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Preface

My approach in this book: theory and experiment


“It doesnt matter how beautiful your theory is, it doesnt matter how smart
you are. If it doesnt agree with experiment, its wrong.”  Richard Feynman


In Ruby Under a Microscope I’m going to teach you how Ruby works internally.
I’ll use a series of simple, easy to understand diagrams that will show you
what is happening on the inside when you run a Ruby program. Like a physicist
or chemist, I’ve developed a theory about how things actually work based on
many hours of research and study. I’ve done the hard work of reading and
understanding Ruby’s internal C source code so you don’t have to. 

But, like any scientist, I know that theory is worthless without some hard
evidence to back it up. Therefore after explaining some aspect of Ruby
internals, some feature or behavior of the language, I’ll perform an experiment
to prove that my theory was correct. To do this I’ll use Ruby to test itself!
I’ll run some small Ruby test scripts to see whether they produce the expected
output or whether they run as fast or as slowly as I expect. We’ll find out if
Ruby actually behaves the way my theory says it should. Since these experiments
are written in simple Ruby, you can try them yourself.

A travel journal

Before teaching you how Ruby works internally, I had to learn it myself. To do
this, I went on a six month journey through MRI Ruby’s internal implementation.
I also took a few side trips to visit JRuby and Rubinius. I started by simply
reading and studying Ruby’s C source code; later I continued by looking at how
it actually functions by setting breakpoints and stepping through the code
using the GDB debugger. Finally, I modified and recompiled the C source code to
be sure I thoroughly understood how it worked. Often I added “printf”
statements to write out debug information; occasionally I changed the code
directly to see what would happen if it were written differently.

Ruby Under a Microscope is my travel journal; I’ve written everything I’ve
learned during this long journey. I hope the following pages give you the same
sense of beauty and excitement which I found and felt as I discovered one
amazing thing after another.

Ruby’s internal C source code is like a foreign country where people speak a
language you don’t understand. At first it’s difficult to find your way and
understand the people around you, but if you take the time to learn something
of the local language you can eventually come to know the fascinating people,
places, food and culture from what was previously uncharted territory.

What this book is not

Ruby Under a Microscope is not a beginner’s guide to learning Ruby. Instead, in
Ruby Under a Microscope I assume you already know Ruby and use it on a daily
basis. There are many great books on the market that teach Ruby far better than
I ever could. 

Ruby Under a Microscope is also not a newer, updated version of the Ruby
Hacking Guide. As the name implies, the Ruby
Hacking Guide is a guide for C programmers who want to understand Ruby’s
internal C implementation at a detailed level. It’s an invaluable resource for
the Ruby community and required reading for those who want to read and work on
the MRI source code. Ruby Under a Microscope, on the other hand, is intended to
give Ruby developers a high level, conceptual understanding of how Ruby works
internally. No knowledge of C programming is required.



For those people familiar with C, however, I will show a few vastly simplified
snippets of C code to give you a more concrete sense of what’s going on inside
Ruby. I’ll also indicate which MRI C source code file I found the snippet in;
this will make it easier for you to get started studying the MRI C code
yourself if you ever decide to. Like this paragraph, I’ll display this
information on a yellow background.



If you’re not interested in the C code details, just skip over these yellow
sections.




Why bother to study Ruby internals?

Everyday you need to use your car to drive to work, drop your kids off at
school, etc., but how often have you ever thought about how your car actually
works internally? When you stopped at that red light on your way to the grocery
store last weekend were you thinking about the theory and engineering behind
the internal combustion engine? No, of course not! All you need to know about
your car is which pedal is which, how to turn the steering wheel and a few
other important details like shifting gears, turn indicator lights, etc.

At first glance, studying how Ruby is implemented internally is no different.
Why bother to learn how the language was implemented when all you need to do is
use it? Well, in my opinion, there are a few good reasons why you should take
the time to study the internal implementation of Ruby:


	You’ll become a better Ruby developer. By studying how Ruby works internally,
you can become more aware of how Yukihiro Matsumoto and the rest of the Ruby
core team intended the language to be used. You’ll be a better Ruby developer
by using the language as it was intended to be used, and not just in the way
you prefer to use it. 


	You can learn a lot about computer science. Beyond just appreciating the
talent and vision of the Ruby core team, you’ll be able to learn from their
work. While implementing the Ruby language, the core team had to solve many of
the same computer science problems that you might have to solve in your job or
open source project.


	It’s fun! I find learning about the algorithms and data structures Ruby uses
internally absolutely fascinating, and I hope you will too.




Roadmap

The journey I took through Ruby’s internal implementation was a long one, and I
covered a lot of ground. Here’s a quick summary of what I will teach you about
in Ruby Under a Microscope:

I start in Chapter 1, Tokenization, Parsing and Compilation, by describing how
Ruby reads in and processes your Ruby program. When you type “ruby
my_script.rb” at the console and press ENTER, what happens? How does
Ruby make sense of the text characters you typed into your Ruby program? How
and why does Ruby transform your Ruby code from one format to another and
another? I find this to be one of the most fascinating areas of Ruby internals
and of computer science.

Next in Chapter 2, How Ruby Executes Your Code, I pick up the story from where
Chapter 1 left off and describe how Ruby’s virtual machine, called “Yet Another
Ruby Virtual Machine” (YARV) executes your program. How does YARV actually execute
your Ruby code? How does it keep track of local variables? How does YARV
execute “if” statements and other control structures?

In Chapter 3, Objects, Classes and Modules, I switch gears and explain how
Ruby’s object model works internally. What is a Ruby object? What would I see
if I could slice one open? How do Ruby classes work? How are Ruby modules and
classes related? How does Ruby’s method lookup algorithm work?

Chapter 4, Hash Tables, thoroughly explains how hash tables work in Ruby. Ruby uses hash
tables not only to implement the hash object you use in your programs, but
also for many of its own internal data structures.  Methods, instance
variables, constant values - Ruby stores all of these and many other things
internally in hash tables. Hash tables are central to Ruby internals.

Finally in Chapter 5, How Ruby Borrowed a Decades Old Idea from Lisp, I take a
trip back to the 1960s to learn more about closures, first introduced by the
Lisp programming language. Are Ruby blocks really closures? What happens when
you call a block? How are lambdas, procs, bindings and blocks related? And what
about metaprogramming - what does this have to do with closures?

Along the way in each of these five chapters I compare and contrast the MRI
implementation with how JRuby and Rubinius work. While most Ruby developers
still use MRI, it isn’t the only game in town and there’s a lot to learn from
the alternative implementations as well. In fact, there are even more versions
of Ruby that I didn’t have time to cover here at all: mruby, MacRuby,
RubyMotion, among others.

What is missing?

Ruby’s internal implementation is a vast, foreign territory that I have just
started to describe. Completely covering all of Ruby’s internal implementation
would require many trips - many books similar to Ruby Under a Microscope. To
name just a few examples: I didn’t cover how Ruby implements many of the core
classes, such as strings, arrays or files. I also didn’t cover garbage
collection and memory management, and I never said a word about threads or
concurrency.

Instead, I decided to cover the real “guts” of the language: how does the Ruby
language work at its core? I felt it would be better to cover a few important
topics well, in great detail, rather than to touch on a larger set of topics at
a surface level.

If I have time someday, and if Ruby Under a Microscope turns out to be a useful
resource for the Ruby community, I may try to write a second book. I might
call it Ruby Under a Microscope Part 2, which would pick up where this book
left off. However, I’m not making any promises!

A word about my diagrams

As you’ll see, Ruby Under a Microscope is an illustrated travel journal. While
I’m not an artist, I tried my best to describe Ruby’s internals visually.
Obviously, a picture is worth a thousands words. My goal is that some of these
diagrams come back into your mind the next time you use a particular feature of
Ruby. I want you to be able to imagine what is happening inside Ruby when you
call a block, include a module in a class or save a value in a hash, for example.

However, my diagrams are not intended to be either definitive or exhaustive.
Instead, view them as visual aids that can help you understand something.
On many occasions I left out fields, pointers and other details that I felt
would be confusing or just wouldn’t fit. The only way to get completely
accurate information about a particular structure, object or algorithm is to
read the C source code yourself.

Feedback please

Please send feedback to:


	http://patshaughnessy.net/ruby-under-a-microscope#disqus_thread


	Twitter: @pat_shaughnessy


	Email: pat@patshaughnessy.net


	https://github.com/patshaughnessy/ruby-under-a-microscope/issues








  Chapter 1

  
    Tokenization, Parsing and Compilation
  


  [image: image]

  
    Your code has a long road to take

    before Ruby ever runs it.
  



How many times do you think Ruby reads and transforms your code before running
it? Once? Twice? Whenever you run a Ruby script  whether it’s a large Rails
application, a simple Sinatra web site, or a background worker job  Ruby rips
your code apart into small pieces and then puts them back together in a
different format three times! Between the time you type “ruby” and
start to see actual output on the console, your Ruby code has a long road to
take, a journey involving a variety of different technologies, techniques and
open source tools.

At a high level, here’s what this journey looks like:


  
    [image: image]
  


First, Ruby tokenizes your code. During this first step, Ruby reads the text
characters in your code file and converts them into tokens. Think of tokens as
the words that are used in the Ruby language. In the next step, Ruby parses
these tokens; “parsing” means to group the tokens into meaningful Ruby
statements. This is analogous to grouping words into sentences. Finally, Ruby
compiles these statements or sentences into low level instructions that Ruby
can execute later using a virtual machine.

I’ll get to Ruby’s virtual machine, called “Yet Another Ruby Virtual Machine”
(YARV), next in Chapter 2, but first in this chapter I’ll describe the
tokenizing, parsing and compiling processes which Ruby uses to understand 
the code you give it. Join me as I follow a Ruby script on its journey!

Chapter 1 Roadmap


  
    
      	Tokens: the words that make up the Ruby language
      
      

    
      	Experiment 1-1: Using Ripper to tokenize different Ruby scripts
      
      

    
      	Parsing: how Ruby understands the code you write
      
        
          
            	Understanding the LALR parse algorithm

          
            	Some actual Ruby grammar rules

          
        

      
      

    
      	Experiment 1-2: Using Ripper to parse different Ruby scripts
      
      

    
      	Compilation: how Ruby translates your code into a new language
      
        
          
            	Stepping through how Ruby compiles a simple script

          
            	Compiling a call to a block

          
        

      
      

    
      	Experiment 1-3: Using the RubyVM class to display YARV instructions
      
      

    
      	Tokenization, parsing and compilation in JRuby
      
      

    
      	Tokenization, parsing and compilation in Rubinius
      
      

    
  







  Tokens: the words that make up the Ruby language
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    Tokens are the words that make up

    the Ruby language.
  



Let’s suppose you write this very simple Ruby program:


  
10.times do |n|
  puts n
end





 and then execute it from the command line like this:


  
$ ruby simple.rb
0
1
2
3
etc...





What happens first after you type “ruby simple.rb” and press “ENTER?” Aside
from general initialization, processing your command line parameters, etc., the
first thing Ruby has to do is open and read in all the text from the simple.rb
code file. Then it needs to make sense of this text: your Ruby code. How does
it do this?

After reading in simple.rb, Ruby encounters a series of text characters that
looks like this:


  
    [image: image]
  


To keep things simple I’m only showing the first line of text here. When Ruby
sees all of these characters it first “tokenizes” them. As I said above,
tokenization refers to the process of converting this stream of text characters
into a series of tokens or words that Ruby understands. Ruby does this by
simply stepping through the text characters one at a time, starting with the
first character, “1:”


  
    [image: image]
  


Inside the Ruby C source code, there’s a loop that reads in one character at a
time and processes it based on what character it is. As a simplification I’m
describing tokenization as an independent process; in fact, the parsing engine
I describe in the next section calls this C tokenize code whenever it needs a
new token. Tokenization and parsing are two separate processes that actually
happen at the same time. For now let’s just continue to see how Ruby tokenizes
the characters in my Ruby file.

In this example, Ruby realizes that the character “1” is the start of a number,
and continues to iterate over all of the following characters until it finds a
non-numeric character  next it finds a “0:”


  
    [image: image]
  


And stepping forward again it finds a period character:


  
    [image: image]
  


Ruby actually considers the period character to be numeric also, since it might
be part of a floating point value. So now Ruby continues and steps to the next
character:


  
    [image: image]
  


Here Ruby stops iterating since it found a non-numeric character. Since there
were no more numeric characters after the period, Ruby considers the period to
be part of a separate token and steps back one:


  
    [image: image]
  


And finally Ruby converts the numeric characters that it found into a new token
called tINTEGER:


  
    [image: image]
  


This is the first token Ruby creates from your program. Now Ruby continues to
step through the characters in your code file, converting each of them to
tokens, grouping the characters together as necessary:


  
    [image: image]
  


The second token is a period, a single character. Next, Ruby encounters the
word “times” and creates an identifier token:


  
    [image: image]
  


Identifiers are words that you use in your Ruby code that are not reserved
words; usually they refer to variable, method or class names. Next Ruby sees
“do” and creates a reserved word token, indicated by keyword_do:


  
    [image: image]
  


Reserved words are the special keywords that have some important meaning in the
Ruby language  the words that provide the structure or framework of the
language.  They are called reserved words since you can’t use them as normal
identifiers, although you can use them as method names, global variable names
(e.g. $do) or instance variable names (e.g. @do or @@do). Internally, the
Ruby C code maintains a constant table of reserved words; here are the first
few in alphabetical order:


  
alias
and
begin
break
case
class





Finally, Ruby converts the remaining characters on that line of code to tokens
also:


  
    [image: image]
  


I won’t show the entire program here, but Ruby continues to step through your
code in a similar way, until it has tokenized your entire Ruby script. At this
point, Ruby has processed your code for the first time  it has ripped your
code apart and put it back together again in a completely different way. Your
code started as a stream of text characters, and Ruby converted it to a stream
of tokens, words that Ruby will later put together into sentences.

  
    If you’re familiar with C and are interested in learning more about the
detailed way in which Ruby tokenizes your code file, take a look at the
parse.y file in your version of Ruby. The “.y” extension indicates parse.y is
a grammar rule file  a file that contains a series of rules for the Ruby
parser engine which I’ll cover in the next section. Parse.y is an extremely
large and complex code file; it contains over 10,000 lines of code! But don’t
be intimidated; there’s a lot to learn here and this file is worth becoming
familiar with.

For now, ignore the grammar rules and search for a C function called
parser_yylex, which you’ll find about two thirds of
the way down the file, around line 6500. This complex C function contains the
code that does the actual work of tokenizing your code.  If you look closely,
you should see a very large switch statement that starts like this:


  
retry:
  last_state = lex_state;
  switch (c = nextc()) {





The nextc() function returns the next character in the code file text stream
 think of this as the arrow in my diagrams above. And the lex_state variable
keeps information about what state or type of code Ruby is processing at the
moment. The large switch statement inspects each character of your code file
and takes a different action based on what it is. For example this code:


  
  /* white spaces */
case ' ': case '\t': case '\f': case '\r':
case '\13': /* '\v' */
  space_seen = 1;






  
...






  
  goto retry;





 looks for whitespace characters and ignores them by jumping back up to the
retry label just above the switch statement.

One other interesting detail here is that Ruby’s reserved words are defined in
a code file called defs/keywords  if you open up the keywords file
you’ll see a complete list of all of Ruby’s reserved words, the same
list I showed above. The keywords file is used by an open source package
called gperf to produce C code
that can quickly and efficiently lookup strings in a table, a table of
reserved words in this case.  You can find the generated reserved word
lookup C code in lex.c, which defines a function named rb_reserved_word,
called from parse.y.

One final detail I’ll mention about tokenization is that Ruby doesn’t use the
Lex tokenization tool, which C
programmers commonly use in conjunction with a parser generator like Yacc or
Bison. Instead, the Ruby core wrote the Ruby tokenization code by hand. They
may have done this for performance reasons, or because Ruby’s tokenization
rules required special logic Lex couldn’t provide.

  

  
    Experiment 1-1: Using Ripper to tokenize different Ruby scripts
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Now that we’ve learned the basic idea behind tokenization, let’s look at how Ruby
actually tokenizes different Ruby scripts. After all, how do I know the
explanation above is actually correct? It turns out it is very easy to
see what tokens Ruby creates for different code files, using a tool
called
Ripper.
Shipped with Ruby 1.9 and Ruby 2.0, the Ripper class allows you to call
the same tokenize and parse code that Ruby itself uses to process the
text from code files. It’s not available in Ruby 1.8.

Using it is simple:


  
require 'ripper'
require 'pp'
code = <<STR
10.times do |n|
  puts n
end
STR
puts code
pp Ripper.lex(code)





After requiring the Ripper code from the standard library, I call it by passing
some code as a string to the Ripper.lex method. In
this example, I’m passing the same example code from earlier. Running this I
get:


  
$ ruby lex1.rb 
10.times do |n|
  puts n
end
[[[1, 0], :on_int, "10"],
 [[1, 2], :on_period, "."],
 [[1, 3], :on_ident, "times"],
 [[1, 8], :on_sp, " "],
 [[1, 9], :on_kw, "do"],
 [[1, 11], :on_sp, " "],
 [[1, 12], :on_op, "|"],
 [[1, 13], :on_ident, "n"],
 [[1, 14], :on_op, "|"],
 [[1, 15], :on_ignored_nl, "\n"],
 [[2, 0], :on_sp, "  "],
 [[2, 2], :on_ident, "puts"],
 [[2, 6], :on_sp, " "],
 [[2, 7], :on_ident, "n"],
 [[2, 8], :on_nl, "\n"],
 [[3, 0], :on_kw, "end"],
 [[3, 3], :on_nl, "\n"]]





Each line corresponds to a single token Ruby found in my code string. On the
left we have the line number (1, 2, or 3 in this short example) and the text
column number. Next we see the token itself displayed as a symbol, such as
:on_int or :on_ident.
Finally Ripper displays the text characters it found that correspond to each
token.

The token symbols Ripper displays are somewhat different than the token
identifiers I showed in the diagrams above. Above I used the same names you
would find in Ruby’s internal parse code, such as tIDENTIFIER, while Ripper used :on_ident instead.  Regardless, it’s easy to get a sense of
what tokens Ruby finds in your code and how tokenization works by running
Ripper for different code snippets.

Here’s another example:


  
$ ruby lex2.rb
10.times do |n|
  puts n/4+6
end






  
...






  
 [[2, 2], :on_ident, "puts"],
 [[2, 6], :on_sp, " "],
 [[2, 7], :on_ident, "n"],
 [[2, 8], :on_op, "/"],
 [[2, 9], :on_int, "4"],
 [[2, 10], :on_op, "+"],
 [[2, 11], :on_int, "6"],
 [[2, 12], :on_nl, "\n"],






  
...





This time we see that Ruby converts the expression n/4+6 into a series of tokens in a very straightforward
way. The tokens appear in exactly the same order they did inside the code file.

Here’s a third, slightly more complex example:


  
$ ruby lex3.rb   
array = []
10.times do |n|
  array << n if n < 5
end
p array






  
...






  
 [[3, 2], :on_ident, "array"],
 [[3, 7], :on_sp, " "],
 [[3, 8], :on_op, "<<"],
 [[3, 10], :on_sp, " "],
 [[3, 11], :on_ident, "n"],
 [[3, 12], :on_sp, " "],
 [[3, 13], :on_kw, "if"],
 [[3, 15], :on_sp, " "],
 [[3, 16], :on_ident, "n"],
 [[3, 17], :on_sp, " "],
 [[3, 18], :on_op, "<"],
 [[3, 19], :on_sp, " "],
 [[3, 20], :on_int, "5"],






  
...





Here you can see that Ruby was smart enough to distinguish between << and < in the line:
“array << n if n < 5.” The characters << were converted to a single operator token, while
the single < character that appeared later was
converted into a simple less-than operator. Ruby’s tokenize code is smart
enough to look ahead for a second < character when
it finds one <.

Finally, notice that Ripper has no idea whether the code you give it is valid
Ruby or not. If I pass in code that contains a syntax error, Ripper will just
tokenize it as usual and not complain. It’s the parser's job to check syntax,
which I’ll get to in the next section.


  
require 'ripper'
require 'pp'
code = <<STR
10.times do |n
  puts n
end
STR
puts code
pp Ripper.lex(code) 





Here I forgot the | symbol after the block parameter
n. Running this, I get:


  
$ ruby lex4.rb  
10.times do |n
  puts n
end






  
...






  
[[[1, 0], :on_int, "10"],
 [[1, 2], :on_period, "."],
 [[1, 3], :on_ident, "times"],
 [[1, 8], :on_sp, " "],
 [[1, 9], :on_kw, "do"],
 [[1, 11], :on_sp, " "],
 [[1, 12], :on_op, "|"],
 [[1, 13], :on_ident, "n"],
 [[1, 14], :on_nl, "\n"],






  
...





  





  Parsing: how Ruby understands the code you write
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    Ruby uses an LALR parser

    generator called Bison.
  



Now that Ruby has converted your code into a series of tokens, what does it do
next? How does it actually understand and run your program? Does Ruby simply
step through the tokens and execute each one in order?

No, it doesn’t your code still has a long way to go before Ruby can run it.
As I said above, the next step on your code’s journey through Ruby is called
“parsing,” which is the process for grouping the words or tokens into sentences
or phrases that make sense to Ruby. It is during the parsing process that Ruby 
takes order of operations, methods and arguments, blocks and other larger code
structures into account. But how does Ruby do this? How can Ruby or any
language actually “understand” what you’re telling it with your code? For me,
this is one of the most fascinating areas of computer science endowing a
computer program with intelligence.

Ruby, like many programming languages, uses something called an “LALR parser
generator” to process the stream of tokens that we just saw above. Parser
generators were invented back in the 1960s; like the name implies, parser
generators take a series of grammar rules and generate code that can later
parse and understand tokens that follow those rules. The most widely used and
well known parser generator is called Yacc (“Yet Another Compiler
Compiler”), but Ruby instead uses a newer version of Yacc called Bison, part of the GNU project.
The term “LALR” describes how the generated parser actually works internally 
more on that below.

Bison, Yacc and other parser generators require you to express your grammar
rules using “Backus–Naur Form” (BNF) notation. For Bison and Yacc, this grammar
rule file will have a “.y” extension, named after “Yacc.” The grammar rule file
in the Ruby source code is called parse.y  the same file I mentioned earlier
that contains the tokenize code. It is in this parse.y file that Ruby defines
the actual syntax and grammar that you have to use while writing your Ruby
code. The parse.y file is really the heart and soul of Ruby  it is where the
language itself is actually defined!

Ruby doesn’t use Bison to actually process the tokens, instead Ruby runs Bison
ahead of time during Ruby’s build process to create the actual parser code.
There are really two separate steps to the parsing process, then:
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Ahead of time, before you ever run your Ruby program, the Ruby build process
uses Bison to generate the parser code (parse.c) from the grammar rules file
(parse.y). Then later at run time this generated parser code actually parses
the tokens returned by Ruby’s tokenizer code. You might have built Ruby
yourself from source manually or automatically on your computer by using a tool
like Homebrew. Or someone else
may have built Ruby ahead of time for you, if you installed Ruby with a
prepared install kit.

As I explained at the end of the last section, the parse.y file, and therefore
the generated parse.c file, also contains the tokenization code. This is why I
show the diagonal arrow from parse.c to the “Tokenize” process on the lower
left. In fact, the parse engine I am about to describe calls the tokenization
code whenever it needs a new token. The tokenization and parsing processes
actually occur simultaneously.

Understanding the LALR parse algorithm

Now let’s take a look at how grammar rules work  the best way to become
familiar with grammar rules is to take a close look at one simple example.
Suppose I want to translate from the Spanish:


Me gusta el Ruby


to the English:


I like Ruby


 and that to do this suppose I use Bison to generate a C language parser from
a grammar file. Using the Bison/Yacc grammar rule syntax  the “Backus–Naur”
notation  I can write a simple grammar rule like this with the rule name on
the left, and the matching tokens on the right:
  This is actually a slightly modified version of BNF that Bison uses  the
  original BNF syntax would have used ‘::=’ instead of a simple ‘:’ character.



  
SpanishPhrase : me gusta el ruby {
  printf("I like Ruby\n");
}





This grammar rule means: if the token stream is equal to “me”, “gusta,” “el”
and “ruby”  in that order  then we have a match. If there’s a match the
Bison generated parser will run the given C code, the printf statement (similar to puts
in Ruby), which will print out the translated English phrase.

How does this work? Here’s a conceptual picture of the parsing process in
action:
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At the top I show the four input tokens, and the grammar rule right underneath
it. It’s obvious in this case there’s a match since each input token
corresponds directly to one of the terms on the right side of the grammar rule.
In this example we have a match on the SpanishPhrase rule.

Now let’s change the example to be a bit more complex: suppose I need to
enhance my parser to match both:


Me gusta el Ruby


and:


Le gusta el Ruby


which means “She/He/It likes Ruby.” Here’s a more complex grammar file that
can parse both Spanish phrases:
  again this is a modified version of BNF used by Bison  the original syntax
  from the 1960s would use < > around the child rule names, like this for
  example: “VerbAndObject ::= <SheLikes> | <ILike>”)



  
SpanishPhrase: VerbAndObject el ruby {
  printf("%s Ruby\n", $1);
};
VerbAndObject: SheLikes | ILike {
  $$ = $1;
};
SheLikes: le gusta {
  $$ = "She likes";
}
 ILike: me gusta {
  $$ = "I like";
}





There’s a lot more going on here; you can see four grammar rules instead of
just one. Also, I’m using the Bison directive $$ to
return a value from a child grammar rule to a parent, and $1 to refer to a child’s value from a parent.

Now things aren’t so obvious  the parser can’t immediately match any of the
grammar rules like in the previous, trivial example:
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Here using the SpanishPhrase rule the el and ruby tokens match, but
le and gusta do not.
Ultimately we’ll see how the child rule VerbAndObject
does match “le gusta” but for now there is no immediate match. And now that
there are four grammar rules, how does the parser know which one to try to
match against? and against which tokens?

This is where the real intelligence of the LALR parser comes into play. This
acronym describes the algorithm the parser uses to find matching grammar rules,
and means “Look Ahead LR parser.” We’ll get to the “Look Ahead” part in a
minute, but let’s start with “LR:”


  	
  “L” (left) means the parser moves from left to right while processing the
  token stream; in my example this would be: le, gusta, el, ruby.
  

  	
  “R” (reversed rightmost derivation) means the parser uses a bottom up
  strategy for finding matching grammar rules, by using a shift/reduce
  technique.
  



Here’s how the algorithm works for this example. First, the parser takes the
input token stream:
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 and shifts the tokens to the left, creating something I’ll call the “Grammar
Rule Stack:”
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Here since the parser has processed just one token, le, this is kept in the stack alone for the moment.
“Grammar Rule Stack” is a simplification; in reality the parser does use a
stack, but instead of grammar rules it pushes numbers on to its stack that
indicate which grammar rule it just parsed. These numbers  or states from a
state machine  help the parser keep track of where it is as it processes the
tokens.

Next, the parser shifts another token to the left:
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Now there are two tokens in the stack on the left. At this point the parser
stops to examine all of the different grammar rules and looks for one that
matches. In this case, it finds that the SheLikes
rule matches:
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This operation is called “reduce,” since the parser is replacing the pair of
tokens with a single, matching rule. This seems very straightforward the
parser just has to look through the available rules and reduce or apply the
single, matching rule.

Now the parser in our example can reduce again  now there is another matching
rule: VerbAndObject! This rule matches because of the
OR (vertical bar) operator: it matches either the SheLikes or ILike child rules.
The parser can next replace SheLikes with VerbAndObject:
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But let’s stop for a moment and think about this a bit more carefully. How did
the parser know to reduce and not continue to shift tokens? Also, in the real
world there might actually be many matching rules the parser could reduce with
 how does it know which rule to use? This is the crux of the algorithm that
LALR parsers use that Ruby uses how does it decide whether to shift or
reduce? And if it reduces, how does it decide which grammar rule to reduce
with? 

In other words, suppose at this point in the process
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 there were multiple matching rules that included “le gusta.” How would the
parser know which rule to apply or whether to shift in the el token first before looking for a match?

Here’s where the “LA” (Look Ahead) portion of LALR comes in: in order to find
the proper matching rule it looks ahead at the next token:
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Additionally, the parser maintains a state table of possible outcomes depending
on what the next token was and which grammar rule was just parsed. This table
would contain a series of states, describing which grammar rules have been
parsed so far, and which states to move to next depending on the next token.
LALR parsers are complex state machines that match patterns in the token
stream. When you use Bison to generate the LALR parser, Bison calculates what
this state table should contain, based on the grammar rules you provided.

In this example, the state table would contain an entry indicating that if the
next token was el the parser should first reduce
using the SheLikes rule, before shifting a new token.

I won’t show the details of what a state table looks like; if you’re
interested, the actual LALR state table for Ruby can be found in the generated
parse.c file. Instead let’s just continue the shift/reduce operations for my
simple example. After matching the VerbAndObject
rule, the parser would shift another token to the left:
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At this point no rules would match, and the state machine would shift another
token to the left:
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And finally, the parent grammar rule SpanishPhrase
would match after a final reduce operation:
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Why have I shown you this Spanish to English example? Because Ruby parses your
program in exactly the same way! Inside the Ruby parse.y source code file,
you’ll see hundreds of rules that define the structure and syntax of the Ruby
language. There are parent and child rules, and the child rules return values
the parent rules can refer to in exactly the same way, using the $$, $1, $2, etc. symbols. The only real difference is scale  my
Spanish phrase grammar is extremely simple, trivial really. On the other hand,
Ruby’s grammar is very complex, an intricate series of interrelated parent and
child grammar rules, which sometimes even refer to each other in circular,
recursive patterns. But this complexity just means that the generated state
table in the parse.c file is larger. The basic LALR algorithm  how the parser
processes tokens and uses the state table  is the same.

Some actual Ruby grammar rules

Let’s take a quick look at some of the actual Ruby grammar rules from parse.y.
Here’s my example Ruby script from the last section on tokenization:


  
10.times do |n|
  puts n
end





This is a very simple Ruby script, right? Since this is so short, it should’t
be too difficult to trace the Ruby parser’s path through its grammar rules.
Let’s take a look at how it works:
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On the left I show the code that Ruby is trying to parse. On the right are the
actual matching grammar rules from the Ruby parse.y file, shown in a simplified
manner. The first rule, “program: top_compstmt,” is the root grammar rule which
matches every Ruby program in its entirety. As you follow the list down, you
can see a complex series of child rules that also match my entire Ruby script:
“top statements,” a single statement, an expression, an argument and finally a
“primary” value.

Once Ruby’s parse reaches the “primary” grammar rule, it encounters a rule that
has two matching child rules: “method_call” and “brace_block.” Let’s take the
“method_call” rule first:
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The “method_call” rule matches the “10.times” portion of my Ruby code - i.e.
where I call the times method on the 10 Fixnum object. You can see the rule matches another primary
value, followed by a period character, followed, in turn, by an “operation2.” The
period is simple enough, and here’s how the “primary_value” and “operation2”
child rules work: first the “primary_value” rule matches the literal “10:”
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And then the “operation2” rule matches the method name times:
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What about the rest of my Ruby code? How does Ruby parse the contents of the
“do … puts… end” block I passed to the times method?
Ruby handles that using the “brace_block” rule from above:
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I won’t go through all the remaining child grammar rules here, but you can see
how this rule, in turn, contains a series of other matching child rules:


	“keyword_do” matches the do reserved keyword


	“opt_block_param” matches the block parameter |n|


	“compstmt” matches the contents of the block itself - “puts n,” and


	“keyword_end” matches the end reserved keyword




  
    To give you a taste of what the actual Ruby parse.y source code looks like,
here’s a small portion of the file containing part of the “method_call” grammar
rule I showed above:


  
method_call        : 






  
...






  
  primary_value '.' operation2
  {
  /*%%%*/
      $<num>$ = ruby_sourceline;
  /*% %*/
  }
opt_paren_args
  {
  /*%%%*/
      $$ = NEW_CALL($1, $3, $5);
      nd_set_line($$, $<num>4);
  /*%
      $$ = dispatch3(call, $1, ripper_id2sym('.'), $3);
      $$ = method_optarg($$, $5);
  %*/
  }





Like my Spanish to English example grammar file above, here you can see there
are snippets of complex C code that appear after each of the terms in the
grammar rule. The way this works is that the Bison generated parser will
execute these snippets if and when there’s a match for this rule on the tokens
found in the target Ruby script. However, these C code snippets also contain
Bison directives such as $$ and $1 that allow the code to create return values and to refer
to values returned by other grammar rules. What we end up with is a confusing
mix of C and Bison directives.

And to make things even worse, Ruby uses a trick during the Ruby build process
to divide these C/Bison code snippets into separate pieces  some that are
actually used by Ruby and others that are only used by the Ripper tool which we
tried out in Experiment 1-1. Here’s how that works:


  	
    The C code that appears between the /*%%%*/ line and the /*% line is
    actually compiled into Ruby during the Ruby build process, and:
  

  	
    The C code between /*% and %*/ is dropped when Ruby is built. Instead,
    this code is only used by the Ripper tool which is built separately during
    the Ruby build process.
  



Ruby uses this very confusing syntax to allow the Ripper tool and Ruby itself
to share the same grammar rules inside of parse.y.

And what are these snippets actually doing? As you might guess Ruby uses the
Ripper code snippets to allow the Ripper tool to display information about what
Ruby is parsing.  We’ll try that next in Experiment 1-2. There’s also some
bookkeeping code: Ruby uses the ruby_sourceline
variable to keep track of what source code line corresponds to each portion of
the grammar.

But more importantly, the snippets Ruby actually uses at run time when parsing
your code create a series of “nodes” or temporary data structures that form an
internal representation of your Ruby code. These nodes are saved in a tree
structure called an Abstract Syntax Tree (or AST) more on that in a minute.
You can see one example of creating an AST node above, where Ruby calls the
NEW_CALL C macro/function. This creates a new NODE_CALL node, which represents a method call. We’ll see
later how Ruby eventually compiles this into byte code that can be executed by
a virtual machine.

  

  
    Experiment 1-2: Using Ripper to parse different Ruby scripts
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In Experiment 1-1 I showed you how to use Ripper to display the tokens Ruby
converts your code into, and we just saw how all of the Ruby grammar rules in
parse.y are also included in the Ripper tool. Now let’s learn how to use Ripper
to display information about how Ruby parses your code. Here’s how to do it:


  
require 'ripper'
require 'pp'
code = <<STR
10.times do |n|
  puts n
end
STR
puts code
pp Ripper.sexp(code)





This is exactly the same code I showed in the first experiment, except that
here I call Ripper.sexp instead of Ripper.lex. Running this I get:


  
[:program,
  [[:method_add_block,
     [:call,
       [:@int, "10", [1, 0]], :".",
       [:@ident, "times", [1, 3]]],
     [:do_block,
       [:block_var,
         [:params, [[:@ident, "n", [1, 13]]],
                   nil, nil, nil, nil, nil, nil],
         false],
       [[:command,
          [:@ident, "puts", [2, 2]],
          [:args_add_block, [[:var_ref, [:@ident, "n", [2, 7]]]],
                            false]]]]]]]





What the heck does this mean? I can see some bits and pieces from my Ruby
script in this cryptic text, but what do all of the other symbols and arrays
mean here?

It turns out that the output from Ripper is a textual representation of your
Ruby code. As Ruby parses your code, matching one grammar rule after another,
it converts the tokens found in your code file into a complex internal data
structure called an Abstract Syntax Tree (AST). You can see some of the C code
that produces this structure in the previous yellow section. The purpose of the
AST is to record the structure and syntactical meaning of your Ruby code. To
see what I mean, here’s a small piece of the AST structure Ripper just
displayed for my sample Ruby script:
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This is how Ruby represents that single call puts n
internally. This corresponds to the last three lines of the Ripper output:


  
[[:command,
   [:@ident, "puts", [2, 2]],
   [:args_add_block, [[:var_ref, [:@ident, "n", [2, 7]]]],
                     false]]]





Like in Experiment 1-1 when we displayed token information from Ripper, you can
see the source code file line and column information are displayed as integers.
For example [2, 2] indicates that Ripper found the puts call on line 2 at column 2 of my code file. Aside from
that, you can see that Ripper outputs an array for each of the nodes in the
AST, “[:@ident, puts, [2, 2]]” for example.

What’s interesting and important about this is that now my Ruby program is
beginning to “make sense” to Ruby. Instead of a simple stream of tokens, which
could mean anything, Ruby now has a detailed description of what I meant when I
wrote puts n. We have a function call, “a command,”
followed by an identifier node which indicates what function to call. Ruby uses
the args_add_block node since you might optionally
pass a block to a command/function call like this.  Even though we are not
passing a block in this case, the args_add_block node
is still saved into the AST. Another interesting detail is how the n identifier is recorded as a :var_ref or variable reference node, and not as a simple
identifier.

Let’s take a look at more of the Ripper output:
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Here you can see Ruby now understands that “do |n| 
end” is a block, with a single block parameter called n. The puts n box on the right
represents the other part of the AST I showed above, the parsed version of the
puts call.

And finally here’s the entire AST for my sample Ruby code:
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Here you can see “method add block” means we’re calling a method, but also
adding a block parameter “10.times do.” The “call”
tree node obviously represents the actual method call “10.times”. This is the NODE_CALL
node that we saw earlier in the C code snippet.

Again, the key point here is that now your Ruby program is no longer a simple
series of tokens  Ruby now “understands” what you meant with your code. Ruby’s
knowledge of your code is saved in the way the nodes are arranged in the AST.

To make this point even more clear, suppose I pass the Ruby expression “2+2” to Ripper like this:


  
require 'ripper'
require 'pp'
code = <<STR
2 + 2
STR
puts code
pp Ripper.sexp(code)





And running it I get:


  
[:program,
  [[:binary,
     [:@int, "2", [1, 0]],
     :+,
     [:@int, "2", [1, 4]]]]]





Here you can see the + is represented with an AST
node called “binary:”
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Not very surprising, but look what happens when I pass the expression “2 + 2 * 3” into Ripper:


  
require 'ripper'
require 'pp'
code = <<STR
2 + 2 * 3
STR
puts code
pp Ripper.sexp(code)





Now I get:


  
[:program,
 [[:binary,
   [:@int, "2", [1, 0]],
   :+,
   [:binary,
     [:@int, "2", [1, 4]],
     :*,
     [:@int, "3", [1, 8]]]]]]





And here’s what that looks like:
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Note how Ruby was smart enough to realize that multiplication has a higher
precedence  than addition does. We all knew this, of course this isn’t very
interesting. But what is interesting to me here is how the AST tree structure
itself inherently captures the information about the order of operations. The
simple token stream: 2 + 2 * 3 just indicates what I
wrote in my code file, while the parsed version saved to the AST structure now
contains the meaning of my code  all the information Ruby will need
later to execute it.

One final note: Ruby itself actually contains some debug code that can also
display information about the AST node structure. To use it, just run your Ruby
script with the “parsetree” option:


  
$ ruby --dump parsetree your_script.rb





This will display the same information we’ve just seen, but in a different
format. Instead of showing symbols, the “parsetree” option will show the actual
node names from the C source code. In the next section, about how Ruby compiles
your code, I’ll also use the actual node names.

  





  Compilation: how Ruby translates your code into a new language
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    The code Ruby actually runs looks

    nothing like your original code.
  



Now that Ruby has tokenized and parsed my code, is Ruby ready to actually
run it? For my simple “10.times do” example, will
Ruby now finally get to work and iterate through the block 10 times? If not,
what else could Ruby possibly have to do first?

The answer depends on which version of Ruby you have. If you’re still using
Ruby 1.8, then yes: Ruby will now simply walk through the nodes in the AST and
execute each one. Here’s another way of looking at the Ruby 1.8: tokenizing and
parsing processes:


  
    [image: image]
  


At the top as you move down you can see how Ruby translates your Ruby code into
tokens and AST nodes, as I described above. At the bottom I show the Ruby 1.8
interpreter itself  written in C and, of course, compiled into native machine
language code.

I show a dotted line between the two code sections to indicate that Ruby 1.8
simply interprets your code  it doesn’t compile or translate your code into
any other form past AST nodes. After converting your code into AST nodes, Ruby
1.8 proceeds to iterate over the nodes in the AST, taking whatever action each
node represents  executing each node. The break in the diagram between “AST
nodes” and “C” means your code is never completely compiled into machine
language. If you were to disassemble and inspect the machine language your
computer’s CPU actually runs, you would never find instructions that directly
map to your original Ruby code. Instead, you would find instructions that
tokenize, parse and execute your code instructions that implement the Ruby
interpreter.

However if you have upgraded to Ruby 1.9 or Ruby 2.0, then Ruby is still not
quite ready to run your code. There’s one final step on your code’s journey
through Ruby: compilation. With Ruby 1.9, the Ruby core team introduced
something called “Yet Another Ruby Virtual Machine” (or YARV), which actually
executes your Ruby code. At a high level, this is the same idea behind the much
more famous Java Virtual Machine (or JVM) used by Java and many other
languages. To use the JVM, you first compile your Java code into “byte code,” a
series of low level instructions that the JVM understands. Starting with
version 1.9, Ruby works the same way! The only differences are that:


	Ruby doesn’t expose the compiler to you as a separate tool; instead, it
automatically compiles your Ruby code into byte code instructions internally
without you ever realizing it.


	MRI Ruby also never compiles your Ruby code all the way to machine language.
As you can see in the next diagram, Ruby interprets the byte code instructions.
The JVM, however, can compile some of the byte code instructions all the way
into machine language using its “hotspot” or JIT compiler.




Here’s the same diagram again, this time showing how Ruby 1.9 and Ruby 2.0
handle your code:
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This time your Ruby code is translated into no less than three different
formats or intermediate languages! After parsing the tokens and producing the
AST, Ruby 1.9 and 2.0 continue to compile your code to a series of low level
instructions called “YARV instructions” for lack of a better name.

I’ll cover YARV in more detail in the next chapter: what the instructions are
and how they work, etc. I’ll also look at how much faster Ruby 1.9 and Ruby 2.0
are compared to Ruby 1.8. The primary reason for all of the work that the Ruby
core team put into YARV is speed: Ruby 1.9 and 2.0 run much faster than Ruby
1.8 primarily because of the use of the YARV instructions. Like Ruby 1.8, YARV
is still an interpreter, although a faster one: your Ruby code ultimately is
still not converted directly into machine language by Ruby 1.9 or 2.0. There is
still a gap in the diagram between the YARV instructions and Ruby’s C code.

Stepping through how Ruby compiles a simple script

But now let’s take a look at how Ruby compiles your code into the instructions
that YARV expects  the last step along your code’s journey through Ruby.
Here’s an example Ruby script that calculates 2+2 = 4:


  
puts 2+2





And here’s the AST structure Ruby will create after tokenizing and parsing this
simple program  note this is a more technical, detailed view of the AST than
you would get from the Ripper tool what we saw above in Experiment 2:
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The technical names I show here, NODE_SCOPE, NODE_FCALL, etc., are taken from the actual MRI Ruby C
source code. To keep this simple, I’m also omitting some AST nodes that aren’t
important in this example: nodes that represent arrays of the arguments to each
method call, which in this simple example would be arrays of only one element.

Before we get into the details of how Ruby compiles this program, let me
mention one very important attribute of YARV: it is a stack oriented virtual
machine. As I’ll explain in the next chapter, that means when YARV executes
your code it maintains a stack of values, mainly arguments and return values
for the YARV instructions. Most of YARV’s instructions either push values onto
the stack or operate on the values that they find on the stack, leaving a
result value on the stack as well.

Now to compile the “puts 2+2” AST structure into YARV
instructions, Ruby will iterate over the tree in a recursive manner from the
top down, converting each AST node into one or more instructions. Here’s how it
works, starting with the top node, NODE_SCOPE:
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NODE_SCOPE tells the Ruby compiler it is now starting
to compile a new scope or section of Ruby code  in this case a whole new
program. Conceptually I’m indicating this scope on the right with the empty
green box. The “table” and “args” values are both empty, so we’ll ignore those
for now.

Next the Ruby compiler will step down the AST tree and encounter NODE_FCALL:
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NODE_FCALL represents a function call, in this case
the call to puts.  Function and method calls are very
important and very common in Ruby programs; Ruby compiles them for YARV
using this pattern:


	Push receiver


	Push arguments


	Call the method/function




So in this example, the Ruby compiler first creates a YARV instruction called
putself  this indicates that the function call uses
the current value of the “self” pointer as the receiver. Since I call puts from the top level scope of this simple, one line Ruby
script, “self” will be set to point to the “top self” object. The “top self”
object is an instance of the “Object” class automatically created when Ruby
starts up. It’s sole purpose is to serve as the receiver for function calls
like this one in the top level scope.

Next Ruby needs to create instructions to push the arguments of the puts function call. But how can it do this? The argument to
puts is 2+2  in other
words the result of some other method call. Although 2+2 is a very simple expression in this example, puts could instead be operating on some extremely complex
Ruby expression involving many operators, method calls, etc.  How can Ruby
possibly know what instructions to create here?

The answer lies in the structure of the AST: by simply following the tree nodes
down in a recursive manner, Ruby can take advantage of all the work the parser
did earlier. In this case, Ruby can now just step down to the NODE_CALL node: 
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Here Ruby will compile the + method call, which
theoretically is really the process of sending the +
message to the 2 Integer
object. Again, following the same receiver  arguments  method call format I
explained above:


	First Ruby creates a YARV instruction to push the receiver onto the stack,
the object 2 in this case.


	Then Ruby creates a YARV instruction to push the argument or arguments onto
the stack, again 2 in this example.


	Finally Ruby creates a method call YARV instruction  “send :+, 1”. This means “send the ‘+’ message” to the
receiver: whatever object was previously pushed onto the YARV stack, in this
case the first Fixnum 2 object. The 1 parameter tells YARV there is one argument to this method
call, the second Fixnum 2 object.




What you have to imagine here  and what we’ll go through more carefully in the
next chapter  is how YARV will execute these instructions. What will happen
when Ruby executes the “send :+” instruction is that
it will add 2+2, fetching those arguments from the stack, and leave the result
4 as a new value on the top of the stack.

What I find fascinating about this is that YARV’s stack oriented nature also
helps Ruby to compile the AST nodes more easily. You can see how this is the
case when Ruby continues to finish compiling the NODE_FCALL from above:
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Now Ruby can assume the return value of the “2+2” operation, 4, will be left at
the top of the stack, just where Ruby needs it to be as the argument to the
puts function call. Ruby’s stack oriented virtual
machine goes hand in hand with the way that it recursively compiles the AST
nodes! On the right you can see Ruby has added the “send
:puts, 1” instruction. This last instruction will call the puts function, and as before the value 1 indicates there is one argument to the puts function.

It turns out Ruby later modifies these YARV instructions one more time before
executing them: the Ruby compiler has an optimize step, and one of Ruby’s
optimizations is to replace some YARV instructions with “specialized
instructions.” These are special YARV instructions that represent commonly used
operations such as “size,” “not,” “less-than,” “greater-than,” etc. One of
these special instructions is for adding two numbers together: the opt_plus YARV instruction. So during this optimization step
Ruby changes the YARV program to:
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You can see here that Ruby replaced “send :+, 1” with
opt_plus  a specialized instruction which will
run a bit faster.

Compiling a call to a block

Now let’s take a somewhat more complex example and compile my “10.times do” example from before:


  
10.times do |n|
  puts n
end





What really makes this example interesting is the fact that I’ve introduced a
block as a parameter to the times method. Let’s see
how the Ruby compiler handles blocks. Here is the AST for the the “10.times do” example  again using the actual node names
and not the simplified output from Ripper:
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This looks very different than “puts 2+2,” mostly
because of the inner block shown on the right side. I did this to keep the
diagram simpler, but also because Ruby handles the inner block differently, as
we’ll see in a moment. But first, let’s break down how Ruby compiles the main
portion on the script, on the left. Ruby starts with the top NODE_SCOPE as before, and creates a new snippet of YARV
instructions:
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Now Ruby steps down the AST nodes on the left, to NODE_ITER:
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Here there is still no code generated, but notice that above in the AST there
are two arrows leading from NODE_ITER: one continues
down to the NODE_CALL, which represents the 10.times call, and a second to the inner block on the
right. First Ruby will continue down the AST and compile the nodes
corresponding to the “10.times” code. I’ll save some
space and skip over the details; here’s the resulting YARV code following the
same receiver-arguments-message pattern we saw above:
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You can see here that the new YARV instructions push the receiver, the Integer object 10, onto the stack
first. Then Ruby generates an instruction to execute the times method call. But note how the send instruction also contains an argument “block in
<main>.” This indicates that the method call also contains a block
argument my “do |n| puts n end” block. In this
example, NODE_ITER has caused the Ruby compiler to
include this block argument, since in the AST above there’s an arrow from NODE_ITER over to the second NODE_SCOPE node.

Now Ruby will continue by compiling the inner block, starting with the second
NODE_SCOPE I showed on the right in the AST diagram
above. Here’s what the AST for the inner block looks like:
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This looks simple enough  just a single function call and a single argument
n. But notice I show a value for “table” and “args”
in NODE_SCOPE. These values were empty in the parent
NODE_SCOPE but are set here for the inner NODE_SCOPE. As you might guess, these values indicate the
presence of the block parameter n. Also notice that
the Ruby parser created NODE_DVAR instead of NODE_LITERAL which we saw before. This is because n is actually not just a literal string or local variable;
instead it is a “dynamic variable”  a reference to the block parameter passed
in from the parent scope. There are also a lot of other details that I’m not
showing here.

Skipping a few steps again, here’s how Ruby compiles the inner block:
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On the top I’ve shown the parent NODE_SCOPE, and the
YARV code we saw above.  Below that I’ve displayed a second green box
containing the YARV code compiled from the inner block’s AST.

The key point here is that Ruby compiles each distinct scope in your Ruby
program, whether it’s a block, lambda, method, class or module definition,
etc., into a separate snippet of YARV instructions. Again, in the next chapter
I’ll take a look at how YARV actually executes these instructions, including
how it jumps from one scope to another.

  
    Now let’s take a look at some of the internal code details of how Ruby
actually iterates through the AST structure, converting each AST node
into YARV instructions. The MRI C source code file which implements the
Ruby compiler is called compile.c, not surprisingly. To learn how the
code in compile.c works, you should start by looking for a function
called iseq_compile_each. Here’s what the beginning
of this function looks like:


  
/**
  compile each node
  self:  InstructionSequence
  node:  Ruby compiled node
  poped: This node will be poped
 */
static int
iseq_compile_each(rb_iseq_t *iseq, LINK_ANCHOR *ret, NODE * node,
                  int poped)
{





This function is very long and again consists of a very, very long
switch statement the switch statement alone is 1000s of lines long! The
switch statement branches based on the type of the current AST node and
generates the corresponding YARV code. Here’s the start of the switch
statement:


  
type = nd_type(node);






  
...






  
switch (type) {





Here node was a parameter passed into iseq_compile_each, and nd_type is
a C macro that returns the type from the given node structure.

Now let’s take a quick look at how Ruby compiles function or method
calls nodes into YARV instructions using the receiver/arguments/function
call pattern from earlier. First search in compile.c for this case in
the large switch statement:


  
case NODE_CALL:
case NODE_FCALL:
case NODE_VCALL:{                /* VCALL: variable or call */
  /*
    call:  obj.method(...)
    fcall: func(...)
    vcall: func
  */





Here as the comment explains NODE_CALL represents a
real method call (like 10.times), NODE_FCALL a function call (like puts) and NODE_VCALL a “variable”
or function call.  Skipping over some of the C code details  including
optional SUPPORT_JOKE code used for implementing the
goto statement  here’s what Ruby does next
to compile these AST nodes:


  
/* receiver */
if (type == NODE_CALL) {
    COMPILE(recv, "recv", node->nd_recv);
}
else if (type == NODE_FCALL || type == NODE_VCALL) {
    ADD_CALL_RECEIVER(recv, nd_line(node));
}





Here Ruby calls either COMPILE or ADD_CALL_RECEIVER:


	In the first case, for real method calls (NODE_CALL), Ruby calls COMPILE to
recursively call into iseq_compile_each again, processing the next AST node
down the tree that corresponds to the receiver of the method call or message.
This will create YARV instructions to evaluate whatever expression was used to
specify the target object.


	If there is no receiver (NODE_FCALL or NODE_VCALL) then Ruby calls ADD_CALL_RECEIVER which creates a pushself YARV instruction.




Next Ruby creates YARV instructions to push each argument of the
method/function call onto the stack:


  
/* args */
if (nd_type(node) != NODE_VCALL) {
    argc = setup_args(iseq, args, node->nd_args, &flag);
}
else {
    argc = INT2FIX(0);
}





For NODE_CALL and NODE_FCALL Ruby calls into the setup_args function, which will recursively call into iseq_compile_each again as needed to compile each argument
to the method/function call. For NODE_VCALL there are
no arguments, so Ruby simply sets argc to 0.

Finally Ruby creates YARV instructions to execute the actual method or
function call:


  
ADD_SEND_R(ret, nd_line(node), ID2SYM(mid),
           argc, parent_block, LONG2FIX(flag));





This C macro will create the new send YARV
instruction.

  

  
    Experiment 1-3: Using the RubyVM class to display YARV instructions


  [image: image]


It turns out there’s an easy way to see how Ruby compiles your code: the
RubyVM object gives you access to Ruby’s YARV engine from your Ruby
program! Just like the Ripper tool, using it is very straightforward:


  
code = <<END
puts 2+2
END
puts RubyVM::InstructionSequence.compile(code).disasm





The challenge is understanding what the output actually means. Here’s
the output you’ll get for “puts 2+2:”


  
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
0000 trace            1                                               (   1)
0002 putself          
0003 putobject        2
0005 putobject        2
0007 opt_plus         <ic:2>
0009 send             :puts, 1, nil, 8, <ic:1>
0015 leave            





You can see the same instructions that I showed earlier in my diagrams, with
some additional technical details that I omitted above for sake of clarity.
There are also two new instructions that I dropped completely: trace and leave. trace is used to implement the set_trace_func feature, which will call a given function
for each Ruby statement executed in your program, and leave is similar to a return statement. The line numbers on
the left show the position of each instruction in the byte code array the
compiler actually produces.

The “<ic:1>” and “<ic:2>” notation shown with both opt_plus and send indicates these
two method calls will use an inline method lookup cache to speed things up
later when Ruby executes the YARV instructions.

The other values shown with the send instruction -
“send :puts, 1, nil, 8” indicate that:


	puts takes one argument,


	there is no block parameter (nil), and


	This is a function call, and not a normal method call (8).




Using RubyVM it’s easy to explore how Ruby compiles different Ruby scripts; for
example, here’s my “10.times do” example:


  
code = <<END
10.times do |n|
  puts n
end
END
puts RubyVM::InstructionSequence.compile(code).disasm





Here’s the output I get now - notice that the “send
:times” YARV instruction now shows “block in
<compiled>” which indicates that I am passing a block to the “10.times” method call


  
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
== catch table
| catch type: break  st: 0002 ed: 0010 sp: 0000 cont: 0010
|------------------------------------------------------------------------
0000 trace            1                                               (   1)
0002 putobject        10
0004 send             :times, 0, block in <compiled>, 0, <ic:0>
0010 leave            
== disasm: <RubyVM::InstructionSequence:block in <compiled>@<compiled>>=
== catch table
| catch type: redo   st: 0000 ed: 0012 sp: 0000 cont: 0000
| catch type: next   st: 0000 ed: 0012 sp: 0000 cont: 0012
|------------------------------------------------------------------------
local table (size: 2, argc: 1 [opts: 0, rest: -1, post: 0, block: -1] s3)
[ 2] n<Arg>     
0000 trace            1                                               (   2)
0002 putself          
0003 getdynamic       n, 0
0006 send             :puts, 1, nil, 8, <ic:0>
0012 leave 





Now you can see that Ruby has displayed the two YARV instruction
snippets separately: the first one corresponds to the global scope, and
the second to the inner block scope. 

Another important detail to learn about here is the “local table.” This shows a
listing of the variables that are available in each scope. In my “10.times do” example, the local table for the inner scope
contains a single variable: “n<Arg>” - the block parameter. The “<Arg>”
text indicates that n is a parameter to this block. The text “argc: 1 [opts: 0,
rest: -1, post: 0, block: -1]” describes what kind of arguments were passed to
the method or block that this YARV code snippet corresponds to. Here’s how it
works:


	“argc” indicates the total number of arguments.


	“opts” shows the count of optional variables that were passed in, e.g.
“var=1, var2=2.”


	“rest” shows the number of arguments included by the splat operator, e.g.
“*args.”


	“post” shows the number of arguments that appear after the splat operator,
e.g. “*args, y, z”, and


	“block” is true or false indicating whether or not a block was passed in.




It’s easier to see how the local table works by creating a few local
variables in a Ruby script and then compiling it:


  
code = <<END
a = 2
b = 3
c = a+b
END
puts RubyVM::InstructionSequence.compile(code).disasm





Running, I get:


  
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
local table (size: 4, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)
[ 4] a          [ 3] b          [ 2] c          
0000 trace            1                                               (   1)
0002 putobject        2
0004 setlocal         a
0006 trace            1                                               (   2)
0008 putobject        3
0010 setlocal         b
0012 trace            1                                               (   3)
0014 getlocal         a
0016 getlocal         b
0018 opt_plus         <ic:1>
0020 dup              
0021 setlocal         c
0023 leave            





Notice that the local table now contains three variables: “a,” “b,” and
“c:”


  
local table (size: 4, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)
[ 4] a          [ 3] b          [ 2] c          





These are the three local variables created by my Ruby code. You should also
note YARV uses the instructions setlocal and getlocal to set and get local variables. One confusing
detail here is that the local table size is shown as 4, even though I have only
defined three variables. YARV uses the extra space in the locals table when it
executes your code  I’ll cover this in detail in Chapter 2.

Another important detail about the RubyVM output worth learning about
are “catch tables.” These have to do with how YARV implements program
control features such as redo, next, break, throw/catch, raise/rescue, etc.
Let’s try adding a redo statement to the inner block
in my example program


  
code = <<END
10.times do |n|
  puts n
  redo
end
END
puts RubyVM::InstructionSequence.compile(code).disasm





… and see how Ruby compiles that:


  
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
== catch table
| catch type: break  st: 0002 ed: 0010 sp: 0000 cont: 0010
|------------------------------------------------------------------------
0000 trace            1                                               (   1)
0002 putobject        10
0004 send             :times, 0, block in <compiled>, 0, <ic:0>
0010 leave            
== disasm: <RubyVM::InstructionSequence:block in <compiled>@<compiled>>=
== catch table
| catch type: redo   st: 0000 ed: 0020 sp: 0000 cont: 0000
| catch type: next   st: 0000 ed: 0020 sp: 0000 cont: 0020
|------------------------------------------------------------------------
local table (size: 2, argc: 1 [opts: 0, rest: -1, post: 0, block: -1] s3)
[ 2] n<Arg>     
0000 trace            1                                               (   2)
0002 putself          
0003 getdynamic       n, 0
0006 send             :puts, 1, nil, 8, <ic:0>
0012 pop              
0013 trace            1                                               (   3)
0015 jump             17
0017 jump             0
0019 putnil           
0020 leave            





You can see the output “catch type: redo” and “catch type:next” at the
start of the block’s  YARV code snippet. These indicate where the
control should jump to if a redo or next statement is compiled inside
the block. Since the “catch type: redo” line ended with “cont: 0000” the
jump statement on line 17 is “jump 0”. Curiously, Ruby adds an extra,
unnecessary “jump 17” instruction on line 15; this must be due to a minor
inefficiency or bug in the compiler.

Finally, if we use break instead of redo:


  
code = <<END
10.times do |n|
  puts n
  break
end
END
puts RubyVM::InstructionSequence.compile(code).disasm





… then we get this output:


  
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
== catch table
| catch type: break  st: 0002 ed: 0010 sp: 0000 cont: 0010
|------------------------------------------------------------------------
0000 trace            1                                               (   1)
0002 putobject        10
0004 send             :times, 0, block in <compiled>, 0, <ic:0>
0010 leave            
== disasm: <RubyVM::InstructionSequence:block in <compiled>@<compiled>>=
== catch table
| catch type: redo   st: 0000 ed: 0018 sp: 0000 cont: 0000
| catch type: next   st: 0000 ed: 0018 sp: 0000 cont: 0018
|------------------------------------------------------------------------
local table (size: 2, argc: 1 [opts: 0, rest: -1, post: 0, block: -1] s3)
[ 2] n<Arg>     
0000 trace            1                                               (   2)
0002 putself          
0003 getdynamic       n, 0
0006 send             :puts, 1, nil, 8, <ic:0>
0012 pop              
0013 trace            1                                               (   3)
0015 putnil           
0016 throw            2
0018 leave            





This looks similar, but now Ruby has created a throw
instruction at the end of the inner block, which will cause YARV to jump out of
the block and back up to the top scope, since that scope contains a “catch
type: break” line. Since the line shows “cont: 0010” Ruby will continue from
line 0010 after executing the throw statement.

I’ll explain how this works in more detail next in Chapter 2.

  





  Tokenization, parsing and compilation in JRuby

Although JRuby uses a completely different technical platform than MRI Ruby
does - JRuby uses Java while MRI Ruby uses C - it tokenizes and parses your
code in much the same way. Once your code is parsed, JRuby and MRI both
continue to compile your code into byte code instructions. As I explained
above, Ruby 1.9 and Ruby 2.0 compile your Ruby code into byte code instructions
that Ruby’s custom YARV virtual machine executes. JRuby, however, instead
compiles your Ruby code into Java byte code instructions that are interpreted
end executed by the Java Virtual Machine (JVM):
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Just like with Ruby 2.0, 1.9 and 1.8, JRuby uses a two step process for
tokenizing and parsing. First, ahead of time during the JRuby build process a
tool called Jay generates LALR parser code based on a grammar file, in just the
same way that MRI Ruby uses Bison. In fact, Jay is really just a rewrite of
Bison that generates a parser that uses Java or C# code instead of C. For JRuby
the grammar file is called DefaultRubyParser.y instead of parse.y and the
generated parser code is saved in a file called DefaultRubyParser.java instead
of parse.c. Note: if you run JRuby in 1.9 compatibility mode, the new default
for the JRuby head/master build, JRuby will use a different file called
Ruby19Parser.y instead. The JRuby team more or less copied over the grammar
rules from MRI Ruby’s parse.y into DefaultRubyParser.y and Ruby19Parser.y -
this is not a surprise since JRuby aims to implement Ruby in a completely
compatible way.

Then, once you have installed JRuby on your machine including the generated
parser, JRuby will run the parser to tokenize and parse your Ruby script. First
JRuby will read the text from your Ruby file and generate a stream of
tokens, and next the generated LALR parser will convert this stream of tokens
into an AST structure. This all works essentially the same as it does in MRI
Ruby.

Here’s a high level view of the different forms your Ruby code takes as you run
a JRuby process:
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At the top you can see JRuby converts your Ruby code into a token stream and
then, in turn, into an AST structure. Next, JRuby compiles these AST nodes into
Java byte code, which are later interpreted and executed by the JVM - the same
VM that runs Java programs along with many other programming languages such as
Clojure and Scala.

I didn’t include the “interpret” dotted line in this diagram that appears in
the analogous Ruby 1.8 and Ruby 1.9 diagrams, because the JVM’s JIT (“Just In
Time”) compiler actually converts some of that Java byte code - the compiled
version of your Ruby program - into machine language. The JVM will take the
time to do this for “hotspots” or frequently called Java byte code functions.
For this reason, JRuby can often run faster than MRI Ruby even though it’s
implemented in Java and not C, especially for long running processes. What this
means is that it’s possible for JRuby and the JVM working together to convert
part of the Ruby code you write all the way into native machine language code!

  
    Taking a look at the JRuby tokenizing and parsing code details, the similarity
to MRI is striking. The only real difference is that JRuby is written in Java
instead of C. For example, here’s some of the code that JRuby uses to tokenize
the stream of characters read in from the target Ruby code file - you can find
this in RubyYaccLexer.java in the src/jruby/org/jruby/lexer/yacc folder.


  
loop: for(;;) {
    c = src.read();
    switch(c) {






  
...






  
    case ',':
        return comma(c);





Just like the parser_yylex function in MRI Ruby, the
RubyYaccLexer Java class uses a giant switch statement to branch based on what
character is read in.  Above is the start of this switch statement, which calls
src.read() each time it needs a new character, and
one case of the switch statement that looks for comma characters. The JRuby
code is somewhat simpler and cleaner than the corresponding MRI Ruby code,
since it uses object oriented Java vs. standard C.  For example, tokens are
represented by Java objects - here’s the comma
function called from above which returns a new comma token:


  
private int comma(int c) throws IOException {
    setState(LexState.EXPR_BEG);
    yaccValue = new Token(",", getPosition());
    return c;
}





It’s a similar story for parsing: the same idea using a different programming
language. Here’s a snippet from the DefaultRubyParser.y file - this implements
the same method_call grammar rule that I discussed in
detail earlier for MRI Ruby:


  
method_call   : 






  
...






  
              | primary_value tDOT operation2 opt_paren_args {
                  $$ = support.new_call($1, $3, $4, null);
              }





Since JRuby uses Jay instead of Bison, the code that JRuby executes when
there’s a matching rule is Java and not C. But you can see Jay uses the same
“$$, $1, $2, etc.” syntax to specify the return value for the grammar rule, and
to allow the matching code to access the values of each of the child rules.

Again, since the matching code is written in Java and not C, it’s generally
cleaner and easier to understand compared to the same code you would find in
MRI Ruby. In the snippet above, you can see JRuby creates a new call AST node to represent this method call. In this case
the support object, an instance of the ParserSupport class, actually creates the AST node. Instead
of C structures, JRuby uses actual Java objects to represent the nodes in the
AST tree.

JRuby's Ruby to JVM byte code compiler, however, doesn’t resemble the YARV
compiler code I explained earlier in Chapter 1 very much. Instead, the JRuby
team implemented a new, custom compiler - it walks the AST node tree in a
similar way, but outputs JVM byte code instructions instead of YARV
instructions. Generally these byte code instructions are more granular and
low-level compared to the YARV instructions - i.e. each instruction does less
and there are more of them. This is due to the nature of the JVM, which was
designed to run not only Java but also many other languages. The YARV
instructions, as we’ve seen, are designed specifically for Ruby. If you’re
interested in exploring JRuby’s compiler, look in the org.jruby.compile package
in your copy of the JRuby source tree.

The JRuby core team is also currently working on a new higher-level and less
granular instruction set called “IR,” which will be specifically designed to
represent Ruby programs. To learn more about the new IR instruction set see the
article OSS Grant Roundup: JRuby’s New Intermediate
Representation.

  





  Tokenization, parsing and compilation in Rubinius

Now let’s take a look at Rubinius and how it parses your Ruby code. You may
have heard that Rubinius is a version of Ruby implemented with Ruby, but did
you know this also applies to the compiler that Rubinius uses? That’s right: as
hard as it is to imagine, when you run a Ruby script using Rubinius, it
compiles your Ruby code using Ruby.

At a high level the process looks very similar to MRI and JRuby:
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Again at build time, before you ever run your Ruby program, Rubinius generates
an LALR parser using Bison  the same tool that MRI Ruby uses. Just like JRuby,
the Rubinius team has more or less copied the same grammar rules over from the
original MRI parse.y file. In Rubinius the grammar file is called either
“grammar18.y” or “grammar19.y”  just like JRuby, Rubinius maintains two copies
of the grammar rules for its 1.8 and 1.9 compatibility modes.

Later when you run your Rubinius process, it converts your code again into a
token stream, an AST structure, and later into high level instructions called
“Rubinius instructions.” One nice feature of Rubinius is that it allows you to
save these compiled instructions into special “.rbc” files. That is, Rubinius
exposes a compile command, and allows you to precompile your Ruby code before
you actually run it, if you prefer, saving some time later. Remember that MRI
didn’t provide this feature: Ruby 1.9 and 2.0 always compile your code every
time you run it.

But what makes Rubinius fascinating is the way that it implements Ruby using
Ruby, or more precisely a combination of C, C++ and Ruby. I’ll have more
examples of this later in other chapters, but for now let’s take a look at how
Rubinius parses and compiles your code. Here’s the same diagram I had for MRI
and JRuby showing all the different forms your code takes internally inside of
Rubinius when you run it:
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When you run a Ruby script using Rubinius your code is converted into all of
these different formats, and ultimately into machine language! At the top, the
picture is the same: your Ruby script is once again tokenized and parsed, and
converted into a similar AST structure. Next, Rubinius iterates through the AST
nodes, compiling them into high level instructions which I’ll call “Rubinius
instructions.” These are similar to the YARV instructions that Ruby 1.9 and 2.0
use internally, except as I mentioned above they can optionally be saved into
.RBC files for later use.

Then in order to execute these instructions, Rubinius uses a well known and
very powerful open source framework called the “Low Level Virtual Machine” or
LLVM. The LLVM framework includes a number of different, powerful tools that
make it easy  or at least easier  to write a language compiler. LLVM provides
a low-level instruction set, a virtual machine to execute these instructions
along with optimizers, a C/C++ compiler (Clang), a debugger and more.

Rubinius primarily leverages the LLVM virtual machine itself by converting the
high level Rubinius instructions into low level LLVM instructions using a JIT
(“just in time”) compiler written by the Rubinius team. That is, first your
Ruby code is parsed and compiled into Rubinius instructions; later Rubinius
converts these high level instructions into their equivalent low level LLVM
instructions using a background thread as your Rubinius process runs.

As we’ll continue to see in later chapters, Rubinius’s implementation is a tour
de force  it’s an innovative, creative implementation of Ruby that at the
same time leverages some of the best open source software available to provide
fantastic performance. For me one of the most elegant aspects of Rubinius
internals is the way that it seamlessly combines C++, C and Ruby code together
 the parsing/compiling process is a good example of this. Here’s a closer
look at the way Rubinius processes your code:
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Inside of Rubinius, parsing and compiling your code is a team effort:


	First, as I mentioned above, Rubinius uses the same Bison generated LALR
parser that MRI Ruby does. Rubinius also uses similar C code to first tokenize
your code file’s text.


	But next, the C code triggered by the matching grammar rules in the parser
create AST nodes that are implemented by Ruby classes! Every type of AST node
has a corresponding Ruby class, all of which have a common Ruby super class:
Rubinius::AST::Node.


	Next each of these AST node Ruby classes contains code that compiles that
type of AST node into Rubinius instructions.


	Finally, once your Rubinius process is running a JIT compiler written in C++
converts these high Rubinius instructions into low level LLVM instructions.




  
    The Rubinius Ruby compiler, itself written in Ruby, is very readable and
straightforward to understand. In fact, the fact that much of Rubinius is
implemented in Ruby is one of its most important features. To see what I mean,
take a look at how the send AST node  or method
call  is compiled into high level Rubinius instructions:


  
module Rubinius
  module AST
    class Send < Node






  
...






  
      def bytecode(g)
        pos(g)
        if @vcall_style and reference = check_local_reference(g)
          return reference.get_bytecode(g)
        end
        @receiver.bytecode(g)
        if @block
          @block.bytecode(g)
          g.send_with_block @name, 0, @privately
        elsif @vcall_style
          g.send_vcall @name
        else
          g.send @name, 0, @privately
        end
      end






  
...





This is a snippet from the lib/compiler/ast/sends.rb Rubinius source code file.
This class, Rubinius::AST::Send, implements the Send Rubinius AST node that the parser creates when it
encounters a method or function call in your Ruby script. You can see the
reference to the Rubinius::AST::Node super class.

I won’t explain every detail, but at a high level the way this works is:


	When Rubinius compiles the AST nodes into Rubinius instructions, it visits
every AST node object and calls their bytecode
methods, passing in a generator object or “g” here. The generator object
provides a DSL for creating Rubinius instructions, e.g. send_with_block or send.


	After checking for the case where the function call might actually be a
reference to a local variable, Rubinius calls @receiver.bytecode  this
compiles the receiver object first.


	Then Rubinius creates either a send_with_block,
send_vcall or send method
depending on various attributes of the node object.




To save space I’m glossing over some details here but it’s real pleasure
reading the Ruby compiler code inside Rubinius since it’s so easy to understand
and follow. Again, you can find all of the AST node Ruby classes in the
lib/compiler/ast folder in your Rubinius source tree.

  





  Chapter 2

  
    How Ruby Executes Your Code
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    Ruby 1.9 and later use a virtual machine known as “YARV”
  



Now that Ruby has tokenized, parsed and compiled your code, Ruby is finally
ready to execute it. But exactly how does it do this? We’ve seen how the Ruby
compiler creates YARV (“Yet Another Ruby Virtual Machine”) instructions, but
how does YARV actually run them? How does it keep track of variables, return
values and arguments? How does it implement if
statements and other control structures?

Just like your computer’s actual microprocessor hardware, Koichi Sasada and the
Ruby core team designed YARV to use a stack pointer and a program counter. In
this chapter, I’ll start by looking at the basics of YARV instructions: how
they pop arguments off the stack and push return values onto the stack. I’ll
continue by explaining how Ruby accesses variables in two different ways:
locally and dynamically. Then I’ll show you how YARV implements Ruby control
structures  including a look at how Ruby implements the break keyword internally by raising an exception! Finally,
I’ll compare the instruction sets used by the JRuby and Rubinius virtual
machines to YARV’s instruction set.
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  YARV’s internal stack and your Ruby stack
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    Aside from it’s own stack, YARV keeps
 track of your Ruby call stack.
  



As we’ll see in moment, YARV uses a stack internally to keep track of
intermediate values, arguments and return values. YARV is a stack-oriented
virtual machine.

But alongside YARV’s internal stack Ruby also keeps track of your Ruby
program’s call stack: which methods called which other methods, functions,
blocks, lambdas, etc. In fact, YARV is not just a stack machine  it’s a
“double stack machine!” It not only has to track the arguments and return
values for it’s own internal instructions; it has to do it for your Ruby
arguments and return values as well.

First let’s take a look at YARV’s basic registers and internal stack:
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On the left I show YARV’s internal stack  SP is the
“stack pointer” or location of the top of the stack. On the right are the
instructions that YARV is currently executing. PC is
the program counter or location of the current instruction. You can see the
YARV instructions that Ruby compiled from my “puts
2+2” example from Chapter 1. YARV stores both the SP and PC registers in a C
structure called rb_control_frame_t, along with a
type field, the current value of Ruby’s self variable
and some other values I’m not showing here.

At the same time YARV maintains another stack of these rb_control_frame
structures, like this:
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This second stack represents the path through your Ruby program YARV has taken
and it’s current location. In other words, this is your Ruby call stack  what
you would see if you ran “puts caller.” The CFP
pointer indicates the “current frame pointer.” Each stack frame in your Ruby
program stack contains, in turn, a different value for the self, PC and SP registers we saw above. The type field in each rb_control_frame_t structure indicates what type of code is
running at this level in your Ruby call stack. As Ruby calls into the methods,
blocks or other structures in your program the type might be set to METHOD, BLOCK or one of a few
other values.

Stepping through how Ruby executes a simple script

To understand all of this better, let’s run through a couple examples. I’ll
start with my simple 2+2 example:


  
puts 2+2





This one line Ruby script doesn’t have any Ruby call stack, so I’ll focus on
the internal YARV stack only for now. Here’s how YARV will execute this script,
starting with the first instruction, trace:
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You can see here YARV starts the PC or program counter at the first
instruction, and initially the stack is empty. Now YARV will execute the
trace instruction, incrementing the PC register:
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Ruby uses the trace instruction to support the set_trace_func feature: if you call set_trace_func and provide a function, Ruby will call it
each time it executes a line of Ruby code, or when a few other events occur.

Next YARV will execute putself and push the current
value of self onto the stack:
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Since this simple script contains no Ruby objects or classes the self pointer will be set to the default “top self” object.
This is an instance of the Object class Ruby
automatically creates when YARV starts up. It serves as the receiver for method
calls and the container for instance variables in the top level scope. The “top
self” object contains a single, predefined to_s
method which returns the string “main”  you can call this method by running
this command at your console:


  
$ ruby -e 'puts self'





Later YARV will use this self value on the stack when
it executes the send instruction  self is the receiver of the puts
method, since I didn’t specify a receiver for this method call.

Next YARV will execute “pushobject 2” and push the
numeric value 2 onto the stack, and increment the PC
again:
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This is the first step of the receiver  arguments  operation pattern I
described in Chapter 1. First Ruby pushes the receiver onto the internal YARV
stack; in this example the Integer object 2 is the receiver of the message/method plus which takes a single argument, also a 2. Next Ruby will push the argument 2:
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And finally it will execute the operation  in this case opt_plus is an special, optimized instruction that will add
two values: the receiver and argument.
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You can see the opt_plus instruction leaves the
result, 4, at the top of the stack. And now, as I explained in Chapter 1, Ruby
is perfectly positioned to execute the puts function
call the receiver self is first on the stack and
the single argument, 4, is at the top of the stack. I’ll describe how method
lookup works in Chapter 3, but for now let’s just step ahead:
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Here the send instruction has left the return value, nil, at the top of the
stack. Finally Ruby executes the last instruction leave, which finishes up
executing our simple, one line Ruby program.

Executing a call to a block

Now let’s take a slightly more complicated example and see how the other stack
 your Ruby program stack  works. Here’s a simple Ruby script that calls a
block 10 times, printing out a string:


  
10.times do
  puts "The quick brown fox jumps over the lazy dog."
end





Let’s skip over a few steps and start off where YARV is about to call the
times method:
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On the left are the YARV instructions Ruby is executing, and now on the right
I’m showing two control frame structures. At the bottom of the stack is a
control frame with the type set to FINISH  Ruby
always creates this frame first when starting a new program. At the top of the
stack initially is a frame of type EVAL  this
corresponds to the top level or main scope of your Ruby script. Internally,
Ruby uses the FINISH frame to catch any exceptions
that your Ruby code might throw, or to catch exceptions generated by a break or return keyword. I’ll
have more on this in section 2.3.

Next when Ruby calls the times message on the Integer
object 10 the receiver of the times message, it will add a new level to the control frame
stack:
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This new entry on the right represents a new level in your program’s Ruby call
stack, and the CFP pointer has moved up to point at the new control frame
structure. Also since the times Integer method is
built into Ruby there are no YARV instructions for it. Instead, Ruby will call
some internal C code that will pop the argument “10” off the stack and call the
provided block 10 times.  Ruby gives this control frame a type of CFUNC.

Finally, if we interrupt the program inside the inner block here’s what the
YARV and control frame stacks will look like:
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You can see there will now be five entries in the control frame stack on the
right:


	the FINISH and EVAL
frames that Ruby always starts up with,


	the CFUNC frame for the call to 10.times,


	another FINISH frame; Ruby uses this one to catch
and exceptions or calls to return or break that might occur inside the block,
and


	a BLOCK frame; This frame at the top of the stack
corresponds to the code running inside the block.




  
    Like most other things, Ruby implements all of the YARV instructions like
putobject or send using C code which is then compiled into machine language
and executed directly by your hardware. Strangely, however, you won’t find the
C source code for each YARV instruction in a C source file. Instead the Ruby
core team put the YARV instruction C code in a single large file called
insns.def. For example, here’s a small snippet from insns.def showing how
Ruby implements the putself YARV instruction internally:


  
/**
  @c put
  @e put self.
  @j スタックに self をプッシュする。
 */
DEFINE_INSN
putself
()
()
(VALUE val)
{
    val = GET_SELF();
}





This doesn’t look like C at all  in fact, most of it is not. Instead, what
you see here is a bit of C code (“val = GET_SELF()”)
that appears below a call to DEFINE_INSN. It’s not
hard to figure out that DEFINE_INSN stands for
“define instruction.” In fact, Ruby processes and converts the insns.def file
into real C code during the Ruby build process, similar to how Bison converts
the parse.y file into parse.c:
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Ruby processes the insns.def file using Ruby: the Ruby build process first
compiles a smaller version of Ruby called “Miniruby,” and then uses this to run
some Ruby code that processes insns.def and converts it into a C source code
file called vm.inc. Later the Ruby build process hands vm.inc to the C compiler
which includes the generated C code in the final, compiled version of Ruby.

Here’s what the snippet above for putself looks like
in vm.inc after Ruby has processed it:


  
INSN_ENTRY(putself){
{
  VALUE val;
  DEBUG_ENTER_INSN("putself");
  ADD_PC(1+0);
  PREFETCH(GET_PC());
  #define CURRENT_INSN_putself 1
  #define INSN_IS_SC()     0
  #define INSN_LABEL(lab)  LABEL_putself_##lab
  #define LABEL_IS_SC(lab) LABEL_##lab##_##t
  USAGE_ANALYSIS_INSN(BIN(putself));
{
#line 323 "insns.def"
    val = GET_SELF();
#line 474 "vm.inc"
  CHECK_STACK_OVERFLOW(REG_CFP, 1);
  PUSH(val);
#undef CURRENT_INSN_putself
#undef INSN_IS_SC
#undef INSN_LABEL
#undef LABEL_IS_SC
  END_INSN(putself);}}}





The single line “val = GET_SELF()” appears in the
middle, while above and below this Ruby calls a few different C macros to do
various things, like adding one to the program counter (PC) register, and pushing the val
value onto the YARV internal stack. The vm.inc C source code file, in turn, is
included by the vm_exec.c file, which contains the primary YARV instruction
loop: the loop that steps through the YARV instructions in your program one
after another and calls the C code corresponding to each one.

  

  
    Experiment 2-1: Benchmarking Ruby 1.9 vs. Ruby 1.8
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The Ruby core team introduced the YARV virtual machine with Ruby 1.9; before
that Ruby 1.8 and earlier versions of ruby executed your program by directly
stepping through the nodes of the Abstract Syntax Tree (AST). There was no
compile step at all; Ruby just tokenized, parsed and then immediately executed
your code. Ruby 1.8 worked just fine; in fact, for years Ruby 1.8 was the most
commonly used version of Ruby. Why did the Ruby core team do all of the extra
work required to write a compiler and a new virtual machine? The answer is
simple: speed. Executing a compiled Ruby program using YARV is much faster than
walking around the AST directly.

How much faster is YARV? Let’s take a look in this experiment I’ll measure how
much faster Ruby 1.9 is compared to Ruby 1.8 by executing this very simple Ruby
script:


  
i = 0
while i < ARGV[0].to_i
  i += 1
end





Here I’m passing in a count value on the command line via the ARGV array, and then just iterating in a while loop
counting up to that value. This Ruby script is very, very simple  by
measuring the time it takes to execute this script for different values of
ARGV[0] I should get a good sense of whether
executing YARV instructions is actually faster than iterating over AST nodes.
There are no database calls or other external code involved.

By using the time Unix command I can measure how long
it takes Ruby to iterate 1 time:


  
$ time ruby benchmark1.rb 1   
ruby benchmark1.rb 1  0.02s user 0.00s system 92% cpu 0.023 total





or 10 times:


  
$ time ruby benchmark1.rb 10
ruby benchmark1.rb 10  0.02s user 0.00s system 94% cpu 0.027 total





etc

Plotting the times on a logarithmic scale for Ruby 1.8.7 and Ruby 1.9.3, I get:
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  Time (sec) vs. number of iterations


Looking at the chart, you can see that:


	For short lived processes, i.e. loops with a small number of iterations shown
on the left, Ruby 1.8.7 is actually faster than Ruby 1.9.3, since there is no
need to compile the Ruby code into YARV instructions at all. Instead, after
tokenizing and parsing the code Ruby 1.8.7 immediately executes it. The time
difference between Ruby 1.8.7 and Ruby 1.9.3 at the left side of the chart,
about 0.01 seconds, is how long it takes Ruby 1.9.3 to compile the script into
YARV instructions.


	However, after a certain point  after about 11,000 iterations  Ruby 1.9.3
is faster. This crossover occurs when the additional speed provided by
executing YARV instructions begins to pay off, and make up for the additional
time spent compiling.


	For long lived processes, i.e. loops with a large number of iterations shown
on the right, Ruby 1.9 is about 3.75 times faster!




This speed up doesn’t look like much on the logarithmic chart above, but if I
redraw the right side of this chart using a linear scale:
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  Time (sec) for 10 or 100 million iterations


you can see the difference is dramatic! Executing this simple Ruby script
using Ruby 1.9.3 with YARV is about 3.75 times faster than it using Ruby 1.8.7
without YARV!

  





  Local and dynamic access of Ruby variables
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    Using dynamic access, Ruby can climb

    up to access values in the parent scope
  



In the previous section, we saw how Ruby maintained two stacks: an internal
stack used by YARV as well as your Ruby program’s call stack. But something
obvious was missing from both of these code examples: variables. Neither of my
scripts used any Ruby variables   a more realistic example program would have
used variables many times. How does Ruby handle variables internally? Where are
they stored?

Storing variables is straightforward: Ruby stores all of the values you save in
variables on YARV’s stack, along with the parameters to and return values from
the YARV instructions. However, accessing these variables is not so simple.
Internally Ruby uses two very different methods for saving and retrieving a
value you save in a variable: local access and dynamic access.

Local variable access

Let’s start with local access first, since that’s simpler. Whenever you make a
method call, Ruby sets aside some space on the YARV stack for any local
variables that are declared inside the method you are calling. Ruby knows how
many variables you are using by consulting the “local table” that was created
for each method during the compilation step I covered in Chapter 1.

For example, suppose I write a very silly Ruby function to display a string:
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On the left is my Ruby code, and on the right is a diagram showing the YARV
stack and stack pointer. You can see that Ruby stores the variables on the
stack just under the stack pointer. Notice there’s a space reserved for the
str value on the stack, three slots under where the
SP is, in other words at SP-3.

Ruby uses the svar/cref slot for two different
purposes: it might contain a pointer to a table of the “special variables” that
exist in the current method.  These are values such as $! (last exception message) or $&
(last regular expression match). Or it might contain a pointer to the current
lexical scope. Lexical scope indicates which class or module you are currently
adding methods to. In Experiment 2-2 I’ll explore what special variables are
and how they work.

Ruby uses the first slot  the “special” variable  to keep track of
information related to blocks. I’ll have more about this in a moment when I
discuss dynamic variable access.

When my example code saves a value into str, Ruby
just needs to write the value into that space on the stack:
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Internally YARV uses another pointer similar to the stack pointer called the
LFP or “Local Frame Pointer.” This points to where
the local variables for the current method are located on the stack. Initially
it is set to SP-1. Later the value of SP will change as YARV executes instructions, while the
LFP value will normally remain constant.

Here are the YARV instructions that Ruby compiled my display_string function into:
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First the putstring instruction saves the “Local
access” string on the top of the stack, incrementing the SP pointer. Then you can see YARV uses the setlocal instruction to get the value at the top of the
stack and save it in the space allocated on the stack for the str local variable. Internally, setlocal uses the LFP pointer and
a numerical index indicating which variable to set  in this example that
would be: “address of str = LFP-2.”

Next for the call to “puts str” Ruby uses the getlocal instruction:
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Here Ruby has pushed the string value back onto the top of the stack, where it
can be used as an argument for the call to the puts
function.

The works the same way if I instead pass the string in as a method parameter 
method arguments are essentially the same as local variables:
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The only difference between method arguments and local variables is that the
calling code pushes the arguments onto the stack before the method calls even
occurs. In this example, there are no local variables, but the single argument
appears on the stack just like a local variable:
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Dynamic variable access

Now let’s take a look at how dynamic variable access works, and what that
“special” value is. Ruby uses dynamic access when you use a variable that’s
defined in a different scope, for example when you write a block that
references values in the parent scope. Here’s an example:


  
def display_string
  str = 'Dynamic access.'
  10.times do
    puts str
  end
end





Here str is again a local variable in display_string, and Ruby will save it using the setlocal instruction we saw above. 
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However, now I’m calling “puts str” from inside a
block. To access the str local variable from the
block, Ruby will have to use dynamic access to reach the stack frame for the
parent scope. Before explaining exactly how dynamic access works, let’s first
step through the process of calling the block to see how Ruby sets up the
stack.

First Ruby will call the 10.times method, passing a block in as an argument:
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First, notice the value 10 on the stack  this is the actual receiver of the
method times. You can also see just above that Ruby
has created a new stack frame on the right for the C code that implements Integer#times to use. Since I passed a block into the
method call, Ruby saves a pointer to this block in the “special” variable on
the stack. Each frame on the YARV stack corresponding to a method call keeps
track of whether or not there was a block argument using this “special”
variable. I’ll cover blocks and the rb_block_t
structure in much more detail in Chapter 5.

Now Ruby will call the block’s code over and over again, 10 times:
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You can see here that, as I explained in section 2.1, Ruby actually creates two
new stack frames when you call a block: a FINISH
frame and a BLOCK frame.  The first FINISH frame is more or less a copy of the previous stack
frame, holding the block as a parameter in the “special” variable. But when
Ruby starts to execute the block itself, it changes the “special” variable to
become something else: a pointer to the parent scope’s stack frame. This is
known as the DFP or Dynamic Frame Pointer.

Ruby uses the DFP to enable dynamic variable access. Here are the YARV code
instructions Ruby compiled my block into:
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The dashed arrows indicate Ruby’s dynamic variable access: the getdynamic YARV instruction copies the value of str from the lower stack frame, from the parent or outer
Ruby scope, up to the top of the stack, where the YARV instructions in the
block can access it. Note how the DFP pointers, in a
sense, form a ladder that Ruby can climb to access the local variables in the
parent scope, or the grandparent scope, etc.

In the “getdynamic str, 1” call above, the second
parameter 1 indicates which stack frame or Ruby scope to look for the variable
str in. Ruby implements this by iterating through the
DFP pointers that number of times. In this case Ruby
moves up one scope before looking for str. If I had
two nested blocks
like this:


  
def display_string
  str = 'Dynamic access.'
  10.times do
    10.times do
      puts str
    end
  end
end





 then Ruby would have used “getdynamic str, 2”
instead.

  
    Let’s take a look at the actual C implementation of getdynamic. Like most of
the other YARV instructions, Ruby implements getdynamic in the insns.def code
file:


  
/**
  @c variable
  @e Get value of block local variable (pointed to by idx
     'level' indicates the nesting depth from the current
  @j level, idx で指定されたブロックローカル変数の値をスタックに
     level はブロックのネストレベルで、何段上か
 */
DEFINE_INSN
getdynamic
(dindex_t idx, rb_num_t level)
()
(VALUE val)
{
    rb_num_t i;
    VALUE *dfp2 = GET_DFP();
    for (i = 0; i < level; i++) {
        dfp2 = GET_PREV_DFP(dfp2);
    }
    val = *(dfp2 - idx);
}





Here the GET_DFP macro returns the DFP from the current scope. This macro is defined in the
vm_insnhelper.h file along with a number of other YARV instruction related
macros. Then Ruby iterates over the DFP pointers,
moving from the current scope to the parent scope, and then from the parent
scope to the grandparent scope, by repeatedly dereferencing the DFP pointers.
Ruby uses the GET_PREV_DFP macro, also defined in
vm_insnhelper.h, to move from one DFP to another. The
level parameter indicates how many times to iterate,
or how many rungs of the ladder to climb.

Finally, Ruby obtains the target variable using the idx parameter; this is the index of the target variable.
Therefore, this line of code:


  
val = *(dfp2 - idx);





gets the value from the target variable. It means:


	Start from the address of the DFP for the target
scope, dfp2, obtained previously from the GET_PREV_DFP iterations.


	Subtract idx from this address. idx tells getdynamic the index of
the local variable you want to load, or in other words how far down the stack
the target variable is located.


	Get the value from the YARV stack at this adjusted address.




So in my example above:


  
getdynamic str, 2





YARV will take the DFP from the scope two levels up
on the YARV stack, and subtract the index value str
(this might be 2 or 3 for example) from it to obtain a pointer to the str variable.

  

  
    Experiment 2-2: Exploring special variables
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In the diagrams above I showed a value called svar/cref in the LFP-1 position
on the stack. What are these two values? And how can Ruby save two values in
one location on the stack? Why does it do this? Let’s take a look….

Most often the LFP-1 slot in the stack will contain
the svar value - this is a pointer to a table of any
special variables that might exist in this stack frame. In Ruby the term
“special variables” refers to values that Ruby automatically creates for you as
a convenience based on the environment or on recent operations. For example,
Ruby sets $* to the ARGV array and $! to the last exception raised.

Notice that all of the special variables begin with the dollar sign character,
which usually indicates a global variable. This begs the question: are special
variables global variables? If so, then why does Ruby save a pointer to them on
the stack? To find out, let’s create a simple Ruby script to match a string
using a regular expression:


  
/fox/.match("The quick brown fox jumped over the lazy dog.\n")
puts "Value of $& in the top level scope: #{$&}"





Here I’m matching the word fox in the string using a
regex. Then I print out the matching string using the $& special variable. Running this I get:


  
$ ruby regex.rb
Value of $& in the top level scope: fox





Now I’ll search the same string twice: first in the top level scope and then
again from inside a method call:


  
str = "The quick brown fox jumped over the lazy dog.\n"
/fox/.match(str)






  
def search(str)
  /dog/.match(str)
  puts "Value of $& inside method: #{$&}"
end
search(str)






  
puts "Value of $& in the top level scope: #{$&}"





This is simple Ruby code, but it’s still a bit confusing. Here’s how this
works:


	First I search the string in the top scope for fox.
This matches the word and saves fox into the $& special variable.


	Then I call the search method and search for the
word dog. I immediately print out the match using the
same $& variable inside the method.


	Finally I return to the top level scope and print out the value of $& again.




Running this test, I get:


  
$ ruby regex_method.rb
Value of $& inside method: dog
Value of $& in the top level scope: fox





This is what we expect, but think carefully about this for a moment. The $& variable is obviously not global since it has different
values at different places in my Ruby script. Ruby preserves the value of $& from the top level scope during the execution of the
search method, allowing me to print out the matching
word “fox” from the original search.

Ruby provides for this behavior by saving a separate set of special variables
at each level of the stack using the svar value:
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Here you can see Ruby saved the “fox” string in a table referred to by the
svar pointer for the top level scope, and saved the “dog” string in a
different table for the inner method scope. Ruby finds the proper special
variable table using the LFP pointer for each stack frame. Depending on exactly
which special variable you use, the table in this diagram might be a hash table
or just a simple C structure. I’ll discuss hash tables in Chapter 4.

Ruby saves actual global variables - these are variables you define using a
dollar sign prefix - in a single, global hash table. Regardless of where you
save or retrieve the value of a normal global variable, Ruby accesses the same
global hash table. 

Now let’s try one more test - what happens if I perform the search inside a
block and not a method?


  
str = "The quick brown fox jumped over the lazy dog.\n"
/fox/.match(str)






  
2.times do
  /dog/.match(str)
  puts "Value of $& inside block: #{$&}"
end






  
puts "Value of $& in the top level scope: #{$&}"





Running this last test, I get:


  
$ ruby regex_block.rb 
Value of $& inside block: dog
Value of $& inside block: dog
Value of $& in the top level scope: dog





Notice that now Ruby has overwritten the value of $&
in the top scope with the matching word “dog” from the search I performed
inside the block! This is by design: Ruby considers the top level scope and the
inner block scope to be the same with regard to special variables. This is
similar to how dynamic variable access works: we expect variables inside the
block to have the same values as those in the parent scope.

Here is how Ruby implements this behavior:
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Now Ruby has just a single special variable table, for the top level scope.
Ruby finds the special variables using the LFP pointer, which points only to
the top level scope. Inside the block scope, since there is no need for a
separate copy of the special variables, Ruby takes advantage of the DFP-1 open
slot and saves a value called the cref there instead.

What does the cref value mean? Unfortunately, I don’t
have space in this book to explain this carefully, but in a nutshell cref indicates whether the given block should be executed
in a different lexical scope compared to the parent frame. Lexical scope refers
to the class or module the you are currently defining methods for. Ruby uses
the cref value to implement metaprogramming API calls
such as eval and instance_eval - the cref value
is a pointer to the location on the lexical scope stack this block should be
evaluated in.  I’ll touch on these advanced concepts in Chapter 5, but you’ll
have to wait for Ruby Under a Microscope - Part 2 to read a complete
explanation of lexical scope and how Ruby implements it.

  

  
    The best way to get an accurate list of all the special variables Ruby supports
is to look right at the MRI C source; here’s a snippet of the C code that
tokenizes your Ruby program. I’ve taken this from the parser_yylex function
located in parse.y:


  
case '$':
  lex_state = EXPR_END;
  newtok();
  c = nextc();
  switch (c) {
    case '_':                /* $_: last read line string */
      c = nextc();
      if (parser_is_identchar()) {
          tokadd('$');
          tokadd('_');
          break;
      }
      pushback(c);
      c = '_';
      /* fall through */
    case '~':                /* $~: match-data */
    case '*':                /* $*: argv */
    case '$':                /* $$: pid */
    case '?':                /* $?: last status */
    case '!':                /* $!: error string */
    case '@':                /* $@: error position */
    case '/':                /* $/: input record separator */
    case '\\':                /* $\: output record separator */
    case ';':                /* $;: field separator */
    case ',':                /* $,: output field separator */
    case '.':                /* $.: last read line number */
    case '=':                /* $=: ignorecase */
    case ':':                /* $:: load path */
    case '<':                /* $<: reading filename */
    case '>':                /* $>: default output handle */
    case '\"':                /* $": already loaded files */
      tokadd('$');
      tokadd(c);
      tokfix();
      set_yylval_name(rb_intern(tok()));
      return tGVAR;





At the top of this code snippet you can see Ruby matches a dollar sign “$”
character - this is part of the large C switch statement that tokenizes your
Ruby code, the process I discussed back at the beginning of Chapter 1. This is
followed by an inner switch statement that matches on the following character;
each of these characters corresponds to a special variable.

Just a bit farther down in the function is more C code that parses other
special variable tokens you write in your Ruby code - these are the “regex last
match” and related special variables:


  
case '&':                /* $&: last match */
case '`':                /* $`: string before last match */
case '\'':                /* $': string after last match */
case '+':                /* $+: string matches last paren. */
  if (last_state == EXPR_FNAME) {
      tokadd('$');
      tokadd(c);
      goto gvar;
  }
  set_yylval_node(NEW_BACK_REF(c));
  return tBACK_REF;





Finally, this last snippet parses $1, $2, etc., producing the special variables
that return the “nth back reference” from the last regular expression
operation:


  
case '1': case '2': case '3':
case '4': case '5': case '6':
case '7': case '8': case '9':
  tokadd('$');
  do {
      tokadd(c);
      c = nextc();
  } while (c != -1 && ISDIGIT(c));
  pushback(c);
  if (last_state == EXPR_FNAME) goto gvar;
  tokfix();
  set_yylval_node(NEW_NTH_REF(atoi(tok()+1)));
  return tNTH_REF;





  





  How YARV controls your program’s execution flow
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    YARV uses its own internal set of control structures,

    similar to the structures you use in Ruby.
  



We’ve seen how YARV uses a stack while executing its instruction set and how it
can access variables locally or dynamically, but what about control structures?
Controlling the flow of execution is a fundamental requirement for any
programming language, and Ruby has a rich set of control structures. How does
YARV implement it?

Just like Ruby itself, YARV has it own control structures, albeit at a much
lower level. Instead of if or unless statements, YARV uses two low level instructions
called branchif and branchunless. And instead of using control structures such
as “whileend” or “untilend” loops, YARV has a single low level function
called jump that allows it to change the program
counter and move from one place to another in your compiled program. By
combining the branchif or branchunless instruction with the jump instruction YARV is able to execute most of Ruby’s
simple control structures.

How Ruby executes an if statement

A good way to understand how YARV controls execution flow is to take a look at
how the if/else statement works. Here’s a simple Ruby
script that uses both if and else:
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On the right you can see the corresponding snippet of compiled YARV
instructions. Reading the YARV instructions, you can see Ruby follows a pattern
for implementing the if/else statement:


	evaluate condition


	jump to false code if condition is false


	true code; jump to end


	false code




This is a bit easier to follow if I paste the instructions into a flowchart:
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You can see how the branchunless instruction in the center is the key to how
Ruby implements if statements; here’s how it works:


	First at the top Ruby evaluates the condition of my if statement, “i < 10,” using the
opt_lt (optimized less-than) instruction. This will
leave either a true or false value on the stack.


	Then branchunless will jump down to the false/else
condition if the condition is false. That is, it “branches unless” the
condition is true. Ruby uses branchunless and not
branchif for if/else
conditions since the positive case, the code that immediately follows the if
statement, is compiled to appear right after the condition code. Therefore YARV
needs to jump if the condition is false.


	Or if the condition is true Ruby will not branch and will just continue to
execute the positive case code. After finishing the positive code Ruby will
then jump down to the instructions following the if/else statement using the
jump instruction.


	Finally either way Ruby will continue to execute the subsequent code.




YARV implements the unless statement in a similar way
using the same branchunless instruction, except the
positive and negative code snippets are in reverse order. For looping control
structures like “whileend” and “untilend” YARV uses the branchif instruction instead. But the idea is the same:
calculate the loop condition, then execute branchif
to jump as necessary, and finally use jump statements
to implement the loop.

Jumping from one scope to another

One of the challenges YARV has implementing some control structures is that,
similar to dynamic variable access, Ruby sometimes can jump from one scope to
another. The simplest example of this is the break
statement. break can be used both to exit a simple
loop like this:


  
i = 0
while i<10
  puts i
  i += 1
  break
end





or from a block iteration like this:


  
10.times do |n|
  puts n
  break
end
puts "continue from here"





In the first case, YARV can exit the while loop using simple jump instructions like we saw above in the if/else example. However, exiting a block is not so simple:
in this case YARV needs to jump to the parent scope and continue execution
after the call to 10.times. How does it do this? How
does it know where to jump to? And how does it adjust both its internal stack
and your Ruby call stack to be able to continue execution properly in the
parent scope?

To implement jumping from one place to another in the Ruby call stack  that
is, outside of the current scope  Ruby uses the throw YARV instruction.  YARV’s throw instruction resembles the Ruby throw keyword: it sends or throws the execution path back
up to a higher scope. It also resembles the throw
keyword from C++ or Java  it’s similar to raising an exception, except there
is no exception object here.

Let’s take a look at how that works; here’s the compiled code for the block
above containing the break statement:
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You can see a “throw 2” instruction appears in the compiled code for the block.
throw implements throwing an exception at the YARV instruction level by using
something called a “catch table” A catch table is a table of pointers
optionally attached to any YARV code snippet. Conceptually, a catch table might
look like this:
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Here, the catch table from my example contains just a single pointer to the
pop statement, which is where execution would
continue after an exception.  Whenever you use a break statement in a block,
Ruby not only compiles the throw instruction into the
block’s code, but it also adds the BREAK entry into
the catch table of the parent scope. For a break
within a series of nested blocks, Ruby would add the BREAK entry to a catch table even farther down the rb_control_frame stack.

Later, when YARV executes the throw instruction it
checks to see whether there’s a catch table containing a BREAK pointer for the current YARV instruction sequence:
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If there isn’t, Ruby will start to iterate down through the stack of
rb_control_frame structures looking for a catch table
containing a break pointer
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and continue to iterate until it finds one:
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In my simple example, there is only one level of block nesting, so Ruby will
find the catch table and BREAK pointer after just one
iteration:
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Once Ruby finds the catch table pointer, it resets both the Ruby call stack
(the CFP pointer) and the internal YARV stack to
reflect the new program execution point. Then YARV continues to execute your
code from there. That is, YARV resets the internal PC
and SP pointers as needed.

What is interesting to me about this is how Ruby uses a process similar to
raising and rescuing an exception internally to implement a very commonly used
control structure: the break keyword. In other words,
what in more verbose languages is an exceptional occurrence becomes in Ruby a
common, everyday action. Ruby has wrapped up a confusing, unusual syntax 
raising/rescuing of exceptions  into a simple keyword, break, and made it very easy to understand and use. Of
course, Ruby needs to use exceptions because of the way blocks work: they are
on one hand like separate functions or subroutines, but on the other hand just
part of the surrounding code. For this reason Ruby needs a keyword like break that seems simple at first glance but internally is
quite complex.

Another commonplace, ordinary Ruby control structure that also uses catch
tables is the return keyword. Whenever you call return from inside a block, Ruby internally raises an
exception and rescues it with a catch table pointer like this. In fact, break and return are implemented
with exactly the same YARV instructions; the only difference is that for return Ruby passes a 1 to the throw instruction (e.g. throw 1),
while for break it passes a 2 (throw 2) as we saw above. The return and break keywords are
really two sides of the same coin.

Finally, besides BREAK there are other types of
pointers that Ruby can use in the catch table. The others are used to implement
different control structures: RESCUE, ENSURE, RETRY, REDO and NEXT. For example, when
you explicitly raise an exception in your Ruby code using the raise keyword, Ruby implements the rescue block in a similar way by using the catch table, but
this time with a RESCUE pointer.  The catch type is
simply a list of event types that can be caught and handled by that sequence of
YARV instructions, similar to how you would use a rescue
block in your Ruby code.

  
    Experiment 2-3: Testing how Ruby implements for loops internally
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I always knew that Ruby’s for loop control structure worked essentially the
same way as using a block with the each Enumerable method. That is to say, I knew this code:





  
for i in 0..5
   puts i
end





… worked the same way as this code:


  
(0..5).each do |i|
   puts i
end





But I never suspected that internally Ruby actually implements for loops using
each! That is, there really is no for loop control
structure in Ruby at all; instead, the for keyword is
really just syntactical sugar for calling each with a
range.

To prove this is the case, all you have to do is inspect the YARV instructions
that are produced by Ruby when you compile a for loop. Let’s use the same RubyVM::InstructionSequence.compile method that I did in
Chapter 1:


  
code = <<END
for i in 0..5
   puts i
end
END
puts RubyVM::InstructionSequence.compile(code).disasm





Running this I get:


  
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
== catch table
| catch type: break  st: 0002 ed: 0010 sp: 0000 cont: 0010
|------------------------------------------------------------------------
local table (size: 2, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)
[ 2] i          
0000 trace            1                                               (   1)
0002 putobject        0..5
0004 send             :each, 0, block in <compiled>, 0, <ic:0>
0010 leave            
== disasm: <RubyVM::InstructionSequence:block in <compiled>@<compiled>>=
== catch table
| catch type: redo   st: 0005 ed: 0016 sp: 0000 cont: 0005
| catch type: next   st: 0005 ed: 0016 sp: 0000 cont: 0016
|------------------------------------------------------------------------
local table (size: 2, argc: 1 [opts: 0, rest: -1, post: 0, block: -1] s3)
[ 2] ?<Arg>     
0000 getdynamic       *, 0                                            (   3)
0003 setlocal         i                                               (   1)
0005 trace            1                                               (   2)
0007 putself          
0008 getlocal         i
0010 send             :puts, 1, nil, 8, <ic:0>
0016 leave            





To make this a bit easier to follow, I’ll repeat these YARV instructions in a
diagram, and remove some of the technical details like the trace statements:
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You should notice right away there are two separate YARV code blocks: the outer
scope which calls each on the range 0..5 and then an inner block that makes the puts i call.  The “getdynamic *,
0” instruction in the inner block loads the implied block parameter
value - i in my Ruby code - and the following setlocal instruction saves it into a local variable also
called i.

Taking a step back and thinking about this, what Ruby has done here is:


	Automatically converted the “for i in 0..5” code into
“(0..5).each do”


	Automatically created a block parameter to hold each value in the range, and:


	Automatically created a local variable in the block with the same name as the
for loop variable, and saved the block parameter’s value into it.




  





  How JRuby executes your code

As I explained in Chapter 1, JRuby tokenizes and parses your Ruby code in
almost the same way that MRI Ruby does. And, like Ruby 1.9 and Ruby 2.0, JRuby
continues to compile your Ruby code into byte code instructions before actually
running your program using a virtual machine.

However, this is where the similarity ends: MRI and JRuby use two very
different virtual machines to execute your code. As I showed earlier in Chapter
2, MRI Ruby 1.9 and higher use YARV, which was custom designed to run Ruby
programs. JRuby, however, uses the Java Virtual Machine to execute your Ruby
program. Despite it’s name, many different programming languages run on the
JVM. In fact, this really is JRuby’s raison d'être - the whole point of
building a Ruby interpreter with Java is to be able to execute Ruby programs
using the JVM.  There are two important reasons to do this:


	Environmental: Using the JVM opens new doors for Ruby and allows you to use
Ruby on servers, in applications and in IT organizations where previously you
could not run Ruby at all.


	Technical: The JVM is the product of almost 20 years of intense research and
development. It contains sophisticated solutions for many difficult computer
science problems such as garbage collection, multithreading, and much more. By
running on the JVM, Ruby runs faster and more reliably!




To get a better sense of how this works, let’s take a look at how JRuby would
execute the same one line Ruby script I used as an example earlier:


  
puts 2+2





The first thing JRuby does is tokenize and parse this Ruby code into an AST
node structure. Once this is finished, JRuby will iterate through the AST nodes
and convert your Ruby into Java byte code. Using the bytecode command line option you can actually see this byte
code for yourself:


  
$ cat simple.rb
puts 2+2
$ jruby --bytecode simple.rb





The output is complex and confusing and I don’t have the space to explain it
here, but here’s a diagram summarizing how JRuby compiles and executes this one
line program:
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Here’s how this works:


	On the top left I show the “puts 2+2” Ruby source
code from simple.rb.


	The downward arrow indicates that JRuby translates this into a Java class,
named “simple” after my Ruby file name, and derived from the AbstractScript base class.


	The JVM later calls the second method in this class, __file__, in order to execute my compiled Ruby script.
The __file__ method contains the compiled version
of the top level Ruby code in simple.rb - in this example the entire program.


	The __file__ method, in turn, calls the op_plus method in the RubyFixnum
Java class.


	Once JRuby’s RubyFixnum Java class has added 2+2
for me and returned 4, __file__ will call the
puts method in the RubyIO
Java class to display the result.




There are a couple of important ideas to notice in all of this: First, as I
said above, your Ruby code is compiled into Java byte code. It’s both alarming
and amazing at the same time to imagine one of my Ruby programs converted into
Java! However, remember we’re talking about Java byte code here, not an actual
Java program. Java byte code instructions are very low level in nature and can
be used to represent code originally written in any language, not just Java.

Second, JRuby implements all of the built in Ruby classes such as Fixnum and IO using Java classes;
these classes are named RubyFixnum, RubyIO, etc.  Of course, JRuby also implements all of the
Ruby language’s intrinsic behavior as a series of other Java classes,
including: objects, modules, blocks, lambdas, etc. I’ll touch on a few of these
implementations in the following chapters.

Internally, the JVM uses a stack to save arguments, return values
and local variables just like YARV does. However, explaining how the JVM works
is beyond the scope of this book.  

  
    To get a feel for what the JRuby source code looks like, let’s take a quick
look at the op_plus method in the org.jruby.RubyFixnum Java class:


  
public IRubyObject op_plus(ThreadContext context,
                           IRubyObject other) {
  if (other instanceof RubyFixnum) {
    return addFixnum(context, (RubyFixnum)other);
  }
  return addOther(context, other);
}





First of all, remember this is a method of the RubyFixnum Java class, which represents the Ruby Fixnum
class, the receiver of the op_plus operation.
Thinking about this for a moment, this means that each instance of a Ruby
object, such as the Fixnum receiver “2” in my
example, is represented by an instance of a Java class. This is one of the key
concepts behind how JRuby’s implementation works: for every Ruby object
instance there is an underlying Java object instance. I’ll have more about this
in Chapter 3.

Next, note the arguments to op_plus are something
called a ThreadContext and the operand of the
addition operation, a Java object called other which
implements the IRubyObject interface. Reading the
code above, we can see that if the other operand is
also an instance of RubyFixnum then JRuby will call
the addFixnum method; here is that code: 


  
private IRubyObject addFixnum(ThreadContext context,
                              RubyFixnum other) {
  long otherValue = other.value;
  long result = value + otherValue;
  if (additionOverflowed(value, otherValue, result)) {
    return addAsBignum(context, other);
  }
  return newFixnum(context.getRuntime(), result);
}





Here you can see the Java code calculates the actual result of the “2+2”
operation: “result = value + otherValue.” If the
result were too large to fit into a Fixnum object,
JRuby would call the addAsBignum method instead.
Finally JRuby creates a new Fixnum instance, sets its
value to result or 4 and returns it.

  





  How Rubinius executes your code

In Chapter 1 I explained how Rubinius uses a combination of C++ and Ruby to
tokenize, parse and compile your Ruby code. The same is true when it comes time
to actually execute your code: Rubinius combines a virtual machine (the
“Rubinius VM”) implemented in C++ with a library of the basic core Ruby classes
written in Ruby itself. Called the “kernel,” this Ruby library allows you to
see how all of the core Ruby classes actually work without having to
understand C or Java! Where is it not possible to implement Ruby with Ruby,
Rubinius’s implementation uses C++ code in the virtual machine instead.

Similar to MRI and JRuby, Rubinius first compiles your Ruby code into a series
of VM instructions. Along with implementing the portions of the Ruby basic
object library that couldn't be built with Ruby, the Rubinius VM also
interprets and executes these instructions. In addition, the C++ Rubinius VM
also implements a garbage collector and contains support for threads, for
interacting with the operating system and many other things.

I don’t have space here in this book to explain Rubinius internals in complete
detail, but let’s see how Rubinius executes my one line sample Ruby program:


  
puts 2+2





Just like JRuby, Rubinius has a command line option that allows you to see the
VM instructions your code is compiled into:


  
$ cat simple.rb
puts 2+2
$ rbx compile simple.rb -B






  
============= :__script__ ==============
Arguments:   0 required, 0 post, 0 total
Arity:       0
Locals:      0
Stack size:  3
Lines to IP: 1: 0..11
0000:  push_self                  
0001:  meta_push_2                
0002:  meta_push_2                
0003:  meta_send_op_plus          :+
0005:  allow_private              
0006:  send_stack                 :puts, 1
0009:  pop                        
0010:  push_true                  
0011:  ret                        
----------------------------------------           





Unlike JVM byte code, the Rubinius VM instructions are very high level and easy
to understand; in fact, they very closely resemble the YARV instructions we saw
earlier in this chapter. For example, push_self will
push the self pointer on the top of the stack and
send_stack will call the specified method with the
given number of arguments.
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This diagram shows what happens when I run my simple Ruby program:


	First, on the left Rubinius compiles my “puts 2+2”
code into Rubinius VM instructions.


	On the right, Rubinius compiles it’s own Ruby code, in this case the Kernel module puts method, into
VM instructions in the same way. This compilation actually happens ahead of
time during the Rubinius build process.


	Later the Rubinius VM starts to interpret and execute these instructions.
Depending on how long my process continues to run, a JIT compiler might further
compile these instructions into LLVM byte code and ultimately into machine
language.


	When my code makes the call to puts to print out the result of 4, the
Rubinius VM send_stack instruction finds and calls
the Kernel.puts method.




Let’s see what happens next. Since Rubinius’s implementation of puts is written in Ruby we can just take a look at it! Here
is a snippet of that code, taken from kernel/common/kernel.rb:


  
module Kernel






  
  ...






  
  def puts(*a)
    $stdout.puts(*a)
    nil
  end





As you can see, here Rubinius simply calls into the puts method of the
underlying global IO object that represents the
stdout stream. This is also written in Ruby, this time inside the
kernel/common/io19.rb file:


  
class IO






  
  ...






  
  def puts(*args)






  
  ...






  
  write str
  write DEFAULT_RECORD_SEPARATOR unless str.suffix?(DEFAULT_RECORD_SEPARATOR)





I’ve removed some of the code in the IO.puts method to keep things simple, but
you can see IO.puts calls a write method to actually write out the string. It turns out
Rubinius implements this using C++ code inside the Rubinius VM itself.

Taking a step back, let’s review the overall process Rubinius uses to execute
your Ruby code:


	First, it compiles your code into VM instructions.


	Then it executes these instructions using the Rubinius VM.


	Since Rubinius implements all of the Ruby core classes using Ruby itself, any
calls you make to String, Array, Fixnum, etc., are all
simple Ruby calls into the Ruby portion of the Rubinius kernel.


	Finally, portions of the Rubinius core library that can’t be implemented in
Ruby  either for performance reasons or because the code needs to interact
with the operating system at a low level  are written in C++ directly inside
the Rubinius VM.




  
    Let’s continue down the call stack and see how exactly Rubinius calls into the
write method in the C++ code. Here’s a snippet from
the vm/builtin/io.hpp C++ source file:


  
namespace rubinius {






  
  class IO : public Object {






  
    ...






  
    // Rubinius.primitive :io_write
    Object* write(STATE, String* buf, CallFrame* calling_environment);






  
    ...
  }
}





You can see the write method is a member of the IO C++ class. The IO C++ class
corresponds to the IO Ruby class  each core Ruby
class in Rubinius’s Ruby kernel has as corresponding C++ class that handles
things the Ruby class cannot. An important detail here is the comment: “Rubinius.primitive :io_write”  this is actually the glue
that holds Ruby and C++ together inside of Rubinius. This is not just a
comment, but is also a directive that tells the Rubinius VM to call the IO::write C++ method when the Ruby IO code calls the IO.write Ruby method.

I won’t show the actual implementation of IO::write,
but if you’re interested you can find it in vm/builtin/io.cpp. As you might
guess, it takes the string data and passes it into an operating system call.

  





  Chapter 3

  
    Objects, Classes and Modules
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    I always think about object oriented

    programming in the supermarket.
  



We all learn very early on that Ruby is an object oriented language, descended
from languages like Smalltalk and Simula. Everything is an object and all Ruby
programs consist of a set of objects and the messages that are sent back and
forth among them. Typically, we learn about object oriented programming by
looking at how to use objects and what they can do: how they can group together
data values and behavior related to those values, how each class should have a
single responsibility or purpose or how different classes can be related to
each other through encapsulation or inheritance.

But what are Ruby objects, exactly? What information does an object contain? If
I were to look at a Ruby object through a microscope, what would I see? Are
there any moving parts inside? And what about Ruby classes? All of us know how
to create and use Ruby classes, but what exactly is a class? Finally, what are
modules in Ruby? How are modules and classes related? What happens when I
include a module into a class? How does Ruby determine which class or module
implements a given method?

In this chapter I am going to answer these questions by exploring how Ruby
works internally. Looking at exactly how Ruby implements objects, classes and
modules can give you some insight into how they were intended to be used, and
into how to write object oriented programs using Ruby.
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  What’s inside a Ruby object?
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    If I could slice open a Ruby object, what would I see?
  



Ruby saves all of your custom objects inside a C structure called RObject, which looks like this in Ruby 1.9 and 2.0:
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On the top is a pointer to the RObject structure.
Internally Ruby always refers to any value using these VALUE pointers. Below you can see the RObject value is divided into two halves: RBasic and RObject. The RBasic section contains information that all values use,
not only objects: a set of boolean values called flags which store a variety of internal, technical values
and also a class pointer, called klass. The class
pointer indicates which class this object is an instance of. At the bottom in
the RObject specific portion, Ruby saves an array of
instance variables that this object instance contains, using two values: numiv, the instance variable count, and ivptr, a pointer to an array of values.

Summarizing the contents of the RObject structure, we
can write a very technical definition of what a Ruby object is:


Every Ruby object is the combination of a class pointer and an array of
instance variables.


At first glance, this definition doesn’t seem that useful at all. It doesn’t
help me understand the meaning or purpose behind objects, or how to use them in
a Ruby program. Why does Ruby implement objects in this way? The answer is
simple: Ruby saves this information in RObject
to support the basic features of the language.

For example, suppose I have a simple Ruby class:


  
class Mathematician
  attr_accessor :first_name
  attr_accessor :last_name
end





Ruby needs to save the class pointer in RObject
because every object has to keep track of the class you used to create it:


  
> euler = Mathematician.new
 => #<Mathematician:0x007fbd738608c0>





In the above example by displaying the class name, “#<Mathematician,” Ruby is displaying the value of the
class pointer for the “euler” object when I inspect it. The hex string that
follows is actually the VALUE pointer for the object.
This will be different for every instance of Mathematician.

Ruby also has to keep track of any values you save in it  Ruby uses the
instance variable array to do this:


  
> euler.first_name = 'Leonhard'
 => "Leonhard" 
> euler.last_name  = 'Euler'
 => "Euler" 
> euler
 => #<Mathematician:0x007fbd738608c0 @first_name="Leonhard", @last_name="Euler"> 





As you can see here, Ruby also displays the instance variable array for euler when I inspect it again. Ruby needs to save this
array of values in each object since every object instance can have different
values for the same instance variables. For example:


  
> euclid = Mathematician.new
> euclid.first_name = 'Euclid'
> euclid
 => #<Mathematician:0x007fabdb850690 @first_name="Euclid">





Now let’s take a look at Ruby’s C structures in a bit more detail  when you
run this simple script, Ruby will create one RClass
structure and two RObject structures:
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I will cover how Ruby implements classes with the RClass structure in the next section, but here is an
example of how Ruby saves the mathematician information in the two RObject structures in more detail:
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You can see each of the klass values points to the
Mathematician RClass
structure, and each RObject structure has a separate
array of instance variables. Both arrays contain VALUE pointers, the same pointer that Ruby uses to refer to
the RObject structure. As you can see from the
example above, one of the objects contains two instance variables, while the
other contains only one.

Generic objects

This is how Ruby saves custom classes, like my Mathematician class, in RObject
structures. But we all know that every Ruby value, including basic data types,
such as integers, strings or symbols, are also objects. The Ruby source code
internally refers to these built in types as “generic” types. How does Ruby
store these generic objects? Do they also use the RObject structure? The answer is no. Internally Ruby uses a
different C structure to save values for each of its generic data types, and
not RObject. For example, Ruby saves string values in
RString structures, arrays in RArray structures and regular expressions in RRegexp structures, etc. Ruby only uses RObject to save instances of custom object classes that you
create, and for a few custom object classes Ruby creates internally as well.

However, all of these different structures share the same RBasic information that we saw in RObject:
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Since the RBasic structure contains the class
pointer, each of these generic data types is also an object. They are all
instances of some Ruby class, indicated by the class pointer saved inside of
RBasic.

As a performance optimization, Ruby saves small integers, symbols and a few
other simple values without any structure at all. Ruby saves these values right
inside the VALUE pointer:
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That is, these VALUEs are not pointers at all;
instead they are the values themselves. For these simple data types, there is
no class pointer. Instead, Ruby remembers the class using a series of bit flags
saved in the first few bits of the VALUE. For
example, all integers have the FIXNUM_FLAG bit set,
like this:
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Whenever the FIXNUM_FLAG is set, Ruby knows this
VALUE is really a small integer, an instance of the
Fixnum class, and not a pointer to a value structure.
There is also a similar bit flag to indicate if the VALUE is a symbol, and values such as nil, true and false also have special values.

It’s easy to see that integers, strings and other generic values are all
objects using IRB:


  
$ irb
> "string".class
 => String 
> 1.class
 => Fixnum
> :symbol.class
 => Symbol 





Here we can see Ruby saves a class pointer or the equivalent bit flag for all
of these values by calling the class method on each
of them. The class method returns the class
pointer, or at least the name of the class the klass
pointer refers to.

Do generic objects have instance variables?

Now let’s reread our definition of a Ruby object from above:


Every Ruby object is the combination of a class pointer and an array of
instance variables.


What about instance variables for generic objects? According to our definition,
all Ruby objects are a class pointer combined with an array of instance
variables. Do integers, strings and other generic data values have instance
variables? That would seem a bit odd. But if integers and strings are objects,
then this must be true! And if this is true, where does Ruby save these values,
if it doesn’t use the RObject structure?

Using the instance_variables method you can see that
each of these basic values can also contain an array of instance variables, as
strange as that might seem at first:


  
$ irb
> str = "some string value"
 => "some string value" 
> str.instance_variables
 => [] 
> str.instance_variable_set("@val1", "value one")
 => "value one" 
> str.instance_variables
 => [:@val1] 
> str.instance_variable_set("@val2", "value two")
 => "value two" 
> str.instance_variables
 => [:@val1, :@val2] 





You can repeat the same exercise using symbols, arrays, or any Ruby value you
select whatsoever. Every Ruby value is an object, and every object contains a
class pointer and an array of instance variables.

Internally, Ruby uses a bit of a hack to save instance variables for generic
objects; that is, for objects that don’t use an RObject structure. When you save an instance variable in a
generic object, Ruby saves it in a special hash called the generic_iv_table.  This hash maintains a map between
generic objects and pointers to other hashes that contain each object’s
instance variables. For my str string example above,
this would look like this:
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For more information about hashes and how Ruby implements them, please refer to
Chapter 4.

  
    

Here are the actual definitions of the RBasic and
RObject C structures; you can find this code in the
include/ruby/ruby.h header file:


  
struct RBasic {
    VALUE flags;
    VALUE klass;
};






  
#define ROBJECT_EMBED_LEN_MAX 3
struct RObject {
    struct RBasic basic;
    union {
        struct {
            long numiv;
            VALUE *ivptr;
            struct st_table *iv_index_tbl;
        } heap;
        VALUE ary[ROBJECT_EMBED_LEN_MAX];
    } as;
};





First at the top you’ll see the definition of RBasic.
This contains the two values I described earlier: flags and klass. Below, you’ll
see the RObject definition. Notice that it contains a
copy of the RBasic structure as I described above.
Following this is a union keyword, which contains a
structure called heap followed by an array called
ary. I’ll have more on this in a moment.

The heap structure contains the values I discussed
earlier:


	First is the value numiv which tracks the number of
instance variables contained in this object.


	After that is ivptr  a pointer to an array
containing the values of the instance variables this object contains. Note the
names or id’s of the instance variables are not stored here, only the values.
Instead, Ruby uses the next value, iv_index_tbl, to
keep track of which instance variable is which.


	iv_index_tbl points to a hash table that maps
between the id or name of each instance variable and its location in the ivptr array. This value is actually stored once in the
RClass structure for this object’s class, and this
pointer is simply a cache or shortcut Ruby uses to obtain that hash table
quickly. The st_table type refers to Ruby’s
implementation of hash tables, which are covered in Chapter 4.




Finally, the last member of the RObject structure,
called ary, occupies the same memory space as all of
the previous values because of the union keyword at
the top. Using this ary value, Ruby can save all of
the instance variables right inside the RObject
structure if there’s enough room for them to fit. This avoids the need to call
malloc to allocate extra memory to hold the instance
variable value array. Ruby also uses this sort of optimization for the RString and RArray structures.

  

  
    Experiment 3-1: How long does it take to save a new instance variable?
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To learn more about how Ruby saves instance variables internally let’s measure
how long it takes Ruby to save one in an object. To do this, I’ll create a
large number of test objects:


  
obj = []
ITERATIONS.times do |n|
  obj[n] = Class.new.new
end





Here I’m using Class.new to create a unique class for
each new object so they are all independent. Then I’ll add instance variables
to each of them:


  
20.times do |count|
  bench.report("adding instance variable number #{count+1}") do
    ITERATIONS.times do |n|
      obj[n].instance_variable_set("@var#{count}", "value")
    end
  end
end





This code will iterate 20 times, repeatedly saving one more new instance
variable to each of the objects I created above. Here’s a graph showing the
time it takes Ruby 1.9.3 to add each variable  on the left is the time it
takes to save the first instance variable in all the objects, and moving to the
right the additional time taken to save one more instance variable in each
object:
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Time to add one more instance variable (seconds x100,000) vs.

instance variable count


Looking at this bar chart, you can see a strange pattern. Sometimes it takes
Ruby longer to add a new instance variable, and sometimes Ruby is able to save
one faster. What’s going on here?

The reason for this behavior has to do with that array I showed above where
Ruby stores the instance variables:
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In Ruby 1.8 this array is actually a hash table containing both the variable
names (the hash keys) and the actual values, which will automatically expand to
accommodate any number of elements. Stay tuned for Chapter 4 to learn more
about hash tables.

However, Ruby 1.9 and 2.0 speed things up a bit by saving the values in a
simple array  the instance variable names are saved in the object’s class
instead, since the names are the same for all instances of a class. What this
means, however, is that Ruby 1.9 and 2.0 need to either preallocate a large
array to handle any number of instance variables, or repeatedly increase the
size of this array as you save more variables. From the graph, you can see Ruby
1.9 and 2.0 repeatedly increase the array size. For example, suppose I have
seven instance variables in a given object:
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When I add the eighth variable, bar number 8 in the graph, Ruby 1.9 and 2.0
increase the array size by three, anticipating that you will soon add more
variables:
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Allocating more memory takes some extra time, which is why bar number 8 is
higher. Now if I add a ninth and tenth instance variable Ruby 1.9 and 2.0 won’t
need to reallocate memory for this array, the space will already be available.
This explains the shorter times for bars numbered 9 and 10.

  





  Deducing what’s inside the Class structure
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    Two objects, one class
  



We saw above that every object remembers its class by saving a pointer to an
RClass structure. What information does each RClass structure contain? What would I see if I could look
inside a Ruby class? Let’s build up a model of what information must be present
in RClass, and therefore, a technical definition of
what a Ruby class is, based on what we know classes can do.

Every Ruby developer knows how to write a class: you type the class keyword, specify a name for the new class, and then
type in the class’s methods. In fact, I already wrote a Ruby class this way in
the previous section:


  
class Mathematician
  attr_accessor :first_name
  attr_accessor :last_name
end





As you probably know, attr_accessor is just shorthand
for defining get and set methods for an attribute. The
methods defined by attr_accessor also check for nil values. I don’t show this here. Here’s the more
verbose way of defining the same Mathematician class:


  
class Mathematician
  def first_name
    @first_name
  end
  def first_name=(value)
    @first_name = value
  end
  def last_name
    @last_name
  end
  def last_name=(value)
    @last_name = value
  end
end





When taking a step back, and looking at this class, or any Ruby class, it looks
like it is just a group of method definitions. I can assign behavior to an
object by adding methods to its class, and when I call a method on an object,
Ruby looks for the method in the object’s class. This leads me to my first
definition of what a Ruby class is:


A Ruby class is a group of method definitions.


Therefore, I know that the RClass structure for Mathematician must save a list of all the methods I defined
in the class:
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While reviewing my Ruby code above, notice that I’ve also created two instance
variables called @first_name and @last_name. We saw earlier how Ruby stores these values in
each RObject structure, but you may have noticed that
the names of these variables were not stored in RObject, just the values were. (As I mentioned above,
Ruby 1.8 actually stores the names in RObject as
well.) Instead, Ruby must store the attribute names in RClass; this makes sense since the names will be the same
for every Mathematician instance. Let’s redraw RClass again, including a table of attribute names as well
this time:
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Now my definition of a Ruby class is:


A Ruby class is a group of method definitions and a table of attribute names.


At the beginning of this chapter I mentioned that everything in Ruby is an
object. This might be true for classes too. It’s easy to prove this is, in
fact, the case using IRB:


  
> p Mathematician.class
 => Class





You can see Ruby classes are all instances of the Class class; therefore, classes are also objects. Let’s
update our definition of a Ruby class again:


A Ruby class is a Ruby object that also contains method definitions and
attribute names.


Since Ruby classes are objects, we know that the RClass structure must also contain a class pointer and an
instance variable array, the values that we know every Ruby object contains:
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You can see I’ve added a pointer to the Class class,
in theory the class of every Ruby class object. However, in Experiment 3-2
below I’ll show that actually this diagram is not accurate, that klass actually points to something else! I’ve also added a
table of instance variables. Note: these are the class level instance variables.
Don’t confuse this with the table of attribute names for the object level
instance variables. 

As you can see, this is rapidly getting out of control; the RClass structure seems to be much more complex than the
RObject structure was! But, don’t worry, we’re almost
done.  In a moment I’ll show you what the actual RClass structure looks like.  But first, there are still
two more important types of information we need to consider that each Ruby
class contains.

Another essential feature of object oriented programming that we all know Ruby
also implements is inheritance. Ruby implements single inheritance by allowing
us to optionally specify one superclass when we create a class, or if we don’t
specify a superclass then Ruby assigns the Object
class to be the superclass.  For example, I could rewrite my Mathematician
class using a superclass like this:


  
class Mathematician < Person
...





Now every instance of Mathematician will include the
same methods that instances of Person have. In this
example, I might want to move the first_name and
last_name accessor methods into Person. I could also move the @first_name and @last_name
attributes into the Person class, all instances of
Mathematician would also share these attributes.
Somehow the Mathematician class must contain a
reference to the Person class (its superclass) so that Ruby can find any
methods or attributes that actually were defined in a superclass.

Let’s update my definition again, assuming that Ruby tracks the superclass
using another pointer similar to klass:


A Ruby class is a Ruby object that also contains method definitions, attribute
names and a superclass pointer.


And let’s redraw the RClass structure including the new superclass pointer:
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At this point it is critical to understand the difference between the klass pointer and the super
pointer. The klass pointer indicates which class the
Ruby class object is an instance of. This will always be the Class class:


  
> p Mathematician.class
 => Class





Ruby uses the klass pointer to find the methods of
the Mathematician class, such as the new method which every Ruby class implements.

However, the super pointer records which class is the
superclass of this class:


  
> p Mathematician.superclass
 => Person





Ruby uses the “super” pointer to help find methods that each Mathematician instance has, such as first_name= or last_name. I’ll
cover method lookup in the next section.

Now we have just one more feature of Ruby classes to cover: constants. As you
probably know, Ruby allows you to define constant values inside of a class,
like this:


  
class Mathematician < Person
  AREA_OF_EXPERTISE = "Mathematics"
  etc...





Constant values must start with a capital letter, and are valid within the
scope of the current class. Curiously, Ruby actually allows you to change a
constant value but will display a warning when you do so. Let’s add a constant
table to our RClass structure, since Ruby must save
these values inside each class:
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That’s it  so now we can write a complete, technical definition of what a Ruby
class is:


A Ruby class is a Ruby object that also contains method definitions, attribute
names, a superclass pointer and a constants table.


This isn’t as concise as the simple definition we had for what a Ruby object
is, but each Ruby class does actually contain much more information than each
Ruby object does. Ruby classes are obviously fundamental to the language.

The actual RClass structure

Now that we have built up a conceptual model for what information must be
stored in RClass, let’s look at the actual C
structure that Ruby uses to represent classes:
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As you can see, Ruby actually uses two separate structures to represent each
class: RClass and rb_classext_struct. But, these act as one large structure
since each RClass always contains a pointer (ptr) to a corresponding rb_classext_struct. You might guess that the Ruby core team
decided to use two different structures since there are so many different
values to save, but actually they likely created rb_classext_struct to save internal values they didn’t want
to expose in the public Ruby C extension API.

Like I did for RObject, on the left I show a VALUE pointer. Ruby always accesses classes using these
VALUE pointers. On the right, you can see the
technical names for all of the fields we just discussed:


	flags and klass are the
same RBasic values that every Ruby value contains.


	m_tbl is the method table, a hash whose keys are
the names or id’s of each method and whose values are pointers to the
definition of each method, including the compiled YARV instructions.


	iv_index_tbl is the attribute names table, a hash
that maps each instance variable name to the index of the attribute’s value in
each RObject instance variable array.


	super is a pointer to the RClass structure for this class’s superclass.


	iv_tbl contains the class level instance variables
 both their names and values.


	And finally const_tbl is a hash containing all of
the constants  names and values  defined in this class’s scope. You can see
that Ruby implements iv_tbl and const_tbl in the same way; that is, class level instance
variables and constants are almost the same thing.




  
    Now let’s take a quick look at the actual RClass
structure definition:


  
typedef struct rb_classext_struct rb_classext_t;
struct RClass {
    struct RBasic basic;
    rb_classext_t *ptr;
    struct st_table *m_tbl;
    struct st_table *iv_index_tbl;
};





Like the RObject definition we saw earlier, you can
find this structure definition in the include/ruby/ruby.h file. You can see all
of the values I showed in the previous diagram.

The rb_classext_struct structure definition, on the
other hand, can be found in the internal.h C header file:


  
struct rb_classext_struct {
    VALUE super;
    struct st_table *iv_tbl;
    struct st_table *const_tbl;
};





Once again, you can see the values I showed in the diagram. In Chapter 4 I’ll
cover hash tables in detail, the st_table type here,
which Ruby uses to save all of these values: the method table, the constant
table, the instance variables for the class and also the instance variable
names/id’s for object instances of this class.

  

  
    Experiment 3-2: Where does Ruby save class methods?
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Above we saw how each RClass structure saves all the
methods defined in a certain class; in my example:


  
class Mathematician
  def first_name
    @first_name
  end





Ruby stores information about the first_name method
inside the RClass structure for Mathematician using the method table.

But what about class methods? It’s a common idiom in Ruby to save methods in a
class directly, using this syntax:


  
class Mathematician
  def self.class_method
    puts "This is a class method."
  end





Or this syntax:


  
class Mathematician
  class << self
    def class_method
      puts "This is a class method."
    end
  end





Are they saved in the RClass structure along with the
normal methods for each class, maybe with a flag to indicate they are class
methods and not normal methods? Or are they saved somewhere else? Let’s find
out!

It’s easy to see where class methods are not saved. They are obviously not
saved in the RClass method table along with normal
methods, since instances of Mathematician cannot call
them:


  
obj = Mathematician.new
obj.class_method
=> undefined method `class_method' for
#< Mathematician:0x007fdd8384d1c8 (NoMethodError)





Thinking about this some more, since Mathematician is
also a Ruby object  remember my definition from above:


A Ruby class is a Ruby object that also contains method definitions, attribute
names, a superclass pointer and a constants table.


then Ruby should save methods for Mathematician in
the same way it saves them for any object: in the method table for the object’s
class. That is, Ruby should get Mathematician’s class
using the klass pointer and save the method in the
method table in that RClass structure:
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But actually Ruby doesn’t do this  you can prove this is the case by creating
another class and trying to call the new method:


  
> class AnotherClass; end
> AnotherClass.class_method
=> undefined method `class_method' for AnotherClass:Class (NoMethodError)





If Ruby had added the class method to the method table in the Class class, then all classes in your application would
have the method. Obviously this isn’t what we intended by writing a class
method, and thankfully Ruby doesn’t implement class methods this way.

Then where do the class methods go? You can find a clue by using the
ObjectSpace.count_objects method, as follows:


  
$ irb
> ObjectSpace.count_objects[:T_CLASS]
 => 859 
> class Mathematician; end
 => nil 
> ObjectSpace.count_objects[:T_CLASS]
 => 861 





ObjectSpace.count_objects returns the number of
objects of a given type that currently exist. In this test, I’m passing the
T_CLASS symbol to get the count of class objects that
exist in my IRB session. Before I create Mathematician, there are 859 classes. After I declare Mathematician, there are 861  two more.  This seems a bit
odd I declared one new class but Ruby actually created two!  What is the
second one for? Where is it?

It turns out whenever you create a new class internally Ruby always creates two
classes! The first class is your new class: Ruby creates a new RClass structure to represent your class as I have
described above. But internally Ruby also creates a second, hidden class called
the “metaclass.” Why? Just for this reason: to save any class methods you might
later create for your new class. In fact, Ruby sets the metaclass to be the
class of your new class  it sets the klass pointer of your new RClass
structure to point to the metaclass.

Without writing C code, there’s no easy way to see the metaclass or the klass pointer value, but you can obtain the metaclass as a
Ruby object as follows:


  
class Mathematician
end
obj = Mathematician.new
p obj.class
p obj.singleton_class





Running this I get:


  
$ ruby metaclass.rb
Mathematician
#<Class:#< Mathematician:0x007fb6228856c8>>





The first line displays the object’s class, while the second line displays the
object’s metaclass; the odd “#<Class:#<
Mathematician” syntax indicates that the second class is the
metaclass for Mathematician.  This is the second
RClass structure that Ruby automatically created for
me when I declared the Mathematician class. And this
second RClass structure is where Ruby saves my class
method:
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If I now display the methods for the metaclass, I’ll see all the usual Ruby
Class methods, along with my new class method for
Mathematician:


  
p obj.singleton_class.methods
=> [ ... :class_method, ...  ]





  





  How Ruby implements modules and method lookup
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    You can mix multiple modules into one class.
  



Most Ruby developers are used to the idea that Ruby only supports single
inheritance; unlike C++ for example, you can only specify one superclass
for each class. However, Ruby does allow for multiple inheritance in an
indirect way using modules. You can include as many different modules into a
class as you wish, each of them adding new methods and behavior. 

How do modules work? Following the same pattern we’ve seen with RObject and RClass, is there also
an RModule structure that defines a Ruby module? And
how does Ruby keep track of which modules have been included in which classes?
Finally, how does Ruby lookup methods? How does it know whether to search for a
certain method in a class or a module?

It turns out that Ruby doesn’t use an RModule
structure. Internally Ruby implements modules as classes. Whenever you create
a module, Ruby actually creates another RClass  rb_classext_struct
structure pair, just like it would for a new class. For example, when I define
a new module like this:


  
module Professor
end





internally Ruby will create a class, not a module! Here are the class
structures again:
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However, while internally modules are really classes they are still different
from classes in two important ways:


	Ruby doesn’t allow you to create objects directly from modules  this means
you can’t call the new method on a module. new is a method of Class, and not
of Module.


	Ruby doesn’t allow you to specify a superclass for a module.




So in fact modules don’t use the iv_index_tbl value, since there
are no object level attributes to keep track of. Modules don’t have object
instances. Therefore, we can imagine modules using a slightly smaller version
of the RClass structures:
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Following the same train of thought, we can write a technical definition of a
Ruby module as follows:


A Ruby module is a Ruby object that also contains method definitions, a
superclass pointer and a constants table.


What happens when you include a module in a class?

The real magic behind modules happens when you include one into a class. At the
moment you include a module into a class, for example:


  
module Professor
end






  
class Mathematician
  include Professor
end





Ruby creates a copy of the RClass structure for
the Professor module and inserts it as the new
superclass for Mathematician. Ruby’s C source code
refers to this copy of the module as an “included class.” The superclass of the
new copy of Professor is set to the original
superclass of Mathematician, preserving the
superclass or “ancestor chain:”
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Here I’ve kept things simple by only displaying the RClass structures and not the rb_classext_struct structures, which actually hold the
super pointers.

Rubys method lookup algorithm

Why go to all of this trouble? Why does Ruby bother to change all of the super
pointers to make included modules behave as if they were superclasses? Ruby
does this to allow its method lookup algorithm to work properly, taking both
superclasses and modules into account.

Understanding Ruby’s method lookup algorithm thoroughly is essential for every
Ruby developer, so let’s take a close look at it:
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What surprised me about this algorithm is how simple it is; Ruby simply
follows the super pointers until it finds the class
or module containing the target method. I had always imagined this would be a
much more complex process: that Ruby would have to distinguish between modules
and classes using some special logic, that it would have to handle the case
when there were multiple included modules with some special code, and more. But
no, it’s very simple, just a simple loop on the super
pointer linked list.

Let’s take an example and walk through the method lookup process. Suppose I
decide to move my first and last name attributes out of Mathematician and into the Person
superclass like this:


  
class Person
  attr_accessor :first_name
  attr_accessor :last_name
end





Remember my Mathematician class uses Person as the superclass and also now includes the Professor module:


  
module Professor
  def lectures; ...etc... end
end






  
class Mathematician < Person
  include Professor
end





Now, suppose I set the first name of a mathematician:


  
ramanujan = Mathematician.new
ramanujan.first_name = "Srinivasa"





To execute this code, Ruby needs to find the first_name= method. To do this, Ruby will start by taking
the ramanujan object and getting it’s class via the
klass pointer:
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Then Ruby will look to see if Mathematician
implements first_name= directly by looking through
its method table:
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Since I moved all of the methods down into the Person
superclass, the first_name= method is no longer
there. Instead Ruby will get the superclass of Mathematician using the super pointer:
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Remember, this is not the Person class but instead is
the “included class,” or copy of the Professor module.
Ruby will now look through the method table for Professor, but will only find the lectures method, and not first_name=.

An important detail here is that, because of the way Ruby inserts modules above
the original superclass in the superclass chain, methods in an included module
will override methods present in a superclass. In this example, if Professor also had a first_name=
method, Ruby would call it and not the method in Person.

Since in this example Ruby doesn’t find first_name=
in Professor, it will continue to iterate over the
super pointers  this time using the super pointer in Professor:
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Note the superclass of the Professor module, or
more precisely, the superclass of the included class copy of the Professor module, is now actually the Person class. This was the original superclass of Mathematician. Finally, Ruby can find the first_name= method and call it.

What is interesting here is that internally Ruby implements module inclusion
using class inheritance. Saying that in a different way, there is no difference
at all between including a module and specifying a superclass. Both make new
methods available to the target class, and internally both use the class’s
super pointer. Including multiple modules in a Ruby
class really is equivalent to specifying multiple superclasses.

However, Ruby keeps things simple by enforcing a single list of ancestors.
While including multiple modules does create multiple superclasses internally,
Ruby maintains them in a single list for you. As a Ruby developer, you get the
benefits of multiple inheritance  adding new behavior to class from as many
different modules as you would like  while keeping the simplicity of the
single inheritance model. Ruby itself benefits from this simplicity as well!
By enforcing this single list of superclass ancestors, Ruby’s method lookup
algorithm can be very simple. Whenever you call a method on an object, all Ruby
has to do is iterate through the superclass linked list until it finds the
class or module that contains the target method.

Including two modules in one class

Ruby’s method lookup algorithm is simple, but the code it uses to include
modules is not. As we saw above, when you include a module in a class, Ruby
inserts a copy of the module into the class’s ancestor chain. This also means
if you include two modules, one after the other, the second module will appear
first in the ancestor chain and will be found first by Ruby’s method lookup
logic.

For example, suppose I include two modules into Mathematician:


  
class Mathematician < Person
  include Professor
  include Employee
end





Now Mathematician objects have methods from the Professor module, the Employee
module and the Person class. But which methods will
Ruby find first? Which methods override which?

Using a diagram, it’s easy to see the order: since I include the Professor module first, Ruby inserts its copy as a
superclass first:
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And now when I include the Employee module, its copy
will be inserted above the Professor module’s copy
using the same process:
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This means that methods from Employee will override
methods from Professor, which in turn will override
methods from Person, the actual superclass.

Finally, modules don’t allow you to specify superclasses; i.e., I can’t write:


  
module Professor < Employee
end





But I can include one module into another like this:


  
module Professor
  include Employee
end





Now what happens when I include Professor, a module
with other modules included in it, into Mathematician? Which methods will Ruby find first? Here’s
what happens: first, when I include Employee into
Professor, Ruby will create a copy of Employee and set it as the superclass of Professor internally:
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That’s right: modules can’t have a superclass in your code, but inside of Ruby
they can! This is because Ruby represents modules with classes internally. And
now, finally, when I include Professor into Mathematician, Ruby iterates over the two modules and
inserts them both as superclasses of Mathematician:
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Now Ruby will find the methods in Professor first,
and Employee second.

  
    Experiment 3-3: Modifying a module after including it
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Following a suggestion by Xavier Noria, this experiment will look at what
happens when you modify a module after it’s been included into a class. Let’s
reuse the same Mathematician class and the Professor module:


  
module Professor
  def lectures; end
end








  
class Mathematician
  attr_accessor :first_name
  attr_accessor :last_name
  include Professor
end





This time the Mathematician class contains the
accessor methods for @first_name and @last_name, and I’ve also included the Professor module. If I inspect the methods of a
mathematician object, I should see both the attribute methods, first_name=, etc., and the lectures method which came from Professor:


  
fermat = Mathematician.new
fermat.first_name = 'Pierre'
fermat.last_name = 'de Fermat'






  
p fermat.methods.sort
 => [ … :first_name, :first_name=, … :last_name, :last_name=, :lectures … ]





No surprise; I see all the methods.

Now let’s try adding some new methods to the Professor module after including it in the Mathematician class. Is Ruby smart enough to know the new
methods should be added to Mathematician as well?
Let’s find out.


  
module Professor
  def primary_classroom; end
end






  
p fermat.methods.sort
=> [ ... :first_name, :first_name=, ... :last_name, :last_name=, :lectures,
... :primary_classroom, ... ]





As you can see, I get all the methods, including the new primary_classroom method added to Professor after it was included in Mathematician. No surpise again  Ruby is one step ahead of
me.

Now let’s try one more test. What will happen if I re-open the Professor module and include yet another module into to it:


  
module Employee
  def hire_date; end
end






  
module Professor
  include Employee
end





This is getting somewhat confusing now, so let me summarize what I’ve done so
far:


	First I included the Professor module in the Mathematician class.


	Then I included the Employee module in the Professor module.


	Therefore, methods of the Employee module should
now be available on a mathematician object.




Let’s see if Ruby works as I expect:


  
p fermat.methods.sort
 => [ … :first_name, :first_name=, … :last_name, :last_name=, :lectures … ]





The hire_date method is not available in the fermat object. Including a module into a module that was
already included into a class does not effect that class. After learning
about how Ruby implements modules this shouldn't be too hard to understand.
Including Employee into Professor does change the Professor module, but not the copy of Professor that Ruby created when I included it in Mathematician:
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But what about the primary_classroom method? How was
Ruby able to include primary_classroom in Mathematician, even though I added it to Professor after I included Professor in Mathematician?
Looking at the diagram above, it’s clear Ruby created a copy of the Professor module before I added the new method to it. But
the fermat object gets the new method how?

To understand this, we need to take a closer look at how Ruby copies modules
when you include them into a class. It turns out that Ruby copies the RClass structure, but not the underlying module table!
Here’s what I mean:
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Ruby doesn’t copy the method table for Professor.
Instead, it simply sets m_tbl in the new copy of
Professor, the “included class,” to point to the same
method table. This means that modifying the method table, reopening the module
and adding new methods, will change both the module and any classes it was
already included in.

  





  Objects, classes and modules in JRuby

In Chapter 2 I showed how JRuby executes your code at a very, very high level:


	JRuby compiles your Ruby code into a Java class containing byte code
instructions.


	Meanwhile, JRuby provides a series of Java classes that implement Ruby’s
intrinsic behavior and the built in Ruby classes, such as String, Array or Fixnum.




To learn what I mean by “Ruby’s intrinsic behavior” better let’s take a look
now at how JRuby implements Ruby’s object model: objects, classes and modules.
We saw earlier that MRI Ruby uses the RObject and
RClass C structures to represent these concepts -
does JRuby use similar structures?

As you might guess, instead of C structures JRuby uses a series of Java
objects. In fact, JRuby creates one Java object for each Ruby object you create
in your application. The common superclass for all of these Java objects is
called RubyBasicObject, named after the Ruby BasicObject class.
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In the diagram I’ve shown two of the instance variables present in this Java
class:


	metaClass is a reference to an instance of the
RubyClass Java class; this indicates which Ruby class
this Ruby object is an instance of.


	varTable[] is an array containing the instance
variables stored inside of this Ruby object.




You can see that the Java RubyBasicObject class meets
the requirements of our definition of a Ruby object from earlier:

 Every Ruby object is the combination of a class pointer and
an array of instance variables.  

Here metaClass is the class pointer and varTable[] is the instance variable array.

Since JRuby uses an object oriented implementation in Java to implement Ruby
objects, it able to take advantage of Java object inheritance to create a
series of subclasses representing different types of Ruby objects:
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This elegant design allows JRuby to organize the code that implements all of
these classes, while sharing a base class that provides the common behavior.
This is analogous to MRI including the RBasic C
structure inside each RObject and other Ruby object
structures. 

Next let’s look at how JRuby represents Ruby classes; I mentioned above that
JRuby has a Java class called RubyClass. It turns out
that this Java class is actually a subclass of the RubyModule Java class:
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What’s interesting about this is that JRuby’s internal implementation of
modules and classes actually reflects their meaning and usage in the Ruby
language:


	Both classes and modules are also Ruby objects - they are both derived from
RubyObject and RubyBasicObject.


	The superclass of the RubyClass Java class is the
RubyModule Java class, just as the superclass of the
Ruby Class class is the Ruby Module class.  Instead of using a structure like RClass to implement both classes and modules like MRI does,
JRuby saves the method definitions and constant table in the RubyModule Java class where they belong.




Reviewing our definition of a Ruby class:

 A Ruby class is a Ruby object that also contains method
definitions, attribute names, a superclass pointer and a constants table.



	It’s derived from RubyBasicObject, which contains
all of the Ruby object information, and


	It’s derived from RubyModule, which contains the
superclass pointer, method definitions and the constants table.




  
    Above you can see in JRuby the RubyModule class
contains the method definition table, which in MRI was saved in the RClass structure. Let’s take a look now at how JRuby’s
RubyModule class implements the method lookup
algorithm we saw earlier. Here’s a method from org/jruby/RubyModule.java
that looks up a method given a name:


  
public DynamicMethod searchMethod(String name) {
  return searchWithCache(name).method;
}





The first thing you’ll notice here is that JRuby implements some sort of a
cache. If we follow along and look at the searchWithCache method, we see:


  
public CacheEntry searchWithCache(String name) {
  CacheEntry entry = cacheHit(name);
  if (entry != null) return entry;






  
...





I won’t try to explain how the cache actually works, but here you can see if
JRuby finds the requested method in the cache it will return it immediately. If
not, JRuby continues to actually lookup the method without a cache using a
method called searchMethodInner:


  
DynamicMethod method = searchMethodInner(name);





… and here’s the implementation of seachMethodInner:


  
public DynamicMethod searchMethodInner(String name) {
  DynamicMethod method = getMethods().get(name);
        
  if (method != null) return method;
        
  return superClass == null ? null :
                              superClass.searchMethodInner(name);
}





Here’s how this works: first, JRuby calls getMethods(). This returns the actual method table which
JRuby implements using a Java map:


  
private volatile Map<String, DynamicMethod> methods =
                                            Collections.EMPTY_MAP;





Next, the get(name) call will lookup the method name
in the map. If it’s found, JRuby returns it. If it’s not found, then JRuby
recursively calls the searchMethodInner method on the
super class RubyModule, if there is one.

  





  Objects, classes and modules in Rubinius

In Chapter 2 I explained how Rubinius executes your code using a combination of
Ruby and C++. We saw how Rubinius’s kernel contains pure Ruby implementations
for all of the core classes, such as Array, String and Hash.  For the
portions of these core classes that cannot be implemented directly in Ruby,
Rubinius uses native code written in a corresponding C++ class, compiled into
the Rubinius VM.

This applies to the core classes behind Ruby’s object model as well. Here is
how Rubinius represents Ruby objects internally:
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On the left are three C++ classes: ObjectHeader,
Object, and BasicObject.
These are related using C++ class inheritance, indicated by the arrows. The
Object and BasicObject C++
classes correspond to the Ruby core classes with the same name shown on the
right. However, inside the Rubinius C++ VM, the Object class is the common base class for all Rubinius
objects, while BasicObject is actually a subclass of
Object. This is the opposite of what we have in Ruby,
where BasicObject is the superclass of Object. The ObjectHeader class,
similar to the RBasic structure in MRI, contains some
basic technical information Rubinius keeps track of for every object:
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	header is an instance of the HeaderWord C++ class. This contains some technical flags
Rubinius keeps track of for each object.


	klass_ is a pointer to a C++ class called Class. This is the class of this Ruby object.


	ivars_ is a pointer to a C++ object that contains a
table of the instance variables stored in this object. Rubinius stores the
variable names in this table also, like Ruby 1.8.




Since the Rubinius Object C++ class is a subclass of
ObjectHeader, you can see it also meets our
definition of a Ruby object:


Every Ruby object is the combination of a class pointer and an array of
instance variables.


Next let’s briefly look at how Rubinius implements classes and modules:


  
    [image: image]
  

 
Again you can see a one to one correspondence between Ruby and C++ classes.
This time the C++ class inheritance model reflects the Ruby object model; the
Class class is a subclass of the Module class. Finally you can see Rubinius classes meet our
previous definition since they contain all of the same information:


A Ruby class is a Ruby object that also contains method definitions,
attribute names, a superclass pointer and a constants table.


Rubinius stores the attribute names in the instance variable table, part of
Object, and not in the Module object.





  Chapter 4

  
    Hash Tables
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    Ruby stores much of its own internal data in hash tables.
  



Back in Experiment 3-1 we saw how in Ruby 1.9 and 2.0 the ivptr member of the RObject
structure pointed to a simple array of instance variable values. We saw adding
a new value was usually very fast, but that while saving every third or fourth
instance variable Ruby was somewhat slower, since it had to allocate a larger
array. Looking more broadly across the MRI C source code base, it turns out
this technique of repeatedly allocating larger and larger arrays to save data
values is unusual. This should’t be a surprise, since repeatedly increasing the
size of an array over and over by a small amount is probably inefficient.

In fact, Ruby instead saves much of its own internal data in a memory structure
called a “hash table.” Unlike the simple array we saw in Experiment 3-1, hash
tables can automatically expand to accommodate more values. There’s no need for
the user or client of a hash table to worry about how much space is available
or about allocating more memory for it.

As you might guess, Ruby uses a hash table to hold the data you save in the
Hash objects you create in your Ruby script. However,
Ruby uses hash tables for many other reasons as well: it saves much of its own
internal data in hash tables. Every time you create a method, Ruby inserts a
new value in a hash table. Every time you create a constant, Ruby inserts a new
value in a hash table. Ruby saves many of the special variables we saw in
Experiment 2-2 in hash tables. As we saw in Chapter 3, Ruby saves instance
variables for generic objects, such as integers or symbols, in a hash table.
Hash tables are the work horse of Ruby internals. 

In Chapter 4 I’ll start by explaining how hash tables work: what happens inside
the table when you save a new value with a key, and when you later retrieve the
value again using the same key. Later I’ll explain how hash tables
automatically expand to accommodate more values. Finally, we’ll look at how
hash functions work in Ruby.
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  Hash tables in Ruby
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    Every time you write a method,
Ruby creates an entry in a hash table.
  



Hash tables are a commonly used, well known, old concept in computer science.
They organize values into groups or “bins” based on an integer value calculated
from each value called a “hash.” Later when you need to search for and find a
value, by recalculating the hash value you can figure out which bin the value
is contained in, to speed up the search.

Here’s a high level diagram showing a single hash object and its hash table:
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On the left is the RHash structure; this is short for
“Ruby Hash.” On the right, I show the hash table used by this hash, represented
by the st_table structure. This C structure contains
the basic information about the hash table, such as the number of entries saved
in the table, the number of bins and a pointer to the bins. Each RHash structure contains a pointer to a corresponding st_table structure. Finally, I show some empty bins on the
lower right. Ruby 1.8 and Ruby 1.9 initially create 11 bins for a new, empty
hash.

The best way to understand how a hash table works is by stepping through an
example. Let’s suppose I add a new key/value to a hash called my_hash:


  
my_hash[:key] = "value"





While executing this line of code, Ruby will create a new structure called an
st_table_entry and will save it into the hash table
for my_hash:
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Here you can see Ruby saved the new key/value pair under the third bucket, #2.
Ruby did this by taking the given key, the symbol :key in this example, and passing it to an internal hash
function that returns a pseudorandom integer: 


  
some_value = internal_hash_function(:key)





Next, Ruby takes the hash value, some_value in this
example, and calculates the modulus by the number of bins i.e. the remainder
after dividing by the number of bins:


  
some_value % 11 = 2





In this diagram I imagine that the actual hash value for :key divided by 11 leaves a remainder of 2. Later in this
chapter I’ll explore the hash functions that Ruby actually uses in more detail.  

Now let’s add a second element to the hash:


  
my_hash[:key2] = "value2"





And this time let’s imagine that the hash value of :key2 divided by 11 yields a remainder of 5:


  
internal_hash_function(:key2) % 11 = 5





Now you can see Ruby places a second st_table_entry
structure under bin #5, the sixth bin:
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The benefit of using a hash table comes later, when you ask Ruby to retrieve
the value for a given key:


  
p my_hash[:key]
=> "value"





If Ruby had saved all of the keys and values in an array or linked list, then
it would have to iterate over all the elements in that array or list, looking
for :key. This might take a very long time, depending
on how many elements there were. But using a hash table Ruby can jump straight
to the key it needs to find by recalculating the hash value for that key. It
simply calls the hash function again:


  
some_value = internal_hash_function(:key)





redivides the hash value by the number of bins and obtaining the remainder,
the modulus:


  
some_value % 11 = 2





and now Ruby knows to look in bin #2 for the entry with a key of :key.  In a
similar way, Ruby can later find the value for :key2
by repeating the same hash calculation: 


  
internal_hash_function(:key2) % 11 = 5





  
    Believe it or not, the C library used by Ruby to implement hash tables was
originally written back in the 1980’s by Peter Moore from the University of
California at Berkeley, and later modified by the Ruby core team. You can find
Peter Moore’s hash table code in the C code files st.c and
include/ruby/st.h. All of the function and structure names use the naming
convention st_ in Peter’s hash table code.

Meanwhile, the definition of the RHash structure that
represents every Ruby Hash object can be found in the include/ruby/ruby.h file.
Along with RHash, here you’ll find all of the other
primary object structures used in the Ruby source code: RString, RArray, RValue, etc.

  

  
    Experiment 4-1: Retrieving a value from hashes of varying sizes
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My first experiment will create hashes of wildly different sizes, from 1
element to 1 million elements and then measure how long it takes to find and
return a value from each of these hashes. First, I create hashes of different
sizes, based on powers of two, by running this code for different values of
exponent:




  
size = 2**exponent
hash = {}
(1..size).each do |n|
  index = rand
  hash[index] = rand
end





Here both the keys and values are random floating values. Then I measure how
long it takes to find one of the keys, the target_key 10,000 times using the benchmark library:


  
Benchmark.bm do |bench|
bench.report("retrieving an element
              from a hash with #{size} elements 10000 times") do
    10000.times do
      val = hash[target_key]
    end
  end
end





By using a hash table internally, Ruby is able to find and return value from a
hash containing over a million elements just as fast as it takes to return one
from a small hash:
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  Time to retrieve 10,000 values (ms) vs. hash size


Clearly the hash function Ruby uses is very fast, and once Ruby identifies the
bin containing the target key, it is able to very quickly find the
corresponding value and return it. What’s remarkable about this is that the
values in this chart are more or less flat.

  





  How hash tables expand to accommodate more values
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You might be thinking ahead at this point by asking yourself: “If there are
millions of st_table_entry structures, why does
distributing them among 11 bins help Ruby search quickly?” Even if the hash
function is fast, and even if Ruby distributes the values evenly among the 11
bins in the hash table, Ruby will still have to search among almost 100,000
elements in each bin to find the target key if there are a million elements
overall.

Something else must be going on here. It seems to me that Ruby must add more
bins to the hash table as more and more elements are added. Let’s take another
look at how Ruby’s internal hash table code works. Continuing with the example
from above, suppose I keep adding more and more elements to my hash:


  
my_hash[:key3] = "value3"
my_hash[:key4] = "value4"
my_hash[:key5] = "value5"
my_hash[:key6] = "value6"
...





As I add more and more elements, Ruby will continue to create more
st_table_entry structures and add them to different
bins. The additional bins depend on the modulus of the hash value for each key.
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Ruby uses a linked list to keep track of the entries in each bin: each st_table_entry structure contains a pointer to the next
entry in the same bin.  As you add more entries to the hash, the linked list
for each bin gets longer and longer.

To keep these linked lists from getting out of control, Ruby measures something
called the “density” or the average number of entries per bin. In my diagram
above, you can see that the average number of entries per bin has increased to
about 4. What this means is that the hash value modulus 11 has started to
return repeated values for different keys and hash values. Therefore, when
searching for a target key, Ruby might have to iterate through a small list,
after calculating the hash value and finding which bin contains the desired
entry.

Once the density exceeds 5, a constant value in the MRI C source code, Ruby
will allocate more bins and then “rehash”, or redistribute, the existing
entries among the new bin set. For example, if I keep adding more key/value
pairs, after a while Ruby will discard the array of 11 bins, allocate an array
of 19 bins, and then rehash all the existing entries:
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Now in this diagram the bin density has dropped to about 3.

By monitoring the bin density in this way, Ruby is able to guarantee that the
linked lists remain short, and that retrieving a hash element is always fast.
After calculating the hash value Ruby just needs to step through 1 or 2
elements to find the target key.

  
    You can find the rehash function - the code that
loops through the st_table_entry structures and
recalculates which bin to put the entry into - in the st.c source file. This
snippet is from Ruby 1.8.7:


  
static void
rehash(table)
    register st_table *table;
{
  register st_table_entry *ptr, *next, **new_bins;
  int i, old_num_bins = table->num_bins, new_num_bins;
  unsigned int hash_val;
  new_num_bins = new_size(old_num_bins+1);
  new_bins = (st_table_entry**)Calloc(new_num_bins,
                                      sizeof(st_table_entry*));
  for(i = 0; i < old_num_bins; i++) {
    ptr = table->bins[i];
    while (ptr != 0) {
      next = ptr->next;
      hash_val = ptr->hash % new_num_bins;
      ptr->next = new_bins[hash_val];
      new_bins[hash_val] = ptr;
      ptr = next;
    }
  }
  free(table->bins);
  table->num_bins = new_num_bins;
  table->bins = new_bins;
}





The new_size method call here returns the new bin
count, for example 19. Once Ruby has the new bin count, it allocates the new
bins and then iterates over all the existing st_table_entry structures (all the key/value pairs in the
hash). For each st_table_entry Ruby recalculates the
bin position using the same modulus formula: hash_val =
ptr->hash % new_num_bins. Then it saves each entry in the linked list
for that new bin. Finally Ruby updates the st_table
structure and frees the old bins.

In Ruby 1.9 and Ruby 2.0 the rehash function is implemented somewhat
differently, but works essentially the same way.

  

  
    Experiment 4-2: Inserting one new element into hashes of varying sizes
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One way to test whether this rehashing or redistribution of entries really
occurs is to measure the amount of time Ruby takes to save one new element into
an existing hash of different sizes. As I add more and more elements to the
same hash, at some point I should see some evidence that Ruby is taking extra
time to rehash the elements.

I’ll do this by creating 10,000 hashes, all of the same size, indicated by the
variable size:


  
hashes = []
10000.times do
  hash = {}
  (1..size).each do
    hash[rand] = rand
  end
  hashes << hash
end





Once these are all setup, I can measure how long it takes to add one more
element to each hash - element number size+1:


  
Benchmark.bm do |bench|
  bench.report("adding element number #{size+1}") do
    10000.times do |n|
      hashes[n][size] = rand
    end
  end
end





What I found was surprising! Here’s the data for Ruby 1.8:
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  Time to add a new key/value pair (ms) vs. hash size


Interpreting these data values from left to right:


	It takes about 9ms to insert the first element into an empty hash (10000
times).


	It takes about 7ms to insert the second element into a hash containing
one value (10000 times).


	As the hash size increases from 2, 3, up to about 60 or 65 the amount of
time required to insert a new element slowly increases.


	We see it takes around 11ms or 12ms to insert each new key/value pair
into a hash that contains 64, 65 or 66 elements (10000 times).


	Later, we see a huge spike! Inserting the 67th key/value pair takes over
twice as much time: about 26ms instead of 11ms for 10000 hashes!


	After inserting the 67th element, the time required to insert
additional elements drops to about 10ms or 11ms, and then slowly increases
again from there.




What’s going on here? Well, the extra time required to insert that 67th
key/value pair is spent by Ruby reallocating the bin array from 11 bins to 19
bins, and then reassigning the st_table_entry
structures to the new bin array.

Here’s the same graph for Ruby 1.9 - you can see this time the bin density
threshold is different. Instead of taking extra time to reallocate the elements
into bins on the 67th insert, Ruby 1.9 does it when the 57th element is
inserted. Later you can see Ruby 1.9 performs another reallocation after the
97th element is inserted.
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  Time to add a new key/value pair (ms) for 10,000 hashes vs. hash size


  

  
    If you’re wondering where these magic numbers come from, 57, 97, etc., then
take a look at the top of the “st.c” code file for your version of Ruby. You
should find a list of prime numbers like this:


  
/*
Table of prime numbers 2^n+a, 2<=n<=30.
*/
static const unsigned int primes[] = {
  8 + 3,
  16 + 3,
  32 + 5,
  64 + 3,
  128 + 3,
  256 + 27,
  512 + 9,
...





This C array lists some prime numbers that occur near powers of two. Peter
Moore’s hash table code uses this table to decide how many bins to use in the
hash table. For example, the first prime number in the list above is 11, which
is why Ruby hash tables start with 11 bins. Later as the number of elements
increases, the number of bins is increased to 19, and later still to 37, etc.

Ruby always sets the number of hash table bins to be a prime number to make it
more likely that the hash values will be evenly distributed among the bins,
after calculating the modulus - after dividing by the prime number and using
the remainder. Mathematically, prime numbers help here since they are less
likely to share a common factor with the hash value integers, in case a poor
hash function often returned values that were not entirely random. If the hash
values and bin counts shared a factor, or if the hash values were a multiple of
the bin count, then the modulus might always be the same. This leads to the
table entries being unevenly distributed among the bins.

Elsewhere in the st.c file, you should be able to find this C constant:


  
#define ST_DEFAULT_MAX_DENSITY 5





 which defines the maximum allowed density, or average number of elements
per bin. Finally, you should also be able to find the code that decides when to
perform a bin reallocation by searching for where that ST_DEFAULT_MAX_DENSITY
constant is used in st.c. For Ruby 1.8 you’ll find this code:


  
if (table->num_entries/(table->num_bins) > ST_DEFAULT_MAX_DENSITY) {
  rehash(table);





So Ruby 1.8 rehashes from 11 to 19 bins when the value num_entries/11 is greater than 5 i.e. when it equals 66.
Since this check is performed before a new element is added, the condition
becomes true when you add the 67th element, because num_entries would be 66 then.

For Ruby 1.9 and Ruby 2.0 you’ll find this code instead:


  
if ((table)->num_entries >
    ST_DEFAULT_MAX_DENSITY * (table)->num_bins) {
  rehash(table);





You can see Ruby 1.9 rehashes for the first time when num_entries is greater than 5*11, or when you insert the
57th element.

  





  How Ruby implements hash functions
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    Hash functions allow Ruby to find which
bin contains a given key and value.
  



Now let’s take a closer look at the actual hash function Ruby uses to assign
keys and values to bins in hash tables. If you think about it, this function is
central to the way the Hash object is implemented  if this function works
well then Ruby hashes will be fast, but a poor hash function would in theory
cause severe performance problems. And not only that, as I mentioned above,
Ruby uses hash tables internally to store its own information, in addition to
the data values you save in hash objects. Clearly having a good hash function
is very important!

First let’s review again how Ruby uses hash values. Remember that when you save
a new element  a new key/value pair  in a hash, Ruby assigns it to a bin
inside the internal hash table used by that hash object:
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Again, the way this works is that Ruby calculates the modulus of the key’s hash
value by the number of bins:


  
bin_index = internal_hash_function(key) % bin_count





Or in this example:


  
2 = hash(:key) % 11





The reason this works well for Ruby is that Ruby’s hash values are more or less
random integers for any given input data. You can get a feel for how Ruby’s
hash function works by calling the hash method for
any object like this:


  
$ irb
> "abc".hash
 => 3277525029751053763
> "abd".hash
 => 234577060685640459
> 1.hash
 => -3466223919964109258
> 2.hash
 => -2297524640777648528





Here even similar values have very different hash values. Note that if I call
hash again I always get the same integer value for
the same input data:


  
> "abc".hash
 => 3277525029751053763
> "abd".hash
 => 234577060685640459





Here’s how Ruby’s hash function actually works for most Ruby objects:


	When you call hash Ruby finds the default
implementation in the Object class. You, of course,
are free to override this if you really want to.


	The C code used by the Object class’s implementation of the hash method gets
the C pointer value for the target object  i.e. the actual memory address of
that object’s RValue structure. This is essentially a unique id for that
object.


	Ruby then passes it through a complex C function  the hash function  that
mixes up and scrambles the bits in the value, producing a pseudo-random integer
in a repeatable way.




For string and arrays it works differently. In this case, Ruby actually
iterates through all of the characters in the string or elements in the array
and calculates a cumulative hash value. This guarantees that the hash value
will always be the same for any instance of a string or array, and will
generally change if any of the values in that string or array change.

Finally, integers and symbols are another special case. For them Ruby just
passes their values right to the hash function.

  
    Ruby 1.9 and 2.0 actually use something called the “MurmurHash” hash function,
which was invented by Austin Appleby in 2008. The name “Murmur” comes from the
machine language operations used in the algorithm: “multiply” and “rotate.” If
you’re interested in the details of how the Murmur algorithm actually works,
you can find the C code for it in the st.c Ruby source code file. Or you can
read Austin’s web page on Murmur:
http://sites.google.com/site/murmurhash/.

Also, Ruby 1.9 and Ruby 2.0 initialize MurmurHash using a random seed value
which is reinitialized each time you restart Ruby. This means that if you stop
and restart Ruby you’ll get different hash values for the same input data. It
also means if you try this yourself you’ll get different values than I did
above. However, the hash values will always be the same within the same Ruby
process.

  

  
    Experiment 4-3: Using objects as keys in a hash
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Since hash values are pseudo-random numbers, once Ruby divides them by the bin
count, e.g. 11, the remainder values left over (the modulus values) will be a
random number between 0 and 10. This means that the st_table_entry structures will be evenly distributed over
the available bins as they are saved in the hash table. Evenly distributing the
entries ensures that Ruby will be able to quickly search for and find any given
key. The number of entries per bin will always be small.

But imagine if Ruby’s hash function didn’t return random integers - imagine if
instead it returned the same integer for every input data value. What would
happen?

In that case, every time you added any key/value to a hash it would always be
assigned to the same bin. Then Ruby would end up with all of the entries in a
single, long list under that one bin, and with no entries in any other bin:
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Now when you tried to retrieve some value from this hash, Ruby would have to
look through this long list, one element at a time, trying to find the
requested key. In this scenario loading a value from a Ruby hash would be very,
very slow.


  
size = 2**exponent
hash = {}
(1..size).each do
  index = rand
  hash[index] = rand
end





Now I’m going to prove this is the case  and illustrate just how important
Ruby’s hash function really is  by using objects with a poor hash function as
keys in a hash. Let’s repeat Experiment 1 and create many hashes that have
different numbers of elements, from 1 to a million:


  
size = 2**exponent
hash = {}
(1..size).each do
  index = rand
  hash[index] = rand
end





But instead of calling rand to calculate random key
values, this time I’ll create a new, custom object class called KeyObject and use instances of that class as my key values:


  
class KeyObject
end






  
size = 2**exponent
hash = {}
(1..size).each do
  index = KeyObject.new
  hash[index] = rand
end





This works essentially the same way as Experiment 1 did, except that Ruby will
have to calculate the hash value for each of these KeyObject objects instead of the random floating point
values I used earlier.

After re-running the test with this KeyObject class, I’ll then proceed to
change the KeyObject class and override the hash
method, like this:


  
class KeyObject
  def hash
    4
  end
end





I’ve purposefully written a very poor hash function  instead of returning a
pseudo-random integer, this hash function always returns the integer 4,
regardless of which KeyObject object instance you
call it on. Now Ruby will always get 4 when it calculates the hash value.
It will have to assign all of the hash elements to bin #4 in the internal hash
table, like in the diagram above. Let’s see what happens.

Running the test with an empty KeyObject class:


  
class KeyObject
end





I get results similar to Experiment 1:
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  Time to retrieve 10000 values (ms) vs. hash size


Using Ruby 1.9 I again see that Ruby takes about 1.5ms to 2ms to retrieve
10,000 elements from a hash, this time using instances of the KeyObject class as the keys.

Now let’s run the same code, but this time with the poor hash function in
KeyObject:


  
class KeyObject
  def hash
    4
  end
end





Here are the results:
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  Time to retrieve 10000 values (ms) vs. hash size


Wow  very different! Pay close attention to the scale of the graph. On the
y-axis I show milliseconds and on the x-axis again the number of elements in
the hash, shown on a logarithmic scale. But this time, notice that I have 1000s
of milliseconds, or actual seconds, on the y-axis! With 1 or a small number
of elements, I can retrieve the 10,000 values very quickly  so quickly that
the time is too small to appear on this graph. In fact it takes about the same
1.5ms time.

When the number of elements increases past 100 and especially 1000, the
time required to load the 10,000 values increases linearly with the hash size.
For a hash containing about 10,000 elements it takes over 1.6 full seconds to
load the 10,000 values. If I continue the test with larger hashes it would take
minutes or even hours to load the values.

Again what’s happening here is that all of the hash elements are saved into the
same bin, forcing Ruby to search through the list one key at a time.

  





  Hash tables in JRuby

It turns out JRuby implements hashes more or less the same way MRI Ruby does.
Of course, the JRuby source code is written in Java and not C, but the JRuby
team chose to use the same underlying hash table algorithm that MRI uses. Since
Java is an object oriented language, unlike C, JRuby is able to use actual Java
objects to represent the hash table and hash table entries, instead of C
structures. Here’s what a hash table looks like internally inside of a JRuby
process:


  
    [image: image]
  

 
Instead of the C RHash and st_table structures, we have a Java object which is an
instance of RubyHash. And instead of the bin array
and st_table_entry structures we have an array of
Java objects of type RubyHashEntry. The RubyHash object contains an instance variable called size which keeps track of the number of elements in the
hash, and another instance variable called table,
which is the RubyHashEntry array.

JRuby allocates 11 empty RubyHashEntry objects or hash table bins when
you create a new hash. As you insert elements into the hash, JRuby fills in
these objects them with keys and values. Inserting and retrieving elements
works the same was as in MRI: JRuby uses the same formula to divide the hash
value of the key by the bin count, and uses the modulus to find the proper bin:


  
bin_index = internal_hash_function(key) % bin_count





As you add more and more elements to the hash, JRuby forms a linked list of
RubyHashEntry objects as necessary when two keys fall
into the same bin - just like MRI:
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JRuby also tracks the density of entries, the average number of RubyHashEntry objects per bin, and allocates a larger
table of RubyHashEntry objects as necessary to
rehash the entries.

  
    If you’re interested, you can find the Java code JRuby uses to implement hashes
in the src/org/jruby/RubyHash.java source code file. I found it easier to
understand than the original C code from MRI, mostly because in general Java is
a bit more readable and easier to understand than C is, and because it’s object
oriented. The JRuby team was able to separate the hash code into different Java
classes, primarily RubyHash and RubyHashEntry.

The JRuby team even used the same identifier names as MRI in some cases; for
example you’ll find the same ST_DEFAULT_MAX_DENSITY
value of 5, and JRuby uses the same table of prime numbers that MRI does: 11,
19, 37, etc., that fall near powers of two. This means that JRuby will show the
same performance pattern MRI does for reallocating bins and redistributing the
entries.

  





  Hash tables in Rubinius

At a high level, Rubinius uses the same hash table algorithm as MRI and JRuby -
but using Ruby instead of C or Java. This means the Rubinius source code is
about 10 times easier to understand than either the MRI or JRuby code, and is a
great way to learn more about hash tables if you’re interested in getting your
hands dirty without learning C or Java.

Here’s how hashes look inside of Rubinius:
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Since this is just plain Ruby, in Rubinius your Ruby objects are actually
implemented with a real Ruby class called Hash.
You’ll see it has a few integer attributes, such as @size, @capacity and @max_entries, and also an instance variable called @entries which is the bin array that actually contains the
hash data. Rubinius implements the bin array using a Ruby class called Rubinius::Tuple, a simple storage class similar to
an array.  Rubinius saves each hash element inside a Ruby object called Bucket, saved inside of the @entries
Rubinius::Tuple array.

One difference you’ll see in the Rubinius hash table implementation is that it
uses simple powers of two to decide how many hash bins to create, instead of
prime numbers. Initially Rubinius uses 16 Bucket objects. Whenever Rubinius
needs to allocate more bins, it just doubles the size of the bin array, @entries, in the code above. While theoretically this is
less ideal than using prime numbers, it simplifies the code substantially and
also allows Rubinius to use bitwise arithmetic to calculate the bin index,
instead of having to divide and take the remainder/modulus.

  
    You’ll find the Rubinius hash implementation in source code files called
kernel/common/ hash18.rb and kernel/common/hash19.rb - Rubinius has entirely
different implementations of hashes depending on whether you start in Ruby 1.8
or Ruby 1.9 compatibility mode. Here’s a snippet from hash18.rb, showing how
Rubinius finds a value given a key:


  
def [](key)
  if item = find_item(key)
    item.value
  else
    default key
  end
end
...etc...
# Searches for an item matching +key+. Returns the item
# if found. Otherwise returns +nil+.
def find_item(key)
  key_hash = key.hash
  item = @entries[key_index(key_hash)]
  while item
    if item.match? key, key_hash
      return item
    end
    item = item.link
  end
end
...etc...
# Calculates the +@entries+ slot given a key_hash value.
def key_index(key_hash)
  key_hash & @mask
end





You can see the key_index method uses bitwise arithmetic to calculate the bin
index, since the bin count will always be a power of two for Rubinius, and not
a prime number.

  





  Chapter 5

  
    How Ruby Borrowed a Decades Old Idea From Lisp
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    The IBM 704, above, was the first computer
to run Lisp in the early 1960s.
  



Blocks are one of the most commonly used and powerful features of Ruby  as you
probably know, they allow you to pass a code snippet to iterators such as
each, detect or inject. In Ruby you can also write your own custom
iterators or functions that call blocks for other reasons using the yield keyword. Ruby code containing blocks is often more
succinct, elegant and expressive than the equivalent code would appear in older
languages such as C.

However, don’t jump to the conclusion that blocks are a new idea! In fact,
blocks are not new to Ruby at all; the computer science concept behind blocks,
called “closures,” was first invented by Peter J.
Landin
in 1964, a few years after the original version of Lisp was created by John
McCarthy in
1958.  Closures were later adopted by Lisp  or more precisely a dialect of
Lisp called Scheme, invented by Gerald Sussman and Guy Steele in 1975. Sussman
and Steele’s use of closures in Scheme brought the idea to many programmers for
the first time starting in the 1970s.

But what does “closure” actually mean? In other words, exactly what are Ruby
blocks? Are they as simple as they appear? Are they just the snippet of Ruby
code that appears between the do and end keywords? Or is there more to Ruby blocks than meets
the eye? In this chapter I’ll review how Ruby implements blocks internally, and
show how they meet the definition of “closure” used by Sussman and Steele back
in 1975. I’ll also show how blocks, lambdas, procs and bindings are all
different ways of looking at closures, and how these objects are related to
Ruby’s metaprogramming API.
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  Blocks: Closures in Ruby
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    Sussman and Steele gave a useful definition of the term “closure”
in
    this 1975 academic paper, one of the so-called “Lambda Papers.”
  



Internally Ruby represents each block using a C structure called rb_block_t:
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Exactly what are blocks? One way to answer this question would be to take a
look at the values Ruby stores inside this structure. Just as we did in Chapter
3 with the RClass structure, let’s deduce what the
contents of the rb_block_t structure must be based on
what we know blocks can do in our Ruby code.

Starting with the most obvious attribute of blocks, we know each block must
consist of a piece of Ruby code, or internally a set of compiled YARV byte code
instructions. For example, if I call a method and pass a block as a parameter:


  
10.times do
  str = "The quick brown fox jumps over the lazy dog."
  puts str
end





it’s clear that when executing the 10.times call,
Ruby needs to know what code to iterate over. Therefore, the rb_block_t structure must contain a pointer to that code:
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In this diagram, you can see a value called iseq
which is a pointer to the YARV instructions for the Ruby code in my block.

Another obvious but often overlooked behavior of blocks is that they can access
variables in the surrounding or parent Ruby scope. For example:


  
str = "The quick brown fox"
10.times do
  str2 = "jumps over the lazy dog."
  puts "#{str} #{str2}"
end





Here the puts function call refers equally well to
the str variable located inside the block and the
str2 variable from the surrounding code. We often
take this for granted  obviously blocks can access values from the code
surrounding them. This ability is one of the things that makes blocks useful.

If you think about this for a moment, you’ll realize blocks have in some
sense a dual personality. On the one hand, they behave like separate functions:
you can call them and pass them arguments just as you would with any function.
On the other hand, they are part of the surrounding function or method. As I
wrote the sample code above I didn’t think of the block as a separate function
 I thought of the block’s code as just part of the simple, top level script
that printed a string 10 times.

Stepping through how Ruby calls a block

How does this work internally? Does Ruby internally implement blocks as
separate functions? Or as part of the surrounding function? Let’s step through
the example above, slowly, and see what happens inside of Ruby when you call a
block.

In this example when Ruby executes the first line of code, as I explained in
Chapter 2, YARV will store the local variable str on
its internal stack, and save its location in the DFP
pointer located in the current rb_control_frame_t
structure. If the outer code was located inside a
function or method then the DFP would point to the
stack frame as shown, but if the outer code was located in the top level scope
of your Ruby program, then Ruby would use dynamic access to save the variable
in the TOPLEVEL_BINDING environment instead  more
on this in section 5.3. Regardless the DFP will
always indicate the location of the str variable.
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Next Ruby will come to the “10.times do” call. Before
executing the actual iteration  before calling the times method  Ruby will create and initialize a new rb_block_t structure to represent the block. Ruby needs to
create the block structure now, since the block is really just another argument
to the times method:
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To do this, Ruby copies the current value of the DFP, the dynamic frame
pointer, into the new block. In other words, Ruby saves away the location of
the current stack frame in the new block.

Next Ruby will proceed to call the times method on
the object 10, an instance of the Fixnum class. While doing this, YARV will create a new
frame on its internal stack. Now we have two stack frames: on the top is the
new stack frame for the Fixnum.times method, and
below is the original stack frame used by the top level function:
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Ruby implements the times method internally using its
own C code. It’s a built in method, but Ruby implements it the same way you
probably would in Ruby. Ruby starts to iterate over the numbers 0, 1, 2, etc.,
up to 9, and calls yield, calling the block once for
each of these integers. Finally, the code that implements yield internally actually calls the block each time through
the loop, pushing a third Ruby actually pushes an extra,
internal stack frame whenever you call yield before actually calling the block,
so strictly speaking there should be four stack frames in this diagram. I only
show three for the sake of clarity. frame onto the top of the stack for
the code inside the block to use:
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Above, on the left, we now have three stack frames:


	On the top is the new stack frame for the block, containing the str2 variable.


	In the middle is the stack frame used by the internal C code that implements
the Fixnum.times method.


	And at the bottom is the original function’s stack frame, containing the
str variable from the outer scope.




While creating the new stack frame at the top, Ruby’s internal yield code copies the DFP from
the block into the new stack frame. Now the code inside the block can access
both its own local variables, via the rb_control_frame structure as usual, and indirectly the
variables from the parent scope, via the DFP pointer
using dynamic variable access, as I explained in Chapter 2. Specifically, this
allows the puts statement to access the str2 variable from the parent scope.

Borrowing an idea from 1975

To summarize, we have seen now that Ruby’s rb_block_t
structure contains two important values:


	a pointer to a snippet of YARV code instructions, and


	a pointer to a location on YARV’s internal stack, the location that was at
the top of the stack when the block was created:
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At first glance, this seems like a very technical, unimportant detail. This is
obviously a behavior we expect Ruby blocks to exhibit, and the DFP seems to be just another minor, uninteresting part of
Ruby’s internal implementation of blocks.

Or is it? I believe the DFP is actually a profound,
important part of Ruby internals. The DFP is the
basis for Ruby’s implementation of “closures,” a computer science concept
invented long before Ruby was created in the 1990s. In fact, the Scheme
programming language, a dialect of Lisp invented by Gerald Sussman and Guy
Steele in 1975, was one of the first languages to formally implement closures
 almost twenty years earlier! Here’s how Sussman and Steele defined the term
“closure” in their 1975 paper Scheme: An Interpreter for Extended Lambda
Calculus:


In order to solve this problem we introduce the notion of a closure [11, 14]
which is a data structure containing a lambda expression, and an environment to
be used when that lambda expression is applied to arguments.


Reading this again, a closure is defined to be the combination of:


	A “lambda expression,” i.e. a function that takes a set of arguments, and


	An environment to be used when calling that lambda or function.




I’ll have more context and information about “lambda expressions” and how
Ruby’s borrowed the “lambda” keyword from Lisp in section 5-2, but for now take
another look at the internal rb_block_t structure:
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Notice that this structure meets the definition of a closure Sussman and Steele
wrote back in 1975:


	iseq is a pointer to a lambda expression  i.e. a
function or code snippet, and


	DFP is a pointer to the environment to be used when
calling that lambda or function  i.e. a pointer to the surrounding stack
frame.




Following this train of thought, we can see that blocks are Ruby’s
implementation of closures. Ironically blocks, one of the features that in my
opinion makes Ruby so elegant and natural to read  so modern and innovative 
is based on research and work done at least 20 years before Ruby was ever
invented!

  
    In Ruby 1.9 and later you can find the actual definition of the rb_block_t structure in the vm_core.h file. Here it is:


  
typedef struct rb_block_struct {
    VALUE self;
    VALUE *lfp;
    VALUE *dfp;
    rb_iseq_t *iseq;
    VALUE proc;
} rb_block_t;





You can see the iseq and dfp values I described above, along with a few other
values:


	self: As we’ll see in the next section when I cover
the lambdas, procs and bindings, the value the self
pointer had when the block was first referred to is also an important part of
the closure’s environment. Ruby executes block code inside the same object
context the code outside the block had.


	lfp: It turns out blocks also contain a local frame
pointer, along with the dynamic frame pointer. However, Ruby doesn’t use local
variable access inside of blocks; it doesn’t use the set/getlocal YARV instructions inside of blocks.  Instead,
Ruby uses this LFP for internal, technical reasons
and not to access local variables.


	proc: Finally, Ruby uses this value when it creates
a proc object from a block. As we’ll see in the next section, procs and blocks
are closely related.




Right above the definition of rb_block_t in vm_core.h
you’ll see the rb_control_frame_t structure defined:


  
typedef struct {
    VALUE *pc;            /* cfp[0] */
    VALUE *sp;            /* cfp[1] */
    VALUE *bp;            /* cfp[2] */
    rb_iseq_t *iseq;      /* cfp[3] */
    VALUE flag;           /* cfp[4] */
    VALUE self;           /* cfp[5] / block[0] */
    VALUE *lfp;           /* cfp[6] / block[1] */
    VALUE *dfp;           /* cfp[7] / block[2] */
    rb_iseq_t *block_iseq;/* cfp[8] / block[3] */
    VALUE proc;           /* cfp[9] / block[4] */
    const rb_method_entry_t *me;/* cfp[10] */
} rb_control_frame_t;





Notice that this C structure also contains all of the same values the rb_block_t structure did: everything from self down to proc. The fact that
these two structures share the same values is actually one of the interesting,
but confusing, optimizations Ruby uses internally to speed things up a bit.
Whenever you refer to a block for the first time by passing it into a method
call, as I explained above, Ruby creates a new rb_block_t structure and copies values such as the LFP from the current rb_control_frame_t structure into it.  However, by making
the members of these two structures similar  rb_block_t is a subset of rb_control_frame_t; they contain the same values in the
same order  Ruby is able to avoid creating a new rb_block_t structure and instead sets the pointer to the
new block to refer to the common portion of the rb_control_frame structure. In other words, instead of
allocating new memory to hold the new rb_block_t
structure, Ruby simply passes around a pointer to the middle of the rb_control_frame_t structure. This is very confusing, but
does avoid unnecessary calls to malloc, and speeds up
the process of creating blocks.

  

  
    Experiment 5-1: Which is faster: a while loop or passing a block to each?
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I said earlier that in my opinion Ruby code containing blocks is often more
elegant and succinct than the equivalent code would be using an older language
such as C. For example, in C I would write a simple while loop to add up the
numbers 1 through 10 like this:




  
#include <stdio.h>
main()
{
  int i, sum;
  i = 1;
  sum = 0;
  while (i <= 10) {
    sum = sum + i;
    i++;
  }
  printf("Sum: %d\n", sum);
}





and I could use a while loop in Ruby in the same manner:


  
sum = 0
i = 1
while i <= 10
  sum += i
  i += 1
end
puts "Sum: #{sum}"





However, most Rubyists would write this loop using an iterator with a block,
like this:


  
sum = 0
(1..10).each do |i|
  sum += i
end
puts "Sum: #{sum}"





Aesthetics aside, is there any performance penalty for using a block here? Does
Ruby slow down significantly in order to create the new rb_block_t structure, copy the DFP value, and create new stack frames  everything I
discussed above?

I won’t benchmark the C code  clearly that will be faster than either option
using Ruby. Instead, let’s measure how long it takes Ruby to add up the integers
1 through 10 to obtain 55, using a simple while loop:


  
require 'benchmark'
ITERATIONS = 1000000
Benchmark.bm do |bench|
  bench.report("iterating from 1 to 10, one million times") do
    ITERATIONS.times do
      sum = 0
      i = 1
      while i <= 10
        sum += i
        i += 1
      end
    end
  end
end





Here I am using the benchmark library to measure the time required to run the
while loop one million times. Admittedly I’m using a block to control the
million iterations (ITERATIONS.times do) but I’ll use the same block in the
next test as well.

On my laptop with Ruby 1.9.2, I can run through this code in just over a half
second:


  
$ ruby while.rb
      user     system      total        real
      iterating from 1 to 10, one million times  0.520000   0.000000
                                                 0.520000 (  0.514112)





Now let’s measure the time required using the each iterator with a block:


  
require 'benchmark'
ITERATIONS = 1000000
Benchmark.bm do |bench|
  bench.report("iterating from 1 to 10, one million times") do
    ITERATIONS.times do
      sum = 0
      (1..10).each do |i|
        sum += i
      end
    end
  end
end





This time it takes somewhat longer to run through the loop a million times,
about 0.8 seconds:


  
$ ruby each.rb
      user     system      total        real
      iterating from 1 to 10, one million times  0.800000   0.000000
                                                 0.800000 (  0.808752)





Ruby requires about 57% more time to call the block 10 times, compared to
iterating through the simple while loop 10 times.
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  Time for 1,000,000 iterations (sec)


At first glance, 57% more time seems like a large performance penalty just
for making your Ruby code somewhat more readable and pleasant to look at.
Depending on your work and the context of this while loop this may or may not
be an important difference. If this loop were part of a time-sensitive,
critical operation that your end users were waiting for  and if there weren’t
other expensive operations inside the loop  then writing the iteration using
an old-fashioned C style while loop might be worthwhile.

However, the performance of most Ruby applications, and certainly Ruby on Rails
web sites, is usually limited by database queries, network connections and
other factors  and not by Ruby execution speed. It’s rare that Ruby’s
execution speed has an immediate, direct impact on your application’s overall
performance. Of course, if you are using a large framework such as Ruby on
Rails then your own Ruby code is a very small piece of a very large system. I
imagine that Rails uses blocks and iterators many, many times while processing
a simple HTTP request, apart from the Ruby code you write yourself.

  





  Lambdas and Procs: treating functions as a first class citizen
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    In the 1930s Alonzo Church introduced “λ-notation”
in his research on Lambda Calculus
  



Next let’s look at a different, convoluted way of printing the same
string to the console:




  
def message_function
  str = "The quick brown fox"
  lambda do |animal|
    puts "#{str} jumps over the lazy #{animal}."
  end
end
function_value = message_function
function_value.call('dog')





Here you can see I’m using a lambda keyword to return
a block, which I call later after message_function
returns. This is an example of “treating a function as a first class citizen,”
to paraphrase a commonly used computer science expression. Here I use the block
as just another type of data  I return it from message_function, I save it in code_value and finally I call it explicitly using the call method. With the lambda
keyword  or with the equivalent proc keyword or
Proc object  Ruby allows you to convert a block
into a data value like this.

In a moment, I’ll take a look inside of Ruby to see what happens when I call
lambda and how Ruby converts code into data. But
first: where does the word “lambda” come from? Why in the world did Ruby choose
to use a Greek letter as a language keyword? Once again, Ruby has borrowed an
idea from Lisp. Lambda is also a reserved keyword in
Lisp; it allows Lisp programmers to create an anonymous function like this:


  
(lambda (arg) (/ arg 2))





Like in my Ruby example, Lisp developers can treat anonymous functions like
the one above as data, passing them into other functions as arguments.

Taking a look even farther back in history, however, it turns out that the term
“lambda” was introduced well before John McCarthy invented Lisp in 1958. You
may have noticed that Sussman and Steele’s 1975 paper was titled Scheme: An
Interpreter for Extended Lambda Calculus. Here they are referring to an area of
mathematical study called “Lambda Calculus” invented by Alonzo Church in the
1930s. As part of his research, Church formalized the mathematical study of
functions, and introduced the convention of using the Greek letter λ to refer
to a function along with an ordered list of arguments the function uses. Later
in his 1960 paper introducing Lisp, Recursive Functions of Symbolic
Expressions and Their Computation by Machine, Part
I , John McCarthy
references Church’s work directly while discussing functions and function
definitions.

Stack memory vs. heap memory

Now let’s return to my example:


  
def message_function
  str = "The quick brown fox"
  lambda do |animal|
    puts "#{str} jumps over the lazy #{animal}."
  end
end
function_value = message_function
function_value.call('dog')





What happens when I call lambda? How does Ruby
convert the block into a data value? What does it really mean to treat this
function as a first class citizen?

Does the message_function function return an rb_block_t structure directly?  Or does it return an rb_lambda_t structure? If we could look inside this, what
would we see? How does it work?


  
    [image: image]
  

 
Before trying to understand what Ruby does internally when you call lambda, let’s first review how Ruby handles the string
value str more carefully.  First imagine that YARV
has a stack frame for the outer function scope but hasn't called message_function yet:
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As usual you can see YARV’s internal stack on the left, and the rb_control_frame structure on the right. Now suppose Ruby
executes the message_function function call:
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Here again we have the str variable saved in the top
level stack frame used by message_function. Before
going farther, let’s take a closer look at that str
variable and how Ruby stores the “quick brown fox” string in it. Recall from
Chapter 3 that Ruby stores each of your objects in a C structure called RObject, each of your arrays in an RArray structure, and similarly each of your strings in a
structure called RString. For example, Ruby saves the
quick brown fox string like this:
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We have the actual string structure on the right, and a reference or pointer to
the string on the left. When Ruby saves a string value on the YARV stack  or
any object value for that matter  it actually only places the reference to the
string on the stack. The actual string structure is saved in the “heap”
instead:
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The heap is a large area of memory that Ruby or any other C program can
allocate memory from. Objects or other values that Ruby saves in the heap
remain valid for as long as there is a reference to them, the str pointer in this example. Here’s a more accurate picture
of what Ruby does when we create the str local
variable inside of message_function:
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After there are no longer any pointers referencing a particular object or value
in the heap, Ruby later can free it during the next run of the garbage
collection system. To show this happening, let’s suppose for a moment that my
example code didn’t call lambda at all, that instead
it immediately returned nil after saving the str variable:


  
def message_function
  str = "The quick brown fox"
  nil
end





After this call to message_function finishes, YARV
will simply pop the str value and any other temporary
values saved there off the stack and return to the original stack frame:
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You can see there no longer is any reference to the RString structure containing the “quick brown fox” string
and that Ruby will free it later.

Stepping through how Ruby creates a lambda

Now let’s return to my original example code that returns the lambda expression instead of nil:


  
def message_function
  str = "The quick brown fox"
  lambda do |animal|
    puts "#{str} jumps over the lazy #{animal}."
  end
end
function_value = message_function
function_value.call('dog')





Notice that later when I actually call the lambda  the block  the puts statement inside the block is somehow able to access
the str string variable from inside message_function. How can this be possible? We’ve just seen
how the str reference to the RString structure is popped off the stack when message_function returns! Obviously, Ruby must do something
special when you call lambda; somehow after calling
lambda the value of str
lives on so the block can later access it.

When you call lambda, internally Ruby copies the
entire contents of the current YARV stack frame into the heap  the same place
the RString structure is located. For example, here
is the YARV stack again just after we call message_function:
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To keep things simple, I don’t show the RString
structure here, but remember the RString structure
will be saved in the heap.

Next, Ruby will call lambda; here’s what happens
internally:
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You can see Ruby has created a new copy of the stack frame for message_function in the heap. I indicate that with the
horizontal stack icon that appears below the dotted line. Now there is a second
reference to the str RString structure, which means
Ruby won’t free it when message_function returns. 

Along with the copy of the stack frame, Ruby creates two other new objects in
the heap:


	An internal environment object, represented by the
rb_env_t C structure at the lower left. This object
only exists internally inside of Ruby; you can’t access this environment
directly from your Ruby code. It is essentially a wrapper for the heap copy of
the stack.


	A Ruby Proc object, represented by the rb_proc_t structure. As you may know, this is the actual
return value from the lambda keyword; this object is
what the message_function function returns.




Note the new Proc object structure, rb_proc_t,
actually contains an rb_block_t structure, including
the iseq and DFP pointers.
Just as with a normal block, these keep track of the block’s code and the
referencing environment for the block’s closure. Ruby sets the DFP inside this block to point to the new heap copy of the
stack frame. You can think of a Proc as a Ruby object
that wraps up a block; technically speaking, this is exactly what it is.

Also, notice the Proc object  the rb_proc_t structure  contains an internal value called
is_lambda. This will be set to true for my example since I used the lambda keyword to create the Proc. If I had created the Proc
using the proc keyword instead, or by just calling
Proc.new, then is_lambda
would be set to false. Ruby uses this flag to produce
the slight behavior differences between procs and lambdas; however, it’s best
to think of procs and lambdas as essentially the same thing.

Stepping through how Ruby calls a lambda

What happens when message_function returns? Since the
lambda or proc object is the return value of message_function, a reference or pointer to the lambda is
saved in the stack frame for the outer function in the function_value local variable. This prevents Ruby from
freeing the proc, the internal environment object and the str variable; there are now pointers referring to all of
these values in the heap:
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Finally, when Ruby executes the call method on the
proc object returned by message_function:


  
function_value = message_function
function_value.call('dog')





it finally executes the block contained in the proc:
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When Ruby calls a normal block, it creates a new stack frame for the
block to use, and saves the animal value  the
argument passed to the block  into this new stack frame. And just as with
calling a normal block, Ruby also copies the DFP
pointer from the rb_block_t structure into the new
stack frame.

The only real difference here is that the DFP points
to the copy of the stack frame Ruby created in the heap earlier when it
executed lambda. This DFP
allows the code inside the block, the call to puts,
to access the str value.

The Proc object

Stepping back for a moment to review, we’ve just seen that inside of Ruby there
really is no structure called rb_lambda_t:
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Instead, Ruby’s lambda keyword created a proc object,
which internally is a wrapper for a block  the block you pass to the lambda or proc keyword:
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Just like a normal block, this is a closure: it contains a function along with
the environment that function was referred to or created in. You can see that
in this case the environment is a persistent copy of the stack frame saved in
the heap.

There’s an important difference between a normal block and a proc: procs
are Ruby objects. Internally, they contain the same information that other Ruby
objects contain, including the RBasic structure I
discussed in Chapter 3. Above I mentioned that the rb_proc_t structure represents the Ruby proc object; it
turns out this isn’t exactly the case. Internally, Ruby uses another data type
called RTypedData to represent instances of the proc
object:
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You can think of RTypedData as a trick that Ruby’s C
code uses internally to create a Ruby object wrapper around some C data
structure. In this case, Ruby uses RTypedData to
create an instance of the Proc Ruby class that
represents a single copy of the rb_proc_t structure. 

Here, just as we saw in Chapter 3, the RTypedData
structure contains the same RBasic information that
all Ruby objects contain:


	flags: some internal technical information Ruby
needs to keep track of


	klass: a pointer to the Ruby class this object is
an instance of, in this case the Proc class.




Here’s a another look at how Ruby represents a proc object, this time shown on
the right next to a RString structure:
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Notice how Ruby handles the string value and the proc value in a very similar
way. Just like strings, for example, procs can be saved into variables or
passed as arguments to a function call. Ruby uses the VALUE pointer to the proc whenever you do this.

  
    Experiment 5-2: Changing local variables after calling lambda
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My previous code example showed how calling lambda
makes a copy of the current stack frame in the heap.


  
def message_function
  str = "The quick brown fox"
  lambda do |animal|
    puts "#{str} jumps over the lazy #{animal}."
  end
end
function_value = message_function
function_value.call('dog')





Specifically, the str string value is valid here even
after message_function returns. But what happens if I
modify this value in message_function after calling
lambda?


  
def message_function
  str = "The quick brown fox"
  func = lambda do |animal|
    puts "#{str} jumps over the lazy #{animal}."
  end
  str = "The sly brown fox"
  func
end
function_value = message_function
function_value.call('dog')





Notice now I change the value of str after I create
the lambda. Running this code I get:


  
$ ruby modify_after_lambda.rb                 
The sly brown fox jumps over the lazy dog.





How is this possible? In the previous section I discussed how Ruby makes a copy
of the current stack frame when I call lambda. In
other words, Ruby copies the stack frame after running this code:


  
str = "The quick brown fox"
func = lambda do | animal |
  puts "#{str} jumps over the lazy #{animal}."
end
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Then after this copy is made, I change str to the
“sly fox” string:


  
str = "The sly brown fox"





Since Ruby copied the stack frame above when I called lambda, now I should be modifying the original copy of
str and not the new lambda copy:
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This means that the new, lambda copy of the string should have remained
unmodified. Calling the lambda later I should have gotten the original “quick
fox” string, not the modified “sly fox” string.

What happened here? How does Ruby support this behavior? How does Ruby allow me
to modify the new, persistent copy of the stack after it’s been created by
lambda?

An important detail that I left out of my diagrams in the previous section is
that after Ruby creates the new heap copy of the stack  the new rb_env_t structure or internal “environment” object  Ruby
also resets the DFP in the rb_control_frame_t structure to point to the copy. Here’s
another view of Ruby copying the local stack frame into the heap:
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The only difference here is that the DFP now points
down to the heap. This means that when my code accesses or changes any local
variables after calling lambda, Ruby will use the new
DFP and access the value in the heap, not the
original value on the stack. In this code, for example:

str = The sly brown fox

Ruby actually modifies the new, heap copy that will later be used when I call the
lambda:
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Another interesting behavior of the lambda keyword is
that Ruby avoids making copies of the stack frame more than once. For example,
suppose that I call lambda twice in the same scope:


  
i = 0
increment_function = lambda do
  puts "Incrementing from #{i} to #{i+1}"
  i += 1
end
decrement_function = lambda do
  i -= 1
  puts "Decrementing from #{i+1} to #{i}"
end





Here I expect both lambda functions to operate on the local variable i in the main scope. Thinking about this for a moment, if
Ruby made a separate copy of the stack frame for each call to lambda, then each function would operate on a separate copy
of i  and would call my lambdas like this


  
increment_function.call
decrement_function.call
increment_function.call
increment_function.call
decrement_function.call





would yield these results:


  
Incrementing from 0 to 1
Decrementing from 0 to -1
Incrementing from 1 to 2
Incrementing from 2 to 3
Decrementing from -1 to -2





But instead I actually get this:


  
Incrementing from 0 to 1
Decrementing from 1 to 0
Incrementing from 0 to 1
Incrementing from 1 to 2
Decrementing from 2 to 1





Most of the time this is what you expect: each of the blocks you pass to the
lambdas access the same variable in the parent scope. Ruby achieves this simply
by checking whether the DFP already points to the
heap. If it does, as it would in this example the second time I call lambda, then Ruby won't create a second copy again. It
would simply reuse the same rb_env_t structure in the
second rb_proc_t structure. Both lambdas would use
the same heap copy of the stack.

  





  Metaprogramming and closures: eval, instance_eval and binding
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  During the 1980s, computers designed specifically
for running Lisp were built and commercialized.
  



Metaprogramming literally means to write a program that can, in turn, write
another program. In Ruby, the eval method is
metaprogramming in its purest form: you pass a string to Ruby and it
immediately compiles it and executes it.  Here’s an example:


  
str = "puts"
str += " 2"
str += " +"
str += " 2"
eval(str)





As you can see here, I dynamically construct a string, “puts
2+2,” and then pass it to eval. Ruby then
evaluates the string  it tokenizes it, parses it, and compiles it using the
algorithms I discussed in Chapter 1. Ruby uses exactly the same Bison grammar
rules and parse engine that it did when it first processed your primary Ruby
script. Once this process is finished and Ruby has another new set of YARV byte
code instructions, it then executes your new code.

However, one very important detail about the eval
method, which isn’t obvious in the example above, is that Ruby evaluates the
new code string in the same context where you called eval from. To see what I mean, consider this similar
example:


  
a = 2
b = 3
str = "puts"
str += " a"
str += " +"
str += " b"
eval(str)





Running this code I get the result you would expect: 5. But notice the
difference between this example and the previous one; in this second example I
refer to the local variables a and b from the surrounding scope and Ruby is able to access
their values without a problem. Internally, this works in the same way a block
would; let’s take a look:
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Here, as usual, you can see Ruby has saved the values of a, b and str on the stack to the left; on the right we have the
rb_control_frame_t structure representing the outer
or main scope of my Ruby script. Next, when I call the eval method, here’s what happens:
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Above the green icon indicates that calling eval
invokes the parser and compiler on the text I pass it. When the compiler
finishes, Ruby creates a new stack frame for running the new, compiled code;
you can see this on the top.  But notice that Ruby sets the DFP in this new stack frame to point to the lower stack
frame where the variables a and b are. This allows the code passed to eval to access these values.

This should look familiar; aside from parsing and compiling the code
dynamically, this functions in precisely the same way as if I had instead
passed a block to some function:


  
a = 2
b = 3
10.times do
  puts a+b
end





In other words, the eval method creates a closure:
the combination of a function and the environment where that function was
referenced. In this case, the function is the newly compiled code, and the
environment is the place where I called eval from.

Calling eval with binding

As an option, the eval method can take a second
parameter: the binding. Passing a binding value to
Ruby indicates that you don’t want to use the current context as the closure’s
environment, but instead some other environment. Here’s an example:


  
def get_binding
  a = 2
  b = 3
  binding
end
eval("puts a+b", get_binding)





Here I have written a function called get_binding
which contains two local variables a and b  but note the function also returns a binding. At the
bottom, I once again want Ruby to dynamically compile and execute the code
string and print out the expected result of 5. The difference is that, by
passing the binding returned by get_binding to eval, I want Ruby to evaluate “puts
a+b” inside the context of the get_binding
function.

A binding is a closure without a function; that is, it’s just the environment.
Just as it does when you call the lambda keyword,
Ruby makes a persistent copy of this environment in the heap because you might
call eval long after the current frame has been
popped off the stack. In my example, even though get_binding has already returned, when Ruby executes the
code parsed and compiled by eval it still is able to
access the values of a and b.

Below is what happens internally when I call binding:
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This looks very similar to what Ruby does when you call lambda  the only difference is that Ruby creates an rb_binding_t C structure instead of an rb_proc_t structure. The binding structure is simply a
wrapper around the internal environment structure, i.e. around the heap copy of
the stack frame.  The binding structure also contains the file name and line
number of the location where you called binding from.

Just like the Proc object, Ruby uses the RTypedData structure to wrap a Ruby object around the rb_binding_t C structure:
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With the Binding object, Ruby allows you to create a
closure, and then obtain and treat the closure’s environment as a data value.
The closure created by the binding, however, doesn’t contain any code  it’s a
closure without a function.  You can also think of the Binding object as an indirect way of accessing, saving and
passing around Ruby’s internal rb_env_t structure. 

Stepping through a call to instance_eval

Finally, let’s look at a variation on the eval
method: instance_eval.  Here’s yet another way of
printing out the same “quick brown fox” string to the console:


  
class Quote
  def initialize
    @str = "The quick brown fox"
  end
end
str2 = "jumps over the lazy dog."
obj = Quote.new
obj.instance_eval do
  puts "#{@str} #{str2}"
end





This example is even more complicated, so let me take a moment to explain how
it works:


	First, I create a Ruby class call Quote, which
saves the first half of my string in an instance variable, @str, when I initialize any new Quote instance.


	At the bottom I actually create an instance of the Quote class, and then call the instance_eval method, passing a block to it. instance_eval is similar to eval,
except that it evaluates the given string in the context of the receiver, or
the object I call instance_eval on. Also, as in this
example, I can pass a block to instance_eval instead
of a string if I don’t want to dynamically parse and compile code.


	The block I pass to instance_eval here prints out
the string, accessing the first half of the string from the quote object’s
instance variable, and the second half from the surrounding scope or
environment.




How can this possibly work? It appears the block passed to instance_eval has two environments: the quote instance and
also the surrounding code scope. In other words, the @str variable comes from one place, and the str2 variable from another.

This example points out another important part of closure environments in Ruby:
the current value of self. Recall from Chapter 2 that
the rb_control_frame_t structure for each stack frame
or level in your Ruby call stack contains a self
pointer, along with the PC, SP, DFP and LFP pointers and other values. The self pointer records indicates the current value of self at that point in your Ruby project; it indicates which
object is the owner of the method Ruby is currently executing at that time.
Here’s another, more accurate view of the rb_control_frame_t structure:
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You can see self points to the RObject structure corresponding to the Ruby object to which
the method Ruby is currently executing belongs. self
might instead point at an RString, RArray or other type of built in Ruby object structure
instead.

I mentioned above the self pointer is also part of
closure environments; let’s take a look at what Ruby does internally when you
call instance_eval.  First, suppose I have already
declared the Quote class, and Ruby has just executed
these two lines of code:


  
str2 = "jumps over the lazy dog."
obj = Quote.new





Here is the YARV stack with two local variables str2
and obj saved on it:
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The self pointer here is initially set to main, the value of self Ruby uses in your top level
scope. This is actually the “top self” object, an instance of the Object class Ruby creates when it starts up, just for this
purpose.

Next Ruby executes the instance_eval method. Given
I pass a block to instance_eval instead of a string,
there’s no need to startup the parser and compiler again. Ruby, however, does
need to initialize a new rb_block_t structure to
represent the new block:
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This works exactly the same way as if I had called a normal block without instance_eval. In fact, Ruby always saves the self pointer in rb_block_t when
you pass a block into a function call.

Calling the block using instance_eval on obj tells Ruby you want to reset the self pointer from the value it would normally have 
whatever self was in the code calling the block  to
the receiver of instance_eval or obj in this example:
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Another important part of Ruby closures

Stepping back for a moment, we’ve discovered another important member of the
rb_block_t structure:
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We know now, therefore, that closures in Ruby consist of:


	A function, referenced by the iseq pointer,


	A stack environment, referenced by the dynamic frame pointer, and


	A object environment, referenced by the self
pointer.




  
    Experiment 5-3: Using a closure to define a method
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Another common metaprogramming pattern in Ruby is to dynamically define methods
in a class using the define_method method. For
example, here’s a simple Ruby class that will print out a string when you call
display_message:




  
class Quote
  def initialize
    @str = "The quick brown fox jumps over the lazy dog"
  end
  def display_message
    puts @str
  end
end
Quote.new.display_message
=> The quick brown fox jumps over the lazy dog





But using metaprogramming I could have defined display_message in a more verbose but dynamic way like
this:


  
class Quote
  def initialize
    @str = "The quick brown fox jumps over the lazy dog"
  end
  define_method :display_message do
    puts @str
  end
end





You can see here I call define_method instead of the normal def keyword.
Notice that the name of the new method is passed as an argument:
:display_message. This allows you dynamically construct the method name from
some data values or to iterate over an array of method names, calling
define_method for each one.

However, notice there is another subtle difference between def and
define_method. For define_method I provide the body of the method as a
block that is, I have to use a do keyword. This may seem like a minor syntax
difference, but remember that blocks are actually closures. Adding that simple
do keyword has introduced a closure, meaning that the code inside the new
method has access to the environment outside. This is not the case with the
simple def keyword.

In this example above there aren’t any interesting values in the location where
I call define_method. But suppose there was another location in my
application that did have interesting values that I wanted my new method to be
able to access and use  by using a closure Ruby will internally make a copy of
that environment on the heap my new method will be able to use.

Let’s repeat the same example, but this time only store the first half of the
string in the instance variable:


  
class Quote
  def initialize
    @str = "The quick brown fox"
  end
end





Now I can define a method using a closure like this:


  
def create_method_using_a_closure
  str2 = "jumps over the lazy dog."
  Quote.send(:define_method, :display_message) do
    puts "#{@str} #{str2}"
  end
end





Note that since define_method is a private method in the Module class, I
needed to use the confusing send syntax here. Earlier I was able to call
define_method directly since I used it inside a class/module definition, but
that isn’t possible from other places in my application. By using send the
create_method_using_a_closure method is able to call a private method it
wouldn’t normally have access to.

More importantly, you can see the str2 variable, the second half of my
example string, is preserved in the heap for my new method to use  even after
create_method_using_a_closure returns:


  
create_method_using_a_closure
Quote.new.display_message
=> The quick brown fox jumps over the lazy dog.





Internally, Ruby treats this as a call to lambda  that is, this code
functions exactly the same way as if I had written:


  
class Quote
  def initialize
    @str = "The quick brown fox"
  end
end
def create_method_using_a_closure
  str2 = "jumps over the lazy dog."
  lambda do
    puts "#{@str} #{str2}"
  end
end
Quote.send(:define_method, :display_message, create_method_using_a_closure)
Quote.new.display_message





Here I’ve separated the code that creates the closure and defines the method.
If you pass 3 arguments to define_method Ruby expects the third to be a Proc
object. While this is even more verbose, it’s a bit less confusing since
calling the lambda makes it clear Ruby will create a closure.

Finally, when I call the new method Ruby will reset the self pointer from the
closure to receiver object, similar to how instance_eval works. That is,
whatever object context the call to create_method_using_a_closure occurred in
 maybe create_method_using_a_closure is a method defined in some other
class, for example  Ruby uses Quote.new as the self pointer while
executing display_message. This allows the new method to access @str as you
would expect.

  





  Closures in JRuby

Back in Chapter 2 I showed how JRuby executes a simple “puts 2+2” script. Now
let’s take a look at how JRuby executes some Ruby code that is just a bit more
complex, for example: 


  
10.times do
  str = "The quick brown fox jumps over the lazy dog."
  puts str
end





Here’s a conceptual diagram showing how JRuby will execute this script:


  
    [image: image]
  

 
Let’s walk through what’s going on in this diagram:


	On the top left is my Ruby script, this time called block.rb. JRuby will
compile this into a Java class called block, named after the Ruby source file
block.rb.


	When it’s time to start executing my script the JVM will call the file
method, which corresponds to the top level code in my script. This works the
same way my “puts 2+2” JRuby example did back in Chapter 2. However, notice now
there is another Java method in the generated block class called
block_0$RUBY$__file__”. This oddly named method contains the compiled JVM byte
code for the contents of my Ruby block.


	Next while executing the call to 10.times, JRuby will call the
RubyFixnum.times method, passing in the block as a parameter.


	Now RubyFixnum.times will iterate 10 times, calling the
block_0$RUBY$__file__ method each time through the loop.


	Finally, the block’s code will in turn call the JRuby RubyIO Java class to
print out the string.




The important detail to learn here is that JRuby's byte code compiler generates
a separate Java method for each block or other scope in my Ruby script. Also
note how JRuby passes control back and forth between the compiled version of my
Ruby script and the Java classes that implement the Ruby’s built in classes
such as Fixnum.

Now let’s take a second example that uses a closure:


  
str = "The quick brown fox"
10.times do
  str2 = "jumps over the lazy dog."
  puts "#{str} #{str2}"
end





Here the block’s code refers to the str variable in the parent scope. JRuby
compiles this script in same way as the previous example, generating a Java
class that contains three methods. But how does JRuby allow the block to access
the str from the parent scope? Does it use a DFP pointer and dynamic variable
access like MRI does?

The answer is no. One of the important differences between JRuby and MRI is
that JRuby does not use the JVM stack to keep track of different scopes or
closure environments in your Ruby program, in the same way that MRI Ruby uses
the YARV stack. There is no equivalent to the Dynamic Frame Pointer in JRuby.
Instead, JRuby implements the same behavior using a series of Java classes,
most importantly one called DynamicScope. When you reference variables from a
different scope, i.e. when you use closures, JRuby saves the referenced
variables inside a DynamicScope object. (Actually, there are a series of
different Java classes that share DynamicScope as a common superclass that hold
your closure variables.) In this example, JRuby saves my str variable inside
a DynamicScope like this:


  
    [image: image]
  

 
Later when JRuby executes the block, it creates a second DynamicScope object
that refers to the parent scope like this:


  
    [image: image]
  

 
Each DynamicScope object contains a parent pointer that indicates which other
dynamic scope is the enclosing or parent scope for this closure. This is
JRuby’s implementation of dynamic variable access. By iterating over these
parent pointers, the JRuby Java code can get or set a variable that is
present in a parent scope, or in the referencing environment of the closure.





  Closures in Rubinius

Now let’s take a look at how Rubinius handles blocks and closures. What happens
inside of Rubinius when I call a block? Let’s use the same two examples we just
did with JRuby - first a simple call to a block:


  
10.times do
  str = "The quick brown fox jumps over the lazy dog."
  puts str
end





Here’s how Rubinius handles this:


  
    [image: image]
  

 
Since in Rubinius the Integer.times method is
implemented in Ruby, the call to 10.times is a simple
Ruby call. The Integer.times method, in turn, yields
to my block code directly. All of this is implemented with Ruby!

Internally, Ruby compiles the 10.times do” call into these byte code
instructions:


  
    [image: image]
  

 
Here the text Rubinius::CompiledCode refers to the
block I’m passing to the 10.times method call. Behind
the scenes the Rubinius VM creates a C++ object to represent the block using
the create_block instruction, and then passes that
object along to the method call with the send_stack_with_block instruction.

Now let’s take another example and see how Rubinius handles closures:


  
str = "The quick brown fox"
10.times do
  str2 = "jumps over the lazy dog."
  puts "#{str} #{str2}"
end





Again, this time my block code refers to a variable defined in the parent
scope. How does Rubinius implement this? To find out, let’s look at how
Rubinius compiles the code inside the block into VM instructions:


  
    [image: image]
  

 
I’ve shown the key VM instruction here in bold: Rubinius uses the push_local_depth instruction to walk up the stack and get
the value of str from the parent scope. Internally
Rubinius implements this instruction using a C++ object called VariableScope:


  
    [image: image]
  

 
Just like the Java DynamicScope object did in JRuby,
this C++ object saves an array of values - in other words the closure
environment. Rubinius doesn’t use tricks with the VM stack to save pointers the
same way that YARV does. There is no dynamic frame pointer; instead, Rubinius
represents closure environments, blocks, lambdas, procs and bindings with a set
of different C++ classes. I don’t have the space here to explain how all of
that works in detail, but let’s take a quick look at how Rubinius uses the
VariableScope object to obtain the str value from the parent scope:


  
    [image: image]
  

 
This should look familiar - in fact, Rubinius functions in exactly the same way
that JRuby does when accessing a parent scope. At a high level, the only
difference is that VariableScope is written in C++
while JRuby’s DynamicScope object is written in Java.
Of course, at a more detailed level the two implementations are very different.

Like JRuby, Rubinius stores the outer str variable in
an instance of the VariableScope class and later
creates a second VariableScope object when executing
the code inside the block. The two VariableScope
objects are connected with a parent pointer. When the
Rubinius VM executes the push_local_depth instruction
from inside the block, it follows the parent pointer
up to obtain the value of str from the outer scope.

  
    The most important and impressive feature of Rubinius is that it does implement
many of the methods in Ruby’s core classes, such as Integer.times, in pure Ruby code. This means you can take a
look right inside of Rubinius yourself to learn how something works. For
example, here’s Rubinius’s implementation of the Integer.times method, taken from the
kernel/common/integer.rb source code file:


  
def times
  return to_enum(:times) unless block_given?
  i = 0
  while i < self
    yield i
    i += 1
  end
  self
end





On the first line, Rubinius calls to_enum to return
an enumerator object if a block is not given. But in the most common case when
you do provide a block you want to iterate over, as in my 10.times example, Rubinius uses a simple Ruby while-loop
that calls yield each time through the loop. This is
exactly how you or I would probably implement the Integer.times method if Ruby didn’t provide it for us.

  





Conclusion

This is the end of my journey through Ruby internals. I hope I’ve given you
some sense of how Ruby works, of what happens when you type “ruby
my_awesome_script.rb” and press ENTER. The next time you include a module in a
class, call a block or use the break keyword to jump
back up the call stack, I hope some of the diagrams you’ve seen here come to
mind.

More to come?

As I said in the preface, there are many, many areas of Ruby’s internal
implementation I didn’t have time to cover in this book. For starters, except
for hash tables I didn’t describe how Ruby’s core classes such as arrays,
strings, files or integers work. I also didn’t explore garbage collection, the
regular expression engine, threads, or the extension API, just to name a few
topics.

This year in Ruby Under a Microscope I’ve tried to cover the core of the
language implementation. I’ve also covered the topics I was most interested in.
Someday I may try to write a second book, Ruby Under a Microscope - Part 2,
that would cover portions of Ruby’s implementation I didn’t have time for here.

Feedback please

I hope you found this useful, that you’ve gained a deeper understanding of Ruby
and become a more knowledgable Ruby developer. Please let me know what you
think - I plan to post an updated version of the text with technical
corrections and updates. I’d also love to hear what you think should be covered
in Ruby Under a Microscope - Part 2 if I ever write it.

Please send feedback to:


	http://patshaughnessy.net/ruby-under-a-microscope#disqus_thread


	Twitter: @pat_shaughnessy


	Email: pat@patshaughnessy.net


	https://github.com/patshaughnessy/ruby-under-a-microscope/issues
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