

Contents in Detail

	Cover Page

	Title Page

	Copyright Page

	Dedication

	About the Author

	About the Technical Reviewer

	Brief Contents

	Contents in Detail

	Acknowledgments

	Everyone Makes Games

	What You’ll Need

	A Brief History of Games

	Who Makes Video Games?

	Why Make a Video Game?

	What Should My Game Be About?

	About PuzzleScript

	1 PuzzleScript Basics

	Getting Started with PuzzleScript

	Parts of PuzzleScript

	What You Learned

	2 Herding Cats: Your First PuzzleScript Game

	Opening a Blank Project

	Creating Objects

	Using Your Objects

	Defining Properties of Objects

	Winning the Game

	Adding Sounds

	What You Learned

	3 Herding Cats: Using Level Design to Tell Stories

	Using the Level Editor

	Levels Tell a Story

	Levels Teach the Player the Rules

	Levels Challenge Players to Use What They Know

	Learning from Mistakes

	Design Your Own Levels!

	Sharing Your Game

	Bonus Challenges

	What You Learned

	4 Robot Heist: Creating Rules and Obstacles

	How Robot Heist Works

	Brainstorming Objects and Interactions

	Getting Started

	Player Swapping

	Building a Test Level

	Adding Pushing Rules

	Creating Win Conditions

	Making Gates That Open and Close

	Adding the Security Lasers

	Bonus Challenges

	What You Learned

	5 Robot Heist: Creating Consequences for Losing

	Getting Caught

	Adding Robot Guards

	Realtime Mode

	Extra Challenges: Make It Look Good

	What You Learned

	6 Robot Heist: Refining Your Level Design

	Brainstorming the Story

	Exploring the Palette

	Creating Your First Level

	Refining Your First Level

	Designing Levels for Both Robots

	Putting It All Together

	What You Learned

	7 Where to Go from Here

	Asking Questions

	More PuzzleScript Games to Try

	Game Challenges

	Keep Exploring and Creating!

	Index

	i

	ii

	iii

	iv

	v

	vi

	vii

	viii

	ix

	x

	xi

	xii

	xiii

	xiv

	xv

	xvi

	xvii

	xviii

	xix

	xx

	xxi

	xxii

	xxiii

	xxiv

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	32

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	46

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	57

	58

	59

	60

	61

	62

	63

	64

	65

	66

	67

	68

	69

	70

	71

	72

	73

	74

	75

	76

	77

	78

	79

	80

	81

	82

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	102

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	115

	116

	117

	118

	119

	120

	121

	122

	123

	124

	125

	126

	127

	128

	129

	130

	131

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	160

 MAKE YOUR OWN PUZZLESCRIPT GAMES!

[image: image]

ANNA ANTHROPY

[image: image]

San Francisco

 MAKE YOUR OWN PUZZLESCRIPT GAMES! Copyright © 2020 by Anna Anthropy

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-944-2
ISBN-13: 978-1-59327-944-8

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Josh Ellingson
Illustrator: Garry Booth
Developmental Editor: Annie Choi
Technical Reviewer: Stephen Lavelle
Copyeditor: Anne Marie Walker
Compositor: Happenstance Type-O-Rama
Proofreader: Emelie Burnette

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Anthropy, Anna, author.
Title: Make your own PuzzleScript games! / Anna Anthropy.
Description: 1st ed. | San Francisco : No Starch Press, 2019. | Includes

 index. | Summary: “A beginner-friendly guide to creating interactive

 games using PuzzleScript. Covers the entire game development process

 including problem solving, level design, and how to design games to be

 both challenging and fun”-- Provided by publisher.

Identifiers: LCCN 2019022940 (print) | LCCN 2019022941 (ebook) | ISBN

 9781593279448 (paperback) | ISBN 1593279442 (paperback) | ISBN

 9781593279455 (ebook)

Subjects: LCSH: Computer games--Programming--Juvenile literature. |

 Computer games--Design--Juvenile literature. | PuzzleScript (Computer

 program language)--Juvenile literature.

Classification: LCC QA76.76.C672 A5844 2019 (print) | LCC QA76.76.C672

 (ebook) | DDC 794.8/1525--dc23

LC record available at https://lccn.loc.gov/2019022940

LC ebook record available at https://lccn.loc.gov/2019022941

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

 For the new generation, and for the generation who grew up without having the tools: Here they are.

 About the Author

ANNA ANTHROPY is a game designer, author, and educator. She lives in Chicago with her little black cat, Encyclopedia Frown, where she teaches game design as DePaul University’s Game Designer in Residence.

 About the Technical Reviewer

STEPHEN LAVELLE lives in Berlin and makes games and tools for making games. He’s responsible for Puzzlescript, Bfxr, and Stephen’s Sausage Roll, amongst other things.

 Brief Contents

Acknowledgments

Everyone Makes Games

1 PuzzleScript Basics

2 Herding Cats: Your First PuzzleScript Game

3 Herding Cats: Using Level Design to Tell Stories

4 Robot Heist: Creating Rules and Obstacles

5 Robot Heist: Creating Consequences for Losing

6 Robot Heist: Refining Your Level Design

7 Where to Go from Here

Index

 Contents in Detail

Acknowledgments

Everyone Makes Games

What You’ll Need

A Brief History of Games

Who Makes Video Games?

Why Make a Video Game?

What Should My Game Be About?

About PuzzleScript

Do I Need to Know How to Program?

How Much Does It Cost?

Do I Have to Make Puzzle Games?

Alternative Tools

1 PuzzleScript Basics

Getting Started with PuzzleScript

Parts of PuzzleScript

Adding Basic Information

Creating Objects

Defining Objects in the Legend

Adding Sounds

Setting Collision Layers

Writing Rules

Setting Win Conditions

Making Levels

What You Learned

2 Herding Cats: Your First PuzzleScript Game

Opening a Blank Project

Creating Objects

Drawing the Background

Drawing Walls

Adding the Background and Wall to the Legend

Creating the Collision Layers

Creating a Sample Level

Drawing the Player

Drawing Cats

Using Your Objects

Adding More Collision Layers

Creating a Test Level

Creating Rules for Cats

Making Cats Follow the Player

Defining Properties of Objects

Allowing Cats to Wake Up Other Cats

Keeping Cats Together

Winning the Game

Adding Sounds

What You Learned

3 Herding Cats: Using Level Design to Tell Stories

Using the Level Editor

Playing a Level

Editing a Level

Enlarging a Level

Saving and Printing Your Level

Adding Your New Level to Your Game

Testing Your Levels

Levels Tell a Story

Levels Teach the Player the Rules

Troubleshooting

Running Rules at the Start of a Level

Levels Challenge Players to Use What They Know

Learning from Mistakes

Design Your Own Levels!

Sharing Your Game

Bonus Challenges

Levels with Different Shapes

Four Types of Cats

What You Learned

4 Robot Heist: Creating Rules and Obstacles

How Robot Heist Works

Brainstorming Objects and Interactions

Getting Started

Creating Objects

Creating the Legend

Player Swapping

Updating the Legend

Updating the Collision Layers

Writing Rules to Switch Characters

Building a Test Level

Adding Pushing Rules

Making Groups of Pushable Objects

Allowing Characters to Push Multiple Objects

Creating Win Conditions

Adding Exit to a Collision Layer

Creating the Buddy Group for the Win Condition

Making Gates That Open and Close

Creating the Gate Objects

Adding the Gates to the Legend and the Collision Layers

Writing Rules for Gates

Testing the Gates

Adding the Security Lasers

Creating the Laser Objects

Adding Lasers to the Legend

Adding Lasers to the Collision Layers

Writing Laser Rules

Testing the Lasers

Fixing the Laser Bug

Bonus Challenges

What You Learned

5 Robot Heist: Creating Consequences for Losing

Getting Caught

Adding Sound Effects

Adding Caught Robots to the Collision Layers

Writing the Rules for Getting Caught

Updating the Win Conditions

Adding Robot Guards

Creating Guard Objects

Adding Guards to the Legend and the Collision Layers

Writing Rules to Move Guards Forward

Writing Rules for Turning Right

Catching the Intruders

Testing the Guards

Realtime Mode

Making Objects Move in Realtime

Checking for a Stationary Player

Extra Challenges: Make It Look Good

What You Learned

6 Robot Heist: Refining Your Level Design

Brainstorming the Story

Exploring the Palette

Creating Your First Level

Introducing New Objects

Adding a Second Concept

Creating Bumpy Floors

Refining Your First Level

Giving Structure to a Level

Creating Sections Within a Level

Designing Levels for Both Robots

Basic Teamwork

Using a Crate

Splitting Up the Robots

Putting It All Together

What You Learned

7 Where to Go from Here

Asking Questions

More PuzzleScript Games to Try

Cake Monsters

Flying Kick

Cute Train

Game Challenges

Make an Animated GIF of Your Game

Post Your Game on itch.io

Make a Two-Player Game

Tell a Story with No Words

Collaborate with Friends

Make Games with Bitsy

Keep Exploring and Creating!

Index

 Acknowledgments

Thanks to Hax for making these books happen and to Caitlin for all she had to put up with. And to my perfect nebling Camilla Grace, for giving me a material reason to want these books in the world.

 [image: Image]

Everyone Makes Games

Video games can be playful, weird, exciting, curious, magical, and even downright scary. We enjoy playing games because they act like windows into other worlds, worlds that move and change as we play with them, worlds whose rules are different than our own. (Sometimes these rules seem to make more sense than ours.) Games can be places we visit for a short time or places we get lost in for long stretches at a time. Through games, we can try on other personas and explore different perspectives.

Whatever games might mean to you, you should know that you can make your own games. And it’s a lot easier than might you think! The Make Your Own Video Games series shows you how to make fun, interactive games from scratch using a few tools.

What You’ll Need

To create the games in this book in this series, you’ll need the following:

	Access to a computer

	An internet connection

That’s it! In this book, we’ll work with a tool called PuzzleScript, which is designed for making puzzle games. We’ll create little objects and write rules that explain how they interact with each other.

Before you learn how to make games with PuzzleScript, let’s first explore some history behind the games you enjoy today.

A Brief History of Games

Games have been around forever, or at least since the start of civilization. In fact, our oldest ancestors made their own games from sheep’s bones (the very first dice!). They used seeds and some holes in the dirt to make the game we now call Mancala. Tic-tac-toe was first played more than 3,000 years ago in Egypt!

Games existed long before other activities, such as writing, painting, and 3D movies. It seems like people were born to play. Whenever a group of people agrees to play by a certain set of rules, a new game is born. As these games pass on to new players, the new group puts its own unique spin on it. For example, a tag player might wonder, “Wouldn’t tag be more exciting if you could rescue people who’ve been tagged?” And just like that, a new rule is born: games grow and change over time, like weird plants.

Games that are designed by a group of people instead of just one person are called folk games. No one person invented tag. More likely, tag had a million different authors who each added their own little touches. This is why so many different versions of tag, like flashlight tag, freeze tag, and kick the can, exist today. All it took was someone to come up with another, more fun, way to play the game, and the rest was history.

The mobile games on your phones are designer games, which were made by a single person or a team of people. They aren’t folk games, but they’re still the result of people playing games and trying to come up with different ways to improve a game or create new games using their imagination.

While playing a game, have you ever thought, “This game would be so much cooler if it just had this!” If so, you have the makings of a great game designer.

Who Makes Video Games?

In the 1960s, computers were the size of an entire room: these huge computers were called mainframes. Because computers were so expensive and complicated, only a few people could use them to make video games.

One of the oldest video games, Spacewar, was written by punching holes into paper cards and then putting the cards into a computer. After writing out the code on paper, you then had figure out which holes to punch on a card so the computer could read and understand the cards. If any of the holes were wrong, you had to start over and repunch all the cards!

As you can imagine, computers were very tricky to use back then. They were also so big and expensive that only schools could afford them. In fact, most of the video games made in the 1960s and 1970s were designed by students at universities, such as the Massachusetts Institute of Technology (MIT).

But these students were not being taught game design in school. They were being taught serious computer programming. However, between classes, they snuck away to the computer labs and figured out how to make video games because they thought games were cool. They disguised their games as Serious Computer Programs because the administrators would delete any programs that looked like games, calling them a waste of space.

Today, we remember all those early games, but not many of the Serious Computer Programs. Keep that idea in mind if someone complains about how much time you spend making games. People might forget the serious programs, but they’ll usually play a fun game for a very long time.

Computers have changed a lot since the 1960s. Now people carry around a pocket-sized computer—your smartphone—which can do so much more than a huge mainframe computer ever could and is much faster. These pocket-sized computers are also less expensive and easier to use.

You’ll learn how easy it is to make your own video games using free, simple tools like PuzzleScript, which hundreds of different people have used: these are people of different colors and genders, young and old. People who are sick and people who are well, those who have gone to college and those who haven’t. People who like cats, people who like dogs, and those who like both. All kinds of people.

So the answer to the question Who makes video games? is everyone!

[image: Image]

Why Make a Video Game?

People create video games for many different reasons! For example, maybe you’ve tried drawing comics, and it was fun. Maybe you’ve tried writing stories, and that was fun too. Perhaps you enjoy arts and crafts as well as making music. Odds are if you’re creative, you’ll also enjoy making games.

Another reason to create games is that you really like them and want to learn how they work. Making your own games is the best way to understand how game designers make decisions when they create your favorite games.

If you don’t like games very much—that’s okay too! Perhaps you can make a new type of game no one has ever seen before—a game that is totally different from the currently available games. Gamers need and like challenges.

If you know you want to be a game developer, you could try to make games that kids will love to play for generations, which will inspire them to make games.

For me, making games is exciting and new, even after all the time I’ve spent on them. Whenever I think I’m done, a new idea pops into my head. I can’t stop thinking about it until it’s out of my head, which means I have to make the idea a reality. When I create a new game, I’m creating something I can share with the world. It feels awesome!

There are tons of reasons to make a game, and they’re all great reasons as long as they excite you.

What Should My Game Be About?

Games can be about anything. Really, it’s true. They can be about big things, small things, important things, silly things, people and places, your mom or dad, a brother or sister, or your cat or dog.

They can be about things that happened to you or things you wish had happened to you. You could make a game about your weird dreams, about a funny story you heard, or about robots taking over the Earth.

Or perhaps your game can be about the network of secret tunnels leading from your basement to the center of the Earth (you know about those, right?) and the monsters that live in them.

You could just try re-creating games that you already play and like. Make your own game about the dude in the funny overalls with the mustache (Mario). For example, what would Mario do on his day off? Would he go on a picnic? Do you think he has a cat?

Although there are already games about almost anything, there is always room for more ideas. Don’t let anyone tell you otherwise!

About PuzzleScript

PuzzleScript is a simple tool for writing puzzle games. In a PuzzleScript game, you move objects around to solve problems and play through the levels.

Do I Need to Know How to Program?

No, you don’t need to know how to program to use PuzzleScript. You’ll type words into your computer to tell the game what objects should look like and how rules should work, but PuzzleScript has its own language for doing this. It will take you a little time to learn it, but it isn’t that complicated. Once you understand it, you can do lots of interesting stuff!

How Much Does It Cost?

PuzzleScript is free! Making your game, publishing your game, and putting your game online where other people can play it don’t cost a thing! You’ll need access to a computer with an internet connection. If you don’t have a computer at home, try using one at your school or library.

Do I Have to Make Puzzle Games?

No, you don’t have to make just puzzle games with PuzzleScript, but PuzzleScript is best for making turn-based puzzle games where the player uses the keyboard to move objects around in the right way in order to advance to the next challenge.

Alternative Tools

If you dislike puzzles, check out the other two books in this series: Make Your Own Twine Games! and Make Your Own Scratch Games! Twine is best for storytelling, Scratch is best for real-time games, and PuzzleScript is best for making games where the players take turns.

But you should try to learn PuzzleScript, too! The more tools you know how to work with, the more versatile you’ll be as a creator! The best artists can pick up and use any tool to craft something that matches their vision. Let’s get started!

 [image: Image]

1
PuzzleScript Basics

In this chapter, you’ll learn the basic components of PuzzleScript using a simple puzzle game. We call a game a puzzle game when it’s turn-based, spatial, and solvable.

Turn-based means that events or actions in the game happen one at a time, like in a game of Checkers. The player makes a move, looks at the board, thinks about what to do next, and then makes another move. Thinking and planning are usually important parts of puzzle games.

[image: Image]

Spatial means that it matters where objects are on the screen. In a classic puzzle game called Sokoban, the player tries to push crates onto special panels. Crates get in the way of other crates, so playing the game involves thinking carefully about where all the crates are and where to move them.

Solvable means that every screen in the game has a winning condition. For example, when the player gets all the crates onto the panels in Sokoban, they’ve solved the puzzle! Then they go on to the next puzzle.

There are ways to make PuzzleScript games that aren’t turn-based, don’t require objects to be in certain positions, or don’t require the player to solve puzzles. But the easiest game to make with PuzzleScript is one that involves all three features. The PuzzleScript demonstration game is a basic example of this, so it’s a good way to start learning about PuzzleScript.

Getting Started with PuzzleScript

Open https://www.puzzlescript.net/ in a web browser, and you should see something like this.

[image: Image]

Click the Make A Game button to see something like this:

[image: Image]

This is PuzzleScript! The box on the left is your game code, and the box on the right, Puzzle Script Terminal – Insert Cartridge, is where your game will appear.

Let’s look at a sample game. Click the Load Example drop-down menu at the top of the screen, and then choose Basic. This demonstration game was made by Stephen Lavelle, the creator of PuzzleScript.

[image: Image]

Click Run at the top of the screen. The game’s title screen, Simple Block Pushing Game by Stephen Lavelle, should appear in the window at the right. This simple game is a good place to start learning how PuzzleScript works.

Press the X key on your keyboard to start the game. If the game doesn’t start, try clicking the title screen and pressing X again. When the game starts, you should see this screen.

[image: Image]

Try playing the game! You’re the little person. The goal of the game is to get all the orange boxes onto the black squares. Use the arrow keys on your keyboard to move the person, and push an orange box by moving into it. This puzzle is tricky, so don’t worry if you can’t solve it! Just play for a little while to get a feel for what a PuzzleScript game is like.

Parts of PuzzleScript

The colored text on the left side of the screen is the actual script of the game, which tells the game what to do. Let’s walk through all the different parts quickly.

Adding Basic Information

At the very top of the script you see a game’s basic information:

title Simple Block Pushing Game

author Stephen Lavelle

homepage www.puzzlescript.net

When you run the game, you see the title as Simple Block Pushing Game with the author, Stephen Lavelle, listed underneath. If you change the title or author name, you change the game’s title screen too. For example, to call your game Mystery of the Missing Socks by Clarence LeFrou instead, simply replace the text next to title with Mystery of the Missing Socks and the text next to author with Clarence LeFrou like this:

title Mystery of the Missing Socks

author Clarence LeFrou

homepage www.puzzlescript.net

Now when you run your game again, you should see this.

[image: Image]

Let’s now move on to objects.

NOTE: The homepage just lets you put a link at the bottom of the page when you share your game. You can just leave it as is or change it to your website if you have one.

Creating Objects

Objects are one of the most important parts of your PuzzleScript game! They’re all the little pieces that make up your game—all the things that move or don’t move and that are moved by other things.

To add a new object to your game, you put it in the game code’s OBJECTS section. Here’s what the OBJECTS section of the Simple Block Pushing Game looks like.

========

OBJECTS

========

Background

LIGHTGREEN GREEN

11111

01111

11101

11111

10111

Target

DarkBlue

.....

.000.

.0.0.

.000.

.....

Wall

BROWN DARKBROWN

00010

11111

01000

11111

00010

Player

Black Orange White Blue

.000.

.111.

22222

.333.

.3.3.

Crate

Orange Yellow

00000

0...0

0...0

0...0

00000

As you can see, the Simple Block Pushing Game has five objects: Background, Target, Wall, Player, and Crate.

Each object is assigned a name (Background, Target, and so on), so PuzzleScript knows when you’re referring to it, and a description of what it looks like. The list of colors tells PuzzleScript what colors an object should be, and the numbers after them tell PuzzleScript where to put those colors. For example, the player’s colors are black, orange, white, and blue. Those colors give the player black hair, orange skin, a white shirt, and blue pants.

Later, we’ll draw our own pictures to represent all the objects in our game. But for now, let’s try something simple: change the green Background to purple or pink. Then click Rebuild to see how the game changes.

Defining Objects in the Legend

The next part of the script is the legend and is similar to the legend on a map, which explains which symbol represents a mountain or a forest, for example.

In your game, you’ll create levels to tell PuzzleScript where all the objects should go. Levels are saved as text characters, such as letters, numbers, and symbols like ., #, P, and so on. The items in the LEGEND section tell PuzzleScript which symbol refers to which object. Here’s the LEGEND section of the Simple Block Pushing Game:

=======

LEGEND

=======

. = Background

= Wall

P = Player

* = Crate

@ = Crate and Target

O = Target

You can pick any keyboard symbol to represent any object, including the walls and the floor. But it’s best to pick symbols that, when you look at your levels later, will make it easy for you to identify what the level is at a glance. I usually pick # for walls because it’s dense and squarish, and pick . for the background because it’s the closest-looking symbol to empty space. For other objects, it’s easy to remember something like P represents Player.

This is the first level of the Simple Block Pushing Game:

=======

LEVELS

=======

####..

#.O#..

#..###

#@P..#

#..*.#

#..###

####..

It shouldn’t be too hard to tell what the shape of the walls is and where all the objects are located inside it. The LEGEND tells us that the letter P is the player; the asterisk (*) is an orange crate, and the O is the target the player is trying to push the crate onto. The at symbol (@) represents a combined crate and target (you’ve pushed the crate onto the target), which tells PuzzleScript to put both objects in the same space.

Adding Sounds

Any sounds in your game go in the SOUNDS section. There’s just one sound in this sample game, that of a crate being pushed.

=======

SOUNDS

=======

Crate MOVE 36772507

The number 36772507 represents the sound to play, and Crate MOVE tells PuzzleScript what action to link that sound to. When you click the numbers, you’ll hear the sound play.

Setting Collision Layers

The code’s COLLISIONLAYERS section tells PuzzleScript which objects bump into others and which objects are on top of other objects. PuzzleScript manages collisions by moving objects in layers. The Simple Block Pushing Game has three collision layers.

================

COLLISIONLAYERS

================

Background

Target

Player, Wall, Crate

To visualize these layers, think of your flat screen as if it has three dimensions, going from front to back. The Background layer is the layer farthest back into the screen. The Target layer (the dark squares) is the middle layer in front of the Background layer. And the frontmost layer is the one that contains the player, walls, and crates.

Because the player, walls, and crates are on the same layer, the player can’t move through either walls or crates, although they can push crates. Crates can’t move through walls or through other crates: if you try pushing a crate through another crate, it will be blocked and won’t move. For example, in the second level of the Simple Block Pushing Game, if the player tries to push down on the crate below them, it won’t budge because it’s blocked by another crate.

When you create new objects, you need to add them to the COLLISIONLAYERS section. Most objects will probably go on the same layer as the player. But sometimes you’ll want objects to share the same space as other objects, like crates and targets.

Writing Rules

In the RULES section we describe what should happen in your game—the way objects interact with each other. The Simple Block Pushing Game contains just one rule that describes how the player pushes crates:

======

RULES

======

[> Player | Crate] -> [> Player | > Crate]

On the left side of the arrow (->) are the objects the game is looking for. If the game finds these objects in the order written from left to right (a player next to a crate), the game changes those objects into the set of objects on the right side of the arrow (a player next to a crate). The difference is that in the first case, the player is moving. In the second case, the player and the crate are moving: that is, the player is pushing the crate.

The rule is saying that if the first set of objects exists, change it to the second set of objects. Change this to that: [this] -> [that].

You use square brackets ([]) to enclose a set of objects and a vertical bar (|) to separate objects inside the square brackets. For example, the following line means a player is right next to a crate.

 [Player | Crate]

But the rule in the Simple Block Pushing Game is looking for this:

 [> Player | Crate]

Here, the greater than sign (>) means that the player is trying to move. The > is pointing toward that crate, which means the player is moving toward the crate. When the player moves toward a crate, the crate should move too, because the player is pushing it. So to push a crate, you turn Crate into > Crate to say that it’s moving in the same direction as the player.

All this happens before any of the objects actually move. The > really means “I want to move.” So a > Player and a > Crate will move at the same time. It’s a little confusing, so let’s walk through it step-by-step.

Each time you press an arrow key in the Simple Block Pushing Game, this happens:

	The Player moves in the direction of the arrow key, turning the Player into a > Player.

	PuzzleScript checks to see whether it can find any objects on the level that looks like [> Player | Crate]; that is, a player trying to move into a crate. If it finds a match, it changes those objects into whatever the rule says to change it to, which in this case is [> Player | > Crate].

	All the objects marked with > will try to move in that direction. If they’re not blocked by something else, they should move. If they’re blocked, they should stay in place.

Keep in mind that PuzzleScript rules are checked in every direction. So even though the following rule is written left to right, it still will let a player push a crate from above, below, or the left.

[> Player | Crate] -> [> Player | > Crate]

You can read this rule as “If the player is moving toward a crate, make the crate move in that same direction.” The rule doesn’t specify the direction.

[image: Image]

Setting Win Conditions

The WINCONDITIONS section in a PuzzleScript game explains what the player has to do to win the level and advance to the next level. This is the Simple Block Pushing Game’s win condition:

==============

WINCONDITIONS

==============

All Target on Crate

This condition means that when all target spaces (the dark squares) have a crate occupying the same space, the player wins the level! Why not write this as All Crate on Target? Well, there’s a subtle difference between the two.

	All Target on Crate means every target must have its own crate.

	All Crate on Target means every crate must have its own target.

Let’s say there are more crates than targets. Then, in the case of All Target on Crate, if every target had a crate on it, the win condition would be satisfied, even if some crates were left over. But if the win condition were All Crate on Target, every crate would need to be on its own target. In this particular scenario, there aren’t enough targets to satisfy this win condition, so the player could never win the game.

Other games might have other win conditions. Here are some examples of valid win conditions:

	No candy: A game where you try to eat all the candy

	Some purple: A game where you try to mix colored paint to make new colors

	No puppy in the doghouse: A game where you try to take every dog out for a walk

NOTE: To learn more about PuzzleScript win conditions, read the official PuzzleScript documentation at https://www.puzzlescript.net/Documentation/documentation.html. Click Docs at the top of the screen and then click Bird’s-Eye View of a PuzzleScript File ▸ WinConditions.

Making Levels

Your game’s levels go in the LEVELS section of your PuzzleScript script, as symbols, one after the other. (Fortunately, you don’t have to enter all your levels manually; PuzzleScript has a neat level editor, which you’ll learn about in Chapter 2.)

The Simple Block Pushing Game has two levels, which the player will see in the order in which they appear in the list:

=======

LEVELS

=======

####..

#.O#..

#..###

#@P..#

#..*.#

#..###

####..

######

#....#

#.#P.#

#.*@.#

#.O@.#

#....#

######

Recall from the LEGEND section earlier that # represents walls, . represents open space, P is the player, * is a crate, O is a target, and @ is a crate on a target. The contents of the LEGEND tells PuzzleScript how to “read” this level and turn it into a playable game with all the objects in their correct places.

When you build your levels, use the level editor. But make sure that all finished levels end up in the LEVELS section in text form so they’ll be included in your game. (We’ll talk more about levels in Chapter 2.)

[image: Image]

What You Learned

Phew! Now that you’ve learned the basic components of a PuzzleScript game and how PuzzleScript works, let’s take a short break. Take a deep breath, pet your cat, go for a walk, or make yourself a sandwich. You could even try playing some of PuzzleScript’s other built-in sample games by clicking the Load Example drop-down menu at the top of the page.

Remembering to take breaks is a very important part of game making! If you keep working nonstop, you’ll get tired and frustrated, and you won’t get anything done! So make sure you take a moment to step away from the computer every now and then. I always get my best ideas for games when I’m away from the computer.

When you get back from your break, we’ll make a game called Herding Cats from scratch!

 [image: Image]

2
Herding Cats: Your First PuzzleScript Game

In this chapter, we’ll make our own PuzzleScript game. Specifically, it will be a game about herding cats. (You can never have too many games about cats. Remember that when you’re a famous game designer.) You can play it at https://w.itch.io/herding-cats/. After you’ve played the game, we’ll go over how to make it!

[image: Image]

In Herding Cats, your goal is to make friends with all the different cats in each level. Press X on your keyboard to start, and then use the arrow keys on your keyboard to move around. You can use the Z key to rewind time if you make a mistake and want to redo your moves. Press R to restart the level you’re on. (Most PuzzleScript games use the same keys to play a game.)

At the start of each level, all the cats will be sleeping. When you wake up a cat, it’ll start following you. A woken cat will follow you everywhere, but it can make it hard to fit through some spots.

The game can get tricky. You don’t have to solve every level to read the rest of the chapter! Just get a feel for how the game works.

Opening a Blank Project

Let’s start with a blank game. Navigate to https://www.puzzlescript.net/ and click Make A Game. Clear your PuzzleScript work area by clicking the Load Example drop-down menu at the top of PuzzleScript and selecting Blank Project.

[image: Image]

You should see a totally blank PuzzleScript project like this.

[image: Image]

Next, you’ll add a game title and your name at the top of the script, above OBJECTS. Click at the start of the very first line and press ENTER three times to move the OBJECTS section down to make room, and then add these lines:

title Herding Cats!

author anna anthropy

homepage www.puzzlescript.net

The result should look something like this.

[image: Image]

If you make a mistake and need to undo it, hold down the CTRL key and press Z. CTRL-Z is almost universally the undo shortcut in the tools you’ll work with.

Now let’s look at how to create objects.

Creating Objects

Every object in your game has to look like something. An object’s appearance gives the player important information about what it does. For example, in the Simple Block Pushing Game, all the pushable objects look like boxes with flat, easy-to-push sides. The player has arms, showing that they can push objects.

PuzzleScript lets you use pixels to draw objects. A pixel (a combination of the words picture element) is just a single dot of color. PuzzleScript objects are 5 pixels wide by 5 pixels tall—25 pixels in total. For example, here’s a door I drew.

Door

Brown White Blue

11111

10001

10001

10021

10001

The pictures you draw are made up of numbers; each number represents a single pixel. Which number the pixel is corresponds to the color you want the pixel to be.

From top to bottom, you see the name of the object on the first line (Door), the colors I want on the second line, and then numbers for the 25 pixels below that. Because I want a brown door with a white frame and a blue doorknob, I enter those colors on the second line as Brown White Blue. These words should display in their colors as you type them.

Next, I use the numbers representing each color to enter where the colors go, one pixel at a time. Computers start counting at 0, so the first color I enter, Brown, is color 0, White is color 1, and Blue is color 2. The numbers representing each color will also display in those colors, so you can imagine what your rendered drawing will look like as you enter the colors. (Keep in mind that in this Door example, if you try to enter a number higher than 2, such as 3 or 4, the number will display as white because you’ve defined the colors using only the numbers 0, 1, and 2.)

NOTE: If you have a hard time remembering that computers start counting at 0, think of a bunch of people standing in line for the bathroom. If I’m at the front of the line, how many people are in front of me? Zero! If I’m right behind the person at the front of the line, how many people are in front of me? One! The next person is 2, the next is 3, and the next is 4. Five people in line would be numbered 0, 1, 2, 3, and 4.

Herding Cats needs some objects, so let’s draw them now!

Drawing the Background

To draw objects in Herding Cats, we first need a Background. Every PuzzleScript game must have a background. Let’s draw one that looks like grass at the beginning of the OBJECTS section:

========

OBJECTS

========

Background

DarkGreen Green

01000

10010

00100

01001

00010

The zeros are dark green and the ones are regular green. I’ve scattered them around like little blades of grass because I’m trying to create an image that, when repeated, will just create a big field strewn here and there with grass.

Remember that with this code we’re drawing just one square of grass that is five pixels wide by five pixels tall. But we’ll never see just one square of grass in the game; instead, we’ll see a bunch of these background squares, like this.

[image: Image]

Now we’ll add some walls in the OBJECTS section.

Drawing Walls

To draw the walls with a stacked brick pattern and make them look more like brick walls, use Red for the bricks and DarkBrown for the mortar between them. Then fill out the pixels so the brown mortar crisscrosses the red bricks:

Wall

Red DarkBrown

01000

01000

11111

00010

11111

Mine has four bricks, but you can make your wall look however you want. When there are a bunch of these chunks onscreen, it’ll look like one big, continuous brick wall.

Before we can see what our walls actually look like in the game, we need to add a few more requirements to the LEGEND section.

Adding the Background and Wall to the Legend

Any object we want to appear at the start of a level needs to have a symbol in the LEGEND section. For now, add a symbol for the background and the walls:

=======

LEGEND

=======

. = Background

= Wall

I chose the . as the symbol for background tiles because it has a lot of empty space around it. Conversely, I picked the # to represent walls because it’s dense, square, and wall-like. Try to choose symbols that remind you of the objects they represent so you can tell at a glance what a level looks like.

Creating the Collision Layers

Whenever we add an object to our game, we have to remember to add it to the COLLISIONLAYERS section as well! Let’s add our wall object like this:

================

COLLISIONLAYERS

================

Background

Wall

Each line in the COLLISIONLAYERS section represents a separate layer. The Background gets its own layer. Everything else—the walls, the player, and the cats—will be on a second collision layer. If walls and cats weren’t on the same layer, cats could walk through walls. That would be impressive, even for a cat.

[image: Image]

Creating a Sample Level

Now that we’ve added the wall to the LEGEND and the COLLISIONLAYERS sections, let’s make a sample level in the LEVELS section just to see what our Background and Wall objects look like. Use the symbols for the background and wall to create a level:

=======

LEVELS

=======

###....

#.#.###

#.###.#

#.....#

##..###

.####..

Click Run and then press the X on your keyboard to see the level we just drew. I made my wall very squiggly so I can really get an idea of how my walls look in use.

[image: Image]

Now that you can see what your background and walls look like, you might want to change them. When you make changes to any object’s appearance and then click Rebuild, your sample level will update to show the new look. This is a great way to keep track of what your objects look like as you work on them.

Drawing the Player

Now we need a player character. In the OBJECTS section, I drew a player with pink hair, a white dress, and two little hands. (That’s what I was trying to draw, anyway.) You can make your player look the way you want by choosing colors and filling pixels with those colors. But notice the gray periods (.) in the drawing.

Player

Brown Pink White

.111.

.0011

.0011

.222.

02220

When you’re drawing objects in PuzzleScript, a period (.) in the code means that a pixel is transparent. Where there’s a period, you’ll see through that part of the object to whatever is behind it (which is usually the background).

We don’t need to have see-through pixels on the background, because there’s nothing behind it. Also, we don’t really need to see through the walls because the walls can be square. But the player isn’t square, so we fill in the unused parts of their picture with see-through pixels.

[image: Image]

Whenever something moves around (like the player), it’s a good idea to give it a see-through background so we can tell what it’s moving around on. Earlier I mentioned trying to show what objects can do by using their appearance. For example, a player standing on top of the grass looks like it can move, whereas the rigid, square walls that don’t share any space with the background look fixed in place.

Drawing Cats

Last and most important, we need to add our cats. Let’s think about the cats in Herding Cats. What do they do? Well, when they’re awake, they follow the player around, but when they’re asleep, they just sleep until someone wakes them up. To make Herding Cats work the way we want it to, we need two different kinds of cats: one that stays in place, which we’ll call SleepingCat, and another that follows the player, which we’ll call AwakeCat.

[image: Image]

We’ll start by drawing two different objects in the OBJECTS section to create the two basic types of cats.

SleepingCat

Black Yellow

.....

0.0..

101..

00000

.0000

AwakeCat

Black Yellow

0.0..

101.0

00000

.0000

.0..0

The sleeping cat is lying down. As with most sleeping cats, you can’t see its legs because they’re tucked underneath. This cat looks stationary. But the awake cat is standing up, ready to follow the player.

[image: Image]

Click Save at the top of the screen to save your work so far. It’s a good idea to save often in case you accidentally close the window, your computer crashes, or your cat jumps on your keyboard. (If you’ve saved your game, you can click the Load menu next to the Save button to load the saved version of your game.)

This would be a good time to take another break, pet another cat, or make another sandwich. See you in a minute!

Using Your Objects

Before we can use our new objects, we need to tell PuzzleScript what to do with them by adding them to the LEGEND and COLLISIONLAYERS sections of our code. Go to the legend and pick a symbol for the player and the sleeping cat objects, as shown here:

. = Background

= Wall

P = Player

m = SleepingCat

[image: Image]

There’s no symbol for the AwakeCat object because the legend gives PuzzleScript a list of all the objects we want to build our levels from. I picked m for the SleepingCat because it looks like a little cat sitting down with its legs tucked under. (Cute, right?) Because all the levels start with all the cats asleep, we have only sleeping cats at the beginning of a level. The awake cats appear only when a sleeping cat awakens!

Adding More Collision Layers

We’ll need only two collision layers for our objects: the Background and everything else. Add the following lines to the COLLISIONLAYERS section. Next, we’ll want to add the player and both kinds of cats to the COLLISIONLAYERS section.

Background

Player, SleepingCat, AwakeCat, Wall

The background is on its own layer, and everything else moves around on top of it. The player, sleeping cat, awake cat, and wall are on the same layer so they can bump into each other and get in each other’s way. Otherwise, they wouldn’t be able to bump into each other. Walls aren’t really walls if you can walk right through them.

Next, we need to update our test level. But before we do, save your work!

Creating a Test Level

Let’s create a test level to make sure everything in our game works the way we expect it to. Enter something similar to the following code in the LEVELS section, making sure the level contains every object in the legend: Wall (#), SleepingCat (m), one Player (p), and Background spaces (.). Be sure to add a wall somewhere in the middle, too, not just around the edges!

=======

LEVELS

=======

#######

#..#..#

#.m#m.#

#..#..#

#.....#

#..p..#

#######

Click Save and then click Run. You should see the game’s title screen appear in the window at the right side of the screen, as shown here.

[image: Image]

Now press X on your keyboard to start the game. You should see the test level that you created.

[image: Image]

Cool! Now test your level by moving the player with the arrow keys. The player should move but not through walls or cats. Make sure that all objects are working correctly. The cats will just sit there because we haven’t added rules to tell them what to do yet.

Creating Rules for Cats

Now we’ll add a rule that states when a Player object touches a SleepingCat object, the sleeping cat should wake up and become an AwakeCat object. Add this rule to the RULES section of your code:

======

RULES

======

[Player | SleepingCat] -> [Player | AwakeCat]

This rule means if the Player is next to a SleepingCat, change them to a Player next to an AwakeCat. Click Rebuild at the top of the PuzzleScript screen to make PuzzleScript add everything you changed to the game you’re already playing. Then try to move the player next to the cats to see if they wake up.

The cats should wake up, but they’re a little late in doing so: instead of waking up when you touch them, they wake up on the next move. To see what I mean, walk up to a cat and then walk away from it. The cat wakes up after the next move the player makes, not right when the player walks up to it. We want the cats to perk up as soon as they see the player! What’s the deal, cats?

To understand the issue with the game play so far, think about how rules work:

	The player decides in which direction to move.

	PuzzleScript checks all the rules and makes any changes the rules tell it to.

	Everything that wants to move finally moves.

You press an arrow key to move the player next to a cat, and the player becomes a moving > Player. Next, PuzzleScript checks the rules to see whether the player is next to any cats. Because they’re not next to any cats yet, the cats stay asleep and the > Player finally moves. Then PuzzleScript waits for the next arrow keypress, and the cat remains asleep! When you press an arrow key again, the player becomes a > Player again, and PuzzleScript checks the rules again. This time it sees that the player is next to a cat, so the cat becomes an awake cat, and the player moves away.

To fix this hiccup in the game play, we add the keyword late to the rule so it will check whether the player is next to a cat right after the player moves instead of right before the player’s next move. The new rule looks like this:

late [Player | SleepingCat] -> [Player | AwakeCat]

Adding late to the start of a rule tells PuzzleScript to check the rule after objects have moved instead of before. Essentially, we’ve added another step to the way PuzzleScript processes our rule, so this happens:

	The player decides in which direction to move.

	PuzzleScript checks all the rules and makes any changes the rules tell it to.

	Everything that wants to move finally moves.

	PuzzleScript checks all the late rules and makes any changes they tell it to.

Now the cats should wake up right after the player moves instead of waiting until the next cycle! Test this code. (You might need to click Run to start a new game if all your cats are already awake.) Your cats should perk up as soon as the player gets close.

Making Cats Follow the Player

Now let’s add this rule to make the awake cats follow the player:

======

RULES

======

late [Player | SleepingCat] -> [Player | AwakeCat]

[> Player] [AwakeCat] -> [> Player] [> AwakeCat]

There are no vertical bars (|) in this rule because [> Player | AwakeCat] would mean that the player and the cat would have to be next to each other for the cat to move. But we want the cats to move with the group regardless of what shape the group is in. So the easiest thing to do is to just have the cats make the same movements no matter where or how far from the player they are. As long as a cat is awake, it should move however the player does. To do that, we enclose the Player and the AwakeCat objects in separate square brackets, meaning they don’t have to be right next to each other. The player and the cat can be anywhere, and the rule will still trigger. Essentially, this new rule states that if a player is trying to move, every awake cat will try to move in the same direction.

Click Rebuild and try it out! Wake up the cats and get them moving! Pretend you’re a morning aerobics instructor for cats! Let’s get those tails shaking!

[image: Image]

The game still doesn’t work exactly like it should. Right now, groups don’t stick together. For example, if you’re blocked by a wall but a cat friend is not, the cat will keep walking and the group will break up. To make the shape of the group important, we need to make sure the group stays together.

If we make the group stay together, we need to make sure that cats outside the group can add other cats to the group, too. Otherwise, once the player has woken up a few cats, they would be stuck in the middle of the cats and unable to reach any new ones!

We have two challenges: we want the player and the cats to move as a group, and we want to allow cats already in the group to awaken other cats, just as the player does. Fortunately, these two problems have the same solution.

Defining Properties of Objects

To address both problems with our game play, we need the same rules to apply to the player and the cat objects. We could write two versions of every rule—one for the player and another for the cats—but then if we ever wanted to change that rule, we’d have to change it twice. Also, if we wanted to add a new rule, we’d have to write it twice! One characteristic of programmers is that we’re lazy. Why do extra work when we can play with our real cat instead? Let’s make our code clean and efficient the first time.

We’ll use the LEGEND section to tell PuzzleScript to treat different kinds of objects in the same way. The LEGEND section doesn’t just let us tell PuzzleScript what symbols refer to which objects. It also lets us tell PuzzleScript which words refer to which objects, so we can use one word to include the player and cats in a group.

Allowing Cats to Wake Up Other Cats

Let’s add an entry to the legend to describe any object that can be a member of the player’s group, whether that’s the player or the cats following them around. That way, anyone in the group (player or cats) can wake up sleeping cats. We’ll call this type of object a WakerUpper.

WakerUpper = Player or AwakeCat

Now in our rules, instead of checking whether the player is next to a sleeping cat, we check whether any WakerUpper is next to a sleeping cat. Keep in mind that the player and any cat that has already joined their group count as WakerUppers.

We’ll add WakerUpper to our current late rule by changing this line:

late [Player | SleepingCat] -> [Player | AwakeCat]

to this:

late [WakerUpper | SleepingCat] -> [WakerUpper | AwakeCat]

Now the cats in the game should be able to wake up other cats. The current rule looks for any objects marked as WakerUpper, and the legend defines the player and awakened cats as WakerUpper. Try playing the game, and then save your work!

Keeping Cats Together

We’ve solved the first problem: cats can wake up other cats. Next, we have to figure out how to stop the group from splitting apart when it moves.

First, let’s determine why the group splits apart. Remember that the > symbol means that something is trying to move. Because of the following rule, whenever the player tries to move, all the cats try to move in the same direction:

[> Player] [AwakeCat] -> [> Player] [> AwakeCat]

But if the player tries to move again and their way is blocked, every cat still tries to move anyway and the group splits up.

To keep the player and cats together as a group, we need to stop everyone in the group from moving if any one member of the group is blocked. We can do this by adding another rule and using the keyword cancel:

======

RULES

======

late [WakerUpper | SleepingCat] -> [WakerUpper | AwakeCat]

[> Player] [AwakeCat] -> [> Player] [> AwakeCat]

[> WakerUpper | Wall] -> cancel

This rule states that “if a WakerUpper tries to move into a wall, stop everyone from moving.” Everyone stays where they are. Because we used WakerUpper, this rule will check the player and all the awake cats, and the group should stay together.

[image: Image]

Keep in mind that PuzzleScript reads all your scripting from top to bottom, the same as you do. PuzzleScript applies your rules in the order they’re listed, starting at the top and working its way to the bottom. We want the “if a WakerUpper tries to move into a wall” rule to happen at the very end, after all the WakerUpper members decide where they’re moving. So make sure this last rule is at the very bottom of your RULES section!

Save your work, and then try to play the game. Do the player and cats stay in a group?

Winning the Game

Earlier, we decided that the goal of the game would be to wake up all the cats and have them join your group. Well, we’ve woken up all the cats in the level.

But the level still hasn’t ended because we haven’t added a win condition for PuzzleScript to check for yet.

Some games can go on forever, but not this one. To win Herding Cats, we need to add a win condition. What win condition would make sense? Well, the goal in Herding Cats is simply to have all cats join the group. To accomplish that, we need to wake up all the cats! Okay then, let’s try this as our win condition:

No SleepingCat

You win if there are no more sleeping cats, and all the cats are now awake cats.

Add the No SleepingCat line to the WINCONDITIONS section, and then run your game to see whether you can win your level. You should see the message Win Condition Satisfied when the last cat wakes up, as shown here.

[image: Image]

And you’re back at the title screen.

[image: Image]

Adding Sounds

To make the game more interesting and fun, let’s add sound effects to your game. See these little buttons beneath the game screen? Try clicking each of them!

[image: Image]

These buttons produce different sound effects like jump sounds, pew pew sounds, and bird tweets. The random sound button at the far right gives you a completely random sound, and the X on the far left clears the information panel below the game screen, along with any sounds you’ve added! Be careful with the X button: you don’t want to accidentally erase any sounds that you like and might still want to use!

Each time you click a button, such as the bird button, a line like birdSound: 40166309 appears. That number is the sound effect in a form that PuzzleScript understands. When you click a number, you should hear the sound. When you find a sound you like, write down its number.

[image: Image]

Try to find a sound you could play that would indicate in an exciting way that you won the level! The powerup sound button with the + on it might be a good one. Keep clicking it until you get to a sound you like. Then enter the number of the sound into the SOUNDS section of your game, like this:

=======

SOUNDS

=======

Endlevel 72533508

[image: Image]

The keyword Endlevel tells PuzzleScript to play this sound when the level ends. Now run your game again and try to win the level. Do you hear your cool sound when you win?

How about adding a sound to the cats when they wake up? Find a sound effect that sounds meowy, and then add it to your list of sounds, like so:

sfx0 9963503

The code sfx0 stands for “sound effects 0.” If you add another sound effect, you would call it sfx1, then sfx2, and so on. (Remember that 0 is always the number of the person in the front of the bathroom line!)

You can make the sfx0 sound play whenever you want it to by putting it at the end of a rule, like this:

late [WakerUpper | SleepingCat] -> [WakerUpper | AwakeCat] sfx0

This line tells PuzzleScript to play sfx0 every time the rule for waking up a cat runs, meaning every time a cat wakes up.

Save your game and test it out. Listen to the beautiful symphony of weird video game sounds your game has now. Magnificent!

[image: Image]

What You Learned

Now you know all the parts that make up a PuzzleScript game. You know how to draw the objects that make up your game, add the rules that tell the game what to do with those objects, and set up the collision layers that tell the game which objects interact with which objects. You also know that the LEGEND section tells PuzzleScript what words and symbols refer to which objects. You learned about adding a win condition to be able to finish the game and adding sounds to make the game more fun and communicative.

The one important part of a PuzzleScript game we haven’t talked a lot about yet is levels. In the next chapter, you’ll learn how to use PuzzleScript’s handy, built-in level editor to make puzzles for your game. You’ll also learn how to use level design to tell your game’s story. Take another break, and we’ll meet again in Chapter 3!

 [image: Image]

3
Herding Cats: Using Level Design to Tell Stories

In this chapter, you’ll learn about level design, which is the blueprint of each level in a game. A level can be one scene in a game, one room, one area, or one part of the journey through the game. For example, each puzzle in Herding Cats is one level. You can imagine the whole game as a tower of levels: each one is stacked on top of the other, and the players work their way through the stack one level at a time.

Level design tells stories. It shows a player what’s important and can teach the player the fundamental ideas of your game. For example, in Herding Cats you sometimes need to use a cat to reach another cat. You can use level design to develop those ideas; use it in trickier, harder ways; and mix it up to create something unexpected. Level design can surprise the player or make them feel different emotions, such as smart, excited, scared, frustrated, or curious.

Think of each level in a game as a kind of tiny game, each with its own challenges and solutions. The characters might be the same, but the situation changes with each new level; each new level teaches the player more about the characters and the game.

Using the Level Editor

In this section, we’ll create levels for Herding Cats using PuzzleScript’s built-in level editor. We’ll identify the important ideas in Herding Cats and figure out how to introduce them to the player. Then we’ll build on them. We’ll think about what goes into a good level and what levels go into a well-paced, complete game. And we’ll tell a little story while we’re at it.

Let’s start by building the smallest possible level using the built-in level editor. Enter the following in your PuzzleScript game’s LEVELS section to build a level. Or visit bit.ly/catswithoutlevels for a fully programmed copy of the game with the levels missing.

=======

LEVELS

=======

###

#m#

#.#

#p#

###

This creates your first level with one cat (m), a starting position for the player (p), an empty space in between them (.), and walls (#).

Playing a Level

To play the level you just entered, you can use a handy shortcut: hold down the CTRL key on your keyboard (COMMAND key on Mac) and click the level. It should pop up immediately in the game, ready to play, as shown here.

[image: Image]

Pretty much the smallest Herding Cats level you can make

Press the up arrow to wake up the kitty and win!

Editing a Level

Now let’s edit the level you entered to make it more interesting. To enter editing mode, CTRL-click the level again and, while pressing CTRL, press the E key. A row of objects should appear that includes the letter S, some grass, a wall, the player, and a cat, as shown in the following figure. (The cat should just be a pair of yellow eyes, because it’s a black cat on a black background.) We’ll call this the level editor palette.

[image: Image]

Editing mode

Click an object from the palette to select it, and then click in the level to place it. Try selecting the cat, and then click the player in your level to change the player into a cat. To erase the placed objects, right-click them.

Enlarging a Level

To enlarge the level, click an edge, and then move your cursor to the far left, far right, top, or bottom of the level. The cursor should change from a box to crosshairs (+). Click when the cursor looks like crosshairs to grow the level by one row or column in that direction. Right-click to shrink the level. Try making the level bigger and then redrawing the walls to fit the new level. Here’s what an enlarged level with two cats would look like.

NOTE: To play your level while editing it, press the arrow keys. (You might have to add a new player to the game if you turned the player into a cat earlier.)

[image: Image]

Enlarged level

Saving and Printing Your Level

Once you finish editing a level in editing mode, save it by clicking the S from the palette. The box below the game should now display the text version of your new level.

[image: Image]

PuzzleScript levels can also be represented in text.

Note that the text version displays the code for the level as it exists at that very moment. So if you moved the player in editing mode, the code should now display the player in their new position. But if you woke up all the cats, there should be no cats shown in the code because the LEGEND section has no code for an awake cat.

Be sure to click S a lot when you’re working on levels to make sure you don’t accidentally lose your work!

Adding Your New Level to Your Game

Once you’re done updating your level in editing mode, you’ll need to copy and paste the updated PuzzleScript code into your game’s LEVELS section.

To copy and paste the new level, highlight the text version of your level. Next, right-click and select Copy to copy the text of the level to your operating system’s clipboard. (You won’t see the clipboard; the text will just be saved invisibly.) Then right-click under LEVELS and select Paste to paste your new level into your game’s LEVELS section! You can also drag and drop the highlighted text into your LEVELS section.

The result should look like this.

=======

LEVELS

=======

########

#...m..#

#......#

#...m..#

#......#

#......#

########

Testing Your Levels

To test your levels without totally rearranging them, press R (Reset). But be careful! Pressing R will reset your level to the way it was before you first pressed E to enter editing mode. If you changed your level since you started editing, pressing R will undo all of your changes! Eek!

But there’s a solution to this problem: to test a level, press E twice (once to exit editing mode and once to reenter it), and then play your level. Now when you press R, the level should again reset to the way it was when you pressed E. Click the S button to print your level.

Be sure to play your levels a lot while you’re working on them, and save them even more frequently.

[image: Image]

Levels Tell a Story

Let’s build some levels for our Herding Cats game. What would be a good starting level? Your game’s first level should introduce the game’s story (the player tries to make friends with cats) and show the player the goal of each level, which is to wake up cats.

This figure shows a starting level that I came up with. See if you can re-create it in the editor.

[image: Image]

Level 1: Cat friend #1

[image: Image]

This first level is very simple: when the player touches the cat, the level ends. The player doesn’t know why they’re befriending cats yet. But you can help them figure this out by adding a message in PuzzleScript to give them some context about what’s going on. In your game’s LEVELS section, enter the word Message followed by what you want your message to be (for example, Oh, a kitty!). The words you enter in your message will display on the screen between levels (without the word Message).

=======

LEVELS

=======

Message Oh, a kitty!

########

#...m..#

#......#

#...m..#

#......#

#......#

########

Message Hi, kitty.

Let’s add the message Oh, a kitty! to make it appear before the level begins at the very start of the game to establish that the kitty is important. Then let’s show the message Hi, kitty. when the level ends, to tell the player that meeting the kitty was what they were supposed to do. The player will also see some text reminding them to press X to continue the game, as shown here.

[image: Image]

This is what a message looks like in the game.

That completes our first level for Herding Cats! By the end of this level, the player should know the basic point of the game.

Levels Teach the Player the Rules

We’ve introduced the idea of meeting cats as a game goal. The next important rule we need the player to understand is that cats will follow the player around. How can we make a level to teach the player that rule?

[image: Image]

Level 2: Cats like to tag along.

To finish this second level, the player must pass by two cats to get to the third cat on the right. As they pass the cats, the cats perk up and follow. The level ends when the player has met every cat.

Troubleshooting

But what about the cat from the first level? Could that cat still be following the player? Let’s modify our level to add a cat sidekick. Here’s what the level looks like now.

[image: Image]

Level 2B: The player starts level 2 with their cat friend from level 1.

Build this level and try it. Uh-oh, there’s a problem. Did you find it?

When you move the player, the cat from Level 1 doesn’t follow. You can go back and wake up the cat, but we want the cat to be following the player already because this is a friend we made on Level 1!

The problem occurs because of the PuzzleScript rules we set in Chapter 2. The rule that tells PuzzleScript to turn sleeping cats into awake cats is a late rule that triggers only when the player moves. But because the player hasn’t moved yet, no rules have triggered!

Running Rules at the Start of a Level

Fortunately, we can solve the problem of the first cat friend following the player by making sure all the rules run at the beginning of every level, before the player does anything. To make that happen, just add run_rules_on_level_start to the beginning of your PuzzleScript code, as shown here.

title Herding Cats

author anna anthropy

homepage www.puzzlescript.net

run_rules_on_level_start

Now click Rebuild and restart your level. The new cat should follow the player. The player should start level 2 by walking around with their cat friend from level 1. As they pass the two cats on the left, the cats wake up and start following them. Then, with an entourage of three cats accompanying the player, they meet a fourth and final cat, and the level is complete. Let’s end with another message, just to make the story complete.

message Oh, hi to you too!

That’s a whole little story right there!

Levels Challenge Players to Use What They Know

So far we’ve taught the player that cats they touch will follow them around and that the goal is to get every cat to follow them. Now that they know those rules, let’s create a puzzle that will challenge them to use what they know.

Can you make a level that forces the player to think carefully about the order in which they wake up the cats?

[image: Image]

Level 3: A close fit!

Level 3 has two rooms with two cats each and a super narrow passage between them. If the player isn’t careful about how they herd their cats, they won’t be able to make it through the gap, as shown in the figure. Try to solve the level. Do you see how this level tests what the player has learned?

[image: Image]

Level 3: Stuck!

If the player doesn’t think carefully about the shape of their group, they’ll get stuck!

[image: Image]

Level 3 solution

To get through this level, the player needs to arrange all the cats in the group to fit through the narrow hole.

Learning from Mistakes

Let’s try to arrange the cats in Level 3 a little differently. We’ll put them across from each other horizontally instead of on a diagonal. How might that affect how the player thinks about shaping their group?

[image: Image]

Level 3B: What if the cats were arranged differently?

Every player thinks a little differently. But it’s likely that the player will have an easier time finding the solution with this setup. The cats are already lined up the way they need to be to fit through the narrow hole! So does this level change make the level better?

I would say no, because making mistakes is an important part of play. In Herding Cats, when the player makes a mistake and gets stuck, that’s when they realize they need to think more carefully about where their cat friends are. When they make mistakes, they learn about how the game works and how they need to think to solve puzzles. Messing up is important!

Design Your Own Levels!

Try designing some levels of your own for the game! Here are some ideas:

	Make a level that’s harder than the previous level but only a little bit. Then try to make a level that’s a little bit harder than that! It’s much trickier to make a not-too-hard level than a very hard level. Imagine if your favorite game skipped straight to the hardest level. You would have no idea what to do: the in-between levels help you learn how to handle harder challenges! If you make a level that’s too hard, think about what you could do to simplify it.

	Make the hardest level you can in the smallest amount of screen space. Think carefully about where you put your objects. How many do you really need to make an interesting level?

	Make levels that tell stories! When the first level ends with the player making friends with a cat and the second level starts with that cat friend still hanging out, that’s storytelling! It’s a simple story, but it makes the player care about the game. What other ways can you come up with to tell simple stories?

	Make some levels with multiple players. When you add multiple player objects, what kind of puzzles can you come up with?

[image: Image]

Remember to play your levels while you’re working on them! Pay attention to what you’re thinking and experiencing when you play each level. What is your first instinct in a level? Is it to go a particular way, and if so, why? If something about a level seems a little rough, make it better and then play it again! As you build levels, you’ll develop your intuition for level design.

When you’ve completed your game, have friends play your levels to get a sense of how others experience a level. Remember that as the game developer, you know all there is to know about the game. But what’s easy for you might be hard for someone else. It’s important to see how other people react to your creations.

While you’re watching someone else play your levels, pay attention to what they do. Try to resist the urge to explain to them what they’re supposed to be doing or why you made a particular part a certain way. Your goal should be to get an idea of what players will do when you’re not there.

It takes a lot of work to become a good level designer. Listen to your own instincts and to other people’s feedback. The more levels you make, the better you’ll get at it!

Sharing Your Game

When you’ve finished your PuzzleScript game, you can share it! Sharing a PuzzleScript game is super easy! Just click Share at the top of the screen. You’ll need to create a GitHub account.

[image: Image]

Click the Share button to create a link to your game.

When you click Share, PuzzleScript creates two links: one opens your game in the PuzzleScript editor, and the other leads to your playable game.

Share that second link with friends so they can play your game! They can also open your game in the editor by clicking the hack link at the bottom of the page.

[image: Image]

PuzzleScript generates links to your game.

You can also save a copy of your game to your computer by clicking Export at the top of the screen. Exporting your game creates an HTML file on your computer that you can open to play your finished game. This version doesn’t have the hack link, so if you want to keep your game code a secret, export it and upload it to a free website, such as https://neocities.org!

Bonus Challenges

Here are a couple of graphical tricks I added to Herding Cats to make the game look more interesting. Can you figure out how to do them? If you need some hints, open my finished version of the game at https://w.itch.io/herding-cats and check out how I did them.

Levels with Different Shapes

The first graphical trick is a simple one. Instead of being completely rectangular, the levels are all different shapes.

[image: Image]

Creating levels with funky shapes

This trick is easy! I just made a totally black object and used it to fill the space outside the walls. So instead of the stages looking like big rectangles, they have unique shapes.

Four Types of Cats

The other graphical change is more complicated: instead of just one type of cat, there are four different kinds, as you can see here.

[image: Image]

Sleeping and awake cats

This trick involves creating sleeping and waking versions of all four kinds of cats, plus a generic cat object to put in levels. At the start of a level, each generic cat will randomly become one of the four kinds of cats. (Read through the RULES section in my finished version of the game to see how this happens!)

One note about the editor: if you rebuild the game after adding new objects, the level editor might get confused about what order the objects are in. Whenever you add a new object, click the Run button to make sure PuzzleScript updates correctly. Clicking Rebuild is still fine when you’re making changes within levels or to objects’ appearances.

What You Learned

Well, that’s it for Herding Cats! In this chapter, you learned how to use PuzzleScript’s level editor to tell stories, teach the player the rules, and challenge the player’s understanding of those rules.

Next, you’ll make a game called Robot Heist and learn how to create obstacles like lasers. You’ll also explore some clever ways to use the level editor to make your game more interesting. Soon you’ll be a PuzzleScript master!

 [image: Image]

4
Robot Heist: Creating Rules and Obstacles

In this chapter, you’ll build the Robot Heist game from the ground up. You’ll make two robot objects that the player will use to navigate each level. You’ll also create the backdrop and other objects, such as crates, guns, and panels. You’ll use PuzzleScript rules to make these objects interact with one another in interesting ways.

Recall from Chapter 2 that the RULES section in your code is where you write instructions to change one set of objects into another.

How Robot Heist Works

In Robot Heist, two robots work together to rob a Data Bank. Each robot has different capabilities, so the player needs to switch between them to solve puzzles. There are security robots and lasers to avoid, and a treasure to steal. You’ll find the game at http://tinyurl.com/robotheist/. This is what the game looks like.

[image: Image]

Example level in Robot Heist

The game begins with only one robot named Vertibot because we want the player to learn the basics before introducing a second robot. Vertibot can push objects vertically (up and down). Later in the game, the player meets another robot named Horibot that can push objects horizontally (left and right). To take advantage of their different pushing capabilities, the player must make Vertibot and Horibot work together to solve the game’s puzzles.

Brainstorming Objects and Interactions

Before I started working on my Robot Heist game, I thought carefully about what objects I wanted in the game. I didn’t just want objects that were cool: I wanted objects that worked together in intriguing ways. Choosing your game’s objects is like casting a play, and a play in which none of the characters talk to each other would be very boring.

[image: Image]

The objects I came up with were the robots (the player characters), crates to push, gates to open and close, security lasers, and patrolling guard robots. Each of these objects interacts with the others in the following ways:

Robots (the player) Robots can push crates and open gates. They need to avoid lasers and guards.

Crates Robots can push crates to block lasers or hold gates open. Crates can also block guards, so robots can put them in a guard’s path to confuse them.

Gates Robots and guards can open and close gates. Crates can be used to keep gates open. Gates block lasers when they’re closed but let lasers through when they’re open.

Lasers A laser will catch the robots if one of them tries to cross it, but robots can block a laser with a crate or a gate. Guards can block lasers as well, so the robots can sometimes sneak past while a guard is blocking the laser.

Guards Guards can open and close gates or block lasers. Guards can catch robots, so robots should avoid them. Robots can use crates to block the guards’ paths.

This is my cast of characters! Because I can make them all interact with each other, I should be able to make a lot of fun levels.

Getting Started

PuzzleScript remembers the last 20 versions you’ve saved, but it’ll forget any versions after that. You can click the Load menu at the top of the window to see your saved versions.

Before you start a new project, be sure to make a copy of the previous one! The easiest way to do this is to click Share as if you were sharing your game and keep a copy of the link. When you click the link, you should see the hack button that lets you access your game’s code again.

NOTE: You could also copy all the code and email it to yourself. Click the Export button to create an HTML copy of your game. To find the game code in your HTML file, open it using a plain text editor. The text between “sourceCode=” and “;compile” is your game code! Copy and paste the unformatted code into a free formatting tool like https://www.freeformatter.com/javascript-escape.html and then click UNESCAPE. You should now see the complete code of your game.

After you’ve backed up your old project, you can start the new one. Click Load Example▸Blank Project to start a new game from scratch.

[image: Image]

Creating a new project

Give your new game a title and an author. You can add these at the beginning of your code, like this:

title Robot Heist

author anna anthropy

Keep in mind that the title and author should go before your code’s OBJECTS section. Now that you’ve labeled your new game, you’re ready to start adding objects to the game.

Creating Objects

Objects are a very important part of your code because they outline all the items that make up your game. Whenever you add a new element to your game, you’ll follow these steps to create an object for it in your code’s OBJECTS section.

	Add an object to the OBJECTS section, giving it a name and appearance.

	Add the object to the LEGEND section so it appears in the level editor.

	Add the object to the COLLISIONLAYERS section. PuzzleScript won’t run if there are objects that don’t have a collision layer, because it won’t know what to do if they touch another object.

	Write the rules that tell PuzzleScript what the object should do.

To start, let’s add the most basic objects we need: a background and some sort of solid wall.

=======

OBJECTS

=======

Background

Green

Wall

LightGreen DarkGreen

00001

00001

00001

00001

11111

Your background and wall can look like these, or you can use your own colors. Keep in mind that if you give an object just a color but no numbered pixels, the object will just look like a solid square of that color. For example, in the example level shown at the beginning of this chapter, I made the background Green without including numbered pixels, which means it will be a solid green. But I list two colors for the wall: LightGreen and DarkGreen. Then I use a grid of numbers below that to specify that the outer pixels will be in dark green to make a border around the light green interior.

Before we can use these objects, we need to add them to the LEGEND section.

Creating the Legend

Adding an object to the legend makes it appear in the level editor so we can draw with it. Let’s add the background and wall to the LEGEND section and assign a symbol to each, as shown here:

=======

LEGEND

=======

. = Background

= Wall

Not all objects need to be in the legend. For example, some objects never appear at the very start of a level, so we don’t need them in the level editor. We’ll make some objects like that soon.

Now add your new objects to the COLLISIONLAYERS section:

================

COLLISIONLAYERS

================

Background

Wall

Keep in mind that objects collide with each other only if they’re on the same collision layer. Because the background and wall objects are on different layers (each on its own line of code), they can share the same space without colliding. This allows the wall to sit on top of a background tile, which acts as the floor.

We don’t need to add any rules for these objects, because we don’t need them to do anything but display on the screen. Any other solid object we add from this point forward will need to be on the same collision layer as the wall because the walls should be able to block other objects from moving through them.

Now that we have our basic building blocks, we can run our game, right? Not so fast! PuzzleScript won’t let you run a game unless it has a player object. Let’s figure out how our two player robots are going to work!

Player Swapping

Think about what we need the player objects to do. We want two robots that are onscreen at the same time, but the player can control only one at a time. The player can switch between the two robots at any time.

[image: image]

One way to think about this scenario is that only one robot is awake at any given time while the other one is asleep. (Just like the cats in Herding Cats!) When the player presses the action key, the sleeping robot wakes up and the awake robot goes to sleep.

We can program the action key (either X or the spacebar) to do whatever we want, and the player can press it during the game. In our game, we’ll use the action key to allow the player to switch between robots. This means we need four objects in total to pull off this wacky scheme. Because we have two different robots, each needs two possible states: awake or asleep.

Our robots will also need something to push around, so let’s make a crate object while we’re creating the four robot objects. Add the four robot objects and the crate object to your game, using the following code.

Vertibot

blue pink

.000.

.101.

.000.

.111.

.000.

VertibotSleeping

blue gray

.000.

.101.

.000.

.111.

.000.

Horibot

orange blue

.....

01010

00000

01110

.....

HoribotSleeping

orange gray

.....

01010

00000

01110

.....

Crate

yellow brown

00000

01110

01110

01110

00000

As you can see, I drew the Vertibot to look tall and thin and the Horibot to look short and stout to make it easy to tell them apart. I made the sleeping version of each robot look different from the awake version by making the sleeping robots gray. The player should be able to tell just by looking at the colors which robot is awake and which is asleep. The crate is a square object that has a yellow border around its brown interior.

Updating the Legend

Now we need to put our new objects in the legend so we can use them in our levels. I picked the letter I for Vertibots because it’s tall and vertical and an H for Horibot. Let’s update the LEGEND section, as shown here:

=======

LEGEND

=======

. = Background

= Wall

I = Vertibot

H = HoribotSleeping

* = Crate

Any objects we add to the legend should now appear in the level editor. You might notice that we only added two robot objects to the legend: the awake Vertibot and the asleep Horibot. The reason is that what we’re drawing in the level editor is the starting position for each level. In other words, we’re designing the way the level looks at the very beginning of play. Whenever a level begins, one robot should be awake and the other asleep. For consistency, I decided that at the start of each level, Vertibot will always be the robot that’s awake and Horibot will always be asleep.

PuzzleScript won’t let us run our game until we have a player object. Without it, PuzzleScript won’t know which of the two objects to move when the player presses the keys. Fortunately, the legend lets us define groups. You can use a group to contain multiple objects, which you can then refer to by the same name. For example, we can create a group called Player and add both robots to it by adding the following code to the LEGEND section:

Player = Vertibot or Horibot

By writing Vertibot or Horibot, we specify that only one of the awake versions of the robots counts as a player. Because VertibotSleeping and HoribotSleeping don’t count as players, they won’t move when the player runs the game.

PuzzleScript lets you have as many players onscreen as you like at the same time. But in our game, the two robots won’t ever be awake at the same time. Whichever one is awake will act as the player and move when the player presses the arrow keys.

Updating the Collision Layers

Because PuzzleScript won’t run if an object doesn’t have a collision layer, we need to put all our newly added objects into the COLLISIONLAYERS section. We want the robots to bump into walls and to be able to push crates around, so we should make sure the robots, crates, and walls are all on the same collision layer, as shown here:

================

COLLISIONLAYERS

================

Background

Wall, Vertibot, VertibotSleeping, Horibot, HoribotSleeping, Crate

Right now, the only object that should be on a separate collision layer is the background, which is on its own line of code. Save your game, and click Rebuild to make sure everything in your game works. If it does, a Successful Compilation message should appear under the game window.

[image: image]

Successful Compilation message

If something is wrong with the code, such as if any of the objects are not in the COLLISIONLAYERS section or if you forgot to add a player to the LEGEND section, you might see a bright red error message pop up that looks like this.

[image: image]

Compilation Error message

We’re done updating the COLLISIONLAYERS section, so let’s create an action key that allows the player to switch between robots.

Writing Rules to Switch Characters

As mentioned earlier, we can program an action key to do whatever we want it to. Pressing either the X key or spacebar triggers action in PuzzleScript. The player can use whichever one they’re more comfortable with. While the player uses the arrow keys to move around, they can use the action key to jump, pull a switch, put on a hat, or do whatever the rules say happens when the player presses the action key.

In our game, the action key will switch between characters by waking up one robot and putting the other to sleep. Keep in mind that the action key won’t do anything until we write rules telling PuzzleScript what it should do. So let’s add the following rules in the RULES section:

======

RULES

======

(switching characters)

[action Horibot] [VertibotSleeping] -> [HoribotSleeping] [Vertibot]

[action Vertibot] [HoribotSleeping] -> [VertibotSleeping] [Horibot]

PuzzleScript ignores anything in parentheses, so (switching characters) is just a note to me to help me remember what this part of the code does when I look at it later.

The two lines of code below the note check to see when the player presses the action key and then switches each robot to its sleeping and awake state. In PuzzleScript, the action key is based on a condition, just like movement. For example, if > Horibot represents a moving Horibot, action Horibot represents a Horibot that’s doing the action.

If the awake Horibot has the action condition, it becomes HoribotSleeping, and VertibotSleeping becomes Vertibot, the awake version. And if Vertibot is the one doing the action, then it goes to sleep and the sleeping Horibot wakes up.

Note that because the characters are enclosed in separate square brackets, they don’t need to be next to each other for the switching rule to work. In PuzzleScript rules, we use sets of brackets to group objects together. A series of objects in the same set of brackets, divided by a vertical bar, indicates objects that are next to each other on the level’s grid (for example, [Vertibot | HoribotSleeping]). If we put the two objects together without the vertical bar, it means the two objects are sharing the same space (for example, [Vertibot Background]). We’ll talk more about this format shortly!

If we put one object in its own set of brackets and one in another set of brackets, that just means two objects are in two different grid spaces (for example, [Vertibot] [HoribotSleeping]). They could be next to each other, or they could be across the level from each other. All PuzzleScript checks for is that they’re on the same level at the same time.

But because both characters are listed in each rule, they both need to be in the same level for the switch to work. This automatically means that if only one character is in the level, the program will ignore these rules. That’s perfect if we want to design levels with only one of the characters, like we do in this case!

Note that even if the objects are in different places, there need to be as many objects on the left side of the rule as on the right side. If you entered [Vertibot] [HoribotSleeping] -> [VertibotSleeping], PuzzleScript would give you an error message. It wouldn’t know what to do with HoribotSleeping!

Let’s take a moment to make sure the rules we wrote are working.

Building a Test Level

To test our rules, we’ll create a quick test level to make sure everything in the game works so far. Enter this text in the LEVELS section:

======

LEVELS

======

#########

#.......#

#.I...H.#

#.......#

#...*...#

#.......#

#########

This level includes all the objects we’ve added so far. Recall from the legend that the I and H are the robots, the * is a crate, the # is the wall, and the . is the background. Click Save and then click Run. Now when you start the game, you should see something like this.

[image: image]

Test level

This level doesn’t look as pretty as it will in the finished game, but for now we just want to make sure the basics work. Try pressing the arrow keys to move the characters around and X or the spacebar to switch between them. Move one character around, switch to the other, move that character around, and then switch back. The robots shouldn’t be able to move through the walls or the crate because they’re on the same collision layer.

But we don’t want the crate to simply stop the robots. We want the robots to be able to push the crate around! Let’s add a few rules to make that happen.

Adding Pushing Rules

Here are some rules that let both robots push crates:

(pushing)

horizontal [> Horibot | Crate] -> [> Horibot | > Crate]

vertical [> Vertibot | Crate] -> [> Vertibot | > Crate]

This rule is similar to the one we saw in the demo game in Chapter 1 except this one includes horizontal and vertical. A PuzzleScript rule is applied in four different directions. We can specify which direction to apply a rule by giving PuzzleScript a specific direction, like left or right or down. In this case, horizontal means left and right, and vertical means up and down. This rule tells the program that a moving Horibot can only move a crate left and right, and a moving Vertibot can only move a crate up and down.

Click Save and then click Rebuild. Try pushing the crate around. Each robot should be able to push the crate in two directions: left and right horizontally or up and down vertically.

Making Groups of Pushable Objects

Now our robots can push crates, but what if the awake robot could push around the robot that’s asleep? This would create even more chances for teamwork and would cut down on traffic jams. For example, if the sleeping robot is in the way of the awake robot, instead of having to switch to the sleeping robot to move it, the player could just push it out of the way.

In the legend, we used a group to tell PuzzleScript that both Vertibot and Horibot count as players. Similarly, we can update the legend to say that crates and sleeping robots count as pushable objects. Note that the pushable group is a group we’re making up. The word “pushable” doesn’t mean anything to PuzzleScript until we tell it what it means. After we define a pushable group, we can write rules telling the robots to push pushables in general instead of just crates.

Add this line to the LEGEND section to tell PuzzleScript that crates and sleeping robots all count as pushables.

Pushable = Crate or VertibotSleeping or HoribotSleeping

[image: image]

Now when we write a rule using the word Pushable, we tell PuzzleScript to check for any of those three objects. Let’s go back and change the pushing rules we wrote earlier so they check for pushables instead of crates. Replace all instances of Crate with Pushable so the code looks like this:

(pushing)

horizontal [> Horibot | Pushable] -> [> Horibot | > Pushable]

vertical [> Vertibot | Pushable] -> [> Vertibot | > Pushable]

A robot that is moving toward an object can now push that object if it’s defined as Pushable, which includes crates and the robot’s sleeping partner. Click Rebuild and try it out. Of course, Horibot should only be able to push a sleeping Vertibot horizontally, and Vertibot should only be able to push a sleeping Horibot vertically.

Allowing Characters to Push Multiple Objects

What happens when you try pushing the crate into a sleeping robot or a sleeping robot into the crate? It stops, and you can’t push it any farther. As they are now, the rules only allow a character to push a single pushable at a time. But the ability to push in one direction or the other is each robot’s only superpower. So they should be able to push as many objects as they want, as long as it’s in the right direction.

To allow robots to push multiple objects at a time, add this line of code to the RULES section, under the pushing rules we already have:

(pushing)

horizontal [> Horibot | Pushable] -> [> Horibot | > Pushable]

vertical [> Vertibot | Pushable] -> [> Vertibot | > Pushable]

[> Pushable | Pushable] -> [> Pushable | > Pushable]

Note that this rule isn’t directional because Vertibot and Horibot already have rules telling them which directions they can push. Remember that PuzzleScript runs rules in order from top to bottom, and we want this new rule to happen after pushing starts. The rule checks whether one pushable is being pushed into another, and if it is, the rule tells the second pushable to move in the same direction. And because PuzzleScript can run each rule as many times as possible, if the second pushable is pushed into a third, that third one will also move in the same direction, and so on. Now our robots can push as many objects as they want, as long as there’s room.

Creating Win Conditions

How does the player win a Robot Heist level and go on to the next one? We can specify this by defining our win condition. In our game, a player satisfies the win condition, or completes a level, when both characters make it to the exit, which is a physical location in the level.

To add this condition to Robot Heist, we first need to make a new Exit object, as shown here.

Crate

yellow brown

00000

01110

01110

01110

00000

.....

Exit

white black

01010

10101

01010

10101

01010

When the robots are on the exit, the level is finished! I made my exit look like a black-and-white checkered flag.

[image: image]

Add the Exit object to your LEGEND section, like this:

=======

LEGEND

=======

. = Background

= Wall

I = Vertibot

H = HoribotSleeping

* = Crate

X = Exit

Player = Vertibot or Horibot

Pushable = Crate or VertibotSleeping or HoribotSleeping

Of course, I used X for Exit.

Adding Exit to a Collision Layer

As with every object we add to a game, we need to assign Exit to a collision layer. But we’ll put it on a different collision layer than the robots because we want them to be able to stand on top of the exit. You can think of the exit as a checkered pattern painted on the ground at the end of a racetrack. Update the COLLISIONLAYERS section like this:

================

COLLISIONLAYERS

================

Background

Exit

Wall, Vertibot, VertibotSleeping, Horibot, HoribotSleeping, Crate

The placement of Exit gives it its own layer, which means the other objects won’t be able to collide with it. In fact, the higher up an object is in the COLLISIONLAYERS section’s list, the farther back it will be drawn in the game. For example, the background layer in the game is all the way in the back. The exit layer is in front of the background layer, and the solid objects (robots and crates) layer is in front of the exit layer.

Now we’re ready to write the win condition. It should state that both robots need to be on the Exit object to win the level. We could try something like this:

==============

WINCONDITIONS

==============

all Vertibot on Exit

all HoribotSleeping on Exit
But this condition will work only if Vertibot is awake and Horibot is asleep. What if the opposite is true? Or what if only one of the robots is in the level? We need code that’s a little more versatile.

Creating the Buddy Group for the Win Condition

Fortunately, we can use groups for the win condition too. Just like we made a pushable group to turn crates and sleeping robots into pushable objects, we can make a new group to make robots count as the same thing, whether they’re sleeping or awake. Let’s update the legend by adding the following line:

Player = Horibot or Vertibot

Pushable = Crate or HoribotSleeping or VertibotSleeping

Buddy = Player or HoribotSleeping or VertibotSleeping

Note that because Player already includes Horibot and Vertibot, we can just use Player to create a new group called Buddy that includes both robots. Now, whenever we refer to a Buddy, we’re referring to any robot in either state, asleep or awake.

Let’s update our WINCONDITIONS section using Buddy:

==============

WINCONDITIONS

==============

all Buddy on Exit

The code all Buddy refers to all Buddy objects currently in the level. If there’s only one robot in a level, all Buddy means just that one robot. If both robots are in the level, all Buddy means both of them. Because sleeping and awake robots count as Buddy objects, it doesn’t matter what state they’re in. As long as all the Buddy objects in the current level are on an Exit object, the win condition is satisfied.

One more thing! To make sure that both robots can fit on the exit, each level needs to have at least two Exit spaces. Add two Exit spaces to your level, as shown here:

======

LEVELS

======

#########

#.......#

#.I...H.#

#.......#

#...*...#

#X.....X#

#########

You can either add two Xs to your LEVELS section code, or you could add the Exit spaces using the level editor (see Chapter 3 to review how to do this). Here’s what the updated level should like:

[image: image]

Creating exits for each robot

Now that we’ve created Exit objects and defined our win condition, let’s make our game even more fun to play by creating gates that open and close.

Making Gates That Open and Close

We decided that creating gates that open and close would help foster teamwork between the two robots. Because these gates can open only when a robot is holding them open, one robot must hold the gate open while the other goes through.

Gates are a great idea for our game, but how do they actually work? To keep the idea simple, you can think of a gate as a type of wall that can be turned on and off. When it’s on, it’s in the same collision layer as the robots and other solid objects, acting like a wall. But when it’s off, it’s on another collision layer, so the robots can walk over it. In its off state, the gate acts more like a floor.

We also need some sort of trigger, or switch, for the gate opening and closing. Have you ever seen a movie where someone steps on a hidden panel in the floor, and then a secret passage opens or a bunch of poison darts fly out of the wall? We’ll use this idea to make our trigger a switch panel that robots can step on to open gates. This is a good solution because it means that other solid objects, like crates and guards, can also activate these switches. When the game finds a solid object on top of a panel, the gates will be in floor mode. If there’s no object on a switch panel, the gates will be in wall mode.

[image: image]

Creating the Gate Objects

We’ve identified three different objects we need to make our gates work. Similar to how we have two versions of each robot (asleep and awake), we need two versions of our gate: open and closed. We’ll put the closed version on the same collision layer as the robots. The open version will be on a different collision layer. The third object we need is the trigger panel that opens the gates.

Let’s start by adding these objects to our game and describing what they look like.

GateClosed

blue darkblue

00001

00001

00001

00001

11111

GateOpen

darkblue black

00001

00001

00001

00001

11111

Panel

blue

00000

0...0

0...0

0...0

00000

Creating gates and panel objects

When objects work together in some way, like the panel and the gate, it’s a good idea to make them look similar. This helps the player make the connection between the two objects. Here, I made GateClosed and Panel in the same color so they match. I also made GateOpen blue but in a darker shade so it’s similar to the background. This will let the player know they can pass over it.

Adding the Gates to the Legend and the Collision Layers

Now we need to add these objects to the legend so we can use them in the level editor. I chose the letter T (T) for the gate because it looks kind of like a fence and a forward slash (/) for the panel because it looks like a lever you might pull.

T = GateClosed

/ = Panel

We don’t need a symbol for an open gate because the gates will start out closed, and we’re only defining the start of each level.

Finally, we need to add our new objects to the COLLISIONLAYERS section. Update the COLLISIONLAYERS section by adding the highlighted objects, like this:

Background

Exit, Panel, GateOpen

Wall, Vertibot, VertibotSleeping, Horibot, HoribotSleeping,

Crate, GateClosed

Because we want the robots to be able to step on or walk through the panel and any open gates, they’re in a different layer than the robots. But we want the robots to collide with closed gates, so GateClosed is in the same layer as the robots. Keep in mind that the closer a collision layer is to the top of the list, the farther back it is. This is why we need to make sure that the objects the robots can step on appear above the robots in code, not below.

Writing Rules for Gates

Now we can write the rules that tell our panels and gates what to do. So how do our gates work?

	Solid object on a panel means gates are open

	No solid object on any panels means gates are closed

Which solid objects can activate a panel? The robots, definitely, and crates, so robots can use them to keep gates open. It’d be fun to have guards operate panels, too. It sounds like we need a new group to contain all the objects that can activate a panel. Let’s define a new group called Depressor by adding the following to the legend (I’ve called the group “Depressor” because these objects can depress a panel in the floor, not because they’re depressing):

Depressor = Player or Pushable

Again, I use two groups I’ve already defined to name all the objects I want to include in the Depressor group. The first is Player, which includes the awake versions of both robots, and the second is Pushable, which includes the sleeping versions of both robots, plus crates. This is handy because if I ever introduce another pushable object, I only need to update the Pushable group. Because the Pushable group is in the Depressor group, it will get updated automatically!

[image: image]

Now let’s translate our ideas into rules PuzzleScript can understand by adding the following code:

(gates)

late [Panel no Depressor] [GateOpen] -> [Panel no

Depressor] [GateClosed]

late [Panel Depressor] [GateClosed] -> [Panel Depressor]

[GateOpen]

The first rule states that when there’s no depressor on a panel, open gates should change to closed gates. The second rule states that when there is a depressor on a panel, closed gates should change to opened gates.

Recall how we check for two objects next to each other. For example, in [SleepingCat | WakerUpper] the vertical bar indicates that the two objects are in two different spaces but right next to each other. So if we don’t use a line to separate two objects, that would mean that they’re in the same space. So [Panel Depressor] means that the space contains a panel and a depressor stepping on that panel. Similarly, [Panel no Depressor] means that there’s a panel in a space with no depressor on top of it. Naturally, two objects can share the same space only if they’re on different collision layers, which is why we put the panels and the depressors on different collision layers in the previous section.

When we put two separate, bracketed items next to each other, like [Panel Depressor] and [GateClosed], it means we’re looking for both states occurring at the same time anywhere in the level but not necessarily next to each other. So [Panel Depressor] [GateClosed] checks for instances where there’s a depressor on a panel anywhere and a closed gate anywhere. If that condition is met, we transform the closed gate into an open one.

The full rule is late [Panel Depressor] [GateClosed] -> [Panel Depressor] [GateOpen]. Notice that on the right side of the arrow, GateClosed has changed to GateOpen, but the panel and the depressor haven’t changed. We don’t want them to change, so to indicate that to PuzzleScript, we write them in the same way on both sides of the arrow.

Also, notice that both rules are late. You learned in Chapter 3 that late rules happen after movement, not before. Because we want gates to open after a robot has stepped onto a panel, we run this rule late.

Testing the Gates

Let’s build a new test level to make sure our gates and panels work the way we want. I drew a level with both robots, a long gate, a panel, and a crate for the robots to push onto the panel, as shown here:

###########

#.......T.#

#.i.....T.#

#.......T.#

#...*...T.#

#.......T.#

#.h.../.T.#

#.......T.#

###########

You can either type this in to the LEVELS section manually, or you can use the level editor. (Press E to switch into editing mode, and then click the S button in the corner to see a text version of your level.)

Now playtest your level. Playtesting is about trying as many features as possible in the game to make sure they work. Try to do as many actions as you can think of to see how the code handles different scenarios. Imagine you’re a detective, carefully trying to find the hidden bugs. There’s one in the game right now. Can you find it?

To find the bug, have one robot stand on the panel and hold the gate open. Next, move the other robot on top of an open gate.

[image: image]

Holding a gate open

Then have both robots stand right on top of the open gate. Finally, switch back to the first robot and have them step off the panel. What happens?

Boosh! The robot disappears forever because the closed gate object is on the same collision layer as the character object. Two objects on the same collision layer can’t share the same space, so when the open gate becomes a closed gate, the robot disappears.

[image: image]

Finding the bug

To fix this bug, we need to tell PuzzleScript to do something normally except in a specific case. In this case, we want the GateOpen to become a GateClosed except when there’s already a depressor on top of it. In other words, when a depressor is on top of an open gate, the gate should not close to prevent the depressor from disappearing.

Let’s update our rule with this exception by changing [GateOpen] to [GateOpen no Depressor], as shown here:

(gates)

late [Panel no Depressor] [GateOpen no Depressor] ->

 [Panel no Depressor]

 [GateClosed]

Updating the rule to [GateOpen no Depressor] tells PuzzleScript that if no depressor is on top of a panel, only the open gates without a depressor on them should close, except any that have depressors standing on them. Click Rebuild to rerun your game, and try to replicate the bug by trying to do the same action that caused the robot to disappear previously. Now when an object is on top of an open gate, for example, the gate won’t be able to close, even when another object is activating the switch. But when nothing is on top of the open gate, the gate should close.

Adding the Security Lasers

Now that we’ve created crates and gates, and written rules for how they interact, we’re ready to introduce security lasers, a threat that the robots can avoid using the gates and crates! To do this, we’ll make a laser gun that shoots out lasers at every turn. If a laser hits a robot, the player loses! But if the laser hits another solid object, like a crate or gate, it’ll stop there.

Creating the Laser Objects

Let’s start by drawing our objects. We’ll need three objects:

Gun

grey darkgray

..0..

.101.

00100

.101.

..0..

LaserVertical

red

..0..

..0..

..0..

..0..

..0..

LaserHorizontal

red

.....

.....

00000

.....

.....

The laser gun (Gun) is shaped like a cross, and the two lasers (LaserVertical and LaserHorizontal) are beams of red light. The vertical laser, as you can imagine, fires up and down, and the horizontal laser fires left and right.

Adding Lasers to the Legend

Because we only need to add objects to the legend that will be at the very beginning of the level, we only need to add the guns, which definitely will be at the start of the level. The lasers appear only when the guns fire them, so we don’t need to give them a symbol here. I used a plus sign (+) to represent the gun because it’s also plus-shaped.

+ = Gun

Can you think of any groups we should add to the legend before we start writing our rules? For example, it would be useful to create a group for objects that block the laser, like walls, closed gates, and crates. We’ll group these objects into a new group called Blocker, as shown here:

Blocker = Wall or GateClosed or Crate or Gun

This line tells PuzzleScript that the Wall, GateClosed, and Crate will all be able to block the lasers. We don’t use the Pushable group here because it includes Vertibot and Horibot in their sleeping forms, and we want them to trigger an alarm if a laser hits them. Note that we also want the Gun to be able to block lasers, because we want the lasers to shoot from our guns, not through them.

Because we have two different kinds of lasers, let’s add them to the group Laser to easily refer to both. This should make it easier to check whether something has been hit by a laser. Without this group, we’d have to do two separate checks, one for each kind of laser.

Laser = LaserVertical or LaserHorizontal

Adding Lasers to the Collision Layers

Now let’s add our new objects to the COLLISIONLAYERS section.

Background

Exit, Panel, GateOpen

LaserVertical

LaserHorizontal

Vertibot, VertibotSleeping, Horibot, HoribotSleeping, Crate,

Wall, GateClosed, Gun

We place the gun on the same layer as all the other solid objects that the robots can bump into. The different lasers are on different layers because we want the laser beams to be able to pass through the solid objects.

Notice that each laser is on its own collision layer. The reason is that if they were on the same layer, the vertical laser beam would be able to block the horizontal laser, and vice versa! In real life, lasers are just beams of light, and one laser can’t block another, or can it? If any scientists are reading this, please let me know!

Writing Laser Rules

The laser objects we made are just a single piece of a laser beam, which is big enough to fit only a single space in a given level. If we put a bunch of them in a row, we’ll have a much longer laser. We want the lasers to keep going until they hit a Blocker. The following rules make this happen:

(lasers)

horizontal [Gun | no Blocker] -> [Gun | LaserHorizontal]

vertical [Gun | no Blocker] -> [Gun | LaserVertical]

First, we need to make the laser guns fire. A gun fires laser beams in whatever directions aren’t blocked by a blocker. PuzzleScript checks a rule in all four directions (up, down, left, and right) unless you tell it to do otherwise. We don’t want the horizontal lasers to shoot up and down or the vertical lasers to shoot left and right. So we tell PuzzleScript that horizontal lasers fire horizontally and vertical lasers fire vertically using horizontal and vertical, respectively.

In this case, horizontal [Gun | no Blocker] -> [Gun | LaserHorizontal] checks that there’s no blocker next to a gun, and if this is true, the space next to the gun turns into a horizontal laser beam. We use the same idea for the vertical laser beam.

Testing the Lasers

Let’s return to our LEVELS section to test our laser rules. Add a laser to the test level by updating the code to look like this:

#############

#.......T...#

#.i.....T...#

#.......T.+.#

#...*...T...#

#.......T...#

#.h.../.T...#

#.......T...#

#############

I’ve put the laser behind the gate so I can test whether gates block lasers like they’re supposed to. Click Rebuild to run the game, and you should see something like this.

[image: image]

Test level with laser gun

[image: image]

As you can see, the lasers fire, but the beams extend only a single space in each direction. The laser beams are too short! We need to add a rule that makes the beams extend until they eventually hit a blocker. All the objects in PuzzleScript are the same size. To create a longer laser, we’ll put a bunch of laser objects in a line. We need to add a rule that does that.

Again, we’ll create separate rules for vertical and horizontal lasers. If every laser extended in every direction, it would be extremely dangerous, as you can imagine. Instead, we’ll extend horizontal lasers left and right and extend vertical lasers up and down. Add the following lines of code below your existing laser rules:

(lasers)

horizontal [Gun | no blocker] -> [Gun | LaserHorizontal]

vertical [Gun | no blocker] -> [Gun | LaserVertical]

vertical [LaserVertical | no blocker] -> [LaserVertical |

LaserVertical]

horizontal [LaserHorizontal | no blocker] ->

[LaserHorizontal | LaserHorizontal]

These additional rules check for empty spaces next to the laser beams. As we did when we checked for a panel with no depressors on it using [Panel no Depressor], we use [LaserVertical | no blocker] to check for a laser with no blocker objects next to it. If there’s no blocker in the space next to the laser beam, we extend the laser into that space by changing no blocker to a LaserVertical or LaserHorizontal. But if there is a blocker in the space, the rule would stop there.

PuzzleScript runs a single rule over and over until it stops before moving on to the next rule. So this rule continues to run for all adjacent spaces in a laser’s path as long as there’s no blocker in those spaces. As a result of this rule, a continuous laser beam shoots out from the gun horizontally and vertically.

To test the updated laser rules, click Rebuild and check whether the laser beams extend to the wall. Also, try using the panel to open the gate. The laser should extend through the opened gate.

Fixing the Laser Bug

There’s still a problem with the lasers. If you step off the panel, the gate closes and blocks the laser, but the laser beam continues on the other side of the gate.

[image: image]

Test level showing a laser bug

[image: image]

The game design process often involves adding some code to your game, checking how it works, making little changes, and then checking it again. Every time we do this, we get a little closer to making our game exactly how we want it. In this case, we need to tweak our laser rules so a closed gate completely blocks a laser beam.

To do that, we need to remind ourselves what a single turn in a PuzzleScript game looks like. PuzzleScript runs a turn whenever the player presses a key (either the arrow keys or the action key). This is what happens in a turn:

	PuzzleScript marks any player objects that are trying to move (in the rules, this looks like > Vertibot instead of Vertibot).

	PuzzleScript runs every rule in order from top to bottom as many times as it can.

	Anything marked to move moves.

	PuzzleScript runs any late moves in order from top to bottom as many times as it can.

The problem with our current rules is that we never get rid of lasers after they’re cut off by a blocker object. Let’s add the following rule that does that:

(lasers)

[laser] -> []

horizontal [Gun | no blocker] -> [Gun | LaserHorizontal]

vertical [Gun | no blocker] -> [Gun | LaserVertical]

vertical [LaserVertical | no blocker] -> [LaserVertical |

LaserVertical]

horizonta l [LaserHorizontal | no blocker] -> [

LaserHorizontal | LaserHorizontal]

Here, we use the laser group we defined earlier. This simple addition tells PuzzleScript that any laser beams no longer attached to a gun should disappear. The rule also tells PuzzleScript to change the lasers into empty spaces to get rid of the laser beams after they’ve been blocked by a closed gate. Then PuzzleScript creates new lasers that extend out to erase all the lasers left over from the previous turn. The square brackets represent an empty space, so [laser] -> [] tells PuzzleScript to find all the laser objects and get rid of them. Then, we’ll redraw our lasers based on the current layout of the level.

Click Rebuild and run this test again! Try standing on and moving off the panel a few times. We’re a bit closer, but the program is still a little wonky. When the robot steps off the panel, the beams are cut off, but it doesn’t happen until the next turn!

[image: image]

Fortunately, there’s an easy solution to fixing this delay. On any given turn, PuzzleScript runs through each rule and then objects move according to the rules. Right now the rules governing our lasers are happening before the robots move on or off of the panel. Let’s make sure those rules happen after movement, which we can accomplish by simply making the laser rules happen late, as shown here:

(lasers)

[laser] -> []

late horizontal [Gun | no blocker] -> [Gun |

LaserHorizontal]

late vertical [Gun | no blocker] -> [Gun | LaserVertical]

late vertical [LaserVertical | no blocker] -> [

LaserVertical | LaserVertical]

late horizontal [LaserHorizontal | no blocker] -> [

LaserHorizontal | LaserHorizontal]

Notice also that the lasers don’t fire immediately. They wait until after you’ve made a move and then fire. To have the lasers begin firing right away, just add run_rules_on_level_start to the very beginning of your PuzzleScript code, under the name of your game, as shown here:

title Robot Heist

author anna anthropy

run_rules_on_level_start

norepeat_action

You might have noticed when you hold down the action button to switch characters, the selection flickers back and forth quite quickly. The norepeat_action command makes sure the action button switches character only once, no matter how long you press it.

When you’re done, try the following challenges.

Bonus Challenges

Try making four different lasers, each of which shoots in only one direction: up, down, left, and right.

In the finished Robot Heist game, there are two kinds of gates and panels, pink and blue. There are also some gates that close instead of open when a Depressor steps on a panel. See if you can figure out how to do this in your own game!

If you need help, try clicking the hack link in Robot Heist (http://tinyurl.com/robotheist/) to see how this code works.

What You Learned

So far you successfully created the basic building blocks of the Robot Heist game, including the two robot objects the player will use to navigate the level, the background and wall that provide the backdrop, and other objects, such as crates, guns, and panels. You learned to write rules for each of these objects so they interact with one another in interesting ways. You also created obstacles, such as lasers, which some objects can block. But right now, our lasers aren’t a real threat because they don’t do anything.

In the next chapter, you’ll explore the concept of losing in game design and learn how to raise the stakes for the player. You’ll also explore PuzzleScript’s “realtime” mode by creating obstacles that move on their own. See you there!

 [image: image]

5
Robot Heist: Creating Consequences for Losing

Now that our game has lasers, danger is a possibility, which means there’s the potential for the player to lose. What does losing mean in a game?

In Herding Cats, the player could get stuck and have to restart the level, which was a form of losing. In that case, when players make a mistake, they need to try again. So one way to think of losing is as a process by which the player learns. Every time the player makes a mistake, they learn what not to do next time. We used the same thought process when we were figuring out how to make our lasers work. A good game always makes it clear to the player what they did wrong.

Do all games need to let the player lose? Not at all! Some games are just about exploring, telling a story, or petting a dog. Can you lose the experience of petting a dog? Losing doesn’t make sense in some contexts.

[image: image]

Robot Heist, on the other hand, is about trying to break into a bank without being detected. The possibility of getting caught makes the game more exciting and tense. Because the players can lose if they’re not careful, they can also feel like they’ve outsmarted the game when they succeed. Feeling challenged gives the player the opportunity to overcome obstacles, which can motivate them to beat the game. Let’s look at how to make losing feel like losing.

Getting Caught

What does getting caught look like in Robot Heist? Remember that losing is the process of making mistakes and learning from them. We should make sure that when the player loses, they understand that they made a mistake and they should understand what the mistake is. That’s the only way they’ll learn.

Click Rebuild and try moving a robot through a laser. What happens? Nothing!

We need to decide what losing looks and sounds like when a laser hits a robot. Perhaps an alarm should go off when the robots trip a security laser? We can play an alarm noise to let the player know they did something wrong.

The player also needs to know what they did wrong so they can change their strategy. We’ll let the players know by making them stop in their tracks when they’re caught. That way, if they were caught stepping into a laser, the player can see that was the mistake. We’ll turn both robots red (because they’ve been caught red-handed) to show they can no longer move. Even if only one robot is spotted, when the alarm goes off, the jig is up for both of them.

We’ll need to add two new objects to the game to serve as the caught, red versions of each robot, as shown here.

VertibotCaught

red darkgray

.000.

.101.

.000.

.111.

.000.

HoribotCaught

red darkgray

.....

01010

00000

01110

.....

VertibotCaught and HoribotCaught are just Vertibot and Horibot colored red. We don’t need to worry about adding these new objects to the legend, because the robots will never start a level already caught: that would be a very hard game to win!

Let’s think about whether we can add any groups to the legend at this point to make writing our rules easier. If the awake robot walks into a laser, the sleeping robot should get caught too. Therefore, it shouldn’t matter whether the robot is awake or asleep. So let’s make groups that let us refer to each robot regardless of what state they’re in.

Add these two groups to the LEGEND section:

Vbot = Vertibot or VertibotSleeping

Hbot = Horibot or HoribotSleeping

We call the groups Vbot and Hbot because Vertibot and Horibot are already being used; they refer to the awake robots. Here, we tell PuzzleScript that Vertibot and VertibotSleeping count as Vbot, and Horibot and HoribotSleeping count as Hbot. Now we can use Vbot and Hbot to check whether the robots are caught and whether they’re awake.

Next, we need an alarm sound.

[image: image]

Adding Sound Effects

Our “You got caught!” sound doesn’t need to sound exactly like an alarm, but it should sound menacing! When a player hears it, they should immediately know there’s trouble. Click the sound effects buttons until you find a sound you like (try the *, :(, or ? button). Then copy and paste the sound into the SOUNDS section of your script. Alternatively, you can copy the numbers as shown here:

=======

SOUNDS

=======

sfx0 72277508

In PuzzleScript, each sound is a set of numbers. We have to give our sound a name before we can use it. We’ll call this sound sfx0, and when we add this name to a rule, the sound should play whenever the rule runs.

Adding Caught Robots to the Collision Layers

Now we’re ready to put the caught robot objects on collision layers. Try doing that on your own! Make sure you add them to the same collision layer as the other robot objects.

Click Rebuild, and just to be safe, make sure there are no errors! If you forgot to add the new objects to the COLLISIONLAYERS section, you might see an error message like this below the game window:

[image: image]

An error message

Usually, an error message tells you what you forgot to do. In this case, it’s clear that the error is caused by the objects not being assigned to a collision layer. If this is what you see, go to the COLLISIONLAYERS section and make sure to add the objects!

Writing the Rules for Getting Caught

Let’s write some rules to make the robots turn into their caught forms if they touch a laser. Keep in mind that you can show that two objects are in the same space by putting them both in square brackets with no vertical bar dividing them. Because it doesn’t matter whether the robots are asleep or awake when they get caught, we’ll simply use the Vbot and Hbot groups that we created earlier. Add the following lines under your existing code in the RULES section:

(getting caught)

late [Vbot Laser] -> [VertibotCaught] sfx0

late [Hbot Laser] -> [HoribotCaught] sfx0

The rules are marked as late because we want them to happen after the robot has walked into a laser, not before. Be sure to put sfx0 at the end of each rule to make your cool sound effect play when the rules run.

Click Rebuild and try the program. When you move a robot into a laser, it should turn red like this.

[image: image]

Testing the rules for getting caught

Try using one robot to push the other sleeping robot into the laser. The sleeping robot should also turn red when it touches the laser beam. Because the caught forms of the characters don’t count as players according to the legend, you shouldn’t be able to move them after they turn red. Caught red-handed!

Right now, only the robot that touches the laser gets caught. But we want them both to get caught, even when only one messes up. Let’s add a rule that makes sure that both robots get caught.

(getting caught)

late [Vbot Laser] -> [VertibotCaught] sfx0

late [Hbot Laser] -> [HoribotCaught] sfx0

late [VertibotCaught] [Hbot] -> [VertibotCaught] [HoribotCaught]

late [HoribotCaught] [Vbot] -> [HoribotCaught] [VertibotCaught]

With this rule, when PuzzleScript sees that Vertibot has been caught, Horibot becomes caught too, and vice versa. Because you have two different pairs of square brackets on the same side of the arrow, both of those objects can be anywhere in the room. Recall that when we wrote the rules for switching earlier, having two objects in their own sets of square brackets means they don’t need to be next to each other. This rule makes sure that if the alarm goes off, it doesn’t matter where the robots are: they’re both busted.

Click Rebuild to test this new rule! Now both characters should get caught at the same time.

[image: image]

Both robots get caught

You can see that when Horibot triggers the alarm by crossing a laser, both Horibot and Vertibot turn red to show that they’re caught.

But notice that something weird happened. The characters get caught, but you also get a Win Condition Satisfied message and the level ends! This is the opposite of what we want to happen. Winning is the opposite of losing! Why do we win instead of losing?

Updating the Win Conditions

Let’s put our detective hats on again to figure out why the win condition is met when Vertibot and Horibot get caught. Because PuzzleScript gave us the Win Condition Satisfied message, maybe we should check our WINCONDITIONS section, which currently looks like this:

==============

WINCONDITIONS

==============

all Buddy on Exit

Our Buddy group currently contains Horibot, Vertibot, HoribotSleeping, and VertibotSleeping. Recall that all Buddy on Exit means all the buddies on the screen, regardless of how many there are, should be on the Exit objects for the player to win the level. The Buddy grouping should still hold true even if there are no buddies on the screen. The problem is that when Vertibot and Horibot become VertibotCaught and HoribotCaught, they no longer count as buddies because VertibotCaught and HoribotCaught don’t belong to the Buddy group.

This means that when the robots are caught, there are no objects that could possibly meet the win condition. And because there are no buddies not on exits, PuzzleScript decides that the win condition is met. Computers are more logical than we are, but they’re way less smart. When PuzzleScript checks the win condition all Buddy on Exit, it’s making sure that there are no buddies anywhere other than on exits. If there are no buddies at all, then as far as PuzzleScript is concerned, all the buddies on the screen (that is, zero!) are on exits.

Fortunately, we can have multiple win conditions in our game. Let’s add new win conditions to the WINCONDITIONS section that specify the player can’t win when both robots are caught, like this:

all Buddy on Exit

no VertibotCaught

no HoribotCaught

The code no VertibotCaught checks that there are no VertibotCaught objects in the level. To win a level, all the win conditions need to be satisfied at the same time, so the level can’t be won if PuzzleScript finds any caught robots, even if they are all on the exit.

This new win condition should work fine (try it and see!). But we could simplify this even further by making a group that contains both caught robots, which we’ll call Trouble. Add this line to the LEGEND section:

Trouble = VertibotCaught or HoribotCaught

So we’ll finish the level with no Trouble. The player wins if they’ve gotten both buddies onto the exit without running into any Trouble. Now we can use the Trouble group to streamline our WINCONDITIONS section code, like this:

==============

WINCONDITIONS

==============

all Buddy on Exit

no Trouble

Now that we’ve written rules for how the robots should interact with lasers and how that should affect the outcome of the game, let’s add a few more threats to make our game more exciting.

Adding Robot Guards

The second threat we’ll add to the game are robot security guards that patrol the Data Bank. If the robot guards find Vertibot or Horibot, the player will lose!

The challenge will be to make the guards move on their own, because this can be a very complicated process to program. Have you ever played Hide and Seek? A lot of decisions go into finding your friends when they’re hidden. You probably know the best hiding spots in the area in which you’re playing. You know your friends. You know which friend always surprises you by trying to pick the cleverest hiding spot. You remember which places you’ve already looked in. You look over your shoulder sometimes in case someone is sneaking around behind you. Somehow a human being can synthesize all of this information to make decisions quickly. How can we possibly program a video game guard that’s as smart as a person?

Fortunately, we don’t have to, because this is only a robot guard. It’s okay if it follows a very simple pattern. In fact, it’s probably better if the guard’s actions are predictable. For example, if it covers the same ground over and over, the player can anticipate its path and sneak around it. If the guards were as smart as real humans, our game would be impossible to win.

The simplest way we can code this kind of patrolling movement is to have the guard move in a straight line and then turn when it reaches a wall. We can have it continue moving forward and turning in the same direction until it eventually returns to the point where it started and then starts over again.

Creating Guard Objects

Let’s start by creating the objects. We’ll need four guard objects: one for each direction the guard can move in (up, down, left, and right). We start with one of the objects and then change it into the next type of object when it runs into a wall. A benefit of using four distinct objects is that we can change each object to look different depending on the direction in which it’s moving. That way, the player can look at the screen and see where the guards are going.

Let’s add four new objects to the game.

GuardUp

gray red

..0..

.010.

00000

00000

.000.

GuardRight

gray red

.00..

0000.

00010

0000.

.00..

GuardDown

gray red

.000.

00000

00000

.010.

..0..

GuardLeft

gray red

..00.

.0000

01000

.0000

..00.

We’ll name them GuardUp, GuardRight, GuardDown, and GuardLeft. As you can see, the red pixel should signal to the player which direction each object can move in.

Adding Guards to the Legend and the Collision Layers

Now we need to put these guards into the legend. We also need to assign a symbol for each direction, so we can use it to choose which direction the guards start in. Add the following lines to your existing code in the LEGEND section:

8 = GuardUp

6 = GuardRight

2 = GuardDown

4 = GuardLeft

I chose those numbers as symbols because of their placement on the keyboard’s keypad (the part that looks like a calculator). An up arrow is on the 8, a right arrow is on the 6, and so on. When I see these numbers in a level and forget which direction it is, I can just glance at the keypad on my keyboard to remind myself.

Let’s also add a Guard group to the legend that will let us refer to all guard objects regardless of which direction a guard is facing, like this:

Buddy = Player or HoribotSleeping or VertibotSleeping

Guard = GuardUp or GuardRight or GuardDown or GuardLeft

Depresser = Player or Pushable or Guard

Blocker = Wall or GateClosed or Crate or Gun or Guard

Note that the Guard group should come before the Depresser group in your script. The reason is that we want guards to be able to step on panels like the other depresser objects and be able to block lasers as a blocker. Before we can add Guard to the Depresser and Blocker groups, we first need to tell PuzzleScript what a guard is. Only then can we tell PuzzleScript that a guard can be a depresser and a blocker.

Last but not least, be sure to add all four guard objects to a collision layer. Put them on the same layer as the robots and all the other solid objects. Then click Rebuild to make sure there aren’t any errors.

Now let’s write the rules that make our guards patrol.

Writing Rules to Move Guards Forward

A guard’s motion has two parts: it moves forward, and then, when it bumps into a wall, it turns to the right.

[image: image]

Let’s add the forward movement first by adding the following to the RULES section:

(guardbots)

left [GuardLeft] -> [> GuardLeft]

down [GuardDown] -> [> GuardDown]

right [GuardRight] -> [> GuardRight]

up [GuardUp] -> [> GuardUp]

At every turn, we just change our guards into moving guards. Because the four rules are directional, the > simply matches the direction of the rule. For example, GuardLeft always moves left, GuardDown always moves down, and so on.

Put together a simple test level to check that this script works now. Be sure to include all four objects on your test level, like this:

########

#..6...#

#......#

#..I..2#

#8..H..#

#......#

#...4..#

########

Try playing your level! You should see something like this.

[image: image]

Guard test level

If your guards start one space forward from where you put them, it’s because of run_rules_on_level_start! Don’t worry—this won’t be an issue when we turn on realtime mode shortly. The guards should move only when the player moves. Wiggle the player back and forth and watch how the guards behave. They’ll move forward until they hit the wall. Then they’ll get stuck because we haven’t told them what to do when they run into a wall. Let’s tell them to turn to the right after bumping into something.

NOTE: If you get an error message that says, “Trying to access a level that doesn’t exist,” try pressing Rebuild and start a new game.

Writing Rules for Turning Right

Before we can make the guards turn, let’s define a new group in the legend called Obstacle for every object that could get in a guard’s way. Add the following to the LEGEND section:

Guard = GuardUp or GuardRight or GuardDown or GuardLeft

Obstacle = Wall or Crate or GateClosed or Gun or Guard

The new Obstacle group includes all the solid objects a guard can run into.

Now we can add rules to make the guards turn when they bump into any obstacle. Guards turn clockwise (to the right) whenever they bump into something. We’ll make guards turn by replacing them entirely with another object that points in the new direction. Add the following to the RULES section to do this:

(guardbots)

left [GuardLeft] -> [> GuardLeft]

down [GuardDown] -> [> GuardDown]

right[GuardRight] -> [> GuardRight]

up[GuardUp] -> [> GuardUp]

[> GuardLeft | Obstacle] -> [GuardUp | Obstacle]

[> GuardDown | Obstacle] -> [GuardLeft | Obstacle]

[> GuardRight | Obstacle] -> [GuardDown | Obstacle]

[> Guardup | Obstacle] -> [GuardRight | Obstacle]

When a guard tries to move into an obstacle, it instead is turned into the guard object facing the next direction clockwise. GuardLeft turns into GuardUp, GuardUp turns into GuardRight, GuardRight turns into GuardDown, and GuardDown turns into GuardLeft.

Note that I’ve grouped the rules so all the guards move forward at the same time and then all the guards turn at the same time, because rules are run in order from top to bottom. Click Save now. To see what can happen when you change the order of the rules, try moving the [> GuardLeft | Obstacle] -> [GuardUp | Obstacle] rule before the up [GuardUp] -> [> GuardUp] rule. Then try grouping the rules so each guard object’s move and turn rules are together.

(guardbots)

left [GuardLeft] -> [> GuardLeft]

[> GuardLeft | Obstacle] -> [GuardUp | Obstacle]

down [GuardDown] -> [> GuardDown]

[> GuardDown | Obstacle] -> [GuardLeft | Obstacle]

right [GuardRight] -> [> GuardRight]

[> GuardRight | Obstacle] -> [GuardDown | Obstacle]

up [GuardUp] -> [> GuardUp]

[> GuardUp | Obstacle] -> [GuardRight | Obstacle]

Click Rebuild and try playing the game with this updated code. You should see that one of the guards moves differently than the others. In this example, GuardLeft turns into GuardUp after it runs into a wall. But because of the misplaced code, GuardUp moves one step forward immediately after turning instead of turning in place and waiting a turn to move like the others. This is why it’s important to always think about the order in which your rules execute. When GuardLeft hits a wall, it turns into GuardUp and immediately moves up; the other guards wait a turn after turning to move. Can you read through the rules one by one and see why?

Early in the rules, GuardLeft becomes GuardUp. But a later rule moves GuardUp up. Because the turning rule for GuardLeft happens before the moving rule for GuardUp, the guard turns and moves on the same turn!

Click the Load menu and return to the game you last saved.

Catching the Intruders

Let’s create rules that let the guards actually catch Horibot and Vertibot by adding these two lines to the guardbots section in the RULES section:

(guardbots)

left [GuardLeft] -> [> GuardLeft]

down [GuardDown] -> [> GuardDown]

right [GuardRight] -> [> GuardRight]

up [GuardUp] -> [> GuardUp]

[> Guard | Hbot] -> [Guard | HoribotCaught] sfx0

[> Guard | Vbot] -> [Guard | VertibotCaught] sfx0

Now if a guard tries to move into either robot, the robot turns into its caught equivalent, setting off the alarm sound at the same time. (I know the guards are robot guards, but whenever I mention “robots,” I’m referring to just Vertibot and Horibot.)

Notice how grouping helps us write fewer rules. The Guard group includes four different guard objects, and Hbot and Vbot include two objects each: the sleeping and awake versions of the robots. Without groups, we’d need to write 16 different rules to cover all the different combinations!

Click Rebuild to test your game. Try moving a robot in front of a guard’s patrol path. Then try putting an asleep robot in front of a guard’s patrol path. When the guard bumps into the robot, the robot should turn red just like it would when it walks into a laser.

[image: image]

Testing the Guards

Earlier, we put guards in Depresser and Blocker groups in the legend. Let’s make some test levels to test those features.

Here’s a level that tests how guards work with panels.

[image: image]

Testing guards and panels

Because a guard is a depresser, the gates should open when the guard moves onto the panel and close when the guard moves off the panel. If you want the gate to stay open for a longer time, try putting a bunch of panels in a row, so it will take the guard longer to get past them.

Next, try making a level to test whether guards will block lasers. Can you come up with a level where the robots need to time their movements with the guards to sneak past lasers?

As a last test, let’s see what happens when a guard runs into a dead end. Make a level shaped like the following.

[image: image]

Testing guards at a dead end

When the guard bumps into the dead end in the upper left, it turns to the right. Then it immediately bumps into another wall and turns right again. Now it should head back down. What do you think will happen when it gets back to the bottom and bumps into the wall there? You should see something like this.

[image: image]

Guard stuck in a dead-end path

It should turn right again, just like we told it to. It should turn around and start heading back up. This guard will keep going up and down this pathway forever and never return to its original patrol path. Keep this example in mind when you design your levels so you won’t make the same mistake!

Realtime Mode

All the games we’ve made so far are called turn-based games. In a turn-based game, one player has a turn and then the next player takes a turn, as in a game of Checkers. In Herding Cats, the cats move only when the player moves.

In Robot Heist, we want characters that move on their own. Right now, the security guards in our game move only when the player moves. But if we switch our game into realtime mode, they’ll move on their own, even when the player isn’t moving. Realtime refers to basing the movements of game objects on the amount of time that has passed in the real world, not the movements of the player character.

How does realtime feel different than a turn-based game? First, there’s an element of time pressure. Even when the player is not moving, the guards are patrolling. That means the player won’t be able to sit and think about their next move for as long as they want. As in a real heist, the player has to think and act quickly. It also helps create the sense that these guards have a life of their own, outside the player. After all, real security guards wouldn’t wait for an intruder’s permission to move, would they?

Making Objects Move in Realtime

Let’s make objects move by themselves by turning on realtime mode in PuzzleScript. We can tell PuzzleScript how often we want objects to move, such as once every second. Then, every time a second passes, PuzzleScript runs all the rules whether or not the player has moved.

To turn on realtime mode, simply add the following line to the beginning of your PuzzleScript code:

title Robot Heist

author anna anthropy

run_rules_on_level_start

realtime_interval 0.2

The number after realtime_interval tells PuzzleScript how often to run the game rules, in seconds. So realtime_interval 1 would be once every second. And 0.5 would be once every half a second, or two moves per second. Our example has realtime_interval 0.2, which is two-tenths of a second, or five moves every second.

Realtime works best if you add a couple more of PuzzleScript’s optional features, like throttle_movement and norepeat_action (the latter of which was added in Chapter 4). Add both below realtime mode, like so:

title Robot Heist

author anna anthropy

run_rules_on_level_start

realtime_interval 0.2

throttle_movement

norepeat_action

The throttle_movement feature limits the player’s movement speed. Without it, pressing an arrow key a bunch of times can make you move faster than just holding down the arrow key. That’s not a big deal if everything in the world moves at the same speed as you, but it’s important if everything else is moving at its own speed. And it isn’t a big deal if everyone else in the game moves whenever the player moves. But if guards are moving at their own speed, the player can move way faster than them by mashing buttons. And because this game is about planning and strategy, not about button mashing, we’ll use throttle_movement to keep the player from mashing buttons in order to win.

Without norepeat_action, holding down the action key will continue switching between both robots, meaning it’s easier to accidentally switch more times than you want to. Also, norepeat_action makes sure the player releases the action key before they can press it again. Adding both features makes the game more user-friendly.

Click Rebuild and watch your guards go! They should start moving on their own in a beautiful, synchronized ballet, even when your robots aren’t moving.

Now try moving the robots. Whoa!

[image: image]

When you move the robots, you should see that the guards speed up and move super fast whenever you move! Yikes! What’s going on?

Checking for a Stationary Player

Instead of calling a turn as normal (running the rules, then moving objects, and then running late moves) PuzzleScript’s realtime mode calls a turn every 0.2 seconds. So the rules for guards are run even when the player hasn’t pressed any keys. But we haven’t accounted for the fact that PuzzleScript still calls a turn whenever the player presses a key. This means that the guards move on their own every 0.2 seconds and move again when the player moves. We want the guards to move independently of the player, not to move faster when the player moves.

We need the guards to move only every 0.2 seconds, but not when the player moves. To do that, we just need to check that the player is stationary whenever we try to move the guards. Go back to the rules for moving guards in the RULES section, and add [stationary Player] to both sides of each arrow, like this:

left [GuardLeft] [stationary Player] -> [> GuardLeft]

[stationary Player]

down [GuardDown] [stationary Player] -> [> GuardDown]

[stationary Player]

right [GuardRight] [stationary Player] -> [> GuardRight]

[stationary Player]

up [Guardup] [stationary Player] -> [> Guardup]

[stationary Player]

Adding [stationary Player] lets guards move forward only when there’s a stationary (non-moving) player somewhere in the level. Note that this doesn’t change the player at all. These rules just make sure that guards move every 0.2 seconds, but not when the player robots move.

Click Rebuild and try moving around. The guards’ speed should remain constant no matter what the player does.

Extra Challenges: Make It Look Good

Here are some extra touches I added to the finished version of Robot Heist to make the game look more appealing. The challenges are listed in order of difficulty. Can you figure out how to script them? If you need help, hack my finished Robot Heist game and look at how I did it.

Challenge 1: Make characters bigger than a single space If you look closely at the player robots in Robot Heist, you’ll see that they’re slightly larger than the 5 × 5 pixel size of most PuzzleScript objects. In fact, each player robot is made up of three separate objects that all move together.

Challenge 2: Randomize the walls One way to keep the walls from looking too similar is to create a bunch of slightly different wall objects. When the level starts, each wall changes its appearance at random. These walls all behave in the same way, but they add visual variety to the levels.

Challenge 3: Add animation In a realtime game, we can make objects change appearance over time and animate them. For example, the solid gold superconductor—the treasure the robots are trying to steal—shines and gleams by changing between three different objects, each representing a single frame of animation.

Challenge 4: Wire paths To make it easier for the player to make the connection between panels and the gates they open, I drew wires leading from the panels to the gates. These work a lot like the lasers do: at the beginning of the level, the player looks around for adjacent wires and then draws connections between them.

What You Learned

In this chapter, you added the ability to lose the game. You gave lasers and robot guards the ability to catch the player, adding an element of tension to the game. You learned what losing looks like and why you might want to give the player the possibility of losing. And you made the guards move in realtime, patrolling for the robots instead of waiting for them to move.

Now you have a complete cast of objects: the robot protagonists, crates to push, gates to open and close, security lasers, and patrolling guards. You’re ready to combine all these objects into action-packed levels. In the next chapter, you’ll do just that.

 [image: Image]

6
Robot Heist: Refining Your Level Design

Now that all your operatives are in place, like a true mastermind, you can begin planning your heist of the century. You can start with the game you built in the previous two chapters or visit https://tinyurl.com/robotsneedlevels/ to find a fully programmed version of Robot Heist just waiting for some levels!

Brainstorming the Story

So far, we have two characters with different abilities, and we have a bunch of objects for them to interact with. How do we make our game feel like a heist? Before we start designing levels, let’s think about the shape of our story. What’s the story structure those levels will fit into? When I made Robot Heist, I took some time to brainstorm a bunch of ideas for the game and tried to use just the good ones.

We want Vertibot and Horibot to work together to pull off the heist. How do we show this idea to the player? One way is to have the player start with only one robot. If the player starts as Vertibot, there are things they simply won’t be able to do until they find Horibot. This also makes sense when we’re thinking about difficulty. Managing two different robots at the same time can be tricky. Giving the player only one robot to start with gives them time to learn the basics before the second robot appears.

Because this is a heist, let’s say Horibot is locked in prison for a heist he committed a long time ago. Vertibot’s first task will be to bust him out. Once they’re reunited, they can pull off the final job that will set them up for life. And what if the treasure they’re trying to steal is an object they can push around, like a crate, and they have to work together to get it out of the bank? That way they really need to use teamwork!

Now that we have a general picture of what the story might be, let’s map it out:

Act 1: The Prison Break Vertibot breaks into robot prison alone to rescue Horibot.

Act 2: The Bank Job Reunited, Vertibot and Horibot work together to break into the Data Bank.

Act 3: The Getaway Vertibot and Horibot find the solid gold superconductor and abscond with it using maximum teamwork.

All right, now we have an idea of how our game will start. Before we make our levels, let’s look at what’s in the level editor!

Exploring the Palette

If you loaded the preprogrammed version of the game from the URL mentioned earlier, you might be wondering what all the objects in the level editor are. If you’re working with your own game, feel free to skip this section. Here’s what’s in the Robot Heist level editor:

[image: image]

	Guards and laser guns have four different versions, each facing a different direction.

	The floor has three different versions: normal, bumpy, and blank. The bright gray bumpy floor blocks crates from being pushed onto it. Also, patrolling guards won’t cross over empty floors, so you can use them to shape the guards’ paths.

	Walls are two different colors, purely for style reasons.

	Wire segments draw wires along the floor (in my levels, I use them to draw trails from gates to the panels that open and close them). These look like dots, but when they’re next to other wire segments, they create a continuous line. The first wire segment produces a line (with four dots) over a normal background tile; the second produces a line (no dots) on an empty background; and the third produces a line that goes through a wall. Don’t worry too much about these wires.

	Treasures are the solid gold superconductors. If a superconductor is in a level, the player can finish the level only by getting both robots and the superconductor to the exit.

	Gates come in two colors: blue and pink. They also have two states: open and closed. Whichever state a gate starts the level in, putting something on the same colored panel will make it switch to the other state. (Closed gates will open; open gates will close.)

In this version of the game, Vertibot always starts a level awake and Horibot starts asleep. This means you can make levels that feature only Vertibot but not levels that feature only Horibot. If you want to make levels featuring only Horibot, you’ll need to make a symbol for his awake object.

Remember that these are just the objects that have symbols in the legend. Now that you know where everything is, let’s make some levels!

Creating Your First Level

One feature of level design is that it introduces the player to all the important game elements. Robot Heist has five important elements: switching robots, pushing crates, opening gates, avoiding lasers, and eluding guards. Can we design levels that introduce each of those objects or ideas? Which one should we start with?

Well, you can’t do a lot with gates without crates to hold them open. And you can’t get very far with lasers without crates to block them. It seems like pushing crates is the first concept the player needs to understand, so let’s start with a level that teaches them that.

[image: image]

Introducing New Objects

Because I start the game with just Vertibot and introduce character switching later, I want my first level to introduce the idea of pushing crates and also to make the player realize they can only push objects vertically.

What does a level like that look like? Try to make your own first. Then I’ll explain how I came up with my first Robot Heist level. Don’t read ahead until you’ve taken a crack at this!

What does your level look like? Does it teach the player pushing but also make it clear that they can only push objects vertically?

Here’s what I came up with.

[image: image]

Example of a horizontal level

I tried to make a level that was horizontal where objects look like they should move horizontally, but if the player tries to push that way, they’ll realize they can’t. Why? Remember when we talked in Chapter 4 about how failure is important? By trying actions they can’t do, the player learns the rules of the game!

This level has two main parts: the first part displays a door the player can’t get through until they push crates out of the way. That’s just to introduce the idea of pushing vertically. The player can’t actually get to the second part of the level until they understand two ideas:

	They can push crates.

	They can only push crates vertically.

The second part of the level builds on that understanding. To get through that wall of crates, the player needs to create a path for themselves by pushing crates vertically, moving horizontally, and repeating those movements until they get through. It’s the same kind of movement they do at the beginning of the level, but they have to do it a bit more thoughtfully. Good level design introduces ideas and then builds on those ideas!

The exit tiles are on the right side of the screen. This is the first time the player sees them. How do they know they’re the goal of the level? Because they’re all the way on the opposite side of the screen from where the player starts! The level forms a visual path leading the player’s eye from where Vertibot starts on the left over to where the exit is on the right. That’s called composition: I’ll talk more about that in a minute!

Adding a Second Concept

We’ll introduce another basic concept in this level. One of the most important reasons the player would want to push a crate is to keep a gate open. Let’s close the level with a simple introduction to a gate.

Now three actions happen in this level, from left to right: first, the player learns to push crates vertically. Second, they navigate through an obstacle by using that knowledge. Third, the player encounters a gate that only opens when something is on a panel. The solution is to push a crate vertically onto the panel. Each part of the level emphasizes the same idea: pushing crates vertically is important!

But there are some problems with this last action. It’s possible to get stuck and have to restart the level.

If the player pushes the final crate down or if they push it all the way up past the panel, the crate will get stuck. Because the wall blocks the player from getting around and pushing the crate from the other side, the player is stuck as well. They’ll have to restart, and that’s a huge bummer when they’re so close to the end of the level! Is there a way to fix this?

Creating Bumpy Floors

To get around the problem of getting stuck, I created a new object for the game, which is the bumpy floor I mentioned earlier in the chapter. This kind of floor will stop crates, but the player can still walk on the floor. We can use these floors to prevent the player from pushing crates all the way up to a wall and getting stuck without room to push it back.

[image: image]

Example of bumpy floors

The bumpy floors are the tiles with the bright gray dots on them. If you haven’t implemented these floors in your version of the game, they’re very easy to make. Just add this line to the RULES section after your other code lines about pushing:

[> Pushable | Gravel] -> [Pushable | Gravel]

I named the object Gravel. If the player tries to push anything onto a Gravel object, it just cancels that object’s movement. But the player can still walk onto it freely.

[image: image]

Maybe you’re wondering why I spent time earlier emphasizing that letting the player make mistakes and mess up is important, only to prevent the player from failing here. There are a few reasons:

	The point of this part of the level is to teach the player how panels and crates interact. If they get the crate stuck before it can reach the panel, they don’t learn anything. The game just seems to be broken.

	This is the first level, and the player is still learning the basics. Later, we can give them more room to mess up. Think of these bumpy tiles as training wheels. In later levels, when the player knows what they’re doing, we can take the training wheels off.

	Messing up when they’re close to the end of a level is no fun at all.

Adding “training wheels” like this just makes gameplay a little easier while the player is getting used to the basics.

Refining Your First Level

As a level designer, you should always play your levels, see how well they’re working, and find ways to make them better. There’s room to make the gate part of this first level better. Why? Well, I want to make sure the player learns the important ideas about panels and gates. It’s essential to know that panels open gates only when something is on them. If the player steps onto the panel, the gate will open. When they step off the panel, it’ll close again. That’s why they need the crate.

But what if the player just sees the crate and immediately pushes it up and onto the panel without even trying to stand on the panel first? They’ll miss this critical step and the information it provides.

Is there a way we can make it more likely the player will step on the panel first, before pushing the crate onto the panel? To do this, I put the panel right in front of the gate and the crate off to the side. Getting the crate up is now more of a puzzle: the player has to push the crate down first and then go around and push it back up. The panel, on the other hand, is right there. The player is far more likely to check out the object that’s right in front of them before trying the weird puzzle that’s off to the side.

[image: image]

Guiding the player to the panel

Always try to think about what your players will do in your levels. It’s hard, but try to imagine you’re playing through your own levels, seeing them for the first time. What’s the first action you might take? You won’t always know, which is why it’s important to get other people to play your games; however, you can usually make some good guesses!

Giving Structure to a Level

A level is a series of challenges for the player to solve or explore. But it also represents an imaginary place, not to mention an image on a screen. When we’re thinking as level designers, we should be thinking about our level in all these ways at the same time. What kind of place is our level? What does it look like?

In Robot Heist, Vertibot breaks into a high-security robot prison to rescue Horibot. How do I make a level feel like a player is breaking in?

[image: image]

Structure of the finished level

In the finished level, the player starts outside of something! I turned the level I designed into just one corner of a larger building, the robot prison. Now the player starts on the outside and has to break in to complete the level.

You can think of levels as pictures the player looks at. Composition means the balance of different picture elements and how they relate to each other. To make the player feel like they were on the outside of a place, I thought a lot about composition.

Creating Sections Within a Level

This first level is made up of two L shapes: the one on the outside and the one on the inside. The outside L has no borders: it opens up to the edge of the screen. The inside L has heavy borders: the outline is two walls thick. I also made the outside prison wall look a little like the battlements on top of a castle. I wanted it to look like something built to keep people out.

I used a few other tricks to make the inside L and outside L look different from each other. On the outside, I used empty floor spaces to make the ground look patchy and irregular—think of patches of grass on a hillside.

[image: image]

Irregular patchy floor

Notice that the ground is the patchiest where the player is, and then it gradually gets less patchy toward the door to the robot prison. I wanted to use the ground to lead the player’s eye from their starting position toward where they need to go. Although the ground outside is patchy, the floor inside is completely regular, like the floor in a bank lobby.

[image: image]

Regular floor pattern

I used another technique to connect with the two themes of being unable to push objects horizontally and breaking into a place: there are two hallways leading away from the level, and one of them is blocked by crates. Because Vertibot can only push vertically, they’re forced to find a second way through (the crate and gate puzzle). Always look for ways to try to tell simple stories with your levels!

I also added a message before the level that introduces the Vertibot character and gives the player some instructions: as long as you’re Vertibot, you can only push objects vertically.

[image: image]

Giving instructions to the player

So there’s the finished level! Try playing through the first few levels of the finished Robot Heist game at http://tinyurl.com/robotheist/. Can you identify what each level is teaching and how?

Designing Levels for Both Robots

The first level was designed with just Vertibot in mind, but at the heart of Robot Heist is the theme of having both robots work together to get through challenges. Can you come up with levels about teamwork? The following sections provide you with some ideas to use as starting points.

Basic Teamwork

Here is a very simple example of how to use gates to force cooperation: a robot can pass this gate only if the other robot is holding down one of the panels on either side of it.

[image: image]

Taking turns to hold the gate open

Getting both robots through requires each of them to take a turn holding the door for the other.

Using a Crate

Here’s a more complicated example: to hold the gate open, the robots need to push a crate onto the panel.

[image: image]

Getting to the crate

Because the crate is located up and to the right of the panel, it requires each robot to do some pushing and some door holding. Note that I used the floor patterns to show a path from the crate to where it needs to be pushed.

In the next scenario, the robots have to coordinate their movements more closely.

[image: image]

Working together with a crate

Horibot has to move into just the right position to push the crate when Vertibot moves it in front of him. In later levels, as the player gets better at teamwork, you can design situations that require them to coordinate the robots in more complicated ways.

Splitting Up the Robots

What do you think about this idea? After the robots have learned to work together, try splitting them up!

[image: image]

Robots split up

Even though they’re in different areas, they still need to look out for each other by opening gates and blocking lasers. A cool part of level design is that once the player thinks they know how everything works, you can add a twist to shake things up and keep them on their toes!

Each idea is just one moment to fit in a larger level. What kind of levels can you build around these ideas? Can you come up with different challenges?

[image: image]

Putting It All Together

After we’ve introduced different objects to the player, we can start combining them. What does a level that combines lasers and gates look like? What about a level with crates and guards?

Here’s a level I made that combines lasers, gates, and guards. It’s one of the first levels I made, and it ended up in the finished game almost unchanged from the original version.

[image: image]

A level with lasers, gates, and guards

In this level, the guard patrols around its room, moving on and off the blue panels. When it’s on the panels, the gates blocking the way to the exit open. When it moves off the panels, the gates blocking the lasers open, zapping the player if they’re standing in the wrong place! This level is all about the player using the right timing to get across the screen.

This level works only if the player has already learned about gates, lasers, and guards and how they work. Before you can combine objects like this, you need to introduce each object on its own; otherwise, the player will have no idea what’s going on.

What You Learned

In this chapter, you learned about level design in more depth. Level design introduces concepts, builds on them, and combines them in fun and unexpected ways. A level is a set of challenges but also a virtual place and an image. When you’re thinking as a level designer, you should consider all three of these perspectives at the same time. And always look for ways to make your levels play better.

That’s all the time we’ll spend on Robot Heist. If you’re curious about what any of the later levels look like, take a peek at them in the PuzzleScript editor. Remember that you can CTRL-click on any level to load it into the game.

You’re now a PuzzleScript maestro! Congratulations! In the next and final chapter, I’ll recommend some other PuzzleScript games to check out and present some game design challenges to try.

 [image: Image]

7
Where to Go from Here

You made it to the last chapter! How does it feel to be a game designer? A little weird? Don’t worry—that’s normal. Or maybe you don’t feel like a game designer yet. That’s normal too.

It’s easy to feel like you’re not qualified to call yourself something. But there are so many different ways to be a game designer. For example, game designers can be people who work at big companies where everyone makes small contributions to a product. Game designers can also be people who sit in their bedrooms making things that they find fun.

Game designers are also people who go to the park to play catch with friends and then wonder, “What if we have to toss the ball under our leg?” or “What if we’re not allowed to touch the ball with our hands?” There are a million-and-a-half different ways to be a game designer.

Asking Questions

You might not have a ton of game design experience yet, but I’ll tell you a cool fact about game design: if you’re doing it right, it should always remain a mystery to you. Even the people who’ve designed games for years are still asking questions about what games could be. “What if you can only move one space every day?” “What kind of game can you play at a protest?” “Why don’t games let you make friends with the monsters instead of fighting them?”

Game design is less about finding answers than it is about asking questions. Everyone, regardless of their skill level and experience, can ask questions.

In this chapter, I’ll show you some cool PuzzleScript games other people have made as well as provide you with some exercises to try when you’re making your own games.

More PuzzleScript Games to Try

You learned how to build some PuzzleScript games from scratch. Even if you don’t think your game is perfect, you should be proud that you’ve made something. Many adults who have been making games for way longer than you still have a hard time finishing them.

But this is only the beginning. What will your next game be like? Keep your mind open so new ideas can get in. Ideas might find you when you’re walking in the park, when you’re staring at the ceiling over your bed, or even when you’re in the bathroom. Never be too quick to dismiss a daydream; it could be the seed for an amazing game!

In the meantime, here are a few more PuzzleScript game examples you can try to see what’s possible with PuzzleScript. Click the hack links to see how they work and get ideas to try in your own PuzzleScript games! The games are listed in order from simplest to most complicated.

Cake Monsters

Cake Monsters by Matt Rix (http://struct.ca/games/cakemonsters/) is about cute monsters who just want to eat a bunch of cake. Each monster can only eat cake that is the same color as they are, but they can combine with other monsters to change color. For example, a red monster and a blue monster can merge to make a purple monster. All the monsters move at the same time, like the cats in Herding Cats!

NOTE: Click hack to see the game’s code. In this source code, you can see how to add music to your game: just give PuzzleScript the ID code of a YouTube video.

Flying Kick

Created by Aaron Steed, Flying Kick (http://tinyurl.com/puzzlekick/) is different from any PuzzleScript game you’ve seen so far. It has a profile perspective similar to that in Super Mario Brothers and is about using mighty jump-kicks to get around. This game’s code uses PuzzleScript’s again command. By putting again at the end of a rule, the game runs another turn immediately. That way, when the player is in a flying kick, they keep flying until they hit something. You can use this command to make some fun and entertaining animations.

Cute Train

Cute Train by Mark Wonnacott (http://tinyurl.com/cutetrain/) is about riding a cute train. Like most trains, the train runs on tracks, but you can change where the tracks go by flipping switches. Hold down the action key when you’re behind the train to ride it along the track, or press the action key when you’re on a switch to flip it. This game uses PuzzleScript’s flickscreen mode. That means that instead of having a series of levels that you play through from start to finish, it has one continuous world to explore.

Sometimes when you look at games other people have made, you can easily get discouraged. You might think to yourself, “Well, that’s way better than anything I could make.” I know because I think that all the time.

But there’s another way to think about the cool things other people make. You could say, “Wow, I didn’t know you could do that! But now I do! The next thing I make will be so much cooler because of it!”

The more you explore other people’s games, the more likely you’ll be to think of ideas and designs you’ve never thought of before, and the more you’ll learn about what you can make. In fact, every little thing you learn about or play with can make you better at creating your own game because it helps fuel new ideas during the planning stage.

So don’t let other peoples’ art scare you into thinking you can’t do something similarly cool. Give yourself permission to learn from others’ work. The more PuzzleScript games you play, the more ideas you’ll get! I’ve been making games with PuzzleScript for years, and I’m still coming up with more ideas.

Game Challenges

When you’re done exploring these games, here are some exercises you can try. Some of them are about challenging yourself to make a game in a new way. Some challenge you to promote your games and work with others.

Don’t worry about completing every game or doing them in order. Do the ones that most excite you and lead you to the most interesting questions.

Make an Animated GIF of Your Game

A GIF is a little animated image that you can put on the internet. If you want to show off a cool feature in your game or a neat puzzle, a great way to capture it is with an animated GIF! PuzzleScript has a built-in feature to record GIF files of your games. Here’s how it works:

	Load a level of your game. Remember that you can load any level by holding CTRL and clicking its entry in your game’s LEVELS section.

	Do what you want the GIF to capture. Show off the neat rules you came up with, or solve part of your cool level, but not the whole thing! Potential players have to play to see how it ends!

	Hold down CTRL (or CMD on a Mac) and press K. This tells Puzzle-Script to make a GIF of everything you did after loading the level.

	In a minute, a window should pop up with your GIF in it! (If you did a lot of stuff before pressing CTRL-K, it might take longer.)

	Right-click the GIF and save it to your computer.

Now you can post your GIF online, email it to friends, and use it to show off your cool game. Maybe it will motivate people to play your game!

Post Your Game on itch.io

The website itch.io (https://itch.io/) is full of hundreds of games (only some of which are made in PuzzleScript). Some people use itch.io to sell their games while others give theirs away for free. Posting your game on itch.io helps people find it more easily. Now that you know how to make an animated GIF of your game, you can use that GIF as a cover image to show people browsing itch.io what your game looks like.

You can either embed your game on itch.io (you can find instructions on how to do this at itch.io) or post a GIF along with a link to your game.

Now you’ve designed a game and published it! Good work!

Make a Two-Player Game

Playing a game on your own on your computer can be surprising, exciting, and fun, but playing a game with another person can be even better. When you play a game with someone else, you’re not just playing by the rules of the game; you’re also trying to anticipate, respond to, or make sense of what the other player is doing.

How would you go about making a game for two players with PuzzleScript? Here are a few ideas:

	One player controls the arrow keys while the other player presses the action key (X or spacebar) to either help out or cause mischief!

	Make a game with two characters like Robot Heist, but each player controls a different robot. When the second character is activated, the second player takes over the keyboard, and vice versa.

	The players take turns! Imagine a game where one player pushes blocks around to solve a puzzle, and then the second player shows up as a janitor who has to put everything back into the position it was in at the start of the puzzle.

	One player sits at the computer and the other looks at something else. Maybe player 2 has a hand-drawn map and is trying to guide player 1 to a treasure hidden in a PuzzleScript game. Player 1 can’t look at the map, and player 2 can’t look at the screen. They have to communicate information to each other verbally.

Can you think of any other ways to make a two-player game?

Tell a Story with No Words

PuzzleScript lets you write messages that appear before and after levels. These messages are perfect for providing instructions, offering clues, and telling parts of the story. Try making a PuzzleScript game that tells a story without using these messages or using very few of them!

How expressive can you be by just moving objects around a screen without words? How can you communicate your story?

Here are a few items you’ll want to take advantage of to tell your story:

What objects look like. Each object in PuzzleScript is a grid of just 25 dots. But some of the most expressive symbols we see every day are made of just a few dots and lines. How can you use shape and color to create expressive characters?

How objects move. How someone or something moves tells us a lot about it. What does it mean if an object zigzags everywhere instead of moving in straight lines? What if your game has an object so scary that the rules won’t let the player get close to it, and they can only move if they’re moving away? Watch any cartoon to see how expressive motion can be.

Sound. Different sounds make you feel different ways. Next time you play your favorite game, pay attention to how actions sound. What sound does it make when you collect a coin? How does it make you feel? What about the sound that plays when you fall into a hole? Play with PuzzleScript’s sound buttons to find the sounds that best match what you want each interaction to communicate.

Space. Different kinds of spaces feel different to be in. How does your room feel different than the hallway at your school? You probably spend a lot of time in your room, so you’ve put some effort into making it feel cozy. Hallways, on the other hand, are designed to get people from one place to another: they’re not places you’re meant to linger in. Spaces in video games work the same ways, even though they’re not real.

If you want the player to feel alone, put them in a big open area. If you want them to feel cramped, put them in a tiny hallway. If you want them to feel lost, make everything surrounding them look the same. You’ve probably already instinctively thought about this when you were designing levels without even consciously thinking about it!

Even if you’re not trying to make a word-free game, try to think about these ideas when designing your games! Even small details in your game have an effect on how it feels to play that game.

Collaborate with Friends

Try making a game with a friend. It can be very exciting to bounce ideas back and forth with someone else. Each of you can build on what the other has come up with. Some of the most powerful ideas emerge that way, and the energy of collaboration can be really fun.

There are a lot of different ways to work together on a project. For example, you can write the rules, but you both create a bunch of levels. Maybe you design the levels, and your friend decides how the objects should look. Maybe your friend just plays your game and gives you ideas about how to make it better.

Working with other people on creative projects can be tricky, especially when they’re your friends. If you get into an argument about the project, it could affect your friendship. Collaborating feels great when you both have the same level of energy and excitement, but tensions can build when you both have different amounts of energy or availability. At times, you might see one person taking charge of the whole project and making all the decisions.

Collaboration is all about communication! If someone doesn’t feel like they’re involved enough in decision-making or feels frustrated because they think they’re spending more time on the project than the other person, have a conversation about it! Offer constructive criticism without getting defensive: try to be specific about what the problem is, how it makes you feel, and what could make the situation better.

Collaboration is a lot of work, but it can lead to amazing creations you couldn’t make on your own.

Make Games with Bitsy

If you like drawing objects and writing stories but you’re not as interested in puzzles, you might want to try using Bitsy. Bitsy is a cute little game maker by Adam Le Doux. Like PuzzleScript, it lets you draw characters, write messages, and design little game worlds. It has very little scripting, so if you’re looking for a simpler application than PuzzleScript, Bitsy could be a fun alternative!

You can find the Bitsy editor online at http://tinyurl.com/bitsyeditor/.

To see an example of what you can do with Bitsy, try playing the game You Have to Go to Work by KC at http://tinyurl.com/bitsywork/.

Keep Exploring and Creating!

The world we live in is not always the best place, and it can be easy to lose hope and joy. Making art—whether that’s games, comics, zines, music, writing, or just a little garden in your window—helps us remember that we’re capable of creating beautiful things. It reminds us to feel wonder for our surroundings and ourselves.

The older you get, the less time you have for play and creating things that don’t make money. Get in the habit of making and doing, and hold onto it as you grow older! It’s never too late to start. Making art will increase your enjoyment for life. For real.

But this book is just a starting point. Now that you know how to make games using PuzzleScript, it’s up to you to figure out what to do with that knowledge. Follow your ideas wherever they lead you, even if they seem silly, weird, or unoriginal. Keep exploring.

I can’t wait to see what you come up with.

 Index

Symbols

-> (arrow), 10–11

> (greater than), 11

() (parentheses), 74

. (period), 26–27

[] (square brackets), 11, 75, 98

| (vertical bar), 11

A

action keys, 70, 74–75

again command, 143

all condition, 12–13, 82

animation, 124, 143, 144–145

author keyword, 5, 20

AwakeCat object. See cat objects

B

Background objects. See also floors

in COLLISIONLAYERS section, 10, 69

defining, 6–7

grass pattern, 22–23

backing up games, 66

Bitsy, 148

Blank Project item, 18

Blocker group, 92, 93–94, 95–96, 97–99

Buddy group, 82

C

Cake Monsters (Rix), 143

cancel keyword, 37

cat objects

drawing, 27–30

rules for keeping objects together, 37–38

rules for waking and following player, 32–35

in WakerUpper group, 36–37

in win conditions, 39

collaboration on game design, 147–148

COLLISIONLAYERS section

compilation messages, 73–74

defining layers in, 9–10

in object creation sequence, 68

order of layers, 81, 86

colors, 7–8, 21

COMMAND (CTRL) key commands, 47

comments (notes), 74

compilation errors, 73–74

composition, 130, 134

Copy (copy text) button, 50

copying games, 66

Crate objects

drawing, 7

in level design, 65–66, 84, 92, 128–132, 136–137

rules for moving, 10–12, 77–78

sound, 9

in win conditions, 12–13

CTRL key commands, 47

CTRL-Z (undo), 20

Cute Train (Wonnacott), 143–144

D

dead-end paths, 118–120

Depressor group, 87

Door object, 21

down keyword, 113

E

E (edit level) button, 47, 50

editing levels, 46–49

Endlevel keyword, 41–42

error messages

accessing levels, 115

compilation errors, 73–74

Exit object, 79–81, 83, 130

Export button, 60, 66

F

flickscreen mode, 144

floors

adding bumps to, 130–131

in palette, 127

panels in, 84

patterns, 134–135, 136

Flying Kick (Steed), 143

G

game code box, 3. See also levels

game design

adding time pressure, 120

collaborating on, 147–148

lose conditions, 101–102

mindset for, 141–142, 144

objects and interactions planning, 65–66

win conditions, 12–13, 108–109

games. See also PuzzleScript games; video games

brief history, xix–xx

Hide and Seek, 110

ideas, xxi–xxii

nature of, xvii–xviii

gate objects

drawing, 84–86

in level design, 65–66, 132–133

in palette, 127

rules for, 87–91

wire path challenge, 124

GIF creation, 144–145

Gravel object, 131

groups, 36, 72

guard objects

drawing, 110–111

in level design, 65–66

overview, 109-110

in palette, 127

rules for catching robots, 117

rules for moving, 113–114

rules for turning, 115–116

testing, 118–120

Gun object, 91–92. See also laser objects

H

hack links, 60

Hbot group. See robot objects

Herding Cats

adding cats, 27–30

adding player, 26–27

adding sounds, 42

background and walls, 22–24

bonus challenges, 60–62

collision layers, 24, 30–31

getting started, 18–20

level designs, 51–58

and level editor, 46–49

overview, 17–18

rules, 32–35, 36–38

testing, 25–26, 31–32

win conditions, 38–39

homepage keyword, 6, 20

Horibot objects. See robot objects

horizontal keyword, 77

I

itch.io website, 145

K

K (record GIF) button, 145

L

laser objects

drawing, 91–93

in level design, 65–66

in palette, 127

rules for catching robots, 106–108

rules for firing, 93–99

late keyword, 33–34

Lavelle, Stephen, 3–4

layers, 9–10. See also COLLISIONLAYERS section

left keyword, 113

LEGEND section

defining groups in, 72–73

defining objects in, 8, 69

defining properties in, 36

object and group sequences, 112

in object creation sequence, 68

overview, 8–9

level editor, 46–50, 62, 127

levels

adding structure, 133–134

advanced designs, 138–139

bonus design challenges, 57–58, 60–62

changing shapes of, 60–61

defining, 8, 9

designing for challenge, 55–57

designing for story, 51–53

designing to teach rules, 53–55, 128–132

editing and enlarging, 46–49

overview, 45–46

sound effects for, 41–42

testing, 31–32, 50, 59

LEVELS section

adding messages to, 52–53

defining levels in, 8, 9, 13–14

in object creation sequence, 68

updating from level editor, 50

Load Example menu, 18

Load menu, 66

M

Make A Game button, 3, 18

Message keyword, 52

MOVE keyword, 9

moves

and dead-end paths, 119–120

horizontal and vertical, 77

in realtime mode, 120–123

rules for, 10–12

N

no keyword, 39

norepeat_action command, 99, 121–122

notes, 74

numbering, 22

O

Objects. See also specific objects

adding random behaviors, 62, 123–124

appearance, 21, 86, 123

in brainstorming example, 65–66

choosing symbols for, 8–9

in COLLISIONLAYERS section, 9–10

defining properties, 36–38

getting rid of, 98

ideas for, 146–147

in LEGEND section, 8

moving by player, 10–12, 77–78

moving in real time, 120–123

moving multiple, 78–79

and palette, 47–48, 49, 127

positions on layer, 11, 75, 88

sequence for creating and adding, 6–8, 67–69

objects-only game challenge, 146–147

OBJECTS section, 6–7

Obstacle group, 115–116

P

palette, 47–48, 49, 127

Panel object

drawing, 85–86

and level design, 84, 98, 118, 124, 130, 132–133, 136

in palette, 127

in rules, 87–90

Paste button, 50

pixels

defined, 21

transparent, 26–27

Player objects. See also robot objects

adding transparency, 26–27

in COLLISIONLAYERS section, 10, 30

drawing, 7–8

as groups, 72

rules for, 10–12, 34, 36, 37

player switching, 70–75

playtesting, 89

posting games online, 145

powerup sound button, 41

Pushable group, 77–79

PuzzleScript

documentation, 13

overview, xxii–xxiii, 1–2

starting, 3–5

PuzzleScript games. See also Herding Cats; Robot Heist; Simple Block Pushing Game; video games

adding notes, 74

copying, 66

counting attributes, 22

ideas for, 144–148

more games to try, 142–144

posting on itch.io, 145

realtime mode, 120–123

saved versions, 66

script order, 38

script parts, 5–14

sharing, 59–60

starting new project, 18–20

two-player game challenge, 145–146

Puzzle Script Terminal screen, 3

R

R (Reset) button, 50

random behaviors

object switching, 62

walls appearance, 123–124

realtime_interval command, 121

realtime mode, 120–123

Rebuild button, 8

right keyword, 113

Robot Heist

adding gates, 84–91

adding guards, 109–120

adding lasers, 91–99

adding robot prison, 133–135

adding robots, 70–73, 103–109

adding robot teamwork, 135–138

advanced level design, 138–139

background and wall, 68–69

bonus challenges, 100, 123–124

characters and interactions, 65–66, 70–72

first level design, 128–132

getting started, 66–67

losing conditions, 101–102

overview and story, 64

palette, 127

in realtime mode, 120–123

rules, 74–75, 77–79

source program, 125

story, 126

test level, 75–76

win conditions, 79–83, 108–109

robot objects

drawing, 70–73, 103–105

in level design, 65–66

in pushing rules, 77–79

rules for getting caught, 106–108, 117–118

rules for switching, 74–75

in teamwork, 135–138

in win conditions, 79–83

rules

and object positions, 75, 88

repeated running, 96

running at start of level, 54

sequence of execution, 33–34, 97

writing, 10–12

RULES section

adding exceptions, 90–91

adding sound effects, 42

order of execution, 38

Run button, 4

run_rules_on_level_start command, 54, 99

S

S (save level edit) button, 49

Save button, 29

Scratch games, xiii

screen

layout, 3

sound buttons, 40

sfx0 (sound effects) code, 42

Share button, 59, 66

sharing games, 59–60

Simple Block Pushing Game (Lavelle)

basic information, 4–6

collision layers, 9–10

legend, 8–9

levels, 13–14

objects, 6–8

overview, 3–5

rules, 10–12

sounds, 9

win conditions, 12–13

SleepingCat object. See cat objects

solvable games, 2

sound buttons, 40

sound effects, 9, 40–42, 105, 147

SOUNDS section, 41–42

spatial games, 2

[stationary player] keyword, 122–123

switching players, 70–75

T

Target object, 7, 10, 12–13

testing techniques, 31–32, 50, 59, 89, 133

throttle_movement command, 121

title keyword, 5, 20

treasure objects, 124, 127

Trouble group, 109

turn-based games, 1, 120

Twine games, xvii

two-player game challenge, 145–146

U

undo shortcut, 20

up keyword, 113

V

Vbot group. See robot objects

Vertibot objects. See robot objects

vertical keyword, 77

video games

brief history, xix–xx

ideas for, xxi–xxii

posting on itch.io, 145

tips for making, 15

tools for making, xviii, xxii–xxiii, 148

types, 1–2

W

WakerUpper object, 36–37

Wall objects

brick pattern, 23

in COLLISIONLAYERS section, 69

and dead-end paths, 119–120

drawing, 7

in palette, 127

prison pattern, 134

randomized appearance, 123–124

space design ideas, 147

win conditions

defining, 12–13

multiple, 108–109

Win Condition Satisfied message, 39

WINCONDITIONS section, 12–13, 38–39, 81, 82–83

wire paths, 124, 127

X

X (start game) button, 4

X button (clear sounds), 40

Make Your Own Twine Games is set in Stone Informal, Museo Sans, Source Code Pro, and Coop.

Updates

Visit https://nostarch.com/puzzlescriptgames/ for updates, errata, and other information.

More Smart Books for Curious Kids! [image: Image]

[image: Image]

MAKE YOUR OWN TWINE GAMES!

BY ANNA ANTHROPY

MAR 2019, 104 PP., $17.95

ISBN 978-1-59327-938-7

FULL COLOR

[image: Image]

MAKE YOUR OWN SCRATCH GAMES!

BY ANNA ANTHROPY

JUL 2019, 192 PP., $17.95

ISBN 978-1-59327-936-3

FULL COLOR

[image: Image]

MISSION PYTHON

Code a Space Adventure Games!

BY SEAN MCMANUS

OCT 2018, 280 PP., $29.95

ISBN 978-1-59327-857-1

FULL COLOR

[image: Image]

MAKE YOUR OWN PIXEL ART

Create Graphics for Games, Animations, and More!

BY JENNIFER DAWE AND MATTHEW HUMPHRIES

MAR 2019, 200 PP., $19.95

ISBN 978-1-59327-886-1

FULL COLOR

[image: Image]

25 Scratch 3 Games for Kids

A Playful Guide to Coding

BY MAX WAINEWRIGHT

OCT 2019, 128 PP., $19.95

ISBN 978-1-59327-990-5

FULL COLOR

[image: Image]

THE OFFICIAL SCRATCH CODING CARDS

Creative Coding Activities for Kids

BY NATALIE RUSK AND THE SCRATCH TEAM

MAY 2019, 76 CARDS, $24.95

ISBN 978-1-59327-976-9

FULL COLOR

1.800.420.7240 or 1.415.863.9900 | sales@nostarch.com | www.nostarch.com

 AGES 10+
BUILD YOUR OWN GAMES WITH PUZZLESCRIPT!

[image: Image]

PuzzleScript is a free, web-based tool you can use to create puzzle games. In a PuzzleScript game, you move objects around to solve problems and play through levels.

In Make Your Own PuzzleScript Games! you’ll learn how to use PuzzleScript to create interactive games—no programming experience necessary! You’ll start with the basics like how to make objects, create rules, and add levels. You’ll also learn how to edit, test, and share your games online.

Learn how to:

	Decorate your game with fun backgrounds

	Write rules that define how objects interact

	Add obstacles like laser guns and guards

	Herd cats and even pull off a robot heist!

With colorful illustrations and plenty of examples for inspiration, Make Your Own PuzzleScript Games! will take you from puzzle solver to game designer in just a few clicks!

ABOUT THE AUTHOR

Anna Anthropy is a game designer, author, and educator. She currently teaches game design as DePaul University’s Game Designer in Residence. She is the author of many games about cats, and she lives in Chicago with a little black cat named Encyclopedia Frown.

[image: Image]

[image: Image]

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

 OEBPS/Images/pg042-01.jpg

OEBPS/Images/pg159-07.jpg
@

OEBPS/Images/pg159-06.jpg

OEBPS/Images/pg107-01.jpg

OEBPS/Images/pg159-05.jpg

OEBPS/Images/pg094-01.jpg

OEBPS/Images/pg059-01.jpg
RUN - REBUILD - LEVEL EDITOR - EXPORT DOCS - FORUM

OEBPS/Images/pg080-01.jpg

OEBPS/Images/pg004-01.jpg
PuzzleScript save A

T — Load Example
2 ‘Anonymous Tutorial

3 v.puzzlescript.net

= Eyeball

6 Match 3

Z Random Ry
N Random Robot Spawner
10| Gre: Elementary

- Block Faker (Drogen)
| By Your Side (Draknek)

12 Kettle (increpare)
B oban (D. Skinner)

17 Neko Puzzle (Lexaloffle)
18|Player Notsnake (Terry Cavan:
19| Blue Zen Puzzle Garden (Lexaloffle)
= Intermediat

o . ntermediate

22 : Lime Rick (kissmaj7)

S Octat (increj

2 Constellation Z (increpare)
26 Advanced

27

28| . = Background

29| # Wall

30(P = Player

3t Crate

32|@ = Crate Target

330 = Target

OEBPS/Images/pg136-01.jpg
e

OEBPS/Images/pg113-01.jpg
1
W@ﬂ

OEBPS/Images/pg160-02.jpg

OEBPS/Images/pg160-01.jpg

OEBPS/Images/pg136-02.jpg

OEBPS/Images/pg004-02.jpg

OEBPS/Images/pg159-04.jpg
MAKE YOUROWN

PixelArt

OEBPS/Images/pg122-01.jpg

OEBPS/Images/pg159-03.jpg

OEBPS/Images/pg159-02.jpg
MAKE YoUR OWN
SCRATCH
GAMES!

OEBPS/Images/pg027-01.jpg

OEBPS/Images/pg159-01.jpg
MAKE YOUR OWN
TWINE
GAMES!

OEBPS/Images/pg065-01.jpg

OEBPS/Images/pg104-01.jpg

OEBPS/Images/pg131-02.jpg

OEBPS/Images/pg131-01.jpg
w
o
K}
=
>
2
€
1
@

o o
LWL

OEBPS/Images/pg125-01.jpg

OEBPS/Images/pg001-01.jpg

OEBPS/Images/pg074-01.jpg
ject "VERTIBOTSLEEPING™ has been defined, but not assigned to a layer.
Line 48 : Object "HORIBOTSLEEPING® has been defined, but not assigned to a layer.
Errors detected during compilation, the game may not work correctly.

OEBPS/Images/pg053-02.jpg
nr -':-‘:':.1';-‘
o .-i.

e,
R,
s

OEBPS/Images/pg053-01.jpg
X e continue

OEBPS/Images/pg139-01.jpg

OEBPS/Images/logo.jpg

OEBPS/Images/9781593279455.jpg
MAKE YOUR OWN
PUZZLESCRIPT

OEBPS/Images/pg118-01.jpg

OEBPS/Images/pg060-01.jpg
Compilation, generated 12 instructions.
Github (log_out) submission successful.

Link to source code:
https://ww. puzzlescript.net/editor. htn] hack=2f68adfbas fds6F15a85eb30326e7998

The game can now be played at this ur:
https://wm. puzzlescript .net/play. htul

p=2f68adfbasfda6F15a85eb30326e7992

OEBPS/Images/pg047-01.jpg

OEBPS/Images/pg019-01.jpg
souNDS

COLLISIONLAYERS

wINcoNDITIONS

RUN REBUILD LEVELEDITOR EXPORT SHARE DO(

Random Ro
Random
clementary
Faker (D

X0+

Successful Conr

OEBPS/Images/pg019-02.jpg
PuzzleScript save A

BYRRRENEBEEEEGREREBvnonswne

OBJECTS.

COLLISTONLAYERS

RULES

RUN REBUILD LEVELEDITOR EXPORT SHARE DOCS FORUM

Fuzzbe TSerift TErm;nuL:
VlE-

Lingért cartriddae]

KOk

PuzzleScript Log V1.6.0

No collision layers defined. ALL objects need to be in collision layers.

OEBPS/Images/pg105-01.jpg
Object "VERTIBOTCAUGHT" has been defined, but not assigned to a layer.
line 123 : Object "HORIBOTCAUGHT" has been defined, but not assigned to a layer.
Errors detected during compilation, the game may not work correctly.

OEBPS/Images/pg040-01.jpg

OEBPS/Images/pg040-02.jpg

OEBPS/Images/pg054-01.jpg

OEBPS/Images/pg096-01.jpg

OEBPS/Images/pg073-01.jpg

OEBPS/Images/pg138-01.jpg

OEBPS/Images/pg006-01.jpg
MYSTery o¢ the MisSind Socks
by Ciorence Lerrou

Start same ®

45 vo wove
27"k ve resvart

OEBPS/Images/pgxvii-01.jpg

OEBPS/Images/pg119-01.jpg

OEBPS/Images/pg119-02.jpg

OEBPS/Images/pg025-01.jpg

OEBPS/Images/pg048-01.jpg
SEEE-
e
Lo L

OEBPS/Images/pg067-01.jpg
PuzzleScript save [REHEEEEA X

OBIECTS

RUN REBUILD LEVEL EDITOR

LEGEND

10| SOUNDS

14| COLLISIONLAYERS

18| RULES

22| WINCONDITIONS

26| LEVELS

OEBPS/Images/pg127-01.jpg

OEBPS/Images/pg020-01.jpg
title Herding Cats!
author anna anthropy
homepage www. puzzlescript.net

OBIECTS.

LEGEND

7
18| COLLISTONLAYERS
9

1
22|RULES

5
26| HINCORDLTIONS

OEBPS/Images/pg045-01.jpg

OEBPS/Images/pg102-01.jpg

OEBPS/Images/pg133-01.jpg

OEBPS/Images/pg051-02.jpg

OEBPS/Images/pg133-02.jpg
{alalulalalululululululalaulululalulululala)

Egnnﬂgﬂgﬂﬂnnﬂnﬂﬂﬂﬁnﬂﬂﬂ

-) E &R

§] O ooodd
o

88aaadoboanagavogiadtn
GO

OEBPS/Images/pg014-01.jpg

OEBPS/Images/pg051-01.jpg

OEBPS/Images/cover.xhtml

O'Reilly logoSkip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Resource Centers

		Expert Playlists

		Jupyter Notebooks

		queue iconExplore		All Topics

		Most Popular Titles

		Recommendations

		Early Release

		Playlists

		Attend		Live Training

		Conferences

		Newsletters

		settings iconSettings

		Support

		Sign Out

 		

 		

 [image: 404 error]
 Eeep, we couldn’t find that page. Search, or go to the home page.

 You have 2 days left in your trial, Varta2019. Subscribe today. See pricing options.

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2019 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/pg039-01.jpg
el + v

Successtul Compilacion, generated 12 inscructions.

k7

OEBPS/Images/pg076-01.jpg

OEBPS/Images/pg056-01.jpg

OEBPS/Images/pg056-02.jpg

OEBPS/Images/pg031-01.jpg
PuzzleScript SAVE RUN REBUILD LEVELEDITOR EXPORT SHARE DOCS FORUM

41| avakecac
Yellow

HErdind Cats!
Ed anna anthrosd

Start Same

arcow KEYS to more
¥ to actaion
Z to wundo. R to rEstart

DX O] 3 |+ | | = | rufe=)

Successful Compilation, genmerated 0 instructions.
66|Background
67|Player, SleepingCat, AwakeCat, Wall

OEBPS/Images/pg003-02.jpg
PuzzleScript save | RUN REBUILD LEVELEDITOR EXPORT SHARE DOCS FORUM

title My Game
author Stephen Lavelle
homepage ¥vv.puzzlescript.net

Background

BR(R TR

Erer T R s
Blue T 1 W I
il N
Orange

Puzzlescript Log V1

Background
Wall

Player

Crate

Crate and Target
Target

EEELED

COLLISIONLAYERS

Background
Targec
Player, Wall, Crate

1
2
H
2
B
H
7
e
s

10

11

12

13

12

15

16|

17

1

15

20

21

22

23

21

2

26|

27

2

29

30

31

32

35

31

ES

36|

37

38

39

20

a1

a2

43

a1

a5
46|
a7
a8
Bt

OEBPS/Images/pg003-01.jpg
PuzzleScript!

PuzzleScript is an open-source HTML5 puzzle game
engine.

Gallery

Make A Game

First Steps

£

T
v,
"

»

OEBPS/Images/pg087-01.jpg

OEBPS/Images/pg028-01.jpg

OEBPS/Images/pg017-01.jpg

OEBPS/Images/pg023-01.jpg
L T T T
R e
e o
-"l--_.-u----

OEBPS/Images/pg098-01.jpg

OEBPS/Images/pg052-01.jpg

OEBPS/Images/pg090-01.jpg

OEBPS/Images/pg032-01.jpg
e
b)
iy SR

.

SR
i

i
i

OEBPS/Images/pg055-01.jpg

OEBPS/Images/pg141-01.jpg

OEBPS/Images/pg117-01.jpg

OEBPS/Images/pg061-01.jpg

OEBPS/Images/pg061-02.jpg

OEBPS/Images/title.jpg

OEBPS/Images/pg084-01.jpg

OEBPS/Images/pgxx-01.jpg

OEBPS/Images/pg070-01.jpg

OEBPS/Images/pg129-01.jpg
ooooooooooooooooooo

o oo aF - dr ooog

E oo #u# ooo
B

=] § *]

=] 5 L

o

o

DDDEDDDDDDEDEDDEDEE

OEBPS/Images/pg078-01.jpg

OEBPS/Images/pg095-01.jpg

OEBPS/Images/pg058-01.jpg

OEBPS/Images/pg114-01.jpg

OEBPS/Images/pg135-02.jpg
VALERIE "VAL" ROEOT. ALIAS
VERTIEOT. MASTER OF PUSHING THINGS
VERTICALLY.

X to continue

OEBPS/Images/pg012-01.jpg

OEBPS/Images/pg135-01.jpg

OEBPS/Images/pg026-01.jpg

OEBPS/Images/pg089-01.jpg

OEBPS/Images/pg064-01.jpg
Robot Heist

OEBPS/Images/pg101-01.jpg

OEBPS/Images/pg128-01.jpg

OEBPS/Images/pub.jpg
©

no starch
press

OEBPS/Images/pg038-01.jpg

OEBPS/Images/pg057-01.jpg
--":-'.-'.-'

OEBPS/Images/pg030-01.jpg

OEBPS/Images/pg134-01.jpg

OEBPS/Images/pg002-01.jpg

OEBPS/Images/pg063-01.jpg

OEBPS/Images/pg029-01.jpg

OEBPS/Images/pg018-01.jpg
Herding Cats
e oo v o s e Y e) s o B o

www.puzzlescript.net | hack

OEBPS/Images/pg041-01.jpg
ilation,
prermeattie
17035007

pushSound
explosion : 39953902
pickupCoin : 2289300

pushSound : 11985707
pushSound : 84635907
explosion : 33052302
explosion : 20364302

explosion : 82215762

OEBPS/Images/pg041-02.jpg

OEBPS/Images/pg106-01.jpg

OEBPS/Images/pg097-01.jpg

OEBPS/Images/pg035-01.jpg
Yy

o By
e,
L
e e
o i A
P e

OEBPS/Images/pg137-02.jpg

OEBPS/Images/pg137-01.jpg

OEBPS/Images/pg049-01.jpg

OEBPS/Images/pg049-02.jpg
uccessful Compilation, generated 12 instructions.
Printing Lover contents

OEBPS/Images/pg083-01.jpg

