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Assume f'(a) > 0.

Since f(x) = f'(a) (x - a) + fla) near x = a,
JS'(a) > 0 means that the approximate
linear function is increasing at x = a.
Thus, so is f(x).

In other words, the roller
coaster is ascending, and it is not at
the top or at the bottom.

Similarly, y = f(x) is descending
when f'(a) < 0, and it is not at the
top or the bottom, either.

If y = f(x) is ascending or descending when f'(a) > 0 or f'(a) < 0, respectively,
we can only have f'(a) = 0 at the top or bottom.

In fact, the approximate linear function y = f'(a) (x — a) + fla) =0 x (x - a)
+ fla) is a horizontal constant function when f'(a) = 0, which fits our under-
standing of maxima and minima.

(a, fla))
5 { fl@=0
Sl@=0 ; ;

(a, f(a))

DISCUSSION CAN
BE SUMMARIZED INTO
THE FOLLOWING
THEOREM.

THEOREM 2-2: THE CRITERIA FOR INCREASING AND DECREASING
y =flx) is increasing around x = a when f'(a) > 0.

y =f(x) is decreasing around x = a when f'(a) < 0.
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OPS/images/200.jpg
AND 1 < y < 4, WHICH
ARE SHOWN IN THIS
FIGURE.

IN THE SAME WAY, WE PUT
UP 16 STICKS AT 16 POINTS

LOOKING AT THIS
FIGURE, YOU CAN
VAGUELY SEE THAT
THE GRAPH FORMS A
PLANE, CAN'T YOU?

YES, I SEE IT!

NOW, LET'S LOOK AT
THE PILLARS ON THE
NEAREST SIDE.

LEFT, f(1, 1) = 6, f(2, 1) = 9,
(3, 1) =12, AND fi4, 1) = 15.

THEIR HEIGHTS ARE,
BEGINNING FROM THE

THESE POINTS FORM
A LINE WHOSE
SLOPE 15 3,

WHICH IS INTUITIVE
BECAUSE IFy 15 A
CONSTANT (y=1) IN
z=fx,y)=3x+2y+1,
WEGETz=8x+2x1
+1=3x+3.

NEXT, LET'S LOOK AT THE
HEIGHTS OF THE STICKS RIGHT
BEHIND THE FIRST ONES.
THEIR HEIGHTS ARE f(1, 2) = 8,
(2, 2) = 11, f(3, 2) = 14, AND
(4, 2) = 17, EACH OF WHICH
i5 HIGHER THAN THE STICK IN
FRONT OF IT BY 2.

FURTHERMORE,

THE HEIGHTS OF THE STICKS BEHIND
THESE ONES ARE f(1, 3) = 10, f(2, 3) =
13, (3, 3) = 16, AND f(4,3) = 19, EACH OF
WHICH 15 AGAIN HIGHER THAN THE ONE IN
FRONT OF IT BY 2.
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LA, LA, LA!
ILOVE
DIFFERENTIATION!
I CAN SEE
SOCIETY WITH IT!
& TEE HEE HEE!
’

WHAT? YOU HAVE
ANYTHING NEW TO
SAY? ALL YOU SAY

1S DIFFERENTIATION,

DIFFERENTIATION.

OH, 50 YOU
UNDERSTAND!

WHAT? YOU
JUST SAID YOU
LOVE...

NO, THANK YOU. I DON'T
WANT TO DRINK TOO
MUCH TONIGHT.

K
WOULD YOU LIKE
ANOTHER DRINK?

IT'S BECAUSE
OF THAT CALL,
ISN'T IT? WHAT
DID THE BOSS
SAY?

66 CHAPTER Z LET'S LEARN DIFFERENTIATION TECHNIQUES!





OPS/images/075.jpg
THEY WANT TO
KNOW MORE ABOUT
YOUR SOURCES AND

ANY BACKGROUND
INFORMATION. THIS MAY
BE A GOOD OPPORTUNITY
TO RESTORE YOUR

NOR.

YES...1
UNDERSTAND.

THANK YOU FOR
CALLING ME. TLL GET
EVERYTHING TOGETHER. /.

WHAT'S THE
MATTER? YOU
DONT LOOK

SO GOOD.

OH, NO. IT'5
NOTHING
SERIOUS.

MR. SEK| GETS A CALL &1
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IT CAN BE
EXPRESSED

o i

IN THE CASE OF
MR. 5EKI, x 15
EXCELLENT WRITING,
y 5 HARD-HITTING
REPORTING, AND
2 15 TRANSFER TO

THAT RIGHT?

THE MAIN OFFICE. 15 /|

/" WELL, I DON'T
KNOW THE
REASONS FOR
MY TRANSFER
YET.

IN THE CASE OF NORIKO, x,
15 LAST MONTH'S BLUNDER,
x, 15 THIS MONTH'S BLUNDER,

AND x, AND x, ARE POOR
GROOMING AND HYGIENE,
WHICH MAKES y HER
DEMOTION TO WRITING
OBITUARIES.

ALL RIGHT, THAT'S
ENOUGH. NORIKO,
WE DON'T HAVE MUCH

TIME LEFT.

LET'S LEARN THE
BASICS QUICKLY.

182 CHAPTER & LET'S LEARN ABOUT PARTIAL DIFFERENTIATION!
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DIFFERENTIATING POLYNOMIALS

AS A WRAP-UP,
LET'S

MONOMIAL
MEMORIZE THE
y=ax FORMULAS FOR
DIFFERENTIATING
LET'S CHANGE THE TERM POLYNOMIALS. THE
SUBJECT. DIFF\?FE:TN@HON

y=ax’+bx+c POLYNOMIAL CAN
L 1| BEPERFORMED
POLYNOMIAL BY COMBINING
THREE FORMULAS.

FORMULA 2-4: THE DERIVATIVE OF AN nTH-DEGREE FUNCTION

The derivative of h(x)=x" is h’'(x)=nx""

How do we get this general rule? We use the product rule of differentiation
repeatedly.

For h(x)=x?% since h(x)=xxx,h’(x)=xx1+1xx=2x
The formula is correct in this case. \

For h(x) =x°, since h(x)=x"xx, h’(x)= (xz), xx+x*x(x) = (2x)x +x* x1=3x*
The formula is correct in this case, too.

For h(x) =x", since h(x)=x’xx, h'(x)= (x“), xx+x° ><(x)l =3x?xx+x°x1=4x"

Again, the formula is correct. This continues forever. Any polynomial can
be differentiated by combining the three formulas!

FORMULA 2-5: THE DIFFERENTIATION FORMULAS OF SUM RULE,
CONSTANT MULTIPLICATION, AND x™
et

© Sumrule: {f(x)+g(x)} =f'(x)+g'(x) © Power rule (x"): {x"} =nx

® Constant multiplication: {af(x)} =af’(x)

Let’s see it in action! Differentiate h(x)=x* +2x* +5x +3
rule O

R(x)={x*+2x* +B5x + 3}/ = I(x“ )l +(2x )l +(5x) + (3)(I

:(x3)l +2(x2), +5(x) =3x* +2(2x)+5x1=3x* + 4x+5
| ML AR, S A | | S
rule ® rule ®
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THE FUNCTION OF
THE LEFT DIAGRAM
15 WRITTEN AS
z = g(x, y), AND
THAT OF THE RIGHT
DIAGRAM 15 WRITTEN
AS y = hix,, x,, X3, X,).

1 WILL GIVE YOU
SOME EXAMPLES OF
FUNCTIONS THAT HAVE
TWO CAUSES, THAT
1S, TWO-VARIABLE

FUNCTIONS.

EXAMPLE 1
Assume that an object is at height h(v, t) in meters after t seconds when

it is thrown vertically upward from the ground with velocity v. Then, h(v, t)
is given by

h(v,t) = vt - 4.9¢*

EXAMPLE 2
The concentration f(x, y) of sugar syrup obtained by dissolving y grams of
sugar in x grams of water is given by

f(x,y):xzyxloo

EXAMPLE 3
When the amount of equipment and machinery (called capital) in a nation
is represented with K and the amount of labor by L, we assume that the

total production of commodities (GDP: Gross Domestic Product) is given
by Y(L, K).

IN ECONOMICS, Y (LK) = BL*K'™ (CALLED THE
COBB-POUBLAS FUNCTION) (WHERE o AND B ARE
CONSTANTS) 15 USED AS AN APPROXIMATE FUNCTION
OF Y(L, K). SEE PAGE 203.

EXAMPLE 4
In physics, when the pressure of an ideal gas is given by P and its volume
by V, its temperature T is known to be a function of P and V as T(P, V). And
it is given by

T(P,V)=yPV

WHAT ARE MULTIVARIABLE FUNCTIONS? 183
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I'M GOING OUT
FOR A WHILE.

DON'T WORRY
ABOUT HIM.

YES, 1 HEARD THAT THE
I WANT YOU TO GO OUT ROLLER COASTER IN THE
AND DO SOME REPORTING. SANDA-CHO AMUSEMENT
PARK WAS JUST
RENOVATED.

REALLY?

JUST A LOCAL
ROLLER COASTER...

DIFFERENTIATING POLYNOMIALS 63





OPS/images/198.jpg
THE BASICS OF VARIABLE LINEAR FUNCTIONS

WELL, YES. BUT SINCE WE NOW
HAVE TWO-VARIABLE FUNCTIONS,
WE HAVE TO USE TWO-VARIABLE

LINEAR FUNCTIONS.

WHAT DO YOU THINK
WE DO TO EXAMINE
THE PROPERTIES OF
THESE COMPLICATED
TWO-VARIABLE
FUNCTIONS?

DO WE USE
IMITATING LINEAR
FUNCTIONS?

o

TWO-VARIABLE LINEAR
FUNCTIONS ARE GIVEN IN A
FORM LIKE z = f(x, y) = ax +
by + ¢ (WHERE a, b, AND ¢
ARE CONSTANTS.)

zZ=

—_ FOR EXAMPLE,
] f = ax+by+c
—

z=3x+2y+10R
z=-x+9Y -2,
SEE?

A PILLAR...

NOW, LET'S SEE WHAT

THEIR GRAPHS LOOK LIKE. WELLdl 2T THINK

SINCE THEY HAVE TWO %@L I‘IMr?e@ E-I;‘
INPUTS (x AND 1) AND AN PLANE 1S THE

OUTPUT (2, IT IS NATURAL
TO USE 3-DIMENSIONAL
COORPDINATES.

FLOOR AND THE
Z-AXIS 1S APILLAR. |
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FINDING MAXIMA AND MINIMA

Maximum
= Y
3 1
SOMETHING D x
LIKE A Minimum
ROLLER |
COASTER * SANDA-CHO
TRACK SANDALAND

AMUSEMENT
PARK

Maxima and minima are where a function changes from a decrease to an
increase or vice versa. Thus they are important for examining the properties
of a function.

Since a maximum or minimum is often the absolute maximum or
minimum, respectively, it is an important point for obtaining an optimum
solution.

THEOREM 2-1: THE CONDITIONS FOR EXTREMA

If y = f(x) has a maximum or minimum at x = a, then f'(a) = 0.

This means that we can find maxima or minima by finding values of a
that satisfy f'(a) = 0. These values are also called extrema.

WHAT'S THAT?
1 HATE ROLLER
COASTERS...

CLICKETY-
CLACK
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15 SOMETHING
WRONG?

OH! NO, NOTHING.
LET'S CONTINUE.

YOU SEE, THE POINT P

AT THE COORDINATES

(2, 3, 5) IS THE POINT
AT THE TOP OF A
STICK STANDING AT

(2, 3) ON THE FLOOR

AND HAVING A LENGTH

F 5.

NOW, WHAT DO YOU
THINK THE GRAPH OF
THE TWO-VARIABLE
LINEAR FUNCTION
z=flx,y)=ax+by +c
LOOKS LIKE?

LET'S DRAW
THE GRAPH OF
z=flx,y) =3x+2y +1
AS AN EXAMPLE.

FIRST, WE PLACE A STICK HAVING THE

LENGTHf(1,2)=3x1+2x2+1=8
AT POINT (1, 2) ON THE FLOOR.
IN THE SAME WAY, THE HEIGHT
OF THE GRAPH HAS A VALUE OF
f4,3)=83x4+2x3+1=19

AT POINT (4, 3)

* ALTHOUGH WE SHOULD ACTUALLY WRITE IT AS (4, 3, 0),

WE'LL USE (4, 8) FOR SIMPLICITY.

THE BASICS OF VARIABLE LINEAR FUNCTIONS 185
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WE GET" R'(@) =p'(a) x a + pa) x 1

RIGHT. PRODUCTION
BE

STOPPED AT THE

EXACT MOMENT IT
BECOMES LESS
THAN THE COST
OF PRODUCTION

INCREASE PER UNIT.

IN OTHER WORDS,
PRODUCTION WILL BE STOPPED
WHEN p’(a) x a + p(a) = COST
OF PRODUCTION. WE KNOW
THAT THE FIRST TERM IS
NEGATIVE, 5O THE MARKET
PRICE p(a) |15 GREATER
THAN THE COST.

BUT THE PRICE 15
ACTUALLY GREATER

THAN THE COST
OF PRODUCING AN
ADDITIONAL UNIT WHEN
A MONOPOLISTIC
COMPANY STOPS

PRODUCTION.

THAT'S UNDUE
PRICE-FIXING,
ISNT IT?

YOU ARE RIGHT, BUT YOU
SHOULD TAKE A CLOSER
LOOK. COMPANIES DO
THIS NOT BECAUSE OF
MALICIOUS MOTIVES BUT
BASED ON A RATIONAL
JUDGMENT.

LOOK AT THE
EXPRESSION
AGAIN.

THE PRODUCT RULE OF DIFFERENTIATION 57
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EXERCISES
1. Obtain the Taylor expansion of f(x) = e *at x = 0.

atx=0.

2. Obtain the quadratic approximation of f(x)= L
cos

3. Derive for yourself the formula for the Taylor expansion of f(x) centered
at x = 1, which is given on page 159. In other words, work out what ¢,
must be in the equation:

f(X)=co+c (x-a)+c,(x-a)* +...+c, (x-a)"

178 CHAPTER 5 LET'S LEARN ABOUT TAYLOR EXPANSIONS!
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Sales increase (per unit) when production is increased a little more:
R'(a)=p'(a)a+p(a)
The two terms in the last expression mean the following:

pla) represents the revenue from selling a units

p'(@)a = Rate of price decrease x Amount of production
= A heavy loss due to price decrease influencing all units

WHAT DO YOU

THE MONOPOLY
THINK, NORIKO?

STOPS PRODUCTION,
CONSIDERING BOTH
HOW MUCH IT OBTAINS
BY SELLING ONE MORE s
UNIT AND HOW MUCH -
LOSS IT SUFFERS DUE
TO A PRICE DECREASE.

IF 50O, IT IS NOT DOING
A "BAD” THING BUT IS
JUST SIMPLY ACTING IN
ACCORDANCE WITH A
CAPITALIST PRINCIPLE
OF PROFIT-SEEKING.
THEREFORE, ACCUSING
THE COMPANY OF BEING
MORALLY WRONG 15 OF
NO UsE.

BUT, FOR CONSUMERS
AND SOCIETY, THE
COMPANY'S BEHAVIOR
1S THE CAUSE OF HIGH
PRICES, WHICH 15 NOT
DESIRABLE. THAT'S
WHY MONOPOLIES ARE

PROHIBITED BY LAW.
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&

LET'S LEARN ABOUT
PARTIAL DIFFERENTIATION!
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MR. SEKI, THAT'S GREAT!!
ALL OF SOCIETY'S
PROBLEMS CAN BE SOLVED /
WITH DIFFERENTIATION,
CAN'T THEY?

WHAT ABOUT
LOVE? HOW
DO YOU SOLVE

YOU CAN'T BE SERIOUS.
IT'S IMPOSSIBLE!

ARGHHH!
I HATE
you!!

THE PRODUCT RULE OF DIFFERENTIATION 59
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WHAT ARE MULTIVARIABLE FUNCTIONS?

WHAT??7?

MR. SEKI IS GOING
BACK TO THE MAIN
OFFICE?

WHAT HAPPENED?
WERE YOU
PROMOTED?

180 CHAPTER & LET'S LEARN ABOUT PARTIAL DIFFERENTIATION!
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ASAGAKE TIMES,

SANDA-CHO
OFFICE.

THE NEWSPAPER
WANTS TO ASK YOU
A FEW QUESTIONS

ABOUT THAT ARTICLE
YOU WROTE.
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BUT YOU TOLD ME,
“AN EFFECT OCCURS
BECAUSE IT HAS A
CAUSE.”

YOU'VE BEEN
TEACHING ME
EVERY DAY! I EVEN
HAD NIGHTMARES
ABOUT IT!

CAUSE AND EFFECT...I
REMEMBER THAT. WE
TALKED ABOUT THAT
IN ONE OF OUR FIRST
LESSONS.

IT'S TRUE THAT WE
HAVE BEEN EXPLORING
SIMPLE FUNCTIONS
THAT HAVE A CAUSE

AND AN EFFECT.

HA
RELATIONSHIP CAN

BE EXPRESSED

IN A DIAGRAM

)\ LIKE THIS.

BUT THIS TRANSFER
HAS REMINDED ME THAT
THE WORLD IS NOT SO

SIMPLE, AFTER ALL.

1 GUESS MY TRANSFER
TO THE MAIN OFFICE HAS
BEEN BROUGHT ABOUT AS
A COMBINED RESULT OF
SEVERAL CAUSES.

WHAT ARE MULTIVARIABLE FUNCTIONS? 181
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PROBABILITY 15 LIMITED
ONLY TO UNCERTAIN
PHENOMENA THAT ALLOW
NO INTENTIONALITY.
I'M SORRY FOR BEING
PEDANTIC.

BUT, MR. $EK|, SUPPOSE
THERE 15 A VERY
INNOCENT GIRL...

i
.

WHY DO YOU NEVER
UNDERSTAND ME?

WHAT DOES TAYLOR EXPANSION TELL US? 177
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FORMULAS OF DIFFERENTIATION

FORMULA KEY POINT
Constant i The multiplicative
multipli- {txf(x)} =af(x) constant can be fac-
cation tored out.

x" (Power) (x" )’ il The exponent becomes
the coefficient, reduc-
ing the degree by 1.

The derivative of a
sum is the sum of the
derivatives.

Sum

{F(x)+g(x)f = (x)+g'(x)

Product The sum of the prod-

{F(x)g(x)} =5 (x)g(x)+ £ (x)g'(x) ucts with each func-
tion differentiated in
turn.

_g(x)f(x)-g(x) S (x) squared. The numera-

S(x) tor is the difference
between the products
with only one function
differentiated.

Quotient J }/ The denominator is

Composite 2 v The product of the
functions {g(f(x))} =9 (f(x))_f (x) derivative of the outer
and that of the inner.

Inverse " 1 The derivative of an

functions g'(y)= T inverse function is
the reciprocal of the
original.

EXERCISES

1
1. For natural number n, find the derivative f'(x) of f(x) = —..
X

2. Calculate the extrema of f(x) = x° - 12x.
3. Find the derivative f'(x) of f{x) = (1 — x]3.

4. Calculate the maximum value of g(x) = xz[l - x)3 in the interval 0 <x < 1.
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USING THE MEAN VALUE THEOREM

We saw before that the derivative is the coefficient of x in the approximate
linear function that imitates function f(x) in the vicinity of x = a.
That is,

f(x)=f'(a)(x-a)+ f(a) (when xis very close to a)

But the linear function only “pretends to be” or “imitates” f(x), and for b,
which is near a, we generally have

@ Jf(b)= f(a)(b-a)+f(a)

So, this is not exactly an equation.

\@ FOR THOSE WHO CANNOT STAND FOR THIS, WE
)\; HAVE THE FOLLOWING THEOREM.
&

THEOREM 2-3: THE MEAN VALUE THEOREM

For a, b (a < b), and ¢, which satisfy a < ¢ < b, there exists a
number ¢ that satisfies

f(b)=s'(c)(b-a)+f(a)

In other words, we can make expression @ hold with an equal sign not
with f'(a) but with f'(c), where c is a value existing somewhere between a
and b.”

* That is, there must be a value for x between a and b (which we’ll call ¢) that has a tangent line
matching the slope of a line connecting points A and B.
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Let's draw a line through point A = (a, f(a)) and point B = (b, f(b)) to form
line segment AB.

y=flx)

P B = (b, f(b))

Slope f'(c)

We know the slope is simply Ay / Ax:

® Slope of AB = 7'”!’) S(a)
b-a

Now, move line AB parallel to its initial state as shown in the figure.

The line eventually comes to a point beyond which it separates from the
graph. Denote this point by (c, f(c)).

At this moment, the line is a tangent line, and its slope is f'(c).

Since the line has been moved parallel to the initial state, this slope has
not been changed from slope @.

THEREFORE, WE KNOW

J(b)-s(@)_,
“pa SO

MULTIPLY BOTH SIDES BY THE
DENOMINATOR AND TRANSPOSE
TO GET f(b)=f'(c)(b-a)+ f(a)

USING THE MEAN VALUE THEOREM 73
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USING THE QUOTIENT RULE OF DIFFERENTIATION

9(x)
S(x)

First, we find the derivative of function p(x)= L, which is the

reciprocal of f(x). f(x)
If we know this, we’'ll be able to apply the product rule to h(x).

Let’s find the formula for the derivative of h(x) =

Using simple algebra, we see that f(x) p(x) = 1 always holds.

1= f(x)p(x)={f(a)(x-a) + f (@){p'(a)(x - a) + p(a)}

Since these two are equal, their derivatives must be equal as well.

0=p(x)J'(x)+P'(x) S (x)

Thus, we have p’(x) = —%.
Since p(a) = _f(la)' substituting this for p(a) in the numerator gives
pla)-28).
S(a)
For h(x)= igii in general, we consider h(x) = g(x)xﬁ =g(x)p(x)
and use the product rule and the above formula.
a , ’ L S(x)
h'(x)=g(x)p(x)+g(x)p'(x)=9 (x)——-9g(x =
(5)=9()p(x)+ 9 ()P (x) =9 (S 1590 5

Therefore, we obtain the following formula.

FORMULA 2-6: THE QUOTIENT RULE OF DIFFERENTIATION
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CALCULATING DERIVATIVES OF COMPOSITE FUNCTIONS

Let's obtain the formula for the derivative of h(x) = g(f(x)).
Nearx=a,

J(x)-J(a)=f'(a)(x-a)
And near y = b,
9(y)-9g(b)=g'(b)(y-b)

We now substitute b = fla) and y = f(x) in the last expression.
Nearx =a,

9(f(x))-g(f(a))=g'(f(a))(f(x)-f(a))

Replace f(x) - f(a) in the right side with the right side of the first
expression.

9(f(x)-9(f(a))=9g'(f(a))f (a)(x-a)

Since g( f(x)) = h(x), the coefficient of (x — a) in this expression gives us
h'(a) = g'(fla)) f'(a).

We thus obtain the following formula.

FORMULA 2-7: THE DERIVATIVES OF COMPOSITE FUNCTIONS
R’ (x)=g'(f (%) S (x)

CALCULATING DERIVATIVES OF INVERSE FUNCTIONS

Let's use the above formula to find the formula for the derivative of x = g(y),
the inverse function of y = f(x).

Since x = g( f(x)) for any x, differentiating both sides of this expression
gives 1 = g'(J(x) f'(x).

Thus, 1 = g'(y) f'(x), and we obtain the following formula.

FORMULA 2-8: THE DERIVATIVES OF INVERSE FUNCTIONS

)= L
g(y)ff,(

x)
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SINCE CARBON DIOXIDE IN
CARBONATED DRINKS, SUCH AS
BEER, IS5 SUPERSATURATED, IT 1S
MORE STABLE AS A GAS THAN
WHEN IT IS DISSOLVED IN FLUID.

50, THE ENERGY OF
A BUBBLE DECREASES
IN PROPORTION TO

4 TS5 VOLUME
(=nr®, WITH r BEING THE
RADIUS).

4
PLEASURE!

O ON THE OTHER HAND, SURFACE
GAS (BUBBLE) TENSION ACTS ON THE BOUNDARY
SURFACE BETWEEN THE BUBBLE
AND THE FLUID, TRYING TO

REDUCE THE SURFACE AREA.
FLUID

T

URfce TendloN fcTo THEREFORE, THE ENERGY OF

° THE BUBBLE DUE TO THIS FORCE
INCREASES IN PROPORTION TO
THE SURFACE AREA, 4nr?.

CONSIDERING THESE
TWO EFFECTS, THE
ENERGY E(r) OF A

BUBBLE OF RADIUS r

CAN BE EXPRESSED

SURFACE
VOLUME AREA

OF A OF A
SPHERE SPHERE
E(r)= —a[%nr“ j +b(4nr?)

| NS ) SE—
TERM TERM

FORTHE  FOR THE
VOLUME AREA
AS SHOWN HERE.
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THE BUBBLE TRIES TO
REDUCE ITS ENERGY AS
MUCH AS POSSIBLE. IF
WE FIND OUT HOW E(r)
BEHAVES TO REDUCE
ITSELF, WE WILL SOLVE
THE MYSTERY OF BEER
BUBBLES.

il
I

1 SEE.
IMPRESSIVE,
FUTOSHI!

TO SIMPLIFY THE PROBLEM,
LET'S ASSUME a AND b
ARE 1 AND CHANGE THE

VALUE OF r SO THAT
E(r)=-1° + 3r’ THAT IS
ENOUGH TO SEE THE
GENERAL SHAPE OF E(r).

PLY MULTIPLIED EACH TERM BY 3/(4x).

* THIS IS CALLED NORMALIZING A VARIABLE. WE'VE SIMI

FIRST, LET'S
FIND THE
EXTREMUM,

4

SINC?
E/(r):(—rj) +(3r2)
=-3r* +6r
=-8r(r-2)

WHEN r=2, E'(=0,
FORO<r<2(E'(r)>0), THE
FUNCTION 1S INCREASING, AND
FOR 2 < r, THE FUNCTION 15
DECREASING (E'(r) < 0).
50, WE FIND E(r) 15 AT ITS
MAXIMUM POINT P WHEN r = 2.

NOW WE KNOW THAT THE
GRAPH OF E(r) LOOKS LIKE
THIS. THIS GRAPH TELLS US
THAT THE BUBBLES BEHAVE
DIFFERENTLY ON THE TWO

SIDES OF MAXIMUM P.

E(r)

FINDING MAXIMA AND MINIMA &9
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A BUBBLE THAT HAS THE RADIUS
AND ENERGY OF POINT M
SHOULD REDUCE ITS RADIUS
UNTIL IT 1S5 SMALLER THAN m TO
MAKE |ITS ENERGY E(r) SMALLER.

THE BUBBLE WILL CONTINUE
TO BECOME SMALLER UNTIL
IT FINALLY DISAPPEARS,

ON THE OTHER HAND, A BUBBLE
THAT HAS THE RADIUS AND
ENERGY OF POINT N SHOULD
INCREASE ITS RADIUS TO MAKE
ITS ENERGY E(r) SMALLER. THE
BUBBLE WILL CONTINUE TO
GROW LARGER AND TO RISE
UP INSIDE THE BEER.

<— The bubble
becomes smaller

The bubble —»
becomes larger

N..NORIKO!
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DON'T BRING

UP GRAPHS AND SAiPél{TBl'lel’é 5
THEOREMS IN FRONT e

YEOW! YOU BEHAVE
TOTALLY DIFFERENTLY
OUTSIDE OF THE
OFFICE!

SHE SEEMS TO
HAVE REACHED
HER MAXIMUM,

FINDING MAXIMA AND MINIMA 71
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DELICIOUS! DRAFT
BEER 1S THE BEST
BEER!

ARE TWO TYPES OF BEER
BUBBLES. RELATIVELY
SMALL ONES THAT BECOME
EVEN SMALLER AND
FINALLY DISAPPEAR...

AND RELATIVELY LARGE
ONES THAT QUICKLY BECOME
LARGER, RISE UP TO THE
SURFACE, AND POP THERE.
NOW, EXPLAIN WHY THIS
HAPPENS!

FINDING MAXIMA AND MINIMA &7
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HOW CAN YOU BE
HAPPY TUCKED AWAY IN
OUR BRANCH OFFICE?

- ol 6
iy e,

NO MORE 7

YOUR WRITING  {f || ALCOHOL

HAS BecoMme 50 \{| |

FOR HER.
INCONSEQUENTIAL! )\ \

1 WONDER WHAT
THE PROBABILITY K
15 OF ME EVER b
BECOMING A TOP- 4
NOTCH JOURNALIST
LIKE THOSE
PEOPLE IN THE
pUB.

IF ALL YOU'RE WORRIED
ABOUT IS THE PROBABILITY
OF BECOMING GREAT,
YOU WON'T BECOME
ANYTHING. YOU WON'T GET
ANYWHERE BY WAITING.
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Criminal Charges
Brought Against
Megatrox

Construction Contract
Violates Antitrust Laws

L

NIAI

WOW! MEGATROX 15 A
HUGE COMPANY!

THIS 1S5 A GREAT |
SCOOP, ISN'T IT? |
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ALTHOUGH THEY WERE \/'——\ THEY JUST KEEP DOING

WHAT THEY WANT TO DO.
CHATHN?HQB@%EH alkLy THEY ARE ALL MAKING NONE OF THEM WOULD EVER
DESPERATE EFFORTS IN SURRENDER THEMSELVES TO
THEIR WORK. THEIR FATE. AND T WOULDN'T,
EITHER.

DROOPED

OH, SPEAKING OF WHATZ NO WAY! OF COURSE! I'M YOUR
PROBABILITY! WE'RE GOING TO TEACHER, AND YOU ARE
STUDY NOW? A PRECIOUS ASSET.
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1 5UPPOSE YOU
WANT TO WRITE A BIG
STORY SOMEDAY?

OF COURSE!

YOU TWO MUST
HAVE GOT SOME
REALLY EXCITING

SCOOPS WHEN YOU
WERE AT THE MAIN
OFFICE. TELL ME!

1 OFTEN FAILED TO
REPORT BIG NEWS. T
HAVE ALSO WRITTEN A
LETTER OF APOLOGY
FOR INCLUDING FALSE

INFORMATION IN MY
REPORTING.

THAT'S
NOTHING TO
BE PROUD
OF!

I UNDERSTAND THAT
YOU HAVE HIGH
EXPECTATIONS

FOR NEWSPAPER

JOURNALISM, BUT THE

BASICS ARE MOST

IMPORTANT.

NORIKO WANTS A SCOOP!

45
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WHEN WE ANALYZE
UNCERTAIN THINGS USING
PROBABILITY, WE MOST
FREQUENTLY USE THE
NORMAL DISTRIBUTION.

THIS DISTRIBUTION
1S DESCRIBED BY A
PROBABILITY DENSITY
FUNCTION THAT 15
PROPORTIONAL TO

f(x)=e b

AFTER SCALING. THE GRAPH
OF f(x) 1S SYMMETRICAL
ABOUT THE Y-AXIS, AS
SHOWN IN THIS FIGURE, AND
IT LOOKS LIKE A BELL.

SORRY. HE'S GOING
TO BE WRITING A
LOT. CAN YOU GIVE
US SOME MORE
COASTERS?

IN FINANCIAL CIRCLES,
THE EARNING RATES OF
STOCKS ARE BELIEVED
TO HAVE A NORMAL
DISTRIBUTION.

MANY PHENOMENA
HAVE THIS FORM OF
DISTRIBUTION. FOR
EXAMPLE, THE HEIGHTS
OF HUMANS OR ANIMALS
TYPICALLY HAVE THIS
DISTRIBUTION.
SOME STUDENT GRADING
HAS BEEN BASED ON A
NORMAL DISTRIBUTION
BECAUSE EXAM RESULTS
ARE OFTEN EXPECTED TO

MEASUREMENT
FALL IN SUCH A WAY.

ERRORS, TOO.
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CLEARLY—DON'T USE BIG
WORDS OR JARGON.

WRITE SIMPLY AND

DON'T FORGET
ABOUT THE
READERS ON
MAIN STREET.

ALSO, DON'T PRETEND TO
KNOW EVERYTHING. IF YOU
COME ACROSS ANYTHING

YOU DONT KNOW, ALWAYS
ASK SOMEONE OR cHeck ' U1OoH! 15 STILL
IT OUT YOURSELF.

YOUNG, BUT
HIS ABILITY TO
INVESTIGATE 1S
EXCEPTIONALLY

I DON'T PRETEND TO
KNOW EVERYTHING!

7

BY THE WAY,

WHAT IS THE ANTITRUST

LAW FOR?
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CALCULATING THE DERIVATIVE

Let’s find the imitating linear function g(x) = kx + L of function f(x) at x = a.
We need to find slope k.

0 g(x)=k(x-a)+f(a) (g(x) coincides with f(a) when x = a.)

Now, let’s calculate the relative error when x changes from x = a to
x=a+es.

Difference between fand g after x has changed
Relative error =

Change of x from x=a

Sfla+e)-gla+e)
£

g(a+e)=k(a+ec-a)+ f(a)
Sfla+e)-(ke+ f(a)) =ke+ f(a)

When ¢ approaches 0,
the relative error also
approaches 0.

kzli{xﬂlw \{ f(a+¢)- f(a) approaches k

e when ¢ = 0.

(The lim notation expresses the operation that obtains the value when ¢
approaches 0.)

Linear function @, or g(x), with this k, is an approximate function of f(x).

k is called the differential coefficient of f(x) at x = a.

. Sfla+e)-f(a) Slope of the line tangent to y = f(x) at
lim—————~ 5
0 & any point (a, f(a)).

We make symbol f’ by attaching a prime to f.

.\ v fla+s)-f(a)  fla) is the slope of the line tangent to
S}l 5 y=fxatx=a.

Letter a can be replaced with x.
Since f’ can been seen as a function of x, it is called “the function
derived from function f,” or the derivative of function f.

CALCULATING THE DERIVATIVE 39
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[11 TAYLOR EXPANSION OF A SQUARE ROOT
'
We set f(x)=v1+x=(1+x)

Thus, from f’(x)= %(1 + x)’;

V+x=1+= xflx +ix
8 16

[31 TAYLOR EXPANSION OF LOGARITHMIC
FUNCTION 1n (1 + x)

We set f(x)=In(x+1)

J'(x)= R =(1+x)"

F(x) =~ x)", 5 (x) =

i (x)=-6 1+x)
(0)

2(1+x)°,

£(0)=0,5(0)=1,f7(0)=-1, ¥ (0)=2
f{ér 0 ==31,.

Thus, we have

In(l+x)=
0+x-Lx2 s Luore Loty
2 3! 4
In(l+x)=
x=Lgmy Lo Lo, +( 1)"’ll "t
3 n

TAYLOR EXPANSION OF VARIOUS FUNCTIONS

[2] TAYLOR E)(PANSION OF EXPONENTIAL
FUNCTION €

If we set f(x)=e*

J(x)=e€* f"(x) =€ f"(x)=

So, from
. 1 1 1 1
ef=l+—x+—x"+—x*+—x"+..
1! 2! 3! 4!
+ix"+‘..
n!

Substituting x = 1, we get

1.1 1 1 1
e=l+ —t—+—Fdut
1! 2! 3! 4! n!

IN CHAPTER 4, WE LEARNED THAT e IS
ABOUT 2.7. HERE, WE HAVE OBTAINED THE
EXPRESSION TO CALCULATE IT EXACTLY.

[4] TAYLOR EXPANSION OF TRIGONOMETRIC
FUNCTIONS

We set f(x) = cos x.

S'(x)=-sinx, f'(x)=-cosx, £ (x)

=sinx, f* (x)=cosx,...

1 : 8 4
cosx=1+0x-—xIxx’+—x0xx®+—xIxx*+..
21 3! 4!

1 1
cosx=1-—x"+—x*+..+

S1) X
21" Tt 1) A

(2n)!

Similarly,

sinx=x-sxt bty +ot (-1 S
31™ "5t (2n-1)1
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CALCULATING THE DERIVATIVE OF A CONSTANT, LINEAR, OR QUADRATIC
FUNCTION

1. Let’s find the derivative of constant function f(x) = «. The differential
coefficient of f(x) at x = a is

lim

=

=1lim

£ P

Jlare)-s(a) _ppo-a_pio-o
: at

Thus, the derivative of f(x) is f'(x) = 0. This makes sense, since our
function is constant—the rate of change is 0.

NoTe The differential coefficient of f(x) at x = a is often simply called the
derivative of f(x) at x = a, or just f(a).

2. Let's calculate the derivative of linear function f(x) = ax + p. The deriva-
tive of f(x) at x = a is

a(a+e)+p-(aa+p)

1imf(a+8)_f(a):lim =lima =a

550 & 50 & 50

Thus, the derivative of f(x) is f'(x) = a, a constant value. This result
should also be intuitive—linear functions have a constant rate of change
by definition.

3. Let’s find the derivative of f(x) = x?, which appeared in the story. The dif-
ferential coefficient of f(x) at x = a is

s 2 _aq? B
y O EIAIIE) _y QAREY O .., S =lim(2a +¢)=2a
P

5550 £ =) & £-0

Thus, the differential coefficient of f(x) at x = a is 2a, or f'(a) = 2a.
Therefore, the derivative of f(x) is f'(x) = 2x.

SUMMARY

* The calculation of a limit that appears in calculus is simply a formula
calculating an error.

* Alimit is used to obtain a derivative.
+ The derivative is the slope of the tangent line at a given point.
* The derivative is nothing but the rate of change.

40 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!
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WHAT DOES TAYLOR EXPANSION TELL US?

TAYLOR EXPANSION REPLACES COMPLICATED FUNCTIONS
WITH POLYNOMIALS. CAN YOU DRAW THE GRAPH OF,
FOR EXAMPLE, In (1 + x)?

AFTER ALL, IT 1S NECESSARY TO APPROXIMATE OR IMITATE
FUNCTIONS TO UNCOVER THEIR COMPLICATED WORLD, ISN'T IT?

LET'S UsE ln(1+x)=xf%x2 +%x3 7ix‘ +... , AN EXAMPLE GIVEN

ABOVE, TO SEE WHAT WE CAN GAIN FROM A TAYLOR EXPANSION,

1 Linear approx. I—3 Cubic approx.
1 1

1
In(1+x)=0+x-=x+=x>-=x* +...
e 2 3 4
Oth degree
approx. 2 Quadratic approx.

FIRST, Oth-DEGREE APPROXIMATION. In (1 + x) ~ 0 NEAR
x = 0. WHAT DOES THIS MEAN?

AH, WELL...IT MEANS THAT THE VALUE OF f(x) IS 0 AT x = 0 AND
IT PASSES THROUGH POINT (0, 0).

THAT'S RIGHT. NEXT IS LINEAR
APPROXIMATION. YOU SEE THAT y = f(x)
ROUGHLY RESEMBLES y = x NEAR

x = 0% 50, THIS MEANS THAT THE .
FUNCTION 15 INCREASING AT x = 0. [
(NOTE: THE EQUATION OF A TANGENT | 4
LINE = LINEAR APPROXIMATION.)

WHAT DOES TAYLOR EXPANSION TELL U527 161





OPS/images/055.jpg
The derivative of f(x) at x = a is calculated by

limf(a+s)—f(a)

= &

g(x) = fa) (x — a) + fla) is then the approximate linear function of f(x).

J'(x), which expresses the slope of the line tangent to f(x) at the point
(x, f(x)), is called the derivative of f(x), because it is derived from f(x).

Other than f'(x), the following symbols are also used to denote the
derivative of y = f(x).

L dy df d
g, 4 & d

2 dxﬂx]

EXERCISES

. We have function f(x) and linear function g(x) = 8x + 10. It is known
that the relative error of the two functions approaches O when x
approaches 5.

A Obtain f(5).
B. Obtain f/5).

2. For flx) = x3, obtain its derivative f'(x).

EXERCISES 41
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WE'LL NOW TAKE ONE
MORE STEP TO QUADRATIC
APPROXIMATION. LET'S
CONSIDER THE GRAPH OF -1

1
In(1+x)=x-=x*
n(1+x)=x 2x

AROUND x = 0. NORIKO,
WHAT DOES THIS MEAN?

H

THIS MEANS THAT y = f(x) ROUGHLY RESEMBLES y = x —lx2

NEAR x = 0 AND ITS GRAPH IS CONCAVE DOWN 2

AT x = 0. (QUADRATIC APPROXIMATION ALLOWS US TO
FIND HOW IT IS CURVED AT x=a.)

LET'S USE CUBIC
APPROXIMATION AS THE
LAST PUSH! NEAR x = 0,

/ ln(l+x)=x—lx’+lx3
W 2 3
~

/

(CUBIC APPROXIMATION
FURTHER CORRECTS THE
ERROR IN QUADRATIC
APPROXIMATION.)

NOW, MR. SEK|,
ON TO THE NEXT BAR!
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WE SHOULD HAVE
JUST COME HERE
IN THE FIRST

THIS 1S BETTER! WE
CAN TALK MORE
QUIETLY AT THIS

HOTEL BAR.

YOU COULD HAVE
TALKED MORE
WITH THE GUYS

AT THAT pPUB.

WELL, THEY ALL SEEMED
BRILLIANT. I FELT...I WOULD
SAY, SOMEWHAT INFERIOR.

50 WHAT'S YOUR
DEAL, MR. SEKI?

ALL OF THOSE

PEOPLE ARE BUT, I COULD
FAMOUS— IMMEDIATELY
THEY'VE ALL WON TELL THAT THEY
JOURNALISTIC RESPECTED YOU.
PRIZES.

WHAT DOES TAYLOR EXPANSION TELL US7 163
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WE'RE DONE
WITH OUR WORK.

YOU KNOW,

DRINKING WITH
YOUR COLLEAGUES 50, SHALL We
AFTER WORK, GO OUT FOR A

>

TALKING ABOUT DRINK?

SUCCESS STORIES...

OKAY,
LET'S GO.

HEADLINER'S PUB
(OPEN 24 HOURS)
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@w@? BUT YOU
SAID HE WAS

OH, IT WAS FUTOSHI. oE e WES
n I DIDN'T YOU?

HE /5 A HIGH-

YOU'RE e
KIPDING! JOURNALIST.

AS 1 EXPECTED..SOLVING
MATH PROBLEMS HAS
NOTHING TO PO WITH

BEING A HIGH-POWERED

JOURNALIST.

THE DERIVATIVE IN ACTION! 37
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NIcE
ATMOSPHERE,
ISNT IT?

AH, YES. ARE ALL
THESE PEOPLE
JOURNALISTS?

AND THAT'S MR. NAKATA,
A HEAVYWEIGHT IN THE
DESIGNERS' CIRCLE.

LOOK, THAT'S ISHIZUKA,
THE PHOTOGRAPHER
WHO 15 THE YOUNGEST
WINNER OF THE JAPAN
PHOTOGRAPHIC PRIZE.

THE GUYS OVER
\{ THERE ARE FROM THE
\ SANDPA CITY POST.

HEY, CALCULUS, LETS SEE. 1

NICKNAME! BUT,
LONG TIME NO ] HOPE T CAN
SEE. JOIN US., T CERTAINLY LISTEN TO THEIR
PROFESSIONAL
DISCUSSION.

MAYBE 1
SHOULD THINK

IT'S JUST MIDDLE-
AGED MEN'S TALK!

BITTERMAN
GOT DIABETES ABOUT GETTING THIS 1S USELESS.
RECENTLY. A MEDICAL — ¥

CHECKUP
SOON.
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THIS 15 ABSURD!
1 WON'T GIVE UP!

54

0\ LUNCHTIME 15 OVER.
LETS FIX THE CARY

FUTOSH, LIFT THE I DON'T THINK
CAR UP MORE! THIS HAS
YOU'RE A HIGH- ANYTHING TO DO

POWERED BRANCH- WITH BEING A

OFFICE JOURNALIST,
AREN'T YOU?

JOURNALIST....

38 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!





OPS/images/173.jpg
FORMULA 5-2: THE FORMULA OF TAYLOR EXPANSION
If f(x) has a Taylor expansion about x = 0, it is given by
F(x)= £(0)+ L £(0)x+ L 57(0)x* + L £7(0)x° +.ct L £ (0)x" +
1! 2! 3! Tnt
For the above,
f(0) Oth-degree constant term  a, = f(0)
F(0)x 1st-degree term a, = f/(0)
T 1.,
af (0)x* 2nd-degree term a, —Ef (0)
1 4 ; 1.
af (0)x° 3rd-degree term a, = g_f (0)

For the moment, we forget about the conditions for having Taylor expansion
and the circle of convergence.
Using this formula, we check @ on page 153.

N SPTS SN SR S R
g W e s
£(0)=1,f(0)=1, f/(0)=2, f7(0) =6,..., f7 (0)=n!

Thus, we have
f(")=f(O)+%f’(°)"+%f”(0)x2 +%f’(0)xs Fant %f"‘) (0)x™ +...
1o, .. 1, 1,

:1+X+EX2X +a><6x +...+En!x W ma THEY

=1+x+x? +2° +o. X"+ COINCIDE!

THE FORMULA ABOVE IS FOR AN INFINITE-DEGREE POLYNOMIAL THAT COINCIDES WITH
THE ORIGINAL NEAR x = 0. THE FORMULA FOR A POLYNOMIAL THAT COINCIDES NEAR x = a
15 GENERALLY GIVEN AS FOLLOWS. TRY THE EXERCISE ON PAGE 178 TO CHECK THIS!

-/

£(x)=5(@)+ ;S (@) (x-a) + 3 5"(a)(x - a)
1 3 1

+§f"(a)(x—a) Fout Ef"‘" (a){(x-a)" +...

( TAYLOR EXPANSION 15 A SUPERIOR IMITATING FUNCTION.

HOW TO OBTAIN A TAYLOR EXPANSION 159
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NOW, I WILL USE
DIFFERENTIATION
TO EXPLAIN WHY A
MONOPOLY SHOULD
NOT BE ALLOWED.

HOW PO You
SOLVE A SOCIAL
PROBLEM USING
DIFFERENTIATION?

ISN'T IT RATHER
: AN 155U OF
.\ MORALITY, JUSTICE,

AND TRUTH?

LET'S LOOK AT THE
WORLD IN A MORE
BUSINESSLIKE

A MARKET WHERE MANY
COMPANIES SUPPLY
PRODUCTS THAT CANNOT
BE DISCRIMINATED
BETWEEN |5 CALLED “A
PERFECTLY COMPETITIVE

PERFECTLY
COMPETITIVE MARKET

LET'S SEE...
VIDEO RENTAL
SHOPS?

THAT'S RIGHT.” COMPANIES
IN A PERFECTLY
COMPETITIVE MARKET
ACCEPT THE COMMOPDITY
PRICE DETERMINED BY THE
MARKET AND CONTINUE
TO PROPUCE AND SUPPLY
THEIR PRODUCT AS LONG
AS THEY MAKE PROFITS.

* IN REALITY, THERE ARE USUALLY BIG-NAME BRANDS FOR ANY COMMODITY.
54 CHAPTER 2 THERE ARE FAMOUS CHAIN SHOPS IN THE VIDEO RENTAL MARKET—NO MARKET CAN
BE A PERFECTLY COMPETITIVE ONE, 50 THIS 15 A FICTITIOUS, IDEAL SITUATION.
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SINCE WE NOW KNOW

T,
lnhn(x)=—%z’, WE GET h,, (x):—e 2,

THAT'S IT!

IF YOU ARE AFRAID THAT THE HIGHER-DEGREE TERMS OF
x® AND MORE THAT APPEAR IN THE TAYLOR EXPANSION
OF In MIGHT AFFECT THE SHAPE OF h,(x) (n: LARGE
ENOUGH), ACTUALLY CALCULATE h,(x), USING

1n(1+t):t—lt2 +lt3
2 3

YOU WILL FIND THAT THE TERM OF z* HAS n IN THE
DENOMINATOR OF ITS COEFFICIENT AND CONVERGES TO
ZERO, OR DISAPPEARS, WHEN n — .

AS FOR THE NORMAL
DISTRIBUTIONS, CAN WE
APPLY THEM TO THINGS

OTHER THAN COIN
FLIPPING?
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IF THE COST OF
PRODUCING ONE MORE

SUPPOSE, FOR EXAMPLE, A COMPANY UNIT IS 10,000, THE
PRODUCING CD PLAYERS WHOSE COMPANY WILL SURELY
MARKET PRICE |5 ¥12,000 PER UNIT INCREASE PRODUCTION,
CONSIDERS WHETHER OR NOT IT BECAUSE IT WILL MAKE

WILL INCREASE PROPUCTION VOLUME.

MORE PROFIT.

>~ SINCE MANY

/" OTHER COMPANIES
PRODUCE THE SAME

KIND OF PRODUCT, THE
COMPANY BELIEVES
THAT ITS INCREASE IN

PRODUCTION WILL CAUSE

THE PRICE TO DECREASE.

50 THE COMPANY WILL CONSIDER
MAKING ADDITIONAL UNITS. BUT THE IN SHORT, THE MARKET
COST OF MAKING ONE MORE UNIT STABILIZES WHEN THE
CHANGES, AND THE COMPANY'S MARKET PRICE OF
FEOOUGTION BETichaicy WLk THE UNIT EQUALS THE
CHANGE. EVENTUALLY, THE COST
OF MAKING ONE MORE UNIT €0-T OF PRODLCING

WILL REACH THE MARKET PRICE ANOTHER UNIT.
OF ¥12,000. AT THAT POINT, AN
INCREASE IN PRODUCTION WOULD :
NOT BE WORTH THE COST. “ UH-HUH

ON THE OTHER HAND, THE
STORY |5 DIFFERENT IN A
MONOPOLY MARKET, WHERE
ONLY ONE COMPANY SUPPLIES
A PARTICULAR PRODUCT. THEN

JUST ONE COMPANY IS THE
ENTIRE MARKET.

WHEN YOU LOOK
AT THE MARKET
AS A WHOLE, AN
INCREASE IN SUPPLY
WILL CAUSE THE
PRICE TO GO DOWN.
THAT'S JUST SUPPLY
AND DEMAND.

L

\!
MONOPOLY \

MARKET
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IT's oUT
OF THE
QUESTION!

ARE YOU THINKING
ABOUT APPLYING OUR
STUDIES TO LOVE AGAINT

PROBABILITY CAN ONLY

APPLY WHEN PHENOMENA
ARE UNINTENTIONAL AND
PURELY RANDOM.

HOW ABOUT IN
THE CASE OF
UNINTENTIONAL AND
PURE LOVE?

LISTEN! IF WE DARE TO
ASSUME VERY ROUGHLY THAT
THE WAY TWO PEOPLE FALL IN
LOVE 15 SOMETHING LIKE THE
COMBINATION OF THE RESULTS

OF FLIPPING AN INFINITE

NUMBER OF COINS...

WELL, SINCE WE
HAVE FOUND THAT
THE DISTRIBUTION
OF THE RESULTS OF
COIN FLIPPING 15
APPROXIMATELY A
NORMAL DISTRIBUTION,
IT WOULD NOT BE
SURPRISING IF A
NORMAL DISTRIBUTION
COULD BE CALCULATED
FOR LOVE.

REALLY?
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BY THE WAY, p’(x), WHICH

NOW, LET'S ASSUME
WE KNOW THAT THE
PRICE THAT ALLOWS
THE COMPANY TO SELL
EVERY UNIT SUPPLIED
IN QUANTITY x 1S p(x),
A FUNCTION OF x.

EXPRESSES THE CHANGE

IN PRICE, 1S NEGATIVE
BECAUSE THE UNIT'S
PRICE DECREASES IF
x 15 INCREASED.

THAT'S RIGHT.
THE COMPANY'S
REVENUE FROM THIS
PRODUCT 15 GIVEN
BY THIS...

SQUEAK
SQUEAK

Revenue = R(x) = price x quantity = p(x) x

THIS SHOWS
US THAT THE
ADDITIONAL REVENUE
FROM AN INCREASE
IN PRODUCTION 1S
R'(a) PER UNIT.

FORMULA 2-3:

THE COMPANY'S REVENUE
Since R(x) = R'(a)(x-a)+R(a)
we know that

R(x)-R(a)=R'(a)(x-a)

CHANGE IN CHANGE IN
REVENUE PRODUCTION
VOLUME

s

YOU'RE RIGHT. SINCE
R(x) = p(x) x x,
REMEMBER THAT
PRODUCT RULE OF
DIFFERENTIATION.

1 GET IT! THE COMPANY
NEEDS TO CALCULATE THIS
TO DECIDE WHETHER TO
INCREASE PRODUCTION,
WHILE COMPARING IT
AGAINST THE COS5TS OF
PRODUCING THE UNITS.

I THINK T
REMEMBER...

56 CHAPTER 2 LET'S LEARN DIFFERENTIATION TECHNIQUES!
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SUPPOSE THE
DISTANCE HE WALKED
IN x MINUTES FROM
THE REFERENCE POINT
0 15 f(x) METERS.

J

a MINUTES LATER,
HE 15 AT POINT A.

SUPPOSE x MINUTES
LATER, HE 15 AT
POINT P.

O<
o A

THIS MEANS THAT HE
TRAVELED FROM A TO P
IN (x — a) MINUTES.

THAT'S RIGHT.
BUT DOES
IT MEAN
ANYTHING?

SHORT.

THIS CAN BE
CHANGED
INTO...

MR. SEKI, THE
SUPPOSE THIS LEFT SIDE OF
TRAVEL TIME THS EGUATION 15
x-a) 5 - (@) (x DISTANCE TRAVELED
EXTREMELY S()=s(a)(x-a)+ f(a) DIVIDED BY TRAVEL

TIME. 50, 15 THIS
THE SPEED?

EXACTLY! 50,
f'la) REPRESENTS
FUTOSHI'S SPEED
WHEN HE PASSES

POINT A.

50 CHAPTER 2 LET'S LEARN DIFFERENTIATION TECHNIQUES!
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IN OTHER

IN THIS WAY, WE
WORDS, n R CHANGE THE VARIABLE.
THE NEW ONE, z, 15 THE
= =+ 5K 1 — x= NUMBER OF STANDARD
DEVIATIONS AWAY
FROM THE CENTER.

[N

n Jn__
WE SET ot g F5%

AND SUBSTITUTE z IN h,,.

I
S|

N
W B

N.\ =2
~N

N

ol

WE TAKE A In OF
EACH SIDE.

NOW WE NEED

TO CALCULATE
THIS, BUT SHALL
WE MOVE ON TO
THE NEXT BAR?

* WE USE

Inab=Ina+Inb

lnizlnd~1nc
c
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THAT MEANS THAT TO
DIFFERENTIATE 1S TO FIND
THE SPEED WHEN f(x) 15 A
FUNCTION EXPRESSING THE
DISTANCE!

THAT'S RIGHT. 50, IF
h(x) = flx) + g(x), THEN
R'(x) = f'(x) + g'(x)
MEANS THE
FOLLOWING.

THIS TIME, LET HIM
WALK ON A MOVING
WALKWAY, LIKE YOU

MIGHT SEE AT AN
AIRPORT.

TRAVELS g(x) METERS
IN x MINUTES

THE MOVING WALKWAY MOVES
flx) METERS IN x MINUTES.
WHEN MEASURED ON THE
WALKWAY, FUTOSHI TRAVELS
g(x) METERS IN x MINUTES.

MOVES f(x) METERS
= IN x MINUTES

50 THE TOTAL
DISTANCE FUTOSHI
TRAVELS IN x
MINUTES BECOMES
h(x) = flx) + g(x).

THE SUM RULE OF DIFFERENTIATION 51
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THANK YOU. T THINK

WE'RE DONE. STHERE ARE ONLYA -
" Few LerT

I 6UESS I SHOULD
BE HAPPY I STILL
HAVE SOME...

Approximating In (m!) Area=Inm
y=Inx

Inm!=Inl1+In2+In8+...+1lnm

If we pack rectangles in the

h of In x, he here, t
graph of In x, as shown here, we ge Hves =45
i In m
ln2+...+lnm=J.l In xdx

(xlnx—x)' :1nx+xxl—1:1nx
X

m-1m

Thus,
j] Inxdx = (mlnm-m)-(1ln1-1)
=mlnm-m+1
Since we will use this where m is very large, m In m is the important term.

-m + 1 is much smaller, so we'll ignore it. Therefore, we can consider roughly
thatln m!=m In m.
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IT MEANS FUTOSHI'S TRAVEL

THEN, WHAT DOES SPEED, AS SEEN FROM
h'(x) = f'(x) + g'(x) SOMEONE NOT ON THE WALKWAY,
MEAN? 1S THE SUM OF HIS SPEED ON

THE WALKWAY AND THE SPEED
OF THE WALKWAY ITSELF,
DOESN'T IT?

BE PATIENT
BUT, IT'S NOT SO FOR A LITTLE
SURPRISING, 15 WHILE LONGER,
IT? DOES THIS GRASSHOPPER.

1 TOLD YOU THAT
THE BASICS ARE
IMPORTANT.

HAVE ANYTHING
TO DO WITH THE
ANTITRUST LAW?

THE NEXT RULE 15
ALSO FUNDAMENTAL,
50 REMEMBER THIS
ONE, TOO.

52 CHAPTER 2 LET'S LEARN DIFFERENTIATION TECHNIQUES!
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WELL, LET'S JUST FINISH
THIS HERE! IF WE USE
Inm!'~mlnm
(5EE THE PREVIOUS

AHHHH!

Jn
L
2

WE USED, E.6., 1.1(% +

NOW, LET'S USE A
TAYLOR EXPANSION,
WHICH YOU'VE BEEN
WAITING FOR.

WAITING

I HAVEN'T BEEN

FORIT.

JUST TAKE

WHAT DOES TAYLOR EXPANSION TELL U527 173
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THE PRODUCT RULE OF DIFFERENTIATION

FORMULA 2-2:
ONLY ONE
THE PRODUCT RULE OF DIFFERENTIATION FUNCTION?

For  h(x)=f(x)g(x)
W (x)=S"(x)g(x)+ £ (x)g'(x)
The derivative of a product is the sum

of the products with only one function
differentiated.

YES. LET'S
CONSIDER x = a.

h(x)=f(x)g(x)=k(x-a)+1
R(x)={J (a)(x~a)+ S (@)} <{g'(a) (x~a) + g (a)}
%)= 1 (@)g (@)(x~a)' + S (a)g'(a) (x~a)+ S () (x ~@)9 (@) + f(a) 9 ()

(x-a)ls ASMALL
CHANGE. THAT MEANS
(x - a)® 15 VERY, VERY
SMALL. SINCE WE ARE
APPROXIMATING, WE CAN
THROW THAT TERM OUT.

h(x) (S (@9(a) + S(@)9 (@)} (x )+ (@)3(a)
k= riejalahe () WE GET THIS.

THE PRODUCT RULE OF DIFFERENTIATION 53
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WHEN t IS
CLOSE TO
ZERO,

1
NOW, n  Jn IS VERY
CLOSE TO ZERO IF n 1S
LARGE ENOUGH.

n(+t)~t-2t ||,
n  ALSO IS THEREFORE

r. || Bs cLose as we want
(QUADRATIC ~ || 10 zero For FixeD =.
APPROXIMATION)" &.

* S5EE PAGE 161.

THEREFORE,

fohyor-(8-Ealfe ke B Re-£i)
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50 YOU CAN Yas.HwaH DON'T KEOW
UNDERSTAND, I DONT TAKE ME WHICH SIDE WILL

WILL SHOW YOU, FOR A FOOL. APPEAR. BUT WE DO

USING A TAYLOR 75 %, KNOW THE CHANCES

OF A PARTICULAR SIDE
IS1IN 2,

EXPANSION,
THAT FLIPPING
COINS FOLLOWS
A NORMAL
DISTRIBUTION.
WHAT'S THE
PROBABILITY OF
A COIN SHOWING
HEADS WHEN
FLIPPED?

THE GRAPH ON TOP SHOWS
THE PROBABILITY OF GETTING
HEADS WHEN 20 COINS ARE
FLIPPED AT ONCE, PLOTTED
WITH THE NUMBER OF HEADS
ON THE HORIZONTAL AXIS
AND THE PROBABILITY ON THE
VERTICAL AXIS.

1 3 5 7 9 11131517 19

The number of heads when
20 coins are flipped at once
(binomial distribution)

OH, IT LOOKS LIKE
THE LOWER GRAPH.

/

-4 -3 -2 -1 0 1 2

YES, IT OVERLAPS
WITH THE GRAPH
OF A NORMAL
DISTRIBUTION
ALMOST PERFECTLY.

3 4

Standard normal distribution
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WELL, YOU KNOW THAT
THE FEDERAL TRADE
COMMISSION KEEPS AN
EYE ON COMPANIES TO

SEE IF THEY DO ANYTHING

THAT HINDERS FREE

COMPETITION,

DON'T YOU?

DoUBTFUL

COMPANIES AND STORES
ARE ALWAYS TRYING TO
SUPPLY CONSUMERS WITH
BETTER MERCHANDISE AT
LOWER PRICES.

THE RESULT OF THEIR
COMPETITION SHOULD
BE BETTER QUALITY AND
LOWER PRICES.

BUT IF SOME COMPANIES
AGREE NOT TO COMPETE
WITH EACH OTHER, OR
SOMETHING ELSE HAPPENS
TO HINDER COMPETITION,
CONSUMERS WILL BE
GREATLY DISADVANTAGED.
THE AIM OF THE FEDERAL
TRADE COMMISSION 1S TO
CONTROL SUCH ACTIVITIES.

NOW, I WILL TELL
YOU ABOUT A MOVING
WALKWAY TO EXPLAIN

WHY WE MUST THINK OF
THE ANTITRUST LAW IN
TERMS OF CALCULUS.

WE'LL DISCUSS
THE SUM RULE OF
DIFFERENTIATION.
YOU SHOULD
REMEMBER THIS
BECAUSE IT IS
USEFUL.

NORIKO WANTS A 5COOP!

47
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IN FACT, IF WE DEFINE g,(x) \\\ \ \
AS “THE PROBABILITY OF \ J
GETTING x HEADS WHEN
n COINS ARE FLIPPED AT
ONCE™ AND ALLOW n TO
APPROACH +x FOR THE , 2
GRAPH OF g, (x)... -
(0 15 READ AS z Z

INFINITA)...

HE WROTE THE SAME .WE CAN

EQUATION BEFORE! HE REWRITE IT TO
DOESN'T HAVE TO USE SEE THAT IT 1S
TWO COASTERS! PROPORTIONAL
TO THE NORMAL

FUNCTION

* The distribution of such probabilities as that of getting x heads when n coins
are flipped is generally called the binomial distribution.

For example, let’s find the probability of getting 3 heads when 5 coins are
flipped. The probability of getting HHTHT (H: heads, T: tails) is

1. 1111 (1Y
—X=X=X=X==|=
272727272 |2

5
Since there are ;C, ways of getting 3 heads and 2 tails, it is ;C, % . The
general expression is | C, % . We will show that if n is very large, the binomial

distribution is the normal distribution.
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THE SUM RULE OF DIFFERENTIATION

LET'S LOOK

FORMULA 2-1: INTO THIS BY
THE SUM RULE OF DIFFERENTIATION APPROXIMATING
AROUND x =a.

For  h(x)=s(x)+g(x)
R ()= () +9' (%)

THAT IS5, THE
DERIVATIVE OF A
FUNCTION 15 EQUAL
TO THE SUM OF THE
DERIVATIVES OF THE
FUNCTIONS THAT
COMPOSE IT.

WHAT
DOES THAT
MEAN?

SQUEAK

f(l)z jE/(a)(%-a) + f(a) 0 JUEAK

APPROXIMATING 5@(/5‘“,

g = gla)Xz-a)+ g(a) o

APPROXIMATING

GIVEN THAT
SINCE h(x) = f(x) + g(x),
SUBSTITUTE @ AND @ IN
THIS EQUATION.

hmzk(z—a) f e

APPROXIMATING

WE WANT TO KNOW k.
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USING THE
BINOMIAL
DISTRIBUTION,

Y g.(x) CAN BE WRITTEN
IN THIS WAY.

SINCE THE GRAPH OF
flx) 15 SYMMETRICAL
ABOUT x=0
AND g,(x) ABOUT x = P

WE CONSIDER g,(2)
INSTEAD ~ 2
OF g,(x).

DIVIDING g,(x)
BY THIS...

WE GET h,,
THE SCALED
FUNCTION

50 THEN...

WHAT DOES TAYLOR EXPANSION TELL US? 169
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WE ALSO
KNOW THAT...

h(z) ~ f (a)(x—a)ﬂo(a) + 9’(&)(7(—(1) +g(@) o

%0 IF WE REARRANGE RIGHT!
THE TERMS OF o, 2 > k=f(a)+ga)! y/
EQUATION © SAYS /. s AN i
THE COEFFICIENT OF /. /
(x - a) WILL BE k. LET SEE. " o DIFFERENTIAL
= COEFFICIENT EQUALS

THE DERIVATIVE. 50,
k=h(a)=
S'a) +g'la).

NOW, LET ME

EXPLAIN ABOUT

THE MOVING
WALKWAY.

I'D RATHER NOT

THINK ABOUT IT,

BUT I GUESS
I WILL.

SUPPOSE FUTOSHI
1S WALKING DOWN
THE SIDEWALK.

THE SUM RULE OF DIFFERENTIATION 49
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[ m £ Newrd A '

WELL, WE NOW =
CONVERT THE UNIT INTO —-
SINCE x |15 AWAY |
FROM THE CENTER o
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Jn
5 |5 THE STANDARD
DEVIATION. IF YOU
DON'T KNOW STATISTICS,
SIMPLY REGARD IT AS A
MAGIC WORD!

* STANDARD DEVIATION 15 AN INDEX WE USE
TO DESCRIBE THE SCATTERING OF DATA.
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WELL, THAT'S THE
ITALIAN RESTAURANT
WE WANT TO @O TO.

IT'5 STILL SO
FAR AWAY.

LET'S DENOTE
THIS ACCIDENT

SITE WITH
POINT P.

\/ ITALIAN

RESTAURANT

ACCIDENT
SiTe

AND LET'S THINK

OF THE ROAD AS
A GRAPH OF THE
FUNCTION f(x) = x°.

APPROXIMATING WITH FUNCTIONS 25
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THE ASAGAKE TIMES
MAIN OFFICE

WOW! WHAT
AN OFFICE. [

I WANNA
WORK HERE!

NN

1 HAVE A MEETING.
WILL YOU WAIT FOR
ME IN THE LOBBY?

WHAT..WILL I BE
A NUISANCE?
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Italian
restaurant

ﬁ y=gx
a 5 P=(2 4
Imitate with
gx)=4x-4
S =x
X Incline at point P
x=2 x

AT POINT P
THE SLOPE RISES
4 KILOMETERS VERTICALLY
FOR EVERY 1 KILOMETER
IT GOES HORIZONTALLY. IN
REALITY, MOST OF THIS ROAD
IS NOT SO STEEP.

THE LINEAR FUNCTION THAT
APPROXIMATES THE FUNCTION
(%) = x* (OUR ROAD) AT x =2 IS
g(x) = 4x — 4. THIS EXPRESSION
CAN BE USED TO FIND OUT,
FOR EXAMPLE, THE SLOPE AT
THIS PARTICULAR POINT.

* THE REASON 15 GIVEN ON PAGE 34.

FUTOSHI? WE'VE
HAD AN ACCIDENT.
WILL YOU HELP Us?

WHAT FUNCTION
SHOULD I USE TO
APPROXIMATE THE
INSIDE OF YOUR
HEAD?

THE ACCIDENT
SITE? IT'S
POINT P.

26 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!
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THAT'S RIGHT.
YOU ARE A
QUICK STUDY,

NOW, LET'S
DO THE REST
AT THE ITALIAN
RESTAURANT.

FUTOSH), WE'RE
LEAVING FOR
LUNCH. DON'T
EAT TOO MANY

SNACKS.

SELLER?

SPEAKING OF SNACKS,
PO YOU KNOW ABOUT
JOHNNY FANTASTIC,
THE ROCKSTAR WHOSE
BOOK ON DIETING
HAS BECOME A BEST

APPROXIMATING WITH FUNCTIONS 21
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MORE APPLICATIONS OF THE FUNDAMENTAL THEOREM

Other functions can be expressed in the form of f(x) = x“. Some of them are

For such functions in general, the formula we found earlier holds true.

FORMULA 4-2: THE POWER RULE OF DIFFERENTIATION

f(x)=x" S (x)=ax""

EXAMPLE:

For f(x) :?, f’(x) :(x’“)( =-3x"* :—xi

PROOF:
Let’s express f(x) in terms of e. Noting €™~ = x, we have

_f(x) = x° :(emx)" = e¥lnx
Thus,
In f(x)=alnx

1
Differentiating both sides, remembering that the derivative of In w = 7
and applying the chain rule,

L

"(x :cx><l
f(x)Xf( )=ex_

Therefore,

f’(x):axle(x) :axlxx” =ox™!
X X
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BUT HE SUDDENLY
BEGAN TO GAIN
WEIGHT AGAIN
AFTER A BAD
BREAK-UP.

MY WEIGHT
A%Q:?ﬁ‘*g ,'1‘29 GAIN HAS WHETHER
HIM ABOUT I, ALREADY JOHNNY’S WEIGHT
) PASSED ITS GAIN IS REALLY

SLOWING DOWN
LIKE HE SAID.

HE WAS CERTAIN.
NOW WHAT HIS
AGENT WANTS TO

KNOW 15...

@'ze RIGHT. NOW,

LET'S IMITATE HIS
WEIGHT GAIN WITH

2
y=ax“ +bx+c y=ax®+bx+c

Weight (kg) Weight (kg) \

(]
70 o o 70

8 9 10 1 i 12 8 9 10 11 12
Days Days
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INTEGRATION BY PARTS
If h(x) = f(x) g(x), we get from the product rule of differentiation,

R (x)= f(x)g(x)+ £(x)g'(x)
Thus, since the function (the antiderivative) that gives f'(x) g(x) + f(x) g'(x)

after differentiation is f(x) g(x), we obtain from the Fundamental Theorem of
Calculus,

{5 (x)g(x)+ £ (x)g (x)}ax = £ (b)g (b) - f(a)g(a)

Using the sum rule of integration, we obtain the following formula.

FORMULA 4-3: INTEGRATION BY PARTS

[: 7 (x)g(x)ax+ [} £ (x)g (x)dx =f (b)g(b) - S (@) g(a)

As an example, let’s calculate:
J'o xsinxdx

We guess the integral's answer will be a similar form to x cos x, so we
say f(x) = x and g(x) = cos x. So we try,

n

J.O- x’cos x dx + _“; x(cosx)/ dx = f(x)g(x)

o

We can evaluate that
=f(z)g(r)-f(0)g(0)

Substituting in our original functions of f(x) and g(x), we find that
=mcost-0cos0=n(-1)-0=-7

We can use this result in our first equation.

IO x’cosxdx+J.") x(cosx) dx = -7

MORE APPLICATIONS OF THE FUNDAMENTAL THEOREM 143
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WEIGHT GANN 15
ACCELERATING.

WEIGHT GAN 15
SLOWING DOWN.

i/ IF a 15 POSITIVE, HIS WEIGHT
GAIN 1S5 ACCELERATING.
AND IF a IS NEGATIVE, IT'S
SLOWING DOWN.

&)

GOOp!

YOU'RE
A
DOING WELL.

THERE ARE LOTS
OF TIGHT CURVES
AROUND HERE.

EH, I DON'T
REALLY CARE
ABOUT THAT.

LET'S ASSUME YOU
WANT TO KNOW
HOW TIGHT EACH

CURVE 15.

WE CAN
APPROXIMATE
EACH CURVE WITH
A CIRCLE.

APPROXIMATING WITH FUNCTIONS 23





OPS/images/158.jpg
We then get:
_‘.ﬂ cos x dx + J'Rx(—sinx)dx =-r
o 0
Rearranging it further by pulling out the negatives, we find:
".Rcosxdx —rxsinxdx =-7
o o

And you can see here that we have the original integral, but now we have
it in terms that we can actually solve! We solve for our original function:

_‘:xsinxdx :_f: cosxdx +m

Remember that I cos x dx = sin x, and you can see that
j':xsinxdx =sinx|) +7
=sinr7 -sin0+7x

=0-0+m=nxm

There you have it.

EXERCISES

1. tan xis a function defined as sin x / cos x. Obtain the derivative of tan x.

2. Calculate

[} oos

o cos® x

3. Obtain such x that makes f(x) = xe* minimum.
4. Calculate

f2xlnxdx

A clue: Suppose f(x) = x* and g(x) = 1n x, and use integration by parts.
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y= R (e=a) +b

(x—a.)2 +(y—b)2 =R?
LET'S IMITATE IT WITH THE FORMULA
FOR A CIRCLE WITH RADIUS R

CENTERED AT POINT (a, b).

LOOK. ASSUME THE

CURVATURE OF THE ROAD 1S
ON THE CIRCUMFERENCE OF
A CIRCLE WITH RADIUS R.

THE SMALLER
R 5, THE
TIGHTER THE
CURVE 15,

-4 ARE YOU ALL RIGHT? ML
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5

LET'S LEARN ABOUT
TAYLOR EXPANSIONS!






OPS/images/031.jpg
L»‘!’v o

oepmors |
SUBJECT: TODAY'S HEADLINES

A BEAR RAMPAGES IN A HOUSE AGAIN—-NO INJURIES

THE REPUTATION OF SANDA-C|
o
IMPROVES IN THE PREFECTUR% RTRENEE O

DO YOU..pO
YOU ALWAYS
FILE STORIES
LIKE THIS?

LOCAL NEWS LIKE

THIS IS NOT BAD.

BESIDES, HUMAN-

INTEREST STORIES
CAN BE...

4

POLITICS, FOREIGN

AFFAIRS, THE
ECONOMY... 1 WANT TO
) COVER THE
9 \S  HARD-HITTING
I55UES! AH..THAT'S
\ IMPOSSIBLE.
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2. Next we will find out that f(x) surely exists and what it is like.

EXPRESS THE INVERSE FUNCTION @@
OF y = flx) AS x = g(y).

OF f(x) 15 ITSELF. BUT THIS DOES NOT HELP US. WHAT 1S
THE DERIVATIVE OF g(y) THEN?

-“\,,
ﬁ {FROM S'(%) = f(x) INDICATED ON PAGE 136, THE DERIVATIVE

o d(y)= f't ] o—{ Since we get this generally,’
x
r( ) 1 1 - l we get this result, which
o gly}= _f'(x) (x) y shows that the derivative of

the inverse functlon g[y) is

explicitly given by =
Now, we can use the Fundamental

Theorem of Calculus. It gives

Since we now know g'(y) = 1
function g(o) is found to y
be a function obtained by
integrating 1 from 1 to a.

ith

® fidy:g(a)—g(l) -

If we assume g(1) = O here . . .

o1
weeeT  g(a)=] i
GOOD! NOW, LET'S DRAW THE GRAPH OF z =~ I
y

* As shown on page 75, if the inverse function of y = f(x) is x = g(y), f'(x) g'(y) = 1.
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IT'S NOT LIKE A
SUMMIT MEETING
WILL BE HELD
AROUND HERE.

NOTHING EXCITING
EVER HAPPENS,
AND TIME GOES

BY VERY SLOWLY.

I KNEW IT.
I DON'T WANNA WORK

HERE!
7

NORIKO, YOU CAN
STILL BENEFIT
FROM YOUR
EXPERIENCES

I DON'T KNOW
WHICH BEAT YOU
WANT TO COVER,

e

BUT I WILL TRAIN YOU
WELL SO THAT YOU
CAN BE ACCEPTED AT
THE MAIN OFFICE.

18 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!
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THIS IS A GRAPH OF
INVERSE PROPORTION.

LET'S DEFINE g() AS THE AREA BETWEEN THIS GRAPH AND
THE Y-AXIS IN THE INTERVAL FROM 1 TO o THIS IS5 A WELL-
DEFINED FUNCTION. IN OTHER WORDS, g(«) 19 STRICTLY
DEFINED FOR ANY o, WHETHER IT IS A FRACTION OR 2.

SINCE z = = IS AN EXPLICIT FUNCTION, THE AREA CAN BE
Y ACCURATELY DETERMINED.

Since g(1) = J.‘lidy = Oyfidy = g(«)-g(1) which satisfies ©.

Thus, we have found out the inverse function g(y), the area under the
curve, which also gives the original function f(x).

AH, HOW ABOUT PLEASE TELL

THE RECENT ME THE TRUTH. YOU'RE
GROWTH RATE 1 WON'T BE CRYING! IS IT
OF THE ASAGAKE SURPRISED. THAT BAD?
TIMES?

USING EXPONENTIAL AND LOGARITHMIC FUNCTIONS 139
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BY THE WAY,
DO YOU THINK R — NN
THE JAPANESE =" woowc |\\| & ITHINKSO. IFEEL

ECONOMY 15 STILL ] ITINMY DALY LIFE.
EXPERIENCING

DEFLATION?

THE GOVERNMENT
REPEATEDLY SAID
THAT THE ECONOMY
WOULD RECOVER.

BUT IT TOOK A LONG
TIME UNTIL SIGNS OF
RECOVERY APPEARED.

2004 2005

1 HAVE A BAD
FEELING ABOUT

A TRUE JOURNALIST THIS...

MUST FIRST ASK
HIMSELF, “WHAT DO
I WANT TO KNOW?”

APPROXIMATING WITH FUNCTIONS 19
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SUMMARY OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS
Iz
S(x)

® y = f(x) which satisfies
growth rate of 1.

is thought to be the growth rate.

S(x)
(x

=1 is the function that has a constant

This is an exponential function and satisfies
F(x)=1(x)

© If the inverse function of y = f(x) is given by x= g(y), we have

1
® If we define g(«), we can find the area of h(y) = —,

y
«l
9(0‘):f,gdy

The inverse function of f(x) is the function that satisfies * and g(1) = 0.

e z

‘We define e (the base of the
natural logarithm) as y that
satisfies g(y) = 1. That is, it
is the « for which the area
that is about 2.7178. between the 1 /y curve and
the y-axis in the interval
from 1 to a equals 1.

e is an irrational number
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HERE WE
USE A LINEAR
EXPRESSION: NOW, WHAT WE WANT

TO KNOW MOST 15 IF
PRICES ARE GOING
UP OR DOWN.

IF YOU CAN APPROXIMATE WHAT
YOU WANT TO KNOW WITH A
SIMPLE FUNCTION, YOU CAN SEE
THE ANSWER MORE CLEARLY.

y=ax+hb

y
(Prices)

SOIFals
NEGATIVE, WE KNOW
THAT DEFLATION 15
STILL CONTINUING.

APPROXIMATING
THE FLUCTUATION %
IN PRICES WITH (Year)
y=ax+bGIVES..
ol a<0

ol a>0

Turned to inflation Still in deflation
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Since f(x) is an exponential function, we can write, using constant a,,
S(x)=a.a*
Since f(g(1)) = f(0) = al,a.0 =a, and f(g(1)) = 1, we get
Sla()-1-q,
And so we know
S(x)=a*
Similarly, since
S(9(e)-s1)-a' and
Slale)=e

e=a'

Thus, we have _f(x) =e~

The inverse function g(y) of this is log,y, which can be simply written as
1n y (In stands for the natural logarithm).

Now let's rewrite ® through @ in terms of e“ and In y.

) f’(x):f(x)@(e‘)/ =e

i 1 s 1
] g(y)zgﬁ(lﬂy) ==

a1l v 1
(5] g(zx):_‘.] gdywlny:_‘.1 ;dy
© To define 2%, a function of bits, for any real number x, we look at

f(x) = el (x is any real number)

The reason is as follows. Because e and In y are inverse functions to
each other,

en? — g
Therefore, for any natural number x, we have

f(x):(e‘“)x —9x

SUMMARY OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

4
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From @, we have f(h)= f(0)h+ f(0) and get
8 f(h)~f(0)(h+1)

If x is close enough to h, we have
Sf(x)=f'(h)(x-h)+f(h)

Replacing x with 2h and using f'(h) = f(h),
f(2n)= f'(R)(2h-h)+ f(h)
Sf(2n)= f(h)(h)+ f(h)
F(ar)= £ (R)(R+1)

We'll then substitute f(h)= f(0)(h+1) into our equation.
f(2h) = f(0)(h+1)(h+1)
f(2n)= £(0)(h+1)

In the same way, we substitute 3h, 4h, 5h, ..., for x and allow mh = 1.
S(1)=f(mh)= £ (0)(h+1)"

Similarly,
£(2)= 5 (2mh)= £ (0)(h+1)" = s (O)f(1+h)"}
5(3)= 5 (smh) = £(0)(h+1)"" = s O)f+ )"}

Thus, we get
f(n)= f(0)a" where we used a = (1 + i)™

which is suggestive of an exponential function.”
* Since mh=1,h= % Then, f(1)= f(o)‘/1 +%Jm. If we let m — « here, ‘:u%f]m — e, or Euler’s

number, a number about equal to 2.718. Thus, f(1) = f(0) x e, which is consistent with the dis-

cussion on page 141.
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THE ANSWER 15..THE COMPANY
DECIDED TO DECREASE THE
COMMERCIAL TIME!

PEOPLE USE FUNCTIONS
TO SOLVE PROBLEMS
IN BUSINESS AND LIFE IN
THE REAL WORLD.

THAT'S TRUE
WHETHER THEY ARE
CONSCIOUS OF
FUNCTIONS OR NOT.

36 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!

BY THE WAY, WHO 15 THE
MAN THAT SOLVED THIS
PROBLEM?
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THE DERIVATIVE IN ACTION!

YOU KNOW THE
BEVERAGE
MANUFACTURER
AMALGAMATED
COLAZ

LET'S CONSIDER
WHETHER ONE OF
THEIR EXECUTIVES
INCREASED OR
DECREASED THE AIRTIME
OF THE COMPANY'S TV
COMMERCIAL TO RAISE
THE PROFIT FROM ITS
POPULAR PRODUCTS.

OKAY, I GUESS.

YOU KNOW...

WHEN I WORKED AT
THE MAIN OFFICE, ONLY
ONE MAN SOLVED THIS
PROBLEM. HE IS NOW A
HIGH-POWERED...

TLL DO IT! I WILL
WORK HARD.
PLEASE TELL ME
THE STORY.

-
v
A

ASSUME AMALGAMATED COLA
AIRS ITS TV COMMERCIAL x
HOURS PER MONTH.

IT 15 KNOWN THAT THE PROFIT
FROM INCREASED SALES DUE TO
x HOURS OF COMMERCIALS 15
f(x) = 20Vx
(N HUNDREDS OF MILLION YEN).

32 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!
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ARE CALLED HIGH-DEGREE TERMS.

s

(@i IMITATING A FUNCTION WITH A QUADRATIC (ZND-DEGREE)
", FUNCTION IN THIS WAY OFTEN ALLOWS US TO FIND
N

THE TERMS X" FOR WHICH 1. 1S MORE THAN 1 )

INTERESTING THINGS. NOW, LET'S CONSIDER IMITATING A
FUNCTION WITH A HIGHER-DEGREE POLYNOMIAL. IN FACT, IT
15 KNOWN THAT WE CAN MAKE THE EXACT FUNCTION, INSTEAD
OF AN IMITATION, WITH AN /NFINITE-DEGREE POLYNOMIAL.

For example, if we set _f(x) = 1;, we get
-x
1
0 f(x)= s 1+x+x*+x*+x*+... (continues infinitely)
-x

| Note this is = instead of ».

THIS IS A I THOUGHT
MISTAKE, ISN'T YOU WOULD .
IT? IT CAN'T BE SAY THAT. LET'S =
EQUAL TO! CALCULATE IT. ;

Suppose x = 0.1. We get

1 1 10
0.1)= =—=—
gy 1-0.1 09 9
11115
9| 10
Right side =1+0.1+0.1% +0.1° +0.1* +... 2
=1+0.1+0.01+0.001 +0.0001 +... 13
=1.111111... —_
10
9
If we actually calculate 10/9 by long division, we o
will obtain the same result. 9

IMITATING WITH POLYNOMIALS 153
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AMALGAMATED COLA
NOW AIRS THE TV
COMMERCIAL FOR

4 HOURS PER MONTH.

AND SINCE

f(4) =204 = 40, THE

COMPANY MAKES A PROFIT
OF 4 BILLION YEN.

THE FEE FOR THE
TV COMMERCIAL 15
10 MILLION YEN PER

MINUTE.

1-MINUTE COMMERCIAL =
¥10 MILLION

NOW, A NEWLY
APPOINTED EXECUTIVE
HAS DECIDED TO
RECONSIDER THE
AIRTIME OF THE TV
COMMERCIAL. DO YOU
THINK HE WILL INCREASE

THE AIRTIME OR
DECREASE IT?

Sf(x)=20x HUNDRED MILLION YEN
1-MIN COMMERCIAL = ¥10 MILLION

THE DERIVATIVE IN ACTION! 33
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When a general function f(x) (provided it is differentiable infinitely many
times) can be expressed as

SF(x)=a, +ax+a,x* +ax’ +..+a,x" +...

the right side is called the Taylor expansion of f(x) (about x = 0).

THIS MEANS THAT f(x) PERFECTLY COINCIDES WITH AN
INFINITE-DEGREE POLYNOMIAL IN A DEFINITE INTERVAL
INCLUDING x = 0. IT SHOULD BE NOTED, HOWEVER,
THAT THE RIGHT SIDE MAY BECOME MEANINGLESS
BECAUSE IT MAY NOT HAVE A SINGLE DEFINED VALUE
OUTSIDE THE INTERVAL.

FOR EXAMPLE, SUBSTITUTING x = 2
IN BOTH SIDES OF EXPRESSION @,

Left side = I -1 SEE? THE TWO
SIDES ARE NOT
EQUAL.

1-2
Right side=1+2+4+8+16+...

It turns out that expression @ is correct for all
x satisfying -1 < x < 1, which is the allowed interval
of a Taylor expansion. In technical terms, the inter-
val -1 < x < 1 is called the circle of convergence.
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A SINCE IT'S IMPOSSIBLE

7O IMITATE THE WHOLE
FUNCTION WITH A LINEAR
FUNCTION, WE WILL
AL)= 74 IMITATE IT IN THE VICINITY
HUNDRED MILLION YEN Tia SRl ARIIE

SINCE f(x) = 20vx
HUNDRED MILLION YEN
15 A COMPLICATED
FUNCTION, LET'S
MAKE A SIMILAR
LINEAR FUNCTION TO
ROUGHLY ESTIMATE
THE RESULT.

STEP 2 Yy

WE WILL DRAW A
TANGENT LINE™ TO
THE GRAPH OF

Sflx)=20Vx
AT POINT (4, 40).

N:V

* Here is the calculation of the tangent line. (See also the explanation of the
derivative on page 39.)
For f(x)= 20V/x, J'(4) is given as follows.

f(4+5>,f(4] 72(]@,20)(2720(\/44&: —Z)x(«/4+s +2)
- £ N sx(\/4+s+2)

£

-20 4+e-4 20

s(«/m+2)_v4+s +2

When ¢ approaches 0, the denominator of @ V4 +¢ +2 — 4.
Therefore, ® — 20 + 4 = 5.
Thus, the approximate linear function g(x)=5(x - 4)+ 40 = 5x + 20

34 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!
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HOW TO OBTAIN A TAYLOR EXPANSION
When we have
0 f(x)=a,+ax+a,x’+ax’+..+a,x"+..
let’s find the coefficient a,,.
Substituting x = 0 in the above equation and noting f(0) = a,, we find that
the Oth-degree coefficient a, is f(0).
We then differentiate @.
© f'(x)=a, +2a,x +3a,x* +...+na,x"" +...
Substituting x = 0 in ® and noting f'(0) = a;, we find that the 1st-degree
coefficient a, is f'(0).
We differentiate © to get
o f'(x)=2a,+6a,x+..+n(n-1)a,x"* +..
1 Substituting x = 0 in @, we find that the 2nd-degree coefficient a, is
= f7(0).
2 Differentiating @, we get
f7(x)=6a, +..+n(n-1)(n-2)a,x"* +...
From this, we find that the 3rd-degree coefficient a, is %j"(o).

Repeating this differentiation operation n times, we get

S (x)=n(n-1)..x2x1a, +...

where f™(x) is the expression obtained after differentiating f(x) n times.
From this result, we find

nth-degree coefficient a, :L'f“" (0)
n!

n! is read “n factorial” and means nx(n-1)x(n-2)x..x2x1.

HOW TO OBTAIN A TAYLOR EXPANSION 155
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IF THE CHANGE N x IS
LARGE —FOR EXAMPLE, AN
HOUR—THEN g(x) DIFFERS
FROM f(x) TOO MUCH AND
CANNOT BE USED.

IN REALITY, THE CHANGE
IN AIRTIME OF THE TV
COMMERCIAL MUST ONLY
BE A SMALL AMOUNT,
EITHER AN INCREASE OR A

DECREASE.

IF YOU CONSIDER AN
INCREASE OR DECREASE
OF, FOR EXAMPLE,

& MINUTES (0.1 HOUR),
THIS APPROXIMATION
CAN BE USED, BECAUSE
THE RELATIVE ERROR
1S5 SMALL WHEN THE
CHANGE IN x 1S5 SMALL.

WE FIND THAT
IN THE VICINITY OF x = 4 AN INCREASE OF
HOURS, f(x) CAN BE SAFELY & MINUTES BRINGS
APPROXIMATED AS ROUGHLY A PROFIT INCREASE

OF ABOUT 5 % O =
0.5 HUNDRED MILLION

g(x) = 5x + 20.

THE FACT THAT THE s e
COEFFICIENT OF x IN g(x) 15 1 \
5 MEANS A PROFIT INCREASE H“g\ﬁlT:U'élH@ g‘roeangT
OF 5 HUNDRED MILLION YEN COST TO INCREASE
PER HOUR. 50O IF THE CHANGE | | THE AIRTIME OF THE
1S ONLY & MINUTES (0.1 HOUR), COMMERCIAL BY
THEN WHAT HAPPENS? & MINUTES?

IF, INSTEAD, THE AIRTIME
15 DECREASED BY
& MINUTES, THE PROFIT
DECREASES ABOUT
0.5 BILLION YEN. BUT
SINCE YOU DON'T HAVE
TO PAY THE FEE OF
0.6 HUNDRED MILLION
YEN...

THE FEE FOR THE i
INCREASE 1S 6 X O =

0.6 HUNDRED 2\

MILLION YEN.

THE DERIVATIVE IN ACTION! 35





OPS/images/170.jpg
I MEAN THAT IF f(x) I5 A
L B 50, WHy 15 OUR | | FUNCTION THAT DESCRIBES | by e
ety COMPANY'S BURNHAM CHEMICAL'S | ThE enp?
kol PREDICAMENT ADVERTISING EXPENSES,
THE TAYLOR THEIR SUPPORT OF

EXPANSION? OUR PAPER COULD BE

CONSIDERED THE THIRD

TERM OF A TAYLOR N
EXPANSION. f(x) = THE JAPAN

TIMES + THE KYODO NEWS +
THE ASAGAKE TIMES

SINCE IT'S
INSIGNIFICANT FOR
THEM ANYWAY,
THEY'LL LIKELY
SUPPORT US LIKE
THEY DID BEFORE

THAT'S RIGHT.

>

ACTUALLY FOR
BURNHAM CHEMICAL,

THE AMOUNT OF MONEY EVEN IF THEY
THEY SPEND FOR | CHANGE THEIR
EXECUTIVES.

US 15 ONLY A VERY
SMALL AMOUNT—THE
3RD-DEGREE TERM,
OBTAINED AFTER
DIFFERENTIATING
THREE TIMES.

MR. SEKI, WHERE
PID YOU 60 OUT
FOR DRINKS WHEN
YOU WORKED AT
THE MAIN OFFICE?
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ASSUME THAT x
EQUALS Z AT THE
POINT WHERE WE ARE
NOW AND THAT THE
DISTANCE FROM HERE
TO THE RAMEN SHOP

I R PTTREI.
o

LET'S CHANGE
xBYO0Lx=2
BECOMES x = 2.1.

2.1°- 44
4x7(-4-44

fa
8(2.!)

50 THE DIFFERENCE 15
f2.1) - g(2.1) = 0.01, AND THE
RELATIVE ERROR 15 0.01 /0.1 =
0.1 (10 PERCENT).

NOW, ASSUME THE POINT
WHERE 1 AM STANDING 15
0.01 FROM P.

RAMEN

7200 20

x

28 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!
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I NEVER

IMAGINED YOU
WOULD BE SO

I WAS 5O
ANXIOUS TO

WELL, YOU
HAVE A LOT OF
CURIOSITY.

MR. SEKI, I'M WORRIED.
BURNHAM CHEMICAL
15 AN IMPORTANT
SPONSOR OF THE
ASAGAKE TIMES.

IF THEIR ILLEGAL

ACT 15 REVEALED, I'M
SURE THEY WILL STOP
SUPPORTING US.

I THOUGHT
ABOUT THIS.

THIS 1S TAYLOR
EXPANSION.

IMITATING WITH POLYNOMIALS 149
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CHANGE x BY 0.01: x =2
BECOMES x = 2.01.

IN OTHER WORDS, THE
CLOSER I STAND TO
THE ACCIDENT SITE, THE
BETTER g(x) IMITATES f(x).

error f(p)- 9020040401404 - 0000

RELATIVE ERROR

0.0001
0.01

0.0l

THE RELATIVE ERROR

[1%] FOR THIS POINT IS
SMALLER THAN FOR
THE RAMEN SHOP.

As the variation approaches 0, the relative error also approaches 0.

Variation of Jx) glx) Error Relative
x from 2 error
1 9 8 1 100.0%
0.1 4.41 4.4 0.01 10.0%
0.01 4.0401 4.04 0.0001 1.0%
0.001 4.004001 4.004 0.000001 0.1%

I 1

1 1

A 4 ¥

0 o
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DIFFERENTIATION
WAS NOTHING BUT
MAKING AN IMITATING
LINEAR FUNCTION.

WE IMITATED ,
FUNCTIONS TO IF WE SET p =f'la) AND

q = fla) FOR FUNCTION f(x), FOR
CET Bt e25 || “exameLE, we coulp mmate
ot rne || s wimh A'LNeAR FUNCTION AS
W’E? fx) ~ q + plx — a) VERY NEAR

xX=a.

BUT, IN OTHER CAS

WE IMITATED A FUNCTION
WITH A QUADRATIC OR A
CUBIC FUNCTION.

YES, AN EXAMPLE
15 THE CASE OF
JOHNNY FANTASTIC,
WHO BEGAN TO
GAIN WEIGHT AGAIN
BECAUSE OF HIS
BREAKUP.

ES,

1 HAVEN'T DONE
THIS RECENTLY.
50, HERE'S
ANOTHER
EXAMPLE.

ASSUME YOU
BORROW M YEN
AT AN ANNUAL
INTEREST RATE
OF x.

IF YOU PAY BACK THE MONEY

AFTER 1 YEAR, YOU PAY M(1 + x).
IF YOU PAY BACK THE MONEY

AFTER Z YEARS, YOU PAY

M (1 + x) (1 + x). IF IT'S AFTER
n YEARS, YOU PAY M (1 + x)".

NOW, IF WE WANT TO “EXPAND”,

THAT FUNCTION..."

(1+2)"= | +nz + DS Dgs 4 RO=D025 4.

WE HAVE THIS.

* THIS 1S THE FORMULA OF BINOMIAL EXPANSION, WHERE ,C, = pr I

c _n(n-1) c _n(n-1)(n-2)

(1+x)" =1+ ,Cx+ ,Cx* + ,C;x* +...+ ,C X

!
ﬂ AND ,C =n

_ n(n-1)..{n-(r-1)}

seennnC,

n“2 2

a3 T '
6
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THAT'S NOT SO
SURPRISING, 15 IT?

GREAT! YOU
ALREADY
UNDERSTAND
DERIVATIVES.

50, THE
RESTAURANT
HAVING THE
SMALLEST
RELATIVE

THE RAMEN
SHOP.

YES. TODAY WE WILL
EAT AT THE RAMEN
SHOP, WHICH 15
CLOSER TO POINT P.

BE STRAIGHT WITH
ME! WE'RE GONNA
EAT AT THE RAMEN
SHOP, AREN'T WE?

THE APPROXIMATE LINEAR FUNCTION IS SUCH THAT ITS
RELATIVE ERROR WITH RESPECT TO THE ORIGINAL
FUNCTION IS LOCALLY ZERO.

50, AS LONG AS LOCAL PROPERTIES ARE CONCERNED,

WE CAN DERIVE THE CORRECT RESULT BY USING THE

APPROXIMATE LINEAR FUNCTION FOR THE ORIGINAL
FUNCTION.

SEE PAGE 39 FOR THE DETAILED CALCULATION.

30 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!
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TAKING ONLY THE
FIRST PART, WE CAN
IMITATE (1 +x)" WITH

LINEAR FUNCTION
1+nx.

(1+x)" =1+nx

BUT...

THIS IMITATION
15 IN FACT TOO
ROUGH TO BE OF
MUCH UsE.

IF YOU USED THIS
APPROXIMATION,
YOU WOULD EASILY
BORROW TOO MUCH

MONEY AND SINK
INTO DEBTOR'S
PRISON.

.

50, WE USE THE
QUADRATIC FUNCTION
TO IMITATE...

JU..JUST A MINUTE!

I THOUGHT TAYLOR
EXPANSION APPLIED TO
OUR NEWSPAPER!

JUST BEAR
WITH ME FOR
A MINUTE, WILL
youz

IMITATING WITH POLYNOMIALS 151
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RAMEN SANDA

WHY 15 FUTOSHI
EATING SO MUCH?
HE JUST CAME TO
RESCUE Us.

SIGH. I LIKE RAMEN,
BUT I WANTED TO EAT
ITALIAN FOOD.

NORIKO, WE CAN ALSO
ESTIMATE THE COST-
EFFECTIVENESS OF
TV COMMERCIALS
USING APPROXIMATE
FUNCTIONS.

CALCULATING THE RELATIVE ERROR 31
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FORMULA 5-1: THE FORMULA OF QUADRATIC APPROXIMATION

(1+x)":1+nx+wx2

follows.

. n
(1+x)" =1+nx+

IF WE MODIFY THIS EXPRESSION
A LITTLE, WE GET A VERY
INTERESTING LAW.

For any pair of n and x that satisfy nx = 0.7, we get

(n-1)
2

x’=1+nx+%(nx)2——nx

1 i
=1+0.7+ EX 0.7 =1.945=2 | Nearly zero, so we neglect it.

In short, if nx = 0.7, (1 + x)" is almost 2. This can be written as a law as

LAW OF DEBT HELL

When years to repay loan x interest rate = 0.7, the amount
you will repay is about twice as much as you borrowed.

ABOUT TWICE IF BORROWED FOR
35 YEARS AT 2 PERCENT

ABOUT TWICE IF BORROWED FOR

7 YEARS AT 10 PERCENT

ABOUT TWICE IF BORROWED FOR
Z YEARS AT 35 PERCENT

OH, NO!!
THIS 1S TERRIBLE!
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IMITATING WITH POLYNOMIALS

I HAVE HEARD SO
MUCH ABOUT YOU,
MR. SEKI.

NICE TO MEET
You.

B NS W

1 WOULD LIKE YOU
TO LOOK AT THIS
DATA FIRST.

b

OH, THANK...

youlz

4
Aﬁ!'al“‘ "‘l}
[

i
i |

THANK YOU.

.u...mﬂw ‘ /

I fi%)
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CALCULATING THE RELATIVE ERROR

’}‘ ' ‘ Rz

Y

THE RELATIVE ERROR
GIVES THE RATIO OF THE
DIFFERENCE BETWEEN THE
VALUES OF f(x) AND g(x) TO
THE VARIATION OF x WHEN x
IS5 CHANGED. THAT 15...

WHILE WE WAIT FOR
FUTOSH, T'LL TELL
YOU ABOUT RELATIVE
ERROR, WHICH 15
ALSO IMPORTANT.

Our Our
original approximating
function function

Difference between f(x) and g(x)

Change of x

Relative error =

I DON'T CARE
ABOUT RELATIVE
DIFFERENCE. T
JUST WANT SOME
LUNCH.

CALCULATING THE RELATIVE ERROR 27
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NORIKO, WHAT ARE
YOU DOING? YOU
LOOK SUSPICIOUS.

THIS IS THE SAME
DATA THAT YOU USED
IN YOUR ARTICLE,
ISNT IT?

1T FROM BURNHAM
CHEMICAL. WE
RECEIVED THE
DOCUMENT ITSELF
FROM A WHISTLE-
BLOWER. WE'VE
ALREADY CHECKED
ITS CREDIBILITY WITH
OTHER SOURCES.

I CAN'T PUBLISH
MY NEW STORY
YET.

BUT I WILL LEND YOU
THE DATA THAT I HAVE
COLLECTED SO FAR.

AH, YES..WHAT'S
THE SOURCE OF
THIS DATA?

THE SIMILARITIES ARE
ENCOURAGING.
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INCIDENTALLY, SINCE THE IN OTHER WORDS,
X-AXIS COINCIDES WITH sin[ 04 ﬁj —cosd
THE Y-AXIS WHEN IT IS 2
ROTATED BY 40 DEGREES
(> RADIANS), WE CAN
SAY sin 0 15 A FUNCTION
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AS cos 0. 4
0 !
cos 0
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UH..WILL YOU eive
US BACK OUR

YES?
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NOW, WE ARE READY
FOR THE MAIN PART OF
THE SANDA SUMMER
FESTIVAL!
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ALL RIGHT! LET'S
~ DO THE CALCULUS
é DANCE SONG!!

CALC...
THAT'S A
STRANGE
SOUND!

NORIKO 15 JUST GETTING STARTED AS A JUNIOR
REPORTER FOR THE ASAGAKE TIMES. sHe
WANTS TO COVER THE HARD-HITTING ISSUES,

LIKE WORLD AFFAIRS AND POLITICS, BUT DOES
SHE HAVE THE SMARTS FOR IT? THANKFULLY, HER
OVERBEARING AND MATH-MINDED BOS9, MR. SEK,
15 HERE TO TEACH HER HOW TO ANALYZE HER
STORIES WITH A MATHEMATICAL EYE.

IN THE MANGA GUIDE TO CALCULUS,
YOU'LL FOLLOW ALONG WITH NORIKO AS SHE
LEARNS THAT CALCULUS IS5 MORE THAN JUST
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USING INTEGRALS WITH TRIGONOMETRIC FUNCTIONS

HERE ARE SPECIAL
SEATS FOR YOU. BE
CAREFUL NOT TO
FALL, REPORTERS,
AND TAKE GO0D
PICTURES.

NOW, WE ARE MR. $EK|,
GOING TO LOOK AT YOUR ACTIONS
cos 0 IN TERMS OF ARE TOTALLY

CALCULUS! DIFFERENT FROM

WHAT YOU SAY.

IT'S EASIER TO
UNDERSTAND IF
WE LOOK DOWN
AT THE CIRCLE OF
DANCERS FROM
WAY UP HERE.

IN FACT, INTEGRALS ARE
EASIER TO OBTAIN THAN
DERIVATIVES.
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LOOK AT THIS
FIGURE. DOESN'T
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SHOWS THAT THE

INTERSECTING

ANGLE OF THE
Y-AXIS WITH THE
TANGENT LINE PQ,
WHERE P IS THE
POINT MOVED FROM
(1, 0) BY ANGLE 6,
15 ALSO o.

At angle ¢,
with the y-axis

A A,

Length 0, - 6,
! A,

A 0,-0, '

6,6,

v
ﬁl =i 9{1 Aﬂ

x

The change in cos ¢ is the length A" A',.
That length is the orthogonal projection A A,.
Length A" A, ~ arc A A, x cos 0, = (0, - 0,) x cos 6,

X

o|

/ FUTOSHI! WHY DOES
CHOW MEIN n HE GET TO EAT CHOW
T g MEIN WHILE I HAVE
1 3 TO LEARN ABOUT
1] < g INTEGRALS?
4
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PREFACE

There are some things that only manga can do.

You have just picked up and opened this book. You must be
one of the following types of people.

The first type is someone who just loves manga and thinks,
“Calculus illustrated with manga? Awesome!” If you are this type
of person, you should immediately take this book to the cashier—
you won't regret it. This is a very enjoyable manga title. It's no
surprise—Shin Togami, a popular manga artist, drew the manga,
and Becom Ltd., a real manga production company, wrote the
scenario.

“But, manga that teaches about math has never been very
enjoyable,” you may argue. That’s true. In fact, when an editor at
Ohmsha asked me to write this book, I nearly turned down the
opportunity. Many of the so-called “manga for education” books
are quite disappointing. They may have lots of illustrations and
large pictures, but they aren’t really manga. But after seeing a
sample from Ohmsha (it was The Manga Guide to Statistics), I
totally changed my mind. Unlike many such manga guides, the
sample was enjoyable enough to actually read. The editor told me
that my book would be like this, too—so I accepted his offer. In
fact, I have often thought that I might be able to teach mathemat-
ics better by using manga, so I saw this as a good opportunity to
put the idea into practice. I guarantee you that the bigger manga
freak you are, the more you will enjoy this book. So, what are you
waiting for? Take it up to the cashier and buy it already!

Now, the second type of person is someone who picked up this
book thinking, “Although I am terrible at and/or allergic to calcu-
lus, manga may help me understand it.” If you are this type of per-
son, then this is also the book for you. It is equipped with various
rehabilitation methods for those who have been hurt by calculus
in the past. Not only does it explain calculus using manga, but
the way it explains calculus is fundamentally different from the
method used in conventional textbooks. First, the book repeatedly
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FROM NOW ON,
WE WILL UsE
RADIANS AS THE
UNIT FOR ANY

BECAUSE THE TOTAL
CIRCUMFERENCE OF THIS
CIRCLE 15 21, WE KNOW THAT
A0 DEGREES = ;, RADIANS
AND 180 DEGREES =
n RADIANS. A RADIAN IS
ABOUT EQUAL TO 57.2958
DEGREES.

OH, THAT'S WHY YOU

2 WHAT'S GOING
SHOUTED, “THAT'S ON INSIDE HIS
HEAD?

cos 0.

AND WE CAN EXPRESS
x AS THE FUNCTION
cos 0 = x. THAT MEANS
WHEN A DANCER MOVES
BY 0 RADIANS, SHE |15 AT
A HORIZONTAL POSITION
DETERMINED BY cos 6.

YOU BETTER
REMEMBER

IN THE SAME WAY,
THE DANCER'S
VERTICAL
POSITION CAN
BE EXPRESSED
AS THE FUNCTION
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Xl PREFACE

presents the notion of what calculus really does. You will never
understand this through the teaching methods that stick to limits
(or £-3 logic). Unless you have a clear image of what calculus really
does and why it is useful in the world, you will never really under-
stand or use it freely. You will simply fall into a miserable state of
memorizing formulas and rules. This book explains all the formu-
las based on the concept of the first-order approximation, helping
you to visualize the meaning of formulas and understand them
easily. Because of this unique teaching method, you can quickly
and easily proceed from differentiation to integration. Further-
more, I have adopted an original method, which is not described in
ordinary textbooks, of explaining the differentiation and integra-
tion of trigonometric and exponential functions—usually, this is
all Greek to many people even after repeated explanations. This
book also goes further in depth than existing manga books on
calculus do, explaining even Taylor expansions and partial dif-
ferentiation. Finally, I have invited three regular customers of
calculus—physics, statistics, and economics—to be part of this
book and presented many examples to show that calculus is truly
practical. With all of these devices, you will come to view calculus
not as a hardship, but as a useful tool.

I would like to emphasize again: All of this has been made
possible because of manga. Why can you gain more information
by reading a manga book than by reading a novel? It is because
manga is visual data presented as animation. Calculus is a branch
of mathematics that describes dynamic phenomena—thus, calcu-
lus is a perfect concept to teach with manga. Now, turn the pages
and enjoy a beautiful integration of manga and mathematics.

HIROYUKI KOJIMA
NOVEMBER 2005

NOTE: For ease of understanding, some figures are not drawn
to scale.





OPS/images/135.jpg
BEAUTIFUL!

BEAUTIFULI?

YES! AS 0 BECOMES LARGER, THE VALUE
OF cos () CHANGES FROM 1, GRADUALLY
BECOMES SMALLER UNTIL IT'S 0, GOES ALL
THE WAY DOWN TO -1, BACK TO 0, THEN
BACK TO 1 AGAIN!

50, cos 0

VIBRATES

BETWEEN

1 AND -,
DOESN'T IT?

AWW! THE OLD
LADIES THINK YOU'RE ¢
TALKING ABOUT
THEM, AND THEY'RE

RIGHT. AND SINCE
TRIGONOMETRIC
FUNCTIONS EXPRESS
WAVES, THEY CAN
BE USED AS A TOOL
FOR CLARIFYING
MANY THINGS IN
NATURE.

REALLY
BEAUTIFUL!
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UPDATES

Visit http://www.nostarch.com/mg_calculus.htm for updates, errata,
and other information.
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YES. BUT, WHY
DO YOU HAVE
DRUMSTICKS?

IT'S A PRETTY
BIG FESTIVAL,
ISN'T IT?

BECAUSE IT'S A
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STICK MULTIPLIED BY /"""

FESTIVAL!
DID YOU KNOW THAT
E LENGTH OF
;P-'anwow '}';S A YES, IT'S RATHER THEN, LET'S
Wt/ DRUMSTICK EQUALS SURPRISING, BUT FIND THIS
THE LENGTH OF THE I REMEMBER IT ACCURATELY.

VAGUELY.
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MORE MANGA GUIDES

The Manga Guide series is a co-publication of No Starch Press
and Ohmsha, Ltd. of Tokyo, Japan, one of Japan’s oldest and most
respected scientific and technical book publishers. Each title in
the best-selling Manga Guide series is the product of the combined
work of a manga illustrator, scenario writer, and expert scientist
or mathematician. Once each title is translated into English, we
rewrite and edit the translation as necessary and have an expert
review each volume for technical accuracy. The result is the Eng-
lish version you hold in your hands.

Find more Manga Guides at your favorite bookstore, and learn
more about the series at http:/www.edumanga.me/.

MOLECULAR
BloLOGY
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JOURNALIST! MY

CAREER STARTS
HERE!

JUST THINK—ME,
NORIKO HIKIMA, A

THE ASAGAKE
TIMES'S SANDA-CHO
OFFICE MUST BE
AROUND HERE.

IT'S A SMALL
NEWSPAPER AND
JUST A BRANCH
OFFICE. BUT I'M
STILL A JOURNALIST!

2 PROLOGUE
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THE SUN IS SHINING
STRAIGHT DOWN ON
STICK AB, WHICH 15
STANDING TILTED AT
ANGLE 0 FROM THE
GROUND.

IF WE ASSUME THE
RESULTING SHADOW
(THE ORTHOGONAL
PROJECTION) TO BE AC,
THE LENGTH OF SHADOW
AC EQUALS THE LENGTH
OF STICK AB MULTIPLIED

BY cos 6.
WE CAN THINK OF THE
STICK IN TERMS OF THAT'S RIGHT!
A FUNCTION. COSINE
AND BY DEFINITION, EXPRESSES HOW
MUCH SHORTER
cosp = AC (shadow) THE SHADOW 15
AB (stick) THAN THE STICK
ITSELF!
50 THE SHADOW'S
LENGTH IS AB x cos 0.

RIGHT?
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WHEN I WAS A CUB
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WASN'T SUCH A
CONVENIENCE.
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USE A PAY PHONE
TO SEND IN MY
REPORT WHEN 1
WAS ON DEADLINE.

1 READ MY REPORT
WORPD BY WORD OVER
THE PHONE TO MY
ASSISTANT.

\‘.{I'Zil .

WE DONT
HAVE TO
DO THAT

ANYMORE,

THANKS TO

RADIO WAVES.

ALL SORTS OF
OTHER WAVES OCCUR
IN NATURE, TOO.

YEAH!
OCEAN WAVES,
EARTHRUAKES,
SOUND WAVES...
AND LIGHT.
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THOSE WAVES CAN
BE DESCRIBED WITH
FUNCTIONS, FOR
EXAMPLE, WITH THE
COSINE OF THETA

(cos 0. DID YOU 1
KNOW THAT? \

UH, I HAVE TO GO
BACK TO WORK.

NORIKO! INCIDENTALLY, IF YOU
CUT OUT A SLEEVE OF
A BLOUSE, THE CUT
END 1S A GRAPH OF
cos 0.

TRIGONOMETRIC
FUNCTIONS ARE

VERY IMPORTANT
FOR FASHION!
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DIFFERENTIAL AND INTEGRAL CALCULUS DANCE
SONG FOR TRIGONOMETRIC FUNCTIONS

IT SOUNDS QUITE BOOKISH, IN THE LOOP OF SINE AND

INDEED. BUT THIS DANCE
DIFFERENTIATE SINE AND COSINE, IT'5 50 NATURAL—
SONG MAKES IT 50 EASY! YOU GET CO5INE! SOLUTIONS TAKE TURNS
FOR THE DIFFERENTIAL AND
IN THE LOOP OF SINE AND
COSINE, DIFFERENTIAL INTEGRAL
AND INTEGRAL CALCULUS INTEGRATE COSINE AND

SKILLS ARE MINE. YOU GET SINE!
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NORIKO, TAKE A
PICTURE OF THAT!
IT'S cos 0.

LOOK AT THE
DANCERS. THIS 1S A
GO0D OPPORTUNITY.
WE CAN STUDY
THE APPLICATION
OF FUNCTIONS
TOGETHER WHILE
REPORTING,

YOU AND YOUR
FUNCTIONS!!!

THERE 15

A UNIT OF
MEASUREMENT
FOR ANGLES
CALLED A
RADIAN.

OH, SHOOT! M
TAKING NOTES
OUT OF HABIT.

SHOCKED!

CONSIDER A CIRCLE
OF RADIUS 1 WITH
IT5 CENTER AT (0, 0).
SUPPOSE THAT WE
START AT POINT A AND
TRAVEL TO POINT P ON
THE CIRCUMFERENCE
OF THE CIRCLE,
CORRESPONDING TO
THE ANGLE 6.

FOR A CIRCLE WITH
RADIUS =1, THE
LENGTH OF THE
ARC AP EQUALS
THE ANGLE 6 IN
RADIANS!

V.
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BY STRAIGHT LINES OR CURVES WITH A REGULAR SHAPE.

THE GRAPHS OF SOME FUNCTIONS CANNOT BE EXPRESSED ]>

The stock price P of company A in month x in 2009 is
y =P

300
200

Yen

100

Month

P(x) cannot be expressed by a known function, but it is still a function.
If you could find a way to predict P(7), the stock price in July, you could
make a big profit.

COMBINING TWO OR MORE FUNCTIONS 15 CALLED “THE
COMPOSITION OF FUNCTIONS.” COMBINING FUNCTIONS
ALLOWS US TO EXPAND THE RANGE OF CAUSALITY.

A composite function
r of fand g

x—[f]— s —[g]—gu

EXERCISE

1. Find an equation that expresses the frequency of z chirps/minute of a
cricket at x°F.

14 PROLOGUE
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GENERALIZING EXPONENTIAL AND LOGARITHMIC FUNCTIONS

ALTHOUGH EXPONENTIAL AND LOGARITHMIC
FUNCTIONS ARE CONVENIENT, OUR DEFINITION OF
THEM UP TO NOW ALLOWS ONLY NATURAL NUMBERS
FOR x IN flx) = 2 AND THE POWERS OF 2 FOR y
IN g(y) = log,y. WE DON'T HAVE A DEFINITION FOR
THE —8th POWER, THE 7/3rd POWER OR THE +/2th
POWER, log,5, OR log,m.

( I WILL TELL YOU HOW WE
DEFINE EXPONENTIAL AND
J { LOGARITHMIC FUNCTIONS IN

GENERAL, USING EXAMPLES.

WE DO, THEN?

( HMM, WHAT DO

GLAD THAT YOU ASKED AM 1.
THE POWER OF CALCULUS WE USE
FOR THIS. YES.

k3
T>1

FIRST, USING OUR EARLIER EXAMPLE, LET'S CHANGE THE ECONOMY'S
ANNUAL GROWTH RATE TO ITS INSTANTANEOUS GROWTH RATE.

Value after 1 year — Present value f(x +1)- f(x)
Annual growth rate = =
Present value Sf(x)

THIS 15 THE EXPRESSION
WE START WITH.
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NOW WE DEVELOP THIS INTO THE INSTANTANEOUS
GROWTH RATE, AS FOLLOWS,

Instantaneous growth rate
Value slightly later — Present value + Time elap "'J

= Idealization of
Present value

+e)-
= Result obtained by letting £ — 0 in [M] L

BT
1 [f("”)‘f(")}%f'bc)

=lim ——
-0

(%)

g

GROWTH RATE A5 4 (%)

50, WE DEFINE THE /()
}f INSTANTANEOUS
/

Now, let’s consider a function that satisfies the instantaneous growth
rate when it is constant, or

S(x)
S(x)

Here we assume c = 1, and we
will find f(x) that satisfies

=c where c is a constant.

(%) FIND f(x)7 BUT HOW DO
o) WE FIND IT?

1. We first guess this is an exponential function.

SINCE f'(x) = f(x): ® f(0)= f(0)
NOW, RECALL THAT WHEN h WAS CLOSE ENOUGH TO ZERO,
WE HAD £ (h)=~ f'(0)(h-0)+ f(0)
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APPROXIMATING WITH FUNCTIONS

-
s 51 N O
THE ASAGAKE TIMES
SANDA-CHO OFFICE A

ALL RIGHT, IM
PONE FOR THE
DAY.

NORIKO, I HEARD
A POSH ITALIAN
RESTAURANT JUST
OPENED NEARBY.
WOULD YOU LIKE
TO GO?

WOW! I LOVE
ITALIAN FOOD.
LET'S GO!

BUT..YOU'RE
FINISHED
ALREADY?
IT'S NOT EVEN

NOON.

-

THIS 1S A
BRANCH OFFICE.
WE OPERATE
ON A DIFFERENT
SCHEDULE.
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IN THIS CASE, f
EXPRESSES THE
RELATIONSHIP

OR RULE
BETWEEN
“A PARENT”

B o[7]o o’

A PARENT

AND THIS
RELATIONSHIP IS
TRUE OF ALMOST
ANY ANIMAL. IF x
15 A BIRD, y 15 A
CHICK.

AN OFFSPRING

OKAY! NOW
AT T

\

[

FOR EXAMPLE,

THE RELATIONSHIP
BETWEEN INCOMES
AND EXPENDITURES
CAN BE SEEN AS A
FUNCTION.

\
T

W \nu\\‘\l\l

Y

THE SPEED OF SOUND
AND THE TEMPERATURE
CAN ALSO BE EXPRESSED
AS A FUNCTION. WHEN
THE TEMPERATURE GOES
UP BY 1°C, THE SPEED
OF SOUND GOES UP BY
0.6 METERS/SECOND,

LIKE HOW WHEN
THE SALES AT A
COMPANY GO UP,
e CMPLOVEES

GET BONUSES? !

TEMPERATURE IN THE
MOUNTAINS GOES
DOWN BY ABOUT
0.5°C EACH TIME YOU
GO UP 100 METERS,
DOESN'T IT?

0. PROLOGUE:
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USING EXPONENTIAL AND LOGARITHMIC FUNCTIONS

X
o
OO0

PCs AND THE
INTERNET HAVE
OKAY. WHeW! REALLY CHANGED
ENT MY STORY.
SEND! 15 s10 REPORTERS'
WORK.

BY THE WAV...

OH, I KNOW A
LITTLE B/T ABOUT
COMPUTERS.

THE INFORMATION
HANDLED BY COMPUTERS
15 EXPRESSED IN TERMS
OF TWO DIGITS: 0 AND 1,
OR SEQUENCES OF B/75.

NO REACTION?"
OH, WELL.
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WE HAVE PLENTY

OF TIME HERE TO |
THINK ABOUT THESE

THINGS QUIETLY.

DO YOU GET IT? WE
ARE SURROUNDED BY
FUNCTIONS.

THE THINGS YOU
THINK ABOUT HERE
MAY BECOME USEFUL

SOMEDAY.

1 SEE WHAT
YOU MEAN!

IT'S A SMALL
OFFICE, BUT I HOPE
YOU WILL PO YOUR

BEST.

T

WHAT 15 A FUNCTION? 11
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IF WE SUPPOSE f(x)
15 THE NUMBER OF

| VALUES THAT CAN BE

-\ EXPRESSED BY x BITS,

-\ THEN f(x) = 2% WHICH

15 AN EXPONENTIAL

FUNCTION.

SINCE COMPUTERS

HANDLE INFORMATION IN
THE BINARY SYSTEM, ONE
BIT CAN REPRESENT TWO
NUMBERS (0 AND 1); TWO

BITS CAN REPRESENT

FOUR (00, 01, 10,

AND 11); THREE BITS CAN

REPRESENT EIGHT; AND

n BITS CORRESPOND TO
2" POSSIBLE NUMBERS, Eﬁ%ﬁgﬁrgx«l,
%8
EXPONENTIAL
FUNCTION? AN EXPONENTIAL ng gxi\f«ifa
FUNCTION CAN
EXPRESS AN
INCREASE LIKE !

ECONOMIC
GROWTH.

IN THE 13505 IN ./ APERSONWITH AN
JAPAN, WE HAD A HIGH [ ANNUAL INCOME OF
RATE OF ECONOMIC | ¥5 MILLION ONE YEAR

GROWTH: ABOUT EARNED ¥5.5 MILLION
10 PERCENT A YEAR, THE NEXT YEAR.

HIS SALARY INCREASED
10 PERCENT, AND HE
COULD ENJOY 10 PERCENT
MORE COMMODITIES AND
SERVICES THAN IN THE
PREVIOUS YEAR.
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ARE YOU ALL

OH, LUNCH |15 HERE
ALREADY? WHERE 1S MY
BEEF BOWL?

FUTOSHI, LUNCH
HASN'T COME
YET. THIS 15...

NOT YET? PLEASE
WAKE ME UP WHEN
LUNCH 15 HERE.
2z2..

NO, FUTOSHI,
WE HAVE A
NEW...

12 PROLOGUE
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DONT GET TOO

WE HAD SUCH GOOp EXCITED.

DAYS! T WOULD HAVE
BOUGHT A WHOLE
NEW WARDROBE
AND LOTS OF
OTHER THINGS!

SUPPOSE THE ECONOMIC
GROWTH |5 10 PERCENT,
AND THE PRESENT GROSS
DOMESTIC PRODUCT 15
Go. IN A FEW YEARS,

IT WILL CHANGE AS
FOLLOWS.

THEN, WHAT 15 THE
GROS5 DOMESTIC
PRODUCT AFTER
n YEARS IN
GENERAL?

G, =Gyx L1
Gross domestic product after 1 year

Gy =Gy x1.1=Gyx 1L1?

AN

Gross domestic product after 2 years G, = Go x 1.1, OR 1.95

G NEARLy POUBLED N

Gross domestic product after 3 years JUST 7 YEARS,

G,=Gyx 11

Gross domestic product after 4 years DOUBLED?
5 WOW! WHAT

Gs=Gyx 1.1 WOULD I BUY

Gross domestic product after 5 years IF MY SALARY

POUBLED?

50, A FUNCTION IN AN ECONOMY HAVING

A FORM LIKE AN ANNUAL GROWTH
S = apa® RATE OF o 15

15 CALLED AN EXPRESSED WITH THE

EXPONENTIAL EXPONENTIAL FUNCTION
FUNCTION. J) = a1 + o)*
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TABLE 1: CHARACTERISTICS OF FUNCTIONS

SUBJECT

CALCULATION

GRAPH

Causality

The frequency of a cricket’s chirp is
determined by temperature. We can
express the relationship between

y chirps per minute of a cricket at
temperature x°C approximately as

y=9g(x)=7x-30
T

x=27° 7x27-30

The result is 159 chirps a minute.

Changes

The speed of sound y in meters per sec-
ond (m/s) in the air at x°C is expressed as

y=v(x)=0.6x+331

At 15°C,

y=v(15)=0.6x15 + 331 = 340 m/s
At -5°C,

y=v(-5)=0.6x(-5) +331 =328 m/s

Unit
Conversion

Converting x degrees Fahrenheit (°F) into
y degrees Celsius (°C)

5
y=J(x)-2(x-22)
So now we know 50°F is equivalent to

2(50—32)=10°C

‘When we graph these
functions, the result is
a straight line. That's
why we call them linear
functions.

2]
®

Computers store numbers using a binary
system (1s and 0s). A binary number with
X bits (or binary digits) has the potential
to store y numbers.

y=b(x)=2"

(This is described in more detail on
page 131.)

The graph is an expo-
nential function.

y

1024
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BITS ARE ALSO

1JUsT TOLp
YOU THAT BITS
ARE CODES FOR
EXPRESSING
INFORMATION.

-

AN EXPONENTIAL INVERSE
YES, 1 BIT FUNCTION. IF x BITS FUNCTION
15 FOR 2 CORRESPOND TO f(x)

PATTERNS, POS5IBLE NUMBERS,

z BITS THEN f(x) = 2% YOU
FOR 4 KNOW, THERE IS A
PATTERNS. FUNCTION CALLED AN

INVERSE FUNCTION,
WHICH TURNS WHAT
YOU CALLED PATTERNS,
BACK INTO BITS.

IT's EASY—YOU JUST
NEED TO THINK THE
OTHER WAY AROUND.

2 PATTERNS & 1 BIT

50, WE CAN

REPRESENT
4 PATTERNS = 2 BITS 2" POSSIBLE
NUMBERS USING
8 PATTERNS = 3 BITS n BITS.

NOW, ASSUME g(y)
1S THE INVERSE
FUNCTION OF f(x),
WHICH TURNS y
PATTERNS BACK
INTO BITS. TRY IT.

WE GET g(2) = 1,
g4)=2,9(8) =3,

50, THE RELATIONSHIP
BETWEEN f AND g CAN BE
EXPRESSED AS g(f(x) = x

AND flg(y) = y.

REMEMBER NOW
THAT THE INVERSE
FUNCTION OF AN
EXPONENTIAL
FUNCTION IS CALLED
A LOGARITHMIC
FUNCTION AND 15
EXPRESSED WITH
THE SYMBOL log.

RIGHT, AND log,2 =1,
log,4 = 2, log,8 = 3,
log,16 = 4...

IN THE ABOVE
CASE, IT IS
EXPRESSED AS
g(y) = log,y.

134 CHAPTER 4 LET'S LEARN INTEGRATION TECHNIQUES!





OPS/images/141.jpg
sin ¢ = sin @ freeseeseeeeesd A, (cos 0, sin 0) = (cos a, sin a)

LET'S USE THIS i
TO INTEGRATE a,
FROM 0 TO a.

A, (cos 0, sin 0))

%
A, (cos 6, sin 6) = (1, 0)

2 cos OAG when 0 is changed from O to «

RIGHT! IF WE
cos 0, (0, - 0,) + cos 0, (0, - 0,) + ... +cos 0, (0,-0,,) | | MAKE THESE ‘mEE T,!#;gg:[
INFINTELY  OF cosing I
~ALA +A A+ ..+ A A=A A =sina SMALL... SINE

Jff cos9dh-

Sinck—sin0

YOU'RE
RIGHT!
THEN, TO PUT IT THE
OTHER WAY AROUND, THE NOW
DERIVATIVE OF SINE 15 REMEMBER
COSINE? THESE
FORMULAS,
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THINKING...?
S YES! THINKING

ABOUT FACTS.

THIS 1S A ©O0D
PLACE. A PERFECT
ENVIRONMENT FOR

THINKING ABOUT

THINGS.

A FACT 15 SOMEHOW
RELATED TO
ANOTHER FACT.

UNLESS YOU UNDERSTAND
THESE RELATIONSHIPS,
YOU WON'T BE A REAL

REPORTER.

TRUE JOURNALISM!!

WHAT IS A FUNCTION? 7
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FORMULA 4-1: THE DIFFERENTIATION AND INTEGRATION OF TRIGONOMETRIC FUNCTIONS
Since ® f: cosfdf =sina —sin 0, we know that sine must be cosine’s derivative.
© (sind) =cosd
7 z ;i J : 2\ 3
Now, substitute 0 + o for 0in @. We get tsm 0 +E =cos|0+—|

Using the equations from page 124,
we then know that

(5] (cos@)’ =-sin®

We find that differentiating or integrating sine gives cosine and vice versa.

ALL RIGHT! LET'S
PO THE CALCULUS
DANCE SONG!!

CALC...
THAT'S A
STRANGE
SOUND!

CALCULUS DANCE SONG

TRIGONOMETRIC VERSION

RAISE JUMP AND JUMP AGAIN
BOTH ARMS TURN TO AND CLAP
TOWARD THE LEFT. YOUR HANDS
UPPER RIGHT. TWICE.
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WELL, YOU
MAJORED IN THE
HUMANITIES.

YES! THAT'S
TRUE-T'VE STUDIED
LITERATURE SINCE
I WAS A JUNIOR IN
HIGH SCcHOOL.

YOU HAVE A LOT OF
CATCHING UP TO DO,
THEN. LET'S BEGIN
WITH FUNCTIONS.

WHEN ONE THING
CHANGES, IT INFLUENCES
ANOTHER THING.

A FUNCTION IS A

CORRELATION. YOU CAN THINK OF

THE WORLPD ITSELF AS
ONE BIG FUNCTION.

FU...FUNCTIONS?
MATH? WHAT?

A FUNCTION DESCRIBES A
RELATION, CAUSALITY, OR

CHANGE.
<

AS JOURNALISTS,
OUR JOB IS TO FIND
THE REASON WHY
THINGS HAPPEN—
THE CAUSALITY.
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oAt o
5446-0‘”5 CA

THE DANCE SONG MAKES
BORING LOGIC EASIER!
CALC, CALCULUS. YAY!

CIRCLE OF SINE,
COSINE DOES
INTEGRATION! RAISE

BOTH ARMS TO FORM

A CIRCLE.

COSINE. FORM
AN 5 WITH BOTH

&

4 COSINE INTEGRAL
BECOMES SINE.
FORM A € WITH

BOTH ARMS.

_’.: cosfdp =sin x

DIFFERENTIATION
OR INTEGRATION

INTERCHANGES
SINE AND COSINE.
RAISE AND LOWER
YOUR ARMS.

/
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FOR EXAMPLE,
ASSUME x
AND y ARE

ANIMALS,

DID YOU KNOW A
FUNCTION 15 OFTEN
EXPRESSED AS

(7] — [mmrs]

ASSUME x 15 A FROG, TF <1
YOU PUT THE FROG INTO S0 UK
BOX f AND CONVERT IT, , UH...

TADPOLE y COMES OUT WHAT 15 £2
OF THE BOX.

THE f STANDS FOR
FUNCTION, NATURALLY.

S5 USED TO SHOW THAT
THE VARIABLE y HAS A
PARTICULAR RELATIONSHIP
TO x.

AND WE CAN
ACTUALLY USE ANY
LETTER INSTEAD

OF f.

WHAT I5 A FUNCTION? 9
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FUTOSH, LET'S
DANCE!

NO, I CANT. T
HAVEN'T EATEN
EVEN HALF THE
FOOD AT THESE
STANDS.

WE CAME HERE

YEAH, WELL,
TO REPORT!

YOU'RE THE ONE
WEARING DANCING
CLOTHES!

CUT IT OUT! YOU
TWO HAVEN'T EVEN
STARTED WORKING.

WE DON'T HAVE
MUCH TIME BEFORE

TOMORROW'S
MORNING PAPER!

YOU TWO ARE
ENJOYING THE
FESTIVAL TOO MUCH!
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Density
P

0.02

SUPPOSE plx) 15
EXPRESSED AS

NOW NORIKO, WHAT
IS THE AMOUNT OF
ALCOHOL IN GRAMS

CONTAINED IN THIS F|I@CU?ZNETIT
SHOCHU WITH HOT OUT THAT
WATER? QUICKLY.

Height

STEP 1—WHEN THE DENSITY IS CONSTANT

IF THE DENSITY 1S
0.1 B/CM?, AS SHOWN IN

o THIS GRAPH, WE NEED TO
4 CALCULATE THE DENSITY
BUT IF THE TIMES THE HEIGHT
DENSITY 15 TIMES THE BASE AREA:
CONSTANT, IT'5 0.4 X G X 20 = 18 GRAMS,
EASY, THE TOTAL WHICH 15 THE AMOUNT OF
AMOUNT OF ALCOHOL.
ALCOHOL EQUALS 0.1 :
THE DENSITY
MULTIPLIED BY THE :
VOLUME OF THE 9 x
CONTAINER.
you@ ARE RIGHT! BUT
ISN'T IT THE SAME P TO GET THE VOLUME,
AS CALCULATING WE MUST ALSO
THE AREA OF THE MULTIPLY HEIGHT x
SHADED PART OF BY THE BASE AREA,
THE GRAPH? 20 CM2,
=
pd
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STEP Z—WHEN THE DENSITY CHANGES STEPWISE

Density
pPlx)

NOW, LET'S IMAGINE

A GLASS OF SHOCHU AS
WHERE THE DENSITY REPRESENTED
CHANGES STEPWISE, BY THIS GRAPH,
FOR EXAMPLE. OBt

WHY DON'T YOU
CALCULATE IT,
NORIKO?

WELL, SEPARATING
THE GRAPH INTO THE

STEPS..THE BASE AREA 0.3x2x20+0.2x4x20+0.1x3x20
15 20 CM...
Alcohol for Alcohol for Alcohol for
the portion of | | the portion of | | the portion of
0<x<2 2<x<6 6<x<9

=(0.3x2+0.2x4+0.1x3)x20=234
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THAT'S
THE ANSWER RIGHT.
15 34 GRAMS,
ISNT IT?
STEP 3—WHEN THE DENSITY CHANGES CONTINUOUSLY
NOW, WHAT DO ;
YOU DO WHEN De“s‘(;’)' WHAT A
plx) CHANGES p BOTHER!
CONTINUOUSLY?
24
0.02 ®
1
0 9 x

1 SEE. WE CAN START
BY IMITATING THE
FUNCTION WITH A

STEPWISE FUNCTION

AND CALCULATE
USING THE SAME
METHOD WE DID IN
STEP 2.

ACTUALLY, IT'S
NOT A BOTHER AT
ALL. LOOK!
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RIGHT! DIVIDING
THE X-AXIS AT x,,
.y AND xg,

Xy, Xy«

The density is constant between
X, and x; and is p(x,).

The density is constant between
x, and x, and is p(x,).

The density is constant between
X, and x,; and is p(x,).

IN THIS WAY, WE IMITATE
p(x) WITH A STEPWISE

CALCULATING
THE AMOUNT OF
ALCOHOL WITH THIS
STEPWISE FUNCTION
GIVES US AN AMOUNT
IMITATING THE
EXACT AMOUNT OF
ALCOHOL.

FUNCTION.
RIGHT. THE SHADED
THAT'S THIS AREA OF THE
CALCULATION, STEPWISE FUNCTION
ISN'T IT? 15 THE SUM OF THESE
EXPRESSIONS (BUT
Pxo)x (%, —%,)x 20 WITHOUT MULTIPLYING
= BY 20 CM?, THE
Bl = %20 BASE AREA.
p(x,)x(x; —x,)x20
p(x,)x(x, - x,)x20
P(x,)x(x5 - x,)x20
+P(x5) % (x5 — %5 )x 20
Approximate
amount of alcohol

P
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CARBON DIOXIDE
(€O, 15 SUSPECTED

GLOBAL WARMING.

o)
y?’

QL

TO BE THE CAUSE OF | 2.

IF HEAT RADIATION
CANNOT ESCAPE
THE ATMOSPHERE,
THE EARTH GETS
TOO WARM, CAUSING
ABNORMAL WEATHER.

IT 15 CALLED A
GREENHOUSE GAS. 1T
HAS THE EFFECT OF
KEEPING THE EARTH WARM
BY PREVENTING HEAT
RADIATION FROM ESCAPING
EARTH'S ATMOSPHERE.

THE STUDENT
ANALYZED HOW THE
WIND AFFECTS THE
TEMPERATURE.

HE PROPOSED
RESTRICTING THE
CONSTRUCTION OF

LARGE BUILDINGS
IN THE PATH OF
THE WIND.

HE SEEMS TO HOPE
THAT IF THE WIND
BLOWS OVER THE
COAST OR RIVERS
UNHINDERED, THE
INCREASE IN GROUND
TEMPERATURE
WOULD SLOW.

IT'6 TOUGH TO
REDUCE CO,
EMISSIONS

IN TODAY'S

SOCIETY.

BUT EVERYBODY
SHOULD TRY TO
REDUCE THEM.
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HOW PO YOU FIND
OUT IF THE AMOUNT
OF CO, IN THE AR IS
INCREASING IN THE
FIRST PLACE?

OH, NO,
DIFFERENTIATION?

NO, IT'S INTEGRATION
THIS TIME. BUT IT'S
ALSO A FUNCTION!

N

/

INTEGRATION
ALLOWS Us TO FIND
THE TOTAL AMOUNT
OF CO; IN THE AIR.

IF WE KNOW THE
TOTAL AMOUNT
OF €O, IN THE AIR,
WE CAN ESTIMATE
THESE THINGS.

1. CO,'S EFFECT ON GLOBAL
WARMING

THE AMOUNT OF CO, IN THE
AIR PRODUCED BY HUMAN
FACTORS, LIKE CARS AND
INDUSTRY

BUT FINDING THE
TOTAL AMOUNT OF
CO, 15 A DIFFICULT

PROBLEM.
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CONCENTRATION IN
THE AIR WERE UNIFORM
EVERYWHERE, WE COULD
CALCULATE THE TOTAL
AMOUNT OF CO,: THE
€O, CONCENTRATION
MULTIPLIED BY THE TOTAL

VOLUME OF AIR.

BUT THE €O,
CONCENTRATION
DIFFERS FROM PLACE
TO PLACE, AND IT5
CHANGE 15 SMOOTH
AND CONTINUOUS.

LET'S THINK ABOUT
HOW WE CALCULATE
THE TOTAL AMOUNT

OKAY. LET'G USE
THIS, FUTOSHI'S

FOR THE CONTINUOUS TZSQ%%’E%F
CHANGE OF :
CONCENTRATION
LIKE THIS.

UH...CAN YOU
THINK OF
A SIMPLER
EXAMPLE?

* A JAPANESE DISTILLED SPIRIT

THIS 15 FOR
NORIKO'S TRAINING.
IT'S YOUR FAULT
YOU KEEP IT IN THE
OFFICE.

NO! IT'S *THOUSAND
YEARS OF SLEER” A
VERY RARE, FAMOUS

SHOCHU FROM
SANDA-CHO.

MAYBE THAT'S
WHY HE 15
ALWAYS NAPPING.

STUDYING GLOBAL WARMING





OPS/images/096.jpg
ILLUSTRATING THE FUNDAMENTAL THEOREM OF CALCULUS

WE WILL POUR HOT

WATER INTO THIS
HEIGHT: @ cM

BASE AREA: 20 CM*

GLASS OF SHOCHU.

NATURALLY, WHEN WE
ADD THE HOT WATER,
THE LOWER PART 15
STRONG AND THE
UPPER PART IS LESS
CONCENTRATED.

ALSO, THE
CONCENTRATION
CHANGES SMOOTHLY,
LITTLE BY LITTLE,
FROM TOP TO
BOTTOM. =

NOW LET'S EXPRESS THE

x DENSITY OF SHOCHU AT
em x CENTIMETERS FROM

THE BOTTOM USING THE

FUNCTION p(x) IN G/CM?,
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HEY, DID YOU
READ THE ARTICLE
IN TODAY'S
NEWSPAPER?

THIS ONE. THIS
PERSON GOES TO
MY COLLEGE!

THE TOKYO
METROPOLITAN
GOVERNMENT
HAS BUDGETED

GLOBAL WARMING
COUNTERMEASURES
USING THE STUDENT'S
FINDINGS. THIS 1S

GREAT!

OUR UNIVERSITY
1S STRONG IN
SCIENCE.
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The Integral of Velocity
Proven to Be Distance!

The integral of velocity = difference in
position = distance traveled

If we understand this formula, it's
said that we can correctly calculate the
distance traveled for objects whose veloc-
ity changes constantly. But is that true?
Our promising freshman reporter Noriko
Hikima closes in on the truth of this mat-
ter in her hard-hitting report.

Figure 1: This graph represents
Futoshi's distance traveled over
time. He moves to point y,, y,, Ys...
as time progresses to x, X,, X;...

Sanda-Cho—Some readers will recall our
earlier example describing Futoshi walk-
ing on a moving walkway. Others have
likely deliberately blocked his sweaty
image from their minds. But you almost
certainly remember that the derivative of
the distance is the speed.

© y=F(x)
® [‘v(x)ax=F(b)-F(a)

Equation @ expresses the position of
the monstrous, sweating Futoshi. In other
words, after x seconds he has lumbered a
total distance of y.

Integral of Velocity = Difference in Position

The derivative F’'(x) of expression @
is the “instantaneous velocity” at x sec-
onds. If we rewrite F(x) as v(x), using v for
velocity, the Fundamental Theorem of Cal-
culus can be used to obtain equation @!
Look at the graph of v(x) in Figure 2-A—
Futoshi’s velocity over time. The shaded
part of the graph is equal to the integral—
equation @.

But also look at Figure 2-B, which
shows the distance Futoshi has traveled
over time. If we look at Figures 2-A and
2-B side by side, we see that the integral
of the velocity is equal to the difference in
position (or distance)! Notice how the two

graphs match—
when Futoshi's

Distance velocity is posi-
y tive, his dis-
- tance increases,
= |Difference and vice versa.
y=Fx)
Yy
Y, .
x : x
X,

Figure 2
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SUPPLY CURVE

FIRST, LET'S CONSIDER HOW COMPANIES MAXIMIZE
PROFIT IN A PERFECTLY COMPETITIVE MARKET. WE'LL
TRY TO DERIVE A SUPPLY CURVE FIRST.

The profit P(x) when x units of a commodity are produced is given by the fol-
lowing function:

Pe 55

(Profit) = (Price) x (Production Quantity) — (Cost) = px — C(x)

where C(x) is the cost of production.

Let's assume the x value that maximizes the profit P(x) is the quantity of
production s.

A company wants to maximize its profits. Recall that to find a function’s
extrema, we take the derivative and set it to zero. This means that the com-
pany’s maximum profit occurs when

P'(s)=p-C'(s)=0

p (Price)
p=C'(s) THE FUNCTION p = C’(s) OBTAINED
ABOVE |5 CALLED THE SUPFLY
P CURVE!
1 A
(2]
o
o s (Optimum production

s, volume by companies)

Price p, corresponds to point A on the function, which leads us to opti-
mum production volume s;.

102 CHAPTER 3 LET'S INTEGRATE A FUNCTION!
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MR. SEKIH!

1 DECIDED TO
SPEND ONE MORE
YEAR THINKING
ABOUT THINGS IN
A WARM PLACE.

WOO! I'M
GOING TO EAT
EVERYTHING IN

OKINAWA!!

MR. SEKI, I HAVE
DISCOVERED THE
PURPOSE OF
MATHEMATICS.

OH, REALLY?

WHAT IS MATHEMATICS FOR? 223
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The rectangle bounded by these four points (p,, A, s,, and the origin)
equals the price multiplied by the production quantity. This should be the
companies’ gross profits, before subtracting their costs of production. But
look, the area @ of this graph corresponds to the companies’' production
costs, and we can obtain it using an integral.

[c'(s)as =C(s,)-€(0) = C(s,) = Costs

We used To simplify,
the Fundamental we assume
Theorem here. c(0) =0.

This means we can easily find the companies’ net profit, which is repre-
sented by area @ in the graph, or the area of the rectangle minus area ©.

DEMAND CURVE
Next, let’s consider the maximum benefit for consumers.

When consumers purchase x units of a commodity, the benefit B(x) for
them is given by the equation:

B(x) = Total Value of Consumption - (Price x Quantity) = u(x) - px

where u(x) is a function describing the value of the commodity for all
consumers.

Consumers will purchase the most of this commodity when B(x) is
maximized.

If we set the consumption value to t when the derivative of B(x) = 0, we
get the following equation:”

THE FUNCTION p = u’(t) OBTAINED HERE 15
CALLED THE DEMAND CURVE.

* Again, you can see we're looking for extrema (where B'(t) = 0), as consumers want to maxi-
mize their benefits.

APPLYING THE FUNDAMENTAL THEOREM 103
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So let's consider the area of the rectangle labeled ®, above, which corre-
sponds to the price multiplied by the product consumption. In other words,
this is the total amount consumers pay for a product.

The total area of ® and @ can be obtained using integration.

f: u'(t)dt = u(t,)-u(0) = u(t,) = Total value of consumption
S
To simplify,
we assume
u(0) = 0.

If you simply subtract the value of the rectangle ® from the integral
from O to t;, you can find the area of @, the benefit to consumers.

THE BENEFIT FOR THE
CONSUMERS © |5 THE TOTAL , §
VALUE OF CONSUMPTION MINUS YES, THAT'S IT. NOW LET'S

rd LOOK AT THE SUPPLY
THE AMOUNT THEY PAID ©, RIGHT? AND DEMAND CURVES

COMBINED TOGETHER.

104 CHAPTER 3 LET'S INTEGRATE A FUNCTION!





OPS/images/239.jpg
A

SOLUTIONS TO EXERCISES

PROLOGUE
1. Substituting

y:g(x—SZ) inz:7y—30.z:%5(x—32)—30

CHAPTER 1
I A f(5)=g(5) =50
B f(5)=8
5 lingf(CH'E)—f(Cl):lim(a*'s)s—0-3:lim3a_’e+3axi+xs3
P & =) s pary &

= lim(:m2 +3ac +¢*) =3a
pary

Thus, the derivative of f(x) is f(x) = 3x%

CHAPTER 2

. The solution is

’
x" nx"! n
rog--Zho e n

E N






OPS/images/119.jpg
p (Price)

WE CAN SAY THAT THE COMPANIES'
PROFIT PLUS THE BENEFIT FOR
CONSUMERS EQUALS THE OVERALL
BENEFIT FOR SOCIETY, AS ILLUSTRATED

@

Supply curve

YES, I WILL
REPORT MY
STORIES USING

BY THE SHADED AREA ON THE RIGHT. p. Z""“"“’_“ E
ompanics)
rofit
/ i Demand curve
= Quantity
N
BUT WHAT HAPPENS IF TRADE
DOES NOT HAPPEN AT THE PRICE
AND QUANTITY DETERMINED BY
THE INTERSECTION POINT E?
J
Loss of
THE OVERALL BENEFIT TO SOCIETY ”
15 REDUCED BY THE AMOUNT bencttto
CORRESPONDING TO THE EMPTY AREA society
IN THE FIGURE.
p F
’ E
G
X
DO YOU GET IT? I ALSO THINK )
VELOCITY AND
FALLING BODIES
ARE GOOD

I'M GOING TO
LOOK INTO THEM!

CALCULUS, TOO.

APPLYING THE FUNDAMENTAL THEOREM 105





OPS/images/240.jpg
2 f'(x)=8x"-12=3(x-2)(x+2)
When x < -2, f(x) > 0, when -2 < x < 2, f'(x) < 0, and when x > 2, f(x)

> 0. Thus at x = -2, we have a maximum with f(-2) = 16, and at x = 2, we
have a maximum with f(2) = -16.

3. Sincef(x)=(1- x]3 is a function g(h(x)) combining g(x) = x° and h(x) =
1-x.

F(x)=g (h(x))n’(x)=3(1-x)*(-1) =-3(1 - x)’

4. Differentiating g(x) = xZ(I - x]3 gives
g'(x)=(»* )/ (1-x)" +x* ((1 -x) )/
=2x(1 —x)x +x* (-—3(1 —x)z)
=%{1 —x)2 (2(1—x)—3x)
:x(l—x)2 (2-5x)

g’(x)=0 when x:% or x=1, and g(1)=0.

Thus it has the maximum g(%j = 108 at x= E

3125 5

CHAPTER 3

1. The solutions are

) _":Sx’dx:x3|j:33—13:26

3
J-cx -:1

= dx:f;(x+%)dx:j:xdx+j‘:xizdx

21(42_22)_ 1. 23 25
2 14 1

) J':’x+(1+x’)7alx+j':x—(l+x“)7abc:J':’zxaxxzs.2 -02=25

226 APPENDIX A





OPS/images/112.jpg
——re
TR \\\\"
\\\‘ \\\ Wy ‘\“."\\ W \.\\

BURNHAM...
THEY'RE ONE OF THE
SPONSORS OF THE
ASAGAKE TIMES.

OF ALL THE
COMPANIES IN JAPAN,
MR. SEK| WROTE AN
ARTICLE ACCUSING
OUR BIGGEST
ADVERTISER.

a8 CHAPTER 3 LET'S INTEGRATE A FUNCTION!

THAT MUST BE WHY HE
WAS TRANSFERRED TO
THIS BRANCH OFFICE.






OPS/images/233.jpg
EPILOGUE:
WHAT IS MATHEMATICS FOR?






OPS/images/113.jpg
HAVE YOU FOUND
ANYTHING?

NO, WELL..AH...
THEY PROPOSED
INTERESTING IDEAS, _

SUCH AS CONSTRUCTING
A BUILDING THAT
HARNESSES THE WIND TO
REDUCE THE HEAT-ISLAND
EFFECT—HOW URBAN
AREAS RETAIN MORE HEAT
THAN RURAL AREAS.

50, WHAT KIND OF
ARCHITECTURE ARE
THEY USING?

I DON'T..KNOW.

AH, I..I WILL
IMMEDIATELY CALL
THEM TO ASK ABOUT IT.
1 PROMISE.

CALL THEM?
CALL THEM?!

THE REFERENCE ROOM 49






OPS/images/234.jpg
NAHA AIRPORT

220 EPILOGUE

PHEW, IT'S HOT!

NO MATTER WHERE
THEY PUT ME, TLL DO
MY BEST.

WELL, WHERE 15
THE ASAGAKE
TIMES OKINAWA

OFFICE?






OPS/images/114.jpg
FORGET ABOUT CALLING!!
YOU WRITE ARTICLES USING
YOUR FEET!

THEM FOR AN
INTERVIEW!!

AND AS PUNISHMENT,
FIND OUT IF THEIR
THEORY CAN BE
WRITTEN USING
EQUATIONS!!

e

s
R

f]

/
—

AWWY

\

YES, SIR!
I'M ON MY WAY.

100 CHAPTER 3 LET'S INTEGRATE A FUNCTION!





OPS/images/235.jpg
Q
Q
Zz
Z
Z.
Q
AN
| 78
&)

h
i
.

ul

=
BUGIAW

%

T_,
rm

| coe—

THIS SITUATION
LOOKS ALL TOO
FAMILIAR TO ME!!

youz!?

Y N

YOU AREN'T NO WAY! \ U HAVENS, WHO 15 IN CHARGE
THE HEAD OF /1 JUsT GOT Emﬁgzak@‘@\\ OF THIS OFFICE?
THIS OFFICE, | Here FROM e 0\5‘%\ ;

ARE YOUzIZ THE AIRPORT, ALR

OH, THAT'S
Goop!

WHAT 15 MATHEMATICS FOR? 221





OPS/images/115.jpg
=3

APPLYING THE FUNDAMENTAL THEOREM
ek B

.50 YOU'RE
TALKING ABOUT
SUPPLY AND
DEMAND, RIGHT?

EXACTLY! IN
ECONOMICS, THE
INTERSECTION OF
THE SUPPLY AND

DEMAND CURVES IS
SAID TO...

DETERMINE THE
PRICE AND QUANTITY
AT WHICH COMPANIES
PRODUCE AND
SELL GO0DS.

SURE, I GET BUT THIS

e DOBSN'T JUST
MEAN THAT
TRADE 15 MADE
AT THE POINT
OF THEIR

INTERSECTION.

IN TRUTH, SOCIETY
1S BEST SERVED
IF TRADE MATCHES
THESE IDEAL
CONDITIONS.

THAT'S GREAT!

CAN EASILY
UNDERSTAND
WHY THIS 1S
TRUE USING THE
FUNDAMENTAL
THEOREM OF
CALCULUS.

APPLYING THE FUNDAMENTAL THEOREM 101





OPS/images/236.jpg
OH, HE 1S ALWAYS
SWIMMING.

EXCUSE ME, DO
YOU KNOW WHERE
THE PERSON IN
CHARGE 157

THERE YOU ARE!

22z EPILOGUE





OPS/images/231.jpg
Burnham
Chemical
Apologizes
Ox Bay Pollution

Reconciliation
with Fishery
Cooperative

Expected

AWIOUO09 PUE JUSUIUOIIAUY SOLIOG

A NEW ASSIGNMENT 217





OPS/images/111.jpg
REFERENCE
ROOM

NORIKO, T REMEMBER THAT
ABOUT A YEAR AGO, A GROUP . WHY PO THEY
OF RESEARCHERS AT SANDA KEEP BRUSHING
ENGINEERING COLLEGE ME OFFIz
ALSO ANALYZED WIND
CHARACTERISTICS AND USED
THEIR RESULTS TO DESIGN
BUILDINGS. WILL YOU FIND OUT
HOW THEIR RESEARCH HAS
PROGRESSED SINCE THEN?

KAKERU SEKI...
THIS 1S AN ARTICLE “ﬁ%&?’”
MR. SEKI WROTE.

THE REFERENCE ROOM a7





OPS/images/232.jpg
DERIVATIVES OF IMPLICIT FUNCTIONS

A point (x, y) for which a two-variable function f(x, y) is equal to constant ¢
describes a graph given by f(x, y) = c. When a part of the graph is viewed as a
single-variable function y = h(x), it is called an implicit function. An implicit
function h(x) satisfies f(x, h(x)) = c for all x defined. We are going to obtain
h(x) here.

When z = f(x, y), the formula of total differentials is written as dz = f,dx +
Jydy. If (x, y) moves on the graph of f(x, y) = ¢, the value of the function f(x, y)
does not change, and the increment of z is 0, that is, dz = 0. Then, we get
0 =f.dx + f,dy. Assuming f, # 0 and modifying this, we get

dy__J

ax

The left side of this equation is the ideal expression of the increment
of y divided by the increment of x at a point on the graph. It is exactly the
derivative of h(x). Thus,

EXAMPLE
Jx, y = rz, where f(x, y) = Tt yz, describes a circle of radius r centered
at the origin. Near a point that satisfies x* # 1%, we can solve f(x, y) = X+
y® = to find the implicit function y = h(x) = * - x’or y =h(x)=—r*-x%.
Then, from the formula, the derivative of these functions is given by

R(x)=-2x=-2
(%) A

EXERCISES
1. Obtain f, and f, for f(x, y) = P 2xy + Syz.

2. Under the gravitational acceleration g, the period T of a pendulum hav-
ing length L is given by

T:27r\/z
9

(the gravitational acceleration g is known to vary depending on the
height from the ground).

Obtain the expression for total differential of T.

If L is elongated by 1 percent and g decreases by 2 percent, about
what percentage does T increase?

3. Using the chain rule, calculate the differential formula of the implicit
function h(x) of f(x, y) = c in a different way than above.
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ON A YUKATA,
T00.

N =

* YUKATA IS TRADITIONAL JAPANESE SUMMER WEAR.

NORIKO, YOU'RE HERE. SINC
mmwas nice oF vouto || ZEAT ;,E,ONEE,IIHQXi?
CALL AND LET ME KNOW REALLY GET AWAY
YOU MIGHT BE RUNNING FROM vOU.

LATE.
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ONLY 15 MINUTES
TO GET THERE!

I HAVE TO REPORT
ON THE SANDA-CHO

SUMMER FESTIVAL. I'M COMING,

MR. SEKI!
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“Highly recommended.”
—CHOICE MAGAZINE

“Stimulus for the next generation of scientists.”
—SCIENTIFIC COMPUTING

“A great fit of form and subject. Recommended.”
—OTAKU USA MAGAZINE

“The art is charming and the humor engaging. A fun and fairly painless
lesson on what many consider to be a less-than-thrilling subject.”
—SCHOOL LIBRARY JOURNAL

“This is really what a good math text should be like. Unlike the majority of
books on subjects like statistics, it doesn’t just present the material as a
dry series of pointless-seeming formulas. It presents statistics as some-
thing fun, and something enlightening.”

—GOOD MATH, BAD MATH

“I found the cartoon approach of this book so
compelling and its story so endearing that I
recommend that every teacher of introductory
physics, in both high school and college, con-
sider using [The Manga Guide to Physics].”
—AMERICAN JOURNAL OF PHYSICS

“A single tortured cry will escape the lips of
every thirty-something biochem major who
sees The Manga Guide to Molecular Biology:
‘Why, oh why couldn’t this have been written
when I was in college?'”

—THE SAN FRANCISCO EXAMINER

“A lot of fun to read. The interactions between
the characters are lighthearted, and the whole
setting has a sort of quirkiness about it that
makes you keep reading just for the joy of it.”
—HACK A DAY

“The Manga Guide to Databases was the most
enjoyable tech book I've ever read.”
—RIKKI KITE, LINUX PRO MAGAZINE
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REVIEW OF THE FUNDAMENTAL THEOREM OF CALCULUS
When the derivative of F(x) is f(x), that is, if f(x) = F'(x)
[ £(x)ax =F(b)-F(a)
This can also be written as

['F'(x)ax=F(b)-F(a)

a

These expressions mean the following.

(Differentiated function) dx
= Difference of the original function between b and a

It also means graphically that

Area surrounded by the differentiated function
and the x-axis, between x=aand x=b

Change in the original
function from a to b

y=f(x)=F(x)

y=F(x)
F(b)

i ] .
a b

Fundamental \ F(a) Y- /

Theorem - i

of Calculus J'hf(x)dx = %

¢ Difference in the

original function
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B

MAIN FORMULAS, THEOREMS, AND
FUNCTIONS COVERED IN THIS BOOK

LINEAR EQUATIONS (LINEAR FUNCTIONS)

The equation of a line that has slope m and passes through a point (a, b):

y=m(x-a)+b

DIFFERENTIATION
DIFFERENTIAL COEFFICIENTS

sy Sflath)-f(a)
f(a)fhmf

h—0
DERIVATIVES

f'(x)=1lim

h—0

S(x+h)- f(x)
h

Other notations for derivatives

dy & d
dx’dx‘dxf(x)

CONSTANT MULTIPLES
{af ()} =as’(x)

DERIVATIVES OF ATH-DEGREE FUNCTIONS

,
{x"} =nx"!
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FORMULA OF THE SUBSTITUTION RULE OF INTEGRATION

When a function of y is substituted for variable x as x = g(y), how do we
€express

b
s=["f(x)ax
a definite integral with respect to x, as a definite integral with respect to y?
First, we express the definite integral in terms of a stepwise function

approximately as

S= 2 S(x) (X - %) (% =a,x, =b)

k=0,1,2,..,n-1
Transforming variable x as x = g(y), we set
Yo =Yy Yyseen Yy = B
so that
a=g(«).x =g(y) %, =g(ys) b= g (B)
Note here that using an approximate linear function of
Xt =% = 9 (Yier) = 9(Ue) = 9" (0 ) (Yer —8)
Substituting these expressions in S, we get

s= ¥ ]f(xk)(xm-xk)= 2nlf(g(yk))g’(yk)(yu-yk)

k=0,1,2,...,n-] k=0,1,2,...,n-!
The last expression is an approximation of
JJ ,
[ r(g()g (v)ay

Therefore, by making the divisions infinitely small, we obtain the follow-
ing formula.

FORMULA 3-2: THE SUBSTITUTION RULE OF INTEGRATION

[ r(x)ax=[’r(9(v) g (v)dy

FORMULA OF THE SUBSTITUTION RULE OF INTEGRATION
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5UM RULE OF DIFFERENTIATION

{f(x)+g(x)f =5(x)+g (x)
PRODUCT RULE OF DIFFERENTIATION

{F(x)g(x)} = £(x)g(x)+ F(x)g'(x)
QUOTIENT RULE OF DIFFERENTIATION

{w} _ () S (x)-9(x) S (%)
S(x) sy

DERIVATIVES OF COMPOSITE FUNCTIONS
lo(F )} =g'(s(x)) 5 (x)

DERIVATIVES OF INVERSE FUNCTIONS
When y = f(x) and x = g(y)

EXTREMA
If y = f(x) has a maximum or a minimum at x = a, f'(a) = 0.
y =f(x) is increasing around x = a, if f(a) > 0.
y = f(x) is decreasing around x = a, if f(a) < 0.

THE MEAN VALUE THEOREM
For a, b (a < b), there is a ¢ with a < ¢ < b, so that

S(b)=s'(c)(b-a)+ f(a)

DERIVATIVES OF POPULAR FUNCTIONS

TRIGONOMETRIC FUNCTIONS

{cos0}) = -sin0,{sin0} = cos0

23z APPENDIX B
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EXAMPLE:
Calculate:

[}10(2x +1)" ax
o
We first substitute the variable so that y = 2x + 1, or x = g(y) = yT_l

Since y = 2x + 1, if we take the derivative of both sides, we get

dy = 2dx. Then we get dx = %dy.

Since we now integrate with respect to y, the new interval of integra-
tion is obtained from 0 = g(1) and 1 = g(3) to be 1 - 3.

1 3 1 3 5
[, 10(2x +1)" ax = [ 10y* 7% =[ sy‘ay =3° -1° =242

THE POWER RULE OF INTEGRATION

In the example above we remembered that 5y4 is the derivative of y5 to finish
the problem. Since we know that if F(x) = X", then F'(x) = f(x) = nx" * ¥, we
should be able to find a general rule for finding F(x) when f(x) = i

We know that F(x) should have x™*Y in it, but what about that coef-
ficient? We don’t have a coefficient in our derivative, so we’ll need to start
with one. When we take the derivative, the coefficient will be (n + 1), so it
follows that 1/ (n + 1) will cancel it out. That means that the general rule for
finding the antiderivative F(x) of f(x) = x" is

sy

F(x):nilxx("’”:n+l

* In other words, when x = 0, y = 1, and when x = 1, y = 3. We then use that as the range of our
definite integral.

112 CHAPTER 3 LET'S INTEGRATE A FUNCTION!
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EXPONENTIAL FUNCTIONS
,
o -
LOGARITHMIC FUNCTIONS
,
1
{logx} ==
x

INTEGRALS

DEFINITE INTEGRALS
When F'(x) = f(x)

[Lf(x)dx = F(b)-F(a)
CONNECTION OF INTERVALS OF DEFINITE INTEGRALS
P £ (xyax+ |7 p (x)ax = [ f (x)ax
5UM OF DEFINITE INTEGRALS
(s () + g(x)fax = [ f(x)ax + [ g(x)ax
CONSTANT MULTIPLES OF DEFINITE INTEGRALS
[af(x)ae=af f(x)ax

SUBSTITUTION OF INTEGRALS
When x = g(y), b = g(p), a = g(«)

[ rxyax=[ 1(9(y))g (v)dy
INTEGRATION BY PARTS

[P r(x)g(x)ax+[ r(x)g (x)ax = f(b)g(b)- f(a)g(a)
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The area between the graph of y = f(x) = x* - 3x and the x-axis equals

—J.: x* - 3xdx

L __ (1 5.8 .
B. —Lx —Sxdxf—(gx —-=x )

CHAPTER 4

. The solution is

(tan x)’ N [ sinx )’ _(sin x)’ cosx —sin x(cosx)’

cosx cos® x
_cos’x+sin’x 1
cos® x cos® x
2. Since
(tanx) =———
cos® x

J.‘ 12 dx=tanZ —tan0=1
° cos” x 4

3. From
F(x)=(x) e + x(e")) =e* +xe* =(1+x)e*
the minimum is

Sen=-2

Setting f(x) = x* and g(x) = 1n x, integrate by parts.

j':(xz),lnxdxﬁ-fx2 (Inx) dx=e*lne-Inl
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The Calculus News-Gazette

Free Fall from Tokyo Tower
How Many Seconds to the Ground?

It's easy to take things for granted—
consider gravity. If you drop an object from
your hand, it naturally falls to the ground.
We can say that this is a motion that
changes every second—it is accelerating
due to the Earth’s gravitational pull. This
motion can be easily described using
calculus.

But let’s consider a bigger drop—all the
way from the top of Tokyo Tower—and find
out, “How many seconds does it take an
object to reach the ground?” Pay no atten-
tion to Futoshi’s remark, “Why don’t you go
to the top of Tokyo Tower with a stopwatch
and find out for yourself?”

The increase in velocity when an
object is in free fall is called gravitational
acceleration, or 9.8 m/s”. In other words,
this means that an object’s velocity
increases by 9.8 m/s every second. Why is
this the rate of acceleration? Well, let’s just
assume the scientists are right for today.

Expression @ gives the distance the
object falls in T seconds. Since the integral
of the velocity is the difference in position
(or the distance the object travels), equa-
tion @ can be derived. Look at Figure 3—
we've calculated the area by taking half of
the product of the x and y values—in this
case, % x 9.8t x t. And we know that the
height of Tokyo Tower is 333 m. The square
root of (333 / 4.9) equals about 8.2, so an
object takes about 8.2 seconds to reach
the ground. (We've neglected air resistance
here for convenience.)

Section Al

© F(T)-F(0)=] v(x)dx=["9.8(x)dx

® 4.9T°-4.9x0* =4.9T°

333=4.9T" > T = [>00

=8.2 seconds

Velocity v(x) = 9.8x

Area of the velocity
9.8t x t x Y = 4.9t2

Distance

4.9t?

Distance
fallen

Time

Figure 3
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Thus,

_..:lenxdx +J‘:x“%dx:e2

_‘.:2xlnxdx:—_‘.:xdx+e2 :—%(eZ —l)2 +e?

1, 1
e g 4
2" "2

CHAPTER 5

1. For

f(x)=e*, f'(x)=-€e", f'(x)=€e~, f"(x)=-€~
F(0)=1, f/(0)=-1, f"(0) =1, f7(0) = -1...

1wk L
f(x)=1 TR

2. Differentiate

f(x)= (cosx)’l ,f'(x)=(cos x) " sinx

(cosx) smx)2 + (cosx)’2 cosx
< 2
+

cosx)’ (sinx cosx)’
(cosx)

from f(0)=1,f'(0)=0,f(0)=1

3. Proceed in exactly the same way as on page 155 by differentiating f(x)
repeatedly. Since you are centering the expansion around x = a, plugging
in a will let you work out the c,s. You should get ¢, = 1/n! f™¥(a), as
shown in the formula on page 159.
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The Calculus News-Gazette

The Die Is Cast!!! )

The Fundamental

Theorem of Calculus

Applies to Dice, Too
You probably remem- A

ber playing games with dice
as a child. Since ancient

1234586

Section Al
F(x)
2 C
vt
-1l 1l Fs
123456

times, these hexahedrons
have been rolled around the
world, not only in games, but

Figure 4: Density function

Figure 5: Distribution function

also for fortune telling and
gambling.

Mathematically, you can
say that dice are the world’s Jix)
smallest random-number
generator. Dice are wonder-
ful. Now we’ll cast them for
calculus! A die can show a 1,
2, 3, 4, 5, or 6—the probabil-
ity of any one number is 1 in

Density function

Distribution function

6. This can be shown with
a histogram (Figure 4), with
their numbers on the x-axis
and the probability on the
y-axis.

12345€6

e

SF(3)+S(4)+S(5)=F(5)-F(2)

1234586

This can be expressed by
equation @, or f(x) = Probabil-
ity of rolling x. This becomes
equation ® when we try to
predict a single result—for
example, a roll of 4.

©® f(x) = Probability of rolling x
1
e f(4)= == Probability of rolling 4

Now let’s take a look at Figure 5, which
describes a distribution function. First,
start at 1 on the x-axis. Since no number
less than 1 exists on a die, the probability
in this region is 0. At x = 1, the graph jumps
to 1/6, because the probability of rolling a
number less than or equal to 1is 1 in 6. You
can also see that the probability of rolling
a number equal to or greater than 1 and
less than 2 is 1/6 as well. This should make
intuitive sense. At 2, the probability jumps
up to 2/6, which means the probability for
rolling a number equal to or less than 2 is
2/6. Since this probability remains until

Figure 6: Derivative of distribution function F(x)
= density function f(x)

right below 3, the probability of numbers
less than 3 is 2/6.

© [ f(x)ax=F(b)-F(a)

= Probability of rolling x where a<x<b

In the same way, we can find that the
probability of rolling a 6 or any number
smaller than 6 (that is, any number on the
die) is 1. After all, a die cannot stand on
one of its corners. Now let's look at the
probability of rolling numbers greater than
2 and equal to or less than 5. The equation
in Figure 6 explains this relationship.

If we look at equation ©, we see that it
describes what we know—"A definite inte-
gral of a differentiated function = The dif-
ference in the original function.” This is
nothing but the Fundamental Theorem of
Calculus! How wonderful dice are.

A R A o A S e R R A i A A Rt
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CHAPTER 6
1. For flx, y) = X+ 2xy + 3y2,fx =2x+ 2y, and f, = 2x + 6y.

2. The total differential of

11
T:ZﬂJz:2ﬂg 2L
g

is given by
81 L
dT :a—ng+a—Td_L =-ng *L*dg+ng *L *dL
ag oL
Thus,

3 1 11

AT =-ng 2L*Ag+ng *L AL
Substituting Ag = -0.02g, AL = 0.01L, we get

31 1 1
AT =~ 0.027g 2L?g+0.01rg 2L *L

s L T
=0.037g *L* = O'OSE =0.015T
So T increases by 1.5%.

3. If we suppose y = h(x) is the implicit function of f(x, y) = c.
Thus, since the left side is a constant in this region, f(x, h(x)) = ¢
near x.

From the chain rule formula

af _ df _ oy
2e=Oge =Lt SR (x)=0

Therefore

SOLUTIONS TO EXERCISES 229
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Cobb found f(L, K) that satisfies these equations. It is
S(L,K)= BLVK®®

where f} is a positive parameter meaning the level of technology.
Let's check if this satisfies the above conditions.

3(BLOTKO
aixin(ﬁ )xL:OJ,BL(’D‘S’K”xL‘
oL oL

=0.7pL*"K"?

=0.7f (LK)

a L047KU.3

Y, g 2APEET)

oK oK
=0.3pL"K"*

=0.3f(L.K)

xK = 0.38L K7 x K!

50, PARTIAL DIFFERENTIATION Ié/

YES, IT SURELY REVEALED A MYSTERIOUS PARTIAL
DOES. LAW HIDING IN A LARGE- { DIFFERENTIATION
SCALE ECONOMY—RULES /= 1S ALIVE AND WELL
THAT DETERMINE A | BEHIND THE SCENES,

COUNTRY'S WEALTH. ISNT IT?
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THE CHAIN RULE

We have seen single-variable composite functions before (page 14).

y=f(x), z=9(y), z=9(f(x)),
9(f(x) =g'(5(x)5 (%)

HERE, LET'S DERIVE THE FORMULA OF
PARTIAL DIFFERENTIATION (THE CHAIN RULE)
FOR MULTIVARIABLE COMPOSITE FUNCTIONS.

We assume that z is a two-variable function of x and y, expressed as z =
J(x, y), and that x and y are both single-variable functions of t, expressed as
x = a(t) and y = b(t), respectively. Then, z can be expressed as a function of ¢
only, as shown below.

This relationship can be written as
z=f(xy)=f(a(t).b(t))

dz
What is the form of g; then?

We assume a(t,) = x,, b(t,) = y, and f(x,, y,) =flalty), b(ty)) = z, when t = &,
and consider only the vicinities of t,, x,, y,, and z,.

If we obtain an « that satisfies
® z-z,~ax(t-t,)

dz
itis g7 (t):

206 CHAPTER & LET'S LEARN ABOUT PARTIAL DIFFERENTIATION!
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AT THE EXTREMA OF A TWO-
VARIABLE FUNCTION, THE PARTIAL
DERIVATIVES IN BOTH THE x AND y

DIRECTIONS ARE ZERO.

EXAMPLE
Let's find the minimum of f(x, y) = (x — y)2 +(y- 2)2. First, we'll find it
algebraically.
Since
(x-yf20 (y-2)'20
f(x,y):(x—y)2 +(y—2)2 >0
If we substitute x = y = 2 here,

f(2.2)=(2-2)" +(2-2)"=0

From this, f(x, y) > f(2, 2) for all (x, y). In other words, f(x, y) has a
minimum of zero at (x, y) = (2, 2).

On the other hand, lez(x—y) and gi:Z(xfy)(—l)+2(y—2):—2x+4y—4.
X Y

If we set
¥_¥_
x dy

and solve these simultaneous equations,
2x-2y=0
-2x+4y-4=0

we find that (x, y) = (2, 2), just as we found above.

THE SOLUTIONS ARE
THE SAME!

CONDITIONS FOR EXTREMA 201
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APPLYING PARTIAL DIFFERENTIATION TO ECONOMICS

THERE WAS A SENATOR
FROM ILLINOIS NAMED PAUL
DOUGLAS WHO SERVED FROM
1949 TO 1966.

HE WAS A FORMER
ECONOMIST, AND IN
1927, HE THOUGHT
ABOUT THE PROBLEM
OF SHARING NATIONAL
INCOME IN CAPITAL

AND LABOR.

HOW 15 IT
SHARED?

THERE ARE ROUGHLY
TWO TYPES OF ROUTES
IN WHICH GROS5
DOMESTIC PROPUCT
(GDP), WHICH 15 THE
AMOUNT OF PRODUCTION
WITHIN A COUNTRY IN
ONE YEAR, IS5 SHARED
AMONG THE PEOPLE
OF THE COUNTRY.

THE FIRST ONE |15 THE
WAY IN WHICH GDP |15
SHARED AS WAGES
FOR LABOR.

THE SECOND |15 THE WAY
IN WHICH GDP |15 SHARED
AS STOCK DIVIDENDS TO
THE OWNERS OF CAPITAL,
SUCH AS MACHINERY AND
EQUIPMENT.

20z CHAPTER & LET'S LEARN ABOUT PARTIAL DIFFERENTIATION!
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DOUGLAS STUDIED THE
LABOR AND CAPITAL
SHARES IN THE UNITED
STATES AND FOUND THAT

THEIR RATIO HAD BEEN
ALMOST CONSTANT FOR
ABOUT 40 YEARS.

"

IT'S STRANGE THAT THE
RATIO WAS CONSTANT,
EVEN THOUGH THE
ECONOMIC SITUATION
WAS CHANGING EVERY
MINUTE.

ABOUT 70 PERCENT (0.7)
OF GDP WAS SHARED

=

AS WAGES FOR LABOR,
AND 30 PERCENT (0.3)
AS STOCK DVIDENDS TO

CAPITAL OWNERS. L

YOU WANT TO KNOW
WHAT THE PRODUCTION
FUNCTION f(L, K) THAT
BRINGS THIS RESULT
LOOKS LIKE,
DON'T YOU?

et

DOUGLAS WAS
TROUBLED TOO, 50 HE
ASKED CHARLES COBB, A
MATHEMATICIAN, ABOUT IT.

THE FUNCTION THEY
FOUND |5 THE FAMOUS
CcOBB-DOUGLAS
FUNCTION. BELOW,

L REPRESENTS LABOR,
K REPRESENTS CAPITAL,

AND 3 AND o ARE
CONSTANTS.

COBB-DOUGLAS FUNCTION

f(L.K)=pL K"

AH, WILL YOU TELL ME IN
MORE DETAIL ABOUT MY
WAGES?

OKAY. THIS 15 A GOOD
APPLICATION OF TWO-
VARIABLE FUNCTIONS.

APPLYING PARTIAL DIFFERENTIATION TO ECONOMICS 203
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First, let's suppose that wages are measured in units of w, and capital
is measured in units of r. We’'ll consider the production of the entire coun-
try to be given by the function f(L, K) and assume the country is acting as a
profit-maximizing business. The profit P is given by the equation:

P=f(L,K)-wL-rK

Because we know that a business chooses values of L and K to maximize
profit (P), we get the following condition for extrema:

oF_JoF._
JL oK
o o P_¥ 2L) oK) ¥ ¥
oL oL oL oL oL L
o o P_U L) I(K) ¥y o
9K 0K 0K 0K 0K K

The relations far to the right mean the following.

Wages = Partial derivative of the production function
with respect to L

Capital share = Partial derivative of the production function
with respect to K

Now, the reward the people of the country receive for labor is Wage x
Labor = wL. When this is 70 percent of GDP, we have

® wL=0.7f(L,K)
Similarly, the reward the capital owners receive is
® rK=0.3f(L,K)
From ©® and ©,
I
® —xL=07f(L,K
73 S(L.K)

From ® and 9,

2
o %xK -0.3f(L.K)

204 CHAPTER & LET'S LEARN ABOUT PARTIAL DIFFERENTIATION!
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is called the partial differential function of z = f(x, y) with respect to y and is
expressed by any of the following:

o 0z
’ XYoo
i dy (5ey)ogoa
Obtaining the partial derivatives of a function is called partially
differentiating it.

TOTAL DIFFERENTIALS

2ZND TOTAL
PERIOD DIFFERENTIALS

From the imitating linear function of z = f(x, y) at (x, y) = (a, b), we have
found

f(xy)= f.(a,b)(x-a)+ f,(a,b)(x-b)+ f(a,b)

We now modify this as

® s(xy)-s(ab)=L(ab)c-a)+Z(ab)(y-b)

Since f(x, y) - f(a, b) means the incre-
ment of z = f(x, y) when a point moves from
(a, b) to (x, y), we write this as Az, as we
did for the single-variable functions.

Also, (x — a) is Ax and (y - b) is Ay.

Then, expression ® can be written as

0z

0z
Az =L+ L
L T

This expression means, “If x increases from a by Ax and y from b by Ay
in z = f(x, y), z increases by

TOTAL DIFFERENTIALS 197
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0z
Since i— Ax is “the increment of z in the x direction when y is fixed at b”
z Ox
and (,—y Ay is “the increment in the y direction when x is fixed at a,” expres-

sion @ also means “the increment of z = f(x, y) is the sum of the increment
in the x direction and that in the y direction.”
When expression @ is idealized (made instantaneous), we have

(5] dz:a—zdx+a—z

di
Fraks el

EXPRESSION © OR © IS
CALLED THE FORMULA OF

or THE TOTAL DIFFERENTAL.
o df=fdx+fdy

(A has been changed to d.)
The meaning of the formula is as follows.

Increment of height of a curved surface =

Partial derivative % Increment in & Partial derivative % Increment in
in the x direction the x direction ~ in the y direction =~ the y direction

Now, let’s look at the expression of a total differential from Example 4
(page 183).
By converting the unit properly, we rewrite the equation of temperature
as T=PV.
T _ o(PV) % andl aT _ 9(PV)
oP oP av JoP

Thus, the total differential can be written as dT = VAP + PdV.
In the form of an approximate expression, this is AT ~ VAP + PAV.,

THIS MEANS THAT FOR AN IDEAL GAS, THE
INCREMENT OF TEMPERATURE CAN BE
CALCULATED BY THE VOLUME TIMES THE
INCREMENT OF PRESSURE PLUS THE PRESSURE
TIMES THE INCREMENT OF VOLUME.

Higher temperatures
«
P ’
/
g \\
&
2 k
1
o
o
&
A~
T = constant Volume v
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CONDITIONS FOR EXTREMA

3RD
PERIOD

WHAT A VIEW!
SANDA HASN'T
CHANGED AT ALL!

MAXIMUM OH, YOU STARTED

THE LESSON
ALREADY?

IF WE LOOK AT THAT
MOUNTAIN AS A TWO-
VARIABLE FUNCTION, ITS
TOP 1S A MAXIMUM.
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The extrema of a two-variable function f(x, y) are where its graph is at
the top of a mountain or the bottom of a valley.

Maximum

@ ©— Minimum
0 x 0 x

Maximum point

Horizontal plane

Since the plane tangent to the graph at point P or Q is parallel to the x-y
plane, we should have

_f(x,y):p(x—a)+q(y—b)+f(a,b)

with p = g = 0 in the imitating linear function.
Since

- Y
P—ax(—fx) q‘ay(‘fy)

the condition for extrema’ is, if f(x, y) has an extremum at (x, y) = (a, b),
S.(ab)=f, (ab)=0

or

¥ =¥ =
a(a,b)fay(a,b) 0

* The opposite of this is not true. In other words, even iff,(a, b) = f,(a, b) = 0, f will not always
have an extremum at (x, y) = (a, b). Thus, this condition only picks up the candidates for
extrema.
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USING INTEGRAL FORMULAS

FORMULA 3-1: THE INTEGRAL FORMULAS
b c c
[ Lf(x)duj’bf(x)dx:jaf(x)dx

The intervals of definite integrals of the same function can be
joined.

b b b
2] L{_f(x)+g(x)}dx :L_f(x)dx +L g(x)ax
A definite integral of a sum can be divided into the sum of defi-
nite integrals.
o [Tuf(x)ax=af’ f(x)ax

The multiplicative constant within a definite integral can be
moved outside the integral.

Expressions @ through © can be understood intuitively if we draw their
figures.

L]
s =
Ia b c a b e a b c
]
Area for g _ S 3 glx)
| =
Area for f
I a b d b a b
© af(x)
) Area is
S < multiplied ¢
by a.
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YOU WILL BE
NOTIFIED SOON
WHERE YOU ARE

GOING.

I NEVER
IMAGINED ID BE
GOING TO WORK

IN OKINAWA.

[

TRANSFER TO
OKINAWA

1 DIDN'T EVEN KNOW
OUR COMPANY HAD
AN OKINAWA OFFICE.

THIS 1S5 A FAREWELL
PRESENT FOR
YOU. WRITE GOOD
ARTICLES WITH THIS.
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WHEW! WE
ARE ALL DONE.
FUTOSH, HELP
YOURSELF TO
SOME SHOCHU.

THIS WAS MY

SHOCHU IN THE
FIRST PLACE.

THAT EXPLANATION
WAS A LITTLE
INTENSE, BUT YOU
UNDERSTOOD IT,
DIDNT YOU?

I'VE JUST REMEMBERED
A TASK FOR YOU.
WILL YOU GO TO THE
REFERENCE ROOM?
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USING THE FUNDAMENTAL THEOREM OF CALCULUS

P(’lc)('l- - Lo+ P(’L-)('lz‘ Lt -t P('ls)('ll‘ )

THE ABOVE
EXPRESSION

CAN BE WRITTEN
IN THIS WAY.

BUT, WHAT IS A

A (DELTA) 1S A GREEK
LETTER. THE SYMBOL 15
USED TO EXPRESS THE

AMOUNT OF CHANGE. DELTA

THIS Ax EXPRESSES THE
DISTANCE TO THE NEXT
POINT. IN OTHER WORDS,
IT 15, FOR EXAMPLE,
(%, = %) OR (x5 = x,).

WHAT ABOUT X2
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FOR THE BENEFIT
OF SOCIETY, THE
FACTORY SHOULD
REDUCE PROPUCTION
DOWN TO S FROM s,
THEIR PRODUCTION IN
THE CASE OF PURELY
SELFISH ACTIVITIES.

WHILE THE BENEFIT OF
THE SOCIETY BASICALLY
REACHES A MAXIMUM AT

THE INTERSECTION OF THE

DEMAND CURVE, WHICH
EXPRESSES SELFISH

ACTIVITIES, AND THE SUPPLY
CURVE;" IT DOES NOT HAPPEN
IF A NEGATIVE EXTERNALITY
EXISTS, SUCH AS POLLUTION,
IN THIS CASE.

* SEE PAGE 105.

50 ARE THERE ANY \&\
GOOD MEANS TO
MAKE THE FACTORY
VOLUNTARILY REDUCE
PRODUCTION FROM
sTOS?  1r1He

GOVERNMENT
FORCES THE
FACTORY TO REDUCE
PRODUCTION, IT
BECOMES A PLANNED
ECONOMY, OR
SOCIALISM.

A GOOD MEANS
OTHER THAN THAT IS
TAXATION.

THE GOVERNMENT THIS 15
TAXES THE FACTORY CALLED AN
IN PROPORTION TO ENV/E%/)/(AENTAL

ITS PRODUCTION.
\__/\_/
=
[roon [ = BB

WARMING, A CARBON TAX,
TAXATION ON THE EMISSION

TO ALLEVIATE GLOBAL

OF CARBON, |15 ALSO
BEING DISCUSSED.
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USING X (51GMA) LIKE SO,

Xy Ry eein Ky

EXPRESSES THE OPERATION
Y5UM UP FROM x, = 0
TO x5=9"

NOW NORIKO,
WHAT DOES

IT MEANS TO SUM UP
(THE VALUE OF p AT x) TIMES
(THE DISTANCE FROM x TO
THE NEXT POINT).

YES, IT MEANS
THE EQUATION WE
SAW BEFORE AT
THE BOTTOM OF
PAGE 8q.

THE NEXT ONE 1S THE

SYMBOL TO SIMPLIFY

THIS EQUATION
FURTHER.

SINCE THE EQUATION 15
THE SUM FOR A FINITE
NUMBER OF STEPS,
WE MAKE THE SYMBOL
ROUND WHEN WE HAVE
AN INFINITE NUMBER OF
STEPS.
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THEN, THE PROFIT @ IN
THE CASE OF SELFISH

Acanes BECOMES
LET'S ASSUME THAT THE IKE THIS.
TAX ON A UNIT COMMODITY
PRODUCED AT THE
FACTORY 15 @ B (x)=pf(x)-wx-(-9f(x))

e

9

»--ag b (1(5))

THE CONPITION
FOR EXTREMA THAT
MAXIMIZE THIS 15...

oP,
®

B (x) w9 S (1) 0 (p49) S (x) < w
THIS |15 A POSITIVE CONSTANT. x

SINCE ® 15 THE SAME EQUATION

AS @, THE PRODUCTION AT THE

FACTORY NOW MAXIMIZES THE
BENEFIT FOR SOCIETY.

ORDINARY TAXES
(NCOME TAX,

AN ENVIRONMENTAL
CONSUMPTION TAX)

HAVE YOU GOT IT,
TAX |15 FOR MR. 5EKI?
ARE FOR PUBLIC MAINTAINING A
INVESTMENT... HEALTHY ENVIRONMENT

BY CONTROLLING
& & . THE ECONOMY.

NORIKO GIVES A LESSON 213





OPS/images/107.jpg
I EXPAND ¥ TO REPLACE A

MAKE |, AND

EXPRESSION © MEANS THE
SUM WHEN THE INTERVAL IS
MADE INFINITELY SMALL, AND
IT EXPRESSES THE AREA
BETWEEN THE GRAPH ON THE
LEFT AND THE X-AXIS.

THIS IS CALLED A
DEFINITE INTEGRAL.

IF WE KNOW p(x) [ip()dx=q(®)-q(a)

1S THE DERIVATIVE WE HAVE CALCULATED THE
OF q(x), SUM EXTREMELY EASILY IN
THIS WAY, HAVEN'T WE?

ARE
WONDERFUL!

N+ ™" [[pax= 3 p(x)ax=q(b)-a(a)

We must find g(x) that satisfies q’(x) = p(x)a.

a b

THIS 1S THE FUNDAMENTAL THEOREM OF CALCULUS!
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TEACHER.
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A STRICT EXPLANATION OF STEP 5

In the explanation given before (page 89), we used, as
the basic expression, q(x,)-q(x,)= p(x,)(x, - x,), a
“crude” expression which roughly imitates the exact
expression. For those who think this is a sloppy expla-
nation, we will explain more carefully here. Using the
mean value theorem, we can reproduce the same
result.

We first find g(x) that satisfies y
q'(x) = p(x).

We place points x, (= a), x, X,
X3, ..y X, (= D) On the x-axis.

We then find point x,, that
exists between x, and x, and satis-
fies q(x,)-q(x,) = q'(x0, ) (%, - %, )-

The existence of such a point
is guaranteed by the mean value
theorem. Similarly, we find x,, o
between x, and x, and get

q(x,)-q(x,)=q'(x,)(x, - x,)

Areas of
these steps

Repeating this operation, we get

a(x,)-a(x,)= q (x0) (%, =%5) = p(x0,) (%, = %,) éﬂ
a(x,)-q(x)= q' (%) (%, - %) =p(x,)(x, - %) E
q(xd)_q(xz): q'(x“)(xa—x,‘) =p(x“)(x3—x1) cr:

o

+ q(%,) = (%01) = & (%a1n ) (%n = %aa) = P(%oin J(%0 = %0s)

i ) -q (X.)) Always equal Approximate area

l Infinitely fine sections

q(b)-q(a) Exact area

_Q
®

This corresponds to the diagram in step 5.
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NORIKO'S APARTMENT
A FEW DAYS LATER

I THINK I'M ALMOST
DONE PACKING.

LrvinG ROOM

ngRHD”

NORIKO, HERE
YOU ARE.

AN ASSIGNMENT FUTOSHI, ACTUALLY, THE PAPER
LETTER...ME, TOO. DECIDED TO CLOSE
TOO? YOU'RE NOT THE $ANDA-CHO
OFFICE.

THE ONLY ONE
LEAVING?

I ALREADY
TOLD HIM.

A NEW ASSIGNMENT 215
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THEN, IF WE MAKE THIS WELL, THAT'S
DIVISION INFINITELY FINE, TRUE, BUT IT'S YOU'D HAVE TO ADD UP
WE WILL GET THE EXACT NOT REALISTIC. AN INFINITE NUMBER OF
AMOUNT OF ALCOHOL, INFINITELY FINE PORTIONS.

WON'T WE?

LOOK AT THIS
EXPRESSION. DOES
IT REMIND YOU OF

SOMETHING? P(x)x(x, - x,)

IT LOOKS LIKE AN
IMITATING LINEAR
FUNCTION!

AH!
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MR. SEKI, WHY DONT
1 GIVE YOU A LESSON

UH, OKAY. ITLL
BE FUN TO BE A
STUDENT AGAIN.

HERE, WE HAVE A FACTORY
FROM WHICH WASTE 15
RELEASED AS A RESULT OF
PRODUCTION OF COMMOPDITIES.
THE WASTE SUBSEQUENTLY
POLLUTES THE SEA, CAUSING

A REDUCTION IN THE LOCAL
FISHERMAN'S CATCH.

OKAY! LET'S USE AN ENVIRONMENTAL
A MULTIVARIABLE PROBLEM!
FUNCTION TO THINK

SUPPOSE THAT x WORKERS
PRODUCE AN AMOUNT OF GOODS
GIVEN BY f(x). THE FACTORY ALSO

RELEASES WASTE AS GOODS
ARE MADE, WHICH AFFECTS THE
CATCH OF FISH.

LET'S CALL THE
QUANTITY OF WASTE
b = b(f(x)). NOW...

THE EFFECT THAT PRODUCTION
ACTIVITIES OF A BUSINESS HAVE
ON OTHER FIELDS WITHOUT
GOING THROUGH THE MARKET,
AS |5 THIS CASE, IS CALLED AN
EXTERNALITY. IN PARTICULAR,
HARMFUL EXTERNALITIES, SUCH

AS POLLUTION, ARE CALLED
NEGATIVE EXTERNALITIES.
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STEP 4—REVIEW OF THE IMITATING LINEAR FUNCTION

When the derivative of f(x) is given by f'(x), we had f(x) ~ f'(a) (x — a) + f(a)
near x = d.
Transposing f(a), we get

© f(x)-f(a)=f(a)(x-a)
or (Difference in f) ~ (Derivative of f) x (Difference in x)
If we assume that the interval between two consecutive values of x,, x,,
Xy, X5, .-y Xg is small enough, x, is close to x,, x, is close to x,, and so on.
Now, let’s introduce a new function, g(x), whose derivative is p(x). This
means q’(x) = p(x).
Using @ for this qg(x), we get

(Difference in q) ~ (Derivative of q) x (Difference in x)
a(x)-a(x) = P(%) (% — %)
a(x)-q(x) = p(x) (%, - ;)
The sum of the right sides of these expressions is the same as the sum

of the left sides.
Some terms in the expressions for the sum cancel each other out.

qwzp(xo)(xx_xo)
q%:p(x,)(xz—xl)
ity N =p(x,)(x; - x,)
qwzl’(xs)(’ﬁ"%)
g g = P(x,) (x5 - x,) 50 WE NEED TO FIND
+q(xs)_q s p(xs)(xs _xs) FUNCTION q(x) THAT

SATISFIES q'(x) = p(x).

Substituting x; = 9 and x, = 0, we get
The approximate amount of alcohol = the sum x 20
{q(xs)—q(xo)}XZO

{a(9)-q(0)}x20

88 CHAPTER 3 LET'S INTEGRATE A FUNCTION!





OPS/images/223.jpg
We assume that the catch of fish can be expressed as a two-variable
function g(y, b) of the amount of labor y and the amount of waste b.

0
(The catch g(y, b) decreases as b increases. Thus, E_i is negative.)

Since the variable x is contained in g(y, b) = g(y, b(f(x))), production at
the factory influences fisheries without going through the market. This is
an externality.

First, let's see what happens if the factory and the fishery each act (self-
ishly) only for their own benefit. If the wage is w for both of them, the price
of a commodity produced at the factory p and the price of a fish g, the profit
for the factory is given by

© B (x)=pf(x)-wx

Thus, the factory wants to maximize this, and the condition for
extrema is

dP, ’
@ —L=pf(x)-w=0& pf'(x)=w
dx
Let s be such x that satisfies this condition. Thus, we have
® pf(s)=w

This s is the amount of labor employed by the factory, the amount of pro-
duction is f(s), and the amount of waste is given by

b*=b(S(s))

Next, the profit P, for the fishery is given by
P, =qg(y.b)-wy

Since the amount of waste from the factory is given by b* = b( f(s)),
® P,=qg(y.b*)-wy

which is practically a single-variable function of y. To maximize P,, we use
only the condition about y for extrema of a two-variable function.

aﬁ:qa—g(y,b*)—w:04:»(13—3(5;,b“‘):w

©9y dy

Therefore, the optimum amount of labor ¢t to be input satisfies

® qg—g(t,b*):w
y

NORIKO GIVES A LESSON 209
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STEP 5—APPROXIMATION - EXACT VALUE

WE HAVE JUST The approximate amount of alcohol

OFBoTﬁ:_NoE&Jge (+ 20) given by the stepwise function: ® (q(9)-q(0)
REE‘;(A;:ZOE:??(IDZ(;F P(%) (2 = x,)+ p(x,) (2, = %) + ... ~ | (Constant)

SHOWN IN THE
DIAGRAM.

The exact amount
of alcohol (+ 20)

BUT IF WE INCREASE
THE NUMBER OF
POINTS xg, Xy, X9, X,
AND SO ON, UNTIL IT
BECOMES INFINITE,

WE CAN SAY THAT
RELATIONSHIP ©
CHANGES FROM
“APPROXIMATION"
TO “EQUALITY.

BUT, SINCE THE SUM

OF THE EXPRESSIONS The sum of p(x,)(x,, - x,)
HAVE BEEN IMITATING for an infinite number of x, - q(g) —4 (0)
THE CONSTANT VALUE :
9) - q(0),
q(9) - q(0) < 7

The exact amount
of alcohol (+ 20)

WE GET THE
RELATIONSHIP
SHOWN HERE."

* WE WILL OBTAIN THIS RELATIONSHIP
MORE RIGOROUSLY ON PAGE 44. ILLUSTRATING THE FUNDAMENTAL THEOREM OF CALCULUS 84
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IN SUMMARY... J

The production at the factory and the catch in the fishery when they act
freely in this model are given by f(s) and g(t, b*), respectively, where s and t
satisfy the following.

@ pfi(s)=w
® b* :b(f(s)).qg—i(t,b*):w

NOW, MR. SEK|, LET'S CHECK IF THIS
15 THE BEST RESULT FOR THE WHOLE
SOCIETY. IF WE TAKE BOTH THE FACTORY
AND THE FISHERY INTO ACCOUNT, WE
SHOULD MAXIMIZE THE SUM OF THE
PROFIT FOR BOTH.

P, = pf (x) +qg (4. b(f (x))) - wx - wy

Since P is a two-variable function of x and y, the condition for extrema
is given by

®_®
ox dy

The first partial derivative is obtained as follows.

aa% =pf(x)+ qiag(y' l;if(x))) —w
- B ()40 2 (b (5 ()b (5 (x)). S ()~

(Here, we used the chain rule.)
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STEP 6—p(x) IS THE DERIVATIVE OF q(x)

L T~ If we suppose ¢ (x :—L,thenq'x :L,sz
NOW NORIKO, (x) x+1 (x) (x+1)° (x)

THE NEXT
EXPRESSION WE In other words, p(x) is the derivative of g(x).
WILL LOOK AT q(x) is called the antiderivative of p(x).

1S THIS.

The amount of alcohol
={q(9)-q(0)}x20

% [—le»do

50, THIS q(x) 15
THE FUNCTION
WE WANTED.

“ler1 o1
= 36 grams
Tl MOUNT OF 50, WE SINCE THE SUM
ALC(HDEHéL %UA @?,A;g HAVE A VERY OF INFINITE
OF SHOCHU WITH HOT STRONG TERMS WE HAVE
DRINK HERE. BEEN DOING

WATER |5 GENERALLY

.3 GRAMS,
= & REQUIRES A LOT

OF TIME TO WRITE
DOWN, T WILL
SHOw You IS

SYMBOL.
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fishery, they satisfy

variable simultaneous equations.

and @ are different while ® and @ are the same. Then, how do they differ?

S(S) must be larger than f(s).

Thus,

L -0 p+alS{ubls () (1 3) | )=
Similarly,
o -0 a2 (ub(s(x)-w

Thus, if the optimum amount of labor is S for the factory and T for the

o [praf(ra(E))(s(s)]ris)-w

T

Although these equations look complicated, they are really just two-

If we compare these equations with equations @ and ®, we find that ®
o pxf(s)=w
@ (p+9)xf(S)=w

As you see here, ¥ has appeared in the expression.

Since [V: qg—gb'(f(s)) is negative, p + ¥ is smaller than p.
Since f'(S) or f'(s) is multiplied to the first part to give the same value w,

Slope f' is small.

Slope f' is large. N —

NOW, SINCE
THE GRAPH OF
flx) GENERALLY

LOOKS LIKE THIS,
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First, from the approximation of x = a(t),
da
© x-x,~—-(6)(t-t)
Similarly, from the approximation of y = b(t),
db
©® y-y, Ng( ) t-t,)

Next, from the formula of total differential for a two-variable function
Jix, y),

Y (0090 (5 - o)

f
0 z-z = 00 Yo ) (X = X,
z-2 (%0,Yo)(x x)+ay

ax
Substituting ® and © in @,

da

i da et )+ & by y(e-
e z Zo”a (xo'yO)dt(to)(t to)+ay(xo'yﬂ)dt(to)(t t,)

o da i db
(S G ) F o)

(t) |(t-t)

Comparing ® and ©, we get

o o
&= ax( o’y0) (t°)+8y

da db

; (fo)

(*or¥o) g

This is what we wanted, and we now have the following formula!

FORMULA 6-1: THE CHAIN RULE
When z = f(x,y),x=a(t),y=b(t)

dz 4 da ,oF db

at ox dt oy dt

THE CHAIN RULE 207
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We have now found the following.
If z = f(x, y) has an imitating linear function near (x, y) = (a, b), it is
given by

® z=f.(ab)(x-a)+f,(ab)(y-b)+ f(ab)

or z:E(a,b)(x—a)+§—'£(a,b)(y—b)+f(a,b)

Consider a point («, ) on a circle with radius
1 centered at the origin of the x - y plane (the
floor). We have o+ ﬁ2 =1 (or « = cos 6 and
B = sin 0). We now calculate the derivative in the
direction from (0, 0) to («, p). A displacement
of distance t in this direction is expressed as
(a,b) > (a+at, b+ pt). If we sete = ot and 8 = fit
in @, we get

f(a+at,b+ pt)- f(a,b)—(pat+qpt)
Jllzf2+ﬁ2t2
=f(a+at.b+[it)ff(a,b)7 B
SR v pa-qp
f(a+at,b+pt)- f(a,b)
B

O Since Ja’+p?=1

Assuming p = f,(a, b) and q =f,(a, b), we modify @ as follows:

Relative error =

e f(a+at,b+/3t)ff(a,b+[it)+f(a,b+/3t)ff(a.b)7
t t

fe(a,b)a - f,(a,b)p
Since the derivative of f(x, b + fit), a function of x only, at x = a is

S (ab+pt)

we get, from the imitating single-variable linear function,

f(a+at,b+ pt)- f(a,b+pt)= f (a,b+ pt)at

* We have calculated the imitating linear function in such a way that its relative error
approaches 0 when AP — 0 in the x or y direction. It is not apparent, however, if the relative
error - 0 when AP — 0 in any direction for the linear function that is made up of the deriva-
tives f,(a, b) andjy(a. b). We'll now look into this in detail, although the discussion here will
not be so strict.
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Similarly, for y we get
f(a,b+/3t)—f(a,b)=fy (a,b) pt
Substituting this in ©,

® - (ab+pt)a+f,(ab)p-f. (ab)a-f, (ab)p
=(f. (@ b+ pt)- f,(a,b))a

Since f,(a, b + pt) - f.(a, b) = 0 if t is close enough to O, the relative error =
© ~ 0. Thus, we have shown “the relative error - 0 when AP — 0 in any
direction.”

It should be noted that f, must be continuous to say f,(a, b + pt) - f,(a, b)
~ 0 (t ~ 0). Unless it is continuous, we don't know whether the derivative
exists in every direction, even though f, and f, exist. Since such functions
are rather exceptional, however, we won’t cover them in this book.

EXAMPLES (FUNCTION OF EXAMPLE | FROM PAGE 183)
Let's find the partial derivatives of h(v, t) = vt — 4.9 at (v, t) = (100, 5).
In the v direction, we differentiate h(v, 5) = 5v — 122.5 and get

an
R i5)=5
> (3

Thus,

g—h(IOO.S):hv(lOO,S):S
v

In the t direction, we differentiate h(100, t) = 100t — 4.9t and get

%—':(100,1‘) =100-9.8t
oh
5 (100.,5) =R, (100,5) =100 -9.8x5 =51

And the imitating linear function is

L(x,y)=5(v-100)+51(t-5)-377.5

PARTIAL DIFFERENTIATION 145
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In general,

a—h:t.a—h:v—g.st
Jv Jv

Therefore, from © on page 194, near (v, t) = (v, &),
h("-t) =t, ("‘”o)+ (”o _9-8t0)(t _to)+h(”ovto)

Next, we'll try imitating the concentration of sugar syrup given y
grams of sugar in x grams of water.

100
Slxy)=—+

x+y
¥ _, 100y
ax (x+y)2
of 100(x +y)-100yx1  100x
a_:fy: 5 — =
y (x+y) (x+y)

Thus, near (x, y) = (a, b), we have

100a 100b
-b
(y )+ a+b

1006 o)y

Ty O oy

DEFINITION OF PARTIAL DIFFERENTIATION

When z = f(x, y) is partially differentiable with respect to x for every point

(x, y) in a region, the function (x, y) - f,(x, y), which relates (x, y) to f.(x, y),
the partial derivative at that point with respect to x, is called the partial dif-
ferential function of z = f(x, y) with respect to x and can be expressed by any
of the following:

¥z
Tox’ ax

So £ (xy)

Similarly, when z = f(x, y) is partially differentiable with respect to y for
every point (x, y) in the region, the function

(xy) = S, (xy)
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TEACHER, THERE
WERE STILL
SOME POTATOES
IN THERE. WHAT
SHOULD WE DO?

IF WE DRAW A GRAPH OF
THE TWO-VARIABLE FUNCTION
z=flx,y)=3x+2y+1
IN THE 3-DIMENSIONAL
COORPDINATE SYSTEM, WHAT
DOES IT LOOK LIKE, KAKERU?

NOW, IF WE MAKE
THE PLANE OACB
WITH THIS STRAW

 PROBLEM, LET'S STEAM AND
EAT THEM. HO, HO, HO,

MR. KINJIRO BUNDA.
HE WAS A VERY
GOO0D TEACHER.

NOW, NORIKO,
LET'S BEGIN OUR
LAST LESSON.

140 CHAPTER & LET'S LEARN ABOUT PARTIAL DIFFERENTIATION!





OPS/images/205.jpg
PARTIAL DIFFERENTIATION

OH, THERE'S THE
FIRST PERIOD BELL!
LET'S EXPLORE THE
DIFFERENTIATION
OF TWO-VARIABLE
FUNCTIONS.

CLASS SCHEDULE

PARTIAL
DIFFERENTIATION

—

SINCE WE NOW KNOW THAT
A LINEAR TWO-VARIABLE
FUNCTION APPEARS TO BE A
PLANE, WE CAN IMITATE MORE
COMPLICATED TWO-VARIABLE
FUNCTIONS.

OUR ORIGINAL
FUNCTION LOOKS
LIKE A FLAT-TOP
TENT, DOESN'T IT?

IT LOOKS MORE
LIKE A PIE

WELL, THAT'S NOT AN IMPORTANT
DISAGREEMENT. NOW, LET'S MAKE
AN IMITATING TWO-VARIABLE
LINEAR FUNCTION OF f(x, y) NEAR
A POINT (a, b) (x=a AND y = b).
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We make a two-variable linear function that has the same height as f(a, b) at
the point (a, b). The formula is L(x, y) = p(x — a) + q(y — b) + f(a, b). Substitut-
ing a for x and b for y, we get L(a, b) = f(a, b).

z=f(xy)
z=L(x,y)
(Imitating
two-variable
linear function) J,

f(a+eb+35)

P=(a+eb+5)

While the graph of z = f(x, y) and that of z = L(x, y) pass through the
same point above the point A = (a, b), they differ in height at the point
P=(a+¢, b+J). The error in this caseis fla +¢, b+3)- L@ +¢, b +9) =

Sfla + ¢, b+9) - fla, b) - (ps + qd), and the relative error expresses the ratio
of the error to the distance AP.

difference between fand L

distance AP

Relative error =

:_f(a+x,b+5)—f(ayb)—(P€+‘15)

o
Je? + 62

We consider L(x, y) as the difference between it and f becomes infinitely
close to zero (when P is infinitely close to A) as the imitating linear func-
tion. For that case, we obtain p and q. p is the slope of DE and q that of DF

in the figure. Since ¢ and 0 are arbitrary, we first let § = 0 and analyze ©.
© becomes

S(a+e,b+0)- f(a,b)-(ps+gx0)
\/&:2+02
f(a+s,b)—f(a,b)_

€

Relative error =
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Thus, the statement “the relative error - 0 when ¢ — 0” means the
following:
f(a+e,b)- f(a,b)

€

® lim =
=0

This is the slope of DE.

Here, we should realize that the left side of this expression is the same
as single-variable differentiation. In other words, if we substitute b for y and
keep it constant, we obtain f(x, b), which is a function of x only. The left side
of @ is then the calculation of finding the derivative of this function at x = a.

Although we are very much tempted to write the left side as f'(a, b) since
it is a derivative, it would then be impossible to tell with respect to which, x
or y, we differentiated it.

So, we write “the derivative of f obtained at x = a while y is fixed at b” as
fila, b).

This f, is called “the partial derivative of f in the direction of x". This is
the notation corresponding to the “prime” in single-variable differentiation.

df of

The notation gy (a, b), that corresponds to 5y, is also used. In short, we
have the following:

“The derivative of f in the direction of x obtained at x = a while y is
fixed at b”

S (ab) gf(a,b) also written as Hai] }
—a,y=b

Tx 0x |,
= Slope of DE
015 READ AS
“PARTIAL DERIVATIVE.”

In exactly the same way, we can obtain the
following.

“The derivative of fin the direction of y
obtained at y = b while x is fixed at a”
A
a,b)=—(a,b
5, (@b)=5 (D)
= Slope of DF
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SINCE THE STICKS
BECOME HIGHER BY
2 THE FURTHER AWAY
FROM US THEY ARE,

WE FIND THAT THE
TOPS OF THE STICKS
AS A WHOLE FORM A
PLANE. WE CAN NOW

GENERALIZE THIS.

FIRST, LET'S DRAW
THE GRAPH OF
z=flx,y)=ax+ by
(LET CONSTANT ¢ = 0).

LET'S CONSIDER A PLANE THAT
REPRESENTS THE FUNCTION
fix, ). WE CAN START AT
POINT O, WHICH WE KNOW 15
(0, 0, 0), OR THE ORIGIN. NOW
CONSIDER LINE SEGMENT
OA—A FUNCTION TO DESCRIBE
THIS LINE CAN BE FOUND IF WE
SET y = 0. THI5 MEANS THAT
LINE 15 REPRESENTED BY THE
FUNCTION z = ax, AND HAS
SLOPE a. SIMILARLY, WE FIND
THAT LINE SEGMENT OB OF
THIS PLANE |5 REPRESENTED
BY THE FUNCTION z = by (A5 WE
HAVE SET x EQUAL TO ZERO),
AND HAS A SLOPE OF b. POINT

C ON THE PLANE OACB HAS A

HEIGHT EQUAL TO ax + by. IF
WE WANTED TO PHYSICALLY
REPRESENT THIS PLANE, WE
COULD TIE A SHEET TO
LINE SEGMENTS OA AND
OB, AND TIGHTEN THE

SHEET.

NOW, IF WE HAVE TO
CONSIDER A CONSTANT (AN
EQUATION THAT TAKES THE
FORM z = ax + by + c) WE
SIMPLY ADJUST THE GRAPH
BY RAISING THE PLANE BY c.

POINT O ON OUR PLANE 15

NOW AT (0, 0, ¢), POINT A HAS
A HEIGHT OF (ax + ¢), &
AND SO ON.

THE BASICS OF VARIABLE LINEAR FUNCTIONS 187





OPS/images/202.jpg
LET'S STOP HERE FOR
TODAY. YOU DON'T SEEM
TO BE VERY FOCUSED ON

OUR LESSON. i

NORIKO!

I HAVE A LOT OF THINGS
TO DO BEFORE I LEAVE,
INCLUDING PACKING UP ALL
MY STUFF. 5O, WILL YOU
MEET WITH ME THIS SUNDAY?

1 KNOW YOU WANT TO HAVE
SUNDAYS OFF, BUT LET'S HAVE
ONE LAST LESSON. WHEN
WE'RE DONE, T'LL TREAT YOU
TO DINNER.
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TANAKA SCHOOL
SUNDAY

THIS SCHOOL WAS
CLOSED A FEW
YEARS AGO.

NO. I JUST LIKE IT
HERE BECAUSE IT'S
WHERE I LEARNED
MATH.

REALLY? ARE YOU
GOING TO WRITE A
STORY ABOUT IT?

ACTUALLY, I WAS
BORN IN THIS TOWN.

THIS WAS A SMALL SCHOOL.
BUT THERE WAS A TEACHER
HERE WHO GAVE ME THE BEST
LESSONS IN THE WORLD.
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