

Contents in Detail

	Cover Page

	Title Page

	Copyright Page

	About the Author

	CONTENTS

	CONTENTS IN DETAIL

	ACKNOWLEDGMENTS

	INTRODUCTION

	WHAT IS THIS BOOK ALL ABOUT?

	WHAT’S IN THE BOOK

	WHAT YOU’LL NEED FOR THIS BOOK

	1 GETTING STARTED WITH THE RASPBERRY PI

	WHAT IS A RASPBERRY PI?

	THE RASPBERRY PI’S HARDWARE

	SETTING UP YOUR RASPBERRY PI

	USING THE COMMAND LINE

	ACCESSING YOUR RASPBERRY PI REMOTELY

	TRANSFERRING FILES

	WRAPPING UP

	2 PYTHON PROGRAMMING

	EXPLORING PYTHON

	INTRODUCING THONNY AND IDLE

	WRITING YOUR FIRST PROGRAM

	STRINGS

	VARIABLES

	LOOPS

	CONDITIONALS

	FUNCTIONS

	RUNNING PYTHON CODE FROM THE TERMINAL

	COMMON PROGRAMMING MISTAKES

	USING COMMENTS

	WRAPPING UP

	3 HOT GLUE NIGHT-LIGHT

	WHAT YOU’LL NEED

	BUILDING THE CUSTOM NIGHT-LIGHT

	BUILDING THE LED NIGHT-LIGHT

	WRAPPING UP

	4 THE PI CAMERA: SELFIE SNAPPER

	WHAT YOU’LL NEED

	VERSIONS AND SPECIFICATIONS

	PHOTOGRAPHY WITH THE PI CAMERA

	VIDEOS WITH THE PI CAMERA

	WRAPPING UP

	5 PI SPY PART 1: HACKING WEBCAMS FOR SECRET SURVEILLANCE

	WHAT YOU’LL NEED

	SETTING UP YOUR WEBCAM

	STREAMING A VIDEO FROM THE WEBCAM

	LIVE STREAMING TO A DEVICE

	STOPPING AND RESTARTING MOTION

	WRAPPING UP

	6 MANIPULATING MINECRAFT

	WHAT YOU’LL NEED

	MINECRAFT ON THE RASPBERRY PI

	POSTING A MESSAGE TO CHAT

	TRAMPOLINE GRASS

	THE SAND DROP GAME

	MINECRAFT-CONTROLLED LED

	CAMERA SURVEILLANCE MINECRAFT TOWERS

	WRAPPING UP

	7 RADIO INVASION

	WHAT YOU’LL NEED

	PREPARING THE RASPBERRY PI

	RUNNING A TEST PROGRAM

	STREAMING AN MP3 MUSIC FILE

	RECORDING AND BROADCASTING YOUR OWN FILE

	CODING THE SOUNDBOARD

	RUNNING YOUR PROGRAM

	WRAPPING UP

	8 THE AUTOMATIC TEXTING MACHINE

	WHAT YOU’LL NEED

	A LITTLE ABOUT SMS

	CREATING A SIMPLE TEXT SENDER

	SETTING UP A TWILIO PHONE NUMBER

	CREATING THE AUTOMATIC SMS REMINDER MACHINE

	WRAPPING UP

	9 PI SPY PART 2: WI-FI AND BLUETOOTH TRACKING

	WHAT YOU’LL NEED

	CREATING YOUR STATUS BOARD

	TRACKING DEVICES WITH IP ADDRESSES

	FINDING YOUR IP ADDRESS

	FINDING THE IP ADDRESSES OF OTHER DEVICES

	WRITING THE STATUS BOARD CODE

	SETTING UP THE CODE TO RUN AUTOMATICALLY

	TRACKING DEVICES WITH BLUETOOTH

	WRAPPING UP

	10 MAGIC MUSIC BOX

	WHAT YOU’LL NEED

	CHOOSING A SPEAKER TYPE

	BUILDING THE MAGIC MUSIC BOX

	AUTOMATICALLY STARTING THE MP3 PLAYER ON BOOT-UP

	PUTTING IT ALL TOGETHER

	WRAPPING UP

	11 NATURE BOX: MOTION-SENSING CAMERA

	WHAT YOU’LL NEED

	SETTING UP THE PASSIVE INFRARED SENSOR

	SETTING UP THE PI CAMERA

	WRITING THE TEST CODE

	RETRIEVING THE IMAGES FROM THE RASPBERRY PI

	CODING THE FINAL NATURE BOX

	STARTING THE PROGRAM AUTOMATICALLY

	PUTTING IT ALL TOGETHER

	WRAPPING UP

	12 SMART PLUGS FOR SMART HOME HACKS

	WHAT YOU’LL NEED

	SETTING UP THE ENERGENIE REMOTE PLUG

	TESTING THE LAMP

	USING AN APP TO CONTROL THE PLUG

	CODING THE SMART PLUG

	WRAPPING UP

	13 MIRROR, MIRROR: THE SOCIAL MEDIA STATUS MIRROR

	WHAT YOU’LL NEED

	PREPARING THE EQUIPMENT

	SETTING UP YOUR TWITTER DEVELOPER ACCOUNT

	SETTING UP YOUR TWITTER APP

	PROGRAMMING YOUR RASPBERRY PI WITH THE APP

	THE FINAL PROGRAM

	PUTTING IT ALL TOGETHER

	WRAPPING UP

	14 COMPUTER GAMES WITH THE SENSE HAT

	WHAT YOU’LL NEED

	WHAT IS THE SENSE HAT?

	GETTING STARTED WITH THE SENSE HAT

	BUILDING THE ROCK, PAPER, SCISSORS, LIZARD, SPOCK GAME

	WRAPPING UP

	i

	ii

	iii

	iv

	v

	vi

	vii

	viii

	ix

	x

	xi

	xii

	xiii

	xiv

	xv

	xvi

	xvii

	xviii

	xix

	xx

	xxi

	xxii

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	32

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	46

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	57

	58

	59

	60

	61

	62

	63

	64

	65

	66

	67

	68

	69

	70

	71

	72

	73

	74

	75

	76

	77

	78

	79

	80

	81

	82

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	102

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	115

	116

	117

	118

	119

	120

	121

	122

	123

	124

	125

	126

	127

	128

	129

	130

	131

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	160

	161

	162

	163

	164

	165

	166

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	182

	183

	184

	185

	186

	187

	188

	189

	190

	191

	192

	193

	194

	195

	196

	197

	198

	199

	200

	201

	202

	203

	204

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	222

	223

	224

	225

	226

	227

	228

	229

	230

	231

	232

	233

	234

	235

	236

	237

	238

	239

	240

	241

	242

	243

	244

	245

	246

	247

	248

	249

	250

	251

	252

	253

	254

	255

	256

	257

	258

	259

	260

	261

	262

	263

	264

	265

	266

	267

	268

 RASPBERRY PI® PROJECTS FOR KIDS

CREATE AN MP3 PLAYER, MOD MINECRAFT, HACK RADIO WAVES, AND MORE!

BY DAN ALDRED

[image: image]

SAN FRANCISCO

 RASPBERRY PI® PROJECTS FOR KIDS. Copyright © 2020 by Dan Aldred.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-946-9

ISBN-13: 978-1-59327-946-2

Publisher: William Pollock

Production Editor: Laurel Chun

Cover Illustration: Derek Yee

Photography: Nigel Whitfield

Interior Design: Beth Middleworth

Developmental Editor: Liz Chadwick

Technical Reviewer: Les Pounder

Copyeditor: Anne Marie Walker

Compositor: Happenstance Type-O-Rama

Proofreader: Lisa Devoto Farrell

Circuit diagrams made using Fritzing (http://fritzing.org/).

The following images are reproduced with permission:

The photo in Figure 14-1 was taken by Johnson Space Center of the United States National Aeronautics and Space Administration (NASA) (http://spaceflight.nasa.gov/gallery/images/shuttle/sts-132/html/s132e012208.html). Figure 14-11 was created by DMacks and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported 2.5 Generic, 2.0 Generic, and 1.0 Generic Licenses (https://commons.wikimedia.org/wiki/File:Pierre_ciseaux_feuille_l%C3%A9zard_spock_aligned.svg).

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1.415.863.9900; info@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data:

Names: Aldred, Dan, author.

Title: Raspberry Pi projects for kids : create an MP3 player, mod Minecraft,

 hack radio waves, and more! / Dan Aldred.

Description: San Francisco : No Starch Press, Inc., [2019]

Identifiers: LCCN 2019023893 (print) | LCCN 2019023894 (ebook) | ISBN

 9781593279462 (paperback) | ISBN 9781593279479 (ebook)

Subjects: LCSH: Raspberry Pi (Computer)--Juvenile literature. | Python

 (Computer program language)--Juvenile literature. |

 Microcomputers--Juvenile literature. | Computer programming--Juvenile

 literature.

Classification: LCC QA76.8.R15 A53 2019 (print) | LCC QA76.8.R15 (ebook)

 | DDC 005.13/3--dc23

LC record available at https://lccn.loc.gov/2019023893

LC ebook record available at https://lccn.loc.gov/2019023894

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Raspberry Pi is a trademark of the Raspberry Pi Foundation. Other product and company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

 ABOUT THE AUTHOR

Dan Aldred is a Computer Science teacher, freelance writer, and hacker. He has championed the use of the Raspberry Pi as a tool for learning and creativity, and is a Raspberry Pi Certified Educator. Aldred led the winning team of students for the first Astro Pi competition whose code is now orbiting Earth aboard the International Space Station. He currently lives in the United Kingdom.

ABOUT THE TECH REVIEWER

Les Pounder is a Creative Technologist who solves problems using code and electronics. He has worked with the Raspberry Pi Foundation to deliver their teacher training program, and with schools and universities to help teachers create engaging projects in code. Les writes Raspberry Pi projects for magazines such as Linux Format, Linux User & Developer, MagPi, and Beanz. He also writes Raspberry Pi content for the sites Tom’s Hardware, Tech Radar, and Electromaker. Les blogs at https://bigl.es.

 CONTENTS

ACKNOWLEDGMENTS

INTRODUCTION

CHAPTER 1: GETTING STARTED WITH THE RASPBERRY PI

CHAPTER 2: PYTHON PROGRAMMING

CHAPTER 3: HOT GLUE NIGHT-LIGHT

CHAPTER 4: THE PI CAMERA: SELFIE SNAPPER

CHAPTER 5: PI SPY PART 1: HACKING WEBCAMS FOR SECRET SURVEILLANCE

CHAPTER 6: MANIPULATING MINECRAFT

CHAPTER 7: RADIO INVASION

CHAPTER 8: THE AUTOMATIC TEXTING MACHINE

CHAPTER 9: PI SPY PART 2: WI-FI AND BLUETOOTH TRACKING

CHAPTER 10: MAGIC MUSIC BOX

CHAPTER 11: NATURE BOX: MOTION-SENSING CAMERA

CHAPTER 12: SMART PLUGS FOR SMART HOME HACKS

CHAPTER 13: MIRROR, MIRROR: THE SOCIAL MEDIA STATUS MIRROR

CHAPTER 14: COMPUTER GAMES WITH THE SENSE HAT

 CONTENTS IN DETAIL

ACKNOWLEDGMENTS

INTRODUCTION

WHAT IS THIS BOOK ALL ABOUT?

WHAT’S IN THE BOOK

WHAT YOU’LL NEED FOR THIS BOOK

CHAPTER 1: GETTING STARTED WITH THE RASPBERRY PI

WHAT IS A RASPBERRY PI?

THE RASPBERRY PI’S HARDWARE

THE RASPBERRY PI 4

OTHER MODELS

GPIO PINS

SETTING UP YOUR RASPBERRY PI

DOWNLOADING THE OPERATING SYSTEM

INSTALLING THE OPERATING SYSTEM

SETTING UP YOUR PI EQUIPMENT

BOOTING UP YOUR PI

CONFIGURING YOUR RASPBERRY PI

A QUICK TOUR OF THE RASPBIAN OPERATING SYSTEM

CONFIGURING YOUR RASPBERRY PI

GOING ONLINE

USING THE COMMAND LINE

SETTING THE TIME

ACCESSING THE CONFIGURATION SETTINGS

UPDATING AND UPGRADING

INSTALLING SOFTWARE PACKAGES

ACCESSING YOUR RASPBERRY PI REMOTELY

ACCESSING THE RASPBERRY PI VIA SSH

ACCESSING THE RASPBERRY PI VIA VNC USING REALVNC

ACCESSING THE RASPBERRY PI VIA REMOTE DESKTOP

TRANSFERRING FILES

WRAPPING UP

CHAPTER 2: PYTHON PROGRAMMING

EXPLORING PYTHON

INTRODUCING THONNY AND IDLE

WRITING YOUR FIRST PROGRAM

STRINGS

VARIABLES

LOOPS

WHILE LOOPS

FOR LOOPS

CONDITIONALS

FUNCTIONS

RUNNING PYTHON CODE FROM THE TERMINAL

COMMON PROGRAMMING MISTAKES

CAPITAL LETTERS

INDENTATION

USING COMMENTS

WRAPPING UP

CHAPTER 3: HOT GLUE NIGHT-LIGHT

WHAT YOU’LL NEED

BUILDING THE CUSTOM NIGHT-LIGHT

CODING THE NIGHT-LIGHT

RUNNING YOUR PROGRAM

MODIFY: FADING THE LED

BUILDING THE LED NIGHT-LIGHT

WIRING YOUR NIGHT-LIGHT

CODING THE NIGHT-LIGHT

RUNNING YOUR PROGRAM

WRAPPING UP

CHAPTER 4: THE PI CAMERA: SELFIE SNAPPER

WHAT YOU’LL NEED

VERSIONS AND SPECIFICATIONS

PHOTOGRAPHY WITH THE PI CAMERA

SETTING UP THE HARDWARE AND SOFTWARE

CUSTOMIZING YOUR IMAGES

TRIGGERING THE CAMERA WITH A BUTTON

VIDEOS WITH THE PI CAMERA

MAKING A VIDEO

PLAYING THE VIDEO

PLAYING THE VIDEO ON A COMPUTER OR OTHER DEVICE

CREATING A TIME-LAPSE VIDEO

WRAPPING UP

CHAPTER 5: PI SPY PART 1: HACKING WEBCAMS FOR SECRET SURVEILLANCE

WHAT YOU’LL NEED

SETTING UP YOUR WEBCAM

STREAMING A VIDEO FROM THE WEBCAM

LIVE STREAMING TO A DEVICE

STOPPING AND RESTARTING MOTION

WRAPPING UP

CHAPTER 6: MANIPULATING MINECRAFT

WHAT YOU’LL NEED

MINECRAFT ON THE RASPBERRY PI

STARTING MINECRAFT

FINDING YOURSELF: USING THE X-, Y-, AND Z- COORDINATES

HACKING MINECRAFT

POSTING A MESSAGE TO CHAT

CODING THE CHAT MESSENGER

RUNNING YOUR PROGRAM

TRAMPOLINE GRASS

CODING THE TRAMPOLINE GRASS

RUNNING YOUR PROGRAM

TAKING IT FURTHER

THE SAND DROP GAME

CODING THE SAND DROP GAME

RUNNING YOUR PROGRAM

TAKING IT FURTHER

MINECRAFT-CONTROLLED LED

WIRING THE MINECRAFT LED

CODING THE MINECRAFT LED

RUNNING YOUR PROGRAM

CAMERA SURVEILLANCE MINECRAFT TOWERS

BUILDING THE THREE TRIGGER TOWERS

CODING THE CAMERA TOWERS

RUNNING YOUR PROGRAM

WRAPPING UP

CHAPTER 7: RADIO INVASION

WHAT YOU’LL NEED

PREPARING THE RASPBERRY PI

RUNNING A TEST PROGRAM

STREAMING AN MP3 MUSIC FILE

RECORDING AND BROADCASTING YOUR OWN FILE

SETTING UP YOUR MICROPHONE AND SPEAKERS

MAKING AND PLAYING YOUR RECORDING ON THE RASPBERRY PI

BROADCASTING THE FILE

CODING THE SOUNDBOARD

CREATING THE GUI FUNCTIONS

CREATING THE WINDOW AND BUTTONS

RUNNING YOUR PROGRAM

WRAPPING UP

CHAPTER 8: THE AUTOMATIC TEXTING MACHINE

WHAT YOU’LL NEED

A LITTLE ABOUT SMS

CREATING A SIMPLE TEXT SENDER

SIGNING UP FOR A TWILIO ACCOUNT

SETTING UP A TWILIO PHONE NUMBER

CREATING A PROJECT

INSTALLING TWILIO

WRITING THE CODE

CREATING THE AUTOMATIC SMS REMINDER MACHINE

SETTING UP AND VALIDATING THE FORMAT

CODING THE REMINDER MESSAGE

MATCHING TIMES AND SENDING THE MESSAGE

WRAPPING UP

CHAPTER 9: PI SPY PART 2: WI-FI AND BLUETOOTH TRACKING

WHAT YOU’LL NEED

CREATING YOUR STATUS BOARD

WIRING UP THE LEDS

ADDING THE LEDS TO THE BOARD

CONNECTING THE LEDS TO THE RASPBERRY PI

ATTACHING THE RASPBERRY PI

TRACKING DEVICES WITH IP ADDRESSES

FINDING YOUR IP ADDRESS

FINDING THE IP ADDRESSES OF OTHER DEVICES

USING FING

USING NMAP

WRITING THE STATUS BOARD CODE

SETTING UP AND IDENTIFYING THE FIRST DEVICE

FINDING THE REST OF THE DEVICES

ADDING DELAYS, RESPONDING TO DATA, AND ADDING THE BUTTON

RUNNING THE PROGRAM

TROUBLESHOOTING

SETTING UP THE CODE TO RUN AUTOMATICALLY

USING CRON TO AUTOSTART THE PROGRAM

REBOOTING TO THE COMMAND LINE

TRACKING DEVICES WITH BLUETOOTH

WHAT IS BLUETOOTH?

TURNING ON THE RASPBERRY PI BLUETOOTH

WRITING THE STATUS BOARD CODE

SHUTTING DOWN

WRAPPING UP

CHAPTER 10: MAGIC MUSIC BOX

WHAT YOU’LL NEED

CHOOSING A SPEAKER TYPE

BUILDING THE MAGIC MUSIC BOX

WIRING THE BUTTONS

CONNECTING THE SPEAKER

CODING THE MAGIC MUSIC BOX

RUNNING YOUR PROGRAM

AUTOMATICALLY STARTING THE MP3 PLAYER ON BOOT-UP

HEADPHONE JACK OPTION

BLUETOOTH OPTION

PUTTING IT ALL TOGETHER

WRAPPING UP

CHAPTER 11: NATURE BOX: MOTION-SENSING CAMERA

WHAT YOU’LL NEED

SETTING UP THE PASSIVE INFRARED SENSOR

WIRING THE PIR

TESTING THE PIR

SETTING UP THE PI CAMERA

ATTACHING THE PI CAMERA

CREATING A NEW FOLDER TO STORE THE IMAGES

WRITING THE TEST CODE

RETRIEVING THE IMAGES FROM THE RASPBERRY PI

SETTING UP A DROPBOX ACCOUNT

INSTALLING DROPBOX FOR PYTHON

CODING THE FINAL NATURE BOX

SETTING UP THE FINAL PROGRAM

COMBINING THE CAMERA AND SENSOR

CREATING THE TRY AND EXCEPT

RUNNING THE MOTION SENSOR

STARTING THE PROGRAM AUTOMATICALLY

PUTTING IT ALL TOGETHER

WRAPPING UP

CHAPTER 12: SMART PLUGS FOR SMART HOME HACKS

WHAT YOU’LL NEED

SETTING UP THE ENERGENIE REMOTE PLUG

TESTING THE LAMP

CONTROLLING THE LAMP REMOTELY

FLASHING THE LAMP ON AND OFF

USING AN APP TO CONTROL THE PLUG

CODING THE SMART PLUG

RUNNING THE PROGRAM

IMPROVING THE CODE TO SWITCH ON AND OFF

WRAPPING UP

CHAPTER 13: MIRROR, MIRROR: THE SOCIAL MEDIA STATUS MIRROR

WHAT YOU’LL NEED

PREPARING THE EQUIPMENT

CONNECTING THE SPEAKER

TEACHING THE PI TO READ TEXT OUT LOUD

PREPARING THE LEDS

USING THE NPN TRANSISTOR

PREPARING THE CIRCUIT

TESTING THE LEDS

SETTING UP YOUR TWITTER DEVELOPER ACCOUNT

SETTING UP YOUR TWITTER APP

CREATING THE ACCESS KEYS AND TOKENS

PROGRAMMING YOUR RASPBERRY PI WITH THE APP

SENDING YOUR FIRST TWEET

READING TWEETS

STREAMING TWEETS AUTOMATICALLY

THE FINAL PROGRAM

STARTING THE FINAL PROGRAM

ADDING THE MAIN PROGRAM CODE

AUTOMATICALLY STARTING THE TWITTER STREAM

PUTTING IT ALL TOGETHER

WRAPPING UP

CHAPTER 14: COMPUTER GAMES WITH THE SENSE HAT

WHAT YOU’LL NEED

WHAT IS THE SENSE HAT?

GETTING STARTED WITH THE SENSE HAT

SCROLLING TEXT ACROSS THE SENSE HAT

TAKING A TEMPERATURE READING

MAKING A REAL-TIME TEMPERATURE DISPLAY

BUILDING A COMPASS

MAKING A MAGICAL SPARKLE SCREEN

CREATING AN IMAGE WITH THE LED DISPLAY

CREATING IMAGES WITH THE GRID DRAW PROGRAM

BUILDING THE ROCK, PAPER, SCISSORS, LIZARD, SPOCK GAME

IMPORTING MODULES AND CREATING THE VARIABLES

PREPARING THE GAME

SETTING UP THE PLAYER’S CHOICE

SELECTING AN OBJECT

NOTIFYING THE PLAYER OF THEIR OPTION CHOICE

CODING THE RASPBERRY PI’S SELECTION

DISPLAYING THE RASPBERRY PI’S CHOICE

CHOOSING A WINNER

STARTING A NEW GAME

PLAY AGAIN?

WRAPPING UP

 ACKNOWLEDGMENTS

Thank you to the team at No Starch Press for continuing to be a pleasure to work with and proving that remote teleworking across continents works! A big shout out and thanks to Les who not only checked and reviewed the program code but who also has always been there for programming advice, support, and inspiration. It was his insightful advice in response to the question “How do I get into freelance work?” that kick-started my journey with this book. Thanks also to Nigel Whitfield for the photography and images.

There are countless other inspiring hackers, makers, and people who have taken the time to listen to me, develop my understanding, and create opportunities. To them all, I offer a nod of appreciation.

Finally, thanks to Kay, the most inspirational person that I know.

 INTRODUCTION

WELCOME TO RASPBERRY PI PROJECTS FOR KIDS, WHICH WILL SHOW YOU HOW TO HARNESS THE POWER OF THE RASPBERRY PI COMPUTER AND PYTHON CODE TO CREATE 12 AWESOME PROJECTS. YOU CAN THEN TAKE THE NEW SKILLS AND TECHNIQUES YOU LEARN HERE AND APPLY THEM TO YOUR OWN PROJECTS. THIS BOOK IS AIMED AT BEGINNERS TO USING THE RASPBERRY PI AND BUILDING HACKS, AS WELL AS AT THOSE MORE EXPERIENCED WHO MAY BE LOOKING FOR A LITTLE INSPIRATION FOR THEIR OWN NEXT GREAT BUILD.

WHAT IS THIS BOOK ALL ABOUT?

Over the years, I’ve gained a lot of enjoyment from the Raspberry Pi, a small but versatile $35 computer. In my role as a computer science teacher at a large school, I’ve been fortunate to witness firsthand the positive and life-changing impact of Raspberry Pi–based learning. Using the Pi develops programming skills and hones thinking skills, building confidence along the way. The Pi is enormously successful as an educational tool, and the key to this success is that the Pi is fun!

Coding is no longer about just typing out line after line of instructions. Instead, you can learn to code by hacking Minecraft, making an MP3 music player, or building a spy cam. When using the Raspberry Pi, you’re not just building and coding a distance sensor— you’re creating a friend- or enemy-tracker.

It’s this combination of fun and learning, and the Pi’s versatility, that makes it such a great tool for education.

In my spare time, I research, tinker, and create many of my own Raspberry Pi projects, which I build and share on my website www.tecoed.co.uk. I wrote this book because I want to share my passion for making. Most important, I wanted to write a book that lets you develop relevant skills through exciting and useful hacks.

WHAT’S IN THE BOOK

In each chapter of this book, you’ll learn Python programming skills through building cool, inspiring, and useful hacks that can be deployed around your home. Each chapter is divided into simple step-by-step instructions, with plenty of diagrams to build the project. I’ll also encourage you to test your skills by developing your hacks further on your own.

This book requires no previous Raspberry Pi coding or experience.

I hope that you have as much fun building the projects as I did when writing this book. Here’s a quick breakdown of the content in each chapter:

Chapter 1: Getting Started with the Raspberry Pi

This first chapter provides all the information required for you to get started with your Raspberry Pi. It covers setting up the hardware, installing the operating system, accessing your Pi from another computer, and other useful skills. If you already know your way around the Pi and the Python programming language, you can jump straight into one of the hacks.

Chapter 2: Python Programming

In this chapter, you’ll become familiar with the basics of the Python programming language. This primer will prepare you for the projects in the book. Each of the following chapters features a standalone hack with all the instructions and code required. You can use this chapter as a reference guide whenever you need it and to learn more about how to use Python.

Chapter 3: Hot Glue Night-Light

This is a simple but exciting hack. You’ll take a glue gun, like the ones you’ve probably used in school, and fill a silicone mold of your choice with hot glue. Then you’ll add an LED and let it set. When you wire up the LED, you’ll create your own custom glue light. You’ll then combine this with a light sensor to create a light that gets brighter as the environment gets darker.

Chapter 4: The Pi Camera: Selfie Snapper

Here you’ll master the Pi Camera and learn how to take pictures, apply Instagram-style filters, and edit your photos. You’ll then build your own selfie snapper, which will automatically take your picture for you, as well as a time-lapse camera. Lastly, you’ll learn how to capture video and share it with your friends and family.

Chapter 5: Pi Spy Part 1: Hacking Webcams for Secret Surveillance

With this project, you’ll hack an old webcam and combine it with the Raspberry Pi to stream a live video feed to your mobile or tablet device. This is a great project for spying on your family, keeping watch on your pets, or monitoring your secret stash of sweets.

Chapter 6: Manipulating Minecraft

Here you’ll take command of the Minecraft world and manipulate it with code. You’ll create a trampoline out of grass, build a game where you dodge deadly falling blocks of sand, and even use Minecraft to control the glue light that you made in Chapter 3. In this chapter’s final hack, you’ll build a Pi Camera remote control that will enable you to record a video by hitting a block of melons in Minecraft!

Chapter 7: Radio Invasion

In this project, you’ll take over the radios in your house to broadcast your own messages, music, or even gossip to local listeners. You’ll hack into the radio waves and program a slick interface so you can control the radio with a simple click of a button.

Chapter 8: The Automatic Texting Machine

This project teaches you to safely hack your mobile phone and send messages from your Raspberry Pi. You’ll combine these skills to create a personal text-reminder assistant that sends you texts at particular times to let you know when to do something—like walk the dog, take out the trash, or meet your friend!

Chapter 9: Pi Spy Part 2: Wi-Fi and Bluetooth Tracking

In this project, you’ll discover the basics of tracking devices that are connected to your home internet or have Bluetooth enabled. You’ll access the make and model of the connected devices as well as find out their IP and MAC addresses. The end goal is to create a physical status board that lights up whenever a particular person enters your house with their device.

Chapter 10: Magic Music Box

If you like music, you’ll love this project. With just a few push buttons, some wires, a speaker, and a small box, you’ll build your own MP3 player. You’ll learn how to assign actions to each button press so you can change the song or turn up the volume. You’ll embed your music player within a small box that you can customize and decorate.

Chapter 11: Nature Box: Motion-Sensing Camera

This hack pairs the Pi Camera with an infrared sensor to automatically capture pictures of wildlife. Wire up the parts, write up the code, secure it all in a box, and you can deploy your nature box in your yard or around your local area. The sensor will alert the Pi when something moves nearby, and the Pi will take a picture. You’ll even rig this hack to upload your images to Dropbox so you can view them remotely without disturbing shy wildlife visitors.

Chapter 12: Smart Plugs for Smart Home Hacks

In this project, you’ll use smart plugs and your own code to safely hack the power in your home, giving you the ability to remotely turn lights on and off, boil a kettle, or turn on the TV—all with your phone or tablet. This is a great project for pranking people.

Chapter 13: Mirror, Mirror: The Social Media Status Mirror

How can you check your social media updates and get other stuff done at the same time? You build a social media mirror, that’s how. This useful hack turns your mirror into a set of flashing lights that notifies you when you receive messages from particular users, when you get retweets, or when particular keywords come up on your feed. The mirror even relays the messages via a speaker so you don’t have to stop what you’re doing to read them.

Chapter 14: Computer Games with the Sense HAT

Here you’ll use the same space-age technology that was sent to the International Space Station to expand on the classic rock, paper, scissors game and create rock, paper, scissors, lizard, Spock. You’ll play against the Raspberry Pi by using the built-in joystick, LED matrix, and code on the Raspberry Pi Sense HAT.

WHAT YOU’LL NEED FOR THIS BOOK

This is a list of all the components you’ll need to complete every project in the book. Each chapter will also let you know the required materials for just that project, if you don’t want to get everything all at once. Where I haven’t specified a quantity, I recommend you get a bag or set so you have a few on hand.

The following are Raspberry Pi–related components you’ll need for the projects:

	1 Raspberry Pi (I recommend getting the latest model available, which is the 4 at the time of writing, although the program code has all been tested on a range of models.)

	1 Raspberry Pi Zero W (recommended for Chapter 7)

	1 Pi Camera v1 or v2

	Alligator clips

	1 USB portable battery

	1 USB webcam

	1 USB microphone

	A range of assorted jumper wires (male to male, male to female, female to female)

	Assorted LEDs

	1 breadboard (400 pin)

	1 photoresistor (LDR)

	A range of resistors between 220 and 330 ohms

	1K ohm resistor

	NPN transistor

	1 passive infrared sensor (PIR)

	1 0.1 uF capacitor

	Push buttons

	1 Energenie smart plug

	1 Pi-mote

	Android phone or tablet

	FM-enabled radio (digital or analog), preferably with two speakers or built in

	Bluetooth speaker or audio jack speaker

	Set of battery-powered LED strings

	Small speaker

	1 Raspberry Pi Sense HAT

These are other tools you’ll need:

	A hot glue gun

	Silicone mold (like a novelty ice cube tray)

	Scissors

	Tape

	Small Philips screwdriver

	Glue sticks for a glue gun

	Soldering iron or conductive paint

	Mirror

	Drill

	Dropbox account

	Twitter account

	Small clear plastic box

	Small wooden box

	Small piece of cardboard

	Images or photos

 1
GETTING STARTED WITH THE RASPBERRY PI

WHEN I STARTED MY FIRST RASPBERRY PI CLUB, SEVERAL PEOPLE THOUGHT IT WAS A COOKING CLUB. THEY TURNED UP EXPECTING TO MAKE CAKES, PIES, AND OTHER SWEETS. LOOKING BACK, I SUPPOSE THAT IN SOME SENSE THEY WERE RIGHT. A RASPBERRY PI ENABLES YOU TO MAKE. YOU MIGHT NOT MAKE DESSERTS, BUT LIKE BAKING, YOU FOLLOW RECIPES TO BUILD SOMETHING FROM A FEW DIFFERENT COMPONENTS AND ADD YOUR OWN SPIN ON THEM. OR, YOU CAN GO COMPLETELY OFF TRACK AND DO YOUR OWN THING. THE RASPBERRY PI IS ULTIMATELY A TOOL FOR DISCOVERY, CREATION, AND LEARNING.

Like a recipe book, this book contains instructions for 12 fun projects. You can then combine elements and skills from all the chapters to create your own hacks. Each chapter stands alone, meaning it covers all the skills, content, and techniques you’ll need to complete the project.

This chapter covers the essentials for getting started with your Raspberry Pi, including how to set it up, connect it to the internet, and transfer files to it. This chapter is also a reference for all the common tasks you’ll want to perform with your Raspberry Pi. Of course, if you already know your way around the Raspberry Pi and the Python programming language, you can skip to Chapter 3 and begin the hot glue night-light.

WHAT IS A RASPBERRY PI?

A Raspberry Pi is a small computer about the size of a credit card. But the first time many people see it, they say, “That’s not a computer! It has no screen.”

Well, like all desktop computers, you can connect a screen or monitor to your Raspberry Pi. But a computer doesn’t require a screen; it’s just a device that computes, meaning it takes an input, processes the input, and then, usually, outputs something. Even a television’s remote control is a computer, although you might not think of it as one. When you use a remote, you press the channel numbers, which is the input. The channel changes, which is the output. The part in the middle that controls changing the channel is called the process.

Since its release in February 2012, the Raspberry Pi has become the UK’s bestselling computer. It was created by Ebon Upton with the intention of promoting the teaching of computer science using an affordable, accessible, and fun device. The Raspberry Pi family has since expanded to several different versions of the computer to meet a range of needs and abilities.

THE RASPBERRY PI’S HARDWARE

The Raspberry Pi’s hardware consists of the physical parts of a device—the ones you can hold or touch. In other words, the hardware is the Raspberry Pi’s board itself. The reason the Raspberry Pi can be so small and cheap is that it’s a system on a chip (SoC), or a single board that holds all the main components of the computer, similar to those used in smartphones. We’ll go over the board’s features in this section, starting with the differences between the six Raspberry Pi models.

The Raspberry Pi 4

The projects in this book can be completed on most of the Raspberry Pi models. The latest model, the Raspberry Pi 4 (Figure 1-1), has the highest specification and costs the same as the earlier models. It supports both 2.4 and 5GHz Wi-Fi, which provides a fast Wi-Fi connection for downloads and updates.

[image: Image]

FIGURE 1-1 The Raspberry Pi 4

You can buy the Raspberry Pi 4 for approximately $35. It lets you run a wide range of programs, including Open Office, Java, and Minecraft Pi Edition. The board boasts dual HDMI (high definition) ports to connect your existing TV or monitor as a display or dual screens. The graphics chip (GPU) also supports 4k video playback and displays.

Other Models

Although I recommend using the Pi 4 for this book, other Raspberry Pi models will work for most of the book’s projects. I won’t discuss the hardware specification for every Raspberry Pi model, but the following table compares them.

	MODEL

	PROCESSOR

	CORES

	RAM

	USB PORTS

	BLUETOOTH

	WI-FI

	4

	1.5 GHz

	4

	1GB, 2GB, or 4GB

	4

	Yes

	Yes (2.4 & 5 GHz)

	3B+

	1.4 GHz

	4

	1GB

	4

	Yes

	Yes (2.4 & 5 GHz)

	3A+

	1.4 GHz

	4

	512MB

	1

	Yes

	Yes (2.4 & 5 GHz)

	3

	1.2 GHz

	4

	1GB

	4

	Yes

	Yes

	2

	900 MHz

	4

	1GB

	4

	No

	No

	Pi Zero W

	1 GHz

	1

	512MB

	1 (micro USB)

	Yes

	Yes

	Pi Zero

	1 GHz

	1

	512MB

	1 (micro USB)

	No

	No

The key component of the Raspberry Pi is its brain, known as a processor, which is responsible for processing all the instructions it receives. The faster the processor speed, the more instructions it can complete per second. For example, the 4 model has a processor speed of 1.5 GHz (processor speed is measured in gigahertz). The prefix giga means 1,000,000,000, and hertz refers to the number of times a second that something happens. So a 4 processor can process 1,500,000,000 instructions every second. That’s a lot of processing!

The term cores refers to the number of processors a processor has. Imagine having two or even four brains! The model 4 processor has four cores, meaning it has four processors; each is capable of processing up to 1,500,000,000 instructions per second. That is potentially up to 6,000,000,000 instructions every second! This is why you might notice that your Raspberry Pi gets very hot, especially close to the processor.

All that processing power is useful, but the Pi needs somewhere to store all those instructions, which is where the random access memory (RAM) comes in. RAM is high-speed memory for storing data. The more RAM your Pi has, the more instructions it can save and read before filling up. Once the RAM is full, your Pi starts to slow down because redundant instructions must be removed and new ones must be written to RAM. Therefore, the more RAM the Pi has, the faster it will appear to perform.

You can provide power to the Pi 4 using a USB C cable, the same that many phone chargers use. Other models use a micro USB. You can also use the USB ports to connect a keyboard and mouse.

The Raspberry Pi models starting with model 3 also have built-in Bluetooth and Wi-Fi chips that provide wireless connection, as well as an Ethernet port for a wired connection. For media projects, the Pi has a standard HDMI port, 3.5 mm audio port, which can output sound and video; a CSI port you can attach a Pi Camera to; and a display port you can connect the official Raspberry Pi screen to.

GPIO Pins

Each Raspberry Pi model from model B+ onward has 40 golden GPIO pins sticking out of the board, as shown in Figure 1-2.

[image: Image]

FIGURE 1-2 The Raspberry Pi GPIO pin layout

Each pin has a different function, such as providing power and taking readings from sensors, among other functions, enabling you to create circuits. For example, if you connect one leg of an LED to pin 18 and the other to one of the ground pins, you can turn the LED on and off using a short program. Ground pins have zero voltage and are used as a reference point from which you measure voltages.

Confusingly, there are two standards for identifying and numbering the GPIO pins. One standard is called the BOARD numbering system. Using this system, you identify each pin by its physical position on the Raspberry Pi. The numbering starts from the top-left pin, which is number one. The top-right pin is number two, and the rest of the pins are numbered counting across the row. The Raspberry Pi Foundation standard, which is the more common system for numbering the pins, uses the Broadcom SoC channel (BCM) numbering system. The BCM numbering system identifies each pin by the channel numbers used within the SoC chip. For example, physical pin 40 on the board is channel 21, so you call it GPIO 21. Refer to Figure 1-2 for these GPIO numbers. In the earlier chapters in the book, I’ll refer to the physical and BCM numbering to help you understand both. Standard practice is to use the BCM numbering system.

SETTING UP YOUR RASPBERRY PI

To set up your Pi, you’ll need the following items:

	USB keyboard

	USB mouse

	Micro SD card with at least 8GB

	Official Raspberry Pi power supply or a USB C 15.3 W 5.1V 3 A charger for the Pi model 4 or 2.5 A power supply (like a phone charger) for all other models

	Screen (a computer monitor or a TV)

You’ll also need either a laptop or desktop computer with an internet connection to download the required software that will run and operate your Raspberry Pi.

To use hardware, you need software. Software is a set of instructions that tells the Raspberry Pi what to do when it receives certain inputs. When you press a key on the keyboard, click an icon onscreen, or move the mouse, the Raspberry Pi will take the appropriate action. Software also controls the processes that enable you to use the Raspberry Pi.

The biggest piece of software you’ll need is an operating system, which allows you to run all your other software. Common operating systems include Windows, iOS, Android, and Linux. Although the Raspberry Pi can run a number of different operating systems, you’ll use the Raspbian operating system, which is built specifically for the Raspberry Pi. This software is free and open source, meaning you can use it, customize it, and share it with others.

Downloading the Operating System

On your internet-connected laptop or desktop computer, open your web browser and visit https://www.raspberrypi.org/downloads/. This web page on the Raspberry Pi website lists available operating systems.

Click Raspbian to go to the download page. You’ll see the Raspbian Buster with desktop and recommended software option (Figure 1-3). This includes all recommended software. Click Download ZIP to begin downloading the ZIP folder onto your computer. Once the download has completed, locate and open the ZIP folder to see the operating system image file. Extract this file from the folder by either copying and pasting or dragging and dropping it into a new location.

[image: Image]

FIGURE 1-3 Download the Raspbian operating system from the Raspberry Pi website.

Installing the Operating System

You’ll need to write the operating system image onto your micro SD card (Figure 1-4), so you’ll likely need a micro SD adapter to fit it into your computer.

[image: Image]

FIGURE 1-4 A micro SD card converter

The easiest way to write the operating system to the SD card is to download a free piece of software called Etcher.

Downloading Etcher

Visit https://etcher.io/ and click the Download button (it should detect your computer’s operating system, but if it doesn’t, just click the down arrow and choose the appropriate system in the list).

Once Etcher has downloaded, double-click the file to open it. It will ask whether you want to install the program. Click I Agree to install it. Installing the program files onto your computer will take a few minutes.

Writing the Operating System to the SD Card

Now you’re ready to write the operating system to the SD card. Slide your micro SD card into the converter. Then find the SD card slot on your internet-connected computer and insert it there. Wait for the SD card to load and for the computer to recognize it. Usually, your computer will make a sound to notify you that it has recognized the SD card. Open the Etcher program and click the first Image button, then select the location of the Raspbian.img file you just downloaded.

Click Select Drive and select your micro SD card from the list of drives. Finally, click the Flash! button to write the image to the SD card (Figure 1-5). This process will take a few minutes, so read on while you wait.

If you get stuck or encounter any problems, you can follow a more detailed installation guide available on the Raspberry Pi website at https://www.raspberrypi.org/documentation/installation/installing-images/. There is also a free, detailed user guide here: https://www.raspberrypi.org/magpi-issues/Beginners_Guide_v1.pdf.

[image: Image]

FIGURE 1-5 Writing the operating system to your SD card

Setting Up Your Pi Equipment

Connect your USB keyboard and mouse to your Raspberry Pi via any of the USB ports. Then attach your monitor to your Raspberry Pi using the HDMI lead.

Once the operating system finishes writing to the micro SD card, eject the card from your computer and remove it from the converter. Turn over your Raspberry Pi and slide the card into the SD card slot until it’s secure. Connect your mouse, keyboard, and HDMI display. Then plug the power supply into the power port on your Raspberry Pi and connect the other end to a main power wall socket. Switch on the power and turn on your monitor.

Booting Up Your Pi

After a few seconds, you’ll see activity on the screen. Usually, you’ll see a colored rainbow, which means the graphics are loading. Then the monitor will display the Raspberry Pi logo, which means your Raspberry Pi is booting up and loading the operating system.

Several lines of the operating system program code will run on the screen before you’re presented with the main desktop shown in Figure 1-6. Boot-up time depends on which Pi model you’re using (the fastest is the model 4; the slowest are the Pi Zero and original models).

[image: Image]

FIGURE 1-6 The Raspbian operating system desktop

Configuring Your Raspberry Pi

The Raspbian operating system has a number of different settings and configurations you can use to customize your Pi. For example, you can increase the amount of memory available for the graphics chip to run games like Minecraft more smoothly. You can also rename your Raspberry Pi, change your password, and make other modifications.

When you boot up your Pi for the first time, it will automatically ask you to configure a number of features. The first screen you’ll see is a setup window, as shown in Figure 1-7. Click Next to continue.

[image: Image]

FIGURE 1-7 Start of the initial configuration

Now you’ll see the option to set your location details. This is essential so you can connect to the internet in your country, set the correct keyboard layout, and ensure that the Pi’s clock time is accurate. Select your country, language, and time zone, as shown in Figure 1-8, and then click Next. (If you’re in the United States, make sure to select Use US keyboard as well.)

[image: Image]

FIGURE 1-8 Setting your required localization

The next option window prompts you to change your password, as shown in Figure 1-9. By default, this is set to raspberry until you change it. This means that anyone could log into and access your Pi. If you want to, change your password now, but make sure you remember that it’s no longer the default password, which I’ll use in other chapters.

[image: Image]

FIGURE 1-9 Changing the default password

Now the configuration wizard will search for any visible Wi-Fi networks and list them. You can connect to yours by selecting it from the list. Then you’ll be prompted to enter your Wi-Fi password, as shown in Figure 1-10. Click Next to connect. If you decide to skip this setup, need to change your Wi-Fi connection settings, or want to connect to a different Wi-Fi network, you’ll need to run the Configuration tool, which is covered in “Going Online” on page 18.

[image: Image]

FIGURE 1-10 Configuring the Wi-Fi

Next, you will be prompted to resize the screen; you only need to do this if there is a black border around the image and it does not fill the screen to the edges. Click the Next button.

The final window automatically checks for and downloads any operating system updates and then installs them, as shown in Figure 1-11. This can take a while.

[image: Image]

FIGURE 1-11 Updating the software

The desktop consists of the Raspberry Pi logo, the waste bin icon, and the main taskbar at the top-left corner of the screen.

A Quick Tour of the Raspbian Operating System

The first icon on the taskbar is the Raspberry Pi logo, which opens the operating system’s main menus and submenus (Figure 1-12). All programs you load onto your Raspberry Pi are grouped into categories to make them easier to find. For example, you’d find Minecraft on the Games menu. If you wanted to create a document—say, a letter—you’d find supporting software on the Office menu. To open a program on the menu, simply click it. If the program icon is on the desktop, double-click to open it.

[image: Image]

FIGURE 1-12 Use the taskbar at the top of the screen to access menus containing software.

Figure 1-13 shows the remaining icons in the taskbar.

[image: Image]

FIGURE 1-13 The Raspbian operating system taskbar

The second icon ❶ opens the internet browser Chromium. You need to be connected to a Wi-Fi network to access the internet. I cover this process in “Going Online” on page 18.

Next is the folder icon ❷, which you’ll use to view and manage your files and folders. You can create, delete, rename, copy, and move your files using this tool.

The fourth icon ❸ opens the terminal, a tool that enables you to navigate your Raspberry Pi, install and delete software, and perform other tasks using lines of code, called commands, instead of mouse clicks. I’ll cover the terminal in more detail in the next section.

On the right side of the taskbar, you’ll see the icons shown in Figure 1-14.

[image: Image]

FIGURE 1-14 The icons on the right side of the taskbar

The first icon ❶ turns Bluetooth on and off and connects to Bluetooth-enabled devices. Next is the Wi-Fi icon ❷, which tells you if you’re connected to a network and the current signal strength. You can also view the available Wi-Fi networks, sign into them, and disconnect from them here.

The third icon ❸ opens the volume-management dialog, which lets you choose where to output your sound. Right-click this icon to choose speakers, the HDMI screen, or a Bluetooth device.

You may want to display the amount of work the Pi’s processor is doing, so you know how much processing power you’re using up. The ARM processor is the brains of the Raspberry Pi. It handles all the number crunching and program instructions, and it processes up to 1,500,000,000 instructions every second, depending on which model you are using. Right-click the taskbar and then choose the Add/Remove Panel Items option. If you press the Add button you should see the icon CPU Usage Monitor. Opt to add this. The icon displays a percentage: 20% indicates that the job at hand is taking about 20% of your Raspberry Pi’s processing power. Sometimes it will spike to 100%, which usually means you have a lot of programs open or you’re running graphics-heavy software. Check this tool if your Pi is unresponsive. If it’s at 100%, wait until it drops before carrying out your next activity.

The fourth icon ❹ shows you the current time and date (so you can check how much time you’ve spent hacking!). One last icon will appear when you plug in a USB flash drive or memory stick. Memory sticks are useful for transferring and backing up files between your Raspberry Pi and other computers. You can also use this icon to safely eject your mass storage device.

Configuring Your Raspberry Pi

You can access and change any of the previous settings using the Raspberry Pi Configuration tool. To open the tool, click the Raspberry Pi logo and load the main menu. Click the Preferences option. Scroll down to the Raspberry Pi Configuration option at the bottom of the list of preferences (Figure 1-15) and click it. The Configuration tool should open.

[image: Image]

FIGURE 1-15 Click the Configuration tool to change your preferences.

In the following subsections, I outline settings you might want to change using this Configuration tool.

System Tab

The tool’s System tab (Figure 1-16) contains a button to change the password. Recall that when you booted your Raspberry Pi, you didn’t have to log in or enter a password because the operating system comes with a default account. This account’s username is pi and the password is raspberry. To change your password, click Change Password, and enter your new password. Below Change Password is the Hostname field where you can rename your Raspberry Pi. This is useful if you have several SD cards and one is for a particular project. Just remember what you choose, because you’ll have to use these, rather than the defaults, for the projects in the chapters.

[image: Image]

FIGURE 1-16 Use the System tab to change your password or rename your device.

The System tab also gives you the option to boot the Raspberry Pi to either the desktop or the command line interface (CLI). The desktop should be familiar if you’ve used Windows; it includes a background image and icons and menus that you click to open programs. You also use the mouse to click, select, and scroll. The CLI is a text-only interface in which you write text commands via the keyboard to control the operating system and the Pi. You’ll find more details about the CLI in “Using the Command Line” on page 20.

By deselecting the Auto Login box, you can require a user to log in, adding an additional level of security to your Raspberry Pi. You can also adjust the resolution of the screen output from the Pi so that the onscreen text is legible and the icons are a suitable size for your display.

Interfaces

An interface is a method of sharing data between computers, hardware, software, and humans. For example, a graphical user interface (GUI) enables you to interact with the Raspberry Pi via buttons and menus. A keyboard interface enables you to control or input data into a device.

The Raspberry Pi Configuration tool’s Interfaces tab (Figure 1-17) allows you to enable or disable the various software and hardware interfaces.

[image: Image]

FIGURE 1-17 Enable or disable interfaces in the Configuration tool.

If you’re using a Pi Camera, as you will in the selfie snapper, Minecraft hacks, and nature box projects, you’ll need to enable it in this tab for it to work. We’ll do so when you need it, so don’t worry about that now.

Performance

On the Performance tab, you can use the GPU Memory field (Figure 1-18) to increase or reduce the amount of memory available for processing graphics. If you’re working with images, games, and videos, you’ll want to increase the GPU memory. However, if your project uses the command line or doesn’t require a screen, you can decrease the GPU memory, which frees up more memory for the processor to use.

[image: Image]

FIGURE 1-18 Increase or decrease the GPU memory on the Performance tab.

For now, leave the setting as is.

Localisation

The Localisation tab (Figure 1-19) contains the settings for your country and local area. Configuring these settings ensures that the Raspberry Pi can access the online software repositories and connect to the internet. On this tab, you can also change the time zone, adapt the keyboard layout to suit your preferences, and choose locations and preferred languages.

[image: Image]

FIGURE 1-19 Select your country and local area on the Localisation tab.

When you’re done, click OK to close the Configuration tool.

Going Online

To access the full potential of the Raspberry Pi, you’ll need to go online. The built-in web browser enables you to view websites and content as you would with any other internet-enabled device. However, unlike, say, a tablet or mobile phone, when you go online with the Raspberry Pi, you can use the terminal to update your operating system and install software (I’ll show you how to do this soon). You can also access your Raspberry Pi remotely from other devices and transfer files between your Pi and the device. This also means that you can disconnect your Pi from the monitor, keyboard, and mouse and use it remotely. Using your Pi remotely will come in handy when you create the Pi spy, magic music box, nature box, and social media mirror projects.

Connecting to the Internet with a Monitor Attached

When you start your Raspberry Pi for the first time, it attempts to connect to your Wi-Fi. If you change your location or time zone, you’ll need to reconfigure your Wi-Fi. In the Raspberry Pi Configuration tool, click the Localisation tab, and then click Set WiFi Country. A window opens that lets you select your current country from a list. Figure 1-20 shows this entire process. Once you’ve selected your country, click OK and close the Configuration tool.

[image: Image]

FIGURE 1-20 Click Set WiFi Country to select your current country.

Now you’re ready to scan for available Wi-Fi networks. Locate the Wi-Fi symbol (Figure 1-21) to the right of the taskbar and click it to see a list of available networks. Find your network, click it, and enter your Wi-Fi network password if you have one. Once you’ve done this, your Raspberry Pi will connect to your Wi-Fi and you’ll be online. Now each time you start your Raspberry Pi, it will attempt to connect to this Wi-Fi network by default.

[image: Image]

FIGURE 1-21 Connect to your Wi-Fi network.

Connecting to the Internet via the SD Card

When you can’t access a monitor (which is known as going headless), you can connect to the internet via the SD card. You can program your card ahead of time so when you insert it into your Pi and boot up, it will automatically connect to the Wi-Fi. This is also useful for projects you set up outside, such as the MP3 player or the nature box later in the book.

To program the SD card, shut down your Raspberry Pi, remove the power supply, and then eject the micro SD card. Insert the SD card into the converter, and then place it into the computer or laptop SD card reader. Open it in the file browser (Figure 1-22).

In the SD card’s main directory, create a new file called wpa_supplicant.conf by right-clicking the mouse and creating a new text file; then press ENTER. Download and install the Notepad++ text editor from https://notepad-plus-plus.org/. Open the file in Notepad++, and add the following lines of code:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
network={
 ssid="YOUR_NETWORK_NAME"
 psk="YOUR_PASSWORD"
 key_mgmt=WPA-PSK
}

This file is stored in your SD card’s boot partition, which means it’s loaded and read from when the Raspberry Pi starts and will connect to your internet. Replace YOUR_NETWORK_NAME with the name of the Wi-Fi network you want to connect to, and replace YOUR_PASSWORD with the network’s password. Save the file. Eject the SD card and place it in your Raspberry Pi. The next time your Pi boots, it will use the supplied credentials to connect to the Wi-Fi.

[image: Image]

FIGURE 1-22 Open the micro SD card in your computer’s file browser.

If you prefer to use a wired connection to access the internet, you can connect to your network using a standard Ethernet cable. Attach one cable end to your router and the other to the Ethernet port on your Raspberry Pi. Note that the Raspberry Zero models don’t have an Ethernet port.

USING THE COMMAND LINE

So far, we’ve looked at the Raspbian operating system’s GUI elements—in other words, the parts you access by clicking the buttons onscreen. But the operating system also comes with a command line, which you can access via the terminal. Click the terminal icon in the taskbar to open the terminal in a new window, as shown in Figure 1-23.

The command line lets you input instructions to control your Raspberry Pi. Once you’re comfortable using it, you’ll be able to do tasks a lot faster than you could with the mouse and GUI.

[image: Image]

FIGURE 1-23 The terminal

Notice that the terminal already contains this text: pi@raspberrypi:- $. This is known as the prompt; it contains information on the user you’re logged in as (pi) as well as the current folder you’re in, which you’ll see later. When there is no slash (/) and folder name after the username, you’re in the home directory.

To illustrate the difference between using the GUI and using the terminal, imagine you’re making a new folder called sounds. Using the GUI, you have to do the following:

	Move the mouse to the folder icon.

	Click it.

	Right-click the window.

	Scroll down to the new folder icon.

	Click it.

	Name the folder sounds.

	Press ENTER.

Using the terminal, you simply enter the following command (excluding the prompt text) to create the new folder:

pi@raspberrypi:- $ mkdir sounds

The command mkdir is short for “make a directory.” This process is considerably quicker than using the GUI. The downside is that you need to learn and remember the commands, but over time, they’ll become familiar to you. The following table contains a number of common and useful command line instructions for you to try.

	INSTRUCTION

	WHAT IT DOES

	cd foldername

	Go into a folder (replace foldername with the name of the folder you want to go into)

	cd ~

	Go to the home directory

	cd

	Go back to the home folder from any folder

	cd /home/pi

	Go to the folder named pi

	ls

	List all the files in the current folder

	mkdir filename

	Make a new folder (replace filename with your folder name)

	ifconfig

	Find your IP address

	sudo shutdown

	Shut down the Raspberry Pi

	sudo reboot

	Reboot the Raspberry Pi

	top

	List all the programs currently running

	sudo idle3

	Open the Python 3 editor as a sudo user

	free -m

	Show how much free storage you have (in megabytes)

	sudo -s

	Stay as sudo user in the terminal

	alsamixer

	Open the volume controls

Notice that some commands are preceded by the word sudo. For example, the command to shut down the Raspberry Pi is sudo shutdown. The term sudo refers to super user do, or the administrator of the Raspberry Pi. In this case, that’s you. Being the super user grants you additional privileges, permissions, and rights, which permit you to carry out certain tasks. Not everyone is entitled to just shut down your Raspberry Pi!

To become familiar with the terminal, try some simple tasks that I’ve provided in the following subsections.

Setting the Time

If your Raspberry Pi has been off for a while, the clock display will probably be incorrect. The reason is that the Raspberry Pi doesn’t have an internal power source to keep the clock ticking. If the time is incorrect, you might not be able to access the internet or run your programs.

One way to fix this is to ensure that the Raspberry Pi is connected to the internet. This will automatically update the clock to the current time. If you’re offline, you’ll have to set it manually. Open the terminal and enter the following command to set the clock.

pi@raspberrypi:- $ sudo date -s "Jul 5 08:10"

Be sure to replace the time and date in the example with the correct month, day, and time. For a more precise time setting, you can enter something like this:

pi@raspberrypi:- $ sudo date --set '2020-04-26 18:26:00'

Replace the time and date in the example with the current year, month, and day, followed by the correct hour, minute, and second. After a moment, the clock will update.

Accessing the Configuration Settings

You already learned how to customize the Raspberry Pi using the Configuration tool settings. But you can also access the Configuration tool directly from the command line. Enter the following command to open the window shown in Figure 1-24:

pi@raspberrypi:- $ sudo raspi-config

[image: Image]

FIGURE 1-24 Accessing the Configuration tool from the command line

You can control this tool with your keyboard; use the arrow keys to make a selection, and press ENTER to navigate to that option. Once you’ve completed your configuration settings, navigate to <Finish>, and press ENTER to reboot your Raspberry Pi.

Updating and Upgrading

Over time, your software and operating system will need upgrading. Most software updates are held in an external repository online, which updates whenever you make changes. To upgrade your Raspberry Pi and keep it up-to-date, you need to be connected to the internet. Then, you can use two simple commands. In the terminal window, enter the following to download any updates to the operating system and installed software:

pi@raspberrypi:- $ sudo apt update

Then enter this command to upgrade most of your software to their current versions:

pi@raspberrypi:- $ sudo apt upgrade

Installing Software Packages

A lot of software is also stored in a central online repository, which you can access when your Pi is connected to the internet. You can download software directly from the terminal window by typing a simple command followed by the name of the program you want to install. For example, to install GIMP, a free image-editing software package for your Raspberry Pi, enter this command:

pi@raspberrypi:- $ sudo apt install gimp

You can also delete unwanted software by entering the purge command to remove it:

pi@raspberrypi:- $ sudo apt purge gimp

To search for available software when you don’t know the software’s full name, enter this command:

pi@raspberrypi:- $ sudo apt search keyword

Replace keyword with part of the software’s name. I’ll cover other methods of installing software in later chapters when required.

ACCESSING YOUR RASPBERRY PI REMOTELY

Some of the projects in this book require you to remove your screen or monitor and disconnect your mouse and keyboard from the Raspberry Pi. For example, to build the magic music box MP3 player in Chapter 10, you’ll have to put the Raspberry Pi in a wooden box. In these situations, you’ll need to access the files on your Raspberry Pi even while it’s disconnected from everything. The simplest way to do this is to connect to your Raspberry Pi remotely from another computer or device via your home network, which you’re connected to when you’re connected to the internet. I’ll show you a couple of ways to do this. To get started, you’ll need your username, password, and your Pi’s IP address.

Remember that if you’ve changed any of this information, you’ll need to use your updated information.

Accessing the Raspberry Pi via SSH

You can remotely access your Raspberry Pi’s command line from another device using Secure Shell (SSH). This allows you to open a terminal session or window on another device that is connected to your Pi so you can send commands such as those in the table of command line instructions, to your Pi remotely. For security reasons, SSH is turned off by default to prevent others from hacking into your Pi. To enable SSH, open the Raspberry Pi Configuration tool from the desktop menu.

On the Interfaces tab (Figure 1-25), set the SSH field to Enabled. Click OK or select Finish if you’re using the terminal Configuration tool. I strongly advise you to change the password from the default if you’re using SSH. You can do this in the Configuration tool.

[image: Image]

FIGURE 1-25 Enable SSH on the Interfaces tab in the Configuration tool.

Next, you need your Raspberry Pi’s IP address. The IP address is a set of numbers that identifies your Raspberry Pi on the wireless network. To find this address, open the terminal and enter this command:

pi@raspberrypi:- $ hostname –I

A number appears in the terminal (Figure 1-26). It should look something like 192.134.244.03. Record this number somewhere; you’ll need it later to remotely access your Pi.

[image: Image]

FIGURE 1-26 Record the IP address number that appears in the terminal.

Next, you’ll work with the device you’re using to access your Raspberry Pi, which could be a phone, tablet, or computer. To connect to your Pi, you need to install an SSH client. An SSH client is the software or program that enables you to use SSH to connect to your Pi via your other device. You can download PuTTY, a commonly used client, from https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html or search for an SSH client app in an app store if you prefer.

Once you’ve downloaded and installed the SSH client (Figure 1-27), open it and enter either the Raspberry Pi’s IP address or raspberrypi.local under Host Name (or IP address). If you’re using the Windows operating system to access it, you’ll need to install Bonjour from https://support.apple.com/downloads/bonjour_for_windows. If you’re using Linux or macOS, you’re good to go!

You’ll be prompted to enter the SSH password, which is your login password (it will be raspberry unless you changed it). Then enter your Raspberry Pi login details to establish a connection with your Raspberry Pi. A terminal window should appear. You can use it to control your Raspberry Pi.

Sometimes, the hostname raspberrypi.local won’t work. Most likely it’s because the IP address you’re using has changed since the last time you used the network. Look up the new IP address using the preceding hostname –I command and enter that instead.

[image: Image]

FIGURE 1-27 Configuring your SSH client

Accessing the Raspberry Pi via VNC Using RealVNC

Accessing your Raspberry Pi remotely using the SSH method allows you to control it using the command line. If you want access to the full graphical desktop (GUI) on a device other than the Pi, you can use the built-in Virtual Network Connection (VNC) server. The VNC allows you to access your Pi’s desktop over your network.

An added bonus of VNC is that it’s free to install and use. It requires two parts: the first is a VNC server that’s already installed on the Raspberry Pi. You just need to enable it (Figure 1-28): open the Interfaces tab in Preferences, and click the option to enable VNC.

The second part involves installing a VNC viewer on the remote device you want to view your Pi desktop on. Open your internet browser on the remote device. Browse to the RealVNC website at www.realvnc.com. Click Products, and then click Hobbyists and makers. You should see a page for VNC Connect for Raspberry Pi. Scroll down and click Download in the Download VNC Viewer section.

[image: Image]

FIGURE 1-28 Enable the VNC client.

Here you should see a wide range of supported operating systems (Figure 1-29). Click your operating system icon, and then click Download VNC Viewer to download the installer. Find the installer (probably in your Downloads folder) and double-click it to run it. Then follow the onscreen setup instructions, accepting the default options.

[image: Image]

FIGURE 1-29 Select and install your required RealVNC viewer.

Once the installation is complete, find the VNC Viewer icon and click it to open the program. You should see a window like the one shown in Figure 1-30.

NOTE

Remember that you can find out your Raspberry Pi’s IP address by opening the terminal, entering the command hostname –I, and then pressing ENTER. You can also find the IP address by clicking the VNC icon on your Pi, and the address is sometimes displayed below the connectivity heading.

Enter your Raspberry Pi’s IP address into the box at the top.

Then find the same VNC icon on the device you are using to access the Raspberry Pi. Click the icon, and the VNC server should load.

[image: Image]

FIGURE 1-30 Entering your Raspberry Pi’s IP address

The first time you connect, or if you connect to a new Pi, you might see the identity check screen in Figure 1-31.

[image: Image]

FIGURE 1-31 The identity check

If so, click Continue to access your Pi. You should then be asked to enter your username and the password for your Raspberry Pi.

You should now be connected! If you want to disconnect, just shut down your Pi or close the VNC Viewer window. Sometimes you may be presented with the message computer refused connection. This may be due to a number of reasons. Check that you’ve entered the correct IP address, username, and password. Also check that you’ve enabled VNC in the Raspberry Pi Configuration menu. See Figure 1-28 to do so, and then restart your Pi to ensure that the change is picked up. Finally, consider that some networks block VNC. This is common in schools, libraries, and businesses.

Accessing the Raspberry Pi via Remote Desktop

There’s a second way to access your Pi’s GUI from another device: via a remote desktop. This is similar to using VNC connection, but if you’re using a Microsoft Windows system, you won’t have to install any software on your computer, laptop, or Surface. Using a remote desktop also means that as Microsoft releases updates, your device will remain current, whereas if you use a VNC, you’ll have to download and manually update the server and viewer.

Return to your Raspberry Pi, open the Interfaces tab in Preferences, and enable VNC.

NOTE

At the time of this writing, there was no free software for this alternative method for Apple devices. For a free option, return to the “Accessing the Raspberry Pi via VNC Using RealVNC” section on page 27.

With VNC enabled, you need to install some remote desktop software onto your Pi. Open the terminal window and enter the following command to do so:

pi@raspberrypi:- $ sudo apt-get install xrdp

While this software is installing on your Pi, return to your laptop or other internet-connected device and install a remote desktop app. If you’re using a Windows device, a quick search in the Start menu will locate a built-in remote desktop app called Remote Desktop Connection. If you’re using an Android device, you can download a remote desktop app from the Google store; just search for Microsoft Remote Desktop in the store. If you’re using an Apple device, search for the Apple Remote Desktop in the Apple app store (there is a charge for this app).

Once your Raspberry Pi has finished installing its remote desktop software, open the remote desktop app on your other device. A window, like the one shown in Figure 1-32, should appear.

[image: Image]

FIGURE 1-32 Connect to your Raspberry Pi with a remote desktop app.

Enter either your Raspberry Pi’s IP address or the hostname into the relevant text box next to Computer:, and then click Connect or the equivalent button. You’ll be prompted to enter your username and password for the Raspberry Pi. Once you’ve done this, the app will establish a connection and open a separate window that enables you to view your Raspberry Pi’s desktop (Figure 1-33).

[image: Image]

FIGURE 1-33 Viewing your Raspberry Pi’s desktop remotely

You can interact with the desktop the same way you would on the device. Remember that any changes you make will be saved to your Raspberry Pi.

TRANSFERRING FILES

Sometimes you’ll need to transfer files between a computer and your Raspberry Pi. Maybe you’ll want to back up code saved on the SD card, transfer MP3 files between devices, or add new files to your Raspberry Pi. To do this, you’ll need to download a file transfer program to the device you want to connect to your Pi.

If you’re using Windows, visit https://winscp.net/eng/download.php/ and download the latest version of the WinSCP software. If you’re using macOS, search for the File Transfer App in the Apple app store.

The good news is that you don’t need to install any additional software on the Raspberry Pi to transfer files. Once you’ve downloaded and installed the file transfer program for your other computer or device, open it and enter your Raspberry Pi’s hostname or IP address (Figure 1-34). You’ll need to ensure that SSH is enabled, as shown in Figure 1-25.

[image: Image]

FIGURE 1-34 Enter your Raspberry Pi’s hostname or IP address in your file transfer program.

You’ll probably be prompted to enter your Raspberry Pi’s username and password. Once you’ve done this, your devices should connect, and a file manager should appear onscreen (Figure 1-35).

The file manager will display the files saved on both devices. Click and drag files from one side of the file manager to the other to transfer them.

[image: Image]

FIGURE 1-35 Use a file manager to transfer files between your devices.

WRAPPING UP

Now you should have a basic understanding of your Raspberry Pi and some of its features. Keep in mind that each chapter’s hack is self-contained and covers all the required skills, theory, and code that you’ll need. Refer back to this chapter if you need reminders or explanations.

Let’s start hacking!

 2
PYTHON PROGRAMMING

THE MAJORITY OF THE PROJECTS IN THIS BOOK ARE WRITTEN IN THE PYTHON PROGRAMMING LANGUAGE, WHICH COMES PREINSTALLED WITH THE RASPBIAN OPERATING SYSTEM. PYTHON IS A FAIRLY SIMPLE LANGUAGE TO LEARN, BECAUSE ITS STRUCTURE MAKES IT EXTREMELY USER-FRIENDLY. BUT IT ALSO HAS COMPLEX FEATURES SUITABLE FOR MORE ADVANCED PROGRAMMERS AND CAN ACCOMPLISH TASKS EFFICIENTLY.

When building the projects in this book, I’ll walk you through writing Python code for each program. As a result, you’ll learn the basics of the language as you complete the projects. Before we get started, we’ll look at some programming basics, such as printing statements, making choices, and avoiding common errors in Python.

EXPLORING PYTHON

To illustrate Python’s efficiency, imagine you’re writing the classic first program to display Hello World on your screen.

In the Java programming language, you would write this code:

public class Main {
 public static void main(String[] args) {
 System.out.println("Hello World");
 }
}

In Python, you can achieve the same output with just a single line of code:

print ("Hello World")

Python code is written in an integrated development environment (IDE). An IDE is the software you use to write Python code, in the same way you might use a word processor to write a document or a web browser to load and view a website.

INTRODUCING THONNY AND IDLE

The Raspbian operating system comes preinstalled with access to a Python IDE named Thonny (Figure 2-1). This default Python editor includes a wide range of error-detecting and code-highlighting features. If you need to install Thonny manually for any reason, open the terminal and enter this command:

pi@raspberrypi:- $ sudo apt-get install python3-thonny

The Thonny IDE has a section for you to write full program code as well as a Shell. The Shell area is where you can write single lines of code and test them without having to save the full program code. You can read more about Thonny’s features at http://thonny.org/.

[image: Image]

FIGURE 2-1 Thonny, the default Python IDE

Python has other editors available, including IDLE (pronounced idol), the classic IDE for writing Python code. When you download Python onto something other than Raspbian, say your regular laptop, this is the editor that is supplied.

The program code for each project can be written in any Python editor, but IDLE has been used throughout this book and the code is colored to match it. If you want to use IDLE, open the terminal window and enter this code:

pi@raspberrypi:- $ sudo apt install idle3

You’ll find more information and download details at https://www.python.org/downloads/.

When you load IDLE, two windows will open (Figure 2-2). The window on the left is the Shell window. You can use this window to test single lines of code: when you write code and press ENTER, the code immediately runs. The Untitled window on the right lets you write and save multiple lines of code or full programs. Then you can return to them whenever you want to.

[image: Image]

FIGURE 2-2 IDLE is the classic IDE for writing Python code.

Once you’ve written your program, you’ll want to run, or execute, it to test that it works correctly. For both of the installed IDEs, you use the F5 key to save and execute a program. Most programmers write and test their programs as they’re developing them to catch and remove errors early in the process.

WRITING YOUR FIRST PROGRAM

Let’s write your first program, which will print a simple message to the screen. From the main menu, select the Programming option, select either Thonny or Python 3 (IDLE), and click File ▶ New. You can also click File ▶ New File from IDLE. At the top of your new window, enter this line exactly as shown (although you can change the text between the quotation marks to a message of your own if you want to):

print ("I can code")

To run the program, press F5 on your keyboard; you’ll be prompted to save the program. Click OK, and the program will save and run. The text I can code will appear in the Shell window.

Return to the previous window, and below your earlier code, enter this line:

print ("Look a second line!")

Once again, press F5 to save and run the program, which should now look like this:

print ("I can code")
print ("Look a second line!")

Now that you’ve written your first program, let’s review some Python basics.

STRINGS

Strings are a data type that represents text. You make a string by entering characters inside single or double quotes: either method works as long as you use the same type of quotes at either end of the string.

Inside the quotes, you usually enter text, such as "Welcome to Raspberry Pi Projects for Kids". You can print a string (display it onscreen), save it, and even manipulate it. You can also search strings for a particular word or character, measure the length of a string, and even replace a section of a string, all by using Python code.

Strings are not just for letters. They can also contain numbers and symbols. For example, the string "C3P0" contains letters and numbers. However, the numbers in a string have no value; they simply represent the symbol for the number 3 and the symbol for the number 0. Even a number by itself, such as "465", has no value, meaning you can’t use it as a number in your code by, say, adding it to another number.

Try it out: enter the following program, which looks like it should add two numbers:

Total = 500 + "500"
print (Total)

When you run this program, you’ll get an error. It won’t work because the program tries to add one number and one string, and strings don’t have a value. To solve this error, you need to remove the quotation marks from "500", which changes 500 from a string to a number. Both numbers now have a value, so you can add them together. Try running the program now.

VARIABLES

Some of the programs you’ll write will require the user to enter their own data into the code. Imagine a program that asks a player to input their name. Because this data will change for each user, you can store it in a variable. Think of variables as boxes inside the computer’s memory that hold information. You give each box a label so you can find it again.

In Python, you define a variable by first giving it a label, which is known as declaring the variable. For example, let’s use NameOfMyPet as the variable label. Next, you use the equal sign (=) to indicate that the variable contains a string or a value. The technical term for this is assignment, meaning you assign something to the variable. Finally, you state what the variable should contain. For example, the name of my pet is Iron Cat, so I could declare a variable like this: NameOfMyPet = "Iron Cat". The string "Iron Cat" is now stored in the computer’s memory, and I can retrieve it at any time by calling the variable NameOfMyPet. To print the contents of a variable, use the code print(NameOfMyPet):

NameOfMyPet = "Iron Cat"
print(NameOfMyPet)

You can change the contents of the variable by editing the string. For example, you might change the pet name to Tony Bark. When you run the program after the change, the original contents of the variable are overwritten with the new pet name.

NOTE

You could use a variable label in lowercase style, such as nameofmypet. But this is harder to read and understand at a glance. Python programmers use a technique known as camel case: a capital letter indicates the first letter of each new word in the variable label (for example, NameOfMyPet).

You can also use variables to store user responses to questions, such as “What is your name?”.

To create a variable to store user input, you begin by declaring the variable. Then you use the equal sign (=) and add the question that you want answered or a prompt within parentheses on the other side of the equal sign. Delete the contents in your IDLE or Thonny file, and enter the following:

name = input("What is your name? ")
print ("Welcome ", name)

The program stores the name that the user enters in a variable called name. When you run the program, it retrieves the name from the variable name, combines it with the word Welcome, and prints that on the bottom line. For instance, if your name was Sarah, it would print Welcome Sarah. You may notice that there is a deliberate space after What is your name? and Welcome. This ensures that words are separated by spaces. Otherwise, it will print something like this: WelcomeSarah.

LOOPS

In some of the projects in this book, you’ll need your program to continuously repeat a set of instructions. For instance, in Chapter 3, the program needs to constantly check the level of light in the room to know when to trigger your hot glue night-light to turn on, meaning the code needs to keep running again and again. In Chapter 6, the trampoline program continuously checks whether you’re standing on a block of grass in Minecraft. If you are, it’s trampoline time, and you’re sent springing up into the air!

This programming technique is more commonly known as looping. The two types of loops are while loops and for loops.

while Loops

A while loop continues to repeat its code while a particular condition is met. The following example shows how you might use this loop:

❶ count = 5
❷ while count > 0:
 question = input("Do you like cheese? (yes or no) ")
 ❸ print ("")
 ❹ count = count - 1	

You set the value of the count variable to 5 ❶ to begin with. While the value in count is greater than 0 ❷, the program asks the question "Do you like cheese? (yes or no) ". Then it prints a blank line ❸ to keep the layout looking neat and tidy. Each time the program loops—meaning each time the indented code after the while loop line ❷ runs—it subtracts 1 from the count value in the code count = count – 1 ❹.

After the first time the loop runs, the new count value is set to 4. Because 4 is still bigger than 0, the loop runs again and, at the end of the loop, another 1 is subtracted. The program continues to loop until count reaches a value of 0. Then the loop stops, and the program ends. So this program will run five times and then stop. Notice that the lines at ❸ and ❹ are indented. Indentation indicates to the program that these three lines are part of the loop and run only while the loop is running.

When you use a while True statement, as shown here, the program will keep running until the user stops or closes the program:

while True:
 question = input("Do you like cheese? (yes or no) ")
 print ("")

Try it and you’ll be asked “Do you like cheese?” for eternity (well, at least until you exit the program).

for Loops

A for loop repeats its lines of code for a set number of times. In this example, the range value is set to 5, which means you’ll be asked whether you like cheese five times and then the loop will stop:

for x in range(5):
 question = input("Do you like cheese? (yes or no) ")
 print ("")

Notice that the for loop accomplishes the same task as the first while loop we created earlier. But it uses less code, making the program simpler and more efficient.

CONDITIONALS

Conditionals in Python let your program make decisions: when this is true, this happens, but when that is true, that happens. Think of conditionals like buttons: when you press one button, it makes a sound, but when you press another button, it flashes a light.

Conditionals let your code respond differently to various inputs or outputs. You create conditionals by using if, elif, and else statements.

An if statement is the start of the conditional and checks whether the first condition has been met. For example, if button A is pressed, play sound A.

If the first condition isn’t met, you can then check for conditions by using an elif statement, short for else if. This statement checks for the next choice if the previous choice wasn’t selected. In this example, if button A was not pressed, it might check whether button B was pressed. You can add as many elif statements as your program needs, checking for buttons C, D, and so on.

The last part of the conditional is the else statement. This tells the program what to do if none of the other conditions are met; in this example, if none of the buttons are pressed, the code in the else statement runs.

Consider the following program to see how conditionals work:

while True:
 ❶ question = input("Do you like cheese? (yes or no) ")
 print ("")
 ❷ if question == "yes":
 print ("Good choice")
 ❸ elif question == "no":
 print ("shame, I have lots spare")
 ❹ else:
 print ("Did you answer correctly?")
 print ("")

You begin by asking the user whether they like cheese ❶. The user enters a response. You then use an if statement ❷ to check whether the user’s response is yes. If it is, the program prints the message Good choice.

If the user didn’t enter yes, the program skips to the elif statement ❸ to check whether the user said no. If they did, an alternative message is printed.

Finally, you use an else statement ❹ to respond to any answer that isn’t yes or no.

Enter the program and run it. You might want to try making your own examples.

FUNCTIONS

A function is a useful way to store multiple lines of code that perform a single task, like a set of instructions. Then, when you want to do that task elsewhere in your code, you just enter the function name rather than type all the code again.

To create a function, you enter def followed by the name of the function, a pair of empty parentheses, and a colon (the colon is very important!). Then press ENTER to move to the next line so you can type the instructions that the function will run. Notice that when you press ENTER, the cursor appears indented, not at the start of the line. As with loops, code lines that belong to a function need to be indented so Python knows they belong to the function.

To run the function at any point in the program, you write the function’s name followed by the empty parentheses. This is known as calling a function, as shown in the following example:

def PocketMoney():
 money = good_behavior * rate
 tax = (good_behavior / 100) * 20
 print (money)
 print (tax)
good_behavior = int(input("Please enter the number of days you were
good "))
rate = float(input("Please enter your pocket money rate "))

You begin by defining a function named PocketMoney(). The indented lines following the function definition calculate the amount of pocket money the user gets paid and how much they owe for “tax” based on information that the user inputs.

If you ran this program now, it wouldn’t do anything because you haven’t called the function; you’ve just defined it. The completed program, including the function call, looks like this:

def PocketMoney():
 money = good_behavior * rate
 tax = (good_behavior / 100) * 20
 print (money)
 print (tax)
good_behavior = int(input("Please enter the number of days you were
good "))
rate = float(input("Please enter your pocket money rate "))
PocketMoney()

Now the program will ask the user to enter the number of days they were well-behaved and how much pocket money they were paid per day. Then it calculates and prints the user’s final amount of pocket money minus an amount for tax!

RUNNING PYTHON CODE FROM THE TERMINAL

Sometimes, you’ll need to run a program from somewhere other than IDLE or Thonny. For example, you might run a program remotely from another computer, or you might not have a screen attached to your Raspberry Pi (as in the nature box project in Chapter 11). In such cases, you can run programs from the terminal. Doing so frees up the processor, RAM, and graphics for the Python program.

To run a program from the terminal, open the terminal and use it to navigate to the folder that holds the program you want to run. Then enter the following command:

pi@raspberrypi:- $ sudo python3 name_of_the_program.py

Replace name_of_the_program.py with the name of your Python program, and it will run!

NOTE

When I show code that you should run in the terminal, I’ll precede it with the prompt, which looks like this: pi@raspberrypi:- $. But you need to enter only the commands that come after the prompt, not the actual prompt.

COMMON PROGRAMMING MISTAKES

Programmers love to say that programming is 20 percent coding and 80 percent debugging, which is the term for correcting errors in your code. The word bug dates back to the days when computers were so big that they filled several rooms. The story goes that on September 9, 1947, a now famous programmer by the name of Grace Hopper realized that the computer had stopped working. When she inspected the computer, she discovered that a moth had gotten trapped between some of the moving parts. Hopper subsequently stuck the moth in her log book and wrote, “case of bug being found.”

Errors, bugs, and mistakes will cause your program to run incorrectly, stall, or not even start. Adopting a methodical, line-by-line approach to debugging will make the process easier. But be prepared to spend a lot of time looking for one small error. Hopefully, you won’t find a moth.

Many common mistakes are syntax issues. Syntax is a set of rules that govern how you must write your code. For example, a line of code inside a conditional must always end with a colon. Different programming languages use different syntax. When presented with errors, first check that you used the correct syntax. Two common syntax issues are the misuse of letter case and indentation.

Capital Letters

One of the most common syntax errors is using uppercase and lowercase letters incorrectly. Programming languages don’t always follow standard English grammar rules. Some lines of code begin with a lowercase letter, and sometimes a word might appear to have a random capital letter in the middle of it. Python is sensitive to the use of capital letters! Don’t try to correct what might look like a mistake but isn’t; you must enter the code in this book exactly as it’s shown.

For example, consider the following two lines of code:

Print ("Hello there")

and

print ("hello there")

Only one of them works. Which do you think it is? Try them both to see whether you’re right.

Indentation

Another common cause of error is indentation—the number of spaces at the beginning of a line of code. In general, it doesn’t matter how many spaces you use to indent your lines in Python, as long as you’re consistent. A good practice is to always leave four spaces, or one tab, for each indentation. You can use either, but ensure that you’re consistent and use only one method in your program. Don’t use both methods in the same program. As an example of correct indentation, consider this code snippet from the next chapter:

while True:
 ❶ print(ldr.value)
 ❷ time.sleep(2)
 ❸ if ldr.value <= 0.4:
 ❹ print("light on")
 ❺ led.on()
 ❻ else:
 ❼ led.off()

The lines at ❶, ❷, ❸, and ❻ are aligned. So are the lines at ❹, ❺, and ❼. This program code is indented properly, so it will run.

Recall that you need to indent code lines when you’re using conditionals and loops and when you’re defining functions. More generally, anytime a line ends in a colon, the following line or lines must be indented. If your indentations don’t align properly, your program will fail and produce an error message, as shown in Figure 2-3.

[image: Image]

FIGURE 2-3 If your code contains a syntax error, it will produce an error message like this one.

For example, this program has indentation errors:

while True:
 print(ldr.value)
 time.sleep(2)
 ❶ if ldr.value <= 0.4:
 print("light on")
 led.on()
 else:
 led.off()

Can you figure out which lines are incorrectly indented and will cause an error?

When you want an event to happen outside a loop or after a conditional, the code must be dedented, or realigned in line with the code before the start of the loop or conditional. For example, if you added a print statement at the end, but it was in line with the if statement ❶, the if statement would also run this print command.

To read more about indentation, see the official Python website at https://www.python.org/dev/peps/pep-0008/#indentation/.

USING COMMENTS

When you finish a program and you look back at it later, you might find sections of the coding confusing, even though you wrote it. To help you and others understand what your code does, you can use comments. A comment is a note that gives the reader information about a section of code.

Python provides two methods for adding comments. The first is to use the hash mark (#). Usually, you’ll use one hash mark in front of the comment, like this:

print ("hello") # this is a comment

The second way to create comments is to use three single quote marks to open a comment and three to close it, like this:

print ("hello") '''this is also a comment'''

Remember that comments aren’t commands; they won’t execute when you run the program. Their only purpose is to provide a description and reminder of what the code does. So, which comment method should you use? If the comment is a single line, use the # option. If the comment spans more than one line, use the ''' method.

WRAPPING UP

With this brief introduction to Python, you’re now ready to start the book’s activities. Each chapter walks you through one complete project. You can complete the projects in any order, although they get progressively more challenging. You can also sample code, techniques, and elements from each chapter to invent your own customized hacks. For more guidance, check out the Raspberry Pi Foundation’s website and help forums.

Let’s start a project!

 3
HOT GLUE NIGHT-LIGHT

IN THIS PROJECT, YOU’LL CREATE A TINY, CUSTOMIZED LIGHT BY USING A HOT GLUE GUN, A SILICONE ICE CUBE OR BAKING MOLD, AND AN LED. THEN YOU’LL WRITE A PROGRAM TO MAKE THE LIGHT FLASH ON AND OFF OR FADE IN AND OUT. YOU’LL TAKE THIS PROJECT FURTHER BY ADDING A LIGHT SENSOR TO MAKE A NIGHT-LIGHT THAT TURNS ON AUTOMATICALLY IN THE DARK AND TURNS OFF AS THE SUN COMES UP.

Hot glue is a type of plastic adhesive that’s runny when hot, so it’s ideal for filling up any shape and drying quickly into that shape. Silicone molds are heat resistant, which prevents the glue from sticking to the mold, making it easy to pop out the glue when it’s set. Figure 3-1 shows a completed light.

[image: Image]

FIGURE 3-1 R2-D2 glue gun light

WHAT YOU’LL NEED

Here are the items you’ll need for this project:

	Raspberry Pi

	Glue gun

	Glue sticks

	Silicone mold

	LEDs

	Female-to-female wires

	Breadboard

	Photoresistor (LDR)

	Resistor (between 220 and 330 ohms)

	0.1 uF capacitor

Choose any shape of mold that suits your fancy! Recently, I made a green R2-D2 LED and a red Death Star. I also located some Avengers molds, so I created a green Hulk fist that pulses, a blue Captain America shield, and a red Iron Man face.

Just make sure the mold is silicone so it’s heat resistant. In addition, you should know that photoresistors are also called light-dependent resistors (LDRs) or photocells.

WARNING

The glue gun will get very hot. Never touch the end of the gun or the glue until it has cooled down. Also, be wary of dripping glue: don’t get it on your shoes, clothes, or the floor. Consider putting newspaper down on your build surface first to protect it.

BUILDING THE CUSTOM NIGHT-LIGHT

The custom night-light build has two stages. First, you’ll physically make the light. Second, you’ll code a program to give the light its instructions. Let’s get started.

Follow these steps to construct the light:

	Prepare the glue gun: Slide a glue stick into the glue gun, plug it in, and let it heat up for a few minutes. A small amount of glue will usually drip from the end when it’s ready to use.

	Prepare the mold: Place your silicone mold onto a stable surface. You might want to place some paper or a dust cover underneath the mold to protect the surface. Ensure that the mold is dust free and dry.

	Prepare the LED: Pick up the LED and look at the two wires, also called legs. Notice that one is slightly longer than the other, as shown in Figure 3-2. The longer leg is the positive leg; the shorter leg is negative. This detail is important to remember when you’re attaching the LED to the molded figure. If you wire the legs the wrong way, the circuit won’t close and current won’t flow through the LED, meaning the LED won’t light up.

[image: Image]

FIGURE 3-2 LED legs

Because you need to access the legs when the glue is set, check where you want the LED to sit in the mold before you add the hot glue. Do you want the legs to stick straight out, or maybe bend downward or outward? Your placement of the LED will depend on your mold’s shape. You want your LED, including the legs, approximately halfway into the mold. Too far in, and the LED will stick out; not in far enough, and it won’t remain securely in the glue. Roughly estimate where to place the LED.

	Add the resistor: Wrap one end of the resistor around the LED’s longer positive leg. The resistor prevents the LED from overheating and burning out.

	Add glue to the mold: When you know where you want to place your LED, take it out of the mold. Then, using the preheated glue gun, begin to slowly squeeze the glue into the mold. When the mold is about 80 percent full, gently push the LED into the glue, holding it by the legs. Once the glue has settled, you might need to add a little more glue until the mold is full. Hold on to the LED, but don’t get hot glue on your fingers. Figure 3-3 shows a good position for the LED.

[image: Image]

FIGURE 3-3 Filling the mold with hot glue

	Position and hold the LED: When the mold is full, put the glue gun down. Continue to hold the LED so it’s positioned exactly where you want it while the glue dries.

After a few minutes, the glue will begin to turn a whitish color. At this point, you can let go of the LED and let the glue set for about 15 minutes. Then gently touch the glue. If it’s no longer sticky, carefully peel the mold away from the glue. If the glue figure doesn’t come out easily, you might need to leave it alone for a few more minutes so it can completely set.

	Wire up the LED: When the glue has totally set and cooled down, take two female-to-female jumper wires and attach one to each of the LED’s legs. The positive leg has the resistor wrapped around it, so attach the wire to the end of the resistor. Attach the wire from the positive, longer leg to GPIO pin 18, which is physical pin number 12 on the Pi. Connect the shorter, negative leg to any one of the ground pins on the Pi: you can choose from physical number 9, 14, 20, 30, 34, or 39. Figure 3-4 shows the wiring for hooking up the LED, the positive leg is the straight leg.

[image: Image]

FIGURE 3-4 Wiring diagram for the LED

Coding the Night-Light

Now it’s time to add the software. Here are the steps:

	Plug in and boot up your Raspberry Pi.

	Load Python either by opening the terminal and entering sudo idle3 or by clicking the Pi icon and selecting Start ▶ Programming ▶ Python 3.

	From the IDLE window, select File ▶ New File, as shown in Figure 3-5.

[image: Image]

FIGURE 3-5 Opening a new file in IDLE

	Enter the simple code in Listing 3-1 to make the LED flash on and off.

 from gpiozero import LED

 from time import sleep

❶ led = LED(18)

❷ while True:

 ❸ led.on()

 ❹ sleep(1)

 led.off()

 sleep(1)

LISTING 3-1 Flashing the LED

Let’s look at how this code works. First, you import the LED class from the gpiozero library, which contains commands to help you control the LED. You also import the sleep() function. A function consists of code that performs a particular task but is represented by a single word (or two) that acts as the function name. When you call that function name in your code, Python runs the instructions in the function, sparing you from having to enter all those lines again. You can name the function whatever you desire, although it’s best to use a word that describes what the function does. For example, in the previous chapter, when we used the code print ("hello"), the word print is a function. The IDLE editor colors all function names light purple, making them easy to identify. The print() function contains several code lines that display in the IDLE window the text inside the parentheses. You’ll use the print() function a lot in many of the chapters.

The sleep() function adds a delay between instructions. This means you can flash the LED on and off at different speeds. If you use a lower delay value, the LED flashes faster. Then you tell the Pi which pin the LED is connected to, which is pin 18 ❶.

You create a loop that repeats the instructions indented below it forever unless you stop the program ❷. Finally, you add the instructions to the loop: turn the LED on ❸, wait for 1 second ❹, turn the LED off, and wait for 1 second. The LED will flash forever.

Running Your Program

To run the program and make the LED flash, press F5 on your keyboard. You should be prompted to save the file. Name and save your program: your LED mold should then come to life! To end the program, close the Python window by clicking the X.

Modify: Fading the LED

You can modify your program so the LED fades in and out, also known as pulsing, instead of flashing on and off. Open a new Python file and add the code in Listing 3-2. This program gradually makes the LED brighter, and then it fades out.

from gpiozero import PWMLED

from signal import pause

led = PWMLED(18)

led.pulse()

pause()

LISTING 3-2 Fading the LED

Here you import the PWMLED class to enable you to pulse the LED, set the GPIO pin number you’re using for the LED, and then set the pulse. You also add a pause, which ensures that the program continuously runs and reduces the load on the CPU, making it run faster. Normally, the program runs once and then the GPIO pins are reset. The pause() instruction ensures that the signal to the GPIO program is not stopped: the program continues to run so the LED flashes until you exit the program.

Save this code and run it to see the difference!

BUILDING THE LED NIGHT-LIGHT

Let’s level up the night-light project. You’ll add a photoresistor to make a simple night-light to add atmosphere to your room, as shown in Figure 3-6. A photoresistor is a sensor that measures the amount of light in the room and returns a value. This value can trigger the light to turn on or off, depending on how dark it is.

Light readings are analog, which means they can be any value, not just on or off. Think of the sun rising or setting: it doesn’t just appear in the morning; instead, the light gradually increases. Computers, on the other hand, are digital, meaning they understand only on or off values. Computers use millions of tiny switches that can be turned on or off (like a light switch).

However, if you have a dimmer switch, you can adjust the light to different levels of brightness. You’ll use a similar technique here.

When light hits the photoresistor, it creates a small electrical charge. You’ll store this charge in a capacitor, which is a small device designed to store electrical charge. You can then use the amount of charge stored in the capacitor to indicate how much light was detected.

If the capacitor is fully charged, the reading will be a value of 1, meaning the room is fully lit and you don’t need the night-light on. A reading of 0.4 means that the room is lit about 40 percent and that it’s dark enough for your Pi to turn on the light.

[image: Image]

FIGURE 3-6 An Ironman night-light

Wiring Your Night-Light

You need to keep your LED light attached to GPIO pin 18. Figure 3-7 shows the wiring diagram for reference.

Follow these steps to wire the light:

	Add the new parts: Place the legs of the photoresistor into your breadboard, leaving at least one line of space between the legs. Add the capacitor to the breadboard, with one of the legs in the same row as the right leg of the photoresistor, as shown in Figure 3-7.

[image: Image]

FIGURE 3-7 Adding the capacitor and the photoresistor to the breadboard

	Add the wires: Add wire 1 in line with the left leg of the photoresistor. Add wire 2 in line with the right leg of the photoresistor and the left leg of the capacitor. Place wire 3 in line with the left leg of the capacitor. These wires are shown in Figure 3-7.

	Connect to your Raspberry Pi: Connect wire 1 to the first physical pin, the 3V3 pin, which provides the power. Connect wire 2 to GPIO pin 4: this is the fourth physical pin on the left. Connect wire 3 to the ground pin, GND. I recommend you use the nearest ground pin, number 6.

Coding the Night-Light

To code the night-light, start a new Python file and then add the program in Listing 3-3.

❶ from gpiozero import LightSensor, LED

❷ import time

❸ ldr = LightSensor(4)

❹ led = LED(18)

❺ while True:

 print (ldr.value)

 time.sleep(2)

 ❻ if ldr.value <= 0.4:

 print ("light on")

 led.on()

 ❼ else:

 led.off()

LISTING 3-3 Coding the night-light

You import the LightSensor and LED classes from the gpiozero library to help you control the photoresistor and LED, respectively ❶. Then you import the time module so you can add a short pause between each light reading ❷. To begin with, you’ll set the value to 2. This will enable you to test the program by placing your hand over the photoresistor. When you use the program as a night-light, you can increase the time delay. Because a sunset can take several minutes, taking a reading every second would be pointless; reaching the required light level could take 45 minutes, and your Pi would have to take more than 2700 readings, using up processing time and power.

At ❸ you tell the program that the photoresistor is attached to GPIO 4. Then you tell the program that the LED is attached to GPIO pin 18 ❹.

You create a while True loop to make the program continuously take light readings and check the value so it doesn’t miss the sunset ❺.You print the light reading value to the screen and add a short pause of 2 seconds. You might be interested in the light value readings, and seeing them onscreen will make it easier for you to test if the program is working correctly.

You then use a conditional to check whether the light reading is less than or equal to the value 0.4 (remember that 0 is no light and 1 is full sunlight) ❻. A conditional is an instruction that tells the program to run certain commands only if something is true. This if statement tells the program that if the value is less than or equal to 0.4, it’s getting dark, so the program should print an optional warning message and turn on the night-light. You can adjust the light level to match your environment. For example, if you live in a city, you might need to set the value higher to account for streetlights.

The else statement is another conditional that tells the computer that if the reading is above 0.4, it should turn off the LED ❼.

Running Your Program

To run the program and test your photoresistor, press F5 on your keyboard. This will prompt you to save your file with a recognizable name, and then it will run. Test your night-light by placing a cloth or your fingers over the sensor to block the light: this should trigger your night-light to turn on.

You can adjust the sensitivity by reducing or increasing the value on line 8 of the program. For example, try changing the line to the following:

 if ldr.value <= 0.2:

This line will trigger the light only when it’s very dark. To end the program, close the Python window by clicking the X.

The light in your room and the type of LED you’re using will determine the best values for you to use. Experiment with photoresistor values to find the one most appropriate for your environment.

WRAPPING UP

You now have a working, custom-built night-light. Here are a few ideas for improving your light:

	Create more LED creatures and add them to your collection.

	Use different-colored LEDs to make different-colored lights.

	Add glitter to the glue before the glue sets to make it sparkle.

	Use a small coin-style battery to make the feature portable by placing the battery between the LED legs.

	Reverse the light value so the LED light is an alarm and flashes when the light value is above 0.80.

 4
THE PI CAMERA: SELFIE SNAPPER

PHOTOGRAPHS HAVE BECOME A STAPLE OF OUR DAILY LIVES, THANKS TO THE WIDESPREAD INTRODUCTION OF CAMERAS INTO EVERYDAY MOBILE PHONES. IN 2016, THE NUMBER OF PHOTOS TAKEN EXCEEDED THE TOTAL NUMBER EVER TAKEN SINCE THE INVENTION OF THE CAMERA. IN THIS CHAPTER, YOU’LL LEARN HOW TO TAKE PHOTOS WITH THE RASPBERRY PI CAMERA MODULE MADE EXCLUSIVELY FOR THE RASPBERRY PI HARDWARE.

You’ll set up and configure the Pi Camera to take photos. Next, you’ll move on to some of the more advanced features, such as adding filters, customizing photo quality, and adding a trigger button. Then you’ll learn how to use the Pi Camera to record video. As a final project, you’ll create a time-lapse video that you can use to capture a sunrise or sunset, a plant growing, a candle burning, or whatever you fancy.

WHAT YOU’LL NEED

Here are the items you’ll need for this simple introduction to the Pi Camera:

	Raspberry Pi

	Pi Camera

	Pi Camera ribbon

	2 male-to-female jumper wires

	A push button (optional)

	Alligator clips or soldering iron and solder (to attach wires to the buttons)

VERSIONS AND SPECIFICATIONS

A few models of the Pi Camera are available, including one designed specifically for night vision. All versions of the Raspberry Pi support the Pi Camera hardware as well as the camera ribbon used to connect your Pi to the camera. The ribbon is available in a variety of lengths so you can position the camera exactly where you need it to get the photos or video you want. This table contains the Pi Camera specifications.

	VERSION

	IMAGE RESOLUTION

	SENSOR RESOLUTION

	Camera Module v1

	5 megapixels

	2592 × 1944 pixels

	Camera Module v2

	8 megapixels

	3280 × 2464 pixels

	Pi NoIR Camera Module v2

	Used for nighttime photography

The official Pi Zero case comes with a smaller ribbon and a camera housing built into the top of the case’s lid, providing you with a neat, small, and portable camera.

For this project, you’ll need either the regular Camera Module v1 or v2.

PHOTOGRAPHY WITH THE PI CAMERA

You’ll first put the camera together, and then you’ll learn to take and store photos. Next, I’ll show you how to customize your photography by altering the resolution, resizing images, using filters, and adding text. Then you’ll make the camera more user-friendly by adding a button to take the shot.

Setting Up the Hardware and Software

Let’s begin by attaching and enabling the Pi Camera hardware and then writing a small test program to check that it works correctly. Before you begin, ensure that no power is connected to your Pi and that your Pi is unplugged. Then follow these steps:

	Attach the camera: Connect the ribbon cable to the Pi Camera (Figure 4-1). Depending on where you purchased your Pi Camera, this might already be done for you. If not, gently pull the small plastic clasp on the back of the camera downward and slide the ribbon in with the blue strip facing you. Gently push the clasp up, securing the ribbon.

Find the Pi Camera socket on the Pi, which is located between the HDMI socket and the audio jack. Notice that it also has a clasp similar to the clasp on the Pi Camera. Gently pull up this clasp to open it. Take the other end of the ribbon and place it into the socket, with the blue strip facing toward the audio jack and away from the HDMI socket. Gently push the clasp back down to secure the ribbon in place. Be very gentle when you’re handling the camera ribbon.

[image: Image]

FIGURE 4-1 Attaching the Pi Camera to the Raspberry Pi

	Install the Pi Camera software: Boot up your Pi, open the terminal window, and enter the following command:

pi@raspberrypi:- $ sudo apt update

Once that command has run, enter this command:

pi@raspberrypi:- $ sudo apt install python3-picamera

The Pi Camera software comes preinstalled with the operating system image and includes a Python package that interfaces with the camera. In the future, you might need to reinstall or update the package when newer versions are released, which you can do using the following commands:

sudo apt update

sudo apt upgrade

	Enable the Pi Camera: By default, the camera is set to off. You can’t use it until you configure it to turn on. To do this, return to the terminal window and enter the following command to open the Configuration tool (Figure 4-2):

pi@raspberrypi:- $ sudo raspi-config

[image: Image]

FIGURE 4-2 Enabling the Pi Camera

In the Configuration tool, select Interfacing Options. Then select the option to enable the connection to the Pi Camera (Figure 4-3). Use the arrow keys to select Exit and press ENTER. You’ll be prompted to restart the Raspberry Pi before the Pi Camera is enabled. Select Yes to restart. Now you can test that the camera is connected and working correctly.

[image: Image]

FIGURE 4-3 Selecting the Pi Camera option

Testing the Pi Camera

To test the camera, you’ll run the preview feature. Open a new Python file and enter the program in Listing 4-1. This simple code triggers the camera to display on your monitor for 10 seconds whatever the camera captures. By using this code, you’ll test that the camera is working correctly.

❶ from picamera import PiCamera

❷ from time import sleep

❸ camera = PiCamera()

❹ camera.start_preview()

❺ sleep(10)

❻ camera.stop_preview()

LISTING 4-1 Testing the camera

First, you import the PiCamera class from the picamera library ❶. This provides code that lets you control the camera. Next, you import the sleep() function ❷ so you can add the 10-second delay to make the image display on your screen for 10 seconds.

Then you create a variable called camera to store the PiCamera() instruction ❸. This lets you call the Pi Camera and control it without having to write out PiCamera() each time. Variables are placeholders representing a location in the Raspberry Pi’s memory that stores content. For example, if you make a name variable such as name = "Dan Aldred", whenever you use name in your code, Python will use the content of name and insert Dan Aldred into the program instead of name.

Next, you trigger the preview by telling the camera to start ❹ and add the 10-second delay ❺. The last step stops the preview ❻, turning off the camera.

To run the program, press F5 on your keyboard; you’ll be asked to save the file. Name and save your program; then it will execute.

If you can see the preview on your screen, your hardware and software are working. If you don’t see the preview, the camera doesn’t work: check that the cable is attached to the camera correctly and connected to your Raspberry Pi. Then check that the camera is enabled in the Configuration tool.

The program will stop after 10 seconds. But if you want to end the program sooner, close the Python window by clicking the X at the top right of the window.

Taking a Selfie

Once your camera is working, you can create a program to take your first picture, a selfie (Figure 4-4).

[image: Image]

FIGURE 4-4 Take that selfie!

Open a new text editor window, save the file as selfie.py, and then enter the program in Listing 4-2. This program starts a preview for 5 seconds, allowing you time to get in front of the camera, fix your hair, and practice your pose before the camera automatically takes the picture.

 from picamera import PiCamera

 from time import sleep

 camera = PiCamera()

 camera.start_preview()

 sleep(5)

❶ camera.capture('/home/pi/Desktop/selfie.jpg')

 camera.stop_preview()

LISTING 4-2 Taking a selfie

Again, you import the PiCamera class and sleep() function, and then you use the camera variable to store the PiCamera() command. Then you start a preview and add a 5-second delay (or longer if you like). You trigger the camera to capture the image ❶ and save it to the desktop so it’s easy to locate. The file is saved and named selfie.jpg.

The preview stops, and the program ends. Save and run the program, snap a selfie, and then return to your desktop and open the image to check out your photo.

Changing the File Location Where the Image Is Saved

If you take several selfies at once, they’ll soon clutter your desktop space. To keep your selfies organized, it’s best to create a new folder to neatly store and save all your images.

To create a new folder, open the terminal and enter this command:

pi@raspberrypi:- $ mkdir my_photos

The command mkdir, which is short for make a directory, creates a new folder in your home directory called my_photos. Now go back to your selfie.py file and edit the line camera.capture('/home/pi/Desktop/selfie.jpg') ❶, replacing the word Desktop with the name of your new folder. Unless you’ve used a different folder name, the new line should read as follows: camera.capture('/home/pi/my_photos/selfie.jpg').

Saving Each Image as a New File

Notice that each time you take a new photo and save the image, the program overwrites the previous image file. This isn’t a very useful feature if you want to keep all your photos. This happens because your program saves each image by using the same filename. You can solve this problem by adding a date stamp to the image filename.

Date stamps contain the date and time information indicating when the image was taken. The information is retrieved from the Raspberry Pi’s clock and, because time always moves forward, each filename is always unique. Alter the selfie.py file to match the program in Listing 4-3.

 from picamera import PiCamera

 from time import sleep

❶ import datetime

 camera = PiCamera()

 while True:

 ❷ current_time = datetime.datetime.now()

 camera.start_preview()

 sleep(1)

 ❸ camera.capture('/home/pi/my_photos/'+ str(current_time) +

 'photo.jpg')

 camera.stop_preview()

 sleep(10)

LISTING 4-3 Saving all the images

Most of this code is similar to the previous selfie program in Listing 4-2. The code you need to change is at ❶, ❷, and ❸.

You import the datetime module ❶ to pull the current date and time from the clock. You create a loop that makes the Pi Camera take a photo every 10 seconds. This will give you enough time to check the preview and then pose for your next photo. Then you create a variable called current_time ❷ and use datetime.datetime.now() to grab the current date and time and store the result in the variable.

The final part of the code applies the date stamp value as the image’s filename ❸. You use the camera.capture code from Listing 4-2 followed by the file location to store the image. But this time, you add the value stored in the current_time variable. Because the date stamp is numerical, you need to convert it to a string before using it as a filename. This code will now save all image names with a unique date stamp!

Customizing Your Images

Now that you’ve set up the Pi Camera’s hardware and software, you’re ready to learn about customizing your images. Let’s start by reviewing some image terminology.

Images are made up of picture elements more commonly referred to as pixels. These tiny dots are turned on or off in a pattern that creates the overall image. The image quality is determined by the number of pixels the image contains compared to its size: consider the difference between 1000 pixels on a small 1 × 1–inch square and 1000 pixels on a large sheet of ledger paper. The quality of the image on the ledger sheet would be lower, even though the pixel number is the same.

An image’s size and number of pixels is referred to as its resolution. For example, an image with a resolution of 100 × 100 contains 100 rows, each containing 100 pixels, for a total of 10,000 pixels. A standard, true HD TV resolution is 1080 × 1080, meaning the screen contains 1,166,400 pixels. If you were watching a program that contained only a million pixels on this set, the picture would be 166,400 pixels short of the full potential of the TV screen, and the image quality would decrease. But if you were watching the same program on a tablet device, you wouldn’t notice a decrease in image quality because the tablet is smaller and the pixels would be less spread out.

Next, you’ll learn how to control the quality of your pictures by changing the resolution. Later in this section, you’ll further customize your images by resizing, using filters, and adding text.

Changing the Resolution

You can alter the resolution of the Pi Camera by using the code camera.resolution = (500 x 500), which sets the image to a height and width of 500 pixels. This is useful because the Pi Camera v2 has a resolution of 3280 × 2464 pixels, meaning that every image you take contains 8,081,920 pixels. The adjusted image of 500 × 500 will now contain only 250,000 pixels, so the file will be smaller and consume less storage space.

Remember that different resolutions are more suitable for different screen sizes. Adjusting the resolution ensures that you save storage space on your Raspberry Pi. You might not always need an image that contains 8,081,920 pixels!

Open your selfie.py file and edit it to look like the program in Listing 4-4 to try out different camera resolutions and find one suitable for your screen.

 from picamera import PiCamera

 from time import sleep

 import datetime

 camera = PiCamera()

 current_time = datetime.datetime.now()

❶ camera.resolution = (1024, 768)

 camera.start_preview()

 sleep(2)

 camera.capture('/home/pi/my_photos'+ str(current_time) + 'photo.jpg')

 camera.stop_preview()

LISTING 4-4 Changing the resolution of the image

The program sets the camera resolution to 1024 × 768 ❶, takes a single photo, and then names and saves the file as the current date and time when the photo was taken. This size is the standard resolution setting for a 17-inch screen; each image will contain only 786,432 pixels, compared to the maximum resolution of 8,081,920 pixels. This image has approximately nine times fewer pixels than the full capability of the Pi Camera v2. Try different resolution settings by adjusting the values on line ❶.

Resizing an Image

Resizing an image is optional, but it’s a good skill to learn. If you size the image inappropriately for the number of pixels it contains, the pixels will start to crowd each other out and overlap, distorting the image. A lower resolution is useful for small screens, and a higher resolution is suitable for large screens. 4K screens require 8,294,400 pixels to fill the screen and look clear. If you had half these pixels, the pixels would space out and lower the image quality. In order to keep a similar image quality, you would need to reduce the size of the image and display it on a smaller screen.

One workaround is to resize the image after you take the photograph. Adjusting resolution and resizing images are particularly useful skills for projects for which you’re capturing images over a long period of time, like the nature box project in Chapter 11.

Open your program from Listing 4-4 and alter it to look like Listing 4-5. This program resizes the image to be more appropriate for the resolution.

 from picamera import PiCamera

 from time import sleep

 import datetime

 camera = PiCamera()

 current_time = datetime.datetime.now()

❶ # camera.resolution = (1024, 768)

 camera.start_preview()

 sleep(2)

 camera.capture('/home/pi/my_photos/' + str(current_time) + '.jpg',

 resize=(600, 600))

 camera.stop_preview()

LISTING 4-5 Changing the size of the image

You make the line camera.resolution at ❶ into a comment, which stops the line of coding from running. After you capture the image, you add the code to resize the image: resize=(600, 600).

Try altering the values within the parentheses to suit your screen size. Generally, the smaller the screen is, the lower the resize values are; the larger the screen is, the larger the values are. Experiment with the values to find a balance between the quality of the image and the amount of storage (memory) required to save each image. Remember that the higher the image quality is, the more space is required to store it; the lower the quality is, the less space is required to store it.

Using Filters

Filters instantly change a picture’s style. Most likely, you’ve used filters like the classic sepia, beauty shot, and retro filters on camera apps. The Pi Camera also boasts a range of easy-to-use filters (Figure 4-5). To apply a filter, you use the code camera.image_effect and then add the name of the filter.

[image: Image]

FIGURE 4-5 Applying filters: emboss, watercolor, and negative

Let’s start with the emboss filter, which makes the image appear raised, similar to the design you find on coins. Open your program code from Listing 4-5, and add the line at ❶ in Listing 4-6.

 from picamera import PiCamera

 from time import sleep

 import datetime

 camera = PiCamera()

 current_time = datetime.datetime.now()

 camera.resolution = (1024, 768)

 camera.start_preview()

❶ camera.image_effect = 'emboss'

 sleep(2)

❷ camera.capture('/home/pi/my_photos/' + str(current_time) + '.jpg',

 resize=(600, 600))

 camera.stop_preview()

LISTING 4-6 Adding a filter

This program saves each file as photo.jpg, so each time you run it, the previous image file will be overwritten with the new one. If you want to keep each copy of your filtered image, change the filename that you use to save the image at ❷.

You also could use other filters. Try each of the following filters by replacing 'emboss' at ❶ with a keyword listed here:

	'watercolor'

	'cartoon'

	'negative'

	'sketch'

	'denoise'

	'oilpaint'

	'hatch'

	'pastel'

	'film'

	'blur'

	'colorswap'

	'washedout'

	'posterise'

Adding Text to an Image

Let’s look at how to overlay text on your images to add a message, a title, or just a reminder. You can also combine this feature with the date stamp so the date and time the photo was taken are included in the final image.

Return to your code from Listing 4-5 and add the line in bold in Listing 4-7.

 from picamera import PiCamera

 from time import sleep

 import datetime

 camera = PiCamera()

 current_time = datetime.datetime.now()

 camera.resolution = (1024, 768)

 camera.start_preview()

❶ camera.annotate_text = 'THIS IS A TEXT OVERLAY!'

 sleep(2)

 camera.capture('/home/pi/my_photos/' + str(current_time) + '.jpg',

 resize=(600, 600))

 camera.stop_preview()

LISTING 4-7 Adding a text overlay

The line of code to add text is camera.annotate_text; you just need to replace THIS IS A TEXT OVERLAY at ❶ with your own message, and then save and run the program (Figure 4-6).

[image: Image]

FIGURE 4-6 Adding a text overlay to an image

Triggering the Camera with a Button

You’ve written a program to take photos, but you need to run the program each time you want to take a photo. If you want to take 100 photos, you’ll need to run the program 100 times. Let’s make the camera more camera-like by hooking up a simple button that, when pressed, triggers the camera to take a photo.

Wiring the Button

You’ll use a push button and the two jumper wires to connect it. You can wire the button in various ways depending on what type of button you have:

	Use wires with alligator clips and attach the clips to the button’s legs.

	Tape the wire and legs together, making sure they’re touching.

	Slide wires onto the legs of the button.

	Solder the wires to the legs of the button.

Soldering is a more permanent but trickier option. This technique requires you to superheat solder (typically, a metal alloy made of lead and tin) until it turns to liquid. You then use the liquid to join the wire and the arm. When you remove the heat, the solder hardens again, fusing the wires together. You need special equipment to solder, including a soldering iron and a safe surface to solder on. If you’ve never soldered before, check out the Raspberry Pi Foundation’s excellent guide at https://projects.raspberrypi.org/en/projects/getting-started-with-soldering/.

If you choose the soldering method, carefully solder each male end of the jumper wire onto one of the arms. Once the solder has cooled down and set, attach the female end of one of the wires to GPIO pin 2. Attach the female end of the other wire to one of the ground pins (Figure 4-7). It doesn’t matter which wire attaches to pin 2.

[image: Image]

FIGURE 4-7 Wiring the button

NOTE

If you don’t have a button, you can still create a trigger by attaching one end of the wires to the required GPIO pins and then touching the other end of the two wires together. This makes a circuit that acts like a button press and triggers the Pi Camera to take a photo.

Coding the Button

To code the button, return to your Python editor and create a new file. Then enter the program in Listing 4-8 and save this file as selfie_snapper.py. This program uses gpiozero to set up the button and trigger the Pi Camera to take a photo each time the button is pressed (or the wires touch each other). This is a library of code that makes it easy to interact with your Raspberry Pi hardware and the GPIO pins. You can read more about it here: https://gpiozero.readthedocs.io/en/stable/index.html.

❶ from gpiozero import Button

 from picamera import PiCamera

 import datetime

❷ from signal import pause

❸ button = Button(2)

 camera = PiCamera()

❹ def capture():

 current_time = datetime.datetime.now()

 camera.capture("/home/pi/my_photos/%s.jpg" % current_time)

 print ("Picture taken")

❺ button.when_pressed = capture

❻ pause()

LISTING 4-8 Coding the trigger

You import the Button class from the gpiozero library ❶, which provides commands to control the button. You then import the usual PiCamera class and datetime module that you use to take photos and create unique filenames. The code at ❷ is used to keep the program looping and checking for the button being pressed.

Next, you tell the program which GPIO pin the button is connected to ❸, which is GPIO pin 2.

Then you start the main part of the program, which begins with the capture() function. Here, you’re making your own function! You create a new custom function when a function that does what you want isn’t available. The capture() function will capture, name, and save the image ❹.

To create a function, you use the def command, which means define, and then name the function. In this case, you call the function capture. You then need to add parentheses and a colon. Don’t forget the colon; it tells Python that the next few indented lines are part of the function, and the function won’t work without it.

On the next few lines, you list the function’s instructions. You need to indent these instructions by four spaces so Python knows they belong to the function. In this example, the instructions take a current date and time reading, save this data, capture the image, and save it to your folder. Because this reading returns the date and time, you can take photos the next day without overwriting the previous day’s photos. The filename will be combined with the date–time data to make sure it’s unique each time you take an image.

But you must convert the data to a string to use it with the filename, because date data has a value and can’t be combined with the .jpg extension. To do this, you use the code /%s.jpg" % current_time. The % symbol holds the current_time value, and the s converts the data to a string.

The final part of the function prints a short message to let you know when a photo has been taken. Because that’s the last instruction in the capture() function, you don’t indent the following line so Python knows it isn’t part of capture().

You’ve built the function, but to take a photo, you need to call the function in your code. You use the simple code button.when_pressed = capture ❺ from the gpiozero library to assign the function to the button so the button takes the photo.

Finally, you use the pause() command to ensure that the program runs again ❻, and you can take another picture.

Save your program and press F5 to run it. Now, each time you press the button, it will take a new photo and save the image with a unique filename. Well done! You’ve built your own camera.

VIDEOS WITH THE PI CAMERA

The code for taking videos using the Pi Camera is similar to the code for taking photos, and you can apply the same filters and settings that you learned previously.

Making a Video

To create a video, open a new Python file, name it video.py, and save it to your my_photos folder. Enter the program in Listing 4-9 to record a short clip.

❶ import picamera

❷ camera = picamera.PiCamera()

❸ camera.resolution = (640, 480)

❹ camera.start_recording("/home/pi/my_photos/video_test.h264")

❺ camera.wait_recording(10)

❻ camera.stop_recording()

LISTING 4-9 The video-recording code

You import all of the modules of the picamera library ❶ and assign the Pi Camera to the camera variable ❷.

Optionally, you can then set the resolution of the video ❸. Remember that a high resolution increases the overall quality of the video but also creates a larger file that demands more storage space.

Then you add the code to start the video recording ❹ and provide the folder location you want to save the video file to. You need to include a filename (in this case video_test) and the file format for saving the video; the format I’ve used here is .h264, which is a good format for high-definition video.

Next, you add the length of time you want the video to record ❺. Recording time is measured in seconds, so to record for 1 minute, you change 10 to 60; to record for 5 minutes, change the value to 300 seconds.

At ❻, you stop the video recording, which stops the camera and saves the video file.

Run the program and take some video! Start with a short time to test the program, and then adjust the number of seconds on line ❺ to change the recording length. Press F5 to save your recorded video.

Playing the Video

Once you have a recording, navigate to the folder where you saved your video by opening the terminal and entering the following command:

pi@raspberrypi:- $ cd my_photo

Press ENTER to go to the folder. Once you’re inside the media folder, you can see all the files in that folder by entering this command:

pi@raspberrypi:- $ ls

You should see your video_test file. To play the video, enter the following command:

pi@raspberrypi:- $ omxplayer video_test.h264

This command opens the OMXPlayer and displays your video. The OMXPlayer uses the hardware of the Raspberry Pi to play back many popular audio and video file formats. Remember that size and quality will depend on the resolution that you set and recorded at.

Playing the Video on a Computer or Other Device

You might want to share your video masterpiece with your friends and family or even upload it to a social media account. But in its current format, the video file won’t play on other devices (which won’t have OMXPlayer installed) unless they have a specific video codec, a program that reads a wide range of video file formats. So, you’ll convert the video file into the more common .mp4 format, which will play on most tablets, phones, and smart TVs. Return to the terminal window and enter this command to install the converter:

pi@raspberrypi:- $ sudo apt install ffmpeg

Then enter this command to convert the video file to the .mp4 format:

pi@raspberrypi:- $ ffmpeg -i video_test.h264 -codec copy video_test.mp4

Once the conversion has completed, copy the file onto a memory stick, and you’re ready to play, edit, and share your video!

NOTE

VLC media player is a free video player that works across most devices and operating systems. On your Raspberry Pi, you can find VLC media player under Start ▶ Sound and Video. If you’re viewing your video on another device, you can download and access VLC media player from https://www.videolan.org/ and play the video without having to convert it.

Creating a Time-Lapse Video

A time-lapse video is crafted from several hundred individual photos that, when combined, create a kind of animation effect. For example, you could take a time-lapse video of a candle burning over several hours by taking a photo every few minutes, and the video would show the burning process in just a few seconds.

The more photos you take, the smoother the video will appear. But if you take too many images, you’ll lose the overall impact of the video.

This project has two main phases: taking the photos and piecing together the time-lapse video. Let’s work through the steps to set up the project.

When you run the time-lapse program, it will potentially capture several hundred photos. So, before you write the program, you need to create a new folder for storing the images, to make sure they’re in one place and don’t get mixed up with other images from previous shoots. Return to the terminal and enter this command to return to the home folder:

pi@raspberrypi:- $ cd

Then create a folder called my_timelapse by using this command:

pi@raspberrypi:- $ mkdir my_timelapse

If you rename this folder, remember to change the file location and replace it with your folder name.

Coding the Time-Lapse Video Taker

The picamera library provides all the code you need to easily capture a time-lapse video. When you execute the program, it will run continuously until you stop it. You’ll tell the program how often to take a photo, and it will keep taking pictures. Open a new Python file, save it as time_lapse.py, and add the program in Listing 4-10.

 from time import sleep

 from picamera import PiCamera

 camera = PiCamera()

❶ sleep(2)

❷ for filename in camera.capture_continuous("home/pi/my_timelapse/

 img{counter:04d}.jpg"):

❸ print ("Captured %s" % filename)

❹ sleep(10) # wait 5 minutes

LISTING 4-10 The time-lapse code

By now, you should be familiar with the first three lines of the code, which import the code you need to use and save the PiCamera() command.

Then, you add a small delay ❶ to allow the camera to prepare before it starts taking pictures.

Next, you use a for loop ❷ to take a picture, rename it, print a message, and then wait 10 seconds. This loop spares you from having to write the same code over and over; without it, you’d have to add the same lines of code 1000 times to capture 1000 images. Recall that a loop doesn’t stop until either you stop the program or the program meets a specific condition or point.

After the loop, you use the standard camera.capture() code to take photos ❷. But this time you also add _continuous, which ensures that the camera keeps taking photos forever or until you stop the program.

The next part of that line, /home/pi/my_timelapse/, tells the Pi where to store the photos. Then it gives instructions on how to name the files so they’re not overwritten. Let’s break down how this code works.

First, you add the filename, which is img. Then you use the counter() function to count from 0 upward. Each time a photo is taken, the counter value is added to the filename img. The counter is set to a maximum number of digits; in this program, it’s set to 04d, which means a maximum of four digits.

When the program executes, the first photo taken is saved as img0000, the next photo is saved as img0001, then img0002, and so on. Because you can use up to four digits, you can take 9999 images before they start overwriting each other. This number should be plenty! Depending on what you’re capturing, you might want to take fewer (or more) images. If so, all you have to do is adjust the 04d value to 03d for three digits, 02d for two digits, and so on.

Once the program has saved the image file, it prints the filename ❸ to your screen so you can check that the program is saving the files correctly. You can also see at a glance how many pictures the program has taken.

The final line of the program sets the time delay between each photo taken. A delay of 10 seconds ❹ allows you to test that the program is working correctly before deploying a longer time lapse. The camera will take a photo every 10 seconds until you terminate the program. In your real time-lapse video, you’ll want to use a longer delay time.

Let’s run a test version of the program and create a time-lapse video. Save the program and press F5 to run it. After about a minute or so, stop the program: remember, this is just to test it and create a time-lapse sequence (Figure 4-8).

[image: Image]

FIGURE 4-8 Running the program and collecting the images

Figuring Out the Delay Time

The time delay you set should depend on what you’re filming. For example, consider that a candle takes three hours to burn. You could take a photo every minute by setting a delay of 60 seconds, which would result in 180 images. You could even set the delay to 30 seconds and take 360 images. Both settings would produce a good time-lapse video, depending on how long and how smooth you want it to be.

Now, let’s consider filming a flower growing. This might take five days or more. Using the same settings would result in 14,400 images, which, at a rate of 30 frames per second, would produce an 8-minute video clip. This is too long. Setting a delay of 1200 seconds would be more suitable and would take a photo every 20 minutes. Your video would total 360 images and last for 12 seconds.

Whenever you set up your camera to take time-lapse images, make sure you consider the number of images and choose a suitable delay.

Putting Together the Video

To make the time-lapse video, you need to stitch the photos together so they create the illusion of time passing. You’ll use the Libav software, which will convert, manipulate, and stream a wide range of multimedia formats for you. Here are the steps:

	Install Libav: Open the terminal and enter the following command to download all the Libav tools you’ll need:

pi@raspberrypi:- $ sudo apt -y install libav-tools

	Navigate to the time-lapse folder: Once the program has been installed, navigate to the my_timelapse folder that holds all your images by entering this command:

pi@raspberrypi:- $ cd my_timlapse

	Create the time lapse: Enter this code in the terminal to run the Libav software and create the video (be sure to enter this line exactly as it appears):

pi@raspberrypi:- $ avconv -r 10 -i img%04d.jpg -r 10 -vcodec libx264 -crf 20 -g 15 timelapse.mp4

The process locates each .h264 image in the designated folder and then uses a codec to join it with the previous .h264 file. Libav then converts the completed file to .mp4 format and saves it as a file named timelapse.mp4. The conversion might take a while if you have hundreds of images. This is another reason for testing the setup before you deploy it on a five-day shoot!

	Play the time lapse: Now that your time-lapse test video is in .mp4 format, you can copy it onto a memory stick or transfer it onto a laptop or other device and play it like any video file! Notice the speed at which the images are shown and how smooth it seems. You can use this test to decide how long you want the delay to be in the future.

Making Your Own Time-Lapse Movie

Now you’re ready to set up your time-lapse camera. Calculate the number of images you need to take as well as the time period—whether it’s an hour, a day, or a week. Set the Pi Camera into position, and then start running the program. In my experience, it’s also worth leaving a note to let others know what your Pi is doing so they’re not tempted to turn it off. After the required time period, stop the program, move to the image folder, stitch the images together, and enjoy your video. Don’t forget to share your time-lapse creations so others can admire them.

WRAPPING UP

This chapter covered some of the basics of using the Pi Camera, such as adding filters, changing settings, and taking photos, videos, and a time-lapse video. You can use the Pi Camera for many projects. How about making a stop-motion animation or setting up the camera to keep an eye on your pet and see what it gets up to while you are out? In Chapter 11, you’ll combine the Pi Camera with a motion sensor to remotely capture images of wildlife and upload them to Dropbox.

 5
PI SPY PART 1: HACKING WEBCAMS FOR SECRET SURVEILLANCE

IN THIS CHAPTER, YOU’LL USE THE RASPBERRY PI WITH A CLASSIC USB WEBCAM TO SPY FOR YOU. YOU’LL LEARN HOW TO SET UP THE WEBCAM WITH YOUR PI. THEN YOU’LL STREAM THE FEED FROM THE CAMERA TO A REMOTE DEVICE, LIKE YOUR PHONE, TO MAKE A CHEAP HOME-SURVEILLANCE SYSTEM. WITH THE WEBCAM, YOU CAN KEEP AN EYE ON YOUR PET, YOUR GARDEN, OR YOUR SIBLING. YOU CAN EVEN HIDE IT SOMEWHERE INCONSPICUOUS AND FIND OUT WHO KEEPS EATING ALL THE CHOCOLATE IN YOUR HOUSE!

WHAT YOU’LL NEED

Here are the items you’ll need for this project:

	Raspberry Pi

	USB portable battery

	USB webcam

Nowadays, most computers or computer monitors come with a built-in webcam, so the original USB models tend to be available online for a low cost. You might even find one hidden away at the back of a drawer. If you’re buying a webcam for this project, choose one from the list at https://elinux.org/RPi_USB_Webcams that’s proven to work with the Pi.

You’ll use a USB battery supply to provide power and make the spy camera portable—so it’s worth buying a branded battery. Even though they’re slightly more expensive, they’re of higher quality and will last longer than the budget options. You can hide the webcam in the shed or an empty cereal box in the house without having to worry about plugging it into a power socket. That way, a wire won’t be on display and give the game away.

SETTING UP YOUR WEBCAM

You’ll start by attaching the webcam to your Pi and testing their compatibility. Boot up your Raspberry Pi and attach your monitor, keyboard, and mouse. You’ll remove these after you’ve completed the setup. Simply take the USB end of the webcam wire and plug it into one of the spare USB ports, as shown in Figure 5-1.

Now check that the webcam is working using the following steps.

[image: Image]

FIGURE 5-1 Attaching the webcam

	Recognize the webcam: You can check that the Raspberry Pi has picked up the webcam by opening the terminal and entering the ls command. This command lists all the devices currently connected to the USB ports and looks something like this:

pi@raspberrypi:- $ lsusb

Bus 001 Device 007: ID 1908:2311 GEMBIRD

Bus 001 Device 006: ID 093a:2510 Pixart Imaging, Inc. Optical

Mouse

Bus 001 Device 005: ID 0e6f:0149 Logic3

Bus 001 Device 004: ID 05e3:0610 Genesys Logic, Inc. 4-port hub

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

SMSC9512/9514 Fast Ethernet Adapter

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.

SMC9514 Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

My webcam is a Logic3, which you can see on the third line of the output. You can look for the brand name of your webcam or remove all other connected USB devices (except the keyboard) and see which device is still listed. If your webcam is not listed in the output, try restarting your Raspberry Pi and running the code again. If the webcam still doesn’t appear in the output, your model is probably incompatible and you’ll need another. The website provided earlier has a list of webcams that do and don’t work with the Pi.

	Install the webcam software: Now you’ll install a program called fswebcam that will test that the camera is working correctly before moving on to the main project program. There’s nothing worse than typing your program and then finding it doesn’t work because the hardware is incompatible! Return to the terminal window and enter the following line to download and install the required software:

pi@raspberrypi:- $ sudo apt-get install fswebcam

	Take a test image: Once the program has finished installing, you can test the webcam by taking an image. In the terminal, enter the following command to take a picture from the webcam and save it as an image file called test:

pi@raspberrypi:- $ fswebcam test.jpg

To view the image, open your Pi home folder, find the test.jpg file, and double-click it. If it has taken a picture, the webcam is working correctly! Figure 5-2 shows the output to the terminal window when an image is successfully captured. If it hasn’t taken a picture, you might need to use a different webcam. Also, check that the webcam is connected and ensure that the code is correct.

[image: Image]

FIGURE 5-2 Capturing the image from the webcam

STREAMING A VIDEO FROM THE WEBCAM

Now that you know your webcam is installed and working correctly, you can write a short program to stream the image from the webcam to the Raspberry Pi. You’ll use a code package called PyGame, which is a set of Python modules designed for writing video games. However, it also includes computer graphics, videos, and sound libraries designed to be used with Python. You’ll borrow some functions and tools from PyGame to save you the trouble of writing them yourself.

PyGame comes preinstalled on the Raspberry Pi operating system, so you don’t need to download it. Open a new Python file and save it as pi_spy.py. Then enter the code in Listing 5-1, which is the first part of the code.

❶ import sys

❷ import pygame

 import pygame.camera

❸ pygame.init()

 pygame.camera.init()

 # set the size of the window

❹ screen = pygame.display.set_mode((320,240),0)

LISTING 5-1 The first part of the Pi spy code

As with most programs, you begin by importing the required modules and PyGame libraries. First, you import the system module ❶, and then you import pygame. From pygame, you import the pygame.camera module ❷.

Next, you initialize pygame and the camera commands ❸. This prepares pygame to run. The last line of code sets the size of the pygame window ❹. PyGame runs its programs in a separate window, and this line creates that window when you run the program. You can adjust the size by changing the width and height measurements, which are currently set to 320 × 240. Figure 5-3 shows that the window takes up only a small part of the screen. Some webcams will support higher resolutions. You’ll find several options at https://elinux.org/RPi_USB_Webcams.

[image: Image]

FIGURE 5-3 The webcam window

Next, you’ll use PyGame to find the attached webcam and start it running. To do this, add the code in Listing 5-2 to your program.

 # locate the camera and turn it on

❶ cam_list = pygame.camera.list_cameras()

❷ print (cam_list)

❸ webcam = pygame.camera.Camera(cam_list[0],(32,24))

❹ webcam.start()

LISTING 5-2 The second part of the program: turning on the webcam

First, you need PyGame to find the webcam by asking it to list available cameras. You create a variable to hold the results of the camera search ❶, which should return your single webcam. These results are stored in a list of one item, because there’s only one webcam.

You then print the list of results ❷ to make sure your camera was found. If you have only one webcam connected to your Pi, it should be listed in position 0. Remember that list numbering always starts at 0 not 1.

Then you set up the webcam and store the details in a variable named webcam so you can call it again more easily later in the program ❸. The name of the camera is pulled from the cam_list you got earlier by passing the list name with [0], which tells Python to take the first item in the list held in position 0.

You also specify the dimensions of the webcam image. You can see that these dimensions are in parentheses, not square brackets, with a comma between values: this is a data type known as a tuple, and it’s like a list but with values that don’t change. Tuples are often referred to as immutable, which means that the data held inside them cannot be changed while the program is running. The code at ❸ changes the quality of the image displayed in the stream window. If you set the dimensions to 32 × 24, the video stream will look more pixelated, but the PyGame window remains the original size of 320 × 240. To change it, you’d have to return to the code, edit the sizes, and then rerun the program.

The last line of code tells the camera to start ❹, which turns it on.

Now for the final part of the program. Add the code in Listing 5-3 to your program.

❶ while True:

 # stream the images and scale to a set size

 ❷ stream = webcam.get_image()

 ❸ stream = pygame.transform.scale(stream,(320,240))

 ❹ screen.blit(stream,(0,0))

 # update the display

 ❺ pygame.display.update()

LISTING 5-3 The final code for the Pi spy: streaming the video

You begin by creating a while loop to keep the program running the instructions that follow ❶. The loop tells PyGame to keep pulling images from the webcam and displaying them onscreen.

You then create a variable to store the image from the attached webcam ❷. The next line of code ❸ scales each image so it fits the screen size you entered earlier. In this case, it scales the image to 320 × 240 to match the dimensions you set at the start of the program in the screen = pygame.display.set_mode((320,240),0) variable. If you change either the window size or the scale, make sure those measurements match.

To draw the video image on your screen, you use a PyGame function called blit() ❹. Your display is made up of millions of tiny dots called pixels, which can be turned on or off. When you display an image onscreen, your software manages which pixels are on or off as well as their colors. Pixels also make up your image. The video from your webcam is made up of lots of still images played together one after the other, similar to a flip book or animation. Blitting takes a full copy of the pixels from one of the images and copies them to the pixels on your screen, displaying the image. Then, when the program loops, the next image is captured from the webcam and saved. The pixels are updated using the blit() function to make a video.

The final line of code ❺ updates the PyGame window, displaying the webcam stream for you to watch. The program then loops again, collects a new image, blits it, and then displays it on your screen.

Save your program and run it! Remember that pressing F5 will save and execute the program. A small PyGame window will pop open, and you’ll see a live stream from the webcam.

LIVE STREAMING TO A DEVICE

So far, your Pi streaming video is from the same location as your Pi, which is fine if you’re sitting at your desk with your Pi and can watch the PyGame window. But say you want to spy at a different location. For example, what if you want to set up a webcam at a window that overlooks the front door of your house so you can see visitors approach? Or perhaps you want to hide the webcam in the kitchen and watch what your pets do when you leave them home alone. You could even use the webcam as a simple bedroom monitor. This next program shows you how to make a portable spy camera for such projects.

Make sure your webcam is still plugged into the Pi USB port. Then you’ll need to download and configure a handy piece of software called motion, which enables you to stream images from your webcam to a particular device, like your phone or tablet. For this, you need to make sure your Raspberry Pi and the viewing device are connected to your home network. Follow these steps:

	Install the software: To download and install the motion program, open the terminal and enter the following command:

pi@raspberrypi:- $ sudo apt install motion

	Find your IP address: To access the live stream from another device, you’ll need your Raspberry Pi’s IP address. An IP address identifies each device on a network. This is how your Pi, games console, and smart TV can all be online at the same time and not accidentally receive the wrong data. To find your Pi’s IP address in the terminal, enter the following:

pi@raspberrypi:- $ ip addr show

Or enter this:

pi@raspberrypi:- $ hostname -I

This command will list lots of data related to the network connections. Look for the line that begins with wlan0. On the second line, you’ll find the IP address, which begins with inet and looks like this: 192.168.1.751. This is your Pi’s personal IP address. Write it down, because you’ll need it later.

	Create a daemon to run the program: In computing terms, a daemon is a program that runs in the background, doing its thing. You, the user, don’t need to control it directly. The webcam stream doesn’t require any user interaction and can run as a background process; so you’ll set it to run as a daemon by adding a line to the motion code file. In the terminal window, enter this command:

pi@raspberrypi:- $ sudo nano /etc/default/motion

This command opens a text file called motion that you can add instructions to. The motion software will recognize the motion file. At the bottom of the file, add the following line of code:

pi@raspberrypi:- $ start_motion_daemon=yes

This code tells the daemon to start the webcam server and run it as a background process, as shown in Figure 5-4. Press CTRL-X to exit, and then when prompted, press Y to save the file.

[image: Image]

FIGURE 5-4 The webcam server window

	Change settings in the configuration file: Before you start the stream, you need to make a few more changes in the motion configuration file, motion.conf. Here you can add or alter the code to change the program’s behavior. This file is large and contains lots of settings, so let’s walk through it so you don’t get lost. Enter the following command in the terminal to open motion.conf:

pi@raspberrypi:- $ sudo nano /etc/motion/motion.conf

Configure these settings:

Turn on the daemon: To turn on the daemon, find the daemon off entry near the start of the file and change it to daemon on.

Adjust the quality: Adjust the image quality of the stream to somewhere between 1 and 50, where 50 is the highest quality. A higher quality streams clearer images but will put more strain on the Raspberry Pi and your network. If the value is too high for the Pi to handle, it might crash. I recommend setting the quality to 20 to begin with. Then you can change it later if you want a clearer image. Locate the Live Stream Server section, find the stream_quality line, and set it to 20 so it reads as follows:

stream_quality 20

Adjust the frame rate: Adjusting the frame rate affects the number of frames is displayed each second. The higher the number of frames is, the smoother the video will play. The lower the number is, the jerkier the image will appear. However, sometimes setting it too high can use up too much bandwidth and make the connection slow, especially if other people are using your network. Adjust the frame capture to around 25, which will give you a near-live stream with a delay of 0.2 seconds. Locate the setting stream_maxrate and set it to 50. Again, you can adjust these settings later to suit your network capability.

Change the size of the video displayed (optional): If you’re viewing the feed on a smartphone or tablet, you might need to make the video window size smaller. In that case, locate the width and height entries in the configuration file and adjust the numbers to suit your device. You might have to experiment with a few numbers before you get the right size.

Final settings: Set the stream_localhost line to off to stream the webcam images to your mobile device rather than just the Raspberry Pi, which is the local host. After completing these changes, press CTRL-X. You’ll be prompted to save the changes to the configuration file. Press Y to select yes. To change some of the settings shown in Figure 5-5 again later, just open the file using the sudo nano /etc/motion/motion.conf command. Then make your required adjustments, exit, and save the file.

[image: Image]

FIGURE 5-5 The settings window

	Start motion: To start the web server and capture a video feed, enter this command:

pi@raspberrypi:- $ sudo service motion start

	Access the video stream: To access the video, open a browser window on the device you’re streaming to. In the address bar, enter the Raspberry Pi’s IP address (the one you wrote down earlier); at the end of the address, add the port number :8081. The complete address should look similar to 192.168.1.56:8081. When you press ENTER, the browser should look up your Pi’s IP address and connect to it. The Pi and motion program will respond and start streaming the live video from the webcam to your device, as shown in Figure 5-6.

[image: Image]

FIGURE 5-6 Streaming live video to a browser

Now you need to find somewhere you can hide your Pi and the camera to start spying; just make your camera has a clear view! You can remove the monitor, mouse, and keyboard and place your Raspberry Pi spy cam in a suitable location. Remember to ensure that your Raspberry Pi stays within range of your Wi-Fi signal so the images can be streamed to your mobile device.

STOPPING AND RESTARTING MOTION

Once you’ve finished using the web stream, you can return to your Raspberry Pi and reconnect the monitor, mouse, and keyboard. Then open the terminal and enter this command to stop the program and end the stream:

pi@raspberrypi:- $ sudo service motion stop

If you can’t access a monitor and keyboard, just remove the power from the Raspberry Pi to halt the stream.

Sometimes your motion software might stall, and the video will stop streaming. If this occurs, the image will be static or frozen. In that case, restart the software by using the following command:

pi@raspberrypi:- $ sudo service motion restart

You should also restart anytime you adjust the configuration file settings.

If you’re using your webcam covertly, remember to make sure that no one is around before accessing your Pi and restarting the program. Otherwise, you’ll give away the location of your hidden camera.

WRAPPING UP

Now you have a compact spy camera to do with what you will. You’ll be using the Pi’s image capabilities again in Chapter 11 to set up a nature box that will take surreptitious photos of anything that triggers its sensors. For now, try playing with the settings to see what resolution, frame rate, and size work best for your system.

 6
MANIPULATING MINECRAFT

IN THIS CHAPTER, YOU’LL WRITE PYTHON PROGRAMS TO HACK INTO THE MINECRAFT ENVIRONMENT SO YOU CAN DO SOME COOL THINGS. YOU’LL SEND MESSAGES TO THE MINECRAFT WORLD AND TURN ITS GRASS INTO TRAMPOLINES. THEN YOU’LL WRITE YOUR FIRST MINECRAFT GAME, SAND DROP, WHERE PLAYERS DODGE FALLING BLOCKS OF SAND. USING YOUR GLUE GUN LED LIGHT THAT YOU BUILT IN CHAPTER 3, YOU’LL ADD REAL-WORLD HARDWARE THAT YOU’LL CONTROL FROM MINECRAFT. COMBINING THE POWER OF MINECRAFT WITH THE PI CAMERA, YOU’LL CREATE A HIDDEN CAMERA YOU CONTROL WITH TOWERS OF GOLD, BRICK, AND MELONS!

WHAT YOU’LL NEED

For most of the projects in this chapter, you’ll be coding in Python and Minecraft, so you don’t need many items beyond your Pi and a computer. Here are the few additional items you need:

	Raspberry Pi

	Your glue gun LED light or a new LED with a 220–330 ohm resistor

	Jumper wires

	Pi Camera

MINECRAFT ON THE RASPBERRY PI

Chances are you’re already familiar with Minecraft, but just in case you’re not, here’s a description: Minecraft is a game where you mine, craft, and create all kinds of weird and wonderful objects within a 3D world that consists of various terrains, habitats, and materials. It’s often described as a computer-game version of LEGO. The world is free roaming: you, as the main character Steve or Alex, can travel wherever you want to, see what you want to, and basically do what you want to.

The Raspberry Pi operating system comes preinstalled with a Minecraft Pi Edition. This is a stripped-down version of the game that lets you hack the Minecraft world through a range of programming languages, including Python, which is what we’ll use here.

Starting Minecraft

Boot up your Raspberry Pi and click the Pi symbol at the top left of the screen. A drop-down menu appears. Scroll down to and click the Games tab. The option to open Minecraft appears. Click this option to load the Minecraft Pi Edition, as shown in Figure 6-1. Loading will take between a few seconds and a full minute, depending on which Pi model you’re using. Minecraft loads fastest on the Pi 4 model.

[image: Image]

FIGURE 6-1 Loading Minecraft Pi Edition

Using Minecraft on the Pi is the same as using it on your computer. The Pi uses a classic keyboard-control layout to move your player around the world. But the Pi Edition has something extra: it allows you to fly, meaning you can quickly travel to other locations. You do this by pressing the spacebar twice, using the arrow keys for direction, and using your mouse to control the player’s view (as usual).

The other control you’ll use in these hacks is the TAB key. It releases the mouse from the Minecraft controls so you can use it to click elsewhere. This means you can select the Python programming interface and either write new code or select your program to run. Then you can launch Minecraft and double-click either the left or right mouse button in the middle of the world: the mouse movement will control the player’s view again.

This table shows the keys for the main Minecraft controls.

	KEY

	ACTION

	W

	Move forward

	A

	Move left

	S

	Move backward

	D

	Move right

	E

	Load inventory

	Spacebar

	Jump

	Double spacebar

	Fly/fall

	SHIFT

	Float downward

	ESC

	Pause/Game menu

	TAB

	Release mouse cursor

Finding Yourself: Using the X-, Y-, and Z- Coordinates

Although the Pi Edition of the Minecraft world is not as large as the full game, it’s still easy to get lost. To locate the player in the world, the game uses x-, y-, and z- coordinates, as shown in Figure 6-2.

[image: Image]

FIGURE 6-2 The x-, y-, and z- coordinates are located at the top left of the window.

These three values are an essential part of the game. They ensure that the things you make happen in your program happen at your player’s location. You’ll use these coordinates in your programs.

The coordinate values display at the top left of the screen. All values are measured from the middle of the game world. So, if you’re at the x, y, and z values 0.0, 0.0, 0.0, you’re in the exact center of the world. A negative, or minus, x value means the player is to the left of the world’s midpoint; a negative y value means the player is below the midpoint; and a negative z value means the player is behind the midpoint. For example, 0.0, -45.7, 0.0 means the player is 45.7 blocks lower than the middle of the world. But the worlds are randomly generated, so the size of the worlds varies. This table lists the maximum and minimum values of these coordinates.

	COORDINATE

	INDICATES

	MINIMUM VALUE

	MAXIMUM VALUE

	x

	Left and right movement

	-255

	+255

	y

	Up and down movement

	-128

	+128

	z

	Forward and backward movement

	-255

	+255

Hacking Minecraft

Let’s start hacking Minecraft! The Raspberry Pi operating system lets you connect directly to Minecraft by using Python code. You can develop and write your programs, open and start a Minecraft game, run your code, and then return to the Minecraft world to see the effects in action.

When you’re running your hacking programs, unless you’re using a Raspberry Pi 4, don’t run Minecraft in full-screen mode; instead, keep the window at its default size. Full-screen mode prevents you from viewing your code or any program errors and puts a huge demand on the graphics card, creating lag in the game. If you are using the Pi 4, feel free to use full-screen mode! Also, because of a bug in the Minecraft program, full-screen mode prevents you from accessing the last line of items in your inventory.

POSTING A MESSAGE TO CHAT

We’ll start with a simple program that will post a message to the Minecraft world, as shown in Figure 6-3. This hack is only three lines and will teach you how the interaction between Python and Minecraft works.

[image: Image]

FIGURE 6-3 Displaying a chat message in Minecraft

Coding the Chat Messenger

To begin your first hack, open Python and start a new file. Then enter the program code in Listing 6-1. Remember that you can download the program from https://www.nostarch.com/raspiforkids/ and either use it to compare against your program or just run the first_program.py file from the download.

from mcpi import minecraft
mc = minecraft.Minecraft.create()
mc.postToChat("Welcome to my first Minecraft hack")

LISTING 6-1 The Minecraft messaging program

First, import the mcpi library, which enables you to use Python to control Minecraft. This library tells the program to open and run in Minecraft. To trigger events within the Minecraft world, use the library’s minecraft.Minecraft.create() function to create a connection from Python to Minecraft. Store that function in the variable mc so you don’t have to type it each time. Then use the postToChat() function, after your newly created mc variable, to display a message in the Minecraft game. You can change the message inside the quotes to anything you want to display.

Running Your Program

To run the program, save the file and then open Minecraft. Start a game and wait for the world to load. Once it’s loaded, press TAB to release the mouse from the game so you can use it to find your hack. Next, select your Python program (open it if you closed it), and execute it by pressing F5. Your program will start running in Minecraft automatically. Return to the Minecraft game by selecting it with either one of the mouse buttons. Your custom message should appear. Congratulations! You’ve made your first Minecraft hack! Now let’s do something a bit more adventurous.

TRAMPOLINE GRASS

This trampoline project walks you through creating your first proper interactive program. Each time you step onto a block of grass, you’ll spring into the air just like you’re on a trampoline, as shown in Figure 6-4.

[image: Image]

FIGURE 6-4 Turn all grass into a trampoline

Coding the Trampoline Grass

Begin the hack by opening Python and starting a new file. Enter the program code in Listing 6-2. Remember that you can download the program from https://www.nostarch.com/raspiforkids/ and either use it to compare against your program or just run the trampoline.py file from the download.

from mcpi import minecraft
mc = minecraft.Minecraft.create()

❶ while True:
 ❷ p = mc.player.getTilePos()
 ❸ b = mc.getBlock(p.x,p.y-1,p.z)
 ❹ if b == 2: # grass
 ❺ mc.player.setPos(p.x, p.y+20, p.z)

LISTING 6-2 The trampoline grass program

Import the minecraft module from the mcpi library again so you can use Python to control Minecraft. Save the minecraft.Minecraft.create() connection into a variable named mc again.

Then create a while loop ❶, which, as you might remember from Chapter 2, makes sure the program keeps running. Also, remember to indent the code after the while line four spaces because it belongs in the loop.

In the loop, you find and return the current position of your player within the Minecraft environment ❷ and the type of block the player is standing on ❸. This is important because only the grass is springy, not any other ground. This position is returned as an ID number, and you store it in a variable called b. You subtract 1 from the y position of the block, which is the up-and-down coordinate. The reason is that you want to affect the block below the player, not the actual player.

Use a conditional to check the kind of ground you’re standing on ❹. Each type of block has an ID value, and the value for a grass block is 2. So you check whether the block ID value stored in variable b is equal to 2 and run the code to make the grass bouncy only if it has that value.

When the conditional finds that the player is indeed standing on grass, you use setPos() to send the player up in the air to a new y position ❺. You want to send the player up, not across, so you keep the same x and z positions but add 20 to the y value. The player should shoot into the air.

Running Your Program

As before, save your program and make sure Minecraft is open. Resume your game and wait for the world to load. Press TAB to release the mouse from the game, and then select your Python program. Execute it by pressing F5, and return to the Minecraft window by clicking it with the mouse. Walk around and watch out for that grass!

If you’re getting any errors, check that you’ve followed the same indentation spacing as in Listing 6-2. Also, make sure you included the colon after the while True and if lines.

Taking It Further

You can alter your program to make the player go higher, lower, or even underground—a kind of antigravity trampoline—by changing the p.y number in mc.player.setPos(). Try a few numbers to see the effect. As another challenge, try changing the trigger block ID so the water triggers the trampoline instead. Check out the IDs at https://www.raspberrypi-spy.co.uk/2014/09/raspberry-pi-minecraft-block-id-number-reference/.

THE SAND DROP GAME

Now you’ll make your first game, called Sand Drop. In this simple game, blocks of sand drop from the sky, and the player has to dodge them. In the Minecraft environment, the sand block is automatically affected by gravity: if you set a sand block above the player, it will fall downward, landing on the player if they don’t move in time. If one of the blocks hits the player, it’s game over.

You’ll program the sand blocks to follow you as you move around the world (Figure 6-5), so don’t think you can run away. The sand is out to get you!

[image: Image]

FIGURE 6-5 The Sand Drop game

Coding the Sand Drop Game

Begin the hack by opening Python and starting a new file. Enter the program code in Listing 6-3. Remember that you can download the program from https://www.nostarch.com/raspiforkids/ and either use it to compare against your program or just run the sand_drop.py file from the download.

from mcpi import minecraft
mc = minecraft.Minecraft.create()
from time import sleep

❶ sleep(5)
pos = mc.player.getTilePos()

❷ while mc.getBlock(pos.x, pos.y, pos.z) != 13:
 mc.setBlock(pos.x, pos.y + 25, pos.z, 13)
 sleep(1)
 pos = mc.player.getTilePos()
❸ mc.postToChat("Got you!")

LISTING 6-3 The Sand Drop game program

As with previous hacks, begin by importing the minecraft library and storing the event trigger in the mc variable to keep it simple and save you from having to type minecraft.Minecraft.create() each time.

Also import the sleep() function from the time module, which adds a small delay between each block dropping. This gives you some time to dodge each block. Add a short time delay after the game begins and before the blocks start falling ❶ to give you time to return to the game from the Python window. The blocks will follow you around, so you need to get the player’s x, y, and z position data. Use a while loop to check whether a sand block has hit you ❷. The loop does this by checking the block’s ID at the same position as the player. If it’s not block ID 13—the sand block—you haven’t been hit. Yet.

If you haven’t been hit, the next line runs to place and drop a new sand block. Note that the block’s y position is +25, meaning that the block is placed 25 blocks above you before it drops. Then you wait for 1 second before running the next line of code, which takes the player’s new x, y, and z position reading in case you’ve moved. If a sand block does hit you, a message is posted to the Minecraft world, and it’s game over for you ❸.

Running Your Program

As before, save your program as sand_drop.py, make sure Minecraft is open, and start or resume a game. Release the mouse by pressing TAB, and select and execute your Python program. Return to your Minecraft game, and get ready to dodge that falling sand.

Taking It Further

If you want to test your reflexes, try changing the height of the block to make the game more challenging. If the blocks are closer to the player when they start falling, you’ll have less time to react. You could also reduce the delay or sleep() time between each block dropping.

Different blocks in Minecraft have different physics. Test the world by changing the block from sand to another type. This will alter how the block falls: it might be slower, it might be faster, or it might land in a different location, affecting how you play the game. Try the blocks in the following table for starters.

	BLOCK TYPE

	BLOCK ID

	Water

	9

	Lava

	10

	Gravel

	13

A list of all the block IDs is at https://www.raspberrypi-spy.co.uk/2014/09/raspberry-pi-minecraft-block-id-number-reference/.

MINECRAFT-CONTROLLED LED

In this project, you’ll write a program that lets you use Minecraft to control the glue gun LED light that you made in Chapter 3. Whenever you touch water in the Minecraft world, the light in the real world will turn on. When you leave the water, the light will turn off.

Wiring the Minecraft LED

Using either your custom glue gun light from Chapter 3 or a new LED, attach one male-to-female jumper wire to each of the LED legs. Attach the longer positive leg to GPIO pin 18: this is physical pin 12 on the Pi. Connect the other jumper wire to any one of the ground pins: choose from physical number 9, 14, 20, 30, 34, or 39. Figure 6-6 shows the wiring diagram.

[image: Image]

FIGURE 6-6 Wiring up the LED

Coding the Minecraft LED

Open a new Python file and enter the code in Listing 6-4.

❶ from gpiozero import LED
 import time

 from mcpi.minecraft import Minecraft
❷ mc = Minecraft.create()

❸ led = LED(18)

❹ while True:
 x,y,z = mc.player.getPos()
 ❺ block_id = mc.getBlock(x, y, z)

 ❻ if block_id == 9: # 9 = water
 led.on()
 else:
 led.off()

LISTING 6-4 The Minecraft LED program

Begin by importing the LED class from the gpiozero library ❶, as you did in Chapter 3. Also import the time module, so you can add a delay if required, and the minecraft library. Again, set the variable mc to hold the minecraft library code ❷.

Tell the Pi that the LED is attached to pin 18 ❸ and create a while loop ❹ so the program keeps running the next few indented lines. Then get the player’s x, y, and z position data. Use the getBlock() function to find out the ID of the block you’re standing on and store this ID in a variable called block_id ❺. Recall that you can check the IDs online at https://www.raspberrypi-spy.co.uk/2014/09/raspberry-pi-minecraft-block-id-number-reference/.

Check whether the block ID is equal to 9, the ID for water ❻. If it is, the LED will turn on. If you aren’t standing on water, the LED will be off.

Running Your Program

Save your program, open Minecraft, and press TAB to release the mouse. Select your program and execute it by pressing F5. Return to your Minecraft game and find some water! When the character stands in water, the LED should light up, as shown in Figure 6-7.

[image: Image]

FIGURE 6-7 The LED turns on when the character touches water.

CAMERA SURVEILLANCE MINECRAFT TOWERS

In this hack, you’ll set up a surveillance camera that you’ll control from Minecraft. To anyone else around, it will appear that you’re simply playing Minecraft. But, really, you’ll be using three towers in the game to control the camera. Tower 1 is made from gold and triggers the camera to take a picture. Tower 2 is made from brick and starts capturing video. Tower 3 is made from melons—yes, melons—and ends the video recording. To trigger each tower, you’ll hit it with a sword. You can then view your photos and watch the video or take another video or photo.

Before you start, set up your Pi Camera as you did in Chapter 4.

Building the Three Trigger Towers

Let’s make the secret trigger towers. Load a new Minecraft world, and find a suitable flat space to build your three towers. Select the gold block from the inventory, and build a small tower of three or four blocks.

Repeat the same process for the two other towers, except use the brick and melon blocks. Build the brick and melon towers close together, because when you hit the brick tower, the video won’t stop recording until you hit the melon tower! Figure 6-8 shows the tower placement.

[image: Image]

FIGURE 6-8 The camera control towers

You can actually use any block you want, as long as you amend the program code to include the relevant block name. But make sure each tower is made of only one block type.

You’ll need a way to set off the towers, so equip your player with the sword from the inventory by pressing E and selecting the sword. When you click the left mouse button, you remove blocks, and clicking the right mouse button hits blocks. Hitting a block doesn’t destroy it; instead, it returns block data, which you’ll use in this hack to control the Pi Camera functions. You can try out hitting the towers first before you start your program code.

Coding the Camera Towers

Open a new Python file and enter the code in Listing 6-5. This code sets up the camera and instruction messages for the player. You’ll add the rest of the code shortly.

❶ from picamera import PiCamera
 camera = PiCamera()
 camera.resolution = (600, 600) # size of photo
❷ camera.framerate = 100

 from mcpi.minecraft import Minecraft
❸ import mcpi.block as block
 mc = Minecraft.create()

 import time
 import datetime
❹ mc.postToChat("Minecraft Camera Controller")
 time.sleep(4)
 mc.postToChat("Gold = Take a picture")
 mc.postToChat("Brick = Start filming")
 mc.postToChat("Melon = Stop filming")

LISTING 6-5 Setting up the camera and player instructions

Begin by importing the PiCamera ❶ class to control the camera. Then create a variable called camera to store the PiCamera() command so you don’t have to type it each time.

Set the resolution of the camera image to 100 ❷. This is the frame rate: a high framerate value produces a smooth video, and a lower framerate value makes the video appear jerkier—but it’s a bit of a trade-off. A frame rate of 100 is good, because if you make it too high, the Raspberry Pi will quickly run out of memory and struggle to take the image. You can change the framerate value later if you want to alter the video quality.

Then import the usual Minecraft libraries, as well as the block library ❸, which lets you identify and refer to blocks by their name instead of their ID number. For example, you can specify gold, grass, sand, and brick by name. Finally, import the time module and the datetime library that will add a timestamp to the filename.

Add a line to make a message appear in Minecraft that shows the title of your program ❹. Add a short delay to give the player time to read the message. Then post another message to inform the player of what action each block triggers; for example, gold takes a picture. Now let’s add the triggers.

Hitting the Gold Tower

Now you’ll add the main section of the program, as shown in Listing 6-6. This code checks which tower block has been hit and responds with the appropriate camera command. You’ll start with the gold tower and add the others in a moment.

Make sure you indent the lines of code exactly as shown: lines inside the while loop need to be indented four spaces. Then the lines inside the for loop that follows need to be indented another four spaces, and finally the lines inside the if statement need to be indented four more spaces.

while True:
 current_time = datetime.datetime.now()

 for hitBlock in mc.events.pollBlockHits():
 # print (hitBlock)
 if mc.getBlock(hitBlock.pos.x, hitBlock.pos.y, hitBlock.pos.z)
 == block.GOLD_BLOCK.id:
 print ("PICTURE")
 mc.postToChat("Smile!")
 time.sleep(1)
 camera.capture('/home/pi/Desktop/'+ str(current_time) +
 'photo.jpg')

LISTING 6-6 Programming the gold tower

First create a while True loop, which means the program is constantly checking whether you’ve hit one of the towers. If a tower has been hit, take a reading of the current time and store it in a variable called current_time. Then print a line to the screen showing the details of the block you hit. This includes the player’s x-, y-, and z- coordinates as well as the tower’s ID and block name.

Next, you need to determine which type of tower was hit and which camera action to take. You do this with an if statement that checks whether the block that you just hit is a gold block. If it is, the word PICTURE prints to the screen. At the same time, the word Smile! prints in the Minecraft chat messages to remind the character to smile. Wait a second for the character to pose, and then trigger the camera to take a picture.

Store the picture that was taken on the desktop and assign it a filename of the current time, which you took earlier and stored in the current_time variable. Now the action for the gold tower is taken care of. Save your program as camera_tower.py, but keep it open to add more code.

Hitting the Brick Tower

Add the code in Listing 6-7 to your camera_tower.py program. This code checks whether the player has hit the brick block. If so, the camera starts a video recording.

❷ elif mc.getBlock(hitBlock.pos.x, hitBlock.pos.y, hitBlock.pos.z)
 == block.BRICK_BLOCK.id:
 # print ("brick")
 ❶ mc.postToChat("Video Recording!")
 camera.start_preview()
 time.sleep(1)
 ❸ camera.start_recording('/home/pi/my_video.h264')

LISTING 6-7 Programming the brick tower

Add an elif statement to check whether the brick block has been hit ❶. This is like the if statement you added to check whether a gold tower had been hit. But the elif statement means else if and runs only if the tower hit wasn’t made of gold blocks.

Post a message to the Minecraft screen to inform the player that the video is about to start recording ❷. Start a preview on the screen so you can see what’s being filmed, wait a second, and then trigger the camera to start filming.

Finally, save the file to your /home/pi folder and name it my_video.h264 ❸. The video will continue to record until the melon tower is hit or you stop the program by clicking the close button at the top-right corner of the IDLE window.

Hitting the Melon Tower or Hitting Nothing

The last part of the program responds to the player hitting the melon tower, hitting any other block, or doing nothing. Add the code in Listing 6-8 to the end of your camera_tower.py file.

 elif mc.getBlock(hitBlock.pos.x, hitBlock.pos.y, hitBlock.pos.z)
 == block.MELON.id:
 # print ("Melon")
 mc.postToChat("Stop the video!")
 camera.stop_preview()
 time.sleep(1)
 camera.stop_recording()
 else:
 pass

LISTING 6-8 Programming the melon tower

Add another elif statement to check whether the block that was hit is a melon block. If it is, post a chat message to Minecraft informing the player that the video recording is about to stop, and stop the preview. Wait for 1 second and stop the recording.

Then add a last else statement to respond to the player doing something else other than hitting one of the three towers. If the player doesn’t hit one of the three trigger towers, use a pass statement. A pass statement tells the program to take no action except to return to the start of the while loop in Listing 6-6. The program then checks for the next block interaction.

Running Your Program

Save your program and run it. If you encounter any errors, be sure to double-check that the indentation levels are correct. You can load the camera_tower.py file from the downloads section at https://www.nostarch.com/raspiforkids/ and compare your program against it (or just use mine!) if you can’t get yours to work. Also, make sure you’ve used uppercase and lowercase letters in the same places that they’re used in the program code. Remember to ensure that Minecraft is open and running too.

After you have taken some photos and videos, minimize the Minecraft windows by clicking the middle icon at the top right of the window. You should see the photo files on the Pi desktop. Simply click and open to view each one. To view your video, you need to execute it from the terminal. Click the terminal icon.

In the terminal, enter this line, but replace my_video with the name of your file if you gave it a different name:

pi@raspberrypi:- $ omxplayer my_video.h264

This line runs OMXPlayer, a video player specifically made for the Raspberry Pi. Press ENTER, and the video should play. To play it again, press the up arrow key. Don’t forget to share your photos and videos with your friends.

WRAPPING UP

As an extra challenge, try changing the towers to other blocks, like wool, sand, or even obsidian. You could also build additional towers to add further functionality to your program. Perhaps have a block that adds a filter to your photo.

If you’ve enjoyed these Minecraft hacks and want more, be sure to check out Learn to Program with Minecraft by Craig Richardson (No Starch Press, 2015) and Coding with Minecraft by Al Sweigart (No Starch Press, 2018).

 7
RADIO INVASION

THE RASPBERRY PI NEVER CEASES TO AMAZE ME. WITH JUST A SINGLE JUMPER WIRE, YOU CAN CONVERT THE RASPBERRY PI INTO A RADIO TRANSMITTER. THAT’S RIGHT: YOU CAN USE IT TO BROADCAST MESSAGES TO A REAL RADIO.

In this chapter’s project, you’ll create a simple soundboard to trigger and control broadcasts to the radio. You’ll record sounds or phrases, such as “Listen up, everybody” or “I want a cookie,” or create an emergency broadcast message. Then you’ll assign each sound file to its own button, which you’ll click to broadcast your message to any radios tuned in to the correct frequency. By hijacking radio waves, you’ll be able to prank unsuspecting listeners, share important gossip, or create a personal announcement system.

Radio waves are everywhere. When you watch your television, the program is likely being transmitted to you via radio waves. The Wi-Fi router in your house broadcasts data packets as radio waves. In fact, many cars now use data encoded in radio waves to unlock doors or start the engine. So how do you hack a Raspberry Pi to turn it into a radio transmitter?

Well, GPIO pin 4 can generate a spread-spectrum clock signal, which extends the bandwidth, resulting in a signal that’s spread over a range of up to 40 m. You’ll use software called PiFM to control the pin and enable it to send your FM radio waves. You can read more about the science and the project at http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter.

LEGAL ISSUES

Before you get started, be aware that this project is purely for educational and learning purposes, not for commercial use. The standard 4-inch jumper wire supports a legal broadcast radius of approximately 30–40 m. You’re responsible for researching your country’s laws and requirements. It’s also your responsibility to conform to the requirements of those laws. This project should not be used near any airports or military bases.

WHAT YOU’LL NEED

Here are the items you’ll need for the project:

	Raspberry Pi Zero or the original Pi model (alternative: Raspberry Pi Model B+ V1.2 2014 or Raspberry Pi Model A+ V1.1 2014)

	Jumper wire

	USB microphone (recommended) or other microphone

	FM-enabled radio (digital or analog, preferably with two speakers, either external or built-in)

PREPARING THE RASPBERRY PI

Before building the main project, you’ll install the PiFM software, set up the radio, and then check that it works correctly. This is an easy project to set up.

To set up the hardware, connect one jumper wire to GPIO pin 4—the fourth physical pin on the left of the Pi, as shown in Figure 7-1. That’s it; that’s all the hardware you need to set up to broadcast your signal.

[image: Image]

FIGURE 7-1 Attaching the jumper wire to the Raspberry Pi

Follow these steps to set up the project:

	Create a new folder: You’ll create a folder to store the program software and sound files. Open the terminal and enter the following:

pi@raspberrypi:- $ mkdir Radio

This mkdir command creates a folder named Radio. Navigate to the Radio folder by entering the following command into the terminal:

pi@raspberrypi:- $ cd Radio

The text in the command line’s prompt should now show that you’re in the Radio folder by changing to something like this:

pi@raspberrypi:- $ ~/Radio

	Download the Python library: Download the required PiFM library by entering this line in the terminal:

pi@raspberrypi:- $ wget http://www.tecoed.co.uk/uploads/1/4/2/4/14249012/pifm.tar.gz

This line downloads the program file to your Radio folder. The file is compressed, so you’ll need to uncompress it to access the files. To do so, enter this command:

pi@raspberrypi:- $ tar xvzf pifm.tar.gz

Then press ENTER to extract the program files into the Radio folder.

RUNNING A TEST PROGRAM

You need to check whether the radio works before you load your own sounds:

	Tune in to the radio: Plug in your radio and turn it on. Ensure that it’s on the FM setting and tune it to 100.0 MHz. You should hear the hiss of the radio, because nothing else is being broadcast on that frequency.

	Run the program: Return to the terminal window and enter the following code:

pi@raspberrypi:- $ sudo ./pifm sound.wav 100.0

Press ENTER; you should hear a familiar tune broadcast to your radio. If you have a portable radio, you can test the broadcast radius by walking around your home or even going outside.

	Change the frequency: You can change your frequency for broadcasting by changing the value at the end of the command. For example, to broadcast on frequency 105.0, enter this:

pi@raspberrypi:- $ sudo ./pifm sound.wav 105.0

	Broadcast in stereo: The downloaded program folder includes an audio file to test your radio’s stereo setting. You’ll need two speakers: a left and a right speaker. Enter the same command line in the terminal as before, but this time use the left_right.wav file, like this:

pi@raspberrypi:- $ sudo ./pifm left_right.wav 100.0

The tune will play on your radio again, but this time, if your radio has two separate speakers, the output will play through both, creating a stereo sound. If you don’t hear any sound, check the following:

	You’re using the correct Raspberry Pi model. (Raspberry Pi Zero, original Pi model, Raspberry Pi Model B+ V1.2 2014, or Raspberry Pi Model A+ V1.1 2014)

	You’ve connected the jumper wire to GPIO pin 4.

	The radio is tuned to the correct frequency.

	The frequency in the command line matches the frequency on the radio.

	In the terminal window, you’ve navigated to the Radio folder and run the program code from this folder.

Sometimes, if a previous file hasn’t stopped playing before another is executed, the file won’t play or you might hear a single auditory tone from the radio. Restart your Raspberry Pi and run the program again.

STREAMING AN MP3 MUSIC FILE

So far, you’ve broadcast only WAV files, but your radio can also stream MP3 files, so you can play your regular music. A WAV file has a higher sound quality than an MP3 file. But it takes up more storage space on your device, making WAV files unsuitable for streaming and downloading music. MP3 files are still high quality but take up a lot less storage space, so you can store more on your device and stream music without buffering or lag time. Most music files use MP3 as a standard format, which means you can create a kind of portable speaker with your Pi. Give it a try by following these steps:

	Download an MP3 file: Download your favorite songs and transfer them onto your Raspberry Pi (see “Transferring Files” on page 31); make sure it’s an MP3 file with an .mp3 extension. Save this file to the Radio folder. Also, I recommend renaming the file to a short name to reduce the likelihood of errors when you type it in the command to play the song.

	Install FFmpeg: Sound isn’t digital, so the signal needs to be converted from analog into a string of zeros and ones in order to be played on a computer. The process of sampling captures audio so it can be converted. The higher the sample rate is, the more captures per second there are, and the higher the audio quality will be. Most MP3 files aren’t sampled at a rate that’s compatible with the PiFM program, so you need to install the FFmpeg program, which adjusts the MP3 file’s sample rate in real time as it’s broadcast. In the terminal, enter this line:

pi@raspberrypi:- $ sudo apt install ffmpeg

This command installs the FFmpeg program.

	Play the MP3 file: After installing FFmpeg, navigate to the Radio folder by using this command:

pi@raspberrypi:- $ cd Radio

Then enter the following command, replacing name_of_your_file.mp3 with the name of your MP3 file (now you see why I encouraged you to change the filename!):

pi@raspberrypi:- $ ffmpeg -i name_of_your_file.mp3 -f s16le -ar

22.05k -ac 1 -|sudo ./pifm –

Press ENTER to execute the line of code. Then turn on your radio and tune it until you hear the MP3 playing. Congratulations, your song is on the radio! To stop the song, press Q to quit or press CTRL-X.

RECORDING AND BROADCASTING YOUR OWN FILE

Now you’ll create your own sound files and play them. Creating and editing audio files requires a lot of processing power, so it’s easiest to use another device, such as a laptop or a desktop computer. Most of these devices have built-in microphones that you can use, or if you prefer, you can attach a USB microphone.

Setting Up Your Microphone and Speakers

To edit audio files, you’ll need to install a free, open source audio editor called Audacity. If you’re using a Windows or macOS computer, navigate to the website https://www.audacityteam.org/. Click the link to download the software. Then install it on your device. If you’re using Linux, download the software using the usual terminal method.

Plug your microphone into one of the USB ports. First, you’ll record a sound just to test the mic and the speakers; you’ll need to change some settings before recording the final sound to broadcast. Once you’re ready, open Audacity and click the Record button, shown in Figure 7-2, to start recording.

[image: Image]

FIGURE 7-2 Using the Audacity controls

Speak into your microphone. Remember that you’re only testing the program’s ability to pick up the microphone and record sound, so it doesn’t matter what you say. Once you’re finished, click the Stop button to stop recording. Click the Play button to hear your recording. Don’t forget to ensure that your speakers are turned on and the volume is turned up. If you can hear the sound, your setup is working.

Making and Playing Your Recording on the Raspberry Pi

To broadcast your new sound correctly, you’ll need to adjust the sample size before recording. The sample size is displayed at the bottom left of the program, in the Project Rate (Hz) drop-down list, as shown in Figure 7-3. Click the drop-down arrow and select 11025 from the list.

[image: Image]

FIGURE 7-3 Changing the Project Rate to 11025 Hz

Now make your recording by clicking the Record button as you did earlier.

Once you’re happy with your sound recording, you need to export it to the required format to use it with the PiFM program and broadcast it. From the menu, click File▸export. From the list that appears, select WAV (Microsoft), with the option signed 16-bit PCM where applicable. The program will present you with the option to add metadata to the file. Metadata is information about the audio track, such as its name, its length, and the year it was made. You can skip this option by clicking OK. Figure 7-4 shows both drop-down menus.

[image: Image]

FIGURE 7-4 Exporting the audio file

Next, you need to transfer your sound to your Raspberry Pi and save it to the Radio folder. Use one of the transfer methods discussed in “Transferring Files” on page 31, or you might find it quicker to copy the file onto a USB memory stick and then insert and copy the file to your Raspberry Pi. Ensure that you save the file to the Radio folder.

Broadcasting the File

To play your new sound file, open the terminal and enter cd Radio to navigate to the Radio folder. Then list the contents of the folder by entering this line:

pi@raspberrypi:- $ ls

You should see your newly recorded WAV file. Enter the following command replacing myfile with the name of your new sound file:

pi@raspberrypi:- $ sudo ./pifm myfile.wav 100.0

Turn on your radio, tune it to the frequency 100.0, and press ENTER. Your recording should play!

Sometimes you might hear a single audio tone instead of your recording. This occurs if the previous broadcast has been interrupted before it completes. Simply restart your Raspberry Pi and run the command again.

CODING THE SOUNDBOARD

Now that you know how to record audio files and broadcast them through the radio, you’ll create a simple graphical user interface (GUI) soundboard to trigger and control broadcasts. A GUI gives a program a user-friendly appearance to make it easier to use. GUIs are a staple of most computing devices, TVs, phones, and game consoles, because a GUI uses windows, icons, menus, and pointers to help users control the device. You’ll create a GUI with buttons to trigger sounds to avoid having to enter code into a terminal.

This project uses guizero, a Python library that makes it very simple to create GUIs. If you want to read more about guizero or add more features, check out this website: https://lawsie.github.io/guizero/. With the GUI, you’ll assign each of your homemade MP3 sound files to its own button, as shown in Figure 7-5. When you click a button, the corresponding message broadcasts to any radios tuned to the same frequency.

[image: Image]

FIGURE 7-5 The final soundboard GUI

Creating the GUI Functions

Download and install the guizero Python library by opening the terminal and entering the following command:

pi@raspberrypi:- $ sudo pip3 install guizero

As the guizero library is further developed, its creators will add more features and functionality. You can upgrade your version to the current one by using this command:

pi@raspberrypi:- $ sudo pip3 install guizero --upgrade

Before you begin creating your soundboard, you’ll need to record and create at least three personal sound files containing the phrases you want to broadcast. To record the sound files, use the instructions in “Recording and Broadcasting Your Own File” on page 120. If you don’t want to record your own files, you can download sample files from the book’s resources at https://www.nostarch.com/raspiforkids/. The resources also have an image you can use for the GUI window. You must save all the sound files, the code, and the image for your soundboard in the Radio folder you created at the beginning of the chapter.

You’ll create the program for building the soundboard in IDLE. Open the Python IDLE editor, and then open a new script by clicking File▸New File. Save your new Python file to the Radio folder as radio_gui.py and enter the code in Listing 7-1.

❶ import os

 import time

 from guizero import App, Text, PushButton, info, Picture

❷ def message1():

 print ("Hello")

 os.system("sudo ./pifm hello.wav 100.0")

 time.sleep(1)

❸ def message2():

 print ("Bring me food")

 os.system("sudo ./pifm bringmefood.wav 100.0")

 time.sleep(1)

❹ def message3():

 print ("Let's take a selfie")

 os.system("sudo ./pifm selfie.wav 100.0")

 time.sleep(1)

❺ def close_message():

 info("Goodbye", "See you soon")

 app.destroy()

LISTING 7-1 Building a soundboard

The program begins by importing the operating system module os ❶. This module allows you to run terminal commands within Python code and programs. As a result, you can assign a terminal command to each button to avoid having to type out the commands each time you want to play a sound.

Next, you import the time module and the guizero library, and then you import the App, Text, PushButton, info, and Picture widgets. I won’t discuss each of these, but together they allow you to control the GUI application, create push buttons to trigger the sounds, display informational pop-up windows, and add an image to the soundboard.

Then you create four separate functions; each holds the instructions to trigger one of the sound files and broadcast it to the radio.

The first function is message1() ❷, which plays the audio file that matches the name of the WAV file it contains. It also prints Hello to the screen to let you know the file has been triggered.

You’ll recognize the code line including sudo ./pifm from earlier in the chapter. Notice that this time it begins with os.system(), which tells Python to run the line of code as if it were written and executed from the terminal, not from the Python editor. The code os.system() is required because you’re using Python code to write the GUI program, and PiFM uses Linux commands. The os.system() function enables you to trigger Linux commands from within a Python program. Replace hello.wav in the code with the name of your first sound file, and adjust the broadcast frequency if necessary. Then add the second ❸ and third ❹ functions for your other audio messages, remembering to change the filenames to match the names of your audio WAV files.

The fourth function closes the GUI window ❺. This function prints a short goodbye message and then destroys the app! This is less drastic than it sounds: the function app.destroy() simply closes the GUI.

Creating the Window and Buttons

Now you’re ready to add the code section that creates the actual GUI window and buttons. Add the lines in Listing 7-2 to your radio_gui.py Python program.

 # sets the size of the app window

❶ app = App(title = "My Radio", width=270, height=350, layout="grid")

 # adds the title

❷ Title = Text(app, text="CLICK A MESSAGE TO BROADCAST", size=11,

 font="consolas", grid=[0,0], align='top')

 # adds the image

❸ radio = Picture(app, image="sound.gif", grid=[2,0], align='top')

LISTING 7-2 Building the GUI appearance

The first line of code sets up the GUI window’s title and the window’s width and height in pixels ❶. You also set the window’s layout to a grid layout, which means you can use coordinates to plot and place the buttons within the window.

Next, you add a title to the window to tell the user what the GUI does ❷. You set the size of the font and the font type: you can change these to personalize your GUI, but keep in mind that you might need to alter the width and height of your GUI window to fit bigger fonts.

You set the title to grid positions 0 and 0, which is the top line of the grid, and then you align it to the center of the window, making it look neat and tidy.

Then you add the image from the book’s resources to the window ❸. The image must be in .gif format and be in the Radio folder. Again, you set the image’s grid position, this time on the second line, and align it to the top, which places it in the center of the GUI window.

NOTE

If you use a different image, you’ll need to adjust the window dimensions on the line at ❶ to ensure that the image fits.

With the functions and GUI built, you can add the last section of the program that creates the buttons and assigns each function to a button. When you run the program, clicking a button will trigger the function to execute and then broadcast the audio message. Add the code in Listing 7-3 to your program.

 # sound1

❶ button1 = PushButton(app, command = message1, text="Hello",

 grid=[3,0], align='top')

 # sound2

❷ button2 = PushButton(app, command = message2, text="Bring me food",

 grid=[4,0], align='top')

 # sound3

❸ button3 = PushButton(app, command = message3, text="Let's take a

 selfie", grid=[5,0], align='top')

 # quit the program

❹ quit_button = PushButton(app, command = close_message, text="QUIT

 PROGRAM", grid=[6,0], align='top')

❺ app.display()

LISTING 7-3 Creating the buttons and allocating functionality

You create a button with the PushButton() function ❶. For each button, you need to include the guizero class PushButton, which selects the function that will run when you click that button. Next, you add a label to the button by using text that tells the user what the button does. On the first button, the label Hello indicates that the button will broadcast the “Hello” sound. Then you set the button’s grid position within the GUI window. This button is located on line 3 of the grid and aligned to the top, which places it in the center of the window.

You use the same format to code the other three buttons ❷ ❸ ❹. Remember that if you’ve used a different image or different text lengths or sizes, you’ll need to change the grid coordinates and alignment to fit the content to your GUI window.

The last line is the code to create the GUI ❺. This code pulls together all the elements you created and displays them. After entering the code, save your program, ensuring that you save it to the Radio folder.

RUNNING YOUR PROGRAM

To run your program, follow these steps:

	Turn on your radio and tune it to the broadcast frequency, which in this program is 100.0 MHz.

	Press F5 on the keyboard to run the program. Your GUI should load, and you should see the main image and four buttons.

	Click one of the buttons to broadcast a sound file. The button will stay depressed while the sound file plays, preventing you from spamming the button (pressing the button over and over again) and blocking a broadcast.

WRAPPING UP

You can improve this project to make it do more. Try some of these enhancements for starters:

	Add more buttons.

	Create a simple music machine that lets you select a song that is then broadcast to the radio.

	Create a Halloween scare machine by recording and sharing spooky messages or scary sounds with listeners.

 8
THE AUTOMATIC TEXTING MACHINE

IN THIS CHAPTER, YOU’LL SET UP YOUR RASPBERRY PI TO SEND TEXT MESSAGES TO A REGISTERED MOBILE PHONE. ONCE YOU HAVE THAT BIT WORKING, YOU’LL CREATE A SIMPLE AUTOMATIC TEXT-REMINDER SERVICE: YOU’LL CODE A TIME AND A SHORT MESSAGE, AND WHEN THE SPECIFIED TIME IS REACHED, THE MESSAGE WILL BE SENT TO A NUMBER YOU INPUT. FOR EXAMPLE, YOU MIGHT SEND YOURSELF A MESSAGE TO REMIND YOU TO TAKE THE DOG FOR A WALK OR TO PICK SOMEONE UP, OR YOU MIGHT SEND A MESSAGE TO SOMEONE ELSE TO REMIND THEM EACH DAY THAT THEY OWE YOU $5!

WHAT YOU’LL NEED

Here are the items you’ll need for this project:

	Raspberry Pi

	A basic mobile phone that can send and receive SMS

A LITTLE ABOUT SMS

On December 3, 1992, the first Short Message Service (SMS) message, more commonly known as a text message, was sent from a computer. It read Happy Christmas. This inexpensive, fast, and easy service proved an incredibly popular method of communication between mobile phone devices.

CREATING A SIMPLE TEXT SENDER

You’ll create a simplified text sender that will send whatever message you type as input to the designated number. The first step is to set up your own account with Twilio, a cloud-based communications company. Twilio allows you to write program code that can make and receive phone calls, send SMS texts, collect call duration statistics, and much more.

Because Twilio is a cloud-based service, it uses an application programming interface (API). An API is a set of tools that lets you interact with web-based applications through code. You use the API to interact with Twilio’s web services to, for example, send an SMS message or check a call log. The Twilio website lets you create a free trial account, which is all you need for this project.

NOTE

You can set up the Twilio credentials on another computer and then log back into Twilio on your Pi if you find that easier.

Signing Up for a Twilio Account

On your Pi, head over to the Twilio website at https://www.twilio.com/. Click the red Sign up and start building button in the middle of the page, as shown in Figure 8-1.

[image: Image]

FIGURE 8-1 Starting at the Twilio landing page

Sign up for an account by filling in the form, which may have changed since the time of writing. Enter your first name, last name, an email address, and what you want your password to be. The password must be at least 14 characters long. Once you have completed these steps, click the red Start your free trial button. Figure 8-2 shows all these options.

[image: Image]

FIGURE 8-2 Signing up for a Twilio account

You should have been sent a verification email with a hyperlink at the address you used to sign up. Click the link in your email to verify your email address and assure the site that you’re not a bot.

Now, you’ll have to further assure the site that you’re not a bot. (Proving you are a human is a two-step process!) Add your mobile phone number and click the Verify button. You need to input a valid number because Twilio will send a verification code to the phone number you entered. You will need this code to continue.

Your phone should then receive an SMS message with a verification number. On the Twilio page, enter the verification number and click Submit, as shown in Figure 8-3.

[image: Image]

FIGURE 8-3 Well done, human.

You’re now verified as a human being; you can rest easy!

You will be asked a series of questions about coding, which may have changed since the time of writing, so I’ll guide you through the questions broadly. If you’re asked if you code, say yes. You should be given a list of languages to choose from. Choose Python.

Now you will be asked something like What is your goal today? Select the option closest to Use Twilio in a project. You should also be asked what you want to do first, in which case select the option that involves sending or receiving an SMS.

Once that’s all done, you should be taken to your dashboard, which should look something like Figure 8-4.

[image: Image]

FIGURE 8-4 The Twilio dashboard

SETTING UP A TWILIO PHONE NUMBER

The last step to set up your account is to acquire a Twilio phone number, which will be used to send the SMS messages from your Pi. Click the Get a Trial Number button. (If you can’t see the Get a Trial Number button in your dashboard, go to click the symbol with the three dots, as shown in the highlighted section of Figure 8-4, in the menu to the left, and click Programmable SMS. From there, click Get Started, and then Get a number.)

Twilio will recommend a suitable phone number for you to use. Double-check that the number is registered to the country you reside in and that it’s SMS enabled, as shown in Figure 8-5.

[image: Image]

FIGURE 8-5 Twilio will choose a number for you; make sure it is based in your country and can receive and send text messages.

If the number isn’t SMS enabled, you’ll have to acquire another one by clicking Search for a different number, and you might be charged a small fee. Once you’ve checked that the details are correct, write down the phone number for later and click Choose This Number.

You’ve now set up your Twilio account, and you have a new phone number to use in your Python program. You are now ready to create your project and write the program that will send SMS texts to a phone number.

Creating a Project

Now it is time to set up your project and name it. At this point, Twilio will also show you your project’s authorization codes and credentials. Under “PROJECT NAME,” enter SMS_Phone, or any other name as long as it has SMS in it. The Dashboard will now display the title SMS_Phone Dashboard, as shown in Figure 8-6.

When you created your Twilio account you also created an ACCOUNT SID and authorization token, which you’ll need later to control communication to your verified mobile phone. You will see that the AUTH TOKEN is not displayed for security reasons. To access the token press the copy button next to it. You can now paste the token into your program code.

[image: Image]

FIGURE 8-6 You’ll find your project credentials here.

Installing Twilio

To install Twilio, open the terminal window and enter the following:

pi@raspberrypi:- $ sudo pip3 install twilio

The relevant Python packages will be downloaded and installed onto your Raspberry Pi. Then restart the Pi, and when it loads, open IDLE 3, which is located on the Programming menu.

Writing the Code

Copy the code in Listing 8-1 into the file, and save it as SMS.py.

❶ from twilio.rest import Client

 # Find these values at https://twilio.com/user/account

❷ account_sid = "XXXXXXXXXXXXXXXXXXXXXXXXXXXX"

❸ auth_token = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

❹ message_text = input("Please enter your message ")

❺ client = Client(account_sid, auth_token)

 # Replace +999 with your own phone number and +000 with your Twilio

 number

❻ message = client.messages.create(to = "+999", from_="+000",

 body = message_text)

❼ print ("Your message is being sent")

❽ print ("check your phone")

LISTING 8-1 The simple text-sender code

You begin by importing the Client() function from twilio.rest ❶. Representational State Transfer (REST) is a method of transferring information between a computer device (your Raspberry Pi) and a web-based service (Twilio’s cloud services). You import Client() so you can use REST from Twilio.

Next, you need to add your account security identifier (SID) ❷ and the authorization token ❸. You have already found both values on your dashboard on the Twilio website, so just copy and paste them into your code in place of the X placeholders. If you choose to type these codes, ensure that you use the correct letter case.

You then create a variable called message_text ❹ and give it a phrase to prompt the user for input: input("Please enter your message "). This code line prompts the user (in this example, the user is you) to type in the SMS message they want to send; your program can send any text you want it to rather than a standard preset message.

To utilize the client to send the SMS message, you put your account_sid and your auth_token in a variable called client ❺. With that, you can create a line of code to combine your message, your Twilio credentials, and the relevant phone numbers and then transmit the SMS message.

You create a variable called message and add the command client.messages.create(). When called, message collects the details from your client variable and creates an object to reference the Python Twilio class to create the SMS message ❻.

To the same message variable, you add the mobile number you registered and verified with Twilio after the to = code. You’ll need to replace the +999 currently in the code with the cell number that you’re sending the message to (but make sure to keep the plus sign).

After from_=, you enter the Twilio-enabled phone number you set up in place of the +000 currently in the code. Next, you add the message_text variable, which contains the body of the text message. This completes the line of code to send the message.

Then you add a simple confirmation line to print when the message has been sent ❼ and another line to act as a reminder to check the mobile phone that the message has been sent to, the recipient of the message ❽.

Let’s try it out! Save the program and run it, making sure the registered mobile phone is switched on. When the program runs, you’ll be prompted to enter a short message. Enter your message and press ENTER; you should see the message appear on your mobile phone, as shown in Figure 8-7.

[image: Image]

FIGURE 8-7 Receiving a Twilio message on your phone

CREATING THE AUTOMATIC SMS REMINDER MACHINE

Now that you have a basic SMS program set up, you can combine it with other Python features to create an automatic SMS reminder system, as shown in Figure 8-8. You’ll enter your reminder message and then enter the time the reminder needs to be sent.

[image: Image]

FIGURE 8-8 An automatic text reminder

The program checks the current time on your Raspberry Pi. When it reaches the designated time, it sends the reminder message to your phone. Because the time needs to be accurate, I recommend that you connect your Pi to the internet. That way, the time will be updated each time the Pi is booted up, and your reminder program will respond at the correct time.

Setting Up and Validating the Format

Open a new file in IDLE 3 or your Python code editor and add the first section of the code, as shown in Listing 8-2. Save it as reminder_machine.py.

❶ from twilio.rest import Client

 import time

 import datetime

 import sys

 # Find these values at https://twilio.com/user/account

❷ account_sid = "XXXXXXXXXXXXXXXXXXXXXXX"

 auth_token = "XXXXXXXXXXXXXXXXXXXXXXXXX"

 client = Client(account_sid, auth_token)

 # validation for time

❸ def isTimeFormat(input):

 ❹ try:

 ❺ time.strptime(input, '%H:%M')

 ❻ return True

 ❼ except ValueError:

 ❽ return False

LISTING 8-2 The first part of the reminder_machine.py code

Again, you need to import the Twilio Client ❶. But you also import the time module to add short delays and the datetime module to access the Raspberry Pi’s current time. You also add the sys module, which lets you use command line functions with the program.

As before, you need to add your Twilio account credentials to the variables account_sid and auth_token and then combine them into the variable named client ❷.

This next bit is new: you need to set up a simple validation to check that the input time is in the correct format. The user needs to input the format of hours:minutes, like this: 11:10. If a user enters the time incorrectly as 1110 or 111:0, the program will fail because it would never match the Pi’s time. To check for the correct format, you create a function called isTimeFormat() ❸, and then you use a try method to validate the input ❹. On the next line, you use the function time.strptime() ❺ to check that the input time is in the format %H:%M, which is hours:minutes, or 00:00.

If the time entered is in the correct format, the validation check returns the value True ❻. If an error occurs ❼ or the value doesn’t match the correct formatting, the value False is returned ❽. You’ll use these values later to trigger the continuation of the program to the next stage or to prompt the user to reenter the time in the correct format.

Coding the Reminder Message

Now you’re ready to add the second code section, which introduces what the program does and asks the user to enter their reminder message and time. Add Listing 8-3 to the bottom of the reminder_machine.py file.

❶ print ("Welcome to the reminder machine")

❷ print ("")

❸ time.sleep(1)

❹ reminder = input("Please enter your message ")

 print ("")

 # validation check for time format

❺ check = False

❻ while check == False:

 ❼ reminder_time = input("Please enter the reminder time.

 For example 09:45 ")

 ❽ check = isTimeFormat(reminder_time)

 print ("")

 ❾ print (check)

 print ("")

LISTING 8-3 The second part of your reminder_machine.py program

You start with a simple print() and a statement to notify the user that the reminder machine is running and ready ❶. Then you add a blank line to print between each statement to make them easier to read ❷ and pause for a second to allow the user to read the welcome message and instructions ❸.

Next, you create a variable that prompts the user to enter their reminder message ❹ and then store the message.

Then you check that the time value is in the correct format, 00:00. You set it to False by default ❺. You create a while statement that runs only while the isTimeFormat() validation check value is False ❻. Because you set it to False in the previous line, the while loop keeps looping.

Inside the while loop, you prompt the user to enter the time they want the reminder sent and store this in the variable reminder_time ❼.

To check that the time the user inputs matches the correct format, you call the isTimeFormat() function you created in Listing 8-2 and input the value stored in the reminder_time variable ❽.

Depending on whether the time has been input in the correct format, the function will return either True or False. If the returned value is False, the time input is in an incorrect format and the while loop runs again, prompting the user to enter the time in the correct format.

When the returned value is True, the time format input is correct, and the program continues to line ❾ and prints the validation value. This is for your testing purposes: you can comment out the line at ❾ after the program is operational by placing a # on the left side of the line so it looks like this: # print (check).

Matching Times and Sending the Message

The final section of the program, shown in Listing 8-4, compares the Raspberry Pi’s current time with the reminder time and, when they match, sends out the message.

❶ while True:

 ❷ current_time = datetime.datetime.now().time()

 # print (current_time)

 ❸ current_time = str(current_time) # swap the time to a string

 ❹ current_time = current_time[0:5]

 ❺ if reminder_time == current_time:

 ❻ print ("Reminder Time")

 ❼ message = client.messages.create(to = "+999999",

 from_="+00000000", body=reminder)

 ❽ time.sleep(60)

 ❾ sys.exit()

 else:

 ❿ time.sleep(1)

LISTING 8-4 The final part of reminder_machine.py: sending the message!

First, you create a while True loop to keep this section of the program running continuously, checking the current time and comparing it to the reminder time ❶.

Next, you store the current date-time reading from the Raspberry Pi operating system in a variable called current_time ❷. You’ll print this value for testing purposes, but once the program is functioning, comment it out. The value will be in the format hours:minutes:seconds:milliseconds, which contains more data than you require. So before you use the date-time value, you convert it into a string ❸ and then slice it down to just the first five characters ❹ to match the 00:00 format.

Now you can compare reminder_time with the current time: the next line checks whether, say, 11:10 equals 11:10 ❺, and if the two values match, the program prints a line indicating it’s reminder time ❻!

To send the message, you create a variable called message and add the to and from phone numbers. Then you add the reminder message you entered and stored in the reminder variable as the body of the message ❼. The client.messages.create() function creates and sends the message to your mobile phone.

The lines of code ❷ to ❿ are placed within a while loop, meaning that the program is continuously checking the conditions and sending messages when those conditions are met. If you left the program code like this, it would send you as many messages as possible in the minute that matches the time you have set. To avoid this continuous messaging, you add a delay of 60 seconds before the next line of code runs ❽. As a result, the time will move on to, say, 11:11 and no longer match when the loop runs again.

You add code to exit the program by calling the system exit command from the terminal ❾. In the final line of the program, you add a delay of 1 second, and then the whole loop will start again ❿.

That completes the program. You can now save and execute it. Keep an eye on the levels of indentation. If you have any trouble getting the program to run, first check that the lines are indented at the correct level.

Enter your reminder message and reminder time. Then leave your Raspberry Pi running, and you’ll be sent your text at the allocated time!

WRAPPING UP

You can use your automatic texting machine for all kinds of things, especially now that you have a Twilio account set up. Check out the Twilio documentation to find out what you can do (www.twilio.com/docs/quickstart). As one tip, why not try your hand at detective work: use Twilio to trace messages and phone calls to and from the phone connected to Twilio. You’ll find the code for this hack at www.tecoed.co.uk/spooking-a-mobile.html.

 9
PI SPY PART 2: WI-FI AND BLUETOOTH TRACKING

YOU CAN USE YOUR NEW RASPBERRY PI SKILLS TO SPY ON WHOEVER IS IN YOUR HOUSE BY LOCATING SIGNALS FROM THEIR TECHNOLOGY. ALMOST EVERYONE HAS A SMARTPHONE, TABLET, OR ANOTHER DEVICE THAT TRANSMITS A LOT OF UNSEEN DATA IN THEIR VICINITY. YOU’LL USE THIS DATA TO DETECT WHO IS AROUND.

You’ll use your Raspberry Pi to detect devices through both your internet router and Bluetooth. You’ll send data from your Raspberry Pi to each device via the internet router or Bluetooth and retrieve information including the device’s name, the device’s type, whether it’s connected, and then whether the person who owns the device is around. This assumes that each device is owned by one person and not, say, shared among the family. Otherwise, knowing who’s around is much harder!

You’ll then create an LED visual display board indicator, or status board, that lights up when a user is in the home and goes off when the user is absent (Figure 9-1).

[image: Image]

FIGURE 9-1 A finished status board

WHAT YOU’LL NEED

	Raspberry Pi Zero W or Raspberry Pi 4 (suggested)

	10 female-to-female jumper wires

	5 LEDs—or the same number of LEDs as devices you want to track

	5 resistors (220 to 330 ohms)

	Cardboard

	Pictures (optional)

	Masking tape (optional)

	Push button

You can use pictures of your family members or, to disguise the purpose of the status board, random pictures to represent each family member, as I have in Figure 9-1.

CREATING YOUR STATUS BOARD

Let’s begin by creating the status board that will indicate who is in the vicinity.

If you have one, the Raspberry Pi Zero W is the best size for mounting onto the back of your status board, because it’s the smallest Pi. If you’re using a bigger Pi, such as the model 4, you might have to put it next to the status board on a sturdy surface. However, if you do use the Zero W, you may find it easier to make the project by using a model 4 and then transfering the SD card to your Pi Zero W.

Wiring Up the LEDs

Take one of the five LEDs and locate the longer (positive) leg. Wrap one leg from a resistor around this LED leg so that it’s tight and secure, as shown in Figure 9-2. Now attach one end of a female-to-female jumper wire to the shorter (negative) leg of the LED. Attach the other female-to-female jumper wire to the resistor wire. Repeat this step for all five LEDs.

[image: Image]

FIGURE 9-2 Wiring up an LED

Adding the LEDs to the Board

On the cardboard you’re using for your status board, lightly mark each location where you want to place an LED. If you’re attaching the Raspberry Pi to the board, ensure that you leave enough space for the Pi and all the wires. Carefully pierce a small hole in the board at each previously marked location to hold each LED in place. You can use a pen or screwdriver to do this. Push each LED through a hole. Stick them down with masking tape to keep things neat and tidy, as well as to reduce the possibility of the wires touching each other and causing a short-out. The back of your status board should look similar to Figure 9-3. Each of the numbers refers to the GPIO pin that the LED is connected to. (See the table on the next page for the GPIO pin numbers.) For example, the LED on the left, LED 1, is connected to GPIO 4.

[image: Image]

FIGURE 9-3 Attaching the LEDs to the status board

You can now add your own touches to the front of the board. Perhaps add photos to represent the members of your home, and decorate it to suit your style and taste.

Connecting the LEDs to the Raspberry Pi

To power each LED, you need to take the longer, positive leg that has the resistor wrapped around it and attach its jumper wire to a GPIO pin. (Any one will work fine, but I suggest using the ones in the following table.) Then take the shorter, negative leg and attach its jumper wire to a ground GPIO pin labeled GND. Figure 9-4 shows these connections. The GND pins are located at physical pins 6, 9, 14, 20, 25, 30, 34, and 39. You can use any of these.

[image: Image]

FIGURE 9-4 Connecting an LED to the Raspberry Pi

Now do the same for all your other LEDs to wire them up to the Raspberry Pi board (Figure 9-5). The following table shows which GPIO pins to use.

	ITEM

	GPIO

	LED 1

	4

	LED 2

	18

	LED 3

	24

	LED 4

	7

	LED 5

	26

	Shutdown button

	16

The last set of wires is for the shutdown button, which, when pressed, will power down the Raspberry Pi. Add a jumper wire to GPIO 16 and another one to a GND pin. If you need to, you can connect the LED to any of the pins, except for the 3V and 5V pins (1, 2, 4, and 17), depending on where your LEDs and Pi are positioned on the board. For example, if your Raspberry Pi is in the middle of the board, you may want to use GPIO 2, 3, 4, 14, 15, or 18 for the LEDs located to the right side and 13, 19, 26, 16, 20, or 21 for LEDs on the left. The other end of the LED is attached to one of the ground pins to complete the circuit. If you do use different GPIO numbers or add more LEDs, take note of each GPIO pin number and its corresponding LED, as you’ll need them later when you code with Python.

[image: Image]

FIGURE 9-5 Wiring up all the LEDs and the button

Attaching the Raspberry Pi

Most Raspberry Pis come with four small screw points, one in each corner of the board. These are perfect for mounting the Pi onto the status board. You can use either small screws to screw the Pi in place or adhesive glue dots to secure it. Use the screws if you want to remove the Raspberry Pi and use it for something else in the future.

TRACKING DEVICES WITH IP ADDRESSES

First, you’ll set the Pi to track your house members through their IP addresses. Take a moment to consider the enormous number of devices that use the internet: mobile phones, smart TVs, game consoles, smart watches, refrigerators, cars, tablets, and alarm systems, just to name a few. With so many devices connected, how does the correct data get to the correct device? How does the data for a video you’re streaming, for example, know to be sent to your tablet while someone else in the house is checking email or listening to music?

Well, every device connected to the internet is given an Internet Protocol (IP) address. From the outside, these addresses work similarly to zip codes: they indicate a set of devices within a certain network—your network will be your shared internet connection. From inside this network, each device is given its own unique IP address so the router knows what information to send where.

An IP address is made up of four sets of numbers: for example, 192.168.1.24. At last count, about 340 trillion trillion trillion IPv6 addresses were in use!1

You’ll use the individual IP addresses of the devices on your network to check whether each device is nearby. Because your Raspberry Pi is connected to your home network, it will have its own IP address. Let’s discover what that is.

FINDING YOUR IP ADDRESS

Open the terminal and enter the following, which should give you some information about your network:

pi@raspberrypi:- $ hostname –I

This displays the IP address of your Raspberry Pi. In Figure 9-6, my IP address is 192.168.1.171.

[image: Image]

FIGURE 9-6 Getting the Raspberry Pi’s IP address

FINDING THE IP ADDRESSES OF OTHER DEVICES

There are two methods for finding the IP addresses of the other devices on your network. The first is to use an app such as Fing from your phone or tablet, and the second is to use a program called Nmap from your Pi.

Using Fing

Fing will scan your router and network and return all the IP addresses, plus the name and the manufacturer of all connected devices. Write down this information so you can use it later in the program code. If you want to take this simpler route, download Fing to your phone or other device, and follow instructions at www.fing.io.

Using Nmap

Alternatively, you can write a small Python program on your Pi to scan and return the addresses. This has an advantage: you can copy and paste the numbers straight into the main program and not risk mistyping them. To do this, you’ll use a program called Nmap.

Installing Nmap

Nmap (Network Mapper) is a scanner used to discover devices and services on a computer network. Nmap sends a specific packet of data to the router and then analyzes the responses to build a table of information about the connected devices. From this table, the program builds a map of your network. To install Nmap, open the terminal window and enter the following:

pi@raspberrypi:- $ sudo apt install nmap

Nmap commands are executed from the terminal, so to use Python and the features of Nmap, you need to install a Python wrapper. A wrapper is a program that enables you to write Python code in the terminal to control some software. In the terminal, enter this:

pi@raspberrypi:- $ sudo pip3 install python-nmap

Writing a Program to Find the IP Addresses

Now that you have Nmap installed, you can write a Python program to search for the IP addresses of connected devices. Open IDLE and start a new Python file. Add the code in Listing 9-1 and save it. Before you run it, make sure your own phone or other device is connected to the router, because you’ll use your device as the tester for the final code.

❶ import nmap

❷ nm = nmap.PortScanner()

❸ data = nm.scan(hosts='192.168.1.0/24', arguments= '-sP')

 print (data['scan'])

 print ("")

❹ for host in nm.all_hosts():

 ❺ print ('Host : %s (%s)' % (host, nm[host].hostname()))

LISTING 9-1 Nmap scanning program

Start by importing the nmap library ❶ and then create the variable nm to hold the PortScanner() function ❷ from the nmap library. This function, as you might have guessed, scans ports!

Next, add the code to scan the router ❸. Most routers have a generic IP address that’s standard across all of them. This line scans all IP addresses in the range from 192.168.1.0 to 192.168.1.24 and then retrieves the data that each IP address holds about the connected devices.

However, you may need to check the IP range for your particular router and change the range to reflect this. For example, your router’s IP address range may start from 192.168.0.1, or you may have configured your own custom range. If in doubt, refer to the service provider’s guidance and documentation.

Now use a for loop to cycle through all the hosts (the devices) that have been found ❹. This will provide you with the IP address as well as the name of each device that is currently connected to the router or was previously connected (many routers keep a list of all previously connected devices).

The list you retrieve provides lots of details about the devices, so you’ll print this out ❺ to help you identify each device. Once you’ve entered and saved the program, press F5 to run it and you’ll be presented with a list of connected devices and IP addresses in the Python editor window, like the one in Listing 9-2.

Python 3.5.3

[GCC 6.3.0 20170124] on linux

Type "copyright", "credits" or "license()" for more information.

>>>

=== RESTART: /home/pi/find_ipadresses.py ===

{'192.168.1.1': {'addresses': {'ipv4': '192.168.1.1'}, 'hostnames':

[{'name': 'TestBox.cc', 'type': 'PTR'}], 'vendor': {}, 'status':

{'reason': 'syn-ack', 'state': 'up'}}, '192.164.1.xxx':

{'addresses': {'ipv4': '192.168.1.xxx'}, 'hostnames': [{'name': '',

'type': ''}], 'vendor': {}, 'status': {'reason': 'conn-refused',

'state': 'up'}}}

LISTING 9-2 The IP addresses that have been found

Copy and paste your details into a text document or a new Python file. If you paste into a Python file, remember to add a # before each line to comment it out—this will stop any errors when the program runs. Now, try to identify whom each device belongs to and note the additional information next to the device name. You might be able to make the identification from the device name, or you could quickly check who is in the house and use a process of elimination. For example, if you have two iPhone users in the house, and one phone is showing up, check the model number. If a person is out, you know that any phone that shows up is not theirs. Some users will make it easy for you by using their real name for their device name. You should also make a note of which device is yours.

Remember that in an ideal situation, the devices will be connected to the router and will return the current IP address. But IP addresses can change when the router is turned off or reset, so any devices in your home that are turned off may show up as their previous IP address. It’s best to wait until they go back online before you collect the addresses.

WRITING THE STATUS BOARD CODE

Now that you have a list of IP addresses, devices, and users, you can create the program that combines this information with the electronics in your status board to spy on who is present in your home. If you’re using a Pi Zero W, you’ll need to SSH in (see “Accessing the Raspberry Pi via SSH” on page 25) or use a remote desktop application to access your Pi. Otherwise, you could write and test the code in this section on a Raspberry Pi and then transfer its SD card to your Pi Zero W.

In Python code, you’d typically group common elements like LEDs together. Our code, though, will make more sense if you group the code by each person or device; that way, you can easily add LEDs and check for more people. That’s what you’ll do here.

This program uses the gpiozero library and the PingServer() class, which sends out pings. But what is a ping? You can think of a ping as a request that’s sent to your router. The request is made up of packets of data, represented as a string of zeros and ones, which request information from your router about all of the devices that are connected to it. The router then sends that information back to your Pi and the Python program. In this project, the data is sent back to your Raspberry Pi. You’ll use this information to find out who is around.

Setting Up and Identifying the First Device

Open your Python editor and add the code shown in Listing 9-3.

Then save it as wifi_spy.py.

❶ from gpiozero import PingServer, LED, Button

❷ from subprocess import check_call()

❸ from signal import pause

❹ def shutdown():

 check_call()(['sudo', 'poweroff'])

 # first device apple phone

❺ frank = PingServer('192.168.1.1') # hub

❻ led = LED(4)

LISTING 9-3 Setting up and finding the first device

First, import the required functions ❶ from the gpiozero library. You need PingServer() to retrieve the data from the router, the LED class to control the LEDs, and the Button module to add the button function to shut down the board.

You also need to import check_call() from the subprocess library ❷. This lets you use commands in the terminal to control the Raspberry Pi, and you’ll use this to let you shut down the Pi from the terminal.

Finally, import pause from the signal library so you can keep the program running continuously ❸.

Next, create a shutdown() function that holds the code for shutting down the Pi ❹. This uses the check_call() command to run the command sudo poweroff, which turns off the Pi.

Now you can start detecting people! I’ve put in a comment to help keep track of each person that the device and LED in the status board refers to; you should change this comment to reflect the first device in your house.

Create a variable to hold the details of the first IP address you check ❺. You should name the variable after the user of the device, which you figured out in “Finding the IP Addresses of Other Devices” on page 147. This variable contains the command to ping the router and the device’s IP address. In place of the IP address I’ve put here, take the first IP address from the list you got earlier using Fing or Nmap and place that in the brackets, remembering the quote marks.

The last line identifies which GPIO pin is used by this person’s LED ❻. Each individual should have their own LED, so here Frank is assigned the LED attached to GPIO pin 4.

Finding the Rest of the Devices

Now you’ll use the same code structure to set up the variables for the other device IP addresses you want to check and assign an LED to each device. Add the lines of code from Listing 9-4 to the bottom of your program.

 # second device oneplus

 scott = PingServer('192.168.1.22') # oneplus

 led_scott = LED(18)

 # third device laptop 1

❶ liz = PingServer('192.168.1.72') # laptop 1

 led_liz = LED(24)

 # fourth device raspberry pi

 jenny = PingServer('192.168.1.165') # pi

 led_jenny = LED(7)

 # fifth device laptop 2

 jade = PingServer('192.168.1.209') # laptop 2

 led_jade = LED(26)

LISTING 9-4 Assigning LEDs to each device

As before, you create a variable to hold the results of each ping, indicating the name of the person who owns the device. Remember to replace each variable name with a name in your household, and replace each IP address with the corresponding IP address you collected earlier ❶.

If you can’t locate enough devices, still add the code for each variable listed here and just use an IP address you already used. This will turn on multiple LEDs at once, but it will mean you can test that the wiring and the program code are working correctly. Once you have it all working, you can go back and delete or comment out those lines if you want.

Adding Delays, Responding to Data, and Adding the Button

Finally, you add the concluding section of the program code, shown in Listing 9-5. This will put a delay between the pings for each person.

You delay between each ping because pinging the router too many times will create a lot of traffic and slow the network. You might get caught! Also, a person isn’t likely to leave the house and return every second, so you can run the check once a minute.

 # check every 60 seconds

❶ led.source_delay = 55

 led_scott.source_delay = 56

 led_liz.source_delay = 57

 led_jenny.source_delay = 58

 led_jade.source_delay = 59

 # power on LEDs

❷ led.source = frank.values

 led_scott.source = scott.values

 led_liz.source = liz.values

 led_jenny.source = jenny.values

 led_jade.source = jade.values

 # GPIO 16 for shutdown

❸ shutdown_btn = Button(16, hold_time=2)

❹ shutdown_btn.when_held = shutdown

❺ pause()

LISTING 9-5 Adding delays between pings

Replace the names I’ve used here with the names you used for your variables, and then list the delay in seconds as I’ve done ❶. If you find your network is still running slow or you want to run the checks less frequently, increase the number of seconds for the delays. For example, you could increase the delays to 300, as a user is likely to be online for a while. Note that some smartphones may appear disconnected from your network when the phone screen locks.

Next the program needs to respond to the ping data. If the IP address sent in the ping is located on the router and confirmed as live, the corresponding LED is turned on ❷. If the IP address isn’t found, then the device isn’t found, and the LED is turned off.

Finally, you set up the button to initiate the shutdown sequence ❸. You set this to GPIO pin 16 (if you used a different pin, make sure you put that GPIO pin number here).

The value in hold_time refers to how long the button must be held down to trigger the shutdown sequence ❹. This program sets the time to 2 seconds so that accidentally pressing the button for a moment won’t shut down the program. (You have to hold the button down for at least 2 seconds.) The when_held checks whether the button is being pressed and runs the function to shut down the Raspberry Pi and turn off the status board if it is.

Finally, use pause() ❺ to keep the program looping forever. That concludes the main program structure and status board hardware setup!

Running the Program

Let’s give it a whirl! To check that the program code is working correctly, press F5. This will prompt you to save your program, and then it will execute. Depending on who is around and which devices are connected, you should see some of the LEDs light up.

Make sure your own device is on and connected to the router. To test whether the code is responding, turn off your device or set it to flight mode. You should see your own LED turn off! Remember that the code runs once a minute, so it might not turn off straight away.

Troubleshooting

If the status board doesn’t appear to work correctly, check for these common culprits:

	Are any devices connected to the router?

	Are your LEDs faulty?

	Have you wired up the LEDs correctly? (Check that the positive/negative legs are connected the correct way.)

	Does the LED pin number match the pin number used in the code?

	Are you using the right IP address for each user in your house?

	Is the correct LED assigned to the correct user?

SETTING UP THE CODE TO RUN AUTOMATICALLY

The last step of the project is to configure the program to run automatically so that your status board responds when the Raspberry Pi boots up. Once you have your program working and the status board functioning correctly, you can remove your monitor and attach the Raspberry Pi to the status board. Then, to start up the status board, simply plug in the power to your Raspberry Pi. To turn it off, press the shutdown button or touch the two wires together, and your Raspberry Pi will start the process of shutting down.

Using Cron to Autostart the Program

To start up your status board automatically, you need to schedule the Python program to execute on boot-up. This uses cron, a simple time-based job-scheduling tool named after the Greek word for time, chronos. This tool enables you to create rules for triggering tasks automatically at specific times. For example, you might set rules to download files every hour, run an update every day at 4 PM, or send an email at the same time each week.

You create these rules in a crontab (short for cron table) file, a simple text file that contains the task’s instructions and, most important, the time to trigger the task.

Before you add this task to the crontab file, you need to know where your wifi_spy.py program is saved in your Pi system. Unless you saved yours somewhere in particular, this location will probably be /home/pi/wifi_spy.py. Note the correct file path of wifi_spy.py, and then you’ll edit the crontab.

Open the terminal and enter this:

pi@raspberrypi:- $ crontab –e

This will open the cron console (Figure 9-7).

[image: Image]

FIGURE 9-7 The crontab

The terminal should give you three methods of editing the cron file. Select option 2 to open the nano text editor—you’ll use this because it’s the simplest.

This should open the cron file in nano, and you should see a load of code already there that looks something like Listing 9-6.

daemon's notion of time and timezones.

#

Output of the crontab jobs (including errors) is sent through

email to the user the crontab file belongs to (unless redirected)

#

For example, you can run a backup of all your user accounts

at 5 am every week with:

0 5 * * 1 tar –zcf /var/backups/home.tgz /home/

#

For more information, see the manual pages of crontab(5) and

cron(8)

#

m h dom mon dow command

LISTING 9-6 Startup code in the crontab file

Scroll to the bottom of the text and locate the black space, and right at the end add the following line of code:

@reboot python3 /home/pi/wifi_spy.py &

The command is easy to understand: it states that on rebooting the Raspberry Pi, run Python in super user mode, open the home/pi folder, and execute the program called wifi_spy.py. Make sure that you replace the filename with the name of your file, if required, and that the correct folder path is used.

The & syntax at the end of the line of code is telling cron to run your program in the background so you can still do other things with your Raspberry Pi.

Once you have checked the code you added to the crontab file and are confident that it’s correct, press CTRL-X to save and exit the file. Now, each time you boot up or reboot your Raspberry Pi, the crontab file will run and execute the status board program.

If you ever want to stop the program from automatically running, open the crontab file again from the terminal by using crontab –e, and comment out or delete the line of code that you added. Then save the file and reboot.

Rebooting to the Command Line

Because the status board is designed to run headless (without a screen or monitor), you don’t need the Raspberry Pi to boot to the desktop, as this takes longer and will use more memory and processing power than is necessary. Instead, you’ll configure the Pi to boot to the command line. Open the terminal window and enter this:

pi@raspberrypi:- $ sudo raspi-config

This should bring up the Configuration tool in your terminal, as shown in Figure 9-8. Select the third option, 3 Boot Options, and press ENTER. Then select B1 Desktop / CLI and then the B1 Console option.

[image: Image]

FIGURE 9-8 Booting to the command line option

Once this is set, use the down arrow key to select <Finish> and press ENTER. You’ll be prompted to save the config file and reboot. Select Yes, and your Pi will restart. When it boots up again, the status board program should load.

Now for a visual indicator of who is around, plug in the power source, and your status board will tell you. You may need to wait a minute or two while the Pi connects to the router. Remove the HDMI cable from your Raspberry Pi, as you’re now truly headless!

TRACKING DEVICES WITH BLUETOOTH

In this section, you’ll look at how to spy on who is around by using Bluetooth instead of Wi-Fi. Similar to the way you used IP addresses to track devices, you can use the Raspberry Pi to scan for Bluetooth data transmissions and retrieve the address of the device. This address can then be used to trigger the relevant LED on your status board.

What Is Bluetooth?

Bluetooth is the industry name for the standard range of radio waves between 2.402 and 2.480 GHz, used to enable devices to communicate wirelessly with each other over short distances of around 100–200 m. As with all technology, Bluetooth is always evolving, and the latest Bluetooth 4 technology can communicate over distances up to 200 m. Bluetooth requires little battery power, making it ideal for use on mobile devices.

Every device with Bluetooth is assigned its own unique address, with the format D2:72:F6:87:D2:8A. Because each address is unique to the device, if you get the address and know who owns each device, you can track people! From a security perspective, I recommend you remove or edit the addresses if you intend to share your program code or show others how it works.

Turning On the Raspberry Pi Bluetooth

The Raspberry Pi and Pi Zero W both come with Bluetooth hardware ready. If you have an older model Pi, you can still use this hack, but you’ll need to purchase a Bluetooth USB dongle and attach it via one of the USB ports.

To turn on Bluetooth on your Pi, locate the standard Bluetooth symbol at the top right of the desktop, click the symbol, and select Turn On Bluetooth.

The good news is that to find Bluetooth-enabled devices nearby, you don’t need to be connected to them–that would be a bit of a giveaway. If you have your own device handy, turn on and enable Bluetooth. Then return to your Pi, click the Bluetooth icon, and select the option Make Discoverable. The Bluetooth icon will start flashing green. Click the Bluetooth icon again and select the Add Devices option. A new window should open, and the Bluetooth hardware will begin scanning and searching for devices. Eventually, you’ll end up with a list of all nearby devices with Bluetooth enabled!

To collect Bluetooth addresses for the devices, you’ll write a simple Python script as you did when searching for IP addresses. The program scans for addresses, adds each address to a list, and then prints the list to the Python console. First you need to install some libraries.

To install the required Python libraries, open the terminal window and enter the following commands:

pi@raspberrypi:- $ sudo apt install bluez

pi@raspberrypi:- $ sudo apt install bluetooth libbluetooth-dev

pi@raspberrypi:- $ sudo pip3 install pybluez

When the three programs have finished downloading and installing, reboot your Raspberry Pi.

So let’s see which Bluetooth-enabled devices are in your home. Open a new Python file and copy the program in Listing 9-7. Save it as bluetooth_finder.py.

import bluetooth

from time import sleep

find devices

print ("Searching for devices...")

nearby_devices = bluetooth.discover_devices(lookup_names = True)

sleep(10)

print ("found %d devices" % len(nearby_devices))

for addr, name in nearby_devices:

 print (" %s - %s" % (addr, name))

LISTING 9-7 Using Bluetooth to discover devices

This code controls the Bluetooth hardware to search for nearby devices that are transmitting a Bluetooth signal. Then it creates a nicely organized list of the addresses and prints them out.

The output should look something like Listing 9-8.

Python 3.5.3 (default, Jan 19 2017, 14:11:04)

 [GCC 6.3.0 20170124] on linux

Type "copyright", "credits" or "license()" for more information.

>>>

 RESTART: /home/pi/bluetooth_finder.py

Searching for device...

found 0 devices

>>>

 RESTART: /home/pi/bluetooth_finder.py

Searching for device...

found 1 devices

 D0:57:78:87:F6:8A - DANLAPTOP

LISTING 9-8 Output from scan

Once you have the program copied, you can use it to copy and paste the addresses or write them down to use them for your status board. Remember to check which address corresponds with which device, and carry out a little testing to ensure that you have the correct address for each person.

Writing the Status Board Code

Now that you can locate Bluetooth devices and you have addresses for nearby devices, you can use these as ID codes to trigger the LEDs on your status board. This code will come in a few pieces so I can explain how each bit works. First, let’s set up some essentials.

Importing and Setting Up the LEDs

Let’s import the packages you need and set up the LEDs. Copy the program code in Listing 9-9 into a new Python file and name it bluetooth_status_board.py.

❶ import Bluetooth

 from bluetooth import *

 from gpiozero import LED, Button

 from subprocess import check_call()

 from signal import pause

 from time import sleep

❷ def shutdown():

 ❸ check_call()(['sudo', 'poweroff'])

 # define the LEDs

❹ led1 = LED(4)

 led2 = LED(18)

 led3 = LED(24)

 led4 = LED(7)

 led5 = LED(26)

 button = Button(16)

LISTING 9-9 The first part of the Bluetooth status board code

Start the program by importing the Bluetooth library, followed by the LED and Button classes to control the status LEDs and the shutdown button ❶, respectively. Then import the subprocess library so you can use check_call() from the terminal, as you did with the Wi-Fi version. Use the sleep() function to add delays or pauses in the program.

Next, create the shutdown() function ❷ and have it use check_call() to call the command sudo shutdown from the terminal, which will tell the Raspberry Pi to power off ❸.

Then assign each LED on the status board to a GPIO pin ❹. You also assign the button to pin 16.

Adding the Searching Code

Now you’ll add the code to search for the Bluetooth addresses you collected! You’ll use the searching code from Listing 9-7 to find devices that have Bluetooth enabled and then turn on the status board LED if the corresponding Bluetooth address is found. Add the code in Listing 9-10 to the bottom of your current bluetooth_status_board.py file.

while True:

 # find devices

 print ("Searching for devices...")

 ❶ nearby_devices = bluetooth.discover_devices(lookup_names =

 True)

 sleep(5)

 # search for particular devices

 # person 1

 ❷ liz = bluetooth.lookup_name("C5:ED:FB:F5:BB:D7", timeout=5)

 ❸ if (liz != None):

 ❹ print ("Test 1")

 ❺ led1.on()

 ❻ else:

 led1.off()

 pass

 # person 2

 sarah = bluetooth.lookup_name("C5:ED:FB:F5:BB:D7", timeout=5)

 if (sarah != None):

 print ("Test 2")

 led2.on()

 else:

 led2.off()

 pass

LISTING 9-10 Searching for your first two addresses

First, add the code to detect nearby Bluetooth devices and create a list of the found addresses ❶. This time you don’t need to print this data, so comment out the print lines.

Then search for the particular addresses you found earlier! As with the IP addresses, assign a particular Bluetooth address to a variable (using the name of the person the Bluetooth address belongs to as the variable name), look up the Bluetooth address ❷, and add a time delay of 5 seconds to allow the devices to send and receive the required data.

The next line ❸ checks whether the address for the target associated with LED 1 (in this case, liz) has been discovered, meaning the device is present in the house. If the address has been found, the value for the variable will not be None.

The line at ❹ is for testing purposes and can be commented out of your final program. If the Bluetooth address has been found, the corresponding LED, the first LED on the status board, will be turned on using led1.on() ❺.

If the Bluetooth address isn’t found during the search, the LED is set to off, and the program passes on to the next check ❻.

Adding More Targets

To add more targets, copy Listing 9-11 and paste it into your program again, changing the Bluetooth address to another you found and also remembering to change the variable name and the LED number. Keep the same level of indentation on these lines of code.

 # person 3

 frank = bluetooth.lookup_name("C5:ED:FB:F5:BB:D7", timeout=5)

 if (frank != None):

 print ("Test 3")

 led3.on()

 else:

 led3.off()

 pass

LISTING 9-11 Adding more targets

If you have fewer devices, you can use fewer targets in your code, or you can use your own Bluetooth address multiple times to test that the wiring and the LEDs are functioning correctly.

Shutting Down

The concluding section of the code, shown in Listing 9-12, sets up the shutdown button.

 #shutdown button

 ❶ if button.is_pressed:

 ❷ shutdown()

 else:

 pass

LISTING 9-12 Setting up the shutdown button

Add the if button.is_pressed: code to check whether the button has been pressed ❶. If it has, the shutdown() function will run ❷. This will turn the status board off, and your Raspberry Pi will shut down.

This completes the code for using Bluetooth addresses to trigger your status board. Now save the program code and test that it’s working correctly. You might also want to edit the crontab file by using the instructions in “Using Cron to Autostart the Program” on page 155 so that this program runs on startup instead of the IP address finder. To ensure accuracy, run either the IP or the Bluetooth search, and not both at the same time.

Well done! You’ve used either Wi-Fi and IP addresses to track a mobile device or Bluetooth to get information about the devices that are near you. Or you may have done both! You then created a visual status board on which an LED lights up only whenever a particular device is located, meaning that the owner of the device is likely nearby. Once you’ve added pictures or written the names of the people who own each device, you now have a nice, easy way to see who is about.

WRAPPING UP

Once your status board is up and running, you may want to add features to the project. To get your inventive juices flowing, you could try some of the following:

	Assign different colors for each target.

	Add more LEDs.

	Make the LEDs flash.

	Build a bigger status board.

	Add a sound that plays when a device is detected.

 10
MAGIC MUSIC BOX

IN THIS CHAPTER, YOU’LL CREATE A PERSONALIZED MP3 PLAYER THAT WE’LL CALL THE MAGIC MUSIC BOX. YOU’LL USE YOUR RASPBERRY PI’S PYGAME TO BUILD AN MP3 PLAYER THAT CAN PLAY PRELOADED MUSIC TO A SPEAKER AND THEN ADD FOUR INTERACTIVE BUTTONS: ONE TO SKIP SONGS, TWO TO ADJUST THE VOLUME, AND A POWER SWITCH TO TURN OFF THE PLAYER.

You’ll combine all the hardware into a fancy box to create your MP3 music system (Figure 10-1). The program code uses PyGame, the Python library for creating games that you used in Chapter 5. PyGame allows you to add and control sounds, images, and videos by using Python code. In this project, you’ll use PyGame to control the MP3 files, start and stop them, and adjust the music’s volume.

[image: Image]

FIGURE 10-1 The finished MP3 magic music box and its speaker

WHAT YOU’LL NEED

Here are a few items you’ll need to complete the project:

	Raspberry Pi

	4 push buttons

	8 sets of female-to-male jumper wires

	Bluetooth speaker or audio jack speaker

	Solder and a soldering iron or conductive paint

	Small box (lunchbox, wooden, cardboard, or other)

	Drill or screwdriver (to make holes)

	USB battery (optional)

CHOOSING A SPEAKER TYPE

Depending on the Raspberry Pi model you’re using, you’ll first need to decide which method you’ll use to output the audio. The low-cost option is to use a small speaker attached to the headphone jack and hide that speaker inside the music box. You might search an online retailer or your local shops for a portable speaker with a 3.5 mm audio jack; all 3.5 mm models will work.

The downside to using small speakers is that they produce low-quality sound, and only the Raspberry Pi 2, 3, 4, and A+ models have audio ports to support them.

The other, slightly pricier, option is to use a Bluetooth speaker. This speaker usually has a high-quality sound and is portable, so you can place the speaker wherever you want it. The Raspberry Pi 3, 4, and Zero W models have onboard Bluetooth capabilities. Another advantage of the Pi Zero W is that it’s small, which makes it the easiest model to embed in the music box. If you’re using an older Raspberry Pi model that has spare USB ports, you can add Bluetooth functionality by purchasing a standard USB Bluetooth dongle (which supports Bluetooth 4 and audio) and attaching it to one of the ports.

The following table shows the speaker options suitable for the various Pi models.

	MODEL

	HEADPHONE JACK

	BLUETOOTH

	PROS

	CONS

	A+

	Yes

	No

	Small board; can support Bluetooth dongle via USB port

	Slower model

	Pi 2

	Yes

	No

	Several USB ports

	Large board

	Pi 3B+

	Yes

	Yes

	Good specs; cheaper than the Pi 4

	Large board

	Pi 4

	Yes

	Yes

	Fastest processor

	More expensive than other models

	Pi Zero W

	No

	Yes

	Smallest board; onboard Wi-Fi; can upload MP3 files remotely; inexpensive

	Slower model

BUILDING THE MAGIC MUSIC BOX

Once you’ve selected a speaker for your board, you can build your music box. You can use anything for the music box enclosure—for example, a wooden pencil case, a plastic lunchbox, or an old cereal box. Be aware that you’ll have to make holes in the material; so if you don’t have tools to drill through wood, for example, perhaps choose a cardboard enclosure.

Before beginning the project, you should spend time arranging the buttons, speaker, and Raspberry Pi inside the box to figure out a suitable setup. You can customize the setup, but use common sense. For example, on most music players, the volume-control buttons are located next to each other.

Wiring the Buttons

Let’s make the buttons! Here are the steps:

	Attach wires: Select one of your push buttons and two male-to-female jumper wires, and locate the male ends. Using a little solder or conductive paint, attach a male end to each leg of the button (Figure 10-2). I recommend you use a black wire for one of the legs to indicate that it’s the ground (GND) wire. Follow this process for the other three buttons.

These buttons will form the main controls of the MP3 player that you’ll connect to the Raspberry Pi.

[image: Image]

FIGURE 10-2 Attaching wires to each button

	Wire the buttons: For each button, attach the black wire (the ground wire) to any GND pin on your Raspberry Pi, and attach the other wire to the GPIO pin indicated in the following table.

	PIN

	BUTTON

	GPIO 7

	Next Song (play_skip)

	GPIO 25

	Volume Up

	GPIO 8

	Volume Down

	GPIO 17

	Power Off

You can use any of the GND pins located on the physical pins 6, 9, 14, 20, 25, 30, 34, and 39 (Figure 10-3). Some might be easier for the wires to reach or make neater layouts inside the box.

[image: Image]

FIGURE 10-3 Wiring each button to the Raspberry Pi

	Make holes: If you’re using a wooden or plastic box, you’ll need to drill holes to house the buttons. The size of the hole depends on the size of the button (Figure 10-4). Start with a small hole and try fitting the button before resizing the hole. If you’re using a wooden box, you can ask an adult to drill the holes for you. If you’re using a cardboard box, use a sharp pencil or a pen to make holes. Decide where you want to locate the buttons, and then drill or poke four holes big enough to accommodate each button.

[image: Image]

FIGURE 10-4 Drilling the holes in the box

	Attach the buttons: The way you do this depends on the type of buttons and box that you’re using. Many buttons have a small circular lip around the top that rests on the outside of the hole in your box and two flexible clips that secure the main housing of the button in place. These types of buttons are often referred to as arcade buttons. For other types of buttons, you can glue or use double-sided tape to stick the buttons in place, but do so only after you know that the program and hardware work.

Before securing your Raspberry Pi to the inside of the box, play around with the layout of the Pi so that the wires and the buttons fit. Figure 10-5 shows an example layout, and you may be able to hide the battery inside the box too. Notice that you still have access to the Raspberry Pi, as it’s best to write the program and test it before securing it and the other parts in place. That way, you can still access the buttons and wires if you need to make adjustments.

	Decorate the box: Decorate and personalize the outside of the box. You can add color, stickers, instructions for using the music player, or anything else you like.

[image: Image]

FIGURE 10-5 Preparing the internal hardware layout

Connecting the Speaker

To hear sound from the MP3 files, you need to set up the audio output. There are different ways of doing this, depending on whether you’re using a headphone jack or Bluetooth speaker. Start your Raspberry Pi and attach the monitor, keyboard, and mouse.

Using a Speaker via the Headphone Jack

If you’re using the audio jack, connect your speaker via a standard 3.5 mm jack cable to the black headphone jack on the Raspberry Pi, which is located next to the HDMI port. Plug in your Raspberry Pi and boot it up; load the Pi desktop. Locate and click the audio icon [image:] at the top of the desktop. Select Analog from the audio output drop-down menu. Now all audio will be played through your speaker.

Using a Bluetooth Speaker

If you’re using a Bluetooth speaker, turn on the Bluetooth software on your Pi by clicking the Bluetooth icon at the top right of the screen. Then turn on your Bluetooth speaker. You’ll need to enable the settings on your speaker to make it discoverable. Click the Bluetooth icon again and select Add a Device from the drop-down menu. The Raspberry Pi will attempt to locate all Bluetooth-enabled devices, including your speaker.

When your Pi finds the speaker, it will appear in the pop-up window. Select it from the list, and click the Pair button to establish a connection between your Raspberry Pi and the Bluetooth speaker.

Once the connection is confirmed, click the audio icon [image:] and select your Bluetooth speaker from the drop-down menu. The two devices will attempt to pair and establish a connection again. Once the speaker has been set up, your Raspberry Pi will always automatically locate and connect to this speaker.

Coding the Magic Music Box

Let’s write the code that will play the music and set up the button functions. You’ll use PyGame’s audio mixer tool to control playback of the MP3 files and the volume level. The button functions are controlled via the gpiozero library, which offers simple code to trigger events.

Creating a New Folder

First, you’ll create a folder to store the program code and the MP3 music files that you want to listen to. In the terminal, enter the following command:

pi@raspberrypi:- $ mkdir MP3

Then change to the MP3 folder by entering this command:

pi@raspberrypi:- $ cd MP3

Transfer and save all your MP3 music files to the MP3 folder. Then open a new Python file, and save it to the MP3 folder as music_box.py.

Importing the Modules and Libraries

Now you need to import all the modules and libraries you’ll use in the program. Enter the code in Listing 10-1 to start.

❶ import glob, time, pygame

 from gpiozero import Button

❷ from subprocess import check_call

 from signal import pause

 from pygame.locals import *

❸ pygame.init()

❹ pygame.display.set_mode((100, 100))

❺ global the_song

 global level

 global songs_found

 global number_of_songs

LISTING 10-1 Setting up the imports and global variables

Import glob, time, and pygame ❶. You’re already familiar with the time module. You’ll use the glob module to search for the MP3 filenames, and you’ll use the pygame library to control the playback and volume of the MP3 files.

Then import the Button class from the gpiozero library, which allows you to trigger events when each button is pressed. Next, import the check_call() function ❷, which you’ll use to call the shutdown() command to turn off the music player.

PyGame files run in a separate window, and although you won’t use the window, you still need to initialize it with pygame.init() ❸ to be able to use PyGame. Then you need to define the size of that window. Because you’re not interacting with it, you can make it very small–let’s say, 100 × 100 pixels ❹.

Next, create four variables ❺: the_song holds the name of the MP3 file that’s currently being played, level holds the volume level, songs_found holds the filenames of the MP3 songs, and number_of_songs holds the total number of songs. These variables are global variables. Global variables are declared outside a function, which means that the Python program can pull the data stored in a global variable and use it elsewhere in the program.

Assigning the Buttons to the GPIO Pins

Next, add the code in Listing 10-2, which sets up the shutdown() function and assigns each button to a GPIO pin.

❶ def shutdown():

 ❷ check_call(['sudo', 'poweroff'])

 ### Buttons for control ###

❸ play_skip = Button(7) # begin the music green

 volume_up = Button(25) # volume up blue

 volume_down = Button(8) # volume down yellow

 shutdown_btn = Button(17, hold_time=2) # shutdown

❹ the_song = 0 # as first song is in position 1

❺ playing_songs = True

LISTING 10-2 Defining buttons and pins

Define the shutdown() ❶ function to use the check_call() function to call the Python program that will power off the Pi ❷. This function lets you switch off your music box without needing a screen!

Next, set up the buttons by creating a variable for each one, play_skip, volume_up, volume_down, and shutdown_btn. Then assign each variable to the GPIO pin number wired to that button ❸. If you used different pin numbers than those in this example, make sure you change the values in the parentheses.

Notice that after assigning shutdown_btn to its GPIO number, you specify the hold time, which is the number of seconds the button needs to be held down before the shutdown() function ❷ is triggered. (In this example, the hold time is 2 seconds.) Adding a hold time makes it more difficult to accidentally shut off the MP3 player if you press the button by mistake.

Next, create two more variables. The the_song variable ❹ contains the position of the song currently playing in the list of songs. The list starts with the song held at the first position, 0. The playing_songs variable specifies whether a song is playing ❺. The program uses this variable to search for and play the MP3 files. Set it to True.

Building a Playlist of Songs

The next part of the program finds the MP3 music files you saved to the MP3 folder by using the glob() function you imported earlier. This code, shown in Listing 10-3, builds a list of all the song titles, which the program uses to load and play each song. Remember that the files must be stored in the same folder as the Python program file.

❶ def find_mp3_files():

 global songs_found

 global number_of_songs

 ❷ mp3_files_playlist = glob.glob('*.mp3')

 ❸ songs_found = mp3_files_playlist

 ❹ print ("I have found the following song", songs_found)

 ❺ number_of_songs = len(songs_found)

 ❻ print ("there are", number_of_songs, "songs")

 #### set volume ###

❼ level = 0.10

❽ pygame.mixer.music.set_volume(level)

LISTING 10-3 Finding the songs

The first line defines the find_mp3_files() function that contains the code to find each MP3 file and store the filenames ❶. Because you’ll need to use the information gathered by this function later in the program, you import two global variables from earlier. These variables allow you to transfer the song details and number of songs data to the next function.

Then create another variable, mp3_files_playlist, that uses the glob() function to search for all files ending with the extension .mp3 ❷ and store them in the variable.

Next, copy the list of MP3 filenames to a new variable named songs_found ❸. This keeps the original list stored in the mp3_files_playlist variable and enables you to edit the new list without affecting the old one. If you add new music to your MP3 folder, it’s recognized and added to the song list each time the program runs.

Printing all the names of the MP3 files ❹ allows you to have a list of song titles. This works only if the filename is the same as the song name. For example, if the song is called “Life On Mars,” you need to save the MP3 file as life_on_mars.mp3. Once you detach the MP3 player from a screen and run it headless, you won’t see the printout of MP3 files, but executing this step is useful for testing.

Because you want the MP3 player to play through all the songs in the list, you need to figure out how many songs there are ❺ and see the number printed out ❻. You must do this step anytime you add or remove songs from the playlist, because that changes the length of the list.

You also need to set the initial volume level for the volume-control buttons. This value is between 0 and 1, where 0 represents no sound and 1 represents the maximum volume. The volume range depends on the type of speaker you’re using. Set the initial level at 0.10, a tenth of the full volume, for now ❼; you can change it later if it’s too loud or too quiet. The final line of code tells pygame to set the volume ❽.

Creating the Code for Playing Songs

Listing 10-4 creates the main function, which controls the magic music box buttons.

 ### Main code for playing and changing songs ###

❶ def play_mp3_songs():

 global the_song

 global level

 global songs_found

 global number_of_songs

 ❷ if playing_songs == True:

 ❸ while the_song < number_of_songs:

 ### Play a song ###

 ❹ pygame.mixer.music.load(songs_found[the_song])

 ❺ pygame.mixer.music.play()

 print ("Playing Song")

 ❻ the_song = the_song + 1

 print ("the song number is", str(the_song))

 ❼ while pygame.mixer.music.get_busy():

 ❽ pygame.time.Clock().tick(10) # waits for song

LISTING 10-4 The magic music box playing code

It’s important to keep an eye on the indentation levels because most of the rest of the code is inside the play_mp3_songs() function. Remember that you can download the code from https://www.nostarch.com/raspiforkids/ if you get stuck.

Define a new function called play_mp3_songs() ❶ that holds the main program code. Next, you add the four global variables you created earlier: the_song to control which MP3 file is playing, level to adjust the volume level, songs_found to allow access to the list of MP3 filenames, and number_of_songs.

Create a while loop ❷ that tells the magic music box to keep playing songs until it reaches the last one in the list.

Then make sure the music player stops playing music when it reaches the last track ❸. If song number 4 of 20 is playing, the playlist will keep going, because 4 is less than the total number of songs. Once the playlist reaches song 20 of 20, it will loop back to the beginning. Later, you’ll use this part of the program to skip songs and control the volume.

The code then loads the MP3 file about to be played ❹. Because you previously set the_song to 0, PyGame will load the first song in the list of MP3 files at index 0. When loaded, the program plays the file by using the code pygame.mixer.music.play() ❺. Print the current song to see what it is and test that the name of the song matches the song that is playing.

Next, increment the value of the_song by 1 ❻. This tells the program to select the next song on the list each time the program loops.

To recap, the program selects the first song and starts playing it. It then chooses the next song to play when the current song ends (or if you press the physical Next Song button on your box). Until then, it continues to play the current song by checking that the PyGame music mixer is busy ❼. You use the PyGame clock ❽ to stop PyGame from playing the next song until the current song has stopped playing. This is used instead of the Python wait() or sleep() function because each song will have a different duration.

Programming the Next Song Button

Now, add the code in Listing 10-5, which lets you skip to the next song. This code continues from the previous listing, with the top line at the same indentation level as the last line of Listing 10-4. Use this level as a guide for indenting the rest of this code.

 ### Change the song ###

 ❶ if play_skip.is_pressed:

 ❷ time.sleep(0.5)

 print ("End of Songs")

 ❸ pygame.mixer.music.stop()

 ❹ break

LISTING 10-5 Skipping songs

The code checks whether someone has pressed the Next Song button ❶, which was named play_skip earlier. You also add a short delay ❷, so PyGame can register the button press. Otherwise, the program might crash.

If someone has pressed the button, PyGame uses the function pygame.mixer.music.stop() ❸ to stop playing the music.

Once you’ve stopped the current song, you want the program to loop back to the beginning, where the while the_song < number_of_songs condition checks whether songs are still in the list to be played. To do this, you break out of the loop so the PyGame mixer is no longer busy ❹. PyGame will then play the next song, if there is one.

Increasing the Volume

Add the code in Listing 10-6 for the volume-control buttons. You start with the button to increase the volume, which you called volume_up earlier.

 ### Change volume up ###

 ❶ if volume_up.is_pressed:

 ❷ if level < 1:

 ❸ level = level + 0.10

 print (level)

 ❹ pygame.mixer.music.set_volume(level)

 ❺ else:

 pass

 print ("top volume")

LISTING 10-6 Increasing the volume

As with Listing 10-5, begin by checking whether the button (volume_up) has been pressed ❶. If it has, the program needs to check that the current volume isn’t at its maximum. It does this by checking whether the current level is less than or equal to 1 ❷, which is the maximum volume. If the level is less than 1, you allow the program to increase the volume by adding 0.10 to the current level ❸.

If the program has just started, the level will be 0.10. Pressing volume_up once will add 0.10, which increases the volume to 0.20 ❹.

You code a response for when the condition “less than one” isn’t met, which is when the volume is at its maximum. Use an else statement ❺, and then enter pass to keep the volume at the maximum level.

Decreasing the Volume

Add the code in Listing 10-7 to decrease the volume by using volume_down.

 ### Change volume down ###

 ❶ if volume_down.is_pressed:

 ❷ if level > 0:

 ❸ level = level - 0.10

 print (level)

 pygame.mixer.music.set_volume(level)

 ❹ else:

 pass

 print ("bottom volume")

LISTING 10-7 Decreasing the volume

This code is similar to the code for increasing the volume. You check whether volume_down has been pressed ❶. If it has, check the current volume level and, if the volume level is greater than 0 ❷, subtract 0.10 from the current level ❸.

Again, use an else statement ❹ to pass the button press if the level is 0, because in that case, you can’t turn it down any lower.

Turning Off the Magic Music Box

The code in Listing 10-8 allows you to turn off the music box. You’ll program the music box to stop playing when you press the Power Off button or finish playing all the songs.

 ❶ shutdown_btn.when_held = shutdown

 ❷ else:

 ❸ print ("end of playlist")

LISTING 10-8 Shutting down the music box

Add the code for the Power Off button ❶. Then use an else statement ❷ that will also shut down the music box if all the songs have been played, and print end of playlist ❸.

Ending the Program

You’ve defined the three functions that do all the work. Now finish the program by using Listing 10-9 to call each of these functions.

 ### Main Program ###

❶ find_mp3_files()

❷ button.wait_for_press()

❸ play_mp3_songs()

LISTING 10-9 Calling the magic music box’s three functions

The find_mp3_files() ❶ function locates all the MP3 files whenever the program is running. So if you add new MP3 files, the function will find them and add them to the playlist.

The button.wait_for_press() ❷ function adds the user interaction to the buttons so the box reacts accordingly when you press a button.

The play_mp3_songs() ❸ function runs the main program loop, which checks whether there are MP3 files to play and then plays each one. It also checks whether any button has been pressed and responds if it has.

Running Your Program

It’s time to test your program! If you’re using a Bluetooth speaker, check that it’s paired with your Raspberry Pi. If you’re using a speaker via the audio jack, make sure it’s properly connected. Then save the program and press F5 to run it.

The program should locate all the MP3 files in the folder and build a list of songs. It will then play the first song in the list. Press the Next Song button to change the song. Then try the volume buttons. Press the Power Off button to stop the music playing and shut down your Raspberry Pi.

If your MP3 player doesn’t work correctly, check for the following errors:

	Is the volume low or muted?

	Is the audio set to either Bluetooth or the headphone jack?

	Is the Bluetooth speaker paired?

	Are the MP3 files saved in the same folder as the Python code?

	Do the sound files end in the extension .mp3?

	Are the buttons wired to the GPIO pin numbers used in the program code?

AUTOMATICALLY STARTING THE MP3 PLAYER ON BOOT-UP

As a finishing touch, let’s make your magic music box turn on and start playing songs anytime you plug it into a power supply. You can do this in two ways, depending on whether you’re using the headphone jack or a Bluetooth speaker.

Headphone Jack Option

If you’re using the headphone jack, you’ll use cron, the time-based job-scheduling tool you used in Chapter 9. The cron program enables you to run a particular program automatically at a specific time.

To use cron, you need to create instructions about which event you want to run and when you want to run it. You do this in the crontab file, which holds instructions for which programs or events to run and, most important, when to run these events.

Open the terminal and enter the following command to open the cron console:

pi@raspberrypi:- $ sudo crontab –e

The console will present you with three methods of editing the cron file. Select option 2 and press ENTER to open the crontab file with the nano text editor. Scroll to the bottom of the text in the crontab file and locate the blank space. Then add the following line of code:

@reboot sudo python3 /home/pi/MP3/music_box.py &

The command states that every time the Raspberry Pi reboots, it should run Python in super user mode (which grants permission to run anything, just like administrative mode), open the /home/pi/MP3 folder, and execute the program called music_box.py.

If you named your code file something else, replace music_box.py with the name you gave it. Also check that the folder path is correct by opening the folder where your music_box.py program is stored and noting the file path.

The & at the end of the code line tells your program to run in the background, so you can do other tasks with your Raspberry Pi at the same time.

Once you have checked the command details and are confident that they’re correct, press CTRL-X to save and exit the crontab file. Now, each time you turn on or reboot your Raspberry Pi, the crontab file will run, starting the magic music box.

If you want to stop the program from running automatically, open the crontab file again from the terminal by entering this command:

pi@raspberrypi:- $ crontab –e

Then delete the line of code that you added earlier. Save the file and reboot.

Because the MP3 player is designed to run headless, you don’t need the Raspberry Pi to boot to the desktop and display the background screen and icons. You also don’t need to use the mouse. Booting to the desktop takes longer because of these unnecessary items, and the process uses more memory and processing power. You won’t see the desktop, so it’s pointless to load it. Instead, you’ll configure the Pi to boot from the command line. Open the terminal window and enter this command:

pi@raspberrypi:- $ sudo raspi-config

Next, select the third option, Boot Options, and press ENTER. Then select the B1 Desktop / CLI option, select the B2 Console Autologin option, select <OK>, and press ENTER (Figure 10-6). You’ll need to restart your Raspberry Pi.

[image: Image]

FIGURE 10-6 Booting to the command line with auto login

Select the Finish option, and you’ll be prompted to save the config file and reboot. Select Yes, and your Pi will restart. As your Raspberry Pi boots, the magic music box will load.

Bluetooth Option

If you’re using a Bluetooth speaker, you can still automatically start the program on boot-up, but it’s slightly more challenging because you need to configure numerous settings.

You’ll also need to add a line of text that triggers Python to run your program, to the .bashrc file, which is a shell script that runs whenever the Raspberry Pi boots up.

Before you make a change to this file, make sure the Bluetooth speaker is paired with your Raspberry Pi. To give the Python program access to the speaker, you need to boot to the GUI desktop, not the command line. However, when PyGame runs, it turns the screen blank. This is fine, because the magic music box doesn’t require a screen. But it makes solving any issue in the code difficult because you can’t see or access the program code.

To remedy this, open the Python MP3 player program and add time.sleep(30) after the lines importing the libraries to add a 30-second delay to the start of the program. This gives you time to edit or adjust the setup code if it’s not working correctly. Just remember when you’re testing the program that you’ve added the delay, so you don’t think the program isn’t working!

If, after adding the 30-second delay, Python has loaded PyGame, and you still need to access the Raspberry Pi, you’ll need to access it remotely using SSH. But before you add the automatic startup script, enable SSH in the configuration settings. For a reminder on how to do this, refer to “Accessing the Raspberry Pi via SSH” on page 25.

Now you’re ready to create the boot-up script. Open the terminal window and enter the following command to open the .bashrc file:

pi@raspberrypi:- $ sudo nano .bashrc

Scroll down to the bottom of the file and enter python3 followed by the file path of your MP3 program—for example, python3 /home/pi/MP3/MP3_Player_BT.py (Figure 10-7).

[image: Image]

FIGURE 10-7 The boot-up script

Remember to replace the example file path with the filename and location of your program. Save the file, and then reboot the Raspberry Pi. It should load your MP3 Python code. Remember to wait 30 seconds and ensure that your Bluetooth speaker is still paired. After the delay, the screen will turn black. Press the Next Song button for the first song.

If you can’t hear the music but suspect the code is working, try plugging a speaker or a pair of headphones into the headphone jack. If you can hear the music, you know the program is working correctly and that there’s an issue with the Bluetooth pairing.

If you encounter any other issues and you need to edit the code, you can either reboot your Raspberry Pi or open the terminal window and press CTRL-X or CTRL-Z to halt the code. Then check the various settings. If this doesn’t work, use SSH to access the Raspberry Pi and open, edit, or comment out the .bashrc file; then reboot. Continue testing your music box until you’re confident that the hardware and program code are functioning correctly.

PUTTING IT ALL TOGETHER

Once you’ve completed the program code and tested that it’s working correctly, you can begin to secure the hardware into your box. It might look something like Figure 10-8.

[image: Image]

FIGURE 10-8 The finished magic music box

If you’re using a simple container, like a lunch box, place the Raspberry Pi and battery into the box and secure the lid. If you’re using a wooden box, like the one shown in Figure 10-8, you can mount the Raspberry Pi by using double-sided tape, mounting putty, or a small nylon screw.

Then you can tuck away and hide the wires from outside view. You can also make additional holes to house any power or USB cables that you need. If the program code fails, the best solution is to remove the SD card and put it into another Pi. Once you’ve resolved the problem, return the SD card to the original MP3 player Pi.

WRAPPING UP

Congratulations! You’ve built your own stand-alone magic music box. You can now add features to your magic music box, such as the following:

	More MP3 files

	An LED that flashes when the music player has loaded

	LEDs that flash as the music is playing

	A button to mute the volume

	Additional buttons to play the previous song, an excerpt of the playlist, or a secret Easter egg song

	A small LCD screen that displays the name of the current song

 11
NATURE BOX: MOTION-SENSING CAMERA

IN THIS CHAPTER, YOU’LL BUILD AND CODE A NATURE BOX CAMERA THAT CAN SNAP A PHOTO WHEN IT SENSES MOVEMENT. YOU’LL THEN PLACE THE NATURE BOX IN THE WILD TO PHOTOGRAPH LOCAL WILDLIFE. YOU NEVER KNOW—YOU MAY SNAP A BIRD, A BADGER, OR EVEN A FOX!

The box will contain a motion sensor. Whenever animals come close to it, the sensor triggers the built-in Pi Camera to take a photo. The Raspberry Pi then uploads each image to an online Dropbox folder for you to view and share with your friends. You can leave the camera running from morning to evening and see what kind of visitors you get (Figure 11-1).

[image: Image]

FIGURE 11-1 Build a nature box that takes animal photos like this one.

WHAT YOU’LL NEED

Here are a few items you’ll need to complete the project:

	Raspberry Pi (You can build the nature box with any of the Pi models. The Pi 2, 3 A+, and Zero W work well because they are small and can be hidden in a smaller space.)

	Pi Camera

	Passive infrared sensor (PIR)

	Jumper wires

	Clear plastic box to hold the hardware

	Dropbox account

	USB portable battery

	Drill

SETTING UP THE PASSIVE INFRARED SENSOR

A PIR (Figure 11-2) is more commonly referred to as a movement detector. It detects infrared light emitted from warm objects and bodies, such as humans, animals, and even vehicles; it measures changes in that light. You can write code to respond to the detection of certain levels of change and trigger events in response, such as turning on lights, sounding alarms, or opening doors automatically.

As an object passes by the PIR, it emits heat that changes the surrounding temperature. This difference in the surrounding infrared radiation is picked up by the PIR and changes the internal voltage, which means it has detected something. Inside the sensor’s dome are small mirrors that help the PIR to detect changes in infrared light from as far away as 30 feet.

[image: Image]

FIGURE 11-2 A PIR

Wiring the PIR

You need just three wires to connect the PIR to the Raspberry Pi. Connect the VCC PIR pin, which provides power, to the 5V GPIO pin located at the top of the Pi’s board. The diagram in Figure 11-3 uses the 5V pin, which is physical pin 2. Connect the OUT pin to GPIO pin 4, which is physical pin 7, on the Pi. Then connect the ground (GND) pin on the PIR to a ground pin on the Pi.

[image: Image]

FIGURE 11-3 Wiring the PIR

Testing the PIR

Let’s write a simple program to test that your PIR works correctly. Your body gives off heat, and when you move about, you disturb and move the heat surrounding your body. The code in Listing 11-1 initializes the PIR and then checks for a change in heat. If the PIR detects a significant change, according to a threshold you’ll set, the program indicates that it has seen you. Open your Python editor and enter the code in Listing 11-1. Save it as PIR_test.py.

❶ import time

 import RPi.GPIO as GPIO

 GPIO.setmode(GPIO.BCM)

❷ PIR = 4

 GPIO.setup(PIR, GPIO.IN)

 print ("Ready to find you")

 time.sleep(2)

❸ def Motion_Sensing(PIR):

 print ("We see you")

❹ try:

 ❺ GPIO.add_event_detect(PIR, GPIO.RISING, callback=Motion_Sensing)

 ❻ while 1:

 time.sleep(1)

❼ except KeyboardInterrupt:

 print ("Quit")

 GPIO.cleanup()

LISTING 11-1 Detecting movement with the PIR

Import the time module and the RPi.GPIO module to control and code the GPIO pins ❶. Because there are two GPIO pin numbering systems, define which one you’re using by setting the mode to BCM.

Next, declare a variable to define the GPIO pin number you’re using to check for a response. This is the GPIO 4 pin that you connected to the PIR ❷. Tell the program to check for input on GPIO pin 4 by using GPIO.IN.

Because this is a test program, print a line indicating that the sensor is ready to find you and then provide a short time delay before retrieving the data from the PIR. This gives you a moment to prepare before you move about or wave your hands, triggering the sensor.

Then define a function that responds to any sensed movement or motion ❸. In this test program, the response is a simple statement indicating that you’ve been seen.

Next, the program tries to detect motion ❹. You use the try and except method to avoid causing an error if the PIR doesn’t work correctly or takes an odd data reading. This ensures that the program will continue to run if the PIR malfunctions.

Then you take the reading from the PIR ❺. This code checks GPIO pin 4 to see whether the voltage is rising. If it is, something has triggered the PIR. So you use the callback method to run the function that responds to any sensed movement or motion ❸ and print We see you.

To keep the PIR from reading the same input multiple times, you add a 1-second delay ❻. This allows enough time for the PIR to reset before it checks for a change in temperature again. Remember that you’re looking for motion, not presence; therefore, the camera doesn’t have to be constantly active.

Finally, you need a way to stop the program. You add the except response, which checks whether any key on the keyboard has been pressed ❼. If it detects a keypress, it prints Quit, resets the GPIO pins, and stops the program.

Save the program and press F5 to run it. Alternate between moving and staying still to make sure the PIR detects you. If you want, you can turn this into a game. Can you stand so still that you don’t trigger the PIR? Can you walk into a room without having the PIR spot you?

SETTING UP THE PI CAMERA

With a working PIR that can detect motion, you can set up the Pi Camera to capture images of whatever triggers the sensor.

Attaching the Pi Camera

If you completed the Pi Camera projects in Chapter 4, you might already have the hardware set up. Use the ribbon cable to connect the camera to the Pi, as shown in Figure 11-4, and remember to ensure that the Pi Camera is enabled in the Configuration tool. This requires you to restart the Raspberry Pi. If you get stuck or need more detailed instructions, refer to “Interfaces” on page 16.

[image: Image]

FIGURE 11-4 Setting up the Pi Camera

Creating a New Folder to Store the Images

To keep the nature box project organized, you’ll want to store the images and program files in one place. Create a new folder named Nature_Box by opening the terminal and entering the following command:

pi@raspberrypi:- $ mkdir Nature_Box

Making a project folder will prevent your home folder from becoming cluttered with hundreds of images.

WRITING THE TEST CODE

With the Pi Camera attached, you can now start a new Python file or adapt the code in Listing 11-1 to make the camera take a picture each time the PIR senses movement. You can photograph birds, cats, or other native wildlife—maybe even a fox—as they move past your nature box setup. Enter the code in Listing 11-2 and save it as Cam_PIR.py.

❶ from time import sleep

 from picamera import PiCamera

 import RPi.GPIO as GPIO

 GPIO.setmode(GPIO.BCM)

 PIR = 4

 GPIO.setup(PIR, GPIO.IN)

❷ global Image_Number

 Image_Number = 0

 camera = PiCamera()

 print ("Ready to find you")

❸ sleep(2)

 def Motion_Sensing(PIR):

 ❹ global Image_Number

 ❺ camera.resolution = (1024, 768)

 ❻ camera.capture("Nature" + str(Image_Number) + ".jpg")

 ❼ Image_Number = Image_Number + 1

 try:

 GPIO.add_event_detect(PIR, GPIO.RISING, callback=Motion_Sensing)

 while 1:

 ❽ sleep(1)

 except KeyboardInterrupt:

 print ("Quit")

 GPIO.cleanup()

LISTING 11-2 Taking a picture whenever the PIR detects motion

Edit the program code by importing the sleep() function from the time module and import the picamera class too ❶.

Then, to stop each new image from overwriting the previous one, create a variable to hold the current Image_Number ❷. Make this a global variable so you can use this data later in the main program function to save each file with a different name. Set the Image_Number variable to 0, which means the first image taken will be named Nature0.jpg.

Then add the PiCamera() function to the camera variable. Replace time.sleep(2) with the simpler code sleep(2) ❸. This is a better way of writing the code, as you have less text to type and therefore reduce the chance of an error. You can use this simpler code in your other programs and projects. It serves the same purpose: it pauses the program for 2 seconds, creating a small delay before the next line of code runs.

Next, within the Motion_Sensing(PIR) function, add the code to trigger the Pi Camera and take a picture. At ❹, you add the global variable you created at ❷. Then you set the camera resolution ❺ and add the code to capture the image ❻.

Note that the code that captures the image ❻ combines the string "Nature" and the Image_Number value ❷, which is currently set to 0. This creates a file named Nature0, to which you add the .jpg file extension to save the image as Nature0.jpg.

Then add a value of 1 to the current image value ❼, so the program will save the next file as Nature1.jpg, the following as Nature2.jpg, and so on until the program stops. You also change the final line from time.sleep(1) to sleep(1) ❽.

Save the program in the Nature_Box folder so all the images will be stored there, making it easy to access them later. Press F5 to run the program. Each time something triggers the PIR, the Pi Camera will take a picture and save it in the folder. You could set up your nature box near your most prized possessions or chocolate stash. If anyone steals from you, you’ll have photographic evidence of the culprit.

If the PIR triggers too easily, you can adjust its sensitivity. On warm days, tree branches can move infrared radiation around, which the PIR can pick up. If the box is near a road, cars driving past might alter the surrounding air.

To avoid triggering the camera in those cases, locate the two small dials (Figure 11-5) on the back of the PIR (they’re usually orange). One is the Delay Time Adjust dial, which changes how long it takes to reset the PIR each time it’s triggered. The other is the Distance Adjust dial, which increases or decreases the sensitivity; basically, it determines how much of a change in heat is required to trigger the PIR. Experiment with adjusting these dials to find the perfect settings for your nature box and your local environment.

[image: Image]

FIGURE 11-5 Adjusting the PIR sensitivity on the back of the PIR

RETRIEVING THE IMAGES FROM THE RASPBERRY PI

Now you need to figure out how to retrieve your images. If you leave your hardware in the wild, you won’t be able to access the images until you collect your nature box. Depending on your setup or the type of wildlife you’re trying to monitor, you might want to leave it out for a few days. But waiting that long to view images isn’t ideal. The solution is to connect your nature box to the internet so that you can use the file-sharing website Dropbox and a simple Python program to upload each image in real time. You’ll be able to access the photos remotely by using a tablet, a laptop, or a mobile phone.

Setting Up a Dropbox Account

If you already have a Dropbox account, you can skip this step. If not, head over to the Dropbox website at https://www.dropbox.com/ and register for a new account. Click Create an account and fill in the sign-up form (Figure 11-6). Alternatively, you can use your Google account details to sign up.

[image: Image]

FIGURE 11-6 Signing up or logging in to Dropbox

Once you’ve logged in, navigate to the Dropbox Developers page (Figure 11-7) at https://www.dropbox.com/developers/ to create an app.

[image: Image]

FIGURE 11-7 Going to the Dropbox Developers page

Click the Create your app option. Dropbox presents you with several options. When it prompts you to choose an API, select Dropbox API. Then select App folder as the access type. Name your app; I called mine Nature Box. Agree to the terms and conditions, and click the blue Confirm button to access the next page of configuration settings (Figure 11-8).

[image: Image]

FIGURE 11-8 Configuring your app’s settings

Keep the Status row set to Development, and the Development users row set to Only you. This means only you will have permission to edit the app. You can also edit the app folder name.

Ignore the App key and App secret rows; you don’t need these for this project.

Select the Generated access token box to create a code that will enable your Raspberry Pi to send image files to the Dropbox app. You’ll need to use this token in your Python program later. Remember that this token keeps your account secure, so don’t share it with others.

With your Dropbox app set up, you can now use it to upload the nature box images.

Installing Dropbox for Python

You need to install a Python Dropbox library so you can access your Dropbox app and folder from the Python program code. To install the required software, open the terminal and enter the following command:

pi@raspberrypi:- $ sudo pip3 install dropbox

Then, to make sure you’re using the newest updates, enter this command:

pi@raspberrypi:- $ sudo pip3 install dropbox --upgrade

Creating a Test Program

Before you connect the PIR and Pi Camera to Dropbox, you need to create a simple program to test whether the Dropbox app and token are functioning correctly. But first, save a JPEG image in the Nature_Box folder to test with. In the program in Listing 11-3, I’ve used an image of a cute squirrel (Figure 11-9) and named the file squirrel.jpg.

[image: Image]

FIGURE 11-9 Saving an image in the Nature_Box folder

Open your Python editor, create a new file, and add the following code. Save it as DB_uploader.py.

❶ import dropbox

❷ token = "xxxxxxxxxxxxxxxxxxxxxxxxxxxx"

❸ dbx = dropbox.Dropbox(token)

❹ with open("/home/pi/Nature_Box/squirrel.jpg", "rb") as file:

 ❺ dbx.files_upload(file.read(), '/squirrel.jpg', mute = True)

❻ print ("uploaded")

LISTING 11-3 Testing your Dropbox app and token

Import the dropbox module ❶. Create a variable named token, and enter the app token you acquired earlier within quotation marks ❷. Next, create another variable named dbx to hold the Dropbox class ❸, which enables your Python program code to communicate with your Dropbox account.

Now you’re ready to locate and open the image file you want to upload ❹. Open the folder where the image is stored by using with open. Next, read from the file and use the Dropbox API to upload the image to your account ❺. Then print a short confirmation message ❻ so you know the file upload is complete.

Running the Program

Go to the Dropbox website, log in, and navigate to your app folder. Then return to your Raspberry Pi and run the test program. The test will attempt to upload your image file (in this example, the image of the squirrel), so check your Dropbox folder for the upload (Figure 11-10).

[image: Image]

FIGURE 11-10 The uploaded image in the Nature_Box folder

CODING THE FINAL NATURE BOX

So far, you’ve created three separate programs: a first to test that the PIR is working correctly, a second to trigger the Pi Camera whenever the PIR senses motion, and a third to allow the Raspberry Pi to upload the images to your linked Dropbox folder. Now let’s combine everything you’ve learned so far in this chapter to make the final nature box program.

Setting Up the Final Program

Save and rename your previous DB_uploader.py file or start a new Python file and save it as NatureBox.py. Then enter the code in Listing 11-4.

❶ import dropbox

 from time import sleep

 from picamera import PiCamera

 import RPi.GPIO as GPIO

 GPIO.setmode(GPIO.BCM)

LISTING 11-4 Beginning the final nature box program

Import the dropbox module ❶, which lets you interact with Dropbox via the Python code. Also import the usual sleep() function to add small delays, then the picamera library, and finally the Rpi.GPIO module to control the PIR. Then you set the GPIO numbering system to BCM.

Combining the Camera and Sensor

The next section of the code, shown in Listing 11-5, combines the PIR code and the camera code, so when movement is sensed, the Pi Camera is triggered. It takes a picture and then creates and saves the image file. The first lines should be familiar to you because they’re from the Cam_PIR.py test program you created.

PIR = 4

GPIO.setup(PIR, GPIO.IN)

global Image_Number

Image_Number = 0

camera = PiCamera()

print ("Ready to find you")

sleep(2)

def Motion_Sensing(PIR):

 global Image_Number

 print ("We see you")

 camera.resolution = (1024, 768)

 ❶ Image_Number = Image_Number + 1

 camera.capture("Nature" + str(Image_Number) + ".jpg")

 ❷ pic = ("Nature" + str(Image_Number) + ".jpg")

LISTING 11-5 Capturing and saving an image

Add a value of 1 to the image file variable ❶ (which you set to 0 earlier), so the first image saved is named Nature1.jpg.

After the Pi Camera captures an image, it saves the image file, but not the filename. To save the filename as well, create a new variable named pic ❷ to hold the image’s filename as a string. This means the program can access it later when it’s selecting and uploading the image file to Dropbox.

Creating the try and except

Next, in Listing 11-6, you use the try and except method. The try part attempts to run the section of code responsible for uploading the image files to Dropbox. If for some reason the nature box is unable to access Dropbox—say, because the site is unavailable or because the nature box is no longer online—the program will bypass this section by using the except part and continue to run without halting or causing an error.

 try:

 ❶ token = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 ❷ dbx = dropbox.Dropbox(token)

 print ("ready")

 ❸ with open("/home/pi/Nature_Box/" + pic, "rb") as file:

 ❹ dbx.files_upload(file.read(), '/Nature%s.jpg'

 %(Image_Number), mute = True)

 print ("uploaded")

 file.close()

 ❺ except:

 pass

 print("failed")

LISTING 11-6 Saving the image filename

Add your Dropbox token ❶ and assign it to a variable named dbx ❷, which you use to authenticate your account credentials and enable interaction with Dropbox. At ❸, open the image file that the camera just took by combining the folder location of the image and the pic variable, which holds the filename of the most recent image. The code rb opens the image as a binary file and reads the contents as bytes rather than strings. This is important because the file contains an image, not text. Then assign this data to a variable named file, as in the physical data that makes up the image in the file stored on your Raspberry Pi.

The program reads the bytes from file and tries to upload the data ❹. The code '/Nature%s.jpg' %(Image_Number) adds the filename to Dropbox, because the binary data you uploaded doesn’t contain a filename otherwise. The code mute = True prevents the user from being notified of the upload. You can imagine how distracting receiving hundreds of notifications about uploaded files would be.

After the upload, close the file: open files use processor resources and can slow your Raspberry Pi, especially if there are a lot of them. Finally, add the except section of the program’s try and except method ❺. If the program can’t upload the image, it responds by passing and printing a notification before looping back, resetting the PIR, and waiting for the sensor to be triggered again. The image is still saved in the Nature_Box folder on the Pi but just won’t be uploaded.

Running the Motion Sensor

The final section of the program, shown in Listing 11-7, is identical to the PIR_test.py program you created earlier. It tells the PIR to wait for an input and, upon receiving one, runs the Motion_Sensing() function.

try:

 GPIO.add_event_detect(PIR, GPIO.RISING, callback=Motion_Sensing)

 while 1:

 sleep(1)

except KeyboardInterrupt:

 print ("Quit")

 GPIO.cleanup()

LISTING 11-7 Ending the program

Once you’ve copied the complete program, save and run it. Test that it’s working by moving around to trigger the PIR. Open your internet browser and navigate to your Dropbox folder to check out the uploaded images (Figure 11-11). Before you deploy your nature box into the wild, you can test your program in fun ways: compete with your friends to see who can walk into a room without triggering the sensor, or position your nature box at the front door and check to see who is knocking. Look for the evidence in the Dropbox folder before you decide to open the door!

[image: Image]

FIGURE 11-11 Your photos should appear the Dropbox folder when you run the program.

If the nature box doesn’t function correctly, consider the following common errors:

	Is the Dropbox token used in your program correct?

	Is the Raspberry Pi connected to the internet? Otherwise, all image files will remain stored in the Nature_Box folder.

	Do the folder names in the code match the actual folder names?

	Do the filenames in the code match the actual filenames?

	Is the PIR’s sensitivity adjusted so the proper amount of motion triggers it?

When uploading to Dropbox, you can’t overwrite the same file. Therefore, whenever you run the program again after the first time, make sure you’ve either moved the first batch of image files to a different folder or deleted them.

STARTING THE PROGRAM AUTOMATICALLY

Because you’ll set up the nature box outside, you won’t have a monitor attached to it. The program will need to execute whenever you plug power into the Raspberry Pi. Recall that I covered how to start programs automatically in Chapters 7, 9, and 10. Now you’ll do it again for the nature box program.

You’ll use cron to run the program automatically by creating instructions in the crontab file specifying what event you want to run and when you want to run it. Refer to Chapter 9 if you need a refresher on using cron.

Open the terminal and enter the following command to open the cron console:

pi@raspberrypi:- $ sudo crontab –e

The cron console presents you with three methods of editing the crontab file. Select option 2 and press ENTER to open the crontab file with the nano text editor.

Scroll to the bottom of the text in the crontab file and locate the blank space. Then add the following code line to run the program automatically:

@reboot sudo python3 /home/pi/Nature_Box/NatureBox.py &

The command states that every time the Raspberry Pi reboots, it should run Python in super user mode, open the /home/pi/Nature_Box folder, and execute your NatureBox.py program.

If you named your code file something else, replace NatureBox.py with your filename. Also, check that the folder path is correct by opening the folder where your NatureBox.py program is stored and noting the file path.

The & at the end of the code line tells your program to run in the background, so you can do other tasks with your Raspberry Pi at the same time.

Once you have checked the command details and are confident they’re correct, press CTRL-X to save and exit the crontab file. Now, each time you turn on or reboot your Raspberry Pi, the crontab file will run, starting up the nature box.

If you want to stop the program from automatically running, reopen the crontab file from the terminal and delete the line of code you added, like this:

pi@raspberrypi:- $ crontab –e

Then save the file and reboot.

The nature box is designed to run without a monitor, so you don’t need the Raspberry Pi to boot to the desktop interface and display the background wallpaper and icons. Because you won’t see the desktop, you don’t need to load it. Instead, you can configure the Pi to boot to the command line. Open the terminal window and enter this command:

pi@raspberrypi:- $ sudo raspi-config

Select the third option, Boot Options, and press ENTER. Then select the B1 Desktop / CLI option, followed by the B1 Console option. Click the Save option and then reboot your Raspberry Pi.

Once this is set, select the <Finish> option and press ENTER: you’ll be prompted to save the config file and reboot. Press Yes to restart your Pi. As your Raspberry Pi boots up, the nature box will load. Before you place the box in the wild, run a quick test and check that it’s working and uploading images to your Dropbox account.

PUTTING IT ALL TOGETHER

Now that you have a working program, you can set up your box and then leave it in your garden, at a local park, or elsewhere. Using a plastic case for the box is ideal (Figure 11-12) because you can seal it with tape, and it will remain fairly watertight—although I don’t recommend that you lower the nature box into a pond or leave it out during a thunderstorm.

Preparing your nature box is fairly easy:

	Use a drill to create a small hole for the camera lens to poke through.

	Use a drill to create a larger hole so that the PIR can poke through. It’s best to drill a small hole to start with and then increase the size of the drill bit so that you don’t split the plastic. If you’re using a wooden box, this shouldn’t be an issue. The hole needs to be just big enough for the PIR to poke through.

[image: Image]

FIGURE 11-12 An example of the finished nature box

	Use mounting putty or double-sided tape to secure the Pi Camera and PIR inside your box. Alternatively, the Pi Camera and some PIRs have small screw holes that you could use to mount them.

Happy nature hunting!

WRAPPING UP

Well done, excellent work–you now have a nature box that can sense movement, triggering the Pi Camera to take a picture. This image is then uploaded to your Dropbox account for you to view and share. Now try the following:

	Use your setup in your bedroom to see who goes in and hopefully out.

	Place it near the cookie jar or your stash of chocolate to gather photographic evidence of who keeps stealing from you.

	Purchase the Pi NoIR Camera, which can be used to take photos at night, in the dark.

 12
SMART PLUGS FOR SMART HOME HACKS

IN THIS CHAPTER, YOU’LL LEARN TO CONTROL YOUR ELECTRONICS REMOTELY THROUGH YOUR PHONE. TO DO THIS, YOU’LL COMBINE YOUR RASPBERRY PI WITH AN ENERGENIE SMART PLUG THAT ALLOWS YOU TO CONTROL THE POWER FLOWING THROUGH THOSE ELECTRONICS VIA A SINGLE TAP ON YOUR MOBILE PHONE.

You will be able to use the completed project to turn on a bedroom lamp, a kettle, the TV, some party lights, or anything else that can turned on by simply plugging it in! Figure 12-1 shows the Energenie smart plug. The plug is controlled by the Pi-mote, a small board that attaches to your Pi and enables you to turn the plug on or off.

[image: Image]

FIGURE 12-1 The Energenie smart plug and remote board (Pi-mote) attached to a Raspberry Pi

NOTE

The mobile phone control section of the project works only with Android devices.

WHAT YOU’LL NEED

Here are the items you’ll need for the project:

	Raspberry Pi

	Mobile phone or tablet (Android)

	Energenie Pi-mote

	Energenie smart plug

	UK to US adapter plug

In the United States, you can find the Pi-mote and plugs at a number of websites by searching “Energenie Pi-mote control with two remotes” or using the product code ENER002-2PI.

Energenie supplies directly to 220-Electronics (https://www.220-electronics.com/pi-mote-remote-control-outlet-starter-kit-with-2-sockets.html), which is based in the US and ships worldwide.

Plugs are also supplied and sold at the following retailers:

	http://www.rapidonline.com/

	http://www.cpc.farnell.com/

	http://www.newark.com/

If you can’t find Pi-mote anywhere else, you can try eBay.

In the United Kingdom, you can buy the Pi-mote directly from Energenie at https://energenie4u.co.uk/. Pimoroni (https://shop.pimoroni.com/) and Amazon also carry it.

SETTING UP THE ENERGENIE REMOTE PLUG

As technology advances, you can control more and more electrical devices without leaving your seat via your phone or tablet. For example, you can adjust your central heating from websites, switch on the oven from an app, and open your garage door automatically as your car approaches.

Many of these kinds of controls use a relay, a switch that turns circuits on and off. A circuit is a flow of current around a connected set of wires that are attached to pieces of hardware (for example, a motor, lamp, or buzzer). The Energenie company has created a set of safe and easy-to-use relay plugs that you can control directly from your Raspberry Pi. By turning these relays on or off, you turn the appliance or hardware connected to the plug on or off.

To use the Energenie plug, you slot a small controller board, the Pi-mote, onto the Raspberry Pi to enable you to toggle the plug to switch on or off. The plug works within a range of up to 30 m and through doors, walls, and ceilings. Does this project sound exciting? Let’s get started. First, you’ll make sure your plug works:

	Test the plug: Plug your Energenie plug into a power outlet. Switch on the outlet to provide power to the Energenie plug. Plug a lamp into the Energenie plug, and turn on the lamp. Press the green button on the plug to switch it on. You should hear a distinctive click, which is the sound of the relay inside closing the circuit as it turns on. When you press the green button, the relay closes and connects the circuit inside the plug, and electricity flows to the lamp. Because the lamp is switched on, the bulb will light up.

	Attach the Pi-mote: Ensure that your Raspberry Pi is off and the power supply to your Raspberry Pi is removed. It doesn’t matter whether your smart plug power is on or off. Attach the Pi-mote (the L-shaped board) to the top row of GPIO pins so the L shape of the board faces inward, toward the HDMI port, as shown in Figure 12-2. Press the board on firmly so it makes contact with the GPIO pins and fits securely.

[image: Image]

FIGURE 12-2 Attaching the Pi-mote to your Pi

	Install the software: Before you can create the program to run the plug and Pi, you need to install the required Python libraries that will allow you to interact with the plug. Open the terminal window and enter the following two lines of code, pressing ENTER after each line:

pi@raspberrypi:- $ sudo apt-get install python3-pip

pi@raspberrypi:- $ sudo pip3 install energenie

After the installation completes, reboot your Raspberry Pi by entering this command:

pi@raspberrypi:- $ sudo reboot

TESTING THE LAMP

You’ll create a simple program to test that the Energenie plug and the Raspberry Pi are communicating with each other.

Controlling the Lamp Remotely

The simple program you’ll use will turn on the plug, which will then turn on the lamp. Make sure your lamp is still plugged into the Energenie plug that you’ve inserted into the electrical outlet and that the lamp switch is on. Leave the power to the plug switched on, and if the lamp turns on, the relay is closed. Then press the green button on the Energenie plug to turn it off. Open your Python editor and start a new file. Enter the following code and save the file as plug_test.py.

❶ from energenie import switch_on

❷ switch_on()

The program begins by importing the switch_on class ❶, which, as you can probably work out, is the program function to switch on the plug.

On the next line, call the switch_on() function ❷, which triggers the Pi to send a message from the Pi-mote to the plug, switching it on. Press F5 to execute the code. Your plug will switch on, and the lamp will turn on. That’s pretty cool.

To turn off the plug, change the code in your Python program to the following:

from energenie import switch_off

switch_off()

Save this program and run it again; the lamp should turn off! This code also imports the switch_off() function and then calls the function to switch off the plug.

Flashing the Lamp On and Off

As a final test, you’ll combine the two preceding programs and add a short delay to make the lamp flash on and off. Technically, you’re not flashing the lamp but simply switching the plug on and off every 5 seconds. In a new Python file, add the program code in Listing 12-1 and save it as plug_flash.py.

❶ import time

❷ from energenie import switch_on, switch_off

❸ while True:

 ❹ switch_on() # add the socket number between the parentheses

 ❺ time.sleep(5)

 ❻ switch_off()

 ❼ time.sleep(5)

LISTING 12-1 Switching the plug on and off

The program begins by importing the time module ❶ so you can add a delay between the plug switching on and off. Then you import the switch_on() and switch_off() functions ❷.

Next, use a while True loop to keep the next lines of the program running continuously ❸. Then use the imported functions to switch on the plug ❹, pause for 5 seconds ❺, and then switch off the plug ❻.

The last line of code ❼ adds another 5-second delay. Otherwise, there would be no delay between the plug switching off and then back on again: the lamp would switch on for 5 seconds, then off, and immediately back on again.

Save the code and then run the program. Your lamp should flash on and off every 5 seconds.

After testing the program, stop it by pressing CTRL-C.

USING AN APP TO CONTROL THE PLUG

Using Python programs to control household appliances is cool. But even better, you can use an app that lets you tap a button to control the smart plug. Blue Dot is a super simple Android app that lets you interact with LEDs, motors, and other components, including the Energenie plugs, via a large blue dot on your mobile phone or tablet device, as shown in Figure 12-3. The app uses Bluetooth to enable your device and the Raspberry Pi to communicate, giving you a range of about 10 m. You can think of your device as a handheld remote control for your lamp.

[image: Image]

FIGURE 12-3 The Blue Dot app

	Set up Blue Dot on your Raspberry Pi: You’ll begin by installing the required Python libraries on your Pi. Open the terminal window and enter the following commands:

pi@raspberrypi:- $ sudo apt install python3-dbus

pi@raspberrypi:- $ sudo pip3 install bluedot

pi@raspberrypi:- $ sudo pip3 install bluedot --upgrade

	Install the app: While the Python libraries are installing, unlock your mobile phone or tablet device (remember that this works for only Android devices) and head over to the Google Play Store. In the store, search for the Blue Dot App, which should look like Figure 12-4. Tap the Install button, and the app will download onto your device.

[image: Image]

FIGURE 12-4 Downloading the Blue Dot App for your device

	Pair your device and Raspberry Pi: Enable Bluetooth on your mobile device, which is usually an option in the settings (Figure 12-5). Ensure that it’s set to the Discoverable option so your Raspberry Pi can locate your device. Return to your Raspberry Pi and find the Bluetooth symbol at the top right of the desktop. Click the symbol, and from the menu, select Turn On▸Make Discoverable. After a few minutes, you should see your mobile device listed. Select it to connect to it. You might have to enter a shared PIN, depending on the device you’re using.

[image: Image]

FIGURE 12-5 Connecting to your Raspberry Pi from your device

An alternative method to connect to Bluetooth is to pair via your mobile device. Start by searching for nearby devices, and then select your Raspberry Pi from the list. Follow the onscreen prompts. Pairing is fairly standard, although it might differ slightly depending on the make of your device.

CODING THE SMART PLUG

With your Pi and device connected, you’re ready to write the program to control the Energenie plug from your mobile device! Return to your Python editor and enter the program code in Listing 12-2, saving it as plug_bluedot.py.

❶ from energenie import switch_on, switch_off

❷ from bluedot import BlueDot

❸ bd = BlueDot()

❹ while True:

 ❺ bd.wait_for_press()

 ❻ switch_on()

 ❼ bd.wait_for_release()

 ❽ switch_off()

LISTING 12-2 Controlling the plug from your mobile device

The program begins by importing the switch_on() and switch_off() functions ❶ and then the BlueDot() class ❷.

Set the BlueDot() class to a variable named bd ❸ to make it quicker to use, and then create a while loop to make the program code repeat continuously ❹.

Then tell the Pi to detect whether the blue dot on your device is being tapped ❺, and if it is, switch on the Energenie plug, which turns on the lamp ❻. When you release the dot ❼, the plug is switched off ❽, turning off the light.

Running the Program

Check that the Bluetooth connection between your Raspberry Pi and your device is still active. You might need to reestablish the connection if it was dropped. Run the program. If the Pi is successfully connected to your device, a message will appear in the console window, confirming the connection (Figure 12-6).

[image: Image]

FIGURE 12-6 Connecting your devices to Bluetooth

Return to your device and open the Blue Dot app; you’ll see a large blue dot on your screen, as shown in Figure 12-7. Press your finger on the blue dot and hold it there to turn on the lamp; then release it to turn off the lamp.

[image: Image]

FIGURE 12-7 Connecting to the Raspberry Pi

Improving the Code to Switch On and Off

Now you’ll adapt the plug_bluedot.py program so you can switch on the plug by tapping the dot once and then switch off the plug by tapping the dot again. This way, you can switch on the plug and it will stay on until you tap the blue dot again.

This program is even more useful, because you can rig up anything to the plug! For example, if you connect an electric kettle to the Energenie plug, you can turn it on with a tap of the dot. If you need to turn off the kettle, press the blue dot again and the switch will turn off.

To do this, you’ll use Blue Dot’s D-pad feature, which is similar to the directional pad on game console controllers on which you can press up, down, left, and right buttons to control the player. For this project, you’ll use the up button to turn on the plug and the down button to turn off the plug. Open your plug_bluedot.py file and modify it so it matches the code in Listing 12-3.

 from energenie import switch_on, switch_off

 from bluedot import BlueDot

❶ from signal import pause

 bd = BlueDot()

❷ def dpad(pos):

 if pos.top:

 print ("up")

 switch_on()

 ❸ elif pos.bottom:

 print ("down")

 switch_off()

❹ bd.when_pressed = dpad

❺ pause()

LISTING 12-3 Using Blue Dot to turn the plug on and off

In the new code, you first import the pause() function from the signal library ❶. You need this function, because when the program is running, it’s always waiting for the D-pad to be tapped, which puts a strain on the processor. Adding the pause() function reduces that overall strain.

Next, create a dpad() function to hold the instructions for what should happen when the D-pad is tapped ❷. First, tell the program that if the top of the D-pad has been tapped, it should run the switch_on() function to turn on the plug.

Second, add an elif statement ❸ to catch when the bottom position of the D-pad is tapped. Tell the program that if the bottom of the D-pad is tapped, it should switch off the plug by using the switch_off() function.

Then check for blue dot taps ❹. This line runs the dpad() function you just created when the dot is tapped. Finally, add the pause() function ❺ to reduce the strain on the processor.

Save and execute the program. Make sure your Raspberry Pi and your device are connected via Bluetooth, and then load the Blue Dot app on your mobile device. With your lamp still plugged into the Energenie plug, tap the upper part of the blue dot, where an up button would be on a D-pad, to turn on the lamp. Tap the lower part of the blue dot, where a down button would be on a D-pad, to turn it off. Remember that you don’t need to press and hold on the dot this time.

You now have a working smart plug that lets you control your house remotely! Try it out with a few other appliances.

WRAPPING UP

Once you’ve mastered the basics of this project, you can adapt it to meet your needs. You could make a prank project that turns off a lamp each time someone tries to turn it on. Or how about creating something a little more useful, like a system that turns on your television, the radio, or even a dishwasher? You can combine this project with the glue gun night-light in Chapter 3 to create a lamp that switches itself on when the room gets to a certain level of darkness and then switches off as the room gets brighter.

 13
MIRROR, MIRROR: THE SOCIAL MEDIA STATUS MIRROR

IN THIS CHAPTER, YOU’LL CREATE A SOCIAL MEDIA STATUS MIRROR, A MODERN-DAY TWIST ON THE CLASSIC “MIRROR, MIRROR ON THE WALL” FROM THE SNOW WHITE FAIRYTALE. IMAGINE THAT YOU’RE GETTING READY TO GO OUT AND WANT TO KNOW WHAT YOUR FRIENDS ARE POSTING ONLINE. OR MAYBE YOUR FAVORITE TEAM IS PLAYING, AND YOU WANT TO FOLLOW ALL THE ACTION WHILE YOU GET READY IN THE MORNING.

The social media status mirror can help in either situation. All you have to do is enter a keyword in the Python program. Then, whenever a tweet containing the keyword appears in your social media timeline, an array of LEDs will flash several times before the mirror reads you the tweet. The LEDs inform you of incoming messages. If you set your personal Twitter handle as the keyword, the mirror will read out any tweet that mentions you and tell you the name of the user who wrote the tweet.

You can customize the project by choosing a colored set of LEDs or even animal-, car-, or fruit-shaped LEDs. Or, instead of attaching the LEDs to a mirror, as shown in Figure 13-1, you could attach them to a picture, notice board, bookcase, or window frame. I recommend using the Raspberry Pi Zero for this project, because it’s small and discreet, making it easy to hide. It also has built-in Wi-Fi, which you’ll need to stream data from your Twitter account.

[image: Image]

FIGURE 13-1 Create your social media status mirror.

WHAT YOU’LL NEED

Here are a few items you’ll need to complete the project:

	Raspberry Pi Zero W (recommended)

	Set of battery-powered LEDs (3.3V maximum)

	Twitter account

	Speaker

	USB battery

	Jumper wires

	NPN (Negative-Positive-Negative) transistor (a 2N 2222)

	1K ohm resistor

	Soldering iron and solder, or alligator clips, or aluminum foil

	Mirror (or any other object you want to attach the lights to)

	Small breadboard (optional)

You’ll need to think about the type of speaker you’ll use. You could use a simple portable speaker with the standard audio jack and cable. But then you can’t use the Raspberry Pi Zero, although that’s not an issue unless you have a small mirror that can’t mount a larger Pi board. Another option is to use a Bluetooth-enabled speaker, similar to the setup in Chapter 10. The Pi Zero W is Bluetooth enabled, which means you can stream audio directly to a speaker.

PREPARING THE EQUIPMENT

This project has a few parts, so before you start coding it, you’ll set up your speaker, teach the Raspberry Pi to read text out loud via the speaker, wire the status LEDs, and connect your Pi to Twitter.

Connecting the Speaker

To connect a speaker to the project, you have two options. If you’re not using the Pi Zero, you can use the built-in audio jack. Connect your speaker via a standard 3.5 mm jack cable to the back headphone jack on the Raspberry Pi, which is located next to the HDMI port. Plug in your Raspberry Pi and boot it up; then return to the desktop. Locate the audio icon at the top of the desktop and right-click it. Select Analog from the audio output drop-down menu. Now all audio will be played through your speaker.

If you’re using a Bluetooth speaker, turn on the Bluetooth software on your Pi by clicking the Bluetooth icon at the top right of the screen. Then turn on your Bluetooth speaker. Click the Bluetooth icon again, and select Add a Device from the drop-down menu. The Raspberry Pi will attempt to locate all Bluetooth-enabled devices, including your speaker. Make sure you enable the Bluetooth settings on your speaker to make it discoverable.

When found, the speaker will appear in the pop-up window. Select it from the list and click Pair to establish a connection between your Raspberry Pi and the Bluetooth speaker.

Once the connection is confirmed, click the audio icon and select your Bluetooth speaker from the drop-down menu. The two devices will attempt to pair and establish a connection again. Once the speaker has been set up, your Raspberry Pi should always automatically locate and connect to this speaker.

Teaching the Pi to Read Text Out Loud

For the Raspberry Pi to read your tweets aloud, you need to create a text-to-speech program. This program converts written text into audio and then plays it. You can use the program to read any type of text, including text messages, emails, or weather updates. So you could easily adapt this project to read other information to you as you get ready!

Open the terminal window and install espeak by entering the following command:

pi@raspberrypi:- $ sudo apt install espeak python3-espeak

Then open Python and start a new program. Enter the following code and save it as espeak_test.py:

from espeak import espeak

espeak.synth("Have you met my friend Alexa?!")

Be sure to replace the message between the quotation marks with your own message. Save the program and run it. You should now have a talking Raspberry Pi—well, a Raspberry Pi with a text-to-speech program. Experiment and add your own messages.

Preparing the LEDs

Now you’ll set up the LEDs and write a program to control them. Your set of battery-powered LEDs should be in a loop with the battery pack attached, as shown in Figure 13-2. The LEDs will be powered by the battery pack, and you will use the Raspberry Pi as a switch that will open and close the circuit, turning the LEDs off and on. Ensure that the batteries you use provide no more than 3V, which is two AA or AAA batteries.

[image: Image]

FIGURE 13-2 Battery-powered LEDs

To prepare the battery-powered LEDs, use a pair of scissors to cut through the ground wire. You can identify the ground wire by tracing the wires back to the battery pack and finding the wire connected to the negative terminal (the one where the flat side of the battery fits), as shown in Figure 13-3.

[image: Image]

FIGURE 13-3 Finding the ground wire

Leave a couple of inches of wire still attached to the battery pack. Strip the insulation from both of the ends so a little of the wire is exposed.

Using a single female-to-male jumper wire, attach or solder one of the female ends to one of the ends of the stripped wire. Attach a second female-to-male jumper wire to the end of the other stripped wire. The battery pack should look something like Figure 13-4.

[image: Image]

FIGURE 13-4 Attach one jumper wire to each of the wire ends that have been cut.

NOTE

If you don’t have access to a soldering iron, you can attach an alligator clip to the end of the wire and then clamp the other end onto the jumper wire. Or, you can wrap the ends of the wires in aluminum foil.

Using the NPN Transistor

The NPN transistor acts as a switch to cut the current from the batteries to the LEDs. Without the transistor, the LEDs will still receive some current from the battery pack, which means that the LEDs will glow slightly even when they are supposed to be off. The NPN transistor has three legs: the emitter on the left, the base in the middle, and the collector on the right. Figure 13-5 shows the transistor from the front, which is its flat side.

[image: Image]

FIGURE 13-5 NPN transistor

To set up the circuit, you’ll connect the ground wire from the batteries to the emitter and then connect the other part of the ground wire (which you created by cutting the ground wire in half) to the collector. You’ll use the Raspberry Pi GPIO to turn on the base, allowing you to flip the switch in the transistor and turn the LEDs on and off.

Preparing the Circuit

Attach the two ends of the jumper wires to the NPN by connecting the left wire to the left emitter leg of the NPN transistor and the right wire to the right collector leg of the NPN transistor (Figure 13-6). The NPN transistor acts as a switch by controlling the current that passes through the circuit. By stopping the current flow, the NPN transistor breaks the circuit, so the current from the battery pack can’t reach the LEDs and they go out, as though you turned them off. Attach the 1K ohm resistor to the middle base leg of the transistor. You need the resistor to avoid damaging the Raspberry Pi GPIO pin when the transistor is operating.

[image: Image]

FIGURE 13-6 Setting up the circuit

Use a female-to-female wire to connect the other end of the resistor to pin GPIO 3, which is the pin that provides the current to close the circuit. Then use a male-to-female wire to connect the left emitter leg of the transistor to a ground pin on the Raspberry Pi. Conveniently, there is one directly to the right of GPIO 3, physical pin 6.

Testing the LEDs

Open your Python editor and enter the test program in Listing 13-1. This code is similar to the program you used in Chapter 3 when creating the hot glue night-light. It tells the program which GPIO pin the wire is attached to and then turns on that pin. This creates a circuit via the GND pin, allowing the batteries to power the LEDs.

from gpiozero import LED

from time import sleep

led = LED(3)

while True:

 led.on()

 sleep(1)

 led.off()

 sleep(1)

LISTING 13-1 Creating a circuit to light the LEDs

Save and run the program, and turn on the battery pack. The LEDs on the wire will flash on and then off once per second. If the lights stay on permanently, swap the two wires: attach the GPIO 3 wire to a GND pin and the GND wire to GPIO 3.

Once you’ve gotten the LEDs to work properly, you’re ready to begin creating your social media status mirror. But don’t attach the LEDs to your mirror, picture, or shelf yet. Instead, you’ll test the project by using your monitor to observe the tweets streaming in and the actions the program takes in response.

SETTING UP YOUR TWITTER DEVELOPER ACCOUNT

To access Twitter from your Raspberry Pi with Python, you’ll need to sign up and register for a developer account and then create an app. Then you can generate unique keys and tokens, which you’ll use in your program code to authorize communication between your Raspberry Pi and Twitter. These keys and tokens identify you as a user, enabling you to stream your timeline and post tweets by using Python code.

First, make sure you have a working Twitter account. You can use an existing account, but if you don’t have an account, sign up for one at https://www.twitter.com/.

Once you’ve set up your account, head over to https://developer.twitter.com/ and click Apply at the top right of the page (Figure 13-7).

[image: Image]

FIGURE 13-7 The Twitter Developer website

You should then be presented with a page containing a number of APIs: these are a selection of programming codes and functions that enable you to interact with Twitter.

Choose Standard APIs and click Apply for a developer account (Figure 13-8). This account is free and perfect for the mirror hack requirements. You’ll be asked to enter your Twitter username and password to create an account. If already have a developer account and are returning to create your own version of the hack, you can click Sign in instead.

[image: Image]

FIGURE 13-8 Select the Standard APIs option.

Next, you’ll begin the process of validating your developer account. The first stage requires you to enter a valid mobile phone number. This is purely a security feature so Twitter can send you confirmation texts to authorize the account. Click Add a valid phone number (Figure 13-9).

[image: Image]

FIGURE 13-9 Add a valid phone number.

Enter the appropriate details for your region, enter your phone number, and click Next (Figure 13-10). A verification code should be sent to your phone via a text message.

[image: Image]

FIGURE 13-10 Enter your details.

When you receive the text, open it. Then enter the confirmation code into the verification phone number window shown in Figure 13-11, and click Verify.

[image: Image]

FIGURE 13-11 Enter the code that you receive on your phone.

On completion, you should see a message stating your phone number is now verified (Figure 13-12). Click Continue.

[image: Image]

FIGURE 13-12 Twitter verifies your phone number.

The second stage of the verification asks you to select whom you’re requesting access for (Figure 13-13): select the second option, I am requesting access for my own personal use. Then add a name for your account, which will be your developer account’s username. You can use your own name—for example, Dan’s Twitter—or use your Twitter account name. Select your primary country of operation, which must be where you’re located and where you’re running your mirror hack. Then click Continue.

[image: Image]

FIGURE 13-13 Name your developer account.

In the third stage, Twitter will request information about the use of your project.

In the first What use case(s) are you interested in? question (Figure 13-14), select Chatbots and automation.

[image: Image]

FIGURE 13-14 Select the areas you’re interested in.

You should then be prompted to answer further questions about the purpose of what you’re building. Here are the four questions you need to answer:

	What are you using the Twitter API for?

	Do you intend to analyze tweets?

	Would you like to retweet content?

	How will the data be displayed?

The web page displays a simple guide that includes advice and some example responses, which you can use to create your own answers.

You need to write at least 300 characters when answering these questions. This sounds like a lot, but if you use the model responses, it’s easy to achieve the required number. A useful reminder is displayed in red under the box that disappears when you’ve written the total number of required characters.

Here’s the example I added:

I’m using Twitter’s APIs to collect tweets and mentions from my timeline and then read them out.

The build does not analyze the tweets.

The build will not tweet, retweet, like, or interact with other users or their content. It will only stream tweets that contain my username from my timeline.

Tweets will be converted from text to speech and read out.

You can add more details and customize your answers for your version of the hack.

Under the question Will your product, service, or analysis make Twitter content or derived information available to a government entity?, select No, and then click Continue.

In the fourth stage, you’ll be presented with the terms and conditions (Figure 13-15), which you can read if you want to. Then scroll to the bottom of the page, select the box to accept the terms, and click Submit application.

[image: Image]

FIGURE 13-15 Confirm that you accept the terms and conditions.

You should receive a verification email from the Twitter Developer team. Open this email and click Confirm your email. Well done! You’ve completed the application process and should be redirected to the API developer page.

SETTING UP YOUR TWITTER APP

Once your developer account is set up and verified, you can create your app. For this, you’ll add a few details about your project and then generate a set of unique, random codes called keys. You’ll use the keys in the Python program to enable you to connect to your Twitter account and manage your tweets. Begin by selecting the Create an app option (Figure 13-16).

[image: Image]

FIGURE 13-16 Getting started

	Create a new app: The next page of the website shows you any existing Twitter apps you’ve already created and presents you with the option of creating a new app. Click the Create an app button (Figure 13-17).

[image: Image]

FIGURE 13-17 Creating a new app

	Register the details of your new app: Enter the app’s name (for example, mirror or social media mirror). You’ll use this name to identify your project the next time you log in. In the next box, enter a short description of the project to let others know what your app does (Figure 13-18).

[image: Image]

FIGURE 13-18 Adding details for your app

You’ll also need to enter a website address. If you have your own website, enter its address here. If you don’t, you can enter your Twitter account’s web address, which is usually https://www.twitter.com/your_user_name/.

Make sure the Enable sign in with Twitter option is deselected, and skip the other URL and website prompts. Also, leave the Callback URLs entry blank and agree to the Developer Agreement by selecting the box. Click the Create your Twitter application button.

In the last box, enter a short summary of how you’ll use the app. I added a short description of what the social media status mirror hack does. Then click Create. You should be presented with two further options; select Permissions first (Figure 13-19).

[image: Image]

FIGURE 13-19 Select the access permissions that you require.

You’ll need to select the type of access that your app requires. Read only enables you to read tweets from your timeline, and Read and write enables you to read and send your own tweets. Select the Read and write option, although it might already be set by default.

Creating the Access Keys and Tokens

The final option window presents you with your API keys and access tokens (Figure 13-20). These enable your Raspberry Pi to interact with Twitter through Python. Record the following keys and tokens:

Consumer key Identifies you and your app as a unique user

Consumer secret Use this like a password

Access token A code you’ll use in your program later

Access token secret Used with your access token to authorize a connection with your Twitter app

[image: Image]

FIGURE 13-20 Generate your keys and tokens.

To create the access token and access token secret, click Create.

It’s important that you keep these keys and tokens secure. If you forget your access token or token secret, or they become compromised, you can click Regenerate to create a new token and API key set. Remember that you’ll need to use these in your Python program code, so note them down somewhere safe.

You’ve now completed the setup procedures for the Twitter app. You’re ready to send your first tweet by using your Raspberry Pi. Keep in mind that you can use your credentials for other projects too.

PROGRAMMING YOUR RASPBERRY PI WITH THE APP

Before you start coding your main program, you’ll create a few test programs so you can learn how to send and read tweets by using the Raspberry Pi. This is a useful skill that you can use and adapt for other projects in the future! It’s also a simple and quick method to test that the configuration is working.

Sending Your First Tweet

To send your first tweet, you’ll need to use a new Python library called tweepy, which enables your program to communicate with Twitter.

	Install tweepy: Boot your Raspberry Pi and open the terminal window. Then enter the following command:

pi@raspberrypi:- $ sudo pip3 install tweepy

	Send a tweet: You’ll create a Python program to post a tweet from your Raspberry Pi to your Twitter timeline. The tweet will appear on your public timeline immediately, so be aware of what you send. Open your Python editor, start a new file and save it as Sending.py, and enter the code in Listing 13-2.

❶ import sys, subprocess, urllib, time, tweepy

❷ consumer_key= "xxxxxxxxxx"

❸ consumer_secret= "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

❹ access_token= "xxxxxxxxxxxxxxxxxxxxxxx"

❺ access_token_secret= "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

❻ auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

❼ auth.set_access_token(access_token, access_token_secret)

❽ api = tweepy.API(auth)

❾ api.update_status("Tweet sent from my Pi")

print ("Tweet Sent")

LISTING 13-2 Writing and posting a tweet by using a Raspberry Pi

Start the program by importing the sys and subprocess modules, which is a package for working with URLs. Also, import urllib, which is a module of URLs, or website addresses. This Python module lets you send data to and from your Twitter account via a specific URL for your app. Then import time and tweepy ❶.

Next, enter your consumer key ❷, consumer secret ❸, access token ❹, and access token secret ❺. At ❻, ❼, and ❽, authorize your Twitter account, your app, and the Raspberry Pi, respectively. This grants you access to your Twitter account.

Use the function api.update_status() ❾ to post your message; type the message between the quotation marks. Then print a confirmation that the tweet has been sent.

	Run the program: Before running the program, make sure you’ve entered your own message; then press F5 to save and execute the code. The tweet will post, so check your Twitter timeline.

	(Optional) Change the Twitter Handle: If you want to use another user’s Twitter handle to send them a mention, just add their Twitter handle in the parentheses, before your message; for example, api.update_status('@dan_aldred, Tweet sent from my Pi'). It’s really that easy. You can’t post the same tweet twice because Twitter will consider this spam. When you run this program again, ensure that you change the message on line ❾.

Reading Tweets

To read messages and mentions from your Twitter timeline, you’ll download the latest tweets from the Twitter users you follow and print them in the Python console window. Return to your previous program, Sending.py, and save it with a new filename of Timeline.py. Update the file so it matches the code in Listing 13-3.

 import sys, subprocess, urllib, time, tweepy

 consumer_key= "xxxxxxxxxxxxxx"

 consumer_secret= "xxxxxxxxxxxxxxxxxxxxxxx"

 access_token= "xx"

 access_token_secret= "xxxxxxxxxxxxxxxxxxxx"

 auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

 auth.set_access_token(access_token, access_token_secret)

 api = tweepy.API(auth)

❶ public_tweets = api.home_timeline()

❷ for tweet in public_tweets:

 ❸ try:

 ❹ print (tweet.text)

 ❺ time.sleep(2)

 ❻ print ("")

 ❼ except:

 ❽ print ("cannot display")

LISTING 13-3 Reading tweets from your Twitter timeline

The first section of the program, which is identical to the start of the previous program, Sending.py, controls the authentication and authorization to Twitter. You don’t need to adjust these lines unless you’ve changed your key and token details.

You delete all the lines of code that appear after api = tweepy.API(auth). (Don’t worry about losing your Sending.py program, because you’ve saved it under a different name.) Add the code at ❶, which pulls all the tweets from your public timeline and stores them in a variable named public_tweets. Next, use a for loop ❷ to cycle through each of the tweets.

Then use the try and except method, which tries to run the next part of the program ❸ and, if it can’t, runs the except code at ❼ and ❽. The reason is that sometimes tweets contain symbols and characters that the Python code can’t interpret, like emojis. Without the code at ❸ and ❼, your program would crash and return a message saying it can’t display the text. With the exception, you give your code something to do other than crash.

In the next step, print each tweet ❹. Add a short delay ❺ to give you time to read each post. You might want to make this delay longer than 2 seconds (say, 5 seconds).

Skip a line before printing the next tweet ❻. This makes reading each tweet a little easier. It also makes the presentation neater, so you don’t have an overwhelming sea of text. Then add the except statement at ❼ and a message to inform you that it can’t display the tweet ❽. Save the file as Timeline.py and run the program as before. You now have a Python Twitter timeline reader (Figure 13-21)!

[image: Image]

FIGURE 13-21 Printing tweets from your timeline

Streaming Tweets Automatically

When running the Timeline.py program, you might have noticed that it downloads only the first 20 tweets from your timeline. It also prints only tweets that were posted before you started running the program: it won’t automatically download any new tweets received while running the program. This isn’t very useful if you want to retrieve your tweets in real time or check for a keyword.

One solution is to use a while loop that requests the tweets from your timeline every 20 seconds or so. But the problem with this is that Twitter limits your number of downloads, because it wants to block spam bots. Each time you request and download the data, Twitter logs that information. If you request data too many times per hour, your program might time out, and you’ll have wait a while before you can request your timeline data again.

A better solution is to create a class to stream the tweets. This significantly reduces the number of requests, so Twitter won’t time out your program. This method also allows you to stream the tweets as they’re posted to your timeline. Each time a new tweet arrives while the program is running, Python prints it to the shell window. Let’s create a class now:

	Stream tweets with a class: Open Timeline.py and save it as Stream_Tweets.py. Edit the file so it matches the code in Listing 13-4.

 import sys, subprocess, urllib, time, tweepy

 consumer_key= "xxxxxxxxxxxxxx"

 consumer_secret= "xxxxxxxxxxxxxxxxxxxxxxx"

 access_token= "xx"

 access_token_secret= "xxxxxxxxxxxxxxxxxxxx"

 auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

 auth.set_access_token(access_token, access_token_secret)

 api = tweepy.API(auth)

❶ class Social_Media_Mirror_StreamListener(tweepy.StreamListener):

 ❷ def on_status(self, status):

 ❸ tweet_to_check = status.text

 ❹ does_the_tweet_contain_key_word = tweet_to_check.find("@Dan_Aldred")

 ❺ print (does_the_tweet_contain_key_word)

LISTING 13-4 Using a class to stream tweets

As with the previous programs, begin by importing the required modules, as well as your keys and tokens, to authenticate and authorize your Twitter account and app.

Then create a new class called Social_Media_Mirror_StreamListener, which uses the streaming features of the Python tweepy library ❶. Create a function that streams the tweets and checks for your trigger word ❷. The code status.text retrieves all the tweets on your timeline. Store these in the variable tweet_to_check ❸.

Next, check for your trigger word by using .find(). Combine this with the tweet_to_check variable to search for your trigger word in each streamed tweet. Replace the trigger word @Dan_Aldred in my example with your own Twitter handle, a keyword, or a hashtag that will be the indicator to turn on the LEDs. The program then checks for your keyword and, if it finds it, returns the numerical position of your keyword in the tweet. If the keyword isn’t present in the tweet, the program returns a value of -1 and stores it in the does_the_tweet_contain_key_word variable ❹. You print the positional value of the keyword at ❺. If the keyword is contained within the tweet, a value of 0 or greater is returned to the variable on line ❹.

	Search for the keyword: The following section of the program checks the tweets for the keyword. Add the code in Listing 13-5 to your program.

 ❶ if does_the_tweet_contain_key_word >= 0:

 ❷ who = status.user.screen_name # gets the user name

 ❸ print (who) # prints the user's name

 ❹ print ("LIGHTS ON")

 ❺ else:

 ❻ print ("LIGHTS OFF")

 ❼ time.sleep(1)

LISTING 13-5 Checking the stream of tweets for your keyword

First, check the incoming tweet for your trigger word by seeing whether the trigger word’s placement value is equal to or greater than 0 ❶. If it is greater than or equal to 0, the trigger word is somewhere in the tweet. For example, if the value is 0, the word is at the very start of the tweet. If the value is 7, the keyword is found at position 7 in the tweet.

Next, grab the Twitter handle of the user who included your trigger word ❷ and print it ❸.

In the final program, you’ll also use the keywords as triggers to turn on the LED lights. That would normally happen at this point in the program, but because you haven’t added the code for the LEDs yet, you’ll just add a test statement indicating this ❹.

Then you add a response for cases when the trigger word isn’t found in the tweet. The response occurs if the value is -1. If that happens, you add a notification that the lights are off ❺ ❻ before a short pause of 1 second ❼. This completes the main function of the streaming program.

	Start the streaming: The final step is to start the streaming. Add the code in Listing 13-6.

❶ myStreamListener = Social_Media_Mirror_StreamListener()

❷ myStream = tweepy.Stream(auth = api.auth, listener=myStreamListener)

❸ myStream.filter(follow=["xxxxxxxxx"])

LISTING 13-6 Starting the streaming

Create a variable called myStreamListener to combine and hold the details of your authorization to the Twitter app and the Social_Media_Mirror_StreamListener() function you coded in the previous steps ❶. Then combine these functions to authenticate your credentials and deploy the stream ❷.

To stream the timeline for the correct Twitter account, you need to add the ID number of the Twitter account ❸. You find this number by opening https://tweeterid.com/ and entering the account name you want to track (Figure 13-22). Place the ID number it returns in line ❸. You can add your own account to ensure that you pick up mentions and messages that are sent to you; you can also search for your favorite celebrity accounts, friends and family, or the hashtag for a trending event.

[image: Image]

FIGURE 13-22 Finding out the ID number of Twitter accounts

Save and run your Stream_Tweets.py program. You can test it by mentioning your keyword in a tweet (or getting a friend to do it). Experiment with different placements of the keyword to see how the program responds. Then move on to the final section of code, where we’ll combine this program with the LEDs and audio to complete the social media status mirror.

THE FINAL PROGRAM

To complete the project, you’ll combine the code for streaming the tweets that contain your keyword with the code to flash the LEDs and read the tweets out loud.

Starting the Final Program

Start a new program file and save it as Social_Media_Mirror.py. This code combines the code you used in Listings 13-4 and 13-5 to complete the program.

 import sys, subprocess, urllib, time, tweepy

❶ from espeak import espeak

❷ from gpiozero import LED

 consumer_key= "xxxxxxxxxxxxx"

 consumer_secret= "xxxxxxxxxxxxxxxx"

 access_token= "xxxxxxxxxxxxxxxxxxxxxxx"

 access_token_secret= "xxxxxxxxxxxxxxxxxx"

 auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

 auth.set_access_token(access_token, access_token_secret)

 api = tweepy.API(auth)

❸ led = LED(3)

❹ led.off()

LISTING 13-7 Starting the final program

Import the espeak() function ❶, which you use to read the tweets aloud. Then import the LED class from the gpiozero library ❷. You use this to turn the GPIO pin on or off, controlling the battery power to the LEDs. Assign pin GPIO 3 to the LED ❸. Use this pin to turn the lights on and off. Next, turn off the LED ❹ so the light won’t turn on every time the program resets.

Adding the Main Program Code

Now you’ll add the main program code Social_Media_Mirror.py.

class Social_Media_Mirror_StreamListener(tweepy.StreamListener):

 def on_status(self, status):

 ❶ led.off()

 ❷ try:

 print(status.text)

 except:

 pass

 print ("Cannot display Tweet")

 led.off()

 tweet_to_check = status.text # checks the tweet

 does_the_tweet_contain_key_word = tweet_to_check.find("@Dan_Aldred")

 # replace with your Twitter user name or a keyword

 print (does_the_tweet_contain_key_word)

 if does_the_tweet_contain_key_word >= 0:

 who = status.user.screen_name # gets the user name

 print (who) # prints the user's name

 ❸ # flash the lights

 led.on()

 time.sleep(0.6)

 led.off()

 time.sleep(0.5)

 led.on()

 time.sleep(0.4)

 led.off()

 time.sleep(0.3)

 led.on()

 time.sleep(0.2)

 led.off()

 time.sleep(0.1)

 led.on()

 time.sleep(0.05)

 led.on()

 print ("LIGHTS ON")

 ❹ espeak.synth(who)

 ❺ espeak.synth("said")

 ❻ time.sleep(1)

 ❼ espeak.synth(status.text) # reads out the tweet

 ❽ time.sleep(4)

 ❾ led.off()

 ❿ else:

 print ("LIGHTS OFF")

 led.off()

 time.sleep(1)

LISTING 13-8 Adding code to make the LEDs flash

Use the code at ❶ again to turn off the LED, and then add the try and except method ❷ (as you did in Listing 13-3) to prevent your program from crashing if the tweet contains unknown characters, symbols, or usually emojis that cannot be displayed as text. Next, flash the lights by turning on the LEDs, waiting a few seconds, and then turning them off. The code at ❸ is merely an example and makes the lights flash faster until they stay on. You can adapt this code to suit your own preferences: make them stay lit for 5 seconds or flash them only a single time. In the program in Listing 13-8, the LEDs stay on while the message is read aloud. Change values in time.sleep() ❸ to change the pattern of the LEDs. For example, time.sleep(10) will keep the LEDs on for 10 seconds and then turn them off.

Use the espeak.synth() function to read the name of the Twitter user who sent you a tweet containing your Twitter name ❹. Combine this code with the word said ❺ so when the program reads a tweet (by me, for example), it starts by announcing, “@Dan_Aldred said.” Add a small delay at ❻. Then make the program read the tweet ❼ before adding a final delay ❽ and turning off the LEDs ❾. Turning off the lights indicates that the message has been received and relayed.

If you receive a tweet that doesn’t contain your keyword, flash the LEDs once to indicate that there’s been a new post to your timeline but not a specific message of interest ❿. Then add the final line of code that authorizes your Twitter credentials and streams, in real time, the tweets from your Twitter timeline. Your program checks them for the keyword and responds in the set manner.

Add the end lines of the program in Listing 13-9 to begin the streaming and complete the main program code.

myStreamListener = Social_Media_Mirror_StreamListener()

myStream = tweepy.Stream(auth = api.auth, listener=myStreamListener)

myStream.filter(follow=["xxxxxxxxx"])

LISTING 13-9 Ending the program

Save the Social_Media_Mirror.py code and run it. To test it, load your Twitter feed on another device and mention your Twitter username or keyword in a tweet. Watch the LEDs light up when you get a new message, and then listen as the message is read to you. Contact your friends and get them to try it too.

Remember that you can also replace your Twitter ID with the ID of your favorite Twitter account or users. Use the website https://tweeterid.com/ to look up the ID number. You can also replace the ID code with keywords like No Starch. When you’re testing your program, remember that if you send a duplicate of the same message, Twitter will consider this spam, so ensure that you change your test word.

Automatically Starting the Twitter Stream

Once you’re happy with the project, you can set the program to automatically run when you power up the Raspberry Pi. You do this by configuring a crontab file, as you did for other projects in the book.

Open the terminal and enter the following command to open the cron console:

pi@raspberrypi:- $ sudo crontab -e

The console will present you with three methods of editing the crontab file. Select option 2 and press ENTER to open the crontab file with the nano text editor.

Scroll to the bottom of the text in the crontab file and locate the blank space. Then add the following line of code:

@reboot sudo python3 /home/pi/name_of_your_program.py &

The command states that every time the Raspberry Pi reboots, it should run Python in superuser mode, open the home/pi/ folder, and execute your program. Replace the name_of_your_program.py with the name that you saved your program as.

The & at the end of the line of code tells your program to run in the background, so you can do other tasks with your Raspberry Pi at the same time.

Once you have checked the command details and are confident that they’re correct, press CTRL-X to save and exit the crontab file. Now each time you turn on or reboot your Raspberry Pi, the crontab file will run, starting the Social_Media_Mirror.py program, and your social media status mirror will be ready.

If you want to stop the program from automatically running, open the crontab file again from the terminal by entering this command:

pi@raspberrypi:- $ crontab -e

Then delete the line of code that you added. Save the file and reboot.

PUTTING IT ALL TOGETHER

Now that all the hardware is working, you can add the LEDs to the mirror—or to any other object you’ve chosen. (You could also make a social media shelf.) Make sure your speaker and LEDs are attached, and then attach the battery pack to the back of the mirror (Figure 13-23). You could glue it to the back of the frame or use double-sided tape. Remember to leave the battery door facing outward so you can change the batteries if required. Then hang your mirror and wait for your messages to come through.

[image: Image]

FIGURE 13-23 Attach the Pi and battery pack to the back of your mirror.

WRAPPING UP

To develop your project further, try one or more of the following:

	Change the LED flashing pattern by altering the time.

	Add a music or fanfare MP3 file that plays before each tweet is read out loud.

	Combine the project with the glue light in Chapter 3 or wire another set of LEDs that respond to a particular second trigger word.

 14
COMPUTER GAMES WITH THE SENSE HAT

IN THE FINAL PROJECT IN THIS BOOK, YOU’LL USE THE SENSE HAT HARDWARE AND PYTHON CODE TO BUILD A VERSION OF THE CLASSIC GAME OF ROCK, PAPER, SCISSORS — BUT WITH A TWIST. YOU’LL PROGRAM A COLORFUL LED MATRIX AND A JOYSTICK TO ADD A GAME DISPLAY AND CONTROL TO YOUR PROGRAM.

In late 2015, the European Space Agency (ESA) sent a supply rocket to replenish the International Space Station (ISS). Among the cargo were two Raspberry Pi computers, each fitted with a special add-on board known as the Astro Pi. These were sent in preparation for the inaugural visit of Major Tim Peake, a British astronaut. Each Astro Pi boasts an array of hardware and sensors and an 8 × 8 LED display—perfect for taking and displaying readings such as temperature, pressure, acceleration, and magnetic field strength.

Previously, in the summer of 2015, the Raspberry Pi Foundation held a competition for children to write a program or experiment for the Astro Pi that would run aboard the ISS. During Peake’s stay, the Astro Pi ran the preloaded experiments designed by the winners. The Astro Pi will stay onboard the ISS until 2021, and, provided you meet the qualifications to take part, you can still enter the competitions. Find more details at https://astro-pi.org/. Who knows—maybe you’ll be inspired to write your own program to run in space aboard the ISS, shown in Figure 14-1.

In December of that year, the Astro Pi became available for sale to the public, rebranded as the Sense HAT. The Sense HAT you can buy today consists of exactly the same hardware and sensor set found on the Astro Pi.

[image: Image]

FIGURE 14-1 The International Space Station

The Sense HAT’s LED display can serve as a screen, making it the perfect tool for creating games. In this chapter, you’ll use it to program a twist on the classic game of rock, paper, scissors. This version—called rock, paper, scissors, lizard, Spock—introduces new possibilities to mix up the gameplay.

First, though, you’ll look at simple programs in order to explore the Sense HAT’s key features. You’ll scroll text, make an interactive temperature display, and use a tool called an array to draw a basic image. These skills also stand alone, and you can adapt them for your own projects.

WHAT YOU’LL NEED

Here’s what you’ll need to build this game project:

	Raspberry Pi 3 or 4 (suggested)

	Sense HAT

	USB portable battery (optional)

	Small Phillips-head screwdriver

WHAT IS THE SENSE HAT?

Let’s take a look at the Sense HAT’s sensors and hardware, shown in Figure 14-2.

[image: Image]

FIGURE 14-2 The Sense HAT and its parts

The Sense HAT parts are as follows:

Multicolor 8 × 8 LED matrix You can use these 64 programmable LED lights to scroll messages or to display data from the sensors, animations, or simple games.

Temperature sensor This built-in sensor is accurate to about 2°C (approximately 4°F) in the 0-65°C (32-150°F) range. It’s useful for measuring the temperature of your surrounding environment.

Magnetometer Works like a compass by detecting magnetic field strengths. You can use its readings to measure magnetic fields and find compass points relative to north.

Accelerometer Measures acceleration in the directions of up, down, and across. You can use this to track movements, or modify it to create a controller for a game.

Multidirectional joystick Can be used to move characters in a game or as a selection tool for options.

GETTING STARTED WITH THE SENSE HAT

Setting up the Sense HAT is extremely easy, because it was designed to work with the Raspberry Pi. Take the Sense HAT and slide it onto the GPIO pins. Firmly push it down to secure it into place. Then take the Raspberry Pi’s offset mounts (these should come with your Sense HAT) and screw them into the Sense HAT. Fitting these mounts will keep the board from moving around when you’re using the joystick. Next, plug in your power supply and boot up your Raspberry Pi.

You’ll now have a look at some basic programs that will show off the various features and capabilities of the Sense HAT.

Scrolling Text Across the Sense HAT

Let’s write your first program, which will scroll a message across the LED display.

Making the Text Scroll

Open your Python editor, start a new file, and enter the program in Listing 14-1.

❶ from sense_hat import SenseHat

 sense = SenseHat()

❷ sense.show_message("My name is Ada")

LISTING 14-1 Scrolling a message across the LED display

Start by importing the SenseHat module ❶. Then create a line of code ❷ that’s responsible for scrolling the message. Replace the text between the quotation marks with your own, save the file as scroll_text.py, and press F5 to run it. Your message will scroll across the LEDs.

Changing the Color of the Text

You can change the color of the text by altering its red, green, and blue (RGB) values. You can combine any amount of red, green, and blue using values between 0 and 255, where 0 is none and 255 is the maximum amount, to create an overall color.

Replace the last line of code from Listing 14-1 with the following:

sense.show_message("Hi, this is Ada!", text_colour=[255, 0, 0])

This code sets the color to the maximum red value (255) and the minimum green and blue values (0) to change the text to red. Save and run the program code as before.

Play around with other color variations. Change the color values at the end of the line of code, and then run the program to see the colors change. The following table lists color values you could use.

	COLOR

	RGB VALUES

	Pink

	255, 102, 255

	Yellow

	255, 255, 0

	Orange

	255, 128, 0

	Purple

	102, 0, 102

	Light blue

	0, 255, 255

Taking a Temperature Reading

Now you’ll combine the code that scrolls text with the Sense HAT’s temperature sensor to display the temperature of your surroundings. Open a new Python file and enter the code in Listing 14-2.

 from sense_hat import SenseHat

 sense = SenseHat()

❶ temp = sense.get_temperature()

❷ print ("Temperature: %s C" % temp)

❸ sense.show_message("Temp: %s C" % temp)

LISTING 14-2 Scrolling the temperature across the LED display

Again, begin by importing the SenseHat module. Then tell the temperature sensor to take a reading and store this value in a variable named temp ❶. Next, print out the value ❷. On the last line, use the same code as you did in Listing 14-1 to scroll text, but make the message the value from the temp variable ❸.

Now the temperature (in degrees Celsius) will scroll across the LED display. If the number seems high, that’s because the sensor is located near the Raspberry Pi’s CPU, which gets hot. So the reading is probably 5 or 6 degrees Celsius above your environment. If you want a more accurate temperature reading, you can subtract 6 from the reading by replacing line ❶ with temp = sense.get_temperature() - 6.

Making a Real-Time Temperature Display

Our program so far takes a single temperature reading at the moment when you execute the program. This isn’t useful if you want to monitor a change in temperature, so you’ll edit the code to update the temperature readings continuously. You’ll also use the LEDs to make a virtual thermometer, rather than representing the temperature as a number. You’ll do this by assigning the value of the temperature reading to a number of pixels, creating an LED thermometer. Open a new Python file and copy out Listing 14-3, which that shows this program.

 from sense_hat import SenseHat

 sense = SenseHat()

❶ red = (255, 0, 0)

❷ blue = (0, 0, 255)

❸ while True:

 ❹ temp = sense.temp

 ❺ print (temp)

 ❻ pixels = [red if i < temp else blue for i in range(64)]

 ❼ sense.set_pixels(pixels)

LISTING 14-3 Making an updating virtual thermometer

Start the program by importing the SenseHat modules. Then assign two colors for the temperature display. In this example, use red ❶ to represent the current temperature and blue ❷ to represent the rest of the scale.

Next, create a while loop to ensure that the program repeats, updating the temperature ❸. As before, take the temperature reading and store the value in temp ❹ and then print the value ❺.

Calculate how many LEDs should be red and how many should be blue ❻. Each LED represents a degree, so if the temperature were 26°C, you would want the first 26 LEDs to be red and the rest to be blue (the blue LEDs, would mark temperature values 27°C and above). The code indicates that the LEDs should be blue if their number is greater than the temperature and red if they are equal to or lower than the temperature. These color values are then written to the LED display ❼.

As the temperature changes, the looping program will recalculate the combination of red and blue LEDs. You’ll have more red LEDs as it gets hotter and more blue LEDs as it gets colder. Figure 14-3 shows the LED thermometer.

[image: Image]

FIGURE 14-3 The Sense HAT real-time temperature sensor

Save the program as temp.py and run it. Try adjusting the temperature by safely placing your Sense HAT near a heat source or maybe putting the Sense HAT in the fridge for a few minutes!

Building a Compass

The Sense HAT has an onboard magnetometer that you can use as a compass to calculate the Sense HAT’s position in relation to magnetic north. Open a new Python file and try this out now, using the code in Listing 14-4.

 from sense_hat import SenseHat

 sense = SenseHat()

 import time

 while True:

❶ north = sense.get_compass()

❷ print ("North: %s" % north)

❸ time.sleep(1)

LISTING 14-4 Finding the magnetic north

Add the first three lines of code, which are the standard imports and assignments. Then create a while loop to keep the program repeating; this way, as in the thermometer project, the Sense HAT will continuously update its location. Next, take a reading from the magnetometer ❶, and store it in a variable named north. Print out the value ❷ and then add a 1-second pause ❸ in order to allow you to settle in a position before the next reading is taken.

Save and run the program. Move the Sense HAT around and watch the readings change.

Making a Magical Sparkle Screen

This nice little program from the Raspberry Pi Foundation turns the Sense HAT LED display into a wall of sparkling colors, as shown in Figure 14-4. It selects a random LED and assigns it a random color, turns that LED on, and then pauses for one-tenth of a second before selecting and turning on another random LED with a random color. This pattern continuously loops, creating a sparkling show. Stick a transparent object on top, and you’ll have your own mood light.

[image: Image]

FIGURE 14-4 The Sense HAT sparkles.

Open Python and save a new file as sparkles.py. Enter the code from Listing 14-5.

 from sense_hat import SenseHat

❶ from random import randint

❷ from time import sleep

 sense = SenseHat()

❸ while True:

 ❹ x = randint(0, 7)

 ❺ y = randint(0, 7)

 ❻ r = randint(0, 255)

 ❼ g = randint(0, 255)

 ❽ b = randint(0, 255)

 ❾ sense.set_pixel(x, y, r, g, b)

 ❿ sleep(0.01)

LISTING 14-5 Choosing random LEDs and colors

Begin the program by importing the SenseHat module. Then import the randint() function from the random module ❶. The randit() function, short for random integer, selects a random integer (a nondecimal number) to use in the program, which will give you the random color selection. Next, import the sleep() function to add a short delay to the program ❷.

Create a while True loop so the program continuously selects new random LEDs and gives them new random colors, creating the sparkling effect ❸. In this while True loop, build up the details of the random LED. First, the LED’s position is selected using random integers for the x- and y-coordinates on the display. The x position is a random value between 0 and 7 ❹ that’s stored in a variable named x. The y value is also a random value between 0 and 7, and it’s stored in a variable named y ❺. Although you have eight LEDs across and down, in programming we start numbering from zero, so the first LED is in position 0, and the second is in position 1. This means that the eighth LED is number 7.

Second, create variables for red, green, and blue, which the program will then combine at random to create the LED’s random color. Store the RGB values in the variables r, g, and b ❻ ❼ ❽.

Finally, combine all these values and write them to the LEDs with sense.set_pixel() ❾ followed by the x, y, r, g, and b variables. When the program runs, it will choose a random value for each of those five variables. Finish by adding a small pause ❿ before the program loops. Save and run the program, and enjoy the light show!

Creating an Image with the LED Display

Images are made up of pixels, which you can think of as tiny dots of color. If you treat each individual LED on the Sense HAT display as a pixel, you can create an 8 × 8 pixel image, as shown in Figure 14-5.

[image: Image]

FIGURE 14-5 An 8 × 8 pixel drawing

In this program, you’ll use an array to hold the position and color of each LED. An array is a list that uses more than one line. Like a list, an array is used for holding data, which can be numbers, strings, or symbols. For example, shopping = ['eggs', 'chocolate', 'bread'] is a list. You enclose the lists in square brackets, [], and can select any item in the list by referring to its index number. As you know, the item in the first position (eggs) is 0, the next item (chocolate) is 1, then 2, and so on.

Your array will contain 64 entries, one for each LED. This way, you can control each LED individually, turning it on or off and setting the color. For simplicity, the array is divided into eight lines consisting of eight entries each, mimicking the layout of the LED display. Start a new Python file and save it as face.py. Enter the program code in Listing 14-6 to create a smiley face emoji.

 from sense_hat import SenseHat

 sense = SenseHat()

❶ R = [255, 0, 0] # Red

❷ O = [0, 0, 0] # Black or off

❸ B = [0, 0, 255] # Blue

❹ Y = [255, 255, 0] # Yellow

❺ face = [

❻ O, O, O, Y, Y, O, O, O,

 O, Y, Y, Y, Y, Y, Y, O,

 O, Y, B, Y, Y, B, Y, O,

 O, Y, Y, Y, Y, Y, Y, O,

 O, Y, Y, Y, Y, Y, Y, O,

 O, Y, Y, R, R, Y, Y, O,

 O, O, Y, Y, Y, Y, O, O,

 O, O, O, Y, Y, O, O, O

]

❼ sense.set_pixels(face)

LISTING 14-6 Drawing a smiley face emoji

Start the program by importing the SenseHat module. Then assign RGB values to four color variables: R for red ❶, O for black ❷, B for blue ❸, and Y for yellow ❹. To create black as we see it, you have to turn off all the color by setting the RGB to 0, 0, 0 ❷. Of course, you can also adjust the RGB values to create your own customized colors for the face.

Next, create an array called face ❺ to hold the color and position of each LED. Populate the array with the proper color variables ❻. Each of the list’s eight lines contains eight individual entries. Typing B, B, B, B, B, B, B, B, for example, would set the top line of LEDs to blue, because the variable B represents the RGB value for blue.

Note that the final line of the array doesn’t end with a comma. This indicates that it’s the end of the array, and Python should expect no more values. Close the array with a closing square bracket.

Finally, tell Python to write the elements in the array to the LED display ❼. This turns on each LED with the relevant color, building up the image.

Save and run the program. You’ll see a smiley face appear on the Sense HAT display, as shown in Figure 14-6.

[image: Image]

FIGURE 14-6 Smiley face displayed on the Sense HAT

Have a go at creating another face—or maybe an animal, car, plane, or tree. You may find it helpful to draw your image ahead of time by shading in squares in a similar 8 × 8 square grid.

Figure 14-7 shows some examples. Can you guess what they are?

[image: Image]

FIGURE 14-7 Try displaying one of these icons on your Sense HAT.

Creating Images with the Grid Draw Program

Creating images by using an array is fun but can be time-consuming. Using an array can also become frustrating if you’re trying to draw something precisely. Another way to create images is to use 8x8GridDraw, an interactive program designed to make creating images on Sense HAT a lot easier.

Once installed, the 8x8GridDraw program allows you to do the following:

	Create an image on an 8 × 8 grid and write it directly to the LED display.

	Choose from nine colors.

	Export the image as a set of code, which you can add to your Python program.

	Export and save the image as a PNG file.

	Rotate the image on the LED display.

	Add new frames to create a simple animation.

This project will be slightly more involved than those you’ve done so far in this chapter, so I’ll walk you through it step-by-step:

	Install the software: To install the software, open the terminal window and enter the following:

pi@raspberrypi:- $ sudo pip3 install pypng

This installs the software library, which enables you to export and save your image as a small 8 × 8 pixel PNG file.

Next, install the main program by entering this command:

pi@raspberrypi:- $ git clone https://github.com/topshed/RPi_8x8GridDraw

This downloads the required files to a new folder. Once completed, you’ll have a new folder that contains several programs related to 8x8GridDraw.

	Create an image: Let’s have a go at creating an image. First, you need to start the program. Return to the terminal and enter the following:

pi@raspberrypi:- $ cd RPi_8x8GridDraw

This command navigates to the program folder for 8x8Grid-Draw. To run the program, enter this:

pi@raspberrypi:- $ python3 8x8grid-sense.py

This loads the main window, shown in Figure 14-8.

[image: Image]

FIGURE 14-8 The Sense HAT Grid Editor

Clicking a circle on the grid will fill the square surrounding it with color. To change the color, select a new color from the right side. To turn off an LED, double-click the square, and it will return to the original transparent outline. You draw images by filling particular squares with chosen colors. Go ahead and create a simple image.

	Display the image: Once you have created your image (like the tree in Figure 14-9), you can write the image into your Sense HAT. Locate and then click the Play on LEDs button. Your image will show up on the Sense HAT’s LEDs. Check it out!

[image: Image]

FIGURE 14-9 Click the Play on LEDs button to make your drawing appear on the Sense HAT.

	Export the image: Once you have completed your image, you can export it. You could export it as code and then add it to your other programs, but it’s much easier to export it as a PNG, so that’s what you’ll do now.

Click the Export to PNG button on the GUI and save the file in the RPi_8 x 8 GridDraw folder (Figure 14-10). To load the image, it needs to be located in the same folder as your program code, so you may need to copy your image from this folder into the same folder where your Python program code is saved.

[image: Image]

FIGURE 14-10 Exporting your file as a PNG will save it in the RPi_8x8 GridDraw folder.

This will produce a small 8 × 8 PNG file, which you can load onto the Sense HAT with the following line of code written into your Python program:

sense.load_image("name_of_your_file.png")

Now that you can create drawings, you have everything you need to program a game of rock, paper, scissors, lizard, Spock.

BUILDING THE ROCK, PAPER, SCISSORS, LIZARD, SPOCK GAME

NOTE

This variation on the game was originally created by Sam Kass and Karen Bryla (http://www.samkass.com/theories/rpssl.html).

You’re probably already familiar with rock, paper, scissors. You and an opponent play by forming a rock, a piece of paper, or a pair of scissors with your hands; each object beats—and gets beaten by—a different one. The issue with the original game is that it’s too easy to predict the outcome (because only three possible results exist, other than a tie). During season two of the popular TV show The Big Bang Theory, the character Sheldon makes the classic game more exciting and challenging by using an alternative version that adds Spock and lizard to the three original choices.

To play Spock, you use the Vulcan hand sign from the TV series Star Trek. To play a lizard, you make your hand into a sock-puppet-like mouth.

Wondering how they work? Well, Spock smashes scissors and vaporizes the rock. However, he is poisoned by the lizard and disproved by the paper. The lizard poisons Spock and eats the paper, but it is crushed by the rock and decapitated by the scissors. Gruesome! Adding these options creates more possible combinations and makes the overall game much more exciting and less predictable. Figure 14-11 shows all of the hand signs (arrows are pointing at the move that is defeated by the move at a given arrow’s origin).

In our version of the game, RPSLS, the player will select one of the five options by scrolling through the five images with the Sense HAT’s joystick. The player presses the joystick in, like a button, to select an option. Then the Raspberry Pi will randomly select its option. The game will compare both options and choose a winner. The player will then be able to choose to play another game or quit.

[image: Image]

FIGURE 14-11 How to play rock, paper, scissors, lizard, Spock

First you need an 8 × 8 PNG image for each option. You can either make these yourself or download the example ones used in this chapter from https://www.nostarch.com/raspiforkids/ and save them in the folder you’re using for this project. Note that if you create your own images, you’ll need to save them as 0.png, 1.png, 2.png, 3.png, and 4.png. These are the image filenames the program will look for.

Importing Modules and Creating the Variables

Open your Python editor and add the code in Listing 14-7. Save the program as RPSLS.py, and make sure the program file is saved into the same folder as the images are saved in, or the program won’t know where to find them.

❶ from sense_hat import SenseHat

 import random

 import time

❷ global playersChoice

❸ global count

❹ global computer_choice

❺ gameRunning = True

LISTING 14-7 Adding the modules and global variables

Begin the program by importing the SenseHat module ❶ that enables the player to control the joystick, scroll text, and display images on the LED matrix. Then import the random module to enable the Raspberry Pi to select a random number and the time module to add small pauses.

Next, set up three global variables, which you’ll be able to access from anywhere in the program (unlike local variables defined inside a particular function, which can be accessed only within that function).

The first variable ❷ stores the player’s choice of rock, paper, scissors, lizard, or Spock. You use the second variable ❸ to store the amount of time the Raspberry Pi has to make its move. The number will be random, creating the illusion that the Raspberry Pi is taking its time to select its choice. You use the next variable ❹ to store the Raspberry Pi’s choice for later use. Finally, create a variable named gameRunning ❺ to hold the status of the game. The value True means the game is currently running.

Preparing the Game

The code in Listing 14-8 prepares the Sense HAT for the RPSLS game.

 # Prepare Sense Hat

❶ sense = SenseHat()

❷ sense.load_image("0.png")

❸ sense.low_light = True # Save your eyes!

❹ playersChoice = 0

LISTING 14-8 Creating the initial game settings

First, initialize the Sense HAT ❶ and load the first image for the game ❷. Then reduce the brightness of the LEDs ❸. This is useful if the LEDs are too bright; dimmer lights are better for your eyes. You can adjust this later to suit your tastes.

For the start of the game, set playersChoice to 0 ❹. This is the first option in the list that the player can select. Remember that in programming, the first option in a list is in position 0. The PlayersChoice variable will hold a number between 0 and 4 that represents the player’s option: 0 is rock, 1 is Spock, 2 is paper, 3 is lizard, and 4 is scissors. The player will get to select an option when the game begins by scrolling through the options with the joystick.

Setting Up the Player’s Choice

Now, you’ll create the function that will convert the player’s choice from a number into its corresponding rock, paper, scissors, lizard, or Spock image. Enter the code in Listing 14-9.

 # Converts the Number into the choice i.e. lizard, spock, etc.

❶ def number_to_name(number):

 if number == 0:

 return "Rock"

 ❷ elif number == 1:

 return "Spock"

 elif number == 2:

 return "Paper"

 elif number == 3:

 return "Lizard"

 elif number == 4:

 return "Scissors"

LISTING 14-9 Setting up the player’s choice

Create and name the function ❶ that checks which option the player has selected with the joystick (the option is stored as a number, and then that number is converted into the name of the option).

This function uses conditionals ❷ to check each number and then assigns the name of the option for each number that’s selected. The first conditional checks whether the value 0 is selected and returns Rock if it is. If 0 isn’t selected, the program checks for the number 1. If 1 is selected, the program returns Spock, and if it isn’t, the program checks for the number 2. The program continues until it has checked for every possible selection.

Selecting an Object

The next section of the program creates a function that holds the main gameplay mechanics. The player will use the Sense HAT’s joystick to scroll through the five options. The LED display will show each option as the player scrolls through. To select one, the player must click using the joystick. Add the code in Listing 14-10 to your program.

def mainGame():

 ### PLAYER SELECTION ###

 # Loops while running variable is True

 running = True

 ❶ global playersChoice

 global computer_choice

 while running == True:

 ❷ sense.set_rotation(90)

 ❸ for event in sense.stick.get_events():

 ❹ if event.action == "pressed" and playersChoice < 5:

 ❺ if event.direction == "up":

 print (playersChoice)

 ❻ sense.load_image(str(playersChoice) + ".png")

 playersChoice = playersChoice + 1

 ❼ if playersChoice == 5:

 playersChoice = 0

 # Checks for a 'select / Enter' Choice

 if event.action == "pressed":

 ❽ if event.direction == "middle":

 running = False

 ❾ break # Ends loop and moves onto main game

LISTING 14-10 Coding the player’s object selection

Begin this function by importing the global variables you created earlier ❶. Add your while running = True statement, which indicates that the game is in play.

Rotate the image displayed on the LEDs so it’s oriented correctly with respect to the joystick ❷. Now start checking for joystick movements ❸, called events in the Sense HAT stick events.

First the program checks whether the joystick has been pressed (moved) and whether playersChoice is set to a value of less than 5. If the value is less than 5, the player hasn’t reached the end of the images. At the start of the program, you assigned playersChoice a value of 0, which means that the conditional on line ❹ is True when you first run the program, because 0 is less than 5, so the next lines of code run.

Now check whether the joystick has been moved up, using event.direction == 'up' ❺. The line below prints out the name of the option that the player selected. You won’t normally see this when playing the game, as RPSLS is designed to be stand-alone. However, this line is useful for testing that the selection part of the program is working correctly.

The program then loads the first image file, 0.png, which is the image of the rock ❻. The next line increases the playersChoice variable by 1, which loads 1.png the next time the joystick is moved up. Eventually, the playersChoice value will reach the top value of 5, the last option in the list, Spock ❼. At this point, there are no other options to select in the list, so playersChoice returns to 0, loading the rock image again. This loop continues until the player selects an object by pressing the middle button with the joystick ❽; this acts like pressing ENTER and therefore selects the player’s choice of option. This sets the running variable to False, which stops the loop. The break at line ❾ moves the program into the next section.

Notifying the Player of Their Option Choice

Once the player has selected an object, the code in Listing 14-11 will notify them of their option choice.

 # Message for player about their choice

❶ print ("Your Choice is", playersChoice)

 number = playersChoice - 1

❷ playerMessage = number_to_name(number)

 sense.set_rotation(0)

LISTING 14-11 Notifying the player of their choice

The line at ❶ is an optional test to see whether the program has selected the correct image file; remove it once you are happy that the program is running correctly by commenting out that line with a hash mark. The line at ❷ runs your object number through the number_to_name(number) function, which you wrote in Listing 14-9. This converts your number into the name of the option and returns that name so it can be scrolled as text across the LEDs. This name of the option is stored in the playerMessage variable.

Coding the Raspberry Pi’s Selection

Now it’s the Raspberry Pi’s turn to select its object. Copy the code from Listing 14-12 into your program.

 ### RASPBERRY PI SELECTION ###

 # Raspberry Pi selects a random choice from the options

❶ count = random.randrange(5,50)

 sense.set_rotation(90)

 while count > 1:

 ❷ computer_choice = random.randrange(0,5)

 # print (computer_choice)

 time.sleep(0.1)

 ❸ sense.load_image(str(computer_choice) + ".png")

 ❹ count = count - 1

LISTING 14-12 Coding the Raspberry Pi’s object selection

Use the random.randrange() function ❶ to get the program to generate a number between 5 and 50. Then store this number in a variable named count. This count value creates a delay of 0.10 to 5 seconds between the player selecting their option and the Raspberry Pi’s selection. During this delay, the five images are repeatedly displayed and changed, creating the illusion that the Raspberry Pi is scrolling through the options and thinking about which option to choose.

The images are selected on line ❷, where the program picks a random number between 0 and 5. Each number is associated with an image file. On line ❸, make the computer_choice value into a string and add the .png extension so that the name you pass to sense.load_image() matches the name of one of the image files. That image file is loaded.

Use a small pause to allow the player to view the image before the loop runs again and displays another image. Subtract a value of 1 from count ❹ to keep the count decreasing; this ensures that the delay will eventually reach 0 and run out.

If the count value is greater than 1, the loop continues, an image is displayed, and 1 is subtracted from count. This continues until the count reaches 0. Then the current image displayed is selected as the Raspberry Pi’s choice; it has made its selection.

Displaying the Raspberry Pi’s Choice

In the next section of the program, shown in Listing 14-13, you tell the player which option the Raspberry Pi selected by showing it on the Sense HAT.

 # Message for player about the Raspberry Pi's choice

❶ number = computer_choice

❷ sense.set_rotation(0)

❸ sense.show_message("Raspberry Pi = ", text_colour=[0, 150, 255],

 scroll_speed = 0.06)

 sense.set_rotation(90)

❹ sense.load_image(str(computer_choice) + ".png")

❺ time.sleep(1)

 sense.set_rotation(0)

LISTING 14-13 Displaying the Raspberry Pi’s selection

Store the program’s choice in the number variable ❶ so you can use number to represent the Pi’s choice in the rest of the program.

Set the image rotation to the correct angle ❷. Then scroll a message across the LED display, announcing the Raspberry Pi’s choice ❸. The code text_colour=[0, 150, 255], where the three values represent the RGB value, sets the color of the text. You can also adjust the speed of the scroll to any value between 0 and 1.

Next, load the image corresponding to the number that the Raspberry Pi selected ❹. If, for example, the Raspberry Pi selected option number 3, the program would load and display the image of the lizard. Add a short pause ❺ before the program calculates the winner of the game.

Choosing a Winner

The final part of the mainGame() function, shown in Listing 14-14, compares the player’s option with the Raspberry Pi’s option and calculates the winner of that round. This uses a branch of math called modulus.

 ### WINNER CALCULATED ###

❶ result = (int(computer_choice - (playersChoice-1))) % 5

❷ if result == 0:

 ❸ sense.show_message("Player and Pi Tie!", text_colour=

 [0, 0, 255], scroll_speed = 0.08)

❹ elif result >=3:

 ❺ sense.show_message("Player Wins!", text_colour=

 [0, 255, 0], scroll_speed = 0.08)

❻ else:

 ❼ sense.show_message("Raspberry Pi Wins!", text_colour=

 [255, 0, 0], scroll_speed = 0.08)##??

LISTING 14-14 Calculating the winner

First, create a variable called result ❶ to store a particular value, which you’ll use to determine who won. The math behind the calculation is interesting. In general, this line subtracts the value that corresponds to the Pi’s option choice away from the player’s choice value (which already has 1 subtracted from it). For example, if the Pi’s value is 5 and the player’s value is 3, you’d calculate 5 - (3 - 1) to 5 - 2, which equals 3. The modulo of this number by 5 is then found; the modulo is the remainder from the division. In this example, the answer would be 2, because 3 goes into 5 once with a remainder of 2. The number 2 is then used to determine whether the player or the Pi has won the game.

If the result value is equal to 0, both players picked the same option, and the game ends in a tie ❷. Make the message Player and Pi Tie! scroll across the LED display ❸. Again, you can adjust the color and speed of the text scroll.

If the value of result is greater than or equal to 3, your option beats the Raspberry Pi’s option, and you win the game ❹. Make the message Player Wins! scroll across the LED display ❺.

The final possible outcome of the game is that the Raspberry Pi’s choice beats yours ❻. This is the case if anything other than the first two possibilities occurs. If this happens, scroll a message telling the player that the Raspberry Pi wins. You can customize the color and the speed of the message ❼.

This completes all of the code for the mainGame() function that controls the essential gameplay mechanics of rock, paper, scissors, lizard, Spock. To recap: the function enables the player to select an option and then makes the Raspberry Pi select an option (after a delay, to make it seem like the Pi is thinking). It then compares the two options to calculate the winner of the game and scrolls a message updating the player on the outcome.

Starting a New Game

You’re almost done! Listing 14-15 is the initial welcome section of the game. It introduces the game and then runs the mainGame() function (whereas before you were simply defining the mainGame() function). After a round has finished, it also gives the player the option to play again by moving the joystick up or to end the game by moving the joystick down.

START THE GAME

sense.show_message("Welcome to R.P.S.L.S!", text_colour=[155, 100,

30], scroll_speed = 0.08)

sense.show_message("Please use 'Up' to select", text_colour=[155,

255, 255], scroll_speed = 0.05)

sense.load_image("0.png")

LISTING 14-15 Starting the game

Begin by adding the welcome message. You can customize this, but in my experience, I’ve found that simple messages work best, since most players just want the game to begin. Then add a second message that tells the player how to select an option. Again, feel free to adjust the color and scroll speed for each message. If at first you want a slower scroll speed, try setting it to 0.60 instead. Once you are familiar with the game, you’ll want to just get on with it and not wait for slow scrolling text.

Then add sense.load_image("0.png"), the code that loads the first image, and shows it on the LED display. This is your rock image.

These three lines will run only the first time the program is executed, because you don’t need to have the welcome message and instructions show every time you play the game, just the first time it loads. Therefore, keep these lines of code outside the mainGame() function.

Play Again?

End your program with code that checks whether the player wants to play again. Add the code in Listing 14-16.

❶ while gameRunning == True:

 ❷ play_again = 1

 ❸ mainGame()

 sense.show_message("Play Again?", text_colour=[255, 255, 255],

 scroll_speed = 0.08)

❹ while play_again == 1:

 ❺ for event in sense.stick.get_events():

 if event.action == "pressed":

 if event.direction == "up":

 ❻ play_again = 0

 ❼ if event.action == "pressed":

 if event.direction == "down":

 ❽ sense.show_message("Bye Bye", text_colour=

 [255, 255, 255], scroll_speed = 0.08)

 ❾ play_again = 0

 ❿ gameRunning = False

LISTING 14-16 Starting a new game

For this, use a while loop named gameRunning, which you set to True; as long as the variable is set to True, the game will keep running ❶.

Now create another variable to hold a value that indicates whether the player wants to play again ❷. Use a value of 1 to signify the player wants to start a new game. A value of 0 would mean that the player doesn’t want to play again.

The next line of code calls the mainGame() function, which holds the main gameplay elements and starts the game. After the first game is completed, a message scrolls across the LED display asking the player whether they wish to play again ❸. Now, because the play_again variable is set to 1 ❹, the program waits for the player to move the joystick ❺. If the player moves the joystick up, the variable play_again is set to a value of 0 ❻. This breaks the play_again loop ❹ and returns to the main loop, which loads the mainGame() function ❸ and begins the game again.

If the player moves the joystick down ❼, a message appears, informing the player that the game is ending ❽. The play_again variable is reset to 0 ❾ and, most important, the gameRunning variable is set to False ❿. So when the program loops back to the beginning, gameRunning no longer has a value of True, which means the mainGame() function doesn’t load, and the program ends. To play the game again, you’d have to start up the entire program by pressing F5.

This completes the program code for rock, paper, scissors, lizard, Spock. Double-check that your five images are saved into the same folder as the program code, and then give it a test run. A lot of indentation levels need to be exact, so ensure that you double-check them if your program doesn’t run the way you expect it to. Have fun!

WRAPPING UP

Once you have RPSLS working, you can customize your version of the game. Why not try creating your own images for rock, paper, scissors, lizard, Spock? Add sound effects or a scoring system. Adapt the code so that you can play another human being rather than your Raspberry Pi. Also, if you want to see Sheldon in full effect, check out https://www.youtube.com/watch?v=hoV-SNpdyW8.

 AGES 11+

12 Fun Projects

[image: Image]

The Raspberry Pi® is an inexpensive, pocketsized computer that will help you build and code your own hardware projects.

Raspberry Pi Projects for Kids will show you how to harness the power of the Raspberry Pi to create 12 cool projects using simple code and common materials like a webcam, a microphone, and LED lights. Step-by-step instructions and detailed diagrams guide you through each project.

After a brief introduction to the Python programming language, you’ll learn how to:

[image: Image] Create an LED night-light that turns itself on and off

[image: Image] Set up a Raspberry Pi camera to take selfies and videos

[image: Image] Set up a webcam to stream video to your cell phone

[image: Image] Manipulate environments in Minecraft®

[image: Image] Hijack local radio waves to play your own songs and recordings

[image: Image] Configure the Raspberry Pi to send texts to a cell phone

[image: Image] Track your family members’ locations via Wi-Fi and Bluetooth

[image: Image] Create an MP3 player

[image: Image] Set up a camera to take motion-triggered photos of wildlife

[image: Image] Control the electronics in your home with your cell phone

[image: Image] Teach the Raspberry Pi to read aloud posts from your Twitter feed

[image: Image] Play rock, paper, scissors against the Raspberry Pi

Raspberry Pi Projects for Kids will deliver hours of fun and endless inspiration!

ABOUT THE AUTHOR

Dan Aldred is a computer science teacher, freelance writer, and hacker. He has championed the use of the Raspberry Pi as a tool for learning and creativity, and is a Raspberry Pi Certified Educator. Aldred led the winning team of students for the first Astro Pi competition; their code is now orbiting Earth aboard the International Space Station. He currently lives in the United Kingdom.

[image: Image]

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

 Footnote

Chapter 9

1 https://www.ripe.net/about-us/press-centre/understanding-ip-addressing

 OEBPS/Images/06fig08.jpg

OEBPS/Images/06fig06.jpg

OEBPS/Images/06fig07.jpg

OEBPS/Images/06fig01.jpg

OEBPS/Images/06fig04.jpg

OEBPS/Images/06fig05.jpg

OEBPS/Images/06fig02.jpg
Minecs
pos: 502, 48,98

OEBPS/Images/06fig03.jpg
Helcome to my first Minecraft P.ma_c:k

OEBPS/Images/07fig05.jpg
My Radio o x

[CLICK A MESSAGE TO BROADCAST

o |

Bring me food

Les take a selfie

QUIT PROGRAM

OEBPS/Images/07fig04.jpg
@ Audacity
Bl ct Seect View Tooport Tads Gevemte Bect Arabue Hep
New cuen [T /|| &[5 s dodeiaiod]

open awo | M @ ‘
= = Qo¥ KOO n
hone (Cone |2 Stereo) Recor o) Spesker: (Conecant St

Close cuow

Sove Project Cules. 0 20 30 40 50

SevaProrct
Eportas MP3

o [U e
Export2: 06

i > EportAudi. CuleShiftE

Page Seup.. Export Seected Auco

Prin.. Epon Labes

= g | BporMulple.. CuteshiftsL
EportMDI

Save Compressed Copy of Project...

OEBPS/Images/07fig03.jpg
SnapTo | Audio Positon Startand End of Selecton

Nearest || [(0R00m00/0005% | [00R00m00/0005+ [00M00m00/000%>

OEBPS/Images/07fig02.jpg

OEBPS/Images/07fig01.jpg

OEBPS/Images/11fig11.jpg
Oropbox » Appe > Nature Box
L1
B [e

OEBPS/Images/11fig12.jpg

OEBPS/Images/10fig08.jpg
mun 1 i wl
b

OEBPS/Images/10fig07.jpg
falias 1="1s —CF'

Alias definitions.
You may want to put all your additions into a separate file like
~/.bash_aliases, instead of adding them here directly.

See /ust/share/doc/bash-doc/examples in the bash-doc package.

if [-f ~/.bash_aliases]; then
. ~/.bash_aliases
fi

enable programmable completion features (you don't need to enable
this, if it's already enabled in /etc/bash.bashrc and /etc/profile
sources /etc/bash.bashrc) .
if ! shopt -oq posix; then
if [-f /usr/share/bash-completion/bash_completion]; then
. /usr/share/bash-completion/bash_completion
elif [-f /etc/bash_completion]; then
. /etc/bash_completion
fi
£i

#python3 /home/pi/MP3/MP3_Player BT.py

OEBPS/Images/11fig10.jpg
T Upgrade st

Dropbox > Apps > Nature Box am a
[Motted R

[~ - e e

OEBPS/Images/08fig03.jpg
Verify you're a human to start your free trial
ety e

erity Phone Number

OEBPS/Images/05fig02.jpg
Fswebcan
o upgraded, 1 newly installed, © to remove and 1 not upgraded.

Need to get 44.6 kB of archives

After this operation, 105 kB of additional disk space will be used
Get:1 http://mirrordirector.raspbian.org/raspbian stretch/main armhf fswebcam ar]
ahf 20140113-1 [44.0 k8]

Fetched 44.0 kB in ©s (224 kB/s)

Selecting previously unselected package fswebcam,

(Reading database ... 123222 files and directories currently installed.)
Preparing to unpack .../fswebcam_20140113-1 armhf.deb ...

unpacking fswebcan (20140113-1)

Setting up Fswebcam (20140113-1)

Processing triggers for man-db (2.7.6.1-2)

piéraspberrypi:~ $ fswebcam image.jpg

--- Opening /dev/video. ..

Trying source module vai2

/dev/videod opened.

No input was specified, using the first.

Adjusting resolution from 384x288 to 352x288.

--- Capturing frame.

captured frame in 6.60 seconds

--- Processing captured image.

Writing JPEG image to 'image.jpg’

pidraspberrypi:~ s |

OEBPS/Images/05fig01.jpg

OEBPS/Images/08fig02.jpg
©]

Get started with a free Twilio account
No credit card required

Crestoastrorg, unque passmd (not.
the o you U for your bank account

Svong passwords arehard o guss, 80
210 uing “twio”,your parsonal
fcrmation ke emo,repaaing.
Characters, o sequentil rmbers.

OEBPS/Images/05fig04.jpg
set to 'yes' to enable the motion daemon
[start_motion_daemon=yes

Get Help

OEBPS/Images/08fig01.jpg
Build 1:1 elationships at scale.
Build them with Twi

zendesk

OEBPS/Images/05fig03.jpg

OEBPS/Images/08fig07.jpg
VX1

Wewc) Eow)
Bl S
) Sew)

OEBPS/Images/08fig06.jpg
Dashboa

OEBPS/Images/08fig05.jpg
wecr

OEBPS/Images/08fig04.jpg
My st T,

& ownbourd

5

e -

My first Twilio project Dashboard

Proectinte

OEBPS/Images/10fig02.jpg

OEBPS/Images/10fig01.jpg

OEBPS/Images/08fig08.jpg
U3 R WO 1725

€« @ A

s
v

OEBPS/Images/05fig06.jpg

OEBPS/Images/10fig06.jpg
——— Raspberry P1 Software Configuration 100l (raspi-config) ———

81 Console Text console, requiring user to login

B3 Desktop Desktop GUI, requiring user to login
B4 Desktop Autologin Desktop GUI, automatically logged in as 'pi' user

<ok> <cancel>

OEBPS/Images/05fig05.jpg

OEBPS/Images/10fig05.jpg

OEBPS/Images/10fig04.jpg

OEBPS/Images/10fig03.jpg

OEBPS/Images/03fig06.jpg

OEBPS/Images/03fig05.jpg
ython 370 Shel
Fie £t Shel Debug Optors Window Help
[e N]
Open. e edits" or "li
OpenModule.. AkeM
RecentFles
ModuleBrowser AteC
Path Browser

Sove Cutes
Save s Cueshites
Stve Copy Az AtoShiteS.

Prnt Window _ Cte?

Close ey
et e

OEBPS/Images/03fig04.jpg

OEBPS/Images/03fig03.jpg

OEBPS/Images/01fig31.jpg
VNG Viewer has n reced f connecting o his VN Srver 50 s
Identycarnt e cheched.

WCsener teiocs 9

Coaomase
Sqe.

e o0 51 o 10 conect You T wamed b 4 3990

aecty

Lson -

OEBPS/Images/01fig30.jpg
@cvene
Fie vien v

A
Thre e computers nyut s sk st e
[S ———

T T ——

Lson -

OEBPS/Images/01fig33.jpg

OEBPS/Images/01fig32.jpg
& Remote Desktop Connection i

*«i Remote Desktop
) Connection

Compuer. [xample: computerfabrikam com B

Usemame: None specified

‘The computer name fiekd s blank. Enter a full remote computer
name.

Help

OEBPS/Images/03fig07.jpg

OEBPS/Images/09fig01.jpg

OEBPS/Images/01fig35.jpg
f

HHEEiE

HHHIHHHY
wesyerressreqy

A THL LR

OEBPS/Images/09fig02.jpg

OEBPS/Images/01fig34.jpg
"R Login

LT Sesson
e prtocl:
s
Hostrome: ot rumber:
I z
ser name:
e donced... |v
Tools - 3

OEBPS/Images/09fig03.jpg

OEBPS/Images/09fig04.jpg

OEBPS/Images/09fig05.jpg

OEBPS/Images/03fig02.jpg

OEBPS/Images/03fig01.jpg
sarh/

OEBPS/Images/09fig06.jpg
[pibraspberrypi:~ $ hostname
192.168.1.171
piraspberrypi:~ s ||

I

OEBPS/Images/09fig07.jpg
[pibraspberrypi:
no crontab for

select an edito

1. /bin/ed
/bin/nano

choose 1-3 [2]

3. Jusr/bin/vin. tiny

S crontab -e

using an empty one

To change later

easiost

select-ed

tor

OEBPS/Images/09fig08.jpg
————— Raspberry P1 Software Configuration Tool (raspi-config)

1 change User Password Change password for the current u
2 Network Options Configure network settings
B For st

4 Localisation Options Set up language and regional sett
5 Interfacing Options Configure connections to peripher
6 overclock Configure overclocking for your P
7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest ve
9 About raspi-config Information about this configurat

<select> <Finish>

OEBPS/Images/12fig06.jpg
Eie Edt Shel Debug Qplions Window Help

Python 3.5.3 (default, Jan 19 2017, 14
[6CC 6.3.0 20170124] on linux

Type "copyright”, "Credits” or "license()" for more information.
========= RESTART: /home/pi/1_Book_Codes/Chapter Kettle/4 bluedot.py ==s======
Server started B8:27:EB:9E:26176

Waiting for connection

Client connected CO:EE:FB:F:

)

:07

OEBPS/Images/12fig05.jpg
DO

raspberyp!
SSasAIZIFAC

An app wants o tum Bhetooth ON for this

evce

OEBPS/Images/12fig07.jpg
3® V.4 70%0 1946 C] $® ¥4 7050

OEBPS/Images/12fig02.jpg

OEBPS/Images/12fig01.jpg
,,—\
4

ENERGEN ES
wmormee

OEBPS/Images/12fig04.jpg
2030 000K M w4 17

<« Q i

Blue Dot
Martin O'Hanlon

aak 10K+ a
Ioomiews Dowriosss 630

Biue Dot alows you'to contol your Raspberry P projects

READMORE

Rate this app
Tellothers what you think

OEBPS/Images/12fig03.jpg
Ve

Blue Dot

OEBPS/Images/cover.xhtml

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Resource Centers

		Expert Playlists

		Jupyter Notebooks

		queue iconExplore		All Topics

		Most Popular Titles

		Recommendations

		Early Release

		Playlists

		Attend		Live Training

		Conferences

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

 		

 [image: 404 error]
 Eeep, we couldn’t find that page. Search, or go to the home page.

 You have 5 days left in your trial, Bakara24. Subscribe today. See pricing options.

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2019 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/14fig01.jpg

OEBPS/Images/bull.jpg

OEBPS/Images/14fig02.jpg

OEBPS/Images/01fig11.jpg
Raspberry Pi Configuration vax

System | Interfaces | Performance | Localisation
Password: Change Password...
Hostname: raspbemypi

Auto Login: SRR |
Network at Boot:
‘Confirm new password:
'Splash Screen:
Composite Video Cancel

oK

oK

OEBPS/Images/01fig10.jpg
Enter WiFi Password

Enter the password for the WiFi network "Martin-Router-King'.

P— —
4 Hide characters

Press ‘Next to connect, or ‘Skip'to continue without connecting.

[Csep |[Chex

OEBPS/Images/14fig09.jpg

OEBPS/Images/01fig13.jpg

OEBPS/Images/01fig12.jpg
® @ B Blvoesooenyoi -]

43 BlueJ Java IDE

> @) Geany

> G Greenfoot Java IDE
> @m

> & NodeeD

> g Python 3 (IDLE)

> 8 Scratch
> & scratch2
, R Sense HAT Emulator
) Sonic Pi
>
T Thonny Python IDE

14

OEBPS/Images/14fig07.jpg

OEBPS/Images/01fig15.jpg
[—
[——

OEBPS/Images/14fig08.jpg

OEBPS/Images/01fig14.jpg
o
01:58

OEBPS/Images/14fig05.jpg

OEBPS/Images/01fig17.jpg
Interfaces

OEnabled @ Disabled
© Enabled O Disabled
© Enabled O Disabled
© Enabled O Disabled
O Enabled @ Disabled
O Enabled @ Disabled
O Enabled @ Disabled
O Enabled @ Disabled

OEBPS/Images/14fig06.jpg
lr°‘:

OEBPS/Images/01fig16.jpg
Change Password...
raspbenrypi
@© ToDesktop O ToCLI
4 As current user
O Wait for network
@© Enabled O Disabled
Set Resolution...
@ Enabled O Disabled
OEnabled @ Disabled

cancel |[_ok_|

OEBPS/Images/14fig03.jpg

OEBPS/Images/01fig19.jpg
Raspberry Pi Configuration il

Localisation

Set WiFi Country...

OEBPS/Images/14fig04.jpg

OEBPS/Images/01fig18.jpg
Not available -

128

EDJ

OEBPS/Images/Speaker_1.jpg

OEBPS/Images/f0168-02.jpg

OEBPS/Images/14fig10.jpg
Fie Edt View Bookmarks Go Too's Help

LR R 4 [8) | Mome/puRP1_BxBGNEDraw 'S
B = -
O M- 0 M

<z

e = - - g

#Public phatpng. ng sensepy unicom py unmunpm

o -

&

= raspizpng butionspy ledpy

oho i

14 items (2 hidden) Free space 8.4 GiB (Total: 145 GiB)

OEBPS/Images/f0168-01.jpg
o

N

OEBPS/Images/14fig11.jpg

OEBPS/Images/01fig20.jpg
(s |t [putomanc | locsteten|
Passward Change Password
Hosmame. e

Boot © ToDesktop O ToCU

Ao Logi: @ Ascumentuser
Nkt Boox O watfornetwork
‘Spiash Screen @Enabled O Disabled
Resolution | SetResoiuion.
Underscan. @Enabled O Disabled.
Pl Douting. Obrabied ® Dissbed

[omes) [Cox]

OEBPS/Images/01fig22.jpg
< o)
& Winoows €
< space®)

o teme Ouemosted e

T TR
+ owon oS et
Bame OB TeaDocmert
Bty 00320181709 T Docmert
9 ensioe T Docment
0 wcostance et omare

0 comin wove i e

O soxet D asme

O sngmer noess s

0 snent oS asrie

O st oSy asrie

0 wenanopiensan oS o

0 nenanopesoousan weees orae

0 sendniomesoam e w5 orae

0 wenarspe0am o5 orae

0 enarb s noiesy ot

R -, Do o

0 enams o s o

0 senarpiomas weees o
e 953 Oscimegerie
5 et W89 Ducimogeie
0 s xan oS OAThe

0 mamen oS AR

0 fm oo oS OATFe

0 oo oS OaTie

0 ucancesosseon v 728 sORDCOUFE
[Ep—— R ——

"
2
I

e
e

e

asoxs

wssxa

s

e
e
e
e
e
e
P
e
asioxe
oy
o
o
e
e
m
s

OEBPS/Images/01fig21.jpg
5 0 [ex
Tum Off Wi-Fi

BTHUb6-8COM
BTWifi-with-FON

EE-wny94n

OEBPS/Images/01fig24.jpg
—————1 Raspberry P3 Sof tware Configuration Tool (raspi-config)

e e e e igure network settings

2
3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional sett
5 Interfacing Options Configure connections to peripher
6 Overclock Configure overclocking for your P
7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest ve
9 About raspi-config Information about this configurat

<Select> <Finish>

OEBPS/Images/01fig23.jpg
i@raspberrypi:~ 5

OEBPS/Images/01fig26.jpg
piEraspberrypi:~ $ hostname

192.168.1.10
pibraspberrypi:~ § ||

I

OEBPS/Images/01fig25.jpg
(cancel |[_ox_]

OEBPS/Images/01fig28.jpg
[Leance] [ox]

OEBPS/Images/01fig27.jpg
Basic ptionsforyour PUTTY session

‘Speckythe destaton you want 0 comect o
Host Name for P addess) Pot

2

Connecton ype:
ORan OTenet ORogn @SSH O Sess
Load, save ordelete 2 tored sesson
‘Saved Sessons

Defo Seios

WinSCP temporary session

OEBPS/Images/01fig29.jpg
VNC® Connect consists of VNC® Viewer and VNC® Server

Douiosa YNC® Viewst 1o the dedkce jou Sure youve nst3ied VHCB Sever onthe

= & 0 8 o h @ & o @

OEBPS/Images/02fig01.jpg
File Edit View Run Tools Help

+uts OB EEEO

<untitied>X

Shell

Python 3.5.3 (/usr/bin/python3)
>>>

OEBPS/Images/13fig01.jpg

OEBPS/Images/13fig03.jpg

OEBPS/Images/13fig02.jpg

OEBPS/Images/13fig05.jpg
COLLECTOR //
BASE
g

OEBPS/Images/13fig04.jpg

OEBPS/Images/13fig07.jpg
Tap into
what's happening.

Puttan and anaiyze Twests, cptiire ada, and crese ursaue customer xparences

OEBPS/Images/13fig06.jpg

OEBPS/Images/13fig09.jpg
e

Interestedin o deveiopessccount?

D T——

OEBPS/Images/02fig02.jpg

OEBPS/Images/02fig03.jpg
SyntaxError x

OEBPS/Images/13fig08.jpg
Gt stated it Tt APl and tos.

Apply for access.

A v Goviopar s soph b dovelopr sccoust 10 accaes Tter APl 0 appeoved, you can b 1 s . tarchd AP
rc cu e prran APl

OEBPS/Images/11fig01.jpg

OEBPS/Images/11fig02.jpg

OEBPS/Images/11fig03.jpg
PIR

vee

out

5V

~——GPIO4 (pin7)

~&—— GROUND (GND)

OEBPS/Images/11fig04.jpg

OEBPS/Images/11fig05.jpg

OEBPS/Images/11fig06.jpg
08X Platform

Develop apps for 500
million Dropbox users

OEBPS/Images/11fig07.jpg
Dropbox

Myops

OEBPS/Images/pub.jpg
©

no starch
press

OEBPS/Images/13fig10.jpg
Verify phone number x

This phone number will also be associated to your Twitter account.
We willtext a verification code to this number. Standard SMS fees may apply.

Country/region (required)

Select a country/region v

Phone number (required)

+

OEBPS/Images/13fig12.jpg
piing. you agree toreceive emalls from our team requesting feedback on your

eveloper account
i rganizason, you
is most ety to own
nt specal
roies ater

Your phonie number i now verified

Your phone umber 8 o aiocated wh ot

OEBPS/Images/13fig11.jpg
Verify phone number

We sent a code to + . Enter it below to verify your number. Resend code

Verification code (required)

OEBPS/Images/11fig08.jpg
32 Dropbox

2 Crseepectcemouresd

OEBPS/Images/13fig14.jpg
StaTus i pRoGRLSS

e i

Account doate

EpTro—

Toms o erics

Tell us about your project

Wit core e you vt
—

© A< esecn bt s e Tuees
© Adwtnng © St ot Lewmog o
Ausnce sy
5 Top s
[
) tuns s e srecren
) Conmomerandener
P 5 oome
. Trgrgnmentsnd cutomer

L ———
st doscrbewhotyou ke 1o bl T A% B e g
ot s 1 ol Qtsn. 1 i G 1
e ek, e gty e . T e ol o o

2100 et e Tenets T s o e cotrt 36t
ey ol e

3 oes o o e e Tove e, s i oo 3

e e s b ey 1 i oyt e’y 0
Sty s et oo T, i P 00wttt Tt 1
Tt o b iy 10 s ok e o1 s W
il Tt 0 T conte b e ol bt
e ————"

OEBPS/Images/13fig13.jpg
Wy b qeniens?

OEBPS/Images/11fig09.jpg

OEBPS/Images/13fig16.jpg
Welcome!

bttt

Lot o e et

Getstaned

Cresten app

Strt g the endponts

OEBPS/Images/13fig15.jpg
1. Tt ot oo, Tt 0, Dees Mesaes, Oect Message 05, Tt n s ot i, Uss 105, Porccpe
esaacs Pk rosdest s a1y e 542 4. 45 el s s 1 o 1 1 1 AP by) ot
mears unorze b Tt 200 ay opes 400 e ok erot

2 Devsloper She Tt s v sm e 551 e i 1

3 Precope Broadcest A s gurried e e Sk v o - Genc i by ey o T

2 oadst D - Ao eeutcsionrrsoes gerecied o asch Paicope Bosccst.

5 Tweet A s o et o s b st o ot Srvcos

© Tweet10- A iacue ourscaton nunrseced for o Twset.

7 Diect Mg A s 51 s s e . 1y ot 0 h Tt S o o s 1 11 ot
spectic o .

3 iect Memsage 0 - A i cortfcan s gt s Dot s

5 Tr AP T Tt Atossion Proranrig ket FAPT S Devaprmer Ki (S0K") andir e wted dosumaiaion.
i o s o e i T 3 it 5 £k R T a1 D

10 T Marke - T o i, o oo st T s vt yo. nckide 10 b evlser S

1. e - Yot websten, copRctonn. nrs 003 o oo ot Gapy & et s Tl Carent.

12 UserID - Uniue ariction umbars gensed for sch User st G0 ok coria ey psarl el rmation i o T

5 By cicking on the box.You ndicatetht you have rax nd 30 0 thisDeveloper Agraemant and the Twttr Developer Polcy.
‘adtonally as s relacesto your dispay of any o the Content the Dsplay Requiremens:a i relaes o your use and dislay of
the Toiter Marks,the Titer B Asets and Gurdenes: nd a5 1 et king sutomated actons on your account. the
Automation Fukes. These documents ae avedab n hardcopy upon request t Tt

5 Subscibe to ouremel st for productupdates devloper news, and marketng commnications.

OEBPS/Images/13fig18.jpg
Apps / Create an app

EL——
Wt amapp?
g ogior s 37

Whichproducts e an AP et

App detas

Appoame 000009 0

e —

nabe S i wih Tottr
Camac s &

OEBPS/Images/13fig17.jpg

OEBPS/Images/13fig19.jpg
Ao permmen

OEBPS/Images/04fig01.jpg

OEBPS/Images/04fig02.jpg

OEBPS/Images/04fig03.jpg

OEBPS/Images/04fig04.jpg

OEBPS/Images/01fig02.jpg
"Tmmmxxmm:mmmmm:

1000/ c/0©/0/00/6/0/6/0 0 00000
10/0/0/0/0/0/0/0/0/0/0/0/000 00000 '

OEBPS/Images/04fig05.jpg

OEBPS/Images/01fig01.jpg
CPU, GPU, MEMORY GPIO PINS

BLUETOOTH 5.0
wi-Fl

DS DISPLAY

PORT

MICRO SD
(ONBACK)

USB 2.0 PORTS

MICRO HDMI PORTS |

USB C POWER CSI CAMERA PORT
AUDIO AND VIDEO

OEBPS/Images/04fig06.jpg

OEBPS/Images/01fig04.jpg

OEBPS/Images/01fig03.jpg
Products oy Dowsss Commnty Nep Foums Eaeaten Procts

Raspion s 7 Founsatns ol e comatng sy Youcn st £
WV D085 o Goriod e g o andolow ok QAN e

Ratian comes r e i gy o st fr et oA
3o 13 Py, S S, v e

Toa R Dt magecrtanad o 29 e v 4GB .
Hhchmaas it s chves e fsres whch ek sppoedy ol
72513 s ltoms o ko donriod e o be ot
ol ot rzpong conecty pease y o) 2 Vsow) o T
Lkt scrt) B e of charg e b et 10125

oty
P — Rasin uster it eskio
rcommended satnae e e et
Q=" I =
el T BT
R e

Raspbin Buster Lt

OEBPS/Images/04fig07.jpg

OEBPS/Images/01fig06.jpg

OEBPS/Images/04fig08.jpg
Python 3.5.3 (default, Jan 19 2017, 14

[6CC 6.3.0 20176124] on linux

Type "copyright”, "Credits" or "license()" for more information.

5>

====== RESTART: /home/pi/1_Book_Codes/Chapter_3_PiCamera/time_lapse.py ======
7home/pi/my_tinelapse/ingool. jpg
7home/pi/my_tinelapse/ing0o2. jpg
7home/pi/my_timelapse/ing0e3. jpg
7home/pi/my_tinelapse/ingood. jpg
7home/pi/my_tinelapse/ing0os. jpg
7home/pi/my_timelapse/ingoos. jpg
7home/pi/my_tinelapse/ingoo7 . jpg
7home/pi/my_tinelapse/ingoos. jpg
7home/pi/my_tinelapse/ing0os. jpg

7home/pi/my_tinelapse/ing010. jpg
7home/pi/my_tinelapse/ing011.Jpg
7home/pi/my_tinelapse/ing012.3pg

OEBPS/Images/01fig05.jpg
Burn. Better.

Bur images to SD cards & USB drives, safely and easily.

‘oxperimental CLI
See whats new!

v XD

FETCHER @resnio

OEBPS/Images/01fig08.jpg
Set Country

Enter the details of your location. This is used to set the language,
time zone, keyboard and other intemational settings.

Country: United States -

Language:
Timezone:

Use English language Use US keyboard
Press 'Next when you have made your selection.
Back Next

OEBPS/Images/01fig07.jpg
Welcome to the Raspberry Pi Desktop!

Before you start using it there are a few things to set up.

Press Next to get started.

(L Cancel |

Next

OEBPS/Images/01fig09.jpg
Raspbeny Pi Configuration v

System | Interfaces

Password:

Hostname:
Boot
[l Enternew password: |
Network at Boot:

Splash Screen:

Composite Video:

OEBPS/Images/13fig21.jpg
Elo E Shey Debg Qpions Window Hel

Python 3.5.3 (default, Jan 19 2017, 14:11:64) 121
[6¢C 6.3.0'20170122] on Linux

Type “copyright”, “credits” or "license()" for more information.

RESTART: /home/pi/1 Book Codes/Social Media Mirror/send a_twest.py
BT @urGhrinary: Tunes playlist for Day 10 Afebausicchallenge " hiips:/7t co/muix2
52!

RT @orinaryRocks1: Here are the questions for #PrisaryRocks on Nonday from 8pm
Join in by searching #PrimaryRocks
MissGleesonch gepilep

Never really done any team sports-y things before but tonight I'm playing in my
First ever contract bridge competit.. https://t.co/XKAIGULrPG

Tueet sent from my Pi

L6 Coto

OEBPS/Images/13fig20.jpg
pr———

OEBPS/Images/13fig23.jpg

OEBPS/Images/9781593279479.jpg
RASPBERRY Pr
PROJECTS
FOR KIDS

R MOD MINECRA
AND MORE

OEBPS/Images/13fig22.jpg
TweeterID

Twitter ID and username converter

Type n any Twitter 1D or @handle below. and
twillbe converted into the respective D or
usermame on the right: @dan aldred >

Recent 1D Conversions:

@Dan_ Aldred

