

ARDUINO PROJECT HANDBOOK
VOLUME 2:

25 SIMPLE ELECTRONICS
PROJECTS FOR BEGINNERS

MARK GEDDES

SAN FRANCISCO

ARDUINO PROJECT HANDBOOK, VOLUME 2. Copyright © 2017 by Mark
Geddes.

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording,
or by any information storage or retrieval system, without the prior written permission
of the copyright owner and the publisher.

ISBN-10: 1-59327-818-7
ISBN-13: 978-1-59327-818-2

Publisher: William Pollock
Production Editor: Serena Yang
Cover and Interior Design: Beth Middleworth
Cover Photo: Max Burger
Developmental Editor: Liz Chadwick
Technical Reviewer: Sam Stratter
Copyeditor: Rachel Monaghan
Compositor: Serena Yang
Proofreader: James Fraleigh

Circuit diagrams made using Fritzing (http://fritzing.org/).

For information on distribution, translations, or bulk sales, please contact No Starch
Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress has catalogued the first volume as follows:

Names: Geddes, Mark.
Title: Arduino project handbook : 25 practical projects to get you started /

 by Mark Geddes.
Description: San Francisco : No Starch Press, [2016] | Includes index.
Identifiers: LCCN 2015033781| ISBN 9781593276904 | ISBN 1593276907
Subjects: LCSH: Programmable controllers. | Microcontrollers--Programming. |

 Science projects--Design and construction. | Arduino (Programmable
 controller)
Classification: LCC TJ223.P76 G433 2016 | DDC 629.8/9551--dc23
LC record available at http://lccn.loc.gov/2015033781

No Starch Press and the No Starch Press logo are registered trademarks of No Starch

http://fritzing.org/
mailto:info@nostarch.com
http://www.nostarch.com
http://lccn.loc.gov/2015033781

Press, Inc. Other product and company names mentioned herein may be the
trademarks of their respective owners. Rather than use a trademark symbol with every
occurrence of a trademarked name, we are using the names only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
author nor No Starch Press, Inc. shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in it.

CAMERON AND JEMMA, YOU ARE THE CREATORS AND
MAKERS OF THE FUTURE.

THIS BOOK IS FOR YOU!

CONTENTS

Introduction
Primer: Getting Started

LEDs
Project 1: LED Light Bar
Project 2: Light-Activated Night-Light
Project 3: Seven-Segment LED Count Down Timer
Project 4: LED Scrolling Marquee
Project 5: Mood Light
Project 6: Rainbow Strip Light
Project 7: NeoPixel Compass

Sound
Project 8: Arduino Piano
Project 9: Audio LED Visualizer

Motors
Project 10: Old-School Analog Dial
Project 11: Stepper Motor
Project 12: Temperature-Controlled Fan

LCDs
Project 13: Ultrasonic Range Finder
Project 14: Digital Thermometer
Project 15: Bomb Decoder Game
Project 16: Serial LCD Screen
Project 17: Ultrasonic People Counter
Project 18: Nokia 5110 LCD Screen Pong Game

Project 19: OLED Breathalyzer

Security
Project 20: Ultrasonic Soaker
Project 21: Fingerprint Scanner

Smart Machines
Project 22: Ultrasonic Robot
Project 23: Internet-Controlled LED
Project 24: Voice-Controlled LED
Project 25: GPS Speedometer

Troubleshooting Tips for Common Errors
Components
Arduino Pin Reference

Acknowledgments

Once again, many thanks to Bill Pollock and the fantastic team at No
Starch Press for their dedicated support and guidance in the creation of
this book, particularly Liz Chadwick and Serena Yang for being so
patient through the process. Thanks also to Sam Stratter for his technical
reviews and suggestions.

This book wouldn’t exist if it wasn’t for the inspirational Arduino
founders; Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca
Martino, and David Mellis. Thank you again for introducing me and the
world to the wonder that is Arduino.

Special thanks to Warwick Smith, James Newbould, Joey Meyer,
Chase Cooley, Onur Avun, Nick Koumaris, Chris Campbell, Mouad Er
Rafay, Pololu, and Brainy-Bits.com for their amazing support and kind
permission to reproduce their projects. The creativity of the ever-
growing Arduino community never ceases to amaze me.

Thanks to everyone who read Arduino Project Handbook, Volume 1 for
the kind words and messages of encouragement—it’s made writing this
volume that little bit easier.

Finally, I have to thank my wonderful wife, Emily, for being so
supportive and patient over the last year—I promise that my “man cave”
will not expand any further!

http://Brainy-Bits.com

Introduction

Welcome to Arduino Project Handbook, Volume 2. If you haven’t read the
first volume, don’t worry—each project in this book is completely
independent and designed to gently introduce you to the world of
building with Arduino. We’ll cover some of the important aspects of
getting started with Arduino here and in the next chapter, so if you’ve
read Volume 1 you can either skim through as a refresher or skip ahead
to dive straight into the new projects.

This book uses the Arduino Uno, a small, inexpensive computer that
can be programmed to control endless devices and creations. You’ll soon
use the Arduino to control a whole host of projects, like a musical
keyboard, temperature-controlled fan, digital thermometer, fingerprint
entry system, and many others.

The Arduino board is composed of two main elements: the hardware,
or microcontroller, which is the brain of the board; and the software that
you’ll use to send your program to the microcontroller. The software,
called the Arduino integrated development environment (IDE), is
available free for download, and I’ll show you how to use it to set up a
simple project in the primer.

ABOUT THIS BOOK
What inspired me to write this book? The internet is bursting with
tutorials, videos, and articles covering the Arduino and potential projects,
but many lack detailed visuals or the code required to build these
projects. This book is intended to help you build simple projects that will
inspire you to create your own inventions as you apply the skills and
techniques that you’ll learn.

NOTE

In this book you’ll create your projects on a breadboard. This is the best way to
learn about how circuits work, because the connections are not permanent; if
you make a mistake, you can just unplug the wire or component and try
again.

Each project includes a description of what it will do, the items you’ll
need, pictures of the setup, simple step-by-step instructions with tables
for quick connection references, a circuit diagram (see Figure 1), and the
necessary code, so you don’t have to worry about learning to program
before you begin. The early projects provide simple explanations of
what’s happening in the code, to help you understand the process of
programming enough to make your own modifications if you want to. If
you don’t want to type that much code out, the sketches are available to
download at https://www.nostarch.com/arduinohandbook2/.

FIGURE 1: The circuit diagrams in this book were created with Fritzing
(http://www.fritzing.org/), a free, open source program.

At the beginning of each project, I include an indication of the cost of
the components required in addition to the Arduino Uno (see Table 1)
and an estimated time for the build. At the end, I provide a
troubleshooting section specific to that project.

https://www.nostarch.com/arduinohandbook2/
http://www.fritzing.org/

TABLE 1: The cost indication used in this book

INDICATOR COST

$ $1–$9

$$ $10–$19

$$$ $20–$29

$$$$ $30+

I’ve written this book to teach you how to create your own gadgets.
By giving you the technical know-how, I allow you to focus on the
creative design element. The idea is that learning the function of circuits
can open up your imagination to ways of using those circuits practically.
Although I don’t delve deeply into electronics theory or programming,
the projects in this book progress steadily in compexity and will give you
a good starting point.

This book gives you practical information so you can, for example,
reference the pin connections and replicate them when needed in a
different project. You can also combine projects to make more
complicated and interesting gadgets. A lot of Arduino books focus on the
programming element, and that’s great for a certain kind of learning, but
I think there’s also a place for plug-and-play electronics. By following the
steps in the projects, you’ll learn as you go.

I’ve written the book that I was looking for but couldn’t find when I
started out with the Arduino. I hope you’ll enjoy reading and working
through this book as much as I enjoyed writing it.

ORGANIZATION OF THIS BOOK
I recommend you try out some of the earlier projects first, as you’ll find
information there that’s useful for the more complicated builds, but if you
see a project you like and feel confident enough to take it on, you can skip
to it. The parts of the book are organized as follows:

Primer: Getting Started Learn all about the Arduino Uno and how to
use a breadboard, and then test your board with a simple program and get
a crash course in soldering.

Part I: LEDs Here you’ll start out by learning how to control simple
light-emitting diodes (LEDs) with variable resistors, and then combine
components to build a light-activated LED, a scrolling text display, a
flashing multicolored compass, and more.

Part II: Sound In this part, you’ll use a piezo, a device that emits sound,
to make tunes with a musical keyboard and create a simple audio
visualizer that makes LEDs dance to your music.

Part III: Motors These projects use various types of motors to bring
your creations to life. You’ll build an analog dial that gauges light levels,
learn how a stepper motor works, and build a temperature-controlled fan
to keep you cool.

Part IV: LCDs The LCD screen is useful in lots of projects for
displaying messages and results. In these projects, you’ll learn how to set
up a serial LCD screen and then build a defusable bomb game, an
ultrasonic range finder, a mobile Pong game, and even an alcohol
breathalyzer.

Part V: Security Protect your space with a motion sensor that triggers an
ultrasonic soaker water pistol and a security system that uses a fingerprint
scanner to keep unauthorized persons out.

Part VI: Smart Machines In this final part you’ll combine the Arduino
with motors and sensors to create an intelligent robot, control lights
using Bluetooth technology, and even build a GPS speedometer to track
your movements.

At the end of the book, I provide some helpful reference information,
including a review of some of the more common program errors and how
to fix them, information on the components used in this book and where
to buy them, and a reference table for the pins on the Arduino Uno.

Primer: Getting Started
Before you start building with the Arduino, there are a few things
you need to know and do. First, let’s take a look at the hardware and
software you’ll need for this book. Then, you’ll test out the Arduino
with a simple LED project and get started with a few techniques
that will come in handy, like soldering and downloading useful code
libraries.

HARDWARE
First let’s look at the Arduino Uno board and a few pieces of hardware
that you’ll use in almost every project.

The Arduino Uno
There are numerous types of Arduino boards available, but this book uses
only the most popular one, the Arduino Uno shown in Figure 0-1. The
Arduino Uno is open source (meaning its designs may be freely copied),
so as well as the official board, which costs about $25, you will find
numerous compatible clone boards for around $15.

FIGURE 0-1: The Arduino Uno board

The Arduino controls components you attach to it, like motors or
LEDs, by sending information to them as output (information sent out
from the Arduino). Data that the Arduino reads from a sensor is input
(information going in to the Arduino). There are 14 digital input/output
pins (pins 0–13) on the Arduino. Each can be set to either input or output
(see “Arduino Pin Reference” on page 253 for a full pin reference table).

Power
When you connect the Arduino Uno board to your PC to upload a
program, it is powered from your computer’s USB port. When the
Arduino is not linked to your PC, you can have it run independently by
connecting it to a 9-volt AC adapter or 9-volt battery pack with a 2.1 mm
jack, with the center pin connected to positive power as shown in Figure
0-2. Simply insert the jack into the power socket of the Arduino.

FIGURE 0-2: A 9-volt battery pack, which you can plug into the Arduino to give it
power

Breadboards
A breadboard acts as a construction base for electronics prototyping.
You’ll use a breadboard for all of the projects in this book instead of
soldering parts together.

The name breadboard dates back to when electronics projects were
created on wooden boards. Hobbyists hammered nails into the wood and
wrapped wires around them to connect components without having to
solder them permanently. Today’s breadboards are made of plastic with
predrilled holes (called tie points) into which you insert components or
wires, which are held in place by clips underneath. The tie points are
connected by lengths of conductive material that run beneath the board,
as shown in Figure 0-3.

FIGURE 0-3: Breadboard connections

Breadboards come in various sizes. To build the projects in this book,
you’ll ideally need three breadboards: one full-size, typically with 830
holes; one half-size, with about 420 holes; and one mini board with 170
holes. The full-size breadboard is ideal for projects that use an LCD
screen or a lot of components, and the half-size and mini boards are best
for smaller projects. For the projects in this book, I recommend that you
buy breadboards that look like the one shown in Figure 0-3, with red and
blue lines and a center break between the holes.

TIP
It’s useful to use red wires for connections to 5V and black wires for
connections to ground (GND). The rest of the wires can be your choice of
color.

The main board area has 30 columns of tie points that are connected
vertically, as shown in Figure 0-3. You’ll often have to position
components so they straddle the breadboard’s center break to complete
your circuit. This break helps to prevent components from short-
circuiting, which can derail your project and even damage your
components. You’ll learn more about this as you start to build.

The blue and red lines at the top and bottom are power rails that you
use to power the components inserted in the main breadboard area (see

Figure 0-4). The power rails connect all the holes in the rail horizontally;
the red lines are for positive power and the blue lines for negative power
(or ground, as you’ll often see it called).

FIGURE 0-4: Positive and negative breadboard rails

Jumper Wires
You’ll use jumper wires to make connections on the breadboard. Jumper
wires are solid-core wire with a molded plastic holder on each end that
makes it easier to insert and remove the wires. (You could use your own
wire if you have it, but make sure to use solid-core wire—stranded wire is
not strong enough to push into the hole clips.)

When you insert a jumper wire into a breadboard hole, it’s held in
place from beneath the board by a small spring clip, making an electrical
connection in that row. You can then place a component in an adjoining
hole to help create a circuit, as shown in Figure 0-5.

FIGURE 0-5: An example breadboard circuit

NOTE

Because the IDE versions can change fairly quickly, I won’t take you through
installing them, but installation should be straightforward and the
instructions on the Arduino site are clear. All versions of the IDE and full
details of how to install for your operating system are available at
http://www.arduino.cc/.

PROGRAMMING THE ARDUINO
To make our projects do what we want, we need to write programs that
give the Arduino instructions. We do so using the Arduino integrated
development environment (IDE). The Arduino IDE is available to download
free from http://www.arduino.cc/, and will run on Microsoft Windows, OS
X, and Linux. It enables you to write computer programs (a set of step-
by-step instructions, known as sketches in the Arduino world) that you
then upload to the Arduino using a USB cable. Your Arduino will carry

http://www.arduino.cc/
http://www.arduino.cc/

out the instructions based on its interaction with the outside world.

The IDE Interface
When you open the Arduino IDE, it should look similar to Figure 0-6.
The IDE screen is divided into a toolbar at the top with buttons for the
most commonly used functions; the sketch window in the center, where
you’ll write or view your programs; and the Serial Output window at the
bottom. The Serial Output window displays communication messages
between your PC and the Arduino, and also lists any errors if your sketch
doesn’t compile properly.

FIGURE 0-6: The Arduino IDE

Arduino Sketches
I’ll give you the sketch for each project within the relevant project itself,
and talk through it there. All of the sketches are available to download
from http://www.nostarch.com/arduinohandbook2/.

Like any program, sketches are a very strict set of instructions and
very sensitive to errors. It’s best to download the sketch and open the file
in the IDE, rather than try to copy it from the book. To make sure it

http://www.nostarch.com/arduinohandbook2/

works correctly, click the green check mark at the top of the screen. This
is the Verify button, and it checks for mistakes and tells you in the Serial
Output window whether the sketch has compiled correctly.

Libraries
In the Arduino world a library is a piece of code that carries out a specific
function. Rather than enter this same code repeatedly in your sketches
wherever you need, you can simply add a command that borrows that
code from the library. This shortcut saves time and makes it easy for you
to connect to items such as a sensor, display, or module.

The Arduino IDE includes a number of built-in libraries—such as the
LiquidCrystal library, which makes it easy to talk to LCD displays—and
there are many more available online. To create the projects in the book,
you’ll need to import the following libraries: PololuLedStrip, FastLED,
HMC5883L, Keypad, Tone, Adafruit_GFX, Adafruit_SDD1306,
NewPing, Adafruit Fingerprint Sensor, and Adafruit Motor Shield. You’ll
find all of the libraries you need in the resources at
http://www.nostarch.com/arduinohandbook2/.

Installing Libraries
Once you’ve downloaded the libraries, you’ll need to install them. To
install a library in Arduino version 1.0.5 and higher, follow these steps:

1. Choose Sketch ▸ Include Library ▸ Add .ZIP Library.

2. Browse to the ZIP file you downloaded and select it. In older
versions of Arduino, unzip the library file and put the whole folder
and its contents into the sketchbook/libraries folder on Linux, My
Documents\Arduino\Libraries on Windows, or
Documents/Arduino/libraries on OS X.

To install a library manually, go to the ZIP file containing the library
and uncompress it. For example, to install a library called keypad in a
compressed file called keypad.zip, you would uncompress keypad.zip, which

http://www.nostarch.com/arduinohandbook2/

expands into a folder called keypad, which in turn contains files like
keypad.cpp and keypad.h. Once the ZIP file is expanded, you would drag
the keypad folder into the libraries folder on your operating system:
sketchbook/libraries in Linux, My Documents\Arduino\Libraries on
Windows, and Documents/Arduino/libraries on OS X. Then you’d restart
the Arduino application.

Libraries are listed at the start of a sketch and are easily identified
because they begin with the command #include. Library names are
surrounded by < > and end with .h, as in this code to call the Servo
library:

#include <Servo.h>

Go ahead and install the libraries you’ll need for the projects now to
save yourself a bit of time later.

TESTING YOUR ARDUINO: BLINKING AN LED
Let’s begin our tour with the classic first Arduino project: blinking an
LED (short for light-emitting diode, which is like a little light bulb). Not
only is this the simplest way to make sure that your Arduino is working
correctly, but it will also introduce you to a simple sketch. The Arduino
can hold only one program at a time, so once you upload your sketch to
your Arduino, that sketch will run every time the Arduino is switched on
until you change it.

The Build
For this project we’ll use the Blink example sketch that comes with the
IDE. The Blink program turns an LED on for 1 second and then off,
repeatedly. The LED works only with current flowing in one direction,
so its longer wire must connect to a positive power connection. LEDs
require a current-limiting resistor or else the bulb may burn out. There is a
built-in resistor in pin 13 of the Arduino that we’ll use.

Follow these steps to set up your test:

1. Insert the longer, positive leg of the LED to pin number 13 on the
Arduino, as shown in Figure 0-7. Connect the shorter, negative wire
to the GND pin next to pin 13.

FIGURE 0-7: The Blink project setup

2. Connect the Arduino to your computer with the USB cable.

3. Open the Arduino IDE on your computer, then choose File ▸
Examples ▸ Blinking LED from the drop-down menu. The sketch
will appear in the main program area of the IDE.

➊// Blinking LED Project - This example code is in the public
domain

➋ int led = 13;

➌ void setup() {

➍ pinMode(led, OUTPUT);
 }
➎ void loop() {

➏ digitalWrite(led, HIGH);

➐ delay(1000);

➑ digitalWrite(led, LOW);

➒ delay(1000);

➓ }

4. In the IDE, click the Verify button to check that the sketch is
working correctly.

5. Click the Upload button to send the sketch to your Arduino.
Running this code should make your LED flash on and off.

Understanding the Sketch
Here’s what’s happening on each line of the sketch:

➊ This is a comment. Any line in your program starting with // is meant
to be read by the user only and is ignored by the Arduino, so use this
technique to enter notes and describe your code (called commenting
your code). If a comment extends beyond one line, start the first line
with /* and end the comment with */. Everything in between will be
ignored by the Arduino.

➋ This gives pin 13 the name led. Every mention of led in the sketch will
refer to pin 13.

➌ The code between the curly brackets, {}, will run once when the
program starts. The open curly bracket, {, begins the setup code.

➍ This tells the Arduino that pin 13 is an output pin, indicating that we
want to send power to the LED from the Arduino. The closing curly
bracket, }, ends the setup code.

➎ This creates a loop. Everything between the curly brackets, {}, after
the loop() statement will run once the Arduino is powered on and then
repeat until it is powered off.

➏ This tells the Arduino to set led (pin 13) to HIGH, which sends power to
that pin. Think of it as switching the pin on. In this sketch, this turns
on the LED.

➐ This tells the Arduino to wait for 1 second. Time on the Arduino is
measured in milliseconds, so 1 second = 1,000 milliseconds.

➑ This tells the Arduino to set led (pin 13) to LOW, which removes power
and switches off the pin. This turns off the LED.

➒ Again the Arduino is told to wait for 1 second.

➓ This closing curly bracket ends the loop. All code after the initial setup
must be enclosed within curly brackets. A missing bracket can easily be
overlooked and is a common cause of errors that will prevent your
sketch from compiling correctly. After this curly bracket, the code
goes back to the start of the loop at ➎.

Now that you’ve tested your Arduino and understand how a sketch
works and how to upload it, we’ll take a look at the components you’ll
need to carry out all of the projects in this book. “Components” on page
238 has more details about each component, what it looks like, and what
it does.

PROJECT COMPONENT LIST
This is a complete list of the items you’ll need in order to complete the
projects in this book. The most important part, of course, is the Arduino
board itself, and all projects use the Arduino Uno R3 version. Only the
official boards are named Arduino, but you’ll find compatible clone
boards from companies like SlicMicro, Sainsmart, and Adafruit. (You’ll
find a list of official suppliers at http://arduino.cc/en/Main/Buy/.)

You can buy each item individually, but I suggest buying an
electronics hobby starter kit or Arduino kit, which will provide you with
several of the items here. See the “Retailer List” on page 249 for a list of
suggested suppliers. Alternatively, each project begins with a list of the
required parts, so you can flip to a project that interests you and obtain
just those components if you’d like.

1 Arduino Uno R3 (or compatible)
1 9V battery pack with 2.1 mm jack for 6 AA batteries
1 9V battery snap and battery
3 breadboards: 1 full-size, 1 half-size, 1 mini

http://arduino.cc/en/Main/Buy/

50 male-to-male jumper wires
10 female-to-male jumper wires
Solid-core wire
9 220-ohm resistors
4 10k-ohm resistors
8 1k-ohm resistors
40 5 mm LEDs in red, green, yellow, blue (10 of each)
1 RGB common-cathode LED
1 RGB LED strip (WS2812B 5V 32-LED strip)
1 Adafruit NeoPixel ring with 16 RGB LEDs
1 HMC5883L three-axis sensor
2 50k-ohm potentiometers
1 10k-ohm potentiometer
8 momentary tactile pushbuttons
1 seven-segment, single-digit common-cathode LED
1 piezo sounder
1 3.5 mm female headphone jack
1 Tower Pro SG90 9g servomotor
1 photoresistor (light-dependent resistor, or LDR)

1 28BYJ-48 stepper motor with ULN2003 driver module
1 HC-SR04 ultrasonic sensor
1 3×4 membrane keypad
1 LM35 temperature sensor
1 12V mini computer cooling fan
1 5V single-channel relay module
1 HD44780 16×2 LCD screen
1 Nokia 5110 LCD screen
1 serial LCD screen module

1 OLED monochrome screen (128×64)
1 8×8 LED Maxim 7219 matrix module
1 Keyes MQ3 alcohol sensor module
1 optical fingerprint sensor (ZFM-20 series)
1 L293d motor shield
1 robot chassis kit, including two DC motors and wheels, center

wheel, base, and fittings
1 Ethernet shield W5100 LAN expansion board
1 Ethernet cable
1 WLToys V959-18 Water Jet Pistol
1 HC-06 Bluetooth module
1 Ublox NEO-6M GPS module aircraft flight controller and antenna

QUICK SOLDERING GUIDE
The majority of the projects in this book do not requiring soldering, but
there are a few components that may come with their header pins (Figure
0-8) unattached for ease of transport. Header pins come in strips that can
be easily snapped to the size needed.

FIGURE 0-8: Header pins

For example, the GPS module used in Project 25 doesn’t come with
the pins attached, so I’ll explain how to solder those in place. A general-
purpose, 30-watt soldering iron with a fine tip should meet your needs. It

is worthwhile to buy a kit that includes a soldering iron, stand, and solder
(Figure 0-9).

FIGURE 0-9: Soldering iron

1. Plug in your soldering iron and wait at least 5 minutes for it to reach
operating temperature.

2. To solder, break off a strip of header pins with the number you need.
Insert them into the module as shown in Figure 0-10.

FIGURE 0-10: Insert the header pins into the module.

3. Now solder the pins in place, starting with the leftmost pin. Hold
the heated tip of the soldering iron to both the pin and module
contact at the same time. You only need to hold it there for about 2
seconds. While holding the iron in place, add solder to the area; the
solder should melt and flow and create a join. Note that you do not
apply solder directly to the iron, only to the joint you are soldering.
Quickly remove both the iron and solder—more than a couple of
seconds of contact could damage your components.

4. A good solder joint should look like a shiny cone (Figure 0-11). With
a little bit of practice, you will be able to solder cleanly in no time at
all.

FIGURE 0-11: Solder joins should look like this.

Safety First
Soldering irons get very, very hot and should be used with extreme care
under adult supervision. Here are a few safety tips:

• Be sure to use a stand and never lay a hot soldering iron down on a
table.

• Solder in a well-ventilated room. The fumes released from melting
solder can be harmful.

• Keep flammable materials away from your work area.

• Keep equipment out of reach of children.

• Wear eye protection.

• Wait for a soldering iron to cool down completely before storing it.

LEDs

1
LED Light Bar
In this project we’ll flash a row of LEDs back and forth
in sequence, sort of like KITT from the 1980s TV series
Knight Rider.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
8 LEDs
8 220-ohm resistors

HOW IT WORKS
An LED emits light when a small current is passed through it. LEDs are
polarized, which means one side is positive and one side is negative. This
is because the LED will work only with current flowing in one direction,
from positive to negative. The longer leg of the LED is positive and must
connect to a positive power connection. The Arduino sketch controls the
sequence of flashes.

LEDs are delicate parts, requiring only a small amount of voltage to
light up—smaller than the voltage the Arduino provides. To prevent the
LEDs from being overloaded with voltage and burning out, we use
resistors, which limit the amount of voltage passing through them to the
LED on the other end.

You can change the color of your LEDs and use this light bar to
decorate a car, scooter, bike, picture frame, subwoofer, or almost
anything else you choose. You can add up to 10 LEDs on the Uno before
you run out of pins.

THE BUILD

1. Insert the LEDs into the breadboard with their shorter, negative legs
in the GND rail at the top of your breadboard. Then connect this
rail to GND on the Arduino, as shown in Figure 1-1.

FIGURE 1-1: The LEDs flash back and forth in sequence. The short leg of the
LED is in the GND rail of the breadboard, and the long leg is connected to the
Arduino via a resistor.

2. Connect the LEDs in sequence to Arduino digital pins 2–9, as shown
in the following circuit diagram. Place a 220-ohm resistor between
each LED and digital pin, ensuring that the resistors bridge the
center divide in the breadboard.

LEDS ARDUINO

Positive legs Pins 2–9 via resistor

Negative legs GND

3. Check your setup against Figure 1-2, and then upload the code in
“The Sketch” below.

FIGURE 1-2: The circuit diagram for the LED light bar

THE SKETCH
The sketch sets the pins connected to the LEDs as outputs, and then
defines a function to turn all the LEDs off at the same time. This
function is called in the loop cycle to turn the LEDs off, and then the
LEDs are turned on one at a time—with a 200-millisecond delay between
each one—to create a sweeping effect. Another loop sends the sequence
back the other way.

// Used with kind permission from
// Warwick A Smith, startingelectronics.com
// Knight Rider display on eight LEDs

void setup() {
 for (int i = 2; i < 10; i++) { // Choose pins 2-9
 pinMode(i, OUTPUT); // Set the pins as outputs
 }
}
// Define function to turn off all LEDs at the same time
void allLEDsOff(void) {
 for (int i = 2; i < 10; i++) {
 digitalWrite(i, LOW);
 }
}

// Switch on LEDs in sequence from left to right
void loop() {
 for (int i = 2; i < 9; i++) { // Run loop once for each LED
 allLEDsOff(); // Turn off all LEDs

 digitalWrite(i, HIGH); // Turn on current LED
 delay(200); // Delay of 200 ms,
 // then repeat loop to move on to next LED
 }
 for (int i = 9; i > 2; i--) { // Light LEDs from right to left
 allLEDsOff();
 digitalWrite(i, HIGH);
 delay(200);
 }
}

TROUBLESHOOTING
Q. The code compiles, but some or all of the LEDs do not light up as expected.

• If none of the LEDs light, make sure you’ve connected the GND wire
from the Arduino to the correct breadboard power rail and that the
Arduino has power connected.

• If only some LEDs light, check that the LEDs are inserted the correct
way, with the longer wire to positive power and the shorter wire to
GND. Because LEDs are polarized, they must be connected the
correct way. Check that the resistors are inserted fully and lined up in
the same row as the corresponding LED leg.

• Make sure the LEDs are connected to the Arduino pins defined in
“The Sketch” on page 19. The first part of the sketch defines pins 2–9
as outputs, so these are the pins you should use.

• If an LED still fails to light, it may have burnt out or be faulty. An
easy way to check is to swap the LED with another in the sequence
and see if that resolves the issue. If you find that the LED works in
another position, it means the resistor is either faulty or not inserted
fully. Depending on the outcome, replace the LED or resistor with a
functioning component.

2
Light-Activated Night-Light
This project is a simple test of a photoresistor’s
functionality: we’ll create a night light that gets brighter
depending on the amount of light detected.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
Photoresistor
LED
10k-ohm resistor

HOW IT WORKS
A photoresistor is a variable resistor that reacts to light; the less light that
shines on it, the higher the resistance it provides. This resistance value
varies the voltage that’s sent to the input pin of the Arduino, which in
turn sends that voltage value to the output pin as the power level of the
LED, so in low light the LED will be bright. There are different styles of
photoresistors, but they usually have a small, clear, oval head with wavy
lines (see Figure 2-1). Photoresistors do not have polarity, so it doesn’t
matter which way you connect the legs.

The principles at work here are similar to those of a child’s night-
light. You can use a photoresistor to control more than just LEDs, as
we’ll see in upcoming chapters. Since we only have two power and GND
connections, we won’t be using the breadboard power rails here.

FIGURE 2-1: A photoresistor

THE BUILD

1. Place your photoresistor in the breadboard, connecting one leg to
GND directly on the Arduino and the other leg to Arduino A0.

2. Connect one leg of the 10k-ohm resistor to +5V, and connect the
other leg to the A0 photoresistor leg, as shown in the circuit diagram
in Figure 2-2.

FIGURE 2-2: The circuit diagram for the light-activated LED

3. Insert the longer, positive leg of the LED directly into pin 13 on the
Arduino and the shorter, negative leg directly into Arduino GND.
We would normally use a resistor to limit the current to an LED,
but we don’t need one here because pin 13 on the Arduino has one
built in.

4. Upload the code in “The Sketch” below.

THE SKETCH
The sketch first connects the photoresistor to Arduino pin A0 as our
INPUT and the LED to pin 13 as our OUTPUT. We run the serial
communication with Serial.begin(9600), which (when your Arduino is
connected to your PC) will send information to the Arduino’s Serial
Monitor. This means the resistance value of the photoresistor will be
displayed in the Serial Monitor on your computer, as shown in Figure 2-
3.

FIGURE 2-3: The Serial Monitor will display the resistance of the photoresistor.

The loop reads the photoresistor’s analog value and sends it to the
LED as a voltage value. The A0 pin can read 1,024 values, which means
there are 1,024 possible brightness levels for the LED. Minuscule
changes between this many levels aren’t very visible, so we divide that

number by 4 to scale down to only 256 values, making it easier to detect
when there is a change in voltage to the LED.

int lightPin = A0; // Pin connected to the photoresistor
int ledPin = 13; // Pin connected to the LED
void setup() {
 Serial.begin(9600); // Begin serial communication
 pinMode(ledPin, OUTPUT); // Setting the LED pin as an output
}

// This loop reads the analog pin value and
// sends that to the LED as an output
void loop() {
 // Read the value of the photoresistor
 Serial.println(analogRead(lightPin));
 // Write the value to the Serial Monitor
 // Send the value to the ledPin and divide by 4
 analogWrite(ledPin, analogRead(lightPin) / 4);
 delay(10); // Short delay before the sequence loops again
}

TROUBLESHOOTING
Q. The code compiles, but the LED does not light when it’s dark.

• Make sure that the LED is inserted with the long, positive leg in pin
13 and the short, negative leg in GND next to it.

• Make sure the photoresistor is connected to Arduino A0 as shown in
the circuit diagram in Figure 2-2. Open the Serial Monitor to see if
there’s a reading. If you’re getting a reading but the LED doesn’t
light, the LED may be faulty, so try replacing it with another one.

3
Seven-Segment LED Count Down
Timer
In this project we’ll create a simple timer that counts
down from 9 to 0. This can be used in any number of
useful projects!

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
Seven-segment, single-digit common-cathode LED
8 220-ohm resistors

HOW IT WORKS
A seven-segment LED display shows a single digit or character using
LED segments. Each segment is an individual LED, and by controlling
which segments are lit at any time, we can display numeric values. We’re
using a single-digit display in this project, shown in Figure 3-1, but there
are also two-, three-, four-, and eight-digit variations available.

FIGURE 3-1: A seven-segment LED

NOTE

The cathode of a device is the negative connection, usually indicated with a
minus sign (–) and sometimes referred to as ground (abbreviated GND). It
is connected to negative power. The anode of a device is the positive
connection, usually indicated with a plus sign (+) and connected to positive
power.

This project will create a simple timer to count down from 9 to 0.
The seven-segment LED has 10 pins. Seven pins control the seven LEDs
that light up to form each digit, and the eighth pin controls the decimal
point. The other two pins are the common-cathode (–) or common-
anode (+) pins, which add power to the project. Our seven-segment LED
is common cathode, meaning one side of each LED needs to connect to
ground. It’s important to note that the code will work only with a
common-cathode LED. If you have a common-anode LED you want to
use, check the troubleshooting section at the end of this chapter before
uploading the sketch. Each LED segment requires a resistor to limit the
current; otherwise, it will burn out.

The pins are labeled with a letter, as shown in Figure 3-2. The
numbered pins control the segments as shown on the right. The Arduino
creates the number by turning the LEDs off or on in different
combinations.

FIGURE 3-2: A typical pin layout for a seven-segment LED

THE BUILD

1. Place the seven-segment display in a breadboard as shown in Figure
3-3, making sure the pins straddle either side of the center break.
Connect LED pins 3 and 8 to the GND rail.

FIGURE 3-3: The seven-segment LED pins should straddle the center break of
the breadboard.

2. Connect LED pins 1, 2, 4, 5, 6, 7, and 9 as shown in the following
table, remembering to insert a 220-ohm resistor between the LED
and the Arduino connection. It’s important that the resistors straddle
the center break on the breadboard, as shown in the circuit diagram
in Figure 3-4.

ARDUINO
SEVEN-

SEGMENT LED
SECTION

SEVEN-
SEGMENT LED

DISPLAY

Pin 2 A Pin 7

Pin 3 B Pin 6

Pin 4 C Pin 4

Pin 5 D Pin 2

Pin 6 E Pin 1

Pin 7 F Pin 9

Pin 8 G Pin 10

Pin 9 DP Pin 5

FIGURE 3-4: The circuit diagram for the seven-segment LED countdown
timer

3. Upload the code in “The Sketch” on page 32.

THE SKETCH
The sketch starts by defining the digits 0 to 9 as combinations of off (0)
and on (1) LEDs. The pins controlling the LEDs are set as output, so
they can set their corresponding LEDs to either HIGH or LOW. The
combination of 1 and 0 values lights up to form the digit.

Note that these patterns are for common-cathode displays. For
common-anode displays, change each 1 to 0 and each 0 to 1. In the code, a
value of 1 means the LED is on, and 0 means the LED is off.

// Arduino seven-segment display example software
// http://hacktronics.com/Tutorials/arduino-and-7-segment-led.html
// License: http://www.opensource.org/licenses/mit-license.php

// Define the LEDs to be lit to create a number
byte seven_seg_digits[10][7] = { { 1, 1, 1, 1, 1, 1, 0 }, // = 0
 { 0, 1, 1, 0, 0, 0, 0 }, // = 1
 { 1, 1, 0, 1, 1, 0, 1 }, // = 2
 { 1, 1, 1, 1, 0, 0, 1 }, // = 3
 { 0, 1, 1, 0, 0, 1, 1 }, // = 4
 { 1, 0, 1, 1, 0, 1, 1 }, // = 5
 { 1, 0, 1, 1, 1, 1, 1 }, // = 6
 { 1, 1, 1, 0, 0, 0, 0 }, // = 7
 { 1, 1, 1, 1, 1, 1, 1 }, // = 8
 { 1, 1, 1, 0, 0, 1, 1 } // = 9
};

// Set the seven-segment LED pins as output
void setup() {
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);
 pinMode(7, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(9, OUTPUT);
 writeDot(0); // Start with the decimal point off
}

void writeDot(byte dot) {
 digitalWrite(9, dot);
}

void sevenSegWrite(byte digit) {
 byte pin = 2;

http://hacktronics.com/Tutorials/arduino-and-7-segment-led.html
http://www.opensource.org/licenses/mit-license.php

 for (byte segCount = 0; segCount < 7; ++segCount) {
 digitalWrite(pin, seven_seg_digits[digit][segCount]);
 ++pin;
 }
}
void loop() {
 for (byte count = 10; count > 0; --count) { // Start the countdown
 delay(1000); // 1 second between each digit
 sevenSegWrite(count - 1); // Counting down by 1
 }
 delay(4000);
}

TROUBLESHOOTING
Q. Some LED segments do not light up.

Check that the LEDs’ wires are inserted securely and line up with the
resistors on the breadboard.

Q. The display is not showing numbers correctly and looks erratic.

• Recheck that your wiring matches the diagrams as shown, as it’s easy
to insert some wires in the wrong place.

• If all wiring is in the correct place and the timer’s still not working,
the configuration of your seven-segment LED may be different from
the one used here. Check the data sheet for your part and use that to
direct your circuit along with the seven-segment pin table. You can
also check which pin corresponds to each LED by connecting it up:
attach the GND pin of the seven-segment LED to the negative end of
a battery; connect a jumper wire to the positive end of the battery, via
a 220-ohm resistor; and touch each pin in turn to light the segments
individually. Note which segment each pin lights up.

• Remember, this wiring is for a seven-segment, common-cathode
LED; for common-anode displays, change each 1 to 0 and each 0 to 1
in the sketch.

4
LED Scrolling Marquee
In this project we’ll use a built-in driver module to
create a scrolling message on an 8×8 matrix.

PARTS REQUIRED
Arduino board
Female-to-male jumper wires
8×8 LED Maxim 7219 matrix module

LIBRARY REQUIRED
MaxMatrix

HOW IT WORKS
An LED matrix is an array of LEDs that you can control individually to
make patterns, text, images, or whatever you can program. The 8×8 LED
matrix we’ll use in this project comes prebuilt with a driver module—a
board, driven by a Maxim 7219 chip, that lets you control the entire
matrix with only five pins connected to your Arduino. These modules are
inexpensive and can be chained together so you have multiple matrices
running from one sketch.

The matrix module has three pins: DIN, CS, and CLK, shown in
Figure 4-1. DIN stands for Data IN, CS for Chip Select, and CLK for
CLocK. The remaining two pins connected to your Arduino power the
matrix. The CLK pin senses pulses and controls the speed at which the
Arduino and matrix communicate with each other in sync. The matrix
uses a serial peripheral interface (SPI) communication protocol to speak
with the Arduino, and the CS pin detects which SPI device is in use. DIN
reads the data—in this case, the project’s sketch—from the Arduino.

FIGURE 4-1: The Maxim 7219 chip controls the LED matrix.

Each module has extra connections so you can add another module.
By chaining together modules and changing the number of matrices in
the code, you could scroll a message over a larger area.

THE BUILD

1. Connect the module directly to the Arduino using the female-to-
male jumper wires, connecting the female end to the module. As
shown in the following table, connect VCC on the LED matrix
module to +5V on the Arduino, GND to GND, DIN to Arduino pin
8, CS to Arduino pin 9, and CLK to Arduino pin 10.

LED MATRIX MODULE ARDUINO

VCC +5V

GND GND

DIN Pin 8

CS Pin 9

CLK Pin 10

2. Confirm that your setup matches the circuit diagram in Figure 4-2,
and upload the code in “The Sketch” on page 38.

FIGURE 4-2: The circuit diagram for the scrolling LED marquee

THE SKETCH
This sketch works by calling on the MaxMatrix library to control the
matrix module. We then define the characters to display, and set the
Arduino pins that control the matrix. Your message will be displayed in a
continuous loop on the LEDs.

#include <MaxMatrix.h> // Call on the MaxMatrix library

PROGMEM const unsigned char CH[] = {
3, 8, B00000000, B00000000, B00000000, B00000000, B00000000, // space
1, 8, B01011111, B00000000, B00000000, B00000000, B00000000, // !
3, 8, B00000011, B00000000, B00000011, B00000000, B00000000, // "
5, 8, B00010100, B00111110, B00010100, B00111110, B00010100, // #
4, 8, B00100100, B01101010, B00101011, B00010010, B00000000, // $
5, 8, B01100011, B00010011, B00001000, B01100100, B01100011, // %
5, 8, B00110110, B01001001, B01010110, B00100000, B01010000, // &
1, 8, B00000011, B00000000, B00000000, B00000000, B00000000, // '
3, 8, B00011100, B00100010, B01000001, B00000000, B00000000, // (
3, 8, B01000001, B00100010, B00011100, B00000000, B00000000, //)
5, 8, B00101000, B00011000, B00001110, B00011000, B00101000, // *
5, 8, B00001000, B00001000, B00111110, B00001000, B00001000, // +
2, 8, B10110000, B01110000, B00000000, B00000000, B00000000, // ,
4, 8, B00001000, B00001000, B00001000, B00001000, B00000000, // -
2, 8, B01100000, B01100000, B00000000, B00000000, B00000000, // .
4, 8, B01100000, B00011000, B00000110, B00000001, B00000000, // /
4, 8, B00111110, B01000001, B01000001, B00111110, B00000000, // 0
3, 8, B01000010, B01111111, B01000000, B00000000, B00000000, // 1
4, 8, B01100010, B01010001, B01001001, B01000110, B00000000, // 2
4, 8, B00100010, B01000001, B01001001, B00110110, B00000000, // 3
4, 8, B00011000, B00010100, B00010010, B01111111, B00000000, // 4
4, 8, B00100111, B01000101, B01000101, B00111001, B00000000, // 5
4, 8, B00111110, B01001001, B01001001, B00110000, B00000000, // 6
4, 8, B01100001, B00010001, B00001001, B00000111, B00000000, // 7
4, 8, B00110110, B01001001, B01001001, B00110110, B00000000, // 8
4, 8, B00000110, B01001001, B01001001, B00111110, B00000000, // 9
2, 8, B01010000, B00000000, B00000000, B00000000, B00000000, // :
2, 8, B10000000, B01010000, B00000000, B00000000, B00000000, // ;
3, 8, B00010000, B00101000, B01000100, B00000000, B00000000, // <
3, 8, B00010100, B00010100, B00010100, B00000000, B00000000, // =
3, 8, B01000100, B00101000, B00010000, B00000000, B00000000, // >
4, 8, B00000010, B01011001, B00001001, B00000110, B00000000, // ?
5, 8, B00111110, B01001001, B01010101, B01011101, B00001110, // @
4, 8, B01111110, B00010001, B00010001, B01111110, B00000000, // A
4, 8, B01111111, B01001001, B01001001, B00110110, B00000000, // B
4, 8, B00111110, B01000001, B01000001, B00100010, B00000000, // C
4, 8, B01111111, B01000001, B01000001, B00111110, B00000000, // D
4, 8, B01111111, B01001001, B01001001, B01000001, B00000000, // E

4, 8, B01111111, B00001001, B00001001, B00000001, B00000000, // F
4, 8, B00111110, B01000001, B01001001, B01111010, B00000000, // G
4, 8, B01111111, B00001000, B00001000, B01111111, B00000000, // H
3, 8, B01000001, B01111111, B01000001, B00000000, B00000000, // I
4, 8, B00110000, B01000000, B01000001, B00111111, B00000000, // J
4, 8, B01111111, B00001000, B00010100, B01100011, B00000000, // K
4, 8, B01111111, B01000000, B01000000, B01000000, B00000000, // L
5, 8, B01111111, B00000010, B00001100, B00000010, B01111111, // M
5, 8, B01111111, B00000100, B00001000, B00010000, B01111111, // N
4, 8, B00111110, B01000001, B01000001, B00111110, B00000000, // O
4, 8, B01111111, B00001001, B00001001, B00000110, B00000000, // P
4, 8, B00111110, B01000001, B01000001, B10111110, B00000000, // Q
4, 8, B01111111, B00001001, B00001001, B01110110, B00000000, // R
4, 8, B01000110, B01001001, B01001001, B00110010, B00000000, // S
5, 8, B00000001, B00000001, B01111111, B00000001, B00000001, // T
4, 8, B00111111, B01000000, B01000000, B00111111, B00000000, // U
5, 8, B00001111, B00110000, B01000000, B00110000, B00001111, // V
5, 8, B00111111, B01000000, B00111000, B01000000, B00111111, // W
5, 8, B01100011, B00010100, B00001000, B00010100, B01100011, // X
5, 8, B00000111, B00001000, B01110000, B00001000, B00000111, // Y
4, 8, B01100001, B01010001, B01001001, B01000111, B00000000, // Z
2, 8, B01111111, B01000001, B00000000, B00000000, B00000000, // [
4, 8, B00000001, B00000110, B00011000, B01100000, B00000000, // \
2, 8, B01000001, B01111111, B00000000, B00000000, B00000000, //]
3, 8, B00000010, B00000001, B00000010, B00000000, B00000000, // hat
4, 8, B01000000, B01000000, B01000000, B01000000, B00000000, // _
2, 8, B00000001, B00000010, B00000000, B00000000, B00000000, // `
4, 8, B00100000, B01010100, B01010100, B01111000, B00000000, // a
4, 8, B01111111, B01000100, B01000100, B00111000, B00000000, // b
4, 8, B00111000, B01000100, B01000100, B00101000, B00000000, // c
4, 8, B00111000, B01000100, B01000100, B01111111, B00000000, // d
4, 8, B00111000, B01010100, B01010100, B00011000, B00000000, // e
3, 8, B00000100, B01111110, B00000101, B00000000, B00000000, // f
4, 8, B10011000, B10100100, B10100100, B01111000, B00000000, // g
4, 8, B01111111, B00000100, B00000100, B01111000, B00000000, // h
3, 8, B01000100, B01111101, B01000000, B00000000, B00000000, // i
4, 8, B01000000, B10000000, B10000100, B01111101, B00000000, // j
4, 8, B01111111, B00010000, B00101000, B01000100, B00000000, // k
3, 8, B01000001, B01111111, B01000000, B00000000, B00000000, // l
5, 8, B01111100, B00000100, B01111100, B00000100, B01111000, // m
4, 8, B01111100, B00000100, B00000100, B01111000, B00000000, // n
4, 8, B00111000, B01000100, B01000100, B00111000, B00000000, // o
4, 8, B11111100, B00100100, B00100100, B00011000, B00000000, // p
4, 8, B00011000, B00100100, B00100100, B11111100, B00000000, // q
4, 8, B01111100, B00001000, B00000100, B00000100, B00000000, // r
4, 8, B01001000, B01010100, B01010100, B00100100, B00000000, // s
3, 8, B00000100, B00111111, B01000100, B00000000, B00000000, // t
4, 8, B00111100, B01000000, B01000000, B01111100, B00000000, // u
5, 8, B00011100, B00100000, B01000000, B00100000, B00011100, // v
5, 8, B00111100, B01000000, B00111100, B01000000, B00111100, // w

5, 8, B01000100, B00101000, B00010000, B00101000, B01000100, // x
4, 8, B10011100, B10100000, B10100000, B01111100, B00000000, // y
3, 8, B01100100, B01010100, B01001100, B00000000, B00000000, // z
3, 8, B00001000, B00110110, B01000001, B00000000, B00000000, // {
1, 8, B01111111, B00000000, B00000000, B00000000, B00000000, // |
3, 8, B01000001, B00110110, B00001000, B00000000, B00000000, // }
4, 8, B00001000, B00000100, B00001000, B00000100, B00000000, // ~
};

 int data = 8; // Pin connected to DIN pin of MAXIM7219 module
 int load = 9; // Pin connected to CS pin of MAXIM7219 module
 int clock = 10; // Pin connected to CLK pin of MAXIM7219 module

➊ int maxInUse = 1; // Set the number of matrices you are using
 MaxMatrix m(data, load, clock, maxInUse); // Define the module
 byte buffer[10];

 // Set message to scroll on the screen
➋ char string1[] = " Arduino Project Handbook . . . ";
 void setup() {
 m.init(); // Start module
 m.setIntensity(0);
 Serial.begin(9600); // Start serial communication
 }

 void loop() {
 byte c;
 while (Serial.available() > 0) {
 byte c = Serial.read();
 Serial.println(c, DEC);
 printCharWithShift(c, 100);
 }
 delay(100);
 m.shiftLeft(false, true);
 printStringWithShift(string1, 100);
 }

 // The remainder of this sketch moves the scrolling characters
 // depending on the number of matrices that are attached
 void printCharWithShift(char c, int shift_speed) {
 if (c < 32) return;
 c -= 32;
 memcpy_P(buffer, CH + 7 * c, 7);
 m.writeSprite(maxInUse * 8, 0, buffer);
 m.setColumn(maxInUse * 8 + buffer[0], 0);
 for (int i = 0; i < buffer[0] + 1; i++) {
 delay(shift_speed);
 m.shiftLeft(false, false);
 }
 }

 void printStringWithShift(char* s, int shift_speed) {
 while (*s != 0) {
 printCharWithShift(*s, shift_speed);
 s++;
 }
 }

 void printString(char* s) {
 int col = 0;
 while (*s != 0) {
 if (*s < 32) continue;
 char c = *s - 32;
 memcpy_P(buffer, CH + 7 * c, 7);
 m.writeSprite(col, 0, buffer);
 m.setColumn(col + buffer[0], 0);
 col += buffer[0] + 1;
 s++;
 }
}

You can change the message on the LED matrix by altering the text
inside the quotation marks at ➋. If you want to chain your matrices
together, change the number at ➊ to the number you have (the maximum
number of matrices you can chain together is seven).

TROUBLESHOOTING
Q. The matrix does not light up or the LED shows erratic symbols.

• If none of the LEDs light, make sure you have connected the matrix
as shown in the circuit diagram in Figure 4-2; the pins must match
exactly.

• Make sure that your Arduino is powered and the TX light is flashing.
If not, recheck your batteries or power supply.

• Make sure the Maxim 7219 chip is securely inserted in the module.

5
Mood Light
In this project we’ll create a soothing mood light using a
single multicolored LED.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
RGB common-cathode LED
3 220-ohm resistors

HOW IT WORKS
LEDs come in many different colors and forms, but one of the most
useful is the RGB LED. As its name implies, an RGB LED is actually
three LEDs in one: red, green, and blue (see Figure 5-1).

FIGURE 5-1: The primary colors of the RGB LED

RGB is an additive color model, which means that by combining the
light of two or more colors we can create other colors. Red, green, and
blue are the additive primary colors used as the base for other colors, as
shown in Figure 5-2.

FIGURE 5-2: RGB is an additive color model.

Let’s look at an RGB LED in a bit more detail in Figure 5-3.

FIGURE 5-3: An RGB LED

You’ll see that the RGB LED has four legs instead of the usual two:
one each for red, green, and blue, and the fourth one is either the cathode
or anode. We’ll be using a common-cathode RGB LED like the one in the
figure, where the longest leg is the cathode and connects to ground.

We can use our RGB LED to create a random-color output that
cycles through the colors of the rainbow, fading each one in and out. This
lighting effect is used quite often in clubs or bars to create a relaxing
mood. You could also place the LED in an opaque vase or box for a
soothing night-light.

THE BUILD

1. Begin by placing the common-cathode RGB LED into your
breadboard with the red leg in the hole to the left of the long GND
(or cathode) leg. Connect a 220-ohm resistor to each of the three
color legs.

NOTE
On some RGB LEDs the green and blue legs are the other way around.

2. Connect the red leg to Arduino pin 11, GND to Arduino GND,
green to Arduino pin 10, and blue to Arduino pin 9.

COMMON-CATHODE RGB LED ARDUINO

Red Pin 11

GND GND

Green Pin 10

Blue Pin 9

3. Confirm that your setup matches the circuit diagram in Figure 5-4,
and upload the code in “The Sketch” on page 47.

FIGURE 5-4: The circuit diagram for the mood light

THE SKETCH
The sketch first sets Arduino pins 9, 10, and 11 as outputs. This sketch

varies the brightness (power) value of each light on the RGB LED in turn
by switching them on and off incredibly quickly—the longer an LED is
lit for, the brighter it appears. To do this the Arduino uses a technique
called pulse width modulation (PWM). The Arduino creates a pulse by
switching the power on and off very quickly. The duration that the power
is on or off (known as the pulse width) in the cycle determines the average
output, and by varying this pulse width the Arduino can simulate voltages
between full on (5 volts) and off (0 volts). If the signal from the Arduino is
on for half the time and off for half, the average output will be 2.5 volts,
halfway between 0 and 5. If the signal is on for 80 percent and off for 20
percent, the voltage is 4 volts, and so on.

We define an RGB value between 0 and 255, with an increment of 5
volts, to create a fade effect. In simple terms, each color of the LED
brightens from 0 to 5 volts in sequence, and then fades out when it
reaches its maximum value of 255. The Arduino can handle values
between 0 and 1023 (1,024 values in total), but because this is such a high
number we divide it by 4 and use 255 as the maximum LED value so the
color change is more noticeable.

int redPin = 11; // Pin connected to red leg of the RGB LED
int greenPin = 10; // Pin connected to green leg of the RGB LED
int bluePin = 9; // Pin connected to blue leg of the RGB LED

void setup() {
 setRgb(0, 0, 0); // Set all colors at 0
}

void loop() {
 int Rgb[3]; // 3 RGB pins

 Rgb[0] = 0; // A value for each
 Rgb[1] = 0;
 Rgb[2] = 0;

 // Colors increase and decrease in value
 for (int decrease = 0; decrease < 3; decrease += 1) {
 int increase = decrease == 2 ? 0 : decrease + 1;

 for (int i = 0; i < 255; i += 1) { // Fade the colors
 Rgb[decrease] -= 1;
 Rgb[increase] += 1;

 setRgb(Rgb[0], Rgb[1], Rgb[2]);
 delay(20);
 }
 }
}

void setRgb (int red, int green, int blue) {
 analogWrite(redPin, red);
 analogWrite(greenPin, green);
 analogWrite(bluePin, blue);
}

TROUBLESHOOTING
Q. The code compiles, but the RGB LED does not light up as expected.

• If the RGB LED does not light at all, make sure you’ve connected the
GND wire from the Arduino to the correct leg on the RGB LED—
the long cathode leg—and that the Arduino has power connected.

• If you have a common-anode RGB LED, then you should connect the
long leg to +5V on the Arduino. Check the data sheet for your part to
find out which kind of RGB LED you have.

• If the colors don’t appear as expected, your RGB LED may have a
different pin configuration; check your data sheet or try swapping the
connections to the green and blue legs around.

6
Rainbow Strip Light
In this chapter we’ll use an RGB LED strip light to
create a decorative ambient strip of rainbow colors.

PARTS REQUIRED
Arduino board
Solid-core wires
RGB LED strip (WS2812B 5V 32-LED strip)

LIBRARY REQUIRED
PololuLedStrip

HOW IT WORKS
LED strip lights are often used to create ambiance as a decorative feature,
such as backlighting for a TV or lighting beneath kitchen cabinets. They
are low-powered, typically between 5 and 12 volts, so they’re easy to
install anywhere with their own power supply—and they look good too!

Strip lights generally come in two varieties. Single-color or multicolor
nonaddressable strips can only light all the LEDs in one color at a time.
RGB multicolored strips are generally addressable, which means that each
LED has its own chip and can be individually controlled, allowing
multiple colors on different LEDs to light at a time.

We’ll be using a strip light of addressable RGB LEDs. Unlike the
RGB LED from Project 5, the LEDs on a strip light are surface mounted.
This means that the components are placed directly onto the surface of a
printed circuit board—in this case, a flexible strip—rather than being
individually inserted into a circuit.

There are two main kinds of addressable RGB strip lights. Three-pin
RGB LED strips have GND, Data, and +5V connections to control the
LEDs. The Data pin connects to the Arduino and uses the same pulse
width modulation (PWM) function explained in Project 5 to create the
colors and sequence on the strip. Four-pin RGB LED strips have GND,
Clock, Data In, and +5V connections and use Serial Peripheral Interface
(SPI) to control their LEDs. SPI is a communication method that allows
the two-way transfer of data between devices.

Our addressable RGB LED strip, shown in Figure 6-1, is the three-
pin type using PWM. It calls on the PololuLedStrip library, created by
Pololu Robotics and Electronics (https://www.pololu.com/), to control the
LEDs.

FIGURE 6-1: A three-pin addressable RGB LED strip light

We’ll use our RGB LED strip to create a color output that cycles
through the colors of the rainbow, fading each color in and out, as shown
in Figure 6-2.

FIGURE 6-2: RGB LED strip cycling through the colors of the rainbow

THE BUILD

https://www.pololu.com/

1. Download and add the PololuLedStrip library to your Arduino IDE
(check the primer for guidance on saving libraries).

2. The setup for this project is very simple and doesn’t take long to
complete. Most three-pin addressable RGB LED strips come
without wires attached to the strip connections, so you’ll have to
connect them. With the LEDs facing upward, begin by soldering
solid-core wire to the three connections at the left end of the strip, as
shown in Figure 6-3.

FIGURE 6-3: Soldering wires to the left-side connections

3. Connect the LED’s GND pin to Arduino GND, DI to Arduino pin
12, and +5V to Arduino +5V, as shown in the following table.

RGB LED STRIP ARDUINO

GND GND

DI (data in) Pin 12

+5V +5V

4. Check your setup against the circuit diagram in Figure 6-4, and then

upload the code in “The Sketch” below and power the Arduino using
your battery pack.

FIGURE 6-4: The circuit diagram for the rainbow strip light

THE SKETCH
The sketch first calls on the PololuLedStrip library, which we use to
control the individual LEDs. Next, it defines the pin to control the data
going from the Arduino to the LED strip as 12 and sets the number of
LEDs on the strip to 32—you would change this if your strip had a
different number of LEDs.

Next is a calculation to control the hue, saturation, and value (HSV)
of our LEDs to generate the RGB colors. You can change these using an
HSV chart if you want; just do a quick internet search to find a chart for
reference.

The WS2812B data sheet states that the color of each LED is
encoded as three LED brightness values, which must be sent in GRB
(green-red-blue) order. The first color transmitted applies to the LED
that is closest to the data input connector, the second color transmitted
applies to the next LED in the strip, and so on.

/* PololuLedStrip Library Copyright (c) 2012 Pololu Corporation.
For more information, see http://www.pololu.com/;
http://forum.pololu.com/

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON
INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

LedStripRainbow: Example Arduino sketch that shows how to make a
moving rainbow pattern on an Addressable RGB LED Strip from Pololu.
To use this, you will need to plug an Addressable RGB LED strip from

http://www.pololu.com/
http://forum.pololu.com/

Pololu into pin 12. After uploading the sketch, you should see a
moving rainbow. */

#include <PololuLedStrip.h>

// Create an ledStrip object and specify the pin it will use.
PololuLedStrip<12> ledStrip;

// Create a buffer for holding the colors (3 bytes per color).
#define LED_COUNT 32
rgb_color colors[LED_COUNT];

void setup() {
}

// Converts a color from HSV to RGB.
// h is hue, as a number between 0 and 360.
// s is saturation, as a number between 0 and 255.
// v is value, as a number between 0 and 255.

rgb_color hsvToRgb(uint16_t h, uint8_t s, uint8_t v) {
 uint8_t f = (h % 60) * 255 / 60;
 uint8_t p = (255 - s) * (uint16_t)v / 255;
 uint8_t q = (255 - f * (uint16_t)s / 255) * (uint16_t)v / 255;
 uint8_t t = (255 - (255 - f) * (uint16_t)s / 255) * (uint16_t)v / 255;
 uint8_t r = 0, g = 0, b = 0;
 switch((h / 60) % 6) {
 case 0: r = v; g = t; b = p; break;
 case 1: r = q; g = v; b = p; break;
 case 2: r = p; g = v; b = t; break;
 case 3: r = p; g = q; b = v; break;
 case 4: r = t; g = p; b = v; break;
 case 5: r = v; g = p; b = q; break;
 }
 return (rgb_color) {
 r, g, b
 };
}

void loop() {
 // Update the colors.
 uint16_t time = millis() >> 2;
 for (uint16_t i = 0; i < LED_COUNT; i++) {
 byte x = (time >> 2) - (i << 3);
 colors[i] = hsvToRgb((uint32_t)x * 359 / 256, 255, 255);
 }

 // Write the colors to the LED strip.
 ledStrip.write(colors, LED_COUNT);
 delay(10);

}

TROUBLESHOOTING
Q. The code compiles, but the RGB LED does not light up as expected.

• If the RGB LED strip does not light, make sure that your wires are
connected as shown in Figure 6-4, and that your LED strip is the
WS2812B type specified.

• If you aren’t doing so already, use an external power source for the
RGB LED strip.

7
NeoPixel Compass
In this chapter we’ll use a three-axis sensor and an RGB
LED ring to create a compass that indicates north by
lighting the LEDs in that direction.

PARTS REQUIRED
Arduino board
Jumper wires
HMC5883L three-axis sensor
Adafruit NeoPixel ring with 16 RGB LEDs
9V battery pack with 6 AA batteries

LIBRARIES REQUIRED
Wire
FastLED
HMC5883L

HOW IT WORKS
The HMC5883L three-axis sensor (Figure 7-1) is a multichip module
that senses magnetic force. The module measures both the direction and
the magnitude of Earth’s magnetic fields. We will use the HMC5883L
library to turn our project into an electronic compass.

FIGURE 7-1: The HMC5883L three-axis module runs on 3.3V rather than 5V.

Earth’s magnetic field is believed to be generated by electric currents
in the conductive material of its core that are created by heat escaping.
Since Earth is effectively a magnet, the north end of a compass magnet is
drawn to align with its magnetic field.

To visualize our compass direction we will use the Adafruit NeoPixel
ring, shown in Figure 7-2. The NeoPixel ring is made up of 16 RGB
LEDs, each of which has its own driver chip and so can be controlled
individually. A single data line controls the LEDs, and we’ll use the
FastLED library to control the colors.

FIGURE 7-2: The Adafruit 16 RGB NeoPixel ring

When the project is powered up, the HMC5883L module will detect
magnetic north and display it on the NeoPixel ring by lighting the LEDs
in that direction. If you turn around while holding the powered NeoPixel
compass, the LED lights will move to always point north.

THE BUILD

NOTE
The pin labeled DRDY on the compass module is not used in this project.

Your HMC5883L module may arrive with the header pins loose, so the
first step is to solder the header pins into the module. You will need the
strip of five header pins that should come with the module. Insert the
header pins into the five available holes on the module and solder each
pin for a couple of seconds (check the “Quick Soldering Guide” on page
12 if you need help). The module communicates with the Arduino using
I2C and the Wire library.

1. In order to use the compass properly you need to calibrate the
HMC5883L module. Connect the module to the Arduino as shown
in the following table.

HMC5883L MODULE ARDUINO

VCC +3.3V

GND GND

SCL Pin A5 (SLC)

SDA Pin A4 (SDA)

2. Download the HMC5883L library and add it to the Arduino library
folder on your PC. Check the library section in the primer if you
need a reminder of how to do this. Once you have the library saved,
restart your Arduino IDE. When it opens again, it should have the
library saved in Examples. Select File ▸ Examples ▸ Arduino-
HMC5883L-Master ▸ HMC5883L_calibrate. If you can’t see the
sketch, make sure you’ve saved the library in your Arduino library
folder. The following sketch will be shown in the IDE main window:

/*

 Calibrate HMC5883L. Output for HMC5883L_calibrate_processing.pde
 Read more: http://www.jarzebski.pl/arduino/czujniki-i-sensory/3-
osiowy-magnetometr-hmc5883l.html
 GIT: https://github.com/jarzebski/Arduino-HMC5883L
 Web: http://www.jarzebski.pl
 (c) 2014 by Korneliusz Jarzebski
*/

#include <Wire.h>
#include <HMC5883L.h>

HMC5883L compass;

int minX = 0;
int maxX = 0;
int minY = 0;
int maxY = 0;
int offX = 0;
int offY = 0;

void setup() {
 Serial.begin(9600);

 // Initialize Initialize HMC5883L
 while (!compass.begin()) {
 delay(500);
 }
 // Set measurement range
 compass.setRange(HMC5883L_RANGE_1_3GA);
 // Set measurement mode
 compass.setMeasurementMode(HMC5883L_CONTINOUS);
 // Set data rate
 compass.setDataRate(HMC5883L_DATARATE_30HZ);
 // Set number of samples averaged
 compass.setSamples(HMC5883L_SAMPLES_8);
}

void loop() {
 Vector mag = compass.readRaw();
 // Determine Min / Max values
 if (mag.XAxis < minX) minX = mag.XAxis;
 if (mag.XAxis > maxX) maxX = mag.XAxis;
 if (mag.YAxis < minY) minY = mag.YAxis;
 if (mag.YAxis > maxY) maxY = mag.YAxis;

 // Calculate offsets
 offX = (maxX + minX)/2;
 offY = (maxY + minY)/2;

 /*Serial.print(mag.XAxis);

http://www.jarzebski.pl/arduino/czujniki-i-sensory/3-osiowy-magnetometr-hmc5883l.html
https://github.com/jarzebski/Arduino-HMC5883L
http://www.jarzebski.pl

 Serial.print(":");
 Serial.print(mag.YAxis);
 Serial.print(":");
 Serial.print(minX);
 Serial.print(":");
 Serial.print(maxX);
 Serial.print(":");
 Serial.print(minY);
 Serial.print(":");
 Serial.print(maxY);
 Serial.print(":"); */
 Serial.print(offX);
 Serial.print(":");
 Serial.print(offY);
 Serial.print("\n");
}

3. We only need the X and Y Serial.print lines in this last bunch of
Serial.print commands, so comment out the Serial.print lines of the
sketch shown in bold. Upload the sketch to the Arduino and open
the Serial Monitor. A series of numbers will display, as shown in
Figure 7-3.

FIGURE 7-3: The calibration numbers will be shown in the IDE Serial
Monitor window.

4. Rotate the sensor 360 degrees while it’s connected to the Arduino

IDE Serial Monitor, and you should see two digits displayed; in
Figure 7-3, they’re 13 and –294. You’ll need these calibration
numbers in the sketch later, so make a note of them.

5. You can improve the accuracy of your compass by finding the
magnetic declination for your location. The magnetic declination, or
variation, is the angle on the horizontal plane between magnetic
north (where a compass points) and true north (the direction toward
the geographic North Pole). You can find your magnetic declination
by visiting http://www.magnetic-declination.com/ and entering your
location in the search bar at the top left. Your result will appear as
shown in Figure 7-4.

FIGURE 7-4: The magnetic declination for your location can be found at
http://www.magnetic-declination.com/.

6. The values you need are the magnetic declination and the
declination; in Figure 7-4, they’re –2° 26' and NEGATIVE

http://www.magnetic-declination.com/
http://www.magnetic-declination.com/

(WEST), respectively, but yours will be different. Record these
values too, as we’ll use them in the sketch at the end of the project—
with one minor change. For example, my values were –2 and 26. We
don’t put the negative (minus) sign before the first value but instead
put it after, like so:

 float declinationAngle = (2 - (26.0 / 60.0)) / (180 / M_PI);

If your location’s declination were POSITIVE (WEST), then
you would add the positive (plus) sign instead:

 float declinationAngle = (2 + (26.0 / 60.0)) / (180 / M_PI);

Next, add the NeoPixel ring to the Arduino by connecting V on
the NeoPixel to +5V on the Arduino, GND to GND, and In on the
NeoPixel to pin 3 on the Arduino.

NEOPIXEL ARDUINO

V +5V

GND GND

In Pin 3

7. Check your setup against the circuit diagram in Figure 7-5, and then
upload the code in “The Sketch” below.

FIGURE 7-5: The circuit diagram for the NeoPixel compass

THE SKETCH
First we call on the Wire, FastLED, and HMC5883L libraries. The Wire
library is installed with the Arduino IDE, but you need to add the others.
Download them in the book’s resources at
http://www.nostarch.com/arduinohandbook2/, and follow the guide in the
primer for more information on adding libraries.

Next we declare the number of LEDs on the NeoPixel ring (16) and
assign pin 3 on the Arduino to control it. We then call on a number of
settings in the HMC5883L library to control the compass module. At ➊
we add the compass offset values for X and Y, which should match your
calibration from Step 4 earlier; mine were 13, –294, respectively. At ➋ we
add the magnetic declination from Step 6. Again, remember to change it
to the one for your location.

The next set of calculations allows the sensor to map to a 360-degree
rotation. Then we set the LEDs on the NeoPixel to move depending on
the readings of the sensor to point north. Three LEDs are lit: one red
LED that points north and a green LED on either side of it. The
compass is best used outdoors with the module, away from any strong
electrical or magnetic sources, and should be powered from a battery
pack rather than a USB connection.

http://www.nostarch.com/arduinohandbook2/

// Code by brainy-bits.com and used with kind permission
// https://brainy-bits.com/tutorials/find-your-way-using-the-hmc5883l/

#include <Wire.h>
#include "FastLED.h"
#include <HMC5883L.h>

#define NUM_LEDS 16 // Number of LEDs on Ring
#define DATA_PIN_RING 3 // Pin 3 connected to RGB Ring

CRGB leds_RING[NUM_LEDS];

HMC5883L compass;
int fixedHeadingDegrees; // Used to store Heading value

void setup() {
 Serial.begin(9600);
 Wire.begin(); //Setup I2C
 // Set up the FastLED library with the neopixel ring data
 FastLED.addLeds<NEOPIXEL,DATA_PIN_RING>(leds_RING, NUM_LEDS);

 // Set measurement range
 compass.setRange(HMC5883L_RANGE_1_3GA);

 // Set measurement mode
 compass.setMeasurementMode(HMC5883L_CONTINOUS);

 // Set data rate
 compass.setDataRate(HMC5883L_DATARATE_30HZ);

 // Set number of samples averaged
 compass.setSamples(HMC5883L_SAMPLES_8);

 // Set calibration offset. See HMC5883L_calibration.ino
➊ compass.setOffset(13, -224);
 }

 void loop() {
 Vector norm = compass.readNormalize();

 // Calculate heading
 float heading = atan2(norm.YAxis, norm.XAxis);

 // Set declination angle on your location and fix heading
 // Find your declination on http://magnetic-declination.com/
 // (+) Positive or (-) for negative
 // For Dumfries, Scotland declination angle is -2 '26W (negative)
 // Formula: (deg + (min / 60.0)) / (180 / M_PI);
 float declinationAngle = (2.0 – (26.0 / 60.0)) / (180 / M_PI);

https://brainy-bits.com/tutorials/find-your-way-using-the-hmc5883l/

➋ heading -= declinationAngle;

 // Correct for heading < 0deg and heading > 360deg
 if (heading < 0) {
 heading += 2 * PI;
 }

 if (heading > 2 * PI) {
 heading -= 2 * PI;
 }

 // Convert to degrees
 float headingDegrees = heading * 180 / M_PI;

 // To fix rotation speed of HMC5883L compass module
 if (headingDegrees >= 1 && headingDegrees < 240) {
 fixedHeadingDegrees = map(headingDegrees * 100, 0, 239 * 100, 0, 179
* 100) / 100.00;
 }
 else {
 if (headingDegrees >= 240) {
 fixedHeadingDegrees = map(headingDegrees*100, 240*100, 360*100,
180*100, 360*100) / 100.00;
 }
 }

 int headvalue = fixedHeadingDegrees / 18;
 int ledtoheading = map(headvalue, 0, 15, 15, 0);

 // Clear the ring
 FastLED.clear();

 // New heading
 if (ledtoheading == 0) {
 leds_RING[15] = CRGB::Red;
 leds_RING[0] = CRGB::Green;
 leds_RING[14] = CRGB::Green;
 }
 else {
 if (ledtoheading == 15) {
 leds_RING[0] = CRGB::Red;
 leds_RING[15] = CRGB::Green;
 leds_RING[1] = CRGB::Green;
 }
 else {
 leds_RING[ledtoheading] = CRGB::Red;
 leds_RING[ledtoheading+1] = CRGB::Green;
 leds_RING[ledtoheading-1] = CRGB::Green;
 }
 }

 FastLED.setBrightness(50);
 FastLED.show();
 delay(100);
}

TROUBLESHOOTING
Q. The code compiles, but the RGB LEDs do not light up as expected.

• If no LEDs are lit, double-check your wiring, particularly that the
data pin of the NeoPixel is connected to pin 3 on the Arduino.

• Check that your power for the NeoPixel is connected to GND and
+5V. The compass module should be connected to GND and +3.3V.
The Arduino should be powered by your battery pack, not the USB
cable from your PC.

• Make sure you have calibrated the module and entered the values
using the steps shown earlier. The compass module should be held
horizontally and in line with the RGB ring. The ring and the module
should always be moved together.

• The module is best used outdoors, as it is very sensitive to metal and
electrical interference.

• Try to keep the power for your Arduino and the sensor as far apart as
possible to avoid interference.

Sound

8
Arduino Piano
In this project we’ll use some momentary pushbuttons
and a piezo sounder to create a simple piano.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
Piezo sounder
8 momentary tactile pushbuttons
8 1k-ohm resistors

HOW IT WORKS
Each pushbutton in our project (see Figure 8-1) is connected to an
Arduino pin, and when the pushbutton is pressed, the piezo sounder will
emit one of eight notes.

FIGURE 8-1: A momentary pushbutton and its circuit

When pressed, a pushbutton completes a circuit, turning it on. As
soon as the button is released, the connection will spring back and break
that circuit, turning it off. The pushbutton switch is also known as a
momentary or normally open switch, and is used in, for example, computer
keyboards. This is in contrast to a toggle switch, which stays either on or
off until you toggle it to the other position, like a light switch.

This type of pushbutton has four pins, but you generally use only two
at a time for connection. We’re using the top pins in this project so it’s
easier to reach the button and play a tune, although the two unused pins
at the bottom would do the same job. As Figure 8-2 shows, the pins work
in a circuit. Pins A and C are always connected, as are pins B and D.
When the button is pressed, the circuit is complete.

FIGURE 8-2: A pushbutton’s incomplete circuit

The Arduino piano uses a piezo sounder, shown in Figure 8-3, to
create frequencies that resemble recognizable notes. Piezo sounders, or
just piezos for short, are inexpensive buzzers often used in small toys. A
piezo element without its plastic housing looks like a gold metallic disc
with connected positive (typically red) and negative (typically black)
wires. A piezo is capable only of making a clicking sound, which we create
by applying voltage.

FIGURE 8-3: A piezo sounder

We can make recognizable notes by getting the piezo to click
hundreds of times a second at a particular frequency, so first we need to
know the frequency of the different tones we want. Table 8-1 shows the
notes and their corresponding frequencies. Period is the duration of the
cycle, in microseconds, at which the frequency is created. For example, to
get a C note (261 Hz), we need the piezo to cycle at a period of 3,830
microseconds. We halve the period to get the timeHigh value, which is
used in the code to create the note. (The tone is caused by the piezo
being turned on and off very quickly, so the time that the piezo is on, or
HIGH, is half the period.)

TABLE 8-1: The Musical Notes and Frequencies Used in the Code

NOTE FREQUENCY PERIOD TIMEHIGH

c 261 Hz 3,830 1915

d 294 Hz 3,400 1700

e 329 Hz 3,038 1519

f 349 Hz 2,864 1432

g 392 Hz 2,550 1275

a 440 Hz 2,272 1136

b 493 Hz 2,028 1014

C 523 Hz 1,912 956

THE BUILD

1. Insert the momentary pushbuttons into the breadboard with the pins
straddling the center break of the breadboard.

2. Looking at the breadboard face on, number the pushbuttons 1–8
from left to right. Connect the top-left pin (A) of pushbutton 1 to
Arduino pin 2 using a jumper wire. Connect the top-left pins of the
other pushbuttons to the Arduino as shown here.

PUSHBUTTON NOTE ARDUINO

1 c 2

2 d 3

3 e 4

4 f 5

5 g 6

6 a 7

7 b 8

8 C 9

3. Insert a 1k-ohm resistor into the breadboard in line with the first
pushbutton’s top-left pin, as shown in Figure 8-4, and connect the
other side of the resistor to the GND rail of the breadboard. Repeat
this for the other pushbuttons. The resistor pulls the switch to GND
when the button is not pressed to tell the Arduino that it’s not in a
positive state; when the button is pressed, the positive power sounds
the corresponding note.

FIGURE 8-4: A 1k-ohm resistor connects the pushbutton pin to GND.

4. Connect the top-right pin (B) of each of the pushbuttons to the
positive breadboard power rail using jumper wire.

5. Connect the piezo’s red wire to Arduino pin 13 and its black wire to
the GND rail of the breadboard, then connect the power rails to
GND and +5V on the Arduino.

6. Make sure that your setup matches the circuit diagram in Figure 8-5,

and then upload the code in “The Sketch” on page 74.

FIGURE 8-5: The circuit diagram for the Arduino piano

THE SKETCH
The sketch first defines the pin that the piezo sounder is connected to
and the pins for the pushbuttons. A value is defined for each pushbutton,
and a tone is assigned to correspond with that value. The pushbuttons are
set as inputs and the piezo sounder as an output. The loop cycle checks
each button, playing the corresponding tone for as long as the button is
held down. Only one note can be played at a time because each note
requires the loop to begin again, so when the button is released, the piezo
sounder stops playing the tone and the loop starts over.

int speakerPin = 13; // Piezo defined as pin 13
int key_c = 2; // Define Arduino pins for the keys
int key_d = 3;

int key_e = 4;
int key_f = 5;
int key_g = 6;
int key_a = 7;
int key_b = 8;
int key_C = 9;

// Value for each key press
int keypress_c = 0; int keypress_d = 0; int keypress_e = 0;
int keypress_f = 0; int keypress_g = 0; int keypress_a = 0;
int keypress_b = 0; int keypress_C = 0;

// Define the frequency of each note
int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136, 1014, 956 };
// 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C'
int keytone = 0; // Give a value for keytone

void setup() {
 pinMode(key_c, INPUT); // Set up key pins as inputs
 pinMode(key_d, INPUT);
 pinMode(key_e, INPUT);
 pinMode(key_f, INPUT);
 pinMode(key_g, INPUT);
 pinMode(key_a, INPUT);
 pinMode(key_b, INPUT);
 pinMode(key_C, INPUT);
 pinMode(speakerPin, OUTPUT); // Set up piezo pin as an output
}

// Start a loop to read the press of each key
void loop() {
 keypress_c = digitalRead(key_c); keypress_d = digitalRead(key_d);
 keypress_e = digitalRead(key_e); keypress_f = digitalRead(key_f);
 keypress_g = digitalRead(key_g); keypress_a = digitalRead(key_a);
 keypress_b = digitalRead(key_b); keypress_C = digitalRead(key_C);

 // And if the key press is HIGH, play the corresponding tone
 if ((keypress_c == HIGH) || (keypress_e == HIGH) ||
 (keypress_g == HIGH) || (keypress_d == HIGH) ||
 (keypress_f == HIGH) || (keypress_a == HIGH) ||
 (keypress_b == HIGH) || (keypress_C == HIGH))
 {
 if (keypress_c == HIGH) {
 keytone = tones[0];
 }
 if (keypress_d == HIGH) {
 keytone = tones[1];
 }
 if (keypress_e == HIGH) {
 keytone = tones[2];

 }
 if (keypress_f == HIGH) {
 keytone = tones[3];
 }
 if (keypress_g == HIGH) {
 keytone = tones[4];
 }
 if (keypress_a == HIGH) {
 keytone = tones[5];
 }
 if (keypress_b == HIGH) {
 keytone = tones[6];
 }
 if (keypress_C == HIGH) {
 keytone = tones[7];
 }
 digitalWrite(speakerPin, HIGH); // Turn on piezo to play tone
 delayMicroseconds(keytone);
 digitalWrite(speakerPin, LOW); // Turn off after a short delay
 delayMicroseconds(keytone);
 }
 else { // If no key is pressed, piezo remains silent
 digitalWrite(speakerPin, LOW);
 }
}

TROUBLESHOOTING
Q. The code compiles, but some or all of the buttons do not produce a tone.

• If the piezo sounder makes no noise at all, check that the piezo’s red
wire is connected to pin 13 and its black wire to GND on the
breadboard. Make sure you have connected GND on the Arduino to
the correct breadboard power rail and that the Arduino has power
connected.

• If only some buttons make a sound, recheck the wiring for the
pushbuttons that are silent. It’s easy to misalign the jumper wires in
the breadboard so they don’t actually line up in the row with the
pushbutton pins.

• If you still have an issue, try swapping the offending pushbutton for
one you know works; if this resolves your problem, then your original
pushbutton may have been faulty.

9
Audio LED Visualizer
In this project we’ll use a sound sensor that will light a
series of LEDs depending on the beat and volume of the
sound it detects.

PARTS REQUIRED
Arduino board
Breadboard
Solid-core wires with ends stripped
Jumper wires
2 red LEDs
2 yellow LEDs
5 green LEDs
9 220-ohm resistors
3.5 mm female headphone jack

HOW IT WORKS
In Project 2 we created an LED night-light that was controlled by a light
sensor. This project is similar, but the LEDs will be controlled by sound.
We’ll connect a headphone jack to the Arduino, hook the jack up to an
MP3 player, and watch the lights “dance” to the music. The signal from
the MP3 player is picked up by the headphone jack and received as pulses
by the Arduino A0 pin. The pattern of the pulses depends on the beat and
volume of the music. The Arduino then sends power to the LEDs in
direct response to the pattern of the music. As an alternative to using the
MP3 player, you could add a microphone and have your own voice
visualized in colored lights.

THE BUILD

1. Place the LEDs into the breadboard with the short, negative legs in
the GND rail. Connect the GND rail on the breadboard to Arduino
GND.

2. Insert a 220-ohm resistor for each LED, making sure the resistors
straddle the center break, and connect one leg to each positive LED
leg (see Figure 9-1). Connect the other leg of each resistor to
Arduino digital pins 2 through 10 with jumper wires, as shown in the

following table.

LED ARDUINO

Positive leg Digital pins 2–10 (via resistor)

Negative leg GND

FIGURE 9-1: A resistor is required between the LEDs and power.

NOTE
This headphone jack was reclaimed from a radio bought in a dollar
store, but if you can find one to purchase, that will work too. On the
headphone jack, the pins are GND, right channel, and left channel.

3. Connect the ground pin of the headphone jack directly to GND, and
the left channel of the jack to Arduino pin A0, as outlined in the
following table. You could use jumper wire for this, but I’ve used

solid-core wire and stripped the ends for connections. Stranded wire
is too thin and won’t connect easily to the Arduino pins. (See Figure
9-2 for the positions of the jack pins.)

HEADPHONE JACK ARDUINO

Ground GND

Left channel A0

FIGURE 9-2: 3.5 mm headphone jack with MP3 player jack plugged in

4. Check your setup against the circuit diagram in Figure 9-3, and then
upload the code in “The Sketch” on page 81.

FIGURE 9-3: The circuit diagram for the audio LED visualizer

Plug your MP3 player into the headphone jack for audio input. The
LEDs will dance to the beat and volume of your music!

THE SKETCH
The sketch first sets the Arduino pins connected to the LEDs, pins 2–10,
as outputs. The input in this sketch is the signal from the MP3 player,
received through the headphone jack, which is read by analog pin A0.
The music sent by the player is picked up as a series of pulses by A0, and
the volume and beat of the music determine how the LEDs light up. The
louder the music, the more LEDs will light; and the faster the music’s
beat, the faster the LEDs will flash.

// Used with kind permission from James Newbould
int led[9] = {2, 3, 4, 5, 6, 7, 8, 9, 10}; // Pins connected to LEDs
int leftChannel = A0; // Pin connected to headphone jack
int left, i; // Create a variable for left and i
void setup() {
 for (i = 0; i < 9; i++)
 pinMode(led[i], OUTPUT); // Set LEDs as output
}

void loop() { // Light LEDs from left to right and back again
 // depending on the value from A0
 left = analogRead(leftChannel); // Read left value
 left = left / 10; // Set level of sensitivity between 1 and 50
 if (left == 0) {
 for (i = 0; i < 9; i++) { // If value is low, turn off LED
 digitalWrite(led[i], LOW);
 }
 }
 else { // Or else turn on LEDs in sequence
 for (i = 0; i < left; i++) {
 digitalWrite(led[i], HIGH);
 }
 for (i = i; i < 9; i++) {
 digitalWrite(led[i], LOW);
 }
 }
}

TROUBLESHOOTING
Q. The code compiles, but some or all of the LEDs do not light up as expected.

• If none of the LEDs light, make sure you’ve connected the GND wire
from the Arduino to the correct breadboard power rail and that the
Arduino has power connected.

• If only some LEDs light, check that the LEDs are inserted the correct
way, with the longer leg connected to the positive power and the
short leg to GND. LEDs have polarity, so they must be connected
correctly. Check that each resistor is inserted fully and lines up in the
same row as the corresponding LED leg.

• Make sure the LEDs are connected to the Arduino pins defined in the
sketch and match the circuit diagram in Figure 9-3; the first part of
the sketch defines pins 2–10 as outputs, so these should be used.

• If an LED still fails to light, it may be burned out or faulty. An easy
way to check is to swap the LED with another in the sequence and see
if that solves the issue. If you find that the LED works in another
position, it means the resistor is either faulty or not inserted fully.
Depending on the outcome, replace the LED or resistor with a
functioning component.

Motors

10
Old-School Analog Dial
Old-fashioned analog displays have a certain charm. In
this project I’ll demonstrate how to make your own.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
Tower Pro SG90 9g servomotor
Photoresistor
10k-ohm resistor

LIBRARY REQUIRED
Servo

HOW IT WORKS
Today, visual representations of measurements are usually displayed
digitally on an LCD screen or with LED digits, but not that long ago
analog dials were always used to show pressure, speed, and even time!
The Arduino can detect a voltage input from a sensor, and we’ll use that
capability here to create a dial that the Arduino moves in response to the
input received. We can use this dial in lots of ways to show measurements
for different projects.

In this project, we’ll use a photoresistor to measure light input, but
you could easily swap in a water sensor to make a rain detector, or a gas
sensor for a warning meter. A photoresistor, also referred to as a light-
dependent resistor, produces a variable resistance depending on the amount
of light the sensor detects, as discussed in Project 2.

The principles for adding an analog sensor are the same for whichever
sensor you choose. Most sensors have three connections: ground, +5V,
and a signal connection that connects to the analog A0 pin on the
Arduino—this makes it easy to swap in a different sensor. The
photoresistor is slightly different because it has only two connections, so
one will go to power and one to A0.

We’ll use the sensor to measure light levels, and the Arduino will use

that measurement to move the arm of a small servomotor (or “servo” for
short) to the corresponding angle. The angle of the motor arm indicates
the strength of the light input.

A servo, shown in Figure 10-1, is a small, cheap, mass-produced motor
used for small robotics and a variety of electronics tasks. The servo is
controlled by three wires: ground (black or brown), power (red), and
signal or control (typically orange, yellow, or white). Pulses are sent from
the Arduino over the control wire via pulse width modulation (PWM;
discussed in Project 5), and the input received by the photoresistor
determines the angle of the servo’s actuator arm. The servo expects a
pulse every 20 milliseconds in order to retrieve the correct information
about the angle.

The pulse width dictates the range of the servo’s angular motion.
Typically, a servo pulse width of 1.5 milliseconds sets the servo to its
“neutral” position of 45 degrees, a pulse width of 1.25 milliseconds sets
the angle to 0 degrees, and a pulse width of 1.75 milliseconds sets the
angle to 90 degrees.

FIGURE 10-1: A servomotor

The physical limits of the arm angle and the timing of the servo

hardware vary across brands and models, but in general a servo’s angular
motion travels in the range of 90 to 180 degrees and the neutral position
is almost always at 1.5 milliseconds.

THE BUILD

1. Connect the servo’s red (power) wire directly to +5V on the
Arduino, the brown (ground) wire to Arduino GND, and the yellow
(signal) wire to Arduino pin 9, as shown in the following table.

SERVO ARDUINO

Red (power) wire +5V

Brown (ground) wire GND

Yellow signal (control) wire Pin 9

2. Place the photoresistor in the breadboard and connect one leg to
+5V on the Arduino. Connect the photoresistor’s other leg to a 10k-
ohm resistor, as shown in the circuit diagram in Figure 10-2, and use
a jumper wire to connect this resistor leg to Arduino pin A0 (see the
following table). Connect the other leg of the 10k-ohm resistor to
GND.

PHOTORESISTOR ARDUINO

Leg 1 +5V

Leg 2 Pin A0 via 10k-ohm resistor

FIGURE 10-2: The photoresistor is connected to Arduino pin A0 and measures
the amount of light. The servo is connected to pin 9 and moves according to the
amount of light.

3. Upload the code in “The Sketch” on page 89.

4. Make a faceplate for your dial, like the one in Figure 10-3, and
attach it to the servo. Be sure the servo arm can move over the
measurements of the dial like a pointer. Cover the photoresistor
completely when you add power to the Arduino, and then mark this
position as 0 on the faceplate. Shine a bright flashlight at the light
resistor to get the maximum value, and then mark that position on
the faceplate as well. Add equally spaced marks between 0 and the
max value to give you a scale.

FIGURE 10-3: An example faceplate

The servo’s actuator arm will move up the scale as it detects light,
depending on the brightness. For example, on the left of Figure 10-4, the
servo arm is shown at position 0. On the right, the servo arm displays the
brightness measurement when light—in this case, a laser—is applied to
the photoresistor.

FIGURE 10-4: When light shines on the photoresistor, the servo arm moves.

THE SKETCH
The sketch first calls the Servo library, which is already built into the
Arduino IDE (so there’s no need to download and install this library). We
give the servo position a starting value of 0, and set the photoresistor pin
as A0. We assign Arduino pin 9 to control the servo and then read the
value from the analog pin. Pin A0 is capable of reading an analog value

from the photoresistor and converting it to a digital value in the range 0–
1,023, so we scale this down to 0–179 (180 possible values) to fit the servo
arm’s 180-degree range of movement. If no light is applied to the
photoresistor, the value will be 0 and the servo position will be 0. As you
add light, the servo arm will move, up to a maximum of 180 degrees. The
angle depends on the brightness.

/* Created by David Cuartielles modified 30 Aug 2011 by Tom Igoe
This example code is in the public domain
http://arduino.cc/en/Tutorial/AnalogInput */
#include <Servo.h> // Call the Servo library (built into the IDE)
Servo myservo;
int pos = 0; // Give the position a value
int lightPin = A0; // Pin connected to the photoresistor

void setup() {
 myservo.attach(9); // Pin connected to the servo
}

void loop() {
 // Read voltage from photoresistor, can read 1024 possible values
 int lightLevel = analogRead(lightPin);
 // Scale 1024 values to 180
 lightLevel = map(lightLevel, 0, 1023, 0, 179);
 // Scale of 0-179 (180 values)
 pos = constrain(lightLevel, 0, 179);

 myservo.write(pos); // Set the servo angle
 delay(100);
}

TROUBLESHOOTING
Q. The code compiles, but the servo does not move when light is applied to the

photoresistor.

• If the servo does not move at all, make sure that your wiring matches
the diagram in Figure 10-2 and that there’s power going to the
Arduino.

• Connect the Arduino to your PC and open the Serial Monitor to
check that there’s a reading from the photoresistor. If no reading is
registered, check that the photoresistor is securely inserted into the

http://arduino.cc/en/Tutorial/AnalogInput

breadboard. If you still get no reading, your photoresistor may be
faulty, so replace it with another one.

11
Stepper Motor
In this project I’ll introduce you to a stepper motor (or
step motor), set it up, and discuss how it works.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
28BYJ-48 stepper motor with ULN2003 driver module
50k-ohm potentiometer

LIBRARY REQUIRED
Stepper

HOW IT WORKS
A stepper motor, like the one shown in Figure 11-1, is a direct current
(DC) electric motor that divides a full rotation of the arm into a number
of equal steps. Unlike the servomotor used in Project 10, this stepper
motor turns 360 degrees and has the advantage of being able to position
itself with great accuracy or rotate continuously.

FIGURE 11-1: A 28BYJ-48 stepper motor

The stepper motor’s data sheet will state the number of steps it
performs per revolution; a step is just one movement within one
revolution. A motor with 200 steps per revolution will turn through 360
degrees in 200 steps, or 1.8 degrees per step. Within a stepper motor
there are two interlocked discs, similar to gears, with teeth of opposing
magnetism that alternate and connect to the center shaft or rotor. The
motor moves in steps when power is sent to its windings—a series of wire
coils that become electromagnets when voltage is applied. When
powered, these electromagnets attract or oppose the gear-shaped discs
and rotate the shaft.

You can control the motor’s position and speed by commanding it to
move to and hold at one of these steps. Since we know the angle each step
represents, we can get accurate and precise turning angles and distance
measurements. Stepper motors are commonly used in CD and DVD
players and in 3D printers, where movements need to be very accurate.

When you’re looking to buy a stepper motor, there are a few things to
consider. The first is whether or not it has a gearbox. A gearbox will

improve the torque (moving power) but reduce the revolutions per minute
(RPM, or speed).

The next consideration is whether the stepper motor is bipolar or
unipolar. Bipolar motors switch polarity of the coils. Polarity is the
direction the current flows; so if, for example, we reversed the 5V and
GND connections, the motor would turn in the opposite direction.
Bipolar motors have simpler windings but require more complicated
drivers as they reverse the polarity for us. Unipolar motors essentially have
a winding per polarity, but they can use simpler drivers. You can check
whether your motor is bipolar or unipolar by looking at the connections:
a bipolar motor has four connections, and a unipolar motor has five to
eight connections. In this project we’re using a unipolar motor, the
28BYJ-48 stepper motor with the ULN2003 driver test module—a board
that makes it easy to control the motor with the Arduino, like the module
board for the LED matrix in Project 4. Some driver boards will have a
slightly different setup, so I’d recommend getting the model of motor
listed here for the project so you can follow the instructions closely.

Turning the potentiometer alters the angle of the stepper motor arm,
so as you move the potentiometer to the left or right, the stepper motor
arm will follow your input. (A potentiometer is a variable resistor with a
knob.) The resistance of the potentiometer changes as you turn the knob.
They are commonly used in electrical devices such as volume controls on
audio equipment.

THE BUILD

1. Connect the stepper motor to the driver board, as shown in Figure
11-2. From the outermost pin to the innermost pin in the middle of
the board, connect the wires from the motor in the following order:
blue, pink, yellow, orange, red. The connector can only be inserted
in this way.

FIGURE 11-2: Connecting the stepper to the driver board

2. Connect the driver board pins 1, 2, 3, and 4 at the other end of the
board directly to Arduino pins 8, 9, 10, and 11, respectively.

STEPPER DRIVER BOARD ARDUINO

IN1 Pin 8

IN2 Pin 9

IN3 Pin 10

IN4 Pin 11

GND GND

+5V +5V

3. Insert a potentiometer into the breadboard, connecting its center pin
to Arduino A0 and its outer two pins to Arduino +5V and GND in
any order.

POTENTIOMETER ARDUINO

Left pin GND

Center pin A0

Right pin +5V

4. Connect the driver board GND and +5V to the breadboard GND
and +5V, and connect the breadboard rails to the Arduino. Don’t
forget to attach the power rails of the breadboard to GND and +5V
too.

5. Make sure that your setup matches the final configuration shown in
Figure 11-3, and upload the code in “The Sketch” below.

FIGURE 11-3: The circuit diagram for the stepper motor

THE SKETCH
This code comes with the Arduino IDE and can be found at File ▸
Examples ▸ Stepper ▸ MotorKnob. I’ve reproduced it here as you’ll see it
in the IDE. It uses the built-in stepper library, <Stepper.h>. The
potentiometer is connected to the Arduino A0 pin and gives a variable
voltage depending on the turn of the potentiometer, which then controls
the position of the stepper motor.

/* MotorKnob
 * http://www.arduino.cc/en/Reference/Stepper

http://www.arduino.cc/en/Reference/Stepper

 * This example code is in the public domain.
 */
#include <Stepper.h>
// Change this to the number of steps on your motor
#define STEPS 100

// Create an instance of the stepper class, specifying the number of
// steps of the motor and the pins it's attached to
Stepper stepper(STEPS, 8, 10, 9, 11);
// The previous reading from the analog input
int previous = 0;

void setup() {
 // Set the speed of the motor to 700 RPM
 stepper.setSpeed(30);
}

void loop() {
 // Get the sensor value
 int val = analogRead(0);

 // Move a number of steps equal to change in the sensor reading
 stepper.step(val - previous);

 // Remember the previous value of the sensor
 previous = val;
}

TROUBLESHOOTING
Q. The code compiles, but the stepper motor does not move.

• When you power the motor, lights should blink on the driver motor
board. If they don’t, there’s an issue with power, so check that your
setup matches the circuit diagram in Figure 11-3. Make sure the
stepper motor connection is firmly inserted into the driver motor
board—it can only go in one way.

• If the driver board lights but the motor does not move, check that the
connections to the potentiometer are secure and match the tables
shown earlier.

12
Temperature-Controlled Fan
In this project, we’ll use an LM35 temperature sensor to
turn a fan on automatically when the temperature is too
high.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
LM35 temperature sensor
5V single-channel relay module
12V mini computer cooling fan
9V battery snap and battery

HOW IT WORKS
The LM35 temperature sensor (shown in Figure 12-1) senses the
temperature and sends that measurement to the Arduino in voltage. The
Arduino converts this voltage value to temperature in degrees Celsius and
then converts this value to degrees Fahrenheit. When the temperature
reading is above 71 degrees Fahrenheit, the Arduino sends power to the
relay, which turns on the computer fan.

FIGURE 12-1: The LM35 temperature sensor: the left pin is +5V, center is data out,
and right is GND.

The computer fan requires more power than the Arduino can provide,
so we need to give it its own power supply: a 9V battery. This circuit is
controlled by an electronic relay—an electronically operated switch that in
this case uses an electromagnet to mechanically open or close the circuit

(shown in Figure 12-2). A relay is generally used when a low-power
device is required to switch on or off a much higher-voltage device. Our
relay is powered by 5 volts to operate the mechanical switch. In this
project the circuit is only 9 volts, but the relay could control a circuit up
to 240 volts. Adding higher-voltage circuits can be very dangerous,
however, so do this only if you are comfortable working with electricity
or can seek professional advice.

FIGURE 12-2: A 5V single-channel relay

THE BUILD

1. Insert the LM35 sensor into the breadboard with the front of the
sensor (the flat surface with text on it) facing you. Connect the left
pin to the +5V rail on the breadboard, the center pin to Arduino A0,
and the right pin to the GND rail, as shown in the following table.

LM35 SENSOR ARDUINO

Left pin +5V

Center pin A0

Right pin GND

2. There are a number of connections on the relay, as shown in Figure
12-3. If your relay module has a different layout, adapt the wiring
accordingly (using the data sheet or the pin markings on the
module). Our relay has an LED marked PWR to indicate when it’s
receiving power, and another LED to show when the
electromagnetic switch is on (you can usually hear this, too, as it
makes a satisfying clicking noise). The relay can be set to be HIGH or
LOW when triggered, as indicated by a small jumper switch or pins.
For our project, make sure the jumper is set to HIGH so the relay will
send power when it is triggered.

FIGURE 12-3: Relay connections (your relay pins may differ, so follow the data
sheet provided)

3. As Figure 12-3 shows, the pins on the right side of the relay module
are Signal, GND, and +5V. Attach the relay’s Signal pin to Arduino
pin 5, GND to Arduino GND, and +5V to the Arduino power via
the breadboard rails.

5V RELAY ARDUINO

Signal Pin 5

GND GND

+5V +5V

4. On the left side of the relay module are the connections for the

electromagnetic switch (Figure 12-3). The center pin is the common
connection; the left pin is marked NO for normally open, meaning the
circuit is broken and the default state is off; and the right pin is
marked NC for normally closed, meaning the default state is on. If the
relay is not switched, the common pin is connected to the NC pin. If
the relay is switched, the common pin is connected to the NO pin.
Because we want the circuit to be off until we use the switch, we will
use the NO pin.

5. Next, connect the black GND wire of the fan to the GND wire of
the 9V battery. Then, as shown in the following table, attach the red
positive wire of the fan to the common pin on the relay, and connect
the positive wire of the 9V battery to NO on the relay.

5V RELAY FAN/9V BATTERY

NO (normally open) 9V battery’s positive wire

Common Fan’s positive wire

NC (normally closed) Not connected

6. Connect the breadboard power rails to each other and to the
Arduino GND and +5V pins.

7. Make sure your setup matches the circuit diagram in Figure 12-4,
and then upload the code in “The Sketch” on page 103.

FIGURE 12-4: The circuit diagram for the temperature-controlled fan

THE SKETCH
In this sketch we first set the sensor pin for the LM35 as A0 on the
Arduino, define the fan as pin 5, and create a variable to read the value
from the LM35. We then create a variable to store the temperature and
set the fan pin as an output. A small calculation turns the voltage reading
from the sensor into a temperature value in degrees Fahrenheit. We then
start the Serial Monitor so you can see the LM35 reading value when the
Arduino is connected to your PC, which is handy for making sure the
sensor is working correctly. A loop reads the sensor every second, and if
the temperature reaches 71 degrees Fahrenheit, power is sent to the fan
pin, which triggers the relay and switches on the fan. If the temperature
falls below 71, the relay switches the fan off.

#define SENS_PIN A0 // Defines A0 pin as "sensor"
#define FAN_PIN 5
int Vin; // Reads value from Arduino pin
float Temperature; // Receives converted voltage value to temp
float TF; // Receives converted value in °F

void setup() {
 pinMode(FAN_PIN, OUTPUT); // Fan pin as an output

 Serial.begin(9600); // Start Serial Monitor
}

void loop() {
 // Tells Arduino to read pin and stores value in Vin
 Vin = analogRead(SENS_PIN);

 // Converts voltage value into temperature and
 // stores value in Temperature (as °F)
 Temperature = (500 * Vin) / 1023 * (1.8) + 32;

 TF = Temperature;
 Serial.print("Temperature: "); // Sends text to display screen
 Serial.print(TF); // Shows value of temperature in Serial Monitor
 Serial.println(" F"); // Writes F to indicate it is in Fahrenheit
 if (TF > 71) { // If temperature is more than 71
 digitalWrite(FAN_PIN, HIGH); // Turn fan on
 }
 else if (TF < 71) {
 digitalWrite(FAN_PIN, LOW); // Or keep fan off
 }
 delay(1000); // Waits for a second to read the pin again
}

TROUBLESHOOTING
Q. The fan does not turn on when expected.

• Make sure the connections to the LM35 match the tables in this
chapter and the circuit diagram in Figure 12-4. Connect the Arduino
to your computer and open the IDE Serial Monitor to check whether
the Arduino is reading the sensor correctly. If the reading is incorrect,
recheck your wiring or change the sensor to another.

• Remember, your relay may not match the one used here, so the
connections may be in a slightly different order; alter the wiring
according to your relay and data sheet.

• The fan used here takes between 9 and 12 volts, so a 9V battery has
enough power to run it. If you used a fan that requires more voltage,
you will need to match its voltage input accordingly with a more
powerful battery.

LCDs

13
Ultrasonic Range Finder
In this project we’ll create a simple ultrasonic range
finder with a screen that displays the distance of an
object up to 5 meters from the sensor.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
HD44780 16x2 LCD screen
HC-SR04 ultrasonic sensor
50k-ohm potentiometer

LIBRARY REQUIRED
LiquidCrystal

HOW IT WORKS
The ultrasonic range finder sends out a burst of ultrasound and listens for
the echo that bounces off an object. The Arduino sends out a short pulse
on the trigger pin to send the ultrasonic burst, then listens for a pulse on
the echo pin using the pulseIn function.

This duration between sending and receiving the pulse is equal to the
time taken by the ultrasound to travel to the object and back to the
sensor. The Arduino converts this time to distance and displays it on the
LCD screen. You can find an HC-SR04 unit (Figure 13-1) from one of
the sources listed in the “Retailer List” on page 249, or you can search
online for HC-SR04 ultrasonic module.

FIGURE 13-1: The HC-SR04 ultrasonic sensor

An LCD (liquid crystal display) screen is made of two sheets of
polarizing material with a liquid crystal solution between them. Current
passing through the solution makes the screen opaque, so by controlling
which areas of the screen current passes through, the Arduino creates an
image or, in this case, characters. You’ll need an LCD screen that’s
compatible with the Hitachi HD44780 driver for it to work with the
Arduino; there are lots of them out there and you can usually identify
them by their 16-pin interface. We’ll use the LiquidCrystal library to
send characters to the LCD screen (refer to the primer if you need a
refresher on libraries). The LiquidCrystal library maps the characters and
uses the print commands to send messages to the screen.

PREPARING THE LCD SCREEN
The LCD screen will probably require a bit of assembly. Your screen
should have come with 16 holes, as shown in Figure 13-2, and a separate
strip of header pins. Break off a row of 16 pins from the strip. Insert the
shorter side of the pins into the 16 LCD holes. You’ll need to solder

these in place; the primer has a quick soldering guide if you need
pointers. Solder the far-right and far-left pins first to hold the strip in
place and wait a moment for them to set. Then solder each pin in turn.
Holding the iron to the pins for too long will damage them, so solder
them only for a couple of seconds.

FIGURE 13-2: A 16×2 LCD screen

THE BUILD

1. Place your LCD screen in the breadboard, inserting the header pins
into the breadboard holes. Also place the potentiometer in the
breadboard, and use jumper wires to connect your LCD screen,
Arduino, and potentiometer as shown in the following table. The
pins of the LCD screen should be labeled or numbered, either on
the back or the front. If not, they usually start at 1 from the left when
the pins are along the top. There are a number of connections from
the LCD screen to Arduino GND, so use the breadboard ground

rail to make multiple connections to the Arduino GND pin.

LCD SCREEN ARDUINO

1 VSS GND

2 VDD +5V

3 VO contrast Potentiometer center pin

4 RS Pin 11

5 R/W Pin 10

6 Enable Pin 9

7 D0 No connection

8 D1 No connection

9 D2 No connection

10 D3 No connection

11 D4 Pin 7

12 D5 Pin 6

13 D6 Pin 5

14 D7 Pin 4

15 A BcL+ +5V

16 K BcL– GND

2. You should have already connected the center pin of the 50kohm
potentiometer to LCD pin 3 (VO). Now connect one of the outer
potentiometer pins to GND and the other to +5V. Twist the
potentiometer to control the contrast of your LCD screen.

3. Backlit LCD screens will have resistors built in, but if you have a
nonbacklit LCD screen, insert a 220-ohm resistor between LCD 15
and +5V. Check the data sheet for your screen if you’re unsure.

4. Add the ultrasonic sensor module to your breadboard and connect
VCC to +5V, Trig to Arduino pin 13, Echo to Arduino pin 12, and
GND to GND, as shown in the following table.

ULTRASONIC SENSOR ARDUINO

VCC +5V

Trig Pin 13

Echo Pin 12

GND GND

5. Connect your breadboard rails to Arduino +5V and GND for power.

6. Check that your setup matches the circuit diagram in Figure 13-3,
and upload the code in “The Sketch” on page 112.

FIGURE 13-3: The circuit diagram for the ultrasonic range finder

THE SKETCH
The sketch first calls on the LiquidCrystal library and defines the LCD
pins connected to the Arduino. Pin 13 on the Arduino, connected to the
trigger pin of the sensor, sends an ultrasonic signal out, and Arduino pin
12, connected to the echo pin of the sensor, receives the returning signal.
The Arduino converts the time between sending and receiving the signal
into distance and displays the result on the LCD screen, in both inches
and centimeters. This sketch can be found on the Arduino site, so I’ve
copied it here exactly as it appears there.

/*
 Created 3 Nov 2008 by David A. Mellis;
 Modified 30 Aug 2011 by Tom Igoe
 This example code is in the public domain.
 */
#include <LiquidCrystal.h>

LiquidCrystal lcd(11, 10, 9, 7, 6, 5, 4);
int pingPin = 13;
int inPin = 12;

void setup() {
 lcd.begin(16, 2);
 lcd.print("testing...");
}

void loop() {
 // Establish variables for duration of the ping,
 // and the distance result in inches and centimeters:
 // long duration, inches, cm;

 // The PING))) is triggered by a HIGH pulse of 2 ms or more
 // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
 pinMode(pingPin, OUTPUT);
 digitalWrite(pingPin, LOW);
 delayMicroseconds(2);
 digitalWrite(pingPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(pingPin, LOW);

 // The same pin is used to read the signal from the PING))):
 // a HIGH pulse whose duration is the time (in microseconds)
 // from the sending of the ping to the reception of its echo off
 // of an object.
 pinMode(inPin, INPUT);

 duration = pulseIn(inPin, HIGH);

 // Convert the time into a distance
 inches = microsecondsToInches(duration);
 cm = microsecondsToCentimeters(duration);

 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(inches);
 lcd.print("in, ");
 lcd.print(cm);
 lcd.print("cm");

 delay(100);
}

long microsecondsToInches(long microseconds) {
 // According to Parallax's datasheet for the PING))),
 // there are 73.746 ms/in (i.e. sound travels at 1130 fps).
 // This gives the distance traveled by the ping, outbound,
 // and return, so divide by 2 to get the distance of the obstacle.
 return microseconds / 74 / 2;
}

long microsecondsToCentimeters(long microseconds) {
 // The speed of sound is 340 m/s or 29 ms/cm.
 // The ping travels out and back, so to find the distance
 // of the object, take half of the distance traveled.
 return microseconds / 29 / 2;
}

TROUBLESHOOTING
Q. Nothing is displayed on the LCD screen.

• Make sure you’ve connected power to the breadboard rails and the
connections match the tables given earlier.

• Turn the potentiometer to change the contrast of the screen until you
see text.

• If the screen has garbled messages on it, you have not wired it up
correctly; recheck your wiring against Figure 13-3.

14
Digital Thermometer
This project will add an LM35 temperature sensor to an
LCD screen and Arduino to give you a digital
thermometer.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
HD44780 16×2 LCD screen
LM35 temperature sensor
50k-ohm potentiometer

LIBRARY REQUIRED
LiquidCrystal

HOW IT WORKS
The Arduino takes the voltage reading from the same LM35 temperature
sensor we used in Project 12 and converts that value to temperature in
degrees Celsius. The sketch then changes this value to Fahrenheit by
multiplying the value by 9, dividing the result by 5, and adding 32. The
LiquidCrystal library does all the hard work in displaying the
temperature on the LCD screen using the lcd.print command. This
project can easily be adapted with more sensors for an all-around weather
center.

THE BUILD
First, prepare the LCD screen according to “Preparing the LCD Screen”
on page 109. Then follow these steps:

1. Insert your LCD screen and potentiometer into the breadboard;
then use your breadboard and jumper wires to make the connections
for the LCD screen as shown in the following table.

LCD SCREEN ARDUINO

1 VSS GND

2 VDD +5V

3 VO contrast Potentiometer center pin

4 RS Pin 12

5 R/W GND

6 Enable Pin 11

7 D0 No connection

8 D1 No connection

9 D2 No connection

10 D3 No connection

11 D4 Pin 5

12 D5 Pin 4

13 D6 Pin 3

14 D7 Pin 2

15 A BcL+ +5V

16 K BcL– GND

2. Connect the GND and +5V rails to Arduino GND and +5V.

3. You should have already connected the center pin of the 50k-ohm
potentiometer to LCD pin 3 (VO). Now connect one of the outer
pins to GND and the other to +5V.

4. Connect the center pin of the LM35 temperature sensor to Arduino
A0, the left pin to the +5V rail, and the right pin to the GND rail, as
shown in the following table.

LM35 SENSOR ARDUINO

Left +5V

Center A0

Right GND

5. Make sure your setup matches the circuit diagram shown in Figure
14-2, and upload the code in “The Sketch” on page 118.

FIGURE 14-1: The circuit diagram for the digital thermometer

THE SKETCH
The sketch uses the LiquidCrystal library to display a value on the screen
according to what the LM35 sensor detects. The LM35 sensor sends a
reading to Arduino pin A0, which is read as voltage. The sketch converts
the voltage reading to a temperature value in Celsius, and then it uses a
couple of calculations to show the final reading in Fahrenheit. The sketch
updates and displays the reading every second.

#include <LiquidCrystal.h> // Call the LCD library
#define sensor A0 // Pin connected to LM35 sensor (A0)
int Vin; // Reads the value from the Arduino pin
float Temperature; // Receives the voltage value converted to temp
float TF; // Receives the converted value in °F
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Pins connected the LCD

void setup() {
 lcd.begin(16, 2); // The display is 16x2
 lcd.print("Temperature: "); // Sends text to the LCD
}

void loop() {
 // Reads the A0 pin and stores the value in Vin
 Vin = analogRead (sensor);
 // Converts voltage value to temperature and
 // stores value in Temperature (in °C)
 Temperature = (500 * Vin) / 1023;
 TF = ((9 * Temperature) / 5) + 32; // Changes °C to °F
 lcd.setCursor(0, 1); // Move cursor of LCD to next line
 lcd.print(TF); // Display the temperature on the LCD screen
 lcd.print(" F"); // Write F for the Fahrenheit scale
 delay(1000); // Wait for a second before reading the pin again
}

TROUBLESHOOTING
Q. Nothing is displayed on the LCD screen.

• Make sure you’ve connected power to the breadboard rails and that
the connections match the tables given earlier.

• Turn the potentiometer to change the contrast of the screen until you
see text.

• If the screen has garbled messages on it, you probably haven’t wired it
up correctly; recheck your wiring against Figure 14-2.

• If the value shown seems too high, make sure the LM35 sensor is
firmly inserted in the breadboard and allow a moment for the reading
to stabilize.

15
Bomb Decoder Game
In this project we’ll build a code-breaking bomb-
decoding game. We’ll use an LCD screen and a keypad
to give the players instructions and take input.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
HD44780 16×2 LCD screen
10k-ohm potentiometer
Piezo sounder
3×4 membrane keypad
3 220-ohm resistors
Red LED
Yellow LED
Green LED

LIBRARIES REQUIRED
LiquidCrystal
Keypad
Tone

HOW IT WORKS
When you power up the Arduino, one player enters a four-digit code to
start the bomb timer. They give the timer to another player, who presses
the * button to begin decoding the bomb—this player (the “defuser”)
must crack the code entered by the first player to defuse the bomb in
time. If the defuser presses a wrong key, they can press # to delete their
input and start again. If they enter the wrong code or the timer reaches
zero, the bomb detonates and they lose.

During the game, the yellow LED flashes and the piezo sounder
beeps in time to the countdown. The LCD screen displays the
countdown and code input. When the bomb detonates, all the LEDs
flash and the piezo sounds an explosion.

A good way to take this game further would be to ask the defuser four

questions, each giving the defuser one digit of the bomb code. The
defuser has a set time to answer the questions and input the four-digit
code. Answer incorrectly or too late, and the bomb explodes!

THE BUILD

1. If required, prepare the LCD screen by soldering the header pins as
described in “Preparing the LCD Screen” on page 109.

2. Place your LCD screen in the breadboard, inserting the header pins
into the breadboard holes. Also place the potentiometer in the
breadboard, and use the breadboard and jumper wires to connect
your LCD screen, Arduino, and potentiometer as shown in the
following table. There are multiple GND connections, so use the
breadboard rail to make those connections to the Arduino GND pin.

LCD SCREEN ARDUINO

1 VSS GND

2 VDD +5V

3 VO contrast Potentiometer center pin

4 RS Pin 7

5 R/W GND

6 Enable Pin 8

7 D0 No connection

8 D1 No connection

9 D2 No connection

10 D3 No connection

11 D4 Pin 10

12 D5 Pin 11

13 D6 Pin 12

14 D7 Pin 13

15 A BcL+ +5V

16 K BcL– GND

3. You should have already connected the center pin of the 10k-ohm
potentiometer to LCD pin 3 (VO). Now connect one of the outer
pins to GND and the other to +5V, as shown in Figure 15-1. This
controls the contrast of your LCD screen.

FIGURE 15-1: The potentiometer controls the contrast of your LCD screen.

4. Looking at the keypad head-on, as in Figure 15-2, the pins are
numbered 1–7 from left to right. Connect the keypad pins as shown
in the following table.

FIGURE 15-2: The 3×4 numeric keypad with seven pin connections

KEYPAD ARDUINO

Pin 1 Pin 5

Pin 2 Pin A5

Pin 3 Pin A4

Pin 4 Pin A2

Pin 5 Pin A1

Pin 6 Pin A0

Pin 7 Pin A3

5. Connect the piezo sounder’s red wire directly to Arduino pin 9 and
its black wire to Arduino GND.

PIEZO SOUNDER ARDUINO

Red wire Pin 9

Black wire GND

6. Place the green LED in the breadboard, connecting the short,
negative leg to the negative breadboard rail via a 220-ohm resistor.
Connect the green LED’s long, positive leg to pin 2. Do the same
with the yellow LED to pin 3 and the red LED to pin 4, as shown in
Figure 15-3 and the table that follows.

FIGURE 15-3: Connect the LEDs to the Arduino via a 220-ohm resistor.

LEDS ARDUINO

Negative legs GND

Green positive leg Pin 2 via 220-ohm resistor

Yellow positive leg Pin 3 via 220-ohm resistor

Red positive leg Pin 4 via 220-ohm resistor

7. Connect the positive and negative breadboard power rails to +5V
and GND, respectively.

8. Make sure your completed project circuit matches Figure 15-4,
remember to add the required libraries to your Libraries folder, and
then upload the code in “The Sketch” on page 127.

FIGURE 15-4: The circuit diagram for the bomb decoder game

PLAYING THE GAME
Figure 15-5 shows the different stages of playing the game.

FIGURE 15-5: Playing the game

1. Enter the code to set up the bomb.

2. The bomb confirms the code entered.

3. The timer starts the countdown sequence.

4. The yellow LED flashes in time to the countdown.

5. Pass the keypad to another player (the defuser). They press the *
button on the keypad, then enter the defuse code.

6. The screen does not show the numbers entered to defuse the bomb.

7. If the correct code is entered, the bomb is defused . . .

8. . . . but if not . . . Boom!

NOTE
All libraries and code can be downloaded from
https://www.nostarch.com/arduinohandbook2/.

THE SKETCH
The sketch calls on the Keypad, LiquidCrystal, and Tone libraries.
LiquidCrystal is included in your IDE, but you’ll have to download
Keypad and Tone from the book’s resources at
https://www.nostarch.com/arduinohandbook2/ and save them in your
Libraries folder for the Arduino (see the primer for details on how to do
that if you’re unsure).

First the sketch defines the timer duration, password length, LED
pins, and keypad. It requests a code input from the first player by
displaying “Enter Code:” and then stores that value as the bomb defusal
code. When the second player (the defuser) presses *, the timer starts and
waits for a code to be entered, and the yellow LED flashes in time to the
countdown. If the code the defuser enters does not match the defusal
code, the text “The Bomb Has Exploded!” displays on the screen and the
LEDs and piezo indicate an explosion. If the defuser’s input is correct,

https://www.nostarch.com/arduinohandbook2/
https://www.nostarch.com/arduinohandbook2/

the timer stops, the green LED lights, and the message “Bomb Defused”
displays on the screen. The bomb will also explode if the timer reaches
zero with no input. When the game ends, the code resets, ready for
another game.

// Original code by Joey Meyer and Chase Cooley
// and used with kind permission

#include <Keypad.h>
#include <LiquidCrystal.h>
#include <Tone.h>

Tone tone1;

int Scount = 10; // Change this to the number of seconds to start from
int Mcount = 5; // Change this to the number of minutes to start from
int Hcount = 0; // Count hours
int DefuseTimer = 0; // Set timer to 0

long secMillis = 0; // Store last time for second add
long interval = 1000; // Interval for seconds

char password[4]; // Number of characters in password
int currentLength = 0; // Defines number currently writing
int i = 0;
char entered[4];

int ledPin = 4; // Red LED
int ledPin2 = 3; // Yellow LED
int ledPin3 = 2; // Green LED
// The pins we use on the LCD
LiquidCrystal lcd(7, 8, 10, 11, 12, 13);

const byte ROWS = 4; // Four rows
const byte COLS = 3; // Three columns
char keys[ROWS][COLS] = {
 {'1', '2', '3'},
 {'4', '5', '6'},
 {'7', '8', '9'},
 {'*', '0', '#'}
};
byte rowPins[ROWS] = {5, A5, A4, A2}; // Connect to the row pinouts
 // of the keypad
byte colPins[COLS] = {A1, A0, A3}; // Connect to the column pinouts
 // of the keypad

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

void setup() {
 pinMode(ledPin, OUTPUT); // Sets the digital pin as output
 pinMode(ledPin2, OUTPUT); // Sets the digital pin as output
 pinMode(ledPin3, OUTPUT); // Sets the digital pin as output
 tone1.begin(9);
 lcd.begin(16, 2);
 Serial.begin(9600);
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("Enter Code: ");
 while (currentLength < 4) {
 lcd.setCursor(currentLength + 6, 1);
 lcd.cursor();
 char key = keypad.getKey();
 key == NO_KEY;
 if (key != NO_KEY) {
 if ((key != '*')&&(key != '#')) {
 lcd.print(key);
 password[currentLength] = key;
 currentLength++;
 tone1.play(NOTE_C6, 200);
 }
 }
 }

 if (currentLength == 4) {
 delay(500);
 lcd.noCursor();
 lcd.clear();
 lcd.home();
 lcd.print("You've Entered: ");
 lcd.setCursor(6, 1);
 lcd.print(password[0]);
 lcd.print(password[1]);
 lcd.print(password[2]);
 lcd.print(password[3]);
 tone1.play(NOTE_E6, 200);
 delay(3000);
 lcd.clear();
 currentLength = 0;
 }
}

void loop() {
 timer();
 char key2 = keypad.getKey(); // Get the key
 if (key2 == '*') {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Code: ");

 while (currentLength < 4) {
 timer();
 char key2 = keypad.getKey();
 if (key2 == '#') {
 currentLength = 0;
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Code: ");
 }
 else if (key2 != NO_KEY) {
 lcd.setCursor(currentLength + 7, 0);
 lcd.cursor();
 lcd.print(key2);
 entered[currentLength] = key2;
 currentLength++;
 tone1.play(NOTE_C6, 200);
 delay(100);
 lcd.noCursor();
 lcd.setCursor(currentLength + 6, 0);
 lcd.print("*");
 lcd.setCursor(currentLength + 7, 0);
 lcd.cursor();
 }
 }
 if (currentLength == 4) {
 if (entered[0] == password[0] && entered[1] == password[1] &&
entered[2] == password[2] &&entered[3] == password[3]) {
 lcd.noCursor();
 lcd.clear();
 lcd.home();
 lcd.print("Bomb Defused");
 currentLength = 0;
 digitalWrite(ledPin3, HIGH);
 delay(2500);
 lcd.setCursor(0, 1);
 lcd.print("Reset the Bomb");
 delay(1000000);
 }

 else {
 lcd.noCursor();
 lcd.clear();
 lcd.home();
 lcd.print("Wrong Password!");
 if (Hcount > 0) {
 Hcount = Hcount - 1;
 }
 if (Mcount > 0) {
 Mcount = Mcount - 59;
 }

 if (Scount > 0) {
 Scount = Scount - 59;
 }
 delay(1500);
 currentLength = 0;
 }
 }
 }
}

void timer() {
 Serial.print(Scount);
 Serial.println();
 if (Hcount <= 0) { // If timer reaches 0, LCD displays explosion
 if (Mcount < 0) {
 lcd.noCursor();
 lcd.clear();
 lcd.home();
 lcd.print("The Bomb Has ");
 lcd.setCursor(0, 1);
 lcd.print("Exploded!");
 while (Mcount < 0) {
 digitalWrite(ledPin, HIGH); // Sets the LED on
 tone1.play(NOTE_A2, 90);
 delay(100);
 digitalWrite(ledPin, LOW); // Sets the LED off
 tone1.play(NOTE_A2, 90);
 delay(100);
 digitalWrite(ledPin2, HIGH); // Sets the LED on
 tone1.play(NOTE_A2, 90);
 delay(100);
 digitalWrite(ledPin2, LOW); // Sets the LED off
 tone1.play(NOTE_A2, 90);
 delay(100);
 digitalWrite(ledPin3, HIGH); // Sets the LED on
 tone1.play(NOTE_A2, 90);
 delay(100);
 digitalWrite(ledPin3, LOW); // Sets the LED off
 tone1.play(NOTE_A2, 90);
 delay(100);
 }
 }
 }

 lcd.setCursor(0, 1); // Sets cursor to 2nd line
 lcd.print("Timer:");

 if (Hcount >= 10) {
 lcd.setCursor(7, 1);
 lcd.print(Hcount);

 }
 if (Hcount < 10) {
 lcd.setCursor(7, 1);
 lcd.write("0");
 lcd.setCursor(8, 1);
 lcd.print(Hcount);
 }

 lcd.print(":");

 if (Mcount >= 10) {
 lcd.setCursor(10, 1);
 lcd.print(Mcount);
 }
 if (Mcount < 10) {
 lcd.setCursor(10, 1);
 lcd.write("0");
 lcd.setCursor(11, 1);
 lcd.print(Mcount);
 }

 lcd.print (":");

 if (Scount >= 10) {
 lcd.setCursor(13, 1);
 lcd.print(Scount);
 }
 if (Scount < 10) {
 lcd.setCursor(13, 1);
 lcd.write("0");
 lcd.setCursor(14, 1);
 lcd.print(Scount);
 }

 if (Hcount < 0) {
 Hcount = 0;
 }

 if (Mcount < 0) {
 Hcount --;
 Mcount = 59;
 }

 if (Scount < 1) { // If 60 do this operation
 Mcount --; // Add 1 to Mcount
 Scount = 59; // Reset Scount
 }

 if (Scount > 0) { // Do this operation 59 times
 unsigned long currentMillis = millis();

 if (currentMillis - secMillis > interval) {
 tone1.play(NOTE_G5, 200);
 secMillis = currentMillis;
 Scount --; // Add 1 to Scount
 digitalWrite(ledPin2, HIGH); // Sets the LED on
 delay(10); // Waits for a second
 digitalWrite(ledPin2, LOW); // Sets the LED off
 delay(10); // Waits for a second
 }
 }
}

TROUBLESHOOTING
Q. Nothing is displayed on the LCD screen.

• Make sure you’ve connected power to the breadboard rails and the
connections match the tables in this chapter.

• Turn the potentiometer to change the contrast of the screen until you
see text.

• If the screen has garbled messages on it, you haven’t wired it up
correctly; recheck your wiring against the circuit diagram in Figure
15-4.

Q. The LEDs do not light when expected.

• Check your wiring against the circuit diagram in Figure 15-4 and
ensure that the short leg of the LED is connected to the ground rail
of the breadboard.

• It’s easy to forget to add power to the breadboard rails, so make sure
you connect the ground and power rails on either side of the
breadboard to the Arduino with a jumper wire.

• Check that your LEDs and resistors are firmly inserted into the
breadboard and they line up with one another.

• If the wrong LED lights up, you’ve probably connected to the wrong
pin numbers by mistake, so just change them around.

Q. The piezo sounder does not make a noise.

• The positive red wire of the sounder should be connected to pin 9 and

the black ground wire to GND. If the sounder does still not make a
noise, try replacing it with another one.

Q. When the keypad is pressed, the numbers are incorrect or do not register.

• Make sure the connections of the keypad to the Arduino match the
circuit diagram in Figure 15-4 exactly.

• The configuration is set up specifically for this project’s 3×4 numeric
keypad, so if your keypad is different, check the data sheet to find out
which pins you need to connect.

16
Serial LCD Screen
In this project we’ll take a 16×2 character LCD screen
and a serial module to create a serial LCD that’s
controlled by only two wires.

PARTS REQUIRED
Arduino board
Female-to-male jumper wires
HD44780 16×2 LCD screen
Serial LCD screen module

LIBRARIES REQUIRED
Wire
LiquidCrystal_I2C

HOW IT WORKS
LCD screens are very useful in projects, but they use up a lot of pins on
the Arduino. This means that if you’re incorporating them into a more
complex project, you might run out of pins. Thankfully there is a
solution: use a serial LCD screen. Serial LCDs use the communication
protocol I2C, which stands for Inter-Integrated Circuit, and differ from
normal 16×2 LCD screens in that they can be controlled by your Arduino
with only power and two pins.

Serial LCD screens usually come in kit form and require you to solder
header pins, which I’ll cover later in the chapter. You’ll usually receive
the 16×2 LCD screen and the serial module separately, as shown in
Figure 16-1.

FIGURE 16-1: 16×2 LCD screen and serial module

PREPARING THE SERIAL LCD SCREEN

1. The serial module has a strip of 16 header pins already attached to
one side. Turn the LCD screen over and you’ll see 16 corresponding
holes, as shown in Figure 16-2.

FIGURE 16-2: The reverse side of the LCD screen

2. Place the serial controller header pins into those holes, as shown in

Figure 16-3.

FIGURE 16-3: Insert the serial module into the LCD screen holes.

3. Carefully add a small amount of solder to each of the pins to make a
connection and hold the serial monitor to the screen. Turn to the
primer for a quick soldering guide.

THE BUILD
Your serial LCD screen has an assigned address that your Arduino needs
in order to communicate with it. The addresses differ depending on the
make, so you need to check the address of your specific screen, as you’ll
need it for the sketch later. To check the address, connect the LCD
screen to your Arduino and run a quick sketch to scan the module—or
you could also refer to the data sheet for your screen.

1. Connect your female-to-male jumper wires to the four pins on the
controller for the LCD screen.

2. Wire up the serial LCD screen to the Arduino with GND to GND,
VCC to +5V, SDA to Arduino pin A4, and SCL to Arduino pin A5,
as shown in the following table and the circuit diagram in Figure 16-
4.

SERIAL LCD SCREEN ARDUINO

GND GND

VCC +5V

SDA Pin A4 (SDA)

SCL Pin A5 (SCL)

FIGURE 16-4: The circuit diagram for the serial LCD screen

3. Upload the following sketch to the Arduino. We’ll get the address in
hexadecimal, a number system that uses letters and numbers in an
abbreviated form to represent a much larger number.

#include <Wire.h>
void setup() {
 Wire.begin();
 Serial.begin(9600);
 Serial.println("I2C Scanner");
}
void loop() {
 byte error, address;
 int nDevices;
 Serial.println("Scanning...");
 nDevices = 0;
 for (address = 1; address < 127; address++) {
 Wire.beginTransmission(address);
 error = Wire.endTransmission();
 if (error == 0) {
 Serial.print("I2C device found at address 0x");
 if (address < 16)
 Serial.print("0");

 Serial.print(address, HEX);
 Serial.println(" !");
 nDevices++;
 }
 else if (error == 4) {
 Serial.print("Unknown error at address 0x");
 if (address < 16)
 Serial.print("0");
 Serial.println(address, HEX);
 }
 }
 if (nDevices == 0)
 Serial.println("No I2C devices found\n");
 else
 Serial.println("done\n");
 delay(5000); // Wait 5 seconds for next scan
}

The sketch scans for all addresses on the Arduino’s I2C bus and
displays the output in the Serial Monitor, as shown in Figure 16-5.

FIGURE 16-5: The hexadecimal number of your module will be shown in the IDE
Serial Monitor.

The address is the number that comes after the 0x. In my case that is

27, so I need to make a note of 0x27. You’ll use this address in the final
sketch.

THE SKETCH
This sketch calls on the Wire and LiquidCrystal_I2C libraries. The Wire
library is included in the Arduino IDE, but you will need to install the
LiquidCrystal_I2C library by downloading it from
https://www.nostarch.com/arduinohandbook2/. The libraries allow the
Arduino to control the module using serial communication via just the
SDA and SCL pins.

Change the code at ➊ so that the 0x27 is replaced with the address you
just noted from your scan in the test sketch.

#include <Wire.h> // Call the wire library
#include <LiquidCrystal_I2C.h> // Call the I2C library
LiquidCrystal_I2C lcd(0x27➊,16,2); // Set LCD address to 0x27 for a
 // 16-character and 2-line display
void setup() {
 lcd.begin(); // Initialize the lcd
 lcd.backlight();
 lcd.print("Arduino Handbook"); // Print a message to the LCD
}

void loop() { // Loop around again
}

There is a potentiometer built into the module to control the contrast
of the LCD screen, shown in Figure 16-6. Turn this carefully with a
small screwdriver until the contrast on the screen looks right.

FIGURE 16-6: The small blue box on the back of the module is a potentiometer to
control the contrast.

https://www.nostarch.com/arduinohandbook2/

TROUBLESHOOTING
Q. The code compiles, but nothing shows on the screen.

• Double-check that the SDA and SCL pins are connected to the
correct Arduino pins. If the LCD screen is lit but shows no characters,
carefully turn the small potentiometer at the back of the module until
the letters appear.

• If the screen still shows nothing and all the connections are correct, it
may be that the solder on the header pins is not making a clean
connection or you have soldered more than one pin together. Heat
the area again with your soldering iron to melt the solder, and then
use a solder sucker to remove any excess and resolder the header pins.

17
Ultrasonic People Counter
This project teaches you how to use the HC-SR04
ultrasonic sensor to sense when people pass and then
show that count on a serial LCD screen.

PARTS REQUIRED
Arduino board
Mini-breadboard
Jumper wires, male-to-male and female-to-male
LED
Serial LCD screen module
220-ohm resistor
HC-SR04 ultrasonic sensor

LIBRARIES REQUIRED
NewPing
Wire
LiquidCrystal_I2C

HOW IT WORKS
People counters are often used in shops or tourist attractions to count the
number of visitors, but you could also use one to record the volume of
traffic on a highway or in a parking lot, or to count how many times
someone entered your room while you were out!

The ultrasonic sensor we’ll use is the HC-SR04, shown in Figure 17-
1, which you first saw in Project 13. It uses an ultrasonic signal, or ping, to
calculate the distance between the sensor and an object. In this project
we’ll use this function to count every time someone or something passes
in front of the sensor. An LED will flash when a count is registered, and
the serial LCD screen will show the total number counted.

FIGURE 17-1: The HC-SR04 ultrasonic sensor uses a ping to calculate distances.

THE BUILD

1. Use the female-to-male jumper wires to connect the HC-SR04
ultrasonic sensor to the Arduino with the VCC pin to Arduino +5V,
GND to GND, and Trig and Echo to pins 7 and 8 on the Arduino,
respectively, as shown in the following table and in Figure 17-2. Use
the mini-breadboard for multiple connections.

ULTRASONIC SENSOR ARDUINO

VCC +5V

Trig Pin 7

Echo Pin 8

GND GND

FIGURE 17-2: The connections from the ultrasonic sensor

2. Make sure to download the LiquidCrystal I2C and NewPing
libraries and add them to the relevant folder on your computer (see
the primer for guidance). The Wire library comes with the Arduino
IDE, so you do not need to add it.

3. Connect the serial LCD screen to the Arduino as follows, using the
mini-breadboard to connect to +5V.

SERIAL LCD SCREEN ARDUINO

GND GND

VCC +5V

SDA Pin A4 (SDA)

SCL Pin A5 (SCL)

4. Insert the LED into the mini-breadboard so that the shorter,
negative (GND) leg is to the left and the longer, positive (+5V) leg is
to the right, as shown in the following table and in Figure 17-3.

Connect the 220-ohm resistor to the positive leg of the LED,
making sure the other leg of the resistor straddles the break in the
breadboard. Connect this other resistor leg to pin 13 on the
Arduino. Connect the shorter leg of the LED to GND on the
Arduino.

LED ARDUINO

GND GND

+5V Pin 13 via 220-ohm resistor

FIGURE 17-3: We use the mini-breadboard to hold the LED and for multiple
connections to the Arduino +5V.

5. Make sure your final circuit looks like Figure 17-4, and then upload
the code in “The Sketch” on page 146 to the Arduino.

FIGURE 17-4: The circuit diagram for the ultrasonic people counter

THE SKETCH
The sketch begins by calling on the LiquidCrystal I2C, NewPing, and
Wire libraries to control the serial LCD screen and ultrasonic sensor.
Next it defines the ultrasonic sensor Trig and Echo pins as Arduino pins
7 and 8, respectively. We set the maximum distance for the sensor to read
to 200 centimeters (any reading beyond 200 centimeters is ignored).

Then we define pin 13 on the Arduino as the LED, which will be our
counting indicator, and create variables to hold the distance and number
of people. We create a count state so the Arduino can determine a valid
record, and then we define the type of LCD screen. We initiate the LCD
screen so that People: is printed to the screen, and set the LED pin as an
output.

The loop section sends a ping from the sensor and if the ping that’s
returned is from a distance of more than 100 centimeters, the space in
front of the sensor is considered empty and nothing is registered. If the
distance recorded is less than 100 centimeters, it means something is
within range in front of the sensor. In order for the people: variable to
increment, someone has to move in front of the sensor, then out of the
way. The sensor will keep counting every time a valid register is received,
and the latest total is shown on the LCD screen.

The sensor could be placed to one side of an entrance, facing across
the threshold, so as someone enters the sensor picks it up and registers a
count. If the sensor is pointing toward a wall that’s less than 100
centimeters away, you’ll need to change the following line of code to a
distance less than the distance to the wall; otherwise, the sensor will
record a count every time the wall is detected.

if (distance < 100 && distance != 0 && !count)

Here is the full code:

#include <LiquidCrystal_I2C.h> // Call on the libraries
#include <NewPing.h>
#include <Wire.h>

#define TRIGGER_PIN 7 // Ultrasonic sensor trig to Arduino pin 7
#define ECHO_PIN 8 // Ultrasonic sensor echo to Arduino pin 8
#define MAX_DISTANCE 200
NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);

int LEDPin = 13; // Set LED to pin 13
int distance; // Variable for distance
int people = 0; // Variable for number of people
boolean count = false; // State for counting
LiquidCrystal_I2C lcd(0x27, 16, 2);

void setup() { // Run once to set up the LCD screen and LED
 lcd.begin();
 lcd.backlight();
 pinMode(LEDPin, OUTPUT); // Set the LED as an output
 lcd.print("People:"); // Print People: to the LCD screen
}

void loop() { // This loops forever to check for number of people
 delay(50);
 distance = sonar.ping_cm(); // Ping every 50 milliseconds
 // If more than 100 cm away, don't count
 if (distance > 100 && count) {
 count = false;
 digitalWrite(LEDPin, LOW);
 }
 // If less than 100 cm away, count 1
 if (distance < 100 && distance != 0 && !count) {
 count = true;
 people ++; // Keep adding 1 per count
 digitalWrite(LEDPin, HIGH);
 lcd.setCursor(10, 0);
 lcd.print(people); // Print number of people to LCD screen
 }
}

TROUBLESHOOTING
Q. The code compiles, but nothing shows on the screen.

• Double-check that the SDA and SCL pins are connected to the
correct Arduino pins.

• If the LCD screen is lit up but nothing shows, carefully turn the small
potentiometer at the back of the module to change the contrast until
the letters appear.

Q. The sensor does not register a count or the LED does not light when expected.

• Make sure that the ultrasonic sensor trigger pin is connected to
Arduino pin 7 and the Echo pin to Arduino pin 8, and that power is
connected to GND and +5V.

• If a count is registered and the LED does not light, recheck that the
short leg of the LED is connected to GND and the long leg to +5V.
The resistor should straddle the break in the breadboard and be

connected to the LED’s long leg on one side and Arduino pin 13 on
the other.

• Remember that the positioning of the sensor is important. If the
distance to a fixed object (like a wall) is less than the distance in the
sketch, the count will be incorrect.

• Your device may have a different address than the one we’ve used
here. To check the address of your device, use the I2C scanner sketch
available on the Arduino website
(http://playground.arduino.cc/Main/I2cScanner). Run the sketch with
your device attached to the Arduino and open the IDE Serial
Monitor, and you should see the address of your device. Update the
following line in this sketch with the address shown:

LiquidCrystal_I2C lcd(0x27,16,2);

http://playground.arduino.cc/Main/I2cScanner

18
Nokia 5110 LCD Screen Pong Game
This project shows you how to connect a Nokia 5110
LCD screen to your Arduino to recreate a Pong-style
arcade game.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
Nokia 5110 LCD screen
4 10k-ohm resistors
2 1k-ohm resistors
2 50k-ohm potentiometers

HOW IT WORKS
Nokia 5110 LCD screens were used for all Nokia phones a few years
back, so you should find plenty available online. We’ll wire one up to the
Arduino and create a simple Pong-style game by adding some
potentiometers as controllers.

NOTE
See Project 13 for instructions on soldering header pins, and see the primer
for general soldering instructions if you haven’t soldered before.

The screen is 84×48 pixels, which, with spaces between the characters
so they aren’t touching, gives us a 12×6-character screen. The screen
works in the same way as the LCD screen in Project 13: by sending
current through the liquid crystal from the Arduino to make certain
pixels opaque and form letters or images.

Most screens come with the header pins separate for ease of transport,
so you may need to solder them in place if you want to plug the screen
into a breadboard. You’ll need to solder a strip of eight header pins into
the row of holes on one side of the screen, as you can see in Figure 18-1.

FIGURE 18-1: The reverse of the Nokia 5110 LCD screen showing the pin
connections

This project connects to +3.3V on the Arduino, rather than +5V.

THE BUILD

1. Insert the Nokia 5110 screen into the breadboard.

2. The Nokia screen has eight pins. Insert a 10k-ohm resistor for
Nokia pins 1, 3, 4, and 5, making sure they straddle the center break.
Insert a 1k-ohm resistor for Nokia pins 2 and 7, as shown in Figure
18-2.

FIGURE 18-2: Insert the resistors for the Nokia LCD screen as shown here.

WARNING
It’s really important to use the +3.3V power from the Arduino for the
Nokia 5110 screen and not +5V for this project; otherwise, you will
damage the screen.

3. Use jumper wires to make the connections from the Nokia screen to
Arduino pins 3–7 and to the breadboard power rails. Make sure to
add the right value resistor to the correct pin, as shown in the
following table. Some breakout boards may have the pins in different
locations, so match the pin names on the Nokia screen with the
Arduino pin.

NOKIA 5110 SCREEN RESISTOR ARDUINO

1 RESET 10k-ohm Pin 6

2 CE 1k-ohm Pin 7

3 DC 10k-ohm Pin 5

4 DIN 10k-ohm Pin 4

5 CLK 10k-ohm Pin 3

6 VCC None +3.3V

7 Light 1k-ohm GND

8 GND None GND

4. Insert the potentiometers into the breadboard as shown in Figure
18-3. Connect the center pin of one potentiometer to Arduino A0
and the center pin of the other potentiometer to Arduino A1.
Connect an outer pin of each potentiometer to the +5V rail of the
breadboard and the other outer pins to the GND rail.

5. Connect the power rails of the breadboard to +5V and GND on the
Arduino (this is for the potentiometers only).

6. Confirm that your setup matches Figure 18-3, and upload the code
in “The Sketch” below.

FIGURE 18-3: The circuit diagram for the Nokia 5110 LCD Screen Pong
Game

THE SKETCH

The game starts with two bars on opposite sides of the screen and a ball
bouncing between them. The object of the game is to use the
potentiometers to move the bars like paddles, hitting the ball back and
forth to stop it from going out of the play (beyond the screen perimeter).
The ball bounces off the bars and gradually gets faster and faster. The
game is over when the ball goes beyond the screen limit, at which point
the display will invert and the game will start over again. Note that the
ball can appear quite faint the faster it moves, due to the limitation of the
screen graphics.

The first part of the sketch defines the pins connected to the Nokia
5110 LCD screen. It then defines the size of the screen, which is the area
of our game that counts as in-play, and the size and starting positions of
the bars and ball. The potentiometers read the analog signal from
Arduino pins A0 and A1 and move their corresponding bars onscreen
depending on how they’re twisted. The calculations that follow
determine whether the ball and the bar have met at certain coordinates. If
they have, the ball bounces back; if they haven’t, it means the bar has
missed the ball, so the screen inverts and flashes to indicate the game is
over.

// Arduino Pong by Onur Avun and reproduced with kind permission

#define PIN_SCE 7
#define PIN_RESET 6
#define PIN_DC 5
#define PIN_SDIN 4
#define PIN_SCLK 3
#define LCD_C LOW
#define LCD_D HIGH
#define LCD_X 84
#define LCD_Y 6

int barWidth = 16;
int barHeight = 4;
int ballPerimeter = 4;

unsigned int bar1X = 0;
unsigned int bar1Y = 0;
unsigned int bar2X = 0;
unsigned int bar2Y = LCD_Y * 8 - barHeight;

int ballX = 0;
int ballY = 0;

boolean isBallUp = false;
boolean isBallRight = true;
byte pixels[LCD_X][LCD_Y];
unsigned long lastRefreshTime;
const int refreshInterval = 150;

byte gameState = 1;
byte ballSpeed = 2;
byte player1WinCount = 0;
byte player2WinCount = 0;
byte hitCount = 0;
void setup() {
 LcdInitialise();
 restartGame();
}

void loop() {
 unsigned long now = millis();
 if (now - lastRefreshTime > refreshInterval) {
 update();
 refreshScreen();
 lastRefreshTime = now;
 }
}

void restartGame() {
 ballSpeed = 1;
 gameState = 1;
 ballX = random(0, 60);
 ballY = 20;
 isBallUp = false;
 isBallRight = true;
 hitCount = 0;
}

void refreshScreen() {
 if (gameState == 1) {
 for (int y = 0; y < LCD_Y; y++) {
 for (int x = 0; x < LCD_X; x++) {
 byte pixel = 0x00;
 int realY = y * 8;
 // Draw ball if in frame
 if (x >= ballX && x <= ballX + ballPerimeter -1 && ballY +
 ballPerimeter > realY && ballY < realY + 8) {
 byte ballMask = 0x00;
 for (int i = 0; i < realY + 8 - ballY; i++) {
 ballMask = ballMask >> 1;

 if (i < ballPerimeter)
 ballMask = 0x80 | ballMask;
 }
 pixel = pixel | ballMask;
 }

 // Draw bars if in frame
 if (x >= bar1X && x <= bar1X + barWidth -1 && bar1Y +
 barHeight > realY && bar1Y < realY + 8) {
 byte barMask = 0x00;
 for (int i = 0; i < realY + 8 - bar1Y; i++) {
 barMask = barMask >> 1;
 if (i < barHeight)
 barMask = 0x80 | barMask;
 }
 pixel = pixel | barMask;
 }

 if (x >= bar2X && x <= bar2X + barWidth -1 && bar2Y +
 barHeight > realY && bar2Y < realY + 8) {
 byte barMask = 0x00;
 for (int i = 0; i < realY + 8 - bar2Y; i++) {
 barMask = barMask >> 1;
 if (i < barHeight)
 barMask = 0x80 | barMask;
 }
 pixel = pixel | barMask;
 }
 LcdWrite(LCD_D, pixel);
 }
 }
 } else if (gameState == 2) {
 }
}

void update() {
 if (gameState == 1) {
 int barMargin = LCD_X - barWidth;
 int pot1 = analogRead(A0); // Read pots and set bar positions
 int pot2 = analogRead(A1);
 bar1X = pot1 / 2 * LCD_X / 512;
 bar2X = pot2 / 2 * LCD_X / 512;

 if (bar1X > barMargin) bar1X = barMargin;
 if (bar2X > barMargin) bar2X = barMargin;

 // Move the ball now
 if (isBallUp)
 ballY -= ballSpeed;
 else

 ballY += ballSpeed;
 if (isBallRight)
 ballX += ballSpeed;
 else
 ballX -= ballSpeed;
 // Check collisions
 if (ballX < 1) {
 isBallRight = true;
 ballX = 0;
 }
 else if (ballX > LCD_X - ballPerimeter - 1) {
 isBallRight = false;
 ballX = LCD_X - ballPerimeter;
 }
 if (ballY < barHeight) {
 if (ballX + ballPerimeter >= bar1X && ballX <= bar1X + barWidth) {
 // Ball bounces from bar1
 isBallUp = false;
 if (ballX + ballPerimeter / 2 < bar1X + barWidth / 2)
 isBallRight = false;
 else
 isBallRight = true;
 ballY = barHeight;
 if (++hitCount % 10 == 0 && ballSpeed < 5)
 ballSpeed++;
 } else { // Player 2 wins
 gameState = 2;
 player2WinCount++;
 }
 }
 if (ballY + ballPerimeter > LCD_Y * 8 - barHeight) {
 if (ballX + ballPerimeter >= bar2X && ballX <= bar2X + barWidth) {
 // Ball bounces from bar2
 isBallUp = true;
 if (ballX + ballPerimeter / 2 < bar2X + barWidth / 2)
 isBallRight = false;
 else
 isBallRight = true;
 ballY = LCD_Y * 8 - barHeight - ballPerimeter;
 if (++hitCount % 10 == 0 && ballSpeed < 5)
 ballSpeed++;
 } else { // Player 1 wins
 gameState = 2;
 player1WinCount++;
 }
 }
 } else if (gameState == 2) {
 for (int i =0; i < 4; i++) {
 LcdWrite(LCD_C, 0x0D); // LCD in inverse mode.
 delay(300);

 LcdWrite(LCD_C, 0x0C); // LCD in inverse mode.
 delay(300);
 }
 restartGame();
 }
}

void LcdInitialise(void) {
 pinMode(PIN_SCE, OUTPUT);
 pinMode(PIN_RESET, OUTPUT);
 pinMode(PIN_DC, OUTPUT);
 pinMode(PIN_SDIN, OUTPUT);
 pinMode(PIN_SCLK, OUTPUT);
 delay(200);
 digitalWrite(PIN_RESET, LOW);
 delay(500);
 digitalWrite(PIN_RESET, HIGH);
 LcdWrite(LCD_C, 0x21); // LCD Extended Commands
 LcdWrite(LCD_C, 0xB1); // Set LCD Vop (Contrast)
 LcdWrite(LCD_C, 0x04); // Set Temp coefficent. //0x04
 LcdWrite(LCD_C, 0x14); // LCD bias mode 1:48. //0x13
 LcdWrite(LCD_C, 0x0C); // LCD in normal mode.
 LcdWrite(LCD_C, 0x20);
 LcdWrite(LCD_C, 0x80); // Select X Address 0 of the LCD ram
 LcdWrite(LCD_C, 0x40); // Select Y Address 0 of the LCD ram
 LcdWrite(LCD_C, 0x0C);

}

void LcdWrite(byte dc, byte data) {
 digitalWrite(PIN_DC, dc);
 digitalWrite(PIN_SCE, LOW);
 shiftOut(PIN_SDIN, PIN_SCLK, MSBFIRST, data);
 digitalWrite(PIN_SCE, HIGH);
}

TROUBLESHOOTING
Q. Nothing is displayed on the LCD screen.

• Make sure you’ve connected power to the LCD screen direct to the
Arduino +3.3V power pin and the connections match the tables in this
chapter.

• Make sure your resistors line up with the correct LCD pins, as well as
the wires to the Arduino pins.

• If the backlight of the LCD screen is lit but there is no image, you
may have some wires mixed up; they need to match the circuit in
Figure 18-3 exactly.

Q. When the player turns the potentiometer, one or both of the bars do not
move.

• Make sure the potentiometers are connected firmly in the breadboard
and that the wires connecting to the power rails and Arduino line up
with the potentiometer pins.

• Remember that the potentiometers require +5V power and GND
from the Arduino. These pins should be hooked up to the breadboard
power rails via jumper wires.

• Make sure you also use jumper wires to connect the corresponding
power rails on either side of the breadboard to each other.

19
OLED Breathalyzer
In this project we’ll use the MQ3 alcohol sensor and an
OLED LCD screen to make a mini-breathalyzer.

PARTS REQUIRED
Arduino board
Female-to-male jumper wires
Keyes MQ3 alcohol sensor module
OLED monochrome screen (128×64)

LIBRARIES REQUIRED
SPI
Wire
Adafruit_GFX
Adafruit_SSD1306

HOW IT WORKS
The MQ3 is part of a family of gas sensors that also includes the MQ2,
sensitive to methane, butane, and smoke; the MQ4, sensitive to
compressed natural gas; the MQ6, sensitive to butane and LPG gas; and
the MQ7, sensitive to carbon monoxide. The MQ3 is sensitive to alcohol
and ethanol, so it’s the one we’ll use in our breathalyzer.

DISCLAIMER
This project is for amusement only and should not be used to accurately
determine anyone’s alcohol intake.

The Keyes MQ3 module (Figure 19-1) has the wiring we need for
this project, including a built-in potentiometer and resistor. The three
pin connections on the module are OUT, VCC, and GND.

FIGURE 19-1: The Keyes MQ3 alcohol sensor module. As with most MQ sensors,
the module has a small heater inside with an electrochemical sensor used to measure
the gas level. The value of the reading is sent to the OUT pin, which is then read by
an analog pin on our Arduino.

To display the sensor readings, we’ll use an OLED screen (Figure 19-
2). OLED, which stands for organic light-emitting diode, is a light-emitting
technology composed of a thin, multilayered organic film placed between
an anode and cathode. When voltage is applied, an image is created
through electroluminescence, which means the screen does not require a
backlight. Our OLED screen is an I2C 128×64 monochrome version,
meaning we can control it using only two pins to the Arduino and it
measures 128 pixels by 64 pixels. This screen uses the same
communication protocol as our serial LCD in Project 16 and is explained
further there.

FIGURE 19-2: 128×64 OLED monochrome screen. When the MQ3 reads the value,
the Arduino sends a message to the OLED screen indicating whether or not alcohol
has been detected.

WARNING
As mentioned earlier, the MQ3 uses an internal heater as part of the sensor
process. This heater can reach 120–140 degrees when powered, so take care
when handling it when it’s in use.

THE BUILD

1. Before you use the sensor for the first time, you need to “burn it in.”
This process, which simply involves powering it up for a few hours
to heat the mechanism inside, improves the sensor’s accuracy. To do
this, connect the VCC and GND pins of the sensor to +5V and
GND on your Arduino, respectively, using female-to-male jumper
wires. When you power the Arduino, it will send the correct voltage
to the MQ3. Leave it powered for two to three hours—you may
notice a burning smell and the sensor will get hot, but this is normal.

2. Once the sensor is burned in, disconnect the power to the Arduino
and connect the sensor to the Arduino using the female-to-male
jumper wires, with the MQ3’s OUT pin connected to Arduino pin
A0, and the power and GND still connected as before (see the

following table).

MQ3 ALCOHOL SENSOR ARDUINO

OUT Pin A0

VCC +5V

GND GND

3. Next, connect the OLED screen to the Arduino as shown in the
following table, with SCL connected to pin A5, SDA to pin A4,
VCC to +3.3V, and GND to GND.

OLED SCREEN ARDUINO

SCL Pin A5

SDA Pin A4

VCC +3.3V

GND GND

4. This project requires a number of libraries to work correctly; the SPI
and Wire libraries are built into the Arduino IDE, but we also need
the Adafruit_GFX and Adafruit_SSD1306 libraries to control the
OLED screen. Both are available from
https://www.nostarch.com/arduinohandbook2/. Refer to the primer if
you need a reminder on how to add libraries to the IDE.

5. Check that your setup matches the circuit diagram in Figure 19-3,
and upload the code in “The Sketch” below.

FIGURE 19-3: The circuit diagram for the OLED breathalyzer

https://www.nostarch.com/arduinohandbook2/

6. The heater inside the MQ3 sensor needs to heat up for about 4
minutes before it can operate accurately. The sketch has a timer so
that when you power it up for the first time, the values won’t appear
onscreen until the required time has passed. The “Warming up” text
will display with a small countdown bar until the sensor is ready.

THE SKETCH
The sketch starts by calling on the SPI, Wire, Adafruit_GFX, and
Adafruit_SSD1306 libraries to control communication and the OLED
screen. We assign a time for the warm-up session (4 minutes) and set the
analog pin as Arduino A0.

Next we set up the OLED screen. The Arduino sends different

messages to the screen depending on the value read from the analog pin.
For instance, if the sensor reading is above 200, the Arduino will ask you
if you’ve had a beer. If the reading is below this value, the Arduino will
say you’re sober. The minimum level of alcohol the MQ3 will read is
about 180. For anything over 450, the breathalyzer will let you know
you’re drunk!

The sketch loops every second to read the analog sensor. To use the
breathalyzer, wait for the sensor to heat up for 4 minutes, then gently
breathe onto the sensor. Try not to get the sensor wet or expose it to a
smoky environment, as this will affect the reading.

// Re-created with kind permission from Nick Koumaris educ8s.tv

// Call the SPI, Wire, Adafruit_GFX, and Adafruit_SDD1306 libraries
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#define OLED_RESET 4 // Define the OLED screen
int TIME_UNTIL_WARMUP = 4; // Time for the warm-up delay in minutes
unsigned long time;
int analogPin = 0; // Set analog pin as A0
int val = 0; // Set a value to read from the analog pin
Adafruit_SSD1306 display(OLED_RESET);

void setup() { // Set up the OLED screen
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
 display.clearDisplay();
}

void loop() { // Take the reading and show it onscreen
 delay(100);
 val = readAlcohol();
 printTitle();
 printWarming();
 time = millis() / 1000;
 time /= 60;
 if (time <= TIME_UNTIL_WARMUP) { // If warm-up is less than 4 mins
 time = map(time, 0, TIME_UNTIL_WARMUP, 0, 100); // Show countdown
 display.drawRect(10, 50, 110, 10, WHITE); // Empty bar
 display.fillRect(10, 50, time, 10, WHITE);
 } else { // When warm-up time has passed
 // the value and message are printed on the screen
 printTitle();
 printAlcohol(val);

 printAlcoholLevel(val);
 }
 display.display();
}

void printTitle() { // Position and text of title on the screen
 display.clearDisplay();
 display.setTextSize(1);
 display.setTextColor(WHITE);
 display.setCursor(22, 0);
 display.println("Breath Analyzer");
}
void printWarming() { // Warm-up message
 display.setTextSize(1);
 display.setTextColor(WHITE);
 display.setCursor(30, 24);
 display.println("Warming up");
}

void printAlcohol(int value) { // Print alcohol value to screen
 display.setTextSize(2);
 display.setTextColor(WHITE);
 display.setCursor(50, 10);
 display.println(val);
}

void printAlcoholLevel(int value) { // Print message to screen
 display.setTextSize(1);
 display.setTextColor(WHITE);
 display.setCursor(20, 25);
 if (value < 200) { // If value read is less than 200, you are sober
 display.println("You are sober...");
 }
 if (value >= 200 && value < 280) {
 display.println("You had a beer?");
 }
 if (value >= 280 && value < 350) {
 display.println("Two or more beers.");
 }
 if (value >= 350 && value < 450) {
 display.println("I smell VODKA!");
 }
 if (value > 450) {
 display.println("You are drunk!");
 }
}

// Finds average by summing three readings and
// dividing by 3 for better accuracy
int readAlcohol() {

 int val = 0;
 int val1;
 int val2;
 int val3;
 display.clearDisplay();
 val1 = analogRead(analogPin);
 delay(10);
 val2 = analogRead(analogPin);
 delay(10);
 val3 = analogRead(analogPin);
 val = (val1 + val2 + val3) / 3;
 return val;
}

TROUBLESHOOTING
Q. The display is not showing readings correctly.

• Recheck that your wiring matches the diagram in Figure 19-3.

• If all your wiring is in the correct place, make sure you’ve carried out
the earlier step to burn the sensor in by leaving it powered for a few
hours.

• To check whether your components are faulty, temporarily swap a
potentiometer in for the sensor. Connect the center pin of the
potentiometer to A0 and add power to either side. If the
potentiometer is working okay, it means your sensor is probably
faulty, so replace your sensor—they are very inexpensive.

Security

20
Ultrasonic Soaker
In this project we’ll use an ultrasonic sensor to trigger a
toy water pistol. You could set this up to soak
unsuspecting victims when they venture into forbidden
territory!

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
HC-SR04 ultrasonic sensor
WLtoys V959-18 Water Jet Pistol

LIBRARY REQUIRED
NewPing

HOW IT WORKS
For our soaker, we’ll use the WLtoys V959-18 Water Jet Pistol (Figure
20-1) attachment for RC helicopters, which is inexpensive and widely
available online. The pistol has a small reservoir to hold water and a
mini-pump that shoots the water through a nozzle at the front. The pistol
has only two wires: red is positive power and white is ground. It requires
only a little current, which lets us trigger the pump using the current
supplied by the Arduino.

FIGURE 20-1: The WLtoys V959-18 Water Jet Pistol

NOTE
Remember that water and electricity do not mix well, so try to keep your
Arduino away from the water jet to minimize the chance of water short-
circuiting your Arduino board.

As we discussed in Project 13, the ultrasonic sensor sends out a burst
of ultrasound and listens for the echo that bounces off an object to
determine its distance. Here, the ultrasonic sensor looks for a bounceback
that indicates an object is less than 15 centimeters away, in which case the
Arduino sends power to the soaker to squirt water on our victims.

THE BUILD

1. Add the ultrasonic sensor module (Figure 20-2) to your breadboard
and connect VCC to +5V, Trig to Arduino pin 12, Echo to Arduino
pin 13, and GND to GND, as shown in the following table.

ULTRASONIC SENSOR ARDUINO

VCC +5V

Trig Pin 12

Echo Pin 13

GND GND

FIGURE 20-2: The ultrasonic sensor

2. Connect the pistol’s red power wire to Arduino pin 3 and its white
wire to Arduino GND via the breadboard power rail. Connect the
power rails of the breadboard to Arduino power. The pistol comes
with a small pipette to help you fill the reservoir. Figure 20-3 shows
where to fill the reservoir.

FIGURE 20-3: Use the pipette provided to fill the reservoir shown with water
through the opening at the top.

3. Once you’ve confirmed that your setup matches the circuit diagram
in Figure 20-4, upload the code in “The Sketch” on page 172 to your
Arduino, making sure to add the NewPing library to the Arduino
IDE.

FIGURE 20-4: The circuit diagram for the ultrasonic soaker

THE SKETCH
Before entering the sketch, download the NewPing library from
http://www.nostarch.com/arduinohandbook2/. The sketch calls on the
NewPing library and defines the Arduino pin connections. Arduino pin
12 is connected to the sensor’s trigger pin and sends out an ultrasonic
signal, and Arduino pin 13, connected to the sensor’s Echo pin, receives
the returning signal. The Arduino converts the time between sending and
receiving the signal into distance. The soaker is attached to Arduino pin
3, and a loop checks the distance to the detected object. If the distance is
less than 15 centimeters, power is sent to pin 3 and the soaker shoots
water at your unsuspecting friends!

#include <NewPing.h> // This calls the NewPing library
#define trigPin 12 // Trig pin attached to Arduino 12
#define echoPin 13 // Echo pin attached to Arduino 13
#define soakerPin 3
#define MAX_DISTANCE 500

http://www.nostarch.com/arduinohandbook2/

NewPing sonar(trigPin, echoPin, MAX_DISTANCE);

void setup() {
 Serial.begin(9600);
 pinMode(soakerPin, OUTPUT);
}
void loop() {
 int distance;
 distance = sonar.ping_cm();
 Serial.print(distance);
 Serial.println(" cm");

 if (distance <= 15) { // If distance is less than 15
 digitalWrite(soakerPin, HIGH); // Soaker shoots water
 delay(250);
 digitalWrite(soakerPin, LOW); // Short pulse of water
 }
 else {
 digitalWrite(soakerPin, LOW); // Soaker will remain off
 }
 delay(500);
}

TROUBLESHOOTING
Q. The ultrasonic soaker does not shoot.

• Make sure the connections match the setup for the ultrasonic sensor
by rechecking this chapter’s tables and the circuit diagram in Figure
20-4.

• Remember that the water will shoot only when the sensor detects
someone or something in front of it.

• Make sure you have added power to the breadboard power rails.

• Check that the water jet is working correctly by disconnecting it from
the circuit and then connecting the wires to +5V and GND on the
Arduino directly. You should hear the buzz of the pump motor; if you
don’t, your component may be faulty.

21
Fingerprint Scanner
In this project we’ll use a fingerprint sensor, a
servomotor, and some LEDs to create a cool biometric
entry system.

PARTS REQUIRED
Arduino board

Breadboard
Jumper wires
Red LED
Green LED
2 220-ohm resistors
Tower Pro SG90 9g servomotor
Optical fingerprint sensor (ZFM-20 Series)

LIBRARIES REQUIRED
Adafruit_Fingerprint
Servo
SoftwareSerial

NOTE
The software we’re using in this project operates only on Windows.

HOW IT WORKS
Biometric identification is used to identify a person from a specific
biological characteristic that remains the same even over a long period of
time, such as a fingerprint or iris pattern. Since fingerprints are unique to
each person, they’re often used to help identify individuals for purposes
like criminal investigations and security authentication. In this project,
we’ll use a fingerprint sensor to read a fingerprint and, if it matches a
print on record with the right security clearance, allow access by moving
a servomotor.

The sensor we’ll use is the ZFM-20 Series Fingerprint Identification
Module (see Figure 21-1) but will generally be referred to as an optical
fingerprint sensor module. The sensor takes a photograph of a fingerprint,
adds it to the module’s database, and then checks the scanned fingerprint
for a match. It can hold up to 162 fingerprints. The sensor is available
online and from retailers such as Adafruit, which has also created a

specific Arduino library for the module that we’ll use in the sketch.

FIGURE 21-1: The ZFM-20 Series Fingerprint Identification Module is an optical
fingerprint sensor.

PREPARING THE FINGERPRINT SENSOR
To use the sensor, we must first get the SFG Demo software, available to
download from http://www.adafruit.com/datasheets/SFGDemoV2.0.rar. The
SFG Demo software is a simple, free program that connects your PC to
the Fingerprint ID module via an Arduino so you can control it, add or
delete fingerprints, and assign an ID for each one.

1. Download the SFGDemoV2.0.rar file and unzip to a destination of
your choice.

2. Once you have unzipped the .rar file, double-click the SFGDemo.exe
file to run the program, and you’ll see the screen shown in Figure
21-2.

FIGURE 21-2: The SFGDemo control screen

http://www.adafruit.com/datasheets/SFGDemoV2.0.rar

3. Now you need to connect the fingerprint sensor module to your PC
via the Arduino. The connections for the module to Arduino are
shown in the following table.

FINGERPRINT SENSOR ARDUINO

GND (black wire) +5V

RX (white wire) Pin 0 (RX)

TX (green wire) Pin 1 (TX)

+5V (red wire) +5V

4. You’ll be using the Arduino as a bypass to connect the fingerprint
scanner to your PC via the USB cable, so you need to load a blank
sketch to get the Arduino to connect to the PC without carrying out
a function. The easiest way to do this is to open the latest version of
the Arduino IDE and upload the default sketch, shown next.

void setup() {
 // put your setup code here, to run once:

}
void loop() {
 // put your main code here, to run repeatedly:

}

5. Next, connect the Arduino to your PC and in the SFGDemo
program, select the Open Device button. From the Com Port
drop-down menu that opens, choose the port your Arduino is
connected to and click OK. You’ll see a message indicating that your
module is connected and recognized, as shown in Figure 21-3. Here
my module is connected to the Arduino through com port 4, but you
might need to use a different port.

FIGURE 21-3: When the device is connected correctly, the program shows the
message “Open Device Success!”

6. Next, you’ll add a fingerprint to the database. Click Enroll on the
SFGDemo control screen. When you see the message “Waiting for
fingerprint,” press a finger firmly against the fingerprint sensor
module window and wait a few seconds. When the print is
registered, you’ll see the message “Success!” (as shown in Figure 21-
4).

FIGURE 21-4: The module has successfully captured a fingerprint and shows a
preview of the print in the top-left window.

7. Now you’ll test whether the module recognizes the fingerprint you
just recorded. Click the Match button on the SFGDemo control
screen. When prompted, press your finger against the window firmly
for a few seconds. If the demo finds a match, you’ll see the “Pass!”
message shown in Figure 21-5.

FIGURE 21-5: The fingerprint matches and a “Pass!” message displays in the
information panel of the SFGDemo control panel.

8. Now you need to check that the module recognizes your fingerprint
when it’s attached to the Arduino and not the PC. Close the
SFGDemo program and, from the resources you downloaded from
https://www.nostarch.com/arduinohandbook2/, add the Adafruit
Fingerprint Sensor library to your IDE. If you need a refresher on
adding libraries, check out the library section at the start of this
book.

9. Once you’ve added the Adafruit Fingerprint Sensor library, open the
IDE and select Files ▸ Examples ▸ Adafruit-fingerprint-sensor-
master ▸ Fingerprint to choose the library fingerprint sketch shown
in Figure 21-6. Upload this sketch to your Arduino.

FIGURE 21-6: The fingerprint demo sketch from the Adafruit Fingerprint
Sensor library

https://www.nostarch.com/arduinohandbook2/

NOTE
Your sensor may come with six wires, two of which aren’t necessary for
the demo.

10. Once you’ve uploaded the fingerprint sketch to your Arduino,
disconnect from the PC. You now need to change your module/
Arduino pin setup. Instead of connecting the module to the TX and
RX pins, change these connections to pins 2 and 3 on the Arduino,

respectively, as shown in the following table. This keeps the TX and
RX serial communication free to use the Arduino IDE Serial
Monitor in the next step.

FINGERPRINT SENSOR ARDUINO

GND (black wire) +5V

TX (green wire) Pin 2

RX (white wire) Pin 3

+5V (red wire) +5V

11. Now, reconnect your Arduino to the PC and open the Arduino IDE.
Open the Serial Monitor of the IDE. When you press your finger to
the module window, you should see something like Figure 21-7.

FIGURE 21-7: The module processes are displayed in the Arduino IDE serial
screen.

THE BUILD
Now that you know the module is working as expected, you’ll use what
you’ve learned to create the fingerprint entry system.

1. The fingerprint module should now be connected to the Arduino,
but if you’re starting at this point, follow the connections given in
step 10 before proceeding.

2. Connect the servomotor to the GND and +5V power rails on the
breadboard and connect the signal pin to Arduino pin 9, as shown in
the following table.

SERVO ARDUINO

Signal (yellow wire) Pin 9

Positive power (red wire) Breadboard +5V rail

Negative power (black wire) Breadboard GND rail

3. Insert the LEDs into the breadboard so that the shorter, negative leg
is connected to the GND power rail of the breadboard and the
positive, longer leg is connected to Arduino pins 7 and 8 via a 220-
ohm resistor, as shown in the following table. The resistors should
straddle the center of the breadboard, as shown in Figure 21-8.

LEDS ARDUINO

Green LED (positive, longer leg) Pin 7 via 220-ohm
resistor

Red LED (positive, longer leg) Pin 8 via 220-ohm
resistor

Negative power of both LEDs
(shorter leg)

Breadboard GND
rail

FIGURE 21-8: The LEDs are connected to the Arduino pins via 220-ohm
resistors.

4. Connect the power rails of the breadboard to +5V and GND on the
Arduino, and then check that your circuit matches Figure 21-9.

5. Upload the code in “The Sketch” on page 183.

FIGURE 21-9: The circuit diagram for the fingerprint scanner

THE SKETCH
The sketch first calls on the Servo, SoftwareSerial, and Adafruit_
Fingerprint libraries. The LED and servo pins are defined as 7, 8, and 9,
respectively, and pins 2 and 3 are defined for serial connection to the
fingerprint sensor module. The fingerprint library handles the
functionality of the module, and the sketch has a series of steps to read
and store a fingerprint.

The sensor automatically scans every 5 seconds and reads the
fingerprint when it is pressed to the window. If the fingerprint matches
one in the module memory (which we stored earlier in the project), the
red LED will turn off, the green LED will light, and the servomotor will
turn 180 degrees. This state will continue for 5 seconds, and the setup

will reset and wait for another valid entry.

// Fingerprint Sensor Library reproduced with kind permission
// from Adafruit Industries
/***
 This is an example sketch for our optical Fingerprint sensor

 Designed specifically to work with the Adafruit BMP085 Breakout
 ----> http://www.adafruit.com/products/751

 These displays use TTL Serial to communicate, 2 pins are required to
 interface
 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 Written by Limor Fried/Ladyada for Adafruit Industries.
 BSD license, all text above must be included in any redistribution
 **/

#include <Servo.h>
#include <Adafruit_Fingerprint.h>
#if ARDUINO >= 100
#include <SoftwareSerial.h>
#else
#include <NewSoftSerial.h>
#endif

int getFingerprintIDez();
int ledaccess = 7; // Green LED pin
int leddeny = 8; // Red LED pin
int servoPin = 9; // Servo pin

Servo doorLock;

// Pin #2 is IN from sensor (GREEN wire)
// Pin #3 is OUT from arduino (WHITE wire)
#if ARDUINO >= 100
SoftwareSerial mySerial(2, 3); // Pins for the fingerprint sensor
#else
NewSoftSerial mySerial(2, 3);
#endif

Adafruit_Fingerprint finger = Adafruit_Fingerprint(&mySerial);

void setup() {
 doorLock.attach(servoPin); // We define the servo pin
 pinMode(ledaccess, OUTPUT); // Green LED pin set as an ouput
 pinMode(leddeny, OUTPUT); // Red LED pin set as an output
 pinMode(servoPin, OUTPUT); // Servo pin set as an output

http://www.adafruit.com/products/751

 Serial.begin(9600); // Start sending messages to the Serial Monitor
 Serial.println("fingertest");
 finger.begin(57600); // Set data rate for the sensor serial port

// Start the module and checking for fingerprint
 if (finger.verifyPassword()) {
 Serial.println("Found fingerprint sensor!");
 } else {
 Serial.println("Did not find fingerprint sensor :(");
 while (1);
 }
 Serial.println("Waiting for valid finger...");
}
void loop() {
 int ID = getFingerprintIDez(); // Get the fingerprint ID#
 // Reset the device to the test state
 digitalWrite(ledaccess, HIGH);
 digitalWrite(leddeny, HIGH);
 doorLock.write(0);
 if (ID >= 0) { // Valid ID. Unlocked state
 // Enable the access LED, turn off the deny LED
 digitalWrite(ledaccess, HIGH);
 digitalWrite(leddeny, LOW);
 // Unlock the servo
 doorLock.write(180);
 }
 else if (ID == -3) { // ID doesn't match any registed print
 // Locked state
 // Enable the deny LED, turn off the access LED
 digitalWrite(ledaccess, LOW);
 digitalWrite(leddeny, HIGH);
 }
 delay(5000);
}

uint8_t getFingerprintID() {
 uint8_t p = finger.getImage();
 switch (p) {
 case FINGERPRINT_OK: // Sensor takes a photo when a finger is
 // placed on the module window
 Serial.println("Image taken");
 break;
 case FINGERPRINT_NOFINGER:
 Serial.println("No finger detected");
 return p;
 case FINGERPRINT_PACKETRECIEVEERR:
 Serial.println("Communication error");
 return p;
 case FINGERPRINT_IMAGEFAIL:
 Serial.println("Imaging error");

 return p;
 default:
 Serial.println("Unknown error");
 return p;
 }

 p = finger.image2Tz(); // OK success! We have a fingerprint and
 // now check that it can be read
 switch (p) {
 case FINGERPRINT_OK:
 Serial.println("Image converted");
 break;
 case FINGERPRINT_IMAGEMESS:
 Serial.println("Image too messy");
 return p;

 case FINGERPRINT_PACKETRECIEVEERR:
 Serial.println("Communication error");
 return p;
 case FINGERPRINT_FEATUREFAIL:
 Serial.println("Could not find fingerprint features");
 return p;
 case FINGERPRINT_INVALIDIMAGE:
 Serial.println("Could not find fingerprint features");
 return p;
 default:
 Serial.println("Unknown error");
 return p;
 }

 p = finger.fingerFastSearch(); // OK converted! It's valid, so
 // check it against module memory
 if (p == FINGERPRINT_OK) {
 Serial.println("Found a print match!");
 } else if (p == FINGERPRINT_PACKETRECIEVEERR) {
 Serial.println("Communication error");
 return p;
 } else if (p == FINGERPRINT_NOTFOUND) {
 Serial.println("Did not find a match"); // No match found,
 // back to the start
 return p;
 } else {
 Serial.println("Unknown error");
 return p;
 }
 // We found a match! So the following will run:
 Serial.print("Found ID #"); Serial.print(finger.fingerID);
 Serial.print(" with confidence of ");
Serial.println(finger.confidence);
 return finger.fingerID;

}
// Returns -1 if failed, otherwise returns ID #
int getFingerprintIDez() {
 int p = finger.getImage();
 if (p != FINGERPRINT_OK) return -1;

 p = finger.image2Tz();
 if (p != FINGERPRINT_OK) return -2;

 p = finger.fingerFastSearch();
 if (p != FINGERPRINT_OK) ; {
 Serial.println("No match found");
 return -3;
 }

 // Found a match!
 Serial.print("Found ID #"); Serial.print(finger.fingerID);
 Serial.print(" with confidence of ");
Serial.println(finger.confidence);
 return finger.fingerID;
}

TROUBLESHOOTING
Q. The code compiles, but the fingerprint sensor does not light up or function.

• Make sure that your wiring matches the tables on page 181 and page
182. This code will work only with the fingerprint sensor I’ve used in
this project.

• If your sensor has six wires instead of the expected four and the wire
colors don’t match as described, it is the first four pins you need:
GND, TX, RX, and +5V. The other two connections are not used in
this project, so you can remove these wires.

• If your module still does not light up, check the data sheet for the
actual pin configuration and reconnect the wires according to that.

• Remember you need to set up the module first and test it as described
in “Preparing the Fingerprint Sensor” on page 176.

Q. The LEDs do not light up as expected.

• Ensure the LEDs are firmly inserted into the breadboard and the
resistors line up with the connections to the Arduino.

• Remember to connect power to the breadboard rails.
Q. The servomotor does not move as expected.

• Double-check that the wiring matches the servo connections shown in
Figure 21-9.

• The module, servo, and LEDs combined draw a fair amount of power
from your battery pack, and while the Arduino can still function at a
lower voltage, the servomotor cannot. Change to fresh batteries.

Smart Machines

22
Ultrasonic Robot
In this project we’ll combine an ultrasonic sensor with
two DC motors and a servomotor to create a simple
object-avoiding robot.

PARTS REQUIRED
Arduino board

Jumper wires
L293d motor shield
2 DC motors and wheels*
HC-SR04 ultrasonic sensor
9V AA battery pack
Robot base with fittings*
Center wheel*
Tower Pro SG90 9g servomotor

LIBRARIES REQUIRED
Servo
NewPing
Adafruit Motor Shield V1

* These items can be purchased as part of a kit

HOW IT WORKS
The key parts of the ultrasonic robot are the HC-SR04 ultrasonic sensor,
L293d motor shield, and the motors. The motors I used were purchased
as part of a kit; if you search online for “Arduino robot kit,” you too
should be able to find a kit that contains the motors and wheels, base,
battery pack, center wheel, and fittings needed. The one I bought is
called the “2WD Smart Motor Robot Car Chassis Kit for Arduino 1:48,”
so try a few of those keywords until you find something similar to the kit
in Figure 22-1. Also try the suppliers listed in the “Retailer List” on page
249.

FIGURE 22-1: Robot motor kit

The ultrasonic sensor sends and receives a signal to determine the
distance of an object. If there is an object less than 15 centimeters away,
the robot will stop, look around, turn toward a direction in which it
doesn’t sense anything, and move in that direction. The ultrasonic sensor
is mounted on a servomotor so that the robot can move and search for a
clear route. For more on how the HC-SR04 ultrasonic sensor works, see
Project 13. The L293d motor shield fits on top of the Arduino and
controls the DC motors using the Adafruit Motor Shield library.

THE BUILD

1. You will need to solder wires to the DC motors as shown in Figure
22-2. See the “Quick Soldering Guide” on page 12 if you need a
refresher on how to do this. Solder the red, positive power wire to
the left pin of one DC motor and the black ground wire to the right
pin; reverse this order for the other motor. DC motors do not have

polarity, so it doesn’t matter which way you hold the motors to
determine which is left and right, but power and GND need to be in
opposite positions on the motors so the direction of the revolution
will be the same.

FIGURE 22-2: Solder the red, positive power wire to the left pin of one DC
motor, and the black ground wire to the right pin. Reverse this order for the
other motor.

2. Attach the single wheel to the front of the robot base and the two
rear wheels to the back using the screws and fittings provided. The
underside of the robot should resemble Figure 22-3.

FIGURE 22-3: Assemble the base of the Arduino robot.

3. Now you need the L293d motor shield (Figure 22-4); we’ll solder
some wires to it to control the ultrasonic sensor.

FIGURE 22-4: The L293d motor shield. We’ll solder four wires to the pins
highlighted in the image.

4. Take four female jumper wires and strip about 5 millimeters from
one end of each, as shown in Figure 22-5.

FIGURE 22-5: Strip the ends of four female jumper wires to solder onto the
motor shield.

5. Solder the stripped ends to the highlighted pins on the motor shield,
as shown in Figure 22-6. This can be tricky, so take your time to
create the best connection you can.

FIGURE 22-6: Solder the jumper wires to the motor shield (shown in Figure
22-4). The two pins below the power connections should connect to analog A4
and A5 to control the sensor.

6. Once you’ve soldered the wires to the motor shield, place the shield
on top of the Arduino so that the pins of the shield line up with the
holders in the Arduino below. The shield should fit exactly, but take
care to align the pins to the holes and gently lower it in place.

7. Next, connect the ultrasonic sensor to the female ends of the jumper
wires you soldered to the motor shield. Connect VCC on the sensor
to +5V on the motor shield, Trig to A4, Echo to A5, and GND to
GND (see the following table).

ULTRASONIC SENSOR MOTOR SHIELD

VCC +5V

Trig Pin A4

Echo Pin A5

GND GND

8. Connect the wires from the DC motors to the motor shield as shown
in the following tables and Figure 22-7. You connect the wires by
feeding them through the pin and using the screws to grip the wires
in place.

LEFT MOTOR MOTOR SHIELD ARDUINO

Red wire M1 +5V

Black wire M1 GND

RIGHT MOTOR MOTOR SHIELD ARDUINO

Red wire M3 +5V

Black wire M3 GND

FIGURE 22-7: Connect the power wires of the DC motors as shown.

9. Next attach the servomotor to the shield, as shown in the following
table and Figure 22-8.

SERVOMOTOR MOTOR SHIELD ARDUINO

Brown wire Servo_2 - GND

Red wire Servo_2 + +5V

Yellow wire Servo_2 s Signal

FIGURE 22-8: Connect the servomotor to the shield as shown.

10. Attach the servomotor to the front of the robot using glue or tape.
Then attach the ultrasonic sensor to the horn of the servomotor so it
moves with the servo arm and your robot can look around. At this
stage the robot should look something like Figure 22-9.

FIGURE 22-9: The completed robot with ultrasonic sensor attached to the
servomotor

11. Make sure you’ve downloaded the NewPing and Adafruit Motor
Shield libraries and added them to your IDE. The Servo library is
already included in the IDE, so you don’t need to install it.

12. Once you’ve confirmed that your setup matches the circuit diagram
in Figure 22-10, upload the code in “The Sketch” on page 198 and
connect the 9V battery pack to your Arduino to see your robot in
action!

FIGURE 22-10: The circuit diagram for the ultrasonic robot

THE SKETCH
The sketch starts by calling on the Adafruit Motor Shield, NewPing, and
Servo libraries. The Trig pin of the ultrasonic sensor is defined as
Arduino A4 and the Echo pin as Arduino A5. The maximum distance of
the ultrasonic sensor is set at 200 centimeters and the speed of the DC
motors is set at a medium speed of 190 (out of 255). The DC motors are
defined to use connections M1 and M3 of the motor shield.

The servo is given a name and attached to pin 9 on the Arduino (via
the connection on the motor shield). The loops after that take a reading
from the ultrasonic sensor and, if it detects that an object is less than 15
centimeters away, the motors stop and reverse slightly, the servo moves
left and right once to look around, and the robot turns to the left and
continues to move forward until it discovers another object.

// Reproduced with kind permission from Nick Koumaris
// http://www.educ8s.tv
#include <AFMotor.h>
#include <NewPing.h>
#include <Servo.h>
#define TRIG_PIN A4
#define ECHO_PIN A5
#define MAX_DISTANCE 200
#define MAX_SPEED 190 // Sets speed of DC motors

http://www.educ8s.tv

#define MAX_SPEED_OFFSET 20

NewPing sonar(TRIG_PIN, ECHO_PIN, MAX_DISTANCE);
AF_DCMotor motor1(1, MOTOR12_1KHZ); // First motor to connection 1
AF_DCMotor motor2(3, MOTOR12_1KHZ); // Second motor to connection 3
Servo myservo; // Give the servo a name
boolean goesForward = false;
int distance = 100; // Define an int for distance and speed
int speedSet = 0;

void setup() {
 myservo.attach(9); // Servo attached to pin 9
 myservo.write(115); // Set servo at 115 degrees
 delay(2000);
 distance = readPing(); // Read the distance from the sensor
 delay(100);
 distance = readPing();
 delay(100);
 distance = readPing();
 delay(100);
 distance = readPing();
 delay(100);
}
void loop() {
 int distanceR = 0;
 int distanceL = 0;
 delay(40);
 // If distance is less than 15 cm, carry out this function
 if (distance <= 15) {
 moveStop();
 delay(100);
 moveBackward();
 delay(300);
 moveStop();
 delay(200);
 distanceR = lookRight();
 delay(200);
 distanceL = lookLeft();
 delay(200);
 if (distanceR >= distanceL) {
 turnRight();
 moveStop();
 } else { // Or else carry on
 turnLeft();
 moveStop();
 }
 } else {
 moveForward();
 }
 distance = readPing();

}

int lookRight() { // The servo looks to the right
 myservo.write(50);
 delay(500);
 int distance = readPing();
 delay(100);
 myservo.write(115);
 return distance;
}

int lookLeft() { // The servo looks to the left
 myservo.write(170);
 delay(500);
 int distance = readPing();
 delay(100);
 myservo.write(115);
 return distance;
 delay(100);
}

int readPing() {
 delay(70);
 int cm = sonar.ping_cm();
 if (cm == 0) {
 cm = 250;
 }
 return cm;
}

void moveStop() {
 motor1.run(RELEASE);
 motor2.run(RELEASE);
}

void moveForward() {
 if (!goesForward) { // If area is clear, motors move forward
 goesForward = true;
 motor1.run(FORWARD);
 motor2.run(FORWARD);
 // Slowly bring up speed to avoid loading down
 // batteries too quickly
 for (speedSet = 0; speedSet < MAX_SPEED; speedSet += 2) {
 motor1.setSpeed(speedSet);
 motor2.setSpeed(speedSet + MAX_SPEED_OFFSET);
 delay(5);
 }
 }
}

void moveBackward() {
 goesForward = false;
 motor1.run(BACKWARD);
 motor2.run(BACKWARD);
 // Slowly bring up speed to avoid loading down
 // batteries too quickly
 for (speedSet = 0; speedSet < MAX_SPEED; speedSet += 2) {
 motor1.setSpeed(speedSet);
 motor2.setSpeed(speedSet + MAX_SPEED_OFFSET);
 delay(5);
 }
}

void turnRight() { // Movement for turning right
 motor1.run(FORWARD);
 motor2.run(BACKWARD);
 delay(300);
 motor1.run(FORWARD);
 motor2.run(FORWARD);
}

void turnLeft() { // Movement for turning left
 motor1.run(BACKWARD);
 motor2.run(FORWARD);
 delay(300);
 motor1.run(FORWARD);
 motor2.run(FORWARD);
}

TROUBLESHOOTING
Q. The code compiles, but the Arduino robot does not function as expected.

• Make sure that your wiring matches the tables in steps 7, 8, and 9 and
the circuit diagram in Figure 22-10.

• If your robot spins around rather than moving forward, reverse the
wiring on one of the DC motors—as mentioned earlier, they don’t
have polarity but changing the power connections will reverse the
motor’s rotation.

• Power the robot with a pack of 1.5V AA batteries in series rather than
a 9V battery, which has less amperage and will drain quicker.

23
Internet-Controlled LED
In this project we’ll use an ethernet shield to connect
our Arduino to the internet and control an LED from a
web browser.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
Ethernet shield W5100 LAN expansion board
Ethernet cable
LED
220-ohm resistor

LIBRARIES REQUIRED
SPI
Ethernet

The Internet of Things (IoT) is revolutionizing our use of everyday
items. The term refers to objects or smart devices connected through a
network, usually involving the internet. This allows us to control devices
remotely, from inside or outside the house! Amazon Echo and Google
Home are taking things further by allowing a multitude of devices to be
connected and controlled via a central hub, even if you aren’t at home.
We’ll create our own IoT project in its most basic form to demonstrate
the principles involved.

HOW IT WORKS
The Ethernet shield W5100 LAN expansion board, shown in Figure 23-
1, fits directly on top of the Arduino to provide additional functionality to
the board. We’ll use the Ethernet library built into the Arduino IDE to
connect our board to the internet via an Ethernet cable, as shown in
Figure 23-2.

FIGURE 23-1: Ethernet shield

FIGURE 23-2: Ethernet cable

The library allows the Arduino to act as a server to accept incoming
commands, a client to send them out, or both. The shield communicates
with the Arduino using the Serial Peripheral Interface (SPI) connections.
On the Arduino Uno the SPI connections are on digital pins 10, 11, 12,
and 13. In our project the Arduino will use both functions to send
information to the internet in the form of a simple web page and accept

commands from this page to control an LED. Buttons on the web page
will allow us to switch the LED on or off as long as the Arduino is
powered and connected to the internet.

SETTING UP YOUR ETHERNET CONNECTION
You need to know the MAC address of your shield for this project to
work. A MAC address is a unique number assigned to devices for
communication and is used as a network address for Ethernet and Wi-Fi.
If you have a newer shield, the MAC address will be printed on a product
sticker. If you have an older generic Ethernet shield like the one we are
using, you can use the MAC address 0xDE, 0xAD, 0xBE, 0xEF, 0xFE,
0xED for this project.

For communication, we’ll use port 80, the default for HTTP. Short
for HyperText Transfer Protocol, HTTP is the set of rules for
transferring data over the internet. In this instance port 80 handles the
transfer of data to a web page.

Our sketch includes some HTML (HyperText Markup Language)
code, which tells a web browser how to display an internet page. If you
right-click on any web page and select Inspect, you can see some of the
HTML code behind that page.

The section of our sketch that includes HTML code is as follows and
produces the web page displayed in Figure 23-3.

client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
client.print("<center>
<h1>Internet Controlled LED</h1>

<FORM>");
client.print("<P> <INPUT type=\"submit\" name=\"status\"value=\"ON\">");
client.print("<P> <INPUT type=\"submit\" name=\"status\"value=\"OFF\">");
client.print("</FORM></center>");

FIGURE 23-3: Our simple web page to control the LED

THE BUILD

1. Attach the Ethernet shield on top of the Arduino board as shown in
Figure 23-4. The board fits directly on top of the Arduino, so gently
press the legs of the shield in place with the holes of the Arduino
beneath.

FIGURE 23-4: Attach the Ethernet shield on top of the Arduino board.

2. Insert the LED into the breadboard with the legs straddling the
center break of the board. Then, as shown in the following table,
connect the shorter, negative leg of the LED to the GND rail of the
breadboard via a 220-ohm resistor, and connect the longer, positive
leg of the LED to pin 7 on the Arduino/Ethernet shield. Connect
the GND rail of the breadboard to Arduino GND.

LED ARDUINO

Negative leg GND via 220-ohm resistor

Positive leg Pin 7

3. With the Ethernet shield attached on top of the Arduino, connect
the shield to your router with the Ethernet cable.

NOTE

Take note of your IP address; it will be different from mine shown in
Figure 23-5.

4. Attach the Arduino to your PC and upload the code at the end of the
project using the IDE. Once the code is uploaded, open the IDE
Serial Monitor in order to ascertain the IP address—a unique string
of numbers to identify a device attached to the internet—of the
Arduino, which is acting as our server. You should see something
similar to Figure 23-5.

FIGURE 23-5: The IP address of the Arduino shield will be shown in the Serial
Monitor.

5. Open any web browser and enter your IP address. You should see a
web page with an On and an Off button, as shown earlier in Figure
23-3. Press the On button to light the LED and press the Off button
to switch it off.

6. This project will also work when you are not connected to your local
network, as long as you have port 80 open on your internet router.

Many internet service providers (ISPs) have this port blocked for
security reasons, so follow the instructions from your ISP to change
this if required.

WARNING
Carry out this function only if you are aware of the security risks and
how to minimize them.

7. Confirm that your setup matches the circuit diagram in Figure 23-6,
and then upload the code in “The Sketch” on page 208.

FIGURE 23-6: The circuit diagram for the internet-controlled LED

THE SKETCH
The sketch calls on the SPI and Ethernet libraries to control
communication with the internet. We define the MAC address for the
shield. This is the line you need to change if your shield came with its
own MAC address; if not, the address given earlier in this project and
shown in the code should work for you. We then set the server to use
port 80 and define pin 7 on the Arduino as the LED pin.

The setup defines the LED pin as an output, begins the Ethernet

shield, and starts serial communication so we can see the IP address of
our server. The loop sets up our web page to the browser once it is called
and waits for an input on the browser task bar. When the On button is
pressed, the server tells the Arduino to set the LED pin as HIGH and the
LED will light. When the Off button is pressed, the power to the LED is
LOW and the LED will turn off.

You could easily change the LED for a relay switch such as the one
used in Project 12 to control a larger-voltage device.

#include <SPI.h>
#include <Ethernet.h>

// MAC address for shield
byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
EthernetServer server(80); // Using port 80
int led = 7; // LED attached to pin 7

void setup() {
 pinMode(led, OUTPUT); // LED set as an output
 Ethernet.begin(mac); // Start the Ethernet shield
 server.begin();
 Serial.begin(9600); // Start serial communication
 Serial.println("Server address:"); // Print server address
 // (Arduino shield)
 Serial.println(Ethernet.localIP());
}

void loop() {
 EthernetClient client = server.available();
 if (client) {
 boolean currentLineIsBlank = true;
 String buffer = "";
 while (client.connected()) {
 if (client.available()) {
 char c = client.read(); // Read from the Ethernet shield
 buffer += c; // Add character to string buffer
 // Client sent request, now waiting for response
 if (c == '\n' && currentLineIsBlank) {
 client.println("HTTP/1.1 200 OK"); // HTTP response
 client.println("Content-Type: text/html");
 client.println(); // HTML code
 client.print("<center>
<h1>Internet Controlled LED</h1>

<FORM>");
 client.print("<P> <INPUT type=\"submit\"
name=\"status\"value=\"ON\">");
 client.print("<P> <INPUT type=\"submit\"

name=\"status\"value=\"OFF\">");
 client.print("</FORM></center>");
 break;
 }
 if (c == '\n') {
 currentLineIsBlank = true;
 buffer = "";
 }
 else if (c == '\r') { // Command from webpage
 // Did the on button get pressed
 if (buffer.indexOf("GET /?status=ON") >= 0)
 digitalWrite(led, HIGH);
 // Did the off button get pressed
 if (buffer.indexOf("GET /?status=OFF") >= 0)
 digitalWrite(led, LOW);
 }
 else {
 currentLineIsBlank = false;
 }

 }
 }
 client.stop(); // End server
 }
}

TROUBLESHOOTING
Q. The code compiles, but the LED does not light as expected.

• First, make sure you’ve connected the GND wire from the Arduino to
the correct breadboard power rail and that the Arduino has power
connected.

• Check that the resistor is inserted fully and lines up with the
corresponding LED leg.

• Try checking that the project is working by connecting to your local
area network and using that PC to connect to the Arduino.

Q. You receive an error when calling the web page.

• Make sure you have entered the IP address of the server exactly as you
read it in the steps given earlier.

• It is best to check the project is working by connecting to your local

area network and using that PC to connect to the Arduino.

• If the project worked when you connected it to your local area
network, but you receive an HTTP 403 error when connecting to the
internet externally, then your ISP is blocking incoming traffic. You
could add port forwarding to your router for port 80. This will differ
for every device, so check with your ISP for detailed instructions. Do
a quick internet search with your ISP and “port forwarding” as terms
and follow the instructions, but be aware: this can compromise the
security of your PC and should be done only if you understand the
risks and are able to protect your network.

24
Voice-Controlled LED
In this project we’ll use a bluetooth module, a
smartphone, and a voice recognition app to control an
LED with vocal commands.

PARTS REQUIRED
Arduino board
Breadboard
Jumper wires
HC-06 Bluetooth module
LED
220-ohm resistor
Android smartphone

HOW IT WORKS
Bluetooth wireless technology uses radio waves to transmit and exchange
data over short distances. Smartphones, laptops, and multimedia devices
such as speakers use Bluetooth as a common standard. We’ll use the
inexpensive HC-06 Bluetooth module (Figure 24-1) to pair (connect) our
Arduino to a smartphone so we can turn an LED on and off remotely
using a voice recognition app. This module has six pins, but we’ll just use
the middle four. The pins should be labeled on the front.

FIGURE 24-1: The HC-06 Bluetooth module

The app we’ll use is Arduino Bluetooth Control from BroxCode,
available to download for free on the Google Play store for Android
devices. There are many other similar free apps available for both
Android and Apple devices and the principles of use should be the same
for each, but the BroxCode app has some additional features that we’re
using in this project, such as voice recognition through Google Assistant.

THE BUILD
Before you build the Bluetooth controller, you need to upload the code to
the Arduino. This is because the serial communication from your PC to
the Arduino uses the same pins that we’ll be connecting to the Bluetooth
module.

1. Upload the code in “The Sketch” on page 220, and then insert the
Bluetooth module into the breadboard and connect VCC to the
positive power rail of the breadboard, GND to the GND power rail,
TXD to Arduino pin 0 (RX), and RXD to Arduino pin 1 (TX), as
shown in the following table.

HC-06 BLUETOOTH MODULE ARDUINO

VCC +5V

GND GND

TXD Pin 0 (RX)

RXD Pin 1 (TX)

2. Insert the LED into the breadboard with the legs straddling the
center break. Use a 220-ohm resistor to connect the shorter,
negative leg of the LED to the GND rail of the breadboard.
Connect the longer, positive leg of the LED to pin 9 of the Arduino
using a jumper wire, as outlined in the following table.

LED ARDUINO

Positive leg Pin 9

Negative leg GND

3. Connect the GND rail of the breadboard to Arduino GND and the
positive rail to Arduino +5V.

4. Check that your build matches the diagram in Figure 24-2.

FIGURE 24-2: The circuit diagram for the Bluetooth voice-controlled LED

ARDUINO BLUETOOTH CONTROL
The Arduino Bluetooth Control app offers six control options, all of
which send data to the Arduino via different methods (Figure 24-3). You
can customize each to your own preferences.

FIGURE 24-3: The menu screen on the Arduino Bluetooth Control app

• Arrow Keys: Here you’ll find customizable arrow buttons.

• Terminal: This is a classic terminal for sending and receiving data,
displayed with a timestamp corresponding to each action.

• Accelerometer: This tool reads movement using the gesture sensor
of your phone.

• Buttons and Slider: Here you’ll find six fully customizable buttons
and a slider view that shows up when you rotate your device. You can
set the range of the data for this slider.

• Metrics: This tool is optimized to receive data via the println()
function of the Arduino, which allows your paired phone to receive
notifications by SMS from another phone. You only need to specify
the number in the Settings section. This function is explained further

shortly.

• Voice Control: This great tool uses the Google voice command on
your Android device to let you customize your own vocal commands
and use them to control the Arduino.

Now you need to download the Arduino Bluetooth Control app from
the Google Play app store and set it up.

1. Go to https://play.google.com/store/ and search for “Arduino Bluetooth
Control.” You’ll probably get several apps in your results, but the
one you want is precisely named “Arduino Bluetooth Control,” as
shown in Figure 24-4. Click Install to download it to your device.
The app is free but does include some ads.

FIGURE 24-4: Arduino Bluetooth Control from BroxCode on Google Play

2. Once you’ve downloaded the app, power your Arduino to start the

https://play.google.com/store/

Bluetooth module. Go to your Bluetooth settings on your
smartphone, turn on Bluetooth, and select MORE SETTINGS to
view visible devices. You should see the HC-06 module as an
available device. Select it to pair with your phone. You’ll be asked for
a password to connect: the default for the module is 1234 or in some
instances 0000, so try both if the first doesn’t work.

3. When your device is paired, open the Arduino Bluetooth Control
app. From the window that appears showing all available devices,
select the HC-06 module, as shown in Figure 24-5. You won’t need
to choose the device every time you power up—the app will
remember it.

FIGURE 24-5: Pairing your device

4. You’re going to use the Voice Control function to turn the LED off

and on when you speak certain commands into the smartphone.
Select the Voice Control function, and you’ll be taken to the
Settings menu, shown in Figure 24-6. Choose Vocal commands
configuration. We’ll use this to define our input and output
functions.

FIGURE 24-6: Selecting the Vocal commands configuration setting

5. Select Vocal command n°1, as shown in Figure 24-7.

FIGURE 24-7: Setting your first voice command

6. Here you give the input that will trigger the first function. Enter
light on as text, as shown in the screen on the left in Figure 24-8.
The app will then ask for the output data to send to the Arduino
when you give the input command. On this screen, enter 1 for on or
HIGH, as we’ve seen in previous LED projects (shown in the screen on
the right in Figure 24-8). When the app hears the vocal command
“light on” through the phone, the number 1 will be sent to the
Arduino as an input, and power will be sent to the LED to light it
up.

7. Carry out the same steps to define Vocal command n°2 with the
input light off and the output data 0, as shown in Figure 24-9. This
command will switch the LED off.

Now you’ve configured your commands so that when you press the
voice command function and tap the microphone button on the screen,
the app will listen for your command and, depending on the input, switch
the LED on or off.

FIGURE 24-8: Configuring our LED to turn on with the voice command “light on”

FIGURE 24-9: Configuring the “light off” function

The app also has a function to let you control the Arduino using SMS.
Once the app is launched and connected to the Arduino, you can send
data to the Arduino by sending an SMS text to the phone paired with the
Bluetooth module, as long as the paired phone is in range of the module.
Simply text Arduino 1 to the phone connected to the Arduino, and that
phone will send 1 to the module to light your LED. Text Arduino 0, and a
0 will be sent to switch your LED off. This way you can have control
through Bluetooth from anywhere in the world!

THE SKETCH
The sketch for this project is quite simple. It starts by creating a variable
to hold the data from the Bluetooth module. It sets the data rate for serial
communication to 9600 and sets pin 9 as an output for our LED. In the

loop, it checks for data to be sent to the Arduino from the Bluetooth
module. The loop reads the data, and also sends it to the Serial Monitor
so we can check that it’s working correctly. If the Arduino receives a 1
from the app, pin 9 will be set to HIGH, which will turn on the LED. If the
Arduino receives a 0, pin 9 is set as LOW and the LED is turned off.

Using these principles, you could add numerous relays in place of the
LED and begin to automate your home from anywhere. You could set it
up to turn on your living room lights before you enter your house, set the
thermostat when you’re on your way home, or have your favorite music
already playing as you walk in the door.

char data = 0; // Create a variable for data
void setup() {
 Serial.begin(9600); // Data rate for serial communication
 pinMode(9, OUTPUT); // Set pin 9 as an output
}
void loop() {
 if (Serial.available() > 0) { // Send data
 data = Serial.read(); // Read incoming data and
 // store it into variable data
 Serial.print(data); // Print data value to the Serial Monitor
 Serial.print("\n"); // Start a new line
 if (data == '1') // If value is 1, turn on LED
 digitalWrite(9, HIGH);
 else if (data == '0') // If value is 0, turn off LED
 digitalWrite(9, LOW);
 }
}

TROUBLESHOOTING
Q. The code compiles, but the LED does not light.

• Make sure you’ve connected the GND and power pins from the
Arduino to the correct breadboard power rails and that the Arduino
has power connected.

• Check that the LED is inserted the correct way, with the longer leg
connected to the positive power and the shorter leg to GND. Check
that the resistors are inserted fully and line up with the corresponding
LED leg.

• With the project powered and connected to your PC, open the
Arduino IDE Serial Monitor to see if the Arduino is receiving data
from the app. If you don’t see data streaming in the Serial Monitor,
double-check that the TXD of the module is connected to RX of the
Arduino and the RXD of the module to Arduino TX.

• If the app does not work when opened on your smartphone, check the
compatibility of your phone with the app on the developer’s site. You
may need to use an alternative app.

• The data set in your app must match the data expected in the sketch,
so make sure you’ve used 1 for on and 0 for off.

25
GPS Speedometer
In this project we’ll connect an OLED screen and GPS
module to our Arduino to create a simple GPS
speedometer that can track your speed from satellites.

PARTS REQUIRED
Arduino board
Female-to-male jumper wires
OLED monochrome screen (128×64)
Ublox NEO-6M GPS module aircraft flight controller and antenna

LIBRARY REQUIRED
U8glib

HOW IT WORKS
The Ublox NEO-6M GPS module (Figure 25-1) we’re using in this
project is an inexpensive device generally used to track the position of
model aircraft or drones. The module is widely available from the
suppliers listed in the “Retailer List” on page 249, or you can search
online for “Ublox NEO-6M GPS module.” Make sure to buy a module
that also comes with a GPS antenna, as shown in Figure 25-2.

FIGURE 25-1: The Ublox NEO-6M GPS module

FIGURE 25-2: The GPS antenna

The module uses GPS (Global Positioning System) technology to
determine the exact location of the Arduino and display its speed in
kilometers per hour on the OLED screen (see Project 19 for more on
OLED screens). GPS consists of 32 satellites orbiting the earth, and it’s
used across the globe in everyday technology such as car satellite
navigation systems, smartphones, and trackers.

The Navstar Global Positioning System was created in the 1970s by
the United States government initially for military purposes, but it’s now
freely accessible for anyone with GPS receiver equipment, which
probably includes you if you have a smartphone. To pinpoint the location
of a receiver, the system uses the satellites, control stations on the
ground, and your equipment to calculate distance, speed, and time for
signals to be sent and received—with these, it can determine your
location.

The Ublox NEO-6M GPS module receives satellite signals
continuously and sends them to the Arduino to pinpoint your location. As
soon as you move, your speed is sent to the OLED screen in kilometers
per hour, serving as our speedometer.

While the functionality of this project is quite complex, the build is
very simple. The board comes with the header pins separate, so you need
to solder these in place before beginning. See the “Quick Soldering
Guide” on page 12 if you need soldering guidance. The board has all the
GPS circuitry built in, but you’ll need to clip the GPS antenna in place;
I’ll show you how in a moment.

THE BUILD

1. Take the OLED monochrome screen shown in Figure 25-3 and,
using female-to-male jumper wires, make the connections in the
following table. The OLED screen uses 3.3V, so make sure you
connect it to Arduino 3.3V, not 5V, or you could damage the screen.

FIGURE 25-3: The OLED monochrome screen displays the speed of
movement in kilometers per hour (digit on the right).

OLED SCREEN ARDUINO

VCC +3.3V

GND GND

SCL Pin A5

SDA Pin A4

2. The GPS module uses the RX and TX pins of the Arduino for
communication, but you also need these pins when uploading a
sketch from your PC. Upload the code in “The Sketch” on page 227
now so those pins will be free. Connect the Arduino to your PC.
Remember to first download the U8glib library and add it to the
relevant folder in the Arduino IDE.

3. With the sketch uploaded, disconnect the Arduino from your PC
and attach the GPS VCC to Arduino +5V, GND to GND, GPS TX
to Arduino pin 0 (RX), and GPS RX to Arduino pin 1 (TX), as
indicated in the following table.

GPS MODULE ARDUINO

VCC +5V

GND GND

TX Pin 0 (RX)

RX Pin 1 (TX)

4. Clip the end of the antenna onto the module, as shown in Figure 25-
4.

FIGURE 25-4: Clip the end of the antenna to the socket on the GPS module.

5. Confirm your setup matches the circuit diagram in Figure 25-5.

FIGURE 25-5: The circuit diagram for the GPS speedometer

6. Connect power to your Arduino, and the GPS speedometer is ready

to use. The antenna needs to be facing upward to work, as shown in
Figure 25-4, and works best outdoors because the GPS module
requires line of sight with the orbiting satellites in order to function
properly (though I’ve also had success when close to a window
indoors, so experiment to see what works for you).

7. The GPS module will take about 30 seconds or so to connect to the
satellites. When the connection is successful, the module LED will
blink and the symbol at the top left of the OLED screen will spin.

THE SKETCH
The sketch first calls on the U8glib library and then defines the OLED
so we can control our screen. We define the GPS module as a serial
connection, and tell it what information we want to receive from the
satellites.

NOTE
Remember to disconnect the Arduino 0 (RX) pin of your build before
uploading the sketch and then reconnect when running.

The next section of code contains a long list of data. This section is
quite complex, and the data sheet for the Ublox NEO-6M details all the
information that can be received by the module if you’re interested. For
the purposes of our project, the code at ➊ contains the relevant data: the
NAV-PVT data that includes the number of satellites the module is
connecting to and the ground speed at which your GPS speedometer is
moving. The remaining information requests are not used and are set as
off.

The section that follows defines the NAV-PVT settings with a
number of calculations to check that the data being received from the
satellites is valid.

The loop at the end of the sketch checks to see if data is being
received, and if so, animates the symbols at the top left of the OLED.

The first symbol shows that the screen is refreshing correctly, and the
second shows that the GPS data packet is being received from the
satellites. The screen also displays the number of satellites it’s connected
to at the top left.

If all the data is being received as expected, the ground speed will be
shown at the top right of the screen in kilometers per hour.

// Sketch reproduced with kind permission from Chris Campbell
/*
 Connections:
 GPS TX -> Arduino 0 // Disconnect Arduino 0 to upload this sketch
 GPS RX -> Arduino 1
 Screen SDA -> Arduino A4
 Screen SCL -> Arduino A5
*/

#include "U8glib.h" // Call U8glib library to control OLED screen

U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_DEV_0|U8G_I2C_OPT_NO_ACK|U8G_I2C_OPT_FAST);
// Fast I2C/TWI

#define GPS Serial // Define the serial connection as the GPS module

const unsigned char UBLOX_INIT[] PROGMEM = {
 // These lines of code request data from the satellites. Most are disabled and
turned off.
 // Disable NMEA
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x24,
// GxGGA off
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x01,0x00,0x00,0x00,0x00,0x00,0x01,0x01,0x2B,
// GxGLL off
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x02,0x00,0x00,0x00,0x00,0x00,0x01,0x02,0x32,
// GxGSA off
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x03,0x00,0x00,0x00,0x00,0x00,0x01,0x03,0x39,
// GxGSV off
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x04,0x00,0x00,0x00,0x00,0x00,0x01,0x04,0x40,
// GxRMC off
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x05,0x00,0x00,0x00,0x00,0x00,0x01,0x05,0x47,
// GxVTG off

 // Disable UBX
 0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x17,0xDC,
// NAV-PVT off
 0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xB9,
// NAV-POSLLH off
 0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x13,0xC0,
// NAV-STATUS off

 // Enable UBX—this is the key information we require

➊ 0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x07,0x00,0x01,0x00,0x00,0x00,0x00,0x18,0xE
1, //NAV-PVT on
 //0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x02,0x00,0x01,0x00,0x00,0x00,0x00,0x13,0xB

E, //NAV-POSLLH on
 //0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x03,0x00,0x01,0x00,0x00,0x00,0x00,0x14,0xC
5, //NAV-STATUS on

 // Rate
 0xB5,0x62,0x06,0x08,0x06,0x00,0x64,0x00,0x01,0x00,0x01,0x00,0x7A,0x12, //
(10Hz)
 // 0xB5,0x62,0x06,0x08,0x06,0x00,0xC8,0x00,0x01,0x00,0x01,0x00,0xDE,0x6A, //
(5Hz)
 // 0xB5,0x62,0x06,0x08,0x06,0x00,0xE8,0x03,0x01,0x00,0x01,0x00,0x01,0x39 //
(1Hz)
};

const unsigned char UBX_HEADER[] = { 0xB5, 0x62 };

struct NAV_PVT { // This sets the GPS navigation data
 unsigned char cls;
 unsigned char id;
 unsigned short len;
 unsigned long iTOW; // GPS time of week of the navigation epoch (ms)

 unsigned short year; // Year (UTC)
 unsigned char month; // Month, range 1..12 (UTC)
 unsigned char day; // Day of month, range 1..31 (UTC)
 unsigned char hour; // Hour of day, range 0..23 (UTC)
 unsigned char minute; // Minute of hour, range 0..59 (UTC)
 unsigned char second; // Seconds of minute, range 0..60 (UTC)
 char valid; // Validity Flags (see graphic below)
 unsigned long tAcc; // Time accuracy estimate (UTC) (ns)
 long nano; // Fraction of second, range -1e9 .. 1e9 (UTC) (ns)
 unsigned char fixType; // GNSSfix Type, range 0..5
 char flags; // Fix Status Flags
 unsigned char reserved1; // Reserved
 unsigned char numSV; // Number of satellites used in Nav Solution

 long lon; // Longitude (deg)
 long lat; // Latitude (deg)
 long height; // Height above Ellipsoid (mm)
 long hMSL; // Height above mean sea level (mm)
 unsigned long hAcc; // Horizontal Accuracy Estimate (mm)
 unsigned long vAcc; // Vertical Accuracy Estimate (mm)

 long velN; // NED north velocity (mm/s)
 long velE; // NED east velocity (mm/s)
 long velD; // NED down velocity (mm/s)
 long gSpeed; // Ground Speed (2-D) (mm/s)
 long heading; // Heading of motion 2-D (deg)
 unsigned long sAcc; // Speed accuracy estimate
 unsigned long headingAcc; // Heading accuracy estimate
 unsigned short pDOP; // Position dilution of precision
 short reserved2; // Reserved
 unsigned long reserved3; // Reserved
};

NAV_PVT pvt;

void calcChecksum(unsigned char* CK) {

 memset(CK, 0, 2);
for (int i = 0; i < (int)sizeof(NAV_PVT); i++) {
 CK[0] += ((unsigned char*)(&pvt))[i];
 CK[1] += CK[0];
 }
}

long numGPSMessagesReceived = 0;

bool processGPS() {
 static int fpos = 0;
 static unsigned char checksum[2];
 const int payloadSize = sizeof(NAV_PVT);

 while (GPS.available()) {
 byte c = GPS.read();
 if (fpos < 2) {
 if (c == UBX_HEADER[fpos])
 fpos++;
 else
 fpos = 0;
 }
 else {
 if ((fpos-2) < payloadSize)
 ((unsigned char*)(&pvt))[fpos-2] = c;

 fpos++;

 if (fpos == (payloadSize+2)) {
 calcChecksum(checksum);
 }
 else if (fpos == (payloadSize+3)) {
 if (c != checksum[0])
 fpos = 0;
 }
 else if (fpos == (payloadSize+4)) {
 fpos = 0;
 if (c == checksum[1]) {
 return true;
 }
 }
 else if (fpos > (payloadSize+4)) {
 fpos = 0;
 }
 }
 }
 return false;
}

void setup() {
 GPS.begin(9600);

 u8g.setColorIndex(1);

 // Send configuration data in UBX protocol
 for (unsigned int i = 0; i < sizeof(UBLOX_INIT); i++) {
 GPS.write(pgm_read_byte(UBLOX_INIT+i));

 delay(5); // Simulate a 38400baud pace (or less),
 // or otherwise commands are not accepted by the device

 }
}

long gSpeed = 0;
int numSV = 0;
unsigned long lastScreenUpdate = 0;
char speedBuf[16];
char satsBuf[16];

char* spinner = "/-\\|"; // Symbol for the spinner on screen to
 // show communication
byte screenRefreshSpinnerPos = 0;
byte gpsUpdateSpinnerPos = 0;

void loop() {
 if (processGPS()) {
 numSV = pvt.numSV;
 gSpeed = pvt.gSpeed;
 gpsUpdateSpinnerPos = (gpsUpdateSpinnerPos + 1) % 4;
 }

 unsigned long now = millis();
 if (now - lastScreenUpdate > 100) {
 updateScreen();
 lastScreenUpdate = now;
 screenRefreshSpinnerPos = (screenRefreshSpinnerPos + 1) % 4;
 }
}

void draw() {
 u8g.setFont(u8g_font_courB24);
 u8g.drawStr(36, 45, speedBuf);
 u8g.setFont(u8g_font_fur11);
 u8g.drawStr(2, 12, satsBuf);
}

void updateScreen() {

 int kmh = gSpeed * 0.0036;
 sprintf(speedBuf, "%3d", kmh);
 sprintf(satsBuf, "%c %c %d", spinner[screenRefreshSpinnerPos],
spinner[gpsUpdateSpinnerPos], numSV);

 u8g.firstPage();
 do {
 draw();
 } while(u8g.nextPage());
}

TROUBLESHOOTING
Q. The code compiles, but the expected information is not shown onscreen.

• If nothing shows on the OLED screen, recheck that your wiring
matches Figure 25-5; it’s quite easy to reverse the TX and RX wires
accidentally.

• The symbols at the top left of the screen will rotate to show the
screen is working correctly and that the GPS module is receiving data.
If the far-left symbol spins but not the GPS symbol, you have your
TX and RX wires crossed; recheck the wiring for the module.

• The GPS module works best outdoors and should have line of sight to
the satellites orbiting the earth, so try repositioning the module until
you get a reading. It can take 30–60 seconds to get a stable reading.

• Remember that the OLED screen should be connected to 3.3V and
not 5V.

Troubleshooting Tips for Common
Errors
All the sketches for the projects in this book can be
downloaded from
https://www.nostarch.com/arduinohandbook2/ and have
been verified to work correctly. However, when you
compile a sketch in the Arduino IDE, there are a
number of problems that you may encounter.

This section will go through three of the most common types of errors,
explaining why they occur and how to fix them. When an error occurs,
the monitor box at the bottom of the IDE will helpfully highlight the line
of code that caused the error, as shown in Figure A-1. This information
will be invaluable to you in fixing your code.

FIGURE A-1: The IDE will highlight the line where the error has occurred.

https://www.nostarch.com/arduinohandbook2/

UPLOAD ERROR
When you upload your code, you get a message like the one in Figure A-
2, which says:

avrdude: ser_open(): can't open device "COM1": No such file or
directory

FIGURE A-2: The error message “Problem uploading to board”

Solutions

This error generally means that the IDE cannot find your Arduino board.
Try one of these solutions

• Check that your USB connection is securely inserted into your PC’s
USB port.

• In the IDE, open the Tools tab and select Port. From the drop-down
menu, you should see that one of the COM ports is highlighted. If
this is not the port your Arduino is connected to, select the correct
one.

• If the correct port is already highlighted, verify that the right board
type is selected: open the Tools tab, select Board, and from the drop-
down menu make sure the type of Arduino board you have attached is
highlighted. This is set to Arduino Uno by default.

• You can also check the Arduino documentation for more possible
solutions: http://www.arduino.cc/en/Guide/Troubleshooting#upload.

CODE VERIFICATION ERROR #1
When you verify your code, you receive an error like the one in Figure A-
3, which says:

expected '}' at end of input

FIGURE A-3: The error message “expected '}' at end of input”

Solution
Check that each opening curly bracket ({) has a closing curly bracket (})
and, if not, add the closing bracket. Curly brackets define the start and

http://www.arduino.cc/en/Guide/Troubleshooting#upload

end of a block of code, and every open bracket needs a closing bracket to
complete a function or loop. In this instance, you would add a closed
bracket at the end of your code.

CODE VERIFICATION ERROR #2
When verifying your code, you receive the error shown in Figure A-4,
which says:

expected ';' before '}' token

FIGURE A-4: The error message “expected ';' before '}' token”

Solution
This error, one of the most common you’ll encounter, indicates that you
missed a semicolon (;) at the end of a line. Add a semicolon to the line
above the one highlighted in the IDE.

MISSING LIBRARY ERROR
When verifying your code, you receive an error like this:

fatal error: #NewPing.h no such file or directory

The example shown in Figure A-5 is from Project 20, which uses the
NewPing library.

FIGURE A-5: The error message “Error compiling for board Arduino/Genuino
Uno”

Solution
This error is also quite common and it means the IDE cannot find the
expected library in the library folder. Follow the instructions in
“Installing Libraries” on page 8 to make sure you’ve installed any libraries
required by your code that are not included by default in the IDE.
Remember that it is not enough to just download these libraries—you
have to install them too.

Each project in this book lists the required libraries at the start of the
chapter. You can download those not included in the IDE from

https://www.nostarch.com/arduinohandbook2/.

https://www.nostarch.com/arduinohandbook2/

Components
This section gives you some more information on the
components used in this book. Each component is
accompanied by a photo and a few details for quick
reference and identification. At the end, I’ve also
included a handy list of retailers to buy the parts from
and a quick lesson on reading resistor values.

COMPONENTS GUIDE
The components are listed in the order in which they appear in the book.
Many of the items can be found with a simple search on websites like
eBay and Amazon, but a list of specialist suppliers is also provided in the
“Retailer List” on page 249.

Arduino Uno R3
The Arduino Uno R3 microcontroller board is the main component for
the book and the brain for all your projects.

• Quantity: 1

• Connections: 14

• Projects: All

9V Battery Pack

The 9V battery pack with a 2.1 mm jack for 6 AA batteries plugs into the
power port on the Arduino and can be used to power your projects. Note
that the Arduino can also be powered through the USB cable.

• Quantity: 1

• Connections: 1

• Projects: Optional for all

Breadboard
The breadboard is a prototyping board used to connect components
together to create your projects. See the primer for more details.

• Quantity: 1 full-size board, 1 half-size board, 1 mini board

• Connections: 940 on a full board, 420 on a half board, 170 on a mini
board

• Projects: All except Projects 4, 6, 7, 16, 19, 22, and 25

LED
An LED, or light-emitting diode, is a small bulb that emits light when a
low current is passed through it. It has two legs, the longer of which is the
positive connection. LEDs generally require a resistor or they may burn

out. LEDs are polarized, meaning current flows only in one direction.

• Quantity: 40 (10 red, 10 blue, 10 yellow, 10 green)

• Connections: 2

• Projects: 1, 2, 9, 15, 17, 21, 23, 24

Resistor
Resistors restrict the amount of current that can flow through a circuit to
prevent components from overloading. A resistor looks like a cylinder
with colored bands and a wire extending from each end. The resistance
value is indicated by a color code—see “Decoding Resistor Values” on
page 250 for more details. Check the value carefully, as it can be easy to
choose the wrong one. Resistors come in four-, five-, and six-band
varieties, so be aware that, for example, a four-band 220-ohm resistor can
look slightly different from a five-band resistor of the same value.

• Quantity: 9 220-ohm, 4 10k-ohm, 8 1k-ohm

• Connections: 2

• Projects: 1–3, 5, 8–10, 15, 17, 18, 21, 23, 24

Seven-Segment LED Display

A seven-segment LED display forms a digit or character using LED
segments, and is often used to display numbers for counters, clocks, or
timers. You can get single-digit to eight-digit displays, and four-digit
displays are commonly used for digital clocks.

• Quantity: 1

• Connections: 10

• Project: 3

8×8 LED Maxim 7219 Matrix Module
This prebuilt 8×8 LED matrix module needs only five pins connected to
your Arduino to work.

• Quantity: 1

• Connections: 5

• Project: 4

RGB LED
An RGB LED combines three colors—red, green, and blue—to make any
color of the rainbow. It is a clear LED with four legs, each of which needs
a resistor to limit the current and prevent the LED from burning out.
The longest leg is either the common cathode or anode.

• Quantity: 1

• Connections: 4

• Project: 5

RGB LED Strip (WS2812B 5V 32-LED Strip)
LED strips come in single-color or multicolored varieties, and can differ
in how the individual LEDs are controlled. Single-color, or multicolor
nonaddressable, strips can light only one color at a time. RGB multicolored
strips are generally addressable, which means each LED has its own chip
and can be individually controlled, allowing multiple colors to light
simultaneously.

• Quantity: 1

• Connections: 3

• Project: 6

Adafruit NeoPixel Ring with 16 RGB LEDs
The Adafruit NeoPixel ring has 16 RGB surface-mounted LEDs, each of
which is addressable, allowing you to control each LED separately.

• Quantity: 1

• Connections: 3

• Project: 7

HMC5883L Three-Axis Sensor
The HMC5883L three-axis sensor is a multichip module used for sensing
magnetic fields—we use it to detect magnetic north to act as a compass.
The module may require you to solder header pins.

• Quantity: 1

• Connections: 4

• Project: 7

Pushbutton
A pushbutton is a simple switch that makes a connection when pushed.
Also known as a momentary switch, a pushbutton connects a circuit when
pushed in, and spring backs to break the connection when released.
Pushbuttons vary in size, but most have four pins.

• Quantity: 8

• Connections: 4

• Project: 8

Piezo Sounder
The piezo sounder is a very basic speaker often used in inexpensive toys.
A pulse of current causes it to click extremely quickly, and a stream of
pulses emits a tone. The piezo sounder often looks like a small black box
with two wires. Taken out of the case, it looks like a small, gold disc.

• Quantity: 1

• Connections: 2

• Projects: 8, 15

3.5 mm Female Headphone Jack
The 3.5 mm female headphone jack is a simple jack that allows you to
connect audio devices to your Arduino. It can be purchased on its own or
reclaimed from a dollar-store radio.

• Quantity: 1

• Connections: 3

• Project: 9

Servomotor
A servomotor is a motor with an arm attachment that you can position to
specific angles by sending the servo a coded signal. The motor is in a
small box with three wires and an output shaft to which you can attach
the arm, known as a horn.

This book uses the Tower Pro SG90 9g servomotor, which turns 180
degrees; others are continuous and turn the full 360 degrees.

• Quantity: 1

• Connections: 3

• Projects: 10, 21, 22

Photoresistor
A photoresistor, also referred to as a light-dependent resistor or a diode,
detects light levels by producing a variable resistance depending on the
amount of light falling on it. There are different styles, but it usually

looks like a small, clear oval with wavy lines and two legs. You will need
to calibrate your photoresistor to determine light levels before using it in
a program.

• Quantity: 1

• Connections: 2

• Project: 10

28BYJ-48 Stepper Motor with ULN2003 Driver Module
A stepper motor is a DC electric motor that divides a full 360-degree
rotation of the arm into a number of equal steps for heightened control.
We’re using the 28BYJ-48 stepper motor, which comes with a ULN2003
driver module to control it.

• Quantity: 1

• Connections: 5

• Project: 11

LM35 Temperature Sensor
The LM35 temperature sensor detects the temperature and sends the
reading as a voltage value to the Arduino so we can measure heat.

• Quantity: 1

• Connections: 3

• Projects: 12, 14

12V Mini Computer Cooling Fan
A 12V mini computer cooling fan is the cooling fan used internally in a
computer. We are using a 4 cm × 4 cm fan, but you could use a larger one
if required. You could also reclaim one from an old PC, as long as it is no
longer used.

• Quantity: 1

• Connections: 2

• Project: 12

5V Single-Channel Relay Module
A relay is an electronically operated switch that, in this case, uses an
electromagnet to mechanically open or close a circuit.

• Quantity: 1

• Connections: 6

• Project: 12

Potentiometer
A potentiometer is a resistor whose value you can vary to manipulate the
voltage flowing through it, allowing you to control how much power goes
to a component. It has a knob that you can turn and three pins at the
bottom. The center pin is the control pin, with power to either side. It’s
commonly used to control an output such as the volume on a radio. You
connect power to pins 1 and 3, and it doesn’t matter which way they are
connected.

• Quantity: 2 50k-ohm, 1 10k-ohm

• Connections: 3

• Projects: 11, 13–15, 18

LCD Screen
An LCD (liquid crystal display) screen is a display screen for outputting
characters or images. It is composed of two sheets of polarizing material
with a liquid crystal solution between them. Passing current through the

liquid crystal makes it opaque, creating an image against a backlight.
Screens come in various dimensions. The one shown here is an

HD44780 16×2 (16 characters × 2 lines) and has 16 connections.

• Quantity: 1

• Connections: 16

• Projects: 13–16

Ultrasonic Sensor
An ultrasonic sensor sends out a signal (often referred to as a ping), which
bounces off an object and is returned to the sensor. Distance is calculated
from the time the signal takes to return once it has been sent. The sensor
used in this book is the HC-SR04 ultrasonic sensor, a module board with
two round sensors and four pins.

• Quantity: 1

• Connections: 4

• Projects: 13, 17, 20, 22

Keypad
A 3×4 membrane keypad is basically a series of switches. The example
shown here has 12 pushbuttons connected in series, but a 16-button

version is also available. Of the seven connections, four control the rows
and three control the columns. The Arduino will replicate the number of
the button pressed.

• Quantity: 1

• Connections: 7

• Project: 15

Serial LCD Screen Module
This 16×2 LCD screen has a serial module attached and thus requires
only power and two pins connected to the Arduino.

• Quantity: 1

• Connections: 4

• Project: 16

Nokia 5110 LCD Screen
This is a Nokia 84×48-pixel screen that, accounting for spaces between
the characters, gives us a 12×6-character screen. It works similarly to the
LCD screen in Project 13, by sending current through the liquid crystal

from the Arduino at certain pixels to form letters or images.

• Quantity: 1

• Connections: 8

• Project: 18

OLED Monochrome Screen (128×64)
The OLED (organic light-emitting diode) screen is a light-emitting
technology composed of a thin, multilayered organic film placed between
an anode and cathode. The one we use in this book has a 128×64 screen
size.

• Quantity: 1

• Connections: 4

• Projects: 19, 25

Keyes MQ3 Alcohol Sensor Module
The MQ3 is a gas sensor sensitive to alcohol and ethanol. We use it in
the breathalyzer in Project 19.

• Quantity: 1

• Connections: 3

• Project: 19

WLToys V959-18 Water Jet Pistol
The V959-18 water jet pistol comprises a small reservoir to hold water
and a mini pump that pushes water through a nozzle.

• Quantity: 1

• Connections: 2

• Project: 20

Optical Fingerprint Sensor (ZFM-20 Series)
The ZFM-20 fingerprint sensor is a fingerprint comparison module that
takes a photograph of a fingerprint and adds it to its database, allowing
you to check if a new fingerprint matches one stored there. The sensor
can hold up to 162 fingerprints.

• Quantity: 1

• Connections: 4

• Project: 21

L293d Motor Shield
The L293d motor shield is a module for controlling motors that we use
for our robot in Project 22.

• Quantity: 1

• Connections: fits on top of the Arduino

• Project: 22

Robot Chassis Kit
If you search online for “Arduino robot kit,” you should be able to find a
kit that contains two DC motors and wheels, a base plate, a battery pack,
a center wheel, and the fittings needed to build an Arduino robot. The kit
I bought was specifically named the “2WD Smart Motor Robot Car
Chassis Kit for Arduino 1:48.”

• Quantity: 1

• Connections: 4 (2 for each motor)

• Project: 22

Ethernet Shield W5100 LAN Expansion Board
The Ethernet shield W5100 LAN expansion board fits directly on top of
the Arduino to provide additional functionality, such as a web server or
client that allows the Arduino to connect to a network.

• Quantity: 1

• Connections: multiple

• Project: 23

Ethernet Cable
An Ethernet cable transmits data between an internet connection or
network and a device.

• Quantity: 1

• Connections: 1

• Project: 23

HC-06 Bluetooth Module
The HC-06 module provides Bluetooth wireless capabilities so the
Arduino can transmit radio waves to exchange data over short distances.
Smartphones, laptops, and multimedia devices such as speakers use
Bluetooth technology as a common standard.

• Quantity: 1

• Connections: 4

• Project: 24

Ublox NEO-6M GPS Module Aircraft Flight Controller and
Antenna
The Ublox NEO-6M GPS module is a tracking device that connects top
GPS satellites, generally used to track the position of model aircraft or
drones. The module is widely available from the sources listed here, or
you can simply search for “Ublox NEO-6M GPS module” online. Make

sure to get a module that also comes with a GPS antenna.

• Quantity: 1

• Connections: 5, including antenna

• Project: 25

RETAILER LIST
As mentioned earlier, most electronic components can be found on
generic sites like Amazon or eBay, but if you have trouble finding
anything, the retailers listed here should be able to help.

US Retailers
Adafruit https://www.adafruit.com/

DigiKey http://www.digikey.com/

Jameco Electronics http://www.jameco.com/

MCM http://www.mcmelectronics.com/

Newark http://www.newark.com/

RS Components http://www.rs-components.com/

Seeed Studio https://www.seeedstudio.com/

SparkFun https://www.sparkfun.com/

Australian Retailers
Core Electronics https://core-electronics.com.au/arduino.html

https://www.adafruit.com/
http://www.digikey.com/
http://www.jameco.com/
http://www.mcmelectronics.com/
http://www.newark.com/
http://www.rs-components.com/
https://www.seeedstudio.com/
https://www.sparkfun.com/
https://core-electronics.com.au/arduino.html

Little Bird Electronics http://www.littlebirdelectronics.com.au/

European Retailers
Electronic Sweet Pea’s http://www.sweetpeas.se/

Element 14 http://www.element14.com/

Farnell http://www.farnell.com/

UK Retailers
4tronix http://www.4tronix.co.uk/store/

Cool Components http://www.coolcomponents.co.uk/

CPC http://cpc.farnell.com/

Hobby Components https://www.hobbycomponents.com/

Mallinson Electrical http://www.mallinson-electrical.com/shop/

Maplin http://www.maplin.co.uk/

Oomlout http://oomlout.co.uk/

The Pi Hut http://thepihut.com/

Proto-pic http://proto-pic.co.uk/

Rapid Electronics http://www.rapidonline.com/

RS http://uk.rs-online.com/web/

Spiratronics http://spiratronics.com/

DECODING RESISTOR VALUES
In most of the projects in this book we’ve used resistors. Resistors are
electrical components that limit the amount of current allowed through a
circuit (measured in ohms). They are used to protect components, like
LEDs, from overloading and burning out. The value of a resistor is
identified by colored bands on the body. Resistors can have four, five, or

http://www.littlebirdelectronics.com.au/
http://www.sweetpeas.se/
http://www.element14.com/
http://www.farnell.com/
http://www.4tronix.co.uk/store/
http://www.coolcomponents.co.uk/
http://cpc.farnell.com/
https://www.hobbycomponents.com/
http://www.mallinson-electrical.com/shop/
http://www.maplin.co.uk/
http://oomlout.co.uk/
http://thepihut.com/
http://proto-pic.co.uk/
http://www.rapidonline.com/
http://uk.rs-online.com/web/
http://spiratronics.com/

six colored bands.
It's important to be able to determine the value of a resistor so that

you know you’re using the correct one in your project. Let’s try to
determine the value of the four-band resistor shown in Figure B-1.

FIGURE B-1: A four-band resistor

Viewing the resistor with the silver or gold band on the right, note
the order of the colors from left to right. If the resistor has no silver or
gold band, make sure the side with the three colored bands is on the left.

Use Table B-1 to determine the value of the resistor.

TABLE B-1: Calculating Resistor Values

COLOR FIRST
BAND

SECOND
BAND

THIRD
BAND MULTIPLIER TOLERANCE

Black 0 0 0 1Ω

Brown 1 1 1 10Ω +/–1%

Red 2 2 2 100Ω +/–2%

Orange 3 3 3 1KΩ

Yellow 4 4 4 10KΩ

Green 5 5 5 100KΩ +/–0.5%

Blue 6 6 6 1MΩ +/–0.25%

Violet 7 7 7 10MΩ +/–0.10%

Gray 8 8 8 +/–0.05%

White 9 9 9

Gold 0.1Ω +/–5%

Silver 0.01Ω +/–10%

The first and second bands give you the numerical value, the third
band tells you how many zeros to add to that number, and the fourth
band tells you the tolerance—that is, how much the actual value can vary
from the intended value.

NOTE
While the band that denotes the tolerance is most commonly silver or gold, it
can be any of the other colors that has a percentage listed in the tolerance
column. If you have a resistor with a tolerance band that isn’t silver or gold,
there should be a small gap between the value bands and the tolerance band
so you can tell which it is.

So, for the resistor in Figure B-1:

• First band is brown (1) = 1.

• Second band is black (0) = 0.

• Third band is red (2) = 00 (2 is the number of zeros).

• Fourth band is gold, so the tolerance (accuracy) is +/– 5 percent.

So this resistor is 1,000 ohms or 1 kilohm, with a tolerance of 5
percent, meaning that the actual value can be up to 5 percent more or less
than 1 kilohm. We can do the same calculation for a five- or six-band
resistor.

If you’re ever unsure of a resistor’s value, you can look it up by doing
a quick online search of the colored bands on the resistor’s body. Just

make sure to list the colors in the correct order, reading them from left to
right, with the tolerance band on the right.

Arduino Pin Reference
Without going into too much detail, this section gives
you a reference to the pins on the Arduino Uno, their
technical names, and their functions. The pins are
explained in more detail in the projects in which they’re
used, so the information here will probably make more
sense once you’ve built a few projects.

ARDUINO
PIN FUNCTION AND LABEL ADDITIONAL

FUNCTION

0 RX—Used to receive TTL
serial data

1 TX—Used to transmit TTL
serial data

2 External interrupt

3 External interrupt Pulse width modulation

4 XCK/TO—External Clock
Input/Output (Timer/Counter

0)

5 T1 (Timer/Counter 1) Pulse width modulation

6 AIN0—Analog comparator
positive input

Pulse width modulation

7 AIN1—Analog comparator
negative input

8 ICP1—Input capture

9 OC1A—Timer register Pulse width modulation

10 SS—Slave Select (serial data)
used in SPI communication

Pulse width modulation

11 MOSI—Master Out Slave In
(data in) used in SPI

communication

Pulse width modulation

12 MISO—Master In Slave Out
(data out) used in SPI

communication

13 SCK—Serial Clock (output
from master) used in SPI

communication

AREF Reference voltage for analog
inputs

A0 Analog input can give 1,024
different values.

A1 Analog input can give 1,024
different values.

A2 Analog input can give 1,024
different values.

A3 Analog input can give 1,024
different values.

A4 Analog input can give 1,024
different values.

SDA (serial data line) pin
supports TWI (two-wire
interface) using the Wire

library for I2C
components.

A5 Analog input can give 1,024
different values.

SCL (serial clock line) pin
supports TWI using the

Wire library for I2C
components.

RESET Can be used to reset the
microcontroller

3.3V 3.3 volt output used for low
voltage components. This is
the only 3.3V source. The

digital and analog pins operate
at 5V.

5V Standard +5V output

GND Ground/negative power

Vin 9V power can be input here or
accessed if using power jack.

Serial: 0 (RX) and 1 (TX) These pins are used to receive (RX) and
transmit (TX) transistor-transistor logic (TTL) serial data. We use the
TX and RX pins in Projects 21, 24, and 25.

External interrupts: 2 and 3 These pins can be configured to trigger an
interrupt on a low value, a rising or falling edge (a signal going from low to
high or high to low, respectively), or a change in value. An interrupt is a
signal that tells the Arduino to stop and carry out another function when
the pins have detected an external event, such a pushbutton being
pressed.

PWM: 3, 5, 6, 9, 10, and 11 These pins can be used with pulse width
modulation through the analogWrite() function. There’s more
information on this in Project 5.

SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK) These pins support
SPI communication using the SPI library and are used in Project 4.

LED: 13 There is a built-in LED connected to digital pin 13. When the
pin is HIGH, the LED is on; when the pin is LOW, it’s off. The builtin LED

on pin 13 is used to show when the onboard ATmega328p bootloader is
running, usually when the Arduino is starting up.

AREF This is the reference voltage for the analog inputs; it’s used with
analogReference(). We can input from 0 to 5V, so if your sensor requires a
lower voltage than 5V, you can use this pin to increase the resolution for
a more accurate reading.

Analog inputs: A0–A5 The Uno has six analog inputs, each of which
provides 1,024 different values.

TWI: A4 and A5 These pins support TWI (two-wire interface)
communication using the Wire library. This is used to control and
communicate with an I2C device, such as a serial LCD screen, using only
two wires.

RESET Set this to LOW to reset the microcontroller. This is typically used
to add a reset button.

Don’t worry if this information doesn’t mean much to you right now.
You might find it useful in your future Arduino endeavors, and you can
reference it as you progress through the projects in the book.

Arduino Project Handbook, Volume 2 is set in Helvetica Neue,
Montserrat, True North, and TheSansMono Condensed.

UPDATES

Visit https://www.nostarch.com/arduinohandbook2/ for updates, errata,
and other information.

More no-nonsense books from NO STARCH PRESS

ARDUINO PROJECT HANDBOOK, VOL. 1
25 Practical Projects to Get You Started
by MARK GEDDES JUNE 2016, 272 PP., $24.95 ISBN 978-1-59327-690-
4 full color

https://www.nostarch.com/arduinohandbook2/

THE ARDUINO INVENTOR’S GUIDE
Learn Electronics by Making 10 Awesome Projects
by BRIAN HUANG and DEREK RUNBERG JUNE 2017, 336 PP., $29.95
ISBN 978-1-59327-652-2 full color

ARDUINO WORKSHOP
A Hands-On Introduction with 65 Projects
by JOHN BOXALL MAY 2013, 392 PP., $29.95 ISBN 978-1-59327-448-1

THE MAKER’S GUIDE TO THE ZOMBIE
APOCALYPSE
Defend your Base with Simple Circuits, Arduino, and Raspberry Pi
by SIMON MONK OCTOBER 2015, 296 PP., $24.95 ISBN 978-1-59327-
667-6

ARDUINO PLAYGROUND
Geeky Projects for the Experienced Maker
by WARREN ANDREWS MARCH 2017, 344 PP., $29.95 ISBN 978-1-
59327-744-4

THE MANGA GUIDE TO ELECTRICITY
by KAZUHIRO FUJITAKI, MATSUDA, and TREND-PRO CO., LTD. MARCH

2009, 224 PP., $19.95 ISBN 978-1-59327-197-8

PHONE:

1.800.420.7240 OR

1.415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

mailto:SALES@NOSTARCH.COM
http://WWW.NOSTARCH.COM

	Title Page
	Copyright Page
	Dedication
	Contents
	Acknowledgments
	Introduction
	Primer: Getting Started
	LEDs
	Project 1: LED Light Bar
	Project 2: Light-Activated Night-Light
	Project 3: Seven-Segment LED Count Down Timer
	Project 4: LED Scrolling Marquee
	Project 5: Mood Light
	Project 6: Rainbow Strip Light
	Project 7: NeoPixel Compass

	Sound
	Project 8: Arduino Piano
	Project 9: Audio LED Visualizer

	Motors
	Project 10: Old-School Analog Dial
	Project 11: Stepper Motor
	Project 12: Temperature-Controlled Fan

	LCDs
	Project 13: Ultrasonic Range Finder
	Project 14: Digital Thermometer
	Project 15: Bomb Decoder Game
	Project 16: Serial LCD Screen
	Project 17: Ultrasonic People Counter
	Project 18: Nokia 5110 LCD Screen Pong Game
	Project 19: OLED Breathalyzer

	Security
	Project 20: Ultrasonic Soaker
	Project 21: Fingerprint Scanner

	Smart Machines
	Project 22: Ultrasonic Robot
	Project 23: Internet-Controlled LED
	Project 24: Voice-Controlled LED
	Project 25: GPS Speedometer

	Troubleshooting Tips for Common Errors
	Components
	Arduino Pin Reference

