
www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
SHELVE IN:
OPERATING SYSTEM

S/UNIX
$29.95 ($32.95 CDN)

B U I L D T H E
N E T W O R K Y O U
N E E D W I T H P F

B U I L D T H E
N E T W O R K Y O U
N E E D W I T H P F

 “ I LAY F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

 Printed on recycled paper

OpenBSD’s stateful packet filter, PF, offers an amazing
feature set and support across the major BSD platforms.
Like most firewall software though, unlocking PF’s full
potential takes a good teacher.

Peter N.M. Hansteen’s PF website and conference
tutorials have helped thousands of users build the
networks they need using PF. The Book of PF is the
product of Hansteen’s knowledge and experience,
teaching good practices as well as bare facts and
software options. Throughout the book, Hansteen
emphasizes the importance of staying in control by
having a written network specification, using macros
to make rule sets more readable, and performing rigid
testing when loading in new rules.

Today’s system administrators face increasing challenges
in the quest for network quality, and The Book of PF can
help by demystifying the tools of modern *BSD network
defense. But, perhaps more importantly, because we
know you like to tinker, The Book of PF tackles a broad
range of topics that will stimulate your mind and pad
your resume, including how to:

• Create rule sets for all kinds of network traffic,
whether it is crossing a simple home LAN, hiding
behind NAT, traversing DMZs, or spanning bridges

• Use PF to create a wireless access point, and lock it
down tight with authpf and special access restrictions

• Maximize availability by using redirection rules for
load balancing and CARP for failover

• Use tables for proactive defense against would-be
attackers and spammers

• Set up queues and traffic shaping with ALTQ, so your
network stays responsive

• Master your logs with monitoring and visualization,
because you can never be too paranoid

The Book of PF is written for BSD enthusiasts and network
admins at any level of expertise. With more and more
services placing high demands on bandwidth and
increasing hostility coming from the Internet at large, you
can never be too skilled with PF.

A B O U T T H E A U T H O R

Peter N.M. Hansteen is a consultant, writer, and sys-
admin based in Bergen, Norway. A longtime Freenix
advocate, Hansteen is a frequent lecturer on FreeBSD
and OpenBSD topics. The Book of PF, Hansteen’s first
book, is an expanded follow-up to his very popular
online PF tutorial.

With a foreword by

B O B B E C K ,

Director of

the OpenBSD Foundation

P E T E R N . M . H A N S T E E N

T H E B O O K
O F P F

T H E B O O K
O F P F

A N O - N O N S E N S E G U I D E T O T H E

O P E N B S D F I R E W A L L

H
A

N
S

T
E

E
N

T
H

E
 B

O
O

K
 O

F
 P

F
T

H
E

 B
O

O
K

 O
F

 P
F

THE BOOK OF PF

THE BOOK OF PF
A No - N o n s e n se G u i d e t o t h e

O p e n B S D F ir e w a l l

by Peter N.M. Hansteen

San Francisco

®

THE BOOK OF PF. Copyright © 2008 by Peter N.M. Hansteen.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

11 10 09 08 07 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-165-4
ISBN-13: 978-1-59327-165-7

Publisher: William Pollock
Production Editor: Megan Dunchak
Cover and Interior Design: Octopod Studios
Developmental Editor: Adam Wright
Technical Reviewer: Henning Brauer
Copyeditor: Linda Recktenwald
Compositor: Riley Hoffman
Proofreader: Alina Kirsanova
Indexers: Karin Arrigoni and Peter N.M. Hansteen

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Hansteen, Peter N. M.
 The book of PF : a no-nonsense guide to the OpenBSD firewall / Peter N.M. Hansteen.
 p. cm.
 Includes index.
 ISBN-13: 978-1-59327-165-7
 ISBN-10: 1-59327-165-4
 1. OpenBSD (Electronic resource) 2. TCP/IP (Computer network protocol) 3. Firewalls (Computer
security) I. Title.
TK5105.585.H385 2008
005.8--dc22
 2007042929

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Printed on recycled paper in the United States of America

To Gene Scharmann,
who all those years ago nudged me in the direction of free software

B R I E F C O N T E N T S

Foreword by Bob Beck.. xi

Preface ... xiii

Chapter 1: What PF Is ...1

Chapter 2: Let’s Get On With It ..7

Chapter 3: Into the Real World ...17

Chapter 4: Wireless Networks Made Easy ...33

Chapter 5: Bigger or Trickier Networks..45

Chapter 6: Turning the Tables for Proactive Defense ..67

Chapter 7: Queues, Shaping, and Redundancy ..87

Chapter 8: Logging, Monitoring, and Statistics ...107

Chapter 9: Getting Your Setup Just Right ..121

Appendix A: Resources..135

Appendix B: A Note on Hardware Support ..141

Index ...147

C O N T E N T S I N D E T A I L

FOREWORD by Bob Beck xi

PREFACE xiii
About the Book and Thanks ... xiv
If You Came from Elsewhere .. xvi

PF looks really cool. Can I run PF on my Linux machine? xvi
I know some Linux, but I need to learn some BSD. Any pointers? xvi
Can you recommend a GUI tool for managing my PF rule set?xvii
Is there a tool I can use to convert my OtherProduct® setup

to a PF configuration? ..xviii
Where can I find out more? ...xviii

A Little Encouragement: A PF Haiku .. xix

1
WHAT PF IS 1
Packet Filter? Firewall? A Few Important Terms Explained .. 3
Network Address Translation ... 3

Why the Internet Lives on a Few White Lies .. 4
Internet Protocol, Version 6 on the Far Horizon ... 4
The Temporary Masquerade Solution Called NAT ... 5

PF Today ... 6

2
LET’S GET ON WITH IT 7
Simplest Possible PF Setup on OpenBSD ... 8
Simplest Possible PF Setup on FreeBSD ... 9
Simplest Possible PF Setup on NetBSD .. 10
First Rule Set—A Single, Stand-Alone Machine .. 11
Slightly Stricter, with Lists and Macros ... 13
Statistics from pfctl .. 15

3
INTO THE REAL WORLD 17
A Simple Gateway, NAT If You Need It .. 17

Gateways and the Pitfalls of in, out, and on .. 18
What Is Your Local Network, Anyway? .. 19
Setting Up .. 19
Testing Your Rule Set ... 23

That Sad Old FTP Thing .. 24
FTP Through NAT: ftp-proxy ... 25

FTP, PF, and Routable Addresses: ftpsesame, pftpx, and ftp-proxy 26
New-Style FTP: ftp-proxy ... 26

viii Conten t s in Detai l

Making Your Network Troubleshooting Friendly ... 28
Then, Do We Let It All Through? .. 28
The Easy Way Out: The Buck Stops Here ... 29
Letting ping Through .. 29
Helping traceroute ... 29
Path MTU Discovery .. 30

Tables Make Your Life Easier ... 31

4
WIRELESS NETWORKS MADE EASY 33
A Little IEEE 802.11 Background .. 33

MAC Address Filtering ... 34
WEP .. 35
WPA ... 35
Picking the Right Hardware for the Task ... 35

Setting Up a Simple Wireless Network ... 36
The Access Point’s PF Rule Set ... 38
If Your Access Point Has Three or More Interfaces ... 38
Handling IPsec, VPN Solutions .. 39
The Client Side ... 40

Guarding Your Wireless Network with authpf .. 40
A Basic Authenticating Gateway ... 41
Wide Open but Actually Shut ... 43

5
BIGGER OR TRICKIER NETWORKS 45
When Others Need Something in Your Network: Filtering Services 45

A Webserver and a Mail Server on the Inside—Routable Addresses 46
Getting Load Balancing Right with hoststated .. 51
A Webserver and a Mail Server on the Inside—The NAT Version 56

Back to the Single NATed Network ... 57
Filtering on Interface Groups ... 59

The Power of Tags .. 60
The Bridging Firewall .. 61

Basic Bridge Setup on OpenBSD.. 61
Basic Bridge Setup on FreeBSD.. 62
Basic Bridge Setup on NetBSD... 63
The Bridge Rule Set ... 64

Handling Nonroutable Addresses from Elsewhere .. 65

6
TURNING THE TABLES FOR PROACTIVE DEFENSE 67
Turning Away the Brutes ... 68

You May Not Need to Block All of Your Overloaders 70
Tidying Your Tables with pfctl ... 70
The Forerunner: expiretable .. 71

Conten ts in Detai l ix

Giving Spammers a Hard Time with spamd ... 71
Remember, You Are Not Alone: Blacklisting ... 72
Greylisting: My Admin Told Me Not to Talk to Strangers 75
Some Highlights of Day-to-Day spamd Use ... 78
Handling Sites That Do Not Play Well with Greylisting 83
Conclusions from Our spamd Experience ... 84

7
QUEUES, SHAPING, AND REDUNDANCY 87
Directing Traffic with ALTQ .. 87

Basic ALTQ Concepts .. 88
Queue Schedulers, aka Queue Disciplines ... 88
Setting Up ALTQ ... 89
Understanding Priority-Based Queues (priq) .. 91
Class-Based Bandwidth Allocation for Small Networks (cbq) 93
Queuing for Servers in a DMZ .. 94
Using ALTQ to Handle Unwanted Traffic .. 96

Redundancy and Failover: CARP and pfsync ... 97
The Project Specification: A Redundant Pair of Gateways 98
Setting Up CARP: Kernel Options, sysctl, and ifconfig Commands 100
Keeping States Synced: Adding pfsync .. 103
Putting Together a Rule Set ... 104

8
LOGGING, MONITORING, AND STATISTICS 107
PF Logs: The Basics ... 108

Logging All Packets: log (all) ... 110
Logging to Several pflog Interfaces .. 111
Logging to syslog, Local or Remote .. 112
Tracking Statistics for Each Rule with Labels .. 113

Some Additional Tools for PF Logs and Statistics .. 115
Keeping an Eye on Things with pftop ... 115
Graphing Your Traffic with pfstat ... 116
Collecting NetFlow Data with pfflowd .. 118
SNMP Tools and PF-Related SNMP MIBs .. 118

Remember, Useful Log Data Is the Basis for Effective Debugging 119

9
GETTING YOUR SETUP JUST RIGHT 121
The Things You Can Tweak and What You Probably Should Leave Alone 121

block-policy .. 122
skip ... 123
state-policy ... 123
timeout ... 123
limit ... 125
debug .. 126
ruleset-optimization .. 126
optimization ... 127

x Conten ts in Detai l

Cleaning Up Your Traffic: scrub and antispoof ... 127
scrub ... 128
antispoof .. 128

Testing Your Setup .. 129
Debugging Your Rule Set .. 131
Know Your Network, Stay in Control .. 133

A
RESOURCES 135
General Networking and BSD Resources on the Internet .. 136
Sample Configurations and Related Musings ... 137
PF on Other BSD Systems .. 138
BSD and Networking Books .. 138
Wireless Networking Resources ... 139
spamd and Greylisting-Related Resources .. 139
Book-Related Web Resources ... 139
If You Enjoyed This Book, Buy OpenBSD CDs and Donate! 140

B
A NOTE ON HARDWARE SUPPORT 141
A Case in Point: The Story of a Small Wireless Network ... 142
Getting the Right Hardware ... 143
Issues Facing Hardware-Support Developers .. 144
How to Help the Hardware-Support Efforts .. 144

INDEX 147

F O R E W O R D

OpenBSD’s PF packet filter has enjoyed a lot of success
and attention since it was first released in OpenBSD 3.0
in late 2001. While you’ll find out more about PF’s
history in this book, in a nutshell, PF happened because it was needed by the
developers and users of OpenBSD. Since the original release, PF has evolved
greatly and has become the most powerful free tool available for firewalling,
load balancing, and traffic managing. When PF is combined with CARP and
pfsync, PF lets system administrators not only protect their services from attack,
but it makes those services more reliable by allowing for redundancy and it
makes them faster by scaling them using pools of servers managed through
PF and hoststated.

While I have been involved with PF’s development, I am first and foremost
a large-scale user of PF. I use PF for security, to manage threats both internal
and external, and to help me run large pieces of critical infrastructure in a
redundant and scalable manner. This saves my employer (the University of
Alberta, where I wear the head sysadmin hat by day) money, both in terms
of downtime and in terms of hardware and software. You can use PF to do
the same.

xii Foreword

With these features comes the necessary evil of complexity. For someone
well versed in TCP/IP and OpenBSD, PF’s system documentation is quite
extensive and usable all on its own. But in spite of extensive examples in the
system documentation, it is never quite possible to put all the things you can
do with PF and its related set of tools front and center without making the
system documentation so large that it ceases to be useful for those experi-
enced people who need to use it as a reference.

This book bridges the gap. If you are a relative newcomer, it can get you
up to speed on OpenBSD and PF. If you are a more experienced user, this
book can show you some examples of the more complex applications that
help people with problems beyond the scope of the typical. For several years,
Peter N.M. Hansteen has been an excellent resource for people learning how
to apply PF in more than just the “How do I make a firewall?” sense, and this
book extends his tradition of sharing that knowledge with others. Firewalls
are now ubiquitous enough that most people have one, or several. But this
book is not simply about building a firewall, it is about learning techniques
for manipulating your network traffic and understanding those techniques
enough to make your life as a system and network administrator a lot easier.
A simple firewall is easy to build or buy off the shelf, but a firewall you can
live with and manage yourself is somewhat more complex. This book goes a
long way toward flattening out the learning curve and getting you thinking
not only about how to build a firewall, but how PF works and where its
strengths can help you. This book is an investment to save you time. It will
get you up and running the right way—faster, with fewer false starts and less
time experimenting.

Bob Beck
Director, The OpenBSD Foundation
http://www.openbsdfoundation.org
Edmonton, Alberta, Canada

P R E F A C E

This is a book about building the network
you need. In order to build that network,

we’ll dip into the topics of firewalls and
related functions, starting from a little theory

along with a number of examples of filtering and
other network traffic directing. We’ll assume that you
have a basic to intermediate command of TCP/IP
networking concepts and Unix administration.

All the information in this book comes with a fair warning: As in any
number of other endeavors, the things we discuss can be done in more than
one way. You should also be aware that, as with any other book about software,
the world could have changed slightly or quite a bit since the book was printed.

The information in the book is as up to date and correct as we could man-
age at the time of writing and refers to OpenBSD version 4.2, FreeBSD 7.0,
and NetBSD 4.0, with any patches available shortly before the end of
September 2007.

xiv Preface

The book is a direct descendant of a moderately popular PF tutorial.
The tutorial is also the source of the following admonition, and you may be
exposed to this live if you attend one of my sessions.

WARNING This is not a HOWTO.

This document is not intended as a precooked recipe for cutting and
pasting.

Just to hammer this in, please repeat after me:

The Pledge of the Network Admin

This is my network.

It is mine,
or technically, my employer's;
it is my responsibility,
and I care for it with all my heart.

There are many other networks a lot like mine,

but none are just like it.

I solemnly swear

that I will not mindlessly paste from HOWTOs.

The point is, while the rules and configurations I show you do work
(I have tested them, and they are in some way related to what has been put
into production), they may very well be overly simplistic, and they are almost
certain to be at least a little off and possibly quite wrong for your network.

Please keep in mind that this book is intended to show you a few useful
things and inspire you to achieve good things.

Please strive to understand your network and what you need to do to
make it better.

Please do not paste blindly from this document or any other.

About the Book and Thanks

The book is intended to be a stand-alone document to enable you to work on
your machines with only short forays into man pages and occasional reference
to the online and printed resources listed in Appendix A.

The manuscript started out as a user group lecture, first presented at
the January 27, 2005 meeting of the Bergen [BSD and] Linux User Group
(BLUG). After I had translated the manuscript into English and expanded
it slightly, Greg Lehey suggested that I should stretch it a little further and
present it as a half-day tutorial for the AUUG 2005 conference. After a series
of tutorial revisions, I finally started working on what was to become the book
version in early 2007.

Pre face xv

The next two paragraphs are salvaged from the tutorial manuscript and
still apply to this book:

This manuscript is a slightly further developed version of a
manuscript prepared for a lecture which was announced as
(translated from Norwegian):

“This lecture is about firewalls and related functions, with
examples from real life with the OpenBSD project’s PF (Packet
Filter). PF offers firewalling, NAT, traffic control, and bandwidth
management in a single, flexible, and sysadmin-friendly system.
Peter hopes that the lecture will give you some ideas about how
to control your network traffic the way you want—keeping some
things outside your network, directing traffic to specified hosts or
services, and of course, giving spammers a hard time.”

Some portions of content from the tutorial (and certainly all the really
useful topics) made it into this book in some form. During the process of
turning this into a useful book, a number of people have offered insights and
suggestions.

People who have offered significant and useful input regarding early
versions of this manuscript include Eystein Roll Aarseth, David Snyder, Peter
Postma, Henrik Kramshøj, Vegard Engen, Greg Lehey, Ian Darwin, Daniel
Hartmeier, Mark Uemura, Hallvor Engen, and probably a few who will
remain lost in my email archives until I can grep them out of there.

I would like to thank the following organizations for their kind
support: the NUUG Foundation for a travel grant that partly financed
my AUUG 2005 appearance; the AUUG, UKUUG, SANE, BSDCan, and
AsiaBSDCon organizations for inviting me to their conferences; and finally
the FreeBSD Foundation for sponsoring my trips to BSDCan 2006 and
EuroBSDCon 2006.

Finally, during the process of turning the manuscript into a book,
several people did amazing things that helped this book become a lot
better. I am indebted to Bill Pollock and Adam Wright for excellent
developmental editing; I would like to thank Henning Brauer for excellent
technical review; heartfelt thanks go to Eystein Roll Aarseth, Jakob Breivik
Grimstveit, Hallvor Engen, Christer Solskogen, and Jeff Martin for valuable
input on various parts of the manuscript; and, finally, warm thanks to
Megan Dunchak and Linda Recktenwald for their efforts in getting the
book into its final shape. Special thanks are due to Dru Lavigne for making
the introductions which lead to this book getting written in the first place,
instead of just hanging around as an online tutorial and occasional con-
ference material.

Last but not least, I would like to thank my dear wife, Birthe, and my
daughter, Nora, for all their love and support before and during the book
writing process. This would not have been possible without you.

Now, with that out of the way, we can go on to the meat of the matter.

xvi Preface

If You Came from Elsewhere

If you are reading this because you are considering moving your setup to PF
from some other system, this section is for you. Some of the more common
questions are covered here, in a FAQish, question-and-answer format.

PF looks really cool. Can I run PF on my Linux machine?

In a word, no. Over the years we have seen announcements on the PF mail-
ing list from someone claiming to have started a Linux port of PF, but at the
time of writing (late 2007), nobody has claimed to have completed such a
project. The main reason for this is probably that PF is developed primarily
as a deeply integrated part of the OpenBSD networking stack. Even after
a decade of parallel development, the OpenBSD code still shares enough
fundamentals with the other BSDs1 to make porting possible, but porting PF
to a non-BSD system would require rewriting large chunks of PF itself as well
as whatever integration is needed at the target side.

If you want to use PF, you need to install and run a BSD system such as
OpenBSD, FreeBSD, NetBSD, or DragonFly BSD. These are all fine operating
systems, but my personal favorite is OpenBSD, mainly because that is the
operating system where essentially all PF development happens, and I find
the developers’ and the system’s no-nonsense approach refreshing.

Occasionally minor changes and bug fixes trickle back to the main PF
code base from the PF implementations on other systems, but the newest,
most up-to-date PF code is always to be found on OpenBSD. Some of the
features described in this book are available only in the most recent versions
of OpenBSD; the other BSDs tend to port the latest released PF version from
OpenBSD to their code bases in time for their next release.

If you are planning to run PF on FreeBSD, NetBSD, DragonFly BSD, or
other systems, you should check your system’s release notes and other docu-
mentation for information about which version level of PF is included.

For some basic orientation tips for Linux users to find their way in BSD
network configurations, see “I know some Linux, but I need to learn some
BSD. Any pointers?” below.

I know some Linux, but I need to learn some BSD. Any pointers?

The differences and similarities between Linux and BSD are potentially a
large topic if you probe deeply, but if you have a reasonable command of the
basics, it should not take too long for you to feel right at home in the BSD
way of doing things. In the rest of this book, we will assume that you can find

1 If BSD does not sound familiar, here is a short explanation. The acronym expands to Berkeley
Software Distribution and originally referred to a collection of useful software developed for the
Unix operating system by staff and students at the University of California, Berkeley. Over
time, the collection expanded into a complete operating system, which in turn became the fore-
runner of a family of systems, including OpenBSD, FreeBSD, NetBSD, DragonFly BSD, and,
by some definitions, even Apple’s Mac OS X. For a very readable explanation of what BSD is,
see Greg Lehey’s “Explaining BSD” at http://www.freebsd.org/doc/en/articles/explaining-bsd and of
course the projects’ websites.

Preface xvii

your way around the basics of BSD network configuration. So, if you are
more familiar with configuring Linux or other systems than you are with
BSD, it is worth noting a few points about BSD configuration:

� Linux and BSD use different conventions for naming network interfaces.
Unlike the Linux convention, BSD network interfaces are not labeled
eth0 and so on. Instead, the interfaces are assigned names that equal the
driver name plus a sequence number. For example, older 3Com cards
using the ep driver appear as ep0, ep1, and so on, while Intel Gigabit cards
are likely to end up as em0, em1, and the like. Some SMC cards are listed as
sn0, and so on. Quite logical, really, and you will find this system easy to
get used to.

� The configuration is /etc/rc.conf-centric. In general, the BSDs are orga-
nized to read the configuration from the file /etc/rc.conf, which is read by
the /etc/rc script at startup. OpenBSD recommends using /etc/rc.conf.local
for local customizations, since rc.conf contains the default values, while
FreeBSD uses /etc/defaults/rc.conf to store the default settings, making
/etc/rc.conf the correct place to make changes. In addition, OpenBSD
uses per-interface configuration files called hostname.<if>, where you
substitute the interface name for <if>.

� And finally, for the purpose of learning PF, you will need to concentrate
on the /etc/pf.conf file, which will be largely your own creation.

If you need a broader and more thorough introduction to your BSD
of choice, look up the operating system’s documentation, including FAQs
and guides, at the project’s website. You can also find some suggestions for
further reading in Appendix A.

Can you recommend a GUI tool for managing my PF rule set?

This book is mainly oriented toward users who edit their rule sets in their
favorite text editor.2 The sample rule sets in this book are simple enough
that you probably would not get a noticeable benefit from any of the
visualization options the various GUI tools are known to offer.

A rather common line of argument claims that the PF configuration files
are generally readable enough that the actual need for a graphic visualization
tool is significantly smaller if you are using PF than for other tools. There are,
however, several GUI tools available that can edit and/or generate PF config-
urations, including a complete, customized build of FreeBSD called pfsense,
which includes a sophisticated GUI rule editor.

I recommend that you work through the parts of this book that apply to
your situation, and then decide if you need to use a GUI tool in order to feel
comfortable running and maintaining the systems you build.

2 I will not tire you with details of which text editor I use. If you are truly interested, it’s fairly easy
to find out, even without contacting me.

xviii Pre face

Is there a tool I can use to convert my OtherProduct ® setup to a PF
configuration?

The best strategy when converting network setups, including firewall setups,
from one product to another is without question to go back to the specifi-
cations or policies for your network or firewall configuration, and then
implement the policies using the new tool.

There are several reasons for this. Other products will inevitably have a
slightly different feature set, and the existing configuration you created for
OtherProduct® is likely to mirror slightly different approaches to specific
problems, which do not map easily (or at all) to features in PF and related
tools. Another strong reason to create a set of documents that contain a com-
plete prose specification of what your setup is meant to achieve is that it is
then possible to verify whether the configuration you are running in fact
implements the design goals.

Having a documented policy and taking care to update it as your needs
change will make your life easier. (You might start out by putting comments
in your configuration file to explain the purpose of your rules.) In some
corporate settings there may even be a formal requirement for a written
policy.

The impulse to look for a way to automate your conversion is quite
understandable and perhaps expected in a system administrator. I urge you
to resist the impulse and to perform your conversion after reevaluating your
business and technical needs and (preferably) after creating or updating a
formal specification or policy in the process.

NOTE Some of the GUI tools that serve as administration front ends claim the ability to out-
put configuration files for several firewall products and could conceivably be used as
conversion tools. However, this has the effect of inserting another layer of abstraction
between you and your rule set, and it also puts you at the mercy of the tool author’s
understanding of how PF rule sets work. Once again, I recommend working through at
least the relevant parts of this book before spending serious time considering an auto-
mated conversion.

Where can I find out more?

There are several good sources of information about PF and the systems it
runs on. You have already found one in this book. You can find references to
a number of other printed and online resources in Appendix A.

If you have a BSD system with PF installed, consult the online manual
pages (aka man pages) for information on the exact release of the software
you are dealing with. Unless otherwise indicated, the information in
this book refers to the world as it looks from the command line on an
OpenBSD 4.2 system.

Preface xix

A Little Encouragement: A PF Haiku

If you are not quite convinced yet (or even if you are reading on anyway), a
little encouragement may be in order. Over the years, a good many people
have said and written their bit about PF—sometimes odd, sometimes wonder-
ful, and sometimes just downright strange.

The poem quoted below is a good indication of the level of feeling PF
sometimes inspires in its users. The poem appeared on the PF mailing list in
a thread that started with a message with the subject “Things pf can’t do?” in
May 2004. The message had been written by someone who did not have a lot
of firewall experience and who consequently found it hard to get the setup
he or she wanted.

This, of course, led to some discussion, with several participants saying
that if PF was hard on a newbie, the alternatives were certainly not a bit better.
The thread ended in the following haiku of praise from Jason Dixon, which
is given intact, along with Jason’s comments:3

Compared to working with iptables, PF is like this haiku:

A breath of fresh air,
floating on white rose petals,
eating strawberries.

Now I'm getting carried away:

Hartmeier codes now,
Henning knows not why it fails,
fails only for n00b.

Tables load my lists,
tarpit for the asshole spammer,
death to his mail store.

CARP due to Cisco,
redundant blessed packets,
licensed free for me.

Some of the concepts Jason mentions here may sound a bit unfamiliar,
but if you read on, it will all make sense in a little while.

Now I’ll really stop blabbering and let you go to the first chapter, which
introduces you to some important networking concepts.

3 Jason Dixon, on the PF email list, May 20, 2004. See http://marc.info/?l=openbsd-pf&m=
108507584013046&w=2.

1
W H A T P F I S

You have come here because you have
heard about the networking product called

PF, and you are most likely reading this book
because you want to learn what it’s all about. It’s

probably useful to start by spending a few moments
looking at the project’s history in order to put things
in their proper context.

OpenBSD’s Packet Filter subsystem, which most people refer to simply by
using the abbreviated form PF, was originally written during an episode of
extremely rapid development during the northern hemisphere summer and
autumn months of 2001 by Daniel Hartmeier and a number of OpenBSD
developers. The result was launched as a default part of the OpenBSD 3.0
base system in December 2001.

The new firewalling software subsystem for OpenBSD was suddenly
needed when Darren Reed announced to the world that IPFilter, which at
that point had been rather intimately integrated in OpenBSD, was not BSD

2 Chapter 1

licensed after all. In fact, that wasn’t quite the case: The license itself was
almost a word-for-word copy of the BSD license, omitting only the right to
make changes to the code and distribute the result.

The OpenBSD version of IPFilter contained quite a number of changes
and customizations, which, as it turned out, were not allowed according to
the license. As a result, IPFilter was removed from the OpenBSD source tree
on May 29, 2001, and for a few weeks OpenBSD-current did not contain any
firewalling software.

Fortunately, in Switzerland, Daniel Hartmeier was already doing some
limited experiments involving kernel hacking in the networking code. He
began by hooking a small function of his own into the networking stack and
then making packets pass through it. After a while he began thinking about
filtering. Then the license crisis happened.

The first commit of the PF code happened on Sunday, June 24, 2001 at
19:48:58 UTC.1

A few months of rather intense activity followed, and the version of PF
released with OpenBSD 3.0 contained a rather complete implementation of
packet filtering, including network address translation.

From the looks of it, Daniel Hartmeier and the other PF developers
made good use of their experience with the IPFilter code. Daniel presented
a paper at USENIX in 2002 with performance tests that showed that the
OpenBSD 3.1 PF performed equally well or better under stress than either
IPFilter on OpenBSD 3.1 or iptables on Linux.

In addition, tests were run on the original PF from OpenBSD 3.0 that
showed mainly that the code had increased in efficiency from version 3.0 to
version 3.1. (The article that provides the details is available from Daniel
Hartmeier’s website; see http://www.benzedrine.cx/pf-paper.html.)

This all happened several years ago, and, like the rest the world, OpenBSD
and PF have both been exposed to rapid changes in hardware and network
conditions since. I have not seen comparable tests performed recently, but
in my own experience and in that of others, PF’s filtering overhead is pretty
much negligible. As one data point (mainly to illustrate that the low end
is still useful), the machine that gateways between my office’s network
and the world is a Pentium III 450MHz with 384MB of RAM. When I’ve
remembered to check, I’ve never seen the machine at less than 96 percent
idle according to top.

The PF code naturally generated interest in the sister BSDs as well. As we
mentioned earlier, PF is available as a part of the base system of OpenBSD,
where it is the default packet filter. The FreeBSD project gradually adopted

1 It is worth noting that the IPFilter copyright episode spurred the OpenBSD team to perform a
license audit of the entire source tree and ports in order to avoid similar situations in the future.
A number of potential problems were uncovered and resolved in the months that followed,
resulting in the removal of a number of potential license pitfalls for everyone involved in free
software development. Theo de Raadt summed up the effort in a message to the openbsd-misc
mailing list on February 20, 2003, available among others from the MARC mailing list archives
at http://marc.info/?l=openbsd-misc&m=104570938124454&w=2.

What PF I s 3

PF into the base system as one of three packet-filtering systems, at first as a
package, starting with version 5.3. PF has also been included in NetBSD and
DragonFly BSD.2

The main focus in this book will be on the most up-to-date PF version
available in OpenBSD 4.2. We will note significant differences between that
version and the ones integrated into the other systems where appropriate.

Packet Filter? Firewall? A Few Important Terms Explained

By now I have used some terms and concepts without bothering to explain
them, and I’ll correct that oversight shortly. PF is a packet filter, that is, code
that inspects network packets at the protocol and port levels and then decides
what to do with them. In PF’s case, this code for the most part operates in
kernel space, inside the network code.

PF operates in a world that consists of packets, protocols, connections, ports,
and services. In the PF worldview, interfaces, source addresses, and destination
addresses are relevant too, along with a few other packet and connection
characteristics.

Based on where a packet is coming from or going to, which protocol or
connection it is part of, and which port it is coming from or heading for, PF
is able to determine where to direct the packet or to decide if it is to be let
through at all. It’s equally possible to direct network traffic based on packet
contents (usually referred to as application-level filtering), but that’s not what PF
does. We will return later to some cases where PF will hand off these kinds of
tasks to other software, but first let us deal with some basics.

We’ve already mentioned the firewall concept. Perhaps the most important
feature of PF and similar software is its ability to identify and block traffic that
you do not want to let into your local network or let out to the world outside.
At some point the term firewall was coined, possibly in an attempt at geek
humor that would also appeal to the suits. I must admit that I’m not terribly
fond of the term myself, but since the concept of packet filtering is firmly
connected to the firewall concept in people’s minds, I will use the term firewall
throughout this book where it makes sense.

Network Address Translation

One other concept we will be talking about quite a lot is inner and outer
addresses, or routable and nonroutable addresses. At the heart of things, this
concept is not directly related to firewalls or packet filtering, but because of
the way the world works today, we need to touch on it.

2 There is even a personal firewall product for Microsoft Windows available that claims to
be based on PF. That product, called Core Force, is outside the scope of this book, but if you
are interested, you can find further information at the Core Security website (http://www
.coresecurity.com).

4 Chapter 1

In fact, let us be very clear about this: NAT does not a firewall make. That is
a common misconception, and if you read on you will realize both why some
less well-informed people tend to believe that NAT equals firewall and vice
versa and why that does not, in fact, make sense. But first, let us go back to
the whys and hows.

Why the Internet Lives on a Few White Lies

The addressing terminology that we now take more or less for granted is a
relic of the early 1990s. At the time, commercialization of the Internet had
just started, and somebody started calculating the number of computers that
would connect to the Internet if commercialization continued. The numbers
were staggering.

When the Internet protocols were originally formulated, computers were
usually big, expensive things that would normally serve a large number of
users simultaneously, each at his or her own more or less dumb terminal.
Some of these computers ran on Unix or even an early version of BSD, while
others generally ran the manufacturer’s proprietary system (although back
then it wasn’t too hard for a university or technically oriented business to get
access to its operating system’s source code). Some customers even produced
patches, which were then integrated into later versions of the manufacturer’s
system.

Only universities, research institutions, and a number of companies with
Pentagon contracts were allowed to connect to the network of networks that
would eventually be referred to as the Internet. The thinking was essentially that
32-bit addresses of 4 octets (what most people think of as bytes, though octet
is the more precise term) would go an extremely long way. With a 32-bit
address space, it would be possible to accommodate literally millions of
machines.

Fast-forward a few years, to the early 1990s, and the Internet was no
longer strictly a science project financed by the US Department of Defense.
The experiment was over; the early theory about a decentralized, damage-
resistant network had proven possible and even practical. The world had
changed enough that the commercialization of the Internet began.

Commercial ISPs started offering Internet access to consumers, and
suddenly there were millions of small, inexpensive machines wanting to
connect at the same time. The new users were mainly on dial-up lines, but
they came in large and ever increasing numbers. The development showed
every sign of continuing and even accelerating. This meant that the smart
people who had made the network had some more work to do.

Internet Protocol, Version 6 on the Far Horizon

These smart people went to the root of the problem and began working on
a solution based on a larger address space—since dubbed IP version 6, or
IPv6 for short—which uses 128-bit addresses. IPv6 is the long-term solution,
designed to both replace and (to the extent possible) seamlessly interoperate
with existing networks. While some proprietary systems have been slow to rise

What PF I s 5

to the IPv6 challenge, the BSDs come with IPv6 support built in, thanks to
code from the KAME3 project, which has been integrated into the baseline
network stack for many years. As a result, PF has had native IPv6 support
from the very beginning.

Moving the entire world to a different type of network addressing was
expected to take a few years, and it was decided that an interim solution was
needed.4

The Temporary Masquerade Solution Called NAT

The temporary solution, which has been longer lived and more popular than
its inventors probably intended, consists of two parts. One part is a mechanism
designed to offer the rest of the world “white lies” by letting network gateways
rewrite packet addresses. The other part designates some address ranges,
which had been left unassigned, for use only in networks that do not commu-
nicate directly with the Internet. Thus, several different machines at separate
locations could have the same local IP address but, because the address
would be translated before the traffic was let out to the Internet at large,
there would be no collision.

If traffic with such nonroutable addresses were to hit the Internet at
large, routers seeing the traffic would have a valid reason to refuse to let the
packets pass any further. After all, with source addresses in the private ranges,
the packets should not be out in the public part of the Internet at all.

We call this system network address translation (NAT), sometimes referred
to as IP masquerade or something similar. The two RFCs that define the
whats and hows of this are dated 1994 (RFC 1631) and 1996 (RFC 1918),
respectively.5

There may be a number of reasons to use the so-called RFC 1918
addresses, but traditionally and historically, the main reason has been that
official addresses are either not available or not practical. RFC 1918 provided
the final part of the puzzle for the interim solution to the IP address shortage,
with specific ranges of IP addresses allocated to internal networks for network
administrators to keep track of. With the NAT mechanism in place at the
gateway, the crisis appeared to be over. The key was translation, which lets
packets flow freely with minimal restriction.

3 To quote the project home page at http://www.kame.net, “The KAME project was a joint effort of
six companies in Japan to provide a free stack of IPv6, IPsec, and Mobile IPv6 for BSD variants.”
The main research and development activities were considered complete in March 2006, with
only maintenance activity continuing, now that the important parts have been incorporated into
the relevant systems.
4 In fact, the migration is far from complete, partly due to some IPv6 design decisions that
remain controversial because of possible security implications. Matters turned slightly worse
when some rather serious security issues were discovered early in 2007 that are direct conse-
quences of the IPv6 design. Just how damaging these issues will be to IPv6 adoption is still not
clear at the time of writing.
5 The two documents are RFC 1631, “The IP Network Address Translator (NAT),” dated May
1994, and RFC 1918, “Address Allocation for Private Internets,” dated February 1996. See
Appendix A for more information and other references.

http://www.kame.net/

6 Chapter 1

NOTE I keep running into people who believe that you cannot have packet filtering without
NAT or that NAT provides all the network security anyone needs. Neither of these
assertions is true, as you will see if you keep reading this book or other useful network-
ing literature. See Appendix A for more information and other references.

PF Today

At this point, we have covered a bit of background. Some years have passed
since 2001, and the PF code has been through a number of revisions. Some of
these revisions have introduced major new features, while others have been
introduced maybe to stabilize or optimize PF. PF in its present OpenBSD 4.2
form is a mature and stable packet filter that is capable of doing quite a few
things, if you want it to.

� PF classifies packets based on address family, protocol, source or destina-
tion port or port ranges, packet type, and source or destination address.
It will even classify packets relative to specific interfaces or interface
groups and, with a reasonable degree of certainty, based on the source
operating system and a number of other parameters.

� PF can also direct traffic to destinations other than those designated by
the sender—for example, to a different machine, to a program for further
processing, or to a daemon listening on a port, either locally or on a
different machine. (In Chapter 3 and Chapter 6 we will walk through a
few sample setups where such external programs perform specific services
and interact with PF in various interesting ways.)

� Before PF was written, OpenBSD contained the ALTQ code to handle
load balancing and traffic shaping. After a while, ALTQ was integrated
with PF, mainly for practical reasons.

� Even if NAT is not a required part of a packet filter, for practical reasons
it’s nice if the address-rewriting logic is handled somewhere nearby.
Consequently, PF contains NAT logic as well.

� As a result of some years of development based on the real-world needs
of network administrators, this powerful toolset is yours to configure via
a single, essentially human-readable configuration file, /etc/pf.conf.

Your system probably comes with a pf.conf file that contains some
commented-out suggestions for useful configurations, as well as a few examples
in the documentation directories such as /usr/share/pf/. These examples are
useful as a reference, but we will not be using them directly in this book.
Instead, over the next few chapters we will be constructing a pf.conf file from
scratch, using an incremental, hands-on approach.

2
L E T ’ S G E T O N W I T H I T

In this chapter we create a very simple
setup with PF. At first, we’ll deal with the

simplest configuration possible: a single
machine that is configured to communicate

with a single network. That network could very well
be the Internet.

Your two main tools for configuring PF are your favorite text editor and
the pfctl command-line administration tool. In ordinary, day-to-day admini-
stration, you will edit your rule set in the /etc/pf.conf file and then load your
changes using pfctl. The pfctl application can also do a number of other
things and has a large number of options. Some of these options we will
explore over the next few chapters.

In case you are wondering, there are web interfaces available for PF
administration tasks, but they are not parts of the base system. The PF
developers are not hostile toward these options, but they have not yet seen
a graphical interface for configuring PF that is clearly preferable to editing
pf.conf and pfctl command lines.

8 Chapter 2

Simplest Possible PF Setup on OpenBSD

If you want to enable PF at startup, you need to tell the rc system to start the
service. In OpenBSD, you do this by editing or creating the file /etc/rc.conf.local
and adding this magical (yet simple) line:

pf=YES # enable PF

In addition, it is possible to specify the file where PF will find its rules:1

pf_rules=/etc/pf.conf # specify which file contains your rules

At the next startup, PF will be enabled. You can verify this by looking for
the PF enabled message on the console.

The /etc/pf.conf file that comes out of a normal installation of OpenBSD,
FreeBSD, NetBSD, or other PF-capable system contains a number of useful
suggestions, but they’re all commented out.

You do not actually need to restart your machine in order to enable PF,
though. You can do it just as easily by using pfctl. And since nobody wants to
reboot for no good reason, type this command to enable PF on a running
system:

$ sudo pfctl -e

At this point, however, we do not have a rule set, which means PF does
not actually do anything.

It is probably worth noting that if you reboot your machine at this point,
the rc script on OpenBSD will enable a default rule set, which is in fact
loaded before any of the network interfaces are enabled. This default rule set
is designed as a safety measure in case your gateway boots with an invalid
configuration. It lets you log in and clean up whichever syntax error caused
your rule set not to load. The default rule set allows a small number of basic
services: ssh from anywhere, basic name resolution, and NFS mounts.

USE SUDO!

I tend to use sudo when I need to do something that requires privileges. sudo is in the
base system on OpenBSD and within easy reach as a port or package elsewhere. If
you have not started using sudo yet, you should. Avoid shooting yourself in the foot
simply because you forgot you were root in that terminal window.

1 However, putting your configuration in a file other than the default /etc/pf.conf is probably not
worth the trouble. Using the default here lets you take advantage of a number of automatic
housekeeping features, such as backing up your configuration to /var/backup every night.

Let ’ s Get On Wi th I t 9

Some early versions of PF ports elsewhere neglected to bring the default
rules with them. This led to some discussion on those projects’ mailing lists,
but by the time this book is out, they should all be in line with a sensible
default rule set.

Simplest Possible PF Setup on FreeBSD

Good code travels well, and FreeBSD users will tell you that good code
from elsewhere tends to find its way into FreeBSD sooner or later. PF is no
exception, and from FreeBSD 5.2.1 and the late 4.x series onward, PF and
related tools made their way into FreeBSD.

On FreeBSD, it seems that you need a little more magic in your /etc/rc.conf
file, but it’s still a simple set of commands. There are some differences between
the FreeBSD 4.x and 5.x and newer releases with respect to PF. Refer to the
FreeBSD Handbook, specifically the PF chapter at http://www.freebsd.org/doc/
en_US.ISO8859-1/books/handbook/firewalls-pf.html, to see which information
applies in your case. The PF code in FreeBSD 7.0 is equivalent to the code
in OpenBSD 4.1. By looking at your /etc/defaults/rc.conf file, you will see that
the defaults values for PF-related settings in FreeBSD are as follows:

pf_enable="NO" # Set to YES to enable packet filter (pf)
pf_rules="/etc/pf.conf" # rules definition file for pf
pf_program="/sbin/pfctl" # where the pfctl program lives
pf_flags="" # additional flags for pfctl
pflog_enable="NO" # Set to YES to enable packet filter logging
pflog_logfile="/var/log/pflog" # where pflogd should store the logfile
pflog_program="/sbin/pflogd" # where the pflogd program lives
pflog_flags="" # additional flags for pflogd
pfsync_enable="NO" # Expose pf state to other hosts for syncing
pfsync_syncdev="" # Interface for pfsync to work through
pfsync_ifconfig="" # Additional options to ifconfig(8) for pfsync

The only ones that you actually need to add to your configuration are
these:

pf_enable="YES" # Enable PF (load module if required)
pflog_enable="YES" # start pflogd(8)

PFCTL COMMAND LINES

For convenience, pfctl is able to handle several operations on a single command
line. To enable PF and load the rule set, run this command:

sudo pfctl -ef /etc/pf.conf

It is probably worth repeating that if you reboot your machine at this point, the rc
script on OpenBSD will enable a default rule set, which is in fact loaded before any
of the network interfaces are enabled.

10 Chapter 2

On FreeBSD, PF is compiled as a kernel-loadable module by default.
This means that you can start PF with

$ sudo kldload pf

followed by

$ sudo pfctl -e

The pfctl -e command should produce the following output:

No ALTQ support in kernel
ALTQ related functions disabled
pf enabled

Assuming you have put the relevant lines in your /etc/rc.conf, you could
also use the PF rc script to operate PF. Use

$ sudo /etc/rc.d/pf start

to enable PF, or use

$ sudo /etc/rc.d/pf stop

to disable the packet filter. The PF rc script supports a few other operations
as well. However, it is worth noting that at this point we still do not have a
rule set. Again, since we haven’t gotten around to writing an actual rule set,
PF is not actually doing anything—it’s just passing packets.

Simplest Possible PF Setup on NetBSD

On NetBSD 2.0 and newer, PF is available as a loadable kernel module that
can be installed via packages (security/pflkm) or compiled into a static kernel
configuration. In NetBSD 3.0 onward, PF is part of the base system.

If you want to enable PF in your kernel configuration (rather than
loading the kernel module), add these lines to your kernel configuration:

pseudo-device pf # PF packet filter
pseudo-device pflog # PF log interface

In /etc/rc.conf you need the lines

lkm="YES" # do load kernel modules
pf=YES
pflogd=YES

to enable loadable kernel modules, PF, and the PF log interface, respectively.

Let ’ s Get On With I t 11

If you installed the module, load it with

$ sudo modload /usr/lkm/pf.o

followed by

$ sudo pfctl -e

to enable PF.
Alternatively, you can run the rc scripts

$ sudo /etc/rc.d/pf start

to enable PF and

$ sudo /etc/rc.d/pflogd start

to enable the logging.
To load the module automatically at startup, add the following line to

/etc/lkm.conf :

/usr/lkm/pf.o - - - - AFTERMOUNT

If everything is still correct at this point, you are ready to create your first
PF rule set.

First Rule Set—A Single, Stand-Alone Machine

This is the simplest possible setup: a single machine that will not run any
services, talking to only one network (which may be the Internet).

For now, we will use a /etc/pf.conf file that looks like this:

block in all
pass out all keep state

This rule set denies any incoming traffic, allows traffic we make ourselves,
and retains state information on our connections. That’s the way rules are
evaluated in PF configurations: The rules are read from top to bottom, and
the last rule in your rule set that matches for the packet or connection is the
one that will be applied. That’s all you need to know about the matter at this
point. We will be looking at evaluation order later when the rule sets grow a
bit longer than the one we have here.

The keep state part of the rule tells PF that when a connection matches
the rule, we want to let the return traffic for connections matching that rule
pass back in the other direction, too. In order to achieve that, we keep infor-
mation about the connection as an entry in the state table. This information
includes various counters and sequence numbers, which are normally quite
useful. We can instruct PF to act on state information in various ways, but in

12 Chapter 2

a simple case like this, the main purpose is to let return traffic for the connec-
tions we initiate pass back to us.

It is worth noting that from OpenBSD 4.1 onward, the default for pass
rules is to keep state information,2 so the equivalent rule set in the new style
is even simpler:

minimal rule set, OpenBSD 4.1 onward keeps state by default
block in all
pass out all

In fact, you could even leave out the all keyword here if you like. The
other BSDs are likely to pick up the new defaults soon, and for the rest of this
book we will be sticking to the newer-style rules, with an occasional reminder
in case you are using an older-style system.

It goes pretty much without saying that passing all traffic generated by a
specific host implies a great deal of trust that the host in question is, in fact,
trustworthy. This is something you do only if this is a machine you know you
can trust.

If you are ready to use the rule set, load it with

$ sudo pfctl -ef /etc/pf.conf

The rule set should load with no error messages or warnings. On all but
the slowest systems, you will be returned to the $ prompt immediately.

2 In fact, the new default corresponds to keep state flags S/SA, ensuring that only initial SYN
packets during connection setup create state, eliminating some puzzling error scenarios. If
you want to filter statelessly, you can specify no state for the rules where you do not want to
record or keep state information. On FreeBSD, OpenBSD 4.1–equivalent PF code was merged
into version 7.0.

TESTING THE RULE SET

Even with a simple two-line rule set like this, you can usefully test whether or not the
rule set works as expected.

Testing to see if your configuration conforms to your expectations is always a
good idea, and proper testing will become even more essential once you move on to
more complicated configurations. Writing a test case for each change you make to the
rule set, complete with the results you expect to see, is a best practice, and the sooner
you get into the habit, the better.

For the rule set we have here, you could test something basic like name resolution
by checking the output of $ host nostarch.com, which should return information such
as the IP address of the host nostarch.com and the hostnames of the domain’s email
exchangers. If you have ssh access to another system, see if you can complete a
login and run commands on the remote system. You could also surf the Web (on
OpenBSD, lynx is in the base system).

Basically any service you try to access from your own system should work, and
any service you try to access on your system from anywhere else should produce a
Connection refused message.

Let ’ s Get On With I t 13

Slightly Stricter, with Lists and Macros

The first rule set was an extremely simple example, and even though we could
use it to demonstrate some basics about how networks and packet filtering
work, it is probably too simplistic for practical use. For a slightly more
structured and complete setup, we can construct a slightly more realistic
example. However, this rule set is still based on the single, stand-alone
system that connects to one network.

In this configuration, we’ll start by denying everything and then allowing
only those things we know that we need.3 This gives us the opportunity to
introduce two of the features that make PF such a wonderful tool: lists and
macros.

We’ll make some changes to /etc/pf.conf, starting with

block all

This is a little more restrictive than the first rule set we used. The new
rule blocks all traffic in both directions, incoming and outgoing. This is the
sensible default and one you will get used to seeing. In all complete rule sets
we develop over the next few chapters, this is the baseline filtering rule. Sub-
sequent rules will cut your traffic some slack, but before we get to the actual
rules, we need to make a few more changes at the very top of the configuration
file. We need to define some macros so we can use them later in the rule set:

tcp_services = "{ ssh, smtp, domain, www, pop3, auth, https, pop3s }"
udp_services = "{ domain }"

Here we’ve demonstrated several things. You now know what macros look
like, and we’ve shown that macros may be lists. You probably also expected to
see port numbers by now, but as we have shown here, PF understands rules
using service names as well as port numbers. The names are the ones listed in
your /etc/services file.

This gives us something to put in our rules, which we edit slightly to look
like this:

block all
pass out proto tcp to any port $tcp_services
pass proto udp to any port $udp_services

NOTE Please remember to add keep state to these rules if your system has a PF version older
than OpenBSD 4.1.

3 You may ask why I write the rule set to default deny. The short answer is that it gives you better
control at the expense of some thinking. The point of packet filtering is to take control, not to
play catch-up with what the bad guys do. Marcus Ranum has written a very entertaining and
informative article about this called “The Six Dumbest Ideas in Computer Security,” which
comes highly recommended. It is available at http://www.ranum.com/security/computer_security/
editorials/dumb/index.html and is a very good read.

http://www.ranum.com/security/computer_security/editorials/dumb/index.html
http://www.ranum.com/security/computer_security/editorials/dumb/index.html

14 Chapter 2

The strings $tcp_services and $udp_services are macro references.
Macros are expanded in place when the rule set loads, and the running
rule set will have the full lists inserted where the macros are referenced.
Macros are extremely good for readability. Even in a small rule set like this,
the rules are easier to grasp and maintain than if we had dealt with the full
list or port numbers.

This is the point where you pick up the habit of always looking for parts
of your rule set that could reasonably be written as macros to help readability.
As your rule sets expand, you will be happy that you did.

You may be thinking about how UDP is stateless and connectionless, but
PF creates and maintains data equivalent to state information for UDP traffic
in order to ensure that UDP return traffic is allowed back in. One common
example where state information for UDP is useful is for handling name reso-
lution. When you ask a nameserver to resolve a domain name to an IP address
or to resolve an IP address back to a hostname, it is quite reasonable to assume
that you want to receive the answer. Retaining state information or the func-
tional equivalent about your UDP traffic makes this possible.

Since we’ve made changes to our pf.conf file, we must load the new rules:

$ sudo pfctl -f /etc/pf.conf

If there are no syntax errors, pfctl will not output any messages during
the rule load.

It is worth noting that you can use the -v flag to produce more verbose
pfctl output:

$ sudo pfctl -vf /etc/pf.conf

In this specific case it probably will not make a difference, however. If
there are no errors in your rule set, pfctl will not produce any output before
returning you to the command-line prompt.

If you have made extensive changes to your rule set, you may want to
check the rules before attempting to load them. The command to do this is
pfctl -nf /etc/pf.conf. The -n option causes the rules to be interpreted only
without loading the rules. This gives you an opportunity to correct any errors.
If pfctl finds any syntax errors in your rule set, it will exit with an error message
that points out the line number where the error occurred.

Under any circumstances, unless you flushed your rules (using pfctl -F
and some specifier) before attempting to load new rules from your config-
uration file, the last valid rule set loaded will be in force until you either
disable PF or load a new rule set. The way rule set loading works, pfctl syntax
checks and then loads your new rule set completely before switching over to
the new one. With a valid rule set loaded, there is no intermediate state with
a partial rule set or no rules loaded. The upshot of this is that flushing the
rule set is rarely a good idea, since it effectively puts your packet filter in a
pass all mode.

Let ’ s Get On With I t 15

Statistics from pfctl

The tests you just performed showed that PF was running and hopefully that
your rules behaved as expected. However, in other circumstances you may
want to check that PF is actually running and review statistics about its activity.
In addition to enabling and disabling PF and loading rule sets, the pfctl
program offers many different types of information displays. To access these
features, you use pfctl -s, adding the type of information you want to display.

The following example was taken from my home gateway while I was
working on this book:

$ sudo pfctl -s info
Status: Enabled for 17 days 00:24:58 Debug: Urgent

Interface Stats for ep0 IPv4 IPv6
 Bytes In 9257508558 0
 Bytes Out 551145119 352
 Packets In
 Passed 7004355 0
 Blocked 18975 0
 Packets Out
 Passed 5222502 3
 Blocked 65 2

State Table Total Rate
 current entries 15
 searches 19620603 13.3/s
 inserts 173104 0.1/s
 removals 173089 0.1/s
Counters
 match 196723 0.1/s
 bad-offset 0 0.0/s

TESTING THE RULE SET

Once you have a rule set that pfctl loads with no errors, it’s time to return to your
testing to see if the rules you have written behave as expected.

Testing name resolution with a command such as $ host nostarch.com should
still work and produce the same output as in the previous example. At this point,
however, it is likely that your system still has the result of the last DNS query cached,
so for the real DNS test, please choose a domain you have not accessed recently
(such as a domain for a political party you would not consider voting for). You
should also be able to surf the Web and use several email-related services. However,
any attempt to access TCP services other than ssh, smtp, domain, www, pop3, auth,
https, and pop3s on any remote system should fail. And just as in the first test suite,
your own system should refuse any and all connections that do not match existing
state table entries. This means that only return traffic for connections your machine
has initiated will be accepted back in.

16 Chapter 2

 fragment 22 0.0/s
 short 0 0.0/s
 normalize 0 0.0/s
 memory 0 0.0/s
 bad-timestamp 0 0.0/s
 congestion 0 0.0/s
 ip-option 28 0.0/s
 proto-cksum 325 0.0/s
 state-mismatch 983 0.0/s
 state-insert 0 0.0/s
 state-limit 0 0.0/s
 src-limit 26 0.0/s
 synproxy 0 0.0/s

The first line here indicates that PF is enabled and has been running for
a little more than two weeks, which is equal to the time since I last upgraded
to the latest snapshot (yes, at that time my home gateway ran OpenBSD-
current). The information here is roughly in line with the statistics you should
expect to see on the gateway for a small network configured for IPv4 only.4

At this point, you probably want to spend some time exploring pfctl
and your configuration. As we hinted earlier, pfctl is a powerful program
that supports a large number of options. For example, pfctl -s all provides
highly detailed information about PF on your system. Try it and have a look.
While you’re there, look into some of the other pfctl options. The command
man 8 pfctl gives you full information.

With the last rule set, you have a single machine that should be able to
communicate rather well with other Internet-connected machines. This very
basic rule set serves as a useful starting point for taking control of your network
traffic. One of the most important underlying themes in this book is about
being in control. In many ways, the rest of this book is about extending your
rule set to fit your network needs while remaining firmly in control of what
goes on in your networks.

A few things are still missing, though. You will probably want to add rules
that let at least some ICMP and UDP traffic through—for your own trouble-
shooting needs, if nothing else.

Looking forward, you should start to think about network services that
have consequences for your security, such as ftp. Even though more modern
and more secure options are available, more likely than not, you will be
required to handle these types of services. You may not have to do that
now, on the stand-alone personal system, but once you get around to
setting up a gateway for a network with more people and more computers,
these consequences will become important.

Using packet filtering intelligently to handle services that are demanding
security-wise is a recurring theme in this book.

4 Do not be alarmed by the three packets passed and two blocked in the IPv6 column. OpenBSD
comes with IPv6 built in, and during network interface configuration, the TCP/IP stack sends
IPv6 neighbor solicitation requests for the link local address by default. In a normal IPv4-only
configuration, only the first few packets actually pass, and by the time our PF rule set is fully
loaded, the last two IPv6 packets are blocked by our block all default rule.

3
I N T O T H E R E A L W O R L D

In the previous chapter we demonstrated
the configuration for basic packet filtering

on a single machine. In this chapter we’ll
build on that basic setup but move into more

conventional territory: the packet-filtering gateway.
While most of the items in this chapter are potentially
useful in a single-machine setup, our main focus now
is to set up a gateway that handles common network
services.

A Simple Gateway, NAT If You Need It

At this point we will start building what you probably associate with the term
firewall: a machine that acts as a gateway for at least one other machine. In
addition to forwarding packets between its various networks, this machine’s
mission will be to improve the signal-to-noise ratio in the network traffic it
handles. That’s where our PF configuration comes in.

18 Chapter 3

However, before diving into the practical configuration details, we need to
dip into some theory. Bear with me; this will end up saving you some of the
headaches I’ve seen discussed on mailing lists and newsgroups all too often.

Gateways and the Pitfalls of in, out, and on
In the single-machine setup, life is relatively simple. Traffic you create should
either pass out to the rest of the world or get blocked by your filtering rules,
and you decide what you want to let in from elsewhere.

When you set up a gateway, your perspective changes. You go from the
It’s me versus the network out there mindset to I am the one who decides what to pass
to or from all the networks I am connected to. The machine has several, or at least
two, network interfaces, each connected to a separate network.

Now, it’s very reasonable to think that if you want traffic to pass from the
network connected to re1 to hosts on the network connected to re0, you will
need a rule like

pass in proto tcp on re1 from re1:network to re0:network port $ports keep state

which keeps track of states as well.1

However, one of the most common and most complained-about mistakes
in firewall configuration is not realizing that the to keyword does not in itself
guarantee passage all the way there.

The rule we just wrote only lets the traffic pass in to the gateway itself, on
the specific interface named in the rule.

To let the packets get a bit farther and move on to the next network
over, you would need a matching rule that says something like

pass out proto tcp on re0 from re1:network to re0:network port $ports keep state

This rule will work, but it will not necessarily achieve what you want.
In fact, this rule only lets packets with a destination in the network directly
connected to re0 pass, nothing else.

If there are good reasons why you need to have rules that are this specific
in your rule set, you’ll know you need them and why. By the time you have
worked through to the end of the book (or probably a bit earlier), you
should be able to articulate with some precision just when such rules are
needed. However, for the basic gateway configurations we will be dealing
with in this chapter, it is likely that you will want to write rules that are not
interface specific. In fact, in some cases it is not really useful to specify
direction, either. What you probably want to use is a rule that says

pass proto tcp from re1:network to any port $ports keep state

1 In fact, even if the keep state part denotes the default behavior and is redundant if you are
working with OpenBSD 4.1 or equivalent, there is generally no need to remove the specification
from your rules when upgrading your rule set from earlier versions. To ease transition, the
examples in this book will make this distinction when needed.

I n to the Real World 19

to let your local net access the Internet and leave the detective work to the
antispoof and scrub code. (They are both pretty good, and we will get back to
them later.) For now, we just accept the fact that for simple setups, interface-
bound in and out rules are likely to add more clutter than they are worth to
your rule sets.

For a busy network admin, a readable rule set is a safer rule set.
For the remainder of this book, with some exceptions, we will keep the

rules as simple as possible for readability. There are cases where we need to
specify direction and interface, and we will be returning to some such cases
later in the book.

What Is Your Local Network, Anyway?

Earlier in this chapter we introduced the interface:network notation. It’s a
nice piece of shorthand, but you can make your rule set even more readable
and maintainable by taking the macro a tiny bit further.

For example, you could define a $localnet macro as the network directly
attached to your internal interface (re1:network in the examples above).

Alternatively, you could change the definition of $localnet to an IP
address/netmask notation to denote a network, such as 192.168.100.0/24 for
a subnet of private IPv4 addresses or fec0:dead:beef::/64 for an IPv6 range.

If your network requires it, you could even define your $localnet as a list
of networks. Whatever your specific needs, a sensible $localnet definition and
a typical pass rule of the type

pass proto { tcp, udp } from $localnet to any port $ports

could end up saving you a few headaches. We will stick to that convention
from here on.

Setting Up

We assume that the machine has acquired another network card, or at any
rate, you have set up a network connection from your local network to one or
more additional networks, via Ethernet, PPP, or other means.

In our context it is not very interesting to look at the details of how the
interfaces get configured. We do need to know that the interfaces are up and
running, though.

For the discussion and examples that follow, only the interface names
will differ between a PPP setup and an Ethernet one, and we will do our best
to get rid of the actual interface names as quickly as possible.

First, we need to turn on gatewaying in order to let the machine forward
the network traffic it receives on one interface to other networks via a separate
interface. Initially we will do this on the command line with a sysctl command;
for traditional IPv4 it is as follows:

sysctl net.inet.ip.forwarding=1

20 Chapter 3

If we need to forward IPv6 traffic, the sysctl command is

sysctl net.inet6.ip6.forwarding=1

This is fine for now, but in order for this to work once you reboot the
computer at some time in the future, you need to enter these settings into
the relevant configuration files.

On OpenBSD and NetBSD, you do this by editing /etc/sysctl.conf.
OpenBSD’s default sysctl.conf has these lines commented out, and you
enable them by removing the hash mark (#) from the start of the line,
like this:

net.inet.ip.forwarding=1
net.inet6.ip6.forwarding=1

On NetBSD, you need to add these lines to the file if they are not there
already.

Editing /etc/sysctl.conf will work on FreeBSD too, but by FreeBSD conven-
tions, you make the change by putting these lines in your /etc/rc.conf :

gateway_enable="YES" #for ipv4
ipv6_gateway_enable="YES" #for ipv6

The net effect is identical: The FreeBSD rc script sets the two values via
the sysctl command. However, a larger part of the FreeBSD configuration is
centralized in the rc.conf file.

Now it’s time to check: Are all of the interfaces you intend to use up and
running? Use ifconfig -a or ifconfig interface_name to find out.

The output of ifconfig -a on one of my systems looks like this:

peter@delilah:~$ ifconfig -a
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33224
 groups: lo
 inet 127.0.0.1 netmask 0xff000000
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5
xl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:60:97:83:4a:01
 groups: egress
 media: Ethernet autoselect (100baseTX full-duplex)
 status: active
 inet 194.54.107.18 netmask 0xfffffff8 broadcast 194.54.107.23
 inet6 fe80::260:97ff:fe83:4a01%xl0 prefixlen 64 scopeid 0x1
fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:30:05:03:fc:41
 media: Ethernet autoselect (100baseTX full-duplex)
 status: active
 inet 194.54.103.65 netmask 0xffffffc0 broadcast 194.54.103.127
 inet6 fe80::230:5ff:fe03:fc41%fxp0 prefixlen 64 scopeid 0x2
pflog0: flags=141<UP,RUNNING,PROMISC> mtu 33224
enc0: flags=0<> mtu 1536

I n to the Real World 21

Your setup is probably at least a little different. Here, the physical
interfaces on my system are xl0 and fxp0, while the logical interfaces lo0
(the loopback interface), enc0 (the encapsulation interface for IPsec use),
and pflog0 (the PF logging device) are most likely there on your system, too.

If you are on a dial-up connection, you probably use some variant of PPP
for your Internet connection, and your external interface is the tun0 pseudo-
device. If your connection is via some sort of broadband connection such as
ADSL, you may have an Ethernet interface to play with. However, if you are
in the significant subset of ADSL users who use PPP over Ethernet (PPPoE),
the correct external interface will be one of the pseudo-devices tun0 or pppoe0
(depending on whether you use userland pppoe(8) or kernel mode pppoe(4)),
not the physical Ethernet interface.

Depending on your setup, you may need to do some other device-
specific configuration for your interfaces. All I can say at this point is get it
done so we can move on to the TCP/IP level and deal with our packet-
filtering configuration.

If you still intend to allow any traffic initiated by machines on the inside,
your /etc/pf.conf could look roughly like this:

ext_if = "re0" # macro for external interface - use tun0 or pppoe0 for PPPoE
int_if = "re1" # macro for internal interface
localnet = $int_if:network
ext_if IP address could be dynamic, hence ($ext_if)
nat on $ext_if from $localnet to any -> ($ext_if)
block all
pass from { lo0, $localnet } to any keep state

Note the use of macros to assign logical names to the network interfaces.
Here, RealTek Gigabit Ethernet cards are used, but this is the last time we
will find this to be of any interest whatsoever. In truly simple setups such as
this one, we may not gain very much by using macros like these, but once the
rule sets grow a little larger, you will learn to appreciate the readability this
adds to the rule sets.

Also note the nat rule. This is where we handle the network address
translation from the nonroutable address inside your local net to the sole
official address assigned to you. If your network uses official, routable
addresses, you can simply leave this line out of your configuration.

The parentheses surrounding the last part of the nat rule, ($ext_if), are
there to compensate for the possibility that the IP address of the external
interface may be dynamically assigned. This detail will ensure that your
network traffic runs without serious interruption even if the external IP
address changes.

On the other hand, this rule set probably allows more traffic than you
actually want to pass out of your network. In one of the networks where I’ve
done a bit of work, the equivalent macro is

client_out = "{ ftp-data, ftp, ssh, domain, pop3, auth, nntp, http,\
 https, 446, cvspserver, 2628, 5999, 8000, 8080 }"

http://marc.info/
http://marc.info/

22 Chapter 3

with the rule

pass inet proto tcp from $localnet to any port $client_out

This may be a somewhat peculiar selection of ports, but it’s exactly what
the people who worked there needed at the time. Some of the numbered
ports were required for specific applications. Your needs probably differ in
the details, but this should cover at least some of the more useful services.

In addition, we have a few other pass rules. We will be returning to some of
the more interesting ones rather soon. One pass rule that is useful to those of
us who want the ability to administer our machines from elsewhere is

pass in inet proto tcp from any to any port ssh

or, if you prefer,

pass in inet proto tcp from any to $ext_if port ssh

The from any part is really quite permissive. It lets you log in from any-
where, which is great if you travel a lot and need ssh access from unknown
locations around the world. If you’re not all that mobile (say you haven’t
quite developed the taste for conferences in far-flung locations, or you
really want to leave your colleagues to fend for themselves while you’re on
vacation), you may want to tighten up the from part to include only the
places from which you and other administrators are likely to log in for
legitimate business reasons.

Anyway, this very basic rule set is not complete just yet. The next thing
we need to do is to make the name service work for our clients. We start with
another macro at the beginning of our rule set:

udp_services = "{ domain, ntp }"

We supplement that with a rule that passes the traffic we want through
our firewall:

pass quick inet proto { tcp, udp } to any port $udp_services

Note the quick keyword in this rule. We have started writing rule sets
that consist of several rules, and it is time to revisit the relationships and
interactions among them.

We touched on this in the previous chapter, but repeating this infor-
mation does not hurt: The rules are evaluated from top to bottom, in the
sequence they are written in the configuration file. For each packet or
connection evaluated by PF, the last matching rule in the rule set is the one
that is applied.

The quick keyword offers an escape from the ordinary sequence. When a
packet matches a quick rule, the packet is treated according to the present
rule. The rule processing stops without considering any further rules that

I n to the Real World 23

might have matched the packet. As your rule sets grow longer and more
complicated, you will find this quite handy, for example, when you need a
few isolated exceptions to your general rules.

This quick rule also takes care of the Network Time Protocol (NTP),
which is used for time synchronization. One fact common to both the name-
service and time-synchronization protocols is that they may, under certain
circumstances, communicate alternately over TCP and UDP.

Testing Your Rule Set
You may not have gotten around to writing that formal test suite for your rule
sets just yet, but there is every reason to test that your configuration works as
expected.

The same basic tests in the stand-alone example from the previous
chapter still apply, only now you need to test from the other hosts in your
network as well as from your packet-filtering gateway. For each of the services
you specified in your pass rules, test that machines in your local network get
meaningful results. From any machine in your local network, the output of a
command like $ host nostarch.com should return exactly the same result as it
did when you tested the stand-alone rule set on pages 12 and 152 and traffic
for the services you have specified should pass.

You may not think it’s necessary, but it does not hurt to check to see
that the rule set works as expected from outside your gateway as well. If you
have done exactly what this chapter says, it should not be possible to contact
machines in your local network from the outside.

2 Unless, of course, the information changed in the meantime. Some sysadmins are fond of
practical jokes, but most of the time, changes in DNS zone information are due to real-world
needs in that particular organization or network.

W H Y O N L Y I P A D DR E S S E S , N O H O S T N A M E S O R
D O M A I N N A M E S ?

Looking at the examples up to this point, you have probably noticed that the rule
sets all have macros that expand into IP addresses or address ranges, but never
host names or domain names. You’re probably wondering why. After all, we’ve
seen that PF lets you use service names in your rule set, so why not host names or
domain names?

The answer is, yes, you can use domain names and host names in your rule
set, but then the rule set would only be valid after the name service is running and
accessible. In the default configuration, PF is loaded before any network services are
running. This means that if you want to use domain names and host names in your
PF configuration, you will need to change the system’s startup sequence (by editing
/etc/rc.local, perhaps) to load the name service–dependent rule set only after the
name service is available.

24 Chapter 3

That Sad Old FTP Thing

The short list of real-life TCP ports we looked at on page 21 contained, among
other things, FTP, the classic File Transfer Protocol. FTP is a relic of the early
Internet, when experiments were the norm and security was not really on the
horizon in any modern sense. FTP actually predates TCP/IP,3 and it is possible
to track the protocol’s development through more than 50 RFCs. After more
than 30 years, FTP is both a sad old thing and a problem child, emphatically
so for anyone trying to combine FTP and firewalls. FTP is an old and weird
protocol, with a lot to dislike. The most common points against it are these:

� Passwords are transferred in the clear.

� The protocol demands the use of at least two TCP connections (control
and data) on separate ports.

� When a session is established, data is communicated via ports selected at
random.

All of these points make for security challenges, even before considering
any potential weaknesses in client or server software that may lead to security
issues. As any network greybeard will tell you, these problems have been
known to crop up when you need them the least.

Under any circumstances, other more modern and more secure options
for file transfer exist, such as sftp or scp, which feature both authentication
and data transfer via encrypted connections. Competent IT professionals
should have a preference for some form of file transfer other than FTP.

Regardless of our professionalism and preferences, there are always times
when we need to handle things we would prefer not to. In the case of letting
FTP traffic pass through firewalls, we can still handle this by redirecting the
traffic to a small program that is written specifically for this purpose. The
upside for us is that handling FTP offers the first chance to look at redirection.

The easiest way to handle FTP is to have PF redirect the traffic for that
service to an external application that acts as a proxy for the service. The proxy
then interacts with your packet filter through a well-defined interface.

Depending on your configuration, which operating system you are using
as the platform for your PF firewall, and how you count them, three or four
different options are available for this particular task.

We will present these options in roughly chronological order accord-
ing to their ages. The original, now mainly historical, FTP proxy for PF is
described below in “FTP Through NAT: ftp-proxy.” We’ll then move on to
two newer, intermediate solutions developed by Camiel Dobbelaar in “FTP,
PF, and Routable Addresses: ftpsesame, pftpx, and ftp-proxy” on page 26,
before finally moving on to the modern FTP proxy that was introduced in
OpenBSD 3.9 in “New-Style FTP: ftp-proxy” on page 26.

3 The earliest RFC describing the File Transfer Protocol is RFC 114, dated April 10, 1971. The
switch to TCP/IP happened with FTP version 5, as defined in RFCs 765 and 775, dated June and
December 1980, respectively.

I n to the Real World 25

FTP Through NAT: ftp-proxy

In November 2005, the old ftp-proxy (/usr/libexec/ftp-proxy) was replaced in
OpenBSD-current with the new ftp-proxy, which lives in /usr/sbin. This is the
software that is included in OpenBSD 3.9 onward.

NOTE OpenBSD 3.8 equivalents or earlier only: This section is destined to become purely
historical as soon as the last PF port moves on to the newer version. If you are using
a modern PF version, jump directly to “New-Style FTP: ftp-proxy” on page 26 for up-to-
date information.

The old-style ftp-proxy program, which is a part of the base system on
systems with PF versions corresponding to OpenBSD 3.8 or earlier, is usually
called via the inetd superserver via an /etc/inetd.conf entry.

You may need to enable the inetd service by adding an

inetd_enable="YES"

line to your rc.conf and possibly adjusting other inetd-related configuration
settings.

The line quoted here specifies that ftp-proxy runs in NAT mode on the
loopback interface:

127.0.0.1:8021 stream tcp nowait root /usr/libexec/ftp-proxy ftp-proxy -n

This line may be in inetd.conf already, possibly commented out with a #
character at the beginning of the line. On FreeBSD, an appropriate line
with a slightly different syntax is already in your inetd.conf, commented out.
To enable the ftp-proxy, you need to uncomment that line.

To enable your change, restart inetd.
On FreeBSD, NetBSD, and other rcNG-based BSDs, do this with

$ sudo /etc/rc.d/inetd restart

or equivalent. Consult man 8 inetd if you are unsure.
Now for the actual redirection. Redirection (rdr) rules and NAT (nat)

rules fall into the same rule class. These rules may be referenced directly by
other rules, and filtering rules may depend on these rules. Logically, rdr and
nat rules need to be defined before the filtering rules.

We insert our rdr rule immediately after the nat rule in our /etc/pf.conf :

rdr pass on $int_if proto tcp from any to any port ftp -> 127.0.0.1 port 8021

In addition, the redirected traffic must be allowed to pass. We achieve
this with

pass in on $ext_if inet proto tcp from port ftp-data to ($ext_if) \
 user proxy flags S/SA keep state

26 Chapter 3

Save your pf.conf file, and then load the new rules with

$ sudo pfctl -f /etc/pf.conf

At this point you will probably have users noticing that FTP works before
you get around to telling them what you’ve done.

This example assumes you are using NAT on a gateway with nonroutable
addresses on the inside. The configuration here covers the basics and should
interact well with a wide range of FTP servers and clients. In practice, you may
need to compensate for quirks on either side of the fence, so for the finer
points of ftp-proxy configuration, do look up the various options the proxy
offers. Looking at man ftp-proxy, you will find example methods for restricting
the range or source ports for data connections, as well as variations on how
to interact with other applications and services.

FTP, PF, and Routable Addresses: ftpsesame, pftpx, and ftp-proxy

In cases where the local network uses official, routable addresses inside the
firewall, several users have reported that they had trouble making the pre–
OpenBSD 3.9 ftp-proxy work properly. Back in the pre–OpenBSD 3.9 days,
I struggled with it myself. After I’d already spent too much time on the
problem, I was relieved to find a solution to this specific problem offered
by a friendly Dutchman called Camiel Dobbelaar. His solution was a
daemon called ftpsesame.

Local networks using official addresses inside a firewall are apparently
rare enough that I’ll skip over any further treatment. If you are running one
of the PF-enabled operating systems in which the integrated PF code predates
OpenBSD 3.9, keep ftpsesame in mind.

On FreeBSD, ftpsesame is available through the ports system as
ftp/ftpsesame. Alternatively, you can download ftpsesame from Sentia at
http://www.sentia.org/projects/ftpsesame.

Once installed and running, ftpsesame hooks into your rule set via an
anchor, a named sub–rule set. The documentation consists of a man page
with examples that you can probably simply copy and paste.

ftpsesame never made it into the base system, and Camiel went on to
write a new solution to the same set of problems. The new program, at first
called pftpx, is available from http://www.sentia.org/downloads/pftpx-0.8.tar.gz
and through the FreeBSD ports system as ftp/pftpx. The pftpx package comes
with a fairly complete and well-written man page to get you started.

A further developed version, suitably renamed as the new ftp-proxy, is now
part of OpenBSD since release 3.9 as /usr/sbin/ftp-proxy. The new ftp-proxy is
described in “New-Style FTP: ftp-proxy” below.

New-Style FTP: ftp-proxy

If you are working with a PF version based on OpenBSD 3.9 or newer, this is
the ftp-proxy version to use.

I n to the Real World 27

NOTE This applies to OpenBSD 3.9 and newer and equivalents.

The new-style ftp-proxy interacts with your rule set via a set of anchors,
where the proxy inserts and deletes the rules it constructs to handle your
FTP traffic. Just like its predecessor, the ftp-proxy configuration is mainly cut
and pasted from the man page.

If you are upgrading to the new ftp-proxy from an earlier version, remove
the ftp-proxy line from your inetd.conf file and either restart inetd or disable it
altogether if your setup no longer requires a running inetd.

Next, enable ftp-proxy by adding the following line to your /etc/rc.conf.local
or /etc/rc.conf :

ftpproxy_flags=""

You can start the proxy manually by running /usr/sbin/ftp-proxy if
you like.

Moving on to the pf.conf file, you need two anchor definitions in the
NAT section:

nat-anchor "ftp-proxy/*"
rdr-anchor "ftp-proxy/*"

Both are needed, even if your setup does not use NAT. If you are
migrating from a previous ftp-proxy version, your rule set probably contains
the appropriate redirection already. If not, add it:

rdr pass on $int_if proto tcp from any to any port ftp -> 127.0.0.1 \
 port 8021

Coming down to the filtering rules, add an anchor for the proxy to fill in:

anchor "ftp-proxy/*"

Finally, add a pass rule to let the packets pass from the proxy to the rest
of the world:

pass out proto tcp from $proxy to any port 21 keep state

where $proxy expands to the address the proxy daemon is bound to.
This example covers a simple setup with clients who need to contact FTP

servers elsewhere. The basic configuration here should work well with most
combinations of FTP clients and servers. In practice you may need to compen-
sate for quirks on either side of the fence, so for the finer points of ftp-proxy
configuration, do look up the various options the proxy offers.

If you are looking for ways to run an FTP server protected by PF and
ftp-proxy, you could look into running a separate ftp-proxy in reverse mode
(using the -R option), on a separate port with its own set of redirection and
pass rules.

28 Chapter 3

Making Your Network Troubleshooting Friendly

Making your network easy to troubleshoot is a potentially large subject. At
most times, the debugging or troubleshooting friendliness of your TCP/IP
network depends on how you treat the Internet protocol that was designed
specifically with debugging in mind, the Internet Control Message Protocol
(ICMP).

ICMP is the protocol for sending and receiving control messages between
hosts and gateways, mainly to provide feedback to a sender about any unusual
or difficult conditions en route to the target host.

There is a lot of ICMP traffic, which usually just happens in the back-
ground while you are surfing the Web, reading email, or transferring files.
Routers (you are aware that you are building one, right?) use ICMP to
negotiate packet sizes and other transmission parameters in a process
often referred to as path MTU discovery.

You may have heard admins referring to ICMP as either “just evil” or, if
their understanding runs a little deeper, “a necessary evil.” The reason for
this attitude is purely historical. A few years back, it was discovered that the
networking stacks of several operating systems contained code that could
make a machine crash if it was sent a sufficiently large ICMP request.

One of the companies that was hit hard by this was Microsoft, and you
can find a lot of material on the ping of death bug by using your favorite
search engine. However, this all happened in the second half of the 1990s,
and all modern operating systems have thoroughly sanitized their network
code since then. At least, that’s what we are led to believe. One of the early
workarounds was to simply block ICMP ECHO (ping) requests or even all
ICMP traffic. Now these rule sets have been around for roughly 10 years,
and the people who put them there are still scared. There is most likely little
or no reason to worry about destructive ICMP traffic anymore, but in the next
sections we will cover how to manage just what ICMP traffic passes to or from
your network.

Then, Do We Let It All Through?

The obvious question becomes, if ICMP is such a good and useful thing,
should we not let it all through, all the time? The answer is, it depends.

Letting diagnostic traffic pass unconditionally makes debugging easier,
of course, but it also makes it relatively easy for others to extract information
about your network. That means that a rule like

pass inet proto icmp from any to any

might not be optimal if you want to cloak the internal workings of your
network. In all fairness, it should also be said that you will find some ICMP
traffic quite harmlessly riding piggyback on your keep state rules.

I n to the Real World 29

The Easy Way Out: The Buck Stops Here

The easiest solution could very well be to let all ICMP traffic from your local
net through and let probes from elsewhere stop at your gateway:

pass inet proto icmp icmp-type $icmp_types from $localnet to any keep state
pass inet proto icmp icmp-type $icmp_types from any to $ext_if keep state

Stopping probes at the gateway might be an attractive option anyway,
but let us have a look at a few other options that will show you some of PF’s
flexibility.

Letting ping Through

The rule set we have developed so far has one clear disadvantage: Common
troubleshooting commands such as ping and traceroute will not work. That
may not matter too much to your users, and since it was the ping command
that scared people into filtering or blocking ICMP traffic in the first place,
there are apparently some people who feel we are better off without it. If you
are in my perceived target audience, you will be rather fond of having those
troubleshooting tools available. And with a few small additions to the rule
set, they will be. The ping command uses ICMP, and in order to keep our rule
set tidy, we start by defining another macro

icmp_types = "echoreq"

and a rule that uses the definition

pass inet proto icmp all icmp-type $icmp_types keep state

You may need more or other types of ICMP packets to go through, and
you can then expand $icmp_types to a list of those packet types you want to
allow.

Helping traceroute

The command traceroute is another command that is quite useful when
your users claim that the Internet isn’t working. By default, Unix traceroute
uses UDP connections according to a set formula based on destination. The
following rule4 works with the traceroute command on all forms of Unix I’ve
had access to, including GNU/Linux:

allow out the default range for traceroute(8):
"base+nhops*nqueries-1" (33434+64*3-1)
pass out on $ext_if inet proto udp from any to any port 33433 >< 33626 keep state

4 This gives us the first taste of what port ranges look like. They are quite useful in some contexts.

30 Chapter 3

Experience so far indicates that traceroute implementations on other
operating systems work roughly the same way. One notable exception is
Microsoft Windows. On that platform, the TRACERT.EXE program uses
ICMP ECHO for this purpose. So if you want to let Windows traceroutes
through, you need only the first rule from the previous section, which you
used to let ping through. The Unix traceroute program can be instructed to
use other protocols as well, and it will behave remarkably like its Microsoft
counterpart if you use its -I command-line option. You can check the
traceroute man page (or its source code, for that matter) for all the details.

This solution was lifted from an openbsd-misc post. I’ve found that
list and the searchable list archives (accessible among other places from
http://marc.info) to be a very valuable resource whenever you need OpenBSD-
or PF-related information.

Path MTU Discovery

The last bit I will remind you about when it comes to troubleshooting is the
path MTU discovery. Internet protocols are designed to be device independent,
and one consequence of device independence is that you cannot always
reliably predict what the optimal packet size is for a given connection. The
main constraint on your packet size is called the Maximum Transmission Unit,
or MTU, which sets the upper limit on the packet size for an interface. The
ifconfig command will show you the MTU for your network interfaces.

Modern TCP/IP implementations expect to be able to determine the
right packet size for a connection through a process that simply involves
sending packets of varying sizes with the “do not fragment” flag set, expect-
ing an ICMP return packet indicating “type 3, code 4” when the upper limit
has been reached. Now, you don’t need to dive for the RFCs right away.
Type 3 means destination unreachable, while code 4 is short for fragmentation
needed, but the “do not fragment” flag is set. So if your connections to networks,
which may have MTUs that differ from your own, seem suboptimal, you
could try changing your list of ICMP types slightly to let the destination-
unreachable packets through:

icmp_types = "{ echoreq, unreach }"

As you can see, this means we do not need to change the pass rule itself:

pass inet proto icmp all icmp-type $icmp_types keep state

Now I’ll let you in on a little secret: In almost all cases, these rules are not
necessary for purposes of path MTU discovery, but they don’t hurt either.
However, even though the default PF keep state behavior takes care of most
of the ICMP traffic you will need, PF does let you filter on all variations of
ICMP types and codes. If you want to delve into more detail, the possible
types and codes are documented in the icmp(4) and icmp6(4) man pages.
The background information is available in the RFCs.

I n to the Real World 31

The main Internet RFCs describing ICMP and some related techniques
are RFC 792, RFC 950, RFC 1191, RFC 1256, RFC 2521, and RFC 2765, while
ICMP updates for IPv6 are found in RFC 1885, RFC 2463, and RFC 2466.
These documents are available in a number of places on the Internet,
such as http://www.ietf.org and http://www.faqs.org, and probably also via
your package system.

Tables Make Your Life Easier

By this time you may be thinking that this system for creating rules gets
awfully static and rigid. There will, after all, be some kinds of data that are
relevant to filtering and redirection at a given time but do not deserve to be
put into a configuration file! Quite right, and PF offers mechanisms for
handling these situations, as well.

Tables are one such feature, useful as lists of IP addresses that can be
manipulated without reloading the entire rule set and also when fast lookups
are desirable.

Table names are always enclosed in angle brackets (< and >), like this:

table <clients> persist { 192.168.2.0/24, !192.168.2.5 }

Here the network 192.168.2.0/24 is part of the table with one exception.
The address 192.168.2.5 is excluded using the ! operator (logical NOT).
The keyword persist makes sure the table itself will exist even if no rules
currently refer to it. It is worth noting that it is also possible to load tables
from files where each item is on a separate line, such as the file /etc/clients

192.168.2.0/24
!192.168.2.5

which in turn is used to initialize the table in /etc/pf.conf:

table <clients> persist file "/etc/clients"

So, for example, you can change one of our earlier rules to read

pass inet proto tcp from <clients> to any port $client_out

to manage outgoing traffic from your client computers. With this in hand,
you can manipulate the table’s contents live, such as

$ sudo pfctl -t clients -T add 192.168.1/16

Note that this changes only the in-memory copy of the table, meaning
that the change will not survive a power failure or a reboot unless you
arrange to store your changes.

32 Chapter 3

You might opt to maintain the on-disk copy of the table using a cron job
that dumps the table content to disk at regular intervals, using a command
such as

$ sudo pfctl -t clients -T show >/etc/clients

Alternatively, you could edit the /etc/clients file and replace the in-memory
table contents with the file data:

$sudo pfctl -t clients -T replace -f /etc/clients

For operations you will be performing frequently, you will sooner or
later end up writing shell scripts for tasks such as inserting or removing items
or replacing table contents.

One common example that is extremely easy to implement is enforcing
network access restrictions via cron jobs that replace the contents of the tables
referenced as from addresses in the pass rules at specific times. In some net-
works you may even need different access rules for different days of the week.
The only real limitations lie in your own needs and your creativity.

We will be returning to some handy uses of tables shortly, including a
few programs that interact with tables in useful ways.5

5 One program that interacts well with PF tables is the DHCP daemon dhcpd. On OpenBSD, see
the dhcpd man page and look at the -A and -L flags.

4
W I R E L E S S N E T W O R K S

M A D E E A S Y

It is rather tempting to say that on BSD,
and on OpenBSD in particular, there’s no

need to “make wireless networking simple,”
because it already is. Getting a wireless network

running is not very different from getting a wired one
running, but there are some issues that turn up simply
because we are dealing with radio waves and not wires. We will take some
time to look briefly at some of the issues before moving on to the practical
steps involved in creating a usable setup.

Once we have covered the basics of getting a wireless network up and
running, we will turn to some of the options for making your wireless network
more interesting and harder to break.

A Little IEEE 802.11 Background

Setting up any network interface is, in principle, a two-step process: First,
establish a link, and then move on to configuring the interface for TCP/IP
traffic.

34 Chapter 4

In the case of wired, Ethernet-type interfaces, establishing the link
usually consists of plugging in a cable and seeing the link indicator light
up. However, some interfaces require extra steps. Networking over dial-up
connections, for example, requires telephony steps, such as dialing a
number to get a carrier signal.

In the case of IEEE 802.11–style wireless networks, getting the carrier
signal involves quite a few steps at the lowest level. First, you need to select
the proper channel in the assigned frequency spectrum. Once you find a
signal, you need to set a few link-level network identification parameters.
Finally, if the station you want to link to uses some form of link-level
encryption, you need to set the right kind and probably negotiate some
additional parameters.

Fortunately, on BSD systems all configuration of wireless network devices
happens via ifconfig commands and options, just as you would set up any
other network interface.1

Still, since we are introducing wireless networks here, we need to look at
the security at various levels in the networking stack from this new perspective.

There are basically three kinds of popular and simple IEEE 802.11 security
mechanisms, and we will discuss them briefly in the following sections.

NOTE For a more complete overview of issues surrounding security in wireless networks
see, for example, Professor Kjell Jørgen Hole’s articles and slides at his site
(http://www.kjhole.com and http://www.kjhole.com/Standards/WiFi/
WiFiDownloads.html). For fresh developments in the Wi-Fi field, the Wi-Fi Net
News site at http://wifinetnews.com/archives/cat_security.html and “The
Unofficial 802.11 Security Web Page” at http://www.drizzle.com/~aboba/IEEE
come highly recommended.

MAC Address Filtering

The short version of the story about PF and MAC address filtering is that we
don’t do it.

A number of consumer-grade, off-the-shelf wireless access points offer
MAC address filtering, but contrary to common belief, they don’t really add
much security. The marketing succeeds largely because most consumers are
unaware that it is possible to change the MAC address of essentially any
wireless network adapter on the market today.2

If you really want to try MAC address filtering, you could look into using
the bridge(4) facility and the MAC-filtering features offered by brconfig(8) on
OpenBSD. We will be looking at bridges and some of the more useful ways to
use them with packet filtering in the next chapter.

1 On some systems, the older, device-specific programs such as wicontrol and ancontrol are still
around, but for the most part they are deprecated and in the process of being replaced with
ifconfig functionality. On OpenBSD, the consolidation into ifconfig has been completed.
2 A quick man page lookup will tell you that the command to change the MAC address for the
interface rum0 is simply ifconfig rum0 lladdr 00:ba:ad:f0:0d:11.

Wire less Networks Made Easy 35

WEP

One consequence of using radio waves instead of wires to move data is that
it is comparatively easy for outsiders to capture your data in transit. The
designers of the 802.11 family of wireless network standards seem to have
been aware of this fact, and they came up with a solution, which they went
on to market under the name Wired Equivalent Privacy, or WEP.

Unfortunately, the WEP designers came up with their wired equivalent
encryption without actually reading up on recent research or consulting
active researchers in the field. So, the link-level encryption scheme they
recommended is considered a pretty primitive home brew among cryptog-
raphy professionals. It was no great surprise when WEP encryption was
reverse-engineered and cracked within a few months after the first products
were released.

Even though you can download free tools to descramble WEP-encoded
traffic in a matter of minutes, for a variety of reasons it is still widely supported
and used. Essentially all IEEE 802.11 equipment out there has support for
at least WEP, and a surprising number of products offer MAC address
filtering, too.

You should consider network traffic protected only by WEP to be only
marginally more secure than data broadcast in the clear. Then again, the
token effort needed to crack into a WEP network may be sufficient to deter
lazy and unsophisticated attackers.

WPA

It dawned on the 802.11 designers fairly quickly that their WEP system was
not quite what it was cracked up to be, so they came up with a revised and
slightly more comprehensive solution called Wi-Fi Protected Access, or WPA.

WPA looks better than WEP, at least on paper, but the specification is
arguably too complicated for widespread implementation. In addition, WPA
has also attracted its share of criticism over design issues and bugs. Combined
with the familiar issues of access to documentation and hardware, free software
support varies. If your project specification includes WPA, look carefully at
your operating system and driver documentation.

It goes almost without saying that you will need further security measures,
such as SSH or SSL encryption, to maintain any significant level of confiden-
tiality for your data stream.

Picking the Right Hardware for the Task

Picking the right hardware is not necessarily a daunting task. On a BSD
system, one simple

$ apropos wireless

36 Chapter 4

command is all you need to enter to see a listing of all manual pages with the
word wireless in their subject lines.3

Even on a freshly installed system, this will give you a complete list of all
wireless network drivers available in the operating system. The next step is to
read the driver manual pages and compare the lists of compatible devices
with what is available as parts or built into the systems you are considering.
Take some time to think through your specific requirements. For testing
purposes, low-end rum or ural USB dongles will work. Later, when you are
about to build a more permanent infrastructure, you may want to look into
higher-end gear. You may also want to read Appendix B.

Setting Up a Simple Wireless Network

To start building our first wireless network, it makes sense to use the basic
gateway configuration from the previous chapter as our starting point. In
your network design, it is likely that the wireless network is not directly
attached to the Internet at large, but the wireless network will require a gate-
way of some sort. For that reason, it makes sense to reuse the working gateway
setup for this wireless access point with some minor modifications we intro-
duce over the next few paragraphs. After all, it is more convenient than
starting a new configuration from scratch.

NOTE We are in infrastructure-building mode here, and we will be setting up the access point
first. If you prefer to look at the client side first, see “The Client Side” on page 40, and
then come back to this page.

As we mentioned earlier, the first step is to make sure you have a
supported card and check that the driver loads and initializes the card
properly. The boot-time system messages scroll by on the console, but they
also get stored in the file /var/run/dmesg.boot. You can view the file itself or
use the output of the dmesg command. With a successfully configured PCI
card, you should see something like this:

ath0 at pci1 dev 4 function 0 "Atheros AR5212" rev 0x01: irq 11
ath0: AR5212 5.6 phy 4.1 rf5111 1.7 rf2111 2.3, ETSI1W, address 00:0d:88:c8:a7:c4

If the interface you want to configure is a hot-pluggable type such as a
USB or PCCARD device, you can see the kernel messages by viewing the
/var/log/messages file, for example, by running tail -f on the file before you
plug in the device.

Next, configure the interface to enable the link, and finally, configure
the system for TCP/IP. You can do this from the command line, like so:

$ sudo ifconfig ath0 up mediaopt hostap mode 11b chan 11 nwid unwiredbsd nwkey 0x1deadbeef9

3 In addition, it is possible to look up man pages on the Web. Check http://www.openbsd.org and
the other projects’ websites; they offer keyword-based man page searches.

Wire less Networks Made Easy 37

This command does several things at once. It configures the ath0 interface,
enables the interface with the up parameter, and specifies that the interface is
an access point for a wireless network with mediaopt hostap; then it explicitly
sets the operating mode to 11b, explicitly sets the channel to 11, and finally,
uses the nwid parameter to set the network name to unwiredbsd, with the WEP
key (nwkey) set to the hexadecimal string 0x1deadbeef9.

Use ifconfig to check that the command successfully configured the
interface:

$ ifconfig ath0
ath0: flags=8823<UP,BROADCAST,NOTRAILERS,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:11:95:ca:e6:59
 groups: wlan
 media: IEEE802.11 autoselect mode 11b hostap
 status: no network
 ieee80211: nwid unwiredbsd chan 11 bssid 00:11:95:ca:e6:59 nwkey <not displayed>
 inet6 fe80::211:95ff:feca:e659%ath0 prefixlen 64 tentative scopeid 0x5

Note the contents of the media: and ieee80211: lines. They should match
what you entered on the ifconfig command line. With the link part of your
wireless network operational, you can go on to the next step and assign an IP
address to the interface:

sudo ifconfig ath0 10.50.90.1

On OpenBSD, you can achieve both by creating a /etc/hostname.ath0 file,
roughly like this:

up mediaopt hostap mode 11b chan 11 nwid unwiredbsd nwkey 0x1deadbeef9
inet 10.50.90.1

and either running /etc/netstart ath0 (you need to do that as root) or waiting
patiently for your next boot to complete.

Note that the configuration is divided over two lines. The first line
generates an ifconfig command that sets up the interface with the correct
parameters for the physical wireless network. The second command, which
sets the IP address, is executed only after the first one completes. It is worth
noting that since this is our access point, we set the channel explicitly, and we
enable a weak WEP encryption by setting the nwkey parameter.

On FreeBSD and NetBSD, you can normally combine all the parameters
in one rc.conf setting:

ifconfig_ath0="mediaopt hostap mode 11b chan 11 nwid unwiredbsd nwkey 0x1deadbeef inet 10.50.90.1"

However, on some hardware combinations, setting the link-level options
and the IP address at the same time fails. If your one-liner configuration fails,
you will need to put the two lines in your /etc/start_if.ath0 and substitute your
interface name for ath0 if required.

38 Chapter 4

NOTE Be sure to check the most up-to-date ifconfig man page for other options that may be
more appropriate for your configuration.

The Access Point’s PF Rule Set
With the interfaces configured, it’s time to start configuring the access point
as a packet-filtering gateway.

You can start by copying the basic gateway setup from Chapter 3. Enable
gatewaying via the appropriate entries in the access point’s sysctl.conf or rc.conf
file; then copy across the pf.conf file. Depending on the parts of the last
chapter that were most useful to you, the pf.conf file may look something
like this:

ext_if = "re0" # macro for external interface - use tun0 or pppoe0 for PPPoE
int_if = "re1" # macro for internal interface
localnet = $int_if:network
client_out = "{ ssh, domain, pop3, auth, nntp, http,\
 https, cvspserver, 2628, 5999, 8000, 8080 }"
udp_services = "{ domain, ntp }"
icmp_types = "{ echoreq, unreach }"
ext_if IP address could be dynamic, hence ($ext_if)
nat on $ext_if from $localnet to any -> ($ext_if)
block all
pass quick inet proto { tcp, udp } from $localnet to any port $udp_services
pass log inet proto icmp all icmp-type $icmp_types
pass inet proto tcp from $localnet to any port $client_out

The only change that is strictly necessary for your access point to work
is to make the definition of int_if to match the wireless interface. In our
example, this means the line should now read

int_if = "ath0" # macro for internal interface

More likely than not, you will also want to set up dhcpd to serve addresses
and other relevant network information to clients after they have associated
with your access point. Setting up dhcpd is fairly straightforward if you read
the man pages.

That’s all there is to it. This configuration gives you a functional BSD
access point, with at least token security (actually more like a KEEP OUT sign)
via WEP encryption. If you need to support FTP, you can copy the ftp-proxy
configuration from the machine you set up in Chapter 3 and make similar
changes as for the rest of the rule set.

If Your Access Point Has Three or More Interfaces
If your network design dictates that your access point is also the gateway for
a wired local network or even several wireless networks, you need to make
some minor changes to your rule set. Instead of just changing the value of

Wire less Networks Made Easy 39

the int_if macro, you might want to add another (descriptive) definition
for the wireless interface, such as

air_if = "ath0"

In a wireless gateway configuration, your wireless interfaces are likely to
be on separate subnets, so it might be useful for each of them to have its own
nat rule as well:

nat on $ext_if from $air_if:network to any -> ($ext_if) static-port

Depending on your policy, you might also want to adjust your localnet
definition or at least include $air_if in your pass rules, where appropriate.
And once again, if you need to support FTP, a separate redirection for the
wireless network to ftp-proxy may be in order.

Handling IPsec, VPN Solutions

The details of setting up Virtual Private Networks (VPNs) using the built-in
IPsec tools, OpenSSH, or other tools are beyond the scope of this chapter.
However, with the relatively poor security profile of wireless networks in
general, you are likely to want to set up some additional security. A VPN
setup may range from useful to essential in your situation.

The options fall roughly into three categories:

SSH
If your VPN is based on SSH tunnels, the baseline rule set already contains
all the filtering you need. Your tunneled traffic will be indistinguishable
from other SSH traffic to the packet filter.

IPsec with udp key exchange (IKE/ISAKMP)
Several IPsec variants depend critically on key exchange via proto udp
port 500 and proto {tcp, udp} port 4500 for NAT Traversal (NAT-T).
You need to let this traffic through in order to let the flows become
established. Some implementations also depend critically on letting
ESP protocol traffic (protocol 50) pass between the hosts: pass proto
esp from $source to $target.

Filtering on the IPsec encapsulation interface
With a properly configured IPsec setup, you can set up PF to filter on the
encapsulation interface enc0 itself: pass on enc0 proto ipencap from $source
to $target keep state (if-bound).

Check Appendix A for references to some useful literature on the
subject.

40 Chapter 4

The Client Side

As long as you have all BSD clients, setup is extremely easy. In order to
connect to the access point we just configured, your OpenBSD clients
would need a hostname.if configuration file with

up media autoselect mode 11b chan 11 nwid unwiredbsd nwkey 0x1deadbeef9
dhcp

Try these out from the command line first, with

$ sudo ifconfig ath0 up mode 11b chan 11 nwid unwiredbsd nwkey 0x1deadbeef9

followed by

$ sudo dhclient ath0

The ifconfig command should complete without any output, while the
dhclient command should print a summary of its dialog with the DHCP
server:

DHCPREQUEST on ath0 to 255.255.255.255 port 67
DHCPREQUEST on ath0 to 255.255.255.255 port 67
DHCPACK from 10.50.90.1
bound to 10.50.90.11 -- renewal in 1800 seconds.

Again on FreeBSD, you would need to put those lines in your /etc/
start_if.ath0 and substitute your interface name for ath0 if required.

Guarding Your Wireless Network with authpf

As always, there are other ways to configure the security of your wireless
network besides the one we have just seen. What little protection WEP
encryption offers, security professionals tend to agree, is barely enough to
signal to an attacker that you do not intend to let all and sundry use your
network resources.

The configuration we built in “Setting Up a Simple Wireless Network”
on page 36 is functional. It will let all reasonably configured wireless clients
connect, and that may be a problem in itself, since that configuration does
not have any real support built in for letting you decide who uses your
network.

As we mentioned earlier, MAC address filtering is not really a solid defense
against attackers. Changing the MAC address is just too easy. The OpenBSD
developers chose a radically different approach to this problem when they
introduced authpf in OpenBSD version 3.1. Instead of tying access to a
hardware identifier such as the network card’s MAC address, the OpenBSD

Wire less Networks Made Easy 41

developers decided that the robust and highly flexible user authentication
mechanisms already in place were more appropriate for the task. The authpf
tool is a user shell that lets the system load PF rules on a per-user basis,
effectively deciding which user gets to do what.

To use authpf, you create users with the authpf program as their shell. In
order to get network access, the user logs in to the gateway using ssh. Once
the user successfully completes ssh authentication, authpf loads the rules you
have defined for the user or the relevant class of users.

These rules, which apply to the IP address the user logged in from,
stay loaded and in force for as long as the user stays logged in via the ssh
connection. Once the ssh session is terminated, the rules are unloaded,
and in most scenarios all non-ssh traffic from the user’s IP address is
denied. With a reasonable setup, only traffic originated by authenticated
users will be let through.

It is worth noting that on OpenBSD, authpf is one of the login classes
that is offered by default, as you will notice the next time you create a user
with the adduser program.

For other systems where the authpf login class is not available by default,
you may need to add the following lines to your login.conf :

authpf:\
 :welcome=/etc/motd.authpf:\
 :shell=/usr/sbin/authpf:\
 :tc=default:

The following sections contain a few examples that may or may not fit
your situation directly, but I hope they will give you ideas you can use.

A Basic Authenticating Gateway
Setting up an authenticating gateway with authpf involves creating and main-
taining a few files besides your basic pf.conf. The main addition is authpf.rules;
the other files are fairly static entities that you will not be spending much
time on once they have been created.

Start with creating an empty /etc/authpf/authpf.conf. It needs to be there
for authpf to work, but it doesn’t actually need any content, so creating an
empty file with touch is appropriate.

The other relevant bits of /etc/pf.conf follow. First, we create the interface
macros:

ext_if = "re0"
int_if = "ath0"

In addition, authpf requires a table to fill with the IP addresses of
authenticated users:

table <authpf_users> persist

42 Chapter 4

The nat rules, if you need them, could just as easily go in authpf.rules, but
keeping them in the pf.conf file does not hurt in a simple setup like this:

nat on $ext_if from $localnet to any -> ($ext_if)

Next, we create the authpf anchors, where rules from authpf.rules are
loaded once the user authenticates:

nat-anchor "authpf/*"
rdr-anchor "authpf/*"
binat-anchor "authpf/*"
anchor "authpf/*"

That brings us to the end of the required parts of a pf.conf for an authpf
setup.

For the filtering part, we start with the block all default and then add the
pass rules we need. The only thing we really need at this point is to pass ssh
on the internal network:

pass quick on $int_if inet proto { tcp, udp } to $int_if port ssh

From here on out, it really is up to you. Do you want to let your clients
have name resolution before they authenticate? If so, put the pass rules for
the tcp and udp service domain in your pf.conf, too.

For a relatively simple and egalitarian setup, you could include the rest
of our baseline rule set, but change the pass rules to allow traffic from the
addresses in the <authpf_users> table rather than any address in your local
network:

pass quick inet proto { tcp, udp } from <authpf_users> to any port $udp_services
pass inet proto tcp from <authpf_users> to any port $client_out

For a more differentiated setup, you could put the rest of your rule set in
/etc/authpf/authpf.rules or put per-user rules in customized authpf.rules files in
each user’s directory under /etc/authpf/users/. If your users normally need
some protection, your general /etc/authpf/authpf.rules could have content
like this:

client_out = "{ ssh, domain, pop3, auth, nntp, http, https }"
udp_services = "{ domain, ntp }"
pass quick inet proto { tcp, udp } from $user_ip to any port $udp_services
pass inet proto tcp from $user_ip to any port $client_out

The macro $user_ip is built into authpf and expands to the IP address
the user authenticated from. These rules apply to any user who completes
authentication at your gateway.

A nice and relatively easy addition to implement is special-case rules for
users with different requirements than your general user population. If an
authpf.rules file exists in the user’s directory under /etc/authpf/users/, the rules
in that file will be loaded for the user.

Wire less Networks Made Easy 43

This means that your naïve Windows user Peter, who only needs to surf
the Web and have access to a service that runs on a high port on a specific
machine, could get what he needs with a /etc/authpf/users/peter/authpf.rules
file like this:

client_out = "{ domain, http, https }"
pass inet from $user_ip to 192.168.103.84 port 9000
pass quick inet proto { tcp, udp } from $user_ip to any port $client_out

On the other hand, Peter’s colleague Christina runs OpenBSD and
generally knows what she’s doing, even if she sometimes generates traffic
to and from odd ports. You could let her have free rein by putting this in
/etc/authpf/users/christina/authpf.rules:

pass from $user_ip os = "OpenBSD" to any

This means Christina can do pretty much anything she likes over TCP, as
long as she authenticates from her OpenBSD machines.

Wide Open but Actually Shut

In some situations it makes sense to set up your network to be open and
unencrypted at the link level, while enforcing some restrictions via authpf.
The next example is very similar to Wi-Fi zones you can encounter in air-
ports or other public spaces, in which anyone can associate to the access
points and get an IP address, but any attempt at accessing the Web will be
redirected to one specific web page until the user has cleared some sort of
authentication.4

The following pf.conf file is again based on our baseline, with two
important additions to the basic authpf setup: a macro and a redirection.

ext_if = "re0"
int_if = "ath0"
auth_web="192.168.27.20"
dhcp_services = "{ bootps, bootpc }" # DHCP server + client
table <authpf_users> persist
rdr pass on $int_if proto tcp from ! <authpf_users> to any port http ->
$auth_web
nat on $ext_if from $localnet to any -> ($ext_if)
nat-anchor "authpf/*"
rdr-anchor "authpf/*"
binat-anchor "authpf/*"
anchor "authpf/*"
pass quick on $int_if inet proto { tcp, udp } to $int_if port dhcp_services
pass quick inet proto { tcp, udp } from $int_if:network to any port domain
pass quick on $int_if inet proto { tcp, udp } to $int_if port ssh

4 Thanks to Vegard Engen for the idea and showing me his configuration, which is preserved
here in spirit, if not in every detail.

44 Chapter 4

The auth_web macro and the redirection make sure all web traffic from
addresses that are not in the <authpf_users> table leads all nonauthenticated
users to a specific address.

At that address you set up a webserver that serves up whatever it is you
need. This could be anything from a single page with instructions on who to
contact in order to get access to the network, all the way up to a system that
accepts credit cards and handles user account creation.

It is worth noting that name resolution will work in this setup, but all
surfing attempts will end up at the auth_web address. Once the users clear
authentication, you can add general rules or user-specific ones to the
authpf.rules files as appropriate for your situation.

5
B I G G E R O R T R I C K I E R

N E T W O R K S

In this chapter we’ll build on the material
from the previous chapters while trying

to meet the real-life challenges of larger
networks or even smaller ones with relatively

demanding applications or users. The sample config-
urations in this chapter are all based on the assumption
that your packet-filtering setups will need to accommodate services you run
on your local network. We will mainly be looking at this from a Unix per-
spective, focusing on SSH, email, and Web services, with some pointers on
how to take care of others.

When Others Need Something in Your Network: Filtering
Services

Time passes, and needs change. The change could be that your organization
and the network grow or that you have decided to take the plunge and move
critical points in your corporate infrastructure to BSD and PF.

46 Chapter 5

This chapter is about the things you will want to do when you need to
combine packet filtering with services that are accessible outside your local
network. How much this complicates your rule sets depends on your network
design—and to a certain extent, on the number of routable addresses you
have available.

Over the following pages we will deal with the basics of filtering in net-
works with externally accessible services. We will begin with configurations for
official, routable addresses as the baseline and then move on to situations
with as few as one routable address and the PF-based workarounds that make
the services usable, even under these restrictions.

A Webserver and a Mail Server on the Inside—Routable Addresses
How complicated is your network? How complicated does it need to be?

Let’s start with a baseline scenario where the example clients from
Chapter 3 get three new neighbors: a mail server, a webserver, and a fileserver.
In this scenario we use official, routable addresses, since it makes life a little
easier. Using routable addresses has other advantages, too: With routable
addresses we can let two of the new machines run the domain name service
(DNS) for our example.com domain, one as the master, the other as an author-
itative slave.1

NOTE For DNS it always makes sense to have at least one authoritative slave server somewhere
outside your own network (in fact, some top-level domains will not let you register a
domain unless you have that arrangement). You may also want to arrange for a backup
mail server to be hosted elsewhere. Keep these things in mind as you build your network.
However, these concerns do not affect how we write the PF rule set much.

At this stage we keep the physical network layout fairly simple. We put
the new servers into the same local network as the clients, possibly in a sep-
arate server room, but certainly on the same network segment or switch as
the clients. Conceptually, the new network looks something like Figure 5-1.

With the basic parameters for the network in place, we can start setting
up a sensible rule set for handling the services we need. Once again we start
from the baseline rule set and add a few macros for readability.

The macros we need come rather naturally from the specifications.
The ones we need are our webserver (webserver = "192.0.2.227") and the
services it offers (webports = "{ http, https }"); the mail server (emailserver
= "192.0.2.225") and the services it offers (email = "{ smtp, pop3, imap, imap3,
imaps, pop3s }"); and finally, the nameservers (nameservers = "{ 192.0.2.221,
192.0.2.223 }").

We assume that the fileserver does not need to be accessible to the
outside world unless we choose to set it up with a service that needs to be
visible outside the local network, such as an authoritative slave nameserver
for our domain.

1 In fact, the example.com network here lives in the 192.0.2.0/24 block, which is set aside in RFC 3330
as reserved for example and documentation use. We use this address range mainly to differentiate
from the NAT examples elsewhere in this book, which use addresses in the “private” RFC 1918
address space.

Bigge r or T ri cki er Networks 47

Figure 5-1: A basic network with servers and clients on the inside

With the macros in hand, we add the pass rules. Starting with the web-
server, we make it accessible to the world with

pass proto tcp from any to $webserver port $webports synproxy state

Notice the synproxy state option. When a new connection is created, PF
normally lets the communication partners handle the connection setup
themselves, simply passing the packets on if they match a pass rule. With
synproxy enabled, PF handles the initial connection setup and hands over
the connection to the communication partners only when it is properly
established. PF acting as an intermediary or proxy for a three-way handshake
helps protect against SYN-flood attacks and similar nastiness that could lead
to resource exhaustion at the server end. However, SYN proxying is slightly
more resource intensive than the default keep state, and it could lead to
noticeably increased load on your firewall.

On a similar note, we let the world talk to the mail server:

pass proto tcp from any to $emailserver port $email synproxy state

It is worth mentioning that this lets clients anywhere have the same access
as the ones in your local network, including a few email-retrieval protocols that
run without encryption. That’s common enough in the real world, but you
might want to consider your options if you are setting up a new network.

For the mail server to be useful, it needs to be able to send email to hosts
outside the local network, too:

pass log proto tcp from $emailserver to any port smtp synproxy state

Internet

Switch

Clients

$emailserver
192.0.2.225

$webserver
192.0.2.227

$nameserver
192.0.2.221

Our gateway,
the PF firewall

$int_if
192.0.2.0/24$ext_if

48 Chapter 5

Keeping in mind that the rule set starts with a block all rule, this means
only the mail server is allowed to initiate SMTP traffic from the local network
to the rest of the world. If any of the other hosts on the network need to send
email to the outside world or receive email, they need to use the designated
mail server. This could be a good way to ensure, for example, that you make
it as hard as possible for any spam-sending zombie machines that might turn
up in your network to actually deliver their payloads.

Finally, the nameservers need to be accessible to clients outside our net-
work who look up the information about example.com and any other domains
we answer authoritatively for:

pass inet proto { tcp, udp } from any to $nameservers port domain

With all services that need to be accessible from the outside world
integrated, our rule set ends up looking roughly like this:

ext_if = "ep0" # macro for external interface - use tun0 or pppoe0 for PPPoE
int_if = "ep1" # macro for internal interface
localnet = $int_if:network
webserver = "192.0.2.227"
webports = "{ http, https }"
emailserver = "192.0.2.225"
email = "{ smtp, pop3, imap, imap3, imaps, pop3s }"
nameservers = "{ 192.0.2.221, 192.0.2.223 }"
client_out = "{ ssh, domain, pop3, auth, nntp, http,\
 https, cvspserver, 2628, 5999, 8000, 8080 }"
udp_services = "{ domain, ntp }"
icmp_types = "{ echoreq, unreach }"
block all
pass quick inet proto { tcp, udp } from $localnet to any port $udp_services
pass log inet proto icmp all icmp-type $icmp_types
pass inet proto tcp from $localnet to any port $client_out
pass inet proto { tcp, udp } from any to $nameservers port domain
pass proto tcp from any to $webserver port $webports synproxy state
pass log proto tcp from any to $emailserver port $email synproxy state
pass log proto tcp from $emailserver to any port smtp synproxy state

This is still a fairly simple setup, but unfortunately, it has one potentially
troubling security disadvantage. The way this network is designed, the servers
that offer services to the world at large are all in the same local network as your
clients, and you would need to restrict any internal services to only local access.
In principle this means that an attacker would only need to compromise one
host in your local network to gain access to any resource there, putting the
miscreant on equal footing with any user in your local network. Depending on
how well each machine and resource are protected from unauthorized access,
this could be anything from a minor annoyance to a major headache.

In the next section we look at some options for segregating the services
that need to interact with the world at large from the local network.

Bigge r or T ri cki er Networks 49

A Degree of Physical Separation: Introducing the DMZ

In the previous section we showed that it is possible to set up services on your
local network and make them selectively available to the outside world through
a sensible PF rule set. However, you can get more fine-grained control over
access to your internal network, as well as the services you need to make visible
to the rest of the world, by introducing a degree of physical separation.

Achieving the physical and logical separation is fairly easy. Move the
machines that run the public services to a separate network, attached to a
separate interface on the gateway. The net effect is a separate network that is
not quite part of your local network but not entirely in the public part of the
Internet, either. Conceptually, the segregated network looks like Figure 5-2.

Figure 5-2: A network with the servers in a DMZ

NOTE You can think of this little network as a zone of relative calm between the territories of
hostile factions, and it is no great surprise that a few years back, somebody coined the
phrase De-Militarized Zone, or DMZ, to describe this type of configuration. The
term stuck.

For address allocation, either segment off an appropriately sized chunk of
your official address space for the new DMZ network, or move those parts
of your network that do not have a specific need to run with publicly accessible
and routable addresses into a NATed environment. Either way, you end up
with at least one more interface to filter on. As you will see later, it is in fact
possible to run a DMZ setup in all-NAT environments too, if you are really
short on official addresses.

The adjustments to the rule set itself need not be extensive. If necessary,
you can change the configuration for each interface. The basic rule set logic
remains, but you may need to adjust the definitions of the macros (webserver,
mailserver, nameservers, and possibly others) to reflect your new network layout.

Internet

Switch

Clients

$emailserver
192.0.2.225

$webserver
192.0.2.227

$nameserver
192.0.2.221

Our gateway,
the PF firewall

$int_if
192.0.2.0/25$ext_if

Switch

$dmz_if
192.0.2.129/25

50 Chapter 5

In our example, we could choose to segment off the part of our address
range where we have already placed our servers, and if we leave some room
for growth, we can set up the new dmz_if on a /25 subnet with an address and
netmask of 192.0.2.129/255.255.255.128. With that configuration, you do not
really need to touch the rule set at all for the packet filtering to work after
setting up a physically segregated DMZ.

Whether you consider this to be due to laziness or excellent long-range
planning is debatable; nevertheless, it underlines the importance of having
a sensible address-allocation policy in place.

It might be useful to tighten up your rule set by editing your pass rules
so the traffic to and from your servers is allowed to pass only on the interfaces
that are actually relevant to the services:

pass in on $ext_if proto { tcp, udp } from any to $nameservers port domain
pass in on $int_if proto { tcp, udp } from $localnet to $nameservers port domain
pass out on $dmz_if proto { tcp, udp } from any to $nameservers port domain
pass in on $ext_if proto tcp from any to $webserver port $webports
pass in on $int_if proto tcp from $localnet to $webserver port $webports
pass out on $dmz_if proto tcp from any to $webserver port $webports
pass in log on $ext_if proto tcp from any to $mailserver port smtp
pass in log on $int_if proto tcp from $localnet to $mailserver port $email
pass out log on $dmz_if proto tcp from any to $mailserver port smtp
pass in on $dmz_if from $mailserver to any port smtp
pass out log on $ext_if proto tcp from $mailserver to any port smtp

You could choose to make the other pass rules that reference your local
network interface-specific too, but if you leave them intact, they will continue
to work.

Sharing the Load: Redirecting to a Pool of Addresses

Once you have set up services to be accessible to the world at large, one
likely scenario is that over time, one or more of your services grows more
sophisticated and resource hungry or simply attracts more traffic than you
feel comfortable serving from a single server.

There are a number of ways to make several machines share the load of
running a service, including various ways to fine-tune the service itself. The
particulars of running a webserver are outside the scope of this book. However,
for network-level load balancing, PF offers the basic functionality you need by
letting you redirect to pools of several addresses, known as address pools.

Take the webserver in our example. We already have the macro for the
public IP address (webserver = "192.0.2.227"), which in turn is associated with
the hostname that your users have bookmarked, possibly www.example.com.

When the time comes to share the load, set up the required number of
identical, or at least equivalent, servers and then alter your rule set slightly to
introduce the redirection. First, add the macro that describes your webserver
pool:

webpool = "{ 192.0.2.214, 192.0.2.215, 192.0.2.216, 192.0.2.217 }"

Bigge r or T ri cki er Networks 51

Then specify the redirection, which means you may choose to retire the
original webserver once the switch is done:

rdr on $ext_if from any to $webserver port $webports -> $webpool \
 round-robin sticky-address

The round-robin option means that PF shares the load between the
machines in the pool by cycling through the pool of redirection addresses
sequentially. The sticky-address option makes sure that new connections
from a client are always redirected to the same machine behind the redirec-
tion as the initial connection.

The sticky address could be essential if the service depends on client-
specific or session-specific parameters, which would be lost if the client was
redirected to the equivalent service on a different host. In other contexts,
where even load distribution is not an absolute requirement, selecting the
redirection address at random could be appropriate:

rdr on $ext_if from any to $webserver port $webports -> $webpool random

It is worth noting that even organizations with large pools of official,
routable addresses have opted to introduce NAT between their load-balanced
server pools and the Internet at large. This technique works equally well in
various NAT-based setups, but moving to NAT offers some additional possi-
bilities and challenges.

Getting Load Balancing Right with hoststated

After you have been running a while with load balancing via round-robin
redirection, you may notice that the redirection does not automatically adapt
to external conditions. One example is if one or more of the hosts in the list
of redirection targets goes down. Unless special steps are taken, traffic will be
redirected to the IP addresses in the list of possibilities, even if the target
host happens to be unreachable or unable to handle the service requests.

Clearly, a monitoring solution is needed, and fortunately, the OpenBSD
base system provides one in the host status daemon hoststated. hoststated
interacts with your PF configuration, providing the ability to weed out non-
functioning hosts from your pool.

Introducing hoststated into your setup, however, may require some
minor changes to your rule set. hoststated works in terms of services and
expects to be able to add or subtract hosts’ IP addresses to or from PF tables.
The daemon interacts with your rule set through a special-purpose redirection
anchor named hoststated. To see how we can make our sample configuration
work a little better by using hoststated, we’ll look back at the load-balancing
rule set.

Starting from the top of your pf.conf, add the following line to the NAT
section:

rdr-anchor "hoststated/*"

52 Chapter 5

In the load-balancing rule set, we had the following definition for our
webserver pool

webpool = "{ 192.0.2.214, 192.0.2.215, 192.0.2.216, 192.0.2.217 }"

and this redirection

rdr on $ext_if from any to $webserver port $webports -> $webpool \
 round-robin sticky-address

To make this configuration work with hoststated, we need to change the
webpool definition to table form, like this

table <webpool> persist { 192.0.2.214, 192.0.2.215, 192.0.2.216, 192.0.2.217 }

and change the redirection to use the new <webpool> table:

rdr on $ext_if from any to $webserver port $webports -> <webpool> \
 round-robin sticky-address

Once the pf.conf parts have been taken care of, we turn to hoststated’s
own hoststated.conf configuration file. The syntax in this configuration file is
similar enough to pf.conf to make it fairly easy to read and understand. First,
we add the macro definitions we will be using later:

web1="192.0.2.214"
web2="192.0.2.215"
web3="192.0.2.216"
web4="192.0.2.217"
webserver="192.0.2.227"
sorry_server="192.0.2.200"

All of these correspond to definitions in our pf.conf file, except the last
one. (Its use should become apparent in a few moments.) The default
checking interval in hoststated is 10 seconds, which means that a host
could potentially be down for almost 10 seconds before it is taken offline.
Being cautious, we’ll set the checking interval to 5 seconds to minimize
visible downtime with the following line:

interval 5 # check hosts every 5 seconds

Now we make a table called webpool that uses the macros to match the
table we just made in the PF configuration:

table webpool {
 check http "/status.html" code 200
 timeout 300
 real port 80
 host $web1

Bigge r or T ri cki er Networks 53

 host $web2
 host $web3
 host $web4
}

In addition to defining the member hosts, our table also specifies that
hoststated should check to see if a host is available by asking it for the file
/status.html, using the protocol HTTP, and expecting the return code to be
equal to 200. This is the expected result for a client asking a running webserver
for a file it has available.

No big surprises so far, right? hoststated will take care of excluding hosts
from the table if they go down. But what happens if all the hosts in the webpool
table go down? Fortunately the developers thought of that too and introduced
the concept of backup tables for services. This is the last part of the definition
for the www service, with the table sorry as the backup table:

table sorry {
 check icmp
 real port 80
 host $sorry_server
}
service www {
 virtual ip $webserver port 80
 table webpool
 backup table sorry
}

The hosts in the sorry table are what take over if the webpool table becomes
empty. This means that you need to configure a service that is able to offer a
“Sorry, we’re down” message in case all the hosts in your web pool fail.

If you want to enable hoststated at startup, add the line

hoststated_flags="" # for normal use: ""

to your rc.conf.local. However, most of your interaction with hoststated will
happen through the hoststatectl administration program. In addition to
letting you monitor status, hoststatectl lets you reload the hoststated config-
uration and selectively disable or enable hosts, tables, and services, and it
even lets you view service status interactively, like this:

$ sudo hoststatectl show summary
Type Id Name Avlblty Status
service 0 www active
table 0 webpool active (2 hosts up)
host 3 192.0.2.217 0.00% down
host 2 192.0.2.216 100.00% up
host 1 192.0.2.215 0.00% down
host 0 192.0.2.214 100.00% up
table 1 sorry active (1 hosts up)
host 4 192.0.2.200 100.00% up

54 Chapter 5

Here the web pool is seriously degraded, with only two of four hosts up
and running. Fortunately, the backup table is still functioning. Here, all
tables are active with at least one host up. For tables that no longer have any
members, the Status column changes to empty.

Asking hoststatectl for host information shows the status information in
a host-centered format:

$ sudo hoststatectl show hosts
Type Id Name Avlblty Status
service 0 www active
table 0 webpool active (2 hosts up)
host 3 192.0.2.217 0.00% down
 total: 0/6 checks
host 2 192.0.2.216 100.00% up
 total: 0/6 checks
host 1 192.0.2.215 0.00% down
 total: 0/6 checks
host 0 192.0.2.214 100.00% up
 total: 6/6 checks
table 1 sorry active (1 hosts up)
host 4 192.0.2.200 100.00% up
 total: 6/6 checks

If you need to take a host out of the pool for maintenance or any time-
consuming operations, you can use hoststatectl to disable it with the following
command:

$ sudo hoststatectl host disable 192.168.103.1

In most cases, the operation will display command succeeded to indicate that
the operation completed successfully. Once you have done whatever main-
tenance was needed and put the machine online, you can reenable it as part
of hoststated’s pool with this command:

$ sudo hoststatectl host enable 192.168.103.1

Again, you should see the message command succeeded almost immediately
to indicate that the operation was successful.

In addition to the basic load balancing we have demonstrated here,
hoststated has been extended in recent OpenBSD versions to offer a number
of other features that make it attractive in more complex settings. It can now
handle Layer 7 proxying or relaying functions for HTTP and HTTPS. This
includes protocol handling with header append and rewrite, URL path
append and rewrite, and even session and cookie handling.

The protocol handling needs to be tailored to your application. The
following is a simple HTTPS relay for load balancing the encrypted web
traffic from clients to the webservers.

Bigge r or T ri cki er Networks 55

protocol httpssl {
 protocol http
 header append "$REMOTE_ADDR" to "X-Forwarded-For"
 header append "$SERVER_ADDR:$SERVER_PORT" to "X-Forwarded-By"
 header change "Keep-Alive" to "$TIMEOUT"
 url hash "sessid"
 cookie hash "sessid"
 path filter "*command=*" from "/cgi-bin/index.cgi"

 ssl { sslv2, ciphers "MEDIUM:HIGH" }
 tcp { nodelay, sack, socket buffer 65536, backlog 128 }
}

The protocol handler definition shown here demonstrates a range of
simple operations on the HTTP headers and sets both SSL parameters and
specific TCP parameters to optimize connection handling. The header options
operate on the protocol headers, inserting the values of the variables by either
appending to existing headers (append) or changing the content to a new
value (change). The url and cookie hashes are used by the load balancer to
select which host in the target pool the request is forwarded to. The path
filter specifies that any get request, including the first quoted string as a
substring of the second, is to be dropped. The ssl options specify that only
SSL version 2 ciphers are accepted, with key lengths in the medium-to-high
range, or, in other words, 128 bits or more.2 Finally, the tcp options specify
that the ToS flag should be set to nodelay, specify that the selective acknowl-
edgment method (RFC 2018) is to be used, and set the socket buffer size and
the maximum allowed number of pending connections the load balancer
keeps track of.

The relay definition using the protocol handler follows a pattern that
should be familiar from the service definition for the www service we defined
earlier:

relay wwwssl {
 # Run as a SSL accelerator
 listen on $webserver port 443 ssl
 protocol httpssl
 table webhosts loadbalance
}

However, it is likely that your SSL-enabled web applications will benefit
from a slightly different set of parameters.

Finally, for CARP-based failover of the hosts running hoststated for
your network (see “Redundancy and Failover: CARP and pfsync” on page 97)
hoststated can be configured to support CARP interaction via setting the CARP
demotion counter for the specified interface groups or groups at shutdown
or startup. Like all parts of the OpenBSD system, hoststated comes with

2 See the OpenSSL man page for further explanation of cipher-related options.

56 Chapter 5

informative documentation in the form of man pages. For the angles and
options we have not covered here (there are a few), I recommend that you
dive into the man pages for hoststated, hoststated.conf, and hoststatectl and
start experimenting to find just the configuration you need.

A Webserver and a Mail Server on the Inside—The NAT Version

Let’s backtrack a little and start over with the baseline scenario in which the
example clients from Chapter 3 get three new neighbors: a mail server, a
webserver, and a fileserver. This time around, externally visible addresses are
either not available or too expensive, and running several other services on a
machine that is primarily a firewall is not a desirable option.

This means we are back to the situation where we do our NAT at the
gateway. Fortunately, the redirection mechanisms in PF make it relatively easy
to keep servers on the inside of a NATing gateway. The network specifications
are the same as for the example.com setup we just worked through: We need to
run a webserver that serves up data in clear text (http) and encrypted (https),
and in addition we want a mail server that sends and receives email while let-
ting clients inside and outside the local network use a number of well-known
submission and retrieval protocols:

webserver = "192.168.2.7"
webports = "{ http, https }"
emailserver = "192.168.2.5"
email = "{ smtp, pop3, imap, imap3, imaps, pop3s }"

rdr on $ext_if proto tcp from any to $ext_if port $webports -> $webserver
rdr on $ext_if proto tcp from any to $ext_if port $email -> $emailserver

pass proto tcp from any to $webserver port $webports synproxy state
pass proto tcp from any to $emailserver port $email synproxy state
pass proto tcp from $emailserver to any port smtp synproxy state

Once again, we use the flag synproxy in the new rules. This means that
PF will handle the connection setup (three-way handshake) on behalf of
your server or client before handing the connection over to the applications
running at either end. This provides a certain amount of protection against
SYN-based attacks, as we saw earlier.

DMZ with NAT

With an all-NAT setup, the pool of available addresses to allocate for a DMZ
is likely to be larger than in our previous example in “A Degree of Physical
Separation: Introducing the DMZ” on page 49, but the same principles
apply. When you move the servers off to a physically separate network, you
will need to check that your rule set’s macro definitions are sane, and adjust
the values if necessary.

Bigge r or T ri cki er Networks 57

Just as in the routable addresses case, it might be useful to tighten up
your rule set by editing your pass rules so the traffic to and from your servers is
allowed to pass only on the interfaces that are actually relevant to the services:

pass in on $ext_if proto { tcp, udp } from any to $nameservers port domain
pass in on $int_if proto { tcp, udp } from $localnet to $nameservers port domain
pass out on $dmz_if proto { tcp, udp } from any to $nameservers port domain
pass in on $ext_if proto tcp from any to $webserver port $webports
pass in on $int_if proto tcp from $localnet to $webserver port $webports
pass out on $dmz_if proto tcp from any to $webserver port $webports
pass in log on $ext_if proto tcp from any to $mailserver port smtp
pass in log on $int_if proto tcp from $localnet to $mailserver port $email
pass out log on $dmz_if proto tcp from any to $mailserver port smtp
pass in on $dmz_if from $mailserver to any port smtp
pass out log on $ext_if proto tcp from $mailserver to any port smtp

If it makes sense in your context to make other specific pass rules that
reference your local network interface, you could choose to do so, but if you
leave them intact, they will continue to work.

Redirection for Load Balancing

The redirection-based load-balancing rules from “Sharing the Load:
Redirecting to a Pool of Addresses” on page 50 work equally well in a NAT
regime where the public address is the gateway’s external interface and
the redirection addresses are in a private range.

The main difference between the routable address case and the NAT
version is that after you have added the webpool definition

webpool = "{ 192.168.2.7, 192.168.2.8, 192.168.2.9, 192.168.2.10 }"

you edit the existing redirection, which then becomes

rdr on $ext_if from any to $webserver port $webports -> $webpool \
 round-robin sticky-address

From that point on, your NATed DMZ behaves much like the one with
official, routable addresses.

Back to the Single NATed Network

It may surprise you to hear that there are cases where setting up a small
network is in fact more difficult than working with a large one.

Going back to the situation where the servers are on the same physical
network as the clients, the basic NATed configuration from “A Webserver
and a Mail Server on the Inside—The NAT Version” on page 56 works very
well, up to a point. In fact, everything works brilliantly as long as all you are
interested in is getting traffic from hosts outside your local net to reach your
servers.

58 Chapter 5

To save you from paging back and forth, here is the basic configuration:

webserver = "192.168.2.7"
webports = "{ http, https }"
emailserver = "192.168.2.5"
email = "{ smtp, pop3, imap, imap3, imaps, pop3s }"

nat on $ext_if from $localnet to any -> ($ext_if)

rdr on $ext_if proto tcp from any to $ext_if port $webports -> $webserver
rdr on $ext_if proto tcp from any to $ext_if port $email -> $emailserver

pass proto tcp from any to $webserver port $webports synproxy state
pass proto tcp from any to $emailserver port $email synproxy state
pass proto tcp from $emailserver to any port smtp synproxy state

If you try to reach the services on the official address from hosts in your
own network, you will soon see that the requests for the redirected services
from machines in your local network most likely never reach the external
interface. This is because all the redirection and translation happens on
the external interface.

The gateway receives the packets from your local net on the internal
interface, with the destination address set to the external interface’s address.
The gateway recognizes the address as one of its own and tries to handle the
request as if it was directed at a local service. Consequently, the redirections
do not quite work from the inside.

Fortunately, several workarounds for this particular problem are possible.
The problem is common enough that the PF User Guide lists four different
solutions to it,3 including moving your servers to a DMZ, as we described
earlier. Since this is a PF book, we will concentrate on a PF-based solution,
which consists of treating the local net as a special case for our redirection and
nat rules.

We need to intercept the network packets originating in the local net-
work and handle those connections correctly, making sure that any return
traffic is directed to the communication partner who actually originated
the connection.

This means that for the redirections to work as expected from the local
network, we need to add special-case redirection rules that mirror the ones
designed to handle requests from the outside:

rdr on $int_if proto tcp from $localnet to $ext_if port $webports -> $webserver
rdr on $int_if proto tcp from $localnet to $ext_if port $email -> $emailserver
no nat on $int_if proto tcp from $int_if to $localnet
nat on $int_if proto tcp from $localnet to $webserver port $webports -> $int_if
nat on $int_if proto tcp from $localnet to $emailserver port $email -> $int_if

3 See “Redirection and Reflection” in the PF User Guide (http://www.openbsd.org/faq/pf/
rdr.html#reflect).

Bigge r or T ri cki er Networks 59

This way, we twist the redirections and the address translation logic to
do what we need, and we do not need to touch the pass rules at all. I’ve had
the good fortune to witness, via email or IRC, the reactions of several network
admins at the point when the truth about this five-line reconfiguration
sank in.

Filtering on Interface Groups

Your network could have several subnets that may never need to interact with
your local network except for some common services such as email, Web,
file, and print. How you handle the traffic from and to such subnets depends
on how your network is designed. One useful approach is to treat each less-
privileged network as a separate local network attached to its own separate
interface on a common filtering gateway, and then give it a rule set that allows
only the desired direct interaction, with the neighboring networks attached
to the main gateway.

On the gateway itself, it can be useful to group logically similar interfaces
into interface groups and apply filtering rules to the groups, rather than the
individual interfaces. Interface groups, as implemented via the ifconfig group
option, originally appeared in OpenBSD 3.6 and have been adopted in
FreeBSD 7.0 onward.

All configured network interfaces can be configured to belong to one
or more groups. Some interfaces automatically belong to one of the default
groups. For example, all IEEE 802.11 wireless network interfaces belong to
the wlan group, while interfaces associated with the default routes belong
to the egress group. Fortunately. an interface can be a member of several
groups, and you can add interfaces to interface groups via the appropriate
ifconfig command, such as

ifconfig sis2 group untrusted

(or the equivalent in the hostname.sis2 file on OpenBSD, or the ifconfig_sis2=
line in the rc.conf file on FreeBSD 7.0 or later).

Where it makes sense, you can then treat the interface group in much
the same way you would handle a single interface in filtering rules:

pass in on untrusted to any port $webports
pass out on egress to any port $webports

It is worth noting that filtering on interface groups makes it possible to
write essentially hardware-independent rule sets. As long as your hostname.if
files or ifconfig_if= lines put the interfaces in the correct groups, rule sets
that consistently filter on interface groups will be fully portable between
machines that may or may not have identical hardware configurations.

60 Chapter 5

The Power of Tags

In some networks, the decision of where a packet should be allowed to pass
cannot be made merely on the basis of simple criteria like subnet and service.
The fine-grained control the site’s policy demands could make the rule set
complicated and potentially hard to maintain.

Fortunately, PF offers yet another mechanism for classification and
filtering in the form of packet tagging. The useful way to implement
packet tagging is to tag incoming packets that match a specific pass rule,
and then let the packets pass elsewhere based on which identifiers each
packet is tagged with.

One example could be the wireless access points we set up in Chapter 4,
which we could reasonably expect to inject traffic into the local network with
an apparent source address equal to the access point’s $ext_if address.

In that scenario, a possibly useful addition to the rule set of a gateway
with several of these access points could be

wifi = "{ 10.0.0.115, 10.0.0.125, 10.0.0.135, 10.0.0.145 }"
pass in on $int_if from $wifi to $wifi_allowed port $wifi_ports tag wifigood
pass out on $ext_if tagged wifigood

given, of course, definitions of the $wifi_allowed and $wifi_ports macros to fit
the site’s requirements.

As rule set complexity grows in response to changing needs in your net-
works, it is worth considering the use of tag and tagged in your pass rules to
make your rule set readable and easier to maintain. It is worth noting that tags
are sticky. Once a packet has been tagged by a matching rule, it can potentially
be tagged by all other matching rules too, not just the last one. You could,
for example, set several tags on incoming traffic via a set of pass rules, supple-
mented by a set of pass rules that determine where packets pass out based on
the tags set on the incoming traffic.4

M A C R O S A S I N T E R F A C E G R O U P S

On systems where the interface group feature is not available, you may be able to
achieve some of the same effects via creative use of macros, such as the following:

untrusted = "{ ath0 ath1 wi0 ep0 }"
egress = "sk0"

4 In OpenBSD 4.2, ftp-proxy (see “FTP Through NAT: ftp-proxy” on page 25) acquired the
ability to tag packets, making it easier to integrate in complex configurations. See the ftp-proxy
man page for details.

Bigge r or T ri cki er Networks 61

The Bridging Firewall

An Ethernet bridge consists of two or more interfaces that are configured to
forward Ethernet frames transparently and are not directly visible to the upper
layers, such as the TCP/IP stack. In a filtering context, the bridge config-
uration is often considered attractive because it means that the filtering can
be performed on a machine that does not have any IP addresses of its own.
If the machine in question runs OpenBSD or a similarly capable operating
system, it is still able to filter and redirect traffic.

The main perceived advantage of such a setup is that attacking the fire-
wall itself is more difficult. The disadvantage is that all admin tasks must be
performed at the firewall’s console, unless you configure a network interface
that is accessible via a secured network of some kind or even a serial console.

It also follows naturally that bridges with no IP address configured cannot
be set as the gateway for a network and cannot run any services on the bridged
interfaces. Rather, you can think of a bridge as an intelligent bulge on the
network cable, which is able to filter and redirect.

A few general caveats apply to using firewalls implemented as bridges:

� The interfaces are placed in promiscuous mode, which means that they
can receive any packet on the network.

� Bridges operate on the Ethernet level and, by default, forward all types
of packets, not just TCP/IP.

� The lack of IP addresses on the interfaces makes some of the more
effective redundancy features, such as carp, unavailable.

The exact method for configuring bridges differs in some details among
the operating systems. The following examples are very basic and do not cover
all possible wrinkles, but they should be enough to get you started.

Basic Bridge Setup on OpenBSD

The OpenBSD GENERIC kernel contains all the necessary code to configure
bridges and filter on them. Unless you have compiled a custom kernel without
the bridge code, the setup is quite straightforward.

To create a bridge with two interfaces on the command line, first
create the bridge device. The first device of a kind is conventionally given
the sequence number 0, so we create the bridge0 device with the following
command:

$ sudo ifconfig bridge0 create

Before the next brconfig command, use ifconfig to check that the
prospective member interfaces (in our case ep0 and ep1) are up but have
not been assigned IP addresses.

62 Chapter 5

Then configure the bridge by entering the command

$ sudo brconfig bridge0 add ep0 add ep1 blocknonip ep0 blocknonip ep1 up

The OpenBSD brconfig command contains a fair bit of filtering code
itself, and in this example we chose the blocknonip option for each interface
to block all non-IP traffic.

NOTE The OpenBSD brconfig command offers its own set of filtering options in addition to
other configuration options. The bridge(4) and brconfig(8) man pages offer further
information. It is worth noting that since it operates on the Ethernet level, brconfig is
able to filter on MAC addresses. brconfig is also able to tag packets for further processing
in your PF rule set via the tagged keyword.

To make the configuration permanent, create or edit /etc/hostname.ep0
and finally, enter the following line:

up

For the other interface, you need /etc/hostname.ep1 to contain

up

and finally, enter the bridge setup in /etc/bridgename.bridge0 :

add ep0 add ep1 blocknonip ep0 blocknonip ep1 up

This means your bridge is up and you can move on to creating the PF
filter rules.

Basic Bridge Setup on FreeBSD
For FreeBSD, the procedure is a little more involved. To be able to use
bridging, your running kernel needs to include or be able to load the
if_bridge module. The default kernel configurations build this module, so
under ordinary circumstances, you can go directly to creating the interface.

If you want to compile the bridge device into the kernel, add the line

device if_bridge

in the kernel configuration file. It is also possible to load the device at boot
time by putting the line

if_bridge_load="YES"

in the /etc/loader.conf file.
Create the bridge device by issuing the following command:

$ sudo ifconfig bridge0 create

Bigge r or T ri cki er Networks 63

Creating the bridge0 interface also creates a set of bridge-related sysctls:

$ sudo sysctl net.link.bridge
net.link.bridge.ipfw: 0
net.link.bridge.pfil_member: 1
net.link.bridge.pfil_bridge: 1
net.link.bridge.ipfw_arp: 0
net.link.bridge.pfil_onlyip: 1

It is worth checking that these sysctl values are available. If they are, it is
confirmation that the bridge has been enabled. If they are not, you need to
go back and see what went wrong and why. However, these values apply to
filtering on the bridge interface itself, so we do not need to touch these values,
since IP-level filtering on the member interfaces (the ends of the pipe) is
enabled by default.

Before the next ifconfig command, check that the prospective member
interfaces (in our case ep0 and ep1) are up but have not been assigned IP
addresses.

Then configure the bridge by entering the command

$ sudo ifconfig bridge0 addm ep0 addm ep1 up

To make the configuration permanent, add the following lines to
/etc/rc.conf :

ifconfig_ep0="up"
ifconfig_ep1="up"
cloned_interfaces="bridge0"
ifconfig_bridge0="addm ep0 addm ep1 up"

This means your bridge is up and you can move on to creating the PF
filter rules. See the if_bridge(4) man page for further FreeBSD-specific
bridge information.

Basic Bridge Setup on NetBSD

On NetBSD, the default kernel configuration does not have the filtering
bridge support compiled in. You need to compile a custom kernel with the
option

options BRIDGE_IPF # bridge uses IP/IPv6 pfil hooks too

added to the kernel configuration file. Once you have the new kernel with
the bridge code in place, the setup is quite straightforward.

To create a bridge with two interfaces on the command line, first create
the bridge0 device:

$ sudo ifconfig bridge0 create

64 Chapter 5

Before the next brconfig command, use ifconfig to check that the
prospective member interfaces (in our case ep0 and ep1) are up but have not
been assigned IP addresses.

Then configure the bridge by entering the command

$ sudo brconfig bridge0 add ep0 add ep1 up

Next, enable the filtering on the bridge0 device:

$ sudo brconfig bridge0 ipf

To make the configuration permanent, create or edit /etc/ifconfig.ep0 and
enter the following line:

up

For the other interface, you need /etc/ifconfig.ep1 to contain

up

and finally, enter the bridge setup in /etc/ifconfig.bridge0 :

create
!add ep0 add ep1 up

This means your bridge is up and you can move on to creating the PF
filter rules.5

The Bridge Rule Set

Here is the pf.conf for a bulge-in-the-wire version of the baseline rule set we
started with in this chapter. The network again changes slightly, to look like
Figure 5-3.

Figure 5-3: A network with a bridge firewall

5 For further information, see the PF on NetBSD documentation at http://www.netbsd.org/
Documentation/network/pf.html.

Internet

Switch

Clients

Our bridge,
the PF firewall

int_ifext_if

The clients’
default gateway

Bigge r or T ri cki er Networks 65

The machines in the local net share a common default gateway, which is
not the bridge but could be placed conceptually on either the inside or the
outside of the bridge.

ext_if = ep0
int_if = ep1
localnet= "192.0.2.0/24"
webserver = "192.0.2.227"
webports = "{ http, https }"
emailserver = "192.0.2.225"
email = "{ smtp, pop3, imap, imap3, imaps, pop3s }"
nameservers = "{ 192.0.2.221, 192.0.2.223 }"
client_out = "{ ssh, domain, pop3, auth, nntp, http, https, cvspserver, 2628, 5999, 8000, 8080 }"
udp_services = "{ domain, ntp }"
icmp_types = "{ echoreq, unreach }"
set skip on $int_if
block all
pass quick on $ext_if inet proto { tcp, udp } from $localnet to any port $udp_services
pass log on $ext_if inet proto icmp all icmp-type $icmp_types
pass on $ext_if inet proto tcp from $localnet to any port $client_out
pass on $ext_if inet proto { tcp, udp } from any to $nameservers port domain
pass on $ext_if proto tcp from any to $webserver port $webports synproxy state
pass log on $ext_if proto tcp from any to $emailserver port $email synproxy state
pass log on $ext_if proto tcp from $emailserver to any port smtp synproxy state

Significantly more complicated setups are possible. Remember, though,
that while redirections will work, you will not be able to run services on any of
the IP address–less interfaces.

Handling Nonroutable Addresses from Elsewhere

Even with a properly configured gateway to handle filtering and potentially
network address translation for your own network, you may find yourself in
the unenviable position of having to compensate for other people’s
misconfigurations.

One depressingly common class of misconfigurations is the kind that
lets traffic with nonroutable addresses out to the Internet. Traffic from non-
routable addresses has also played a part in several Denial of Service (DoS)
attack techniques, so it may be worth considering explicitly blocking traffic
from nonroutable addresses from entering your network.

One possible solution is outlined below, which for good measure also
blocks any attempt to initiate contact to nonroutable addresses through the
gateway’s external interface:

martians = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12, \
 10.0.0.0/8, 169.254.0.0/16, 192.0.2.0/24, \
 0.0.0.0/8, 240.0.0.0/4 }"

block in quick on $ext_if from $martians to any
block out quick on $ext_if from any to $martians

66 Chapter 5

Here, the martians macro denotes the RFC 1918 addresses and a few other
ranges that are mandated by various RFCs not to be in circulation on the
open Internet. Traffic to and from such addresses is quietly dropped on the
gateway’s external interface.

The specific details of how to implement this kind of protection will vary
according to your specific network configuration, among other things. Your
network design could, for example, dictate that you include or exclude other
address ranges than these.

NOTE It is worth noting that the martians macro could easily be implemented as a table
instead.

6
T U R N I N G T H E T A B L E S F O R

P R O A C T I V E D E F E N S E

In the previous chapter we spent consider-
able time and energy to make sure the

services we want to offer are available even
when we have strict packet filtering in place.

Now that you have a working setup, you will soon
notice that some services tend to attract a little more
unwanted attention than others.

In this chapter, we’ll look into how we can use built-in PF features such
as tables and state-tracking options, sometimes in tandem with userspace
programs, to head off the unwanted attention and build a more functional
network.

Here’s the scenario: We have set up a network with packet filtering to
match the site’s needs, and as part of the package for a functional network,
we have some services running that need to be accessible to users from
elsewhere. Making services available unfortunately means that there is a risk
that somebody, somewhere will want to exploit the opening your service offers
for some sort of mischief.

68 Chapter 6

There are two services you are almost certain to have on your network:
remote login via the Secure Shell protocol (ssh) and SMTP email, both
tempting targets for the miscreants out there. In the following section,
“Turning Away the Brutes,” we look at some ways to make it harder to gain
unauthorized access via ssh before turning to some of the more effective
ways to deny spammers the pleasures of your servers and users in “Giving
Spammers a Hard Time with spamd” on page 71.

Turning Away the Brutes

The Secure Shell service, commonly referred to as SSH, is a fairly crucial
service for Unix administrators. It’s frequently the main interface to a
machine, and the fact that it’s often enabled on powerful systems has made
the service a favorite target of script kiddie attacks.

If you run a Secure Shell login service on any machine, I’m sure you’ve
seen things like this in your authentication logs:

Sep 26 03:12:34 skapet sshd[25771]: Failed password for root from 200.72.41.31 port 40992 ssh2
Sep 26 03:12:34 skapet sshd[5279]: Failed password for root from 200.72.41.31 port 40992 ssh2
Sep 26 03:12:35 skapet sshd[5279]: Received disconnect from 200.72.41.31: 11: Bye Bye
Sep 26 03:12:44 skapet sshd[29635]: Invalid user admin from 200.72.41.31
Sep 26 03:12:44 skapet sshd[24703]: input_userauth_request: invalid user admin
Sep 26 03:12:44 skapet sshd[24703]: Failed password for invalid user admin from 200.72.41.31
port 41484 ssh2
Sep 26 03:12:44 skapet sshd[29635]: Failed password for invalid user admin from 200.72.41.31
port 41484 ssh2
Sep 26 03:12:45 skapet sshd[24703]: Connection closed by 200.72.41.31
Sep 26 03:13:10 skapet sshd[11459]: Failed password for root from 200.72.41.31 port 43344 ssh2
Sep 26 03:13:10 skapet sshd[7635]: Failed password for root from 200.72.41.31 port 43344 ssh2
Sep 26 03:13:10 skapet sshd[11459]: Received disconnect from 200.72.41.31: 11: Bye Bye
Sep 26 03:13:15 skapet sshd[31357]: Invalid user admin from 200.72.41.31
Sep 26 03:13:15 skapet sshd[10543]: input_userauth_request: invalid user admin
Sep 26 03:13:15 skapet sshd[10543]: Failed password for invalid user admin from 200.72.41.31
port 43811 ssh2
Sep 26 03:13:15 skapet sshd[31357]: Failed password for invalid user admin from 200.72.41.31
port 43811 ssh2
Sep 26 03:13:15 skapet sshd[10543]: Received disconnect from 200.72.41.31: 11: Bye Bye
Sep 26 03:13:25 skapet sshd[6526]: Connection closed by 200.72.41.31

It gets repetitive after that, but this is what a brute force attack looks like.
Somebody, or more likely a cracked computer somewhere, is trying by brute
force to find a username and password that will allow a user to complete a
logon and give the attacker access to your system.

The simplest response would be to write a pf.conf rule that blocks all
access. This leads to another class of problems, though, including how to let
people with legitimate business on your system access it anyway. Setting up
your sshd to accept only key-based authentication would help too, but most
likely it would not stop the kiddies from trying the same thing over and over.
You might consider moving the service to some other port, but then again,
anyone who is flooding you on port 22 now would probably be able to scan
your ports all the way to port 22222 for a repeat performance.

Turni ng the Tab le s for Proac t ive Defense 69

Since OpenBSD 3.7 (or FreeBSD 6.0), PF has offered a slightly more
elegant solution. You can write your pass rules so they maintain certain limits
on what connecting hosts can do.

For good measure, you can banish violators to a table of addresses for
which you deny some or all access. You can even choose to drop all existing
connections from machines that overreach your limits, if you like. Here’s
how it’s done.

First, set up the table by adding the following line to your tables section:

table <bruteforce> persist

Then, somewhere fairly early in your rule set, set up the rule to block
traffic from the brute forcers, as shown here:

block quick from <bruteforce>

And finally, add your pass rule like this:

pass inet proto tcp from any to $localnet port $tcp_services \
 keep state (max-src-conn 100, max-src-conn-rate 15/5, \
 overload <bruteforce> flush global)

This is rather similar to what we’ve seen before, isn’t it? In fact, the first
part is identical to the rule we constructed earlier. What you should pay close
attention to is the part in parentheses, called state-tracking options. These will
ease your network load even further.

max-src-conn is the number of simultaneous connections you allow from
one host. In this example, I’ve set it to 100. However, in your setup you
may want a slightly higher or lower value, depending on the traffic pat-
terns on your network.

max-src-conn-rate is the rate of new connections allowed from any single
host, here 15 connections per 5 seconds. Again, you are the one to judge
what suits your setup.

overload <bruteforce> means that any host that exceeds these limits has its
address added to the table <bruteforce>. Our rule set blocks all traffic
from addresses in the <bruteforce> table.

WARNING It is important to note that once a host has gone over any one of these limits and is put in
the overload table, the rule no longer matches traffic from that host. You need to make sure
that overloaders are handled, if only by a default block rule or something similar.

flush global says that when a host reaches the limit, that host’s connections
will be terminated (flushed). The global part says that for good measure,
the flush applies to connections that match other pass rules too.

The effect is dramatic. My brute forcers more often than not end up
with Fatal: timeout before authentication messages, which is exactly what
we want.

70 Chapter 6

Once again, please keep in mind that this example rule is intended mainly
as an illustration. It is not unlikely that your network’s needs are better served
by different rules or combinations of rules.

Setting the number of simultaneous connections or the rate of connec-
tions too low may lead to locking out legitimate traffic. One such scenario
with a clear risk of self-inflicted DoS is when the configuration includes a
large number of hosts behind a common NATing gateway, and the users on
the NATed hosts have legitimate business needs that require them to contact
services on the other side of a gateway with strict overload rules.

If, for example, you want to allow a generous number of connections in
general but would like to be a little more tight-fisted when it comes to ssh,
you could supplement the aforementioned rule with something like the
one below, early on in your rule set:

pass quick proto { tcp, udp } from any to any port ssh \
 keep state (max-src-conn 15, max-src-conn-rate 5/3, \
 overload <bruteforce> flush global)

You should be able to find the set of parameters that is just right for your
situation by reading the relevant man pages and the PF User Guide (http://www
.openbsd.org/faq/pf)—and perhaps by doing a bit of experimentation.

You May Not Need to Block All of Your Overloaders
It is probably worth making two points here: The overload mechanism is a
general technique that does not have to apply exclusively to the ssh service,
and blocking all traffic from offenders is not always desired.

You could, for example, use an overload rule to protect an email service
or a web service. Or you could use the overload table in a rule to assign
offenders to a queue with a minimal bandwidth allocation (see “Directing
Traffic with ALTQ” on page 87). It’s also useful, in web cases, for redirecting
any and all http requests to a specific web page only (much like in the authpf
example in “Wide Open but Actually Shut” on page 43).

Tidying Your Tables with pfctl
At this point, we have tables that will be filled by our overload rules, and
since we expect our gateways to have months of uptime, the tables will grow
incrementally and take up more memory as time goes by.

At some point, you will probably also find that an IP address you blocked
last week because of a brute-force attack was in fact a dynamically assigned
one, which is now assigned to a different ISP customer who has a legitimate
reason to try communicating with hosts in your network.

Situations like these create the need for a way to remove table entries
that are no longer needed. In OpenBSD 4.1, pfctl acquired the ability to
expire table entries based on the time since their statistics were last reset.

Turni ng the Tab le s for Proac t ive Defense 71

In almost all circumstances, this is equal to the time since the table entry was
added. The keyword was, predictably, expire, and the table entry’s age was
specified in seconds.

For example, the command shown here:

pfctl -t bruteforce -T expire 86400

will remove <bruteforce> table entries that had their statistics reset more than
86,400 seconds, or 24 hours, ago. You might want to set up crontab entries to
run table expiry at regular intervals, such as every hour, once a day, or several
times each day.

The Forerunner: expiretable

Before pfctl acquired the ability to expire table entries, table expiry was
more likely than not handled by the special-purpose utility expiretable,
written by Henrik Gustafsson. This program performs essentially the same
function as pfctl’s -T expire feature and is mainly useful for PF implementa-
tions based on OpenBSD 4.0 or earlier.

You could let expiretable run as a daemon that removes <bruteforce>
table entries older than 24 hours by adding an entry containing the following
to your /etc/rc.local file:

/usr/local/sbin/expiretable -v -d -t 24h bruteforce

expiretable was quickly added to the ports tree on FreeBSD and OpenBSD,
as security/expiretable and sysutils/expiretable, respectively.

If expiretable is not available via your package system, you can download
it from Henrik’s site at http://expiretable.fnord.se.

Giving Spammers a Hard Time with spamd

One other service that needs some special attention is email. Email is one of
the older Internet services and one we would not like to do without. In the
form of SMTP and a host of retrieval protocols, email is one of the basic
services on any TCP/IP network. So basic, in fact, that it’s extremely hard to
even imagine what the Internet would be without it.

By the early years of the present century, the commercialized Internet
had seen the rise of spam as a problem that threatened to make SMTP email
less useful. Various content-filtering solutions were devised, and while a num-
ber of the open-source ones ran well on the BSDs, the OpenBSD team set to
work on its own spam-fighting solution, dubbed spamd, in early 2003. The first
version of spamd was introduced as part of OpenBSD 3.3, which was released
on May 1, 2003.

72 Chapter 6

NOTE In addition to the OpenBSD spam-deferral daemon, the content-filtering based anti-
spam package SpamAssassin (http://spamassassin.apache.org) also features a
program called spamd. The two programs are both designed to help fight spam, but
they represent very different approaches to the underlying problem and do not inter-
operate directly. However, when both programs are correctly configured and running in
your network, they can complement each other well. The two programs are not related
in any way, and care has been taken to make sure their files are installed in separate
locations in the filesystem; if there is a need, it is possible to have both spamd programs
installed on the same system.

The new program hooked into the familiar packet filter via a set of
special-purpose tables and redirection rules. The basic design is easy to
grasp, and based on our recent exposure to PF rule sets, understanding
the following pf.conf lines should be straightforward:

table <spamd> persist
table <spamd-white> persist
rdr pass on $ext_if inet proto tcp from <spamd> to \
 { $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025
rdr pass on $ext_if inet proto tcp from !<spamd-white> to \
 { $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025

We have two tables with distinctive names. For now we’ll just note the
names and move on. The crucial part is that SMTP traffic from the addresses
in the first table plus the ones that are not in the second table are redirected
to a daemon listening at port 8025.

Remember, You Are Not Alone: Blacklisting
The main point underlying the original spamd design is the fact that spammers
send a large number of messages, and the probability that you are the first
person receiving a particular message is incredibly small. In addition, spam
is mainly sent via a few spammer-friendly networks and a large number of
hijacked machines. Both the individual messages and the machines will be
reported to blacklists fairly quickly, and this is the data that eventually ends
up in the first table in our example.

Classic spamd: Blacklists and the Sticky Tar Pit

In the classic mode, spamd employs a method called tarpitting. The daemon
presents its banner to SMTP connections from addresses in the blacklist and
then immediately switches to a mode where it answers SMTP traffic one byte
at a time, intending to waste as much time as possible on the sending end
while costing the receiver pretty much nothing.

The specific implementation with 1-byte SMTP replies is often referred
to as stuttering. Blacklist-based tarpitting with stuttering was the default mode
for spamd up to and including OpenBSD 4.0.

Setting up spamd to run in traditional, blacklisting-only mode is fairly
straightforward. Start by putting the redirections and table definitions

Turni ng the Tab le s for Proac t ive Defense 73

just mentioned in your pf.conf file, and then turn your attention to the
spamd.conf file.

NOTE Note that on FreeBSD, spamd is a port, mail/spamd/. If you are running PF on
FreeBSD 5.x or newer, you need to install the port, follow the directions given by
the port’s messages, and then return here.

A Basic spamd.conf File

As distributed, the file itself offers quite a bit of explanation, and the man
page offers additional information, but we will recap the essentials here.

NOTE On OpenBSD 4.0 and earlier (and by extension, ports that are based on versions prior
to OpenBSD 4.1), spamd.conf was in /etc. Starting with OpenBSD 4.1, the file is to
be found in the /etc/mail directory instead.

Near the beginning of the file, you will notice a line without a # comment
sign that says all:\. This line specifies the lists you actually use, such as

all:\
:uatraps:whitelist:

Here you add all blacklists you want to use, separated by colons (:). If
you want to use whitelists to subtract addresses from your blacklist, add the
name of the whitelist immediately after the name of each blacklist, for
example, :blacklist:whitelist:.

Next up is a blacklist definition:

uatraps:\
 :black:\
 :msg="SPAM. Your address %A has sent spam within the last 24 hours":\
 :method=http:\
 :file=www.openbsd.org/spamd/traplist.gz

Following the name, the first data field specifies the list type, in this case
black. The msg field contains the message displayed to blacklisted senders
during the SMTP dialog. The method field specifies how the spamd-setup
program fetches the list data, in this case http. Other possibilities include
fetching via ftp, from a file in a mounted filesystem, or via exec of an external
program. Finally, the file field specifies the name of the file spamd expects to
receive.

The definition of a whitelist, as shown below, follows much the same
pattern but omits the message parameter, since a message is not needed:

whitelist:\
 :white:\
 :method=file:\
 :file=/var/mail/whitelist.txt

74 Chapter 6

WARNING Choose your data sources with care. The suggested blacklists in the default spamd.conf
as distributed could potentially exclude quite large blocks of the Internet, including
several address ranges that claim to cover entire countries. It goes pretty much without
saying that if your site expects to exchange legitimate email with any of the countries in
question, those lists may not be optimal for your setup. Other popular lists have been
known to list entire /16 ranges as spam sources, and it is well worth the effort to find
out the details of the list’s maintenance policy before putting a blacklist into production.
You are the judge of which data sources to use, and using lists other than the default
ones is possible.

Put the lines for spamd and the startup parameters you want in your /etc/
rc.conf or /etc/rc.conf.local. For example, this line

spamd_flags="-v" # for normal use: "" and see spamd-setup(8)

enables spamd to run in blacklisting mode on OpenBSD 4.0 and earlier. The
-v flag enables verbose logging, which is useful for keeping track of spamd’s
activity for debugging.

NOTE If you want spamd to run in pure blacklist mode without greylisting (described in the
next section) on OpenBSD 4.1 or newer, set the spamd_black variable to YES and then
restart spamd to turn off greylisting and enable blacklisting-only mode.

When you have finished editing the setup, start spamd with the options you
want and complete the configuration using spamd-setup. Finally, create a
cron job that calls spamd-setup to update the tables at reasonable intervals.

By default, spamd logs to your general system logs. If you want the spamd
log messages to go to a separate log file to reduce the clutter in your system
logs, you may want to add an entry similar to this to your syslog.conf file:

!!spamd
daemon.err;daemon.warn;daemon.info /var/log/spamd

When you’re satisfied that spamd is running and does what it is supposed
to do, you will probably want to add the spamd log file to your log rotations, too.

Once spamd-setup has been run and the tables are filled, you can view
table contents using pfctl or other applications. If you want to change or
delete entries, you are advised to use the spamdb utility instead of pfctl table
commands. (We’ll talk more about that later.)

Note that in the example pf.conf fragment at the beginning of “Giving
Spammers a Hard Time with spamd” on page 72, the redirection (rdr) rules
are also pass rules. If your rdr rules do not include a pass part, you need to set
up pass rules to let traffic through to your redirection target. You also need
to set up rules to let legitimate email through. If you are already running an
email service on your network, you can probably go on using your old SMTP
pass rules.

Pure blacklisting mode is here mostly for historical reasons. Given a set
of reliable and well-maintained blacklists, it does a good job of keeping known
spam-sending machines occupied. However, the real gains in spam prevention
come with greylisting, which is a crucial part of how the modern spamd works.

Turni ng the Tab le s for Proac t ive Defense 75

Greylisting: My Admin Told Me Not to Talk to Strangers

Greylisting consists mainly of interpreting the current SMTP standards with a
reasonable helping of pedantry and then adding a little white lie to make life
easier.

Spammers tend to use other people’s equipment to send their messages,
and the software they install without the legal owner’s permission needs to be
relatively lightweight to be able to run undetected. There are also strong
indications that spammers typically do not consider any individual message
they send to be important. Taken together, this means that typical spam and
malware sender software is probably not set up to interpret SMTP status codes
correctly.

We can use this to our advantage, as Evan Harris first showed in a 2003
paper.1 The main point is, when a compromised machine is used to send
spam, the sender application tends to try delivery only once, without checking
for any results or return codes. Real SMTP implementations interpret SMTP
return codes and act on them, and real mail servers retry if the initial attempt
fails with any kind of temporary error. The initial design and early test results
seemed promising, and a number of greylisting implementations followed
over the next few months after the paper appeared.

Even though Internet services are offered with no guarantees, usually
described as best-effort services, a significant amount of design and development
effort has been put into making essential services such as SMTP email trans-
mission fault tolerant. In practical terms, this means that the best effort of a
service such as SMTP is as close as you can get to having a perfect record for
delivering messages. That’s why we can rely on greylisting to eventually receive
email from proper mail servers.

The current standard for Internet email transmission is defined in
RFC 2821. In that document’s section 4.5.4.1, “Sending Strategy,” we find that

In a typical system, the program that composes a message has some
method for requesting immediate attention for a new piece of out-
going mail, while mail that cannot be transmitted immediately
MUST be queued and periodically retried by the sender.

and

The sender MUST delay retrying a particular destination after
one attempt has failed. In general, the retry interval SHOULD
be at least 30 minutes; however, more sophisticated and variable
strategies will be beneficial when the SMTP client can determine
the reason for non-delivery.

RFC 2821 then goes on to state that

Retries continue until the message is transmitted or the sender
gives up; the give-up time generally needs to be at least 4–5 days.

1 The original Harris paper and a number of other useful articles and resources can be found at
http://www.greylisting.org.

76 Chapter 6

To summarize, delivering email is a collaborative, best-effort process,
and the RFC clearly states that if the site you are trying to send email to
reports it can’t receive anything at the moment, it is your duty (a must
requirement) to try again later, giving the receiving server a chance to
recover from its problem.

The clever wrinkle to greylisting is that it’s a convenient white lie. When
we claim to have a temporary local problem, the temporary local problem is
really the equivalent of My admin told me not to talk to strangers. Well-behaved
senders with valid messages will come calling again later, but spammers have
no interest in waiting around for the chance to retry, since it would increase
their cost of delivering the messages.

This is the essence of why greylisting still works. And since it’s really a
matter of being slightly pedantic about following accepted standards,2 false
positives are very rare.

OpenBSD’s spamd acquired its ability to greylist in OpenBSD 3.5, which
was released in May 2004. Starting with OpenBSD 4.1, which was released
May 1, 2007, spamd runs in greylisting mode by default.

The most amazing thing about greylisting, apart from its simplicity, is that
it still works. Spammers and malware writers have been very slow to adapt. We
will see a few examples later.

Setting Up spamd in Greylisting Mode

With the necessary rules in place in your pf.conf, configuring spamd for grey-
listing is fairly straightforward.

Begin by placing the lines for spamd and the startup parameters you want
in your /etc/rc.conf or /etc/rc.conf.local, for example:

spamd_flags="-v -G 2:4:864" # for normal use: "" and see spamd-setup(8)
spamd_grey=YES # use spamd greylisting if YES

2 The relevant RFCs are mainly RFC 1123 and RFC 2821. If you choose to join us greylisting
pedants, you will need to read these, if only for proper RFC-style background information.
Remember, temporary rejection is in fact an SMTP fault-tolerance feature.

S P A M D O N F R E E B S D N E E D S F DE S C F S

Note that on FreeBSD, to use spamd in greylisting mode you need to have a file
descriptor filesystem (see man 5 fdescfs) mounted at /dev/fd/. You can do this by
adding the following line to your /etc/fstab:

fdescfs /dev/fd fdescfs rw 0 0

The fdescfs code is available as a loadable kernel module in the default config-
uration, but if you are using a custom kernel, you may need to check that the module
is available or that the code is compiled in.

Turni ng the Tab le s for Proac t ive Defense 77

Once again, on OpenBSD 4.1 and later, the spamd_grey variable is super-
fluous, since greylisting is the default mode.3

Note that you can fine-tune several of the greylisting-related parameters
via spamd command-line parameters trailing the -G option. This colon-separated
list consists of the values passtime, greyexp, and whiteexp. Here passtime denotes
the minimum number of minutes spamd considers a reasonable time before
retry. The default is 25 minutes, but in this configuration this has been
reduced to 2 minutes. Both greyexp and whiteexp are measured in hours,
where greyexp is the number of hours an entry stays in the greylisted state
before it is removed from the database, and whiteexp is how long a whitelisted
entry is kept around. The default values are 4 hours and 864 hours (just over
one month), respectively.

Tracking Your Real Mail Connections: spamlogd

Behind the scenes, rarely mentioned, and barely documented is one of
spamd’s most important helper programs: the spamlogd whitelist updater.
As the name suggests, spamlogd works quietly in the background, recording
logged connections to and from your mail servers to keep your whitelist
updated. The idea is to make sure valid email to and from hosts you com-
municate with regularly goes through with a minimum of fuss.

NOTE Restart spamd to enable greylisting. If you followed the natural progression up to this
point, it’s most likely spamlogd has been started automatically already. However, if
your initial spamd configuration did not include greylisting, spamlogd may not have
been started, and you may experience strange symptoms such as the greylist and white-
list not getting updated properly. Under normal circumstances, you should not have to
start spamlogd by hand. Restarting spamd after you have enabled greylisting ensures
that spamlogd is loaded and available too.

In order to perform its job properly, spamlogd needs you to log SMTP
connections to and from your mail servers, such as in the sample rule set
discussed earlier in this chapter:

emailserver = "192.0.2.225"
pass log proto tcp from any to $emailserver port $email synproxy state
pass log proto tcp from $emailserver to any port smtp synproxy state

On OpenBSD 4.1 and later (and equivalents), you can create several
pflog interfaces and specify which interface a rule should log to. If you want
to separate the data spamlogd needs to read from the rest of your PF logs,
create a separate pflog1 interface using ifconfig pflog1 create or by making a
hostname.pflog1 file that contains only the line up. If you change the rules to

pass log (to pflog1) proto tcp from any to $emailserver port $email
pass log (to pflog1) proto tcp from $emailserver to any port smtp

3 As we mentioned in “A Basic spamd.conf File” on page 73, you can use the spamd_black variable
to turn greylisting off.

78 Chapter 6

and add -l pflog1 to spamlogd’s startup parameters, you have separated the
spamd-related logging from the rest. See Chapter 8 for more about logging.

With these rules in place, spamlogd will add the IP addresses that receive
email you send to the whitelist. This is not an ironclad guarantee that the reply
will pass immediately, but in most configurations it helps speed things up
significantly.

Manual Intervention with spamdb

There will be times when you need to view or change the contents of your
blacklists, whitelist, or greylist. These records are located in the /var/db/
spamdb database, and an administrator’s main interface to managing those
lists is spamdb.

Early versions of spamdb simply offered options to add whitelist entries to
the database or update existing ones (spamdb -a nn.mm.nn.mm) and to delete
whitelist entries (spamdb -d nn.mm.nn.mm) to compensate for either short-
comings in the blacklists used or the effects of the greylisting algorithms.

In recent times, spamdb has been developed to offer some interesting
features to support greytrapping. We will come back to greytrapping and
other recent advances in a short while, but first we’ll take a look at some field
notes on how spamd performs.

Some Highlights of Day-to-Day spamd Use

What is spamd like in practical use? Users and administrators at sites that
implement greylisting tend to agree that they get rid of most of their spam
that way. We will start by seeing what it looks like according to log files and
then come back with some data.

If you start spamd with the -v command-line option for verbose logging,
the logs include a few more items of information in addition to the IP
addresses. With verbose logging, a typical log excerpt looks like this:

Oct 2 19:53:21 delilah spamd[26905]: 65.210.185.131: connected (1/1), lists: spews1
Oct 2 19:55:04 delilah spamd[26905]: 83.23.213.115: connected (2/1)
Oct 2 19:55:05 delilah spamd[26905]: (GREY) 83.23.213.115: <gilbert@keyholes.net> ->
wkitp98zpu.fsf@datadok.no>
Oct 2 19:55:05 delilah spamd[26905]: 83.23.213.115: disconnected after 0 seconds.
Oct 2 19:55:05 delilah spamd[26905]: 83.23.213.115: connected (2/1)
Oct 2 19:55:06 delilah spamd[26905]: (GREY) 83.23.213.115: <gilbert@keyholes.net> ->
<wkitp98zpu.fsf@datadok.no>
Oct 2 19:55:06 delilah spamd[26905]: 83.23.213.115: disconnected after 1 seconds.
Oct 2 19:57:07 delilah spamd[26905]: (BLACK) 65.210.185.131: <bounce-3C7E40A4B3@branch15.summer-
bargainz.com> -> <adm@dataped.no>
Oct 2 19:58:50 delilah spamd[26905]: 65.210.185.131: From: Auto lnsurance Savings
<noreply@branch15.summer-bargainz.com>
Oct 2 19:58:50 delilah spamd[26905]: 65.210.185.131: Subject: Start SAVlNG M0NEY on Auto
lnsurance
Oct 2 19:58:50 delilah spamd[26905]: 65.210.185.131: To: adm@dataped.no
Oct 2 20:00:05 delilah spamd[26905]: 65.210.185.131: disconnected after 404 seconds. lists:
spews1

Turni ng the Tab le s for Proac t ive Defense 79

Oct 2 20:03:48 delilah spamd[26905]: 222.240.6.118: connected (1/0)
Oct 2 20:03:48 delilah spamd[26905]: 222.240.6.118: disconnected after 0 seconds.
Oct 2 20:06:51 delilah spamd[26905]: 24.71.110.10: connected (1/1), lists: spews1
Oct 2 20:07:00 delilah spamd[26905]: 221.196.37.249: connected (2/1)
Oct 2 20:07:00 delilah spamd[26905]: 221.196.37.249: disconnected after 0 seconds.
Oct 2 20:07:12 delilah spamd[26905]: 24.71.110.10: disconnected after 21 seconds. lists: spews1

The first line is the beginning of a connection from a machine in the
spews1 blacklist. The next six lines show the complete records of two connec-
tion attempts from another machine, which each time connects as the second
active connection. This second machine is not yet in any blacklist, so it is
greylisted.4 The (GREY) or (BLACK) before the addresses indicates greylisting
or blacklisting status. Then there is more activity from the blacklisted host,
and a little later we see that after 404 seconds (or 6 minutes, 44 seconds), the
blacklisted host gives up without completing the delivery. The remaining
lines show a few very short connections, including one more from a machine
that is already in a blacklist. This time, though, the machine disconnects too
quickly to see any (BLACK) flag at the beginning of the SMTP dialog, but we
see a reference to the list name (spews1) at the end.

Roughly 400 seconds is about par for naïve spam senders that end up
in blacklists to hang around, according to data from various sites. That also
corresponds roughly to the time it takes—at the rate of 1 byte per second—
to complete the MAIL TO: ... dialog until spamd rejects the message back to
the sender’s queue. However, while peeking at the logs, you are likely to
find some that hang around significantly longer. In the data from our office
gateway, one log entry stood out for a long time:

Dec 11 23:57:24 delilah spamd[32048]: 69.6.40.26: connected (1/1), lists: spamhaus spews1
spews2
Dec 12 00:30:08 delilah spamd[32048]: 69.6.40.26: disconnected after 1964 seconds. lists:
spamhaus spews1 spews2

This particular machine was already on several blacklists when it made
13 attempts at delivery between December 9 and December 12, 2004. The
last attempt lasted 32 minutes, 44 seconds, without completing the delivery.
However, most connections are a lot shorter than this. The relatively intel-
ligent spam senders drop the connection during the first few seconds, like
the ones in the first log fragment. Others give up after around 400 seconds,
while a very small number hang on for hours.5

These days, most sites have some sort of content filtering in place to
handle spam and email-borne malware. Sites that complement their setup
with a spamd on their gateway see the load on the content-filtering machines
drop significantly.

4 Note the rather curious delivery address (wkitp98zpu.fsf@datadok.no) in the message that the
greylisted machine tries to deliver here. There is a useful trick that we’ll look at in “Setting Up
Your Own Traplist” on page 81.
5 The most extreme case we have recorded hung on for 42,673 seconds, which is almost
12 hours. See Appendix A for references to other publications and more data.

80 Chapter 6

Harvesting the Noise: The Fundamentals of Greytrapping

By the time the development cycle for OpenBSD 3.8 started during the
first half of 2005, spamd users and developers had accumulated significant
amounts of data and experience on spammer behavior and reactions to
countermeasures.

We already know that spam senders rarely use a fully compliant SMTP
implementation to send their messages—that’s why greylisting works. Also,
as we noted earlier, not only do spammers send large numbers of messages,
they rarely check that the addresses they feed to their hijacked machines
are actually deliverable. Combine these facts, and you’ll see that if a grey-
listed machine tries to send a message to an invalid address in your domain,
there is a significant probability that the message is spam or, for that matter,
malware.

Enter Greytrapping

Consequently, spamd had to learn greytrapping. Greytrapping as implemented
in spamd is quite simple and, to my mind, quite elegant. The main thing we
need as a starting point is a spamd that runs in greylisting mode. The other
crucial component is a list of addresses in domains our servers handle email
for, but only addresses that we are quite sure will never receive any legitimate
email. How many addresses are in your list is not important. There needs to
be at least one, and the upper limit is mainly defined by how many addresses
you feel inclined to add.

Next up, use spamdb to feed your list into spamd’s greytrapping feature, and
sit back to watch. At first contact, a sender trying to send email to an address
on your greytrap list is simply greylisted, like any other we have not exchanged
email with before.

If the same machine tries again later, either retrying to the same invalid
address as earlier or trying to deliver to one of the other addresses on your
greytrapping list, the greytrap is triggered. The offender is then put into
a temporary blacklist, dubbed spamd-greytrap, for 24 hours. For the next
24 hours, any SMTP traffic from the greytrapped host will be stuttered at,
with one-byte-at-a-time replies.

Twenty-four hours is short enough to not cause serious disruption of
legitimate traffic, since real SMTP implementations will keep trying to deliver
for a few days, at least.

Experience from large-scale implementations of the technique shows that
it rarely, if ever, produces false positives. Machines that continue spamming
after 24 hours will make it back to the tar pit soon enough.

One prime example of useful greytrapping is Bob Beck’s ghosts of usenet
postings past–based traplist, generated automatically by computers running
spamd at the University of Alberta, which rarely contains less than 20,000 IP
address entries. The number of hosts varies widely and has been as high as
roughly 175,000. At the time this book was written (November 2007), the list
typically contained around 110,000 entries. While still officially in testing, it

Turni ng the Tab le s for Proac t ive Defense 81

was made publicly available on January 30, 2006. To my knowledge, the list
has yet to produce any false positives and is available from http://www.openbsd
.org/spamd/traplist.gz for your spamd.conf.6

Setting Up Your Own Traplist

To set up your own traplist, use spamdb’s -T option. In my case, the strange
address I mentioned earlier was a natural candidate for inclusion:7

$ sudo spamdb -T -a wkitp98zpu.fsf@datadok.no

That address is completely bogus. I use the GNUS email and news client,
and this looks very much like the kind of message-ID the program generates.
That message-ID was probably lifted from a news spool or some unfortunate
malware victim’s mailbox. But sure enough, the spammers thought this was
just as usable as it was almost two years earlier. As you’ll see, the same delivery
address is being recycled.

Nov 6 09:50:25 delilah spamd[23576]: 210.214.12.57: connected (1/0)
Nov 6 09:50:32 delilah spamd[23576]: 210.214.12.57: connected (2/0)
Nov 6 09:50:40 delilah spamd[23576]: (GREY) 210.214.12.57: <gilbert@keyholes.net> ->
<wkitp98zpu.fsf@datadok.no>
Nov 6 09:50:40 delilah spamd[23576]: 210.214.12.57: disconnected after 15 seconds.
Nov 6 09:50:42 delilah spamd[23576]: 210.214.12.57: connected (2/0)
Nov 6 09:50:45 delilah spamd[23576]: (GREY) 210.214.12.57: <bounce-3C7E40A4B3@branch15.summer-
bargainz.com> -> <adm@dataped.no>
Nov 6 09:50:45 delilah spamd[23576]: 210.214.12.57: disconnected after 13 seconds.
Nov 6 09:50:50 delilah spamd[23576]: 210.214.12.57: connected (2/0)
Nov 6 09:51:00 delilah spamd[23576]: (GREY) 210.214.12.57: <gilbert@keyholes.net> ->
<wkitp98zpu.fsf@datadok.no>
Nov 6 09:51:00 delilah spamd[23576]: 210.214.12.57: disconnected after 18 seconds.
Nov 6 09:51:02 delilah spamd[23576]: 210.214.12.57: connected (2/0)
Nov 6 09:51:02 delilah spamd[23576]: 210.214.12.57: disconnected after 12 seconds.
Nov 6 09:51:02 delilah spamd[23576]: 210.214.12.57: connected (2/0)
Nov 6 09:51:18 delilah spamd[23576]: (GREY) 210.214.12.57: <gilbert@keyholes.net> ->
<wkitp98zpu.fsf@datadok.no>
Nov 6 09:51:18 delilah spamd[23576]: 210.214.12.57: disconnected after 16 seconds.
Nov 6 09:51:18 delilah spamd[23576]: (GREY) 210.214.12.57: <bounce-3C7E40A4B3@branch15.summer-
bargainz.com> -> <adm@dataped.no>
Nov 6 09:51:18 delilah spamd[23576]: 210.214.12.57: disconnected after 16 seconds.
Nov 6 09:51:20 delilah spamd[23576]: 210.214.12.57: connected (1/1), lists: spamd-greytrap
Nov 6 09:51:23 delilah spamd[23576]: 210.214.12.57: connected (2/2), lists: spamd-greytrap
Nov 6 09:55:33 delilah spamd[23576]: (BLACK) 210.214.12.57: <gilbert@keyholes.net> ->
<wkitp98zpu.fsf@datadok.no>
Nov 6 09:55:34 delilah spamd[23576]: (BLACK) 210.214.12.57: <bounce-
3C7E40A4B3@branch15.summer-bargainz.com> -> <adm@dataped.no>

6 This list is part of recent sample spamd.conf files as the uatraps blacklist. In addition to this list,
Bob recommends using heise.de’s nixspam list, also in the sample spamd.conf file, which is generated
from various sources with a four-day automatic expiry. Detailed information about that list is
available from Heise’s website at http://www.heise.de/ix/nixspam/dnsbl_en.
7 The actual command I entered back then was $ sudo spamdb -T -a "<wkitp98zpu.fsf@datadok.no>".
In OpenBSD 4.1 and later, spamdb does not require the angle brackets or quotes, but it will accept
them if you put them in.

mailto:wkitp98zpu.fsf@datadok.no

82 Chapter 6

This log fragment shows how the spammer’s machine is greylisted at first
contact and then clumsily tries to deliver messages to the curious address I
added to my traplist, only to end up in the spamd-greytrap blacklist after a few
minutes. By now we all know what it will be doing for the next 20-odd hours.

On a side note, it looks like even though the spammer moved to a differ-
ent machine to send from, both the From: and To: addresses stayed the same.
The fact that it’s still trying to send to an address that has never been deliver-
able is a strong indicator that this spammer outfit does not check its lists too
frequently. By the time you read this, it might be worth checking to see if the
sender domain is still registered. At the time of this writing, it does not receive
email and is clearly marked as being for sale.

Deleting and Handling Trapped Entries

There are a few more spamdb options you should be aware of. The -T option
combined with -d lets you delete traplist email address entries, while the -t
(lowercase) option combined with -a or -d lets you add or delete trapped IP
address entries from the database.

Exporting your list of currently trapped addresses can be as simple as
putting together a one-liner with spamdb, grep, and a little imagination.

Keeping Several spamd Greylists in Sync

Starting with OpenBSD 4.1, spamd is able to keep the greylisting databases in
sync across any number of cooperating greylisting gateways.

The implementation is via a set of spamd command-line options: the -Y
option specifies a sync target, that is, the IP address(es) of other spamd-running
gateways you want to inform of updates to your greylisting information. On the
receiving end, the -y option specifies a sync listener, which is the address or
interface where this spamd instance is prepared to receive greylisting updates
from other hosts.

Our main spamd gateway, mainoffice-gw.example.com, might have the follow-
ing options added to its startup command line to establish a sync target and
sync listening, respectively:

-Y minorbranch-gw.example.com -y mainoffice-gw.example.com

Conversely, minorbranch-gw.example.com at the branch office would have
the hostnames reversed, as shown below:

-Y mainoffice-gw.example.com -y minorbranch-gw.example.com

Note that spamd also supports shared-secret authentication between the
synchronization partners. If you create the file /etc/mail/spamd.key and distrib-
ute copies of that file to all synchronization partners, the contents of that file
will be used to calculate the necessary checksums for authentication. The
file itself can be any kind of data, such as random data harvested from
/dev/arandom, as suggested by spamd’s man page.

Turni ng the Tab le s for Proac t ive Defense 83

Detecting Out-of-Order MX Use

Another nice feature that was introduced in OpenBSD 4.1 was spamd’s ability
to detect out-of-order MX use. Contacting a secondary email exchanger first
instead of trying the main one is a fairly well-known spammer trick and one
that runs contrary to the behavior we expect from ordinary email transfer
agents.

In other words, if someone tries the email exchangers in the wrong
order, it’s pretty much certain that he or she is trying to deliver spam. For our
example.com domain, where the main mail server has the IP address 192.0.2.225
and the backup has the address 192.0.2.224, adding -M 192.0.2.224 to spamd’s
startup options would mean that any host that tries to contact 192.0.2.224 via
SMTP before contacting the main mail server at 192.0.2.225 would be added
to the local spamd-greytrap list to sweat it out for the next 24 hours.

Handling Sites That Do Not Play Well with Greylisting

Unfortunately, there are situations in which you will need to compensate for
the peculiarities of other sites’ email setups. We have already learned that the
main reason greylisting works is that any standards-compliant email setup is
required to retry delivery after some reasonable amount of time. However, as
Murphy will be all too happy to tell you, life is not always that simple.

For one thing, the first email message sent from any site that has not
contacted you for as long as the greylister keeps its data around will be
delayed for some random amount of time, which depends mainly on the
sender’s retry interval.

Under some circumstances, even a minimal delay is undesirable. If, for
example, you have some infrequent customers who always demand immediate
and urgent attention to their business when they do contact you, an initial
delivery delay of what could be up to several hours may not be optimal.

In addition, you are bound to encounter misconfigured mail servers that
either do not retry at all or retry too quickly, perhaps stopping delivery retries
after a few attempts or even just one.

Finally, there are some sites that are large enough to have several out-
going SMTP servers and do not play well with greylisting, since they are not
guaranteed to retry delivery of any given message from the same IP address
as the last delivery attempt for that message. Even though those sites can
sincerely claim to comply with the retry requirements, since the RFCs do not
state that the new delivery attempts have to come from the same IP address,
it’s fairly obvious that this is one of the few remaining downsides of greylisting.

If you need to compensate for such things in your setup, it is fairly easy
to do. One useful approach is to define a table for a local whitelist to be fed
from a file in case of reboots, as follows:

table <localwhite> file "/etc/mail/whitelist.txt"

84 Chapter 6

To make sure SMTP traffic from the addresses in that table is not fed to
spamd, add a no rdr rule at the top of your redirection block, as shown here:

no rdr proto tcp from <localwhite> to $mailservers port smtp

Once you have these changes added to your rule set, enter the addresses
you need to protect from redirection into the whitelist.txt file and then reload
your rule set using pfctl -f /etc/pf.conf. You can then use all the expected
table tricks on the <localwhite> table, including replacing its content after
editing the whitelist.txt file.

It is worth noting that at least some of the sites with many outgoing SMTP
servers also publish information about which hosts are allowed to send email
for their domain via SPF records,8 which are part of the DNS information for
the domain.

To retrieve the SPF records for our example.com domain, you could use the
host command’s -ttxt option, like this:

$ host -ttxt example.com

The command would produce an answer roughly like this:

example.com descriptive text "v=spf1 ip4:192.0.2.129/25 -all"

where the text in quotes is the example.com domain’s SPF record. If you want
email from example.com to arrive quickly, and you trust the people there not
to send or relay spam, pick the address range from the SPF record, put it in
your whitelist.txt file, and reload the <localwhite> table contents from the
updated file.

Conclusions from Our spamd Experience

Summing up, selectively used blacklists combined with spamd are powerful,
precise, and efficient spam-fighting tools. The load on the spamd machine is
minimal. On the other hand, spamd will never perform better than its weakest
data source, which means you will need to monitor your logs and use white-
listing when necessary.

It is also perfectly feasible to run spamd in a pure greylisting mode, with
no blacklists. In fact, some users report that a purely greylisting spamd config-
uration is not significantly less effective than a blacklisting configuration as a
spam-fighting tool and in some cases, it is significantly more effective than
content filtering.

8 SPF records are stored in DNS zones as special-purpose TXT records; see http://www.openspf.org
for details. Note that here we use SPF only as a possible source of information. A full discussion
of the pros and cons of the SPF architecture and its intended purpose is outside the scope of
this book.

Turni ng the Tab le s for Proac t ive Defense 85

One such report is Steve Williams’s October 20, 2006 message to the
OpenBSD-misc mailing list,9 where he reports that a pure greylisting config-
uration immediately rid the company he worked for of approximately
95 percent of its spam load.

From my own experience, I recommend using Bob Beck’s traplist,
generated by large-scale greytrapping, as the only imported blacklist. What
makes this list stand out is that Bob set up the system to remove addresses
automatically after 24 hours. This means that you get an extremely low
number of false positives.

Once you’re happy with your setup, you could try introducing local
greytrapping. This is likely to catch a few more undesirables, and of course
it’s good, clean fun.

Some limited experiments, which were carried out while I was writing
this chapter,10 even suggest that harvesting the invalid addresses spammers
use from your mail server logs, spamd logs, or directly from your greylist to
put in your traplist is extremely efficient. Publishing the list on a moderately
visible web page appears to ensure that the addresses you put there will be
recorded over and over again by address-harvesting robots and will provide
you with even better greytrapping material, since they are then more likely
to be kept on the spammers’ list of known-good addresses.

9 Accessible (among other places) at http://marc.info/?l=openbsd-misc&m=116136841831550&w=2.
10 Chronicled at http://bsdly.blogspot.com, entries starting with http://bsdly.blogspot.com/2007/07/
hey-spammer-heres-list-for-you.html.

7
Q U E U E S , S H A P I N G , A N D

R E D U N D A N C Y

This chapter deals with two main topics,
which taken either separately or together

have the potential to radically transform your
networking experience. The common theme in

this chapter is managing resource availability. In the
first part of the chapter we look at how to use the ALTQ
traffic-shaping subsystem to allocate bandwidth resources efficiently and accord-
ing to a specified policy. The second part of the chapter explores how to make
sure your resources stay available by using the redundancy features offered
by the CARP and pfsync protocols.

Directing Traffic with ALTQ
ALTQ, short for ALTernate Queuing, is a very flexible mechanism for network
traffic shaping, which had a life of its own before getting integrated into PF
on OpenBSD.1 On OpenBSD, ALTQ was integrated into the PF code for the

1 The original research on ALTQ was presented in a paper for the USENIX 1999 conference.
You can read Kenjiro Cho’s paper “Managing Traffic with ALTQ” online at http://www.usenix
.org/publications/library/proceedings/usenix99/cho.html.

88 Chapter 7

OpenBSD 3.3 release, with the configuration done in pf.conf mainly because
it makes sense to integrate traffic shaping and filtering. PF ports to other BSDs
followed suit, with at least some optional ALTQ integration. The integration
process is not yet complete in all systems, and we will look into some of the
differences where they are relevant.

Basic ALTQ Concepts
Managing your bandwidth has a lot in common with balancing your check-
book or handling other resources that are either scarce or available in finite
quantities. The resource is available in a constant supply with hard upper
limits, and you need to allocate the resource with maximum efficiency,
according to the priorities set out in your policy or specification.

The core of ALTQ bandwidth management is the queue concept. Queues
are a form of buffer for network packets. They are where the packets are held
until they are either dropped or sent on their way according to the criteria that
apply to the queue; the packets are subject to the queue’s available bandwidth.
Queues are attached to specific interfaces, and bandwidth is managed on a
per-interface basis, with available bandwidth on a given interface subdivided
into the queues you define.

Queues are defined with either a specific amount of bandwidth or a
specific portion of available bandwidth, and sometimes they have hierarchical
priority. Priority in this context is an indicator of preference, or which queue
should be serviced with the lowest delay. As we will see later, some queue
types can even be configured with a combination of bandwidth allocation
and priority. For even further refinement, some queue types let you allocate
portions of each queue’s bandwidth share to subqueues, or queues within
queues, which share the parent queue’s resources. Once queue definitions
are in place, you integrate traffic shaping into your rule set by rewriting your
pass rules to assign traffic to a specific queue. We’ll cover this in more detail
in the following pages.

NOTE In ALTQ setups, any traffic that you do not explicitly assign to a specific queue gets
lumped in with everything else in the default queue.

Queue Schedulers, aka Queue Disciplines
In the default networking setup, with no ALTQ-style queuing, the TCP/IP
stack and its filtering subsystem process the packets in order as they arrive on
an interface. This is what we generally refer to as the First In, First Out, or FIFO,
discipline.

ALTQ queues can be set up to behave quite differently, sometimes with
startling effect. Each of the three queue scheduler algorithms, or disciplines,
offers its own unique set of options:

priq
Priority-based queues are defined purely in terms of priority within the total
bandwidth. For priq queues, the allowed priority range is 0 through 15,

Queues, Shaping, and Redundancy 89

where a higher value earns preferential treatment. Packets that match
the criteria for higher-priority queues are serviced before the ones
matching lower-priority queues.

cbq

Class-based queues are defined as constant-size bandwidth allocations, as
a percentage of the total available or in units of kilobits, megabits, or
gigabits per second. A cbq queue can be subdivided into queues, which
are assigned priorities in the range of 0 to 7, and again, a higher prior-
ity means preferential treatment. Packets are kept in the queue until the
bandwidth is available. For queues that are subdivided into queues with
priority as well as bandwidth allocations, packets that match the criteria
for a higher-priority queue are serviced sooner.

hfsc

This discipline uses the Hierarchical Fair Service Curve (HFSC) algorithm to
ensure a “fair” allocation of bandwidth among the queues in a hierarchy.
Both the algorithm and the corresponding setup are fairly complicated,
with a number of tunable parameters. For that reason, most ALTQ prac-
titioners stick with the simpler queue types, but the ones who claim to
understand HFSC pretty much swear by it.

The general syntax for ALTQ queues in PF looks like this:

altq on interface type [options ...] main_queue { sub_q1, sub_q2 ..}
 queue sub_q1 [options ...]
 queue sub_q2 [options ...] { subA, subB, ... }
[...]
pass [...] queue sub_q1
pass [...] queue sub_q2

Note that cbq and hfsc queues can have several levels of subqueues, while
priq queues are essentially flat, with only one queue level. We will address
syntax specifics for each type in later sections of the chapter.

Setting Up ALTQ

Enabling ALTQ so you can use the queuing logic in your rule sets may
require some extra steps, depending on which operating system is your
platform of choice.

ALTQ on OpenBSD

On OpenBSD, all supported queue disciplines are compiled into the
GENERIC and GENERIC.MP kernels, so the only configuration you need
to do involves editing your pf.conf.

90 Chapter 7

ALTQ on FreeBSD

On FreeBSD, you need to check that your kernel has ALTQ and the ALTQ
queue discipline options compiled in. The default FreeBSD GENERIC kernel
does not have the ALTQ options enabled. The relevant options are listed here:

options ALTQ
options ALTQ_CBQ # Class-Based Queuing (CBQ)
options ALTQ_RED # Random Early Detection (RED)
options ALTQ_RIO # RED In/Out
options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC)
options ALTQ_PRIQ # Priority Queuing (PRIQ)
options ALTQ_NOPCC # Required for SMP build

The ALTQ option is needed to enable ALTQ in the kernel, and on SMP
systems, you will also need the ALTQ_NOPCC option. Depending on which types
of queues you will be using, you need to enable at least of one of ALTQ_CBQ,
ALTQ_PRIQ, or ALTQ_HFSC. Finally, you can enable the congestion-avoidance
techniques Random Early Detection (RED) and RED In/Out, the ALTQ_RED and
ALTQ_RIO options, respectively. See the FreeBSD Handbook for information on
how to compile and install a custom kernel with these options.

ALTQ on NetBSD

As I am writing this chapter, ALTQ is in the process of being integrated in the
NetBSD 4.0 PF implementation. Much like the case with FreeBSD, NetBSD’s
default GENERIC kernel configuration does not include the ALTQ-related
options. However, the GENERIC configuration file comes with all relevant
options commented out for easy inclusion. The main kernel options are as
follows:

options ALTQ # Manipulate network interfaces' output queues
options ALTQ_CBQ # Class-Based Queuing
options ALTQ_HFSC # Hierarchical Fair Service Curve
options ALTQ_PRIQ # Priority Queuing
options ALTQ_RED # Random Early Detection

The ALTQ option is needed to enable ALTQ in the kernel. Depending on
which types of queues you will be using, you need to enable at least of one of
ALTQ_CBQ, ALTQ_PRIQ, or ALTQ_HFSC.

For pre-4.0 NetBSD versions, Peter Postma maintains a patch to enable
PF/ALTQ functions. Up-to-date information on this, including how to get the
ALTQ patch via pkgsrc, is available from his PF on NetBSD pages (http://
nedbsd.nl/~ppostma/pf) and the NetBSD PF documentation (http://www.netbsd
.org/Documentation/network/pf.html).

Either way, by now you should have all the information you need to get
an ALTQ-enabled system up and running.

http://www.netbsd.org/Documentation/network/pf.html
http://www.netbsd.org/Documentation/network/pf.html

Queues, Shaping, and Redundancy 91

With these preliminaries out of the way, you should be ready to look at
some example network configurations with ALTQ.

Understanding Priority-Based Queues (priq)

The basic concept for priority-based queues (priq) is fairly straightforward and
perhaps the easiest one to understand. Within the total bandwidth allocated to
the main queue, all that matters is traffic priority. You assign queues a priority
value in the range 0 through 15, where a higher value means that the queue’s
requests for traffic are serviced sooner.

For a real-world example, we can look to Daniel Hartmeier. He discovered
a simple yet effective way to improve the throughput for his home network by
using ALTQ. Like many people, Daniel’s home network was on an asymmetric
connection, with total usable bandwidth low enough that he felt a strong
desire to get better bandwidth utilization.

In addition, when the line was running at or near capacity, some odd-
ities started appearing. One symptom in particular seemed to indicate that
there was room for improvement: Incoming traffic (downloads, incoming
email, and such) slowed down disproportionately whenever outgoing traffic
started, more than could be explained by measuring the raw amount of data
transferred. It all came back to a basic feature of TCP.

W H A T I S Y O U R T O T A L U S A B L E B A N D W I T H ?

It can be difficult to determine actual usable bandwidth on a specific interface for
queuing. If you do not specify a total bandwidth, the total bandwidth available will
be used to calculate the allocations. However, some types of interfaces cannot
reliably report the actual bandwidth value. One common example of this discrepancy
is if your gateway’s external interface is a 100Mb Ethernet interface, attached to a
line that actually offers only 8Mb download and 1Mb upload.* The Ethernet interface
will then confidently report the 100Mb bandwidth, not the DSL values.

For that reason it usually makes sense to set the total bandwidth to a fixed value.
Just what value to specify unfortunately has no fixed relationship with what your
bandwidth supplier tells you. There will always be some overhead that varies slightly
among the various technologies and implementations. In typical TCP/IP over wired
Ethernets, overhead can be as low as single-digit percentages, while TCP/IP over
ATM and ADSL have been known to have overhead in the 20- to 25-percent range.
If your bandwidth supplier is not cooperative, you will need to make an educated
guess at the start value for your experimentation. In any case, you should be acutely
aware that the total bandwidth available is never larger than the bandwidth of the
weakest link in your network path.

It is also worth noting that queues are supported only for outbound connections
relative to the system doing the queuing. When planning your bandwidth manage-
ment, you should consider the actual usable bandwidth to be equal to the weakest
(lowest bandwidth) link in the connection’s path, even if your queues are set up on
a different interface.

* This really dates the book, I know. In a few years, these numbers will seem quaint.

92 Chapter 7

When a TCP packet is sent, the sender expects acknowledgment (in the
form of an ACK packet) from the receiving end and will wait for a specified
time for it to arrive. If the ACK does not arrive within the specified time, the
sender assumes that the packet has not been received and resends the packet
it originally sent.

The problem is that, in a default setup, packets are serviced sequentially
by the interface as they arrive. This inevitably means that the ACK packets,
with essentially no data payload, wait in line while the larger data packets are
transferred.

A testable hypothesis formed: If the tiny, practically dataless ACK packets
were able to slip in between the larger data packets, this would lead to a more
efficient use of available bandwidth. The simplest practical way to implement
and test the theory was to set up two queues with different priorities and inte-
grate them into the rule set.

These lines show the relevant parts of the rule set:

ext_if="kue0"

altq on $ext_if priq bandwidth 100Kb queue { q_pri, q_def }
 queue q_pri priority 7
 queue q_def priority 1 priq(default)

pass out on $ext_if proto tcp from $ext_if to any flags S/SA \
 keep state queue (q_def, q_pri)

pass in on $ext_if proto tcp from any to $ext_if flags S/SA \
 keep state queue (q_def, q_pri)

Here we see that the priority-based queue is set up on the external inter-
face, with two subordinate queues. The first subqueue, q_pri, has a high
priority value of 7, while the other, q_def, has a significantly lower priority
value of 1.

This seemingly simple rule set works by exploiting how ALTQ treats
queues with different priorities. Once a connection is assigned to the main
queue, ALTQ inspects each packet’s type of service (ToS) field. ACK packets
have the ToS Delay bit set to low, which indicates that the sender wanted the
speediest delivery possible. When ALTQ sees a low-delay packet and queues
of differing priorities are available, it will assign the packet to the higher-
priority queue.

This means that the ACK packets skip ahead of the lower-priority queue
and are delivered more quickly, which in turn means that data packets are
serviced more quickly too. The net result is that a configuration like this
provides better performance than a pure FIFO configuration with the same
hardware and available bandwidth.2

2 Daniel’s article about this version of his setup at http://www.benzedrine.cx/ackpri.html contains a
more detailed analysis.

Queues, Shaping, and Redundancy 93

Class-Based Bandwidth Allocation for Small Networks (cbq)

Maximizing network performance generally feels nice. However, you may
find that your network has other needs. For example, it might be important
that some traffic such as email and other vital services has a baseline amount
of bandwidth available at all times, while other services (peer-to-peer file
sharing comes to mind) should not be allowed to consume more than a
certain amount. For addressing these kinds of requirements or concerns,
the class-based queue (cbq) discipline offers a slightly larger set of options.

To illustrate how to use cbq, we’ll move on to another example, which
builds on the rule sets from previous chapters. We want to let the users on a
small local network connect to a predefined set of services outside their own
network and also allow access from the outside to a webserver somewhere on
the local network.

Here all queues are set up on the external, Internet-facing interface.
This approach makes sense mainly because bandwidth is more likely to be
limited on the external link than on the local network. In principle, however,
allocating queues and running traffic shaping can be done on any network
interface. Here, the setup includes a cbq queue for a total bandwidth of
2 megabits with six subqueues.

altq on $ext_if cbq bandwidth 2Mb queue { main, ftp, udp, web, ssh, icmp }
 queue main bandwidth 18% cbq(default borrow red)
 queue ftp bandwidth 10% cbq(borrow red)
 queue udp bandwidth 30% cbq(borrow red)
 queue web bandwidth 20% cbq(borrow red)
 queue ssh bandwidth 20% cbq(borrow red) { ssh_interactive, ssh_bulk }
 queue ssh_interactive priority 7 bandwidth 20%

queue ssh_bulk priority 0 bandwidth 80%
queue icmp bandwidth 2% cbq

We see the subqueue main with 18 percent of the bandwidth designated
as the default queue. This means any traffic that matches a pass rule but is not
explicitly assigned to some other queue ends up here. The borrow and red
keywords mean that the queue may “borrow” bandwidth from its parent
queue, while the system attempts to avoid congestion by applying the RED
algorithm.

The other queues follow more or less the same pattern, up to the sub-
queue ssh, which itself has two subqueues with separate priorities. Here we
see a variation on the ACK priority example: Bulk SSH transfers, typically
SCP file transfers, are transmitted with a ToS indicating throughput, while
interactive SSH traffic has the ToS flag set to low delay and skips ahead of the
bulk transfers. The interactive traffic is likely to be less bandwidth consuming
and gets a smaller share of the bandwidth, but it gets preferential treatment
because of the higher-priority value assigned to it.

This scheme also helps the speed of SCP file transfers, since the ACK
packets for the SCP transfers will be assigned to the higher-priority subqueue.

94 Chapter 7

Finally, we have the icmp queue, which is reserved for the remaining two
percent of the bandwidth, from the top level. This guarantees a minimum
amount of bandwidth for ICMP traffic that we want to pass but that does not
match the criteria for being assigned to the other queues.

To make it all happen we use pass rules that show which traffic is
assigned to the queues and their criteria:

set skip on { lo0, $int_if }
pass log quick on $ext_if proto tcp from any to any port ssh flags S/SA \
 keep state queue (ssh_bulk, ssh_interactive)
pass in quick on $ext_if proto tcp from any to any port ftp flags S/SA \
 keep state queue ftp
pass in quick on $ext_if proto tcp from any to any port www flags S/SA \
 keep state queue http
pass out on $ext_if proto udp all keep state queue udp
pass out on $ext_if proto icmp all keep state queue icmp
pass out on $ext_if proto tcp from $localnet to any port $client_out

The rules for ssh, ftp, www, udp, and icmp all assign traffic to their respective
queues, while the last catch-all rule passes all other traffic from the local net,
lumping it into the default main queue.

Queuing for Servers in a DMZ

Back in “A Degree of Physical Separation: Introducing the DMZ” on page 49,
we set up a network with a single gateway but with all externally visible services
configured on a separate DMZ network. That way, all traffic to the servers from
both the Internet and the internal network has to pass through the gateway.

The network schematic is like Figure 7-1, which is identical to Figure 5-2.

Figure 7-1: Network with DMZ

Internet

Switch

Clients

$emailserver
192.0.2.225

$webserver
192.0.2.227

$nameserver
192.0.2.221

Our gateway,
the PF firewall

$int_if
192.0.2.0/25$ext_if

Switch

$dmz_if
192.0.2.129/25

Queues, Shaping, and Redundancy 95

With the rule set from Chapter 5 as the starting point, we will be adding
some queuing in order to optimize our network resources. The physical and
logical layout of the network will not change.

The most likely bottleneck for this network is the bandwidth for the
connection between the gateway’s external interface and the Internet at
large. The bandwidth elsewhere in our setup is not infinite, of course, but
the available bandwidth on any interface in the local network is likely to be
less of a limiting factor than the bandwidth actually available for communi-
cation with the outside world. For services to be available with the best
possible performance, we need to set up the queues so the bandwidth
available at the site is made available to the traffic we want to allow.

In this context it is important to understand the difference between
interface bandwidth and the actual bandwidth available to the family of
connections we want to let through. In our example, it is likely that the
interface bandwidth on the DMZ interface is either 100Mb or 1Gb, while the
actual available bandwidth for connections from outside the local network is
considerably smaller. This consideration shows up in our queue definitions,
where you clearly see that the actual bandwidth available for external traffic
is the main limitation in the queue setup.

total_ext = 2Mb
total_dmz = 100Mb
altq on $ext_if cbq bandwidth $total_ext queue { ext_main, ext_web, ext_udp, ext_mail, ext_ssh }
queue ext_main bandwidth 25% cbq(default borrow red) { ext_hi, ext_lo }

queue ext_hi priority 7 bandwidth 20%
queue ext_lo priority 0 bandwidth 80%

queue ext_web bandwidth 25% cbq(borrow red)
queue ext_udp bandwidth 20% cbq(borrow red)
queue ext_mail bandwidth 30% cbq(borrow red)
altq on $dmz_if cbq bandwidth $total_dmz queue { ext_dmz, dmz_main, dmz_web, dmz_udp, dmz_mail }
queue ext_dmz bandwidth $total_ext cbq(borrow red) queue { ext_dmz_web, ext_dmz_udp, ext_dmz_mail }
 queue ext_dmz_web bandwidth 40% priority 5
 queue ext_dmz_udp bandwidth 10% priority 7
 queue ext_dmz_mail bandwidth 50% priority 3
queue dmz_main bandwidth 25Mb cbq(default borrow red) queue { dmz_main_hi, dmz_main_lo }

queue dmz_main_hi priority 7 bandwidth 20%
queue dmz_main_lo priority 0 bandwidth 80%

queue dmz_web bandwidth 25Mb cbq(borrow red)
queue dmz_udp bandwidth 20Mb cbq(borrow red)
queue dmz_mail bandwidth 20Mb cbq(borrow red)

Notice that the total_ext bandwidth limitation determines the allocation
for all queues where the bandwidth for external connections is available. To
make use of the new queuing infrastructure, we need to make some changes
to the filtering rules, too. It is worth keeping in mind that any traffic you do
not explicitly assign to a specific queue is assigned to the default queue for
the interface. Thus, it is important to tune your filtering rules as well as your
queue definitions to the actual traffic in your network.

96 Chapter 7

The main part of the filtering rules could end up looking like this after
adding the queues:

pass in on $ext_if proto { tcp, udp } from any to $nameservers port domain queue ext_udp
pass in on $int_if proto { tcp, udp } from $localnet to $nameservers port domain
pass out on $dmz_if proto { tcp, udp } from any to $nameservers port domain queue ext_dmz_udp
pass out on $dmz_if proto { tcp, udp } from $localnet to $nameservers port domain queue dmz_udp
pass in on $ext_if proto tcp from any to $webserver port $webports queue ext_web
pass in on $int_if proto tcp from $localnet to $webserver port $webports
pass out on $dmz_if proto tcp from any to $webserver port $webports queue ext_dmz_web
pass out on $dmz_if proto tcp from $localnet to $webserver port $webports queue dmz_web
pass in log on $ext_if proto tcp from any to $mailserver port smtp
pass in log on $ext_if proto tcp from $localnet to $mailserver port smtp
pass in log on $int_if proto tcp from $localnet to $mailserver port $email
pass out log on $dmz_if proto tcp from any to $mailserver port smtp queue ext_mail
pass in on $dmz_if from $mailserver to any port smtp queue dmz_mail
pass out log on $ext_if proto tcp from $mailserver to any port smtp queue ext_dmz_mail

You will notice that only traffic that will pass either the DMZ interface or
the external interface is assigned to queues. In this configuration, with no
externally accessible services on the internal network, queuing on the internal
interface would not make much sense, since it is likely the part of our network
with the least restrictions on available bandwidth.

Using ALTQ to Handle Unwanted Traffic

So far we have focused on queuing as a method to make sure specific kinds
of traffic are let through as efficiently as possible, given the conditions that
exist in and around your network. To wrap up our introduction to queuing,
we’ll take a look at some small examples that present a slightly different
approach to identifying and handling unwanted traffic. These examples
may help you reduce the noise level in your network a little by teaching you
some queuing-related tricks you can use to keep miscreants in line.

Overloading to a Tiny Queue

Think back to “Turning Away the Brutes” on page 68, where we used a
combination of state-tracking options and overload rules to fill up a table of
addresses for special treatment. The special treatment we demonstrated in
the previous chapter was to cut all connections, but it is equally possible to
assign overload traffic to a specific queue instead.

Consider this rule from “Class-Based Bandwidth Allocation for Small
Networks (cbq)” on page 93:

pass log quick on $ext_if proto tcp from any to any port ssh flags S/SA \
 keep state queue (ssh_bulk, ssh_interactive)

Queues, Shaping, and Redundancy 97

If we add state-tracking options, like this

pass log quick on $ext_if proto tcp from any to any port ssh flags S/SA \
 keep state (max-src-conn 15, max-src-conn-rate 5/3, \
 overload <bruteforce> flush global) queue (ssh_bulk, ssh_interactive)

and make one of the queues slightly smaller to make room for our overloaders,
for example by making the web queue smaller and adding

queue smallpipe bandwidth 1% cbq

we can then assign traffic from miscreants to the small-bandwidth queue with
the following rule:

pass inet proto tcp from <bruteforce> to any port $tcp_services queue smallpipe

It might also be useful to supplement rules like these with table entry
expiry, as described in “Tidying Your Tables with pfctl” on page 70.

Queue Assignments Based on OS Fingerprints

PF has a fairly reliable operating system fingerprinting mechanism, which
detects the operating system at the other end of a network connection
based on characteristics of the initial SYN packets at connection setup.
Our final ALTQ example expands on the previous simple rule set based on
the common knowledge that machines that send spam are likely to run a
particular operating system. If, for example, running spamd is not an option
in your environment, a rule like this

pass quick proto tcp from any os "Windows" to $ext_if port smtp queue smallpipe

may be a simple substitute if you are quite sure nobody will ever be sending
you legitimate email from systems running that particular operating system.
Here, email traffic originating from hosts that run a particular operating
system gets no more than 1 percent of your bandwidth, with no borrowing.

Redundancy and Failover: CARP and pfsync

High availability and uninterrupted service have been both marketing buzz-
words and coveted goals for IT professionals and network administrators as
long as most of us can remember. To meet this perceived need and solve a
few related problems, CARP and pfsync were added as two highly anticipated
features in OpenBSD 3.5.

98 Chapter 7

Common Address Redundancy Protocol (CARP) was developed as a non–
patent-encumbered alternative to VRRP (Virtual Router Redundancy Protocol,
RFC 2281, RFC 3768), which was quite far along the track to becoming an
IETF-sanctioned standard, even though possible patent issues have not
been resolved.3

One of the main purposes of CARP is to ensure that the network will
keep functioning as usual even when a firewall or other service goes down
because of errors or planned maintenance activities such as upgrades.
Complementing CARP, the pfsync protocol is designed to handle synchro-
nization of PF states between redundant packet-filtering nodes or gateways.
Both protocols are intended to ensure redundancy for essential network
features with automatic failover.

CARP is based on setting up a group of machines as one master and one
or more redundant backups, all of which are equipped to handle a common
IP address. If the master goes down, one of the backups will inherit the IP
address. The handover from one CARP host to another may be authenticated,
essentially by setting a shared secret, in practice much like a password.

In the case of PF firewalls, pfsync can be set up to handle the synchro-
nization, and if this is done properly, active connections will be handed over
without noticeable interruption. In essence, pfsync is a type of virtual network
interface specially designed to synchronize state information between PF
firewalls. Its interfaces are assigned to physical interfaces with ifconfig. On
networks where uptime requirements are strict enough to dictate automatic
failover, the number of simultaneous network connections and accompanying
state table changes is likely to be large enough that it will make sense to assign
the pfsync network its own physical network. In addition, since pfsync does
not perform any authentication on its synchronization partners, you can
guarantee correct synchronization only if you are using dedicated interfaces
for your pfsync traffic.

The Project Specification: A Redundant Pair of Gateways

Before we lose ourselves entirely in the vast array of options, now is a good
time to set out the specification for the task at hand. In order to illustrate a
useful failover setup with CARP and pfsync, let’s imagine a network that at
the moment has one gateway to the world.

The exact details of the PF rule set are not important at this point; more
important is the goal of the exercise.

Our expectations are that after the reconfiguration is complete, the
network should do the following things:

� Keep functioning much the same way as it did earlier

� Have better availability with no noticeable downtime

� Experience graceful failover with no interruption of active connections

3 The patents involved are held by Cisco, IBM, and Nokia; see the RFCs for details.

Queues, Shaping, and Redundancy 99

We’ll start with the relatively simple network from Chapter 3, which
looks something like Figure 7-2.

Figure 7-2: Network with a single gateway

We replace the single gateway with a redundant pair that shares a private
network for state information updates over pfsync. The result is something
like Figure 7-3.

Figure 7-3: Network with redundant gateways

Next, we’ll move on to the details of this setup. Just like in previous
chapters, the baseline is an OpenBSD setup, but we note differences when
dealing with other BSDs where relevant.

It’s important to understand that the CARP addresses are virtual
addresses. Unless you have console access to all machines in your CARP
group, you will almost always want to assign an IP address to the physical
interfaces in order to be able to communicate with the host and be abso-
lutely sure which machine you are interacting with.

Internet

Switch

Clients

Our gateway,
the PF firewall

$ext_if
192.0.2.19

$int_if
192.168.12.1

Internet

Switch

Clients

$ext_if
192.0.2.18

ep0
carp0

192.0.2.19

$int_if
192.168.12.3
ep1
carp1
192.168.12.1

Switch

Crossover
cable

$int_if
192.168.12.2
ep1
carp1
192.168.12.1

$ext_if
192.0.2.17

ep0
carp0

192.0.2.19

pfsync0
10.0.12.17

ep2

pfsync0
10.0.12.16

ep2

100 Chap te r 7

By convention, the IP address assigned to the physical interface will
belong in the same subnet as the virtual, shared IP address. In fact, the
kernel will by default try to assign the CARP address to a physical interface
that is already configured with an address in the same subnet as the CARP
address. You can override this interface selection by specifying a different
interface in the carpdev option in the ifconfig command string you use to
set up the CARP interface.

NOTE When you are reconfiguring your network and the default gateway address becomes a
virtual address instead of being fixed to a specific interface and host, it’s extremely hard
to avoid temporary loss of connectivity.

Setting Up CARP: Kernel Options, sysctl, and ifconfig Commands

Most of the work in getting a redundant setup going lies in cabling, setting
sysctl values, and issuing ifconfig commands. We describe the cabling only
in the most general terms (and the main schematic comes naturally from the
illustration or a corresponding one for your own setup). However, on some
systems you will need to check that your kernel is set up with the required
devices compiled in. Operating system–specific instructions are shown here.

OpenBSD users
Both the carp and pfsync devices are in the default GENERIC and
GENERIC.mp kernel configurations. Unless you are running with a
custom kernel and you removed these options, no kernel reconfig-
uration is necessary.

FreeBSD users
Check that your kernel has the carp and pfsync devices compiled in.
The GENERIC kernel does not contain these options by default. See
the FreeBSD Handbook for information on how to compile and install a
custom kernel with these options.

NetBSD users
Check that your kernel has pseudo-device carp compiled in. NetBSD’s
default GENERIC kernel configuration does not have carp compiled in.
However, you will find the relevant line commented out in the GENERIC
configuration file. NetBSD does not yet support pfsync, because of
protocol-numbering issues that were unresolved at the time this chapter
was written.

On all CARP-capable systems, the basic functions are governed by a
handful of sysctl variables. The main one, net.inet.carp.allow, is on by
default. On a typical OpenBSD system you will see

$ sysctl net.inet.carp.allow
net.inet.carp.allow=1

which means that your system comes equipped for CARP.

Queues, Shap ing, and Redundancy 101

WARNING If your kernel is not configured with a CARP device, issuing this command will instead
produce something like sysctl: unknown oid 'net.inet.carp.allow' on FreeBSD or
sysctl: third level name 'carp' in 'net.inet.carp.allow' is invalid on NetBSD.

To check that your system is set up properly, you could use this sysctl
command to view all carp-related variables:4

$ sysctl net.inet.carp
net.inet.carp.allow=1
net.inet.carp.preempt=0
net.inet.carp.log=0
net.inet.carp.arpbalance=0

The important variables are the first two, while you will normally not
need to touch the last two. For reference, setting net.inet.carp.log to 1 gives
you debug information about the CARP traffic you logged, but this is turned
off by default. Similarly the net.inet.carp.arpbalance variable can be used to
enable CARP arp balancing, which offers some limited load balancing between
hosts on a local network. However, for graceful failover between the gateways
in the setup we are planning, we need to set the net.inet.carp.preempt variable:

$ sudo sysctl net.inet.carp.preempt=1

Setting the net.inet.carp.preempt variable means that on hosts with more
than one network interface, such as our gateways, all CARP interfaces will set
their advskew (the meaning of which we will explain more thoroughly in a
moment) to the extremely high value of 240 in order to prod other hosts in
the CARP group to start failover when one of the interfaces goes down. This
setting needs to be identical on all hosts in the CARP group. When setting up
your system, you need to repeat the setting on all hosts.

Next, you set up the network interfaces. Looking at the network diagram,
we see that the local network uses addresses in the 192.168.12.0 network,
while the external, Internet-facing interface is in the 192.0.2.0 network.
With these address ranges and the CARP interface’s default behavior in
mind, the commands for setting up the virtual interfaces come naturally.

On the machine you want to set up as the initial master for the group,
use these commands:

$ sudo ifconfig carp0 192.0.2.19 vhid 1
$ sudo ifconfig carp1 192.168.1.1 vhid 2

Note that we do not need to set the physical interface explicitly. The
carp0 and carp1 virtual interfaces here will bind themselves to the physical
interfaces that are already configured with addresses in the same subnets as

4 On FreeBSD, you will also encounter the variable net.inet.carp.suppress_preempt, which is a
read-only status variable indicating whether or not preemption is possible.

102 Chap te r 7

the assigned CARP address. With ifconfig you should be able to check that
each CARP interface is properly configured:

$ ifconfig carp0
carp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:00:5e:00:01:01
 carp: MASTER carpdev ep0 vhid 1 advbase 1 advskew 0
 groups: carp
 inet 192.0.2.19 netmask 0xffffff00 broadcast 192.0.2.255
 inet6 fe80::200:5eff:fe00:101%carp0 prefixlen 64 scopeid 0x5

The ifconfig output for the other CARP interfaces will be quite similar to
this. Note the carp: line, which indicates MASTER status. On the backup, the
setup is almost identical, except that you add the advskew parameter:

$ sudo ifconfig carp0 192.0.2.19 vhid 1 advskew 100
$ sudo ifconfig carp1 192.168.1.1 vhid 2 advskew 100

The advskew parameter requires a bit of explanation. In short, it indicates
how much less preferred it is for the specified machine to take over for the
current master. The longer explanation is that advskew and its companion
value advbase are used to calculate the interval between the current host’s
announcements of its master status when it has taken over. The default value
for advbase is 1; for advskew the default value is 0. In our example, the master
would announce every second (1 + 0/256), while the backup would wait for
1 + 100/256 seconds. With net.inet.carp.preempt=1, when the master stops
announcing or announces it is not available, the backups will take over,
and the new master will start announcing at its configured rate. Smaller
advskew values mean shorter announcement intervals and higher likelihood
for becoming the new master. If more hosts have the same advskew, the one
that is already master will keep its master status.

From OpenBSD 4.1 onward, there is one more factor to the equation that
determines which hosts takes over CARP master duty. The demotion counter is a
value each CARP host announces for its carp interface group as a measure of
readiness for its CARP interfaces. When the demotion counter value is zero,
the host is in complete readiness, while higher values indicate measures of
degradation. You can set the demotion counter from the command line using
ifconfig -g, but the value is usually set by the system itself, with higher values
typically set during the boot process. All other things being equal, the host
with the lowest demotion counter will win the contest to take over as the
CARP master.

Queues, Shap ing, and Redundancy 103

On the backup, you once again use ifconfig to check that each CARP
interface is properly configured:

$ ifconfig carp0
carp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:00:5e:00:01:01
 carp: BACKUP carpdev ep0 vhid 1 advbase 1 advskew 100
 groups: carp
 inet 192.0.2.19 netmask 0xffffff00 broadcast 192.0.2.255
 inet6 fe80::200:5eff:fe00:101%carp0 prefixlen 64 scopeid 0x5

Here the output is only slightly different; note that the carp: line here
indicates BACKUP status along with the advbase and advskew parameters.

For actual production use, you will want to add a measure of security
against unauthorized CARP activity by configuring the members of the CARP
group with a shared, secret passphrase, such as

$ sudo ifconfig carp0 pass mekmitasdigoat 192.0.2.19 vhid 1
$ sudo ifconfig carp1 pass mekmitasdigoat 192.168.1.1 vhid 2

with your own choice of passphrase.5 Just like any other password, the pass-
phrase will then be a required ingredient in all CARP traffic in your setup,
so take care to configure all CARP interfaces in a failover group with the
same passphrase or none.

Once you have figured out the settings you want, you will preserve them
through future system reboots by putting the settings in the proper files in
/etc : On OpenBSD, you put the proper ifconfig parameters into hostname.carp0
and hostname.carp1; on FreeBSD and NetBSD, you put the relevant lines in
your rc.conf file as contents of the ifconfig_carp0= and ifconfig_carp1= variables.

Keeping States Synced: Adding pfsync

The final piece of the puzzle before looking at the rule set itself is to configure
state table synchronization between the hosts in your redundancy group. With
synchronized state tables on the redundant firewalls, in almost all cases the
traffic will see no disruption at all during failover. As we’ve hinted at earlier,
the tool you need is a set of properly configured pfsync interfaces.

NOTE Because of protocol-numbering issues that were unresolved at the time this chapter was
written, NetBSD unfortunately does not currently support pfsync.

5 This particular passphrase, however, has a very specific meaning. A web search will reveal its
significance and why it is de rigueur for modern networking documentation. Or, if you’re lazy,
look it up at http://marc.info/?l=openbsd-misc&m=98027812528843&w=2.

104 Chap te r 7

Configuring pfsync interfaces is a matter of some planning and a few
fairly straightforward ifconfig commands. It is possible to set up pfsync on
any configured network interface, but it is generally a better idea to set up a
separate network for the synchronization.

In our sample configuration (see Figure 7-3) we have set aside a tiny
network for this purpose. Here, a crossover cable connects the two Ethernet
interfaces, but in configurations with more than two hosts in the failover
group, you may want to set up with a separate switch, hub, or vlan.

In this sample configuration, the interfaces we are planning to use for the
synchronization have already been assigned IP addresses, 10.0.12.16 and
10.0.12.17, respectively. With the basic TCP/IP configuration done already,
the complete pfsync setup for each of the two synchronization partner inter-
faces is

$ sudo ifconfig pfsync0 syncdev ep2

which illustrates the advantage of having identical hardware configurations
as well as keeping pfsync traffic on a physically separate network.

The pfsync protocol itself offers little in the way of security features. It
has no authentication mechanism and by default communicates via IP multi-
cast traffic. However, for the cases where a physically separate network is not a
feasible option, you can tighten up your pfsync security in two ways: by setting
up pfsync to synchronize only with a specified syncpeer

$ sudo ifconfig pfsync0 syncpeer 10.0.12.16 syncdev ep2

and by protecting the sync traffic by using IPsec

$ sudo ifconfig pfsync0 syncpeer 10.0.12.16 syncdev enc0

which means that the syncdev device becomes the enc0 encapsulating interface
instead of the physical interface.

NOTE If possible, set up your synchronization to happen across a physically separate, dedi-
cated network.

This takes us to the end of the basic network configuration for CARP-
based failover. In the next section, we’ll consider what you need to keep in
mind when writing rule sets for redundant failover configurations.

Putting Together a Rule Set

After all the contortions we’ve been through in order to get the basic net-
working configured, you are probably wondering what it will take to migrate
the rules you have put in your current pf.conf to the new setup.

Queues, Shap ing, and Redundancy 105

The answer is, not very much. The main change you have introduced is
essentially invisible to the rest of the world, and a well-designed rule set for a
single gateway configuration will generally work well for a redundant setup,
too. However, you have introduced two additional protocols, CARP and pfsync,
and in all likelihood, you will need to make some relatively minor changes to
your rule set in order to let the failover work properly.

Pass CARP traffic on the appropriate interfaces.
The most readable way is to introduce a macro definition for your carpdevs
and an accompanying pass rule, such as

pass on $carpdevs proto carp keep state

Pass pfsync traffic on the appropriate interfaces.
The most readable way is to introduce a macro definition for your syncdev
and an accompanying pass rule, such as

pass on $syncdev proto pfsync

or, if you want to take the pfsync device out of the filtering equation
altogether, use

set skip on $syncdev

Also, you should consider the roles of the virtual CARP interface and its
address versus the physical interface. As far as PF is concerned, all incoming
traffic will come through the physical interfaces, but the traffic may have
the CARP interface’s IP addresses as source or destination addresses.

It may not always be necessary to synchronize every rule in your config-
uration (i.e., connections to services that run on the gateway itself) in case of
a failover. One prime example would be the typical rule to allow ssh in for
the administrator:

pass in on $int_if from $ssh_allowed to self

For those rules, you could use the state option no-sync to prevent synchro-
nizing state changes for connections that are really not relevant after the
failover has happened:

pass in on $int_if from $ssh_allowed to self keep state (no-sync)

With this configuration in hand, you will be able to schedule operating
system upgrades and similar former downtime-producing activities on
members of your carped group of systems when they are convenient to the
system administrator, with no measurable or noticeable downtime for users
of your services.

8
L O G G I N G , M O N I T O R I N G ,

A N D S T A T I S T I C S

Exercising control over a network, whether
at home or at work, is probably a main objec-

tive for anyone who reads this book. One
necessary element of keeping control is having

access to all relevant information about what happens
in your network. Fortunately for us, PF (like most com-
ponents of Unix-like systems) is able to generate log
data for network activity.

PF offers a wealth of options for setting the logging detail level, processing
log files, and extracting specific kinds of data. You can already do a lot with
the tools that are in your base system, but there are several other tools available
via your BSD package system that you can use to collect, study, and present
log data in a number of useful ways. In this chapter we’ll take a closer look at
PF logs in general and some of the tools you can use to extract and present
useful information.

108 Chap te r 8

PF Logs: The Basics

What data PF records in the logs and at what level of detail is up to you, as
determined by your rule set. The principle is simple: For each rule you want
log data for, you add the log keyword.

When you load the rule set with log added to one or more rules, any
packet that starts up a connection matching the rule (that is, blocked or
passed) is copied to a pflog device.

PF will also store some additional data such as the timestamp, interface,
whether the packet was blocked or passed, and the associated rule number
from the loaded rule set. The PF log data is then collected by the pflogd
logging daemon, which is started by default when PF is enabled at system
startup. The default location for storing the log data is /var/log/pflog ; however,
the log is written in the binary format used by tcpdump.1

To get started, let’s take a look at a basic log example. Start with the rules
you want to log, and add the log keyword:

block log all
pass log quick proto { tcp, udp } from any to any port ssh

Reload the rule set, and you will see the timestamp on your /var/log/pflog
file change as the file starts growing. To see just what data is being stored
there, you can use tcpdump with the -r option to read the file.

If the logging has been going on for a while, typing

$ sudo tcpdump -n -ttt -r /var/log/pflog

on a command line can produce large amounts of output. The following
sequence is just the first few lines of output from tcpdump that was several
screens long, with almost all lines long enough to wrap:

$ sudo tcpdump -n -ttt -r /var/log/pflog
tcpdump: WARNING: snaplen raised from 96 to 116
Sep 13 13:00:30.556038 rule 10/(match) pass in on epic0: 194.54.107.19.34834 >
194.54.103.66.113: S 3097635127:3097635127(0) win 16384 <mss 1460,nop,nop,sackOK,nop,wscale
0,[|tcp]> (DF)
Sep 13 13:00:30.556063 rule 10/(match) pass out on fxp0: 194.54.107.19.34834 >
194.54.103.66.113: S 3097635127:3097635127(0) win 16384 <mss 1460,nop,nop,sackOK,nop,wscale
0,[|tcp]> (DF)
Sep 13 13:01:07.796096 rule 10/(match) pass in on epic0: 194.54.107.19.29572 >
194.54.103.66.113: S 2345499144:2345499144(0) win 16384 <mss 1460,nop,nop,sackOK,nop,wscale
0,[|tcp]> (DF)
Sep 13 13:01:07.796120 rule 10/(match) pass out on fxp0: 194.54.107.19.29572 >
194.54.103.66.113: S 2345499144:2345499144(0) win 16384 <mss 1460,nop,nop,sackOK,nop,wscale
0,[|tcp]> (DF)
Sep 13 13:01:15.096643 rule 10/(match) pass in on epic0: 194.54.107.19.29774 >
194.54.103.65.53: 49442 [1au][|domain]
Sep 13 13:01:15.607619 rule 12/(match) pass in on epic0: 194.54.107.19.29774 >
194.54.107.18.53: 34932 [1au][|domain]

1 Additional tools to extract and display information from your log file will be discussed later.
Rest assured, it’s a well-documented and widely supported binary format.

Logging, Monitori ng, and S ta ti s ti cs 109

You will find that tcpdump is a very flexible program, especially when it
comes to output, providing a number of display choices. The format in this
example follows quite straightforwardly from the options we fed to tcpdump.
The program almost always displays the date and time the packet arrived
(here, the -ttt option specifies long format). Next, tcpdump lists the rule
number in the loaded rule set and the interface the packet appeared on,
and then it lists the source and target address and ports (the -n option tells
tcpdump to display IP addresses, not hostnames). Last, you’ll see various packet
properties. You will find the exact set of options that are the most useful for
your purpose by reading the man page for tcpdump.

In the example we just gave, the tenth rule in the loaded rule set seems
to be a catch-all rule that matches both IDENT requests and domain name look-
ups. This is the kind of output you will find invaluable when debugging, and
it is in fact fairly essential to have this kind of data at hand to stay on top of
what is happening in your network. With a little effort and careful reading of
the tcpdump man pages, you should be able to extract any log data you will
find useful.

If you want a live display of the traffic you log, you can use tcpdump to
read log information directly from the log device itself. To do this, use the -i
command-line option to specify which interface you want tcpdump to read
from, but the rest of the command is clearly recognizable:

$ sudo tcpdump -nettti pflog0
tcpdump: WARNING: pflog0: no IPv4 address assigned
tcpdump: listening on pflog0, link-type PFLOG
Sep 13 15:26:52.122002 rule 17/(match) pass in on epic0: 91.143.126.48.46618 >
194.54.103.65.22: [|tcp] (DF)
Sep 13 15:28:02.771442 rule 12/(match) pass in on epic0: 194.54.107.19.8025 >
194.54.107.18.8025: udp 50
Sep 13 15:28:02.773958 rule 10/(match) pass in on epic0: 194.54.107.19.8025 >
194.54.103.65.8025: udp 50
Sep 13 15:29:27.882888 rule 10/(match) pass in on epic0: 194.54.107.19.29774 >
194.54.103.65.53:[|domain]
Sep 13 15:29:28.394320 rule 12/(match) pass in on epic0: 194.54.107.19.29774 >
194.54.107.18.53:[|domain]

D E C I P H E R I N G R U LE N U M B E R S

It is worth noting that the rule numbers in your log files refer to the loaded, in-memory
rule set. Your rule set goes through some automatic steps during the loading process,
such as macro expansion and optimizations that make it very likely that the rule num-
ber as stored in the logs does not quite match what you would find by counting from
the top of your pf.conf file. If it isn’t immediately obvious to you which rule matched,
you can find out by using the command pfctl -vvs rules (or pfctl –vvsr, if you
want to save some typing) and studying the output.

110 Chap te r 8

The output format is recognizable, too. This sequence starts off with an
ssh connection. The next two connections are spamd synchronizations, fol-
lowed by two domain name lookups. If you leave this command running,
the displayed lines will eventually scroll off the top of your screen, but it is
of course possible to redirect the data to a file or to a separate program for
further processing.

NOTE In some situations, you will be interested mainly in traffic to or from specific hosts or
traffic matching other identifiable criteria that are narrower than the scope of the rules
you log. For these situations, tcpdump’s own filtering features can be useful in order
to extract the data you need. See man tcpdump for details.

Logging All Packets: log (all)

For most debugging and at least lightweight monitoring purposes, logging
the first packet in a connection provides enough information. However,
from time to time you may want to log all packets matching the rules you are
interested in. You accomplish that by using the (all) logging option in the
rules you want to monitor. After making this change to our minimal rule set,
it looks like this:

block log (all) all
pass log (all) quick proto tcp from any to any port ssh keep state

This makes the logs quite a bit more verbose. To illustrate just how much
more data log (all) generates, here is a different rule set fragment that passes
domain name lookups and network time synchronizations:

udp_services = "{ domain, ntp }"
pass log (all) inet proto udp from any to any port $udp_services

With log (all) in the above rule, the following sequence shows what
happens when a Russian nameserver sends a domain name request to one
of my servers:

$ sudo tcpdump -n -ttt -i pflog0 port domain
tcpdump: WARNING: pflog0: no IPv4 address assigned
tcpdump: listening on pflog0, link-type PFLOG
Sep 30 14:27:41.260190 212.5.66.14.53 > 194.54.107.19.53:[|domain]
Sep 30 14:27:41.260253 212.5.66.14.53 > 194.54.107.19.53:[|domain]
Sep 30 14:27:41.260267 212.5.66.14.53 > 194.54.107.19.53:[|domain]
Sep 30 14:27:41.260638 194.54.107.19.53 > 212.5.66.14.53:[|domain]
Sep 30 14:27:41.260798 194.54.107.19.53 > 212.5.66.14.53:[|domain]
Sep 30 14:27:41.260923 194.54.107.19.53 > 212.5.66.14.53:[|domain]

That’s six entries instead of just one. Even with everything except port
domain filtered out by tcpdump in our example, it goes pretty much without
saying that adding log (all) to one or more rules will increase the amount

Logging, Monitori ng, and S ta ti s ti cs 111

of data in the logs considerably. If your gateway’s storage capacity is limited
and you need to log all traffic, you may find yourself shopping for additional
storage devices.

Logging to Several pflog Interfaces

In PF versions older than OpenBSD 4.1, only one pflog interface was available.
That changed in OpenBSD 4.1, when the pflog interface became a cloneable
device. This change means you can use ifconfig commands to create several
pflog interfaces, in addition to the default pflog0. This in turn makes it practical
to record the log data for different parts of your rule set to separate pflog
interfaces. It also makes it easier to process the resulting data separately, if
necessary.

The required changes to your setup are subtle but effective. In order to
log to several interfaces, you need to make sure that all the log interfaces
your rule set uses are created before the rule set is loaded. If your rule set
logs to an interface that does not exist, the log data is simply discarded.

While you are in the process of tuning your setup for using several pflog
interfaces, you will most likely add the required interfaces from the command
line, such as

$ sudo ifconfig create pflog1

for as many pflog interfaces are required. You then specify the log device
when you add the log keyword to your rule set, as follows:

pass log (to pflog1) proto tcp from any to $emailserver port $email
pass log (to pflog1) proto tcp from $emailserver to any port smtp

For a more permanent configuration on OpenBSD, you need to create a
hostname.pflog1 file that contains only

up

and similar hostname.pflogN files for any further logging interfaces you need.
On FreeBSD, the configuration of the cloned pflog interfaces belongs in

your rc.conf file, where it turns up in the following form:

ifconfig_pflog1="up"

On NetBSD, cloning pflog interfaces was not an option at the time this
book was written.

As we have seen already in Chapter 6, directing log information for
different parts of your rule set to separate interfaces makes it possible to
feed PF log data to separate applications. This in turn makes it easier to have
programs such as spamlogd process only the relevant information while you
feed other parts of your PF log data to other log-processing programs.

112 Chap te r 8

Logging to syslog, Local or Remote

One way to avoid storing PF log data on the gateway itself is to instruct your
gateway to log to the system logs on another machine. If you already have a
centralized logging infrastructure in place, it is a fairly logical thing to do,
even if PF’s ordinary logging mechanisms were not really designed with
traditional syslog-style logging to a text file in mind.

If this warning does not scare you away from doing your PF logging via
syslog, here is a short recipe for how to do it.

In ordinary PF setups, pflogd handles the log data and copies the data to
the log file. In a setup where you primarily want the log data to be stored on
a remote system, you will want to disable pflog’s data accumulation. You can
do this by changing pflog’s log file to /dev/null, via the daemon’s startup
options in your rc.conf.local (on OpenBSD) to

pflogd_flags="-f /dev/null"

On FreeBSD and NetBSD, you change the pflog_logfile= line in rc.conf
in a similar way, so it ends up looking like this:

pflog_logfile="/dev/null"

Then kill and restart the pflogd process with its new parameters.
The next step is to make sure that the log data, now no longer collected

by pflogd, is transmitted in a meaningful way to your log-processing system
instead. This has two parts: First, set up your system logger to transmit data
to the log-processing system, and second, use tcpdump in tandem with logger to
convert the data and inject it into the syslog system.

A F E W W O R D S O F C A U T I O N A B O U T S Y S L O G

As any old BSD hand will tell you, it should be noted that the traditional syslog sys-
tem log facility is a bit naïve about managing the data it receives over UDP from
other hosts, with DoS attacks involving full disks as one frequently mentioned dan-
ger. There is also the ever-present risk that log information will be lost under a high
load on either the systems or the network. For these reasons, you should consider
setting up your system for remote logging only if all the hosts involved communi-
cate over a well-secured network. On most BSDs, syslogd by default is not set up to
accept log data from other hosts. See the syslogd man page for information about
how to enable listening for log data from remote hosts if you plan to use remote
syslog logging.

Logging, Monitori ng, and S ta ti s ti cs 113

Setting up your syslogd to process the data is straightforward: Choose your
log facility, log level, and action2 and put the resulting line in your /etc/syslog
.conf file. Assuming you have already set up the system logger at loghost
.example.com to receive your data and chosen log facility local2 with log level
info, the correct line is

local2.info @loghost.example.com

After this change, you need to restart your syslogd to make it read the
new settings. Then set tcpdump to convert the log data from the pflog device
and feed the result to logger, which in turn sends the data to the system
logger. Here we reuse the tcpdump command from the basic examples, with
some useful additions:

$ sudo nohup tcpdump -lnettti pflog0 | logger -t pf -p local2.info &

The nohup command makes sure the process keeps running even if it
does not have a controlling terminal or gets put in the background (as we do
here with the trailing &). The -l option to tcpdump specifies line-buffered
output, which is useful for redirecting to other programs, as we do here. At
the other end of the pipe, logger adds the tag pf to identify the PF data in the
stream and specifies log priority with the -p option as local2.info. The result
is logged to the file you specify on the logging host, where the entries in the
log file will look something like this:

pf: Sep 21 14:05:11.492590 rule 93/(match) pass in on ath0: 10.168.103.11.15842 >
82.117.50.17.80: [|tcp] (DF)
pf: Sep 21 14:05:11.492648 rule 93/(match) pass out on xl0: 194.54.107.19.15842 >
82.117.50.17.80: [|tcp] (DF)
pf: Sep 21 14:05:11.506289 rule 93/(match) pass in on ath0: 10.168.103.11.27984 >
82.117.50.17.80: [|tcp] (DF)
pf: Sep 21 14:05:11.506330 rule 93/(match) pass out on xl0: 194.54.107.19.27984 >
82.117.50.17.80: [|tcp] (DF)
pf: Sep 21 14:05:11.573561 rule 136/(match) pass in on ath0: 10.168.103.11.6430 >
10.168.103.1.53:[|domain]
pf: Sep 21 14:05:11.574276 rule 136/(match) pass out on xl0: 194.54.107.19.26281 >
209.62.178.21.53:[|domain]

The log fragment displayed here shows mainly web-browsing activities,
with accompanying domain name lookups.

Tracking Statistics for Each Rule with Labels

The sequential information you get from retrieving log data basically tracks
packet movements over time. In other contexts, the sequence or history of

2 All of these concepts are explained very well in man syslog.conf, which is of course required
reading if you want to understand system logs. The action part is usually a file in a local filesystem,
as you will see from reading the configuration file and the man page.

114 Chap te r 8

connections is less important than aggregates such as the number of packets
or bytes that have matched a rule since the counters were last cleared.

We have already seen how to use pfctl -s all to view the global aggregate
counters along with a number of other data in “Statistics from pfctl” on page 15.
If you want to see a more detailed breakdown of the data, you can keep track
of traffic totals on a per-rule basis by using a slightly different form of the
pfctl command, such as pfctl -vs rules, which displays statistics along with
the rule:

$ pfctl -vs rules
pass inet proto tcp from any to 192.0.2.225 port = smtp flags S/SA keep state label "mail-in"
 [Evaluations: 1664158 Packets: 1601986 Bytes: 763762591 States: 0]
 [Inserted: uid 0 pid 24490]
pass inet proto tcp from 192.0.2.225 to any port = smtp flags S/SA keep state label "mail-out"
 [Evaluations: 2814933 Packets: 2711211 Bytes: 492510664 States: 0]
 [Inserted: uid 0 pid 24490]

The format is easy to read and obviously designed for contexts where you
want to get an idea of what is going on with a simple glance.

On the other hand, the output from the previous command is not very
well suited for feeding to a script or other program for further processing.
If you want to extract these statistics and a few more items in a slightly more
script-friendly format and make your own decisions about which rules are
worth tracking, rule labels are for you.

Labels do more than identify rules for processing specific kinds of traffic.
PF labels also make it easier to extract the traffic statistics. By attaching labels
to rules, you store some extra data about parts of your rule set you are inter-
ested in or parts that require special attention. One good example of labeling
is when you need to measure bandwidth use for accounting purposes.

Here we attach the labels mail-in and mail-out to our pass rules for
incoming and outgoing mail traffic, respectively:

pass log proto { tcp, udp } from any to $emailserver port smtp label "mail-in"
pass log proto { tcp, udp } from $emailserver to any port smtp label "mail-out"

Some time after you have loaded the rule set with labels, you can check
the data using the pfctl -vsl command:

$ sudo pfctl -vsl
mail-in 1664158 1601986 763762591 887895 682427415 714091 81335176
mail-out 2814933 2711211 492510664 1407278 239776267 1303933 252734397

The command output shows the label first, then the number of times the
rule has been evaluated, followed by the total number of packets passed. The
third value is the total number of bytes passed, followed by the number of
packets passed in, the number of bytes passed in, the number of packets
passed out, and finally the number of bytes passed out. While lacking in
details for human consumption, this list format makes it very well suited for
piping to and parsing by scripts and applications.

Logging, Monitori ng, and S ta ti s ti cs 115

The counters run and accumulate from the time the rule set is initially
loaded until they are reset. In many contexts it makes sense to set up a cron
job that reads label values at fixed intervals and puts them in some sort of
permanent storage. If you run the data collection at fixed intervals, it is worth
considering collecting the data via pfctl -vszl instead. The z option resets
the counters after pfctl has read them, and your data collector would then
be fetching periodic data, or data accumulated since the last time the script
was run.

NOTE It is worth noting that rules with macros and lists will expand to several distinct rules.
If your rule set contains rules with lists and macros that then have a label attached, the
in-memory result will be a number of rules, all with a separate, identically named label
attached to it. While this may lead to confusing pfctl -vsl output, it is not really a
problem as long as the application or script that receives the data is able to interpret
the data correctly by adding up the totals for the identical labels.

Some Additional Tools for PF Logs and Statistics

One other important component of staying in control of your network is
having the ability to keep an updated view of your system’s status. In this
section we’ll take a look at a selection of monitoring tools that you may find
useful.

This is not a complete lineup of all the available tools that are capable of
interacting with your PF configuration. However, all the tools presented here
are available via the package system on OpenBSD and FreeBSD (and, with
one exception, NetBSD).

Keeping an Eye on Things with pftop

If you are interested in keeping an eye on what passes in to and out of your
network at the moment, Can Erkin Acar’s pftop is a very useful tool. The name
is a strong hint at what it does—pftop shows a running snapshot of your traffic
in a format strongly inspired by the traditional Unix process viewer top.

This is a minimally edited screenshot of pftop running on one of my
gateways:

pfTop: Up State 1-21/67, View: default, Order: none, Cache: 10000 19:52:28

PR DIR SRC DEST STATE AGE EXP PKTS BYTES
tcp Out 194.54.103.89:3847 216.193.211.2:25 9:9 28 67 29 3608
tcp In 207.182.140.5:44870 127.0.0.1:8025 4:4 15 86400 30 1594
tcp In 207.182.140.5:36469 127.0.0.1:8025 10:10 418 75 810 44675
tcp In 194.54.107.19:51593 194.54.103.65:22 4:4 146 86395 158 37326
tcp In 194.54.107.19:64926 194.54.103.65:22 4:4 193 86243 131 21186
tcp In 194.54.103.76:3010 64.136.25.171:80 9:9 154 59 11 1570
tcp In 194.54.103.76:3013 64.136.25.171:80 4:4 4 86397 6 1370
tcp In 194.54.103.66:3847 216.193.211.2:25 9:9 28 67 29 3608
tcp Out 194.54.103.76:3009 64.136.25.171:80 9:9 214 0 9 1490
tcp Out 194.54.103.76:3010 64.136.25.171:80 4:4 64 86337 7 1410

116 Chap te r 8

udp Out 194.54.107.18:41423 194.54.96.9:53 2:1 36 0 2 235
udp In 194.54.107.19:58732 194.54.103.66:53 1:2 36 0 2 219
udp In 194.54.107.19:54402 194.54.103.66:53 1:2 36 0 2 255
udp In 194.54.107.19:54681 194.54.103.66:53 1:2 36 0 2 271

You can sort your connections by a number of different criteria, among
them by PF rule, volume, age, source and destination addresses, and a few
other possibilities.

This program is not in the base system itself, probably because it is possible
to extract equivalent information (although not quite in a real-time view)
using various pfctl options. However, pftop is available as a package, in ports
on OpenBSD and FreeBSD as sysutils/pftop, and on NetBSD via pkgsrc as
sysutils/pftop.

Graphing Your Traffic with pfstat
Once you have a system up and running and producing data worth monitor-
ing, graphs with curves representing traffic data are the hands-down favorite
form of data representation. Fortunately, it is fairly easy to satisfy the demand
for graphic representation of PF data.

One popular solution is pfstat, a small utility developed by Daniel
Hartmeier to extract and present statistical data that is automatically gen-
erated by PF. The pfstat tool is available via the OpenBSD package system
or as the port net/pfstat, via the FreeBSD ports system as sysutils/pfstat, and
via NetBSD pkgsrc as sysutils/pfstat.

The program collects the data you specify in the configuration file and
presents the data as JPG or PNG graphics files. The data source can be either
PF running on the local system via the /dev/pf device or data collected from a
remote computer running the companion pfstatd daemon.

Setting up pfstat is mainly a matter of deciding which parts of your PF
data you want to put together in a graph and how. You then write the config-
uration file and start cron jobs to collect the data and generate your graphs.

The program comes with a well-annotated sample configuration file and
a brief but useful man page. The sample configuration is in fact a useful start-
ing point for writing your own. I’ll show you a small example.

The following pfstat.conf fragment is very close to one you will find in the
sample configuration:3

collect 8 = global states inserts diff
collect 9 = global states removals diff
collect 10 = global states searches diff

image "/var/www/users/peter/bsdly.net/pfstat-states.jpg" {
 from 1 days to now
 width 980 height 300

3 The color values in the example give you a graph with red, blue, and green lines. For the mono-
chrome print version, we changed the colors to grayscale values: 0 192 0 became 105 105 105,
0 0 255 became 192 192 192, and 255 0 0 became 0 0 0.

Logging, Monitori ng, and S ta ti s ti cs 117

 left
 graph 8 "inserts" "states/s" color 0 192 0 filled,
 graph 9 "removals" "states/s" color 0 0 255
 right
 graph 10 "searches" "states/s" color 255 0 0
}

Collecting state insertions, removals, and searches once a minute and
then graphing the data collected over the last day to a JPG file produces a
graph roughly like the one in Figure 8-1, with data from one of my less-busy
gateways.

Figure 8-1: State table statistics, 24-hour time scale

For a more detailed view of the same data, I decided I wanted the data
for the last hour, only in a slightly higher resolution. I changed the period to
from 1 hours to now and the dimensions to width 600 height 300, producing the
graph in Figure 8-2.

Figure 8-2: State-table statistics, 1-hour time scale

118 Chap te r 8

The pfstat home page at http://www.benzedrine.cx/pfstat.html contains a
number of other examples, with demonstrations in the form of live updates
of graphs that show data from the benzedrine.cx domain’s gateways. By reading
the examples and tapping your own knowledge of your traffic, you should be
able to create pfstat configurations that are well suited to your site’s needs.

Collecting NetFlow Data with pfflowd

NetFlow is a network data collection and analysis method that has spawned
a large family of supporting tools for recording and analyzing data about
TCP/IP connections. NetFlow originated at Cisco, and over time it has
become supported in various network equipment as an important
management-and-analysis feature.

If NetFlow tools are already part of your network toolset, it is useful and
perhaps even crucial to know that PF data can be made available to NetFlow
tools via the pfflowd package.

The NetFlow data model defines a network flow as a unidirectional
sequence of packets with the same source and destination IP address and
protocol. This maps very well to PF state information, and pfflowd is intended
to record state changes from the local system’s pfsync device. Once enabled,
pfflowd acts as a NetFlow sensor that converts pfsync data to NetFlow format
for transmission to a NetFlow collector on the network.

The pfflowd tool was written and is maintained by Damien Miller and is
available from his website (http://www.mindrot.org/projects/pfflowd) as well as
through the package systems on OpenBSD and FreeBSD as net/pfflowd. The
lack of pfsync support on NetBSD means that pfflowd is not available on that
platform at the time this book was written.

SNMP Tools and PF-Related SNMP MIBs

The Simple Network Management Protocol (SNMP) was designed to let net-
work administrators collect and monitor key data about how their systems run
and potentially change configurations on multiple network nodes from a
centralized system.

The protocol debuted with RFC 1067 in August 1988 and is now in its
third major version as defined in RFCs 3411 through 3418. The SNMP
protocol comes with a well-defined interface and a method for extending
the Management Information Base (MIB), which defines the managed devices
and objects.

SNMP manageability support has become such a required component
in serious networking equipment that, if your network is large enough, you
probably looked up this section before deciding whether this book was worth
buying.

Network management and monitoring systems, both proprietary and
open source, generally have SNMP support in one form or another, and in
some products it’s a core feature. On the BSDs, SNMP support has generally
come in the form of the net-snmp package, which provides the tools you

Logging, Monitori ng, and S ta ti s ti cs 119

need to retrieve SNMP data and to collect data for retrieval by management
systems. The package is available on OpenBSD as net/net-snmp, on FreeBSD
as net-mgmt/net-snmp, and on NetBSD as net/net-snmp.

Fortunately, an extension to the net-snmp package that makes PF data
available to SNMP monitoring is available, too. Joel Knight maintains MIBs
for retrieving data on PF, CARP, and OpenBSD kernel sensors, download-
able as patches to net-snmp from http://www.packetmischief.ca/openbsd/snmp.

After you install the package and the extension, your SNMP-capable
monitoring systems will be able to watch PF data too, in any detail you could
desire. In addition, it is worth noting that FreeBSD’s bsnmpd includes a PF
module. See the bsnmpd man page for details.

Remember, Useful Log Data Is the Basis for Effective Debugging

In this chapter we have walked through the basics of collecting, displaying,
and interpreting data about a running system with PF enabled. Knowing
how to find and use information about how your system behaves is helpful
for several purposes.

Keeping track of the status of a running system is useful in itself, but the
ability to read and interpret log data is even more essential for finding out
whether your setup in fact behaves according to specifications. Another prime
use for log data is tracking the effect of changes you make in the configura-
tion, such as when tuning your system to give optimal performance.

Checking your configuration and tuning it for optimal performance,
based on log data and other observations, is a large part of what we will be
dealing with in the next chapter.

9
G E T T I N G Y O U R S E T U P J U S T

R I G H T

By now you have spent a significant amount
of time designing your network and imple-

menting that design in your PF configuration.
Getting your setup just right and removing any

remaining setup bugs and inefficiencies can be quite
challenging at times. In this chapter we’ll discuss some
options and methods that will help you get the setup you need. First, we’ll
take a look at global options and some settings that can have a profound
influence on how your configuration behaves.

The Things You Can Tweak and What You Probably Should
Leave Alone

Network configurations are inherently very tweakable. While browsing the
pf.conf man page or other reference documentation, it is easy to be over-
whelmed by the number of options and settings that you could adjust to get
that perfectly optimized setup.

122 Chap te r 9

It is important to keep in mind that with PF, the defaults are sane for most
setups. However, some settings and variables lend themselves to tuning, while
others should come with a big warning that they should be adjusted to non-
default values only in highly unusual circumstances. We will discuss some of
these scenarios in this chapter.

Let’s start by looking at some of the global settings that you may want to
be aware of, but that you may not have to change at all under most circum-
stances. If you read man pf.conf, you will discover that there are a few other
options available, but they’re not particularly relevant in a network-testing
and performance-tuning context.

The global options, which you write as set option setting, are placed
after any macro definitions in your pf.conf but before translation or filtering
rules. The following sections explain some examples.

block-policy

This option determines what feedback, if any, PF will give to hosts trying to
create connections that are subsequently blocked. The option has two possible
values: drop, which drops blocked packets with no feedback, and return,
which returns with status codes such as Connection refused or something
similar.

The correct strategy for block policies has been the subject of many
discussions over the years. The default setting for block-policy is drop, which
means that the packet is silently dropped without any feedback. However,
silently dropping packets increases the likelihood that the sender will resend
the unacknowledged packets rather than drop the connection. Thus, the
effort is kept up until the relevant timeout counter expires. Unless you can
think of a good reason to set it to something else, the recommendation is
to set the block policy to return, as in

set block-policy return

which means that the sender’s networking stack receives an unambiguous
signal that the connection was refused. It’s also worth noting that this setting
specifies the global default for your block policy. If necessary, you can still vary
the blocking type for specific rules.

You could, for example, change the brute force protection rule set from
“Turning Away the Brutes” on page 68 to have block-policy set to return but
use block drop quick from <bruteforce> to make the brute forcers waste some
extra energy if they stay around after they have been added to the <bruteforce>
table. Another example is dropping traffic from nonroutable addresses com-
ing in on your Internet-facing interface.

Gett i ng Your Setup Jus t R ight 123

skip
The skip option lets you exclude specific interfaces from all PF processing. The
net effect is strikingly similar to a pass-all rule for the interface, such as pass on
$int_if. One common example of explicit skip is to disable filtering on the
loopback interface, where filtering in most configurations adds little security
or convenience:

set skip on lo0

In fact, filtering on the loopback interface is almost never useful, and it
could lead to odd results with a number of common programs and services.
The default is that skip is unset, which means that all configured interfaces
will potentially take part in PF processing. In addition to making your rule set
slightly simpler, setting skip on interfaces where you do not want to perform
filtering results in a slight performance gain.

state-policy
The state-policy option specifies how PF matches packets to the state
table. The possible values are floating and if-bound. The differences
between the two lie in how subsequent packets are treated once a state
table entry has been created.

With the default floating state policy, traffic can match state on all inter-
faces, not just the interface where the state was created. With an if-bound
policy, traffic will match only on the interface where the state is created.
Traffic on other interfaces or groups will not match the existing state. Like
block-policy, this option specifies the global state-matching policy. You can
override state policy on a per-rule basis if needed. For example, in a rule set
with the default floating state policy, you could have a rule like this:

pass out on egress inet proto tcp to any port $allowed modulate state (if-bound)

With this rule, any return traffic trying to pass back in would need to pass
on the same interface where the state was created in order to match the state
table entry.

WARNING The situations in which state-policy if-bound is useful are rare enough that the
general recommendation is to leave this setting at the default.

timeout
The timeout option sets the timeouts and related options for various inter-
actions with the state table entries. The majority of the parameters are
protocol-specific values stored in seconds and prefixed tcp., udp., icmp.,
and other.. However, adaptive.start and adaptive.end denote the number
of state table entries.

124 Chap te r 9

WARNING These options can be used for optimizing your setup for performance, but changing the
protocol-specific settings from the default values creates a significant risk that valid but
idle connections might be dropped prematurely or blocked outright.

The timeout options you are most likely to change are the following:

adaptive.start and adaptive.end
These values set the limits for scaling down timeout values once the num-
ber of state entries reaches the adaptive.start value. When the number
of states reaches adaptive.end, all timeouts are set to zero, essentially
expiring all states immediately. The default values are 6000 and 12000
(calculated as 80 percent and 120 percent of the state limit), respectively.
These settings are intimately related to the memory pool limit parameters
you set via the limit option discussed in the next section.

interval

This value denotes the number of seconds between purges of expired
states and fragments. The default value is 10 seconds.

frag

The frag value denotes the number of seconds a fragment will be kept
in an unassembled state before it is discarded. The default value is
30 seconds.

src.track

When set, src.track denotes the number of seconds source-tracking data
will be kept after the last state has expired. The default value is 0 seconds.

You can inspect the current settings for all timeout parameters with
pfctl -s timeouts. This display shows a system running with default values.

$ sudo pfctl -s timeouts
tcp.first 120s
tcp.opening 30s
tcp.established 86400s
tcp.closing 900s
tcp.finwait 45s
tcp.closed 90s
tcp.tsdiff 30s
udp.first 60s
udp.single 30s
udp.multiple 60s
icmp.first 20s
icmp.error 10s
other.first 60s
other.single 30s
other.multiple 60s
frag 30s
interval 10s
adaptive.start 6000 states
adaptive.end 12000 states
src.track 0s

Gett i ng Your Setup Jus t R ight 125

limit

The limit option sets the size of the memory pools PF uses for state tables and
address tables. These are hard limits, so you may need to increase or tune
the values for a variety of reasons. If your network is a busy one with larger
numbers than the default values allow, or if your setup requires large address
tables or a large number of tables, then this section will be very relevant
for you.

It is important to keep in mind that the total amount of memory available
through memory pools is taken from the kernel memory space, and the amount
available is a function of the total available kernel memory. The kernel
allocates a fixed amount of memory for its own use at system startup; however,
since kernel memory is never swapped, the amount of memory allocated for
the kernel’s own use can never equal or exceed the physical memory in the
system. If that happened, there would be no space for user-mode programs
to run. The exact amount of pool memory available depends on which hard-
ware platform you use as well as on a number of hard-to-predict variables
specific to the local system. On the i386 architecture the maximum kernel
memory is in the 768MB to 1GB range, depending on a number of factors,
including the exact number and kind of hardware devices in the system.
The amount actually available for allocation to memory pools comes out
of this total, again depending on a number of system-specific variables.

You can inspect the current limit settings using pfctl -sm. Typical output
looks like this:

$ sudo pfctl -sm
states hard limit 10000
src-nodes hard limit 10000
frags hard limit 5000
tables hard limit 1000
table-entries hard limit 200000

To change these values, you edit your pf.conf to include one or more
lines with new limit values. For example, you would use these lines to raise
the hard limit for number of states to 25,000 and table entries to 300,000:

set limit states 25000
set limit table-entries 300000

You can also set several limit parameters at a time in a single line by
enclosing them in brackets, like this:

set limit { states 25000, src-nodes 25000, table-entries 300000 }

In the end, you almost certainly should not change the limits at all. If
you do, however, it is important to watch your system logs for any indication
that your changed limits do not have undesirable side effects or do not fit in
available memory. Setting the debug level to a higher value is potentially
quite useful for watching the effects of tuning limit parameters.

126 Chap te r 9

debug
The debug option determines what, if any, error information PF will generate
at the kern.debug log level. The default value is urgent, which means that
only serious errors will be logged. The other possible settings are none
(no messages), misc (reporting slightly more than urgent), and finally loud
(producing status messages for most operations). After I ran my home gate-
way at debug level loud for a little while, this is what my /var/log/messages file
looked like:

$ tail -f /var/log/messages
Oct 4 11:41:11 skapet /bsd: pf_map_addr: selected address 194.54.107.19
Oct 4 11:41:15 skapet /bsd: pf: loose state match: TCP 194.54.107.19:25 194.54.107.19:25
158.36.191.135:62458 [lo=3178647045 high=3178664421 win=33304 modulator=0 wscale=1]
[lo=3111401744 high=3111468309 win=17376 modulator=0 wscale=0] 9:9 R seq=3178647045
(3178647044) ack=3111401744 len=0 ackskew=0 pkts=9:12
Oct 4 11:41:15 skapet /bsd: pf: loose state match: TCP 194.54.107.19:25 194.54.107.19:25
158.36.191.135:62458 [lo=3178647045 high=3178664421 win=33304 modulator=0 wscale=1]
[lo=3111401744 high=3111468309 win=17376 modulator=0 wscale=0] 10:10 R seq=3178647045
(3178647044) ack=3111401744 len=0 ackskew=0 pkts=10:12
Oct 4 11:42:24 skapet /bsd: pf_map_addr: selected address 194.54.107.19

As you can see, the loud level gives you a level of detail where PF repeatedly
reports the IP address for the interface it is currently handling. In between
the selected address messages, PF warns twice for the same packet that the
sequence number is at the very edge of the expected range. This level of
detail seems almost breathtaking at first glance, but in some circumstances
studying this kind of output is the best way to diagnose a problem and later
check to see if your solution actually helped.

It is worth noting that this option can be set from the command line with
pfctl -x, followed by the debug level you want. The command pfctl -x loud
gives you maximum debugging info, while pfctl -x none turns off debug
messages entirely. Keep in mind that the output of the loud debug setting
can be large amounts of data—and in extreme cases could impact perfor-
mance all the way to self-DoS level.

ruleset-optimization

The ruleset-optimization option sets the mode for the rule set optimizer. The
default is basic, which means that no automatic optimization is performed. If
you include this line

set ruleset-optimization basic

in your pf.conf and reload your configuration, the rule set is subjected to some
further processing before it loads.

With basic rule set optimization enabled, the optimizer does the following
things:

� Removes duplicate rules

Gett i ng Your Setup Jus t R ight 127

� Removes rules that are subsets of other rules
For example, say you have the macro tcp_services = { ssh, www, https }

combined with the rule pass proto tcp from any to self port $tcp_services.
Elsewhere in your rule set, you have a different rule that says pass proto
tcp from any to self port ssh. The second rule is clearly a subset of the
first, and they can be merged into one. Another common combination
is having a pass rule like pass proto tcp from any to int_if:network port
$tcp_services with otherwise identical pass rules where the target addresses
are all in the int_if:network range.

� Merges rules into tables if appropriate
Typical rule-to-table optimizations are rules that pass, redirect, or

block based on identical criteria except source and/or target addresses.

� Changes rules order to improve performance

With rule set optimization set to profile, the optimizer analyzes the
loaded rule set relative to the actual network traffic in order to determine
the optimal order of quick rules.

You can also set the value of the optimization option from the command
line with pfctl:

$ sudo pfctl -o basic

This example enables the rule set optimization in basic mode.

NOTE Since the optimization may remove or reorder rules, the meaning of some statistics, mainly
the number of evaluations per rule, may change in ways that are hard to predict. In
most cases, however, the effect is negligible.

optimization

The optimization option specifies profiles for state-timeout handling. The
possible values are normal, high-latency, satellite, aggressive, and conservative.
The recommendation is to keep the default normal setting unless you have
very specific needs. The values high-latency and satellite are synonyms,
where states expire more slowly in order to compensate for potential high
latency. The aggressive setting expires states early in order to save memory
(be forewarned, though, that you run the risk of dropping idle-but-valid
connections if your system is already close to its load and traffic limits). Finally,
the conservative setting goes to great length to preserve states and idle connec-
tions, at the cost of some additional memory use.

Cleaning Up Your Traffic: scrub and antispoof

The next two features we’ll discuss, scrub and antispoof, share a common
theme: They provide automated protection against potentially dangerous
clutter in your network traffic. Together they are commonly referred to
as tools for “network hygiene,” because they sanitize your networking
considerably.

128 Chap te r 9

scrub
The scrub keyword enables network traffic normalization. With scrub,
fragmented packets are reassembled, and invalid fragments such as over-
lapping fragments are discarded, so the resulting packet is complete and
unambiguous. Enabling scrub provides a measure of protection against
certain kinds of attacks based on incorrect handling of packet fragments.1
A number of supplementing options are available, but the simplest form
shown here is suitable for most configurations:

scrub in all

In order for some services to work with scrub, specific options must be
set. One commonly cited example is NFS, where some combinations of
buggy clients and servers have been reported not to work with scrub at all
unless you use the no-df parameter. Some combinations of services, oper-
ating systems, and network configurations may require more exotic scrub
options. If you find yourself having to debug a scrub-related problem, you
are well advised to study the pf.conf man page and consult the gurus on the
relevant mailing lists.

antispoof

There are some very useful and common packet-handling actions that could
be written as PF rules, but not without their becoming long, complicated,
and error-prone rule set boilerplate. Thus, antispoof was implemented for a
common special case of filtering and blocking. This mechanism protects
against activity from spoofed or forged IP addresses, mainly by blocking
packets that appear on interfaces traveling in directions that are not logically
possible.

With antispoof, we can specify that we want to weed out spoofed traffic
coming in from the rest of the world and any spoofed packets that (however
unlikely) were to originate in our own network. Figure 9-1 illustrates the
concept.

To establish the kind of protection depicted in the diagram, specify
antispoof for both interfaces in the illustrated network with these two lines:

antispoof for $ext_if
antispoof for $int_if

These lines in turn expand to complex rules. The first one, for instance,
blocks incoming traffic when the source address appears to be part of the
network directly connected to the antispoofed interface but arrives on a

1 Some notable attack techniques, including several now-historical Denial of Service (DoS) setups,
have exploited bugs in fragment handling that could lead to out-of-memory conditions or other
resource exhaustion. One such exploit, which was aimed at Cisco’s PIX firewall series, is described
in the advisory at http://www.cisco.com/en/US/products/products_security_advisory09186a008011e78d
.shtml.

http://www.cisco.com/en/US/products/products_security_advisory09186a008011e78d.shtml
http://www.cisco.com/en/US/products/products_security_advisory09186a008011e78d.shtml

Gett i ng Your Setup Jus t R ight 129

different interface. However, antispoof is not designed to detect address
spoofing remotely for networks that are not directly connected to the machine
running PF.

Figure 9-1: antispoof drops packets that come in from the wrong network.

Testing Your Setup

Now that we have set our focus on testing, it’s time to dust off the precise
specification that describes how your setup should work. We put it aside for a
few chapters in order to show you the features we thought you would like to
know about, but now it’s pretty essential that you have your specification ready
for referencing. Realistically, for anything past a truly trivial setup, it is fairly
essential to have a specification in hand.

The specification we have been working through in this book runs roughly
like this, with minor variations:

The physical layout of our sample network is centered on a gateway that is
connected to the Internet via $ext_if. Attached to the gateway via $int_if is a
local network with workstations and possibly one or more servers for local use.
Finally, we have a DMZ connected to $dmz_if, populated with servers offering
services to the local network and the Internet. Figure 9-2 shows the logical
layout for the network.

The corresponding rule set specification looks something like this:

� Machines outside our network should have access to the services offered
by our servers in the DMZ and no access at all to the local network.

� The machines in our local network, attached to $int_if, should have access
to the services offered by the servers in the DMZ as well as access to a
defined list of services outside our network.

� The machines in the DMZ should have access to some network services
in the outside world.

Internet

Switch

Clients

Our gateway,
the PF firewall

$ext_if
192.0.2.19

$int_if
192.168.12.1

src: 192.168.12.23
dst: 192.0.2.19:25
- - - - - - - - - - - - - - - - -
Data-data-data-data

src: 192.168.12.23
dst: 192.0.2.19:25
- - - - - - - - - - - - - - - - -
Data-data-data-data

This packet is spoofed;
it is blocked by antispoof.

This packet is not spoofed;
it passes.

130 Chap te r 9

Figure 9-2: Network with servers in a DMZ

The task at hand, then, is to make sure the rule set we have in place
actually implements the specification. We need to test the setup. A useful
test would be to try the sequence in Table 9-1.

Table 9-1: Sample Rule Set Test Case Sequence

Test Action Expected Result

Try a connection from the local network to each of the
allowed ports on the servers in the DMZ.

The connection should pass.

Try a connection from the local network to each of the
allowed ports on servers outside our network.

The connection should pass.

Try a connection on any port from the DMZ to the local
network.

The connection should be blocked.

Try a connection from the DMZ to each of the allowed
ports on servers outside our network.

The connection should pass.

Try a connection from outside our network to $webserver
in the DMZ on each of the ports in $webports.

The connection should pass.

Try a connection from outside our network to $webserver
in the DMZ on port 25 (SMTP).

The connection should be blocked.

Try a connection from outside our network to
$emailserver in the DMZ on port 80 (HTTP).

The connection should be blocked.

Try a connection from outside our network to
$emailserver in the DMZ on port 25 (SMTP).

The connection should pass.

Try a connection from outside our network to one or
more machines in the local network.

The connection should be blocked.

Internet

Switch

Clients

$emailserver
192.0.2.225

$webserver
192.0.2.227

$nameserver
192.0.2.221

Our gateway,
the PF firewall

$int_if
192.0.2.0/25$ext_if

Switch

$dmz_if
192.0.2.129/25

Gett i ng Your Setup Jus t R ight 131

Your configuration may call for other tests or could differ in some partic-
ulars. It is likely that your real-life test scenario should specify how packets
and connections should be logged. The important thing is that you decide
what is the expected and desired result for each of your test cases before you
start testing.

In general, you should test using the applications you expect the typical
user to have, such as web browsers or mail clients on various operating systems.
The connections should simply succeed or fail, according to specifications.
If one or more of your basic tests gives an unexpected result, you move on
to debugging your rule set.

Debugging Your Rule Set

What happens when your configuration does not behave as you expected it
to? It is possible there is an error in the rule set’s logic, and if so you need to
find the error and correct it. Tracking down logic errors in your rule set can
be time consuming and could involve manually evaluating your rule set, both
as it is stored in the pf.conf file and the loaded version after macro expansions
and any optimizations.

Before diving into the rule set itself, you can easily determine whether the
PF configuration is what is causing the problem. Disabling PF by running the
command pfctl -d to see if the problem disappears is a valid test that can save
you a lot of trouble.

On the mailing lists, news groups, and other forums, we frequently see
users initially blaming PF for problems that turn out to be basic network
problems. Network interfaces set to the wrong duplex settings, bad netmasks,
or even faulty network hardware are common culprits.

If the problem persists when PF is not enabled, it is likely that the prob-
lem is not in the PF configuration. You should then turn to debugging other
parts of your network configuration instead. However, if you are about to
start adjusting your PF configuration, it is worth checking that PF is in fact
enabled and that your rule set is loaded, using the following command:

$ sudo pfctl -si | grep Status
Status: Enabled for 20 days 06:28:24 Debug: Loud

Here Status: Enabled tells us that PF is enabled, so we try viewing the
loaded rules with a different pfctl command:

$ sudo pfctl -sr
scrub in all fragment reassemble
block return log all
block return log quick from <bruteforce> to any
anchor "ftp-proxy/*" all

132 Chap te r 9

Here, pfctl -sr is equivalent to pfctl -s rules. The actual output is likely
to be a bit longer than what we show here, but it’s a good example of what
you should expect to see when a rule set is definitely loaded. For debugging
purposes it is useful to add the -vv flag to the pfctl command line to see rule
numbers and some additional debug information, like this:

$ sudo pfctl -vvsr
@0 scrub in all fragment reassemble
 [Evaluations: 67274995 Packets: 34231784 Bytes: 9800756925 States: 0]
 [Inserted: uid 0 pid 1013]
@0 block return log all
 [Evaluations: 618114 Packets: 15833 Bytes: 1444217 States: 0]
 [Inserted: uid 0 pid 1013]
@1 block return log quick from <bruteforce:2> to any
 [Evaluations: 618114 Packets: 13208 Bytes: 792140 States: 0]
 [Inserted: uid 0 pid 1013]
@2 anchor "ftp-proxy/*" all
 [Evaluations: 604906 Packets: 3498832 Bytes: 2803255822 States: 0]
 [Inserted: uid 0 pid 1013]

At this time, you should perform a structured walkthrough of the loaded
rule set. Find the rules that match the packets you are investigating. What is
the last matching rule? If more than one rule matches, is one of the matching
rules a quick rule?2 You will need to trace the evaluation until you hit the end
of the rule set or until the packet matches a quick rule, which then ends the
process. If your rule set walk-through ends somewhere other than with the
rule you were expecting to match your packet, you have found your logic
error.

Rule set logic errors tend to fall into three types of cases:

� Your rule does not match because it is never evaluated. A quick rule
earlier in the rule set matched, and the evaluation stopped.

� Your rule is evaluated but does not match the packet after all because of
the rule’s criteria.

� Your rule is evaluated, the rule matches, but the packet also matches
another rule later in the rule set. The last matching rule is the one that
determines what happens to your connection.

In Chapter 8 we introduced tcpdump as a valuable tool for reading and
interpreting PF logs. The program is also very well suited for viewing what
traffic passes on a specific interface. What you learned about PF’s logs and
how to use tcpdump’s filtering features will come in handy when you want to
track down exactly which packets reach which interface.

2 As you probably recall from earlier chapters, when a packet matches a quick rule, evaluation
stops and whatever the quick rule specifies is what happens to the packet.

Gett i ng Your Setup Jus t R ight 133

Here we use tcpdump to watch for TCP traffic on the xl0 interface (but not
show SSH or SMTP traffic) and print the result in very verbose mode (vvv).

$ sudo tcpdump -nvvvpi xl0 tcp and not port ssh and not port smtp
tcpdump: listening on xl0, link-type EN10MB
21:41:42.395178 194.54.107.19.22418 > 137.217.190.41.80: S [tcp sum ok]
3304153886:3304153886(0) win 16384 <mss 1460,nop,nop,sackOK,nop,wscale 0,nop,nop,timestamp
1308370594 0> (DF) (ttl 63, id 30934, len 64)
21:41:42.424368 137.217.190.41.80 > 194.54.107.19.22418: S [tcp sum ok]
1753576798:1753576798(0) ack 3304153887 win 5792 <mss 1460,sackOK,timestamp 168899231
1308370594,nop,wscale 9> (DF) (ttl 53, id 0, len 60)

The connection shown here is a successful connection to a website.
There are more interesting things to look for, though, such as connec-

tions that fail when they should not, according to your specification, or
connections that succeed when your specification says they clearly should not.

The test in these cases involve tracking the packets’ path through your
configuration. Once more, it is useful to check to see if PF is enabled or if
disabling PF makes a difference. Building on the result from that initial test,
you then perform the same kind of analysis of the rule set as we described
previously. Once you have a reasonable theory of how the packets should
traverse your rule set and your network interfaces, use tcpdump to see the traffic
on each of the interfaces in turn. Use tcpdump’s filtering features to see only
the packets that should match your specific case, such as port smtp and
dst 192.0.2.19.

Find the exact place where your assumptions no longer match the reality
of your network traffic. Turn on logging for the rules that may be involved,
and then turn tcpdump loose on the relevant pflog interface to see which rule
the packets actually match.

The main outline for the test procedure is fairly fixed. If you have
narrowed down the cause to your PF configuration, once more it’s a case of
finding out which rules match and which rule ends up determining whether
the packet passes or is blocked.

Know Your Network, Stay in Control

The recurring theme in this book has been how PF and related tools make it
relatively easy for you, as the network administrator, to take control of your
network and make it behave the way you want it to. In other words, this book
is about building the network you need.

134 Chap te r 9

Running a network can be fun, and I hope you have enjoyed this tour
of what I consider to be the best tool available. In presenting PF, I made a
conscious decision early on to introduce you to its methods and ways of think-
ing via interesting and useful configurations, rather than make this book the
complete reference. The complete PF reference already exists in the man pages,
which are updated every six months with the new OpenBSD releases. Follow-
ing this chapter you will find a list of online and print literature I have found
useful, with short comments for each entry, followed by a note on hardware,
various kinds of support, and how to interact with the developer and user
communities.

Now that you have a basic knowledge of what PF can do, you can start
building networks according to your own ideas of what you need in each
case. It’s all up to you, and now you will see that you have reached the point
where you can find your way around the man pages and locate the exact
information you need. This is when the fun part starts!

A
R E S O U R C E S

These resources should help you get the
most out of your setup. Though I wanted

to, it proved impossible to cover all possible
wrinkles of PF configuration; I hope that the

resources listed here will fill in some details or present
a slightly different perspective. Some of them are even
quite enjoyable reads for their own sake. Hopefully
most of the resources listed here will remain useful
and updated.

136 Appendix A

General Networking and BSD Resources on the Internet

These are the general web-accessible resources cited throughout the book. It
is worth looking at the various BSD projects’ websites for the most up-to-date
information.

� Of particular interest for OpenBSD users is the online OpenBSD Journal
(http://undeadly.org). It offers news and articles about OpenBSD and
related issues.

� OpenBSD’s website (http://www.openbsd.org) is the main reference for
OpenBSD information. If you’re using OpenBSD, you will be visiting this
site every now and then.

� You will find a collection of presentations and papers by OpenBSD devel-
opers at http://www.openbsd.org/papers. This site is a good source of infor-
mation about ongoing developments in OpenBSD.

� OpenBSD’s Documentation and Frequently Asked Questions (http://www.openbsd
.org/faq/index.html) is more of a user guide than a traditional question-and-
answer document. This is where you’ll find a generous helping of back-
ground information and stepwise instructions on how to set up and run
your OpenBSD system.

� PF: The OpenBSD Packet Filter (http://www.openbsd.org/faq/pf/index.html) is
the official PF documentation, maintained by the OpenBSD team. The
PF user guide gets updated for each release and is an extremely valuable
reference resource for PF practitioners.

� Bob Beck’s “pf. It’s not just for firewalls anymore” (http://www.ualberta.ca/
~beck/nycbug06/pf) is a NYCBUG 2006 presentation that covers PF’s redun-
dancy and reliability features, with real-world examples taken from the
University of Alberta network.

� Daniel Hartmeier’s PF pages (http://www.benzedrine.cx/pf.html) are his
collection of PF-related material with links to resources around the Web.

� Daniel Hartmeier’s “Design and Performance of the OpenBSD Stateful
Packet Filter (pf)” (http://www.benzedrine.cx/pf-paper.html) is the paper he
presented at USENIX 2002, which describes the initial design and imple-
mentation of PF.

� Daniel Hartmeier’s three-part undeadly.org PF series, from September
2006, was originally intended as chapters for a book that was unfortunately
canceled. This series of articles comprises “PF: Firewall Ruleset Optimiza-
tion” (http://undeadly.org/cgi?action=article&sid=20060927091645);
“PF: Testing Your Firewall” (http://undeadly.org/cgi?action=article&sid
=20060928081238); and “PF: Firewall Management” (http://undeadly
.org/cgi?action=article&sid= 20060929080943). The three articles cover
their respective subjects in great detail, yet manage to be quite readable.

� RFC 1631, “The IP Network Address Translator (NAT),” May 1994,
(http://www.ietf.org/rfc/rfc1631.txt?number=1631) is the first part of the
NAT specification, which has proved to be longer lived than the authors

http://undeadly.org/
http://www.openbsd.org/papers/
http://www.openbsd.org/faq/index.html
http://www.openbsd.org/faq/index.html
http://www.ualberta.ca/~beck/nycbug06/pf/
http://www.ualberta.ca/~beck/nycbug06/pf/
http://www.benzedrine.cx/pf.html
http://undeadly.org/cgi?action=article&sid=20060927091645
http://undeadly.org/cgi?action=article&sid=20060928081238
http://undeadly.org/cgi?action=article&sid=20060928081238
http://undeadly.org/cgi?action=article&sid=20060929080943
http://undeadly.org/cgi?action=article&sid=20060929080943
http://www.ietf.org/rfc/rfc1631.txt?number=1631

Resou rce s 137

had apparently intended. While still an important resource for under-
standing NAT, it has been largely superseded by the updated RFC 3022,
dated January 2001.

� RFC 1918, “Address Allocation for Private Internets,” February 1996,
(http://www.ietf.org/rfc/rfc1918.txt?number=1918) is the second part of the
NAT and private address space puzzle. This RFC describes the motivations
for the allocation of private, nonroutable address space and defines the
address ranges. RFC 1918 has been designated a Best Current Practice.

Sample Configurations and Related Musings

A number of people have been kind enough to write up their experiences and
make sample configurations available on the Web. The following are some of
my favorites.

� Marcus Ranum’s “The Six Dumbest Ideas in Computer Security”
(http://www.ranum.com/security/computer_security/editorials/dumb/index
.html), from September 2005, is a longtime favorite of mine. This arti-
cle explores some common misconceptions about security and their
unfortunate implications for real-world security efforts.

� Nate Underwood’s “HOWTO: Transparent Packet Filtering with
OpenBSD” (http://ezine.daemonnews.org/200207/transpfobsd.html), from
2002, shows a filtering bridge configuration.

� Randal L. Schwartz’s “Monitoring Net Traffic with OpenBSD’s Packet
Filter” (http://www.samag.com/documents/s=9053/sam0403j/0403j.htm)
shows a real-life example of traffic monitoring and using labels for
accounting. Some details about PF and labels have changed in the inter-
vening years, but the article is still quite readable and presents several
important concepts well.

� The Swedish user group Unix.se’s “Brandvägg med OpenBSD”
(http://unix.se/Brandv%E4gg_med_OpenBSD) and its sample config-
urations, such as the basic ALTQ configurations, were quite useful to me
early on. The site serves as a nice reminder that volunteer efforts such as
local user groups can be excellent sources of information.

� Randal L. Schwartz’s blog for Thursday, January 29, 2004 (http://use.perl
.org/~merlyn/journal/17094) shows how he apparently solved an annoying
problem via creative use of ALTQ and operating system fingerprinting.

� Kenjiro Cho’s “Managing Traffic with ALTQ” (http://www.usenix
.org/publications/library/proceedings/usenix99/cho.html) is the original
ALTQ paper, which describes the design and the early implementation
on FreeBSD.

� Jason Dixon’s “Failover Firewalls with OpenBSD and CARP,” from
SysAdmin Magazine, May 2005 (http://www.samag.com/documents/s=9658/
sam10505e.html) is an overview of CARP and pfsync, with some practical
examples.

http://www.ietf.org/rfc/rfc1918.txt?number=1918
http://ezine.daemonnews.org/200207/transpfobsd.html
http://www.samag.com/documents/s=9053/sam0403j/0403j.htm
http://unix.se/Brandv%E4gg_med_OpenBSD
http://use.perl.org/~merlyn/journal/17094
http://use.perl.org/~merlyn/journal/17094
http://www.usenix.org/publications/library/proceedings/usenix99/cho.html
http://www.usenix.org/publications/library/proceedings/usenix99/cho.html
http://www.samag.com/documents/s=9658/sam0505e/
http://www.samag.com/documents/s=9658/sam0505e/

138 Appendix A

� Theo de Raadt’s OpenCON 2006 presentation, “Open Documentation
for Hardware: Why hardware documentation matters so much and why it
is so hard to get” (http://openbsd.org/papers/opencon06-docs/index.html) was
an important inspiration for the note in Appendix B about hardware for
free operating systems in general and OpenBSD in particular.

PF on Other BSD Systems

PF has been ported from OpenBSD to the other BSDs, and while the stated
goal for these efforts is, naturally, to be as up to date as possible in relation
to the newest PF versions coming out of OpenBSD, it is useful to keep track
of the PF projects in the other BSDs.

The “FreeBSD packet filter (pf)” home page (http://pf4freebsd.love2party
.net) describes the early work with PF on FreeBSD and the project goals. At
the moment the page is not quite up to date with the latest developments,
but it will hopefully spring to life again once Max Laier notices that he’s
referenced in a book.

Peter Postma’s “PF Loadable Kernel Module for NetBSD 2” (http://nedbsd
.nl/~ppostma/pf) has patches and documentation for PF on NetBSD, including
some of the relatively recent features that are not yet integrated in the main
NetBSD tree.

BSD and Networking Books

In addition to what appears to be an ever-expanding number of online
resources, there are several books that may be useful as companions or
supplements to this book.

� Jacek Artymiak, Building Firewalls with OpenBSD and PF, 2nd ed. (devGuide
.net, 2003). Traditionally the recommended PF book, it covers PF in
OpenBSD 3.4 in great detail.

� Michael W. Lucas, Absolute OpenBSD (No Starch Press, 2003). Written at
the time of OpenBSD 3.4, this volume offers a thorough walkthrough of
OpenBSD with a wealth of hands-on, practical material.

� Brandon Palmer and Jose Nazario, Secure Architectures with OpenBSD
(Addison-Wesley, 2004). This book provides an overview of OpenBSD’s
features with a marked slant toward building secure and reliable systems.
The book references OpenBSD 3.4 as the then up-to-date version.

� Douglas R. Mauro and Kevin J. Schmidt, Essential SNMP, 2nd ed. (O’Reilly
Media, 2005). As the title says, this is an essential reference book about
SNMP.

� Jeremy C. Reed (editor), The OpenBSD PF Packet Filter Book (Reed Media
Services, 2006). The book is based on the PF User Guide, extended to cover
PF on FreeBSD, NetBSD, and DragonFly BSD, and with some additional
material on third-party tools that interoperate with PF.

http://openbsd.org/papers/opencon06-docs/index.html
http://nedbsd.nl/~ppostma/pf/
http://nedbsd.nl/~ppostma/pf/

Resou rce s 139

Wireless Networking Resources

Kjell Jørgen Hole’s Wi-Fi courseware (http://www.kjhole.com/Standards/WiFi/
WiFiDownloads.html) is an excellent resource for understanding wireless
networks. The courseware is mainly aimed at University of Bergen students
who take Professor Hole’s courses, but it is freely available and well worth
reading.

For keeping up with developments in the wireless networking world, the
WNN Wi-Fi Net News site offers running updates, with the security-related
stories listed at http://wifinetnews.com/archives/cat_security.html.

Another highly recommended resource for wireless security issues is
“The Unofficial 802.11 Security Web Page” (http://www.drizzle.com/~aboba/
IEEE).

spamd and Greylisting-Related Resources

If handling email and dealing with email problems is part of your life (or is
likely to be in the future), you have probably enjoyed the description of
spamd, tarpitting, and greylisting. If you want a little more background
information than what you find in the relevant RFCs, the following documents
and Web resources provide it.

� The Greylisting.org website (http://www.greylisting.org) contains a useful
collection of greylisting-related articles and other information about
greylisting and SMTP in general.

� Evan Harris’s “The Next Step in the Spam Control War: Greylisting”
(http://greylisting.org/articles/whitepaper.shtml) is the original greylisting
paper.

� Bob Beck’s “OpenBSD spamd—greylisting and beyond” (http://www
.ualberta.ca/~beck/nycbug06/spamd) is an NYCBUG presentation that
explains how spamd works, leading up to a description of spamd’s role in
University of Alberta’s infrastructure. It is worth noting that much of the
future work mentioned in the presentation has already been implemented.

� Peter N.M. Hansteen’s “The Silent Network: Denying the spam and
malware chatter using free tools” (http://home.nuug.no/~peter/malware-talk/
silent-network.pdf) is my BSDCan 2007 paper, a best-practice description
of how to use greylisting, spamd, and various other free tools and OpenBSD
to successfully fight spam and malware in your network.

Book-Related Web Resources

For news and updates about this book, book-related downloads, and errata,
first check the book’s home page at the No Starch Press website (http://www
.nostarch.com/pf.htm). That page contains links to pages on my personal web
space, where various updates and book-related resources will appear as they
become available. I will be posting book-related news and updates at http://
www.bsdly.net/bookofpf.

http://wifinetnews.com/archives/cat_security.html .
http://www.ualberta.ca/~beck/nycbug06/spamd/
http://www.ualberta.ca/~beck/nycbug06/spamd/
http://home.nuug.no/~peter/malware-talk/silent-network.pdf
http://home.nuug.no/~peter/malware-talk/silent-network.pdf
http://www.nostarch.com/pf.htm
http://www.nostarch.com/pf.htm
http://www.bsdly.net/bookofpf/
http://www.bsdly.net/bookofpf/

140 Appendix A

I maintain the PF tutorial manuscript, “Firewalling with OpenBSD’s
PF packet filter,” which is the forerunner of this book. My policy is to make
updates when appropriate, usually as I become aware of changes or features
of PF and related software and while preparing for appearances at confer-
ences. The tutorial manuscript is available under a BSD license and can be
downloaded in several formats from my web space at http://home.nuug.no/
~peter/pf. Updated versions will appear at that URL more or less in the
natural course of tinkering in between events.

If You Enjoyed This Book, Buy OpenBSD CDs and Donate!

If you have enjoyed this book or found it useful, please go to the OpenBSD.org
“Ordering” page at http://www.openbsd.org/orders.html and buy CD sets or,
for that matter, support further development work by the OpenBSD project
with a donation, such as via the “Donations” page at http://www.openbsd
.org/donations.html.

If you are the kind of corporate entity that is more comfortable with
donating to a corporation, you can contact the OpenBSD Foundation, a
Canadian nonprofit corporation that was created in 2007 for that specific pur-
pose. See the OpenBSD Foundation website at http://www.openbsdfoundation
.org for more information.

If you’ve found this book at a conference, there might even be an
OpenBSD booth nearby where you can buy CDs, T-shirts, or other items.

Remember, even free software takes real work and real money to develop
and maintain.

http://www.openbsd.org/donations.html
http://www.openbsd.org/donations.html

B
A N O T E O N H A R D W A R E

S U P P O R T

How’s the hardware support? I tend to hear
that a lot, and my answer usually runs like

this: In my experience, OpenBSD and other
free systems tend to just work.

But for some reason, there is a general perception that going with free
software means picking hardware components that will actually work will be a
serious struggle.

There may be a factual basis for some of this—I certainly remember
struggling with FreeBSD 2.0.5, which managed to boot its installer off the
CD but was unable to actually complete an install since the CD drive I had was
not supported.

But wait—that was back in June 1995.
If you do not remember that far back, this was when PC CD drives more

often than not came with an almost-but-not-quite-IDE interface, attached to
the sound card (or multimedia package) the drive came bundled with. At least
that’s what I had at the time. The BSDs came more from a real-computer or, in
modern terms, server perspective, so SCSI and the like were better supported,

142 Appendix B

and asking for help in a BSD-related newsgroup produced comments about
“seriously losing hardware”—hackerspeak of the time for equipment that is
just too badly designed or too primitive to be worth a hacker’s time.

True enough, and around that time, cheap PCs generally did not come
with networking circuitry built in, either. Configuring a network usually meant
moving jumpers around on the network interface card or the motherboard
itself or running some weird proprietary setup software. That is, if you had
the good luck to be on something with an Ethernet interface. Dial-up and
ISDN were more likely connections to the Internet back then.

Today you can reasonably expect all important components in your
system to work with OpenBSD. Some caution and a bit of planning may be
required for building the optimal setup, but wouldn’t you rather plan and
design your infrastructure carefully than shop by momentary impulse and
hope for the best?

A Case in Point: The Story of a Small Wireless Network

Wireless network support in OpenBSD, and BSDs in general, is getting
better all the time, but this does not mean that getting all the bits you need
is necessarily easy.

A brief history of the wireless setup for my home network goes like this:
I started out buying two CNet CWP-854 cards, which should have been sup-
ported in OpenBSD 3.7 via the new ral driver. The one I put in the brand-new
Dell machine running a non-free operating system worked right out of the
box. My gateway, however, which had been running without incident since
the 3.3 days, was a little more problematic. The card was recognized and
configured, but once the Dell tried to get an IP address, the gateway went
down with a kernel panic. The gory details are available as OpenBSD
PR 4217. I promised to test the card again with a new snapshot as soon as I
could re-locate the card.1

I then decided I wanted to try ath cards and bought a D-Link DWL-G520,
which I somehow managed to misplace while moving. Next, I bought a
DWL-G520+, thinking that the plus sign must mean it’s better. Unfortunately,
the plus sign meant a whole different chipset was used, the TI ACX111,
which comes with a low price tag but with no documentation accessible to
free software developers. Fortunately, the store let me return the card for a
refund with no trouble at all.

At this point, I was getting rather frustrated and went all the way across
town to a shop that had several DWL-AG520 cards in stock. They were a bit
more expensive than the others, but the card did work right away. A couple of
weeks later the G520 turned up, and of course that worked, too. My laptop
(which at the time ran FreeBSD) came with a Realtek 8180 wireless mini-PCI
card built in, but for some reason I could not get it to work. I ended up buying
a DWL-AG650 CardBus card, which works flawlessly with the ath driver.

1 More than two years of deadline chasing later, the card is most likely still in one of the boxes we
packed for the move. I hope I will locate the right box while PCI cards are still useful.

A Note on Hardware Suppor t 143

More than two years later, the acx driver (introduced in OpenBSD 4.0)
brought reverse-engineered support for ACX1nn-based cards to the BSDs.
It took quite a while and significant effort, and the development happened
against the stated wishes of the vendor, but that’s a theme we’ll explore in
“Issues Facing Hardware-Support Developers” on page 144. The point here is
that there’s value in careful planning.

Getting the Right Hardware

Getting the right hardware is essentially a matter of checking that what is
supported in your system meets the needs of your network. It’s always good
practice to check the hardware compatibility lists at your operating system’s
website. You could also check the man pages or use apropos keyword com-
mands (where keyword is the type of device you are looking for). Searching
the archives of relevant mailing lists is also useful if you feel you need more
background information.

You should be aware, though, that some hardware comes with odd
restrictions. One such example is hardware that depends on firmware that
is loaded onto the card. Often in these situations, the manufacturer refuses
to grant redistribution rights for the firmware, and operating systems such as
OpenBSD can’t package it with their releases.

Laptops provide an excellent example of this situation. If you have
shopped around for laptops recently, you’ve likely looked at units that come
with Intel PRO/Wireless 3945ABG 802.11a/b/g networking hardware. That
hardware is quite popular and supported in a wide range of operating systems,
including OpenBSD via the wpi(4) driver. However, the hardware does not
work at all unless you have the correct firmware files on your system, which
Intel requires that you download from its site along with a license agreement.

This means that OpenBSD, despite its excellent support for network
installs, cannot be installed over a wireless network on laptops with this
particular Intel PRO/Wireless hardware. After all, Intel has refused to give
permission to include the necessary files on the install media.

In the case of the wpi driver and firmware, reading the driver man page
will reveal that the driver’s maintainer has collected the firmware files and
made an installable package of them. You can download the package file
from his web space, which kind of feels like cheating (I’m not sure it is strictly
legal with respect to the license agreement), but installing the package does
solve the problem.

This Intel PRO/Wireless chipset is not the only device with such restric-
tions, but it happens to be what came with my ThinkPad R60, which is an
otherwise excellent system. It is worth noting that in cases where supported
hardware is restricted like this, the OpenBSD man pages tend to note the fact
and in some cases even include the email addresses of people who might be
in a position to change the manufacturer’s policy.

144 Appendix B

My general advice is this: If you shop online, keep the man pages available
in another tab or window, and if you go to a physical store, make sure to tell
the clerks you will be using a BSD. If you’re not sure about the parts they are
trying to sell you, see if you can borrow a machine to browse the man pages
and other documentation online. Telling the clerks up front could end up
making it easier to get a refund if the part does not work, and telling them the
part did work is good advocacy.

Issues Facing Hardware-Support Developers

Systems such as OpenBSD and the other BSDs did not spring fully formed
from the forehead of a deity (although some will argue that the process was
not, in fact, that different). Rather, they’re the result of years of effort by a
number of smart and dedicated individuals known as developers.

The developers are all highly qualified and extremely dedicated people
who work tirelessly—the majority in their spare time—to produce amazing
results. However, they do not live in a bubble with access to everything they
need. Either the hardware itself or adequate documentation to support it is
often unavailable to them. Another common problem is documentation that is
provided only under a nondisclosure agreement, which limits how developers
can use the information.2

Through a process called reverse engineering, developers can write drivers to
support hardware even without proper documentation, but it is a complicated
process of educated guessing, coding, and testing. It can be fun if you know
how to do it, but it also has its own problems: It takes a long time to do, and,
for reasons known only to lawmakers and lobbyists, it has legal consequences
in several jurisdictions around the world.

So what’s a soul to do in order to help the developers get the hardware
and other material they need?

How to Help the Hardware-Support Efforts

If you are able to contribute quality code, the BSD projects are likely to
welcome your contribution. If you are not a developer yourself, contributing
code may not be an option, but there are several things you can do even if
you are not a coder:

Buy your hardware from open source–friendly vendors.
If you are making decisions or recommendations when it comes to your
organization’s equipment purchases, it is well worth telling potential sup-
pliers that open source friendliness is a factor in your purchasing decision.

2 This is a frequent talk topic too; see, for example, Theo de Raadt’s OpenCON 2006
presentation, “Open Documentation for Hardware: Why hardware documentation matters so
much and why it is so hard to get,” available at http://www.openbsd.org/papers/opencon06-docs/
index.html.

http://openbsd.org/papers/opencon06-docs/index.html
http://openbsd.org/papers/opencon06-docs/index.html

A Note on Hardware Suppor t 145

Let the hardware vendors know what you think about their support (or lack
thereof) for your favorite operating system.
Some hardware vendors have been quite helpful, supplying both sample
units and programmer documentation. Others have been less forth-
coming and some downright hostile toward developers asking for sam-
ple units and/or documentation. Both kinds of vendors, and the ones
somewhere in between, need the right kind of encouragement. Write to
them, and tell them what you think they are doing right and what they
can do to improve. If, for example, a vendor has refused to make program-
ming documentation available, or available only under a nondisclosure
agreement (NDA), a reasoned, well-formulated letter from a potential
customer could be what makes the vendor start cooperating.

Help test the system, and check out the drivers for hardware you are
interested in.
If a driver exists or is in the process of being developed, the developers
are generally insatiable for reports on how their code behaves on other
people’s equipment. Reports that the system is working fine are always
appreciated, but bug reports with detailed descriptions of what goes wrong
are actually even more essential to creating and maintaining a high-quality
system.

Donate hardware or money.
The developers can always use hardware to develop on and money for
day-to-day needs. If you are in a position to donate money or hardware,
check out the projects’ donations or items-needed pages. For OpenBSD,
the URL for the donations page is http://www.openbsd.org/donations.html,3
while specific equipment needs are listed at http://www.openbsd.org/
want.html. Donating to OpenBSD is what is most likely to help PF
development along, but if you prefer to donate to FreeBSD, NetBSD,
or DragonFly BSD instead, you will be able to find information on how
to contribute financially to those projects at their respective websites.

Whatever your relationship with the BSDs and your hardware, I hope this
helps you make intelligent decisions about what to buy and how to interact
with both computers and people. And hopefully, the rest of the book will
also help you improve your interactions with computers and people.

3 If you are the kind of corporate entity that is more comfortable with donating to a corporation,
you can contact the OpenBSD foundation, a Canadian nonprofit corporation that was created
in 2007 for that specific purpose. See the OpenBSD Foundation website at http://www
.openbsdfoundation.org for more information.

http://www.openbsd.org/donations.html
http://www.openbsd.org/want.html
http://www.openbsd.org/want.html
http://www.openbsdfoundation.org/
http://www.openbsdfoundation.org/

I N D E X

Symbols
< > (angle brackets), 31
: (colon), 73, 77
! (logical NOT operator), 31, 74
() (parentheses), 21, 69

A
Acar, Can Erkin, 115
access points, 38–39
ACK packets, 92–93
adaptive.end value, 124
adaptive.start value, 124
address pools, 50–51
address tables, 125
addresses. See also IP addresses

CARP, 99, 100, 102
email, 85
inner, 3
MAC, 40
nonroutable, 3, 65–66
outer, 3
routable, 3, 26, 46–51

ADSL connections, 21
advbase parameter, 102, 103
advskew parameter, 101–102
ALTQ (ALTernate Queuing). See also

queues
allocation by percentage, 93
basic concepts, 88
directing traffic with, 87–97
example, 97
on FreeBSD, 90
handling unwanted traffic with,

96–97
integration with PF, 6

on NetBSD, 90–91
on OpenBSD, 89
patch, 90
percentage-wise bandwidth

allocation, 93
setting up, 89–91
undesired traffic, 97

ALTQ option, 90
ALTQ_NOPCC option, 90
anchors, 26, 27, 42
angle brackets (< >), 31
antispoof keyword, 19, 127, 128–129
application-level filtering, 3
ath0 interface, 37
attacks

antispoof keyword, 19, 127, 128–129
brute force, 68–71, 122
Denial of Service, 65, 112
scrub keyword, 19, 127–128
spoofed packets, 127–129
SYN-flood, 47
wireless networks, 35–40

authenticating gateway, 41–43
authentication

authpf, 40–44
shared-secret, 82
ssh, 41
user, 40–44

authoritative slave server, 46
authpf anchors, 42
authpf authentication, 40–44
authpf.rules file, 41–43

B
backup machines, 98, 102–103
backup tables, 53, 54

148 INDEX

bandwidth
actual, 95
allocating with ALTQ, 87–97
available, 95
class-based allocation, 93–94
interface, 95
labels, 114
network bottlenecks and, 95
total, 91
usable, 91

basic setups. See also PF configurations
bridge, 61–64
gateway, 19–23
network, xvi
redundancy, 97

Beck, Bob, 80, 85
Berkeley Software Distribution

(BSD), 1–2, 136–137
clients, 40
license, 1–2
systems. See also FreeBSD; NetBSD;

OpenBSD
defined, xvi
DragonFly, xvi, 3
vs. Linux systems, xvi–xvii
PF compatibility and, xvi
resources, 135–140

best-effort services, 75
blacklisting spammers, 72–74, 79–82,

84–85
block all default, 42
block all rule, 48
block policies, 122
block-policy option, 122
boot-time system messages, 36
brconfig command, 61–62, 64
brconfig(8), 34
bridge rule set, 64–65
bridge(4) facility, 34
bridges

Ethernet, 61
firewalls implemented as, 61–64
on FreeBSD, 62–63
on NetBSD, 63–64
on OpenBSD, 61–62

bridging firewall, 61–64
broadband connections, 21
brute force attacks, 68–71, 122

BSD. See Berkeley Software
Distribution (BSD)

bsnmpd, 119
bulk SSH transfers, 93
bytes, 4

C
CARP. See Common Address Redun-

dancy Protocol (CARP)
CARP-based failover, 55
cbq option, 89, 93–94
Cho, Kenjiro, 87
class-based queues, 89, 93–94
clients

BSD, 40
FTP, 26, 27
on local network, 46–48
OpenBSD, 40

cloned pflog interfaces, 111
colon (:), 73, 77
Common Address Redundancy

Protocol (CARP), 97–105.
See also pfsync protocol.

addresses, 99, 100, 102
arp balancing, 101
backup machines, 98, 102–103
described, 97–98
FreeBSD users, 100
group, 101
high availability, 97
master machines, 98, 101–102
NetBSD users, 100
OpenBSD users, 100
redundant gateways, 98–100
security issues, 103–104
setting up, 100–103
traffic, 101, 103, 105

configuration file. See also /etc/pf.conf
file; /etc/rc.conf file

ftp-proxy, 25–26
included with system, 6
overview, 11–12
simple setup on FreeBSD, 9–10
simple setup on NetBSD, 10–11
simple setup on OpenBSD, 8–9
single, stand-alone machine, 11–12

INDEX 149

configurations. See basic setups;
PF configurations

connections
ADSL, 21
block policies, 122
broadband, 21
dial-up, 21
Internet, 21
monitoring, 115–119
new, 69, 70
PPP, 21
rate of, 69, 70
simultaneous, 69, 70
spamd, 110
ssh, 110
terminated (flushed), 69

control messages, 28
conversions

automating, xviii
from OtherProduct setups, xviii
from product rule sets, xviii

cookie hash, 55
Core Force product, 3
cron jobs, 32

D
database synchronization, 82
de Raadt, Theo, 2
debug option, 126
debugging. See also troubleshooting

considerations, 28–31
importance of log data, 119
options for, 126
rule sets, 131–133

default deny rule set, 13
default rule sets, 8, 9
De-Militarized Zone (DMZ)

in NAT environments, 49–50,
56–57

servers in, 49–50, 94–96
demotion counter, 102
Denial of Service (DoS) attacks,

65, 112
devices

CARP, 100
cloneable, 111
hardware, 125
pflog, 108, 113

pfsync, 100
pseudo-devices, 21
wireless, 34, 36

dhclient command, 40
dhcpd, 32, 38
dial-up connections, 21
dmesg command, 36
DMZ. See De-Militarized Zone (DMZ)
DNS (domain name service), 46, 84
DNS query, 15
DNS test, 15
Dobbelaar, Camiel, 26
domain name lookups, 110
domain name service (DNS), 46, 84
domain names, 14, 23
DoS (Denial of Service) attacks,

65, 112
DragonFly BSD, xvi, 3
drop value, 122

E
email. See also mail servers; spam

as basic service, 71, 74
as best-effort service, 75–76
delay in sending, 83
harvesting addresses, 85
RFC 2821 standard, 75–76
sending outside local network,

47–48
SMTP, 71, 75, 85
tracking, 77–78

encryption
data transfer, 24
link-level, 34
web traffic, 54, 56
WEP, 35, 37, 40
WPA, 35

Engen, Vegard, 43
errors. See also troubleshooting

correcting, 14
logic, 131–132
in rule sets, 14, 131–132
syntax, 8, 14
temporary, 75

ESP protocol traffic, 39
/etc/authpf/authpf.conf file, 41
/etc/defaults/rc.conf file, xvii
/etc/inetd.conf entry, 25

150 INDEX

/etc/pf.conf file
configuring access point as

gateway, 38
creating authenticating gateway,

41–43
described, xvii
editing with pfctl, 7
ftp-proxy, 25–26
global settings, 122–127
included with system, 6
simple setup on FreeBSD, 9–10
simple setup on NetBSD, 10–11
simple setup on OpenBSD, 8–9
single, stand-alone machine, 11–12

/etc/rc.conf file, xvii, 8–10, 27, 76
/etc/rc.conf.local file, xvii
/etc/syslog.conf file, 113
Ethernet bridge, 61
Ethernet interface, 21, 91
expire keyword, 71
expiretable utility, 71
expiring table entries, 70–71
explicit blocking, 65

F
failover, 55, 97–105
FAQs, xvi–xviii
Fatal: timeout before authentication

message, 69
fdescfs code, 76
FIFO (First In, First Out), 88, 92
file field, 73
file transfer, 24
File Transfer Protocol (FTP), 24–27

clients, 26, 27
described, 24
ftp-proxy (new), 26–27
ftp-proxy (old), 24, 25–26
ftpsesame daemon, 26
NAT mode, 25–26
pftpx program, 26
routable addresses, 26
security challenges of, 24
servers, 26, 27
TCP and, 24

fileservers, 46–51
filtering. See also PF (Packet Filter)

application-level, 3
ICMP, 28, 29

on interface groups, 59–60
on IPsec encapsulation interface, 39
on loopback interface, 123
MAC addresses, 34, 40
with traceroute command, 29

filtering rules. See rules
filtering services, 45–51
fingerprinting, OS, 97
firewalls

bridging, 61–64
described, 3, 17
NAT and, 4
nonroutable addresses, 65–66

First In, First Out (FIFO), 88, 92
floating state policy, 123
flush global option, 69
frag value, 124
fragmentation, 30, 124, 128
FreeBSD. See also Berkeley Software

Distribution (BSD), systems
adoption of PF, 2–3
ALTQ on, 90
basic bridge setup on, 62–63
CARP setup, 100
enabling/disabling PF, 10
etc/rc.conf file, 9–10
greylisting and, 76
PF compatibility and, xvi
PF-related settings in, 9–10
resources, 138
simple PF setup, 9–10
versions, xiii, 9

FTP. See File Transfer Protocol (FTP)
ftp-proxy program, 24, 25–27
ftpsesame daemon, 26

G
gateways, 17–23

authenticating, 41–43
considerations, 18–19
pitfalls, 18–19
redundant, 98–100
setting up, 19–23
specific rules for, 18–19
specifying local network, 19
stopping probes at, 29
to keyword and, 18
wireless networks, 36–42

GENERIC kernel, 61, 89–90, 100

INDEX 151

GENERIC.MP kernel, 89, 100
global settings, 122–127
global state policy, 123
greyexp value, 77
greylisting, 75–85

FreeBSD and, 76
incompatible sites, 83–84
mode, 76–77, 80, 84
overview, 75–76
resources, 139
turning off, 74

greytrapping, 78, 80–83, 85
groups

CARP, 101
failover, 103
interface, 59–60
redundancy, 103
user, 137

GUI tools, xvii, xviii
Gustafsson, Henrik, 71

H
hacking attacks

antispoof keyword, 19, 127, 128–129
brute force, 68–71, 122
Denial of Service, 65, 112
scrub keyword, 19, 127–128
spoofed packets, 127–129
SYN-flood, 47
wireless networks, 35–40

haiku, PF, xix
hardware

OpenBSD support for, 141–145
wireless networks, 35–36, 142–144

hardware-support developers, 144
Harris, Evan, 75
Hartmeier, Daniel, 1, 2, 91, 116, 136
header options, 55
HFSC (Hierarchical Fair Service

Curve) queues, 89, 90
hfsc option, 89
high availability (CARP), 97
host names, 12, 14, 23
hostname.if configuration file, 40, 59
hostname.pflog1 file, 77, 111
hoststatectl program, 53–54
hoststated, load balancing with, 51–65
HTTP relay, 54–55
HTTPS relay, 54–55

I
ICMP (Internet Control Message

Protocol), 28–31
ICMP ECHO requests, 28, 30
ICMP filtering, 28, 29
icmp queue, 94
ICMP traffic

bandwidth for, 94
blocking/filtering, 29
troubleshooting and, 28–31

IEEE 802.11 standard, 33–36
if-bound state policy, 123
if_bridge module, 62–63
ifconfig commands

CARP setup, 100–103
displaying interface status, 20
wireless device setup, 34
wireless network setup, 36–40

IKE/ISAKMP (IPsec with udp key
exchange), 39

in keyword, 18–19
inner addresses, 3
interface bandwidth, 95
interface for PPPoE (PPP over

Ethernet), 21
interface groups, 59–60
Internet

commercialization of, 4
connections, 21
nonroutable addresses to, 65
overview, 4
resources on, 135–140

Internet Control Message Protocol
(ICMP), 28–31

Internet Protocol, version 6. See IPv6
Internet protocols, 4, 6, 28, 30
interval value, 124
IP addresses. See also addresses

CARP and, 100
forwarding, 19–20
NAT and, 5
physical vs. virtual, 100
resolving, 14
rule sets and, 23
shortage of, 5
spoofed, 128–129

IP masquerade. See Network Address-
able Translation (NAT)

ipconfig -a command, 20

152 INDEX

IPFilter, 1–2
IPsec, 21, 39, 104
IPsec with udp key exchange

(IKE/ISAKMP), 39
IPv6 (Internet Protocol, version 6),

4–5, 16
packets, 16
traffic, 19–20

K
KAME project, 5
keep state rule, 11
kern.debug log level, 126
kernel

enabling PF in, 10–11
GENERIC, 61, 89–90, 100
GENERIC.MP, 89, 100
memory, 125
messages, 36

key exchange, 39
Knight, Joel, 119

L
labels, 113–115
Layer 7 proxying, 54
license audit, 2
limit option, 124, 125
Linux systems

vs. BSD systems, xvi–xvii
migrating to BSD from, xvi
PF and, xvi–xvii
traceroute command, 29

lists, 13–15, 115
load balancing, 51–65

via hostated redirection, 51–65
via HTTPS relay, 54–55
NAT and, 51, 57
redirection and, 50–51, 57
via round robin redirection, 50–51

load sharing, 50–51
local networks

clients in, 46–48
redirection and, 58–59
restricting services to, 46–48
security issues, 48
sending email outside, 47–48
servers in, 46–48
specifying for gateways, 19

log all option, 110–111
log files

debugging and, 119
/etc/syslog.conf file, 113
hostname.pflog1, 77, 111
kern.debug log level, 126
labels, 113–115
rule data in, 108–115
rule numbers in, 109
spamd, 74, 77–78
tcpdump tool for, 108–111, 132–133
/var/log/messages file, 36
/var/log/pflog file, 108

log keyword, 108, 111
logger, 112–113
logging, 107–119

all packets, 110–111
basics, 108–115
example of, 108–109
live display of traffic, 109–110
local, 112–113
log all option, 110–111
log keyword, 108, 111
monitoring tools, 115–119
options for, 107
periodic data, 115
pfflowd tool, 118
pflog interfaces, 77–78, 111
pflogd, 108, 112
pfstat utility, 116–118
pftop tool, 115–116
remote, 112–113
rule statistics, 113–115
SNMP tools, 118–119
syslog, 112–113
tools for, 115–119
verbose, 14, 74, 78–79, 133

logic errors, 131–132
logical NOT operator (!), 31, 74
logs. See log files
loopback interface, 123

M
MAC address filtering, 34, 40
machines

backup, 98, 102–103
load sharing, 50–51
master, 98, 101–102
stand-alone, 11–15

INDEX 153

macros, 13–15
assigning logical names to network

interfaces, 20–21
described, 14
as interface groups, 60
rule set, 13–15, 21, 23, 115

mail servers, 46–51, 56–59. See also
email

man 8 pfctl command, 16
man pages (manual pages), xviii, 134
Management Information Base (MIB),

118–119
manual pages (man pages), xviii, 134
master machines, 98, 101–102
master/slave servers, 46
Maximum Transmission Unit (MTU),

30–31
max-src-conn option, 69, 70
max-src-conn-rate option, 69
memory

kernel, 125
physical, 125
pools, 124–125
rule sets, 109
tables, 31, 32, 70

method field, 73
MIB (Management Information Base),

118–119
Microsoft Windows systems, 3, 30
migrating

to BSD from Linux, xvi
from previous ftp-proxy version, 27
rules, 104

Miller, Damien, 118
monitoring tools, 115–119
msg field, 73
MTU (Maximum Transmission Unit),

30–31
MX use, 83

N
-n option, 14, 109
name resolution, 14, 15, 42, 44
name service, 23
nameservers, 46, 48
NAT. See Network Addressable Trans-

lation (NAT)
nat rules, 21, 42

NAT Traversal (NAT-T), 39
NetBSD. See also Berkeley Software

Distribution (BSD), systems
ALTQ on, 90–91
basic bridge setup on, 63–64
CARP setup, 100
enabling PF, 10–11
minimal setup, 10
PF compatibility and, xvi
pfsync not supported on, 100, 103
resources, 138
simple PF setup, 10–11
version, xiii

NetFlow
data model, 118
tools, 118

net-snmp package, 118–119
Network Addressable Translation

(NAT), 17–23
DMZ setup in, 49–50, 56–57
firewalls and, 4
ftp-proxy program, 25–27
IP addresses and, 5
load balancing and, 51, 57
overview, 3–6
packet filtering and, 6
redirection, 57
servers in local network, 56–59
single NATed network, 57–59

network flow, 118
network hygiene, 127
network interfaces, 20–21
Network Time Protocol (NTP), 23
network traffic. See also traffic

block policies, 122
cleaning up, 127–129
forwarding with sysctl command,

19–20
ICMP, 28–31, 94
interactive, 93
live display of, 109–110
monitoring, 115–119
normalization, 128
overload, 96–97
spoofed, 128–129
streamlining, 127–129
TCP, 133
UDP, 14

154 INDEX

networks
advanced techniques, 45–66
books about, 138
bottlenecks, 95
DMZ, 49–50
filtering services, 45–51
local. See local networks
resources, 136–137, 138
routable addresses, 46–51
subnets, 59
traffic on. See network traffic
TCP/IP. See TCP/IP, networks

no rdr rule, 84
nodelay parameter, 55
no-df parameter, 128
nohup command, 113
nonroutable addresses, 3, 65–66
no-sync option, 105
NTP (Network Time Protocol), 23
nwid parameter, 37
nwkey parameter, 37

O
octets, 4
on keyword, 18–19
OpenBSD. See also Berkeley Software

Distribution (BSD), systems
ALTQ on, 89
basic bridge setup on, 61–62
CARP setup, 100
clients, 40
enabling PF, 8–9
hardware support, 141–145
license audit, 2
PF compatibility and, xvi
resources, 135–140
simple PF setup, 8–9
versions, xiii, xvi, 6

OpenBSD Foundation, 140
openbsd-misc list, 30
operating system (OS) fingerprint, 97
optimization

PF performance, 92–93, 119,
124, 136

rule sets, 126–127
optimization option, 127
OS fingerprinting, 97
out keyword, 18–19

outer addresses, 3
out-of-order MX use, 83
overload <bruteforce> option, 69
overload mechanism, 70
overload rules, 70, 96
overload traffic, 96–97
overloaded tables, 69, 70

P
Packet Filter. See PF (Packet Filter)
packet normalization, 128
packet tagging, 60
packet-filtering gateways. See gateways
packets

ACK, 92–93
fragmented, 30, 124, 128
IPv6, 16
matching to state tables, 123
optimal size of, 30
spoofed, 128–129
tagging, 60
TCP, 92

parentheses (()), 21, 69
pass rules, 12, 19, 22, 94, 114
passtime value, 77
path filter configuration option, 55
path MTU discovery, 30–31
PCI cards, 36
performance, 92–93, 119, 124, 136
periodic data, 115
persist keyword, 31
PF (Packet Filter)

code, 2, 6, 9, 26
creation of, 1
current state of, 6
disabling, 10, 131
early performance benchmark, 2
enabling at startup, 8–9
enabling for debugging, 131
enabling in kernel configuration,

10–11
enabling on FreeBSD, 10
enabling on NetBSD, 10–11
enabling on OpenBSD, 8–9
FAQs, xvi–xviii
gateways. See gateways
haiku, xix
history, 1

INDEX 155

Linux and, xvi–xvii
logs. See log files; logging
man pages, xviii, 134
NAT and, 6
overview, 1–3
performance, 92–93, 119, 124, 136
processing

block policies, 122
excluding specific interfaces

from, 123
matching packets to state

table, 123
timeouts, 69, 123–124, 127

resources for, xviii
rule sets. See rule sets
statistics about. See statistics
web interfaces for, 7

PF configurations, 121–134. See also
basic setups

ALTQ setup on FreeBSD, 90
ALTQ setup on NetBSD, 90–91
ALTQ setup on OpenBSD, 89
becoming familiar with, 133–134
bridge setup, 61–64
CARP setup, 100–103
converting OtherProduct

setups to, xviii
customizing, 121–127
debugging rule sets, 131–133
defaults, 9, 12, 122
global settings, 122–127
IP forwarding, 19–20
maintaining control of, 133–134
optimizing performance, 92–93,

119, 124, 136
sample, 137–138
simple setup on FreeBSD, 9–10
simple setup on NetBSD, 10–11
simple setup on OpenBSD, 8–9
streamlining traffic, 127–129
testing, 12, 129–131

pf.conf file. See /etc/pf.conf file
pfctl -s all command, 16
pfctl -s info command, 15–16
pfctl tool

command lines, 9
described, 7, 16
displaying statistics with, 15–16
tidying tables with, 70–71

pfcts -vs rules command, 114
pfcts -vsl command, 114–115
pfctl -vszl command, 115
pfflowd tool, 118
pflog devices, 108, 113
pflog interfaces, 77–78, 111
pflogd logging daemon, 108, 112
pfsense configuration, xvii
pfstat utility, 116–118
pfsync protocol, 97–105, 118. See also

Common Address Redun-
dancy Protocol (CARP)

pftop tool, 115–116
pftpx program, 26
ping command, 29
ping of death bug, 28
policies, 122, 123, 127
Postma, Peter, 90
PPPoE (PPP over Ethernet), 21
priority, 88–89
priority-based queues, 88–89, 91–92
priq option, 88–89, 91–92
privileges, 8, 59
probes, 29
problems. See troubleshooting
proxies

FTP, 24–27
Layer 7, 54
SYN, 47, 56

Q
queue schedulers, 88–89
queues, 87–105. See also ALTQ

(ALTernate Queuing)
based on OS fingerprint, 97
class-based, 89, 93–94
described, 88
disciplines, 88–89
DMZ servers, 94–96
HFSC, 89, 90
icmp, 94
options, 88–89
overloading, 96–97
priority-based, 88–89, 91–92
subqueues, 88, 89, 92, 93

quick keyword, 22
quick rules, 22–23, 127, 132

156 INDEX

R
Raadt, Theo de, 2
Random Early Detection (RED), 90
Ranum, Marcus, 13
rc scripts, 9–11, 20
rc system, 8
rdr rule, 25
RED (Random Early Detection), 90
redirection

address pools, 50–51
hoststated, 51–65
load balancing and, 50–51, 57
local networks and, 58–59
NAT, 57
round robin, 50–51
web traffic, 43–44

redundancy, 97–105
Reed, Darren, 1–2
relay definition, 55
resources, 135–140
return value, 122
reverse engineering, 144
RFC 1067, 118
RFC 1631, 5
RFC 1918, 5
RFC 2018, 55
RFC 2821, 75–76
round-robin option, 51
routable addresses, 3, 26, 46–51
rule editor, xvii, 7
rule numbers, 109, 132
rule sets

access points, 38–39
blocking incoming/outgoing

traffic, 13–15
CARP traffic, 104–105
debugging, 131–133
default, 8, 9
default deny, 13
lists, 13–15, 115
loading, 14
logic errors, 131–132
macros, 13–15, 21, 23, 115
managing, xvi
minimal, 12, 110
optimizing, 126–127
pfsync traffic, 98, 104–105
putting together, 104
readability of, 19

restrictive, 13–15
sample, xvii
services by name in, 13
simple, 11–12
single, stand-alone machine, 11–15
syntax errors in, 14
testing, 12, 129–131

rules
editing, xvii, 7
evaluation order, 11, 22, 127
flushing, 14
labels, 113–115
log data for. See log files; logging
merging into tables, 127
specific rules for gateways, 18–19
statistics for, 113–115
subsets, 127
tracking statistics for, 113–115

ruleset-optimization option, 126–127

S
scp tool, 24
SCP transfers, 93–94
scrub keyword, 19, 127–128
Secure Shell protocol (SSH), 39,

68–70
traffic, 93
transfers, 93

security
attacks on. See attacks
CARP and, 103–104
FTP and, 24
IPv6 and, 5
local networks and, 48
NAT and, 6
network services, 16
wireless networks, 34, 40–44

servers
in DMZ, 49–50, 94–96
fileservers, 46–51
FTP, 26, 27
load balancing, 50–51
on local network, 46–48
mail servers, 46–51, 56–59
master/slave, 46
nameservers, 46, 48
queuing for, 94–96
SMTP, 83–84
webservers, 46–51, 56–59

INDEX 157

services
best-effort, 75
filtering, 45–51
names, 13, 23
restricting to local access, 46–48
in rule sets, 13
TCP, 15

setups. See basic setups; PF
configurations

sftp tool, 24
shared-secret authentication, 82
Simple Network Management Proto-

col (SNMP), 118–119
email, 71, 75, 85
MIBs, 118–119
return codes, 75
servers, 83–84
tools, 118–119

skip option, 123
slave servers, 46
SNMP. See Simple Network Manage-

ment Protocol (SNMP)
source-tracking data, 124
spam. See also email

blacklists, 72–74, 79–82, 84–85
greylisting, 75–85
greytrapping, 78, 80–83, 85
harvesting email addresses, 85
overview, 71
SMTP email and, 71, 75, 85
whitelists, 73, 77, 78, 83–84

SpamAssassin, 72
spamd connections, 110
spamd program (OpenBSD), 71–85

basic configuration file, 73–74
blacklists, 72–73
database synchronization, 82
example tasks, 78–83
greylists. See greylisting
greytrapping, 78, 80–83, 85
log files, 74, 77–78
manual intervention, 78
out-of-order MX use, 83
overview/conclusions, 71–72,

84–85
resources, 139
routine operations, 78–83
synchronization, 82, 110

tables, 71
tarpitting, 72
traplists, 81–82, 85

spamd program (SpamAssassin), 72
spamdb

database, 78
program, 74, 78, 80–82

spamd.conf file, 73–74, 81
spamd-setup program, 73–74
spamlogd program, 77–78
SPF records, 84
spoofed packets, 128–129
src.track value, 124
SSH. See Secure Shell protocol (SSH)
ssh authentication, 41
ssh connections, 110
ssh sessions, 41
ssl options, 55
state information, 14
state tables

described, 11–12
matching packets to, 123
memory pool size, 125
statistics, 117
synchronization, 98, 103–104, 105
timeout options, 123, 127
unmatched entries, 15

state-policy option, 123
state-tracking options, 69, 96–97
statistics

displaying with pfctl, 15–16
graphing with pfstat, 116–118
monitoring with pftop, 115–116

sticky-address option, 51
stuttering, 72
subnet traffic, 59
subnets, 59
sudo, 8–15
SYN packets, 97
SYN proxying, 47, 56
sync listener, 82
sync target, 82
synchronization

spamd, 82, 110
state tables, 98, 103–104, 105
time, 23, 110

SYN-flood attacks, 47
synproxy flag, 56
synproxy state option, 47

158 INDEX

sysctl command
access point setup, 38
bridge setup, 63
CARP setup, 100–101
forwarding network traffic, 19–20

syslog system log facility, 112–113
system fingerprinting, 97

T
tables, 31–32

address, 125
backup, 53, 54
described, 31
expired entries, 70–71
initializing, 31
loading from files, 31
memory, 31, 32, 70
merging rules into, 127
names, 31
overloaded, 69, 70
removing entries, 70–71
replacing contents of, 32
size of, 70
state. See state tables

tag keyword, 60
tagged keyword, 60, 62
tagging packets, 60
tags, 60, 62
tail -f command, 36
tarpitting, 72
tcp options, 55
TCP packets, 92
TCP services, 15
TCP traffic, 133
tcpdump tool, 108–111, 132–133

TCP/IP
networks

bandwidth overhead, 91
FTP and, 24
wireless networks, 36–37

stacks, 16, 88
testing

PF configurations, 129–131
rule sets, 12, 129–131

text editors, 7
time synchronization, 23, 110
timeout option, 123–124
timeouts, 69, 123–124, 127
to keyword, 18
ToS (type of service) field, 92
ToS Delay bit, 92
ToS flag, 93
traceroute command, 29–30
TRACERT.EXE program, 30
traffic. See also network traffic

block policies, 122
CARP, 101, 103, 105
ESP, 39
ICMP, 28–31, 94
interactive, 93
IPv6, 19–20
live display of, 109–110
overload, 96–97
pfsync, 98, 104–105
spoofed, 128–129
SSH, 93
subnet, 59
TCP, 133
UDP, 14
web, 43–44

traplists, 81–82, 85. See also spam
trapped entries, 82

INDEX 159

troubleshooting. See also debugging;
errors

considerations, 28–31
ICMP traffic and, 28–31
path MTU discovery, 28, 30–31
ping command, 29
traceroute command, 29–30

-ttt option, 109
TXT records, 84
type of service (ToS) field, 92

U
UDP traffic, 14
Unix systems, 29–30, 68, 107, 115
url hash, 55
user groups, 137
users

authentication, 40–44
FreeBSD, 100
local networks, 93
NetBSD, 100
OpenBSD, 100

V
-v option, 14, 74, 78–79
/var/log/messages file, 36
/var/log/pflog file, 108
/var/run/dmesg.boot file, 36
verbose logging, 14, 74, 78–79, 133
Virtual Private Networks (VPNs), 39
-vv flag, 132

W
web interfaces, PF, 7
web traffic, 43–44

webservers, 46–51, 56–59
websites

book-related, 139–140
incompatible with greylisting,

83–84
resources on, 135–140

WEP (Wired Equivalent Privacy), 35,
37, 40

key, 37
whiteexp value, 77
whitelists, 73, 77, 78, 83–84
whitelist.txt file, 84
Wi-Fi Net News site, 34
Wi-Fi Protected Access (WPA), 35
Windows systems, 3, 30
Wired Equivalent Privacy (WEP), 35,

37, 40
key, 37

wireless access points, 38–39
wireless gateways, 41
wireless networks, 33–44

access point, 38–39
attacks on, 35–40
case study, 142–143
configuring for TCP/IP, 36–37
gateways for, 36–42
hardware for, 35–36, 142–144
IEEE 802.11 standard, 33–36
protecting with authpf, 40–44
resources, 139
security, 34, 40–44
setting up simple network, 36–40
VPNs, 39
WEP encryption, 35, 37, 40
WPA encryption, 35

WPA (Wi-Fi Protected Access), 35

U P D A T E S

Visit http://www.nostarch.com/pf.htm for updates, errata, and other information.

C O L O P H O N

The fonts used in The Book of PF are New Baskerville, Futura, and Dogma.
The book was printed and bound at Malloy Incorporated in Ann Arbor,

Michigan. The paper is Glatfelter Thor 60# Antique, which is made from
15 percent postconsumer content. The book uses a RepKover binding, which
allows it to lay flat when open.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN:
OPERATING SYSTEM

S/UNIX

$29.95 ($32.95 CDN)

B U I L D T H E
N E T W O R K Y O U
N E E D W I T H P F

B U I L D T H E
N E T W O R K Y O U
N E E D W I T H P F

 “ I LAY F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

 Printed on recycled paper

OpenBSD’s stateful packet filter, PF, offers an amazing
feature set and support across the major BSD platforms.
Like most firewall software though, unlocking PF’s full
potential takes a good teacher.

Peter N.M. Hansteen’s PF website and conference
tutorials have helped thousands of users build the
networks they need using PF. The Book of PF is the
product of Hansteen’s knowledge and experience,
teaching good practices as well as bare facts and
software options. Throughout the book, Hansteen
emphasizes the importance of staying in control by
having a written network specification, using macros
to make rule sets more readable, and performing rigid
testing when loading in new rules.

Today’s system administrators face increasing challenges
in the quest for network quality, and The Book of PF can
help by demystifying the tools of modern *BSD network
defense. But, perhaps more importantly, because we
know you like to tinker, The Book of PF tackles a broad
range of topics that will stimulate your mind and pad
your resume, including how to:

• Create rule sets for all kinds of network traffic,
whether it is crossing a simple home LAN, hiding
behind NAT, traversing DMZs, or spanning bridges

• Use PF to create a wireless access point, and lock it
down tight with authpf and special access restrictions

• Maximize availability by using redirection rules for
load balancing and CARP for failover

• Use tables for proactive defense against would-be
attackers and spammers

• Set up queues and traffic shaping with ALTQ, so your
network stays responsive

• Master your logs with monitoring and visualization,
because you can never be too paranoid

The Book of PF is written for BSD enthusiasts and network
admins at any level of expertise. With more and more
services placing high demands on bandwidth and
increasing hostility coming from the Internet at large, you
can never be too skilled with PF.

A B O U T T H E A U T H O R

Peter N.M. Hansteen is a consultant, writer, and sys-
admin based in Bergen, Norway. A longtime Freenix
advocate, Hansteen is a frequent lecturer on FreeBSD
and OpenBSD topics. The Book of PF, Hansteen’s first
book, is an expanded follow-up to his very popular
online PF tutorial.

With a foreword by

B O B B E C K ,

Director of

the OpenBSD Foundation

P E T E R N . M . H A N S T E E N

T H E B O O K
O F P F

T H E B O O K
O F P F

A N O - N O N S E N S E G U I D E T O T H E

O P E N B S D F I R E W A L L

H
A

N
S

T
E

E
N

T
H

E
 B

O
O

K
 O

F
 P

F
T

H
E

 B
O

O
K

 O
F

 P
F

	The book of PF
	Foreword by Bob Beck
	Preface
	About the Book and Thanks
	If You Came from Elsewhere
	PF looks really cool. Can I run PF on my Linux machine?
	I know some Linux, but I need to learn some BSD. Any pointers?
	Can you recommend a GUI tool for managing my PF rule set?
	Is there a tool I can use to convert my OtherProduct ® setup to a PF configuration?
	Where can I find out more?

	A Little Encouragement: A PF Haiku

	1: What PF Is
	Packet Filter? Firewall? A Few Important Terms Explained
	Network Address Translation
	Why the Internet Lives on a Few White Lies
	Internet Protocol, Version 6 on the Far Horizon
	The Temporary Masquerade Solution Called NAT

	PF Today

	2: Let’s Get On With It
	Simplest Possible PF Setup on OpenBSD
	Simplest Possible PF Setup on FreeBSD
	Simplest Possible PF Setup on NetBSD
	First Rule Set -A Single, Stand-Alone Machine
	Slightly Stricter, with Lists and Macros
	Statistics from pfctl

	3: Into the Real World
	A Simple Gateway, NAT If You Need It
	Gateways and the Pitfalls of in, out, and on
	What Is Your Local Network, Anyway?
	Setting Up
	Testing Your Rule Set

	That Sad Old FTP Thing
	FTP Through NAT: ftp-proxy
	FTP, PF, and Routable Addresses: ftpsesame, pftpx, and ftp-proxy
	New-Style FTP: ftp-proxy

	Making Your Network Troubleshooting Friendly
	Then, Do We Let It All Through?
	The Easy Way Out: The Buck Stops Here
	Letting ping Through
	Helping traceroute
	Path MTU Discovery

	Tables Make Your Life Easier

	4: Wireless Networks Made Easy
	A Little IEEE 802.11 Background
	MAC Address Filtering
	WEP
	WPA
	Picking the Right Hardware for the Task

	Setting Up a Simple Wireless Network
	The Access Point’s PF Rule Set
	If Your Access Point Has Three or More Interfaces
	Handling IPsec, VPN Solutions
	The Client Side

	Guarding Your Wireless Network with authpf
	A Basic Authenticating Gateway
	Wide Open but Actually Shut

	5: Bigger or Trickier Networks
	When Others Need Something in Your Network: Filtering Services
	A Webserver and a Mail Server on the Inside-Routable Addresses
	Getting Load Balancing Right with hoststated
	A Webserver and a Mail Server on the Inside-The NAT Version

	Back to the Single NATed Network
	Filtering on Interface Groups

	The Power of Tags
	The Bridging Firewall
	Basic Bridge Setup on OpenBSD
	Basic Bridge Setup on FreeBSD
	Basic Bridge Setup on NetBSD
	The Bridge Rule Set

	Handling Nonroutable Addresses from Elsewhere

	6: Turning the Tables for Proactive Defense
	Turning Away the Brutes
	You May Not Need to Block All of Your Overloaders
	Tidying Your Tables with pfctl
	The Forerunner: expiretable

	Giving Spammers a Hard Time with spamd
	Remember, You Are Not Alone: Blacklisting
	Greylisting: My Admin Told Me Not to Talk to Strangers
	Some Highlights of Day-to-Day spamd Use
	Handling Sites That Do Not Play Well with Greylisting
	Conclusions from Our spamd Experience

	7: Queues, Shaping, and Redundancy
	Directing Traffic with ALTQ
	Basic ALTQ Concepts
	Queue Schedulers, aka Queue Disciplines
	Setting Up ALTQ
	Understanding Priority-Based Queues (priq)
	Class-Based Bandwidth Allocation for Small Networks (cbq)
	Queuing for Servers in a DMZ
	Using ALTQ to Handle Unwanted Traffic

	Redundancy and Failover: CARP and pfsync
	The Project Specification: A Redundant Pair of Gateways
	Setting Up CARP: Kernel Options, sysctl, and ifconfig Commands
	Keeping States Synced: Adding pfsync
	Putting Together a Rule Set

	8: Logging, Monitoring, and Statistics
	PF Logs: The Basics
	Logging All Packets: log (all)
	Logging to Several pflog Interfaces
	Logging to syslog, Local or Remote
	Tracking Statistics for Each Rule with Labels

	Some Additional Tools for PF Logs and Statistics
	Keeping an Eye on Things with pftop
	Graphing Your Traffic with pfstat
	Collecting NetFlow Data with pfflowd
	SNMP Tools and PF-Related SNMP MIBs

	Remember, Useful Log Data Is the Basis for Effective Debugging

	9: Getting Your Setup Just Right
	The Things You Can Tweak and What You Probably Should Leave Alone
	block-policy
	skip
	state-policy
	timeout
	limit
	debug
	ruleset-optimization
	optimization

	Cleaning Up Your Traffic: scrub and antispoof
	scrub
	antispoof

	Testing Your Setup
	Debugging Your Rule Set
	Know Your Network, Stay in Control

	A: Resources
	General Networking and BSD Resources on the Internet
	Sample Configurations and Related Musings
	PF on Other BSD Systems
	BSD and Networking Books
	Wireless Networking Resources
	spamd and Greylisting-Related Resources
	Book-Related Web Resources
	If You Enjoyed This Book, Buy OpenBSD CDs and Donate!

	B: A Note on Hardware Support
	A Case in Point: The Story of a Small Wireless Network
	Getting the Right Hardware
	Issues Facing Hardware-Support Developers
	How to Help the Hardware-Support Efforts

	Index
	Updates

