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PREFACE

When thinking about information societies, which rely on networks that func-
tion with the internet at their core, we can see how many aspects of our lives
have become more convenient. In addition to now being able to search for
information on the web and communicate via email, other network services
like online shopping and internet banking have become widespread.

While the age of networking comes with many benefits, we also encounter
phrases like, “safe and secure,” “information security,” “protection of personal
information,” “encryption,” and so on that have a somewhat unpleasant ring
to them. These words are everywhere—not a day goes by without seeing them.
Why is such talk so prevalent?

Networks require a variety of information to be exchanged, and this
includes information that could cause problems when in the hands of others
and information that we wish to keep secret. We must take measures to protect
information in order to prevent important data such as our credit card numbers,
bank account numbers, medical histories, loan debts, and email addresses from
easily leaking to outsiders. This information can be abused, and as such there
is no doubt that protecting information is the most important issue that faces
us in the age of networking. In our connected society, where there are so many
unreliable factors, the ability to distinguish authentic information and provide
protection from dangers such as fraud, forgery, revision, and interception is
crucial. Cryptography is the core technology we use to create network services
that the public can use safely.

Cryptographic technology has evolved rapidly in recent years. It is no lon-
ger just the domain of information security specialists, and is now necessary
knowledge for the users themselves, who up until now have used convenient
network services without a thought.

So how then does cryptography work? How does it actually provide infor-
mation security and protect personal information?

Using manga, this book explains how cryptography works and what it does.
The complex math is broken down into friendly explanations. We've done our
best to make this an effortless learning experience where you can enjoy the
story. Of course, there are also ciphertexts worked into the story, so do your
best to decipher them while having fun. By the time you've finished reading
this book, you’ll no doubt have a thorough understanding of the fundamentals
of cryptography and security.

Lastly, we’'d like to express our most sincere gratitude to those who helped
us publish this book, first to the folks at Ohmsha, Ltd. and also to Mr. Idero
Hinoki who provided the illustrations.

MASAAKI MITANI AND SHINICHI SATO
APRIL, 2007
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A CERTAIN CITY IN A CERTAIN
PREFECTURE, 78TH PRECINCT

MEGURO

BIG BROTHER, BUY
IT FOR MEEEE!

NO WAY! A HIGH
SCHOOL GIRL
DOESN'T NEED A
COMPUTER THAT
FANCY!

) BUT I WANT TO
gcd@' USE IT TO STUDY
= MATHEMATICS!




HELLO, 78TH
PRECINCT.

AN ABACUS WILL
DO JUST FINE
FOR THAT!

YOUTWO oy
G0 AROUND TO /N
HAT EXIT.

PROLOGUE 3



HMMM, SO A
MASTERPIECE—
WHICH WAS CLOSELY
GUARDED—JUST
SUDDENLY VANISHED?

WAS THE

EVEN STANDING
GUARD?

THE SMILING MADONNA 1S
VALUED AT 300 MILLION YEN!

SECURITY GUARD £ \\

2

1 SEE, I SEE.

RIVER! RIGHT ON!

<
WAS YOUR SECURITY A ET,
AIRTIGHT? CHANGE GUARD
SHIFTS...

WORDS,

4 PROLOGUE

WE MADE SURE TO
EXCHANGE CODE




T

THE LOCATION OF THE
PAINTING DEPOSITORY 15
PROTECTED BY A CIPHER
TO KEEP UNAUTHORIZED
PEOPLE FROM FINDING IT.

THEDETAPOSITATORYIS
WATAREHOTAUSEFITAVE

@

)

N,
\
b

)

WHO ARE

e
/ = A

ALL RIGHT! NO
WAY AN OUTSIDER
COULD HAVE
FIGURED THAT OUT!

YOU CALL THAT
SECURITY?

RIO YONEDA, FROM
THE NIGHTLY NEWS!




50 THE PAPER'S
ALREADY GOTTEN
WIND OF THE
INCIDENT, EH?

YOUR CODE WORDS AND
ENCRYPTION METHODS
ARE JOKES!

WHAT'S WRONG
WITH OUR
SECURITY?!

THE PAINTING
DEPOSITORY 15
WAREHOUSE 5,
RIGHT?

SINCE THERE'S A PICTURE OF A
JAPANESE RACCOON, WHICH 15
CALLED A TANUK|, THE MESSAGE
CAN BE READ BY REMOVING EACH
INSTANCE OF THE WORD'S FIRST
SYLLABLE—TA*

SQUEAK
SQRUEAK

. _ARE YOU THE
PERPETRATOR?!

Hov'é/Ngal ;/ou ANYONE COULD

FIGURE IT OUT!

* THE TANUKI CIPHER 1S A COMMON WORDPLAY GAME IN JAPAN.
THE CIPHER |15 BASED ON A PUN OF THE WORD TANUKI, WHICH
CAN MEAN "RACCOON” OR "OMIT THE TA’S.”



INSPECTOR MEGURO!
FORGET ABOUT HER.
FIND THE REAL THIEF—
AND QUICK!

THE PERP..
THE PERP IS...

THE PERP IS
RIGHT THERE!

/
REALLY? YOU'RE /\

UNDER ARREST! a <
o &

'«.@30

PROLOGUE 7



ﬂO—ON THE

WALL, BEHIND
THE CURATOR!

THERE WASN'T

APAINTNG |
HERE BEFORE, |*
BUT...

8 PROLOGUE



I DON'T LOOK AT THE

PAINTING—CHECK OUT
ITS PLAQUE!

YOU'VE BEEN VISITED
BY MS. CYPHER.
I'VE TAKEN THE PAINTING.
NEXT I'LL TAKE VDVIRCU.
GOOD NIGHT.

IT SEEMS STRANGE
TO SAY “GOOD NIGHT”
GIVEN THAT IT'S
DAYTIME, EH?

1 WONDER WHAT I WAS JUsT
THIS MESSAGE WONDERING

AN

PROLOGUE 4



I'VE TAKEN THE PAINTING.
NEXT I'LL TAKE VDVIRCU.

I
DON'T KNOW
ANY FOREIGN
LANGUAGES,
50...

VDVIRCU—WHAT'S THAT?
IS THAT ENGLISH?

IT'S A CIPHERTEXT!
A CIPHERTEXT TELLING

US WHAT WILL BE
STOLEN NEXT!

UNLIKE WITH
THE MUSEUM'S
CIPHERTEXT, IM
NOT FINDING ANY
MEANINGFUL WORDS
BY OMITTING
LETTERS...

<5

VDVIRCU

IN THAT CASE, LET'S
STUDY CRYPTOGRAPHY
AND TAKE DOWN
MS. CYPHER!

BUT THIS ISN'T SOME SPY
NOVEL. IS CRYPTOGRAPHY
REALLY THAT UsEFUL?




WHAT ARE YOU TALKING
ABOUT? THIS |15 THE AGE
OF CRYPTOGRAPHY!

LOOK AT ALL THE
THINGS WE USE
CRYPTOGRAPHY
FOR!

Using a password to verify a
person is who they say they are

Encrypting and certifying
b IS electronic transactions

Guaranteeing a document
hasn’t been tampered with

)=

Encrypting emails
(PGP: pretty good privacy)

In the computer age, cryptography has become essential to protecting
against the falsification, destruction, and interception of information.

WHA—WHAT
. 15 THIS?

BIG BROTHER,
YOU'VE SHOPPED ON
THE INTERNET BEFORE,

RIGHT?

PROLOGUE 11



DIDN'T HAVE
CRYPTOGRAPHY,
SOMEONE COULD
INTERCEPT AND TAMPER
WITH YOUR
MESSAGES...

1 LOVE YOU, ALICE!

Nefarious eavesdropper
intercepting messages

"" NAAY
1 SEE! 50, IT'S BETTER

TO SEND MAIL VIA
POSTAL SERVICE THAN
BY COMPUTER.

THAT'S NOT IT AT ALL!

12 PROLOGUE



WE HAVE SOMETHING —
THAT PROTECTS — |
AGAINST THOSE e
DANGERS... =
e~ |
CRYPTOGRAPHY! e
\
o

AHHH! I CAN'T TAMPER
WITH IT!

Nefarious
eavesdropper

q Decryption * Recipient*
I Ilove you! I | 7ye0zl4njw3 | Internet Ilove you!

Key k used for Key k used for
encryption decryption

* The recipient doesn’t have to be
a person. It could instead be a hard
disk, computer memory, or some
other type of storage media.

/oooH, 50

CRYPTOGRAPHY
REALLY 1S5 USEFUL!

SEET STARTING TO
GET INTERESTED?

PROLOGUE 13



LET'S STUDY CRYPTOGRAPHY!
TLL BE YOUR TEACHER!

ALL RIGHT! LET'S DO
OUR BEST TO CAPTURE
MS. CYPHER!

IN-INSPECTOR...

CURATOR, WE'LL

HAVE THIS INCIDENT ea“zﬁ‘énom
RESOLVED IN NO TIME. otk
JUST LEAVE IT TO ME! HANDCURFS! /

14 PROLOGUE



THE FOUNDATIONS OF
ENCRYPTION




ITOTmoOoOMm RNV ImETo—a

BIG BROTHER, IT'S

TIME TO GET YOU UP

A N TO SPEED ON THIS
/ CASE! LISTEN UP!

\ / P V/

50 WHAT'S A
REPORTER LIKE YOU
DOING HERE?

THIS THEFT 15 GONG
TO BE A BIG STORY!
I WANT TO COVER IT

THOROUGHLY. ¢




WHAT 15 A CIPHER?

A BIG STORY... THE >
PRESSURE 1S ON!

LET'S TALK
ABOUT WHY THIS
PHANTOM THIEF
CALLS HERSELF
“MS. CYPHER”.

THAT'S
SIMPLE!

PEOPLE'S TREASURES, SO

SHE STEALS OTHER

SHE GOES BY THE NAME
CYPHER!*

TALK ABOUT
SIMPLE...

NO, CIPHER! IT'S A WAY
OF WRITING A SECRET
MESSAGE.

* THE WORD FOR TREASURE |15 SAIFU IN
JAPANESE, WHICH SOUNDS LIKE C/PHER.

WHAT 15 A CIPHER? 17



MAYDAY = DISTRESS SIGNAL

ISEE A
CIPHER.

ROGER = TRANSMISSION RECEIVED

I KNOW S50ME
FAMOUS ONES,
LIKE WHEN A PILOT
SAYS “MAYDAY"
OR “ROGER.”

CLOSE BUT NOT
QUITE. THOSE
ARENT ACTUALLY
CIPHERS.

THESE KINDS OF WORDS ARE

ONLY USED AMONG PEERS IN A
PARTICULAR FIELD. YOU COULD
CALL THESE WORDS JARGON
OR PROCEDURE WORDS.

|| BUT WHAT WE'RE
STUDYING...

ARE CIPHERS!

THEY'RE ALSO
KNOWN AS
CODES,

18 CHAPTER 1 THE FOUNDATIONS OF ENCRYPTION



A nefarious eavesdropper
(listening in the middle)

The person
attempting to & 8
intercept the ¥
encrypted message
cannot read it.

m m
I Sender Hl Encryption _@— Decryption Hl Recipient I
Encryption Internet Decryption
key k used for key k used for
encryption decryption

The internet
records and
transmits data.

I 1 love you! | |7yeOzl4njw3 |

Non-encrypted Encrypted Plaintext message
message m message C m decrypted from
(plaintext message) (ciphertext) ciphertext C

LET'S LOOK AT HOW CIPHERS
WORK USING SHANNON'S
ENCRYPTION MODEL.

CLAUPE SHANNON (916-2001 WAS A
Z0TH-CENTURY ENGLISH MATHEMATICIAN
WHO CAME TO BE KNOWN AS THE
FATHER OF INFORMATION THEORY.
IN 1948, HE WROTE AN ARTICLE
ENTITLED “A MATHEMATICAL THEORY
OF COMMUNICATION” IN WHICH HE
COINED THE TERM B/T AND DEVELOPED
SEVERAL CONCEPTS KEY TO
CRYPTOGRAPHY.

WHAT 15 A CIPHER? 19



SHANNON'S ENCRYPTION MODEL

Here’s what the process looks like, broken down into steps.
You start with a plaintext (m), which is just an unencrypted, normal

message.
Plaintext m =

You end up with ciphertext (C), which is the encrypted message.

Ciphertext C = | 7ye0zl4njw3

Encryption is the process that transforms the plaintext to a ciphertext:

Plaintext m Ciphertext C
E,

«
| Ilove you! |—>|7yeOzl4njw3|

where E, is encryption using an encryption key k.
Decryption is the process that restores the plaintext from a ciphertext:

Ciphertext C Plaintext m
D,

e
7yeOzl4njw3|—>| I love you! |

where D, is decryption using a decryption key k.

WHY DO YOU 1T NOT AN
NEED A KEY TO ACTUAL KeY!
MAKE A CIPHER?

THE ENCRYPTION KEY (KD

IS THE SECRET DATA (THE
ENCRYPTION ALGORITHM) THAT
THE CIPHER USES TO PROTECT

THE PLAINTEXT. AN ALGORITHM 1S
A SERIES OF OPERATIONS THAT

ACHIEVES SOME OBJECTIVE OR

SOLVES SOME PROBLEM.

20 CHAPTER 1 THE FOUNDATIONS OF ENCRYPTION



THAT'S

RIGHT! _/anp vice versa,
THE DECRYPTION KEY
7 (K15 A DECODING
ALGORITHM THAT REVEALS
THE PLAINTEXT. IN THE
TANUKI CIPHER, DECRYPTION
REMOVES THE EXTRA
LETTERS—TA—FROM
THE CIPHERTEXT!

HERE'S THE ENCRYPTION
ALGORITHM AND
ENCRYPTION KgY K
FROM THE TANUKI CIPHER
(SEE PAGE 6):

THE ENCRYPTION ALGORITHM \
ADDS EXTRA LETTERS TO \
THE PLAINTEXT. \

IN THIS CASE, THE
ENCRYPTION KEY K
1S JUST ADDING THE 7, TA

LETTERS T7A.

THE RELATIONSHIP BETWEEN THE ENCRYPTION KEY
AND THE DECRYPTION KEY

The sender encrypts their message. Using the sender’s plaintext message m
and encryption key k on the encryption algorithm results in ciphertext C.

Encryption key k
Plaintext m |—>| Encryption |—>| Ciphertext C

The recipient decodes the ciphertext. Ciphertext C is decrypted into
plaintext m by using the ciphertext C and decryption key k on the decryption

algorithm.
Decryption key k
Ciphertext C |—>| Decryption |—>| Plaintext m
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LET'S LOOK
AT ANOTHER
EXAMPLE.
TAKE THIS
CIPHERTEXT...

SQRUEAK SQUEAK

e e

Taceronkey || SVLBITCFBVUITGVM

K SHIFTS EACH OF
THE LETTERS IN THE
ALPHABET FORWARD

ONE SPACE...

RUKAISBEAUTIFUL

RUKA 15 BEAUTIFUL,
RIGHT?

WHAT
1 WOULD THE
7\ PLAINTEXT BE?

AHAHAHA! RUKA?
BEAUTIFUL? THAT'S
TOTALLY OFF BASE!
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SHE'S
ABSOLUTELY
CORRECT!

DECRYPTION WITH
DECRYPTION KEY K
MOVES EACH LETTER
BACK ONE SPACE TO
ITS ORIGINAL POSITION.

RUKA-SENSE|
15 A LITTLE

BUT CAN'T A CIPHER \ RN
LIKE THAT BE A PR N
INSTANTLY DECODED? ANNRRA ; U
( GEH, THE
: WEIGHT OF

s KNOWLEDGE...

)

THAT'S A VERY SIMPLE CIPHER. . ) 5 =
CIPHERS HAVE BECOME MUCH
MORE SOPHISTICATED. AFTER
ALL, IF YOU WANT TO PASS
SECRET MESSAGES, YOU HAVE |
TO DEAL WITH EAVESDROPPERS ] -
TRYING TO DECIPHER THEM. - ’ 7

LET'S TAKE A LOOK AT
- ¢ i SOME CLASSIC ENCRYPTION
= METHODS TO GET A BETTER
P UNDERSTANDING OF THIS
GAME OF CAT AND MOUSE!

THE RELATIONSHIP BETWEEN THE ENCRYPTION KEY AND THE DECRYPTION KEY 23



CLASSIC ENCRYPTION METHODS

Although classic encryption methods are no longer used because they’re not
secure, they’'re still useful for learning how encryption works. Let’s look at how
some of these historical ciphers worked in practice.

CAESAR CIPHER

In the previous example, you saw the Caesar cipher in action. The Caesar cipher
uses an algorithm that creates the ciphertext by shifting each letter of plaintext
n letters. By way of example, let’s try to encrypt the title of the Japanese fairytale
Momotaro. If n = 3, we would move each letter forward by three.

DO THE SAME WITH THE REST OF THE LETTERS:
O->R T->W A->D R->U

Once you've done this, a ciphertext is formed.

MOMOTARO| Plaintext m

PRPRWDUR| Ciphertext C

Letters at the end of the alphabet just wrap around to the beginning.
XERAY Y B Z>C

This cipher is named after the Roman soldier and statesman Julius Caesar
(Gaius Iulius, 100-44 BcE). Caesar used this cipher during the Gallic Wars to
correspond with his allies unbeknownst to his rivals.

JULIUS CAESAR SAID,
“THE DIE 1S CAST!"
WHEN HE CROSSED

THE RUBICON.

* IN JAPANESE, D/E SOUNDS THE SAME AS RHINO.
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SUBSTITUTION CIPHER

It’s pretty easy to decrypt a plain Caesar cipher,
which is a type of substitution cipher. Substitu-
tion ciphers that replace one letter of the plaintext
with another letter to make the ciphertext, as the
Caesar cipher does, are called simple substitution
ciphers.

Let’s look at a simple substitution cipher to
get a handle on it.

Assume that the 26 letters of the English
alphabet have been converted as follows:

Conversion rule [ =

ABCDEFGHIJKLMNOPQRSTUVWXYZ

l l l

QWERTYUIOPASDFGHJKLZXCVBNM

Thus, a cipher is formed as follows:

MOMOTAROl Plaintext m

Conversion in accordance with conversion rule 0

/

DGDGZQKG' Ciphertext C

In this cipher, the conversion of letters is the algorithm, and the “letter-
by-letter replacement method”—in other words, the conversion rule c—is the
encryption key k.

o? HOW DO YOU
SAY THAT? \ — S

THAT'S THE
GREEK LETTER
SIGMA.
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POLYALPHABETIC CIPHER

A cipher that divides the plaintext into fixed-size blocks of n letters and varies
the number of positions each letter shifts within each block is known as a
polyalphabetic cipher. This makes a substitution cipher even sneakier.

Here we see conversion rule  (delta) in action for a block of four letters
(n=4):

Conversion rule 0=
First letter » Move by 2 letters
Second letter » Move by 5 letters
Third letter » Move by 3 letters
Fourth letter » Move by 1 letter

The resulting cipher works like this:

Plaintext m

MOMOTARO

Divide each group of n letters

|MOMO| |TAROI into blocks (n = 4).

y CiphertextC
|oTPP | | VFUP |

Convert each block of n letters in
accordance with conversion rule [

The process to decrypt the ciphertext works the same way, just in reverse.

NOW DECIPHER THE
FOLLOWING, WHICH
WAS CREATED BY USING
THIS FORMULA: TZNB KX
EFCZWJHZO!
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TRANSPOSITION CIPHER

A cipher that divides the plaintext into fixed-size blocks of n letters and then
changes the sequence of the letters in each block is called a transposition
cipher. For example, if n = 4, the substitution rule t (tau) gives us the following:

2340

T D413y

Here’s what is going on in this transposition cipher:

Substitution rule 0=
First letter » Becomes second letter
Second letter » Becomes fourth letter
Third letter »w Becomes first letter

Fourth letter » Becomes third letter

Thus, the following cipher is born:

Plaintext m

MOMOTARO

Divide each group of n letters

|MOMO| ITARO' into blocks (n = 4).

y CiphertextC y
[ooMM] [ATOR]

Shift letter in each block according
to substitution rule [l

In this cipher, the rearrangement of the letters makes up the algorithm,
and the number of letters per block and the substitution rule t are the encryp-
tion key.

3 15 THE GREEK
LETTER DELTA, AND
115 THE GREEK

LETTER TAU. TEEE
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CIPHER SECURITY

THE CAESAR CIPHER'S
ENCRYPTION ALGORITHM...

SHIFTS PLAINTEXT
LETTERS BY
N NUMBER OF
LETTERS.

ALTHOUGH THE CAESAR
CIPHER WAS INVENTED
MORE THAN

2,000 vEARS 4
AGO.. @

WE USE THE
CONCEPTS OF
ALGORITHMS
AND KEYS...

N = 315 THE ENCRYPTION KEY
THAT CAESAR USED.

TO DESCRIBE

THE SAME IDEAS
IN MODERN

. CRYPTOGRAPHY.

\\ )

THE PROBLEM I SHOWED YOU
EARLIER—SVLBITCFBVUIGVM—IS AN
EXAMPLE OF ENCRYPTING WITH
THE CAESAR CIPHER.
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HMM.

THE ANCIENT ROMAN
ALPHABET HAD ONLY
23 LETTERS.

IT LOOKS LIKE THERE AREN'T
ENOUGH ENCRYPTION KEYS
TO BE VERY SECURE...

COULD YOU SHIFT
THROUGH THE
LETTERS OVER AND
OVER TO MAKE
ENCRYPTION MORE

SECURE?

LIKE IF YOU WENT
THROUGH THE
ALPHABET 1,000
OR 2,000 TIMES...

NO, JUST LIKE THE HANDS
ON A CLOCK, YOU WOULP
REVOLVE THROUGH THE
SAME SERIES OF LETTERS.

LET'S SEE...
1,000,
2,000...

Y

ENCRYPTION KEYS! WE CALL THE

IN OTHER WORDS, NO MATTER
HOW MANY LETTERS YOU SHIFT,
THERE ARE ONLY 22 POS5IBLE

TOTAL NUMBER OF POS5IBLE
KEYS IN A CIPHER ITS
KEY SPACE.
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50, IF AN EAVESDROPPER
NOTICED THE STRUCTURE
OF A CAESAR CIPHER THAT
USED THE ANCIENT ROMAN
ALPHABET...

THEY COULD FIGURE
OUT THE KEY AND
DECODE THE CIPHER
IN FEWER THAN 23
ATTEMPTS.

50 IT'S BETTER TO
USE JAPANESE THAN IT
15 TO USE THE ROMAN
ALPHABET!

BECAUSE WE HAVE
HIRAGANA, KATAKANA,
AND KANJI, THERE
ARE MORE THAN
10,000 KEYS.

TO PREVENT YOUR
CIPHERTEXT FROM
BEING DECODED...

=

IT'S BEST TO HAVE A
VERY LARGE NUMBER
OF KEYS.

LET'S TAKE A LOOK
AT HOW MANY
KEYS THERE ARE IN
OTHER CIPHERS.
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THE SUBSTITUTION CIPHER'S KEY SPACE

Let’s think more about how many potential keys there might be for substitu-
tion ciphers and how easy such a cipher would be to break. You saw that a
Caesar cipher using the ancient Roman alphabet had only 22 possible keys

(a key space of 22), so breaking it wouldn’t be too hard. The key space of the
Caesar cipher is limited because it depends on shifting the alphabet to deter-
mine the plaintext letter’s ciphertext substitution. In Caesar’s version of the
Caesar cipher, the substitution letters are simply the alphabet shifted by three
positions, but you could take a different approach by scrambling the positions
of the letters entirely.

Instead of shifting the letters to determine letter substitutions, you could
substitute each letter of the alphabet with any other letter as long as each
plaintext letter corresponds with one unique substitution. Your plaintext
letters would be the alphabet in order:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Then one example of a substitution with a scrambled alphabet could be
written out like this:

QWERTYUIOPASDFGHJKLZXCVBNM

Each letter of the alphabet would be substituted with a corresponding letter
in the scrambled version of the alphabet. You can simply substitute according to
the position of the letters in the alphabet, so A would be substituted as @, B as
W, and so on. The scrambled alphabet would be the cipher’s key.

If we used our modern alphabet with 26 letters, we would have a large num-
ber of ways to potentially arrange those letters for a key:

26Poe = 26! = 26 025 024 w... 03 02 01 A 4.03291461 010>

The letter P is used to represent a permutation, which is a unique arrange-
ment of letters in a sequence. The subscript number before the P means that
there are 26 total characters, and the subscript number after the P means we
are using all 26 of them. The exclamation mark means factorial, or the prod-
uct of the integer and all the positive integers less than it. This formula makes
sense if you think about it this way:

© The first letter could be assigned any of the 26 letters, so there are 26 to
choose from.

» The second letter could be any of the remaining 25 letters, so there are 25 to
choose from. For two letters, there are 26 x 25 possibilities.

* The third letter could be any of the remaining 24 letters.
And so on until . . .

* The last letter will be whichever letter remains—there is one option for the
last letter.
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Given 4.03291461 x 10°® possible permutations of letters, if a computer
were asked to generate all these arrangements until it found the correct key to
break the cipher, then, even if it were to perform an exhaustive search at a rate
of 100,000,000 keys per second, it could take a preposterous period of up to
128,000,000,000 years.

WILL WE BE ABLE
TO DECODE IT
BEFORE THE
UNIVERSE ENDS?

THE UNIVERSE WAS
CREATED 10 BILLION
YEARS AGO!

PERMUTATION, COMBINATION, AND
FREQUENCY ANALYSIS

Let’s look at permutations in more detail. A permutation, expressed as P, is a
method of selecting r things from n possibilities and putting them into unique
arrangements. By unique arrangements, we mean that, for instance, ABCDE is
not the same as EDCBA. Those are considered two different arrangements.

If we selected 5 letters out of the 26 letters of the alphabet, r would be
5 and n would be 26. Then we would use this formula to find the number of
arrangements of 5 letters selected from 26:

nPr:noo(n—l)oo(n—2)w...m(n—r+1):%
n-r)t
Thus,

p __ 260 26!

#7 (26 -B)1 21

Because all the factors in 21! are in 26!, you can cancel out the numbers
up to and including 21:

1
% =26 025 024 023 ©22 = 7,893,000
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In contrast, if r things are selected from n possibilities and order does not

matter, this is called combination and is expressed as C in the combination
formula:

b n!
oG = rt (n—r)teor!

If we're still selecting 5 letters out of 26 possible letters, we would get this:

26!
(211 05!)

The factors would cancel like in the permutation example, which would
leave you with this:

(26 025024 023 0022)

= 65,780
(1 02 03 0l 005)

Because order does not matter, the arrangements ABCDE and EDCBA
would be considered the same, meaning that there are fewer possible arrange-
ments when using combinations rather than permutations.

Searching for the correct key within the large space of 4.03291461 x
10®® permutations is theoretically possible, but in practical terms, it's a
computationally infeasible problem. That said, these types of ciphers are
susceptible to a cryptographic attack known as frequency analysis, which
assumes that the frequency of letters that appear in the plaintext and the
frequency of letters that appear in the ciphertext are consistent.

For example, the letter E is the most common letter in English. That
means if Z is the most common letter in the encrypted text, you can reason-
ably assume that the corresponding letter in the plaintext is E. Frequency

analysis attacks are one of the most effective attacks on simple substitution
ciphers.

THE POLYALPHABETIC CIPHER'S KEY SPACE

Let’s assume that a given block is n characters long. Because we don’t know
how many spaces the first letter has been shifted, we make 26 attempts to fig-
ure it out. Each letter shift in the block is independent from the other shifts,
so the second letter could also take 26 attempts, same with the third letter,
and so on, until we arrive at the nth letter.

Using what we just learned about permutations, combinations, and fre-
quency analysis, r would be block size n, and the possible correct values for n

would be the 26 letters of the alphabet and would apply to each letter. Because
of this, the total number of keys is as follows:

26026 ... 026 ©26 = 26"
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If n = 4, then the key space would be the following:

26" = 26 026 026 ©26 = 456,976

As n grows larger, the number of keys rapidly increases. When n = 10, the
number of possible keys surpasses 140 trillion.

140 TRILLION...

THAT'S MY ANNUAL
INCOME FOR
28,000,000 YEARS...

=

INSPECTOR JUN MEGURO

28,000,000 YEARS
CONTINUOUS SERVICE

I1cOouLp
NEVER WORK
THAT LONG... - —=

THE TRANSPOSITION CIPHER'S KEY SPACE

The total number of keys for a block of n characters is expressed as follows:

P, = noo(n - l)m(n = 2)00...003002001 =n!

ntn

So when there are four letters in one block (n = 4), the total number of keys
k is as follows:

4! =4 0302wl =24
As with other ciphers, the key space increases as n becomes larger, and the

security of the encryption becomes stronger. Note that n = 26 would give the
same key space as the substitution cipher.
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THEN COULD A
SUBSTITUTION CIPHER
WITH A LARGE ENOUGH
KEY SPACE BE SECURE?
IT IS SIMPLE...

POLYALPHABETIC

THE POLYALPHABETIC
CIPHER SEEMS REALLY
COMPLICATED.

SIMPLE SUBSTITUTION
CIPHERS CAN BE EASILY
CRACKED USING BASIC
DECODING CLUES.

GOLPD BUG? IS THAT
A PICTURE BOOK OF
INSECTS?

I'M RICH! »

IT'Ss A FAMOUS MYSTERY
STORY THAT DEALS WITH
CRYPTOGRAPHY.

/7
%
@

OO0OOH,
A STORY!

HERE'S PART OF “THE
GOLD BUG" CIPHER:

53441305))6*;4826)
44.)44);806*;48+
8160))85;1(;:*8+83(88)
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SIMPLE SUBSTITUTION CIPHERS
CAN BE DECODED USING
FREQUENCY ANALYSIS!

va

THAT'S HOW THE
PROTAGONIST IN "THE
GOLD BUG” SOLVES
THE CIPHER.

( ! WITHOUT A
> DOUBT!

BECAUSE WE KNOW THAT
THE MOST COMMON
LETTER IN ENGLISH IS £
AND THE MOST COMMON
WORPD 1S THE...

WE CAN START BY
ASSUMING THAT THE
MOST FREQUENTLY USED
SYMBOL, 8,15 £ AND THAT
THE MOST FREQUENTLY
USED COMBINATION OF
SYMBOLS, ;48, 15 THE.

BRILLIANT!

I WISH I cOULp
RECRUIT HM TO THE

WHEN A CIPHERTEXT
IS5 LONG, THESE KINDS
OF CLUES INCREASE
IN NUMBER, MAKING
DECODING EASIER.

BUT WHEN YOU HAVE
A SHORT SENTENCE,
DECODING 15
TOUGH!
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15 THERE A SECURE
CIPHER THAT EVEN
THE PROTAGONIST

BUT IF THIS OF “THE GOLD

GUY WEREN'T BUG"” ABSOLUTELY
RECRUITED BY A
COP, BUT INSTEAD
BY BAD GUYS...

COULDN'T DECODE?

STOP PANICKING
AND TLL TELL YOU!

WHEN BREAKING CLASSICAL ENCRYPTION IS POSSIBLE

Typically, breaking classical encryption is possible under these conditions:
1. When you understand the encryption algorithm

2. When there is data about the statistical properties of the encrypted plain-
text; for example, the frequency with which a letter or word appears

3. When you have a large number of encrypted example sentences

PERFECTLY SECURE ENCRYPTION

By generating a random number to use as a one-time pad—a key that is as
long as the plaintext, is used once, and is then discarded—you can produce a
cipher that is computationally secure. More specifically, you would be generat-
ing a ciphertext by applying a string of random numbers to plaintext m that is
the same length as the plaintext. This ciphertext cannot be decrypted without
knowledge of the key. Unfortunately, a one-time pad is not practical because
it is difficult to distribute the one-time pad to all the communicating parties
ahead of time.

Gilbert Vernam devised a cipher that uses a one-time pad, the Vernam
cipher, in 1917 and patented it a couple of years later. During World War II,
Claude Shannon (see page 19) established that this cipher is unbreakable
and in 1949 publicly published his mathematical proof.

Here is a simple example of a Vernam cipher. You start by converting the
alphabet to numerical values in a process known as character encoding:
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B @GN D mEW F BGE H I J K L M
0 1 2 3 4 5 6 7 8 9 [LON 11 i
OGN P BGE R IBSH T UM V VA X VAN 7
13 14 15 16 17 18 19 20 21 22 23 24 25

1. Convert each letter to a numerical value (e.g., A becomes 0).

Plaintext R O

7 4

P

2 4 2 4

=
=
—
=
-
° -

=
=

2. Add each number in the sequence to the corresponding one-time use

number.
12 14 12 14 19 0 17 14
Random number o i & + -t i * +
sequence [9 20 15 23 27 2 15 8|
(encryption key) = = = = = E = =
21 34 27 37 46 2 32 22

3. Calculate the remainder when each number is divided by 26.

21 34 27 37 46 2 32 22

26 26 26 26 26 26 26 26

21 8 1 11 20 2 6 22

4. Convert the numbers to letters using the character encoding.

2

:

=
-
-

0 -— =
- —-—

[\
c-3

N

2

g

— -— 0
O -
Q—

Ciphertext
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HMM, IF SOMEONE
USES THIS METHOD, IT
CAN'T BE DECODED.

VERNAM'S CIPHER
15 THEORETICALLY A
SECURE CIPHER.

YOU'RE
RIGHT!

SECURE CIPHERS

1. Fail-safe ciphers
A fail-safe cipher like Vernam’s cipher is theoretically unbreakable.

2. Computationally secure ciphers
Although computationally secure ciphers can be decoded, doing so
is computationally infeasible because it’s so time and labor intensive
that it isn’t worth trying. These ciphers are what we use today.

THERE ARE TWO
TYPES OF SECURE
CIPHERS.

ALL THIS TALK ABOUT
VERNANA CIPHERS 1S
MAKING ME HUNGRY.

DELICIOUS!

:::v //i//i\
|7

7

VERNAM,
YOU MEAN.
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RECEIVING...

EVEN THOUGH THE VERNAM CIPHERTEXT
CIPHER 15 THEORETICALLY
UNBREAKABLE, IT 15 IMPRACTICAL
TO USE IT TO ENCRYPT AND
DECRYPT LONG MESSAGES.
SENDING 1,000 LETTERS OF
PLAINTEXT WOULD REQUIRE A
1,000-CHARACTER KEY!

TRANSMISSION )
COMPLETE

SUCH A LONG
CIPHERTEXT WOULD TAKE A LOT
OF COMPUTATIONAL RESOURCES
AND TIME TO COMPUTE. THIS 15
WHY WE USE COMPUTATIONALLY
SECURE CIPHERS IN REAL-WORLD
SCENARIOS.

THERE'S GOT
TO BE A HINT
SOMEWHERE...

I DON'T THINK THAT
MS. CYPHER'S CIPHER
1S A VERNAM CIPHER.

IT WAS
DELIBERATELY LEFT
BEHIND, 50 IT'S
PROBABLY NOT A
COMPLEX CIPHER.

GROOOOOOOAN

AH! LOOK
AT THE
TIME!

I'M HEADED
BACK TO THE
NEWSROOM.
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THANKS FOR
CHOOSING
USAGI'S DINER!

L

DINNERTIME!

THANK YOU FOR
WAITING.

MS. CYPHER...

Q> ) -
= 1A\

LR AST=
5 3

* USAG| MEANS RABBIT OR BUNNY IN JAPANESE.
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YOU BETTER EAT
UP OR YOUR
RAMEN WILL

I-T'VE GOT IT!
GET COLD!

EAT NOW,
| TALK LATER.

I'VE SOLVED
THE CIPHER!

Rooo a9l

I KNOW WHAT MS. CYPHER PLANS TO
STEAL NEXT!

4Z CHAPTER 1 THE FOUNDATIONS OF ENCRYPTION



f 1 THE BUNNY

IF I TELL YOU -
WHAT SHE PLANS "y COSTUME AND
TO STEAL, WILL bl THE PHRASE

TR “GOOD NIGHT”

YOU BUY ME A

COMPUTER? . WERE HINTS!

WE WERE PUZZLED ABOUT

WHY M5, CYPHER SIGNED
OFF WITH *@00D NIGHT.”

I THINK IT"S THE SECOND
CLUE TO THE CIPHER. YOU SAY
“GOOD NIGHT” WHEN YOU GO
TO SLEEP, AND SLEEP HAS THE
SAME NUMBER OF LETTERS
AS BUNNY.

[
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IT'S A CAESAR CIPHER!
IF YOU SHIFT EACH
LETTER IN BUNNY
FORWARD BY
17 LETTERS...

bunng |
@@%@é 17 LETTERS
sleep

MOVING THE LETTERS
17 PLACES 15 THE KEY!

50 IF WE MOVE EACH
LETTER IN VDVIRCU
17 SPACES...

V%/ THE SOLUTION 15...
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E._,
é‘ | EMERALD!
pP——— N %%

AN EMERALD HAS
BEEN STOLEN FROM
THE INTERNATIONAL

TREASURES EXHIBITION!

EMERALD...

MS. CYPHER STRIKES AGAIN!
LET'S HEAD TO THE SCENE!
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SINCE THE POLICEMAN HEHEHEHE

GAVE US THE ANSWER,
YOUR NEW COMPUTER
WILL HAVE TO WAIT.

RIGHT! HURRY!
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SYMMETRIC-KEY
ALGORITHMS




| BINARY DIGITS AND |
| LOGICAL OPERATORS |

MARBLE ART
MUSEUM

INTERNATIONAL TREASURES
_EXHIBITIO

WE'VE BEEN HAD
AGAIN!

Emerald
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WAS THE
EXHIBITION CASE
LOCKED?

THAT EMERALD COS5TS
THREE BILLION YEN/* é

OF COURSE!
BUT—

IT MUST HAVE BEEN OPENED
AT SOME POINT. BECAUSE
YOUR PRECIOUS GEM WAS

REELED RIGHT UP FROM

THE CEILING.

THIS WAS
DELIVERED TO THE
NEWSROOM!
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CHECK OUT MY CATCH OF THE DAY:
YOUR PRECIOUS EMERALD ¢

-MS. CYPHER

PS: IF YOU WANT TO
MEET ME IN THE FLESH,
THEN FIGURE THIS ouT!

00110001 00101011 00110001  0OMIIO1 00110000

50 IT'S A NEW
CIPHERTEXT...

TLL GET RUKA'S
HELP—PRONTO!

WAIT! WHAT ABOUT
THE EMERALD?

WAIT FOR ME!
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WE KNOW WHO THE
THIEF 15!

CATCH ME IF
YOU CAN!

WELL, HURRY UP
AND BRING BACK
MY EMERALD!

WE WILL! ONCE WE
FIGURE OUT HER

REAL NAME AND
WHEREABOUTS...
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Q00110001 00101011 090110001 00111101 090110000

THIS TIME IT'S
A BUNCH OF 15
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YOU &OT IT! COMPUTERS
STORE DATA AS 15 AND Os,
OR BINARY DI&ITS.

We usually use the base-10 decimal
number system, but the binary sys-
tem is in base 2, which uses only
two numbers to count.

When you count past 1 in
binary, you run out of digits and
must carry the 1 to the next largest
place value. For example, the num-
ber 2 is 10 in binary.

A group of eight bits in a row is
called a byte. Each bit represents
a 0 or 1, so a byte has a total of
2® = 256 possible combinations.
Each combination represents a dif-
ferent piece of information.

A SINGLE BINARY DIGIT
(A1 0RO IS CALLED

Binary |Decimal | Hexadecimal || Binary | Decimal | Hexadecimal
b b numb b number |number

0000 0 0 1000 8 8

0001 1 i 1001 9 9

0010 2 2 1010 10 A

0011 3 3 1011 11 B

0100 4 4 1100 12 C

0101 5 5 1101 13 D

0110 6 6 1110 14 E

0111 7 7 1111 15 F 0150,

As numbers become larger, the number of digits required
to represent them in binary grows rapidly, so hexadecimal
notation is often used instead. Hexadecimal notation is in
base 16, using digits O through 9 and letters A through F,
as shown in this table. This means that after you count up
to 9, you use A instead of 10, B instead of 11, and so on up
to F. The prefix Ox is added to hexadecimal numbers, so for
example, the decimal number 10 is OxA in hexadecimal.

UNLIKE HISTORICAL CIPHERS,
WHICH OPERATE ON LETTERS,
MODERN ENCRYPTION METHODS
OPERATE ON BINARY NUMBERS.
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LOWER-ORDER BIT5.

WELL, LET'S START BY SPLITTING

50 IN THE
THE FIRST EIGHT BINARY DIGITS
NOTE LEFT BY INTO FOUR-DIGIT SETS, THEN WE'LL
MS. CYPHER, CONVERT THEM INTO HEXADECIMAL
THESE BINARY NOTATION. WHEN YOU SPLIT A
DIGITS BYTE, THE LEFT FOUR DIGITS ARE
REPRESENT CALLED THE HIGHER-ORDER BITS
LETTERS? AND THE RIGHT FOUR ARE THE

FOUR HIGHER- FOUR LOWER-
ORDER BITS ORDER BITS

001170001
| |
3 1

317
WHAT DOES
THAT MEAN?

4

THE HEXADECIMAL NOTATION 0x31
CAN BE CONVERTED TO A LETTER
USING A CHARACTER-ENCODING
SYSTEM CALLED ASCII, WHICH 15 USED
BY MANY COMPUTERS. AS YOU CAN
SEE IN THE FOLLOWING TABLE, 0x31
REPRESENTS THE NUMBER 1.

THE ROW AND COLUMN
HEADINGS ARE GIVEN IN
HEXADECIMAL NOTATION.
AT THE TOP 15 THE
HEXADECIMAL VALUE OF THE
FOUR LOWER-ORDER BITS,
AND ON THE LEFT IS THE
HEXADECIMAL VALUE OF THE
FOUR HIGHER-ORDER BITS.

Higher-order bits

Lower-order bits

0 [T |2 3 |4 |56 [6 |7
0 NUL (DLE |space |0 @ |P d P
1 [SOH|DCL|! A 9 [a [a
2 |SIX [DC2Z|" 2 [B R [b |r
3 |BTX |DC3|# 3 [C [s [c |s
4 |EOT |DC4|S 4 [D [T [a |t
5 |ENG [NAK|% 5 [E (U [e |u
6 |ACK[SYN|& 6 [F [V [t |v
7 [BEL [ETB[" 7 |G (W |g |w
8 [BS [CAN|( 8 [H X [n |x
9 [HT [EM |) s [t [Y [i |y
A |LF |SUB|* T |z |i |z
B VT |BSC|+ K I |k |(
C [FF |FS |, < [T [N [T 1
D |[CR |GS |- = M I [m [}
E [SO |RS |. S N [~ [a [~
F [sI |US [/ ? [0 |- [o |ael
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50 |IF WE CONVERT THE

REST OF THE CODE MS. Binary Hexadecimal | ASCII
CYPHER LEFT, WE GET...

number number

BUT DOESN'T
00110001 |31 1 1+1=22
00101011 | 2B +
00110001 |31 1

IS5 MS.
CYPHER AN

00111101 3D =

00110000 30 0

141=0

OF COURSE - =t : THIS 15 AN XOR OPERATION...

SHE'S NOT!
ALSO CALLED AN EXCLUSIVE
OR OPERATION.

IT'S A LOGICAL
OFPERATION USED IN
CRYPTOGRAPHY!

XO* JAR? @
o e

m,/‘

THIS 15 ALL WAY OVER
MY HEAD, 5O TLL JUST
G0 GET A SNACK.

s
e

XO SAUCE |5 A CHINESE CONDIMENT.
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MS. CYPHER HAS USED
A BITW/SE OPERATION,
WHICH 15 A CALCULATION HERE'S A FIGURE TO
THAT WORKS ONLY ON ILLUSTRATE. 4 AND 5 ARE
BINARY NUMBERS (s INPUTS FOR THE BITWISE
AND 0s). ALL COMPUTER OPERATIONS, AND FOR EACH
CALCULATIONS ARE OPERATION, WE GET AN OUTPUT
BITWISE OPERATIONS! THAT IS A BITWISE NUMBER
(EITHER 1 OR O). /
AND operations are sometimes referred to as conjunction logic, and OR opera-
tions are sometimes referred to as disjunction logic. XOR operations are a
combination of conjunction and disjunction logic.
OR operation AND operation NOT operation
A+B A-B A
AlB|a+B AlB|a-B Ala
ofjo|o ojo]o 1]0
1|01 1]0]0 0|1
of|1]1 o|1]0
111 1|11
Ifeither AorBisal, If both A and B are 1, The output is the opposite
the output is 1. the output is 1. of A.If Ais 1, the output is
0; if A is O, the output is 1.
NAND operation NOR operation XOR operation
AOB A+B ACB+ACB - (A0 B)
A|B|A-B A|B|A+B A|B|A®B
oJo|1 o (el Bt ojojo
1|01 1]0]0 1]0]1
of|1]1 oj1]0 of1]1
1]1]0 1|1]0 1|1]0
If either A or B is If both A and B are If A and B are different,
0, the output is 1; 0, the output is 1; the output is 1;
otherwise it is 0. otherwise it is O. otherwise it is 0.
50... OKAY, BUT
HOW 15 THIS

THE SYMBOL FOR AN XOR
1S ® AND 1S USED LIKE THIS:
1l@e0=1,1®1=0.

UseFUL?

WHEN YOU USE THE
XOR OPERATION ON TWO
DIFFERENT VALUES THE
OUTPUT IS 1. IF THE INPUT
VALUES ARE THE SAME,
THE OUTPUT IS O.
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WE CAN USE IT TO
DECIPHER CODES!

As an example, let’s perform an XOR operation using the plaintext 1101
and the encryption key 1001.

1101 0O 1001 = 0100
Plaintext Encryption Ciphertext
key

The result of the operation is the ciphertext 0100. Next, we'll perform
an XOR operation using the ciphertext 0100 and the decryption key 1001.

0100 0O 1001 = 1101
Ciphertext Decryption Plaintext
key

The result of the operation is the plaintext 1101. When you perform
the XOR operation using the ciphertext 0100 and the plaintext 1101, you
get the encryption/decryption key:

0100 0O 1101 = 1001
Ciphertext Plaintext Decryption key = Encryption key

This means that as long as we have two of the three pieces of data—
the plaintext, encryption/decryption key, or ciphertext—we can derive the
remaining piece of data.
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RIGHT! YOU USE AN XOR
AND THAT OPERATION TO PERFORM ENCRYPTION

MEANS...? BOTH ENCRYPTION AND

Plaintext ® Encryption key = Ciphertext

DECRYPTION!
ILOVE YOU! & & = 859@h

‘ { - DECRYPTION
y \
J |
|

&

\
ok Ciphertext @ Decryption key = Plaintext
N 869@A © & = I LOVE YOU!

Encryption key = Decryption key

>AND IF WE USE THE
SUBSTITUTION CIPHER
AND PERMUTATION,
WHICH WERE
INTRODUCED IN
CHAPTER 1, AND

OPERATION...

THEN USE AN XOR /-

Symmetric-key algorithm = Substitution cipher process +
Permutation process + XOR operation

WE CAN IMPLEMENT
A SYMMETRIC-KEY
ALGORITHM, WHICH
1S A MODERN
ENCRYPTION
TECHNIQUE!

SYMMETRIC-
Key?

IT'S A TYPE OF
ALGORITHM THAT
USES THE SAME KEY
\FOR ENCRYPTION AND
DECRYPTION.

50 NOW WE JUST
NEED TO LEARN ABOUT
SYMMETRIC-KEY
ALGORITHMS!

58 CHAPTER 2




SYMMETRIC-KEY
ALOORITHMS

SLUVUURP
P

Recipient

THIS 15 WHAT
A SYMMETRIC-
KEY ALGORITHM
LOOKS LIKE!

THE CIPHER'S
SENDER AND
RECIPIENT USE THE
SAME KEY...

THAT'S UNKNOWN
TO ANYONE ELSE
TO PERFORM BOTH
ENCRYPTION AND

DECRYPTION.
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BECAUSE BOTH PARTIES SHARE THE SAME KEY, SYMMETRIC-KEY
CRYPTOGRAPHY 15 ALSO KNOWN AS SHARED-KEY CRYPTOGRAPHY
OR SECRET-KEY CRYPTOGRAPHY. MOST TRADITIONAL ENCRYPTION

SCHEMES USE A SHARED KEY.

IF THREE PEOPLE
ARE COMMUNICATING
USING A SYMMETRIC-
KEY ALEGORITHM...

IT'S THREE, RIGHT?

BIG@ BROTHER!

IF FOUR PEOPLE ARE
USING A SYMMETRIC-
KEY ALGORITHM, HOW

MANY KEYS WOULD
\ THEY NEED?
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WOMP WOOOOOOMP.

)
IF THREE PEOPLE i
NEED THREE KEYS.
D

FOUR PEOPLE WOULD
NEED FOUR, RIGHT?

IT'S AN EASY MISTAKE
TO MAKE, BUT THE
ANSWER 15 SIX.

WHEN n USERS ARE
USING SHARED KEYS TO
TRANSMIT ENCRYPTED
CORRESPONDENCE...

YOU CAN CALCULATE THE
NUMBER OF KEYS WITH THIS
FORMULA.
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OOOH, 50 IF
THERE WERE
100 PEOPLE...

YOU'D NEED 4,950 KEYS!

AHHH—
CALCULATE ,0,C, AND THAT WAS

ELICIOUS!
100 w(;OO 1 4556

15 WHAT YOU GET!

HERE'S 1
YOUR BILL.

g

50 COULD YOU ENCRYPT
AND SEND A SECRET EMAIL
USING A SYMMETRIC-KEY
ALGORITHM?
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YES. BUT DELIVERING
THE SHARED KEY TO
THE PERSON YOU'RE
COMMUNICATING WITH
1S AN 155UE.

CAN'T YOU JUsT
SEND IT IN THE
EMAIL?

THEN WHAT IF YOU
ENCRYPT THAT KEY

WITH ANOTHER
SHARED KEY?

HOW WOULD YOU
DELIVER THAT
OTHER KEY?

BY EMAIL...

1 >\ ENCRYPT THE

AND, UM...

OTHER KEY USING
YET ANOTHER KEY...

BUT THEN WHAT
WOULD 1 DO WITH
THAT KEYZ!

THEN ENCRYPT THAT
KEY YET AGAIN?

g N
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IN THE END,
WOULPD YOU
SHARE THE KEY
IN PERSON?

THE SAFEST OPTION
WOULPD BE TO HAVE
SOMEONE YOU TRUST
DELIVER IT, RIGHT?

50 WE DON'T!
INSTEAD, PUBLIC-KEY
CRYPTOGRAFPHY USES
TWO KEYS: A PUBLIC KEY
THAT CAN BE DISTRIBUTED
TO EVERYONE AND A
PRIVATE KEY THAT |15 KEPT,
BY ONE PERSONX

YOU'D HAVE TROUBLE

EVERYONE INVOLVED IN

BUT THINK ABOUT IT:

DELIVERING THE
SHARED KEY TO

A COMMUNICATION.

WE'LL LEARN ABOUT
THAT IN CHAPTER 3!

FEATURES OF A SYMMETRIC-KEY ALGORITHM

TO KEEP THE KEY SECURE, USERS MUST
BE CAREFUL HOW THEY STORE AND
EXCHANGE IT.

USUALLY, ENCRYPTION AND DECRYPTION
ARE FAST, SO IT'S CONVENIENT FOR LARGE
QUANTITIES OF DATA.

BECAUSE USERS WOULD HAVE TO CREATE
A LARGE NUMBER OF KEYS, IT ISN'T SUITED
FOR COMMUNICATIONS AMONG LARGE
GROUPS.

FOR NOW, WE'LL FOCUS

ON SYMMETRIC-KEY
ALGORITHMS.

BUT MANY
COMMUNICATION METHODS
USE A COMBINATION OF
SYMMETRIC-KEY AND PUBLIC-
KEY ENCRYPTION.

* PUBLIC-KEY ENCRYPTION USES SEPARATE BUT MATHEMATICALLY
PAIRED KEYS FOR ENCRYPTION AND DECRYPTION. THIS |5 DIFFERENT
FROM SYMMETRIC-KEY ENCRYPTION, WHERE THE SAME KEY |5 USED
TO BOTH ENCRYPT AND DECRYPT A MESSAGE.



THERE ARE TWO MAIN TYPES OF
SYMMETRIC-KEY ALEGORITHMS:

STREAM CIPHERS

BLOCK CIPHERS

WHAT'S THE
DIFFERENCE?

A STREAM CIPHER
ENCODES EACH BIT OR
BYTE INDIVIDUALLY IN
SUCCESSION.

T'LL EXPLAIN THAT
IN A MOMENT.

A BLOCK CIPHER
SPLITS PLAINTEXT AND
CRYPTOGRAPHIC DATA INTO
SECTIONS OF UNIFORM
LENGTHS (BLOCKS). THEN
IT PERFORMS ENCRYPTION
AND DECRYPTION ONE
BLOCK AT A TIME.

FIRST, LET'S LOOK AT
STREAM CIPHERS.

STREAM CIPHERS
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LET'S SEE HOW
STREAM CIPHERS

PERFORM
ENCRYPTION.

In a stream cipher, the key is a long, pseudorandom sequence of
numbers. You can encrypt or decrypt with the key by performing XOR
operations on each bit or byte data, as shown in the following figure.
Stream ciphers are generally less computationally intensive than block
ciphers. Some examples of stream ciphers include RC4 and SEAL.

Start End
1 bit

mames | e [ L L L]

B

2 Encrypt 1 bit or group of bits at a time. ]

v

o (L LT T

g
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INCIDENTALLY, BOTH STREAM
AND BLOCK CIPHERS ARE
VULNERABLE TO BRUTE-
FORCE ATTACKS, IN WHICH AN
\ ATTACKER CAN UNCOVER THE

\ CORRECT KEY BY TRYING ALL
POSSIBLE KEYS.

WHAT'S A PSEUDORANDOM
NUMBER SEQUENCE?

THIS MEANS THAT
SECURITY |5 GUARANTEED
ONLY UP TO A POINT,
DEPENDING ON HOW MUCH
COMPUTATIONAL POWER
AN ATTACKER HAS.

IT'S A SERIES OF
NUMBERS THAT APPEAR
COMPLETELY RANDOM.

A TRULY RANDOM OF RANDOM NUMBERS THAT'S

SEQUENCE? AS LONG AS OR LONGER THAN

THE PLAINTEXT, YOU COULD
USE A ONE-TIME PAD TO
HAVE A SECURE CIPHER.

CAN'T YOU JUsT MAKEFYOU MADE THE KEY A STRING '\

[/ YES BUT IT'S IMPRACTICAL TO |
‘gl CREATE A KEY THAT LARGE AND

A TO GENERATE A TRULY RANDOM
NUMBER SEQUENCE.

HEY! WHERE DID
BIG BROTHER GO?
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BLOCK CIPHERS |

HOW DO THEY
DIFFER FROM
STREAM CIPHERS?

A BLOCK CIPHER
1S A METHOD
OF ENCRYPTING
BLOCKS OF DATA
IN SUCCESSION.

NOW LET'S LEARN
ABOUT THE STRUCTURE
OF BLOCK CIPHERS.

Unlike a stream cipher, which encrypts each bit in succession, a block cipher
splits data into blocks of uniform length and then encrypts each block, as
shown here.

64 bits 64 bits 64 bits 64 bits
Plaintext I AHFTIKLS | | LSOPGWDJ | | KAISFJDP | | IERMGKDL |
Key [ Encryption/‘/j/@] [ Encrypt{m% [ Encrypﬁox%‘m [ Encrypﬁox%((q
Ciphertext| XX XXX XX | | XD | | XX XXX X | | XXX X |

The length of a given block depends on the structure of the cipher used.
Block sizes of 64, 128, or 256 bits are the most common for ciphers. Because
1 byte is composed of 8 contiguous bits, it would be reasonable to use 64-bit
blocks because you could use 8 characters to satisfy the block size. Using
64-bit blocks allows for faster calculations on a computer.

Name of cipher | Block length (bits) | Key length (bits)
DES 64 64
AES 128 128 192 256
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E m e r a l d 7 letters x 8 bits/letter = 56 bits

HOLD ON!

e

THE WORD EMERALD DON'T WE

HAS 7 LETTERS. SINCE rss NEED ONLY

IT TAKES 1 BYTE (B BITS) | — 56 BITS TO

TO ENCRYPT EACH OF P REPRESENT

THOSE LETTERS... Y EMERALD?
Z ] ~

WHEN THE
LENGTH OF A IN THAT SITUATION, WE HAVE TO
BLOCK IS 64 BITS ADD SOME EXTRA NUMBERS TO THE
(8 BYTES)... END OF THE BLOCK UNTIL WE HAVE

THE RIGHT BLOCK LENGTH. THIS 1S
CALLED PAPDING.

— 7
® /
THE WORD WOULD Y
BE 8 BITS (1 BYTE) // ///
SHORT. By : s

Here’s how you would create a block with a length of 64 bits.

Plaintext E m e T a 1 d

l Character encoding in hexadecimal notation

I 56 bits 1
8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits short

| 0x45 | | OXGDl | 0x65 | | 0x72 | | 0x61 |

0x6C | | 0x64 | | |

l Padding to create 64-bit block length

I 64 bits 1
8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

| 0x45 | | OxGDl | 0x65 | | 0x72 | | 0x61 |

0x6C | | 0x64 | | 0x08 |

Remember: digits that have the prefix Ox are numbers in hexadecimal notation.

The value 0x08 is added to the end of the block so that the block length is
64 bits (8 bytes). The padding is 0x08 because that is the amount of padding
that should be removed when the message is decrypted. This is just one way to
pad blocks.
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NO MATTER WHAT THE
PLAINTEXT 15, IT CAN
BE ADJUSTED TO BE
A MULTIPLE OF THE

BLOCK LENGTH.

WHEN THE PLAINTEXT

15 LONGER AND
THERE ARE MORE
BLOCKS...

I\ 3

PO YOU ENCRYPT
THEM ALL
INDIVIDUALLY?

THAT'S ONE THE WAY A BLOCK
WAY OF - CIPHER 15 ENCRYPTED OR
DEALING — DECRYPTED DEPENDS ON

WITH THEM! 1T MODE OF OPERATION,

WHICH 15 THE ALGORITHM
WE USE FOR THE CIPHER.

ECB MODE TREATS
EACH BLOCK AS AN
INDEPENDENT UNIT
AND ENCRYPTS AND
DECRYPTS EACH BLOCK
INDIVIDUALLY.

FOR EXAMPLE, IF THE PHRASE “MY LOVE/”
APPEARS TWICE IN THE PLAINTEXT...

MY LOVE;" ~MY LOVE,

BUT IF THE PLAINTEXT
INCLUDES IDENTICAL
BLOCKS...

l Encryption
o) VRS YK eesrneranens /"85 E%*

THEN THE CIPHERTEXT /"/#%6%* |5 REPEATED.
THIS WOULD INADVERTENTLY PROVIDE A CLUE
FOR CRACKING THE CIPHER, WOULDN'T IT?

WON'T THE CIPHERTEXT
ALSO HAVE IDENTICAL
BLOCKS AND BE
INSECURE?

RIGHT! TO COMBAT THIS,
WE USE A MORE SECURE

MODE CALLED CIPHER
BLOCK CHAINING.

WHAT ON
EARTH IS
THAT?
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CBC MODE

CBC mode outputs different ciphertexts even in cases where the plaintext is
the same.

Once the plaintext is cut into blocks, the first block is XORed with an
initialization vector (an additional cipher block, which is a value known to
everyone), and then it’s encrypted using a block cipher with a key. The next
plaintext block is XORed with the most recently encrypted block and then also
encrypted using the block cipher with a key.

This process is done on all of the blocks, making it practically impossible
for any connection to be made between blocks. In the following figure, the previ-
ous ciphertext block C;_, and the next plaintext block P; are XORed to produce
X;. In other words, X, is calculated by using the following formula:

X,=COP,

With this method, even if there are blocks of identical plaintext data, there
are no identical blocks in the ciphertext.

Plaintext (in binary) ... | Pig || P, ” B | S
t— :
U The previously encrypted
¢ block C, , is used to XOR the
next block of plaintext.
XORed block ... | X, || X, ” X, |
64 bits

Encryption key |—> | DES algorithm |

Output block ... | Cyy ” [0 || Cy | L —-—>| €y
64 bits

o =]

Ciphertext (in binary)

CBC and ECB are two of the most well-known modes of operation. ECB is
no longer used because it is insecure. Other common modes are OFB (output
feedback) and CFB (cipher feedback).
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DES CIPHERS

THE FIRST ENCRYPTION
STANDARD THAT WAS WIDELY
ADOPTED FOR BUSINESS
PURPOSES WAS DES...

The first standardized civilian
BUT IT WAS ACTUALLY encryption system was DES (Data
" Encryption standard). It was
based on an earlier system,
the Lucifer cipher, which was
developed in the early 19705 by
Horst Feistel at IBm.

LET'S START BY TAKING A
LOOK AT FEISTAL CIPHERS,
WHICH DES WAS BASED ON.
THE CIPHERS YOU'VE SEEN S0
FAR HAVE BEEN SIMPLE...

cooL!

>

CAN YOU GIVE ME
AN EXAMPLE OF
HOW DES WORKS?

WITH JUST A FEW STEPS
PERFORMED ON EACH
ENCRYPTED BLOCK.
IN PRACTICE, CIPHERS
PERFORM A LONGER
SERIES OF STEPS.
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THE BASIC CONFIGURATION OF A FEISTEL CIPHER

Each set of steps is called a round, and rounds are performed multiple times
on a block. The series of steps performed each round is the round function.
The Feistel cipher uses multiple rounds and subkeys that are derived from one
initial key. The following figure outlines Feistel’s method of encryption; we’ll
discuss the details of each round and how the subkeys are created later.

Plaintext P |
@ Divide into 3
blocks

Divide the plaintext into blocks of 64 bits.

Plaintext P in blocks

Perform an initial permutation (IP) using
64 bits an algorithm for each 64-bit block that

substitutes and rearranges the bits so
@ | Initial permutation (IP) that even bits are in the left half of the
¥ g

block and odd bits are in the right half.
v The block is split in half so that the

32 even bits now on the right side are
R, and the left 32 odd bits are L.

°

| L

| R(l

32 bits 32 bits
e B P Y ©)
T Use the round function f with the encryp-
® . tion key (K,). We'll go into more detail
Encryption - about f later. For these examples, you
subkey K, g just need to know that fis an algorithm
2 that rearranges and substitutes bits in
a
) a block.

()
L Perform an XOR operation on R, and L,
to create a new right 32-bit block (R)) to
replace the original right block. Take the
original R, and make it into the 32-bit
block on the left (L)).

XOR operation on Encryption ®
R,and L; subkey K After completing one round of steps 3
? and 4, repeat these steps for rounds 2
5 through 15.
a
CING)
| =L 0fR, K, | Reconstruct the left 32-bit block (L,;)

and the right 32-bit block (R,,) into
one 64-bit block.

) —

32 bits

Finally, perform a reversal of the initial
permutation (IP!), and one block of
encryption is complete.

| 32 bits | 32 bits
* 64 bits total

THE STRUCTURE
OF DES 15
SIMILAR TO THIS!

@ | Output M (64 bits) |

v

| Ciphertext C

Perform steps 2-7 on all
blocks, then reconstruct
them into the ciphertext.




THE PROCESS OF
DECRYPTING THE

CREATING A CIPHER CIPHERTEXT...

HAS SO MANY
COMPLEX STEPS!

—

IS CALLED AN
INVOLUTION.

INVOLUTION

An involution is a function that is its own inverse, which means that

if you apply the function twice, you will return the input to its original
state. For example, consider a function in which 1 becomes 4, 2 becomes
3, 3 becomes 2, and 4 becomes 1. The values in the list after the conver-
sion are the same as the values before.

First conversion Second conversion

1 e 4 e 1
2 > 3 > 2
3 > 2 > 3
4 > 1 > 4

By applying the function twice, we return to all of the original values
in the same order.

FEISTEL'S CIPHER | : " NELUINCED THE

15 ANESOME, EVOLUTION OF ’
ISN'T IT? BLOCK CIPHERS.  Tai 2%
= FEISTEL

‘ NETWORK.
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ﬂo, LUCIFER
WAS AN EARLIER
15 DES THE NESHORK.
SAME AS
THE LUCIFER
CIPHER?

DES HAS A STANDARD
KEY SIZE OF é4 BITS,
WHILE LUCIFER HAD
VARIANTS FROM 48 TO
128 BITS.

IN FACT, THE DES KEY SIZE 15
&4 BITS, BUT IT ACTUALLY USES
A KEY OF ONLY 56 BITS. THE
REMAINING 8 BITS WERE DESIONED
TO PERFORM A PARITY CHECK.

A PARITY CHECK DETECTS DATA
ERRORS THAT ARISE FROM NOISE,
READING MISTAKES, AND SO ON IN
THE KEY. IT 15 NO LONGER USED IN
MODERN CIPHERS, THOUGH.

BUT THE LONGER THE
KEY |15, THE MORE
SECURE THE CIPHER
WILL BE, RIGHT?

MORE
SECURE

SECURITY

THE NATIONAL
SECURITY AGENCY
(NSA) DETERMINES

THE STANDARDS, AND
IT RESTRICTED THE

NUMBER OF KEY

CHOICES.

HAVE BEEN

HAVE 5

* ONE HUNDRED MILLION = 108, ONE TRILLION = 10,
TEN QUADRILLION = 10'%, ONE HUNDRED QUINTILLION = 10%°

"THE KEY CHOICES

TO FEWER THAN
100 QUADRILLION*

@

LIMITED

6 BITS
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1T'S BECAUSE IF THE
NUMBER OF KEY CHOICES PROBABLY.
BECOMES TOO LARGE...

THE NSA DOES
THE NSA WON'T BE
ABLE TS INTERCEPT ENGAGE IN GLOBAL
CIPHERTEXTS, RIGHT? INTELLIGENCE.

IT'6 CONSTANTLY CRACKING
CIPHERS AND PROBING
IMPORTANT CLASSIFIED

INFORMATION.

BUT AS I WAS SAYING,
IN DES, SUBKEYS ARE
DERIVED FROM THE
ENCRYPTION KEY...

AND THEN USED AS
INPUTS IN THE ROUND
FUNCTION f.
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GENERATING DES ENCRYPTION SUBKEYS

In DES, a different key is used for each round of encryption, so 16 subkeys—
K, K,, K, . . ., K;s—need to be created from the encryption key for each of the
16 rounds. This is the method used to derive subkeys:

| Secret key K (initial key) 0]
A permutation called permuted choice 1
+ 64 bits (PC-1) is performed on the 56 nonparity
bits of the initial key. Permuted choice 1
is a special permutation method that
56 bits transposes each of the 56 bits into

specific positions. We won’t cover the
details of it here.

@

The 56 bits are divided into a 28-bit left
D DT g block (C,) and a 28-bit right block (D).
v v
Left circular Left circular ®
® shift (LS)) shift (LS)) The bits in C, and D, are left-circular
shifted to create C, and D,. A left-circular
¥ 28 bits v 28 bits shift moves every bit a certain number
e D, i of places to the left, and the bits at the
5 beginning of the block are shifted to the
5 very end, as though the block’s beginning
f_‘: and end were connected as in a circle.

@
C, and D, are joined. Then subkey K|
is made through another permutation,
permuted choice 2 (PC-2). PC-2 is
applied to all 56 bits of C, and D,
except for the 8 parity bits, resulting
in a compressed 48-bit subkey.

®
Steps 3 and 4 are repeated for each
round to generate each subkey K .
S Each of these subkeys will then be
used for each round in DES.

Left circular Left circular
shift (LS ;) shift (LS ,)
¥ 28 bits ¥ 28 bits

91 punoy

Compression
permutation PC-2 To generate the decryption subkeys,
the bits are right-circular shifted instead.
‘When the initial key is used for decryption,
the subkeys are obtained in reverse order
from K to K.
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WHAT ABOUT
THE ROUND
FUNCTION f?

TLL USE THIS
DIAGRAM!

PLEASE

MAKE THE

EXPLANATION
EASY.

THE DES ROUND FUNCTION F

In a round function, you use an S-box (substitution box) to perform substitu-
tions on an input to make a new output. Each S-box in this diagram contains a
different permutation for creating the substitutions.

Expansion @
permutation E The DES function only works on
48-bit blocks, so the rightmost block

of data, which is only 32 bits, needs to
be expanded using a 48-bit expansion
a1 permutation E. This results in the
48 bits output ER_, which is a 48-bit block.

@ 0 «——EKeyK, ®
48 bits Perform an XOR operation on the data
and the subkey.

®

48 bits Separate the result of the operation into
® 3 3 eight sets of 6-bit blocks each.

6 bits 6bits ... 6 bits 6 bits
l l l l @

Substitute each 6-bit set of data with

@ I S-box, I I S-box, | . | S-box, | I S-box, I 4 bits using S-boxes 1 through 8.
, A A . ©
4 bits 4 bits ... 4 bits 4 bits Combine the S-box output data
® sequentially to produce a 32-bit block.

l Combine into 32-bit block

®

Output Finally, apply permutation P to the data
permutation P to yield the output of function f.
32 bits
o K) Output of the round
n-1' “n:

function f
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THE FULL STRUCTURE OF DES ENCRYPTION AND DECRYPTION

The full DES encryption and decryption processes with all the steps we've
covered are shown here. The plaintext encryption process and the cipher
decryption process are opposite each other.

ENCRYPTION

Encryption key I
generation process

DECRYPTION

Decryption key

Encryption process 5
Typ P generation process

Decryption process

Plaintext input Secret key Ciphertext input Secret key
(in binary) (in binary) (in binary) (in binary)
v 64 bits V¥ 64 bits | V¥ 64 bits V¥ 64 bits
Initial Permuted choice | Initial Permuted choice
permutation IP PC-1 Permutation IP PC-1
L, (32)¥ VR, (32) C,(28)¥ vD, (28) | L, (32)¥ VR, (32) C, (28)¥ vD, (28)
Conversion Subley Subkey generation Conversion Sul bkey Subkey generation
process round 1 K, (48) round 1 | process round 1 K, (48) round 1
1 16
L G2V VR (32) C, 29V ¥D, 28) | L, G2V VR, G2)  C, 289V VD, 28)
Conversion Sul bkey Subkey generation Conversion Subkey Subkey generation
process round 2 K, (48) round 2 | process round 2 K,_ (48) round 2
15
L,32¥ VR, 32  C,28)¥ VD, @8 ' L, B2)¥ VR,32)  C, @8V VD, 28)
L (32)y $Ris (32) Ci; (28) D5 28) Ly; (32)y yRis (82) Cy;s (28)y ¥ D15 (28)
Conversion Sul bkey Subkey generation Conversion Slubkey Subkey generation
process round 16 | & (48) round 16 process round 16 | (48) round 16
16 1

Dre (32]?%Rm (32)

|L,G (32)>_<Rm (32)
I

Final
permutation IP !

64 bits

Ciphertext output
(in binary)

Final
permutation IP-*

64 bits

Plaintext output
(in binary)

IN THE EARLY 19705...

LUCIFER INVOLVED A

BLOCK LENGTH OF

64 BITS AND A KEY
Size OF 11Z BITS.

The number inside
each ( ) indicates the
block size in bits.
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AES ENCRYPTION

3-DES ENCRYPTION AND

BIG BROTHER, DO
YOU UNDERSTAND
DES NOW?

* MAN AMONG MEN

?

T'LL UNDOUBTEDLY
MASTER IT!

BUT ONCE I REVIEW IT... )

FIRST YOU'LL HAVE
TO DEEPEN YOUR
UNDERSTANDING OF THE
SIMPLIFIED VERSION,

S0 KEEP AT IT!

BUT CAN DES STILL
BE USED SAFELY
NOW? IT'S BEEN

AROUND SINCE
THE 1970s!
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YES... DES HAS
BECOME INSECURE
DUE TO ADVANCEMENT
IN COMPUTERS AND
NOW CAN BE EASILY
CRACKED.

THE DRAWBACKS OF DES

+ SHORT KEY SIZE: THE SHORTER THE KEY,
THE SMALLER THE NUMBER OF POS5IBLE
KEYS AVAILABLE AND THE MORE FEASIBLE
IT 15 TO UNCOVER THE SECRET KEY.

+ OUTDATED DESIGN: THE STRUCTURAL

DESIGN OF DES |15 CONSIDERED

OBSOLETE AND IS5 NO LONGER USED.

NONRIGOROUS IMPLEMENTATIONS OF

CRYPTOGRAPHY COMMONLY APPEAR ON

THE MARKET AND ARE EASIER TO CRACK

THAN ALREADY ESTABLISHED ONES.

HOW 15 IT & °" | | ABSOLUTELY...

DONE?

IMPOSSIBLE.

CAN EVEN T
po Im?

HERE ARE A FEW
METHODS FOR
CRACKING A
BLOCK CIPHER!

Exhaustive search algorithm Searching for the key by trying
every possible key (brute forcing)

Differential cryptanalysis Searching for vulnerabilities in
the cipher by looking for any
correlation between its inputs

and outputs

Linear cryptanalysis Searching for vulnerabilities in the
cipher by looking for mathematical
weaknesses in the cipher structure
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IN THE 19909,
DES ENCRYPTION...

7

BECAME CRACKABLE
USING COMPUTING
POWER TO BRUTE-

FORCE THE KEY.

\

" HUHP BUT I
WORKED 50 HARD
TO LEARN IT/

IT’S HOPELESS!

e

SI
f/,"w:/\
f o

THANKFULLY,
3-DES TOOK ITS

BASED ON THE
NAME, IT USES
DES, RIGHT?

3-DES IS5 ALSO

THREE SHARED KEYS.
THE FIRST ENCRYPTS
THE PLAINTEXT, THE
SECOND DECRYPTS, AND
THE THIRD ENCRYPTS
AGAIN.

3-DES ciphertext —p

KNOWN AS
TRIPLE-DES.
/ ; Y
EXACTLY. IT PERFORMS
ENCRYPTION BY USING Plaintext

DES encryptionl <+ Key 1

(56-bit encryption key)

DES ciphertext 1

DES decrypt.ionl 4— Key2

(66-bit decryption key)

DES ciphertext 2

DES encryptionl 4— Key3

(56-bit encryption key)

DES ciphertext 3
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WHEN THE FIRST ENCRYPTION
AND DECRYPTION ROUNDS
USE THE SAME KEVY...

THE RESULT IS THE SAME
AS DES NO MATTER WHAT
KEY 15 USED FOR THE LAST
ENCRYPTION. THAT'S BECAUSE
CIPHERTEXT Z WOULD END UP
THE SAME AS THE PLAINTEXT.
IN OTHER WORDS, YOU'RE
ONLY ENCRYPTING THE
PLAINTEXT ONCE.

IF THE FIRST TWO
KEYS OR ALL THREE
KEYS ARE IDENTICAL,
THE REAL KEY SIZE
1S 56 BITS.

IF YOU USE THE SAME
KEY IN BOTH ROUNDS
OF ENCRYPTION...

<

AND A DIFFERENT KEY FOR
DECRYPTION, YOU END
UP WITH A KEY SIZE OF

56 % 2 = 112 BITS!

THIS 3-DES FORMULA IS KNOWN AS EDE
(ENCRYPT-DECRYPT-ENCRYPT) MODE.

IF YOU USE DIFFERENT
KEYS THROUGHOUT, YOU
END UP WITH A KEY SIZE
OF 56 X 3 =168 BITS.

—_—
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50 IT WOULD )
SEEM!

{7
THE KEY SPACE 15
. \J LARGER, BUT THAT'S

NOT A SOLUTION TO
THE FUNDAMENTAL
PROBLEM. 3-DES 7

50 IN 3-DES,
THE KEY SIZE
JUST BECOMES
LARGER,
RIGHT?

STILL CRACKABLE.

AES STANDS FOR

IN 1997, THE U5 NATIONAL ADVANCED ENCRYPTION STANDARD.

INSTITUTE OF STANDARDS AND
TECHNOLOGY MADE A PUBLIC CALL
FOR A BETTER ALGORITHM THAT
WOULD BECOME THE NEW WORLD
STANDARD FOR ENCRYPTION. THIS
ALGORITHM WOULD EVENTUALLY
BE CALLED AES.

IBM, NTT, AND OTHER WORLD
ENTERPRISES AND ORGANIZATIONS
ENTERED SUBMISSIONS.

/

Ice
ENCRYPTION? =

[Regmndael

THE WINNING
SUBMISSION WAS....

NOW, IT'6 USED TO
ENCRYPT THE AMERICAN
GOVERNMENT'S
CONFIDENTIAL DOCUMENTS!

84 CHAPTER 2 SYMMETRIC-KEY ALGORITHMS



AN OUTLINE OF AES

In 2000, Rijndael was renamed AES and published as a Federal Informa-
tion Processing Standard (FIPS). The name Rijndael is derived from the
names of its developers, Joan Daemen and Vincent Rijmen, researchers
at Belgium’s Catholic University of Leuven.

As shown in the following table, in AES there are three possible key

sizes.
Type Key size (bits) | Block size (bits) | Number of rounds
AES-128 128 128 10
AES-192 192 128 12
AES-256 256 128 14

The encryption strength increases with respect to the key size and the
number of operations required. The block cipher structure of AES doesn’t
use a Feistel network but instead uses an SPN (substitution-permutation
network). To give a superficial explanation of what an SPN is, imagine the
substitution portion as an XOR operation that is performed on each block
and subkey while the permutation is some function that simply scrambles
the input bits. These two are performed simultaneously, usually for some
number of rounds (just as in a Feistel network).

From here on out, we’ll leave DES behind and discuss AES.

IF ADES
CIPHERTEXT CAN
BE CRACKED IN
1 SECOND...

15 AES THAT
STRONG?

HOW LONG PO YOU
THINK IT WOULD TAKE
TO CRACK AN AES
CIPHERTEXT?
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A YEAR
OR 507

IT WOULD TAKE
TRILLIONS OF YEARS!

THOUGH THE STRUCTURE
OF THE $-BOX IS5 KNOWN

AND RESEARCHERS HAVE THEN AES WILL

EXAMINED IT TO FIND BE SECURE
VULNERABILITIES... EVEN IN THE
FUTURE, HUH?

AES REMAINS
SECURE FROM
CRYPTANALYSIS
ATTACKS.

WELL, THE TECHNIQUES
USED IN CRYPTANALYSIS
ARE ALSO EVOLVING!

THERE ARE SOME WHO SAY

THAT AES MAY ONLY BE SECURE
FOR ANOTHER 10 YEARS OR
S0. THAT'S JUST SPECULATION,
THOUGH.
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50, BIG
BROTHER...

SINCE I'VE TAUGHT
YOU SO MUCH ABOUT
ENCRYPTION, IM
GRADUALLY EARNING
THAT COMPUTER,

I'VE BEEN THINKING THE
SAME THING AND MADE
SOME ARRANGEMENTS...




THIS COMPUTER 1S
WAY MORE USEFUL
THAN AN ABACUS!

ISNTIT
GREAT?!

TREM g,
LE
v TREMB, =

THIS IS A
CALCULATOR!

I WANT A COMPUTER!

\
J
“YOU'RE-THE— A
worsT BrROTHER - I K<
EVER! . ; ,/

NOW THEN. READ THE
FOLLOWING EXPLANATION
OF SIMPLIFIED DES AND
TRY OUT SOME PRACTICAL
APPLICATIONS OF ENCRYPTION
AND DECRYPTION!

IN CHAPTER 3, THE KEY
THAT HAS BEEN SECRET
UNTIL NOW WILL BE
REVEALED, SO ENJOY!
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SIMPLIFIED DES ENCRYPTION AND DECRYPTION

How are encryption and decryption performed in DES? We will work on a
reduced version of the DES algorithm to get an idea of what real DES is like.
The adaptation of DES that we’ll use here to help you solidify your understand-
ing of the concepts imitates DES but with fewer steps and smaller block sizes
(input/output sizes).

CONVERTING DATA INTO BINARY

Because modern-day algorithms—including DES and others—deal with binary
data, we need to be able to convert plaintext messages composed of letters
and numbers into binary. Table 2-1 illustrates 16 characters converted to 4-bit
binary numbers.

TABLE 2-1: CHARACTERS REPRESENTED IN BINARY

Characters Binary
A 0000
B 0001
C 0010
D 0011
E 0100
F 0101
G 0110
H 0111
i 1000
J 1001
K 1010
L 1011
M 1100
N 1101
o 1110
discarded character 1111

The encoding in Table 2-1 is a simple conversion we will use for the purposes
of this book and is not based on any particular encoding used in cryptography.
Likewise, the following conversions do not reflect actual binary representations
of letters and numbers done in practice (which we saw earlier with ASCII encod-
ing), but rather serve as simple examples of how characters may be converted to
binary numbers.
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GENERATING A DES CIPHERTEXT

In DES encryption, a block is 64 bits. However, for the purposes of this book,
we will use an 8-bit block in our reduced DES cipher example, as shown in
Figure 2-1. Our reduced DES cipher algorithm is composed of two steps—a key
schedule (which generates a larger key from the key we use) and actual encryp-
tion using the generated keys. DES is not the only block cipher to require a key
schedule procedure. It is common for block ciphers to perform a key schedule
prior to or in parallel with encryption and decryption.

Plaintext input
(binary digits)

v
Initial permutation IP

® < SR, K) ER,) Key K, (key K, at the

4 bits e 6 bits time of decryption)

R =L, ®f(ER), K))

4 bits

r 6 bits ——
(< ER) Key K, (key K, at the
T 8 bits time of decryption)

Round 2

Final permutation FP

8 bits Ciphertext output (L,O RO

Figure 2-1: Simplified process of generating a DES ciphertext
(excluding the key scheduler)
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Though it is not shown in Figure 2-1, the plaintext we want to encrypt
is first converted into Os and 1s, using Table 2-1, so that we can work with
binary data.

The two binary keys we'll use to perform reduced DES are as follows:

K, = (110001),, K, = (111000),

NOTE: The notations ( ), and ( ), represent binary digits and decimal num-
bers, respectively.

These keys have already been generated through the key schedule. We'll
discuss how a key is generated through the key schedule later; for now, let’s
focus on the encryption process of truncated DES.

We’ll encrypt the character string “MC” into a ciphertext using the truncated
version of DES, so we'll start by expressing these two inputted characters as a
block of 8 bits. Based on Table 2-1, “MC” in binary is expressed as 11000010.

PERFORM THE INITIAL PERMUTATION

We first convert the plaintext to binary, and then we perform the initial permu-
tation on the binary data according to Table 2-2. IP permutes the 8-bit binary
data by rearranging the input bit positions.

TABLE 2-2: INITIAL PERMUTATION IP

Input bits (original | b, [ b, | by [ b, [bs | bs | by | bg
position)

Output bits (using | b, | b, | bs [bs [ by | b5 | b [ b,
original input

positions)

In Table 2-2, the subscript of each bit indicates its original position, so
these numbers are in order in the first row. Then the bit is translated, so for
example, the first bit of input data (b,) is transposed to be the fifth bit of output
data, and the second bit of input data (b,) is transposed to be the first bit of the
output data. Figure 2-2 shows “MC”, represented in binary, undergoing the ini-
tial permutation.

MC — 1 1 0 0o 0 0 1 0

!

Initial permutation IP ——>

!

Permutation output data —)l 1 0] 0 o | | 1 [v) 0 1

0 R,

Figure 2-2: Initial permutation of the plaintext “MC”
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SEPARATE DATA INTO HIGHER- AND LOWER-ORDER BITS

We separate the permutation’s output data into higher-order and lower-order
bits. The higher-order bits are denoted L,, and the lower-order bits are denoted
R,. Based on Figure 2-2, this yields the following:

L, = (1000),
R, = (1001),

FEISTEL ROUNDS VARIANT

Now we begin going through rounds in a Feistel network. The Feistel network
performs a specific set of steps that “mix bits” to create a new L and R. Since
we're using a reduced form of DES, we’ll mix the bits using a less rigorous
method than with real DES. (In real DES, the network mixes the bits in a way
that ensures pseudorandomness.) The following represents what a round of the
Feistel network looks like in notation form:

L =R,
R =L, O f(Kv Rl—l)

Each generation of a new L and R is a round, and i is equal to the round
number. The process represented in Figure 2-2 is one round.

L, will be equal to R, but the process to derive R, requires much more
work; R, and key K, are input into function f. In our reduced DES, there will
be only 2 rounds, but real DES has 16 rounds.

Let’s walk through how f(K,, R,) works.

ROUND 1
The first operation in fis to apply the expansion function E from Table 2-3 on R,

TABLE 2-3: EXPANSION FUNCTION £

Input bits (original by [by |bg | by
position)

Output bits (using by [by [by |y by |Dy
original input

positions)

This means that we duplicate the third and fourth bits of R, and append
them to the beginning of R, to form a new R, that is 6 bits long:

R, = (1001),( (* @ R, = (011001),

We next XOR the expansion permutation R, and the key K, = (110001),, as
shown in Figure 2-3.
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R, —

1 (0] 0 1
Expansion
permutation E m
0 1 1 0 0 1
O

ER,) —
O O O 0O O
K, — 1 1 o o o 1

ER)OK, —> 1 0 1 0 0 0
Figure 2-3: Visual representation of XORing E(R,) and K,

The process shown in Figure 2-3 can be represented by the following
equation:
E(R,) 0 K, = (011001), O (110001), = (101000),
Now we put R, ® K, through the substitution box (S-box) in Table 2-4, which

compresses and substitutes the bits from R, @ K, to create a 4-bit output. We’ll
label the bits from R, @ K, as b, b,b;b,bsb.

TABLE 2-4: SUBSTITUTION BOX (5-BOX)

Column numbers

0O|1|2(|3|4|5|6|7|8|9|10(11]|12|13|14|15

O |14 4 |183|1 2 |15|11| 8| 3|10 6 |12|5 |9 |O0| 7

0|15 7 @14 2 |13 1106 |12|11| 9 5 3 8

21| 4 1|14 8 ]13] 6 2 |11|15]12]| 9 7 3 ]10| 5 0

Row numbers
=

3|15]|12] 8 2 4|9 i 7 51113 |14|10| O 6 |13

In the S-box shown in Table 2-4, four substitutions are available and labeled
with row numbers starting with 0 and going up to 3. We determine which sub-
stitution to use based on the value of the bits b,b,b;b,b;b,. We convert the first
and last bits, b, and by, to their base-10 equivalent and use those two numbers
to determine which row of the S-box we use. We then also convert the remain-
ing bits, b,bsb,bs, to base 10 to determine which column we will use.

For example, in (101000),, we select row 2 because b, is 1 and bg is 0 and
(10), = (2),,- Then, bits b,bs;b,b; are also converted to base 10 to determine the
column number we select. Since (0100), = (4),,, we select column 4 in this case,
which contains the value (13),, (the position that is boxed in Table 2-4). After
we find the corresponding table entry, we convert it into binary: (1101),.
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The resulting binary, (1101),, then undergoes the permutation PS (Table 2-5).

TABLE 2-5: PERMUTATION P5

Input bits (original |b, |b, |b; |b,
position)

Output bits (using |bs | b, |b; |b,
original input
positions)

When the permutation PS from Table 2-5 is applied to our working example,
the process looks like Figure 2-4.

ROK —> [1 0 1 0 0 o]

S-box (R, 0 K) —>

1 1 0 1
Output of PS ——> %
—_3 0 1 1 1

SR, K)
Figure 2-4: The calculation process of PS

The result is (1111),.We've now finished the permutation process. That
is to say, we've done all the steps involved in the function f. All of these steps
together are written with this notation:

J(K,, Ro) = (0111)2

This is the last step in the first round of the Feistel network (see Fig-
ure 2-1). In this step, we switch the sides of the bits to create L, and R,.
The four lower-order bits on the right side (R,) that we got in “Separate
Data into Higher- and Lower-Order Bits” on page 92 are assigned to L, so
that they become the higher-order bits. L, is assigned to R, and becomes
the lower-order bits. We can summarize the flip by assigning L, to the equa-
tion that produced R, and assigning R, to the equation in “Perform the Initial
Permutation” on page 91. Using the equation from “Feistel Rounds Variant”
on page 92, we will do the following:

L, =R, = (1001)2
R =L,0 f(K,R,) = (1000)2 u] (0111)2 = (1111)2
In order to complete a second round, we repeat these steps on R, and L,.

Since the steps in round 2 are identical to those in round 1, we’ll only show the
calculations involved, without detailed explanations.
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ROUND 2
The expansion function from Table 2-3 is applied to R;:

R =(1111),( @R, = (111111),

We then XOR R, with key K, = (111000),:
R 0 K, =(111111), 0 (111000), = (000111),
Then we use the permutation in Table 2-5 to rearrange the position of the
bits, resulting in this:
(0100), @ (0001),

We'll apply the equation we use to express XORing R, and K, and process
the result with the S-box:

7(K,. R,) = (0001),

For the final step of round 2 (see Figure 2-1 again), we will do the following:
L, =R, =(1111),
R, = L, O f(K,, R,) = (1001), 0 (0001), = (1000),

SWAP THE HIGHER- AND LOWER-ORDER BITS

After round 2 is completed, we swap the higher-order bits L, and lower-order
bits R, again to get L,’ and R,":

L, = R, = (1000),
R, = L, = (1111),

This swap is shown in Figure 2-5.

Figure 2-5: Swapping the higher- and lower-order bits
PERFORM THE FINAL PERMUTATION

Based on the final permutation FP in Table 2-6, we transpose each bit to a new
position.
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TABLE 2-6: FINAL PERMUTATION 7P

Input bits (original | b, | b, [b; [ b, | bs | bg [ by [ by
position)

Output bits (using |bs | b, [bs [ by | b; | b [bs | by
original input

positions)

For example, if you look at Table 2-2, you’ll see that the fifth input bit (by)
becomes the seventh bit in the output. When the seventh bit (b;) is processed
in Table 2-6, it becomes the fifth bit in the output, which means the bit reverts
to its initial position. Figure 2-6 shows the initial and final permutations.

Input bit position
1 2 3 4 5 6 g 8

Initial
permutation IP

Final
permutation FP

1 2 3 4 5 6 T 8
Output bit position

Figure 2-6: The process of putting an 8-bit block through IP and FP. The initial
permutation IP and final permutation FP are inverses of one another.

The process shown in Table 2-6 results in L,” and R,"”, which when com-
bined result in our 8-bit ciphertext:

L,0= (1000),
R,0= (1111),

The resulting ciphertext is (11101010),, as shown in Figure 2-7.

L0 RO
[t o o o] [+ 1 1 1]
pem]:i:?it)n FP =
Ciphertext —> |1 1 10 | I 1 0 1 0
Lo R0

Figure 2-7: The resulting ciphertext from the final permutation FP
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DECRYPTING A DES CIPHERTEXT

Now, we'll try to decrypt the DES ciphertext from Figure 2-7 into its original
plaintext. For decryption, you apply the same steps shown in Figure 2-1.

PERFORM THE INITIAL PERMUTATION

The ciphertext is made up of its left and right sides, L,” and R,". In the initial
permutation, both sides of the ciphertext’s bits (11101010) were rearranged
according to the initial permutation chart in Table 2-2.

SEPARATE DATA INTO HIGHER- AND LOWER-ORDER BITS

The permutated bits are separated into four higher-order bits (left side) L, and
four lower-order bits (right side) R,. These bits are the same as L,’ and R,'. In
equation form, this is the opposite of the final permutation when encrypting
with DES:

L, = (1000),(= L,’)

R, - (1111),(- R/)

Figure 2-8 shows the initial permutation and separation processes together.

Lo R0

Ciphertext —» |1 10 0| |0 o 1 o

Initial
permutation IP

Output from

permutation — I : g 0 Ol | L g g 1

L=1L, R=R,

Figure 2-8: Output after applying the initial permutation IP to the ciphertext

ROUND 1

The first round of decryption inverts the last round of encryption, so we start
by applying the expansion function E from Table 2-3 on R,,. The expansion func-
tion duplicates the first two bits of R, and attaches them to the end of R,:

R, = (1111),( F@ R, = (111111),

We calculate the XOR of R, and key K,. As a reminder, K, is (111000),.

R, 0 K, = (111111), O (111000), = (000111),

We then compress and substitute the result from the previous step
(000111), using the S-box in Table 2-4. We select the first and last bits of
the result, (000111),; combine those two bits into one binary number, (01),;
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and convert the number to decimal, (01), = (1),,- We then convert the remain-
ing four bits from the original binary number (0011), to decimal, (0011), = (3),,.
In Table 2-4, we find where the two decimal values intersect. The column num-
ber is 3 and the row is 1, so the intersecting value is (4),, (the position that is
circled in Table 2-4). The intersecting value is converted into binary to produce
(0100),. Then we use the permutation PS from Table 2-5 on this binary number,
so (0100), becomes (0001),. Finally, this function can be expressed as follows:

S (K, R,) = (0001),
So far, we've found the output for the four higher-order bits L, and calcu-
lated f(K,, R,) = (0001),. With this information, we can also derive R, We first

take L, and set it equal to R,. Then, we derive R, by XORing L, and f(K,, R,).
We'll find the output for the four lower-order bits R, as follows:

L =R, = (1111)2
R =L, 0O f(K,, RO) = (1000)2 + (0001)Z = (1001)2
Now that we have finished the first round, we’ll perform the second round.

ROUND 2

As we did in all the previous rounds, we first find f(K,, R,) by applying the
expansion function E from Table 2-3 on R;:

R, = (1001),( @ R, = (011001),

We calculate the XOR of R, and the key K. The key K, is equal to (110001),.
R, 0 K, =(011001), 0 (110001), = (101000),
Then we put R, ® K, through the S-box using the permutation PS from

Table 2-5. Doing so rearranges the position of the binary number’s bits so that
it becomes the following:

(1101), @ (0111),

Finally, this whole process is expressed in equation form as this:
S(K;, R,) = (0111),
In Figure 2-12, the output of round 2 is the four higher-order bits (left side)

L, and four lower-order bits (right side) R,, which are found using the following
equations:

- R, - (1001),
=)

L2
R, O f(K,, R,) = (1111), 0 (0111), = (1000),

L, is set equal to R,, which in this case is the binary value 1001. R, is found
by XORing L, and f(K,, R,).
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In the final stage of the process in Figure 2-1, we swap the higher-order
bits, L,, and lower-order bits, R,, to find L," and R,’, as seen in Figure 2-9.

Figure 2-9: Swapping the left and right bits

This swap is represented by the following equations:
Ly=R, = (1000)2
R, = L, = (1001),
L," and R," are found by performing the final permutation FP from Table 2-6

on L, and R,’. Using Table 2-1, L,” is then converted from binary to the charac-
ter “M”, and R," is converted to “C”.

L,0= (1100),
R,0=(0010),

You can see this process in Figure 2-10.

Lo RO
1 0o o of [t 0o o 1
Final
permutation FP
Plaintext ~——> I 1 1 0o o0 | I ) 1 0 I
LOEM) R,O(“C™)

Figure 2-10: The final permutation performed on the bits of L,” and R,”

The plaintext is 1100 0010, which is the character string “MC”.

We can see that the resulting 8-bit output data corresponds with the
original plaintext, so the ciphertext has been decrypted. As you can see,
decryption is the same process as encryption, just with the order of keys
reversed. The relationship between encryption and decryption processes is
shown in Figure 2-11.
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,—| Encryption p } ~N - } Decryption process I—\

)] | Plaintext (11000010) Iq- -»I Ciphertext (11101010) | [1]
@ | Initial permutation (10001001) I(- -DI Initial permutation (10001111) | (2]
) | L, (1000) R, (1001) |4. ..[ L, (1000) R, (1111) | )
Key K, —p <4—Key K,
@ | L, (1001) R, (1111) |4. ..I L, (1111) R, (1001) )
Key K, —p <4—Key K‘
® | L, (1111) R, (1000) |4. ..I L, (1001) R, (1000) | [5)
® | L,0(1000) Ry0(1111) |q- -»| L,0(1000) R1(1001) | 16}
Final permutation Final permutation
@ (11101010) ciphertext N ™ (11000010) plaintext L
\\§ J . J
Oe—>0
@e—»0
[OF === 5 e careful when swapping the places
¢ > of the four higher-order bits L,
@ o and four lower-order bits R,
Oe—>»© (wherei=0, 1, 2).
©—> 0
Qe—>»©0

Figure 2-11: Relationship between the encryption and decryption processes

GENERATING DES KEYS

Now that we have seen how encryption and decryption are performed using
reduced DES, let’s discuss how keys are generated from the key schedule.
Reduced DES requires an input of an 8-bit key K,, and the key given by the
user generates two 8-bit keys, which are then used in the encryption and
decryption process.

K, = (10011001),

The key schedule, which is the procedure for generating the keys K, and
K,, is shown in Figure 2-12.
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I Symmetric private key K |

Permuted choice PC-1
4 bits ‘ * 4 bits

| G | I 2, |

NP \JM* P O]

(Circular shift 1 bit to the left) (Circular shift 1 bit to the right)
4 bits

A bt Round 1
& | I

D

6 bits I E

Key K, ¢—{ Permuted choice PC-2 ) %

pa A NN
- Y

U /
T—

CCircular shift 2 bits to the left) @ircular shift 2 bits to the righD ?
4 bits

y T T T

4 bits
| I D | Round 2

6 bits |

cZ
Key K, H Permuted choice PC-2 ) < |
<
<

2

v

Figure 2-12: Generating encryption keys and decryption keys

PERFORM PERMUTED CHOICE PC-1
The symmetric key K, is permuted according to PC-1.

K, = (00110101)2
The bits are transposed, as shown in Table 2-7.

TABLE 2-7: PERMUTED CHOICE PC

4 higher- 4 lower-
order bits order bits
Input bits (original | b, | b, | b [ b, [ bs | bs [ by | bg
position)
Output bits (using |bs | bs | by [ bs [ by | bs | by | by
original input
positions)
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When the transposition in Table 2-7 is applied to K,, we acquire K, as
shown in Figure 2-13.

mitalkeyK,—s[1 0 0o 1 1 o o 1]

Permuted
choice PC-1

Ep —fo o 1 1][o 1 o 1]
C

(

Figure 2-13: Permuted choice PC-1

Here, K,' is divided into C,, which is made up of the four higher-order bits,
and D, the key’s four lower-order bits, and is expressed as follows:
C, = (0011),
D, = (0101),

ROTATE THE BITS
C, and D, are each rotated one bit to the left, as Figure 2-14 shows, and the
results are expressed as C, and D,. During round 1, bits are all shifted by one
position.

C = (0110)2

D, = (1010)2

The bits in C, and D, are rotated independently to produce C, and D, as
shown in Figure 2-14.

Rotate 1 bit
to the left

Figure 2-14: Rotating C, and D, one bit to the left

PERFORM PERMUTED CHOICE PC-2

Based on permuted choice PC-2, C, and D, are compressed from 8 bits to
6 bits, yielding the key K, which is used in round 1 of encryption.

K, = (110001),
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Permuted choice PC-2 is shown in Table 2-8.

TABLE 2-8: PERMUTED CHOICE PC-2

Position of input bits |b, |b, [b; [b, by |b; [b; | by
Output labeled with |b; |bs [b, [bs [Dbg | D,
original input bits

Figure 2-15 shows the results of applying permuted choice PC-2 from
Table 2-8 to C, and D,.

C| Dl
o 1 1t of]t o 1 o
Permuted
choice PC-2
KeyK, —» [t 1 0 0o o 1]

Figure 2-15: Permuted choice PC-2

Repeating the key schedule steps will yield new keys to use for reduced DES.

ROTATE THE BITS AGAIN

Now we are going to generate K,. Each bit of C, and D, is rotated to the left by
two bits, as shown in Figure 2-16.

cl Dl
[0 1 1 o] [t o 1 o
1 0o o 1 I I 1 0 1 0
C D,

2 2

Figure 2-16: Rotating C, and D, two bits to the left

This results in C, and D,:

c, = (1001),
D, = (1010),

COMPRESS THE BITS

Based on permuted choice PC-2 in Table 2-8, C, and D, are compressed from a
total of 8 bits to 6 bits. This yields key K,, which is used in the second round of
encryption:

K, = (111000),
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Figure 2-17 shows how permuted choice PC-2 compresses the bits of C,

and D,,.
¢, D,
[t o o 1][1 o 1 o]
Permuted
choice PC-2
KeyK, —s [t 1 1 0o o o]

Figure 2-17: Using permuted choice PC-2 to produce K,

HOW REDUCED DES DIFFERS FROM REAL DES

We've learned how reduced DES works. As mentioned at the beginning of this
chapter, real DES used in practice is more complex.

DES (and its reduced version) is no longer secure and should not
be used in any practical implementations.

Reduced DES is a modified DES that encrypts and decrypts only 8-bit mes-
sages using an 8-bit key, while real DES encrypts and decrypts 64-bit messages
with a 56-bit key. This means that all of the procedures done in real DES use
a different expansion function, f function, and S-box to accommodate for the
size of the inputs. In addition, real DES performs 16 rounds rather than the
2 rounds of the Feistel network. The key schedule is also different, because
real DES generates 16 keys and performs only one circular bit shift rather
than two.

Although we didn’t cover real DES, this section should still give you an idea
of just how involved, exhaustive, and particular the steps in modern-day encryp-
tion schemes are.
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THE BASICS OF

PUBLIC-KEY ENCRYPTION |

LOOKS LIKE
YOU 6OT YOUR

THANKS,
BIG BROTHER!

SHOOT, NOW I'M
BROKE!

WE'RE HAVING
NOTHING BUT
RAMEN FOR A
WHILE...

YOU LIVE
OFF RAMEN
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WHEN YOU HAVE A
COMPUTER, YOU
CAN DO ALL SORTS

OF THIN@S..

WAIT A MINUTE...
1 THOUGHT YOU
WERE GONNA USE
T TO STUDY?

. >
MY NEW BEST

>>§>

SHOPPING,
GAMES...

I ALSO PO A LOT OF
ONLINE SHOPPING!
IT'S SO CONVENIENT
TO PAY BY CARD!

THAT'S WHY WE USE
PUBLIC-KEY ENCRYPTION—
TO PREVENT YOUR
TRANSACTIONS FROM
BEING INTERCEPTED!

ISN'T THAT DANGEROUS?
I MEAN, WHAT IF YOUR
CREDIT CARD INFO IS

STOLEN?
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DESIGNER PURSE
¥ 300,000

TLL JUsT
ENTER THE
INFORMATION...

GIVE ME YOUR {cp
CREDIT CARD
FOR A SEC.

AND PRESTO! R F<

00,0

PICHASE | | DETAILY

4 cLick!
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| Certificate X

General Details Certification Path . A
You can view the public key used for

show: 2 encrypting messages to a website you
Fieid e ~ are currently communicating with
[Elsignature hash algorithm sha256 in your web browser. If you're using

[ rssuer US, Bitdefender, IDS, Bitdefen... Google Chrome, click the lock sym-
] valid from Saturday, July 15, 2017 5:00:. bol in the addr b d th lick
uvahd to Monday, July 16, 2018 5:00:0. ol 1n € a €Ss bar, an €n clic:
\sub,ect nostarch.com, CloudFlare, Inc. the Valid option under the Certificate
5] Publc key parameters 0500 heading. Switch to the Details tab and
Ji<lSuhiect Altarnative Nams e bd

echLconl ey select Public key. You would also click
30 82 01 0a 02 82 01 01 00 a7 5c do fd £2 A the lock symbol in Firefox and Safari to
view your SSL certificate.

v

p
Edt Properties. Copy toFik... [

!
o]

WHOA! THAT'S AN
AWFULLY LONG
HEXADECIMAL STRING!

THAT'S THE
PUBLIC KEY?!

4 s
SURE 15! P
OH! WELL, -
AND IT MAKES :
SECURE THAT'S A HAHA! —
COMMUNICATION RELIEF!

SHE STILL HAS
YOUR CARD...
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IN THE CIPHERS WE'VE
STUDIED UNTIL THIS POINT,
THE KEY ALWAYS HAD TO

STAY SECRET, RIGHT?

NOW LET'S LEARN
ABOUT ASYMMETRIC
CRYPTOGRAPHY...

WHICH MOST
PEOPLE USE
REGULARLY ON THE
INTERNET WITHOUT
REALIZING!

BECAUSE WE'RE

USING AN ENCRYPTION

SCHEME IN WHICH THE
PUBLIC KEY |5 ONLY
ONE OF THE KEY5!

<

THE OTHER KEY 15
THE PRIVATE KEY!

THEN WHY IS

IT OKAY FOR
THE KEY TO BE

DISCOVERABLE IN

THIS CASE?

Plaintext

a==

%

Sender Recipi

ent
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WAS ENCRYPTED
A PUBLIC KEY.

IN OTHER WORDS,
WHEN WE WERE
SHOPPING JUST NOW,
THE CUSTOMER DATA

WITH

PRIVATE KEY

AND WAS
DECRYPTED WITH
A PRIVATE KEY BY
THE RETAILER.

Plaintext

key) secret.

Public key

I ONE PURSE,
PLEASE!

Open to
public
knowledge

Public key

e

Eaves-
dropper

Encryption

Public key

THANK YOU FOR YOUR
« BUSINESS!

7

Ciphertext

The recipient (the retailer) makes the public
key P, (the encryption key) open to the public
but keeps the private key S, (the decryption

Recipient

| Private key
K) —_—1l

USED FOR DECRYPTION
ARE DIFFERENT?

THEN THE KEY USED FOR
ENCRYPTION AND THE KEY

YEP! AND THIS
15 KNOWN AS
ASYMMETRIC
ENCRYPTION.

THE ENCRYPTION SCHEME
IS ONE PART OF
PUBLIC-KEY
CRYPTOGRAPHY,
WHICH 15 ALSO CALLED
ASYMMETRIC
CRYPTOGRAPHY.

THE BASICS OF PUBLIC-KEY ENCRYPTION 11



EACH PERSON sty THERE MUST BE WAY
NEEDS TWO MORE KEYS THAN IN NO, THAT’S NOT
¢ THE SYMMETRIC-KEY THE cASE!

BECAUSE EVERYONE
INVOLVED IN THE
CORRESPONDENCE HAS

ONE PRIVATE KEY AND ONE

PUBLIC KEY EACH.

In the public-key encryption scheme,

even if n users were communicating with
encryption, the total number of keys
involved is only 2n. That’s because each
user’s public key from their key pair is
what others will use to encrypt a message
to that person. When there are 1,000 users
in a symmetric-key scheme, the number
of keys is calculated as follows (using the
equation on page 61):

EVERYONE CAN
COMMUNICATE WITH A
SMALLER TOTAL NUMBER
OF KeYS.

1,000 »(1,000 — 1)
1,000Cs = - 9

This means that you need 499,500
keys for a symmetric-key scheme. But for
public-key encryption, the key calculation

is just 2 x 1,000, which means you need
only 2,000 keys.

SINCE YOU CAN

KEY DELIVERY
ENAC %Qéwe ISN'T AN 155UE—
ACCESSIBLE KEV... UNLIKE WITH A

SYMMETRIC KEY.
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)
THAT'S .
EXCELLENT! 50 WHAT IF WE KEYS INCREDIBLY
WERE TO JUST STOP LONG?

USING SYMMETRIC °
KEYS AND ONLY
USE PUBLIC-KEY
CRYPTOGRAPHY?

THE KEY 5IZE OF
A SYMMETRIC KEY
15 é4, 128, OR 256
BITS, BUT PUBLIC
KEYS CAN BE
EVEN LONGER AT
1,024 BITS!

BUT AREN'T PUBLIC

YES, THE KEYS ARE MUCH LONGER
FOR PUBLIC-KEY ENCRYPTION,
BUT THAT ISN'T THE MAIN REASON
OTHER TYPES OF CRYPTOGRAPHY
ARE USED. PUBLIC-KEY
CRYPTOGRAPHY REQUIRES A LOT
OF CALCULATIONS—

MANY MORE THAN
IN OTHER TYPES OF
CRYPTOGRAPHY!

WE'LL STUDY THIS IN
> CHAPTER 4,

BUT IN THAT CASE,
WE OFTEN USE
HYBRID METHODS...

WHAT ABOUT X!
WHEN YOU
ENCRYPT

A LONG

SENTENCE?

COMBINING SYMMETRIC-KEY AND
PUBLIC-KEY ENCRYPTION.

THE BASICS OF PUBLIC-KEY ENCRYPTION

ALSO, WHEN A
MESSAGE |5
ENCRYPTED USING
A SYMMETRIC-KEY

ALGORITHM, <

IT'S CLEAR YOU'RE
COMMUNICATING
WITH A MUTUAL
PARTY, BUT...

13



WHEN YOU USE A PUBLIC KEY,
THERE'S NO WAY FOR THE
RECIPIENT TO VERIFY THE
IDENTITY OF THE SENDER!

FOR THAT REASON, WE
USE A FORM OF IDENTITY
VERIFICATION KNOWN AS
AUTHENTICATION.

WE'LL LEARN ABOUT
THIS IN CHAPTER 4
AS WELL.

THEN CAN I HAVE
YOU START BY
TEACHING US THE
KEY TYPES AND
STRUCTURES?

LIKE SYMMETRIC-KEY
METHODS, PUBLIC-KEY
CRYPTOSYSTEMS HAVE

VARIOUS SCHEMES.

114 CHAPTER 3 PUBLIC-KEY ENCRYPTION

N




MATHEMATICAL DEPENDENCIES OF PUBLIC-KEY ENCRYPTION

PUBLIC-KEY ENCRYPTION SCHEMES RELY ON TWO TYPES
OF MATHEMATICAL PROBLEMS:

THE INTEGER THE DISCRETE
FACTORIZATION LOGARITHM PROBLEM
PROBLEM IS USED BY 1S USED BY ELGAMAL
RSA ENCRYPTION, RABIN ENCRYPTION, DSA
ENCRYPTION, AND OTHER AUTHENTICATION, AND
SCHEMES. SO ON.
I NEED TO KNOW MATH?! DON'T WORRY! T'LL
- 4| TEACH YOU THE MATH you CA: THINK OF EECRWTISN
BEHIND ENCRYPTION AS A HARD-TO-SOLVE MAT
AL sl S STARTING FROM THE PROBLEM WHERE SECURITY

INCREASES WITH THE
e DIFFICULTY OF THE PROBLEM.
THE MORE TIME NEEDED
TO SOLVE A PROBLEM, THE
HARDER THE PROBLEM 15.

LOGARITHM PROBLEM?

WHAT 15 ALL THIS?!

WHY DO WE HAVE
TO LEARN SUCH
DIFFICULT MATH?

FIRST T'LL EXPLAIN
ONE-WAY FUNCTIONS,

WHICH ARE NEEDED
TO GUARANTEE THE
SECURITY OF PUBLIC-
. KEY ENCRYPTION.

oo

b you cant 7,
MAKE ME!  »
TO UNDERSTAND THE
STRUCTURE OF A
CRYPTOSYSTEM, YOU
NEED TO KNOW THE
MATH BEHIND 1T/
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ONE-WAY FUNCTIONS

A one-way function is a function F for which it is easy to compute F(x) for
a given input x but not easy to find the input x given the calculation of F(x).
Let’s look at an example of a one-way function.

INTEGER FACTORIZATION PROBLEM

Multiplying two large prime numbers and finding the resulting compos-

ite number is simple. On the other hand, attempting to find the original

two primes is exceedingly difficult when you are given only the composite
number. The process of deriving the original primes based on the compos-
ite number is known as the integer factorization problem (explained later in
“Prime Numbers and Integer Factorization” on page 120).

DISCRETE LOGARITHM FROBLEM
Consider the following equation, which uses modular arithmetic:
a* = y(mod p)
When you know a and x, finding y is comparatively simple. But if you

know a and y, finding x, the logarithm of y, is extraordinarily difficult. This
is the discrete logarithm problem.

THAT'S A LOT
OF COMPLEX
TERMINOLOGY,

e

YOU REALLY
MEAN THAT,
RIGHT?!

BUT YOU'LL COME
TO UNDERSTAND IT
LITTLE BY LITTLE.

116 CHAPTER 3 PUBLIC-KEY ENCRYPTION



BY THE WAY, WHY
15 THE ONE-
WAY FUNCTION
NECESSARY?

IN A SYMMETRIC-KEY
ALGORITHM, DOESN'T
DECRYPTION INVOLVE REVERSING
THE ENCRYPTION PROCESS?

IN PUBLIC-KEY CRYPTOGRAPHY,
WITHOUT THE ONE-WAY
FUNCTION, THERE'S THE DANGER
OF SOMEONE INFERRING THE
PRIVATE KEY.

WAIT A
MINUTE!

IF YOU UsE

A ONE-WAY
FUNCTION, DOESN'T

DECRYPTION BECOME

IMPOS5IBLE?

YOU JUST Use
THE PRIVATE KEY
TO DECRYPT,

PON'T YOU?

CORRECT!
.

PRIVATE KEYS DO HAVE
THAT FUNCTIONALITY.

A ONE-WAY FUNCTION 15 ALSO <
KNOWN AS A TRAPPOOR FUNCTION.
YOU CAN FIND THE INPUT USING THE

PRIVATE KEY, 5O THE FUNCTION ONLY
APPEARS TO BE ONE-WAY TO THOSE
WITHOUT THE KEY.
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If you leave through an automatically locking door, then without a key, you
can’t get back in. A function with this type of structure is known as a trapdoor

function.
Without a key, you can But without a key, you If you have a key, you
leave the room. can’t enter the room. can enter the room.

LET'S TAKE A LOOK AT THE
BIRTH OF RSA ENCRYPTION,
WHICH |5 A PUBLIC-KEY
ENCRYPTION SCHEME,

THAT'S
MY LINE!
AS WELL AS HOW TO USE THE

MATHEMATICS BEHIND IT!
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THE BIRTH OF RSA ENCRYPTION

RSA was introduced in 1977 as the world’s first public-key encryption system.
Its name derives from the initials of the three American researchers who devel-
oped it: Rivest, Shamir, and Adleman.

RSA's strength lies in the difficulty of solving the integer factorization prob-
lem developers published in a science magazine in 1977. The problem involves
applying integer factorization to a given number to decipher a message.

Here is the 129-digit natural number they presented:

1143816257578888676692357799761466120102182967212
4236256256184293570693524573389783059712356395870
5058989075147599290026879543541

Not until 1994 was the number’s integer factorization calculated and the
message deciphered. Doing so took some 1,600 computers. It may seem as
though 17 years is a long time to find the factors of a number, but one of the
RSA developers, Rivest, had anticipated that it would take a thousand years,
so the creators were actually surprised the cipher was cracked when it was.
Incidentally, the decoded message was “THE MAGIC WORDS ARE SQUEAMISH
OSSIFRAGE.”

The numbers currently used in RSA encryption are more than 300 digits
long in base 10 and, even with computers, would take an astronomical amount
of time to perform integer factorization on.
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PRIME NUMBERS AND
INTEGER FACTORIZATION

FIRST, SOME
MATERIALS! THESE
WILL HELP YOU
UNDERSTAND RSA.

o)

“FUN PRIME

NUMBERS"? THERE'S NOTHING FUN

ABOUT THIS!

1 GAVE UP ON
ARITHMETIC AS
SOON AS WE
STARTED DIVIDING
FRACTIONS.
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IN THE MATH BEHIND R5A,

YOU ONLY HAVE TO WORK K onal Integers Natural
WITH NATURAL NUMBERS. === _—
Numbers Numbers Integers not
comprising integers | comprising natural less than 1
and fractions numl?ers., 0, and 1,2,38,...)
THERE AREN'T ANY o
IRRATIONAL NUMBERS 1e2v 8 )
OR FRACTIONS— Nqnnegatjve
KEEP THIS IN MIND! e
Integers that are
not negative
0,1,2,8,..)
— Fractions

Numbers that are
expressed as the ratio of
two integers and that, when
expressed as decimals, are
either finite or repeating

Irrational
numbers

Numbers that can’t be expressed
as a ratio of two integers and
that, in decimal form, are
expressed as noncyclical infinite
decimals (V2, ©, e, and so on)

TIME FOR A
WHAT? PROBLEM!
REALLY?

SAY YOU HAVE
30 ORANGES.

. HOW WOULD

: === T ' YOU DIVIDE THEM

T o U , EQUALLY AMONG
N . A GROUP OF

il CHILDREN, WITH NO
REMAINDER?
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SIMPLE! THAT'S IT! 3/\

A NUMBER THAT DIVIDES
PEOPLE, ORANGES, AND
OTHER THINGS WITH NO
REMAINDER...

15 KNOWN AS A
DIVISOR OR A FACTOR.

HERE'S THE RELATIONSHIP

BETWEEN THE NUMBER OF

PEOPLE AND THE NUMBER
OF ORANGES:

Number of | Oranges

children per child

1 30

2 15 THE DIVISORS (OR

3 10 FACTORS) OF 30 ARE
1,2, 3,5, 6,10, 15, AND

5 o 30—EIGHT IN ALL.

6 5

10 3

15 2

30 1

AND THEN THERE ARE
SOME NATURAL NUMBERS
THAT ARE DIVISIBLE
BY NOTHING BUT 1 AND
THEMSELVES—THOSE
ARE KNOWN AS PRIME
NUMBERS.

A FUNDAMENTAL RULE LET'S TAKE A LOOK
OF MATHEMATICS 1S AT THE PRIME
NUMBERS UP TO 20.

IS5 1 A PRIME
NUMBER?
THAT 1 1SN'T A PRIME
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2 Divisible only by itself (2) and 1 Prime number
3 Divisible only by itself (3) and 1 Prime number
4 Divisible by 2 Not prime
5] Divisible only by itself (5) and 1 Prime number
6 Divisible by 2 and 3 Not prime
7t Divisible only by itself (7) and 1 Prime number
8 Divisible by 2 and 4 Not prime
9 Divisible by 3 Not prime
10 Divisible by 2 and 5 Not prime
il Divisible only by itself (11) and 1 Prime number
12 Divisible by 2, 3, 4, and 6 Not prime
13 Divisible only by itself (13) and 1 Prime number
14 Divisible by 2 and 7 Not prime
15 Divisible by 3 and 5 Not prime
16 Divisible by 2, 4, and 8 Not prime
17 Divisible only by itself (17) and 1 Prime number
18 Divisible by 2, 3, 6, and 9 Not prime
19 Divisible only by itself (19) and 1 Prime number
20 Divisible by 2, 4, 5, and 10 Not prime
NONPRIME NUMBERS _l
ARE CALLED
COMPOSITE NUMBERS, THIS 1S CALLED
AND THEY CAN BE ) INTEGER
EXPRESSED AS THE ég FACTOR/ZATION.
PRODUCT OF ONE OR b
MORE PRIMES.
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INTEGER FACTORIZATION FOR
ANY COMPOSITE NUMBER HAS
ONLY ONE RESULT. ACCORDING
TO THE UNIQUE FACTORIZATION
THEOREM, EACH FACTORIZATION
FOR A COMPOSITE NUMBER |5
ALSO UNIQUE TO THAT NUMBER.

4=2>=2x2 TO PRESERVE THE INTEGER
6=2x3 FACTORIZATION’S UNIQUENESS,
8-2-92x2x2 WE DON'T CATEGORIZE 1 AS
A PRIME NUMBER.

9=32=3x3
10=2x5

_ 92,3
12=2"%8=2%2x8 IF 1 WERE PRIME, NUMBERS
14=2x7 COULD HAVE MORE THAN ONE
15=3x5 FACTORIZATION. FOR EXAMPLE, THE

FACTORS OF 6 WOULD BE BOTH

- 4._
16=2"=2x2x2x2 3XZAND3XZXI1

18=2x3*=2x3x3
20=2x5=2x2x5

WHAAAAAT?!

DO WE HAVE TO
INSPECT EACH AND
EVERY NUMBER TO
DETERMINE WHETHER
IT'S PRIME? /

FORTUNATELY, WE CAN USE
A METHOD KNOWN AS THE
SIEVE OF ERATOSTHENES.

~
HERE'S HOW IT
WORKS!

WHEN A NATURAL NUMBER N ISN'T

DIVISIBLE BY ALL OF THE PRIME ERATOSTHENES
NUMBERS LESS THAN N, THE NATURAL OF CYRENE

NUMBER N IS A PRIME NUMBER.
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THINK OF N AS BEING
EQUAL TO pq.

p<JVN OR gq=<+N

IF N CAN BE EXPRESSED
AS THE PRODUCT OF THE
TWO PRIME NUMBERS pq,
AT LEAST p OR q MUST BE
LESS THAN VN.

p>JN AND gq>+N

l

pq>N

1 SEE!
> 50 IF BOTH p AND

q ARE LARGER THAN
\N, THEIR PRODUCT

WOULD HAVE TO BE
\ GREATER THAN N.

I'M AN ANCIENT
GREEK SCHOLAR!

50 WHAT'S ERA... <
WHATEVER IT IS
YOU SAID?
1 WAS THE FIRST
PERSON TO

CALCULATE THE
SIZE OF EARTH!
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THE SIEVE OF
ERATOSTHENES AN EFFICIENT
METHOD OF DETERMINING
WHETHER A NUMBER

15 PRIME.

THESE BOXES
CONTAIN THE
NUMBERS FROM
1 TO 400.

LOOK AT THIS
PRINTOUT.

1 2 3 4 5 6 7 8 9 10 |11 |12 (13 |14 |15 (16 (17 |18 |19 (20

21 |22 |23 |24 |25 (26 |27 (28 |29 |30 |31 |32 |33 |34 (35 |36 (37 |38 (39 |40

41 (42 (43 (44 |45 |46 |47 |48 |49 |50 (51 |52 |53 |64 (55 |56 |57 (58 (59 |60

61 (62 (63 (64 |65 |66 |67 |68 |69 |70 (71 |72 |73 |74 (75 |76 |77 (78 (79 |80

81 (82 (83 (84 |85 |86 (87 |88 |89 |90 (91 |92 |93 (94 (95 |96 |97 (98 [99 |100
101 {102 {103 (104 |105 |106 |107 (108 |109 |110 (111 (112 |113 [114 (115 |116 |117 (118 |119 |120
121 (122 [123 |124 (125 |126 (127 |128 (129 |130 (131 |132 (133 |134 (135 |136 (137 |138 (139 |140
141 [142 |143 (144 |145 |146 |147 (148 |149 |150 (151 (152 |153 |154 (155 |156 |157 (158 159 |160
161 [162 |163 (164 |165 |166 |167 (168 |169 |170 (171 (172 |173 |174 (175 |176 |177 (178 179 |180
181 (182 (183 |184 (185 |186 (187 |188 (189 |190 (191 |192 (193 |194 (195 |196 (197 |198 (199 |200
201 (202 (203 (204 |205 |206 (207 |208 |209 |210 (211 |212 |213 (214 (215 |216 |217 (218 [219 |220
221 |222 |223 |224 |225 |226 (227 (228 (229 |230 [231 |232 |233 |234 (235 |236 (237 |238 (239 |240
241 (242 (243 (244 |245 |246 (247 |248 |249 |250 (251 |252 |253 (254 (255 |256 |257 (258 [259 |260
261 (262 (263 (264 |265 |266 (267 |268 |269 |270 (271 (272 |273 (274 (275 |276 |277 (278 |279 |280
281 |282 |283 |284 |285 |286 (287 (288 (289 |290 (291 |292 |293 |294 (295 |296 (297 |298 (299 |300
301 (302 (303 (304 |305 |306 (307 |308 |309 |310 (311 |312 |313 (314 (315 |316 |317 (318 319 |320
321 |322 |323 |324 |325 |326 (327 [328 329 |330 [331 |332 |333 |334 (335 |336 (337 |338 (339 |340
341 (342 (343 (344 |345 |346 (347 |348 |349 |350 (351 |352 |353 [354 (355 |356 |357 (358 (359 |360
361 (362 (363 (364 |365 |366 (367 |368 |369 |370 (371 |372 |373 [374 (375 |376 |377 (378 379 |380
381 |382 |383 |384 |385 |386 (387 [388 389 |390 [391 |392 |393 |394 (395 |396 (397 |398 (399 |400

SINCE V400 = 20, THE

PRIME NUMBERS LESS

THAN 400 CAN'T BE

DIVIDED BY PRIME

NUMBERS GREATER
THAN 20.

FIRST, SINCE 2 15 A PRIME
NUMBER, LEAVE IT ALONE.

THEN BLOT OUT ALL

i
THE SET {2, 3,5, 7, 1 MULTIPLES OF 21

13, 17, 19} COMPRISES ALL
OF THE PRIME NUMBERS
LESS THAN 20, (
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25 |26 |27 |28 |29 |30 |31 |32 |33 |34 |35 |36 [37 [38 [39 [40

65 |66 [67 |68 |69 |70 |71 |72 |73 |74 |75 |76 |77 |78 |79 |80

94 |95 |96 [97 |98 |99 |100

105|106 | 107 | 108 [ 109 (110 (111 (112|113 114 115|116 [117 [118|119 |120

IEEEEER
B
S
%
g
3
B
3
g

144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 [ 152 [ 153 [ 154 | 155 | 156 | 157 | 158 | 159 | 160

164 | 165 (166 167 (168 | 169 | 170 | 171|172 | 173 | 174 | 175|176 [ 177 [178 [ 179 [ 180

184 [ 185 (186 | 187 (188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 [ 196 [ 197 [ 198 [ 199 (200

204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212|213 [214 215|216 |217 | 218|219 | 220

224 (225 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 [ 237 [ 238 [ 239 [ 240

244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 [ 254 | 255 | 256 | 257 | 258 | 259 | 260

264 | 265 266 | 267 [ 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 [ 279 | 280

284 | 285 (286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 [ 296 [ 297 [ 298 [ 299 | 300

304 | 305 306 | 307 [ 308 | 309 | 310 | 311 | 312|313 |314 | 315|316 [317 | 318 319 [ 320

324 | 325 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 [ 337 | 338 [ 339 [ 340

344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 [ 357 | 358 [ 359 | 360

364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380

384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 [ 397 | 398 | 399 [ 400

NEXT, BLOT OUT ALL
MULTIPLES OF 3 WITH
THE EXCEPTION OF 3.

3
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5

i
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AFTER THAT,
DO THE SAME
THING FOR ALL
PRIME NUMBERS
THROUGH 14.
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NUMBERS

!

NOW WE'RE
PRIME NUMBER
THROUGH 400:

LEFT WITH EVERY

LOOK!
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AND AREN'T THE

m@ggg; PRIME NUMBERS
USED IN RSA

EASY USING A

COMPUTER... REALLY, REALLY

LARGE?

BUT FINDING LARGER
PRIMES WOULD BE
TOUGH EITHER WAY!

LET'S SAY WE'VE FOUND
A LARGE NUMBER THAT
APPEARS TO BE PRIME.

WE HAVE A METHOD
TO DETERMINE
WHETHER OR NOT IT

IS TRULY PRIME.

TYPES OF PRIMALITY TESTS

The sieve of Eratosthenes is a reliable method for finding prime numbers.
When determining whether a very large number is prime, however, using this
method takes a great deal of time. Instead, we can use Fermat’s method. It
isn’t completely reliable because it determines prime numbers probabilisti-
cally, but it is faster. We’ll cover Fermat’s method in depth later, but for now,
you just need to know that this method has a small chance of misidentifying a
nonprime number n (a composite number) as prime.

We could also use the Miller-Rabin method, which improves upon Fermat’s
method. In a given test, the probability of misidentifying a composite number
as prime is less than with the Fermat method. In fact, this method can deter-
mine prime numbers with near certainty.

NUMBERS THAT ARE PROBABLE
PRIMES ARE KNOWN AS
PSEUPOPRIMES.
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THAT'S EASY!
NEXT, LET'S CHECK RIO, PERFORM
WHETHER INTEGER AN INTEGER
FACTORIZATION 15 FACTORIZATION

AS DIFFICULT AS IT ON 35,
SEEMS!

5 x7!

AND THE PRIME
FACTORIZATION

RIGHT
AGAIN!

PERFORM A PRIME
FACTORIZATION ON

NOW IT'S
YOUR TURN,
BIG BROTHER.
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HOW ABOUT
A PRIME
FACTORIZATION
OF 9,991

WHY DO I GET ALL
THE TOUGH ONES?!

1,001 15
7 X1 x13,
RIGHT?

RAMEN'S HERE!
THANKS FOR
WAITING!
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IT's EASY IF
YOU USE A
FACTORIZATION
FORMULA!

OH, I SEE!

Since x° + y° = (x + Y - xy + y?),
first think of 1,001 as 10° + 1°.

So, 1,001 =10° +1°
=(10+ 1) x (100 - 10 + 1)
=11 x91

=11 x7x13

H—pO You
REALLY?

-y’ = (x+y)x-y),

$0 9,991 = 100* - 3*

= (100 + 3) x (100 - 3)
=103 x 97

OOO0OH!

YOU DIDN'T
SOLVE IT...

WELL DONE!

50 10,001
WOULpD BE?
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INVOLVES MORE THAN
JUST APPLYING A

UP WITH A SOLUTION.

INTEGER FACTORIZATION

FORMULA AND COMING

THE ANSWER IS
73 X 137.

POTENTIAL DIVISORS OF 10,001 ARE PRIME NUMBERS
LESS THAN V1000L LET’S CONSIDER EACH OF THE
NUMBERS IN THE SET {2, 3, 5, 7, 1,13, 17,19, 23, 29, 31,
37, 4, 43, 47, 53, 59, &4, 67, 71, 73, 79, 83, 84, a7} TO
FIND POTENTIAL DIVISORS.

WHEN WE TRY THEM ALL OUT, WE DISCOVER THAT
10,001 = 73 X 137.

OF COURSE, WE HAVE
TO CALCULATE EACH
AND EVERY ONE.

I THINK WE'D
MAKE GREAT
FRIENDS.

THANKS
FOR YOUR
BUSINESS!
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MODULO OPERATIONS

\

NEXT, LET'S TAKE A LOOK
AT THE REMAINDER OF

INTEGER DIVISION. SCHOOL?

YOU NEED TO BECOME
FAMILIAR WITH MODULO
OPERATIONS TO
UNDERSTAND RSA
ENCRYPTION.

YOU MEAN LIKE
THE REMAINDER
DIVISION YOU LEARN
IN ELEMENTARY

15+7=2
WITH A REMAINDER
OF 1

IN MODULAR
ARITHMETIC, WE
WOULD EXPRESS
THE SAME EQUATION
LIKE THIS.

15 =1 (MOD 70

THE EQUATION
REPRESENTS THE
REMAINDER WHEN YOU
DIVIDE 15 BY 7.

WHAT DOES
MOD MEAN?
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1T AN ABBREVIATION
FOR MODULO.

15 =1 (MOD 7)

THIS EQUATION
MEANS THAT WHEN 15 AND
1 ARE DIVIDED BY 7, THEIR
REMAINDER |5 THE SAME.
IN OTHER WORDS, 15 AND 1
MODULO 7 ARE CONGRUENT.

In typical modular arithmetic, a = b (mod N) is also
known as a modulo operation. This equation is read
as “a and b are congruent modulo N.” You can also
use = instead of = to note congruence.

BUT IF IT'S JUST INTEGER
CALCULATION, IT'S
SIMPLE...

WHY COMPLICATE
THINGS WITH MODULAR
ARITHMETIC?

REALLY?

\ |

BECAUSE IT HAS A
NUMBER OF VERY
SPECIFIC ADVANTAGES
FOR ENCRYPTION!
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Position 0

Direction of

rotation

Position 1

Position 2

HERE, I'VE
Position 4 Position 3 CONVERTED
Entrance Exit A MODULO 7
OPERATION INTO

SEVEN-CAR
FERRIS WHEEL

A DIAGRAM.

SINCE THE PROBLEM INVOLVES Tl K F
FINDING THE REMAINDER AFTER HQL%;;H%@IER(ST
WE DIVIDE BY 7, WE'RE ONLY .
WORKING WITH THE NUMBERS >

O THROUGH é.

THE SURPLUS (REMAINDER)
WILL ALWAYS BE SMALLER
THAN THE DIVISOR N
(MOPULO N OR MOD ND.

50 OUR RESULTING
VALUE IS LIMITED TO A
: \SPECIFIC RANGE.
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DOES THIS
FERRIS WHEEL

IT MOVES CLOCKWISE
FOR ADDITION AND
COUNTERCLOCKWISE
FOR SUBTRACTION.

ADDITION

O SUBTRACTION

ADDITION AND SUBTRACTION IN MODULO OPERATIONS

Let’s use the Ferris wheel to model a modulo operation. Each of the seven
cars is labeled with a number from 0 to 6. The cars correspond with num-
bered positions: we start with O at the top, and the positions are numbered 1
to 6 clockwise. Position 3 is the exit, and position 4 is the entrance.

Initially, car O is in position 0, car 1 is in position 1, and so forth. When we
perform addition, the cars are rotated clockwise.

First, take a look at car 0. After moving 1/7 of a rotation, car 0 moves from
position 0 to position 1. This is defined as +1 (the addition of 1). When the
wheel makes 2/7 of a rotation, car 0 moves from position 0 to position 2. This
is +2 (the addition of 2). When the wheel has made 7/7 of a rotation—in other
words, one full rotation—car O returns once again to position 0. This is +7,
which is the equivalent of 0—in other words, it is the same as if the wheel had
not moved at all.

1/7 rotation = +1

2/7 rotation = +2

7/7 rotation = +7 =0

(1sy
L

ny

2 a3
‘l \/
Iy \
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This Ferris wheel model can be used to explain modulo addition. For
example, consider 5 + 6. In the initial state, the 5 in 5 + 6 corresponds to
car 5. When this car moves by 6/7 of a rotation, where do you think it will
end up?

6/7 rotation = +6

If we move the car six positions clockwise, we find that it ends up in posi-
tion 4. In other words, we end up with the following equation:

5+ 6=4(mod7)

When a is the car in its initial state (the car’s initial position) and is moved
b/7 of a rotation, its final position is the solution to the addition problem. We
can review all of the different additions here.

a+ b MODULO 7

a
b

0 1 2 3 4 5 6

o O 1 2 3 4 5 6

Next, let’s use the Ferris wheel to explore subtraction.

138 CHAPTER 3 PUBLIC-KEY ENCRYPTION



First, take a look at car O in the left Ferris wheel as we put it through its
paces. After moving counterclockwise by 1/7 of a rotation, car 0 moves from
position 0 to position 6. This is defined as -1 (a subtraction of 1). After moving
counterclockwise by 2/7 of a rotation, car 0 moves from position 0 to position 5.
This is -2 (a subtraction of 2). If it moves a full rotation counterclockwise, car 0
returns to position 0. This is -7, which is also the equivalent of the car having
not moved at all.

This Ferris wheel model can be used to explain all instances of subtrac-
tion. For example, let’s consider the problem 3 - 4 using the Ferris wheel on
the right.

In its initial state, the 3 in the expression 3 — 4 is car 3. After car 3 moves
4/7 of a rotation counterclockwise, it arrives at position 6.

1/7 rotation = -1

4/7 rotation = -4

7/7 rotation = -7 = 0

2/7 rotation = -2

a - b MODULO 7

In other words, this is the
equivalent of the following

0 1 2 3 4 5 6

equation: b
3-4=6(mod7) o (0 6 5 4 3 2 1
‘When a is the car in its initial 1 1 0 6 5 4 3 2
state (the car’s initial position) and
is moved counterclockwise b/7 of 2 |2 1 0O 6 5 4 3
a rotation, its final position is the
solution to our subtraction prob- 3 3 2 1 0 6 5 4

lem. The different combinations of
subtracting a and b are shown in
the table.
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MODULAR ADDITION
AND SUBTRACTION
ARE ACTUALLY PRETTY
SIMPLE, RIGHT?

THAT WAS
UELICIOUG

FIGURING OUT WHAT
TIME IT 1S ON A CLOCK
AND WHICH DAY OF
THE WEEK IT IS ON A
CALENDAR ARE ALSO
TYPES OF MODULO
OPERATIONS.

MULTIPLICATION

NOW LET'S
Use MODULO
OPERATIONS
TO PERFORM

AND DIVISION!

50 IF YOU WERE
CALCULATING, SAY,
5 X 4, WOULD YOU

DO IT LIKE THIS?

THAT'S
RIGHT!

1

THUMBS
!

MULTIPLICATION!
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a %X b MODULO 7

0 il 2 3 1 5 6

ofo o o O o o0 o

THE NUMBERS IN THIS
TABLE SEEM PRETTY
CHAOTIC, THOUGH...

BUT LOOK! IN THE
COLUMNS IN WHICH
NEITHER a NOR b 15

EQUAL TO O...

EACH NUMBER BETWEEN 1
AND & APPEARS ONLY ONCE
IN EACH COLUMN AND ROW!

a X b MODULO 8
: 01 2 3 4 5 6 7
GREAT POINT!
oo
HERE'S HOW 1|0
MODULO 8
MULTIPLICATION 2|0
WORKS.
3|0
’ /
" ' 4|0
5|0
6|0
7]0
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WHEN NEITHER a NOR
b 15 O, COLUMNS 1,
3,5, AND 7 INCLUDE

ALL OF THE NUMBERS
BETWEEN 1 AND 7...

BUT THIS DOESN'T APPLY
TO ROWS 2, 4, AND 6...
<

N AND THERE
== ARE RANDOM
@ ZEROS?!

v

2

%__5 

FOR MULTIPLICATION
TO YIELD ZERO WHEN
ZERO ISN'T PART OF
THE EQUATION—THAT

P gt 8 IN THIS CASE, THE RULE THAT

“WHEN a x b =0, EITHER a OR b
HAS TO EQUAL O” NO LONGER
HOLDS TRUE.

WHY DOES THIS

HAPPEN? WELL... IT HAPPENS IN

SITUATIONS WHEN MODULO 8
AND EITHER a OR b AREN'T
COPRIME.

JUMP ONIN, N\ )
THE WATER'S
COPRIME... =
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TWO NUMBERS ARE SAID
TO BE COPRIME WHEN
THEY SHARE NO COMMON
FACTORS (COMMON
DIVISORS) EXCEPT 1.

For example, in addition to 1, the numbers 8 and 2 share the common
factor (common divisor) 2, so they aren’t coprime. The numbers 4 and 6 in
the modulo 8 multiplication table likewise share the common divisor 2 with
8, so they aren’t coprime.

On the other hand, 1, 3, 5, and 7 are coprime to 8. You can determine
whether two integers are coprime by confirming that the greatest common

divisor of both is 1.
Thus, all prime numbers are coprime to integers that are not multiples of

themselves. This property allows us to uncover prime numbers when using
the sieve of Eratosthenes method.

50 THAT MEANS IT'S
OKAY |F A NUMBER
THAT TAKES THE
MODULO 15 PRIME?

50 HOW WOULD
WE SOLVE THE
EQUATION 3 = 52

EXACTLY!

/"“.
9,

/2l

i

AND IF YOU HAVE
A PRIME NUMBER
LIKE 7, YOU CAN
ALSO DIVIDE IT!
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JUST CONVERT
THE DIVISION INTO
MULTIPLICATION!

a+b=ax(1/b)

DIVIDING a BY b 1S THE
SAME AS MULTIPLYING a
BY THE RECIPROCAL OF b.
THE RECIPROCAL 15 ALSO
KNOWN AS THE /INVERSE
ELEMENT.

BUT WAIT,
HOW DO YOU
FIND THE
RECIPROCAL?

FOR INSTANCE, THE

3x(1/3)=1

RECIPROCAL OF 315 1/3.
THE RECIPROCAL OF A
NUMBER 15 A NUMBER THAT
YIELDS 1 WHEN MULTIPLIED
BY THE ORIGINAL NUMBER.

LET'S TAKE
ANOTHER LOOK
AT THE MODULO 7
MULTIPLICATION
TABLE AND FIND ALL
INSTANCES OF 1.

THE RECIPROCAL OF 115
1, THE RECIPROCAL OF
215 4, THE RECIPROCAL
OF 315 5, THE
RECIPROCAL OF 415 2,
THE RECIPROCAL OF 515
3, AND THE RECIPROCAL

OF 615 6.

/

0

1

3

©c o o o ©°o

(=}
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50 YOU WOULD
CALCULATE 3 + 5
LIKE THIS?

3 DIVIDED BY 5 1S EQUIVALENT

TO 3 TIMES THE RECIPROCAL

OF 5, WHICH 15 3:
3+5=3%x3=9

Q+7=7+2=2MOD7)

IN OTHER WORDS,
3+5=2(MOD 7).

GREAT JOB!

YEAH!
GREAT!

THERE'S A
DIVISION TABLE,
TOO.

a+ b MODULO 7

0

1

WE CAN ALSO UsE
THE FERRIS WHEEL
MODEL TO EXPLAIN
MULTIPLICATION AND
DIVISION!
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MULTIPLICATION AND DIVISION OF MODULO OPERATIONS

Let’s start by explaining multiplication using the seven-car Ferris wheel model.
It’s best to think of multiplication in terms of rotational speed.

In the initial state, car O is in position 0, car 1 is in position 1, and so on—
all of the car numbers and position numbers match.

If in 1 minute, a car moves 1/7 of a rotation (in other words, in 7 minutes, it
moves one full rotation), car 0’s position after 3 minutes would be as follows:

1 (speed) x 3 (minutes) = 3 (position after rotation)

Distance advanced in
1 minute

Distance advanced
in 3 minutes

When the car moves at a rate of 5/7 of a rotation per minute, what position
would it be in after 6 minutes?

5x 6 =30
30=7 x4 +2 (30 + 7 = 4 with a remainder of 2)

Therefore, 5 x 6 = 2 (mod 7).

In other words, after the value of 30 is divided by 7, we have 4 rotations
with a remainder of 2. In this case, 4 rotations is equivalent to 0 rotations when
dealing with modulo, so you only have to pay attention to the remainder of 2.

2/7 rotation

4 rotations = O rotations
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Think of division as the opposite of multiplication. Given the final position
and the rotational speed, we determine the time the car was in motion using an
inverse operation.

With a speed of 1/7 of a rotation per minute, car 0 begins at position 1 and
finally ends up in position 5. Let’s determine how many minutes the car was in
motion.

5 (final position) + 1 (speed) = 5 (minutes)

So, it was in motion for 5 minutes. Were it to move for 12 minutes, or 19 min-
utes, it would end up in the same position, since each of these rotations is equal
to 5 added to a multiple of 7 (5 + 7n). However, because the times in our mod 7
calculation range only from O to 6 minutes, we can’t visually represent the pas-
sage of 12 or 19 minutes. They would appear identical to 5 minutes. (See the
Ferris wheel at the bottom left.)

At a rate of 2/7 of a rotation per minute (in other words, two full rotations
per 7 minutes), car 0 begins at position 0 and finally arrives at position 5. Using
the division table, we can determine the number of minutes it was in motion as
follows:

5 (final position) + 2 (speed) = 6 (minutes)

The answer is that it rotated for 6 minutes, but what’s the best way to
explain this?

Consider this: the final position was 5, but there was actually one surplus
rotation. In other words, in reality the final position was 2 x 6 = 12, which in
mod 7 is expressed as 5.

Therefore, since 12 + 2 = 6, the answer is that the car rotated for 6 minutes.
(See the Ferris wheel at the right.)

Distance advanced
in 1 minute

Distance advanced
in 5 minutes

Distance advanced
in 6 minutes
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THE FOUR ARITHMETIC

NOW WE'RE ALL CLEAR OPERATIONS
ON HOW THE FOUR ARE ADDITION,
ARITHMETIC OPERATIONS SUBTRACTION,
CAN BE PERFORMED MULTIPLICATION, AND
USING MODULO DIVISION.

OPERATIONS, RIGHT?

IS THAT A BIG ONCE YOU'VE MASTERED
THESE OPERATIONS,
YOU'RE READY TO TAKE
ON THE MATHEMATICS
OF ENCRYPTION AND
DECRYPTION!

NO PROBLEM!

WE CANT USE
ALL INTEGERS DIVISION DOESN'T
WITH THESE WORK FOR
OPERATIONS, NONNEGATIVE
INTEGERS.
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MODULO OPERATIONS ON A PRIME NUMBER p ARE
: STILL SUBJECT TO THE COMMUTATIVE, ASSOCIATIVE,
r AND DISTRIBUTIVE PROPERTIES, SO ANY OPERATION

WILL ALWAYS RESULT IN A NUMBER IN THE SET: {0, 1,
.., p—1}. THIS SET 1S EQUIVALENT TO THE CARS OF

E P
THE FERRIS WHEEL IN OUR EXAMPLE; WHEN THERE
WERE 7 CARS, THEY WERE NUMBERED O THROUGH é&.

EXAMPLES OF THE COMMUTATIVE PROPERTY:
a+b=b+a
ab = ba
EXAMPLES OF THE ASSOCIATIVE PROPERTY:
(@a+b)+c=a+(b+c¢c)
(ab)c = a(bc)
EXAMPLE OF THE DISTRIBUTIVE PROPERTY:
a(b +c)=ab + ac

A FIELD 15 THE SET OF
ELEMENTS (NUMBERS IN OUR
CAsii :ZEAGULTAlNeHFROM
MODULO AND ARITHMETIC
OPERATIONS RATIONAL NUMBERS ARE ONE EXAMPLE OF A FIELD,

SINCE ALL RATIONAL NUMBERS CAN BE FACTORS IN
AN OPERATION. THERE IS AN INFINITE NUMBER OF
RATIONAL NUMBERS, WHICH MAKES THE RATIONAL

NUMBERS AN INFINITE FIELD. IN CONTRAST, THE

FACTORS OF THE MODULO OPERATION FOR PRIME

NUMBER p ARE O, 1,. .., p— 1, MEANING THAT p IS A
FINITE FIELD BECAUSE THERE 15 A LIMITED NUMBER

OF NUMBERS IN THE FIELD.

* THE JAPANESE WORD FOR F/ELD SOUNDS
SIMILAR TO THE WORD FOR A TYPE OF FISH. MODULO OPERATIONS 149



GREAT! NOW WE'RE .
FINISHED WITH MODULO THERE'S ONE
OPERATIONS, RIGHT?

LAST THING!

HERE'S A POWER

TABLE.
a” MopULO 7
a TO CALCULATE THE VALUES IN
N/t 2 & % & B8 THE TABLE, TAKE THE NUMBER a”

AND DIVIDE IT BY 7 TO GET THE
REMAINDER. FOR EXAMPLE, TAKING
ANY VALUE OF a BETWEEN 1 AND & TO
THE 6TH POWER AND THEN DIVIDING

2 2 4 1 2 4 1 THE RESULT BY 7 WILL ALWAYS
RESULT IN A REMAINDER OF 1, WHICH
15 REPRESENTED IN THE LAST COLUMN

3|13 2 6 4 5 1 OF THE TABLE.
i D 19=1=0%x7+1
2°=64=9 %7 +1
Bl 4 B 2 & 1 3°=729=104 X 7 +1
4°= 4,096 =585 X 7 + 1
6|6 1 6 1 6 1 5° = 15,625 = 2,232 X 7 + 1

E° = 46,656 = 6,665 X 7 + 1

THIS MOPULO OPERATION
RESULTS IN VALUES
THAT ARE PRETTY
SPREAD OUT...
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INDEED!

MODULO OPERATIONS
ARE ALSO USED
TO GENERATE
PSEUDORANDOM
NUMBERS.

/

\

[\

ISNT THIS
STRANGE?!

ACCORDING TO THIS
TABLE, ANY NUMBER
TAKEN TO THE 6TH
POWER YIELDS 12

AND THIS 1S CONNECTED TO
THE NEXT THING WE'LL STUDY:

FERMAT'S LITTLE THEOREM!
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FERMAT'S LITTLE THEOREM AND
EULER'S THEOREM

NOW,

LETS MOVE ON TO
FERMAT'S LITTLE
THEOREM!

FERMAT'S LITTLE THEOREM:

WHEN n 15 A PRIME NUMBER
AND YOU HAVE AN INTEGER
a THAT 1S COPRIME TO n
(AN INTEGER THAT 1S NOT
A MULTIPLE OF n), THE
FOLLOWING FORMULA
HOLDS TRUE:

a"' =1 (mod n)

IN OTHER WORDS, IF YOU
TAKE a TO THE POWER OF
n-1AND DIVIDE IT BY n,
THE REMAINDER 15 1.

WE USED FERMAT'S LITTLE
THEOREM IN PRIMALITY TESTS,
REMEMBER?

IT'S AN ABSOLUTELY ESSENTIAL
FOUNDATION TO HAVE FOR LEARNING
EULER'S THEOREM.

a”MODULO 7 Na
1 23 45 6

50 THIS 1S THE LAW WE b
SAW DEMONSTRATED IN 1/1 111 1 1

MODULO 7, WHEN RAISING

NUMBERS 1 THROUGH & TO 2(2 212 4@
THE 6TH POWER YIELDS 1. 3(3 2 6 4 5 1
404 2 1 4 2 1
/l\ > 5|5 4 6 2 3 1
¥/< "ﬂ % 6(6 16 1 61
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WHO WAS THIS
FERMAT GUY?

FERMAT: THE FATHER OF NUMBER THEORY

Pierre de Fermat (1601-1665) was a 17th-century French lawyer and promi-
nent mathematician. He made great contributions to the field of number
theory, including but not limited to creating the modulo operation.

He created not only Fermat's little theorem but also what is known as
Fermat’s big theorem (or last theorem).

Fermat’s big theorem states that given a natural number n whose value
is 3 or more, no three natural numbers (x, y, z) can solve the equation x" + y"
= z". Interestingly, Fermat himself left no proof of this theorem.

At first glance, the contents of the theorem look so simple that it seems
like a middle schooler could solve it. I'm sure you're familiar with the Pythag-
orean theorem, which states that if the lengths of the sides of a right triangle
are a, b, and c, then a® + b? = ¢%. Fermat’s theorem concerns an equation for
when the 2 in a® + b* = ¢® is replaced by a value of 3 or more.

Proof of the big theorem came 330 years after Fermat’s death, in 1995,
thanks to British mathematician Andrew Wiles (1953-).

FERMAT HAD APPARENTLY
WRITTEN THIS IN HIS
NOTEBOOK: THERE, THERE.

1 THOUGHT I WOULD WRITE A
PROOF OF MY BIG THEOREM
HERE, BUT THERE ISN'T ENOUGH
SPACE IN THE MARGIN!
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LET'S USE FERMAT'S
LITTLE THEOREM TO

]
VERIFY PRIME NUMBERS! TAKE THE CONTRAPOSITION OF

FERMAT'S LITTLE THEOREM. IF n AND
a ARE COPRIME AND a™ = 1 (mod n)
1S TRUE, THEN WE CAN SAY THAT n 1S
NOT A PRIME NUMBER.

WHAT'S A CONTRAPOSITION CONTRASTS
> WITH A PROPOSITION. FOR
BT T EXAMPLE, IF W HAD THE
PROPOSITION “IF 4, THEN 8/" THE
CONTRAPOSITION WOULD BE “IF
NOT 8, THEN NOT A"

IF 4,
THEN 8

b, )
%@:ﬁ;ﬁ@

THE CONTRAPOSITION
OF A CORRECT
PROPOSITION 1S

ALWAYS TRUE.

USING THIS AS A METHOD

Lk el OF DETERMINING PRIME
NUMBERS..

MANGA.

IF THE PROPOSITION

“ALL MAN”@A IS KNOWN AS
ARE FUN" IS FERMAT'S METHOD!
TRUE, THEN THE
CONTRAPOSITION

MF IT 15 NOT FUN, IT
15 NOT A MANGA" |15
ALSO TRUE.
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FERMAT'S METHOD AND PSEUDOPRIME NUMBERS

To perform a primality test using Fermat’s method, use this equation:
a*! %1 (mod n),

where n, the number you are performing the primality test on, and a are
coprime.

Although Fermat’s method is very efficient at testing for primality, even if
the number n passes the primality test for several of its coprimes, that doesn’t
necessarily prove n is a prime number.

With Fermat’s method, there are situations in which a number may be
probabilistically determined to be prime even when it really isn’t prime. We
call such values pseudoprime numbers.

For example, when n = 3,215,031,751, it passes the primality test for the
coprimes 2, 3, 5, and 7:

2°%215081750 _ 1 (mod 3,215,031,751)
35215031750 _ 1 (mod 3,215,031,751)
55215031750 _ 1 (mod 3,215,031,751)
75215081750 _ 1 (mod 3,215,031,751)

However, 3,215,031,751 is not actually a prime number. You can see this
when you perform integer factorization:

3,215,031,751 = 151 x 751 x 28,351

However, out of the numbers n less than 250 billion, 3,215,031,751 is the
only nonprime that passes the Fermat method’s primality test for the four
prime numbers 2, 3, 5, and 7.
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NEXT UP |15 EULER'S
THEOREM.

@ IT'S THE MATHEMATICAL
FOUNDATION OF
ENCRYPTION. ONCE YOU
LEARN EULER'S THEOREM,
YOU'LL HAVE THE BASICS
TO UNDERSTAND RSA!

EULER'S THEOREM
Given a natural number n and a coprime integer a, we present the following
equation:
a’™ = 1 (mod n)

The ¢(n) is known as Euler’s totient function. Euler’s totient function
gives the number of integers between 1 and n that are coprime to n.

In addition, if we multiply a’™ by a, we get a®™*!, and from this we can
extrapolate the following equation:

d(n)+1

a =a (mod n)

When k is an integer, am (mod n) will result in 1, as we saw in this
equation:
a*™ =1 (mod n)
This might not be apparent at first sight, but for example, when k =1,

feg(n) o) _ g

a =a'

We can express an even number as k¢(n) + 1, since adding 1 to any odd
number will result in an even number. Because we know that multiplying both
sides of Euler’s theorem equation by a results in

a’™*! = a (mod n),

that means modding ak®™*! by n will also result in a. You should get the
following formulas:

ak?™ =1 (mod n)

ak?™*! = a (mod n)

This means that when a is any integer between 1 and (n - 1), the following
formula will apply:

a™* = g (mod n)
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GIVEN ¢(7), THE NUMBERS
1,2, 3 4, 5 6} ARE
COPRIME TO 7.

50 ¢(7) = 6, RIGHT?

IF n 15 A PRIME NUMBER,
THEN THE ONLY NUMBER
THAT ISN'T COPRIME TO
n BETWEEN THE NATURAL

NUMBERS 1 AND n 1S n
ITSELF!

IN OTHER WORDS,
¢p(n)=n-1

WHEN n 1S A PRIME
NUMBER, THEN
¢(n) = (n - 1), WHICH WE
CAN SUBSTITUTE INTO THE
EQUATION SO THAT
a®™ = g™ = 1 (mod n),
WHICH 15 CONSISTENT
WITH FERMAT'S LITTLE
THEOREM AND THE GRAY
COLUMN OF THE TABLE
ON PAGE 152.

WHAT KIND OF
euY WAS THIS

THE MATHEMATICIAN EULER

Leonhard Euler (1707-1783) was a
prominent Swiss mathematician of
the 18th century.

He not only made huge contribu-
tions to the broad field of mathematics
but also contributed to the fields of
physics and astronomy. His most well-
known contribution to mathematics
is known as Euler’s formula:

ei’ = cosf + i(sind)

We won'’t cover it in detail, but this
formula demonstrates the relationship
between the complex exponential func-
tion ei’ and the trigonometric functions
cosf and sinf through the imaginary
number i = v-1.
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LET'S LOOK AT AN EULER
FUNCTION IN WHICH A
NONPRIME NUMBER N
15 EXPRESSED AS THE

PRODUCT OF TWO PRIME

NUMBERS p AND q.

/.
EULER FUNCTION ON THE PRODUCT OF TWO PRIME NUMBERS

N is the product of two prime numbers p and g. Here, in order to derive the
Euler function of N using p and g, we need to first count the integers that are
not coprime to N. Since p and q are prime numbers, we know that multiples of
p and multiples of g make up all the numbers that are not coprime to N.

1. Because the multiples of p between 1 and gp are p, 2p, 3p, ..., up to gp,
there are g number of multiples of p.

2. Because the multiples of g between 1 and gp are q, 2q, 3q, . .., up to pq,
there are p number of multiples of q.

3. Of the multiples of g and p, only gp and pq are shared by both p and g, but
because gp and pq are both equal to N, they are the same number.

For a prime number n, ¢(n) = n - 1, but because N isn’t prime and the mul-
tiples of the prime numbers g and p are not coprime with it, we need to subtract
the number of multiples of p and q from N instead. Through our analysis from
steps 1 and 2, we found that there are g + p number of integers not coprime
with N. In other words,

pN)=N-p-qg+1
Since N = pg, we can substitute it into the equation to get this:

¢pWN)=pg-p-q+1=(p-1)qg-1)

This means that ¢(pq) = ¢(p)¢(q). If we apply Euler’s theorem to p and g
individually, we would get these equations:

a’! =1 (mod p)
a®™' =1 (mod q)

We can combine these equations to derive another equation. The smallest
multiple (p - 1) and (q - 1) share is known as their lowest common multiple,
which we’ll represent as L. This means that when (p - 1) is multiplied by some
integer m, it equals L, and when (q — 1) is multiplied by some integer n, it also

equals L. Therefore, L = m(p-1) = n(q - 1).
With @’ = 1 (mod p), if we raise both sides by m, we get
™ = 1™ (mod p)

al=1 (mod p)
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If we do the same with a?” = 1 (mod g), we get the same result:

a"M" = 1" (mod q)

a" =1 (mod q)

We can combine these two equations to get a" =1 (mod p, mod g). Because
N is equal to pg, we would get the following equation:

a“ =1 (mod N)

In other words, L functions identically to Euler’s theorem ¢(N). In addition,
because the product of two arbitrary positive integers is equal to the product of
the lowest common multiple and the greatest common divisor (which we’ll call
G), we would get the equation (p - 1)(q - 1) = LG, and we can derive the following:

L_(P-D(a-1
G

For example, let’s say p = 3 and q = 5, so N = pq is 15. Therefore, (p- 1) is
2, (g-1)is 4, and ¢(N) = (p - 1)(g - 1) is 8. The lowest common multiple L of 2
and 4 is 4, and the greatest common divisor G is 2. In this case, for any natural
number a that is coprime to 15 and for any k that is a nonnegative integer, the
following formula applies:

a* =1 (mod 15)

In other words, until we take a to the ¢(N)th power, the greatest common
divisor G = 1 sometimes appears periodically for every L numbers. According
to the Euler’s theorem equation, for all of the integers a between 1 and (N - 1),
this applies:

a*! = a (mod N)

You can see this in the gray columns of this table.

PRODUCT OF TWO PRIME NUMBERS WHEN a” (N=3 x 5, $(15)=8,L =4, G = 2)

: 1 2 3 a 5 6 7 8
1 il 1 1 1 1 1 1 !
2 2 4 8 1 2 4 8 1
3 3 9 12 6 3 9 12 6
4 4 1 4 1 4 1 4 1
5 5 10 5 10 5 10 5 10
6 6 6 6 6

7 74 4 13 i, 4 13 1
8 8 4 2 8 4 2 1
9 9 6 9 6 9 9

10 10 10 10 10 10 10 10 10
11 1171 1 11 1 il 1 11. 1
12 12 9 3 86 12 9 3 6
13 13 4 V4 1 13 4 7 b
14 14 1 14 1 14 1 14 b
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IT'S OKAY, IT'S OKAY!
“EVEN A JOURNEY OF A
THOUSAND MILES BEGING

I HATE EULER J& WITH THE FIRST STEP!”
AND FERMAT...

JUST TAKE

IT AT YOUR

OWN PACE.

1 GUESS...
YOU'RE RIGHT.

OH LOOK, A
CONSTELLATION!

THAT'S IT FOR
THE BASICS OF
ENCRYPTION
MATHEMATICS!

B—

NEXT, WE'LL TAKE
A LOOK AT REAL
PUBLIC-KEY RSA
ENCRYPTIONS!

R
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| THE STRUCTURE OF
RSA ENCRYPTION

WHAT DO YOU
MEAN? WE'RE
JUST GETTING
STARTED!

LIBERATED FROM
MATH AT LAST!

THESE SNACKS ARE
HERE TO TEACH YOU
ABOUT ENCRYPTION.

THE SECRET TO
RSA ENCRYPTION
KEYS...

1S ACTUALLY THIS!

A PORK BUN?

THE STRUCTURE OF RSA ENCRYPTION 161



THERE'S A SECRET
TRICK TO PUBLIC
KEYS!

PUBLIC KEY: N, e

I1DO LIKE
PORK BUNS...

50 NOW WE'RE
FINALLY LEARNING
HOW RSA
ENCRYPTION WORKS,

162 CHAPTER 3 PUBLIC-KEY ENCRYPTION

LET'S FIRST
LOOK AT THE
DIFFERENCES
BETWEEN RSA

ENCRYPTION AND
DECRYPTION.




RSA ENCRYPTION: ENCRYPTION AND DECRYPTION

With a plaintext message m and ciphertext C, encryption is expressed as
follows:

C = m° (mod N)

In other words, if we raise m (the plaintext) to the power of e (a pub-
lic key) and divide it by N (another public key), we're left with C (the
ciphertext).

Decryption is expressed as follows:

m =C% (mod N)

In other words, in decryption, C raised to the power of d (the private
key) divided by N yields m. Here, N is made up of two different and large
prime numbers p and q.

DO YOU KNOW WHY WE
CAN'T DECODE THE FIRST
EQUATION, EVEN THOUGH
THE PUBLIC KEYS e AND N
AND THE CIPHERTEXT C ARE
KNOWN?

IF YOU THINK OF m IN
TERMS OF AN UNKNOWN
VALUE x IN AN EQUATION...

1 DON'T WANNA
HEAR IT!
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IF YOU KNOW EVERYTHING
BUT x (WHICH 1S m) AND
d, YOU THINK IT'D BE
POS5IBLE TO DECIPHER
THE CIPHERTEXT.

IF YOU UNDERSTAND
EULER'S TOTIENT
FUNCTION ¢(IN), YOU
CAN CALCULATE THE
RESULT USING EULER'S

THEOREM! 2’

BUT WHEN
CALCULATING
$(N), YOU HAVE TO
PERFORM INTEGER

FACTORIZATION ON
» N, RIGHT?

RIGHT?

BUT SINCE IT WOULD TAKE AN
ENORMOUS AMOUNT OF TIME
TO DERIVE x BY SUBSTITUTING

NUMERICAL VALUES FOR d ONE

B

g

IT WOULD BE NEARLY IMPOSSIBLE
TO SOLVE THE EQUATION FROM A
PRACTICAL STANDPOINT. THIS |5 WHAT
MAKES RSA A COMPUTATIONALLY
SECURE ENCRYPTION.

IF N IS AN \
INCREDIBLY LARGE
NUMBER, INTEGER

FACTORIZATION WILL
TAKE AN ENORMOUS
AMOUNT OF TIME,
WHICH MEANS THE
ENCRYPTION'S
SECURITY |15 BASED
ON INTEGER
FACTORIZATION.

IN OTHER WORDS, WE END UP WITH AN INTEGER
FACTORIZATION PROBLEM THAT 15 DIFFICULT TO
SOLVE MATHEMATICALLY!

THAT'S WHY IT'S HARD TO DECRYPT!

THE ENCRYPTION KEY
AND DECRYPTION KEY
CARRY OUT IMPORTANT
ROLES IN A PUBLIC KEY.
NEXT UP, LET'S LEARN
ABOUT THE METHODS
FOR GENERATING THEM
STEP-BY-STEP!
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GENERATING AN R5A ENCRYPTION KEY
We'll first generate the public key, and then we’ll generate the private key.

PUBLIC-KEY GENERATION
Public-key generation involves several steps.

1. Select two different, large prime numbers, p and g, at random
and calculate N = pq.

b 4

2. Solve Euler’s function ¢(N) = ¢(pq) = ¢(p)(@) = (p - 1)(g -1 ).

After you solve Euler’s function, p and g become
unnecessary! You should discard them so that
v other parties don’t find them. This is crucial
because if an adversary finds p and g, it is trivial
to then calculate d and break RSA encryption.

3. Select a random positive integer e such that e is coprime with N:
l<e<¢pn)

However, select e such that m® > N! If m® < N,
we wouldn’t be able to use the modulo opera-
tion since we would get m°® = C, where C is the
ciphertext. We wouldn’t be able to mod by N to
scramble the equation. Because we don’t know
what messages we’ll be encrypting, it is best to
choose a reasonably large e (in the past, 65,537
has commonly been used as a value for e).

PRIVATE-KEY GENERATION

Find a positive integer d that satisfies the following equations:

d = e-1 (mod $(N))
ed =1 (mod ¢(N)),

where d is less than ¢(N) but larger than both p and q.
Now the public key is the pair (n, e), and the private key is d.
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d 15 EQUIVALENT TO THE
RECIPROCAL (INVERSE
ELEMENT) OF e IN
MULTIPLICATION WHEN

MODDING BY ¢(N).

IN OTHER WORDS,
YOU NEED TO SOLVE FOR
THE DECRYPTION KEY d

AND THE ENCRYPTION
KEY e AS A PAIR! /

VERIFYING THAT THE PUBLIC KEY £ AND PRIVATE KEY D WORK IN
RSA ENCRYPTION
Since we know that ed = 1 (mod ¢(n)), we can subtract 1 from each side of the

equation to get ed — 1 = 0 (mod ¢(n)). In other words, ed - 1 leaves no remainder
when modded by ¢(n), meaning that it is a multiple of ¢(n). So, you get

ed-1=ko(n),

where k is a nonnegative integer. In addition, we can manipulate the equation to
be this:

ed=kon) +1
Therefore, if we take the earlier equation a*! = a (mod N) (see

page 159), we can express all of the natural numbers of m (the plaintext)
from 1 to (N - 1) in the following equation:

m*! = m (mod N)

Because ed = k¢(n) + 1, we can substitute the exponent, so when the
ciphertext is raised to the private key, we get the following:

m® = m™™*! = m (mod N)

Since the ciphertext C = m®, m* = Ce, it becomes clear that d allows us to
decrypt plaintext m.

PRIVATE KEY
d AND PUBLIC
KEY e CANCEL LET'S PRACTICE
EACH OTHER CREATING PUBLIC AND
TO REVEAL THE PRIVATE KEYS!

PLAINTEXT!
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HOW TO MAKE PUBLIC KEYS AND PRIVATE KEYS

Now, given two prime numbers p = 5 and g = 11, let’s solve for public key N and
private key d.

STEP |

The product of p and g is N.

N=pg=5x11=55

STEP Z
Solve the Euler function of N, ¢(N).

H(B5)=(5-1)x (11-1)=4 x 10 =40

STEP 3
Choose a random integer e such that e is coprime to N and 1 < e < ¢(N). The list
of candidates that fulfill these requirements for our current example is {1, 3, 7,
9,11, 13, 17, 19}. We'll use e = 17, so the public key is (55, 17).
STEP 4
Solve for the private key d. We know that e = 17, and we are using modulo
¢(N)(40). The equation we need to solve is
d =e-1 (mod ¢(N))
ed =1 (mod ¢(N))
17d = 1 (mod 40)
We can see that d multiplied by 17 modulo 40 must equal 1. From the
extended Euclidean algorithm, which we’ll see later, we get that d = 33.
For now, let’s verify that:
17d = 1 (mod 40)
17 x 33 = 1 (mod 40)
561 = 1 (mod 40)

where

561 =1 + 40k
561 =1 + (40 x 14) for k = 14
561 =1 + 560

This shows that d = 33 is valid; thus the private key is d = 33.
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STEP 5

Solve for the decryption key d, which is the inverse of encryption key e. We
know that e = 17 and are modding by 40 (¢(55) = 40).

ed = k¢(n) + 1 (mod 40), so 17d = 40k + 1

When you rearrange this equation, you get

40k +1
17

Because we know d must be an integer, the right side of the equation can’t
leave a remainder. So we can search for solutions in which 40k + 1 is a multiple
of 17 and find that one solution is k = 11.

Furthermore, you can calculate what d is in relation to each e acquired in
step 4 by solving the same formula, ed = 40k + 1. You would get the following d
and e pairs:

(e=8,d=27),(e=7,d=23),(e=9,d=09),
(e=11,d=11), (e=17,d=33), (e=19,d = 19)

In general, the encryption key and decryption key should be different inte-
gers (e = d), and larger integers are preferred for encryption key e; e = 17 and
d = 33 are just examples we will use here.

USING AN EXPANDED
EUCLIDEAN ALGORITHM,
YOU CAN EFFICIENTLY
SOLVE FOR PRIVATE KEY d.

NOW THAT
WE HAVE A
COMPLETE SET
OF KEYS,

GOOD THINKING!

>

NOW WE CAN SEE HOW
RSA ENCRYPTION AND
DECRYPTION WORK!

LET'S PUT ALL THIS
INTO PRACTICE AND
CREATE A CIPHER!
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GENERATING A CIPHERTEXT USING R5A

To begin, we’ll look at the procedure for using a public key to generate a
ciphertext.

To make this a concrete example, we’ll encrypt the four-letter plaintext
GOLF using the encryption key e = 17 that we calculated earlier.

STEP | CHARACTER ENCODING
First, use the table at the right to encode (6Tt rats ol I T g et d ol Ts [

the characters as integers. This is non- P 0 K 36
standard character encoding, but it is
convenient for this exercise. b 1 L 37
[5 2 M 38
f ‘i 5 'I s | 39
w 22 (¢] 40
32 40 37 31 X 23 P 11
sTEP 2 y 24 18 42
Convert the integers to 6-bit binary. z 25 R 43
A 26 S 44
32 40 37 3 B o7 T 45
v v v v C 28 U 46
100000 101000 100101 om |p 29 v 47
s7EP 3 E 30 w 48
Express the binary data as a nonnega- 1y 31 B 19
tive integer less than (N - 1). In this G 32 Y 50
example, since N=55and N-1=55-1 |H 33 Z 51
= 54, the data is divided into 5-bit units. I 34
In other words, the greatest value that —
can be expressed in 5 bits is 31, which J 35 Space 63
is below 54 and fulfills the conditions.
Of course, we could use 3- or 4-bit
sections instead, but using larger-bit
sections is more efficient.
100000 101000 100101 011111 0 ¢=Add
10000 01010 00100 10101 it

We append the final O to pad the last section because there is an insuf-
ficient number of bits to make the section a complete 5-bit unit. Here, we're
using 0, but other padding digits could be used instead, depending on the
encryption scheme.

STEP 4
Convert the binary data into decimal notation.
10000 01010 00100 10101 1mo
{ { { { {
16 10 4 21 30
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STEP 5
Using the encryption keys (N = 55, e = 17), perform the encryption. In concrete
terms, this involves raising the data in decimal notation to the 17th power, divid-
ing by 55, and searching for the remainder. By performing these calculations for
each integer as follows . . .

16'7 (mod 55), 10'7 (mod 55), 4" (mod 55), 21'7 (mod 55), 30'” (mod 55)
... we obtain the encrypted data. For example, we can calculate this for 16
by finding the solution to 16'” (mod 55). We can reduce 16'7 by expanding the
exponent as follows:

16'7 = 16% x 16% x 167 x 16% x 16% x 16 x 16 x 16 x 16 (mod 55)
Because 162 = 256 = 36 (mod 55), we can replace each 16* with 36:

=36 x 36 x 36 x 36 x 36 x 36 x 36 x 36 x 16 (mod 55)
which is equal to

= 36” x 36” x 36° x36” x16 (mod 55)
And since 36% = 1,296 = 31 (mod 55), we can further reduce the equation:

=31 x 31 x 31 x 31 x 16 (mod 55)
=31” x 31% x 16 (mod 55)

Then because 31% = 961 = 26 (mod 55), we get

=26 x 26 x 16 (mod 55)
=26 x 16 (mod 55)

And finally, because 26% =676 = 16 (mod 55), we get

=16 x 16 (mod 55)
= 36 (mod 55)

The remaining encryption is performed in the same way, and we record the
results as follows:

10" (mod 55) = 10
4'" (mod 55) = 49
21" (mod 55) = 21
30" (mod 55) = 35

Thus, the ciphertext expressed in decimal notation is as follows:

36 10 49 21 35
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Then we can encode the decimal notation into letters:

36 10 49 21 35
{ v { { {
K Kk X v J

So the ciphertext is KkXvdJ.

DECRYPTING A CIPHERTEXT USING RSA

Now let’s go over the process of using the private key to decrypt a ciphertext
into plaintext. We’ll use the private encryption key d = 33 in our concrete
example.

STEP ]

Using decryption key d = 33, calculate C* (mod N). This involves raising each
number in the decimal-form ciphertext (36 10 49 21 35) to the 33rd power,
dividing by 55, and seeking out the remainder to obtain the plaintext data as
follows:

36 (mod 55), 10* (mod 55), 49> (mod 55), 21*° (mod 55), 35" (mod 55)

To calculate this for the first decimal digit 36, adopt the same technique
used in step 5 of generating the ciphertext, as follows:
36 = 36° x 36° x 36° x 36° x 36° x 36” x 36° x 36° x 36° x 36° x 36° (mod 55)

= 46,656 x 46,656 x 46,656 x 46,656 x 46,656 x 46,656 x 46,656 x 46,656 x
46,656 x 46,656 x 46,656 (mod 55)

=16x16x16x16x 16 x 16 x 16 x 16 x 16 x 16 x 16 (mod 55)
=167 x 162 x 16 x 162 x 16 x 16 (mod 55)
=36 x 36 x 36 x 36 x 36 x 16 (mod 55)
= 967,458,816 (mod 55)
=16 (mod 55)
The remaining encrypted data {10, 49, 21, 35} is calculated in the same way,
and we record the results as follows:
10%° (mod 55) = 10
49°° (mod 55) = 4
21% (mod 55) = 21
35 (mod 55) = 30

Thus, we would get the plaintext data represented in decimal notation as
follows:

16 10 4 21 30
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STEP 2
Next, convert the decimal numbers you have obtained into 5-bit binary data:

16 10 4 21 30

{ { { { L
10000 01010 00100 10101 11110

STEP 3

To make the bits correspond with the character encoding in the table on
page 169, divide the binary data into 6-bit units:

b o

Because the last 0 was used as padding, it won’t fit into a 6-bit unit. You
can eliminate it.
STEP 4
Convert each 6-bit binary unit into an integer:
100000 101000 100101 011111
{ L { {
32 40 37 31

STEP 5
Using the table on page 169, encode the integer data into characters:

32 40 37 31
{ { { {
G o L F

Now you've completed the decryption process.

WHY ENCRYPT
THE WORD

IT'S THE
AUTHOR'S
HOBBY...

PROBABLY.
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— PUBLIC-KEY ENCRYPTION AND
DISCRETE LOGARITHM PROBLEMS

DO YOU GET R5A
ENCRYPTION NOW?

HA...HA HA.
OF COURSE...!

BY THE WAY,
FOR PUBLIC-KEY
ENCRYPTION,

P

YOU DON'T USE JUST

INTEGER FACTORIZATION
LIKE IN RSA ENCRYPTION,
RIGHT? WHAT ELSE 15
THERE TO IT?

YES, THAT'S RIGHT. T'LL
ALSO GIVE A SIMPLE
EXPLANATION OF
ELGAMAL ENCRYPTION,
WHICH HAS ITS
FOUNDATION IN THE
PDISCRETE LOGARITHM

PROBLEM.

SIMPLE?
YEAH RIGHT!

UGH, MORE
COMPLICATED
VOCAB...

1/

BUT IT
REALLY 15!

FIRST READ THE

FOLLOWING
EXPLANATION...

AND LEARN ABOUT
THE THEORETICAL
FOUNDATIONS OF

ENCRYPTION!
CREN '
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DISCRETE LOGARITHM PROBLEMS

Take another look at the modulo 7 power table. This table contains all the
powers between 1 and 6 and shows the results of modding them by 7. We can
express the possible results of a modulo 7 operation as a finite field comprising
these members:

{0,1,2,3,4,5, 6}

We'll rePresent this finite field in & MODULO 7
group notation. When we have a num-
ber n and a field of numbers related b 2 3 |4 5 6
to n, we can represent the whole b

group as Zn‘. In this case, nis 7, so
we get Z," ={0, 1,2, 3,4, 5, 6}. You'll
notice that every number in this set is
coprime to 7 except 0. We'll represent
the group of coprimes in Zn‘ as Z.

1 1 1 1 1 1 1

You'll notice in the table to the 3 3 2 6 |4 5 1
right that in the row showing the
power of 3 mod 7, the values from 4 14 |2 |1 |4 |2 |1
1 to 6 each appear in the row only
once. This means Z, with the excep- 5 [5 (4 |6 |2 |3 |1
tion of 0 is expressed in the power of
3 modulo 7. When we have a number 6 6 1 6 1 6 1

n, if the power of a modulo n con-
tains every coprime of n in Z,', then
a is called n’s primitive root.

Every prime number p has primitive roots, and the number of primitive
roots is ¢(p — 1). For modulo 7, the result of this equation would be

PT7-1)=¢B)=p(2x3)=(2-1)x(3-1)=2

This means that modulo 7 has two primitive roots. Thus, aside from 3,
there must be one other numerical value that is a primitive root, and, if we
look at the a” modulo 7 table, we can ascertain that it is 5. Where p is a prime
number, a represents a primitive root modulo p, and k is a nonnegative integer
but also fulfills the equation k < p - 1, we can express any member of Z; as a
modulo operation like so:

a* = Z, (mod p)

With some rearrangement of this equation, the exponent k of primitive root
« can also be expressed as the following equation:

k =1log,Z; (mod p)
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When this is the case, k is known as a discrete logarithm with base a.
Let’s quickly go over log notation. For example, the equation 2° = 8is the
same as

3 = 3 log,2 = log,2° = 10g,8

This is similar to rephrasing the expression “2 to the power of 3 is 8” to be
“to get 8, you must multiply 2 by itself 3 times.”
As is also explained on page 116, when you have the equation

o = Z, (mod p),
it isn’t difficult to find Z; when q, k, and p are known, but finding the discrete

logarithm k is incredibly difficult even if you know «, Z;, and p. This is the
discrete logarithm problem.

y = loga AND

WELL, NEXT T'LL

DID YOU EXPLAIN ELGAMAL
UNDERSTAND THE ENCRYPTION, AN
EXPLANATION? ALGORITHM THAT

USES THE DISCRETE
LOGARITHM PROBLEM,

PUBLIC-KEY ENCRYPTION AND DISCRETE LOGARITHM PROBLEMS 175




ENCRYPTION AND DECRYPTION IN ELGAMAL ENCRYPTION

In this cipher, the sender is Ruka, and the recipient is Ran.
1. Recipient Ran prepares a large prime
number g and the primitive root a. WHO 1S RAN?

b 4

THE GIRL FROM
THE RAMEN SHOP!

WE'VE BECOME
FRIENDS!

2. Recipient Ran randomly chooses a private key d, performs the
following calculation, and makes the public keys g, «, and q
available to others.

g =ad (mod q)

b 4

DAY IT'S
THIS ONE!

3. Sender Ruka selects a random number r and calculates C, = ar
(mod q).

In addition, she calculates C, = m x gr (mod q) for the plain-
text message m.
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b 4

4. Sender Ruka sends C, and C, to Ran.

Private key d

Public keys g, a, and q

C, Gy

5. The recipient Ran uses private key d to calculate the following
equation and decrypt the message:

| Q

2 (mod q)
&

m =

(5]

WE HAVE
= (o) = (at) =a = g WOW! WEVE
DECRYPTED THE
%@ PLAINTEXT m!
& _ mog” i
cld g =
1S THE DECRYPTION AMAZIN?{ ]
OF m. i
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SHARING A KEY IN ELGAMAL
ENCRYPTION 1S SIMILAR TO
SHARING A KEY WITH THE
DIFFIE-HELLMAN METHOD.

Ruka and Ran share the large primary number p and the primitive
root a, neither of which is private.

Ruka selects a secret random number ¢ and then sends ac (mod p)

to Ran. On the other end, Ran selects a private random number d
and then sends ad (mod p) to Ruka.

b 4
b 4

The shared key is acd. Ruka obtains the shared key by calculating
(ad)c = acd (mod p) from private key ¢, and Ran obtains the shared
key by calculating (ac)d = acd (mod p) from private key d.

The two of them are able to share a key.

OHHH, THAT'S
EASY TO
UNDERSTAND!

ON TOP OF
THAT, ELGAMAL
ENCRYPTION 15
REALLY STRONG!
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ELGAMAL 1S ALSO USED AS A
DIGITAL SIGNATURE SCHEME...

AND 1S USED IN THE FAIRLY
NEW FIELD OF ELLIPTIC
CURVE CRYPTOGRAPHY!

DIGITAL SIGNATURE?
THAT TECHNOLOGY
1S USED IN
AUTHENTICATION,
RIGHT?

WE'LL LEARN ABOUT
THAT IN CHAPTER 4!

OH! MY EMAIL!

LOOK! IT'S
A MESSAGE
FROM RAN!

4 FROM: RAN UZUKI
A TO: RUKA
7 SUBJECT: BYE-BYE!

1 HOPE TODAY'S LESSON WASN'T TOO TOUGH! I'VE
MOVED OVERSEAS. BUT DON'T WORRY—WE
CAN STILL EMAIL!

YOUR CONVERSATIONS MEANT SO MUCH TO ME, SO
PLEASE KEEP IN TOUCH!

HOPE YOU CATCH THE THIEF AND GET THE
EMERALD BACK!

RAN (T07)/~
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YOU'D JUST BECOME
FRIENDS...IM SO

I'M SAD AND
LONELY TOO.
BUT MORE
IMPORTANTLY,
I'M HUNGRY!

WE'RE GOING
AHEAD!

>~

LET'S GO
GET 5OME 3
RAMEN!

YOU ALL KNOW WHO
MS. CYPHER 1S5 NOW, RIGHT?!
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THE EXTENDED EUCLIDEAN ALGORITHM

The Euclidean algorithm derives the greatest common divisor of two natural
numbers more efficiently than does base factorization. The procedure for iden-
tifying the greatest common divisor of two natural numbers a and b (where

a > b) using the Euclidean algorithm is as follows:

1. Divide a by b to find the remainder r.
2. When r =0, the greatest common divisor is b, and the process is finished.
3. When r# 0, replace a and b with b and r, and perform the first step again.

In other words, repeat steps 1-3, and when you arrive at a remainder of 0,
the divided number is the greatest common divisor.

For example, let’s solve for the greatest common divisor of 1,365 and 77.
Although the Euclidean algorithm deals with remainders, its proof is conven-
tionally written without using modular arithmetic, so we’ll do the same:

1,365 =17 x 77 + 56 1,365 + 77 = 17 with a remainder of 56
77=1x56+21 77 + 56 = 1 with a remainder of 21
56=2x21+14 56 + 21 = 2 with a remainder of 14

21=1x14+® 21 + 14 = 1 with a remainder of 7
14=2 D+ 0 14 + 7 = 2 with a remainder of 0

So, the greatest common divisor is 7.
Next, we'll locate the greatest common divisor for the coprimes 20 and 17.

20=1x17+3

17=5%x3+2
3=1x2+1
2=2x1+0

Of course, since the greatest common divisor is 1 for coprimes, the
Euclidean algorithm seems unnecessary. However, the extended Euclidean
algorithm is very useful to us.

The extended Euclidean algorithm is used to solve for the modular multipli-
cative inverse, which is one of the calculations required in RSA. It aims to solve
for the coefficients of Bezout’s identity, which is the following equation,

ax+by=d,

where d is the greatest common divisor of a and b (x and y are the coefficients
we aim to solve for). To solve for x and y, we must perform a few more steps
after Euclid’s algorithm (hence the name extended Euclidean algorithm).
First, we’ll transpose the first three equations into the following equations:
20-1x17=3
17-5x3=2
3-1x2=1
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Since 2 is equal to (17 - 5 x 3), as seen in the earlier equations, we’ll take
the last equation we created and substitute it for 2.
3-1x2=1
3-1x(17-5%x3)=1
Then manipulate the equation by distributing and combining like terms.
The goal of these substitutions is to express everything on the left side in terms
of ax + by where a =20 and b = 17.
3-1x(17-5%x3)=1
3+(-1x17)+[-1(-5x3)]=1
(-1x17)+3+(B5x3)=1
(-1x17)+(6x3)=1
Next, we’ll substitute (20 — 1 x 17) for 3:
-1x17)+6x(20-1x17)=1
(-1x17)+ (6 x20)+ (-6 x17)=1
6x20)+(-7x17)=1
The result of this series of procedures is rewritten as follows:
20(6) + 17(-7) =1

This is exactly what we were looking for. The value d = 1 because a and b
are coprimes, a = 20 and b = 17 as expected, and we now have the values of x
and y.

The solution to the extended Euclidean algorithm here is x =6, y = -7.

CALCULATING THE PRIVATE KEY IN RSA KEY GENERATION

Here we’ll show how we got d = 33 in our key generation example, which
requires calculating inverse elements in a modulo operation.

In our example, we were trying to solve for the private key d and had this
equation:

17d = 1 (mod 40)

To solve this, you can rearrange the equation into Bezoat’s identity (ax + by
= 1) and use the extended Euclidean algorithm. We'll arrange the equation so
that a =17, b =40, and x = d to get

17x+40y =1
Now, to solve for x, let’s first perform Euclid’s algorithm:

40=2x17)+6

17=2x6)+5
6=(1x5)+1
5=(5x1)+0
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Now we’ll perform the extended Euclidean algorithm. Let’s start with the
second-to-last equation from our calculations for Euclid’s algorithm:

6-1x5=1
Now substitute the third-to-last equation into the second-to-last equation:
6-1x(17-2x6)=1
Now substitute in the first equation as well:
40-2x17)-1x(17-2x(40-2x17))=1

Group the numbers into similar terms. In this case, group them into 17s
and 40s:

-7x17+3x40=1
Given that we had 17x + 40y = 1 and were solving for x, we can see that our
private key d = x = -7 = 33 (mod 40) became -7 + 40 = 33.

Now that you've completed this hands-on example, you should have the
confidence to solve for other private keys for RSA key generation!
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PRACTICAL
APPLICATIONS OF
ENCRYPTION




15 THE RAMEN
READY YET...2 THEY MUST BE
: SHORT-STAFFED
SINCE RAN LEFT...

BY “HYBRID” DO YOU MEAN
A “COMBINATION—AS IN

A FUSION OF MULTIPLE

METHODS?

WELL, WHILE WE WAIT,
T'LL TEACH YOU ABOUT
HYBRID ENCRYPTION.

I HATE STUDYING ON AN
EMPTY STOMACH.
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PRECISELY! N

IT'S A METHOD OF ENCRYPTION
THAT ACCOUNTS FOR THE
WEAKNESSES OF BOTH
SYMMETRIC-KEY ALGORITHMS AND
PUBLIC-KEY CRYPTOGRAPHY.

THE CALCULATIONS
FOR SYMMETRIC-KEY
ALGORITHMS ARE
FAST, BUT EXCHANGING
KEYS 15 AN I155UE.
THE CALCULATIONS
INVOLVED IN PUBLIC-KEY
CRYPTOGRAPHY TAKE
A LOT OF TIME, BUT
EXCHANGING KEYS TO
IMPLEMENT A PUBLIC-

KEY SCHEME 15 SIMPLE.

LET'S SEE HOW HYBRID ENCRYPTION
SOLVES THESE ISSUES BY ENCRYPTING
A SHARED KEY FOR A SYMMETRIC
ALGORITHM USING PUBLIC-KEY
CRYPTOGRAPHY. ONCE THE ENCRYPTED
KEY |15 EXCHANGED, THE PUBLIC-KEY
ALGORITHM 15 NO LONGER NEEDED, AND
FUTURE MESSAGES ARE ENCRYPTED
USING THE SYMMETRIC ALGORITHM
WITH THE SHARED KEY.

Symmetric algorithm

Shared key A
is made into
plaintext and is
encrypted

The recipient’s
public key is
received in
advance

1
1
1
'
1
1
'
1
1
1
!
: Public key
'
1
]
'
1
1
'
1
1
1
1
'
1

Outrageous Outrageous

M M 2

(plZiS:z%g;i) (pl:iS:tlgxet] Identical to

) . shared key A

Bewildered Bewildered

Shared . Shared

iy Qq — Decryption <:|£:'1:8) tris

Ciphertext Ciphertext

Encrypted shared key

Encrypted data
is decrypted to
obtain shared

010111...

Private key

The recipient
creates a pair of
public keys in
advance

Public-key encryption process
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As demonstrated in the previous figure, public-key encryption is used only to
encrypt and decrypt the shared key so that the symmetric-key algorithm can be
used to encrypt and decrypt the actual messages that are exchanged. Since the
shared key is encrypted using a public key, the greatest weakness of a shared
key—the delivery of the key—is avoided.

So, now let’s look at a real-life example of encryption using ramen orders.

Message

HERE, IM
SENDING THE
PUBLIC KEY!

@ Public key
THREE RAMEN, > Shared key
PLEASE!

Encrypuon

Message

1 HAVE A
MESSAGE!

W These two are
Public key 5, A PAI

Private key , : 7

o=

THREE RAMEN,
PLEASE!

THE MESSAGE 15
ENCRYPTED USING
A SHARED KEY, AND

Encrypted THE SHARED KEY 15
’ Encryptlon ENCRYPTED UGIN@
2’ A PUBLIC KEY!
» Received >
Identical publicikey -
Shared key ( T Shared’key
Ciphertext [ =1

AND NOW I'M

SENDING IT! Sending the encrypted shared key

and the message as a ciphertext...

Decryption ——nu)

5 4 Shared key
Encrypted ’
shared key

/
Private key

-
G:E] THREE RAMEN, b
FLEASEL BUSINESS!

Received ciphertext =) Decryption =———————J) Message
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1 SEE! 50 THAT'S HOW
WE CAN EXCHANGE
ENCRYPTED
MESSAGES IN A FAST,
HIGHLY EFFICIENT
MANNER!

I WISH THE RAMEN
WOULD COME OUT
IN A FAST, HIGHLY
EFFICIENT MANNER,

N
GURGLE

BURGLE

HYBRID ENCRYPTION |15
USED ON THE INTERNET.

SEVERAL TYPES OF HYBRID
ENCRYPTION EXIST ONLINE,
INCLUDING PRETTY GOOD
PRIVACY (PGP), WHICH |5 USED
FOR ENCRYPTING EMAIL, AND
S5L/TLS, WHICH |15 USED TO
ENCRYPT WEB PAGES.

SORRY FOR THE WAIT! \/
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HASH FUNCTIONS AND MESSAGE

AUTHENTICATION CODES

/;} SO ANGRY?

%{%@»’\m J’ ,g; ) | WH—WHY 15 HE

INSPECTOR,
HURRY UP AND
ARREST THAT

CRIMINAL!

SURE, BUT...

I DONT
KNOW WHERE
SHE 157
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WE LOST 29 BOWLS
OF RAMEN THE
OTHER DAY!

RAMEN?!

WE RECEIVED A
DELIVERY ORDER VIA
EMAIL, BUT...

Sato-san in

District 1

DELIVER ONE
BOWL OF
RAMEN.

Attacker

30 BOWLS
OF RAMEN

THE MESSAGE WAS
TAMPERED WITH!

CAN'T YOU
PREVENT MESSAGE
TAMPERING USING
ENCRYPTION?

oW
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TAMPERING COUNTERMEASURES

TO STOP TAMPERING,
YOU SHOULD USE HASH
FUNCTIONS!

HOLD THE
DROOL. I DON'T
THINK THERE'S
BEEF INVOLVED,

HASH? IS THAT LIKE
BEEF HASH?

“HASH" REFERS TO
SOMETHING THAT'S
CHOPPED UP.

SOUNDS
DELICIOUS.

OOH, 1 SEE!

INSTEAD OF BEEF, HASH
FUNCTIONS CHOP AND MANGLE
MESSAGES INTO TINY PIECES TO
PRODUCE HASH VALUES.

175 A VALUE CALCULATED FROM THE
MESSAGE. IT'S LIKE A FINGERPRINT
\ YOU WOULD USE TO IDENTIFY A
PERSON IN A CRIMINAL INVESTIGATION.
3 THEY'RE
NOT FOOD!

WHAT'S A HASH
VALUE?

WE USE HASHES
TO CHECK THAT
MESSAGES HAVEN'T
BEEN FALSIFIED.
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Buddha and

all of creation

HASH FUNCTIONS

A hash value identifies a message, like a fingerprint. The hash value is a small,
fixed size, whereas the input is often larger than the hash. A hash function is
used to calculate a hash value from a message.

The sender transmits a hash value with a message to guarantee the mes-
sage’s integrity. A message has integrity when the recipient is assured that the
message hasn’t been falsified. The recipient recalculates the hash using the
same hash function as the sender and then compares that calculated hash to
the hash attached to the message. If the values are the same, the message hasn’t
been falsified. This process, shown in the following figure, is called performing a
checksum.

Tampering
has occurred

0101
001101
111011

¥ Hash function
(fingerprint

extraction) Hashes

are
different

| Hash function |->
A

Message
(plaintext)

Fingerprint
extraction

Results

Hashes
are the
same

Tampering has

Buddha and
all of creation

STELES Buddha and
001101 allof ereation | | 401101
111011 111011
Buddha and

not occurred

Message
(plaintext)

all of creation

Hash value
(fingerprint)

Hash value
(fingerprint)

Message
(plaintext)

Message
(plaintext)

A hash function is a one-way function. The original message can’t be
derived from the hash value. This property is referred to as irreversibility.

Hash functions need to be resistant to collision attacks, which guess the
hashes for messages. Because a hash needs to be unique to a message, the hash
function can’t produce the same hash for different messages. When a hash func-
tion fulfills this requirement, it has strong collision resistance. In addition to
being resistant to hash collisions, a hash function shouldn’t produce similar
values for similar messages. For example, if we were to give the input 01001 to
a hash function, it should output a different value than if we used 01000 as the
input, which differs by only 1 bit. Real-life hash functions have a larger input
than output, which means collisions are unavoidable. Therefore, they don’t
have strong collision resistance. However, hash functions can be developed to
make finding an input that matches an output as difficult as possible. This is
accomplished by using a large output and sets of calculations that are thought
to be resistant to reverse engineering. Some hash functions developed with
these requirements in mind are MD5, SHA-1, SHA-256, and SHA-512, but these
functions are not foolproof. For example, researchers discovered that MD5 and
SHA-1 are vulnerable to collision, so they are no longer safe to use.
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IDENTITY FRAUD

YOU SHOULD USE I SEE...

HASH FUNCTIONS TO 3 THAT ALONE ISN';r

PREVENT MESSAGE e < GOOD ENOUGH!
TAMPERING. BUT... A
" \lr

f = i N ///
)~ 3 AN Y ;
N et W >

WE LOST 30 BOWLS
OF RAMEN AGAIN
TODAY!

Attacker I'M GONNA
CAUSE

TROUBLE!

USAGI'S DINER

QRoERs OF

ANAKA
4 paven ' wﬂi\u Rpu 0 Tm a
| g Rawn T “\“‘\ nie
e W s
W DisTRY

AREN'T THERE

SOMEONE'S BEEN UH...
IMPERSONATING  (// / PREVENT
CUSTOMERS! S IDENTITY
2
(C k- T
( 1 %
= 50 THAT'S WHY,
HEWAS MAD...
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IDENTITY FRAUD COUNTERMEASURES I

YOU CAN Use « 3
A MESSAGE
AUTHENTICATION
CODE!

{

T iy w Ay W VALY

MESSAGE
AUTHENTICATION?

WHEN YOU HAVE A
MESSAGE FROM THE
ACTUAL SENDER...

HOW DOES IT
AUTHENTICATE
MESSAGES?T

IT AUTHENTICATES THAT

THE RECEIVED MESSAGE

HAS COME FROM THE
CORRECT PERSON

AND ISN'T FROM A
FRAUDULENT SENDER
ENGAGED IN IDENTITY
THEFT.
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STRUCTURE OF MESSAGE AUTHENTICATION CODES

A message authentication code is a procedure that confirms a message’s authen-
ticity and certifies a message. Let’s look at the following figure to learn how a
message authentication code can be produced.

The sender transmits a message and the MAC value (also called a tag)
derived from their message. The MAC value is used to perform a checksum in
the same way as with a hash value.

The shared key is
exchanged between

Shared the sender and I—l
key recipient prior Recipient
to the message
\w Y [J A Shared Message
~ A‘p authentication s (plaintext)
Sender rotocol 7
Generation ,f o111 Pass the
of a message 011101 buck
Pass the authentication code MAC value is |—p 110010... Grim
buck [aonesy Hagh generated prospects
function dependent
Grim on a key)
prospects No falsification
:
' '
' '
1 '
! Pass the .
1 0111 1
¢| buex 4+ | ouor [ bucly + | otttor i
' Grim 110010... i L Grim 110010... 1
1| prospects ' 1| prospects '
Ll 1 ] ]
1 1 1 '
. Megsage MAC value 1 : Mensage MAC value 1 Falsified
| (plaintext) i . (plaintext) ' message!
' ' [
........................ a i

The sender delivers a message with its corresponding MAC value to a recip-
ient. The recipient calculates a MAC value from the message they received and
compares their MAC with the original MAC value from the sender. If the two
MAC values match, the recipient is assured that the integrity of the message
is intact and that the message is from the sender.

NOTE: The recipient knows that the message is from the sender because it
is assumed that only the sender and recipient have the key. If the recipient
didn’t create the tag (the MAC value), then it must be from the sender.

Think of a message authentication code as a one-way hash function that
is associated with the shared key. MAC values are similar to hash functions
because they possess the same mechanisms and confirm the authenticity of
a message by calculating and comparing values on the sender’s and recipi-
ent’s ends.

When the two parties calculate the MAC value, they use a key that is shared
only between themselves. By calculating the MAC value from the message, the
receiving party can be assured that the sender of the message is in fact the per-
son who has the same shared key.
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MAC values provide integrity for a
message. When the two MAC values are
identical, the message has not been tam-
pered with en route from the sender. When
the two MAC values differ, the message has
potentially been falsified, and the sender
may not be the one who shared the key.

A message authentication code works
in this way, but as with public-key encryp-
tion, there are issues with the security of
the shared key.

Message authentication codes are also
used for SSL/TLS, which is used by inter-
national banks for money transfers and in
online shopping.

MISTER, NOW YOU

CAN REST EASY! NO—WAIT!

#i]
NOW LET'S
HAVE SOME
RAMEN!

IS THERE STILL
AN 155UE?

WHAT WOULD
YOU DO IN THIS
SITUATION?
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Attacker

I DIDN'T ASK
FOR ANY!

WHAAAA—?!

50 THEY'RE THE ORIGINAL
SENDER, BUT THEY WON'T

ADMIT IT.

UNFORTUNATELY, THERE ARE
LIMITS TO WHAT A MESSAGE
AUTHENTICATION CODE CAN DO.

CAN'T WE USE A MESSAGE
AUTHENTICATION CODE?
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DRAWBACKS OF MESSAGE AUTHENTICATION CODES

Repudiation is the ability to deny being the sender of a message. For
example, a message and MAC value are sent from A to B, and afterward A
claims, “I didn’t send this message to B. B made this up.” There’s no way

to disprove A’s statement, and even if B enlisted the help of a third party to
find out the truth, this third party wouldn’t have a way to determine whether
the message and MAC value were generated by A or by B.

When a message is sent from A to B, B can’t verify to a third party C that
the message was sent from A. This is because the message and MAC value
can be generated by either A or B. In other words, C is unable to determine
whether the MAC value was generated by A or B.

ECccK!

WHAT SHOULD 1 DO?!

THERE'S A
GO0D WAY TO
DEFEND AGAINST
REPUDIATION!
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DIGITAL SIGNATURES

]
REPUDIATION MEASURES [ =
A DIGITAL SIGNATURE IS THE

HOW DO YOU YOU USE ADIGITAL ) —
DEFEND AGAINST SIGNATURE! = OPPOSITE OF ENCRYPTION IN
< PUBLIC-KEY ENCRYPTION.

>
; | DOING THIS WILL ALSO

ALLOW THIRD PARTIES TO
VERIFY YOUR IDENTITY.

HOW DOES
IT WORK? LET'S CHECK
MESSAGE OUT THE
AUTHENTICATION CODES STRUCTURE
PROVIDE INTEGRITY IN OF ADIGITAL
SIGNATURE!

PRIVATE-KEY/SYMMETRIC
ENCRYPTION, WHEREAS
A DIGITAL SIGNATURE

PROVIDES INTEGRITY
IN PUBLIC-KEY
ENCRYPTION,

THE TABLE SHOWS
ENCRYPTION AND DIGITAL
SIGNATURES IN PUBLIC-
KEBY CRYPTOGRAPHY.
Decryption using

Encryption using Ciphertext
recipient’s private

Encrypting
message sender’s public key

key
Digital Decryption using Signature |Encryption using
signature sender’s public key sender’s private key
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A

Ly

warriors

follow the
mind

warriors

follow the
mind

Message
(plaintext)

] ‘
(‘ follow the

Let the brush

worth 1,000

Let the brush

THE WORKINGS OF A DIGITAL SIGNATURE

When using a digital signature, the sender signs a message that has been
encrypted using their own private key. This signature is sent to the recipient
along with the message.

The recipient decrypts the signature using the sender’s public key to obtain
the message. Then the recipient compares the decrypted message to the sent
message.

If the two are the same, the message is verified as authentic, and the sender
is thought to be legitimate. Because the sender’s public key is used for decryp-
tion, a third party can also verify the signature. When a third party is able to
verify that a message came from a specific sender, we have nonrepudiation—the
sender can’t deny they sent a message.

Let’s look at some examples of how a digital signature works. The follow-
ing figure has been simplified to make the general concept of a digital signature
easier to understand.

Public-key Received
5 encryption and . message
Private decryption Public A warrior

key

mind

follow the No problems with
nind authentication

Result
Different

'
'
AN :
'
010010 '
101100 warriors 1
010011 1 1 Let the brush ||
010011... : 1 010011... follow the :
' ! mind 9
' ' '

Signature ! ! Signature Message ! Problem with

(ciphertext) 1 1 (ciphertext) (plaintext) 4 authentication!
] 1 )
........................ a e S R el

In this figure, the message shown is immediately encrypted and signed. In
reality, it takes time to sign an entire message with public-key cryptography.
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It is common to first use a hash function to turn the message into a hash
value and then convert the hash into a signature, as shown in the following

figure.

\r

Scenic beauty ;|

Castle in
the sky

011010
111100

Hash value

Scenic beauty

Hash function

Private key

:

Castle in H

the sky H

'

'

Signature

[N{:isnsschet] (hash-value :
P ciphertext) ,

'

Hash value obtained
from encrypted data

Public key

:

011010
111100

Compare

011010
111100

Hash function

from received

Problem with
authentication!

Different

Same

Hash value
obtained

message

No problems with
authentication

Scenic beauty

Castle in
Scenic beauty the sky
XXXX
' EEE Castle in Message
i o0 the sky « (plaintext)
| Signature Recipient |
1 (hash- Message
1 function (plaintext)
' clphertext]
1

A digital signature is also used to generate a server certificate that authen-
ticates the legitimacy of an SSL/TLS server. A certificate is something that
appends a digital signature to a public key (in this case, the server’s public
key). Certificates also append digital signatures to software downloads to pro-

tect software from being falsified.
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WITH THIS MANY ]
COUNTERMEASURES, YOU'LL
HAVE NOTHING TO WORRY
ABOUT WHEN YOU DELIVER

YOU CAN'T LET YOUR
GUARD DOWN!

THERE ARE ALSO MAN-
IN-THE-MIDDLE (MITM)
ATTACKS...

MAN-IN-THE-MIDDLE ATTACK

Let’s say we have a sender A and a receiver B. We’ll have Mr. Sato of District 1
be A and Usagi’s Diner be B. Sender A corresponds with B using encryption, but
first he has to receive B’s public key. A person in the middle, an attacker, inter-
cepts the public key as it is transmitted from B to A and then sends their own

public key to A instead.

Since the encrypted message sent by A has been encrypted using the
attacker’s public key, the attacker can decode the message using their own
private key. The attacker alters the contents of the message, encrypts it using
B’s public key, and sends it. Once the attacker is done, B has no idea that the
message was tampered with and has no way to check for falsification. Let’s see

what this looks like.

T'LL ORDER
A BOWL OF
RAMEN USING
ENCRYPTION.

Attacker’s

Message is

1 oRDER encrypted
OF RAMEN, Utshiaﬂi'-he
1 attacker’s

PLEASE? public key

Attacker

public key il

Mr. Sato in

T'LL CHANGE
THE KEY AND THE

MESSAGE.

30 oRoers
OF RAMEN,
auick!

Fraudulent message is
encrypted using Usagi’s
Diner’s public key

District 1 G

Attacker sends their own public key
in place of Usagi’s Diner’s public key

> Usagi’s Diner
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BUT IF YOU KNOW WHose | | THAT'S RIGHT!

KEY WAS USED TO
ENCRYPT THE MESSAGE,
THAT TAKES CARE OF THE
PROBLEM!

IF YOU HAVE A
TRUSTED THIRD
PARTY (A CERTIFICATE
AUTHORITY) WHO CAN
ACCURATELY VERIFY
WHOSE KEY IT 15,
YOU'RE GOOD!

USING CERTIFICATES TO PROTECT AGAINST
MAN-IN-THE-MIDDLE ATTACKS

A certificate attaches the digital signature of a public key and that key to an
identity. A certificate is published by a certificate authority. When someone
wants to make a public key available, they register their public key using a cer-
tificate authority and simultaneously request publication of the certificate.

Based on this request, the certificate authority verifies the authenticity
of the user, and, if the public key meets the certificate authority’s standards,
the certificate authority generates a certificate for the public-key and digital-
signature set. Sometimes the user creates the public- and private-key set, while
other times the certificate authority generates these during registration.

The process of verifying the certificate guarantees that the public key indeed
belongs to a specific user. The certificate authority, a trusted third party, verifies
that the public key is correct on behalf of the user. Now let’s look at the proce-
dure shown in the next figure and outlined in these six steps.

1. User A requests that the certificate authority publish the user’s public key.

2. After the certificate authority confirms the identity of User A, the certifi-
cate authority produces a digital signature for User A’s public key, and the
certificate is published. The published certificate affixes a digital signa-
ture to User A’s public key by means of the certificate authority. The cer-
tificate is usually made up of the public key of User A (PKA) and the digital
signature of PKA.

3. The certificate authority stores the certificate in a repository (a data
storehouse).

User B downloads User A’s certificate from the repository.

User B decrypts the digital signature using the certificate authority’s pub-
lic key.

6. The decrypted key is compared with the public key attached to the cer-
tificate. If the two keys are the same, the public key included with the
certificate is verified as belonging to User A.

By means of the certificate-issuing procedure, User B can obtain User A's
verified public key. By using User A’s secured public key, User B can verify that
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the message was encrypted with User A’s private key and affixed with a digital
signature.

The validated message will simultaneously meet the following three
conditions:

1. The message has not been falsified.
2. The message has not been generated by a third party posing as User A.

3. User A can’t repudiate the message. In other words, User A can’t deny they
generated the message.

As long as the legitimacy of a public key is verified, any message affixed
with the public key’s digital signature is assured to meet these three con-
ditions. Let’s finish up by discussing the mechanisms behind public-key
infrastructure (PKI).

Z Wants to publish his

public key
User A's
\‘P public key is
. included with
User A’s private key ine e
©__N’ (stored and kept secret by A) theseertificate
Request User,B can use
to publish User A's public key Ur User A’s public key
certificate
Certificate is Compare G
P e 1 downloaded certificate, public Same
Publishing © I rT T T ey *‘“gl fle;fypte Different
the | Publickeyof | I @=1 1 \ublickey
certificate 1 User A 1 I useras |
1 1 I publickey |
| | I I
I 4 ! ! > Decryption
| | ‘ =it ! I Don’t use
| Digital signature | | | nsI ] 1 the key!
| User A’s | ] \ 1 | Certificate
public key is | VJ | 1 authority’s
| encrypted using | . public key
| the certificate | _Certtlﬁc:t_e 1 Digital |
Certificats aut_hority‘s 1S storet .xn I z I
Comente | prvachey || epwie | signature
ivate I By e o o v repository I |
private key Certificate L a

TCertificate (QALWI

WE CAN FINALLY REST
EASY NOW THAT WE'RE
PROTECTED AGAINST
MAN-IN-THE-MIDDLE
ATTACKS.

NOW WE CAN
RELAX AND EAT

LET'S EAT/
\ 7
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PUBLIC-KEY INFRASTRUCTURE ——

CERTIFICATES?

ENCRYPTION!

OW DO WE KNOW
INFORMATION 15
AUTHENTIC?

U7 EAN HOW CAN WE KNOW A

WE'RE ALMOST B WE CERTIFICATE ACTUALLY

DONE STUDYING REALLY RELY WAS PUBLISHED BY A
ON THOSE CERTIFICATE AUTHORITY?

CAN WE REALLY TRUST

THE CERTIFICATE
AUTHORITY?

FOR EXAMPLE... N
LET'S THINK
ABOUT IT IN
TERMS OF 0000 S
[Ty

CURRENCY. ébw% =

\\\\ OOO0OH,

A 10,000 NOTE!

RUKA'S
LOADED!
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IN REALITY, THIS 1S L IF MONEY LOSES

JUST A SLIP OF PAPER. . 1] V%%Ji’UETRAEgL'I'; VOV;!-'L

IF THE VALUE OF
MONEY INFLATES...

HUH? THE
¥10,000
NOTE THAT!
WAS IN MY
WALLET |5
GONE...

BUT NOTES ARE
I1SSUED BY THE BANK
OF JAPAN, WHICH WE
CAN TRUST, RIGHT?

THAT'S NOT ALL! ACREED!
| ? 1T IMPORTANT
THE BANK |5 CRUCIAL TO KEEP THE

INFRASTRUCTURE OF
SOCIETY IN MIND.

TO MAINTAINING THE
STABILITY OF PAPER
MONEY'S VALUE
50 CITIZENS CAN
FEEL SECURE USING
CURRENCY.

(no one else is allowed to create money).
» The Bank of Japan enacts a variety of measures to ensure

IN OTHER WORDS, , s
CURRENCY HAS VALUE . ’;klllat the. valgefof (;noney' [pal;er curren(ciy) doelsn t dec:lmfe. .
BECAUSE OF 5OCIAL e nation defends against forgery and uses laws to defen:

INFRASTRUCTURE. society’s trust in money.
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INFORMATION

BUT WHO AUTHENTICITY 15
GUARANTEES THE SAME.
INFORMATION
SECURITY AND
AUTHENTICITY? IT'5 RELIABLE

BECAUSE CERTIFICATE
AUTHORITIES ARE
PART OF A SOCIAL
INFRASTRUCTURE.

AND THIS SOCIAL
INFRASTRUCTURE
IS KNOWN AS
A PUBLIC-KEY
INFRASTRUCTURE!

Just as social infrastructure maintains the security and 50 BASICALLY IT'S
i s . THE FOUNDATION

authenticity of money, public-key infrastructure (PKI) guar- OF A SECURE

antees information security and authenticity for public-key INFORMATION

encryption. SOCIETY.
In other words, because of PKI, we can use public-key w

encryption to exchange emails, do business over the internet,
and perform other actions with peace of mind.

,‘Q
THAT'S RIGHT!
LET'S LOOK AT THIS
FOUNDATION IN

MORE DETAIL!
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TO BEGIN, WE HAVE
USER A AND USER B,
WHO ARE EXCHANGING
INFORMATION.

BUT WE DON'T HAVE ANY
IDEA WHEN OR HOW
THEIR INFORMATION

EXCHANGE COULD BE

ATTACKED, RIGHT?

LET'S VISUALIZE THE\
FOUR ELEMENTS OF
THE CERTIFICATE

AUTHORITY AND
REPOSITORY.

Public-key
reglster

Certificate

Request to store
certificate

Certificate
storage

Download

certificate

containing
the key

RECEIVE USER A'S
MESSAGE?

[ Encryption \
%| | using {  using |
\ private key \ public key
\ Digital signature
& y o 4
User A Message
IF I'M USER B, WHAT
PROCEDURE DO 1 NEED ;E[’go'l:i?
F w Cl Y
TO FOLLOW TO SECUREL e e

IN ORDER!
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User B wants to receive User A’'s message without
fear of falsification, identity fraud, or repudiation.

M
SENDING A
MESSAGE!

Internet

(EALSIFICATION)
REPUDIATION) (S5

Using his own private key, User A attaches Using User A’s public key, User B verifies the

a digital signature he has generated to the digital signature on the received message. If
message. Then he sends the message to the decryption of the digital signature with
User B. User A’s public key matches the message

sent, the message is legitimate.

Encryption Decryption

DiciraL Stoatune

=

Compare

DigitaL
SIGNATURE
oF DechypTED

Private key Messace

Public key

BUT HOW DO WE
KNOW THIS PUBLIC
KEY ACTUALLY

BELONGS TO ity
USER A? \ HMM, HOW
s 9U5PI6IOU9 V\gglgl;’DT;E#? %\>

THAT'S IT! THE
TRUSTED CERTIFICATE
AUTHORITY CAN
VERIFY THE
PUBLIC KEY!

User A registers their public key
with the certificate authority, which
publishes a certificate.
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The certificate is composed of User A’'s
public key and the certificate author-
ity’s digital signature.

The certificate authority
stores the certificate in a
repository.

User B downloads User A’s cer-
tificate from the repository.

User B decrypts the digital signature
included in User A’s certificate. User B
then compares the public key and digital-
signature key. If the two keys are the
same, User B has verified that the mes-
sage can}? from User A.

4, DiciTaL SicNaTURE
CeRTIFIED

Certificate
authority’s
public key

G

Compare

Decryption ——Pp

SINCE THE PUBLIC KEY
15 REGISTERED WITH THE
CERTIFICATE AUTHORITY BY
USER A, ANYONE CAN VERIFY
USER A'S IDENTITY.

When verification is complete, we
know that User A’s public key is
legitimate and the message User B
received is also legitimate (in other
words, we've ruled out falsification,
identity fraud, and repudiation).

1 60T THE
MESSAGE!

PUBLIC-KEY INFRASTRUCTURE 211



KNOWING OUR
EXCHANGES OF

SECURE.

NOW WE CAN RELAX

INFORMATION ARE

CERTIFICATES AND PUBLIC
KEYS ARE STANDARDS
CREATED BY OUR
INFORMATION SOCIETY
TO PROTECT IMPORTANT
INTERACTIONS,

WE COULDN'T SECURELY
EXCHANGE INFORMATION
WITHOUT THE STANDARDS
AND RESOURCES CREATED,
BY OUR INFORMATION
SOCIETY.

Your average
person

Authorization

- i
Authorization @
request i
i
i
Message ﬁ !
|
g
0

Application
for a digital

el SR

request

LET'S SEE HOW
THE PKI REQUEST
PROCEPURE WORKS
BY LOOKING AT THE
FIGURE BELOW.

TN

XXXX
XXXX
XXXX

Encrypted
authorization
request

identity certificate

Authorization
request

TN

XXXX
XXXX
XXXX

. Authorization
[~ Decryption ferjtiest

Encrypted
authorization
request

Certificate authority

Certificate authority
publishes User A’s
certificate

D

Message

Certificate
authority’s
private key

When the decryption of the received application and the public key are
verified, the certificate authority will grant User A the certificate.
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BUT ISN'T IT A BIT
OF A PAIN FOR
USER B TO HAVE TO
GO THROUGH ALL
OF THIS?

| MUCH FOR ME...

. ITMIGHT BETOO N
0 e

50 WHAT'S A
CERTIFICATE
LOOK LIKE?

LIKE THIS!

THE PROCESS
1S AUTOMATED

BY HARDWARE

BUILT INTO WEB

BROWSERS,

PRIVATE SOFTWARE
REGISTRATION
CARDS, CARD
READERS, AND
THE LIKE.

NO WORRIES!

& Cetificate

General Detais | Certficatin Path
show: [<All> =
[ A

Saturday, May 30, 2020 2:48:
AddTrust External CARoot, A

30 82 01 0a 02 82 01 01 00 b7 £7 1a 33 6 A

Here’s an example of a certificate in a web browser. Web browsers :
have the functionality to view certificates from websites. You'll be
able to see the certificate’s version information, serial number,
signature algorithm, issuer, and other such information.

WELL, OUR
INTRODUCTORY
COURSE ON
ENCRYPTION
15 DONE!
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OH! IT SAYS

MS. CYPHER!

IT'S FROM RAN,
ALSO KNOWN AS

WHA WHAAAAAAATZ!
e

FROM: RAN (MS. CYPHER)
TO: RUKA
SUBJECT: ARE YOU WELL?

I'M RETURNING THE SMILING MADPONNA
AND THE PRECIOUS EMERALD.

(I'VE STRUCK A DEAL WITH THE
INSURANCE COMPANY.)

BY THE WAY, I'M CURRENTLY IN THE
COUNTRY OF LIBERTY, AND I HAVE A BIG
JOB COMING UP VERY SOON!

HERE'S A HINT, IN BINARY:
00000010 0000100 00010101
000100  0OONI01 000000
00010010

WELL THEN, SEE YA!

STRUCK A
DEAL WITH THE
INSURANCE
COMPANY? _

THE STOLEN GO0DS MUST
HAVE BEEN INSURED!

AND FOR THE
INSURANCE COMPANY,
THIS WAS A SMALLER

MS. CYPHER MUST HAVE RECEIVED A
PORTION OF THE INSURANCE POLICY
IN EXCHANGE FOR RETURNING THE

TREASURES.

LOSS THAN PAYING
OUT THE FULL
AMOUNT!
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WHAT A SCOOP!
I'VE GOTTA GET BACK TO
THE NEWSPAPER!

BY THE WAY, WHAT
DO YOU THINK
MS. CYPHER WILL
STEAL THIS TIME?

IF WE PERFORM AN XOR
OPERATION ON THE BINARY
HINT, WE'LL GET OUR
ANSWER! SEE PAGE 226
FOR THE SOLUTION!

MARBLE ART
MUSEUM

DIRECTOR, DO YOU
REALLY WANT ME
TO TAKE DOWN THIS
PAINTING?
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OF COURSE!

P

WE'RE EXCHANGING
IT FOR THE SMILING
MADONNA.

THE PRECIOUS [/ ~\  THAT'S GREAT! /)
| 5TONE HAS ) < THIS 15 WONDERFUL!
BEEN RETURNED °
TOO, 50 FOR
NOW, ALL IS5
WELL!

FROM HERE ON, LET'S BE ATTENTIVE WHEN IT
COMES TO INFORMATION SECURITY SO WE CAN
BUILD A SAFER SOCIETY!

pLL RIGHTY




ZERO-KNOWLEDGE INTERACTIVE PROOF

In order to use a credit card, you need to share information to verify the authen-
ticity of the card, but credit card theft is common. If your credit information is
stolen while you are authenticating your card, you could be charged for items
you don’t recall purchasing (because you didn’t purchase them!). In the same
way, you risk revealing private information to outsiders whenever you need to
verify your identity. Because of these risks, we need methods that ensure con-
fidentiality can’t be breached (also known as a zero-knowledge protocols) and
methods that verify a person’s identity to others (also known as authenticity).
In an effort to respond to these necessities, Goldwasser, Micali, and Rackoff
introduced the concept of the zero-knowledge interactive proof in 1985. The
zero-knowledge proof is a means by which a third party (for example, a credit
card company) can verify the authenticity of an individual’s card while ensur-
ing that the private information attached to a card is not leaked. For example,
a card has a randomized decimal password of more than 100 digits. To authen-
ticate a card, a company or individual charging to the card would need to verify
that the password is authentic without the ability to see the card’s password.
This might seem impossible, but we can do this using the mathematical theory
behind encryption. Let’s look at how this method works in detail by breaking
the process down into two stages: the preparatory stage and the implementa-
tion stage.

PREPARATORY STAGE

The setup of a zero-knowledge proof first requires an honest verifier (such as a
credit card company). Let’s look at an example.

CREATE A COMPOSITE NUMBER N THAT /5 PUBLICLY AVAILABLE TO ALL USERS

The verifier prepares two prime numbers (p, q) and calculates their product, the
composite number N. That is, they use the following equation:

N =pq

The prime numbers p and q are secret. In actual practice, a proof would
use large prime numbers comprising around 80 digits, but here, we’ll use the
two-digit prime numbers p = 13 and q = 19 for simplicity’s sake. The product of
these two prime numbers is

N =13 =19 = 247

This is a three-digit composite number, but as noted, the factorization of
N in practice would generate a number so large that it would be impossible for
any computer to calculate. This very large composite number N is made avail-
able to all users.

REGISTER EACH USER'S ID WITH THE VERIFIER

Each user has an ID that is a publicly available numerical value associated
with each user’s public key. These IDs enable users to engage in one-to-one
correspondence. Each user registers their ID with the verifier. In this book,
we’ll identify IDs with subscripts. For example, User A's ID is ID,.
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THE VERIFIER CALCULATES AND SENDS EACH USER A PRIVATE KEY

The verifier calculates the user’s registered ID modulo the square root of N.
When dealing with real numbers, calculating a square root is simple; how-

ever, because we need to use integers, the square root calculation is complex
unless the prime numbers p and q of composite number N are known. The zero-
knowledge proof is built upon this computationally complex calculation.

In this example, only the verifier knows the prime numbers 13 and 19, and
since only the verifier can calculate the square root of each ID registered by the
users, confidentiality is not breached. Let’s look at an example in which ID, is
101. In this case, the square root is 71.

101 (mod 247) = 71

When we calculate in reverse and square 71, we get 71? (mod 247) = 101.
The value 71 is User A’s private key (S,), which is secretly delivered to User A.
Generally, the following relationship exists between ID, and private key S,:

\/I'TA(mOdN):SA

(S,)"(mod N) = ID,

In practice, the private key will be a number of more than 100 digits, so the
private key isn’t a number that User A can memorize. However, the purpose of
the private key (S,) is not to verify the identity of User A but rather to verify the
authenticity of User A’'s card. Therefore, User A doesn’t need to memorize S, as
one would memorize the PIN for an ATM card. Now that User A has a number to
verify that their card is authentic, let’s look at how User A would use this card.

IMPLEMENTATION STAGE (VERIFICATION PROCESS)

Now we’ll demonstrate the verification process for when a prover such as User A
wants to authenticate their identity to User B. If User A is trying to buy some-
thing with their credit card, this process shows that the card User A possesses
is genuine.

USER A SENDS A VERIFICATION REQUEST TO USER B
First, User A selects a random number r,, squares it, and divides it by the com-
posite number N to find the remainder, y,. In equation form, the remainder y, is
calculated as follows:
2
Y, = (rp) (mod N)

The remainder y, is sent to User B. Say for example that User A chooses
the random number 50. The remainder y, is calculated as follows:

y, = 50° = 2,500 = 30(mod 247)

Thus, User A sends 30 to User B.
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Next, User A takes the product of the private key S, they received from the
verifier and the random number r,. Then User A divides the product by the com-
posite number N to find the remainder, z,.

z, = S,r, (mod N)
Once User A calculates z,, they send the value to User B. If we use the
example where the random number r, is 50, we get the following equation:

z, = 71050 = 92(mod 247)

And 92 is sent to User B.

USER B VERIFIES USER A'S AUTHENTICITY

User B squares the z, they received from User A and divides by the composite
number N to find the remainder v,.

v, = (2,)"(mod N) = (S,r, )(mod N)

In our example, z, = 92, so we get the following equation:

v, = 92° = 8,464 = 66(mod 247)

Next, User B calculates the value of v, divided by y,, which User B received
from User A earlier in the process.
w, = 2 (mod N) = v, o(y,™*)(mod N)
yA

All of the calculations are operations using the composite number N, and
yA’l expresses the inverse element (reciprocal) of y,. This means that y A’l isa
value that satisfies the following equation:

U w(y,;l) = 1(mod N)

In this example, v, = 66, y, = 30, and yA’1 =30 (mod 247) = 140; therefore,
we can calculate w, as follows:

w, = @(mod 247) = 66 0307 (mod 247) = 66 ©140(mod 247) = 101
* 30

Lo and behold, this is User A’s ID (ID,).

Using this process, User B can verify the authenticity of User A's identity.
We can find ID, using this process because squaring User A’'s private key S,
yields ID,. That is to say, we can derive (S, A]2 using the previous equations as
follows.

ZERO-KNOWLEDGE INTERACTIVE PROOF 219



w, is found by the equation w, = v, / y, (mod N).
Recall the equations found for v, and y,:

v, = (ZA)Z (mod N) = (SArA)2 (mod N)
uy - (1)} (moa )

Substitute these into the equation for w, to get

9
w, = (SArA) = (SA)Z =D,

(ra )2

In other words, w, is equal to User A’s ID, ID,, as you can see in Figure 4-1.

[era ] [oees]
R \
. = (1) (mod N) Receives y,

Y,

Sends z, \
. =S, (mod N) Receives z,

z

A

(S,: User A’s private key) 0 (Z.x)2 (mod N)
Yy

A
The value w, is calculated and
then compared to User A’s
public ID (ID,).

Figure 4-1: Verification process using a zero-knowledge interactive proof

METHODS OF IDENTITY FRAUD

Building on the same example, let’s consider how User X, an attacker, might try
to steal User A's identity. If User A can verify themselves to User X while ensur-
ing that there is only a very small probability User X can learn anything about
User A’s secret key, then the scheme is a valid zero-knowledge protocol. Other-
wise, the protocol is faulty.

The zero-knowledge protocol requires that the prover (in this case, User A
or User X) know the secret key to be able to prove their identity to the verifier
(User B), so the protocol protects against identity attacks in which the adver-
sary doesn’t have knowledge of the secret key. User X, the adversary trying to
identify as User A, doesn’t know anything about User A’s private key S,. In an
attempt to trick User B, User X selects two numbers e and f that have the fol-

lowing relationship with ID,:

e’ = ID, » f(mod N)
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We’ll discuss this equation in more detail later.

In the scenario from Figure 4-1, the legitimate User A first sends User B y,
and z, to initiate a verification request. When attempting identity fraud, User X
mimics this verification request by sending f and e to User B as though they
were User A’s credentials.

Let’s use e = 25 and f = 82 to see how User X would try to mimic User A’s
ID (ID,).

Once User X sends e and fin place of z, and y,, respectively, User B uses
e and f to calculate w, as they would with a legitimate request. Because User X
generated e and f to have a specific relationship with ID,, w, will be identical to
User A’s public ID (ID, = 101), and User B will mistakenly authenticate User X
as User A.

Let’s see how User B'’s calculations work with e and f.

First, let’s look at e’s relationship with v,. First, we know that z, = e, so we
can substitute z, for e in the following formula:

v, = (2,)" (mod )
We find this relationship:
v, = € =25% = 131(mod 247)

Next, we would substitute v, = e’andf= Y, into this equation:
w, = U—"(mocl N)
Ya

Doing so yields the following:

e?

By = = e’ o f! = v, »827 (mod 247)

Here, from 827" (mod 247) = 244, we get w, = 131 x 244 (mod 247) = 101.

Using this method, User X can commit identity fraud on User A’s public ID,
without knowing User A’s private key S, or the random number r,. This process
is illustrated in Figure 4-2.

To get around the verification process in Figure 4-1, User X needs to find
values that fulfill the relationship f = e* (mod N) using only User A’s public ID.
To do this, User X squares e and divides by ID, to find f:

e2
f= E(mOd N)

Once User X calculates e and f, they can pretend to be User A without even
knowing the random number r,, committing a security breach. Let’s look at a
way to turn this protocol into one in which only User A, or someone with actual
knowledge of the secret key S,, can be verified as User A.
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| Legitimate User A (D, = 101) | User B |

Random number r, = 50

Sends y,

<
Y, = 50%(mod 247) =30 | oo es Y

Sende.g; \
Receives z,

z, = 71x50(mod 247)

2
w, O 92 Hhod 2470
30 <
00Ol O ID,

| Illegitimate User X User B
Sends y,
\ Thief has matched
y, 082 Receives y, — real ID, and stolen
User A's identity.
%ﬁ Receives z,

Sends z,

2
w, = %(mod 247)

=101=1D,

Figure 4-2: Example of identity theft

ANTI-IDENTITY FRAUD IN A ZERO-KNOWLEDGE
INTERACTIVE PROOF

Our protocol is flawed because identity fraud is possible, so let’s look at how
one can defend against an attack. To do this, we’ll incorporate a randomly
chosen challenge bit b and modify the prover and verifier’s protocol, as
shown in Figure 4-3.

When User A delivers y, to User B, User B randomly chooses a value of 0
or 1 as the challenge bit b and sends b to User A. The prover then sends z, to
User B, where z, =, x (S,"). User B performs a check on the returned value to
confirm whether the sender is a legitimate user. This check requires calculat-
ing z,” using the two methods z,” = r,” x (ID,") and z, x z, (where z, is the value
that User A sent). User B then compares the results of the two methods of cal-
culating zA2 to determine whether they are equal: z, x z, = rA2 x (IDAb)? If they
are equal, then the verifier accepts the prover’s claim to be User A.

This entire protocol is run t times to ensure that the verifier trusts the
prover, because if b = 0 (which occurs 50 percent of the time if User B chooses
he challenge bit randomly), the prover may simply return r,. This will trick the
verifier into accepting the answer even though the prover doesn’t have knowledge
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of S,. The number of times the challenge bit check is performed depends on the
level of secrecy one wants to achieve, where the probability a user will falsely
impersonate someone is 1/(2'). Performing the check t = log(N) times isn’t
uncommon.

As long as User X doesn’t have the secret key S, and we run this experi-
ment enough times to satisfy the verifier, this protocol can authenticate a user
and address the risk of identity fraud. The verifier also doesn’t learn any infor-
mation about S, from the protocol because z, is calculated from S,r, (mod N),
which multiplies S, by a random number.

| User A | | User B |
Sends y,
\ Receives y,

y, = (r,)" (mod N)
Sends challenge bit b

(b randomly chosen to
pOO,1 be 1 or 0)
Sends z, \
- Performs the following:

., =1,5,"(mod N) :
(r,8,") (mod N) = 2,2,

y, D" =z,z,

and accepts if they are equal

Protocol perflormed t times
Figure 4-3: Valid verification process that prevents identity fraud

This protocol uses a small number of computations, so it’s not uncommon
to see this method on a token card of some sort.
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WHAT NEXT?

Though we've covered the main concepts of cryptography in this book, we’ve
forgone exploring several important topics, including the future of cryptogra-
phy. If you're curious about where cryptography will develop from here or what
areas you could explore next, the following sections will give you an idea of
where to start.

PSEUDORANDOM NUMBERS AND ENCRYPTION SECURITY

PGP

A sequence of random numbers is one of the foundational pieces underlying
security. For example, in public-key encryption, the key used to encrypt and
decrypt information is generated using a random number. To ensure a good
encryption scheme, one must use a random number generator whose results
are impossible or very hard to predict (that is, one that generates a random
number that can’t be predicted based on previous numbers).

Pseudorandom numbers must be distinguished from the concept of
physically random numbers (also called truly random numbers). Pseudo-
random numbers are produced from a fixed formula (called a pseudorandom
number generator), so they are deterministic or predictable by individuals with
enough computing power. Some examples of pseudorandom number genera-
tors include the linear congruential generator, the middle square method, the
M-series, the BBS (Blum-Blum-Shub) method, and the one-way hash function.

In contrast, a physically random number is generated based on a natural
physical phenomenon, implements a perfectly random sequence of numbers,
and can generate an infinite chaotic sequence of numbers. For example, a phys-
ical random number can be generated from the noise produced when electricity
is distributed to a semiconductor circuit.

Despite the fact that most pseudorandom numbers are not secure, most
systems use them instead of physically random numbers because many pseu-
dorandom number generators require an inordinate amount of computing
power to distinguish them from random number generators. In addition, the
cost of using a truly random number generator is magnitudes higher than that
of a pseudorandom number generator. We can’t treat pseudorandom numbers
as though they are truly random numbers, but in most cases, you can reason-
ably assume the adversary isn’t capable of harnessing that much computing
power, so pseudorandom generators suffice. Some top-secret or mission-critical
systems may warrant the use of a random number generator, but these are rare.

The initials PGP stand for Pretty Good Privacy. PGP is a widely used type of
encryption software that was invented in 1991 by Philip Zimmermann.

PGP is a vital piece of functionality in nearly all modern encryption soft-
ware. It makes certificate generation possible in symmetric-key algorithms
(AES, 3-DES, and so on), public-key encryption (RSA, ElGamal, and so on),
digital signatures (RSA, DSA), and one-way hash functions (MD5, SHA-1,
RIPEMD-160, and so on).



S5L/TLS

Communication protocols are used in online shopping and other forms of inter-
net correspondence. When a protocol is used, a message authentication code
certifies and authenticates the contents of a correspondence. Two security
protocols that are often used for this purpose are SSL (secure socket layer)
and TLS (transport layer security). For example, when a credit card number or
other secure information is sent through a web browser, SSL or TLS is used to
encrypt the data and prevent it from being intercepted. To determine whether
you are using SSL/TLS in online communication, you can inspect the URL in
your internet browser. Non-SSL/TLS URLs begin with http:/, while URLs begin-
ning with https:/ indicate SSL/TLS communication.

Like SSL/TLS, the protocols called SMTP (Simple Mail Transfer Protocol)
and POP3 (Post Office Protocol) also encrypt emails using SSL/TLS to protect
information. SMTP is used to encrypt mail that is being sent out, while POP3 is
used for received mail.

QUANTUM CRYPTOGRAPHY

Quantum cryptography is considered an absolutely secure method of encryp-
tion. Quantum cryptography makes use of light pulses that contain more than
10,000 photons, which are the smallest unit of measurement for light. A single
photon contains 1 bit of information, and the photon’s polarity (the direction
in which the electromagnetic waves oscillate) is used to distinguish whether
the bit is a 0 or a 1. Photons follow Heisenberg'’s uncertainty principle, which
states that a quantum system can’t be observed without changing the system’s
state. This means the data contained in photons can’t be copied by an attacker
because, if a photon were observed by the attacker, the photon’s polarization
would be changed and any suspicious activity would be detected. This means
that quantum encryption can’t be intercepted. When quantum cryptography is
combined with a one-time pad that uses a single-use encryption key, cryptogra-
phers can create fail-safe encryption.

BIOMETRICS

Biometrics are biological features unique to an individual that are used to con-
firm a person’s identity. Some examples of biometrics include fingerprints, palm
veins, facial structures, iris patterns, palm prints, DNA (genes), and so on. Veri-
fication systems are seeing more everyday usage, one prominent example being
the fingerprint unlock mechanism in smartphones.
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DECODE THE MYSTERIES OF CRYPTOGRAPHY

CIPHERS HAVE BECOME
MUCH MORE SOPHISTICATED.
AFTER ALL, IF YOU WANT TO

PASS SECRET MESSAGES,
YOU HAVE TO DEAL WITH
EAVESDROPPERS TRYING
TO DECIPHER THEM.

INSPECTOR JUN MEGURO HAS BEEN TASKED

WITH TRACKING DOWN A CRAFTY ART THIEF WHO
LEAVES CLUES IN THE FORM OF PERPLEXING
CRYPTOGRAPHIC PUZZLES. LUCKY FOR HIM, HIS
SISTER RUKO IS A MATH WHIZ WHO 15 WILLING TO
TEACH HIM ABOUT CRYPTOGRAPHY SO THAT HE
CAN CRACK THE CASE. BUT CAN THEY DECODE THE
THIEF'S CIPHERS BEFORE SHE STEALS AGAINT

AS YOU FOLLOW JUN AND RUKO'S QUEST TO
BRING THE CIPHER-WIELDING THIEF TO JUSTICE,
YOU'LL LEARN REAL CRYPTOGRAPHY AND THE
MATH BEHIND IT, INCLUDING:

THE FOUNDATIONS OF ENCRYPTION, LIKE
THE CAESAR AND VERNAM CIPHERS

HOW SUBSTITUTION CIPHERS, PUBLIC-KEY
CRYPTOGRAPHY, AND DIGITAL SIGNATURES
WORK

FIND MORE MANGA GUIDES AT WWW.NOSTARCH.COM/MANGA

THE FINEST IN GEEK ENTERTAINMENT™
www.nostarch.com

LOOK AT SOME CLASSIC
ENCRYPTION METHODS
TO GET A BETTER
UNDERSTANDING OF
THIS GAME OF CAT
AND MOUSE!

HOW TO USE BINARY, LOGIC OPERATIONS,
AND MODULAR ARITHMETIC TO TURN PLAINTEXT
MESSAGES INTO NUMERIC VALUES THAT CAN
BE ENCRYPTED

HOW THE DATA ENCRYPTION STANDARD (DES)
CIPHER WORKS

HOW TO ENCRYPT MESSAGES WITH HASH
FUNCTIONS, MESSAGE AUTHENTICATION CODES
(MAC2), AND PUBLIC KEY INFRASTRUCTURES
(PKI=)

THE MANGA GUIPE TO CRYPTOGRAFPHY
15 THE PERFECT INTRODUCTION TO CRYPTOGRAPHY
FOR PROGRAMMERS, SECURITY PROFESSIONALS,
AND ASPIRING CRYPTOGRAPHERS.

SHELVE IN: COMPUTERS/SECURITY



