

 [image: GROWING SOFTWARE]

 GROWING SOFTWARE
Table of Contents
	ACKNOWLEDGMENTS
	INTRODUCTION
		Book Organization and Conventions
		Company Growth Stages
	Real-Life Accounts
	Spreadsheets
	Templates

	I. DEVELOPMENT TEAM
		1. GETTING STARTED
		Finding Your Way in a New Job
		Dealing with the Immediate
	Undergoing Initial Training
	Collecting Information

	Understanding the People
		Reluctance to Reveal Information

	Learning the Technology, Process, and Product
	Understanding the Customer
	Understanding the Corporate Business Workflow
	Back to the Big Picture

	2. MANAGING A DEVELOPMENT TEAM
		Understanding Your Core Management Values
		Trust
	Flexibility
	Sincerity
	Confidentiality
	Respect
	Empowerment

	Communicating with Your Team
		One-on-Ones
	Project Communication
	Team Meetings

	Conflict Resolution
	Training
	Coaching
	Motivating Your Team Members
	Coaching Problem Employees
	Reviews and Evaluations
		Creating the Review
	Delivering the Review
	Providing Late and Deficient Reviews

	Additional Reading

	3. CREATING AN EFFECTIVE DEVELOPMENT TEAM
		Effective Team Organization
	Programmer Efficiency
	Office Space
	How Other Teams Communicate with Engineering
	New Manager, Old Habits
	Have Fun
	Additional Reading

	4. GROWING A SOFTWARE TEAM
		Designing a Selection Process
	Interview Traits
		Technical Skills
	Success History
	Cultural Fit
	Work Habits and Preferences
	Industry Experience
	People Skills
	Communication Skills
	Personality
	Enthusiasm
	Problem-Solving Ability
	Sense of Humor

	Pulling It All Together
		Phone Screening
	The Office Interview
	Coaching Your Interview Team
	Interview Sessions to Avoid
	Review Session
	Making the Choice

	Additional Reading

	II. PRODUCT AND TECHNOLOGY
		5. DEFINING THE PRODUCT
		Product Definition Process
	Product Definition Contents
	The Whole Product Concept
	Define the Product Using Prototypes
		Prototypes in General
	Quick and Nimble Approaches
	Clickable User Interface Prototypes
	User Interface Design

	Build a Relationship with Marketing
		Avoid Poor Relationships
	Keep Marketing and Engineering Teams Together
	Build a Balanced Relationship

	Customer Perception of the Product
		Surprise! Unplanned Features

	Improving a Product in an Alpha Release
	Understanding an Existing Product's Composition
	Additional Reading

	6. DRIVING RELEASES
		Release Planning
		Release Timeline
	Early Release Strategy
	Planning Product End of Life

	The Release Process
		Release Criteria
	Process Steps
	Post-release Review

	Release Version Identification
		Three-Number Release IDs
	Patch Releases
	Component Numbers vs. Release Numbers
	Numbering Across Releases
	Software for the Gentleman Farmer

	Additional Reading

	7. EVALUATING YOUR TOOLS AND METHODS
		Backing Up Intellectual Property
		Backup Frequency
	Offsite Copies
	Disk-Only Backup

	Creating and Managing Development Documentation
	Source Control Versioning
	Software Build Method and Timing
	Software Release Process
	Bug-Tracking System
	Selecting the Right Development Tools
	Additional Reading

	8. ASSESSING YOUR TECHNOLOGY
		System Documentation
	System Scalability
	Failure Modes
	Error Handling and Messages
	Software System Flexibility and Maintainability
	Third-Party Packages Integrated into the System
	System Application Programming Interface
	Security
	Data Reporting and Analysis
		Data Warehouse

	International Support
	Looking at the Big Picture
	Additional Reading

	III. OUTSIDE OF ENGINEERING
		9. WORKING WITH YOUR COMPANY
		Company Culture and Practices
		Corporate Style
	Management Style
	Meeting Style

	Handling Interteam Problems
	Growing Peer Relationships
	Engineering Team Respect
	Additional Reading

	10. WORKING WITH THE CEO AND THE EXECUTIVE TEAM
		Supporting Your Boss
		Ensuring Clarity of Goals
	Providing Useful Information
	Communicating
	Influencing Decisions

	Collaborating with the Executive Team
		Resolving Conflict
	Taking up Your Mantle with Confidence
	Opening Communication
	Collaborating Effectively

	11. LISTENING TO YOUR CUSTOMERS
		Customer Satisfaction
	Customer Meetings
	Closing the Deal
		When the Sales Team Overpromises
	Requests for Quotes

	Support and Customer Requests

	IV. MAKING WORK FLOW: PROJECTS, PROCESS, AND QUALITY
		12. PROJECT ESTIMATING
		Building an Estimate
		Creating a Task List
	Creating Task Estimates
	Considering Estimation Bias
	Building the Estimate
	Writing and Delivering the Estimate

	Collecting Raw Project Data
		Summarizing Data Using a Spreadsheet
	Engineering Maintenance and Overhead

	Additional Reading

	13. STARTING A PROJECT
		Understanding the Goal
	Assembling the Project Team
		Substitutions
	Game Delays

	Setting Priorities
	Selecting the Framework
	Mapping out the Timeline
	Creating a Project Plan
	Kickoff Meeting
	Additional Reading

	14. PROJECT EXECUTION AND TRACKING
		Managing a Project's Execution
		The Five Rules of Project Management

	Project-Tracking Approaches
		Gantt Chart
	Project-Tracking Spreadsheet

	Change Control Process
	Risk Management
	Additional Reading

	15. DESIGNING A SOFTWARE DEVELOPMENT PROCESS
		What's in a Software Development Process?
	Types of Development Processes
		Ad Hoc
	Waterfall Process
	Modified Waterfall Process
	Iterative Process
	Spiral Process
	Agile Processes
	Other Processes and Approaches

	Customizing a Process
	Selecting a Process
	Introducing a Process
	Additional Reading

	16. PROCESS IMPROVEMENT
		Creating a Process Model
		Define the Process Boundaries
	List the Process Steps
	Create a Flow Chart
	Estimate a Range of Times
	Create a Spreadsheet Model
	Verify the Model

	Analyzing the Process Model
		Process Analysis in Action
	Using the Model to Improve the Process
	Working with Other Teams

	Getting It Going
	Additional Reading

	17. UNDERSTANDING QUALITY ASSURANCE
		Importance of Quality
	Quality Defined
	Valuing Quality
	Quality Assessment
		The Quality Assurance Team
	QA Tools and Environment
	QA Activities
	QA Processes
	Defect-Ranking Process
	Functionality and Usefulness as Specified and Built

	QA Metrics
		Defects Found per Week Post-Release
	Weighted Defect Count per Week
	Weighted Customer-Found Defects
	Percent of Tests Run During Test Pass
	Defects Found in Test Passes
	Defects Repaired per Week During Testing

	The Impact of Defects on Quality and Productivity
	Additional Reading

	V. PLANNING THE FUTURE
		18. SETTING THE DIRECTION
		Listen to the Market
	Create a Whole Product
	Defuse Technical Time Bombs
	Plan a Technology Overhaul
	Optimize Customer Setup

	19. PRODUCT ROADMAP AND STRATEGY
		Creating a Product Roadmap
	Evaluating Choices
		Cost-Benefit Calculation
	Cost-Benefit Comparisons

	Creating One-Page Assessments
		Project Components

	Additional Reading

	20. GOING FORWARD
	A. SOFTWARE COMPANY STRUCTURE
		Company Tasks
	Typical One-Person Company
	Typical Two-Person Company
	Twelve-Person Software Company
	Twenty-four to Fifty-Person Software Company
	Hundred-Plus–Person Software Company
		Hierarchical Structure
	Matrix Organizations
	Small Product Team
	Flexible Project Teams

	Conclusion

	B. INTERNATIONALIZATION
		Internationalization Questions to Ask
		Translating Staffing and Costs
	Database Considerations
	Country and Language Requirements
	Currency Questions
	Dates, Metric, and Dimension Issues

	Best Practice Approach to Internationalization
		Locales
	Translation Process
	Quality Assurance
	Database and Import/Export
	Translation Firm
	User Interface

	Summary

	C. CORPORATE WORKFLOW DIAGRAM
		Creating a Simple Workflow Diagram
	Workflow Example

GROWING SOFTWARE

Louis Testa

Copyright © 2009

For information on book distributors or translations, please
 contact No Starch Press, Inc. directly:
No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950;
 info@nostarch.com; www.nostarch.com
Library of Congress Cataloging-in-Publication
 Data:
Testa, Louis.
 Growing software : proven strategies for managing software engineers / Louis Testa.
 p. cm.
 ISBN-13: 978-1-59327-183-1
 ISBN-10: 1-59327-183-2
 1. Computer software industry--Management. 2. Computer software industry--Technological
innovations--Management. I. Title.
 HD9696.63.A2T47 2009
 005.068'4--dc22
 2008046171

No Starch Press and the No Starch Press logo are registered
 trademarks of No Starch Press, Inc. Other product and company names
 mentioned herein may be the trademarks of their respective owners.
 Rather than use a trademark symbol with every occurrence of a
 trademarked name, we are using the names only in an editorial fashion
 and to the benefit of the trademark owner, with no intention of
 infringement of the trademark.

The information in this book is distributed on an "As Is" basis,
 without warranty. While every precaution has been taken in the
 preparation of this work, neither the author nor No Starch Press, Inc.
 shall have any liability to any person or entity with respect to any
 loss or damage caused or alleged to be caused directly or indirectly by
 the information contained in it.

[image: GROWING SOFTWARE]

No Starch Press

Dedication

To my wife, Edie

ACKNOWLEDGMENTS

Pulling together my first book has been fun but has taken a huge
 amount of effort. However, no matter how much effort I put in
 individually, this book would not be worth reading without the help and
 advice I received from many people, including family and friends.
I would not have written this book without encouragement from my
 wife, Edie, and from my four children, Logan, Kevin, Kerry, and Brady.
 Edie's advice and suggestions for clarity led me to rewrite many of the
 sections and fill in the gaps.
I would like to give special thanks to Clayton Greer for his careful
 technical review of the book and really great suggestions; to Anita Maria
 Gutierrez for her extensive review of the entire draft of the book, as she
 provided editorial insight and suggestions for ideas for improvement; to
 Jef Bell for his exhaustive review, recommendations, and ideas that made
 the book stronger; and to Mike Portwood for his insightful advice on
 topics for the book and the considerable amount of time he spent reviewing
 the material.
Additionally, I am very grateful to Bob Tidwell, Curt Frye, Paul
 Irvine, Gordon Huntsman, Miki Tokola, Rick Sanstrom, and Dylan McNamee for
 their useful information and recommendations.
Finally, it has been great working with the team at No Starch Press:
 Megan Dunchak, Tyler Ortman, Lisa Theobald, and Adam Wright. I would
 recommend them to any aspiring technical author. (I guess I just
 did.)

INTRODUCTION

In many small and growing companies, engineering managers are often
 in the unique position of having to deal with the technical team and other
 senior managers, while simultaneously taking direction from the CEO. Too
 often, development managers focus only on technology, even though the
 nontechnical aspects of the job can have the biggest impact on a company's
 success. As your company grows, problems that once seemed small can grow
 accordingly, exploding into major disasters. I wrote Growing
 Software to offer advice for newer development managers about
 how to succeed when faced with these diverse challenges.
The role of a development manager at a small company differs from
 the same role in a large and stable company in many ways. For example, the
 development manager at a small company must often work with developers to
 support an immature product. Development managers must also work with the
 strong personalities who are attracted to the challenges faced by growing
 companies. But most of all, a small company's development manager must
 have a wide focus that includes employees, product, process, planning,
 technology, and customers.
In contrast, large companies typically support multiple existing
 products, and their processes are usually well defined and relatively
 static. Policies in large companies typically limit the choices of tools,
 techniques, and approaches that a development manager can use. The
 manager's role is more specific and much narrower in scope than the same
 role in a small firm.
Growing Software serves as a practical,
 hands-on guide for development managers at small companies that have moved
 past the initial survival stage and are trying to grow. It is intended to
 help the manager look ahead and deal with problems before they become
 unwieldy. The techniques described here are useful for small firms
 producing software for sale or for a software-as-a-service offering; they
 are not directed at software consulting businesses. Growing
 Software provides general advice, specific solutions, and
 detailed templates and spreadsheets to help development managers put
 general concepts into direct action.
Because the scope of the book is broad, it is written in a
 prescriptive style rather than an argumentative one—that is, many
 recommendations are not supported by exhaustive arguments as to why the
 techniques work well. Although this information would have greatly
 increased the scope of the book, it would have made it less
 readable.
For convenience, I use the terms development
 manager and development management
 throughout this book to describe the top
 software/engineering manager—whether the particular job title is chief
 technology officer (CTO), vice president of engineering, director of
 engineering, or senior engineering manager. This person manages software
 engineers, but he or she might also manage quality assurance,
 documentation, and project management groups. Although the target audience
 for this book is the person in charge of all of development, nontechnical
 managers will also be interested in the problems and solutions described
 here.
Book Organization and Conventions

This book is divided into the following major sections that make
 it easy to use as a reference:
	Development Team

	Product and Technology

	Outside of Engineering

	Making Work Flow: Process, Projects, and Quality

	Planning the Future

Although the order of the book allows for each topic to build on
 earlier ones, you can jump to any section to read about a particular
 topic of interest.
Company Growth Stages

Companies grow in stages as they progress from startup to full
 growth mode. The information in this book applies to one or more of
 these stages. Table 1
 defines the stages according to the size and completion of the
 product.
Table 1. Stages of Startup Company Growth
	Stage
	Company size
	Customers

	Startup
	Less than 12
	0 to 2, with no major customers

	Foothold
	12 to 40
	3 to 5, with one major customer

	Growth
	40-plus
	More than 6, with 2 major
 customers

Real-Life Accounts

Growing Software offers short narratives of
 real-world situations that illustrate key points; these narratives are
 offset from the rest of the text. Although all accounts are written in
 first person for consistency, the stories are a mix of the experiences
 of others as well as my personal experiences. Company and individual
 names have been removed.

Spreadsheets

Spreadsheet examples are used throughout to illustrate
 techniques for collecting, analyzing, and displaying information to
 solve specific types of problems. Each is illustrated and described in
 the text and can be downloaded from http://www.nostarch.com/growingsoftware.htm to be used
 in Microsoft Excel or OpenOffice.org Calc, adjusting for each
 program's minor differences. The primary purpose of the examples is to
 teach how to analyze and solve underlying problems with a simple
 spreadsheet.
Although the spreadsheets can be used as is, many problems will
 require that you customize the basic spreadsheet layout. You can
 re-create a spreadsheet by typing all the fields into a spreadsheet
 program. Arrows point to particular cells to indicate a formula you
 can enter, with a description to the right or below the example. As
 appropriate, copy the formula across a row or column as described in
 the note attached to the spreadsheet. Figure 1 illustrates
 these conventions.
When entering formulas, pay attention to dollar sign ($)
 characters that affect how a formula reads data when it is copied from
 one cell to another. Not including the dollar sign character can
 result in incorrect calculations after the formulas are copied.
[image: This sample spreadsheet illustrates cell instructions.]

Figure 1. This sample spreadsheet illustrates cell
 instructions.

Correct formatting is also important for the spreadsheet
 examples. The default format for an entry is General, which will not
 display all values in the most appropriate ways. Formatting is implied
 from the examples: Dates should use Date
 formatting; currency amounts should use Currency
 formatting with zero digits after the decimal; and
 numbers should use Number formatting with the
 rounding chosen based on how many digits are of interest.
Important Differences Between Excel and OpenOffice.org
 Calc
	OpenOffice.org Calc uses a semicolon (;) to separate
 fields in a formula, and Microsoft Excel uses a comma (,). This
 book uses commas to separate fields in all formulas. If you are
 working in Calc, use semicolons instead. For example, the Excel
 formula =WORKDAY(B3, C3) looks like this in
 Calc: =WORKDAY(B3; C3).

	A second important difference is the inter-sheet
 reference used to refer to cells in other worksheets.
 The inter-sheet reference is an exclamation point (!) in Excel
 but a period in Calc. For example, a formula that references the
 Eng sheet appears in Excel as
 =Eng!H3 but appears as
 =Eng.H3 in Calc.

Templates

Growing Software also provides sample
 templates, surrounded by a dashed box, that you can copy as starting
 points for your own templates. Template instructions appear in
 italics; feel free to delete these instructions as you fill out the
 template.

Part I. DEVELOPMENT TEAM

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Development managers often focus solely on the company's
 technology. Although technology is fun, good managers must first
 understand the people they work with. Focusing on technology instead of
 people is like coaching a baseball team and spending all your time
 testing the latest, greatest bats.
This section covers starting a new job, working with the
 development organization, and successfully growing your team. No need to
 worry; we'll talk about technology—just a little later.

Chapter 1. GETTING STARTED

Imagine you're hiking through the woods, following some new
 trails. The weather is perfect, and you are relaxed. As you walk along,
 you notice the landscape beginning to change as you enter unexplored,
 rugged wilderness. Eventually, you stop to sit on a large rock and eat a
 snack.
As you are eating, you realize that you have no idea where you
 are. You forgot to bring a map and neglected to plan a route or mark
 your path. Now you feel a sudden burst of tension and fear.
 You are lost. You want to move faster—either
 continuing in the direction you were going or turning around to find
 your way back. But you know that panicking and running in any direction
 is a big mistake when you're lost in the woods.
You remember some crucial wilderness advice: When you're lost,
 stop, assess, and then act. You've stopped moving. You assess your
 situation and ask yourself a few questions: What do I know
 about where I am? Do I have tools, maps, or supplies in my backpack that
 would be helpful? How much time has gone by since I started out? How
 much time do I have to get back safely? Next, you make a
 plan—and then you act.
Now, a shift of scenery: You are vice president of engineering at
 a small company that is growing rapidly into unfamiliar territory.
 Although you have been with the firm since the beginning, it's no longer
 the little startup you used to know. You feel lost in the woods without
 a map. Like the hiker, any fast and frantic actions will worsen your
 situation, so instead of panicking, you stop, assess the situation,
 gather what information you can, map out a strategy, and then
 act.
On the other hand, if you are starting a new job at a growing company, you might feel like you've
 been dropped into the middle of the woods—and you missed the pleasure of
 the initial hike in. The same approach to the situation applies,
 however: Stop to survey the landscape and collect what information you
 can before you act. By following these steps, whether you're new or
 newly lost, you can find your way.
Finding Your Way in a New Job

As the volatility of technology companies increases, loyalty to
 company senior staff decreases. As a company folds or changes its
 focus, development managers often find themselves looking for
 new jobs. Getting a new job, of course, starts with an
 interview.
Interviewers paint masterful pictures of their companies during
 interviews, like a softly focused Monet. But once you start the job,
 the picture begins to look distorted, somewhat like a Picasso. Small
 and subtle problems described to you during the interview process
 become huge crises that you must resolve immediately. Table 1-1 shows a tongue-in-cheek
 comparison between the interview statements and reality.
After you've joined the company and headed down that formidable
 path, you need to make the best of the reality.
Table 1-1. The Interview vs. Reality
	Interview statement
	Reality

	We have a few minor quality
 problems.
	The product is a disaster. As soon as you come on
 board, you will be blamed for everything
 that ever went wrong.

	We need to improve our delivery on
 commitments.
	Nothing comes out on time. The company needs to
 make constant changes to its newest product features throughout the
 development process because marketing and other executives
 cannot make up their minds. However, they still expect on-time
 delivery.

	We have a great team of engineers, but a little
 coaching is needed.
	Team members are having screaming arguments in
 the halls. At least one engineer needs to be fired for
 non-performance.

	We are a driven company with highly motivated
 employees.
	Your "lazy" development team is expected to work
 through lunch, every evening, and most weekends—or you will
 have to fire them.

Dealing with the Immediate

During your first days as development manager, urgent issues will demand your immediate attention.
 Some problems will have built up since the last manager moved out of
 the position, leaving several months' worth of deferred decisions on
 your desk. Wading through a swamp best
 describes the job of tackling that backlog.
You might feel pressure to focus exclusively on these issues,
 but that can be hazardous to your long-term success. By focusing
 only on the pressing concerns, you can miss opportunities to learn
 about your company, its products, your co-workers, and your team. So
 take a deep breath and see the bigger picture.
If you split your time between tackling the outstanding issues
 and handling day-to-day crises, you will eventually reduce some of
 the reoccurring problems, thus improving the effectiveness of your
 team. Spending part of each day learning about your company will be
 more effective than spending all your time clearing out the problem
 backlog. In addition, you'll better understand the bigger problems
 faced by your team, which will allow you to start addressing them
 sooner. Many issues will pop up during the day and continually force
 you to shift your focus. You can keep this process from becoming too
 chaotic by creating a system for handling the many demands on your
 time.
Maintain a List of Issues and Efforts

Careful task management and good record-keeping will help
 from the start. Maintain a list of your decisions and efforts as
 well as the big issues, especially those that are presented to you
 as urgent problems. Organize the list in prioritized
 sections along with notes about required completion dates.
 Managing this list will help lower your anxiety about missing any
 issues, and an assembled list will let you review your priorities
 and efforts with your boss.
Review your task list daily and target priority issues. For
 large tasks, target subsets that you can complete in a short time.
 Focus energy on large, high-priority tasks every week; otherwise,
 they will continue to be deferred by short-term pressing demands.
 Assume that you will have only a limited amount of time during the
 day to work on these issues: Avoid overbooking your time and
 hindering your progress.
As you complete a task to resolve an issue, mark it as such
 with a date and archive the task. This archive can be helpful
 later, when you're asked whether and how you handled specific
 issues. Checking off completion is also good for your
 morale.

Delegate When Possible

Delegate responsibility as appropriate for some immediate
 issues instead of trying to tackle them all yourself. Proper
 delegation makes you and your team more productive,
 and the opportunity to tackle new tasks is good for team member
 morale. When delegating, make sure the delegatee understands the
 task, its priority relative to other work, any status check-in
 dates, and a due date. Also make sure that the team members know
 they can come to you for more information.
If delegating an entire task is not appropriate, you can
 assign parts of the task to team members. For example, you could
 assign information collection tasks to others and reserve
 assessment for yourself. Or you could ask a team member to provide
 background research on an issue and then coach the person on
 approaches to analyzing the data. If you give team members an
 opportunity to take on part of an important job, you all
 benefit.
As you work through the immediate issues, remember to keep your boss apprised of your
 progress. This can help prevent misconceptions about your
 efforts.

Undergoing Initial Training

Success during your initial training period will require
 focused effort and time. Reserve a fixed amount of time each day for
 learning about your company's employees, technology, products,
 market, and process. Find an hour or two when you are most alert and
 able to focus your attention. Arrive early and spend the start of
 each day on your training, and continue to reserve this time later
 to tackle difficult issues.
As a new development manager, you'll probably experience a
 short "honeymoon period" of three to six weeks, when your
 boss gives you some leeway to learn about your job and the company
 culture. You should expect to work some overtime hours during this
 time, but these extra hours offer you time to learn about and act on
 important issues. If your boss recognizes your extra efforts, she'll
 feel satisfied with her decision to hire you in the first place.
 After you have shown what you can do, you can scale back your hours
 to a reasonable and sustainable level that works for you.
Know whether you were hired specifically to be a change agent
 or whether you are expected to make incremental changes to an
 already effective organization. These expectations will frame how
 you present issues to your team and your boss. If, for example, you
 identify significant issues but the expectation is to maintain the
 status quo, you might waste considerable time and energy trying to
 convince your boss and team about the importance of some
 problems.
Your timing on addressing long-term issues is also critical.
 If, for example, you wait six months or more to discuss big-picture
 issues, your challenge might be greater: You might have lost an
 opportunity to present a fresh perspective or even to identify the
 problem, as it can be difficult to recognize flaws in a system once
 you become immersed in it. Later on, you might find the development
 team more resistant to change, as people might be willing to listen
 to fresh perspectives only from a new manager.
If you propose significant changes, speak credibly about the
 benefits and the costs to the company. "Selling" your changes can
 help you avoid making enemies or facing inappropriate behaviors from
 others who might be resistant to change.

Collecting Information

Collect information about the company's product, people, and
 process to decide on a strategy for your first three to six months
 on the job. Talk with your boss and spend time with direct reports
 and peers to gain a broad perspective on the company. Your goal is
 to get a big picture view of the company's problems and successes
 and to learn how development can best serve the company. Begin by
 asking the following open-ended questions to identify and isolate
 major concerns:
	What is working well?

	What do you see as major problems?

	What solutions do you propose?

Then pull what you learn into a summary and look for
 patterns.
Creating a Discussions Summary

As you meet with co-workers, managers, and other staff, take
 notes; then type up your notes into bulleted statements to keep
 the ideas organized and fresh in your mind. Paraphrase and
 summarize comments to make your statements short and
 succinct.
Next, organize the summary document by categories. Each
 category can include problem areas as well as successes. After
 each of the problem areas, list a solution that was identified
 during your conversations. Here is a list of potential categories
 in which to collect information (of course, your list might look
 different):
	Technology
	Quality problems

	People
	Internal documentation

	Organization structure
	Risks

	Clarity of goals
	Customer service

	Policies
	Marketing and sales

	Process
	Financial issues

	Planning
	Other

Problems and solutions will fall into three categories: issues you and your team can
 address directly, issues on which you can collaborate with other
 departments and people in the organization, and issues that you
 can influence but not directly address. Label each issue
 accordingly in your summary.
A snippet of the final document might look like this:
4. Technology
	Positive: Our technology is faster and more reliable
 than our competitors'.

	Positive: Languages and libraries in use are up to
 date.

	Problem: The system is missing redundancy in subsection
 A-15 that will lead to "core meltdown." This will require
 collaboration with Operations.

	Problem: The API has poor error checking. Two flawed
 data requests will cause the system to erase the
 database.
Solution: I can address directly through discussion with
 development.

Putting Your Summary to Work

Next, set priorities for the successes and problems
 identified. Ranking successful approaches as well as problems will
 allow you to think about how to keep the most important positives
 strong. A simple A, B, C prioritization works
 well for the initial sorting, and it's a good idea to follow this
 system within each level. Rate your boss's statements high, but do
 not minimize others' feedback. Ultimately, you must decide which
 areas to address and how to address them. Create an action plan from your highest priority items.
 Estimate what you can accomplish in the next three to six months,
 for example. A realistic plan will help you avoid tackling too
 many tasks at once and getting little accomplished.
Make sure you understand the acceptable mix of project work
 versus improvement work before creating a plan. For a small firm,
 spend at least 10 to 20 percent of your time and 5 to 10 percent
 of the team's time solving issues that do not deal directly with
 completing current projects. Such non-project issues include
 improving productivity, conducting training sessions, advancing
 technology, planning for the future, improving working
 relationships, and resolving people issues.
Action plans fail due to lack of company support, so
 be sure to solicit the support of your boss in your improvement
 efforts. You need your boss's enthusiastic support—or at least
 acceptance—if you hope to succeed. If your boss reacts negatively
 to your suggestions, you need to try to understand his
 concerns—or, if you still believe in your proposals, do more
 research and selling. Your boss needs to know that you are
 addressing company problems in a reasonable way before your
 approach can be successful.
You should also engage with other department managers,
 especially in marketing and sales. They'll need to understand why
 time and resources are required for work not directly related to
 their short-term goals. Explain the long-term benefits your
 changes can provide to the company. Since problems you identify
 might not relate to your department only, feedback and discussion
 with others will improve your understanding of the scope of
 problems and help you find the best solutions.
Establish each effort as a project with a timeline and
 resources. Encourage the continuation of improvement projects or
 they will lose momentum; failing to improve leads to lower
 productivity as the company grows.
GETTING AN OVERVIEW AT MY COMPANY
When I joined my last company, I made time to talk to a
 dozen people in different departments. I took what I heard and
 coalesced it into a summary document of a few pages. This
 process gave me valuable insight into what was going on. Talking
 to everyone was an enlightening exercise that directed me toward
 the biggest problems to address first.
—New manager

Understanding the People

Understanding your co-workers will make your job much more productive and a
 lot more fun. Conversely, not getting to know them will be frustrating
 and can lead to friction. Fortunately, you can find out a lot by
 talking to people, especially the developers on your team.
Ask the following questions:
	What do you like to do?

	What work assignments do you dislike?

	What do you do best?

	What would you like help with?

	Where else have you worked?

	Why did you join this company?

	What would you like to change?

Answers to these questions will offer hints about how best to
 work with each person. Learning how developers complete their work and
 interact with others provides a helpful assessment of behaviors.
 Reading your team's past performance reviews can offer some insight, as long as
 the previous manager wrote usable review comments. If that's not the
 case, it tells you something about how the team was managed before you
 came on board.
Talk to workers outside your team as well. Strike up
 conversations with people throughout the company to gain insight into
 company culture and to determine what methods do and don't work. The
 benefits of building relationships with others in the company are
 huge—plus, getting to know people can be enjoyable.
Chapters Chapter 2 and
 Chapter 3 provide
 detailed discussions on working with your team. Chapters Chapter 9 and Chapter 10 offer advice on
 how to work with others throughout the company.
Reluctance to Reveal Information

You might encounter engineers or others who are reluctant to
 reveal information. They can express this in the following
 ways:
	Claiming to be too busy to answer your questions

	Providing only minimal information with important details
 left out

	Claiming not to know an answer, even when you believe they
 do know

	Providing extensive low-level details without
 providing context for the information

	Leaving out technical details intentionally

These claims appear to close the door to getting the
 information you need. To overcome this, you need to understand the
 real reasons behind them. These are some common reasons for people
 being reluctant to provide information:
	The person's ego requires him to know more than anyone
 else.

	He is worried about job security and wants to hold on to
 critical information.

	She is embarrassed by her lack of knowledge.

	He is busy with work and sees little value in educating
 you.

	She does not like or trust management in general.

Politely persisting in your requests for information usually
 works. In all cases, explain your interest in the information to
 build trust, but insist that the engineer provide the information
 without excessive delay. Make the following points:
	You need to understand the technology and choices to work
 effectively with the engineer and with others.

	You need complete information in some areas, not a cursory
 overview. If the engineer pleads lack of time, discuss his time
 commitments. You can request some overtime efforts.

	If an engineer's answers seem incomplete or ill-formed,
 ask the engineer to research the topic and report back to you.
 This shows your confidence in this person and the importance of
 your request.

	If the person really does not know an answer, ask her to
 tell you so directly. Ask who would know the answer. If you
 cannot get the information from that person, assign another
 engineer to get it for you.

	Tell the engineer that you will be making decisions that
 affect his job, and those decisions should be well
 informed.

Hostile engineers will require winning over—or, in the worst
 case, weeding out. Take time to understand the person and his or her
 motivations before acting. Chapters Chapter 2 and Chapter 3 go into more
 detail about managing a development team.
Identifying the Company Culture

Company culture concerns the ways
 people interact with each other and what types of behaviors are
 rewarded by management. To identify the company culture, observe
 what managers say compared to what they do. Reading the corporate
 values and mission statement can also help. You can determine how
 mission and values affect corporate direction by discussing them
 with peer managers; you should understand how management applies
 these resources to their staff and work decisions.
Note
If your boss did not discuss company values
 during initial conversations about your job, the values are
 probably basic boilerplate statements.

Small and growing companies need to think through their
 values and mission statements carefully. These statements
 provide a foundation upon which the company culture is built.
 Management must train employees in the mission and values during
 orientation, and management should review major decisions that are
 not in line with these statements. Because of the rapid changes of
 a small and growing company, mission and value statements are even
 more important than they might be at a large and established
 company.
In a well-run company, the values and mission statements
 define the company. People make decisions based on defined values,
 which are also used to set company direction and define the
 organization. For example, a key value of
 quality would direct the CEO to give the
 quality assurance team a prominent spot in the organization and to
 emphasize quality training. As the development manager, consider
 your company's mission and values and do your best to apply them
 to your management style.
Chapter 9 covers company
 culture in more detail.

Learning the Technology, Process, and Product

During your first two months on the job, get an overview of
 company technology, process, and product. Learn about the technology
 used, how the product works, how the development process works, and how the development team members work
 together. Assess what you know and identify areas that you don't fully
 understand. Then fill in the gaps by systematically collecting the
 missing information.
Know your product inside out. Review, at a minimum, the
 top-level architecture showing the major component blocks of the
 product along with data flows. Developers on your team should be able
 to describe these elements and provide existing overview
 documents.
Warning
In many small firms, overview and process documents
 are often out of date or lacking in detail.

Document the information and draw diagrams of what you learn to
 help you absorb the information. (A drawing tool such as Microsoft
 Visio is great for creating these diagrams.) Your diagrams will
 contribute to the company's intellectual property (IP). Increasing the company
 IP in this way creates multiple positive effects: New
 hires will have a training reference, other groups and potential
 partner companies will have reference information, and, if the company
 is sold, the IP has a positive impact on its valuation.
Consider sending your diagrams to the development team for
 feedback. They can spot problems and provide suggestions for
 improvement. Correcting and refining process diagrams often requires several rounds of
 changes. In the process, teams will form a consensus about the details
 of how the product and process actually work. In addition, the effort
 can lead to improvements in existing processes.
Thinking systematically about what you learn can help you avoid
 blind spots in your training and, later on, in your ability to manage.
 Figure 1-1 illustrates a sample
 checklist of technical topics for review.
To gain the proper perspective about your company's product,
 gather information from many sources. Ask sales or marketing managers
 to train you to use the product so you can learn how they present the
 product to customers.
Experiment with the product on your own to make the training
 details easier to remember. Set up your experiment with realistic but
 hypothetical data—do not use actual customer or production data. Using
 a safe data set lets you experiment without worrying about damaging or
 exposing data. Try every feature, every button, and every data entry model—and try breaking
 them. You need a good understanding of the product and its limitations.
[image: Technology review checklist]

Figure 1-1. Technology review checklist

You can find more information about products in Chapters Chapter 5 and Chapter 6. Chapters Chapter 7 and Chapter 8 cover technology and tools, and
 Chapter 15 covers
 process in more detail.

Understanding the Customer

Learning about your company's customers should also be a part of your initial
 assessment. Talk with sales and marketing teams to understand the
 company's typical customers. Work with sales to set up visits and
 listen in on sales calls.
Discuss the following with sales and marketing teams:
	Customer satisfaction

	Customer perception of product qualities and features

	Customer purchasing concerns and value propositions

Spend some time with key customers to understand their use of the product.
 Communication will provide insights into how customers perceive your
 product. Learn about the industry served by your product. Information
 from sales and marketing teams can help.
Chapter 12 covers understanding the customer in more detail.

Understanding the Corporate Business Workflow

To understand how different teams work together to provide
 products, support, and customer service, learn about the company's
 business workflow. Many companies employ unique overall workflows
 that are important for you to understand. Diagram the information you
 collect to clarify the business workflow and create a useful reference
 for others to use.
Creating an overall corporate workflow diagram will clarify which teams are
 responsible for which part of the software product or service.
 Remember to include how customers interact with the company.
A corporate workflow diagram can benefit a new company: It helps
 the executive team spot problems and understand how best to support
 new services and products. The workflow diagram can be used as
 training material for new staff to help them see how their efforts
 support the company. Team members will feel empowered by an
 understanding of how their work contributes to the whole.
Although workflow software and complex diagramming methods are
 available for capturing corporate workflow, a simple diagram works
 well for most small companies. Appendix C describes a straightforward
 approach to diagramming, including a basic example. Even if you have
 been with your company for a while, you might find it worthwhile to
 diagram your workflow to gain insight into how the company works and
 to identify potential areas for improvement.
Mapping Corporate Workflows
My former company had about 12 different product offerings,
 and each required a different type of quote. I wrote up the
 corporate workflow and detailed how the engineering costs tied
 into each offering. Clarifying the offerings and deciding how we
 would estimate them was a huge benefit, allowing us to provide
 faster and more accurate estimates.
A graphical company workflow made it easy for managers to identify ways to
 improve the process. We also used the material as part of our
 training for new hires.
—Senior manager

Back to the Big Picture

This chapter has presented a lot of information for you to
 consider. Here is a big-picture summary to round things out—a
 checklist of directions that will help you find your way out of the
 forest.
	Meet the people. Get to know
 the people at your company, especially other managers, your boss,
 and your team.

	Handle problems. Deal with
 the immediate issues, but delegate whenever possible. Do not let
 the immediate demands overwhelm your learning efforts.

	Track issues. Keep a
 prioritized list of issues. Separate the
 issues into immediate and long-term ones.

	Collect information and
 summarize. Talk to at least a dozen peers and ask about
 what they do, what is working well, and where the problems are.
 Create a summary from these discussions. Select some of these
 items to add to your list of long-term issues.

	Learn. Spend plenty of time
 learning about your company's product, customers, culture,
 industry, technology, and organization.

	Assess workflows. Diagram the
 significant corporate workflows and look for opportunities to
 improve them.

Review this list at least once a week during your first few
 months on the job. If you are missing information about key areas,
 consider how you might rearrange your efforts to focus on these areas.
 No best single approach or formula exists for mapping out your time
 during the first few months, but if you're constantly in high-stress
 mode and dealing with one crisis after another, find a quiet space
 where you won't be interrupted and map out a plan that will allow you
 to focus on the key areas. If you do not actively plan your efforts,
 you will likely continue to react to bad
 situations—and the job is considerably more fun when
 you are setting the direction and driving efforts
 forward.

Chapter 2. MANAGING A DEVELOPMENT TEAM

As the development manager at a small company, you have a unique
 role not found in most large companies. Whether your title is
 chief technology officer, vice president of
 engineering, or director, you must
 connect the CEO and members of the executive team directly to your
 development team. In a small company, you must be able to stretch in
 ways that differ from those of a development manager in a large
 company.
Understanding Your Core Management Values

Before delving into the mechanics of managing a team, let's take
 an introspective look at what it takes to be an effective manager. Ask
 yourself how you want to work with your development team and how your
 core values affect how you interact with others. Your respect
 for others, ethics, coaching and listening skills, ability to provide
 feedback, and concern for the success of others all affect how you
 make decisions.
As a manager, you need a "toolkit" of approaches you can access
 when working with your team. Your toolkit should include methods for
 motivating people, making yourself available, choosing the team's
 tools, organizing the team, setting up the workspace, managing
 projects, resolving conflict, and communicating with your team. With
 multiple tools and approaches on hand, you can select the best tools
 for the job.
In contrast, a rigid manager might have only one tool—the one he
 used at the last job at the last company. But as the saying goes,
 If your only tool is a saw, then the solution to every
 problem is to cut.
The following sections consider the key tools and components of
 a set of core values: trust, flexibility, sincerity, confidentiality, respect,
 and empowerment.
Trust

Companies with an environment of trust are the most
 productive, because workers do not waste energy on politics,
 pointing out others' mistakes, or guarding their backsides. These
 companies encourage direct communication—employees trust management
 and each other to pass on correct information and get support for
 their work. This fosters high worker morale, as workers focus their
 energies on being productive instead of on being wary.
Employees at small companies must be able to believe what they
 hear from senior management, because working at a small firm can be
 riskier than working for a large company. Since small and growing
 companies often lack significant resources, a high-trust environment
 drives the efficiencies that are essential to success.
Employees at companies with low-trust cultures waste energy focusing on other
 people's mistakes and protecting their positions. Workers believe
 they need to double-check the veracity of all statements from
 management. In such companies, management perpetuates low-trust cultures by rewarding low-trust behavior, such
 as political maneuvering, public verbal complaints about others,
 rumors, power plays to force decisions on other teams, and
 backstabbing. Low-trust cultures tend to breed in companies at which
 people are worried about losing their jobs. Management is often
 authoritative and political. Senior managers spend their energy
 pulling other people down to pull themselves up. In the absence of
 focused positive effort by top management, short-term advantages
 exist for individuals who exhibit low-trust behaviors to advance their position.
Why don't more companies create high-trust environments?
 Building trust requires that management make a focused effort by
 discussing company values and core beliefs every day and not just at
 yearly reviews. A high-trust culture requires that managers hire the
 right people, train them in company culture, and model the behaviors
 they expect.
LAST ONE STANDING
Our QA team consisted of six engineers, and we were good at
 what we did. When our QA manager left the company for another job,
 the VP in charge appointed a manager without QA experience and
 without management experience. Our team was willing to give him a
 chance. However, over the next four months, he managed to alienate
 all of us by showing no interest in quality. Gradually, the other
 team members found other jobs and the manager did not replace
 them.
I was the last QA engineer employed at the firm. I wrote an
 email to my manager asking him to show more interest in QA. I
 expressed concern over how the rest of the team had left the firm
 and how he had not replaced them. He fired me and had me escorted
 out of the building that day for insubordination. I should not
 have trusted him to be fair, even in a private
 communication.
I found out later that this QA manager quit two weeks after
 I was dismissed to take a management job at another company. He
 destroyed the QA team and then left the company.
—QA engineer

As a manager, you can build trust by exhibiting high standards of fairness, confidentiality, respect,
 sincerity, and conflict resolution. You deal effectively with
 development team members who break your trust. For example, if a
 team member reports to you that she has completed a task, you expect
 the task to be completed correctly. If you later discover she did
 not complete the task, you will no longer trust her. This person
 will be a drag on your time, as you have to inspect her work
 carefully to ensure that it's getting done correctly.
In high-trust environments, a development manager looks
 out for her team. She doesn't view the team as machinery to
 accomplish a job; nor does she consider her role to be simply a
 conduit for passing off upper-management's demands and problems to
 the team. Instead, she acts in the interests of both her team and
 her company.
Trust can appear to be an abstract concept. The following
 examples help to illustrate high-trust and low-trust responses to different situations:
	You are attending an executive meeting and a fellow
 manager mentions that one of your senior developers failed to
 deliver a project on time. Although marketing contributed to the
 delay by changing the requirements at the last minute, you and
 the developer agreed to make the changes.
	Low-trust response
 Point out in the executive meeting that the marketing
 manager made it impossible for the developer to complete the
 project on time. He changed the definition too many times,
 running up the costs without your consent.

	High-trust response
 Indicate that you agree that the result was unacceptable.
 You plan to review the project with the goal of improving
 future performance. You invite the marketing manager to join
 in the discussion.

	A developer tells you about his interest in getting a
 master's degree. You know another engineer who would like to
 join the team if a spot became available.
	Low-trust response Find
 an excuse to lay off the engineer who spoke to you because
 you know he was likely to leave anyway.

	High-trust response Try to determine
 whether the engineer can attend classes while still working
 for your firm. Ask him to provide as much notice as possible
 if he decides to leave the company to pursue an
 education.

	Your commercial servers went down for four minutes during
 peak time. Your initial analysis points to an error on the
 operations team, compounded by a software flaw that prevented
 the proper system automatic recovery. You do not manage the
 operations team.
	Low-trust response Tell the CEO about
 the operations team's mistake immediately while pointing out
 the need for the operations director to improve staff
 training.

	High-trust response Spend some time
 investigating the issue with the director of operations.
 Then, the two of you meet with the CEO and describe the sequence of events and what
 steps you plan to work on jointly to prevent this from
 happening again.

Flexibility

A team of workers who believe they are trusted will act in a
 trustworthy fashion; being flexible in how you treat your team will help you
 build a high-trust environment. Treat members of the team as you
 would like your boss to treat you. Focus on individual successes as
 well as team successes. Developers are not just hired hands, but
 people with a career and a life outside of work. If you are fair and
 honest in your approach with them, they will generally treat you
 fairly and honestly in return.
You can show flexibility when a team member encounters
 problems or life situations that make it difficult for her to work
 in the usual ways. Flexibility in such a situation might mean
 allowing her to work from home for an extended period or allowing
 her to take time off. Flexibility can also mean shifting a person's
 working hours or shifting weekday work to weekend work
 short-term.
You can also demonstrate flexibility in making work
 assignments, making adjustments to align required work with the
 desires of individual team members. Each developer would then be
 able to focus on particular tasks that are of interest to him or
 her; this improves team members' morale and usually provides
 valuable cross-training that does not occur if individuals focus on
 the same areas repeatedly.
Flexibility does not mean providing the same solutions to all
 team members, whether or not they have a problem. For example, if
 one employee has family issues that require him to work from home
 for a week, everyone on the team should not then be allowed to work
 at home. When an employee will be working remotely or at hours that
 differ from those of the team, tell your team about the
 accommodation to help them understand your decision. Of course, in some
 circumstances, you should leave the accommodated employee's details
 vaguely defined, because telling others the details would be
 inappropriate.
A manager's flexibility has an impact on all the other core
 management areas. An employee is more likely to trust a manager who
 shows flexibility when the employee is experiencing a situation that
 makes it difficult to complete work as usual.
Some employees might take advantage of your flexible approach, but having an employee take
 advantage of you occasionally is better than being totally
 inflexible. While a few individuals might be untruthful about their
 circumstances, most people are honest.

Sincerity

Your team members will appreciate your sincere concern for
 their success. You can demonstrate your concern in words and
 actions, but ultimately your actions count. If your employees
 believe you are sincere and trustworthy, they are more likely to follow your
 direction when you are trying new approaches to solving problems
 rather than resisting every step of the way.
SINCERITY IS NOT A MANAGEMENT FAD
My manager openly talks about the fact that the job we have
 now may not be the one we always want to have. She encourages
 people to explore their interests even if it means they might end
 up leaving the team. She continues to do this even when the
 company is not filling vacated positions. She constantly puts our
 individual best interests first and is committed to working out
 whatever staffing problems arise as a result. This makes us all
 want to keep working for her!
—Senior technical writer

WHY NOBODY BELIEVED
The management team held a company meeting to announce
 layoffs and budget cuts. The CEO indicated that we were forced to
 freeze hiring and we would have to spend money carefully until
 business picked up. A week later, all the company managers
 received Mercedes leased by the company. When asked at the next
 company meeting why this occurred, the CEO explained that senior
 executives had previously had a "car allowance" that the
 accountants said was not tax-deductible. So management leased the
 cars instead, and they happened to arrive right after the budget
 cuts. When asked why he did not cut this expense, his response was
 that this type of incentive was necessary to retain top management
 talent.
—Hardware engineer

If your actions show that you are insincere, it doesn't matter
 how earnest you appear while talking to people;
 you will not be trusted, and you'll be far less effective as a
 manager, which can lead team members to undermine you. Your team
 will lose focus on achieving the best results for the company.
 Consider, for example, the case of an unprofitable company that
 makes budget cuts. After the manager asks his team to save money and
 spend only on essentials, he purchases a new computer system for his
 desk, even though his current system is fairly new; this manager
 would probably lose his team's respect and ruin his
 credibility.

Confidentiality

Confidence also builds trust. If an employee confides in a
 manager, she expects that the information will not be shared with
 others or used inappropriately. Unless a confiding employee commits
 a serious ethical breach, violates laws, or puts the company at
 risk, you should never share this information or use it against the
 person. By encouraging an environment in which people can confide in
 you, you can help resolve problems rather than allowing them to
 grow.
Consider, for example, an employee who tells you that she
 wants to work on a different type of project. She has spoken with
 other companies about potential employment. On hearing this
 information, some managers would immediately lay off the employee or
 reassign her to unimportant tasks—because she is leaving anyway.
 However, since the employee has voluntarily revealed this
 information, it shows that she trusts you, and, in fact, she might not really want to leave—she
 might be giving you an opportunity to change her project assignment.
 If she does decide to leave the company, she will likely give you
 time to transfer her responsibilities to others because she trusts
 and respects you.

Respect

Individuals on your team must be treated with respect, by you
 and by other developers and co-workers. Lack of respect can be shown
 overtly—for example, when someone verbally demeans another person
 face-to-face or behind the other's back. It can also be shown in a
 subtle way, such as when someone belittles another person by
 demeaning his or her qualifications, skills, or abilities to
 others.
If one member of your team demeans another, pull the abuser
 aside and talk to him. Don't wait for the situation to "work itself
 out." Depending on the extent of the problem, you might need to
 involve human resources.
Build respect by creating a team environment that focuses on
 solving problems, not pointing out other people as problems.
 Encourage staff to work out problems individually, and offer
 assistance only when they prove unwilling or unable to do so
 themselves.

Empowerment

Successful developers enjoy their work and look forward to the
 next challenge. They are self directed and empowered because you
 have defined goals, stepped back, and let them succeed. Empowered
 workers will succeed.
In contrast, workers who feel micromanaged go through the
 paces, viewing work as an acceptable task in exchange for pay. They
 know that the tasks required by management are sometimes inefficient
 or useless, but they believe they are unable to change the way
 things are done. Management treats them like plumbers hired to clean
 out a drain and then go home.
To empower your team members, make sure they understand development goals and boundaries.
 Boundaries define reasonable limits but are never such sacred cows
 that they cannot be discussed or changed. Clear boundaries and flexibility to choose a solution will
 prevent workers from feeling micromanaged.
The following are examples of types of boundaries:
Project constraints Schedules,
 features, budgets, and resources
Company policies Requiring
 management approval for spending company funds
Technical boundaries Partner
 deals that force specific technology on a solution
Business boundaries Choices for
 specific software components that might require managerial buy-in
 due to ongoing excessive operational costs
Once you have set up clear boundaries, let team members choose
 how they will work together to reach the solution. Set the team
 loose, monitor progress, and coach them to success.

Communicating with Your Team

Successful communication requires that you consider what you want
 to say and how you want to say it—before you start talking. Your
 communication should be tailored to fit each situation:
 Realize that what might work in one environment might not be effective
 in another.
When communicating with your team, plan to cover project work
 and people topics. Project work includes development efforts
 to create revenue, projects to reduce risk, and strategies to improve
 productivity. People topics include coaching, training, correcting,
 answering questions, resolving concerns, discussing long-term
 problems, discussing new ideas, assisting with work needs, and helping
 with career planning.
Too often, management focuses only on project work, addressing
 current practical issues that drive the company's short-term success.
 However, failing to address other issues when communicating can lead
 to long-term failures that result in decreased productivity, increased
 staff turnover, quality problems, missed opportunities, and morale
 problems. Spend at least a fifth of your communication time on efforts not tied to current
 projects. Consider a communication approach for project topics that
 differs from the tack you take for people topics; each needs its own venue to ensure that
 it is properly covered. The following sections discuss approaches to
 communicating with your team, including one-on-ones, project communication, team meetings, and
 informal conversations.
One-on-Ones

A weekly one-on-one meeting with individual developers gives
 managers the best opportunity for covering most people topics. (In
 contrast, team building requires team meetings to develop
 relationships and improve interactions.) If your team is larger than
 six people, you might need to limit one-on-one meetings to every other week because of the
 time involved.
One-on-one meetings can provide opportunities to build trust
 and listen to each individual's concerns. Let the employee direct
 the initial discussion. Try to avoid discussing current tasks and
 status issues at the beginning of the conversation. Sometimes
 developers will not be forthcoming with information, so you can help
 get them started by asking questions such as these:
	Do you have any concerns about your work?

	Have you experienced or noted any problems
 recently?

	Do you have any ideas for improvement?

	Do you need additional equipment or software?

	What are your long-term career plans?

	Do you have any ideas to share?

One-on-one meetings are ideal for discussing problems,
 offering advice, agreeing on solutions to problems, and sometimes
 assigning a task or requesting a solution to a problem. Make
 assignments clear, but avoid spelling out the exact details of the
 solution. Instead, establish agreement on what success looks like:
 Give the employee the authority to solve the problem, and offer
 advice. In general, don't immediately assign the task of problem
 resolution to the person who brought it up. If you make a habit of
 doing this, your staff will bring fewer problems to your
 attention.
NOT LISTENING
Early in my career, I had a boss who was a poor listener.
 When I brought up issues to let him know what was going on, he
 would interrupt the discussion and start giving me instructions.
 He would issue orders before I was fully able to describe the
 problems I was trying to resolve. I stopped discussing problems
 with him.
—Software manager

If you want to use one-on-one meetings for project status updates, wait
 to discuss status until after you have covered the other topics. If
 you start with project status, updates might take up all of your
 meeting time and other issues will not get attention.

Project Communication

How you handle project communication depends on the size of the project and
 the release cycle. With short release cycles, daily
 stand-up meetings—15- to 20-minute meetings in which all
 participants stand—can be appropriate. The manager structures the
 meetings at the same time each day, asking participants to offer
 brief statements that describe what they did during the previous
 day, what they plan to do today, and any immediate help they
 require. Stand-up meetings are not intended as problem-solving
 meetings or topic discussions. Instead, any identified problems can
 be assigned to individuals for resolution and follow-up.
For projects with long release cycles, weekly
 project status meetings combined with visiting and
 talking with people at their desks can be helpful. This weekly
 meeting usually lasts 30 minutes to an hour. Status and schedule
 meetings usually involve some detailed discussions, along with plans
 for the next few weeks. The team identifies risks and the project manager assigns
 individuals to work toward mitigating those risks.
You can communicate project status to the team via intranet/wiki postings, emails, whiteboard
 messages, or reviews during regular status meetings. Some team members will not know the full project status or
 will be unaware of recent changes to the project or schedule. Not
 communicating the overall status to the team can lead to confusion,
 while clearly communicating this information improves morale and
 likelihood of project success. If you provide your team with regular
 status updates, they will be more likely to point out problems and
 discrepancies early on, and they'll also be more likely to get their
 status reports to you on time.
When communicating project status to the team, scale the
 content and frequency of the report to the size of the effort. The
 status description should include information about projects that
 have been recently finished, which projects will be tackled next,
 any product functionality that has changed, projected completion
 dates as of today, problems encountered, and current identified
 risks.
On-time project completion depends on accurate status
 information that allows time for the team to make midcourse
 corrections.

Team Meetings

Scheduling team meetings at regular intervals will enhance
 team cohesion and team performance. Team meetings can occur every
 week or every two weeks, depending on the team size. The meetings
 can serve as forums for discussing general concerns or as
 opportunities to provide training on new processes and policies.
 Team meetings also allow team members to discuss concerns or ask
 questions.
Meetings should not be ad-lib events, however, so you should
 prepare an agenda or list of topics in advance. Open a file on your
 desktop and keep it open, adding items as they come up; this file
 becomes the basis for the next meeting's agenda. An established
 agenda will help keep the meeting short and help avoid rambling
 discussions. Circulate the agenda in advance for an even more
 effective meeting.
Overly long team meetings drain energy from the team and
 impact your bottom line, so keep them as short as possible. Long
 team meetings are expensive, too—for example, a meeting that lasts 2
 hours for a team of 12 takes the same amount of time as 3
 engineering days (24 hours).
Allow engineers to speak about concerns such as policies and
 senior management decisions. Keep track of these issues and
 questions and review them weekly with the team, even if you do not yet have answers. Make sure
 you provide ongoing status of open items raised at earlier
 team meetings and work toward closure of issues and
 questions.
Occasionally, a disgruntled engineer can use a team meeting as a complaint session. If the engineer
 crosses the line from constructive suggestions to destructive
 complaining, cut the conversation short and ask him to meet with you
 individually to discuss his concerns.
Regular development team meetings are not good venues for
 detailed technical discussions. Set up separate technical meetings,
 during which you can focus on specific topics, and make most of
 these meetings discretional, so that people who do not need to
 attend can opt out. Otherwise, engineers not affected by the
 specific technical topics will end up spending time listening to
 discussions that are not helpful to them.

Conflict Resolution

At some point, disagreements will arise between team members. As
 their manager, you should encourage them to resolve disagreements
 directly, rather than let disagreements impede cooperation. Typical
 disagreements concern such issues as technology choices, common
 resource usage, or inconsiderate behavior. Team members can usually
 work out technology and resource disagreements directly or sometimes
 through a moderated discussion, but inconsiderate behavior requires a
 different approach.
Problems between co-workers can build up to a point at which the
 people can no longer work together. If one person is angry at another,
 counsel the aggrieved party to ask the other person to meet in a
 conference room to discuss the problem so that a solution can be
 proposed. If they cannot resolve their differences, you can arrange a
 joint session to talk through the problem. However, if a conflict
 involves unprofessional behavior, intervening first can work best:
 Pull the individuals aside at the start and discuss the details of the
 situation with resolution as the goal.
Occasionally, conflicts occur between members of your team and
 people in other groups. These conflicts often involve missed
 deliverables, but poor communication is usually at the core. Encourage the
 individuals to talk about the issue first. Offer to assist if they
 cannot resolve the issue or if emotions are running high.
When assisting to resolve a difficult conflict, first speak with each person involved to
 understand both sides of the issue. Reconstruct the events in a
 timeline. Then call a review meeting with the participants and their
 managers, as appropriate. Present the factual events causing the
 conflict without making judgments. Ask the parties to consider what
 they can do differently to improve the situation the next time it
 occurs. Add your recommendations, if necessary.
ACTING TO RESOLVE CONFLICT
A project manager and her boss told me that they were unhappy
 with one of my engineers. The project was due live on the website at
 midnight, and work had stretched until after 5 pm. The manager told
 me that the engineer was supposed to have called when he completed
 his work. The engineer did not call, so the project manager called
 another engineer who completed the work just before midnight.
It turns out that the project manager gave the engineer a slip
 of paper with the person's phone number to call when the work was
 ready. Unfortunately, the engineer lost the number. Instead, he sent
 an email when the work was complete. The project manager did not
 look for the email and thought that the engineer had
 forgotten.
After talking through all the details of the project, I
 arranged a joint session with the individuals and the other manager.
 I stepped through the timeline factually and described the missteps.
 We discussed as a group how to avoid these issues going forward: For
 future after-hours work, the project manager would write a one-page
 plan. The plan would list who is doing what, how completed steps are
 communicated, and the participants' phone numbers. If a misstep
 occurred in the future, people agreed that they would call the
 managers that evening.
After the meeting, the participants indicated that they were
 pleased with the outcome.
—Web engineering manager

Don't ignore conflicts in the hope that they will go away,
 though they sometimes do. Instead, pay attention to conflicts,
 encourage people to resolve them directly, and intervene when
 necessary. In addition, instead of asking an aggrieved engineer if he
 would like mediation, coach that engineer on conflict resolution.

Training

Company-sponsored training indicates that the company cares enough about
 its employees to invest in their futures; most engineers will
 reciprocate with increased company loyalty. Training, of course, can
 also improve an engineer's performance, as she learns new approaches
 to technology, self-management, and work habits.
In general, engineers have based their careers on technical
 knowledge and respond positively to technical training. Technology
 changes so rapidly that much of the raw technical details in use today
 will become obsolete in a few years. Consequently, most engineers try
 to keep abreast of leading-edge technical knowledge, and this makes
 training an important aspect of work life. While technology training
 benefits engineers in the short term, general work skills training can have long-lasting positive
 effects on their careers. For example, learning time-management skills
 will make an engineer more productive regardless of what technology he
 is using. Most engineers will benefit from training on a variety of
 topics, such as the following:
	Time management
	Delegation

	Project management
	Management basics

	Making presentations
	Conflict resolution

	Meeting management
	Employee motivation

	Systems analysis
	Coaching

	Negotiation
	Interviewing

	Marketing basics
	Project budget management

	Return on investment basics
	Customer communication

	Process improvement
	Understanding emotional
 intelligence

	Defining requirements
	Understanding personality styles

	Quality improvement
	

Unfortunately, training in small companies is often limited by budget
 constraints. Since training trades short-term costs for long-term
 benefits, the costs can be difficult to justify when budgets are
 tight. In addition, many senior managers see little value in providing
 training to development engineers. This means training budgets are
 often the first things cut when the CEO tightens the purse
 strings.
Resist the temptation to ignore training when budgets are tight.
 Instead, consider various training alternatives such as the
 following:
	Offer to approve the expense of any reasonable book
 purchase.

	Select books on a topic and discuss them with the engineers;
 this can be an excellent way to provide inexpensive
 training.

	Ask one team member to share information about a topic with
 the team for an hour.

	Provide the training yourself by setting up a
 mini-course.

	Investigate online training options.

	Investigate small local training agencies that might be able
 to provide lower cost training than larger training houses.

	Investigate the possibility of large training firms
 providing classes to staff from multiple companies to lower the
 per-person cost.

Unfortunately, management often considers only the short-term
 costs of training, ignoring the costs of not providing training and
 the longer term benefits it can provide. Cutting even low-cost
 training is a strategic mistake for a small and growing company.
 Training improves employee stability and productivity, and small
 companies rely on employees and depend on low employee turnover to be
 successful.

Coaching

One of the most direct and satisfying ways to improve team
 performance is through individual coaching. Good coaching guides people toward self-improvement, which
 benefits the company as well as the individual.
Continuity in the Training Attitude
When money was available for training at my company, I focused
 on making a list of training course opportunities and surveyed the
 development team to determine the highest interest items. I hired a
 local training company and we received excellent courses on time
 management, managing meetings, and project management.
The next year, budgets were tight, so the executive team
 eliminated training expenses. However, the need for training did not
 disappear. I purchased books on training topics for team members to
 read. I reviewed the books again and created a course outline,
 organizing the topic into a flow. After managers had read the books,
 I gave a two-hour training session on each topic, including a
 presentation plus a back-and-forth discussion following an outline I
 prepared.
I found that providing a training course was beneficial to me
 as a manager. The classes forced me to review the material and
 thereby refreshed my knowledge of the topics.
—Product development director

Successful coaching requires that the coach understands an
 individual's goals. Here are some good questions to ask as you coach a
 member of the development team:
	What motivates you?

	What are your long-term and short-term goals?

	What technologies interest you?

	What training would you like to have?

	What tasks do you enjoy doing most in your job?

	What do you like the least about your job?

Some people find it difficult to vocalize their career goals. As
 a result, a development engineer might look for a new job to advance
 her career instead of asking her current employers for more options.
 Convincing an engineer to stay when she has an employment offer from
 another company is difficult. It's far better to keep employees happy
 by coaching them and giving them the assignments they want,
 when possible.
Listening Requires Having a Conversation
Early in my career, an excellent engineer left my company
 because she wanted to do something else technically. Had I known, I
 could have arranged her work assignments to provide her with the
 technical challenge she was looking for.
She made the assumption that her current assignments were all
 that were available and that there was no point in asking for
 something different. She accepted an offer from another company.
 Although I told her I could change her work assignments, she did not
 want to go back on her word. By all indications, if I had known
 earlier and changed her assignments, she would have stayed.
—Engineering director

Effective coaching requires a manager's time and an ability to
 listen. Coaching should be an important part of the weekly
 one-on-one meetings. You can coach individuals on how to improve their
 performance in a non-threatening way while encouraging them to
 improve.
Coaching is not simply cheerleading—it is aligning your team
 members with what they do best, providing extra training and practice
 for those who need improvement, and listening to concerns and
 determining how you can address them. In addition, coaching means
 pulling people aside and correcting them when they are approaching
 their tasks in the wrong way.

Motivating Your Team Members

Development teams are motivated in ways that differ from those
 of other teams—engineers generally do not respond well to "rah-rah"
 pep talks, emotional appeals, or contests. What motivates individual
 development engineers varies, but they will usually tell you what they
 need if you ask them. These are some common motivations for engineers:
	Technical challenge

	Opportunity for career success and advancement

	Opportunity to participate in an outside organization,
 forum, or technology group

	Financial opportunity such as a stock award or raise

	Chance to go to conferences or seminars

	Flexible work schedule that allows them to schedule their
 own day and not have to arrive at 8 am or be marked late

	Recognition from peers

	Recognition from respected managers

	Ability to take on senior-level tasks such as code reviews
 and new project estimates

	Opportunity to be part of a well-run team—an elite group of
 engineers paired with great management

	Opportunity to work on a flagship product

	Opportunity to work on a project that has applications in
 the "real world" outside the company

Motivation Through Change
An engineer on my team was unhappy with his assignments. His
 performance was poor. He was argumentative and often late in
 delivery. He requested a transfer to another technical area. While
 my boss advised me to let him go, I gave him a shot at the
 technology he wanted. Over the next few months, the quality and
 timeliness of his work improved greatly. He was excited about
 learning and his attitude improved. The gamble of giving him a
 chance to do what he wanted paid off.
—Engineering manager

Engineers, like most workers, are usually at their best when
 they enjoy their work. Adding a little pressure to achieve reasonable
 goals will add to their overall success. If an engineer participates
 in establishing and committing to project content and delivery, he or
 she will feel motivated and enjoy the effort.
If engineers are encouraged and enjoy their work, many will want
 to put in extra effort. You can encourage them by determining what
 kind of work they enjoy most and create those assignment opportunities
 with realistic, attainable goals. Empower team members by involving
 them in estimating the work effort and delivery dates. Listen to and
 address your team's concerns. Ensure that the team has the proper
 tools to get the job done. Then watch them succeed.
In contrast, continually pushing people to commit to excessive
 overtime will lower team motivation and morale and can lead to people looking for
 new jobs. Engineers, like everyone else, need balance in their
 work and lives. You cannot build a high-trust
 environment or company loyalty if you expect employees to forego a balanced life.
Finally, acknowledge successes publicly. Your direct
 appreciation of a person's work builds up his or her motivation. You can express appreciation by talking
 directly to the person. Alternatively, you can show appreciation by
 personalizing a reward. Reward traditions vary considerably company by
 company, so consider these traditions when deciding on rewards. If your company does not have a reward
 tradition, start one. For example, you can set aside a budget to
 purchase small rewards to celebrate successes—time with a masseuse,
 extra vacation time, humorous plaques, a bonus or raise, gift cards,
 and coffee cards, for example.

Coaching Problem Employees

Every manager eventually encounters an employee who behaves
 inappropriately or who is difficult to work with—a "problem employee."
 Perhaps you inherited this person from the manager who preceded you,
 he might be part of a reorganization, or you might have hired him.
 Even though small companies cannot afford employees who are not good
 workers, you can and should make a good faith effort to improve an
 employee's problem behaviors.
You might be tempted to delay dealing with a problem employee because you have so many important
 tasks to do. However, procrastination just allows more time for the
 problem to grow and affect other employees. Instead, as soon as a pattern of poor
 performance emerges, you should deal with the employee's
 problems.
Two categories of problems are common: employees who perform
 poorly and employees who disrupt the team with their poor attitude. A poorly performing employee will not deliver
 work on time or accurately communicate about his or her workload. An
 employee with a poor attitude has negative or condescending
 interactions with other employees or continually disparages the
 company. Like acid, this person will eventually corrode team cohesion
 and your ability to manage the team.
Start the correction process by talking to the employee about
 what you observe and try to determine the source of the issue. A
 number of reasons can exist for the employee's actions, including the
 following: The employee might need additional training but is afraid
 to ask; the employee might have a short-term personal problem and
 needs schedule flexibility to resolve it; the employee might need some
 coaching on how to be effective; or the employee might
 be unhappy with his or her work assignment.
Depending on the problem, you can work directly with the
 employee to offer coaching. However, if the employee insists that no
 problem exists or behavior explanations appear inadequate, he or she
 will probably not respond to your coaching. In such a case, you will
 need to move more rapidly to a formalized performance improvement
 plan.
When coaching an employee, start by agreeing on specific actions
 that would improve his or her work; this will provide goals and an
 impetus to improve. Then monitor progress and offer periodic progress
 reports. To keep coaching positive and not punitive, encourage the
 employee to perform well rather than only pointing out mistakes. If
 you describe what success looks like from your perspective and
 emphasize the importance of the worker's efforts to the company, he or
 she will be more likely to take the coaching as a positive
 opportunity.
If the employee's performance does not improve over the next
 month or you note a failure to make a reasonable effort to improve,
 you should consider additional measures, such as a formal improvement
 plan. The timing for when to formalize an improvement plan varies
 depending on the situation. Put the employee "on notice" that his or her actions can lead to
 termination. Although some managers will fire the worker without a
 plan, you should create a plan to offer a fair opportunity for the
 employee to change and to provide some protection for your company
 from legal action.
Requirements for performance plans vary. Talk to your company's human
 resources group to understand its requirements. A performance improvement plan should define specific
 problems, spell out the problem behavior as well as what
 success looks like, and describe the consequences of failure. In
 general, use no more than a 60-day review period for the plan.
Do not assume that performance plans automatically lead to
 dismissal. Although some employees will fail or will leave a company on their
 own, some will make an honest effort to improve and will succeed.
 Treat employees as though you expect them to succeed.

Reviews and Evaluations

Employee evaluations must be an ongoing effort throughout the
 year—don't wait until the formal employee review to show appreciation
 for results or discuss a problem. In fact, an annual review is not the
 place to bring up problem behavior. Waiting for the annual review to
 offer an employee negative feedback is a poor but common management
 practice that usually stems from a manager's desire not to confront
 the individual about a problem until forced to do so; this contributes
 to a low-trust environment, however. Though the annual review process
 usually forces the confrontation, most employees will feel blindsided
 if the first they hear of an issue is in their annual review. An
 annual review should reveal no surprises.
Companies handle annual reviews in a variety of ways. Many small
 companies offer no reviews, offer annual reviews for everyone at the
 same time, or offer annual reviews based on anniversary hire dates.
 From the company perspective, the review is driven by human resources
 (HR) to support corporate needs—perhaps to ensure that a review is on
 file to avoid potential lawsuits, especially if the person is
 terminated, or to reward people for good work so that they will
 stay.
Creating the Review

Do not wait until review time to collect information or offer
 feedback to team members. Instead, provide feedback all year during
 your one-on-one meetings. You should also collect data throughout
 the year by writing notes in a file about each employee's performance, rather than trying to remember this
 information at the end of the year. Having your notes at hand will
 make writing the review easier for you and more fair to the
 employee.
One popular practice is called the 360-degree
 review. In this scenario, either HR or the manager
 collects information for the review from people working with the
 employee to be reviewed. People in other teams or co-workers can
 usually offer useful insight into the employee's performance. As
 part of the 360-degree review, you should also require a
 self-appraisal from the employee. Self-appraisals are great opportunities for employees
 to list their achievements for the year and judge their own
 performance. Often the self-appraisals will remind you of tasks the
 employee took on months ago that you had forgotten.
A punctual essay review is the best type of review because it
 covers multiple areas of performance. To write an essay review,
 start by collecting information. Ask the employee to complete his or
 her own version of the review and deliver it in advance of your
 meeting. If the company requires an employee self-appraisal, read it
 first. If self-appraisals are not required, you can still ask for
 them. Write your essay review with descriptions of the employee's
 successes and areas needing improvement. Keep the language
 straightforward and the text relatively short. On completion, review
 each sentence to make sure that it fits in the overall picture you
 want to provide for the employee.
A general format for the review covers results, successes,
 improvements, and a summary. At the beginning of the review,
 describe in detail the engineer's projects. The earlier notes and
 files for the year will make this task easy. Provide a short written
 discussion of each project, and describe the employee's performance
 and major efforts. Next, describe areas of strengths and weakness.
 Suggest techniques that might help him or her improve performance.
 Propose areas for which the employee would benefit from more
 training. You should also propose goals for the next year. Finally,
 provide a summary describing the employee's overall
 performance.
You might be required to fill out standard forms for the
 review. This does not preclude you from writing an essay and
 attaching it to the forms, however.

Delivering the Review

When you deliver the review, discuss each of the different
 areas reviewed. Avoid the temptation to hand the employee the written review at the start of the
 meeting, because he or she will quickly read it and not internalize
 what you are trying to say. Instead, spell out the major points and
 ask questions to determine whether the employee agrees or disagrees
 with your assessments. Give the employee time and encourage him or
 her to ask questions. When reasonable, make the review session a
 positive, uplifting discussion.
At the end of the meeting, provide a written copy of the
 review to the employee. You might consider scheduling a follow-up
 meeting for the day after the review if it seems appropriate. This
 gives the employee an opportunity to think about the review and
 convey any thoughts the next day.

Providing Late and Deficient Reviews

Reviews are important to employees for career and financial
 reasons. Providing regularly scheduled reviews on time is a sign of
 respect. A late review can be demoralizing for an employee who is
 asked to wait. Providing late reviews add to employee anxiety and
 can make the employee believe he or she is neither important nor
 respected.
The anxiety level is often greater if the review is tied to an
 annual salary increase. A few companies have the abominable practice
 of not backdating raises if the manager delivers the review late. In
 these companies, a manager's delay leads to lost income for the
 employee, so the review is no longer a positive experience; it has
 turned into a negative experience that increases the employee's
 cynicism and destroys his or her trust in the company.
Delayed reviews can cause other problems, as well. Development
 engineers will let others know of their concerns about the company
 and management. They might assume management is delaying the reviews
 so the company can save money and may thus speculate that the
 company is in financial trouble.
So why do managers deliver late reviews? For most managers, writing a review is a
 painful process that they avoid by indefinitely delaying the task,
 not writing anything, or not offering advice during the reviews.
 Many managers ignore the importance of the review to ongoing
 employee goodwill.
Poorly written reviews also have a negative impact on
 employees. Such a review might list only a few bullet points along
 with the HR-mandated evaluation boxes in a few different categories.
 The only review worse than a poorly written review is one that the
 manager did not write at all. If HR requires a review session but
 nothing else, the review can become a handshake annual
 review, in which the manager offers the employee a few
 verbal comments along with a raise figure and a handshake.
The Handshake Annual Review
I have received a half-dozen handshake annual reviews in my
 career. I usually find them disappointing, as they offer no
 guidance for the future. They also indicate that my manager does
 not want to spend the time thinking about how I really did. The
 reviews were all positive, so I would have liked a written record.
 The record is valuable to me, especially when I have a new
 manager.
My favorite reviews are upbeat discussions with details and
 ideas for improvement that I can actually act on.
—Engineer

HR departments can make it easy for managers to write poor
 reviews in several ways. First, the review form can use rating
 checkboxes that allow a manager to assign a numerical value to each
 area. In some companies, the sum or average of the numbers on the
 form constitutes the employee's rating. This approach falsely
 assumes that all the rating items have equivalent value and will
 lead to skewed employee evaluations.
Some forms have limited space for including information about
 an employee's key attributes. Advising an employee is difficult when
 you are limited to two lines of comments. A reasonable review
 requires full descriptions.
A minimum standard for quality of the review or feedback is
 often missing. If a manager can produce an acceptable review by
 checking boxes and writing "Good work," the standard is too low. A
 form review can be easy, but it does not serve the company or the
 employees.
Reviews should be a ceremonial culmination of continuous
 feedback and coaching. Annual reviews are easy to write by drawing
 from the outputs of a yearlong coaching system. Employees spend a
 year of their lives developing software for your company. Condensing
 a person's effort into a short summary of "Good work" and a
 checklist is
	☑Unacceptable
	☐Acceptable

on the part of the manager. Instead, use the review to
 reinforce the coaching you provided throughout the year.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	1001 Ways to Reward Employees, by Bob
 Nelson (Workman Publishing Company, 2005)
	Becoming a Coaching Leader: The Proven Strategy
 for Building Your Own Team of Champions, by Daniel S.
 Harkavy (Thomas Nelson, 2007)
	Love 'em or Lose 'em, by Beverley
 Kaye and Sharon Jordan-Evans (Berrett-Koehler Publishing,
 1999)
	Managing Software Maniacs: Finding, Managing, and
 Rewarding a Winning Development Team, by Ken Whitaker
 (Wiley, 1994)
	Managing Technical People: Innovation, Teamwork,
 and the Software Process, by Watts S. Humphrey
 (Addison-Wesley Professional, 1996)
	Peopleware: Productive Projects and
 Teams, by Tom DeMarco and Timothy Lister (Dorsett House
 Publishing Company, 1999)
	Slack: Getting Past Burnout, Busywork, and the
 Myth of Total Efficiency, by Tom DeMarco (Broadway,
 2002)
	What Every Manager Should Know About Training: An
 Insider's Guide to Getting Your Money's Worth from
 Training, by Robert F. Mager (CEP Press, 1999)

Chapter 3. CREATING AN EFFECTIVE DEVELOPMENT TEAM

An effective development team creates a strong company foundation
 with fewer wasted resources. An ineffective team builds a weak
 foundation that will crumble when stressed.
Company management, across the board, must be supportive
 of the efforts of the development team to maintain the
 team's effectiveness. The term effectiveness can be
 interpreted in many ways. At one company, for example, the top executive
 focuses on engineering costs. But that mentality results with metrics
 such as code per dollar—and teams of low-paid
 developers spread across the globe. Development engineers are not
 necessarily effective when they produce the most lines of code in the
 shortest amount of time. Good solutions based on minimal code are the
 deliverables of effective engineers.
Let's continue this discussion with a good definition:
 An effective team provides the best customer solution per
 company dollar. Customer satisfaction, quality, schedule, and
 budget of project delivery can all be measured over time, and the
 best customer solutions meet the customers' needs and provide
 high-quality products delivered on time and on budget. To convince a CEO
 about effective solutions that require immediate expenses or changes,
 you need to focus on the long-term corporate goals—a quality product,
 delivered on time—and meeting these goals requires an effective
 development team.
Management should consider four aspects: team effectiveness, team member effectiveness, management
 effectiveness, and effectiveness of team integration within the company.
 Team effectiveness requires an organization that supports the team's efforts and provides
 solid communication paths. Team member
 effectiveness requires a work environment that allows team
 members to contribute their ideas and ensures proper communication
 within the team. Effective team management requires
 a manager who looks out for the team and is willing to encourage some
 fun along with the work. Finally, efficient team-company
 integration requires a framework for cooperation and
 communication. These aspects are often overlooked and minimized despite
 being necessary ingredients for success.
Effective Team Organization

Whether starting a new job or growing a development team,
 development managers should build team organization based on a planned
 size rather than letting the team grow "organically." Ideally, three
 to eight people should report directly to a manager—more than that,
 and you'll probably not have enough time to spend coaching each
 developer. In some companies, more than 20 people report directly to a
 single manager. A manager with 20 reports does not have time to coach
 each individual properly.
Figure 3-1 illustrates
 a simple engineering team structure, showing a manager with five
 direct reports. Each engineer reports directly to the manager for all
 aspects of his or her work.
As the company grows, the development team grows as well. You
 can support organized team growth by adding either project or
 technical leads or managers along with new development staff.
Technical leads deal with the day-to-day
 technical decisions; they provide the technical leadership and
 guidance for the team, usually on a product or associated line of
 products. Technical leads are not responsible for project management
 or general people management. Project
 leads[1] handle the project management decisions: who to use on a
 project, how to plan the project, and how to deal with change during
 the project. Sometimes a project lead will handle technical
 leadership, but he or she does not take on people management, such as
 conducting reviews, hiring, firing, and coaching.
[image: Simple engineering team structure]

Figure 3-1. Simple engineering team structure

Even if your staff includes a technical or project lead, do not
 let the number of your direct reports grow much above 12, including
 leads. Although leads take care of the day-to-day communications on
 projects and provide help, you, as development manager, are still responsible for
 conducting reviews, career training, hiring and firing, ensuring
 regular communication, and coaching.
Figure 3-2 shows a
 sample team using multiple leads. The solid lines represent the normal
 management relationship, while the dashed lines represent technical
 leadership only.
[image: Sample team using technical leads]

Figure 3-2. Sample team using technical leads

With an engineering team larger than 12 people, keep the number
 of direct reports low by identifying managers who will report to you.
 These managers can be responsible for all aspects of managing the
 people reporting to them. A hybrid organization with technical leads and managers can be
 quite effective, as illustrated in Figure 3-3.
[image: Sample team organization with managers]

Figure 3-3. Sample team organization with managers

As your development team grows larger, consider alternative
 approaches to organizing staff. Some companies with many projects
 adopt a matrix management approach in which
 project managers drive projects and functional managers identify and
 coach the staff. Appendix A
 discusses matrix management in more detail and covers how company
 organizational approaches change as the company grows. As a rule,
 every time a company grows by 50 percent, you should evaluate whether
 organizational changes are required, and by the time growth reaches
 100 percent, you should already have made changes to accommodate that
 growth.
For organizations with many projects, a flexible project lead approach can be very effective.
 Project leads coordinate projects using
 overlapping teams instead of fixed staff assignments. Project leads
 often have technical leadership authority in addition to project
 leadership, and they can be flexible because each
 lead usually holds responsibility for only one project. The lead role
 is not a job title. As projects start and end, leads can be reassigned
 to other projects as developers or project leads. As project size
 permits, some leads may share time in different roles between two
 projects. This requires a team with multiple engineers who also serve
 as project leads.
The flexible approach empowers teams to accomplish individual
 goals instead of being part of a single functional hierarchy. It has a
 large advantage in that the project team assignments can be
 reconfigured as required. This approach also requires separate
 staff managers who deal with issues unrelated to
 project work, including staffing, career growth, process definition,
 and mentoring. A staff manager is a permanently assigned position that
 does not shift with project changes.
The flexible project lead approach differs from matrix
 management, as shown in Table 3-1.
Table 3-1. Comparison of Flexible Project Leads with Matrix
 Management
	Flexible project leads
	Matrix management

	Project leadership is a role, not a permanent
 staff position.
	Project managers hold project leadership as a
 staff position.

	Project leads are chosen from engineering staff
 and have engineering skills.
	Project managers have project management skills
 and may not possess engineering skills.

	Staff managers are assigned to development staff
 but do not necessarily manage a distinct functional
 area.
	Functional managers manage a functional area,
 such as database, middleware, or graphics.

	The project lead succeeds if the project
 succeeds.
	The project manager succeeds if most of his
 projects succeed—at least the important ones.

Figure 3-4
 illustrates a flexible project-lead approach. The dashed lines
 represent temporary assignments made for a project and the leadership
 connection is by project only.
[image: Flexible project-lead organization]

Figure 3-4. Flexible project-lead organization

As you manage a development team in a growing company, think
 about your vision of the team for the next two years. Consider how
 you'll build up the team to match your vision. After you have mapped
 out a team management strategy, decide how you can best use the team's
 time.

[1] The term project lead is used here
 instead of project manager, since the latter
 has become a profession of its own with specific skills and
 training focused on managing projects of any type.

Programmer Efficiency

Software developers need long periods of uninterrupted
 concentration time. Engineers must solve complex
 problems and keep many details in mind as they work. Recovering from
 interruptions can require extra time to "get back into
 the code" before developers can begin coding again in earnest. An
 effective development team needs a balance of thinking time and
 communicating time that doesn't frustrate work efforts.
TIME TO THINK
At my company, noise and interruptions were becoming a big
 productivity problem for the development staff. As we were all
 working in cubes, we had no doors to shut, and people would stop by
 all day.
I purchased several versions of the yellow "Police Line: Do
 Not Cross" tape for team members. By agreement, a busy developer
 would put the tape across his or her cube entrance for no more than
 two hours at a time to indicate that interruptions were unwelcome
 while focusing on code. We asked people in different groups to
 respect this time and interrupt only for true emergencies.
—Engineering manager

Although good inter-team development and intra-team cooperation
 necessitates some communication, good communication does not include
 at-will interruptions. Interruptions might be normal for other staff,
 such as sales and marketing workers, who shift efforts constantly
 during the day. In fact, interruptions may not even be problematic
 during some programming tasks, but for most development efforts, even
 short interruptions can cause problems—having to answer the question
 "Is this a good time?" or "Can I ask a quick question?" will break a
 developer's concentration. Most questions lead to discussions and
 resolutions on the spot, as the developer does not want a second
 interruption.
In some companies, people interrupt engineers continuously throughout the day. Engineers who
 try to work around and between interruptions find that they are inefficient and prone
 to making errors. Errors in code lead to more time spent debugging and
 repairing, which increases development costs. Despite a team's best
 efforts in testing and debugging, poorly written code ultimately
 results in poor-quality products released to customers—and this, of
 course, has big sales and support implications that can create a large
 impact on the company bottom line.
To accommodate all demands, you and your team can actively
 negotiate work habits and communication arrangements within the team
 and with other teams. Consider some systematic approaches to minimize
 interruptions as part of your effectiveness strategy.
	Use distinct signs that engineers can use to indicate "do
 not interrupt." In offices, close the door; in cubicles, use a
 sign or banner. An open space layout encourages interruptions and
 impromptu conversations. By agreement, an engineer could place a
 sign on her desk asking for undisturbed time, but this works less
 well in an open office environment.

	Minimize interruptions by providing other venues for work.
 Allow engineers to work away from their desks if you can provide
 no other solutions for uninterrupted work environments. Work
 venues can include a quiet conference room, a coffee shop, or time
 at home to spend part of the day designing and writing code. They
 can use office time for communication, meetings, group
 discussions, or simple tasks such as reading email.

	Set up a corporate agreement on non-interrupt time that
 restricts interruptions to specific hours of the day. For example,
 meetings and engineering team discussions could all occur only in
 the afternoon hours; this allows the team a period of productive
 coding time in the morning. This approach works reasonably well if
 the company culture supports it.

	Allow engineers to occasionally work remotely, if they prefer it to working in the
 office. Keep in mind, however, that although this is advantageous
 in that it does not require a company-wide agreement, it can lead
 to problems. By working remotely, an engineer can become more of an
 individual contributor and less a part of the team. When
 engineers are away from their desks, fewer team
 discussions occur, and this can have a negative impact on the
 quality of the overall design. It also limits opportunities for
 team interaction, explanations, impromptu design decisions, and
 mentoring.

Office Space

Office layout schemes can have huge impacts on
 development efforts and effectiveness. In an open space layout or a
 cubicle layout, collaboration and conversation are encouraged, which
 can both please and annoy busy workers. Team conversations, however, lead to better designs and
 closer working relationships. Daily informal design discussions can
 provide a major advantage by encouraging collaboration. Other methods,
 such as having all team members working remotely and collaborating via
 email and telephone, are not as effective.
Warning
Most engineering teams dislike a completely open
 space layout because of noise and the visual interruptions of people
 moving about.

As you plan office spaces, make an effort to stay close to your
 team; being close by will help you stay informed about progress and
 problems and will help you build trust with your team. An office close
 to the team means you can readily coach others in private and conduct
 confidential conversations. If you are forced to choose between a
 remote office and a cube, take the cube only if you can arrange for
 conference rooms to be located nearby where private
 conversation can occur. You need to be able to close the door while
 coaching and correcting team members.
In a cube or open space environment, multiple conference rooms
 should be located near the development area to provide spaces for team
 collaboration. As you're reviewing space plans, insist on having more
 than two conference rooms. An insufficient number of rooms shared by
 everyone in the company will quickly fill up with standing meetings
 and customer visits.
Arrange the office space so that quality assurance (QA),
 marketing, technical writing, and engineering teams are located in
 close proximity. This encourages communication between teams, as most
 informal conversations occur within a short walk from a worker's
 desk. Informal conversations among developers and with other teams are
 generally beneficial and collaborative. If developers' only contact
 with marketing staff is through formal meetings, the quality of the
 relationships between members of the two teams will suffer, and so
 will the product.
Keep in mind, however, that developers need sound isolation from
 loud neighbors. Since both marketing and sales team members often use
 the phone and can generate a fair amount of noise, make sure
 engineering space is set up to reduce noise. Consider several
 solutions for keeping the work area quiet:
	Rearrange the office space to minimize sound distribution. You can
 reduce noise by installing dividers between noisy offices and engineering spaces.

	Set up developers' workspaces in an area with little foot
 traffic. Talk with other managers before moving the team to an
 isolated spot, however, because the point is to encourage quiet
 thinking time, not isolating and reducing communication. Avenues
 of communication must be clear and a cooperative attitude should
 drive any space decisions you make.

	Create an impromptu conversation area next to the
 development space. This area can include a large whiteboard and
 comfortable places to sit. If the space has good lighting (such as
 a large window) and a welcoming atmosphere, the team will use and
 appreciate it.

	Ask people to respect others and keep the noise levels down
 when conversing in hallways, cubicles, or other workspaces.

How Other Teams Communicate with Engineering

Growing companies' development teams create the best products
 when they communicate successfully with other departments within the
 company. Good interdepartmental communication keeps the concerns of
 the customers and the organization aligned with the work being
 accomplished. The most effective approach for creating successful
 companies and products is for the entire product team (development,
 sales, marketing, QA, and operations) to be able to discuss goals,
 problems, and solutions and then document them together to create
 working descriptions and a shared understanding of what
 those descriptions mean.[2]
Contact among company teams improves the product definition and
 allows developers and others to understand the whole
 product requirements.[3] Appropriate discussions help developers refine solutions
 before coding begins, saving time. Development, QA, sales, marketing,
 support, technical writers, trainers, and the customer need to
 collaborate to define the product efficiently and avoid significant
 backtracking later.
Open communications between development engineers and QA
 engineers allows QA to ask questions about the intent of the code, to
 create better tests, and to provide better coverage for the system,
 thus improving product quality. It also uplifts QA team morale, as
 they will be taking part in the development effort. In contrast, some
 companies limit QA access to engineering so that programmers can be
 more productive, but QA engineers feel impeded by this situation,
 finding it more difficult to do good work as the importance of their
 role is diminished.
TALK TO THE HAND
My current company completely isolates QA from the software
 engineers. Engineering management told QA that we could not talk
 directly to the engineers to ask questions, and we sometimes must
 wait multiple weeks for information we need to do our job. Our QA
 team is demoralized in general and the quality of our work suffers
 as a result. This is why I am looking for a new position.
—Unhappy QA engineer

QA team contact benefits engineers as well. QA can provide
 valuable feedback on the design of the user interface, for example.
 Close contact between the two groups during testing will allow
 developers to understand individual defects logged in the tracking
 tool. Defect clarity reduces mistakes in repairing defects, and improved defect repair
 improves the product schedule, as discussed in Chapter 17.
Consideration and scheduling usually improves collaborative
 efforts. Dealing with the conflicting needs of access and excess in
 communications with engineering requires that the
 manager define a strategy and get the teams to buy into that strategy.
 For example, to avoid excess interruptions with development engineers, QA engineers
 could bundle questions to present in an afternoon meeting rather than
 interrupting developers throughout the day with new questions.
Some managers try to isolate development teams from the other
 groups in the company by putting the team into a "black box." This
 forces people outside the engineering box to "throw requests over the
 wall," while engineering shoves software back out through a slot in the floor (or maybe
 through a network cable).
A development manager might build a black box around his team
 with the best of intentions. Usually, he adopts the policy because
 engineers complain that they cannot get work done because of
 interruptions from other departments. Engineers complain the loudest
 when they're behind schedule on a critical project. In response, the
 development manager tells the rest of the company not to talk to
 engineers.
On the surface, isolating the development team appears to solve several
 management problems—the manager no longer worries about other people
 asking engineers to work on tasks that were not assigned by him, for
 example. However, this approach leads to long-term failure, because
 engineers cannot collaborate with others, and it indicates a lack of
 trust in other managers to manage their teams. The lack of
 collaboration leads to long schedules, poor product definitions, and
 low quality.

[2] See Chapter 5 for more
 discussion on collaborating on product definitions.

[3] You can read more about the whole
 product concept in Chapter 5.

New Manager, Old Habits

A small company might promote an engineer to development manager
 because of her technical and product knowledge. This newly minted
 manager, however, does not instinctively understand her role as a
 manager, but instead sees herself as an engineer who must now endure
 more interruptions and more paperwork. This new manager might in fact
 prefer to continue writing code full time, despite the perceived
 benefits of a management position. Without training and direction, she
 won't embrace her less code-oriented role and will believe that her
 only management responsibility is to answer team questions. The team
 will almost certainly become disillusioned with this manager.
Delivery pressures compound the new manager's problems. Because
 she sees that another trained engineer would help her team accomplish
 its work goals, she will be tempted to take off her manager hat and
 "be that engineer" for a while. She might assume responsibility for
 building a section of the code and use this assignment as a reason not
 to manage the team. When faced with difficult and unfamiliar
 challenges, new managers often fall back on what they do well—software development.
This problem is more common than it should be. An effective
 development manager needs to focus her energy on management and not
 writing code. Her manager should be aware of her needs and arrange for
 management training and coaching to assist her with the new role. If
 she is not a good management fit, even after extensive training and
 coaching, she should perhaps be sent back into full-time programming
 or another technical leadership role.
An exception to the "do not write code" rule, however, can occur
 if the new manager can apply her technical expertise to a tiny effort
 on a rush schedule. Such an effort should last only a few days. After
 the manager has written the required code, she should immediately
 train an engineer on the technology involved, so the short-term need
 should not arise again for that technical problem.
If the development manager with a team of one or two developers
 is effective at management as well as developing code, she might also
 be able to do both jobs. This works best for experienced managers who
 understand how to balance their management time with development
 effort. However, in most cases, a new manager who also works as an
 engineer has a fool for a boss.
In the end, a new development manager who likes to write code
 can spend personal time working on individual projects. Open source
 projects present great opportunities for working with and staying up
 to date on new technologies. Working on small projects in new
 languages or platforms on her own time can also help the new manager
 keep up with new technology.

Have Fun

One of the great advantages of working at a small firm is that
 it is easier to blow off steam without running afoul of the
 "stuffiness police." Make sure that the team atmosphere allows for
 some fun, especially at the end of the day. The occasional Nerf gun
 fight can energize the entire team.
Making jokes at work is another great way to keep the workplace
 congenial. Seeing humor in difficult situations can make the problems
 of the day seem less stressful. Besides, work is more fun that
 way.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	Managing Software Maniacs: Finding, Managing, and
 Rewarding a Winning Development Team, by Ken Whitaker
 (Wiley, 1994)
	Managing Technical People: Innovation, Teamwork,
 and the Software Process, by Watts S. Humphrey
 (Addison-Wesley Professional, 1996)
	Peopleware: Productive Projects and
 Teams, by Tom DeMarco and Timothy Lister (Dorsett House
 Publishing Company, 1999)
	Slack: Getting Past Burnout, Busywork, and the
 Myth of Total Efficiency, by Tom DeMarco (Broadway,
 2002)

Chapter 4. GROWING A SOFTWARE TEAM

The human resources department probably defines your company's
 hiring process, but you, as the development manager, must take charge of
 the candidate selection process to grow your
 development team and company successfully. A company's hiring process
 usually consists of defined steps for opening the position, identifying
 candidates, filling out forms and getting approvals, setting up
 interviews, checking candidates' credentials, and making and approving
 an offer. However, this process does not define the candidate
 selection process, in which you decide
 who you want. Creating and following a candidate
 selection process is essential to finding the right developer for the
 job.
Because good development teams help small companies succeed and
 grow, your candidate selection process must be a priority. You define
 your team's character by your choice of new hires. Hiring the right
 person at the right time has a positive impact on productivity. Hiring
 the wrong person is painful and costly. A moderate amount of effort in
 hiring the best candidates will yield considerable results.
Without a candidate selection process, interviewers will likely
 focus on the wrong subjects. Engineering interviewers might judge
 candidates based on only a few issues: knowledge of technologies the
 company is currently using, projects listed on the candidate's resume,
 and the candidate's personality. But focusing on only a few traits
 ignores the importance of other key traits, including the candidate's
 success history, work habits, industry experience, people skills, and
 other general (versus specific) technical abilities. A narrow interview
 focus will result in weaker candidates who possess some technical
 skills, and although you might like a candidate on a personal level, he
 or she might not be a good performer on the job.
An organized approach to candidate selection requires that you
 define desired candidate traits, the handling of prescreening, the
 approach to the entire interview, and the decision-making process. Keep
 the big picture in mind as you consider the following areas
 systematically.
Designing a Selection Process

Start any engineering hiring activity by designing a selection
 process that outlines the steps you intend to follow as well as your
 approach to making the selection. Reasonable selection steps for a
 small company would start by identifying potential candidates from the
 resumes you have solicited, ideally through your network. Follow this
 with a phone screening of candidates, selecting the most promising
 applicants for office interviews. Next, you'll interview the
 candidates at your facility along with an interview team and convene a
 post-interview meeting to collect information. After these steps, you
 should be ready to make a hiring decision.
At each of these stages, select clear criteria for evaluating
 whether the candidate is a good fit and scale the effort of selection
 to be reasonable. Use effective methods of screening during the resume
 review and phone interview so that the few candidates that you
 interview at your facility are well worth the time spent interviewing
 them. And, most importantly, decide in advance what you are looking
 for in potential candidates relative to the position. To encourage
 this, the next section is devoted to interview
 traits that should help you choose the ideal person.

Interview Traits

Start by thinking about what makes a good development
 engineer. Using this information, your interview team can evaluate the
 candidates for these traits during the interview by assigning different
 interviewers to different traits. For each of the areas, create a list
 of sample questions that you will provide to members of the interview
 team. If you evaluate candidates in all of the following areas, you
 can get a broader picture of the candidate and his or her
 potential:
	 	
	Technical skills
	Communication skills

	Success history
	Personality

	Cultural fit
	Enthusiasm

	Work habits and preferences
	Problem-solving ability

	Industry experience
	Sense of humor

	People skills
	

Each of the traits requires an evaluation method. Direct
 questions work well for inquiring about the candidate's knowledge of
 the work. A mix of knowledge and behavioral questions can be useful. Answers to
 knowledge questions, of course, tell you about the scope
 of the candidate's knowledge, and answers to behavior questions tell
 you how the candidate applies that knowledge.
Knowledge questions can be rephrased as behavioral questions
 that can reveal the candidate's experience. For example, the knowledge
 question, "How do you prioritize tasks?", can be rephrased as a
 behavioral question: "Describe a project task that proved difficult to
 prioritize and the approach you took," or alternatively, "How did you
 prioritize your tasks on project X?" (where
 project X is a specific project on the
 candidate's resume).
Technical Skills

Technical skills include both foundational skills and specific skills.
 Foundational skills include the candidate's
 ability to program and his or her comprehension of computer science
 basics, while specific technical skills include
 the languages, programs, and libraries the new engineer will need to
 use immediately.
Any legitimate candidate must possess the skills required to do the job, and a set of
 skill-based questions can be useful in evaluating candidates.
 Unfortunately, interviewers often give too much weight to specific
 technical knowledge when evaluating potential
 employees. Instead, focus on the primary technology knowledge
 required by the engineer and do not over-emphasize secondary
 technologies. Most good engineers can learn new technologies
 quickly, so seeking only candidates who match a laundry list of
 technological expertise will unnecessarily eliminate some strong
 contenders.

Success History

An engineer's success history describes
 the engineer's successes with past assignments at other jobs. Talk
 with a trustworthy person who has worked with the candidate in the
 past, asking the following questions:
	What did the candidate do on the project to ensure that
 his work was high quality?

	Did the candidate complete his project work on
 time?

	Did his projects meet their functional goals?

	Did the candidate put in a strong effort to make the
 project a success?

	Did he ask for help when needed?

	Did the candidate resolve problems well as they
 arose?

If you cannot find a trustworthy source, or even if you have
 spoken with someone, you should ask the candidate the following
 questions during the interview:
	How do you ensure that your work is high quality?

	How often was your project work completed on time?
 Describe some situations.

	Did your last three projects meet the functional goals
 planned at the start?

	How did you organize your work on project
 X?

	When is it appropriate to ask for help on a
 project?

	Describe a problem that occurred during a project. How did
 you solve it?

Hearing how a candidate functioned in a previous work situation can
 be a good guide in determining how he will function at your
 company.

Cultural Fit

Because every company has a unique culture and corporate
 values, look for candidates who match your company's style and
 values. A person who is looking for a low-key work environment, for
 example, would not fare well in a company of hard-driven engineers
 who work around the clock. An intensively aggressive culture would
 challenge a quiet and accommodating employee. Candidates who fit
 within the company culture will be happier, more productive, and
 more likely to stick around. Candidates who do not fit will be more
 likely to leave the company for other opportunities when they
 realize the mismatch.
Evaluating cultural fit can be a challenging task. Most
 candidates want the job, so even if you ask them directly about
 their work culture and style, they might tell you what you want to
 hear—that is, what they know about the culture of your company. It
 often works better to ask behavioral questions like these:
	Describe the cultures of Company X
 and Company Y (companies that appear on the
 candidate's resume).

	How did they differ?

	What did you like about each company?

	What did you dislike about each?

	Of all the companies at which you have worked, which has
 the culture that suited you best?

After creating a list of cultural fit questions, consider and
 review your company's culture and the questions with your manager
 and with other department managers. They will have useful insights
 and can offer other good questions to ask. Reviewing culture with
 others can also help to keep the culture in alignment across the
 company. Chapter 9 discusses
 corporate culture in more detail.

Work Habits and Preferences

Work habits describe the engineer's
 habits in a work environment that influence the engineer's
 productivity. Ask the following questions:
	What is your attitude toward work?

	Where and when do you do your best work?

	What parts of the job do you enjoy the most and the
 least?

	How much do you work on a problem before you ask for
 help?

	How do you like to work with other groups—including other
 engineering teams, marketing, and QA?

	How do you follow up on requests you make of
 others?

	What motivates you?

	What are your expectations about work schedule and
 overtime?

	What are your favorite and least favorite types of
 projects?

	What kind of work environment do you prefer?

	How do you like to be managed?

Here are behavioral questions about project
 X that you noted on a candidate's
 resume:
	How did you go about organizing your work on project
 X?

	How did you set priorities for project
 X?

	How did you track the details of project
 X?

Industry Experience

Industry experience describes background
 knowledge of the industry (rather than technology and programming
 knowledge). For example, if the company supplies medical software,
 does the candidate understand the medical software field and
 specific regulations? You can evaluate candidates by asking about
 industry information relative to the position.

People Skills

People skills describe how the engineer
 interacts with others, especially when a conflict occurs. When
 examining a candidate's people skills, consider the candidate's willingness to
 listen, her openness in sharing information, how she resolves
 conflicts, her ability to take constructive criticism, and whether
 she is flexible with assignments. Questions you might ask about
 people skills include the following:
	Describe a conflict with a co-worker and how you handled
 it.

	How much information is appropriate to share with
 co-workers?

	When and why would you hold back information?

	Describe a criticism you received at work that led to your
 improving your performance.

	Describe a work situation that required flexibility on
 your part.

Communication Skills

Communication skills describe the
 candidate's ability to talk, listen, write, and present information.
 You can assess her talking and listening skills during the
 interview. To evaluate her writing skills, ask the candidate to submit an example
 of her technical writing, such as a conference paper (but avoid
 proprietary information). To demonstrate presentation skills, ask her to present a "chalk talk"
 on a technical topic. Ask the candidate to draw and describe a
 software system; this will give you better insight into how well she
 understands her past work and how well she can communicate her
 understanding.

Personality

Consider the candidate's personality as
 you judge whether he will work well with the rest of the team. It's
 easiest to identify red-flag areas, such as these:
	Did the candidate not let you get a word in edgewise
 during the interview?

	Did he seem a little too chummy, or not friendly
 enough?

	Did he appear too eager to please and impress?

	Did he have too many negative comments about past
 situations?

Enthusiasm

People often use candidates' enthusiasm
 to decide which of several qualified candidates to hire. This is
 generally a good thing. Although engineers are usually more reserved
 than sales people, for example, a show of enthusiasm for the job and
 company is important. Successful employees are usually enthusiastic
 about their work.
For young companies, employee enthusiasm can be of particular
 importance. Young companies need people who are passionately
 committed to the business's success and not just their own. Later in
 the growth phase, you can hire candidates who are enthusiastic about
 the technology and possibilities but don't quite qualify as company
 "true believers."

Problem-Solving Ability

Problem solving defines the engineer's
 ability to solve arbitrary dilemmas. Though some problems can have
 little to do with the actual software technology, you can and should
 evaluate the candidate's thought processes while dealing with
 problems. As an engineer encounters new problems outside her current
 technical knowledge, her ability to think through approaches to new
 issues shows her creativity and flexibility.
Ask the engineer about a real and current difficulty your team
 is facing. You can extend this to ask the candidate to step through
 a solution, perhaps including some sample coding for a
 solution.
Several companies, including Microsoft, have a long history of
 focusing on problem-solving tests during the interview process, as
 William Poundstone describes in his book, How Would You
 Move Mount Fuji? (see "Additional Reading" on Additional Reading). As the book title suggests, asking
 a person how to move a mountain can get him thinking about how to
 break down a large problem into simpler steps. This book offers a
 good set of general problems and Internet links for finding
 more.
Giving an engineer an opportunity to address a general problem
 during the interview will reveal several aspects of his
 problem-solving skills. First, it will show how willing he is to ask
 questions of the interviewer. This carries over to how willing he
 will be to ask for help on tough problems. Second, it will tell you
 how he tackles large issues and what skills he uses to resolve
 complicated issues. Third, it will tell you how he reacts to a
 difficult problem that does not have a textbook answer.

Sense of Humor

With all the tasks that engineers are asked to do, do you even
 need to ask why a sense of humor is important?

Pulling It All Together

With a list of interview topics in mind, you should find it
 easier to design a selection process based on the most important
 topics. Consider a good candidate's most important traits as you move through the interview stages—phone
 screening, interviews, review sessions, and deciding who
 to hire.
Phone Screening

A full-day interview, as discussed next, gives the interview
 team an opportunity to evaluate a candidate fully. However,
 interviews usually consume more than a day's worth of engineering
 time per candidate if preparations and reviews are considered.
 Typically, if you're interviewing more than five candidates at your
 facility, you did insufficient screening earlier. Conducting a
 preliminary phone screening (or even a face-to-face lunch screening)
 eliminates overbooking of full-day interviews.
During phone screening, your job is to determine whether the
 candidate will pass the minimum bar. One approach is to make a list
 of each category and add a plus, zero (neutral), or minus symbol
 next to each category based on the quality of the candidate's
 responses. In the end, invite candidates with the most positives and
 fewest negatives for a face-to-face interview. It's a simple but
 effective measurement, and you can use the negative points as
 follow-up topics during the interview.
The progression of issues to cover during a phone screening
 session might look something like this:
Ask about knowledge of your
 company. A candidate who knows nothing about your company
 gets a minus.
Discuss relevant industry
 experience. Considerable experience is a plus, and very
 little is a minus.
Ask about a work-related
 effort. Focus on efforts for which he was particularly
 successful or proud of the results. Self-motivated candidates
 should generally feel proud of work they have done. If the
 candidate can't point to anything, that should be a warning
 sign.
Ask about a conflict situation and the
 resolution. An engineer who cannot describe a conflict is
 not a good hire—a minus. One who describes a reasonable conflict
 and a positive solution is a big plus.
Ask about the depth of technical
 experience. Focus particularly on the areas that are
 important to you. Judge the candidate's experience by how it fits
 your company's needs. An engineer who has worked with many of your
 technologies can usually learn the others quickly.
Assess the candidate's ability to
 communicate. Clear, concise answers during the screening session are a big plus. If the answers are
 too short or long and rambling, it's a minus.
Ask about salary
 expectations. Try to determine whether the candidate is
 widely out of line with your budget and his background. Many
 candidates will be coy about presenting a number, but you can
 usually get a range. If an engineer is looking for a salary way
 above his experience level, it's a minus.
Ask whether the candidate has any
 questions. Any reasonable questions are a plus, while not
 asking any questions is a minus and shows lack of interest or
 preparation.

The Office Interview

The office interview provides your best opportunity for
 evaluating a candidate. Plan in advance not only what information
 you want to know but how you are going to get it. Discuss this
 information with the interview team to make sure that each
 interviewer is prepared and does not cover identical
 ground.
At least five people, including you, should interview the
 candidate to provide a broad perspective on his or her fit. When
 selecting the interview team, choose people with a breadth of
 experience rather than just depth. Interviewers should represent different interview
 concerns, have good interviewing skills, make a positive impression
 on the candidate, and understand the selection criteria.
 Interviewers should include people from other teams—such as
 representatives from sales and marketing. Variety in the
 interviewers' backgrounds and styles will help make the interview
 process more well rounded.
When planning the interview schedule, think of the day from
 the candidate's perspective. Keep the interview process from
 becoming an exhausting marathon lasting longer than eight hours.
 Allow the candidate to take a breather during lunch by keeping the
 conversation lighter and less inquisitorial. After all, she needs an
 opportunity to enjoy her meal. Also, ensure that each interview
 lasts about an hour. Half-hour interviews are worse than ineffective and can lead to
 shallow impressions and poor hiring choices.

Coaching Your Interview Team

Interview teams need to be coached prior to the interview.
 This helps ensure that team members collect the information needed
 to make a hiring decision. You can also take this opportunity to
 recommend approaches to selling your company to the candidate. Without
 coaching or encouragement, interviewers may see the interview as
 just another peripheral task to get done so they can get back to
 "real work."
At your interview coaching meeting, start by describing the
 goals of the interview and the position the company is trying to
 fill. Make sure team members understand the skill levels and
 experience expected for the position as well as your view of what an
 ideal candidate would be like. Without this clarity, interview teams
 may interview for the wrong set of skills.
Assign specific responsibilities to each interviewer to ensure
 that they get good coverage of the candidate. Each interviewer
 should evaluate one to three different candidate traits discussed
 earlier. So they are prepared to find the information, ask
 interviewers to carefully review the candidate's resume prior to the
 interview and prepare a list of questions. To assist, you can
 recommend questions and interview strategies. You can also ask
 interviewers to take notes and capture quotes during the interview,
 which are especially useful during the post-interview review.
Perhaps most importantly, interview team members need to plan how they will
 determine a candidate's technical competence. Discuss potential
 approaches to finding this information, such as:
	Ask a candidate to solve a specific code problem using his
 language of choice

	Discuss details of the programming language your team
 uses

	Ask for an explanation of a section of code you
 supply

	Request that the candidate identify defects in a code
 snippet

	Ask the candidate to suggest improvements to a predefined
 block of code

Remind your team that the goal is not to "trip up"
 interviewees, but rather to understand their abilities and approach.
 The questions a candidate asks and those he does not ask during a
 technical interview are very revealing about how effective the
 candidate will be as part of your team.
The interview session provides an opportunity for you and your
 team to evaluate the candidate, but it's also an opportunity for the
 candidate to decide whether or not she wants the position. More
 importantly, it's an opportunity for you to sell your company.
 Selling your company is vital even if you don't want
 to hire the candidate, because regardless of the outcome of the
 interview, the candidate will likely convey her impressions of your
 company to her colleagues. Consequently, you should always keep the
 interview positive and professional.
At the end of the day, take the opportunity to gather some
 feedback from the candidate. Ask for her impressions of your company
 and the interview process.

Interview Sessions to Avoid

Setting up the interview process is more than scheduling
 meetings. When arranging interviews, many managers focus on the impact on the
 interviewers rather than the impact on the interviewee. For a
 moment, consider the candidate's perspective and reflect on these
 awkward and intense interview schedules.
If your company specializes in any of the following negative
 approaches—or "stress interviews" in general—change your approach to focus
 on more positive tactics that encourage the engineer to want to work
 at your company. The impact of poor interview strategies is experienced beyond the
 candidate being interviewed, as he will relay this information to
 friends and others. Who knows—his stories may even end up in a
 book!
Marathon or Stress Interview

A marathon interview is unusually long,
 typically lasting more than eight hours. Marathon interviews are a form of stress
 interview designed to stress the candidate to see how
 he reacts. Stress interviews are especially undesirable for
 software development work, because programmers do their best work
 when they are not overly stressed. Their reactions to stress don't
 produce useful information or useful work; stress simply lowers
 the apparent performance of the candidate. Stressing a candidate
 is also a good way to put your company on the candidate's "I won't
 work for you or let any of my friends work for you either"
 list.
Keep the length of the interview reasonable, with eight
 continuous hours being the maximum length. Better to schedule a
 six-hour process or split a longer interview into two days, since
 most candidates burn out after six hours and will not represent
 themselves as well.
A VERY LONG DAY
My longest interview was for a local job reporting to a
 manager in another city. The company booked me on a flight with
 the hiring manager, so we talked throughout the flight. The
 interview was the next day, starting with breakfast at 7 AM. It
 went straight through to dinner and ended at 8 PM—13 hours. Near
 the end of the day, I was very tired and having difficulty
 focusing on the interview.
—Software engineer

Hit-and-Run Interview

In a hit-and-run interview, the hiring
 manager puts a candidate on a five-hour or longer flight to the
 company locale, interviews the candidate briefly, and then
 immediately sends her home with no delay. Often, the reason for
 the strained travel arrangements is to save the company money, at
 the expense of the interviewee. These interviews occur most often
 with larger organizations at which human resources (HR) organizes
 interviews but faces restrictive travel policies and budgets for
 interview travel. This interview shares all the exhaustive
 qualities of a marathon interview, but it also indicates little
 concern for the candidate's time, emphasizes the worst in
 cost-cutting policies, and leaves the candidate with a bad overall
 impression.
FLIGHT TO NOWHERE
My remote interview came after I had interviewed
 successfully with the local team. The next step was to interview
 with the remote boss. The company gave me an indirect flight to
 cut costs, but that added four hours each way over the direct
 flight. In addition, they set it up as a one-day trip to avoid
 having to pay for a hotel room. The trip would leave a two-hour
 window in the destination city for the interview.
The trip required me to get up at 4 am to catch a 6 am
 flight. After the stopover, I arrived in the afternoon local
 time, and the hiring manager delayed the meeting for 40 minutes.
 He interviewed me for 20 minutes and then had me call another
 person for a phone interview. I left two hours after I arrived.
 I took the same double-leg flight home, arriving home after
 midnight.
This trip told me what I needed to know about the company,
 and it was not good.
—Engineer

Lunch Committee Interview

The lunch committee interview turns a
 seemingly normal lunch interview into a stress-and-grace test for
 the candidate. Unlike the other examples, this approach does not
 take much effort to set up. Four or more people conduct their only
 interview of the day during lunch with the
 candidate, loading it with specific goals and a
 short time limit. Each interviewer proceeds in sequence to ask
 questions of the candidate that require long answers, ensuring
 that the candidate cannot eat. (Bonus points are awarded for
 catching the interviewee trying to take a bite right before the
 next question is asked.)
With the right intentions, lunch interviews can be useful and positive. A positive
 lunch interview can uncover the interests and passions of the
 candidate and also helps you understand more about her personality
 and cultural fit. It can give the candidate a mental rest so she
 will not be worn down by the afternoon. Best of all, a friendly
 lunch shows respect for the candidate rather than a focus on your
 company's desire to cram as much as possible into a day.

Review Session

After you incorporate the interview team's input, the
 selection process needs to include a way to get that information
 back to you, the hiring manager. A review
 session should occur as soon as possible after the
 interviews take place so that the information is fresh in everyone's
 minds. If team members are unable to attend the session, you can
 talk to them directly prior to the review session.
To prevent a few individuals from dominating the conversation,
 ask people to write down their assessments for each of the focus
 areas before the discussion starts. Some companies start with a
 quick "thumbs up/thumbs down" evaluation of each candidate to get
 the team's assessment quickly before discussing details.
Give every interviewer an opportunity to describe his or her
 impression of the candidate. Each has a unique perspective based on
 a particular interview focus. The hiring manager should speak last,
 as your opinion can unduly bias other interviewers from fully
 expressing their opinions, especially if they have reservations
 about the candidate.
Ask each interviewer to describe his results, top-down: Start
 with the conclusion and work down to more detail. Each interviewer
 should give at least two supporting reasons for his conclusion;
 these reasons should be more specific than "I didn't think she would
 fit in." Then the interviewer can go into details of what he
 decided, ideally, supported by a quote or two from the candidate himself.
Ask interviewers to answer these questions after they give
 their thoughts:
	What surprised you about the candidate?

	How has the other interviewers' feedback so far disagreed
 with your assessment?

	How specific was the candidate in his answers?

When you have finished going around the table, if you find
 that some information from interviewers is contradictory, continue
 the discussion, and ask for more supporting information in the area
 of interest. Before you leave the meeting, you should feel that you
 have all the information you need to make the hiring decision. If
 you like the candidate but don't have enough information in some
 area, make a point of setting up another time to talk to the
 candidate again to resolve any open issues. If another meeting is
 not possible, do not hire the candidate.

Making the Choice

As the hiring manager, you decide whom to hire; don't make the
 decision based on a vote by the interview team. The interview
 process should have provided you with the information you need to
 narrow down the candidates and make a good decision. Make offers to
 candidates about which you have no serious concerns, who meet your
 selection criteria, and who you really believe will be a great
 addition to your team.
Even with a good interviewing process, you can have trouble
 deciding whom to hire. If you are unsure even after completing the
 process, it might be wise to keep looking for the engineer you
 really want. Don't hire someone full time who will solve only a
 short-term problem. Hiring a marginal candidate is rarely a good
 idea, so be sure you're enthusiastic about the person before you
 make that offer.
HIRE IN HASTE, REGRET IN LEISURE
Early in my management career, I worked for a company whose
 profitability varied considerably quarter to quarter. The
 management strategy was to freeze hiring in bad quarters and open
 hiring in good quarters. For a two-year period, it seemed that
 every quarter was alternating between good and bad.
I was trying to hire an engineer. Each quarter, I had to
 start the approval and justification process, which took weeks.
 When top management would give the approval to hire, my search for
 candidates would take several weeks. I would bring in several
 candidates for interviews and finally select someone. Twice in a
 row, the whole cycle took longer than a quarter and a new hiring
 freeze was on by the time the interviews were finished. Frustrated
 by the process, I made the mistake of hiring an engineer quickly.
 The ongoing underperformance of this engineer made him a bad
 choice that I had to live with.
—New engineering manager

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	101 Great Answers to the Toughest Interview
 Questions, by Ron Fry (CENGAGE Delmar Learning,
 2006)
	Dynamics of Software Development, by
 Jim McCarthy (Microsoft Press, 2006)
	How Would You Move Mount Fuji? Microsoft's Cult
 of the Puzzle: How the World's Smartest Companies Select the Most
 Creative Thinkers, by William Poundstone (Little, Brown
 and Company, 2003)
	Smart and Gets Things Done: Joel Spolsky's
 Concise Guide to Finding the Best Technical Talent, by
 Joel Spolsky (Apress, 2007)

Part II. PRODUCT AND TECHNOLOGY

Chapter 5
Chapter 6
Chapter 7
Chapter 8
This section of the book covers product and technology, two areas
 at the heart of the intellectual property of the company. Superior
 product definition leads to superior product, and good technical tools
 and methods enable quicker high-quality results. Understanding how to
 balance product and technology is one of the secrets of effective
 development management.

Chapter 5. DEFINING THE PRODUCT

At its core, a product definition is not a
 knowledge or resource issue; it is a relationship
 issue. When you and your development team build strong relationships with marketing staff and with your customers, defining the product becomes much
 simpler. Open and regular communication with members of other teams can
 help you align your development goals with company goals. In addition,
 developing trust among corporate divisions as well as between the
 company and its customers can result in a quicker consensus on the most
 appropriate product definition.
Some of the most difficult relationship strains occur between
 marketing and development teams. Establishing a positive relationship
 between these teams can be challenging, because the roles played by
 marketing and engineering staff are very different. Marketing's function
 is to understand customer needs and promise the solutions required to
 meet those needs.
Engineering's role emphasizes the practical aspects of building
 products efficiently and then supporting them after they are built.
 With a strong relationship between the two teams, they can
 work together to devise the best and most balanced solutions to meet the
 customer's and company's needs.
This chapter covers the basics of defining a product. You'll learn
 about crucial relationships, study example processes for creating product definitions, read about what goes into a
 product definition, and learn a bit about prototyping and
 how to use templates to help define a product. In addition, you'll learn
 how products are put together and how different partners in the
 relationship perceive the product.
Product Definition Process

Creating a refined product definition can be a challenge for
 companies for several reasons: The number of options surpasses the
 company's ability to build them, information is lacking, and the
 relationships between marketing and engineering are weak. However, if
 the marketing and engineering teams' relationship can be improved,
 they can work together to define the product through a process of
 high-level reviews and quick cost assessments.
Creating a joint and cooperative definition doesn't necessarily
 imply that engineering and marketing have completely overlapping
 responsibilities and authorities in product definition. Some companies
 give engineering the final word, while others give marketing the lead
 role. When the marketing team is strong, the marketing-driven approach
 usually works the best. In either situation, cooperative behavior
 produces the best results.
During the initial product definition process, short daily
 discussions between marketing and engineering encourage more rapid
 closure on choosing the best options to pursue. The daily discussion
 becomes a continuous conversation that allows
 iterative refinement of the requirements and ultimately the
 definition. The teams can analyze the feature costs, timeline, and
 definition in stages—be they quick overviews, intermediate level
 reviews, or fuller definition reviews. At each stage, the teams work
 together to select and eliminate options through thoughtful analysis
 and data collection.
Ideally, the marketing/engineering evaluation works as follows:
 First, engineering works with marketing to define preliminary quick estimates of product size and scope. Next, both
 teams agree on how to pare down the list. Remaining items are analyzed
 with more detail. Then this process is repeated until both teams agree on a final
 set of product definitions, costs, and timelines. Figure 5-1 illustrates this
 filtering process.
[image: Sifting through initial product ideas to produce final choices]

Figure 5-1. Sifting through initial product ideas to produce final
 choices

If a trusting relationship does not exist between the
 marketing and engineering teams, the steps in the process will
 degrade. For example, if marketing treats preliminary quick estimates
 from engineering as full commitments and pressures engineering to meet
 those commitments, engineers will probably stop providing quick
 estimates. Engineers create quick estimates based on limited
 information; these estimates are unsuitable for accurate budgeting and
 scheduling, but fine for establishing ballpark costs so that the
 initial direction can be set. Providing quick estimates as cost ranges
 emphasizes the uncertainty involved, but the analysis is insufficient
 to use in creating an accurate project schedule.
Once mistrust has soured the engineering and marketing
 relationship, the very expensive process shown in Figure 5-2 ensues. In this case, both
 teams treat conversations as mini-contracts, eliminating speculative
 discussions. All feature and project ideas require extensive
 evaluation before engineering will provide any type of estimate, and
 engineering devotes considerable time to precise, in-depth estimates.
 Marketing has to invest substantially more time in fully defining
 every idea before presenting them to engineering. Worst of all,
 engineering must create detailed estimates for
 all of the options before presenting them to
 marketing.
[image: Wasteful selection process]

Figure 5-2. Wasteful selection process

Why do so many companies choose such a wasteful approach to
 product definition? Past bad behavior usually drives
 defensive relationships. If in the past, engineering produced
 quick estimates based on initial ideas, and then
 marketing insisted that these numbers be treated as final, engineering
 has little incentive to provide quick estimates in the
 future.
When operating under a successful approach, however, engineering
 and marketing can collect more information and refine definitions for
 the ideas that will be implemented. Figure 5-3 illustrates the
 pyramid of information associated with refining a definition. Each layer reflects more
 product information.
A refined definition starts at the top
 level and focuses on the customer's needs. As the
 definition process continues, marketing and engineering produce a more
 detailed description of the product: detailed requirements, high-level
 implementation descriptions, detailed concept models and prototypes,
 and then the functional specifications. Then engineering considers the
 product architecture, examines the requirements of the product's
 construction, and prepares a detailed description of its features and
 user interface. Finally, engineering and marketing together flesh out
 the complete definition of the product offering.
[image: Clarity of definition versus amount of detail]

Figure 5-3. Clarity of definition versus amount of detail

The process is challenging because the teams must make
 product decisions based on incomplete information. Decisions involve
 trade-offs between features, timelines, resources, and implementation
 approaches. Making sound initial decisions
 requires not waiting until development is building the product before
 thoroughly analyzing what needs to be built. If questions about the
 technical feasibility of specific functions of features arise, a
 senior engineer should be asked to create simple prototypes for these
 technical areas before building the software. Prototypes are discussed
 in detail later on.

Product Definition Contents

As you strive to define your product, create a document that
 outlines product specifications, and continue to update this document as
 you work with marketing staff and customers to refine the focus.
 Sketches and notes might be useful for initial discussions, but they
 will not provide sufficient background data for the future as you are
 required to make revisions and improvements.
Small companies benefit from short, concise definitions rather
 than formal specifications. Instead of creating a complex
 specification that's time consuming to create and maintain and
 difficult to read, create your product definition with readability and idea sharing in
 mind.
Simple definitions improve development agility. Follow these
 general guidelines:
	Keep the documentation short and readable. Focus on
 high-level definitions of functionality, and do not elaborate on
 detailed specifics. Simplicity in definition can sometimes require
 negotiating with marketing and other teams about the nature of the
 document. Too much complexity will render the document less
 readable as reviewers fill in every detail.

	Avoid adding implementation details as part of the
 definition, because they do not provide clarity to the solution
 and can limit your options later when you're considering how to
 supply what the customer needs.

	Keep the document readable in layout. Avoid a formalized
 template that requires labeling and numbering every
 statement.

	Include pictures as focal points for written definitions.
 Reviewers might have a hard time visualizing the top-level system
 definition if only text is provided. A diagram can be used to
 clarify difficult concepts and acts as a catalyst for ongoing
 discussions of the system.

	Layer the discussion by starting with overview information
 before explaining the lower-level details. Overview information
 provides context for the product including audience, most important
 objectives, and problems solved. Engineers often describe systems
 linearly from start to finish. For nontechnical or even unfamiliar
 readers, an overview provides context that makes the lower-level
 details much easier to understand.

	Create user interface prototypes as part of the product definition, and
 use them selectively in your requirements document. Pages and
 pages of screen captures don't add context or value.

	Consider employing use cases to define sections of the
 product. A use case describes all the steps a
 user would take to obtain a specific goal using the product. Use
 cases supplement and clarify the product definition but should not
 be considered full specifications in themselves.

	Make requirements testable and nonambiguous. Avoid words
 that require interpretation or those that QA cannot measure.
 Requirements outside of functional requirements fall into this
 category. For example, don't say your product requires
 rapid response, high speed, and
 support for large data sets. It's better to
 use definitions such as 2 seconds or less response on
 all screens using our standard hardware,
 translation data rate minimum of 1.5MB per
 second, and support for data sets of 500
 million user records. Creating nonambiguous and
 testable requirements doesn't mean that the specification has to
 be formal and extensive. Just ensure that what you do specify is
 clear and worthwhile. "Good quality" doesn't cut it.

	Use a requirements definition template to organize your
 requirements document. A template organizes the information in a
 consistent way from document to document, which provides an easy
 context for people in your company who read it. A good template
 can help you avoid omitting important topics if it properly lists
 all of the types of information needed. The best templates are
 accepted by the team as being practical and useful—not just a form
 to fill out to keep management happy.

A number of good templates for requirement definitions exist.
 Review multiple templates before selecting one that suits your needs.
 Figure 5-4 illustrates an example
 template. (For this template, instructions are written in italics. You
 should replace all the words in italics with the information required
 for your project.)
Prioritize requirements as you define the product. If you
 discuss priorities with marketing early on, product definitions will be smoother and you can avoid
 having to check back with marketing to clarify issues. Establish
 priorities for agile and
 iterative processes, as they allow you to make
 trade-offs in the design. They also assist in the project planning,
 allowing you to organize efforts to focus on highest priority items
 earlier. Completing the highest priority features first will minimize
 problems that occur when plans are changed or schedules are shortened
 as business needs change.

The Whole Product Concept

Customers demand products that offer complete solutions to meet
 their needs. Software makes a start at solving a customer's problems,
 but it often falls short in several areas. It must meet the customer's
 expectations; it should offer flexible options; it should include APIs
 or other interconnections so that it can integrate with other systems;
 and it should include supporting services, such as access to trained
 call center staff, to professional training, and to onsite support.
 Software that provides solutions in all these areas is called a
 whole product offering.
[image: Sample requirements template]

Figure 5-4. Sample requirements template

When defining a product, consider the whole product concept and not just product features.
 Consider your customers' needs and think about how they make
 purchasing decisions. Do your product's features
 and supporting infrastructure meet customer
 needs? If not, adding new features might be only part of the answer;
 you might also consider adding new interfaces with other systems that
 make the product easier to deploy in various environments.
Note
You can learn more about the whole product concept
 by reading Crossing the Chasm by Geoffrey A.
 Moore or The Marketing Imagination by Theodore
 Levitt. (See "Additional Reading" on Additional Reading.) Then discuss your product
 definition with the marketing team with this concept in
 mind.

Define the Product Using Prototypes

The marketing group's first attempt at product definition
 provides a high-level view of the customer's requirements. This
 definition does not include enough detail for engineering to build the
 product, however; several additional layers of information are
 required to help you build a solution. Engineering must create working
 definitions of the product's user interface (UI),
 application programming interface (API), and
 business logic. The most expensive way to create
 such working-level definitions is for individual engineers to decide
 how to build the software, build it, and then present the results to
 marketing. Invariably, this approach leads to several expensive cycles
 of rework. A better way is to spend the required time up front
 defining the product in key areas and working with marketing until
 reaching agreement on a product definition.
After the product has been sufficiently defined, presenting a
 series of prototypes to marketing and the customer along with new
 ideas will allow for several quick review cycles and a better final
 product.
Prototypes in General

Engineers want to deliver software that solves the customer's
 problems, rather than simply delivering code that's been built based
 on a marketing requirements document. Generally, marketing and the
 customer are unable to provide a detailed definition of the best
 solution. They need to experience a prototype
 to appreciate and understand what they like and dislike about
 various choices. Prototypes allow customers to "touch and feel" the
 product to help them make informed decisions. Without a prototype,
 realizing a clear product definition can require a long process of
 trial and error.
Prototypes are helpful in obtaining information from
 the customer and marketing staff. The process only begins with the
 first prototype developers create—the development team will collect
 feedback and improve the prototype until marketing and ultimately
 the customer are pleased with the results. The feedback and
 prototype improvement cycle enables you to define the product
 effectively. It also protects you from time wasted traveling too far
 down the wrong development paths.
You can use a number of techniques to create prototypes. Paper
 sketches of the interfaces can be presented in different sequences
 to describe concepts to customers. Better yet, you can use
 software-based tools to create interfaces that resemble the final
 software. Many such tools are designed specifically to assist in
 creating rapid prototypes, allowing you to define a prototype that
 is both accessible and easy to distribute to others for their
 feedback. Some example systems are discussed in this chapter.
After you have created a prototype, review it with marketing
 and the customer, as well as with other teams. Talk with QA,
 customer service, and operations; they can offer new insights into
 how the product definition prototype affects other parts of the
 company and help you define ways to improve the product.

Quick and Nimble Approaches

Limit the time spent creating prototypes to make it easier to
 consider alternative approaches and changes later on. In addition,
 avoid creating expensive prototypes, because the high costs can make
 developers less likely to investigate alternative approaches.
Discourage engineers from spending more than a few days
 creating each prototype. A developer who has spent many days
 creating a prototype might be reluctant to make significant changes
 to it. The developer might also be tempted to turn the prototype
 into the product itself, which is a bad idea.
Prototypes are usually discarded after you've learned
 what you need to know from them—another reason to limit resources
 spent on prototyping. Discarding prototypes will prevent you from being saddled with
 the flaws inherent in a quick construction. For this reason, you
 should discourage or prohibit the reuse of prototype code in
 production code. If the prototype tests the technical feasibility of
 a concept and the engineer must write it in the language of the
 final product, ask the engineer not to use the prototype code. Have
 her build the application from scratch, because building the product
 on top of prototype code hurts its long-term quality.
Warning
Always throw prototypes away. Do not use prototype
 code in products.

Finally, make it clear to everyone involved that the prototype
 is not the product to avoid unnecessary
 negative or positive expectations associated with the
 prototype.

Clickable User Interface Prototypes

With a clickable prototype, the user can
 click through and navigate UI screens. Clickable prototypes should
 have no features or functions connected to any of the clickable
 buttons. Their only purpose is to let the customer test the UI. By
 experimenting with clickable prototypes, customers can get a feel
 for the navigation and workflow of the planned system.
Many commercial UI prototyping tools are available. These are some
 examples of popular commercial tools for rapid
 prototyping.
	Microsoft Visual
 Basic
	Visual Basic has a great drag-and-drop interface, and
 you avoid the temptation of developing the final product atop
 the prototype since most commercial programs are not written
 in Visual Basic. http://msdn2.microsoft.com/en-us/vbasic/default.aspx

	Microsoft Visio
	Visio allows you to create pages that can be linked to
 icons to build a UI prototype that is clickable. http://office.microsoft.com/en-us/visio/default.aspx

	Adobe Dreamweaver
	By using the HTML editor Dreamweaver, you can create a highly portable UI
 simulation that people can load in any web browser. http://www.adobe.com/products/dreamweaver/

	Axure RP
	Axure RP is a rapid prototyping tool that can create
 HTML pages or an executable that you can distribute easily to
 a client for review. http://www.axure.com/

You can also create prototypes using systems not normally considered to be
 prototyping tools, such as Microsoft Word, PowerPoint,
 Excel, or Adobe Acrobat. Using these tools, you can produce a
 sequence of screens to represent various workflows.

User Interface Design

Create the UI design early in the product life cycle. By all
 means, don't wait to improve the UI until after you have shipped the
 product! It will be too late to make significant changes without
 incurring significant costs and creating confusion for your
 customers. Many engineering teams without UI experience design an
 interface based on ease of implementation rather than ease of use.
 As the interface is the primary customer contact point, a poor
 interface can make customers unhappy with a product, even if the
 rest of the product is superior.
If the product requires a particularly challenging UI design,
 hire a human factors engineer or usability engineer to help refine
 the interface. These experts understand how people work with
 software and can help you make the product easy to use. Their input
 can greatly improve the product and your customer's satisfaction
 with it and with your company.
Human factors engineers and usability engineers are not usually employees at small
 firms, because they typically don't have enough work to justify
 full-time employment. Hiring a usability consultant can be expensive
 but is a worthwhile expenditure, and good usability engineers are
 worth their fees. The consulting engineer can quickly devise great
 solutions for new UIs and evaluate existing UIs.

Build a Relationship with Marketing

A cooperative arrangement and good relationship between
 engineering and marketing can help both teams jointly own the product
 definition, roadmap, and delivery. In fact, they
 should jointly own these things. A good
 relationship with marketing will help you do a better job as
 development manager, improve the quality of your company's product
 through better definitions, and make it easier to respond to problems
 that occur during the project tenure.
Reach out to marketing and build a trusting relationship at the
 start. Behave in a manner that encourages mutual trust and cooperation
 between the marketing and development teams. Help build the
 partnership by communicating regularly—daily, or at least several
 times a week—to build trust and increase your understanding of each
 other's ways of working and particular needs. Your team's relationship
 with marketing will be defined by how you handle failures, as much as
 how you handle successes. Partnership means joint success and failure.
 When the partnership produces success, you can share the credit. When
 part of the project fails, you can jointly accept the failure rather
 than trying to minimize your roles or blame the other party.
To be a strong partner with marketing, you should understand
 basic marketing concepts, including how product requirements are
 defined by marketing, how items are packaged, and how various types of
 customers can be served by a single product offering. Spend time
 learning about the science and art of marketing by consulting books or
 signing up for an introductory marketing course.
Although marketing and engineering are the major sources of
 product definitions in many small companies, other teams also
 contribute to the product definition. Make sure that you build
 relationships with operations, sales, quality assurance,
 and finance. A great relationship with marketing without support from
 other teams can lead to lack of company support for any plan.
 Understanding the concerns of and seeking input from other groups will
 strengthen your team's relationships throughout the company.
Avoid Poor Relationships

You might be surprised to hear this, but the relationship
 between marketing and engineering teams can be adversarial at
 times. A natural push-pull tension exists between marketing and
 engineering over product definition, feature set, cost, and delivery
 schedules. Marketing teams commonly complain that engineering
 delivered the product late and that it is missing features.
 Development teams complain that marketing folks keep changing their
 minds about what features to include or that they have made feature
 promises to a client without first discussing them with engineering.
Finger-pointing and defensive behaviors will quickly erode a
 work environment and slow down product development, because each
 group will demand a more complete analysis before responding to the
 other group's concerns, as discussed earlier in the chapter.
 Marketing and engineering teams that cannot work together
 cooperatively can make the product development process a nightmare.
 Game playing, such as "we must have one more feature, but you cannot
 change the schedule," can frustrate both teams, ruin the product
 definition process, and wreck morale.
POLITICS VERSUS PRODUCTIVITY
The marketing person I worked with had a long laundry list
 of things he wanted. To help with initial paring, I did a quick
 order-of-magnitude sizing on all of the items based on sketchy
 definitions. We agreed that we would revisit those of interest and
 figure out the details and then estimate them. Doing a detailed
 estimate on each item would take too long and required a lot more
 definition time.
The marketing VP stepped in and selected the items he
 wanted. He insisted that quick estimates were the final estimates
 and that he would base the final plans on them. Because of the
 politics of the company, saying no was not an option. This VP's
 actions changed the dynamic of engineering-marketing cooperation
 in the wrong way. Engineering would not do quick estimates for
 marketing going forward.
—Engineering manager

Keep Marketing and Engineering Teams Together

Marketing and engineering teams should be located in
 the same facility to encourage cooperation and produce the best
 product definitions. When team offices are in the same vicinity, the
 teams can communicate better and build trust. The opportunities for
 creating a joint product definition are improved when the teams can
 easily talk and share their ideas on a regular basis.
Conversely, splitting marketing and engineering into two
 separate facilities can make it difficult to establish the close
 working relationship that good product definitions require.
 With remote teams, people miss opportunities for
 casual communication that helps build trusting relationships. They communicate more often through
 documents, email, and formal meetings. Whiteboard discussions, which
 can be valuable during the product definition process, are awkward
 to set up when teams reside in different locations.

Build a Balanced Relationship

One of the most important requirements for building a good
 relationship between marketing and engineering is
 balance. You should be able to say no to a
 marketing request without that decision being considered a rebuff.
 Disagreements needn't result in the marketing manager asking the CEO
 to force a decision upon you. If you regularly find yourself in
 situations in which you cannot say no, perhaps
 you should say yes to a new position.
Before saying no to a marketing request,
 consider alternative choices that could be answered with a
 maybe or a yes. If you
 offer options to marketing's requests, you can improve the
 collaborative relationship and work together to seek the best
 solutions.
When looking for positive alternatives, consider these
 options: fit in a new feature or new product later in the product
 roadmap, swap a planned set of functionality with the new request,
 or delay a planned release to add the new functionality. In any
 case, be sure that you can support the alternative solutions that
 you propose.

Customer Perception of the Product

The customer's perception of a product never really matches reality.
 For that matter, the perceptions of marketing and sales often do not
 match reality. Even engineering's perception of the product does not
 always match reality.
To help you understand this concept, study Figure 5-5, which provides
 a Venn diagram with some interesting mismatches of perceptions that
 highlight classic problem areas. The three perception circles show all
 the different cases that can occur with mismatched expectations. Each
 case is labeled with a letter. Examine each overlap case separately to
 see potential problems and solutions for perception mismatch.
[image: Customer perception, internal perception, and engineering perception]

Figure 5-5. Customer perception, internal perception, and engineering
 perception

	A: Alignment
	We all perceive the same thing the same way. Perception
 probably matches reality. For these features, the product works
 as designed and the customer expectations match. Smile. This is
 a good thing.

	B: Fooling Ourselves
	Sales and marketing believe the product offers
 capabilities that do not exist. Fortunately, customers are
 unaware of these fictional capabilities. The better the
 communication between engineering, sales, and marketing, the
 less likely this misperception will happen. If engineering and
 marketing regularly communicate during development, they should
 be in alignment about the feature set. Good documentation and
 good sales training will bring the sales team up to speed. If
 sales' understanding is incomplete and staff presents the wrong
 information to the customer, they have created a larger problem,
 which is case C.

	C: Defects, Omissions, or
 Overselling
	In this case, what was sold does not match what
 engineering built. The cause of this mismatch can be a product
 defect, problems with the documentation, or sales intentionally
 overselling the product.
Overselling occurs when sales tells
 the customer that the product includes a feature that
 the product does not in fact offer. Some sales people do this to make the sale
 and then pressure engineers to add the feature quickly to avoid
 embarrassing the company.
Defect and omission cases are straightforward to correct:
 Either correct the code or change the documentation to match
 what is being delivered. If a sales person intentionally
 oversells the product, marketing and senior management should
 take corrective action with the person to avoid the situation in
 the future. Having single sales people define product direction
 without the active participation of engineering, marketing, and
 management will derail the longer-term product planning and hurt
 the company.

	D: Great Expectations
	The customer thinks the product does something that it
 doesn't actually do, even if your company did not tell the
 customer that the feature is supported. This occurs when the
 customer makes unwarranted assumptions about the product. Good
 customer-facing documentation, marketing collateral, and proper
 training for the customer should keep this problem to a
 minimum.

	E: Hidden Capabilities
	In this case, the product includes undocumented features
 that can be unintended artifacts of how the software is constructed. The
 development team might be unaware of these capabilities.
 Sometimes an engineer might add such features intentionally
 without documenting them. Hidden capabilities can be benign
 unless the customer becomes aware of them and exploits
 them.
Hidden capabilities should be documented and the cause
 investigated. If an unintentional side effect of the code
 creates the capability, it should be either documented as a
 feature or disabled. If the capability was intentional but added
 without permission, talk to the engineer who added it to prevent
 this from happening in the future.

	F: Code Artifacts and Unsupported
 Features
	An artifact describes a behavior that
 was unintended and covers some aspect of the system that was an
 unusual and unexpected case. This behavior or hidden feature was
 not intended to be included in the product. It does not appear
 on your test systems and is unknown to you.
When a customer discovers code artifacts or unsupported features, big problems
 can result. Customers can exploit unintended code artifact
 effects on their systems, and because your company does not
 support the artifact, it might not appear in the next new
 release, leaving the customer without that option in the
 future.
Understanding the customer-use model helps you identify and avoid
 such problems. Talk to customers about how they use the product
 to help identify unusual and unplanned uses. Ideally, map out a customer-use
 model. Understand how your customers use the product.
Unsupported features can appear when an engineer adds
 undocumented and unplanned features into a release—perhaps the
 engineer wanted to experiment with a nifty idea. Some customer
 service and support technicians will hear of this feature and tell a customer that it is
 legitimate, because they want to help the customer with a
 problem. To avoid unplanned features, tell the development team
 that adding in features without approval is unacceptable. See
 the next section for more discussion of this case.

	G: Missed
 Opportunities
	In this case, the customer is unaware of a feature of the
 product because the company somehow missed the opportunity to
 describe the feature and improve the sales potential of the
 product. You can avoid this situation by fully documenting all
 features and training sales staff on the most important
 features. Keep customer-facing documentation up to date to avoid
 creating missed opportunities in the future.

Surprise! Unplanned Features

Finding features in the product that an engineer added without
 your knowledge is an unpleasant surprise. Engineers will add
 unplanned features in the product code for three main reasons, all
 of which are unacceptable:
	The engineer wants to please someone (a client, a
 customer service representative, or a senior
 manager) but knows management will not approve this
 feature.

	The engineer thinks he knows better than everyone
 else.

	The engineer wants to experiment with a new feature but
 does not want to ask permission to add it to the product.

Building unapproved features can delay implementation of
 required features and can hurt your product. In some cases, these
 unapproved features can force required features out of a release due
 to lack of development time. Unplanned features can also create inconsistency in
 the product, because often an engineer will implement them only in
 one section of the product. Such features often do not fit an
 overall product definition or strategy. They also ensure big
 problems for QA and documentation teams because the hidden feature's
 behavior differs from the documented behavior. Finally, adding
 unapproved features to a product shows an engineer's disrespect for
 everyone else in the company.
A small "back-door" feature might increase immediate
 customer value and please a client. However, your
 customers will be upset if they try using this feature in another
 part of the software suite and find it's unsupported: The surprise
 feature becomes a major problem for your company. When a customer
 expresses displeasure, you might be forced to scramble to provide
 support for the feature. Completing support for a feature after the
 product is released can be 10 times more expensive than creating the
 feature at the start and providing support. Suddenly, the small
 change has disrupted your company's next few releases and
 potentially its future revenue.
If an engineer adds unapproved features to product code, pull
 her aside and coach her about her action's impact on the product and
 the company. When talking to the responsible engineer, remember that
 your goal is not to stifle innovation, but to encourage team
 discussion of key features before they are implemented.
BEST INTENTIONS
A customer service employee made a feature request
 of an engineer working on one piece of our system.
 The engineer thought it was a neat change, so he implemented it
 without telling anyone else. When the release came out, the
 customer service person told key customers about the feature and
 the customers started using it. A few customers really liked the
 feature and started using it extensively. Customers built up their
 own data files tied into this feature.
However, two key customers quickly found out that the
 product did not support the feature in all areas. This was a huge
 problem for them and they became vocal about it. As large
 customers were pushing for the change, they forced us to change
 our release strategy to support this change. Full feature support
 was not cheap; we had to implement it as a quickly planned
 release. This left other customers unhappy and affected our
 ability to support other critical new features. The unplanned feature really upset the marketing team.
 Going forward, I instituted clear rules for engineers not to add
 in any features without approval.
—Product development manager

Improving a Product in an Alpha Release

You can effectively improve a product definition during its
 alpha release—an early version of the software created and released
 specifically to solicit customer feedback. You can identify
 cooperative customers who know that the alpha software is not ready
 for production use but want to contribute to its definition. Choosing
 existing customers who are enthusiastic about your product will
 minimize your risks and improve your results.
Success with an alpha release requires that you actively drive
 the client's evaluation. A passive alpha release,
 in which you send clients the software and then wait for their
 evaluations, will not produce the feedback you need. Instead, schedule
 an evaluation time with your alpha reviewers so that you can get
 direct feedback from them as they are using the product. If the
 testers are remote, set up regular conferences to discuss their
 impressions of the product. The goal of the alpha release is not to
 identify bugs, but to solicit conceptual flaws in the overall product
 definition, workflow, and features that would lower the value of the
 product. (Chapter 6 discusses practical
 aspects of using alpha releases.)

Understanding an Existing Product's Composition

Product definition isn't strictly limited to an initial release.
 Defining the future of a product requires a clear understanding of the
 product as it stands. Because you might not have
 been involved at the beginning of the product definition process, you
 can step back and take a snapshot view of the product and its features
 to illuminate any problem areas. Understanding an existing product also requires that you check "under the
 hood" for code and construction particulars.
The customer scrutinizes the product based on its functions and
 ability to meet requirements. However, under the hood, each product
 can consist of software packaging (the wrapper around the product
 executables and libraries that make it easy to unpack, install, set
 up, and use), multiple code executables, data files, and a database.
 Small companies often do not properly maintain documentation of a
 product's "internal engine."
Unraveling which software modules are included in which external
 product can be difficult if many executables have been built over time
 and staff changes have occurred during the process. In a few cases,
 engineers create hierarchies of code components as part of the build
 or packaging, which makes the product composition difficult to sort
 out.
For software services with many different components, tracking
 down which pieces the customer uses and which the administrator uses
 can be a complex task. Sometimes components are included in the
 software build but are no longer in use. If the product has a long
 history in the market, you should talk with multiple engineers, QA,
 and operations staff to determine the product composition.
In some cases, your company might have heavily customized a
 product to accommodate particular customers' needs. If the development
 team did not record these customization details, determining exactly
 which parts of a product are important to which customers becomes a
 huge problem when it comes time to maintain or update the
 product.
Three case histories illustrate the problems with unclear
 product definitions mapping to code. In all cases, much work was
 required to reach agreement on defining the product and then
 documenting the results.
	Case 1: Many Compatible
 Modules
	The product offering at Company A had more than 150 different
 modules that had been developed over a decade. The
 operations team had built these modules into a hierarchy; the
 result was a few dozen different product offerings with
 overlapping modules. Seven levels of grouping hierarchy were
 required to build some products. The hierarchy and grouping had
 built up until the people building and packaging the products
 were unclear about their actual contents.
Unraveling this problem required getting the marketing
 descriptions, licensing descriptions, and the homemade packaging
 file. The development manager wrote a program to map components
 to products and identify overlaps and licensing issues. As it
 turned out, many conflicts existed, including license
 duplications. Going through the process simplified
 reorganization of the licensing and packaging and identified
 extra software that was being included unintentionally in some
 packages. This resulted in lost revenue for the company, as a
 key product was being given away instead of being sold with
 every shipment.

	Case 2: Too Much Custom
 Code
	Company B had created many different products and service
 offerings. Unfortunately, no one had documented them along with
 pricing and construction information. Management had no clear
 vision of the various offerings, and sales treated the offerings
 as full custom efforts and made no effort to address the process
 and cost issues associated with this approach.
Marketing, engineering, and management resolved this issue
 by defining each product's content, construction, and pricing,
 and then publishing the results. They produced a standard
 pricing spreadsheet that they required everyone to use. This
 lowered the need for expensive new development with each new
 customer. It also streamlined the process of bringing in new
 customers.

	Case 3: Undocumented System with
 Legacy Code
	Company C offered Software as a Service
 (SaaS), which allowed customers to access the
 software through an API. The system included multiple modules
 that talked to each other and resided on different services. To
 complicate the situation, the company had gone through several
 different versions of the system, and legacy code still resided
 in the production code. Various employees offered different
 answers about the product's composition because few understood
 the big picture that included all the elements.
After talking to operations and engineering staff, the
 engineering manager wrote a high-level summary showing the
 different modules and how they corresponded to the system. The
 manager created a detailed system diagram that showed the
 various servers and which modules were deployed to each one,
 including those used only by operations. The team used this
 summary for future testing and planning, which allowed for
 identification of modules to be removed from the system,
 lowering maintenance costs.

In all these cases, the core problem was that although
 construction of the product changed over time, nobody in the company
 drove the choices or documented them. Development management needs to
 work actively with marketing to define product composition and keep
 internal documents up to date. Product composition issues might appear
 to be unlikely problems, but they do occur regularly in small
 companies.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	Crossing the Chasm, by Geoffrey A.
 Moore (Collins, 2002)
	Developing Products in Half the Time: New Rules,
 New Tools, by Preston G. Smith and Donald G. Reinertsen
 (Wiley, 1997)
	Effective Prototyping for Software
 Makers, by Jonathan Arnowitz, Michael Arent, and Nevin
 Berger (Morgan Kaufmann, 2006)
	Essentials of Marketing: A Global-managerial
 Approach, by E. Jerome McCarthy and William Perreault
 (McGraw-Hill, 2005)
	Software Requirements, by Karl E.
 Wiegers (Microsoft Press, 2003)
	The Marketing Imagination, by
 Theodore M. Levitt (Free Press, 1986)
	User Interface Design for
 Programmers, by Joel Spolsky (Apress, 2001)
	Winning at New Products: Accelerating the Process
 from Idea to Launch, by Robert G. Cooper (Basic Books,
 2001)

Chapter 6. DRIVING RELEASES

A well-defined and well-built release process is vital to getting
 your company's software product into your customers' hands. In fact, the
 method you use to deliver the code is not as important as the release
 process you use to prepare it for delivery. A weak
 release process can not only add delays and unpredictability to your
 product delivery, but it can result in a low-quality product and a
 tarnished company image.
Small companies often have weak release processes because
 management doesn't realize the value of a well-defined plan. A company's
 release process isn't considered as important as product development and
 sales. Although the release process doesn't affect a company's
 short-term bottom line, ignoring its importance can
 lead to ill-advised approaches, such as emailing the product's
 executables to customers from a developer's computer.
An unplanned, "ad hoc" release will negatively affect the
 company's long-term bottom line. The
 problems created by past ad hoc releases become most apparent as your
 company starts to grow. Ad hoc releases are not
 repeatable, they are impossible to
 support long term, and they are error
 prone. A release that is not repeatable will lead to problems
 if and when you need to re-create and repair earlier release code, which
 typically occurs in supporting a customer using an older version of your
 product. Second, because of the casual nature of the delivery, ad hoc
 releases are difficult if not impossible to support. In some cases,
 engineers will ship a code copy built on a local machine rather than a
 copy from the source control repository, making it difficult to know
 which content ended up in which customer's hands. Third, ad hoc releases
 are error-prone because they do not go through the proper testing,
 documenting, and labeling necessary to ensure a high-quality,
 supportable release.
Other problems associated with poor release planning can create nightmares for small
 companies: Poor release naming can lead to mistakes in the content;
 releases can ship without plans for resolving customer problems; and
 customers can become upset because a delivered release was unexpected
 and they were uninformed of its contents.
Release Planning

Perhaps the most underrated aspect of the release planning
 process is its ability to reinforce or undermine your company's values
 and image. Over time, your releases should match your company's
 long-term vision, whether from the standpoint of strategy or corporate
 image. For example, if you want your company and its products to be
 known for their high quality, the release plans should support
 high-quality releases. If you want to be known for rapid innovation,
 releases should be innovative and frequent.
Release planning also involves thinking ahead about the type and
 nature of releases. For example, you might decide that engineering
 will not plan patch releases in advance because releases will be
 designed to fix only serious problems. However, engineering can plan
 for such releases' quick delivery. Mapping out in advance each type of
 release will better prepare your team for the inevitable changes and
 surprises that will occur. Planning a release strategy is much better
 than letting releases just happen.
Consider the release timeline and associated early release
 strategy as part of release planning. Then, with guidelines in place, you can
 establish release criteria and processes to create more efficient and
 higher-quality releases.
Release Timeline

Your company's release timeline is the
 most influential part of matching your release strategy to your
 company's overall strategy and product vision. A clear timeline
 allows for more realistic release plans and lets your company
 establish appropriate customer expectations. On the other hand, not planning
 release timelines means that your results will be variable and
 unpredictable, and they probably won't convey the image you want
 your customers to see. Develop a timeline with marketing and review
 it with the executive team to generate input and support to
 implement it.
Note
This section is intended as an introduction to
 release timelines and timeline planning. Release planning requires
 an understanding of several topics covered in Chapters Chapter 12, Chapter 13, Chapter 14, and Chapter 15.

Your strategy for a release timeline will also define the
 types of releases you will create and guidelines for when they
 occur. When defining a release timeline, consider your customers'
 needs and your company's desired market image. For example, if your
 product is complex and customers want to upgrade versions only once
 a year, plan for major releases to occur yearly and optional minor
 releases to occur intermittently. At the other extreme, some product
 markets are highly competitive and change rapidly; quarterly or more
 frequent releases might be required.
Consider the practical minimum time for a release. For
 example, if a release requires four weeks of testing and a two-week
 approval cycle, more than six weeks must pass between releases.
 Alternatively, if you are building a web-hosted product that can be
 tested in a single day, fewer timeline restrictions apply to your
 strategy.
In addition, if your main product can be customized for
 individual customers, you could release customized versions more
 often than general releases. Another consideration is how far in
 advance your customers need to be informed of imminent releases. If,
 for example, customers require four weeks' notice before new
 software is released and available, having less than a four-week
 development cycle does not make sense.
After you have created an overall release strategy, consider
 your short-term plans for the next 6 to 12 months. During this
 period, you can map out your expectations for the following:
	Number of major releases

	Number of minor releases

	Customized releases

	Expectations for patches

	Expectations of work not included on the normal release
 cycle

With these expectations in mind, you can plan and number the
 near-term releases. When you are assigning approximate timelines,
 allow gaps in your schedule to accommodate unexpected issues and
 patch creation. If you do not include time for surprises, you will
 be habitually late in releasing your product. Make sure you have an
 up-front agreement with marketing and other teams about the
 flexibility of timelines. If product release dates require rigid,
 unmovable dates, increase the buffer time to allow for unknown
 events and opportunities that will occur.
As you plan the next few releases, consider both start and end
 dates for each release cycle. Releases that consider only end dates
 can suffer from overlapping resource use if separate parallel
 release efforts are planned. By mapping out start and end times for
 each planned release, you can determine where and when resource
 conflicts might occur.
Finally, for your next major release, consider the milestones
 for that release before finalizing your plan. If you plan a release
 date without considering testing, approvals, customer checkpoints,
 alpha releases, or beta releases, you will have to backpedal
 later.
Next, we'll look into the early release strategy and its impact on release
 timelines in more detail.

Early Release Strategy

The early release strategy is an approach
 that provides customers with prerelease versions of the product to
 improve the product definition and minimize the risks of uncovering
 problems in production or post-production. Companies use many
 different prerelease approaches, but this book uses the following
 definitions:
	Alpha release
	An alpha release is early product code delivered to a few customers
 who can test the product's features and concepts and offer
 feedback. This code has typically undergone limited testing by either engineering or QA, and
 it might not yet be feature-complete. Customers should
 anticipate lower quality since alpha code is not production
 ready.

	Beta release
	A beta release is early product
 code delivered to a few customers with intended final product
 features usually completed but not fully tested. As with the
 alpha release, the hope is that customers will provide
 feedback on product features and concepts. In addition,
 because the code has undergone more testing, customers can
 often use it for practical applications, which can help them
 provide early feedback about implementation problems or
 omissions. Customer expectation of quality varies depending on
 your company's history in delivering beta releases.

	Limited release
	A limited release is a complete,
 production-ready product release delivered to a few friendly
 customers before widespread release with the goal of
 identifying serious problems.

Figure 6-1
 illustrates how a company might use these different release
 strategies at different points in the release cycle. Although the
 figure shows a milestone diagram, it does not imply any particular
 process.
[image: Release types: alpha, beta, and limited]

Figure 6-1. Release types: alpha, beta, and limited

Each of these approaches poses different risks and rewards.
 Review all three release approaches with marketing, and decide
 together which risks are appropriate for your company. All
 early releases impose costs on marketing and
 development that will slow delivery of the full releases.
Alpha Release

Alpha releases allow customers to offer useful
 feedback early in the production cycle while it is still
 relatively easy to make changes to the product code. In addition,
 customers can help you find problems that can be corrected well
 before QA has invested considerable time reviewing the
 code.
Two notable problems occur with alpha releases, however:
 First, customers often have inappropriately high expectations for
 the release. When reality does not meet those expectations, the
 customer can get a negative impression of the software and might
 not want to use the production version. To minimize such problems,
 you should properly describe the state of the alpha code to the
 customer along with the alpha release. Also consider adding a
 startup screen that highlights the fact that this is an alpha
 release with alpha code. This can help minimize problems that
 might occur, for example, if a primary customer contact passes the
 code to others in his company without passing them the
 disclaimers.
A second problem occurs when customers use alpha releases in
 a production environment. Sometimes impatient customers will run
 their production data against alpha or beta code despite their
 having agreed not to do so. Then, when a serious problem occurs
 with alpha or beta code, these customers will argue for immediate
 repair and data recovery. The common justification? "The new
 feature was so critical that we needed it immediately." You can
 avoid this problem by disabling or limiting the capabilities of
 the alpha release to prevent a customer from using it in a
 production setting. Unfortunately, this might not always be
 possible, as some alpha testing requires that the product be used
 on large data sets.
Warning
If a customer has a history of misusing alpha
 releases, consider giving them only beta or limited releases or
 not using that customer for an early release
 program.

Overall, alpha releases are useful, but consider the risks
 and work to minimize them before shipping alpha code.

Beta Release

The goals of a beta release are to get advance notice of
 problems when the customer uses the code and to get feedback on
 new features. However, making changes to the code in response to
 beta feedback can require production schedule changes, because
 beta code versions are typically sent to customers near the end of
 the release cycle—before QA has completed testing.
A beta release faces the same risks faced by an alpha
 release, but the quality risk is lower than an alpha because QA
 has completed more product testing. In a beta release, that extra
 QA testing lessens the chance of a code malfunction disillusioning
 the customer. It also provides a more appropriate opportunity to
 test the code in actual customer situations to determine whether
 customers can uncover any prerelease problems. Make sure your
 customers have a clear understanding about the valid uses and
 risks associated with beta code. To improve your beta results,
 engineering should let the customer know the true status of the
 code and set the proper expectations.

Limited Release

A limited release differs from alpha and beta releases because the code is ready to ship. The
 goal of a limited release is to reduce the risk of widespread
 visibility in the event of problems. As a result, limited releases are sent only to
 friendly customers. This approach works well
 if errors or problems found post-release are costly to repair,
 especially if customer safety or data is at risk.
Because problems in the code haven't reached all your
 customers and the code is production-ready, the limited release is
 a risk-reduction technique. If someone discovers a large problem,
 a few users will be unhappy, but not your entire user base. The
 situation is better than a full release because the team can focus
 directly on fewer customers. If a customer finds problems, the
 release team can create a patch as quickly as possible.
The biggest disadvantage of this approach is that only a few
 customers review the code; most customers get the new final
 software a few weeks later. Limited releases also add to the overall cost of software
 development, as the development team does not fully focus on the
 next release during a limited release.

Planning Product End of Life

Small companies can benefit from creating an
 end-of-life process—that is, a process for
 retiring products. Planning for this stage might seem odd at first. Most
 software managers in small companies think, "We just created our
 product line, so why would we think about killing parts of it?
 End of life is something that large companies worry
 about. Not us." However, end of life issues can arrive
 earlier in small companies that tend to attempt
 several different solutions to a problem. And every software product
 has an ongoing cost that small companies can least afford. The real
 benefits of a good product retirement plan are improved customer
 satisfaction, reduced internal costs of supporting your customer
 base, and improved profits if your company can remove unprofitable
 products from production.
When and how do you actually realize those benefits? When
 you're planning for your next release, review your products and
 consider candidates for end of life. From an engineering
 perspective, a good candidate could be software whose platform is
 old or obsolete. Platform in this case includes
 the hardware, operating system, or even a third-party software
 package. From a marketing point of view, the key factors for end of
 life are customer use and revenue. Products with small customer
 followings, significant technology issues, and little future
 potential might be good candidates for retirement.
It's true that retiring a product can annoy some customers who
 still use it, but sometimes the cost of supporting that product
 exceeds the value to the customer and the company. You and your team
 are in the best position to identify the costs associated with
 ongoing builds, testing, support, and maintenance. You're also best
 equipped to identify technical failings, which raises another
 important point: Sometimes development needs to take the initiative
 and raise the issue of retiring products. However, the engineers'
 assessment must recognize and balance technical dislikes and costs
 to the business of product end of life.
When you reach internal consensus to retire a product, create
 an end-of-life process. This process keeps you from missing
 important steps that can cause problems for your customers, cost
 your company money, cost your customers money, and hurt your image
 with your customers. Major steps to consider for this process
 include the following:
	Understanding customer
 impact
	Marketing and sales can do the footwork to
 establish whether retiring the product will impact current
 customers. Consider providing an alternative solution for
 these customers among supported products.

	Reviewing contractual and legal
 obligations
	Establish whether contractual or legal issues affect product retirement. Legal
 issues might exist that govern how long you need to maintain
 customer data after you have retired the product.

	Creating a plan and
 timeline
	When you identify products for end of life, work out a timeline and plan the
 process with input from the marketing team. This plan should
 describe the steps and schedule required for removing the
 product from production.

	Communicating with your
 customers
	Inform customers of your decision as soon as you decide
 to retire a product. When possible, talk to customers directly
 and follow up in writing.

	Planning the steps
	Your end of life plan should align with the
 release schedule so that you remove the product during a
 normal release. It should also include release-related steps,
 such as the following, for removing it as a supported
 product:
	Removing the product from the engineering software
 build

	Removing the code from the release media or
 platform

	Removing the code from the packaging and release
 software

	Communicating the product end of life event in
 release notes

	Returning customer
 data
	Many systems have customer data associated with them.
 Naturally, you need a method for returning the data to the
 customers. Engineering should identify a migration path for
 current customers to another available product to improve and sustain customer
 goodwill.

	Deleting or storing customer
 data
	After you have retired the product and shipped the
 customer data, the plan needs to describe whether the customer
 data is permanently stored or deleted.

PRODUCT END OF LIFE
My company had a customer-customizable reporting interface
 to our production server. When I joined the company, I discovered
 that this product had no specification and had not been properly
 tested, and large customer reports could slow down the system for
 everyone.
I first looked at testing and repair, but discovered that
 the estimated costs would be high. With marketing, we looked next
 at how it was being used and anecdotally heard that the usage was
 low.
By agreement with product marketing, we made this product a
 candidate for end of life. Marketing surveyed our customers. They
 found that customers occasionally used it. Unfortunately, one
 customer liked it. We decided to end of life the product and
 worked to create standard reports to meet the one customer's most
 common use.
Because we were a small company, the end of life for the
 offering occurred three months after the initial discussions. This
 decision reduced the testing burden, which was high for that
 product. It also prevented the future quality issues that would
 have occurred if more customers had started to use it, as the
 product had significant quality problems. Overall, it proved to be
 a good company decision.
—Director of engineering

Overall, planning for product end of life solves many potential problems and
 improves customer attitudes toward your company, even if they are
 unhappy with the end of life decision.

The Release Process

The release process describes the steps
 required to release the product once development has built and tested
 it. It is a single step in the overall product development process. To
 develop a release process, first consider the process goals. Internal
 releases need to be named clearly and consistently. The process needs
 to support customer communication about critical issues such as timing
 and features. It also needs to be repeatable, must minimize release
 errors, and must have a review and improvement mechanism in
 place.
Let's look first at criteria for release, followed by advice for
 defining a release process.
Release Criteria

Release criteria define what a successful
 release should look like. It answers the age-old question, "Are we
 there yet?" Knowing in advance what you expect in a release—when it
 comes to features, timing, process steps, and quality—will allow you
 to guide your team toward success while monitoring progress. If the
 criteria have gained consensus within your team, it can also
 minimize pressure to release the product prematurely.
The problem that often arises without release criteria is
 "tunnel vision." Without a definition of what a
 completed release means, engineering will focus
 only on delivery date. The release will consist of what is available
 near the delivery date, with less attention paid to functionality
 and quality.
Release criteria can and should be unique to each company. For
 example, a company whose product and image require high quality will
 produce release criteria of high minimum quality standards; a
 company that emphasizes customer satisfaction should produce release
 criteria that require proper customer communication prior to the
 release; and a company that emphasizes ease of use should produce
 release criteria that require specific approval ratings from
 customers before the product is shipped.
It is wise to work with marketing and consider your business
 needs before setting the release standards. Ensuring that
 you have corporate buy-in on those standards will help the team make
 good decisions when the pressure is on near release time.
To set release criteria, consider the following
 questions:
	What is the minimum quality acceptable for a
 release?

	What is the minimum testing required for each type
 of release? (For example, patch releases might
 have different testing standards.)

	What kind of customer communication is required before and
 after a release?

	What is the minimum that should be done in an emergency release? (An emergency
 release is a release that must be created immediately
 to prevent significant harm to the customer or your
 business.)

	What is the minimum level of customer data compatibility
 that's acceptable for a release?

	What is the maximum delay for the release that does not
 significantly harm the customer?

	What is the earliest that your company can release the
 software? (For some businesses, releasing server-based software
 early will be disruptive to customers who might be planning for
 changes on a specific day.)

	How extensively do features need to be described to
 customers well before the release? Is there room for making late
 feature set modifications without being disruptive?

When considering all of these criteria, be careful not to
 overdefine the minimum standards for a release. Sure, management
 wants the best in all categories, but from a practical standpoint,
 that cannot happen. It is better to emphasize one aspect of the
 release criteria with higher standards and set more generous lower
 standards for other aspects of the release to provide some
 flexibility in decisions.
With release criteria in place, defining a release
 process will simplify the mechanics of pulling a
 release together and make it easier to estimate and automate
 releases.

Process Steps

With these major goals in mind, consider several important
 steps when designing the release process.
 Integrate these steps into the major development process.
	Final release naming and
 numbering
	Engineering and marketing jointly define the final
 release name and release contents. Typically, marketing and
 engineering agree on release naming before the product is
 developed, but finalizing the names and numbers occurs near
 the end of the cycle, as changes might be required.

	Early customer release
 notification
	Marketing should provide customers with advanced notice
 of the release so they can plan for implementing the new
 product and not be surprised when it arrives. As early as
 possible, provide customers with release notification for any
 platform changes intended as part of the release. Customers
 might need to change usage or hardware to support your release
 and will be upset if they're notified too late to make a
 pain-free transition. This can also affect the customers'
 budgeting process.

	Customer release
 information
	Engineering and marketing should create customer
 documentation as appropriate for the release—typically an
 update to existing documentation. This documentation can
 include release notes, marketing release communications,
 product brochures, press releases, and any pricing or service
 level changes. Engineering should review with marketing the
 final set of release changes and check marketing material to
 see the impact of late changes.

	Release notes
	The documentation team should produce release notes
 describing what is present in the release in a high-level
 overview. These notes describe changes in the release relative
 to the current version.

	Informing customers of the status of
 their reported defects
	Customers want to know whether defects they
 reported will be included in a release for their internal planning. A release process should require that customer service
 provide individual customers with the status of their reported
 issues relative to the release. Many software companies avoid
 doing this because of the time involved, but providing defect
 resolution notes can greatly improve customer goodwill.
 Customers will appreciate that you are being responsive to
 their needs. When the customer base is large, an acceptable
 alternative approach is to include a selected list of defect
 resolutions as part of the release notes. However, with a
 small customer base common to small growing companies,
 consider the individualized approach.

	Internal training
	Engineering, customer support, and marketing need to
 ensure that any staff working directly with customers are
 properly trained on the new release.

	Product release
	At this point, the release engineer makes the software
 available to the customer. The physical release of the
 software can be through a CD, via a new download setup, or by
 switching the server software to the new version. Be sure to
 document and automate the release steps. The release process
 documentation should specifically describe the locations of
 the source files, configuration files, and releasable files.
 It should also provide enough detail so that anyone on the
 team could perform the product release.

	Release
 acknowledgment
	Marketing should inform customers of the product's
 release in an email right after the release ships.

	Post-release review
	After the release, host a review meeting to
 discuss issues that occurred during the release cycle and ways
 to improve the next one.

	Post-release
 tracking
	QA should track the defect count and the customer call
 count after a release. Learning about customer concerns will
 lead to improvements in the code or documentation.

Post-release Review

The post-release review is an opportunity
 to review the last release, suggest changes to improve future
 performance, and boost team morale. The review meeting
 should include development teams as well as other teams involved in
 the release cycle: marketing, customer service, and QA, for example.
 Informal one-hour sessions will probably be sufficient. The session
 should cover these points:
	What went well in the release that we should continue
 doing?

	What were the problems, and what could we do
 differently?

	What risks should we have identified earlier, and how can
 we spot them next time?

	How would we prioritize the problems we
 encountered?

	What solutions can we identify?

For a long release cycle that lasted more than nine months, a
 few post-release review meetings of one to two hours each can be
 helpful. These meetings require much preparation, and everyone
 should be aware of that. Create an agenda for each meeting, and ask
 all participants to come prepared with their thoughts on the agenda.
 Also, arrange for a conference room with a whiteboard and mark out
 general categories of problems that are relevant to the release to
 help people generate ideas during the meeting.
To get ideas flowing at the start of the meeting, pass out
 large sticky notes and ask participants to write down issues or
 problems, one issue per note. Each person can post one problem at a
 time and say a few lines about it. This is not the time for detailed
 discussion, however—it's about collecting thoughts and ideas. Move
 around the room from person to person to assure that everyone, even
 quiet team members, can have his or her say.
Depending on the length of the session, attendees can
 prioritize the issues and problems at the end of the meeting or in a
 second meeting. After you've grouped similar issues together, ask
 the team to set priorities for important outstanding issues. At the end of the
 prioritization, write up the results to highlight the issues and
 priorities and send this to everyone who participated. Then ask the
 group to be prepared to talk about potential solutions for the
 highest ranking problems at the next meeting. At a follow-up
 meeting, each person can present solutions to the highest priority
 issues, using sticky notes to summarize ideas in a single sentence.
 Avoid lengthy discussions on single topics until everyone has had a
 chance to present his or her ideas. In-depth discussions can occur
 later.
After the solutions meeting, write up the top problems and
 their solutions. Then ask team members to review the results and
 provide additional ideas. Select the problems you can address, and
 let the team know the plan for making improvements. Any problems you
 cannot address directly can be discussed with the executive team.
 Larger, expensive solutions might require that you write a business
 case to justify the costs and efforts. Large or small, make a good
 faith effort to address the important issues, and inform people
 about which issues you aren't addressing and why.
Be thorough and follow through with the ideas and solutions
 generated in post-release reviews. Conducting an abbreviated review
 with no follow-up can be worse than having no review at all, because
 a lack of attention to issues can result in staff cynicism and a
 belief that the problems will never improve.

Release Version Identification

Software naming and version numbering might seem
 inconsequential, but small companies often run into difficulties by
 not properly identifying their releases. Poorly identified releases
 lead to wasted time and effort due to the following possible
 consequences:
	Engineers add code to the wrong release.

	Marketing sends the wrong information to customers about
 what is included in a release.

	QA and engineers find bugs difficult to track down because
 of improper release identification.

	Nobody knows which customer has which release.

Note
This issue is so common in small companies that this
 chapter provides an extended discussion of product numbering issues
 and practices.

While large firms usually apply a well-defined version numbering sequence, small firms often use
 inconsistent version identifiers. Frequently, the first identifiers
 are release names based on feature sets. Examples would be the
 Database Throughput Release or the
 Customer ABC Support Release.
As your company gets a few releases under its belt, the need to
 identify each release in a unique and informative way increases for
 several reasons. Customers reporting issues need a clear version
 number to reference when reporting problems. Development needs to know
 which of the upcoming releases will get which critical feature. And
 both engineering and QA need to know which errors were found in which
 version to resolve each issue properly.
Clear release identifiers also make defect-repair planning
 easier, since you can assign individual defects to specific future
 releases. They also aid the documentation team in pulling together
 release notes. All of these reasons should push you toward an
 effective release naming method as early as possible in your company's
 growth.
Three-Number Release IDs

There is a lot of psychology in how people react to numbers—a
 version number of 17 might imply that the developers never got it
 right and had to keep putting out major releases, while when a major
 new version comes out, the company renames it something new, like
 version 2.0. Most software goes through quick
 cycles of initial growth and sustained use, and a common and simple
 numbering approach uses three numbers separated by periods, followed
 by a build number. This is referred to here as
 three-number release identification (or
 release IDs). With this method, an example
 release number could look something like 3.5.2 build
 13 or 3.5.2 B13 (see Figure 6-2).
[image: Release numbers illustrated]

Figure 6-2. Release numbers illustrated

The first number is the major release
 number, sometimes known as the marketing
 number. This number is incremented no more than once a
 year, and it rarely gets far into the teens for most projects,
 because customers perceive version numbers such as 17.0.1 to
 be too old and outdated for their purposes—they expect a new major
 release instead of an updated old one. For long-lived products with
 many releases, marketing typically renames the product with a major
 rollout instead of issuing a new release number. Mature products do not undergo future major releases,
 only minor ones, limiting the first number.
The second number defines the minor release
 number, which represents feature changes rather than
 substantial changes to the system. A minor release occurs regularly
 during the year. Either 0 or
 1 works for a starting value, but it should be
 consistent.
The third number, the patch release
 number, changes when a small defect is repaired (with a
 patch) in an existing release. This number can start with either
 0 or 1 but should be
 consistent.
A build number tracks the software
 executable version during the release cycle. For convenience
 purposes, most build systems auto-increment the build number with
 each new executable. A development cycle for a release requires the
 creation of multiple builds, which engineering and QA then evaluate
 and test. With such an iterative process, the build number uniquely
 identifies the final build from earlier builds of the
 release.
These examples help illustrate how to apply numbers to a
 sequence of releases:
	1.0.0 B104: Initial release

	1.1.0 B99: A minor release with notable changes

	1.2.0 B57: Another minor release with notable
 changes

	1.2.1 B12: Patch release to 1.2.0

	1.2.2 B9: Patch release to 1.2.1

	2.0.0 B89: Major upgrade to first release

	2.0.1 B14: Patch release to 2.0.0.

Patch Releases

Although the release numbering system allows for patch releases, it should not
 encourage them. That's an important
 distinction. Treat patch releases as an admission of a mistake, not
 as a quick opportunity to drop in another feature. Marketing might
 put pressure on engineering to add a critical feature to a patch
 release, but resisting this temptation will allow the required patch
 to be released quickly and with properly focused testing. Adding new
 features should always move the release into the minor release
 category, which requires more testing and time to ensure proper
 quality.
Patch releases do require full regression testing to ensure
 that the patch does not make the product fail. Hence, patch releases
 have a high cost per benefit compared to a regular release.
Some companies avoid patch releases and bundle many patch issues into a
 quickly created minor release. This approach can be effective, but
 only if the minor releases go out often enough that your customers
 aren't suffering from the lingering problems.

Component Numbers vs. Release Numbers

Software releases commonly include more than one component or
 product that a customer uses. In a multi-component release, some
 components interact with other components, thus requiring a
 simultaneous release. The choice on how to label release components
 is both a marketing and engineering decision, because it has
 implications on customer perception, customer service, defect
 tracking, and engineering defect investigations. Consider the issues
 related to different component naming strategies while your company
 is in the startup stage, rather than waiting until your company is
 in the growth stage.[4] A thoughtful component naming convention allows you to
 track the dependent pieces and use these names in discussions
 internally and with customers.
Each customer-viewable component in a release requires a
 unique identifier. One approach is to allow the components to keep
 individual numbers that change when the component changes and then
 bundle them together into the release. Another approach is to assign
 all the components in the release the same release number
 regardless of whether they have changed.
Figure 6-3
 illustrates two common approaches—independent component numbers and dependent component
 numbers matching the release.
[image: Two approaches to component numbering]

Figure 6-3. Two approaches to component numbering

Independent component numbering allows
 different numbers to be used for each component. In this approach,
 the numbers advance only when the component is changed. Tracking
 down components for a past release can be difficult down the road,
 however. A table showing the mapping must be publicly available and
 kept up to date so that teams working on the code can easily
 identify the source version of particular user-reported problems. Relying
 only on the source control system to track this is a poor strategy
 and is prone to operator error—plus, it's time consuming.
Dependent component numbering matches the
 components to the release number. The modules all get their numbers
 advanced to the release number even if no code changes. This
 approach makes it much easier to track what changes are included in
 which modules in each release. Determining the history of defects in
 each release is much easier with common release numbering.

Numbering Across Releases

Numbering across releases has several different driving
 concerns. Most software consumers expect release numbers to be
 sequential. Development organizations assign release numbers early,
 often before development has a clear idea of what will go in each
 release.
Early release numbering can cause problems with sequential
 release numbering. Early release numbering reflects the
 future planned release order. The original
 intent for the release numbers was to release them in sequence, but
 this does not always work out.
Figure 6-4
 illustrates an example of out-of-sequence release numbers. At the
 start of release 2.3.4, the plan was to release 2.3.4 first and then
 2.3.5. In this case, development delayed release 2.3.4, while 2.3.5
 shipped as planned. Following release 2.3.5, development released
 number 2.3.4, and now the numbering is out of order.
A company can live with an out-of-order release sequence;
 however, an alternative approach is to renumber future releases so
 that numbers are always sequential. Sequential numbering avoids
 confusion months or years later when, inevitably, problems occur in
 a past release. Referring to Figure 6-4, when the
 planned 2.3.4 release does not release before 2.3.5, you should
 retire the number 2.3.4 as a non-release and rename it with the next
 incremental number, 2.3.6. Do not increment the number until it is
 clear where final delivery will fall relative to other releases. For
 this example, the timeline would look like that shown in Figure 6-5. One caution
 when you renumber a release: Make certain that the documentation and
 the source code identifiers use the new number.
[image: Release numbers fixed at project start]

Figure 6-4. Release numbers fixed at project start

[image: Release numbers always sequential at release]

Figure 6-5. Release numbers always sequential at release

Software for the Gentleman Farmer

For a humorous cross-section of component numbering
 frustrations, read the following example.
Note
All names are intended to be fictitious. Any
 resemblance to real names or companies is
 coincidental.

You own a software company, Givemeabreakfarming Software, Inc., that writes
 software for people who want to run small, part-time
 hobby farms but don't have much farming experience. You produce a
 suite of products. The main product is FarmingBreak, and you also
 provide add-on programs to help with specific activities and crops:
 CowBreak, CornBreak, and WheatBreak. Customers must buy the main
 program, FarmingBreak, to use any of the add-on programs. After the
 first release, your products were all numbered 1.0. The version
 number of each product is visible on the product's user
 screen.
The CowBreak product was rushed to release and had a weak
 feature set, so you provide an upgraded version four months after
 your first release. As you map out the next release, you realize
 that you have a numbering choice. You can do one of the
 following:
	Increment all items to version 1.1 and recompile all the
 modules to match.

	Increment only CowBreak to 1.1 and leave the other
 products numbered at 1.0.

You decide to take the easy way out and modify only CowBreak.
 This avoids having to increment the number for all products to 1.1
 and then explain to customers that nothing has changed.
Later you reach another decision point for the WheatBreak
 upgrade release. Should you call it 1.1 or go to 1.2? You elect to
 call it 1.1. Immediately after the release, a major problem is
 found, so you have to send out a patch. After the patch, WheatBreak
 is numbered 1.1.1.
You again modify CowBreak and name it 1.2 to add major dairy
 functionality.
As your business progresses, you map out a release to
 FarmingBreak, which you decided to call version 1.1. However, you
 have to change the database, and all of the products need to be
 recompiled to new versions, so you up their numbers. Now you have
 FarmingBreak at 1.1, WheatBreak at 1.2, CowBreak at 1.3, and
 CornBreak at 1.1. For new customers, this doesn't pose a huge
 problem—you just send them the latest versions of your software regardless of the number.
A few years down the road, your products are at the following
 version numbers: FarmingBreak 1.8, WheatBreak 1.9.2, CowBreak 1.4,
 CornBreak 1.5.3, and SoyBreak 1.1.3. During this time, you make one
 more database change that is incompatible with past versions. A
 customer calls with a problem in FarmingBreak 1.5 that you recall
 fixing a while back in FarmingBreak 1.6. The customer also has
 CornBreak 1.3.1 and SoyBreak 1.1. You agree to ship him an updated
 FarmingBreak copy, but you can't remember whether his other products
 are compatible or not. Furthermore, he doesn't want to upgrade to
 your latest versions, as he heard they were slow—so that eliminates
 the easy solution. At this point, you don't have version
 compatibility at hand and can't easily tell what is compatible,
 since you didn't keep all the products synchronized in version
 number. To resolve this situation, you stay up all night and read
 your notes until you can figure out which version numbers go with
 the customer's release. You then re-create those versions to ship to
 the customer, since you didn't save compiled copies, only the
 source.
Vowing to clean up some of your mistakes, when you make some
 major upgrades to FarmingBreak, you increment all your products to
 2.0 and archive copies of the code. From now on, you will keep your
 product numbers synchronized so you won't have to keep capability
 notes. Version 2.0 is a success.
With success in hand, you announce to the press that version
 2.1 is due out in six months. Two months after the announcement,
 your marketing team (yes, your company has grown) insists that
 CucumberBreak must have an immediate release in one month to deal
 with a strong competitor. Now you have a problem: If you call
 CucumberBreak version 2.1, then your main release will have to
 become 2.2, but you already announced it as 2.1 and have done all of
 your internal planning using that number. Hmm … maybe you jumped too
 quickly to synchronized numbering. You decide to keep the
 main release name as 2.1, but you allow release
 components to have numbers out of synchronization with the release.
 Going forward, you will keep careful records of component
 capability.

[4] See the book's introduction for definitions of various
 company stages.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	The Build Master: Microsoft's Software
 Configuration Management Best Practices, by Vincent
 Maraia (Addison-Wesley Professional, 2005)
	Manage It!: Your Guide to Modern, Pragmatic
 Project Management, by Johanna Rothman (Pragmatic
 Bookshelf, 2007)
	"Software release life cycle," from Wikipedia, http://en.wikipedia.org/wiki/Software_release_life_cycle
	Software Release Methodology, by
 Michael E. Bays (Prentice Hall, 1999)

Chapter 7. EVALUATING YOUR TOOLS AND METHODS

Modern software development requires that a set of key tools and methods
 be used to protect intellectual property, produce quality code, and manage
 operations efficiently. Although large companies can afford a large
 support staff to maintain tools and enforce the use of specific
 approaches, small companies do not often have that luxury.
Failing to protect your company's intellectual
 property is gambling with your company's assets and
 shareholder value. Intellectual property doesn't
 just refer to your company's code, it also includes how you build and
 release your product, your ideas and data, how you track defects (bugs)
 and the defect data, and what technical documentation you create. A
 large component of a small company's value consists of intellectual property. If your company is being sold, the
 purchasing company considers the intellectual property as part of the
 offer price. If you have poorly maintained your company's intellectual
 property, then the buyer will see less value and make a lower offer for
 your company.
To protect your intellectual property, and ultimately your
 company's value, review your tools and the methods you use in at least
 the following areas:
Data backup Have a systematic and
 automatic approach to creating secure secondary backup copies of data
 on a regular basis.
Document availability Provide an
 easy method for making available all technical and product
 documentation for internal use.
Source code control and configuration
 management Track and archive source code files during and
 after development, and identify sets of files into defined
 releases.
Software builds Control how the
 software source creates the executable code that clients can
 use.
Bug tracking Use appropriate
 technology to track defects (bugs) and their repair.
Release method Employ the
 appropriate methods and technology to release your software.

Consider tools and methods in terms of your
 overall software development processes and practices throughout software
 development and support. Figure 7-1 illustrates this
 interaction. Backup and document
 communication cover the entire software release cycle.
 Source code control and software
 builds apply during code development until development
 releases the product. Bug tracking tracks problems
 discovered at any time. The release method
 describes the process of making the product available to your
 customers.
This chapter describes the different tools and methods used across
 the software release cycle, individually and in detail. Although some
 considerations might seem routine, digging deeper can help you uncover
 hidden risks and opportunities for improvement.
[image: Tools and methods used across the software release cycle]

Figure 7-1. Tools and methods used across the software release
 cycle

Backing Up Intellectual Property

A backup mechanism provides the first level
 of protection for your company's intellectual property. Without a backup mechanism in
 place, all intellectual property can disappear instantly if it resides
 on your server's disk drives, because disk drives can and do fail for
 a number of reasons. In addition, without having secure backups, you can lose intellectual property due to a
 fire, a malicious hacker, or a malevolent employee. A development manager must either ensure that a backup
 mechanism exists or immediately direct its creation. If a separate IT
 organization backs up your intellectual property, you should review
 the organization's backup strategy. Often you will be surprised to
 find that your important data is not a part of their backup
 strategy.
Several best practices are recommended for file backup. You can
 customize these to your company's needs based on costs and staffing
 requirements:
	Full copies of files are stored on permanent media (tape or
 CD, for example) and are not overwritten.

	Full copies are stored on a regular basis in an offsite
 location.

	Users are notified about which parts of the file system are
 backed up so that they can appropriately store their critical
 data.

	Backup copies are made daily. A company usually can't afford
 to lose more than a day's data.

	Source control and configuration management tools are used
 and the repository is backed up. To be effective, this requires
 team discipline, as the team needs to check files into the
 repository often.

	Restoration of files from the backups is tested periodically. Otherwise, system
 administrators can discover backups that are incomplete or unusable after
 disaster has struck. Common causes of backup problems are ignored
 error messages in the backup logs, unexpected mechanical device
 failures, and the omission of needed files from the backup list.
 Test your backups at least once a quarter.

Warning
Backup failures discovered after disaster strikes
 are a common occurrence, so the remedy bears repeating: Regularly
 test your backups by restoring backed up files to test their
 viability.

A number of different backup approaches can be used, with
 different trade-offs for complexity, cost, risk, time to implement,
 and time to recover data. Your choice will depend on how you determine
 the relative balance of these needs for your company. Common backup
 approach considerations include the following:
	Amount of disk space to include in the backup

	Choice of backup media

	Amount of automation in the backup process

	Ease of use of the equipment versus associated costs to
 purchase and staff time

	Regularity of the backups

	Storage location of backup media

	Choice of complete backups or partial backups on a regular
 basis

Backup Frequency

Three common approaches to frequency of backup are
 used:
	Daily full backups

	Weekly full backups, with daily differential backups from
 the last full backup

	Monthly full backups, with weekly differential backups and
 daily incremental backups

Companies also use variations on these approaches. Figure 7-2 illustrates these
 approaches.
[image: Three backup approaches]

Figure 7-2. Three backup approaches

These approaches trade off administrator time and backup media
 space for ease and availability of data recovery. Daily
 full backups require the most backup media and
 potentially the most operator time, depending on the equipment used
 to perform the backup. However, a full backup approach allows you to
 restore files using a single day's stored backup, while other
 approaches do not permit this. You should start with this approach.
 When the backup time starts taking too long, try differential backups.
Weekly full backups plus daily differential
 backups from the last full backup takes less time during
 the week than full backups. However, in some cases you might need
 two sources of backup media to recover multiple files. The extra
 effort in recovery and the time to recover creates an effort "hill"
 you'll need to climb to recover files. This extra effort can make
 the backup administrator slow or reluctant to locate file versions
 that have been inadvertently lost. This approach works well for
 companies in the growth stage.
Monthly full backups with weekly differential and
 daily incremental backups require the fewest number of
 backup media and administrator efforts over a given month. However,
 a series of tapes can be required to recover a set of files. Set up
 each weekly differential to cover all files that changed since the
 weekly backup (and not the last weekly). Avoid this approach unless
 you must back up large amounts of data and you have limited backup
 capabilities, or you are not concerned with time involved for file
 recovery during normal business operations.
If full or full-plus-incremental backups don't seem right for your situation, you can
 use other strategies regarding frequency and amount of data for your
 backups. For example, the backup administrator could
 modify the approach to conduct full backups every other day.
 This would save backup time, but it increases the loss risk to two
 days' work instead of one day's work. Alternatively, the
 administrator could perform the incremental backups to cover only a single day's
 changes. An example would be setting Friday's incremental backup to
 cover only Friday's changed files instead of all the changes that
 occurred since the last full backup. Recovering the system to
 Friday's state would require the last full backup media plus all the
 incremental backups created that week. However, with this approach,
 the daily backups will take less time during the week. This
 modification trades administrator time for decreased cost to recover
 files.
In general, you should choose the simplest backup and recovery
 approach when you're starting out—probably one of the first two
 options. As the data grows, look at other strategies and consider
 changing your backup equipment to minimize administrator effort.
 However, don't skimp on performing proper backups on important
 information because the backups take too much time.

Offsite Copies

Regardless of the backup approach you choose, you should move
 your backup copies offsite to another location on a regular basis.
 Your choice of backup schedule reflects the trade-off of effort and
 risk. On the risk side, consider how many days of development work
 your company could afford to lose as part of disaster recovery. On
 the effort side, consider how much time your company can afford to
 spend making additional copies and moving them offsite.
As tapes can be required to recover lost files, consider the
 time hit spent creating tapes for shipment offsite. An expensive and
 time-consuming approach is to create duplicate copies for onsite and
 offsite copies every night. Most small companies use a simple
 approach of alternating onsite and offsite storage of their full backup copies. This
 approach is not very expensive, but it makes file recovery more
 difficult when you need to recover a file that is stored in an
 offsite backup.
Some customers might compel you to keep offsite copies of
 product code. Additionally, some customer contracts can require
 software escrow (periodic archiving of your
 source code with a third party). Customers ask for software escrow
 to minimize their risk; if your company fails, the customer receives
 a copy of the source code. This requirement forces periodic full
 backups of parts of your source code in addition to
 the regular backups.
Most small companies look for simple solutions to offsite
 backups. If you start with the assumption that a disaster will
 damage only your physical facility, then moving copies out of the
 facility will be sufficient. The media should be stored in a
 commercial backup storage facility or a second building in the same
 town—not at the administrator's home. Storing backup media in a
 person's home can be a problem if the person leaves the company (or
 the country).
To create your offsite backups, you could create an additional
 copy of each backup daily, but this would double your daily backup
 time. Instead, take full backups from your regular process offsite.
 If you need quick access to backup files in your facility, consider
 making duplicate copies of offsite backup media.

Disk-Only Backup

Some system administrators use a dangerous backup practice of
 making periodic image copies of disk files to another disk,
 overwriting the last copy. When used as the sole backup mechanism,
 this method suffers from many weaknesses:
	Corrupt source files might corrupt the backup copy and
 permanent records do not exist.

	A disgruntled employee can alter the data. The backup
 files will store a copy of the problem code as the administrator
 creates these periodically but does not create a permanent
 record.

	Occasionally, hardware does fail. Although unlikely, both
 disks could fail, obliterating all your files.

	Users can delete files by accident. If you discover a lost
 file after the administrator makes the backup image, you cannot
 recover the file.

	Disk-to-disk backups are usually done with onsite disks.
 Consequently, if disaster strikes your building, you will have
 lost everything.

In general, avoid disk-only backup approaches in which you image your
 data and then overwrite the image. It will not help if you need to
 restore a file that was deleted weeks ago. Instead, back up to a
 permanent or stable medium. A disk-to-disk backup can be cost and
 time effective only if different images are made and saved regularly
 and a complete backup is kept on permanent media.

Creating and Managing Development Documentation

You can improve your development team's productivity by making
 development documentation easy to create and access through wikis,
 intranets, or content management systems. This will encourage the
 creation and use of documentation. Not having a system will lead to
 minimal documentation being created and shared.
Unfortunately, many managers ignore documentation during the
 company startup phase because of lack of interest and because its
 absence does not appear to be an immediate problem. A small team can
 track internal documents easily, but as the team and product line
 grows, tracking all the internal documentation becomes difficult
 because of the number of documents and versions that can exist.
 Locating the most current version of a file for a six-month-old
 project requires an archeologist's skill and patience when a
 documentation repository does not exist or the document creator is no
 longer with the company.
With no development documentation, the task of training new
 people is difficult. The lack of documentation also wastes the time of
 the current team as they try to locate information that doesn't exist.
 As individual engineers store pieces of essential information, lack of
 diversified information creates a bottleneck when a key engineer is
 not available—development can get stuck.
Small company development environments often release many
 projects in rapid succession; you can't expect developers to remember
 the details of projects from more than a few months back. The cost of
 poor documentation can be realized months or years later when
 developers badly need the information. Trying to understand someone
 else's code can be difficult enough; trying to understand the
 motivations of specific design decisions can be nearly
 impossible.
Development documentation covers many topics in addition
 to functional specifications. Here is a sample list of categories to
 consider:
	Product definition documents and specifications

	Technical background information

	Internal design documentation

	Customer system architecture

	Data file format information

	Database design schemas

	Process definitions

	Application programming interface (API) description

	Schedules

You can use various methods to make internal documentation
 available in small firms. Simple methods include keeping the main copy
 on local directories of work machines, emailing copies of documents to
 those who need them, creating copies in shared directories, and
 creating intranet pages and links.
All of the simple approaches have drawbacks, however. Document
 submitters can find many categories in which to place a file, and the
 team can find it difficult to track down the desired information. In
 addition, when a developer locates the information, she might not be
 able to determine whether she found the current version. With some
 approaches, opening the documents requires many mouse clicks. Simple
 approaches limit the file or text formats that are acceptable and do
 not block simultaneous edits. Finally, simple approaches do not
 provide levels of restricted access, so everyone has full access to
 every document.
One reasonable solution is to set up a wiki with a tool such as
 MediaWiki (http://www.mediawiki.org/). Wikis are simple to use, but creating and editing wiki
 pages is not always "what you see is what you get," or WYSIWYG—it can
 involve a multi-step process of cutting, pasting, and formatting
 information into the wiki from other documents. Wikis also require an administrator who can set up and
 maintain the site.
A content management system provides a
 method for everyone to access and edit documentation. A number of
 great open source systems are available, with Plone (http://plone.org/) being
 one good example. Excellent commercial systems exist as well, such as
 Microsoft Project Server.
The benefits generally exceed the costs, however, as a good
 system will:
	Allow easy searches for files

	Allow different levels of access for different account
 groups

	Make file uploads simple for all file types

	Make reading documentation easy, requiring a single click to
 open and instantly view documents

Multiple commercial and open source tools are available for use
 in creating collaboration sites. Selecting the proper content
 management tool, setting it up, and maintaining it constitutes a major
 project. In addition, the content system administrator will require
 time to set up the system and organize the data. You will need to
 assign a person to drive the process.
All data storage systems need a gardener to
 keep them organized. Without constant maintenance, the data in the
 systems quickly becomes "weedy" and out of date. As the data grows,
 the administrator will reorganize the layout as needed and manage or
 archive data that has become too old.

Source Control Versioning

Source control versioning (SCV) software
 allows you to save and retrieve multiple versions of different files,
 tag groups of files, and retrieve desired versions of files in a
 straightforward way. SCV software allows a team of development engineers to work on a product
 collaboratively, effectively sharing the use of a common set of source
 files. SCV software acts as a traffic cop to avoid file collisions and
 an archivist to track which files correspond with which product
 version.
SCV software supports the definition of named
 versions of sets of the source code files. With SCV
 software, you can re-create a named version of the code later. SCV
 software also helps manage conflicts when two developers want to use
 the same file at the same time. An engineer can reserve, or
 lock, a file for editing, preventing other
 engineers from modifying that file while it is locked. Without SCV
 locks, an engineer working on a file could find her changes
 overwritten by another engineer who modifies the same particular
 source file.
Warning
Review the default behavior of your system for file
 checkout and locking. A common problem for engineers is assuming
 they have a lock on a file when they check out the file from the
 repository, but the default behavior for many systems is to lock
 files only when specifically requested to do so. Choose and
 configure your tools carefully to achieve the desired behavior, and
 then train your team to use the tools properly.

Alternatively, a second engineer can make his changes on a
 duplicate copy of the source file and use the SCV
 merge feature to merge his changes in with the
 first engineer's changes after the lock is released. Newer SCV systems
 have effective merge systems that allow for two sets of changes to the
 same file to be correctly combined under the review of the last
 engineer checking in the code.
Warning
Unfortunately, file merge can be flawed or can get
 confused on some SCV systems, effectively corrupting the resulting
 file. In some cases, sections of code or bug fixes are inadvertently
 removed from the source file without clear detection by the merging
 engineer. Engineers need to check the source file carefully to
 ensure that the merge was handled properly.

Although SCV systems are well entrenched in software companies,
 management rarely defines best practices for their use. It is a good
 idea to set up best practices for the development team to minimize
 errors and potential team friction. These include the following
 practices.
	For single-repository systems: Allow
 single-person checkout of files.
	This method implies that only a single engineer can check
 out a file for modification at one time and avoids the potential
 for code merging. Automatic code merging causes problems that
 you might not see until after a release, because it can
 accidentally and silently remove earlier repairs from the
 system. An alternative is to require manual merging of
 files for cases in which multiple engineers need
 to work together. If a developer must perform a manual merge of
 files, he can carefully inspect the merged code sections. If
 they overlap, the developer can create a new version of the code
 to incorporate both sets of changes as appropriate. Even with a
 careful merge, the merged code often has unexpected behavior
 because each engineer built his code from what was previously
 there, not accounting for the others' changes.
When planning work, ask developers to examine the sections
 of the code with which they need to work in advance and set up a
 process that avoids coding collisions. Developers can work
 around each other, communicating clearly about where in the code
 they are working and being considerate about how long they check
 out common files.
Note
This recommendation does not apply to systems
 designed to work without a single main repository, such as
 Git.

	For single-repository systems:
 Lock-breaking should be rare.
	Breaking locks on other engineers' files is a bad
 practice. An engineer who needs a locked file should first ask
 the lock holder to check in her work. Breaking another
 engineer's file lock forces her to merge her changes into your
 file. Merging is time consuming if done by hand and error prone
 if done automatically. Both types of merges often lead to
 hard-to-find errors and create the potential for bug repairs to
 be accidentally dropped.
Note
This recommendation does not apply to systems
 designed to work without a single main repository, such as
 Git.

	Comment file check-in notes should be
 descriptive and useful.
	Comments should always be required for all code
 check-ins. The comment should be descriptive—simply adding
 "fixed bugs" is not useful to anyone. Describe the defect number
 as well as the section of the code that is changed to make the
 comment useful for other team members and QA. Descriptive
 comments are especially useful for tracking down defects as
 regression behavior changes.

	Use macro variables to simplify build
 identification.
	Key names and numbers in the code are changed as
 new builds are created and files are checked in. Most source
 control systems have macro languages that allow for easy
 substitution of text into the file during check-in. Examples of
 common macro items are product names, release versions, build
 dates, build numbers, copyright years, legal disclaimers, and
 version numbers. The development team should be required to use
 the macro feature.
Using macro names makes it much simpler to keep source files up to date when global information
 changes. For example, the user interface can display the product
 version numbers to the client, enabling them to associate
 problems with specific code versions. Macros eliminate the need
 to check the version number manually in the code.
Note
Other approaches to automatically labeling
 code versions exist, including using build-and-release systems
 to update the numbering.

Companies in the very early stages of development do not always
 use a source control system, especially if only one to three engineers
 are on staff and they communicate frequently and maintain separate
 files. As these companies add developers to the team, they might
 resist using a SCV system because of the extra effort involved in
 setting them up and using them. Startup engineers can resist SCV
 systems on cultural grounds, as they like the idea of working "fast
 and loose." In this environment, you'll need to provide careful
 preparation and introduction of the system. Involve the engineers in
 the discussion and point out the costs of "fast and loose" when new
 engineers end up inadvertently stomping on others' work and the
 difficulty of recovering an older version of the code.
SCV packages vary considerably in quality, complexity, and
 scope. Some tools are tightly integrated with information reporting,
 bug tracking, and build systems. Investigate at least three packages
 before settling on one to use.

Software Build Method and Timing

A software build method is the approach you
 use for extracting the desired versions of source files, creating one
 or more executable versions of the code, and then storing it in the
 appropriate location for use. A standardized software build method ensures that one set of source files
 compiles into the same program, thereby avoiding the potential errors
 of manual program creation. Usually, the build method interacts with
 the source control tool.
In small companies, software build methods often start out being ad hoc designs.
 Different programs have different build methods because the methods were created by
 different engineers, probably at different times. Ad hoc designs are
 often problematic, and few people know how to use them. One engineer
 might be the only person who knows how to build certain program
 executables.
You must ensure that the build process for each product is
 written down and tested successfully by
 a second engineer. Having a second engineer go through the
 steps of building the code usually ensures that the instructions are
 correct. Often the creator of the instructions will leave out details
 or make mistakes because she knows the process too well. Ask the
 engineer in charge of the build to include a list of common problems
 that could occur and potential solutions to these problems.
When builds are done regularly, productivity is affected as
 well. Most small companies start out creating builds as needed. As the
 team grows larger, build collisions occur, with two engineers trying
 to build the code set at the same time, but using different files. At
 this point, regular builds become essential.
Daily builds work best, although
 development can build the software less often. At some companies the
 daily builds are really nightly builds that occur
 every evening. With daily builds, the build administrator finds file
 check-in mistakes daily, instead of later in the development cycle. In
 addition, the team will not push to delay a build so they can add more
 features or code—with weekly or less regular builds, the team might be
 tempted to delay weekly builds to accommodate last-minute changes. The
 team will also discover code integration problems after a while,
 making the debugging and repair considerably more difficult.
Building software during working hours has advantages over
 nightly builds. Daytime builds allow the team to see problems
 immediately so that the developer who created the problem can fix it
 quickly. With a nighttime build, the developer who created the problem might not
 return to work until later in the morning, leaving other developers
 with the task of cleaning up the problem or sitting idle, waiting for
 the developer's return.
With either nightly or daily builds, the developer who creates the problem should be
 held responsible for fixing it promptly. Breaking the build breaks the
 team's momentum and adds delays to the project. As developers can
 perform trial compiles and tests in their own local accounts, they
 have few excuses for breaking the build.
Note
The best approach is for the build administrator to
 configure development sandboxes at the start of the project to
 ensure consistency of layout and versions. Mismatched sandboxes can
 lead to broken builds after check-in of code.

As the code becomes more complex and the team grows larger, you
 should hire a single person to control and monitor daily software
 builds: a build engineer. The build engineer
 builds the software, maintains the build tools, and reviews build problems from the previous
 night. Require the build engineer to pursue build problems until they
 have been resolved.
In summary, you should move from an ad hoc build system to a
 repeatable system that runs regularly. Do not wait until your company
 is in growth mode to set up the system. Document this system and have
 an alternative engineer trained to understand how it works. Finally,
 treat your build system as an important part of your development
 infrastructure.

Software Release Process

The software release process describes the tools and methods
 required to get the software into the customer's hands. A release
 process moves the executable and supporting files into the release
 location. The process can include automatic changes to the database,
 creation of multiple image copies of files for multiple servers, and
 changing of file attributes so they correctly run on the production
 machine.
As software distribution models vary considerably, release
 processes vary as well. The mechanisms of the process include customer
 downloads from a website, CD distributions, or files copied to
 customer-acceptable servers.
Like many processes, the software release process in small companies is usually ad hoc. As
 the software and product line become more complex, the frequency of
 release mistakes will increase, as each release is often a slight
 variation on a basic theme, providing opportunities for typing
 mistakes or mistaken assumptions about what is required to use the
 release.
At many small companies, only one person knows how to release
 the product—releasing software is a thankless task and not interesting
 to many engineers. If the engineer releases the code properly, nobody
 notices; if the engineer makes a mistake, everyone complains. Making
 the release effort more appealing to engineers is difficult, but
 showing appreciation for the engineer's effort is always worthwhile.
 In general, spread the release knowledge around the team and make it
 as simple as possible. Ensure that the release engineer writes down
 the process clearly and that at least two other people know the
 release process.
You should automate the release process as much as possible.
 Release automation can be as simple as shell scripts, or you can
 include more complex scripts or commercial programs. In all cases,
 automation not only shortens release time, but it reduces release
 errors. Serious release mistakes can take days of engineering work and
 recovery time.
As the company grows, teams other than engineering can take over
 the release process, such as members of the IT or operations groups.
 Not having releases assigned to your team does not mean that you can
 ignore associated problems, however. Work with the managers of the
 other teams to improve the release workflow. Some additional
 engineering effort can lead to savings for the company overall.
RIGHT INSTRUCTIONS, WRONG ORDER
Our company had a separate release engineer who released the
 software during the nighttime when the server was not heavily used.
 The engineering team would create a set of release instructions,
 which QA would test, and the release engineer would execute to
 release the software.
On one release, the release engineer executed the release
 instructions in the wrong order. This led to product data being
 improperly updated. Several engineers worked for three days to fix
 the problem, as they had to write custom SQL scripts to correct
 it.
—Director of engineering

Bug-Tracking System

Bug-tracking software records problems and enhancement
 requests for your company's software products. Many different
 commercial and open source tools are available with different feature sets. Given
 the significant capabilities of this software, you should select an
 available tool rather than creating an ad hoc tool of your own.
Bug-tracking programs are a necessary part of a quality
 assurance process. Note that tracking of defects is only a part of the total QA process, which
 includes unit testing, test planning, traceability of test coverage,
 and recording, evaluation, repair, and validation of defects. Spend
 time considering your choice of tools based on how well they support
 the QA process you want to put in place. Some common issues that arise
 when considering bug systems that might affect your choice are as
 follows:
Cost If the bug-tracking system
 is expensive on a per-person basis, deploying it to everyone in the
 company may not seem cost effective.
Configurability of workflow
 Some systems have very limited ability to change their built-in
 defect workflow, which would force you to match their flow.
Data collection Some systems
 will not allow you to change the data collected at each step or put
 entry restrictions on the data users enter during each step.
Remote access Systems have
 variable abilities to permit access and bug entry remotely. If you
 have development teams working on the same product internationally,
 this could be a big problem.
Reporting A manager's ability
 to see what is going on depends on flexibility in getting reports of
 the data in the system. Reporting capabilities vary
 considerably.
SVC integration Integration
 with source control systems can simplify associating bugs with
 code.

Small companies tend to use bug-tracking tools in sloppy and changeable ways, leading to wasted
 efforts and quality problems. Here is a humorous top ten list of
 abuses of a defect-tracking tool. Avoid these strategies at all
 costs:
	Submitters do not review and "close" defect reports when
 development makes the repair and assigns the defect ticket back to
 submitters for review.

	Reported problems are ignored by the assigned engineer
 because no process for nagging the engineer exists.

	Submitters enter a defect so badly worded that nobody can
 figure out the problem or whether a problem even exists. When
 asked, the submitter does not remember what he was concerned
 about.

	Defect submissions describe ten different problems in one
 defect report so engineering finds it nearly impossible to close
 the ticket out or track any of the problems individually.

	A defect submitter assigns the problem an incorrect and
 unusual status state, making the defect untracked.

	A submitter enters a core-dump error message into the defect
 system but does not include an explanation.

	A submitter's full defect report says "the software is
 broken."

	The system administrator turns on the email feature of the
 defect system so that email replies automatically log into the
 defect system—along with all of the reply messages in the email
 chain. Defects become massive in size and nearly impossible to
 read after a few exchanges.

	A support team member pastes in a 50-page customer email
 chain into a defect ticket with no explanation: "This customer is
 unhappy about something, but dang if I can figure it out."
(Drum roll, please….)

	A submitter writes schedule reminder notes into the defect
 system, because she thinks that someone will actually read the
 defect reports.

With all the potential ways to abuse a defect-reporting system, having some human intervention
 is usually necessary. Without enforcement and review of data in a
 bug-tracking system, so much junk data gets stored that
 people ignore older defects. Ensure that the defect tool has a clear
 process associated with it and enforce the process. A great way to
 enforce the process is to have a gatekeeper or gardener for the bug
 system who is responsible for the health of the bug data, not the
 system per se.
As part of the defect system process, define and enforce
 standards for resolution notes. Resolution notes
 describe how the defect was resolved and are useful to the submitter,
 but they are also helpful in defect analysis and end-of-project
 reviews. Train other teams that use the bug-tracking system in proper
 system use, including customer service, sales, marketing, technical
 writing, and any consultants. Failure to train people will lead to
 extra effort in development dealing with the defects that people
 improperly submit.
In summary, first make sure that your team has a useable
 defect-reporting system, and then ensure that your team has a proper
 process for using it. Monitor the usage and refer offenders to the
 proper correction institution. Finally, refer to Chapter 17 for more information on
 bug tracking and entry.

Selecting the Right Development Tools

After you have reviewed all the basics of tools and methods, you
 can select at least one replacement system. Fortunately, in many small
 companies, the development manager can direct the choice of
 development tools. Having this choice gives you the flexibility to
 change and reconfigure systems as your needs change. This is not
 necessarily the case in large companies.
Managers in startup companies often base their tool selection on two criteria: familiarity and price
 (preferably, free). A thoughtful choice, however, will prevent future
 problems when the company grows and the product takes off.
Don't let price alone drive you toward selecting only from free,
 open source tools. Establish your long-term needs before ruling out
 buying a commercial tool. Since the cost of changing to a different
 tool later is usually very high, picking a tool based just on
 short-term finances will sometimes lead to painful development issues
 a few years later. If price must be an overriding factor (that is, if
 there literally is no money to spend), plan in advance for a
 transition strategy to your ideal tool when money is available.
TOP-DOWN TOOL SELECTION
Many large companies do not give engineering management the
 choice of tools. They have multiple layers of management and many
 different projects. A senior technology manager removed from
 individual developers will choose the tools. Choice of tools will
 usually reflect several factors: price, technology features, ability
 to handle the largest and most complex project in the company, and
 what is commonly being used in different divisions.
However, if your group isn't currently using one of the newly
 chosen tools, libraries, or databases, then you will be forced to
 convert your software to the new tools whether it makes business
 sense or not.

Tool vendors can push hard during the selection process. Vendors may offer low introductory
 prices, free first-year licenses, bundled software, or promises of
 special future features. When considering these incentives, ask for a
 longer-term price guarantee for future purchases—ideally, five years.
 Do not include promises of future features in your decision process
 unless the feature description (along with a delivery date) is
 included in the purchase contract alongside a penalty clause. Once the
 sale is made, you may see your vendor's priorities change.
Smaller vendors may take special interest in making the sale to
 you because they can use your company as a reference account, get a
 sale, and have the potential for future sales automatically as your
 company grows. In contrast, larger vendors will likely press less
 hard, as their sales focus is likely to be larger companies willing to
 buy larger numbers of tools at once. As the selector, you may feel
 camaraderie and empathy for another small company trying to reach
 success; however, recognize this influence when making your decision.
 Do not make the wrong choice simply to help out another small
 company.
Once a development organization uses a tool, it can be expensive
 to replace, because of the costs associated with migrating the data
 and retraining the team. To make the best choice, create a table
 comparing tool options covering these areas:
Initial cost Consider initial
 sale price and installation costs.
Impact on productivity Weigh
 the savings in salary time due to more efficiency of the system and
 fewer errors.
Recurring costs As you add more
 users, consider what happens to the cost per person. Some products
 have low introductory rates for small teams but can get expensive
 per person as your company grows. Nailing down the recurring costs
 as part of the original deal gives you perspective on the
 future.
Maintenance costs Consider how
 much labor and maintenance the tool will require. A few tools
 require half- or full-time staff to maintain them for a good-sized
 team.
Integration with other tools
 Know whether the tool integrates well with other tools—for example,
 consider whether a defect tool integrates with source control and
 whether the source control program integrates with the integrated
 development environments (IDEs) being used.
System performance after growth
 Consider what the system performance will be when the team size
 grows.
Remote development Know whether
 the system can handle users who are working remotely. Consider its
 effectiveness with different development centers overseas, if
 necessary.
Ease of use Consider how easy
 the tool is to learn and use.
Data security Does the tool
 manage your data securely so it won't be lost or revealed
 inadvertently?
Data access Know whether data
 can be reasonably imported and exported, which allows for future
 migration and integration with other tools.

Tool familiarity can be another trap in the selection process. Many people will choose a tool one of
 the team members is already familiar with instead of taking a risk
 with something new. A familiar tool has the benefit of less training
 time—at least for the person selecting it. However, choosing an
 inferior tool based on one person's familiarity can lead to team
 resentment, as other team members will have to live with the tool's
 problems. Tools are changing so rapidly that choosing a known tool can
 result in choosing an obsolete tool. Instead, spend the time to
 investigate other options rather than simply choosing what's familiar
 to you.
Time pressures often force managers to make decisions before
 they can fully assess a product. Delegating the investigation and
 recommendation of tool choices to an interested senior engineer can
 improve the selection process. Delegation of the investigation
 benefits you and the team because it helps build trust: You will have
 shown the team that you trust them with the company's interests as
 well as their own. In contrast, engineers can react negatively if you
 select a tool without their involvement.
Ask the engineer to deeply investigate at least three tools
 before making the recommendation. A deep investigation requires trying
 the tool with realistic data on real problems your team faces. This
 will ensure that the tool meets the team's needs not only on the
 surface, but also in practice.
Once the tool is chosen, make the selecting engineer the tool's
 champion. He should help other engineers with the transition, answer
 questions, and monitor the tool's use. Having the selecting engineer
 actively use the tool will let him understand its problems and
 investigate potential solutions. More of his credibility will be at
 stake for making the tool a success, and he will be more likely to
 ensure that his peers are satisfied with the choice, because he has to
 work with them daily.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	The Build Master: Microsoft's Software
 Configuration Management Best Practices, by Vincent
 Maraia (Addison-Wesley, 2005)
	"Defect Tracking Tools," http://www.testingfaqs.org/t-track.html
	DMOZ Open Directory Project website, http://www.dmoz.org/
	Software Release Methodology, by
 Michael E. Bays (Prentice Hall, 1999)

Chapter 8. ASSESSING YOUR TECHNOLOGY

Evaluating your technology base early helps
 you avoid problems that create crises later. As
 development manager, you are entrusted and expected to keep the
 technology in working order at all times. If you fail to do this, any
 serious problems that are encountered can lead to you making poor
 decisions while under duress. Better to learn your technology early and
 well, before you face major problems.
To understand your company's technology, you must evaluate a
 number of key areas. Unfortunately, a thorough technology assessment is not always a top priority in
 small companies. The following list covers some of the most common
 technical areas that management does not fully scrutinize:
	 	
	System documentation
	System API

	System scalability
	Security

	Failure modes
	Data reporting and analysis

	Error handling and messages
	International support

	Software system flexibility
	Test harness

	Third-party packages
	

As you assess your technology, consider the completeness, quality, and
 long-term impact of choices made to date: Regarding completeness,
 consider all the key technologies in place; regarding quality, consider
 whether the technologies being used are reliable and implemented with
 current best practices. This chapter provides an expanded discussion of
 considerations for each technology area.
System Documentation

Many small and growing companies do not sufficiently document
 their software or systems for many reasons, including lack of interest
 in doing the job, pressure to achieve short-term goals, changing
 definitions, and perceived lack of need. Most engineers want to write
 code, not technical documents. Time pressures can be considerable in
 small firms because the next delivery is always around the corner.
 Changing definitions make it difficult to keep documentation up to
 date. And the need is not perceived: The senior architect understands
 the system in detail, so why document it for others, when he can
 explain it?
Good system overview documentation is critical. Without it, your
 company faces long-term problems and lost opportunities. New engineers
 need a technical overview of the system as part of their initial
 training. In addition, as the development team makes changes to the
 system, they might not see the far-reaching effects of their changes
 without access to proper overview drawings and descriptions.
 Documentation is also important because your growing company might
 eventually face audits by customers or certification agencies (for
 example, Cardholder Information Security Program, or CISP, in the
 financial world). Audits usually require system documentation.
 Finally, if another company wants to buy your firm, it will review
 your technical documents as part of the due diligence.
Your first step in documenting your system is to create a system overview
 diagram. You can obtain the information you need by
 interviewing development team members and possibly by gleaning data
 from any partial documentation that exists. Create the diagram as a
 useful working document, not just fluff for sales presentations.
 Summarize the software and system correctly and in detail. Organize
 the diagram for easy understanding by rearranging the layout to
 minimize the number of crossing or overlapping lines. Make it visually
 consistent by using only a few box sizes and a few types of symbols.
 Finally, label paths and contents clearly and consistently.
After creating the overview diagram, examine the system documentation for the amount of detail. Too
 little detail provides little utility, while too much detail makes the
 document difficult to use and maintain. Review the documentation to
 ensure that you have included enough information by asking these
 questions:
	Is the documentation sufficiently
 complete to support training a new engineer if two individuals on
 your team left their jobs?
	Multiple people leaving a company at the same time
 is a common occurrence. People who enjoy working in startup
 situations might look for the next opportunity and invite
 co-workers to join them.

	Is documentation sufficiently complete
 that removing a team member will not disrupt
 operations?
	Nobody on the team should be so critical that losing him
 or her would mean that production would fall apart. You should
 be able to deal with a personnel change without losing too much
 ground.

	Would the documentation satisfy a
 company that might be interested in buying your company? Will your
 documentation support a reasonable valuation?
	Scrambling to create documentation when someone is
 interested in acquiring your company does not result in good
 work. From a buyer's perspective, a large part of the corporate
 value of a software firm is its intellectual property. Failing to build detailed
 documentation can have an impact on company purchase
 price.

	Does documentation provide accurate,
 up-to-date technical documentation so a customer can understand
 how to integrate his system with your software?
	A poorly defined application program interface (API) or poor
 integration documents will frustrate customers and consume
 valuable development time.

Do not stop at a high-level system diagram when considering your system documentation. Consider all of the interface
 directions, including control files, APIs, and error messages.
 Consider descriptions of how your system fits together, as well
 as inclusion of customer usage models. Consider risk when thinking
 about the documentation. If only one engineer is an expert on
 important aspects of the product, that engineer needs to document
 these features.
A minimum list of recommended system documentation includes the following:
	System overview
	Outstanding issues[5]
	Detailed system architecture description
	API description and usage
	Error handling, including cases and messages
	Control file formats
	Internationalization support description
	Database schemas
	List of technologies and libraries used
	Build instructions for all product parts
	Packaging and release instructions for all modules
	Workflow required to support the system

[5] To qualify as an outstanding issue, the issue should have
 the potential of creating a noticeable impact on the product.
 The description should explain the impact and why the issue is
 unresolved.

System Scalability

System scalability describes the ability of
 the program or system to maintain acceptable performance as the volume
 of users and data increases significantly. Scalability means that the
 usability and speed of the system do not degrade significantly as
 usage increases. Obviously, at some level, all systems will fail, but setting a reasonable maximum
 expected usage size and knowing that the software can handle that size is what scalability is all about.
When a young company starts developing a new project,
 development focuses first on creating core functionality, and
 scalability is often an afterthought. The team might
 consider scalability of the system at times, but this objective is not analyzed,
 monitored, or properly tested because of the expense and time
 involved. Few companies run enough tests to generate an accurate
 scaling model for what happens at different volumes of usage.
Ignoring scalability creates a huge risk factor for the company,
 however. (Are you noticing a theme here?) Scalability problems can
 sink a company if its system fails or slows down when the volume reaches the
 peak. For example, without proper scalability design and testing,
 systems with high uptime requirements can fail at high load, sometimes
 in unexpected ways. These failures can result in the loss of customers
 or even a direct financial loss if your company has guaranteed system
 availability.
A detailed system diagram provides a great
 starting point for examining system scalability. The diagram should show hardware,
 applications, and software for the entire system—a whole system
 overview in enough detail to analyze it. You can create a scaling
 model from a detailed diagram if you have reliable test data. If you
 do not yet have the test data, the diagram can direct you to the tests
 you need to run and help you identify potential failure points.
Various methods and tools can be used to evaluate systems,
 including commercial packages used by IT shops, modeling programs, and
 even Excel spreadsheets. Your choice of approach depends on the
 complexity of the system. You can use a spreadsheet successfully to
 build up scalability models for simple systems with the proper data.
 For complex systems, system-modeling tools are better choices.
Analysis alone does not ensure system scalability; you must also create a test lab to
 experience in practice how the system performs. As most modern systems
 find the biggest delays in the data layer, senior database engineers
 usually run the labs and perform the analyses.
Scalability presents an ongoing problem to the
 development team, requiring vigilance as the team develops new code.
 Engineers not trained in database scaling can easily create queries
 that slow down the system. The engineer most experienced with database
 queries can review all database queries as part of the code review
 process. Finding and fixing a problem in the design phase is far less
 expensive than discovering the problem in a test lab.

Failure Modes

A failure mode occurs when your software or
 system fails in ways that you did not expect and from
 which your software does not directly recover. Failure mode
 analysis involves a systematic analysis of general ways the program or
 system can fail. Small company development teams often do not
 systematically examine how their product or service can break.
 Instead, most wait for a failure to occur and patch the system to fix
 it.
Small company developers usually focus on making the product
 work, rather than looking for what will cause it to fail. Breaking the
 product is a job for quality assurance. However, the QA team does not
 have the insight into the internals of the code that are required to
 perform a proper risk analysis. Engineers themselves need to analyze
 the risks and failure modes of every product or system.
A failure mode review must examine the system as a whole and in
 parts. Failures can occur in components or in the interactions of
 several components; some single components might show no obvious
 failure issues, but their interactions with other components can cause
 the system to break. In addition, a review must consider how
 unexpected customer data or usage can affect the system, including the
 effects of unusual data, overload of data streams, data size issues,
 data rate issues, and timing issues.
External abnormal occurrences can also cause problems to the
 system and should be studied. Using a system diagram as your reference
 point, ask a series of questions about what could happen, such as the
 following:
	What happens if third-party vendors do not provide the
 bandwidth needed?

	What happens if someone cuts a cable or a machine goes
 down?

	If a system loses data, how does its recovery mechanism
 work?

	What synchronization problems can be identified?

	What happens when the wrong data enters the system?

	How does the system respond to data provided in the wrong
 order?

	How will the system detect unauthorized access?

FAILURE MODE
The company I joined had a complex system that synchronized
 data between two different data sets. The system had a
 synchronization problem that would occur a few times each month.
 When this occurred, an engineer would repair the problems directly
 in the database.
While reviewing risk factors for the system, I starting asking
 questions about this failure mode and became concerned. Under
 certain conditions, the failure rate could be high—it would require
 a system problem and a failure in the monitoring of the system by
 the operations team. The architect believed they would never see
 this problem, as it required that a system problem would have to go
 unmonitored by the operations team for many hours. The system had
 real-time monitoring in place, so he believed it would not happen.
 As the company planned for increased system traffic volume over the
 next year, I insisted that we plug this failure mode in the next
 release.
A few months after the release, the meltdown system failure
 occurred, causing a key system component to stop. The operations
 team had turned off the monitoring of this server six months earlier
 without engineering's knowledge, because the monitoring code gave
 too many false warnings. By the time we discovered the problem, the
 improperly synchronized data far exceeded what we could have
 repaired manually. Fortunately, the automatic repair mechanism did
 the corrections and kept the system running. We were one system
 redundancy away from a complete meltdown of our business.
—Software manager

Scale the analysis based on the potential problems a failure
 would create. Although intense failure mode analysis approaches can be used, most
 products require a less intensive examination, except for cases in
 which failure could have an extreme adverse effect on the
 customer.
Requiring a systematic analysis of failure modes will improve
 the reliability of your product or system. As a manager, require an
 analysis for every major release of a system. Perform this analysis
 early in the development cycle and act on any issues uncovered.

Error Handling and Messages

Error handling and
 messaging concern how you process your system's
 reasonably expected usage problems. Error handling occurs within normal operation of the
 system and allows for continued usage. It differs from failure modes,
 as failure modes represent system or product failure cases in which
 the system operation breaks. With a failure mode,
 manual intervention is often required for recovery. With error
 handling, the processing is routine and part of normal product usage.
 Error messaging describes the message sent to the user when the error
 is detected and is sometimes used to describe all of error
 handling.
Error handling is designed as the product is created. When an
 engineer sees a use case that results in a detectable error, she
 creates an exception case in the code to handle it while informing the
 user about the problem. However, development teams often do not
 examine the messages after the initial creation, causing many error
 messages to go untested and ignored.
Development teams in young companies rarely document error
 conditions because the lack of error documentation does not block
 sales and does not cause short-term problems. However, not documenting
 error conditions opens testing holes and opportunities for failure
 modes to occur as part of the error processing. For example, an
 untested warning message, when activated, can cause the program to
 fail or cause database corruption. In addition to identifying problems
 earlier, documenting error conditions helps QA test efforts and
 simplifies internationalization of your software. Knowing the error
 conditions will also support risk analysis. With all of these
 benefits, it is best to create error documentation before your company
 enters its growth phase.
Note
A good standard practice is for QA to test all error
 handling and be able to run unit tests during development. QA's
 careful checking of error conditions can assist in documenting the
 conditions as well as finding critical failures that can occur in
 the error resolution code.

To create the error documentation, request a list of all the
 error phrases in the system from your development team. Ask the team
 to identify error conditions that are not currently associated with a
 textual message. Use this information to improve the product's
 error handling by creating log file records. This can
 improve your testing because you can create targeted test cases to
 activate those error conditions. Documentation should cover the
 general error modes, error display, and error recovery. In addition,
 document error conditions that only a system administrator of your
 product would see. These conditions are often neglected in
 testing.
It's also useful to review error messages for reasonable
 practices. Since developers focus first on the successful workflow,
 they might not spend much time thinking about the unsuccessful
 workflows. For unsuccessful workflows, developers should consider the
 following:
	Does a recovery path exist to resolve
 the issue for the customer?
	A good recovery path puts the user back to the location
 where the problem occurs, retaining as much of the entered data
 as possible, so that the customer can attempt his task again in
 a different way or at least save his data.

	Does the error message provide
 information that hackers could use to break into the
 system?
	For example, does the message provide a list of data
 elements when a fatal flaw occurs?

	If multiple errors occur, does the
 system separately list messages for each? Does each message
 provide useful information?
	A useful message should clearly describe the problem;
 provide data that would assist development in resolving the
 problem if the customer cannot do so; and provide a location of
 the problem in the code, rather than a generic "it
 broke."

Software System Flexibility and Maintainability

System flexibility describes the ease of
 expanding the product with new feature sets and capabilities.
 System maintainability, on the other hand,
 describes the ease of coding bug repairs and adding minor features.
 Both are determined by the architecture and techniques used to create
 the code and resulting quality of the code.
When engineering builds product code with flexibility and
 maintainability in mind, the company gains a long-term corporate
 advantage. Flexible code can be a decisive factor in product success,
 because cost and time to market is critical for small companies. With
 maintainable code, the lower overall cost of working on the code,
 especially when someone other than the author is doing the work, can
 mean the difference between success and failure for a growing company
 in a competitive market. Understanding the state of the code will
 allow you to make much better predictions about the costs of making
 major changes to your product.
As head of engineering, you need to know the flexibility aspects
 of your company's code as well as its maintainability. These things
 affect both short-term and long-term planning: In the short term,
 maintainability and flexibility affect the cost of repairs. In the
 long term, maintainability and flexibility affect your decision of
 when to overhaul or replace the current code.
Many small companies lack foresight about how code will be
 reused across the system. With few customers on board, receiving the
 proper input to plan for the future can be challenging. If the team
 focuses on quick delivery, programmers will often reinvent similar
 code rather than ensure that the code offers maximum reuse. This
 approach creates a maintenance nightmare, however, because the code
 now contains many different versions of similar functions. As the
 product changes and grows, changes to functionality will require far
 more effort, as each different version of the function will need to be
 modified. Because developers implement functions in different ways,
 the cost of modifying two similar functions with one change can be
 more than twice the cost of merging the function code from the
 start.
Software maintenance problems build up over time and are
 sometimes unnoticed because they amount to small increments in a total
 effort.
However, when they become more important because of
 significantly slower development efforts and more quality issues, the
 difficulty in recovering can be too large to be easily
 resolved.
Consider the following two cases, observed "in the wild" and
 related to flexibility and maintainability of code:
	Engineering builds the software to
 minimize costs, but intends to replace the software at a specific
 time.
	Engineering should test this assumption with the executive
 team before building the system in this way. Don't surprise your company
 with a quickly built system that cannot be modified easily.
 Instead, let the executive team know and get their buy-in before
 opting for this choice.

	New customers are supported by
 engineering copying old code and customizing it to meet the
 customer's needs.
	This provides a short-term boost but a long-term disaster.
 The problems associated with copy-and-customize do not justify
 the quick support provided for new customers. The maintenance
 cost of the application multiplies with each copy. Changes
 development makes to improve one customer's code base are not
 portable to another customer's code base; this situation stalls
 out your product development and turns your efforts into custom
 coding.

Regarding both flexibility and maintainability, you need to make
 conscious choices and get buy-in from the executive team, and you
 should continue to be aware of your product's status. There is no
 "one-size-fits-all" solution to flexibility and maintainability
 problems. Different product roadmaps have different requirements and
 expectations as to when the software will be overhauled or
 replaced.

Third-Party Packages Integrated into the System

In most small software companies, the development team
 integrates third-party code into the product because it shortens
 development time. You need to identify and document these packages for
 a number of reasons:
	Potential investors will request this information as part of
 due diligence.

	External security audits will require a list of third-party packages used.

	Third-party packages can increase your product costs
 if the vendor raises its rates.

	Third-party package vendors can change licensing
 requirements, making it difficult to meet your goals and the
 license requirements.

	Third-party packages can affect the quality of your
 product.

	A third-party package that you have modified can increase
 ongoing costs, because the vendor might deliver later versions of
 the package, which means you will have to modify your code
 again.

	Third-party vendors can go out of business or drop support
 for the package, leaving you with a major problem.

To determine what packages have been included in a system, ask
 the system architect to create a list. (Do not be surprised if no
 documentation exists.) Turn the list into a one-page summary and make
 it available to the development team for review. Then, ask the team to
 identify potential risks, including those that might appear as the
 product usage grows. Example risks include scalability issues, quality
 concerns, and overall utility.
Once you have documented a list of third-party packages, assign
 a senior engineer to maintain this list and make it easily available.
 This will help avoid a crisis when trying to pull the information
 together at the last minute and will keep the team thinking about the
 impact of integrating new packages into the product.
Analyzing the third-party code in the existing system does bring
 to light the process of "make versus buy" decisions. With all of the
 potential problems that third-party code can present, why use it at
 all? For most small companies, cash is limited, so getting a product
 to market quickly is a key goal. The best strategy for achieving this
 goal is to create only the sections of the product that are not
 currently available as third-party packages and buy the rest, but only
 when the business case makes sense. When reviewing the business case,
 you should consider all the issues raised in this section as well as
 cost and time to build compared to cost and time to buy and integrate.
 A good rule of thumb is this: Buy when the cost and time are less than
 or nearly equal to the build option.

System Application Programming Interface

Small company development teams commonly underdocument
 system application programming interfaces (APIs). The API
 allows customers and other companies to communicate with your product
 or system through a data or software interface. Most modern programs
 use an API because it provides huge flexibility and speed
 advantages.
Customers often complain because incomplete documentation forces
 them to make assumptions about how the product API works. This can
 lead to wasted customer efforts and demands to change the
 implementation. Incomplete documentation also forces costs back onto
 your company, as your development and support teams have to answer
 questions about proper usage. A poorly documented API probably has not
 been completely tested either, leaving your customers to find
 problems, especially with lesser-used features.
Review the current API specification to ensure that it clearly
 states legal data values, interaction of data elements, error
 conditions, and error handling. If the documentation requires more
 information, ask an engineer and a documentation writer to fill in the
 gaps. If you create a solid API definition before your company hits
 its growth phase, your company will avoid serious problems with
 unhappy partners and customers (as well as the costs of supporting
 them).
API documentation needs more than just an interface
 description—it needs well-chosen use case examples. Providing an API
 description without use case examples is like handing someone a
 foreign language dictionary and expecting them to learn the language.
 Use cases should illustrate common usages that you expect your
 customers to integrate with their product to solve their problems. If
 you continue to update the descriptions as more customers use your
 product, the API document can be a positive asset in technical
 sales.

Security

Although many engineers consider product-usage security an IT or operations team task, the engineering
 team should play the major role in creating a secure product.
 Consequently, you must make security an integral part of your
 development process. The most effective way to do this is to review
 security elements as programmers develop the code and as
 QA tests it.
Security often becomes a high-priority development issue
 when some driving event occurs—a customer asks questions about
 security before buying the product, a certifying organization requires
 a security audit, or a hacker breaks into the system. Don't wait until
 a driving event occurs. Instead, secure your product before being
 asked to do so, either by hiring an outside consultant or assigning
 the project to a team member. Whatever your choice, select one member
 from engineering and QA as the security gurus for their respective
 teams. Then ask them to spend time learning about security practices
 and testing methodologies.
Software security requires continuous focus during every
 development cycle. By assigning a software engineer to review the code
 for security flaws before QA tests the code, you can find problems
 earlier and improve security with less impact on cost and time.
 Security flaws found late in the development process can be very
 costly to fix.
Making security a priority in your system requires that you take
 extra measures. Consider acquiring security analysis tools appropriate
 for your product or system, and use them for every release. In
 critical systems, use a security consultant to review your system and
 identify problems. The additional costs are always justifiable by the
 results—problems identified before the product is released.
When determining how much to budget for the security effort,
 consider the types of security failures, the costs of each, and the
 probabilities of each. These costs will vary considerably based on the
 type of industry the product supports and the nature of the product.
 Devise a development plan in which sufficient money is spent on
 security to bring the failure probability multiplied by the cost down
 to a reasonable level.
Most companies do not spend enough time and effort building
 secure products or systems. More important, the effort spent is often
 at the wrong time in the development cycle—during testing or
 post-release recovery. But testing and repairing security in a built
 system is very expensive and sometimes impossible. As a practice,
 establish security requirements at the beginning, and then ensure they
 are considered and reviewed during the design.
Do not wait until an audit or hacker forces you into action,
 because your team will have a much greater problem improving
 security after the software has been built. Take
 software security seriously, because the damage done by poor
 security can be impossible to repair later.

Data Reporting and Analysis

Many companies' products store customer data, especially if the
 company offers a web-hosted service. Small company systems commonly
 store customer data in a database from which the team designs SQL
 queries that allow the program code to access data. In addition to
 allowing programmers to enter and modify the data in the database,
 many products include a data-reporting functionality that is often added through
 separate modules or through a purchased reporting software
 package.
A simple database approach can work well to get the initial
 product off the ground. As your customer base grows or the volume of
 queries grows significantly, however, the system will slow down. If
 this happens rapidly, your product's release cycle might not occur
 often enough to correct the problem before it becomes a huge
 issue.
Investigate the query speed of your product and estimate where
 speed problems might occur. Also, estimate likely
 customer volume increases and timing. If you do this in advance, you
 will be prepared when speed might become an issue. Typically, query
 speed becomes an issue when your company enters a growth phase. You
 can minimize speed problems by carefully reviewing and testing SQL
 queries in a lab, but this will only get you so far. Large reports
 covering months or years of data will slow down over time. As a rule
 of thumb, when a report takes more than 10 seconds to display,
 customers become dissatisfied with the wait.
Database information displayed in reports can change over time.
 Customers find it disconcerting to see their data from two months ago
 change from what your system reported two months earlier. Changes
 happen because the algorithm for displaying the report changed or
 because parts of the underlying data changed. An example of underlying
 data change might be the removal of an account that the customer
 created in error and you closed. These inconsistencies can be handled
 in several ways: by letting the customer know about the volatility of
 past data and getting their acceptance; by restricting any changes to
 past data even if the data contains errors; by modifying the
 database or business logic so that reports don't appear to change; or
 by using a data warehouse. A data warehouse, although expensive, can
 be a great solution in terms of both data consistency and
 speed.
Data Warehouse

A data warehouse stores snapshots
 summarizing the data at regular intervals with the goal of providing
 rapid access and consistency in responses. Common snapshot intervals
 are daily, weekly, or monthly, depending on the data and the
 customer need. Data warehouses are an expensive, albeit effective,
 approach to improving data reporting.
Creating a data warehouse requires that you decide, in
 advance, what data to accumulate, how it's accumulated, and how it
 will be reported. While you can add reports to the data warehouse
 after it has been built, it should be initially designed to meet
 your long-term needs. Any changes added after the warehouse has been
 built do not become useful immediately, because data must accumulate
 before it can be of enough significance to measure in a report.
 Because creating a data warehouse has many pitfalls, you should hire
 someone with experience in data warehouse creation before taking
 this approach. Both database and IT experience are required to set
 up the warehouse properly.
A data warehouse solves the data change problem as well.
 Because the warehouse takes snapshots of data used to generate a
 report, the displayed data will not change even if the underlying
 data has changed. So, for example, monthly historical data will not
 change unless you run that month's generation routine again. This
 can be especially useful when the formula for calculating some of
 the presented data necessarily had to change over time, but the new
 formula isn't appropriate for the older data. On the other hand, for
 customers who want to propagate changes back in time, the data
 warehouse provides a means for doing this in a controlled manner.
 Such changes can be analyzed and proper business logic applied
 before running the program to update the warehouse, so that the
 changes are verified as correct and made when appropriate for the
 business needs.
Data warehouses are an order of magnitude more expensive than
 a pure database approach and are time consuming to set up and
 maintain.
Make sure that the need for a warehouse is justified from a
 business perspective before building it. For the following reasons,
 creating a data warehouse is an expensive and lengthy task:
	A data warehouse often requires that you acquire additional
 hardware.

	A data warehouse requires rewriting all of your reports
 and creating a program to generate the summary data.

	A data warehouse requires ongoing maintenance.

Because of the costs and time delays, plan for a data
 warehouse before your company hits its growth
 phase to minimize the disruption. Waiting until data access becomes
 a problem will not allow your company enough time to solve the
 problem, as building a data warehouse can easily take six months or
 more.

International Support

Many web applications and some desktop applications require
 international support, and that means much more
 than just translating English text into another language. It often
 requires rethinking and reworking parts of your software. In addition
 to language support, other issues include changes in user interfaces,
 changes to workflow because customers or business practices differ,
 legal issues related to site usage or guarantees, and currency issues
 if you are selling the product or the product deals with
 money.
In most American startups, development builds the first product
 to support English-only for the US market. The introduction of support
 for other countries and languages often follows from sales
 opportunities rather than a technology plan. Ad hoc
 internationalization can lead to major surprises for development and
 the entire company due to the unexpected costs, lack of required
 expertise, and development delays.
Treat international support as a major release. Recognize that
 internationalizing your product will increase your operating costs and
 add release delay going into the future. You can implement
 internationalization during the company growth phase, but planning for
 it in advance can save you headaches later.
Note
Assessing the internationalization costs requires a
 detailed review. Appendix B covers
 internationalization issues by providing questions to ask your
 company management regarding internationalization along with options
 to consider during development. It also includes an overview of best
 practices when implementing internationalization on a
 site.

Looking at the Big Picture

This chapter covered many technological areas that require
 adequate review. Trying to make all of the areas ideal may not be
 practical. In fact, for most business, the different areas vary in
 importance. A good approach is to review of all of the technological
 areas and assess which are terrible, which are tolerable, and which
 are great. Then, bring the terrible areas up to at least tolerable.
 This will minimize your technological risks with the least
 investment.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	Documentation
	Developing Software with UML: Object-Oriented
 Analysis and Design in Practice, by Bernd Oestereich
 (Addison-Wesley Professional, 2002)
The Fine Art of Technical Writing,
 by Carol Rosenblum Perry (Blue Heron Publishing, 1991)
"Software Documentation," from Wikipedia, http://en.wikipedia.org/wiki/Software_documentation

	Scalability
	"Scalability," from Wikipedia, http://en.wikipedia.org/wiki/Scalability

	Risk Factors
	Manage It!: Your Guide to Modern, Pragmatic
 Project Management, by Johanna Rothman (Pragmatic
 Bookshelf, 2007)
Waltzing with Bears: Managing Risk on Software
 Projects, by Tom DeMarco and Timothy Lister (Dorset
 House Publishing, 2003)

	System API
	http://lcsd05.cs.tamu.edu/slides/keynote.pdf,
 "How to Design a Good API and Why It Matters," by Joshua Bloch,
 provides a good summary discussion of APIs

	Error Handling
	Code Complete: A Practical Handbook of Software
 Construction, by Steve McConnell (Microsoft Press,
 2004)
The Pragmatic Programmer: From Journeyman to
 Master, by Andrew Hunt and David Thomas
 (Addison-Wesley Professional, 1999)

	Security
	Secure Coding: Principles and
 Practices, by Mark G. Graff and Kenneth R. Van Wyk
 (O'Reilly, 2003)
Securing Java: Getting Down to Business with
 Mobile Code, by Gary McGraw and Edward W. Felten
 (Wiley, 1999)
Security Engineering: A Guide to Building
 Dependable Distributed Systems, by Ross J. Anderson
 (Wiley, 2008)
https://www.pcisecuritystandards.org/, PCI
 Security Standards Council website focuses on account data
 protection
http://www.cert.org/cert/information/developers.html,
 CERT Information for Developers, provides information for
 developers on coding standards

	Data Reporting
	The Data Warehouse Lifecycle
 Toolkit, by Ralph Kimball, Margy Ross, Warren
 Thornthwaite, and Joy Mundy (Wiley, 2008)

	Internationalization
	Developing International Software,
 by Dr. International (Microsoft Press, 2002)
Maximizing ROI on Software
 Development, by Vijay Sikka (Auerbach, 2004)

Part III. OUTSIDE OF ENGINEERING

Chapter 9
Chapter 10
Chapter 11
While your relationship with the development team is crucial, you
 should not ignore your relationship with teams outside of engineering.
 Even if you have the best engineering team working with you, you will
 not succeed if you have poor relationships with marketing, sales, your
 boss, or your peers. Building these relationships helps ensure your
 success—and it can be a lot of fun, as well.

Chapter 9. WORKING WITH YOUR COMPANY

Since a company's practices, culture, and values set the tone for interactions within the
 organization, a development manager's success depends on her ability to
 work effectively within the company's culture and also her ability to
 influence it. Conversely, a manager whose style is contrary to company
 culture and practices will encounter friction with other managers and
 other employees.
To understand a company's culture and practices, the new manager
 must first inquire about it and then observe what behaviors actually
 occur in the workplace. If you focus on the following five areas, you
 can develop a good sense of your company's culture and practices:
	Ask how decisions are made.

	Observe how people reach agreements.

	Understand how meetings are conducted.

	Know how people problems are resolved.

	See what behaviors get rewarded.

As a manager, you can also influence your company's culture and
 practices by actively promoting new practices among fellow managers and modeling
 appropriate examples. Cultures and practices can shift in small
 companies as they grow and develop, providing opportunities for change
 and improvement. If your CEO wants to improve corporate culture, your
 influence can motivate changes as the company grows.
Company Culture and Practices

Company culture and
 practices refer to the shared understanding of how employees behave in a company and
 how they interact with one another and with management. A growing
 company's culture helps define the company and makes it unique. If a
 culture is easily identifiable and projects itself in a positive
 light, prospective employees will be attracted to the company and
 current employees will be more likely to stay with the firm. From a
 purely financial standpoint, a positive culture adds value to a
 company. From a people standpoint, a positive culture makes working
 for the company an enjoyable experience.
In a small growing company, a culture can form on its own,
 without any particular guidance from employees or management. However,
 this often results in a culture that reflects the values and practices
 of top management, whether explicit or not. Company culture reflects
 what management rewards and encourages in employee behavior, and
 employees usually follow management's lead or decide to leave.
You want first and foremost to promote a culture of trust and collaboration, in which individuals are
 encouraged to share information and perform at a high level with the
 expectation that management will support them in their endeavors. If
 employees know that they will be treated fairly and they feel secure
 about their jobs, a culture of trust grows. Employees don't worry
 about losing their jobs for political reasons. When conflicts occur,
 employees handle their problems first with the individuals involved
 and not through email blasts to management.
More important, in a healthy culture, the overall focus is on
 company success, rather than individual success. Employees are willing
 to take reasonable risks and stretch their abilities on a project because doing
 so is in everyone's best interest. Also of benefit is a focus on
 long-term as well as short-term efforts. A long-term investment in
 productivity at the expense of short-term results might make sense,
 but that approach won't work in an environment that lacks trust.
Contrast a culture of trust with a culture of
 distrust: Employees greet mistakes and failures
 by blaming others, politics are prevalent, and management fires people
 for reasons other than performance and finances. Employees work to
 pull themselves up by pushing others down. Their behaviors are driven
 by the fear of losing their jobs because they have seen it happen to
 others. They focus their efforts on never failing, and they don't take
 reasonable risks if those risks could lead to failure. In a culture of
 distrust, management punishes people for making mistakes.
Knowing a company's culture before accepting a job there will
 protect you from a major mismatch down the line. Unfortunately,
 companies do not always characterize themselves clearly during
 interviews. Getting an accurate picture of a company's culture can
 require that you work there for a while if you aren't able to get
 details from a person you trust.
To encourage a positive culture in your team and your company,
 think about how you interact with members of your team, and make sure
 you are building positive relationships with them. If you support a
 culture based on trust and collaboration, your team will be stronger
 and will benefit from higher productivity, your company will retain
 the best employees, and everyone will be happier.
Corporate Style

Corporate style concerns the general
 manner in which employees interact with one another. Interaction
 styles vary across companies and sometimes across departments in
 larger companies. Styles of interactions you might experience
 include highly confrontational, highly political, low
 confrontational but aggressive (passive-aggressive), and highly
 collaborative. Some companies encourage confrontation for all issues
 and have resolution methods or processes in place. Others encourage
 collaboration and almost no confrontation.

Management Style

Management style is a subset of corporate
 culture. Management styles vary considerably from company to company, not to mention from boss to boss.
 It usually boils down to how management makes decisions and who in
 management makes the decisions. Some managers focus on details,
 while others focus on the big picture. Detail
 managers focus on knowing every detail of the staff
 members' activities. In contrast, big picture
 managers keep their eye on the overview and do not want
 to know details. It's also common to see strict hierarchical management and diffused decision-making management. A
 strict hierarchical manager focuses on giving
 directions to people and making most decisions higher in the
 management chain. With diffused decision-making
 management, managers allow team members to make most of
 the decisions.
CEOs often hire managers and staff whose styles and values are
 similar to their own. This does not necessarily result in uniformity
 of management style, but a CEO can effectively create a
 consensus-type management style. That style tends to propagate down
 in a growing organization because of the continuous hiring
 requirements in a small company.
Knowing the management style will allow you to understand how
 best to drive forward your ideas and important efforts. Matching
 your interaction style with that of the company will lead to greater
 success. However, if you are not comfortable with your company's
 style, do not try to emulate it. A significant mismatch in style can
 be a good reason to look elsewhere for a new position. As you
 consider a new employer, look carefully at the corporate culture and
 management style before accepting a position.

Meeting Style

Meeting style refers to the way teams of
 people organize their discussions and decision processes. Small
 company management typically does not define meeting style, which
 tends to evolve as the company grows.
When a company is tiny, with 12 or fewer employees, all of the
 employees communicate continually and most are up to date with
 events, agendas, and important decisions made by the company.
 Conversations are informal with few preset
 meeting times, agendas, or lists of invitees, while formal
 meetings are usually rare or nonexistent.
As a company grows to about 50 employees, it transitions to
 a point at which formal meetings seem to develop a life of their own. The
 number of potential two-way conversations increases
 exponentially—so, for example, a company of 5 people has 10
 different two-way conversations possible, but a company of 50 people
 has more than 1,000 different two-way conversations possible. As a
 company grows, it becomes impossible for every employee to know
 every other employee well—which was possible when the company was
 still tiny in size.
Company management usually responds to growth by
 compartmentalizing functions. This ensures that
 not everyone needs to talk to everyone else in the company. Most
 employees communicate with people who work in their functional area
 and in some restricted way to people in other teams.
Invariably, the transition from a tiny company to a small
 growing company results in an explosion of meetings. Many small companies develop a culture of
 too many formal meetings: Management sets up regularly scheduled
 status meetings, one-on-one meetings, company meetings, technology
 meetings, and team meetings. With so many meetings to attend, a
 manager has little time to do his work or interact with his teams.
 If more than half of each day is devoted to meetings, the only way a
 manager can interact with his team members is to … set up
 a meeting.
Formal meetings are not a bad thing, unless too many meetings
 are scheduled. They are not always an effective use of people's time
 and can slow down progress in a growing company. Many bad practices
 are brought into meetings by people who missed meeting training.
 Many formal meetings are a waste of people's time because too many
 participants attend, no agenda is offered, no conclusions are
 reached, no action items are recorded, meeting members are allowed
 to pontificate, and meetings are scheduled when an email or hallway
 conversation would be more effective.
A management day chock-full of formal meetings leaves little
 time for other activities such as getting your work done, talking
 with team members at their desks, impromptu hallway conversations,
 and problem solving. Spending the day running from meeting to
 meeting also drains your enthusiasm. You might respond to excessive
 formal meetings by spending your nights getting your own work done,
 not getting key work done, skipping meetings without explanation,
 pushing back on meetings, and blocking out time on your schedule so
 that you can't be added to another meeting roster.
MEETINGS ALL DAY LONG
As a mid-level manager at a large software company, my time is not my own. We use Microsoft
 Outlook and Exchange so that anyone can set up a meeting and send
 you a request. Every day, my schedule gets booked solid with
 meetings. Many meetings are regularly scheduled. The other
 irregular meetings fill in the gaps. If people see a break in my
 schedule, they fill it in.
I get frustrated, as I do not have time to think or do my
 own work except in the evening after 5 PM. Sometimes people insist
 on meetings from 5 to 6 PM as that time is the only slot available
 on my calendar. I am frustrated that my time is not under my
 control.
—Manager at a large company

To reduce excessive company meetings, you will need to discuss
 and advocate for the changes to gain the support of your boss and
 peers. The CEO and other managers might have open ears to
 suggestions about improving efficiency, because, like you, they
 probably have too many meetings crammed into too little time. You
 can also collaborate and share ideas with peer managers about how to
 make meetings more efficient. Actively define best practices for
 meetings to keep them from becoming the dominant time-waster of
 everyone's day. Illustrating best practices in the meetings you
 chair can influence others as well. In all cases, avoid lecturing
 others about poor practices.
Solving the "too many formal meetings" problem requires
 collective cultural action. An "all-day meeting" culture might
 survive in a large company, but in a small growing company, this
 culture saps employee vitality.
Effective Meetings

Creating an effective meeting culture can require a shift in
 company practices as the company grows. Your company should
 provide annual training for employees on running effective
 meetings. A good course will cover how to run an efficient and
 useful meeting, how to choose attendees, and when to use other
 means of communication instead of calling a meeting. If management
 properly calibrates employees' attitudes, employees will respond
 honestly if you ask whether a meeting is necessary.
Several general principles can be followed in setting up a
 meeting:
Define a clear purpose.
 Define a purpose and the desired results before calling the
 meeting. In the purpose definition, include your thoughts about
 the results of the meeting and define the type of meeting you
 seek. Common meeting types are information presentation, data-collection, and decision-making. At an information
 presentation meeting, you present information you
 want the attendees to know. At a data-collection
 meeting, you try to collect information about a
 problem as a group. At a decision-making
 meeting, you discuss a problem and come to a decision
 about how to handle it.
Choose attendees. Choose
 the minimum number of attendees, limiting the list only to those
 who can contribute. You can inform others later of information
 they need to know in an email or in meeting minutes.
Create an agenda. Before
 the meeting, define and distribute an agenda that describes the
 main points you want to discuss so that people come
 prepared.
Distribute clear
 invitations. Define a location, date, and time for the
 meeting and let people know these details well in advance. Make
 sure that they consent to their participation, and do not assume
 their availability.
Start on time. Encourage a
 culture of starting meetings on time or no more than five minutes
 late, even if some of the participants are not present when the
 meeting starts. This will avoid wasting time waiting for tardy
 participants. If meetings always seem to start late, attendees
 will show up late.
Leave gaps in the schedule.
 It is difficult to start a meeting on time when it is scheduled
 back-to-back with other meetings. Leave a 15- or 30-minute gap
 between your meeting and the last meeting on each participant's
 calendar whenever possible. This will allow everyone a short but
 much-needed break and avoid delays in starting your
 meeting.

Follow these general principles for running an effective meeting:
	Designate a moderator to run the meeting.

	Designate someone to capture information and keep
 minutes as needed.

	Stick to the agenda. If meeting members stray to other
 topics, stop the discussion for a moment. Agree on a place in
 the agenda to discuss new items or whether attendees should
 discuss new items in another meeting.

	Manage the meeting time as you discuss topics. Large
 meetings are expensive for small firms. Consider
 the cost of the meeting time, preparation time, and the
 inefficiencies of breaking up people's days with another
 meeting.

	The meeting can cover the statuses of earlier action
 items. For ad hoc meetings, assign a "customer" for the action
 item who will follow the item and judge its success. This will
 often be you by default, but it doesn't need to be.

	At the end of the meeting, review action items and
 ensure that they are recorded in an identified location. A
 standard location can be used for distributing meeting
 minutes.

	After the meeting, ask participants about the value of
 the meeting so that you can make improvements for the next
 meeting. Do not take suggestions personally.

Learning how to be effective at meetings takes repeated
 training and effort. Time spent on this effort will pay off in
 improved productivity and morale. Employees do not find work
 rewarding when they can't do their jobs because they must attend
 too many meetings.

Handling Interteam Problems

As a small company grows, the CEO forms functional teams headed
 by different managers. As the teams grow larger, the feeling of
 camaraderie can shrink and competition and conflict can grow, making
 interteam problem-solving more difficult. If a
 problem-handling strategy is not in place, people will push problems
 up to the executive team, who will push them back down again after
 making a decision.
As the company grows, problem resolution can consume huge amounts of executive
 time. In the process, executives can become micromanagers who are
 constantly resolving conflicts. A corporate approach to problem
 resolution can help.
When workers are reluctant to tackle issues with fellow
 employees in other functional areas, they will try resolving issues
 through email exchanges. For difficult issues, some find it
 easier to offer long responses to emails rather than talking through
 the problem with another individual. They believe the problem is off
 radar once they have sent their email responses, so they can go on
 working. Here's a good rule of thumb regarding this type of
 conversation: If you are on the third email in an inconclusive problem
 discussion chain, talk to the person face to face or call him or her
 on the telephone instead of continuing the email
 correspondence.
One rapidly growing company, for example, had a prevalent
 tendency to bounce problems to the top and back down, and it was
 getting worse as the company grew. Fortunately, the executive team
 recognized the problem and took action by training people on a new
 approach that looked like this:
	Work directly with people in other groups to resolve the
 problem. Ask for their help in solving the problem rather than
 demanding a specific resolution.

	If the problem cannot be resolved, meet with the other team
 member's boss and invite the other team member to join.

	If the issue still cannot be resolved, you can meet with the
 boss's manager and invite your own manager.

The goal of this approach is to encourage employees to resolve
 the problems as close to the source of knowledge without involving top
 management, and it's effective if management regularly trains
 employees in how to do it. It does require a shift in thinking on the
 part of staff about dealing with problems cooperatively and not
 treating other employees as the problem.
Advise your staff that when trying to resolve a difficult
 problem with another person, the focus should be shifted
 from the other person to the actual problem itself. One way to do this
 is to shift physical positions, from each party directly facing each
 other to both facing a whiteboard with the problem written on it. The
 change can shift the relationship from confrontational to the two
 parties viewing the problem as something about which they can
 brainstorm and jointly solve.
As your company grows, actively encourage your team and others
 to work through problems directly with other teams. If your company
 has developed a culture of trust, workers will come to discussions not
 trying to enforce demands, but rather looking for the best joint
 solutions to any problem. Talking one-on-one with difficult co-workers
 can be a trying experience short term, but it will improve everyone's
 work environment in the longer term.

Growing Peer Relationships

Build relationships with your peers and you build influence within your company as it
 grows. You should develop a peer relationship
 with co-workers who are not your direct boss or your direct
 subordinates, such as other managers on the executive team and staff
 workers in different departments such as human resources, finance,
 marketing, QA, and customer service.
You can benefit from getting to know people you do not normally
 see daily. Workers from other departments can offer insights into
 problems faced in their teams, which can help you better understand
 how to modify your work to improve the quality of the overall effort.
 It can also lead to your helping other teams with their problems.
 Understanding others' problems can yield better insights into selling,
 serving, supporting, and upgrading your customers, and it could
 provide opportunities for you to suggest solutions for internal
 improvements that increase the bonus pool or even keep the company
 (and your job) alive. Delivering value to internal departments outside
 of your primary responsibilities also builds trust and respect within
 the company.
Strong peer relationships also benefit your team, because your
 relationships with other managers will encourage cooperative behavior
 between the teams. For example, say you have created a good
 relationship with the marketing team manager and the two teams are
 aware of this; if a technical writer on the marketing team needs
 information from an engineer, the engineer will likely provide the
 information directly to the writer instead of claiming he's too busy
 and forcing the task on you, his manager.
Good peer relationships can also decrease the political
 maneuvering in a company. Political mischief increases in companies
 whose employees build walls between groups. One team can find it
 easier to criticize another team if the two teams have not developed a
 working and trusting relationship. When more direct relationships are
 established, politics are reduced.
You can encourage peer relationships by staying behind after meetings and
 initiating conversations with others about the meeting or about other
 topics, if you or they don't feel pressed for time. Post-meeting
 discussions can be informal chats about work problems, an opportunity
 to share opinions on important work topics, or even a chance to
 converse about non-work–related issues.
Another approach that can improve peer relationships is asking for help with general
 management or personnel problems—both good topics to discuss with
 another manager, as long as they do not involve confidential
 information about an employee. Asking a peer manager for advice shows
 that you respect his or her abilities and trust his or her discretion,
 and it can lead to good discussions and valuable advice. But don't
 invent a problem or ask for advice if you have already decided on a
 solution.
If you are not in the habit of talking to a wide range of peers,
 it can take some directed effort to reach out to people you don't know
 and talk to daily. Spending time walking around and talking with
 people, as opportunity permits, or inviting peers out for lunch or
 coffee provides a less formal setting for conversation. Less formal
 settings allow you to get to know your peers as people, not just as
 corporate entities.
In addition to the benefits it provides to your team and
 company, getting to know others is fun. Talking to people in different
 areas can provide a broad perspective on how your company works. If
 you are sincere in your desire to get to know your peers as people, it
 will show. Make an effort to talk with others, and do not treat
 interactions as a work obligation. Focus on the positive attitude that
 can come from getting to know new people.

Engineering Team Respect

One remaining aspect of company culture is identifying which
 team's efforts are particularly emphasized and respected. Each small company holds a unique view of its
 software development team. Some departments view development as a key
 company resource and give the team commensurate respect, authority,
 equipment, space, and flexibility. Management usually treats engineers
 in startups as heroes, while their development efforts produce the
 initial products for the marketplace.
As the company grows, a management shift in attitude toward
 engineering can occur. This shift happens because sales
 or marketing teams become key drivers of new revenue after development
 has created the product. When this happens, management does not view
 the development team as the most important source of innovation and
 value. Instead, management views development as part of a production
 organization and as a corporate cost. This shift can lead to team
 dissatisfaction as engineers see their status diminished.
Management sometimes even considers development engineers as the
 cause of company problems, such as poor quality
 products, dissatisfied customers, and slow software releases. These
 issues can be the result of improperly built software during the
 startup phase, however.
If senior management treats engineering as merely another
 corporate expense, you need to advocate for your team. Base the
 advocacy on real team successes and potential for the future. As you
 advocate, acknowledge past problems and explain improvements that will
 prevent them from being repeated. Development teams can be drivers of
 innovation and profitability, not just sources of order
 fulfillment.
Spend time at senior staff meetings describing ideas collected
 from your team to demonstrate the value of developers to the company.
 Describing team accomplishments at a company meeting is another great
 approach. Keep up to date on changing company needs, including those
 driven by the market, because you can use this information to propose
 revisions to your product roadmap. You can also promote your team by
 asking developers to help solve problems for other
 departments—sometimes small efforts by development can be of
 tremendous help to another group.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	Behind Closed Doors: Secrets of Great
 Management, by Johanna Rothman and Esther Derby
 (Pragmatic Bookshelf, 2005)
	Death by Meeting: A Leadership Fable…About
 Solving the Most Painful Problem in Business, by Patrick
 M. Lencioni (Jossey-Bass, 2004)
	Essential Manager's Manual, by Robert
 Heller and Tim Hindle (DK Adult, 1998)
	The Five Dysfunctions of a Team: A Leadership
 Fable, by Patrick M. Lencioni (Jossey-Bass,
 2002)
	Joy At Work: A Revolutionary Approach to Fun on
 the Job, by Dennis W. Bakke (PVG, 2005)
	Managing Technical People: Innovation, Teamwork,
 and the Software Process, by Watts S. Humphrey
 (Addison-Wesley Professional, 1996)
	Overcoming the Five Dysfunctions of a Team: A
 Field Guide for Leaders, Managers, and Facilitators, by
 Patrick M. Lencioni (Jossey-Bass, 2005)
	Peopleware: Productive Projects and
 Teams, by Tom DeMarco and Timothy Lister (Dorset House
 Publishing Company, Inc., 1999)
	Slack: Getting Past Burnout, Busywork, and the
 Myth of Total Efficiency, by Tom DeMarco (Broadway,
 2002)
	To Do, Doing, Done: A Creative Approach to
 Managing Projects & Effectively Finishing What Matters
 Most, by G. Lynne Snead and Joyce Wycoff (Fireside,
 1997)
	What Management Is: How It Works and Why It Is
 Everyone's Business, by Joan Magretta (Profile Business,
 2003)

Chapter 10. WORKING WITH THE CEO AND THE EXECUTIVE TEAM

When you're asked to lead a development team in a small company,
 your new relationship with the CEO and other members of the executive team can be one of your largest and most
 unsettling adjustments. The CEO is your boss, your peers are the
 executive team, and you aren't in Kansas anymore. You are accountable
 for the entire company's technical practices and how the development
 team's software affects business. You no longer define success based on
 your technical capabilities alone. You need good people skills and the
 proper attitude to be successful in your new role.
Decisions made at the executive level differ from many of those
 made at lower levels in a company. They are based on the company's
 business needs and focus on a management perspective, not on superiority
 of one technology over another. Consequently, you will need to
 understand the business aspects of your decisions and incorporate the
 opinions and knowledge of other executive team members as you make those decisions.
The information in this chapter will be helpful for a senior
 technologist who is serving on an executive team for the first
 time.
Supporting Your Boss

Your job as the development manager in a small company differs
 from a management position in a large company, because you are
 probably kept accountable by the CEO and other executives in the company. You are in
 charge of software engineers who report to you, but you must also
 report to your boss at the top.
Knowing your boss's background will provide some insight into
 his or her management style and priorities. In any business,
 CEOs and presidents tend to focus on areas in which they
 have the most expertise. CEOs with a sales background, for example,
 may focus on company sales and have a shorter-term focus. CEOs with a
 technology background may dig into the technology, sometimes
 overemphasizing its importance over market and customers. CEOs with a
 marketing background may value the product and market, not always
 pulling together the operational pieces. By understanding your boss's
 background, you can determine the best ways to provide him or her with
 information as well as how to make a winning business case for efforts
 you want to undertake. So, for example, with a finance-focused CEO,
 you could make the case for the revenue benefits of your efforts; with
 an operations-focused CEO, you could emphasize productivity; and with
 a marketing-focused CEO, you could spotlight the market penetration
 benefits.
Your relationship with your boss can also define how the company
 perceives your efforts and those of your team. When your team does
 good work, you need to promote these successes. Your boss's perception
 of your performance influences how she directs you and how successful
 you will be as a leader. A little self-promotion can help you and your team gain respect,
 improve your boss's confidence and trust in you and your abilities,
 and help your boss and the company be confident of your team's
 contributions. Remember that a little self-promotion goes a long way: Avoid excessively
 promoting or bragging about your accomplishments.
A strong relationship with your boss based on mutual trust will also improve your effectiveness: When your
 boss trusts you, your recommendations will carry more weight and your
 decisions will be met with fewer roadblocks. On the other hand, when
 you trust your boss, you are better able to support her decisions,
 because she will have considered your input along with the needs of
 the company as a whole.
You earn the trust of your CEO by supporting her leadership. You act in the
 interest of the company and not just yourself; you support the rest of
 the executive team; you don't reveal confidences to make a convenient
 point; and you follow through with your commitments. If you gain your
 boss's trust, she will give you more responsibility and
 share more information with you.
Act professionally and responsibly with your boss, as you would
 want your direct reports to act toward you. Avoid the pitfalls of not
 being responsive, thinking you know better, not fully supporting or
 criticizing her efforts, and not providing information she needs. A
 positive approach can build a strong foundation of trust with your
 CEO.
Let's consider several areas of interaction in more detail:
 clarity of goals, timely information, communication, and decision
 making.
Ensuring Clarity of Goals

Your boss undoubtedly has goals in mind for the development
 team and probably made these known to you when you began your
 position in management. You may think you understand each of these
 goals, but you can make sure by repeating them back to her in your
 own words. It's critical that you understand her perspectives from
 the beginning and that you meet with her periodically to determine
 whether goals have changed.
Ask your boss to describe her expectations of you and your
 team as well as broad and specific long- and short-term goals. Goals
 should not be viewed merely as a to-do list, but as a vision of
 success that can help you create a mental picture of what you need
 to achieve and why. As you discuss these goals, work with your boss
 to define them in a way that is both sensible and achievable. After
 you have spent some time reviewing the goals, discuss problems
 or questions to be sure you understand each
 completely—blindly charging ahead without fully understanding what is expected of you can lead to many
 wrong turns and will ultimately hurt your team and the company. Work
 with your boss to ensure that each goal will benefit the company and
 your team in the long term.
Goals should be set up and reviewed regularly—ideally, every
 quarter. Reviewing quarterly goals with your boss allows for larger
 tasks to be divided into short-term goals that can be achieved by
 the end of each quarter. Yearly goals, on the other hand, are often
 too broad and can miss the mark, because the needs of a business
 often change throughout the year. What was crucial at the beginning
 of the year may seem unimportant by the end of the year. If your
 boss doesn't require that you set quarterly goals, take the
 initiative and propose them.

Providing Useful Information

Provide your boss with the right information at the right
 time. Consider what types and the amounts of information are most
 appropriate to provide as you discuss results, status, outstanding
 issues, risks, and staff. Instead of providing too many unnecessary
 details, summarize information regarding schedules, technology, and
 staff issues. Regularly provide a summary document showing project
 status. Summarize technology issues using business terms—cost, time,
 trade-offs, and risks—rather than complex technological terms,
 unless she asks for those details. A high-level summary of staff
 issues works best. Avoid discussing details of individual workers'
 personal issues unless they could seriously affect the
 company.
When reporting information, consider your boss's background,
 style, and priorities. If your boss has an analytical bent, she may
 prefer more data as well as the source of data. If she's a
 big-picture person, she may want to see only a high-level summary of
 project progress. Your reporting should focus first on your boss's
 priorities; then you can cover your topics. If, for example, your
 boss's top priority is releasing a particular feature, she will want
 to hear about that first.
Your boss needs to be presented regularly with useful
 information, but she doesn't want to wait to be surprised by big
 issues that can affect business. Don't wait to inform your boss
 about large, important issues. No manager likes to hear about a
 significant problem late in the game, when there is little time to
 correct the situation.

Communicating

If you do not make a point of communicating regularly
 with your boss, you will miss opportunities to provide
 and receive critical information. Do not assume that your boss
 always knows exactly what you do.
To communicate effectively with your boss, learn her
 communication style—every boss has a unique one. Some will set up
 regular meetings and encourage drop-by sessions. Others will stay in
 their offices and talk with you only at assigned one-on-one
 meetings. Others will walk around to see firsthand how work is
 going.
WHEN IS A ONE-ON-ONE NOT A ONE-ON-ONE?
My boss held all of his one-on-one conversations in a group
 meeting. He required all staff to attend the meeting one afternoon
 each week. At the meeting, he would talk with each person
 individually for 20 to 30 minutes and expect everyone to listen.
 This meeting would go on for 4 hours every week.
This approach was not popular with his staff. It had all of
 the disadvantages of a group meeting and none of the advantages of
 a one-on-one meeting. People did not talk about confidential
 situations or issues they did not want to discuss with the team.
 In addition, when it was not your time to talk, you had to spend
 time listening to conversations that were not relevant. It felt to
 all like a wasted afternoon once a week.
—Engineering and IT manager

It's a good idea to talk with your boss in informal as well as
 in regular, formal meetings. Catch your boss late in the day for an
 impromptu conversation—this can be a great time to find out what
 your boss is thinking about key issues and to discuss problems as
 they occur.
As the head of engineering, you are tasked with communicating information from your boss to your team and vice
 versa. Being a megaphone for your boss is not effective—being an
 effective communicator requires filtering information so that it is
 most useful to the team. It requires that you interpret your boss's
 and executive team's goals in ways that the development team can
 understand and use and that you present appropriate information to
 your boss and other managers regarding your developers'
 needs.

Influencing Decisions

When an issue arises that requires the input or approval of
 your boss, describe each problem and outline what you believe to be
 the best particular approach to solve it. She may have questions,
 solution suggestions, and issues of her own to contribute. The best
 decisions can be made together after a thorough discussion.
Do not assume that your boss understands issues exactly as you
 do or that her decisions and conclusions will necessarily be the
 same as yours. Your boss will sometimes disagree with your
 approaches to solving problems as well as which problems need to be
 solved. When this happens, ask questions to try to clarify your
 understanding of your boss's perspectives to learn about outside
 factors that affect her opinion. If you and your boss still disagree
 after a discussion, suggest even more alternative approaches. A good
 boss will listen to other options and sometimes change her decision.
 More input on problems and solutions usually yields better results.
 If your boss decides to stick with her original decision, support
 her.
Never criticize your boss or her decisions to your team.
 Managing a team is a difficult task; managing a staff that does not
 support its leader's decisions can be impossible. Supporting your
 boss and her decisions will make you an effective part of an
 effective company. Not lending support to your boss will lead to
 major problems for your company, for you, and for your team.
 However, if your boss's approach goes against your core management
 or ethical convictions, you'd be wise to look for a new position.
 You'll be better off if you recognize the mismatch and move on
 rather than stay in the position.

Collaborating with the Executive Team

Many development managers at small companies were once excellent
 senior developers who were promoted to senior management roles. Being
 the senior technical person who reports to the CEO puts you on the
 executive team, whether your title is chief technology
 officer, vice president of engineering, director, or manager.
 Consequently, you need to be prepared to handle that level of
 responsibility.
When facing an unfamiliar role as a member of the executive
 team, a new manager should concentrate on four areas:
	Conflict

	Confidence

	Communication

	Collaboration

Resolving Conflict

Working with other senior managers requires that you be able
 to work through conflicts; however, conflicts you encounter with the
 executive team will differ from conflicts that occurred with the
 engineering team. While engineering conflicts usually focus on
 technical details and personality differences, executive team
 conflicts will be driven by executives' varying priorities,
 backgrounds, and styles. Each executive's priorities are based on
 his or her experiences and job function.
Compare, for example, the priorities of the vice presidents of
 sales, finance, marketing, and engineering. The VP of sales will
 focus on the short-term sales funnel; he may aggressively push for
 getting the next best sale, which might require that developers
 build custom features to land a prized client, even if development
 is a bit understaffed or underequipped. The VP of finance will focus
 on financial regulations, accounting, longer-term financial health,
 and keeping the cash flow positive; he may oppose the purchase of
 extra equipment, even if it will help with development. The VP of
 marketing, on the other hand, may prefer to drive the product toward
 general solutions that strengthen its position in the marketplace;
 development tools are the least of her worries. And
 you want your team to be able to purchase extra
 equipment to ease the development burden and focus on rapidly
 creating technically great solutions.
It can be difficult to navigate through perfectly valid but
 competing interests; however, considering the requirements of other
 departments within the company will serve you and your team well. If
 you meet with other executives to discuss their priorities and views
 of the development process, you will build rapport and make
 conflict resolution easier. Building solid
 relationships among other executives will help each of you
 appreciate the pros and cons of proposals from each functional
 area.
On the other hand, if a fellow executive points out a problem
 with you or your team during an executive meeting, you must avoid
 becoming defensive in your response and avoid finger-pointing or
 personal attacks that force the CEO to referee. Instead, suggest
 that the two of you meet later to discuss the situation and work
 toward a solution, perhaps even proposing a specific time and place
 to meet. If a positive corporate culture exists and trust has been
 established among members of the executive team, resolving problems brought up in
 meetings can be a constructive and professional process.
In general, don't treat conflict as a personal affront, and
 don't keep score by counting "wins" and "losses." If a conflict
 remains unresolved or is poorly resolved, everyone loses. Treat each
 challenge as an opportunity to understand other professional
 priorities, backgrounds, and styles. Set a collaborative tone so
 that you can work out conflicts quickly and effectively.

Taking up Your Mantle with Confidence

As the head of software development, you won't need to look
 for conflict; it will find you. Even a cooperative team will
 encounter conflicting goals, limited resources, unfortunate events,
 misunderstandings, and individual mistakes. People react differently
 to stressful situations: Some may shift blame to another person;
 others may become angry and argue relentlessly; still others may
 become quiet and withdrawn. If you are the victim of blame or an
 angry tirade, resist the temptation to fire back and escalate a
 conflict or waffle about what can be done. Instead, treat other team
 members with respect and actively reach out to work cooperatively
 with them.
Some executive meetings can be intense, especially when key
 decisions are being considered that can directly affect the success
 or failure of a company or its product. It is important that you
 show confidence in your ability to manage yourself and your
 team while working with others in executive meetings. Sometimes
 other executives or your boss will suggest technical solutions that
 make little sense to you. Rather than meekly accepting such tasks
 without discussion, consider and offer alternatives that may help
 solve core problems. A development manager needs to be honest and be
 able to say no when the best answer is
 no. It's better to ask for more conversations
 about a request after the meeting than to acquiesce or argue during
 the meeting. On the other hand, confidence does not equal bravado or
 avoidance of responsibility. Accept responsibility for areas and
 developers under your control, and take measures to resolve issues
 that fall within your realm.
Most of all, don't mislead others by providing information
 that is inappropriate, incomplete, or untrue. If you are unsure
 about how to answer a question from another executive, don't make a
 bad impression by waffling or avoiding the question. Indicate that
 you will provide the information and specify a deadline—one to five
 days is usually appropriate for answering most information
 requests.

Opening Communication

Regular communication with members of the executive team improves company success as well as
 others' perception of your efforts. Communication allows for
 coordination of efforts and discussion of overall company
 challenges. A lack of communication results in executives making
 assumptions about what others are doing, which leads to wasted and
 duplicated efforts. For example, sales should not be looking for
 customers for a new technical innovation if development already
 abandoned the idea without informing sales.
Communication is especially important when mistakes occur. You
 may be tempted to avoid advertising mistakes that originate in
 engineering, but exposing them early and working with other
 executives to resolve problems can yield the best results for you
 and the company. For example, if a software defect leads to a major
 problem with a client, the sales VP needs to know so he can talk to
 the client and help mitigate any damages. This approach works best
 when a culture of trust has already been established.
How you communicate is just as important
 as what is being communicated. Consider three
 common communication venues: executive team meetings, special status reports, and individual
 conversations.
Most small companies have weekly executive team meetings that tend to reflect the CEO's
 objectives and interests but usually provide opportunities for each
 team member to speak. Although the format and content vary
 considerably depending on the company and its current goals, you
 typically will be given the opportunity to summarize your team's
 activities. Use this time to highlight delivery changes, problem
 areas, and successes.
A brief summary in an executive meeting often isn't enough to
 provide thorough status information in a rapidly changing business.
 You may want to consider providing weekly one-page status summaries
 to members of the executive team. Each summary should describe
 recent results, project status information, expected delivery dates,
 and problems encountered and resolved. More important, it needs to
 be quick and easy to read and understand—both are critical for busy
 executives. Avoid low-level technical details. The report could
 include information on the following:
	Projects in progress and completed since the previous
 report

	Next priority efforts with estimated delivery schedules

	Unplanned work that has arisen

	Hiring and staffing update

	Risks identified

	Positives (new ideas, happy customers, successful
 efforts)

While a good communication approach during executive team
 meetings is important, talking with other executives individually
 will lay the foundation for more positive working relationships. You
 can also walk around the office and talk with other executive team
 members individually—not just about work items, but also about
 hobbies and/or other interests. Get to know their backgrounds and
 their work objectives to help you understand their perspectives.
 Look for opportunities to collaborate on joint problems, offer
 assistance, or ask for advice. Informal conversations are great for team building and
 discussions that are more detailed.

Collaborating Effectively

Once you're engaging in strong, positive communication with
 other managers, you can improve your relationships further by
 focusing on collaboration. Collaboration at the executive team level
 is essential for solving the larger problems your company will face,
 such as how to stretch finances during tough times, major product
 failures at a customer's site, or how to deal with an unhappy
 customer. Don't wait for the CEO to ask you to work with another
 team member to resolve a problem. Build the relationships first so
 that when a problem occurs, you are already working collaboratively
 with the appropriate manager.
To solve some problems, a team or manager may be required to
 change an approach. For example, if improving the request
 for quote (see Chapter 11) process requires that
 sales supply engineering with more information up front, your team
 gets the immediate benefit of time savings while the sales team
 incurs additional costs. However, the company as a whole will
 benefit from the changes. If you have a good working relationship
 with the sales manager, such changes will be easier to support and
 endure.

Chapter 11. LISTENING TO YOUR CUSTOMERS

The development team's relationship with sales and customers can
 be a source of inspiration—and a source of frustration. It can be inspiring because great ideas
 come out of customer and sales interactions; it can be frustrating when
 communication problems lead to unnecessary work and when sales promises
 features or products before consulting with development about the
 reality of those promises. As development manager, you must always
 remember that the company's success depends on pleasing your
 customers—even if that means dealing with frustrating situations.
Although many software engineers at small companies have some
 customer exposure, most engineers do not see customer communication as a
 primary strength or personal work goal. If you are new to the head of
 engineering position, you will need to appreciate the importance of customer-engineering communications.
This chapter covers several considerations that can be important
 when working with sales and customers: customer satisfaction, meetings, sales promises, requests for
 quotes, and client requests.
Customer Satisfaction

Keeping customers satisfied is a necessity for a small company
 that hopes to be successful. Simply creating a great product will not
 guarantee ample sales if you and your company fail to focus on
 customer problems and requirements. Remember that buyers always have
 other options: They don't have to spend their money on your
 product.
Customer satisfaction is not just a sales and account management
 goal; it requires the efforts of the entire company, including members
 of the development team. As development manager, you are responsible
 for delivering a reliable product on time, but you also need to
 provide service to company customers during and after
 development.
By providing clients with updates of work in progress, seeking
 their opinions, and listening to their concerns, engineers can help
 instill confidence in the company and its products. Speaking with
 clients after product delivery to listen to their concerns can help
 you catch problems early before they get out of hand.
Of course, customers expect you and your company to deliver a
 working product on time, but if you know you can't meet a delivery
 commitment, you need to be honest and straightforward about the
 situation. If delivery will be late, the client needs to be informed
 of the delay as soon as possible. Early communication allows customers
 to adjust their plans and schedules for rolling out the release when
 it is easier and less expensive for them to make such
 adjustments.
Before contacting any customer directly, discuss your concerns
 with your boss and the marketing, sales, and customer support teams to
 determine the best communication approach. Marketing, sales, and
 customer support teams might believe you are undermining their efforts
 if you communicate with a client without including them in the
 discussion. Since sales and customer support are responsible for each
 specific customer relationship, let managers know what you plan to
 communicate and work out the best approach—the interaction can be a
 joint phone call, an email, a meeting, or a direct call in which you
 or another manager summarizes product problems or concerns.
REALLY LISTENING TO AN ANGRY CUSTOMER
A former boss did a great job handling a product failure. An
 older product experienced a significant failure. The customer was
 really upset and ready to stop using our product and take his
 business elsewhere.
In response, my boss listened to the customer and then
 acknowledged his concerns and our failure. He then proposed that it
 was time to get the customer off this older system and on to something more
 current, as the product had aged with all of the custom changes made to it. The customer
 responded positively and was pleased when they received the new
 version of the software at a significantly discounted price.
—Engineering manager

When a product or service disappoints a customer, listen
 carefully to the customer's concerns. Acknowledge the concerns and
 provide accurate information about the problem along with an
 explanation of what went wrong and how you will improve it now and in
 the future. If you can, find and present alternative solutions to the
 problem.
If a serious quality or reliability issue is discovered, a more
 in-depth response is necessary. Investigate the problem, provide an
 explanation of what happened, and outline the steps that will prevent
 the problem from reoccurring. Learn about the specific client's needs
 before preparing this information. Some prefer a cursory explanation,
 but others want to be presented with considerable detail to help them
 fully understand what happened. In some cases, you may need to discuss
 what you hope to say with company legal counsel before you contact a
 client so that you can be informed of any legal issues related to
 providing detailed explanations of problems.

Customer Meetings

A great way to understand your customers is to meet with them. Seek out opportunities to listen to their
 concerns firsthand and to learn how they are using the software. Understanding common problems and requirements
 is a crucial part of setting long-term product direction and making
 short-term improvements. Avoid the temptation to meet with clients only when specifically asked to do
 so.
When a client requests a meeting with engineering, a specific
 technical goal is usually the focus. As engineering manager, you may
 be expected to discuss the product from a high-level technological
 perspective, but avoid providing too much technical detail to those
 who require only a summary. Also, always show enthusiasm for the product and technology, because it
 helps build the customer relationship. An enthusiastic development
 manager builds customers' confidence in the company.
Before the meeting, learn about the client's concerns and what
 he or she hopes to gain from the meeting. Work with the sales team to determine which topics to cover and what
 the company's goals for the meeting are. Get an agreement from sales
 about engineering commitments regarding deliverables, and be prepared
 to respond if you are asked to make a commitment during the meeting.
 If your answer is not an obvious yes, set a
 specific day by which you will be able to provide the answer—better to
 take some time to think through your answers to requests than to
 disappoint an important client. During this time, you can discuss the
 request's importance with sales to make appropriate business
 decisions.
When presenting information, coordinate with sales about who
 will present what information. Review each other's material before the
 meeting to check for inconsistencies and redundancies. Advance
 planning can make for a smoother presentation with fewer unpleasant
 surprises. You might find it helpful to practice delivering your
 presentation in front of the development team before you present it to
 a client.

Closing the Deal

Sales people focus on closing deals with clients in ways that
 satisfy the client and are useful to the company's bottom line. Sales
 people need to listen to the client's requirements, then talk to
 others in the company about what can reasonably be accomplished and in
 what time frame, and finally work to close any gaps to please the
 client. This process is usually iterative for larger sales of software products and services.
DOING ALL THE TALKING
One of my worst customer sales presentations was a joint
 presentation with my company's sales rep. We were both expected to
 present our product offering to the customer, but we did not meet
 and clearly divide the presentation topics. I assumed that I would
 talk about the product technology and he would discuss sales and marketing topics. At his request, I sent my
 presentation to him the day before the meeting for his review. He
 did not send me his material, although I asked for it.
At the meeting, the sales rep went first; he delivered my
 presentation, and did it poorly. I was stuck rehashing the same
 slides quickly. He admitted that he had not prepared his own
 presentation, so he used mine. I never trusted him again.
—Hardware engineer

In a well-run company, management has created a process for
 sales request validation. A sales request process
 usually requires rapid engineering response because the company needs
 to close deals and clients need the information to make
 decisions.
If your company doesn't have a sales request process, set one
 up. First, talk to sales about its needs and time frames. Then work
 out what information you generally need from sales to make estimates.
 Splitting estimates into firm quotes and
 rough quotes can be useful in a cooperative
 environment. You can generate rough quotes faster than firm quotes and
 use ranges of delivery dates that require less information to create.
 Rough quotes can be useful for establishing the feasibility of
 concepts, but they should not be used to close a deal.
A sales request process with buy-in from the sales department is
 essential for the success of a small company. Not having a process in
 a company with poor controls will lead to problems.
When the Sales Team Overpromises

If a sales person wants to close a deal and earn his
 commission, he listens to the client's needs and then makes promises
 on what can be delivered to match those needs. Unfortunately, on
 occasion, sales people will promise clients engineering deliverables
 without first consulting you. In a poorly managed
 company, the CEO gives the sales team incentives to sell but
 enforces few controls over what they can sell. If the client's needs
 are greater than the product can deliver, a naïve,
 less-than-ethical, or uninformed sales person can promise the
 additional functionality without first confirming that those
 promises can be kept.
Of course, such promises frustrate because they can
 and often do impact other, more reasonable, development team
 deliverables. Almost every engineering manager has run into the
 problem of unexpected customer promises by overeager sales people, leading to a complete
 redefinition of the product release schedule. Sometimes even a
 relatively small client can "hijack" the development calendar,
 ultimately stunting future growth that depends on some planned
 functionality.
A mishandled new sale can shift the product direction away
 from the sweet spot of the market and toward one particular
 customer's needs. Instead of each sale demonstrating the market
 potential for the product, this sale diverts the company from
 creating the product that many customers really want. Small and
 growing companies need to keep to their product roadmap and continue
 to build on their whole product offering instead of bolting new
 features on to the current offering for one customer.
In some cases, your company will need to adjust the
 development calendar to close a particularly important deal. The CEO
 or executive team should be consciously making these types of
 decisions, as they will best understand the impact of the choice on
 the business.
To stop a cycle of unchecked sales promises, talk with your
 boss and the management team to create guidelines for a sales
 request process. You can make a strong business case for creating
 this process: Letting individual sales deals drive a small company's
 development strategy can lead to company stagnation or
 worse—failure. If requests for customer features as part of a large
 sale appear to drive the product off track, review the requests with
 senior management and, as a team, make an appropriate choice as a
 logical business decision. You may need to coach other team members
 if frustrations continue about business decisions that lead to
 inefficient delivery schedules or less-than-ideal technical
 solutions.

Requests for Quotes

Long sales cycles (6 to 12 months) are common for expensive
 and complex software. Long sales cycles are also common for software as
 a service (SAS) offerings in which the long-term customer
 costs of the relationship are high. For these types of software
 purchases, customers investigate the product and service thoroughly
 before making a purchase because of the potential impact to their
 businesses. This investigation often starts with a request for quote (RFQ),
 sometimes called a request for procurement (or
 a proposal). An RFQ usually requires that engineering contribute
 information.
Customers will issue RFQs for expensive software and expect a
 quote from the company that indicates price and often specific
 services and new program features. Typically, the sales team will be
 responsible for supplying RFQ responses. Sales will send customer
 requests to development and other teams to provide the information
 required to complete the quote. Most RFQs include questions
 appropriate for engineering that help the customer assess how the
 software works as well as its risks and reliability. Typically, the
 RFQ requires a quick turnaround from engineering. Responses must be
 factually accurate, compact, and understandable, and they must
 highlight the positive aspects of the product.
Because supporting sales to respond to RFQs means development
 must quickly deliver information, preparation is critical. First,
 engineering must work with sales to devise a request process that
 defines how the sales team communicates requests to you, what
 information is included in the RFQs, and how engineering will
 respond. Failing to create a process will lead to mistakes, such as
 the following:
	Sales failing to inform engineers of the need for a quote
 until the day it is due

	Sales failing to provide crucial information

	"Guesstimates" provided by individual engineers being treated as true
 estimates

	Development time being wasted in collecting information or
 preparing the wrong information

	Schedule dates being misunderstood in the quote

Second, devise a quick method of providing estimates to the sales team. The quicker the estimate, the more extra
 time you can insert to make sure that deliverables are released on
 time. When you create time estimates, make sure you clearly describe
 the quoted functionality and the accuracy of the estimate. In some
 cases, providing estimates based on rough time ranges can be useful
 to sales and the customer as long as sales doesn't use
 them to price and sign the deal. (Chapter 12 has more information on
 estimates.)
Third, build up a list of common RFQ questions. Most requests include common questions that you can
 anticipate in advance. If you build this list in advance, you will
 need to supplement it only with those few questions you did not expect. If you
 receive your first RFQ without having prepared for it, use the
 opportunity to start a list of questions and answers. As new
 questions come along, add them to your RFQ list.
Here are some examples of questions that might appear in an
 RFQ.
	Describe the system.
	Create a customer-facing system diagram. The diagram can
 be simple and fit on a single page, but it should provide a
 clear overview of the system. Supplement it with a written
 explanation of how the system works. The explanation can also
 be short and need not rely on internal technical terminology.
 Work with marketing and the technical communications group to
 make this material customer ready.

	Describe the software
 technology.
	This is an open-ended question. Be prepared with an
 overview of how your product works and specific technical
 innovations: Prepare a list of what libraries are used in the
 product, what languages were used in building it, and what
 standards your product follows. The customer may be looking
 for technical issues and support risks, so be prepared to
 explain known issues.

	List third-party code or
 applications used by the product.
	Ask the senior architect to create this list in advance.
 The customer may be looking for system and security risks.

	Describe the product's risks and
 reliability figures.
	Collect the statistics that best reflect your system in
 advance. This data can take considerable time to collect, as
 it usually requires testing and analysis of the system to understand its reliability
 under different conditions. Performing product and system risk
 analyses requires knowing the types of risks that are of most
 concern to customers, such as data integrity, mean time to
 failure, security risks, or throughput reduction risks.

	Describe the new development risks
 if the product requires extra development.
	Development risks become important when part of your
 work involves developing new code to support a customer's
 particular needs. They might be concerned that product changes
 won't be delivered on time or that the changes impose some
 technical challenges that can't be easily solved. Identify
 standard development risks and provide some discussion of
 development's risk-mitigation process. Be prepared to add
 specific risks when responding to the RFQ.

	Describe the development
 process.
	Prepare an overview of your development process,
 including drawings. A customer may need to understand how you
 build quality and security into your system.

	Describe the quality of the product.
 (Alternatively, list measures you take to ensure high
 quality.)
	Provide quality statistics from the product's latest
 release. You can provide customer-facing statistics based on
 problems found in production and describe the quality process
 and metrics.

	Define the product's
 limitations.
	Customer concerns may include speed, database size, and
 scalability. Be prepared for follow-up questions about how you
 collected the data you provide.

	Describe how you ensure that the
 system is secure.
	Provide assurances that security processes are installed
 and that the security technology used is sufficient and up to
 date.

With a request process in place and a document providing the
 answers to the most common technical questions, you can usually
 provide a quick turnaround on a customer RFQ. Even if the RFQ includes a few surprising
 questions, you will be able to complete the request quickly if you
 are properly prepared.
It's easy to forget how long it takes to respond to RFQs when
 you're creating the overall product schedule. Be sure to factor in
 time to the schedule to allow for RFQs, as they can be time
 consuming and can require customer visits and multiple
 conversations. Depending on the nature of your company's sales, you may also need to allow for some unplanned
 customization time for new orders.

Support and Customer Requests

Every project seems to encounter customer requests and changes
 that crop up after the deal has been signed. Customers often discover
 issues and more specific requirements for a newly ordered software
 system. This information can help you improve your product.
Since you can be pretty sure that new customer requests will
 appear after development begins, add time up front to accommodate them
 in the production schedule. Account for a percentage of development
 time to support current customers. Scheduling without allowing for late requests often leads to
 delays. Even more importantly, make sure that your company has
 implemented a change control process. If no such
 process exists, work with other teams to create one. More information
 on a change control process can be found in Chapter 14.
Your company's customer service team is also a great conduit for
 information gathered from customers. Maintain a good relationship with
 the team to get the best information. Even the best relationship
 between engineering and customer service can become adversarial,
 however. The customer support team empathizes with the customer's
 problems and may insist that you handle development requests and
 issues immediately.
From a practical point of view, the development manager must
 balance customer requests with ongoing development. Allowing the
 customer service team some control over how development handles client
 requests can improve the relationship between support and development.
 Set aside a fixed percentage of time and resources for dealing with
 customer service requests. Then, ask customer service management to
 set priorities for requests while considering other company
 stakeholders, including QA and the product manager. Ask customer
 support to order requests and grant them the budgeted engineering
 hours and quick estimates on their requests. In some cases, you may
 need to create a "bug repair release" to support client services if a
 history of deferring defect repairs exists.
EMPOWERING CUSTOMER SUPPORT
At my company, customer support had many ongoing requests from
 customers. Meeting with customer support became an intense weekly
 discussion. Customer support management wanted all customer requests
 fixed in the code quickly.
From my perspective, 25 percent of development time went to
 dealing with customers' defect and minor enhancement requests. The
 remaining new development consumed the rest of our time, and those
 schedules were under pressure. Not enough time was available to
 devote to customer requests.
I decided to shift the perspective of the customer support
 manager by pulling him into the solution. I gave him a budget equal
 to the maintenance time available and calculated in advance how many
 hours of time were available per release. We would provide quick
 estimates for him so he could decide how to spend his time per week.
 He would make the requests, spending his hourly allotment; we would
 schedule the work and tell him when it would go out in a
 release.
He was happy with this approach and began to appreciate the
 difficulty of servicing all customer requests when the budget was
 limited.
—Engineering director

Part IV. MAKING WORK FLOW: PROJECTS, PROCESS, AND QUALITY

Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
In addition to working with people and technology, the development
 manager must strive to enable efficient workflow. Project management,
 development processes, and quality are significant topics—and many books
 have been written about each. This section cannot provide a complete
 discussion of each topic, but it does offer an introduction to each,
 with an emphasis on applications for small software companies. If you
 want to read more, you'll find a list of references provided at the end
 of each chapter.

Chapter 12. PROJECT ESTIMATING

As soon as someone asks "How long will the project take, and how
 many staff hours are required?", your reputation as development manager
 is on the line. You could offer up a quick estimate that gets the task off of your
 to-do list, or you could take the time to create a thoughtful project
 estimate and be confident that you can actually make it happen.
Winging it by providing a quick estimate might be the fastest way
 to provide an answer, but it's also an easy way to "get fried." And
 after being cooked a few times over poor estimates, most development
 managers start looking for a better estimating recipe.
For new managers, the best estimating method isn't always obvious.
 At the extreme end of the spectrum, you can't make an estimate until a
 complete definition of the effort has been proposed and analyzed.
 Unfortunately, this is not always practical for small companies whose
 approaches must be systematic, simple, and relatively
 straightforward.
This chapter covers the process of estimating a single project and
 creating a model to help you improve future estimates. Estimating models
 can take some effort to set up, but they can be very effective in
 helping you improve both the speed and quality of your estimates.
Building an Estimate

Building a good estimate is a skill and an art that requires
 following a reasoned process and using your experience—even
 intuition—to make adjustments. You will rarely have the exact
 information you need to create a highly accurate estimate for a
 project. Part of improving your estimating skills is realizing that
 you will be making many assumptions and guesses, some of which will be
 wrong. You will succeed when your assumptions and guesses are mostly
 right and when you can successfully split the larger processes into
 smaller pieces to estimate.
When crafting an estimate, do it in a systematic way. Start by
 defining what data you need to collect and how you need to assemble it
 into the estimate. Then collect the data for your estimate: This will
 require that you dig through past estimates and data and discuss the
 project and its requirements with others. Finally, you'll construct
 the estimate by assembling the pieces of data into a coherent picture
 that lets you determine the amount of time and effort required to
 finish the work.
When you have completed your estimate, you'll need to deliver
 it. Your method of delivery can have a large impact on the project's
 success. Let's consider estimating and delivery in more detail
 first.
Creating a Task List

How you build the estimate depends on the project complexity.
 A simple project estimate might comprise a short series of steps
 with an estimated cost in effort and
 cost in calendar days. Cost in effort refers to
 the time required to complete a task, assuming the worker is
 devoting all of his time to the task. This is often captured in
 hours or days of work. Cost in calendar time
 refers to the time required to complete a task, assuming the
 employee won't be able to devote all of his time to the task because
 of overhead tasks, company meetings, vacations, and sometimes other
 projects. This is often recorded in calendar days. For example, a cost of effort of 20
 hours for a person who works 8-hour days and can work on the task 60 percent
 of the time yields 1.5 calendar days (20 hours × 0.6 ÷ 8 hours = 1.5
 calendar days).
Ideally, the project has been sufficiently divided into tasks
 that each make up no more than 5 to 10 percent of the project
 duration and last less than two weeks. To estimate a project with
 dozens of tasks to track, you need to split apart the project into
 smaller tasks, understand the assumptions, identify the risks, and
 then assemble the results. Dividing the project into a series of
 smaller tasks improves the accuracy of your estimate, because
 estimates of time required for smaller tasks are more likely to be
 accurate, as the pieces are easier to understand and often relate to
 previous work for which effort is known. If smaller estimates are
 created properly and without estimation biases
 (discussed later in this chapter), they will, on average, be more
 accurate. Per-task estimates that miss the mark on the high or low
 end tend to average out statistically for the entire project if no
 single estimated component is considerably larger than the others.
 If a single estimated component is considerably larger than the
 others, break it down into smaller tasks and estimate these
 tasks.
When building your estimate, first gather information from
 development team members about the issues that will affect the
 project creation and delivery. Consider each developer's unique
 productivity level: The same task might take considerably more time
 if undertaken by one engineer versus another with different skills,
 attitude, and experience. Estimates also need to account for time
 necessary to work on other projects assigned to team members.
Next, create a list of tasks (the
 approach) required to complete the project. You
 can review the list of tasks required for other recent projects for
 comparison. A common estimation mistake is omitting important steps,
 including those that are not in the "critical path" or those that
 seem uninteresting. As you might not remember every task, consider
 the following list of easy-to-overlook tasks as you compile your
 estimate:
	Testing
	Customer requested changes

	Systems integration
	Staff vacations

	Build and packaging time
	Buffer times

	Documentation
	Alpha/beta release customer
 support

	Marketing support
	Project risk allowance

	Training
	Technical risks and discoveries

	Peer reviews
	Technical integration

	Customer reviews
	

Your approach to estimation will differ based on the type
 of business and the product it creates. If the
 business provides many small and similar type jobs, an estimating
 model with a list of choices and a quick summary can work well. If
 the business builds large projects over a period of several months, creating a
 custom spreadsheet for each estimate might be necessary. Another
 alternative for projects with many dependencies is to use a
 Gantt chart program, such as Microsoft Project,
 to prepare your estimate. Gantt chart programs allow you to test sample
 schedules and calculate costs based on those schedules.
After you have created your task list and approach, you can
 start creating task estimates.

Creating Task Estimates

To collect task length estimates, you can take several
 approaches. You can look back at past projects and use the
 time required to finish each project step as a rough
 guide for what you'll need for the current project. This approach
 requires that you keep information on past estimates and the amount
 of time each task actually took to implement. Adjust these values
 only as needed to scale the task to your current estimate needs. In
 addition, consider that historic project data is valuable for
 identifying tasks that didn't get considered in the original
 estimate.
A second approach to get task estimates is to talk
 individually to developers and ask for their opinions. This approach
 requires that you engage in multiple conversations in which you
 explain the task and ask for help in creating the estimate. Make
 sure you ask what assumptions the engineer is making (for example,
 are the estimates in calendar time, or is the engineer counting on
 any specific tools or approach?) to ensure that these assumptions
 match your understanding of the efforts required.
A third approach is to select two to five senior engineers to
 be your "elite" estimation team. This group would meet to create
 estimates for new projects and evaluate change requests to projects.
 In the course of the work, each engineer can become a specialist in
 a particular area and offer insight into the expected costs of tasks in that
 area.
A fourth approach is to schedule an estimation meeting to
 estimate the tasks as a group. With this approach, you can describe
 each task to everyone and request that each participant create an
 estimate independently. Moving around the table and asking for
 suggestions can provide estimates, but people can show a first
 speaker bias, in which everyone adjusts their numbers to be closer
 to those of the first speaker. Consequently, you can ask that
 everyone write down his or her number and show the estimates at the
 same time. An alternative is to use a specially made
 estimation deck of cards that team members can use to hold up their
 estimates simultaneously.
After everyone in the group estimation meeting offers input,
 ask the high and low estimators about their figures. Often they
 might have realized a key point about the task that other estimators
 have forgotten. Some discussion of the point can be useful as you
 settle on the most reliable estimate.
If limited information is available when creating task
 estimates, you and other developers might be more comfortable
 suggesting rough estimates. A reasonable scale
 is roughly based on factors of 2: 1 hour, 2 hours, 4 hours; 1 day, 2
 days; 1 week, 2 weeks, greater than 2 weeks. Break down tasks that
 take longer than 2 weeks into subtasks and provide estimates for
 those. If you draw a size line on the whiteboard, you can mark
 estimates up as they are made and view them in total, as shown in
 Figure 12-1.
[image: Sample estimating size line]

Figure 12-1. Sample estimating size line

Considering Estimation Bias

Before you can create an estimate, you need to adjust numbers
 to account for estimation bias. Estimation
 biases have multiple causes. For example, engineers are generally
 optimistic, especially about tasks they want to
 do. On the other hand, they might forget about a few mundane
 details. Since estimates turn into schedules by which the engineers
 are judged, some engineers will pad time estimates—as a matter of human nature. Another common bias is estimating
 more time required for tasks that an engineer doesn't want to do,
 especially if he or she believes the solution is technically
 inferior. Finally, some engineers might not be interested in
 estimation and will spend too little time thinking
 through what is involved.
Once the team estimates are in, you can revise estimates from
 team members based on their history, especially if you are getting
 information from only one or two engineers. Knowing a bit about each
 person's past predictions will help you know how to adjust their
 current estimates. You might multiply their estimates by a factor to
 account for past biases. For some engineers' estimates, the
 multiplier is as high as 2 to 3 times, implying that a job with a
 20-hour estimate will actually take 40 or 60 hours to
 complete.
An engineer's desire to perform a task can also affect his
 estimate. If he looks forward to doing the work, his estimate may be
 low. If he has no interest in the task, the estimate may be higher
 than it should be. You'll need to use your management sense to
 detect how much bias is present in the estimate.
After you have collected the estimate data, you need a simple
 approach to pulling together the final estimate.

Building the Estimate

With all the estimates in hand, you'll begin assembling the
 pieces into a cohesive picture. This picture should show estimates
 for all the elements involved as well as totals so that you can
 review your assumptions and make changes to the estimate.
As soon as you have finished an estimate draft, "What if ?"
 questions will arise:
	What if we implement some features and not others?

	What if we add or remove staff?

	What if we start earlier or later?

Build your estimates to make it easy to answer such questions.
 A spreadsheet estimating approach is an excellent way to explore
 different options, because it can be set up to try out different
 options. If built correctly, it should make it easier for you to see
 the impact of different feature sets, more or less staff on the
 project, and different start dates. A well-made spreadsheet will be
 designed so that single-cell entries allow for shifting feature
 sets, staff size, and start dates.
Figure 12-2
 illustrates an estimating spreadsheet with key construction features
 highlighted. The tasks are entered in column B (Item). The
 xs in column A (Use) control whether the task
 is to be included in the total. Column C contains the engineering
 estimates in desired units (hours in this example)
 that are multiplied by the factor in column D (Est. Mult.) to obtain
 adjusted totals in days in column E. Column D allows you to add in
 extra time based on your experience with individual engineer's
 estimates. Similarly, QA estimates for the tasks are
 entered into column F, QA multipliers are in column G, and column H
 contains the total cost for that task in days.
In Figure 12-2,
 some estimates are multiplied by 1 (no change) and others are
 multiplied by other factors up to 2. These factors allow you to see
 the original data and scale the information to account for
 estimation biases.
[image: Cost and schedule estimate spreadsheet]

Figure 12-2. Cost and schedule estimate spreadsheet

The number in cell C26, set here at 75 percent, is the
 percent availability to assign to the overall
 engineering and QA team estimates. All calendar day estimates in columns E and H are adjusted by 1 ÷
 (availability constant) to represent the
 increased time required to complete a project because engineers
 can't work 100 percent of the time on the effort. (However, if they can, then
 you can set the percent availability to 100 percent.)
Also near the bottom of the spreadsheet, calendar days are
 added and a done date (completion date) is estimated by dividing
 total calendar days for engineering and QA by the size of the teams.
 Recognize that dividing by full team size is a crude approach that
 works only for smaller teams with tasks that have few dependencies.
 (For more information on these estimates, read The
 Mythical Man-Month by Frederick P. Brooks, Jr.)
This example is not intended as a
 "working spreadsheet" for general purpose estimating, but instead
 serves as a teaching tool. If you want to work through it as an
 example, construct the spreadsheet by copying the data elements into
 your spreadsheet and then type in the formulas. Reread the
 introduction that covers the spreadsheet construction approach used
 in this book. Also, pay attention to the lowercase
 x character used in this example. In addition,
 keep in mind the difference between the separators used in
 OpenOffice.org Calc (semicolon) and Microsoft
 Excel (comma).
You can start with this example spreadsheet and modify it for
 your specific estimate in a number of ways, such as adding rows to
 correspond to features or tasks. You can also expand this
 spreadsheet to cover other teams, including technical documentation
 and product marketing teams.
This example illustrates how to build an estimation worksheet
 to solve a common estimation problem: projecting the end date for a
 project and the total number of staff hours required, while
 providing quick "What if?" estimates based on different features.
 You can use similar formulas and approaches to create templates that
 fit your projects and estimating style.

Writing and Delivering the Estimate

After you've completed the hard work of collecting data and
 creating the estimate, you can write up the estimate and deliver the
 information to the person who requested the quote.
An estimate should consist of a high-level description, assumptions, the type of
 estimate you've created (rough or exact), resources required, a
 delivery date, and a total cost including labor, expenses, and
 materials. Keep the information short, succinct, and in list form
 when possible, ideally limiting the estimate to a single page.
 Describe the exact parameters on which your estimates are based, and
 clearly state each assumption, especially any make-or-break
 assumptions. Be clear about the total cost and weeks to delivery,
 and accompany the proposed completion date with a required start
 date. If necessary, attach an appendix to describe specific
 technology in more detail. Estimates can provide ranges of possible
 costs and timelines (rough estimates) instead of exact hours (exact
 estimates). Add the delivery date and cost at the end of the
 estimate, because often the person receiving the estimate will not
 read anything other than those key pieces of information if the cost
 delivery dates are at the beginning.
Even when your estimate considers every detail of the project
 and is written clearly and succinctly, things can go wrong.
 For example, when the job finally arrives in engineering, you might
 discover that the sales person sold something quite different than
 what you expected, the customer wants a different technical solution
 than the one proposed, and you have to start work immediately, even
 though two of your team members just left for three-week vacations.
 As you go into hyperdrive trying to clean up this mess, you realize
 that something went wrong between the point at which you completed
 the estimate and the point at which the job arrived in engineering.
 In the interest of avoiding future pain, you resolve to change your
 practices when it comes to delivering estimates.
Here is some general advice for anyone who has been burned by
 a new job that differs from that described in the estimate:
 Provide a written estimate and deliver it in
 person. Anything else will adversely affect your health.
 A written estimate gives you the opportunity to identify mismatches
 between the customer's requirements and the estimate provided. These
 mismatches can be highlighted if you deliver all your estimates in
 person and talk through the details with the receiver. The
 combination of a written estimate for references and the interactive
 discussion adds considerable clarity about the estimate and about
 the assumptions made by the requestor and estimator.
Delivering the estimate in person is the best case, but it
 could be delivered by email as you talk on the phone with the person
 who's receiving the estimate. If you deliver the written estimate
 prior to talking to the person who receives it, it is possible that
 the estimate may be delivered to the customer and even approved by the customer before you can fully
 explain your assumptions and the estimate's intentions. Often the development team will be asked to bear the
 costs of fixing any problems created by misunderstandings or other
 miscommunications.
Verbal estimates with no written documentation usually lead to confusion and
 misunderstandings after a project is underway. Common
 misunderstandings occur because of miscommunications concerning the
 project start date, because engineering assumptions are not taken
 into account, customer assumptions are not passed on to engineering,
 rough estimates are taken as exact estimates and used for contracts,
 and customer requirements are not fully understood.
That said, don't count on estimate assumptions being taken
 seriously unless you emphasize them verbally along with the written
 descriptions. The person accepting the estimate might focus only on
 cost and delivery time, ignoring other factors.
For assumptions that critically affect the company, make sure
 your CEO buys into them—consider, for example, a new project that
 requires that development delay working on another business-critical
 project to focus on the new one. In general, make sure that all
 stakeholders are aware of all the impacts resulting from performing
 work on the projects you estimate. If your company has a marketing
 group or product managers, include them in your estimate delivery
 process as well.

Collecting Raw Project Data

Planning and creating estimates requires that you understand how
 people spend their time. Efficiency and process improvements benefit
 from time breakdowns as well. Any company that might be considering
 purchasing your firm will also want to see information on project and
 team efforts. You won't usually need to collect this data during the
 company startup or foothold stages, but it becomes important during
 the growth stage.
One common approach to collecting time-effort information is to buy a software
 package that tracks time per project per individual. Such packages
 generate reports to show the staff breakdown in different ways.
 Software consulting firms, agencies, and large companies often use
 these packages.
However, a "time card–tracking" package has some disadvantages for
 small firms: Some developers resent individual time recording systems
 and might leave the firm because of them, and these packages are expensive to set up and
 maintain.
Collecting coarse-grained time data in a spreadsheet can
 be an efficient solution for tracking project time at a growing firm.
 To set up such a system, you need to define project efforts and how
 you want to report data, and then collect the information in a
 particular format. The spreadsheet can have simple reporting built
 into it. You can ask engineers to summarize their hours in an email
 once a week. If you use a less formal approach for collecting data, you can simplify the process.
An informal spreadsheet approach provides information that is
 not strictly correct, so don't use it for
 accounting or billing purposes. However, this data is
 mostly correct, so you can use it for estimating
 purposes. Creating a high-level view will reveal information about
 where and how developer time is spent relative to where and how it
 should be spent to get maximum return.
One caution with this approach: Do not use this data collection
 process as an opportunity to micromanage your team. If you start
 nitpicking about why one week shows 10 percent more overhead hours
 than the next, your team members will become resentful and might start
 providing incorrect information.
To avoid this, make sure that the team knows how you are using
 the data. You can present the collected information to the team to
 show how you will be using the data in an estimating model. Explain to
 your team how this information benefits them, and they will be more
 enthusiastic about the process. Potential benefits of this information
 include improved planning, schedules that are not overloaded (forcing
 everyone to work weekends), justifications for more staff to handle
 more work, and clarity to executive management about the true costs of
 each request. When presenting the information to your team, also
 describe your efforts to make the overall data collection simple and
 lightweight. It is difficult for engineers to feel enthusiastic about
 an unnecessarily complex data collection effort that consumes their
 time.
Summarizing Data Using a Spreadsheet

Figure 12-3
 illustrates a spreadsheet of projects versus weeks for a development team. This
 example shows seven weeks of data collected by the development team.
 Using this approach, you can assign a worksheet to each team. Each
 week, add an additional column to the chart and insert that week's
 data.
[image: Worksheet tracking engineering time]

Figure 12-3. Worksheet tracking engineering time

You can use the hours-tracking spreadsheet approach to collect
 information for multiple teams and summarize them on a single
 worksheet. To store other teams' information, copy the engineering
 worksheet and rename and modify the underlying data. To create the
 summary worksheet, first copy the engineering worksheet and rename
 it Summary. See Figure 12-4.
[image: Example of summary worksheet in an hours-tracking spreadsheet]

Figure 12-4. Example of summary worksheet in an hours-tracking
 spreadsheet

Figure 12-4
 illustrates a very simple example of a summary worksheet as part of
 a larger spreadsheet containing two worksheets—one for engineering
 (called Eng) and one for quality assurance
 (called QA). Each worksheet has collected data
 for each team. In this example, the summary worksheet adds the
 contents of the two groups together to show a combined sum of
 hours.

Engineering Maintenance and Overhead

Project estimating also requires that you have an idea
 of how much time engineering is spending on maintenance and overhead, separate from the actual project work. You
 must know this information to plan future project work and create
 estimates, because it helps in translating project days to calendar
 days.
You can use the raw time data you collect to create
 average available percentages. Consider this
 example: Suppose your development team spends, on average, 67
 percent of its hours over 8 weeks on project work (33 percent
 overhead) with no significant overtime. You can convert project
 hours into calendar hours like so: 100 ÷ 67 = 1.49. Using this
 information, you can determine that a task that takes 12 engineering
 hours to complete will require 12 × 1.49 = 17.91 calendar hours, or
 about 2.4 days (17.91 ÷ 8 = 2.24), to complete.
An automated approach to calculating overhead percentage can
 be incorporated into the data collection process. Figure 12-5 illustrates this approach, using
 the total time and total project time to calculate overhead.
SIMPLE TIME SUMMARY
I worked for a small company that grew fast. We did not have
 a method of estimating how much time teams spent per project. At
 the time, tracking packages were too expensive to purchase, as the
 business was not doing well. Individuals resisted time
 reporting.
The manager summary approach worked reasonably well for
 giving a bird's eye view of where time was going. As it turns out,
 this estimate was reasonable enough that the management supplied
 it to a company that ultimately purchased our company. The data
 met the buying company's needs.
—Planning director

[image: Calculating overhead]

Figure 12-5. Calculating overhead

Be cautious of data that includes significant overtime hours, especially if it's calculated based on
 40-hour work weeks and not total hours. Significant overtime hours
 can skew calculations even if total hours are used—unless, that is,
 your team's standard practice is to work excessive amounts of
 overtime. (And if that's the case, your calculations will be
 correct, but you should reread the first section of this book,
 because you and your team probably don't have a healthy work-life
 balance.)
Another caution is to consider how vacation time is averaged into your data. Vacations
 tend to be taken in May through August and in December, rather than
 being distributed throughout the year. Consequently, you should
 separate out your vacation time when collecting data. In addition, look for vacation
 patterns such as many vacations during summer and the second half of
 December, and plan your projects accordingly.
Don't be surprised to discover that your team's non-project
 hours are in the range of 25 to 50 percent of the normal work hours
 per year. A typical technology company has 3 weeks of vacation, 7
 days of holidays, plus sick leave. These factors alone make up 10.4
 percent of the workdays per year. Meetings, maintenance tasks, and other regular duties can take
 up a large slice of your team's time—from 10 to 40 percent,
 depending on the company and culture. With project hours being a
 percentage of total calendar hours, the inverse (1 ÷ percent
 availability) is used to convert estimate hours into calendar days.
 So, for example, 60 percent availability is figured like so: 1 ÷ 0.6
 = 1.67 (1.67 is the multiplier); therefore, 3 work days is 3 × 1.67
 = 5 calendar days for this situation.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	Controlling Software Projects: Management,
 Measurement, and Estimates, by Tom DeMarco (Prentice
 Hall PTR, 1986)
	Developing Products in Half the Time: New Rules,
 New Tools, by Preston G. Smith and Donald G. Reinertsen
 (Wiley, 1997)
	Estimating Software Costs, by T.
 Capers Jones (McGraw-Hill Osborne, 2007)
	Manage It! Your Guide to Modern, Pragmatic
 Project Management, by Johanna Rothman (Pragmatic
 Bookshelf, 2007)
	The Mythical Man-Month: Essays on Software
 Engineering, Anniversary Edition, by Frederick P.
 Brooks, Jr. (Addison-Wesley Professional, 1995)

Chapter 13. STARTING A PROJECT

Starting a new project can be similar to planning a trip.
 You need to choose a destination, decide who is going with you, figure
 out the costs, determine how you'll get there, plan for the unexpected,
 and finally take the first step out the door. With a project, you define
 the goal, assemble a team, set the priorities, create a plan, prepare
 for risks, define the framework for carrying out the project, and take
 the first step with a kickoff meeting. In both scenarios, planning your start
 before you take off will make the rest of the journey more
 pleasant.
In many small software firms, engineers jump directly to the
 middle of a project by immediately starting to write code and seeing if
 it works. However, forgoing a properly planned start will guarantee that
 the end product will face difficulties with delivery, customer
 satisfaction, quality, and cost. Imagine getting up one day, driving to
 the airport, and hopping on a plane you choose at random. It might be
 exciting at first, but it probably won't be much fun once you get
 there.
With any project, or trip, you should first focus on understanding the goal.
Understanding the Goal

At the start of the project, the goal might seem obvious: Build the
 software. The customer wants a particular problem solved and wants to
 purchase software to solve it.
Creating a general-use software program is not just about one
 customer's goal, however. A customer might ask for a very specific
 software solution but will not be sure that this solution will truly
 provide the answer to a core problem until after the software has been
 delivered and used in a production system.
As you begin to fully understand the customer's problems and
 solution requirements, you will begin to understand your
 company's project goal. If you're building a
 product for a single customer, you can directly ask the customer to
 specify what is needed. If, however, you are selling a product to many
 customers with which you don't have direct contact, your product
 marketing team is responsible for understanding the market and acting
 as the development team's customer. Keep this information in mind as
 you consider how you need to understand the customer or user of your
 software and how your company and development team fits into the
 picture.
Once you understand your customers' problems and needs and see
 your company's role in providing the solution, your next step is to
 agree on your common goals. For example, consider the following questions: Is
 the customer looking for the software to reduce operating costs? Does
 the customer need the improved functionality to offer better customer
 service? Is your product part of a larger sale the customer is making
 with a fixed time frame? Is the customer trying to offer a totally new
 product or service to its customers? Is the customer hoping to produce
 a highly scalable system of which your product is one
 component?
The larger and more important the project, the more important it
 is for you to talk to the customer
 directly. Without directly conversing with
 customers to understand what they are trying to achieve with a
 solution, you will likely miss the mark with the software you deliver. When you talk to individual
 customers, echo what you hear in your own words to be sure you
 understand. Ask about their current needs and understand their plans
 for using the product after rollout.
After the customer meeting, create a memo recapping the
 information and requirements as you understand them, and send this to
 the customer for review. This approach will help avoid potential
 misunderstandings in the future.
Once the project's goals and requirements are clear, you can start the
 planning process by selecting a project development team.

Assembling the Project Team

If your company is working on one large project, assembling your
 team is not a project issue, but a general staffing issue. Follow good
 hiring practices and build the best team you can (as described in
 Chapter 4). Many small companies work
 on multiple projects that draw from a common team of engineers. In
 this environment, choosing the right team for each project is critical
 to each project's success.
Many managers choose team members by focusing on each
 developer's availability at the time the project needs to start.
 However, availability shouldn't be your sole criteria: Consider the
 candidate's interest and enthusiasm for the effort; the project's priority within
 the company's workload; the candidate's familiarity with the
 technology, ability to work with customers and stakeholders, and
 diversification of assignments; and whether the project will help or
 hurt the developer's career.
Interest and enthusiasm for the effort are important criteria
 for a team member who will contribute to the project's success. An
 engineer who is excited to work on the project will be more likely to
 contribute in positive ways, especially if he or she has asked you for
 a chance to work on it.
The higher the priority of the project for your company, the
 more important it is to assign your strongest engineers to work on it,
 as long as they are enthusiastic about the effort. In addition,
 consider whether an engineer has experience working with the
 technology required for the project, or whether he or she will need to
 spend time learning it. If a candidate needs to learn, can you build
 this into the project costs and timeline and still deliver a
 successful project on time? Training as you go increases the overall
 project risk, which must be considered for high priority projects.
Furthermore, if working on the project requires considerable
 interaction with the customer, does the engineer have a positive
 attitude toward building customer relationships and working with
 customers? If not, you would do better to assign an engineer who
 enjoys working with and listening to customers.
Next, consider whether you are assigning the same tasks to the
 same engineers again and again. This poor management practice doesn't
 help engineers build up their skill sets, which is important in
 helping team members gain flexibility in handling a wide array
 of tasks. You will need such flexibility if team members
 become sick, leave for vacation, or leave the company. Also note that
 engineers get bored performing repetitive tasks, so assigning them new
 challenges can help them stick with your company.
Finally, consider whether working on the project will help or
 hurt a developer's career. Offering a senior engineer routine or
 low-level assignments can reduce his attractiveness to future
 employers. Many engineers realize this, and they'll start looking for
 new jobs if they see their assignments causing their careers to
 stagnate.
Spending time considering the best fit for the job is a valuable
 use of your time. Properly matching people to efforts not only boosts
 productivity, but also reduces risks and improves employee
 morale.
Substitutions

Projects do not always unfold neatly—problems crop up in the
 process as team members' availability changes: Perhaps the project
 requires different numbers of engineers during different parts of
 the development process, or team members become unavailable during
 part of the project cycle. In such cases, you have more than general
 staffing issues to consider.
Substituting one development engineer for another short term
 does not work well, especially if the substitute engineer's time
 involved is less than three weeks and his or her work does not
 result in a clear deliverable (a clearly
 defined section of the code that can be evaluated on its own when
 the work is accomplished). First, the replacement engineer doesn't
 have the same level of project identification as the full-time team member,
 which can lead to low-quality work. Second, the substitute engineer
 doesn't have the full-product perspective. He or she might make
 assumptions that can cause problems that are discovered only later.
 Finally, many engineers find it easier to rewrite others' work than
 to spend time understanding it, leading to wasted effort—which
 sometimes occurs twice, if the original engineer returns to the
 project and reinstates the original code.
Substitutions work best when a clear deliverable is defined as
 the engineer's goal, when the engineer has enough time and expertise
 to understand the code, and especially when the engineer has a
 positive attitude toward working with another engineer's code. If
 these requirements are met, spend time describing the requirements
 of the project to the new engineer in detail and walk through the
 specific deliverable with the engineer. Having another kickoff
 meeting with the entire team can be very effective—it allows the
 team to describe project status, open issues, and changes made from
 the original requirements. Finally, make sure that the new engineer
 agrees that the deliverable makes sense before sending him off to do
 the work.
Political pressure from outside engineering can try to force
 you to swap in a new engineer to show that "everything possible is
 being done" to finish a critical project. As development manager,
 you must explain the costs of this approach to others. If a
 substitution is warranted, consider keeping the substitute engineer
 longer term on the project instead of releasing him or her after the
 original team member returns.

Game Delays

Some projects are delayed at the start due to the
 unavailability of the team. You will be tempted on such projects to
 pile on engineers to help make up for the lost time, especially if
 you have a fixed completion date. If you feel so tempted, take a day
 off and read The Mythical Man-Month by
 Frederick P. Brooks, Jr. (see "Additional Reading" on Additional Reading). The next day, change your game
 plan. You can make up considerable time on a delayed project by
 starting with a single senior engineer instead of a
 team. Together, focus on clarity of requirements, functional
 definitions, and system architecture. This will save you
 considerable time lost by delayed staffing. Come to think of it, you could start your projects that way even if the project did start on
 time and with a full team coding.
Some projects are delayed because a key team member isn't
 available at the start. If a project has a hard completion deadline,
 consider whether starting the effort without the key team member makes
 sense. If the project can be reorganized to allow the starting team
 to do useful work, it may make sense to do that.
One other case of interest is a project that requires
 technical expertise your team currently doesn't have. It may be in
 your company's best interest to ask for a delay of release so you
 can get the expertise—either through a consultant or a team member
 doing research or getting additional training. Charging ahead
 without key expertise can be very wasteful of your company's time
 and resources.

Setting Priorities

Before creating a project plan, you also need to examine
 priorities. Every project has different criteria for success that
 directs its priorities. For some projects, the schedule is the top
 priority because a firm delivery deadline is required. For other
 projects, the security of the product cannot be compromised, even at
 the expense of the schedule. Additional aspects of a project that need
 prioritization include features, costs, resource usage, quality,
 operational policies (how the project is run), reporting, and
 technology choices. Despite what a customer might say and want, not
 every aspect of a project can be top priority.
Make a clear choice about your project's top priority. Identify
 the top priority along with the second and third most important
 priorities. The choices you make determine how you make trade-offs in
 your planning as well as how you make decisions during
 project execution.
A common top priority for software product is schedule—often,
 you're told, because "The Release Date Cannot Move." This is often the
 case when your company requires the project for display at a trade
 show that occurs on a fixed date. Knowing this up front will allow you
 to make ongoing adjustments to your project tactics to increase your
 chance of success. For example, if schedule is top priority, followed
 by quality, and your project is running late, you might consider reducing features to
 ensure that you will release a high-quality project on
 schedule.
Regardless of where functionality falls in your priority list, you
 will also need to prioritize the parts of the functionality you plan
 to build. A good way to evaluate what is most important is to ask
 yourself this question: If the project had to ship early with only one
 or two features complete, what would those features be? Working on the
 most important features first, instead of the easiest features to
 build, is beneficial if you are forced to ship early because schedules
 and priorities change. This happens far too often on
 software projects, so you should consider the feature priority
 order in advance.
With a plan in place, consider the framework for how you will
 organize the effort.

Selecting the Framework

A common framework defines how a team will
 work on the project. Consider four areas: interaction, process, standards, and tools. Without
 formalizing the process, you'll experience a status quo approach:
 We will do this the same way, using the same tools and
 processes we used in the last project. This might be fine
 for completing the project, but failing to consider your framework
 carefully will lead to unpleasant surprises.
Interaction defines how you want to work
 with the team and how team members want to work together, including
 collaboration, meetings, and reports. Some projects include specific
 instructions regarding interaction. For example, the Scrum
 process (an iterative incremental process of software
 development) requires a daily standup meeting. Other projects might or
 might not include definitions of all the interactions of the team. A
 new project is the logical place to change the interaction style if
 you see the need.
Process is the predefined, repeatable set
 of steps that the project will move through as it's being developed.
 In addition to repeatable steps, software development processes have different characteristics,
 some defining required meetings, reports, or specific types of
 communications as the project progresses. You should define the
 process that will be used for the project instead of defaulting this decision to the team. Chapter 15 describes
 different types of processes in more detail.
Standards define the technical practices
 and languages used on the project, including coding languages, minimal
 coding conventions, and file interchange formats. Your choice of
 standards can greatly impact the quality and maintainability of the
 code your team provides. Typically, general technical standards are
 not clearly set at a small company, so you can use new projects as opportunities to define solid
 standards.
Tools describe the choice of software
 tools, software libraries, and hardware systems to be used on the
 project. Some projects are set up as a "free-for-all," in which any
 tool or system is okay to use as long as it pleases the engineers
 working on the code. While granting some flexibility to engineers on
 their choice of tools can be a good idea, not considering the business
 impacts of some tool choices is negligent. Either define the tools to
 be used or review the team's choices to understand the potential
 impacts of the choices before the project begins. See Chapters Chapter 7 and Chapter 8 for more information on tools,
 methods, and technology.

Mapping out the Timeline

A project timeline improves the product and process by mapping
 out initial task order. Start by creating a list of tasks and
 dependencies, and then put them in a reasonable order considering
 constraints such as staff availability. Next, estimate the cost of
 each step, both in hours of effort and projected time required. When
 calculating schedules in calendar time, consider that your staff isn't
 available to work on your project full time every week because of
 disruptions such as meetings, vacation, holidays, and illness. You can
 use a spreadsheet to build up your estimates and track time to
 complete the project as it progresses. All these techniques are
 covered in more detail in Chapters Chapter 12 and Chapter 14.
Now let's pull these pieces together into a project plan.

Creating a Project Plan

Creating a clear, written agreement with the project
 stakeholders that details the project's direction and goals greatly
 increases your chances of providing a solid product that meets those
 goals. This agreement should describe the project's deliverables, when
 they are expected, the project's costs, and what documents describe
 the effort in detail. Equally important is an agreement regarding the
 project's risks, constraints, and open items (undecided
 issues).
A simple approach is to define all of this information in a one-page project
 plan. Figure 13-1
 illustrates a sample project plan template that can result in a one-
 to two-page plan.
[image: Sample project plan template]

Figure 13-1. Sample project plan template

A short project plan might seem like an unnecessary formality in
 a small company. However, the plan can serve as a useful communication
 device, because it frames the project for all the stakeholders,
 helping them understand your vision of the project and the problems it
 will face. The exercise of creating the project plan will also help you in
 understanding the scope of the project.
Building the plan will require that you collect information on
 the project risks and priorities. Getting agreement on the project
 plan will require some negotiation about different project variables.
 Take care of this at the start of a project to eliminate some of the
 dissatisfaction that can result later from differing expectations for
 the project.
A one-page graphic, such as a Gantt chart or other device,
 representing the development effort can also be helpful at this phase
 of the project. A clear, single-page illustration can help project
 stakeholders easily grasp the efforts about to begin.
With the plan defined, you are ready to kick off the
 project.

Kickoff Meeting

What is the best way to start the project? Even a short and
 informal kickoff meeting improves project success
 and decreases time wasted, but make sure you schedule it so that all
 team members can attend.
At the kickoff meeting, review the following areas:
	Project team members and roles

	Goals and requirements of the project

	Customer, team, and corporate perspectives for this
 project

	Timelines and other resources

	Potential risks

	Successful outcomes

The kickoff meeting is also your opportunity to build team
 enthusiasm for the project and its success. Set a
 positive tone, allow time for questions, and keep the discussion at a
 high level. You can fill in the lower-level details later in separate
 discussions.
The kickoff meeting also serves as a ritual that defines a start
 of a new journey. Without a kickoff meeting, team members can feel
 like they are wandering toward the project rather than heading along a
 welcoming path toward a positive final goal.
With a successful kickoff, you have positioned your project for
 success. Now you're ready to start tracking and managing the
 project.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	Controlling Software Projects: Management,
 Measurement, and Estimates, by Tom DeMarco (Prentice
 Hall PTR, 1986)
	Developing Products in Half the Time: New Rules,
 New Tools, Second Edition, by Preston G. Smith and
 Donald G. Reinertsen (Wiley, 1997)
	Manage It!: Your Guide to Modern, Pragmatic
 Project Management, by Johanna Rothman (Pragmatic
 Bookshelf, 2007)
	The Mythical Man-Month: Essays on Software
 Engineering, Anniversary Edition, by Frederick P.
 Brooks, Jr. (Addison-Wesley Professional, 1995)
	Waltzing with Bears: Managing Risk on Software
 Projects, by Tom DeMarco and Timothy Lister (Dorset
 House, 2003)

Chapter 14. PROJECT EXECUTION AND TRACKING

Results matter. As a development manager in a small, growing
 company, you will be judged by the work and results of your development team. Your team must deliver quality
 software projects on time, and that software must please your
 customers.
As you drive your development team toward success, you should
 expect to encounter some detours and hazards along the way. Few plans
 are executed as originally envisioned, so you will need to track and
 direct a project throughout its development cycle.
The good news is that you don't need to use complex project
 management skills to manage most projects in small companies. The
 general practices discussed in this chapter will help you locate and use
 the proper tools to drive project execution forward.
Note
Before you can manage a project in execution, you
 should have started the project in an appropriate way. If you haven't
 read Chapter 13, do so now and establish
 your project goals, plans, and priorities up front. Then put together
 a winning development team.

Managing a Project's Execution

Successful project management starts with an accurate picture of the current project status and realistic estimates of
 tasks and goals to be accomplished. Your primary goal is clear: You
 must drive the project toward a successful conclusion. Study the final
 goals and objectives relative to the current development status of the
 project. Revise your plans at least weekly based on tasks that still
 need to be accomplished and new challenges that arise.
It's not enough simply to measure your team's progress as a
 percentage of tasks completed based on estimates from your original
 schedule. Sticking to your original schedule when the project or its
 components have changed can lead you to rationalize why development
 might be behind schedule with thoughts like "So what if we're behind
 schedule? We have plenty of time to catch up." Instead, you need to be
 realistic and adjust your plans as the project progresses; don't wait
 for your team to fail. Respond quickly to project delays with project reassessments, and implement
 appropriate changes to improve the schedule and outcome. You can make
 adjustments early by rearranging tasks, applying more development
 resources, changing functional deliverables, and sometimes optimizing
 a step in the process.
The Five Rules of Project Management

To understand and communicate your project's actual status,
 you'll need more than the right strategy and the right tools. You'll
 need the right attitude. Use the following five rules as a guide to
 managing your projects realistically and successfully.
	Don't lie to
 yourself.
	This common error for development managers can lead to
 some less-than-constructive behaviors. For example, if you
 can't deal with the truth about development delays or
 problems, you might be tempted to ignore a forecast of late delivery because a particular due date
 has not yet arrived. You might convince yourself into thinking
 you can still make the deadline. Or perhaps you decided that a
 task will take only half the time it normally takes, just to
 make the plan look good on paper (and to make yourself feel
 better). If you haven't come up with a realistic plan for
 reducing the time for the effort, don't fool yourself. Take
 the opportunity to recognize such serious problems before
 you're forced to do so.

	Don't lie to others.
	Keep your project schedule honest. Don't let the project
 predictions echo the original plan because upper management doesn't want to hear bad news. Some
 development managers mirror their initial delivery schedules
 when describing the development team's status—in the worst
 cases, this deception continues up until the software is due
 to be delivered. This results in a huge impact due to
 delays, with little chance to resolve serious
 problems. Instead, as the project progresses, you must provide
 factual information to those who have a stake in your
 project's outcome, including management and the development
 team.

	Deal with bad news early, and let
 everyone know the details.
	In many workplaces, people tend to reveal bad news just
 before delivery is due. In low-trust environments, this
 behavior is actually encouraged. Some senior managers don't
 want to know about potential problems: Don't tell me about it;
 just fix it! This attitude leads to delays in investigating or
 acknowledging problems until events force the discussion and a
 crisis ensues. Instead, inform the appropriate people of
 problems as soon as possible, and include your plans for
 resolving these problems. Dealing with and revealing issues
 early on will lead to better solutions overall.

	If your forecast shows your project
 will be late no matter what you do, you are
 late.
	Finding problems early on in the process is ideal,
 because you obviously have more time and options for solving
 the problems. Problems discovered late in the game are more
 difficult to resolve, as time and options are few. Not
 acknowledging future delivery delays is similar to asking "Am I going to be
 late?" when your appointment is in 10 minutes but it takes 50
 minutes to get there. You are late.
 Period. Make the call immediately and let people
 know.

	Large, last-minute schedule
 surprises are not acceptable.
	People can be reluctant to admit that a project
 for which they are responsible has encountered
 serious problems and will not be delivered on time. When a
 project is going to miss a key date, such as a delivery date,
 it's human nature to put off telling management and customers the bad news until you
 absolutely must. Remember, however, that customers make
 strategic business plans based on what you tell them; their
 success can depend on your meeting your rollout promises.
 Waiting until the last minute to inform a customer that a
 project will not be available on time will ruin your
 credibility and quite possibly your business. And it can ruin
 your customer's business as well.

Now with some basic rules to help guide your steps, let's look
 at an approach to tracking your project during execution.
LAST-MINUTE SURPRISE
My company had multiple engineering managers reporting to
 the same general manager (GM). One manager worked on a project
 with a six-month schedule. The GM of the group held weekly staff
 meetings to review the progress of everyone's projects. Every week
 this manager would report that the project was on track. Six weeks
 before delivery, he said it would be on time. Five weeks before delivery, he indicated it was on
 time. Four weeks before delivery, he said it was on time.
 Marketing told customers that the software would ship in four
 weeks. At three weeks before delivery, the manager indicated it
 was on time. At two weeks before delivery, he said the project
 needs an extra three months.
This was a jaw-dropping moment. Either this manager had so
 little insight into the project that he did not know until two
 weeks before delivery that it would be late, or he had misled
 everyone until he was forced to admit there was a problem.
—Peer engineering manager

Project-Tracking Approaches

Two project-tracking approaches work well for small
 software companies. One approach uses a Gantt
 chart that lets you graphically track a project's progress
 against your original plan and predict a schedule outcome. As
 illustrated in Figure 14-1, a Gantt chart
 uses horizontal bars that each represent the length of time required
 for a task shown at the left. Arrows connecting bars are called
 dependencies. A dependent task requires the
 completion of an earlier task before it can start. In this example,
 the pizza must be delivered and the table set before dinner can be
 eaten. Diamonds are used to mark milestones—in this case, the diamond
 marks that dinner is over.
[image: Simple Gantt chart]

Figure 14-1. Simple Gantt chart

The second approach is a tracking
 spreadsheet that measures progress against original
 estimates and predicts likely outcomes using predetermined formulas.
 You can expand a tracking spreadsheet to show a range of final
 delivery dates using minimum, expected, and maximum values for each
 step.
A Gantt chart works best when the project has many
 task dependencies and when a moderate number of
 parallel tasks are required to complete the project. As Gantt charts
 typically allow for only simple calculations, they are not appropriate
 if you need more complex numeric analyses, such as the ability to
 track multiple ranges of outcomes or base times for events on
 formulas.
In contrast, tracking spreadsheets work best for projects with
 fewer task interdependences, more steps in parallel, larger task
 counts, and complex calculations. Table 14-1 provides
 comparisons of the two approaches based on project characteristics.
 For large projects, complex tools may provide the best results, but
 they are rarely needed in small software companies.
Table 14-1. Comparison of Gantt vs. Tracking Spreadsheet
	Characteristic
	Gantt
	Tracking spreadsheet

	Number of interdependencies among tasks
	Many
	Few

	Number of parallel tasks
	Few
	Many

	Performing best-case, typical, and worst-case
 delivery estimates
	Difficult
	Relatively easy

	Calculations
	Some
	Many

	Visualization—quick assessments
	Easy
	Can be more difficult

You can use both approaches to track multiple-step efforts
 contributing to a single release. In addition, you can adapt either
 approach to correspond to different process workflow and milestones.
 Consider the following simple example cases of projects and choices of approach.
Case 1: You are asked to
 implement a new data interface feature to your online application. The
 data interface requires negotiating a data format with the customer
 and defining a user interface. You need to include a certification
 review step, and several intermediate code development steps need to
 follow a sequence. The project requires a data scheme change after your team
 has completed the initial interface definition. For this case, a Gantt
 should work reasonably well: The project involves multiple
 interdependencies, a relatively small number of team members, and
 parallel tasks.
Case 2: Marketing requires that
 development create 44 new customer reports for delivery in two months.
 You decide to split the tasks among your team of five engineers
 dedicated to completing the reports. After estimating the time
 required for the reports, the estimates vary considerably among them.
 You need to schedule each report separately for engineering, QA, and
 the documentation team. In this case, a tracking spreadsheet is
 appropriate, because the tasks are relatively independent and a large
 number of tasks are being assigned. A spreadsheet will allow you to
 shift tasks easily among individuals.
Now that you have the big picture, let's get to the particulars
 of using Gantt charts and spreadsheets as project management
 tools.
Gantt Chart

Most project management software tools can be used to create Gantt-style
 charts. Commercial project management tools, such as Microsoft
 Project, offer considerable flexibility in the ways they can be
 used to configure and label a chart. The advantages of the chart
 include easy visibility of dependencies and project progress, and the ability to print out the
 chart for others to review. However, you won't enjoy these
 advantages if your chart is designed poorly or used
 improperly.
One common mistake is to provide only the underlying data in a
 row-and-column format instead of using a Gantt, as illustrated in
 Table 14-2. The Pred column here shows
 the prerequisite tasks that must be completed.
Table 14-2. Data in Table Format
	Task name
	Duration
	Start
	Finish
	Pred
	Resource names

	Task 1
	2 days
	9/15
	9/16
	 	James

	Task 2
	1 day
	9/16
	9/16
	 	John

	Task 3
	4 days
	9/17
	9/22
	1,2
	Megan

	Task 4
	3 days
	9/23
	9/25
	2,3
	Adam

	Task 5
	2 days
	9/23
	9/24
	3
	John

	Task 6
	1 day
	9/25
	9/25
	5
	James

This information is much easier to visualize in the Gantt chart shown in Figure 14-2.
[image: Information in a Gantt chart is easier to understand.]

Figure 14-2. Information in a Gantt chart is easier to
 understand.

Once the Gantt chart is set up properly, your team should be
 able to see the following at a glance:
	Task status

	Prediction of the most likely project delivery date

	Milestones based on process

	Staff assigned to each step

	Each step's task interdependencies

Figure 14-3 shows a
 Gantt chart layout approach. Each task has its
 own row. Having two columns on the left make the chart easy to read.
 Using two columns works well, but you can add a third or fourth
 column without distracting from the main information. For example,
 you could add a third column to this example for task start
 date.
[image: Gantt chart layout example]

Figure 14-3. Gantt chart layout example

In this layout, rows show either a diamond milestone marker or
 a solid bar representing a task timeline. The text to the right
 of the bar shows the person assigned to each task. The
 text to the left of each bar shows the total task time in consistent
 units (in this case, days); the task time information should be in
 consistent units—that is, you shouldn't switch among weeks, days,
 and hours in the timescale, because this complicates quick
 calculations and leads to errors. The arrows represent dependencies
 between tasks. In this simple example, Web page task starts after
 Parser change task and Database task are completed.
The value of the Gantt chart increases as the number of tasks
 increases. A project with 30 to 50 different tasks with dependencies
 can be demonstrated and visualized directly in a Gantt chart.
As you construct a Gantt chart, consider these
 guidelines:
	Set the timescale so you can see the Gantt chart on a
 single screen or page whenever possible. Viewing a chart that
 covers many pages limits the ability of the reader to fully
 understand all the particulars of the tasks and interdependencies among them and
 makes it difficult to plan for required changes.

	When making timeline assignments, enter all the numbers
 using the same units, ideally in days or weeks.

	Make sure the line representing today is bold enough to
 see easily.

Like any management tracking tool, a Gantt chart is a living plan.
 Update the Gantt at least weekly to reflect the actual project
 timeline and tasks. Performing regular updates makes the chart an
 accurate and complete record of the project's history. As you
 update, save copies of the older versions. Use version control
 software to save copies of the file, or save files
 under different filenames based on dates or other pertinent
 information. Do not overwrite these files or you will lose
 historical data.
A useful feature of Gantt chart software is the vertical line
 that indicates today. As the project progresses, regular review
 cycles will occur daily, every other day, or weekly. At each review,
 you can adjust lengths and starting points of the bars to the left
 of the today line to reflect project history. If a task started
 late, move the task start to reflect the reality of what happened.
 If a step took more or less time, change the bar length to reflect
 that. If a staffing assignment changes, reflect this in the
 chart.
Times to the right of the today line reflect your best
 estimates of the future—the tasks that need to be completed and the
 time to complete them. Avoid the temptation to shorten future task
 lengths to maintain the end goal if past tasks took too long. Future
 task lengths should remain unchanged unless something has changed to
 justify shortening your estimate of the time required for an
 upcoming task.
In addition, maintain dependencies of future milestones based
 on past tasks unless a dependency no longer exists. For example, if
 step B follows step A, and step A was three days late, then step B
 will end three days later than originally expected. Stay
 honest.
Following this approach, you'll appreciate the Gantt chart's
 features. First, you can use the chart to communicate status. In
 addition, the Gantt continually predicts the future end dates of the
 project during development, based on dates and deadlines already
 passed along with your current best estimates. Good predictions help
 you plan for the future (or change a potential outcome before it
 happens) by adding staff, removing features, or sometimes
 rearranging tasks. Finally, the Gantt stores project history, which is especially useful after the
 project is complete, during improvement reviews. In addition, you
 can use this information to create estimates for new projects in the
 future and to compare how engineers performed on their estimates
 versus actual delivery times.
A useful variation of this basic chart is the dual-bar tracking
 Gantt, which you can use to compare an original plan
 against the current status. The Gantt chart illustrated in Figure 14-3 works well in a dual-bar
 display as well, as shown in Figure 14-4. In this figure, the
 black bars show the original plan and the gray bars show the updated
 numbers. Microsoft Project lets you create dual-bar tracking Gantts;
 in this product, the original plan is called the
 baseline.
[image: Dual-bar tracking Gantt chart]

Figure 14-4. Dual-bar tracking Gantt chart

Project management tools, such as Microsoft Project, offer
 considerable capabilities that are well worth investigating as you
 progress in your Gantt charting experience, including the
 following:
	Establishing complex dependencies among tasks, such as
 adding different delays or start/end relationships among
 tasks

	Calculating resource usage and cost views once the Gantt
 chart is set up

	Grouping series of tasks together

	Viewing workload per person

Now with the basics of Gantt chart setup under your belt, let's review the
 spreadsheet-based approach.

Project-Tracking Spreadsheet

Use a tracking spreadsheet when the interdependences of tasks
 are few, when the number of tasks is large, and when the number of
 parallel tasks is large. You can use common spreadsheet tools such
 as Microsoft Excel or OpenOffice.org Calc to create a tracking spreadsheet.
 Like a Gantt chart, a tracking spreadsheet allows you to compare
 results against the original plan as well as predict the likely
 outcome date. However, a spreadsheet also allows you to use complex
 calculations when making projections.
Figure 14-5 shows a simple
 tracking spreadsheet. You can add tasks and subtasks fairly easily.
 Task times should be broken down into small increments of up to a
 few days.
[image: Tracking spreadsheet]

Figure 14-5. Tracking spreadsheet

This example uses calendar-day estimates for all data, instead of work
 hours or continuous time estimates. As discussed in Chapter 12, a calendar-day
 estimate incorporates any non-project time expected for
 the person doing the work. In making an estimate, the engineer
 accounts for other tasks and overhead tasks required during the week
 in addition to the task at hand. So if the estimate is for five
 days, the engineer is accounting for not only time directly working
 on the task, but time for overhead tasks and work on other
 projects.
The alternative to using calendar days is to track work hours expected for each
 task. Work hours are the actual hours required to complete the task
 if the engineer were working on the task full time. To create this
 estimate, use a multiplier to convert work hours into calendar days.
 The multiplier accounts for overhead and other tasks that prevent a
 worker from spending 100 percent of his time on only assigned tasks. Software company overhead percentages can vary, but a
 common number is 30 percent, which leads to a multiplier of 1 ÷ (1 -
 0.30) = 1.42. See Chapter 12 for a more
 detailed discussion of this topic.
The spreadsheet calculates calendar date outcomes directly.
 Figure 14-5, for example, illustrates
 two different approaches to calculating end dates. The calculations
 can be based on today's date with time estimates added as required
 to complete the project (from the Left column), as shown for
 Projected Date 1. Alternatively, you can calculate the end date
 based on the project start date, plus the spent time, plus the
 estimate for time remaining (from the Left column, or column D)
 until the project is complete, as shown in Projected Date 2. The
 Projected Date 1 approach will shift the end date as you check the
 worksheet daily unless you continually update the Left column values
 or type in today's date as a number instead of using the
 today() function. The Projected Date 2 approach
 will not shift daily but can accumulate small errors in the Spent
 column that can lead to day errors near the end of the project. Both
 approaches require vigilance to ensure accuracy.
You can use the tracking spreadsheet as a project management
 tool. If necessary, you can modify work assignments as the schedule
 progresses. If you need to add a step, you can add an entire row,
 but set the Plan column value to zero (0) and
 add a note, as you've added an unplanned item. To drop a step, leave
 the row in place, but set the Left column value to
 zero and add a note. As with the dual-tracking
 Gantt, the spreadsheet will allow you to compare your original plan
 against the work history when the project is complete.
As mentioned, proper project management requires that you accurately track
 project status throughout the project effort. If you
 construct a model, it can be combined with project status
 information to predict future outcomes. If you don't like the
 outcomes, you can make changes to your project by asking
 what if questions through your model. Change
 happens in most projects—staff changes, requirements change, and new
 opportunities and problems arise. A good model lets you deal with
 change rather than being buffeted by it.
Because this planning tool predicts the likely outcome each
 day, it allows you to make changes to improve the outcome. You can
 identify improvements through what if
 calculations—What if I remove a task? What if I add a feature? What
 if I increase staff? Try the approach, view the revised outcome, and
 judge whether the change makes sense and gets the plan closer to the
 desired goal.
With the basics of the tracking spreadsheet covered, let's consider a
 common problem that projects with many parallel tasks can face:
 balancing the workload among developers as the work progresses. The
 following sections show you how to make these changes using a
 spreadsheet.
Staff Assignments and Workload Balancing

As the project progresses, the plan will change as estimates
 change due to actual times and as new tasks are entered into the
 plan. Simply adjusting lengths of tasks will often leave you with
 an unbalanced set of assignments—that is, some engineers will be
 done with their assignments while others are still toiling away.
 Some rebalancing of workload can help, and you can use a simple
 approach to see what shifts make the most sense. Of course, you do
 have to account for engineers' skills and background knowledge
 while assigning tasks.
You can change team assignments to balance workloads during
 the project and to reduce the overall time required to complete
 tasks. This approach works best for projects in which flexible
 engineering assignments are made. Figure 14-6 shows a modified version of
 the sample spreadsheet shown in Figure 14-5.
[image: Balancing team workload]

Figure 14-6. Balancing team workload

This spreadsheet allows quick what if
 calculations based on time remaining on the project. In this simple example, adding initials in
 the Who column (column F) affects the days of work remaining for each engineer (columns G and
 H). This allows you to make a quick assignment and balance the
 workload based on time remaining for the project by adjusting assignments until RC and JB
 have approximately the same amount of work to do. With dozens of
 tasks involved, performing load balancing manually can be a
 complex task. Of course, this spreadsheet can be easily expanded
 to cover a larger team.
Let's look at another variation of the tracking spreadsheet,
 the minimum-typical-maximum spreadsheet.

Minimum-Typical-Maximum Tracking

A tracking spreadsheet can be set up to predict a range of
 outcomes. With the addition of
 minimum-typical-maximum value columns of data
 for each task, the best case, the likely case, and the worst case
 scenarios can be examined at the same time. The "min-typ-max"
 tracking approach can be useful for dealing with risk management
 issues when the risks are known. It can help you visualize and
 address potential schedule risks early on.
Figure 14-7
 illustrates an example min-typ-max spreadsheet. You can enter the
 range of task times from the original engineering estimates. As
 work progresses, enter spent time into the Actual column (column
 G). The Spent plus Remaining columns should provide a range of
 estimates for the total project effort in End Estimates. This
 spreadsheet uses the same formulas used in Figures Figure 14-5 and Figure 14-6; the key difference here is
 the addition of min, typ, and max columns for the plan and the
 remaining time. An additional row (row 9) sums the spent time and
 remaining time estimates.
In this example, the original plan had a range of min-typ-max outcomes of 15-19-31 days. With tasks
 A and C done, the expected time outcome is now 21-23-28. The
 outcome is still in the predicted range, but it's closer to the
 worst case predicted in the original plan.
[image: Min-typ-max tracking spreadsheet]

Figure 14-7. Min-typ-max tracking spreadsheet

Change Control Process

Every software project experiences changes from the original plan, and
 a change control process is necessary to keep
 changes from turning into chaos. A change control process is an
 agreement of how a change request will be handled in these areas:
 decision, communication, payment, and documentation. For small product
 companies, a simple method of designating who makes the decision, how
 it will be communicated, and agreement on a recording mechanism should
 be sufficient. For a company selling billable services along with the
 product, a more formalized process may be necessary that should result
 in a written change order to be approved by the customer requesting
 the change.
Without a change control process in place, several undesirable
 results can occur:
	Projects increase in cost.

	Projects are delayed.

	Small, less important requests can overtake the overall
 project goal.

	Clients are not charged for work they requested. This is a
 missed revenue opportunity and encourages clients to make more
 last-minute requests because they are free.

The change control process should distinguish between
 customer-requested changes and internally requested changes. For
 internal changes, agreement between marketing and engineering about
 the project features, costs, and delivery changes should be required.
 In addition, you should inform your team promptly of any changes.
A change control process should account for approval and
 implementation:
Approval
	How the requests are made

	Who is responsible for estimating the cost of the change and
 the method used for the estimate

	Who needs to approve the change

	Who should be consulted

	How the decision will be communicated to the customer if it
 is a customer request

	How and if the customer will be billed for specific
 requests

	What is the priority of the change relative to other
 tasks

Implementation
	How the change is communicated to the team

	Whether the process communicates changes to the
 documentation team with ample time to ensure that changes are in
 place before the release

	How QA tracks the change to ensure its completion; as the
 change was not part of the original plan, it's easy to miss during
 development

For customer-requested changes, the process must involve your
 company's sales team as well as engineering and marketing. Larger
 changes might require discussions with your company's executive
 team.
The right time to put a change control process in place is
 before your company's growth phase. The amount
 of review and delay in responding should be smaller
 initially and larger as the company grows as every change affects more
 customers. In the early startup phases, making ad hoc and quick
 changes to meet customer needs can be desirable. In the growth phase,
 dealing with customer requests without a change control process will impose a high cost on your
 overall ability to deliver satisfaction to all your customers.

Risk Management

In addition to tracking projects and dealing with changes, a
 development manager needs to manage project risks. Every software
 project faces risks, such as external dependencies causing delays,
 unexpected development problems, team member unavailability, and late
 changes to requirements. Finding risks early and working to minimize
 those risks leads to successful project deliverables. Waiting until
 risks become reality leads to unnecessary delays. A simple risk management approach can improve your delivery
 success considerably.
Small company risk management need not be complex. The effort
 involved in tracking and mitigating risks should match the size of the
 problems. Typically, medium-sized projects lasting several months are
 good candidates for risk management. Risk tracking for projects
 lasting under a month often has less utility, unless the project is on
 the critical path or it will directly affect a release date or a
 larger project.
A simple risk management approach is to create a risk list and
 review this regularly with the team during the project effort. The
 risk manager should consider tracking the following for each
 identifiable risk:
	Risk ID: identification assigned to track that risk

	Project title: optional if multiple projects in a release
 are tracked

	Risk title

	Category of risk: schedule, quality, or other

	Probability of risk occurring: different scales can be used,
 but three, four, or five values work best (for example, low,
 medium, and high, or a percentage)

	Impact if risk is realized: if it causes a delay, it could
 be represented as weeks added to the schedule

	Person assigned to monitor the risk

	Notes: can include triggers, mitigations, and
 contingencies

A spreadsheet or a table can be a practical way to track risks.
 Table 14-3 shows a sample table.
Table 14-3. Risk-Tracking Example
	#
	Risk title
	Category
	Probability
	Impact
	Assigned
	Notes

	1
	Third-party software doesn't work as
 advertised
	Schedule
	Med.
	Med.
	Smith
	Make it work, buy alternative package, or write
 internally

	2
	Possible vendor delivery delays
	Schedule
	Low
	High
	Jones
	Explore other vendors

A reasonable risk management process requires that you regularly
 review the tracking table in a team meeting. A reasonable time frame
 is weekly for complex projects but less often for smaller projects. At
 the team meeting, anyone in attendance can identify a new risk. The
 project team determines risk value and who to assign to mitigate the
 risk impact. For existing items, the assignee reports on the status
 weekly. The assignee can work to reduce the risk's probability and
 impact. In some cases, the project manager will monitor low and medium
 risks and treat them as acceptable risks for the project. The team
 meeting can also be a time to brainstorm mitigations for any of the
 risks identified.
For most small company projects, your proactive efforts should
 focus on mitigating the high- and medium-impact risks. A risk is
 mitigated when it goes away or is reduced to a
 low-impact or low-probability risk. For low-impact or low-probability
 risks, monitoring them for changes throughout the project is usually
 sufficient.
Team members should be encouraged to point out risks in team
 meetings. Tell your team that finding risks early makes them much
 easier to fix or prevent and helps ensure project success. Note that
 it is always better to point out a potential risk before it has
 occurred, instead of dealing with the aftermath of it. In some
 companies, the corporate culture discourages risk identification, because anyone who points out risks
 is considered to be too negative. The development manager can set a
 positive example by listing his or her own observed risks.
The earlier risks are identified, the more time-risk leverage is available to make adjustments at
 the lowest cost. Time-risk leverage describes how
 the effort today is more effective (has more leverage) when the time
 before risk realization is long instead of short. The more weeks ahead
 of risk becoming reality, the less work effort you need to mitigate
 the risk and obtain a desirable outcome. Waiting until a few days
 before a problem becomes a critical reality means that it can take a
 large effort to change the outcome, if you can change it at
 all.
Consider a hypothetical scenario: A contractor cannot guarantee
 a security review of a key module when you need it, 10 weeks from now.
 A team member discovers this risk and reports it to the assigned risk
 mitigator, who starts calling other contractors to find an
 alternative. If, instead, the team member had discovered this risk a
 week before the critical help was required, finding an alternative
 contractor would be far more difficult, as few, if any, would be
 available on such short notice. You can calculate the expected risk
 impact on your schedule. If you enter percent probability along with
 risk impact in days for each risk, the effective impact can be
 determined by multiplying the two numbers. For example, 20 percent
 probability and a 10-day impact gives 0.2 × 10 = 2-day risk impact for
 that risk. Summing up all of the schedule risks will show the probable
 unmitigated impacts of all the risks. Knowing this number tells you
 the current total schedule risk to your project.
This example focuses on schedule impact while maintaining the
 other aspects of the project such as functionality. If the risk is
 realized, you would use the 10 days if they were required for the
 success of the project. For many projects, priority of different
 features varies considerably. If the work involves a lower priority
 feature and the schedule is of the highest importance, the customer might decide to forgo a feature
 to meet the schedule. When you're considering how to determine the
 impact of different risks, focus on the core deliverables for the
 project and discount less essential tasks.
Figure 14-8 illustrates the
 cumulative schedule impact of the outstanding weighted risk on the project. Given
 what you know when you updated the chart, the risk-adjusted schedule
 will likely result in a 12.5-day slip. If the risks in this case were
 identified at the start of the project, you could examine your
 abilities to mitigate those risks quickly. Otherwise, adding 12.5 days
 to your project schedule would be prudent.
[image: Outstanding weighted risk]

Figure 14-8. Outstanding weighted risk

In summary, risk management allows you to see the impact of
 potential problems early on and take action while it is easier. If
 successful risk management processes are used, fewer crises will
 affect your projects—they will run more smoothly and will have a
 better chance of succeeding.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	Code Complete: A Practical Handbook of Software
 Construction, by Steve McConnell (Microsoft Press,
 2004)
	Controlling Software Projects: Management,
 Measurement, and Estimates, by Tom DeMarco (Prentice
 Hall, 1986)
	The Deadline: A Novel About Project
 Management, by Tom DeMarco (Dorset House Publishing Co.,
 1997)
	Developing Products in Half the Time: New Rules,
 New Tools, by Preston G. Smith and Donald G. Reinertsen
 (Wiley, 1997)
	Manage It! Your Guide to Modern, Pragmatic
 Project Management, by Johanna Rothman (Pragmatic
 Bookshelf, 2007)
	The Mythical Man-Month: Essays on Software
 Engineering, Anniversary Edition, by Frederick P.
 Brooks, Jr. (Addison-Wesley, 1995)
	Waltzing with Bears: Managing Risk on Software
 Projects, by Tom DeMarco and Timothy Listner (Dorset
 House Publishing Co., 2003)

Chapter 15. DESIGNING A SOFTWARE DEVELOPMENT PROCESS

Process can be the friend to everyone involved in a growing
 software company. A useful development process represents
 everything a company has learned about creating and developing
 successful software products. It provides a foundation for efficient and
 successful future projects and gives a company a competitive edge. A
 development manager who picks the proper process, trains his team based
 on it, and then maintains practices for that process will likely have an
 effective team with high morale.
Unfortunately, problematic processes have earned poor reputations
 in some companies, where processes can be bloated, out of date,
 difficult to change, awkward to use, senselessly enforced, and generally
 responsible for slowing everyone down. These companies treat their
 processes not as tools for improving outcomes, but as ends in and
 of themselves. Workers bearing the weight of a misapplied
 process grow resentful, particularly of the concept of development processes in general.
Many startup companies begin without having created a development
 process. As problems appear following the first few releases, it becomes
 apparent that some sort of order needs to be made out of the chaos.
 These companies need a development process, but they might not know how
 to choose, create, or implement one.
This chapter introduces you to software development processes,
 including types of processes and process selection.
What's in a Software Development Process?

A software development process defines a
 systematic, repeatable approach to building software and usually
 involves a series of steps or a diagram showing activities and
 decision points. A development process formalizes the steps involved
 in defining, developing, testing, and releasing software.
Although many formal software development processes exist, they
 all set out to do the same thing: make software development
 predictable while supporting corporate goals. Processes do this
 through a repeatable recipe, with measurable steps along the way. The
 process inputs are product definition, desired schedule, workers,
 resources, and money budgeted. The measurable process outputs are
 delivery schedule, quality, functionality delivered, and money
 spent.
Different development processes use different strategies in
 their definitions. For example, some processes work to fix the
 functional definition early on and allow the schedule to vary, while
 other processes fix the development time per release and reduce
 functionality as needed. Processes also vary regarding number of
 iterations of the main tasks, the amount of feedback between steps,
 the nature of milestones, and the length of the development cycle.
 Because of these variations, different processes can emphasize
 different results, such as the following:
	Minimal time to completion

	Accuracy of schedule prediction

	Quality of end product

	Cost of activity

	Risk reduction

	Most accurately meeting customer needs

Stepping through some of the more common processes used in
 software development can introduce you to different variations and
 what they optimize. The next section covers the most common processes
 in use.

Types of Development Processes

Each process has its place, and no single process is the best
 solution for every situation. In some cases, sensibly customizing a
 process will provide the best results.
The following sections offer brief overviews of various
 processes. You can consult with experienced process users or read a
 book about a particular process to learn more details. (See
 "Additional Reading" on Additional Reading.)
 Each process has its advantages and disadvantages. Consider the
 environment of your company as you decide which process to use. Keep
 in mind that, in some cases, company political issues can render a
 great process unusable.
Warning
For process advocates who believe there is one ring
 process of power that rules over all other processes … well …
 lighten up. After all, engineers have to learn about the others to
 understand the rest of the story, don't they?
For process learners, these sections provide an
 overview of development processes, but not enough information is
 provided here to allow you to understand every detail of any single
 process. You can read a book or undergo training to learn more about
 a particular process. (And you can just ignore those "there is only
 one process" advocates for now!)

In general, small companies can use a lightweight
 process due to their need for limited overhead and maximum
 speed. A lightweight process has a few basic steps, few key
 milestones, clear requirements, limited reporting, few sign-offs, and
 a few alternative paths. A lightweight process must be simple—so
 simple that a diagram of the process fits easily on one page, along with a
 short description.
The following sections discuss several process alternatives,
 starting with the ad hoc approach, which is the most common starting place
 for small development projects.
Ad Hoc

Startup companies often design their first code without a
 formal process—that is, in an ad hoc manner.
 Such an effort usually goes like this: The developer gets an idea,
 writes the code, and keeps adjusting it until he likes the result.
 This approach can be effective (and fun) on small
 projects.
On projects that require more than one or two developers,
 however, ad hoc approaches produce unpredictable results in quality,
 delivery, and functionality. The results are generally poorer than
 those achieved by using a repeatable process. Ad hoc work is
 difficult to schedule accurately, and the overall cost of
 development increases exponentially as the size of a project
 increases.
Ad hoc works best for efforts involving the following:
	One or two developers

	Tiny to small efforts

	Prototyping an idea

	Technology experimentation

Waterfall Process

In its simplest form, a waterfall process
 includes four major steps: define, design, implement, and test. Each
 step must be completed before the next one is started. Most
 companies implementing a waterfall process provide feedback paths,
 but they require special reviews, which can be slow or difficult,
 especially in some larger companies. The process diagram shown in
 Figure 15-1 indicates how the process
 earned its name.
Process advocates often point out the deficiencies of the
 waterfall process. One problem is that many projects lack a clear
 definition at the beginning, so completing the definition step first
 can be very difficult on a major project. Without a clear
 definition, many long feedback loops are incurred as the team
 discovers development problems later in the development cycle. In
 addition, if the team finds problems in an earlier step after that
 step has been completed and the project has moved forward, the
 process of changing the earlier step can be cumbersome.
 Because each step must be completed and approved before the next one
 can start, development can be slower than other approaches.
[image: Waterfall Gantt Chart]

Figure 15-1. Waterfall Gantt Chart

The waterfall process also has its advocates, however. This
 process can work well when the following criteria are met:
	Customer requirements for the project are reasonably well
 known—for example, they require a variant of an existing
 program.

	A dispersed team is working on a joint effort.

	The project is medium to large in size.

	The project does not decompose into smaller deliverable
 pieces.

	The project requires large amounts of interaction between
 different functional teams.

Modified Waterfall Process

Many companies use a modified waterfall
 variation. Modified waterfalls allow some later steps to begin
 before the team has completed earlier steps. Most modified
 waterfalls provide monitored feedback loops so that when people find
 a problem while tackling one step, they can rework an earlier step
 to help fix it. For example, if the team detects a definition
 problem in the design step, the team reopens the definition step to
 work on it. Modified waterfalls usually define what to do in the
 feedback loops to keep the effort from turning into chaos. Figure 15-2 illustrates a version
 of the modified waterfall.
WATERFALL WORKED BETTER
I was working for a company making a complex, semi-custom
 software product, which my company sold to a few dozen customers.
 Most engineers consistently took about a year to complete each
 product. On my first effort, my manager told me to add features
 iteratively after creating the skeleton of the program. As I got
 to later features, the work slowed down—to get clarity from
 customers, to redesign the system, and to add support throughout
 the system.
I switched to a waterfall approach for my next program. I
 spent considerable time getting a clear definition from the
 customer. I then carefully designed and reviewed the system before
 coding. Coding was rapid and successful. Including testing, the
 project was done in half the time. My later projects matched or
 exceeded this result.
—Software engineer

[image: Simple modified waterfall process]

Figure 15-2. Simple modified waterfall process

Companies use many variations of a modified waterfall, such as
 adding tests between steps, using different steps, and using
 different checkpoints depending on the need and company policy. A
 lightweight waterfall process can be created by limiting the
 overhead of hand-off steps while meeting the needs of the company
 and the project.
The modified waterfall process can work well if the
 following criteria apply:
	The project definition is partially known or can be
 discovered early and can be clearly stated.

	Marketing or customers will make some changes to the
 product definition during development.

	Your company requires some very specific structures and
 controls.

	A project does not decompose into smaller deliverable
 pieces.

	The project is of medium complexity.

Iterative Process

The iterative process splits the project
 into sections, with "mini-waterfalls" in each. Development teams can use an
 iterative process to develop usable code in functional sections.
 Marketing can develop requirements either as part of each
 development section or in advance of the iterations. The team
 performs code integration and system tests at the end of all the
 iterations. Figure 15-3
 illustrates an iterative process workflow.
[image: Iterative process workflow]

Figure 15-3. Iterative process workflow

Iterative processes work well for the following
 situations:
	Projects with high risk-reduction requirements

	Projects that can be decomposed into smaller, usable
 segments

	Projects with components much simpler than the whole
 project

	Projects without clear definitions up front

	Projects that benefit from multiple small releases of
 functionality

	Projects that require medium to large efforts

Spiral Process

The spiral process combines prototyping
 with a series of waterfall models, each sequence forming one loop of
 the spiral when drawn. A standard spiral has three
 iterations, as compared to an iterative process for which the number
 of iterations is undefined. The first spiral of the standard process
 consists of prototype creation. In each subsequent spiral,
 developers add increments of functionality to the project. At the
 end of each spiral, management evaluates the risk and makes the decision of whether or not to go
 forward. This formalized risk evaluation is a unique feature in the
 spiral process.
The spiral process steps are as follows:
	Define the requirements or objectives (usually by
 interviewing users and customers).

	Create a preliminary design.

	Create a prototype (first loop) or iteration of the system
 (second and later loops).

	Evaluate the risks and decide whether to continue.

	Plan for the next iteration.

The spiral model offers advantages for larger projects. First,
 as the work moves through different spirals, planning and estimating
 become more realistic. Second, it provides a useful way of
 mitigating risk by constructing the project in stages and evaluating
 each stage. Third, it provides a way to evaluate the feasibility of
 the system as the work progresses. Finally, the model can cope with
 user requirement changes.
One disadvantage of the spiral model is the emphasis on risk
 reduction, which can increase overall costs compared to other
 processes.
Spiral process can work well for the following:
	Projects that lack a clear definition up front, so that
 the project effort might change during discovery

	Projects for which minimizing project risk is very
 important

	Projects of medium to large size

	Complicated projects

	Projects with experimental- or research-type
 subprojects

Agile Processes

Agile processes are not a single process, but a family
 of processes with similar characteristics.
 Agile processes are considered lightweight processes that solve core problems with
 software development, including unclear definitions at project
 start, limited progress indicators, slow development, and an
 unacceptable product being created.
Agile processes have a number of common
 characteristics:
	Customer focus and participation throughout development,
 not just during definition

	Limited formal documentation early in the project

	Emphasis on customer involvement in the definition
 throughout development phases

	Working software as the key success measure

	Daily communication between team members

	Self-organizing teams

	Very short delivery cycles measured in weeks, with two- to
 six-week ranges being common

Note
Note Some agile teams use short integration cycles
 instead of short delivery cycles.

Agile processes have many proponents who appreciate the short
 development cycles, the value of continuous customer feedback, the
 ability to be ready to deliver at any time, and the feeling of
 continual progress. Many people contend that agile processes save
 time overall, because the product definition does not have to be
 complete to make progress and because the end result is likely to be
 acceptable to the customer as built.
Warning
It is possible to encumber an agile process so
 that it is no longer lightweight.

Agile processes have detractors as well. Some people
 believe that daily status meetings, short timelines, and pair programming of extreme programming (XP) are
 inefficient. In addition, some agile processes do not clearly define QA's role in the
 effort. Getting good software test coverage with short development
 cycles is a huge problem, especially for larger projects. Not having
 clear documentation greatly reduces the effectiveness of the QA
 team's work. In addition, short development cycles make it difficult
 to create complex code or systems that developers can split into
 short, complete sections.
Warning
Some companies claim their development process is
 agile, which does not make sense because agile is not a process
 but a group of processes. Such a company tends to focus on short
 delivery cycles and changing requirements. It dresses up its ad
 hoc behavior with the agile terminology.

Several popular agile processes are XP, Scrum, Feature-Driven Development, Dynamic Systems Development Method, Adaptive Software Development, Crystal Clear, and Evolutionary Development (Evo). The next two sections
 discuss the XP and Scrum processes.
Extreme Programming

An early popular agile process is commonly known as
 XP. Kent Beck and Cynthia Andres' book,
 Extreme Programming Explained (see
 "Additional Reading" on Additional Reading) helped popularized XP,
 which consists of a number of interrelated practices, including
 the following:
	Pair programming

	Story cards

	Short timelines

	Continual building and integration of the code

	Evolving designs

	Getting solutions into production early

	Unit testing

Two of these practices may need some explanation:
 Pair programming describes two engineers
 working together at a single computer—one writes code while the
 other provides feedback. The joint development can lead to better
 designs and higher-quality code, which minimizes debugging and
 test repairs. As part of planning, the team creates story
 cards using index cards to describe small tasks
 associated with the software.
XP also emphasizes short time frame releases with
 minimal features in each release. This makes sense for certain
 classes of software problems, especially smaller projects being
 developed from scratch in which the customer does not fully
 understand the nature of the problem or solution.
Extreme programming works best for projects that
 meet the following criteria:
	Projects with teams of 3 to 12 members

	Projects that can be built in usable pieces

	Projects for which delivery date is more important than
 ensuring specific functionality

	Projects with unclear definitions for the larger
 project

	Projects of small to medium complexity

	Organizations with cooperative customers willing to
 participate actively

	Projects whose testing lends itself to being accurately
 and rapidly completed

Scrum Process

Another popular agile process called Scrum is
 named after a rugby term. Scrum uses fixed-length release cycles
 called sprints that are usually 30 days long.
 At the start of the cycle, the team negotiates the definition for
 the sprint. A Scrum master holds daily
 standup meetings and creates specific reports showing progress of
 the work toward completion. The team builds functioning code
 daily. When projected delivery exceeds the sprint length, the
 scrum master decreases the functionality until the team can meet
 the original delivery date. If marketing determines that the
 functionality must change, then the sprint resets and the team
 starts a new sprint. Scrum also uses specific project management
 methods during the cycle, which include daily reviews and specific
 reports.
Scrum has the benefit of fixing the maximum functionality
 along with fixing the timeline at the beginning of the cycle. The
 functionality planned does not increase or change during a sprint,
 but the Scrum master can reduce it to fit the time available. The
 staff size remains constant for a cycle. Having potential
 variables fixed up front makes a Scrum process predictable.
Warning
Warning Scrum does not allow functional changes
 during a cycle without resetting to a new 30-day cycle. However,
 some Scrum users do not follow the reset requirement because
 their management will not allow them to do so—this seriously
 compromises the effectiveness of the
 process.

A modified version of Scrum delivers working functionality
 at the end of a sprint that will later be integrated into the end
 product.
Overall, Scrum is an effective agile process to consider. Figure 15-4 illustrates the Scrum process
 that produces a shippable product.
[image: Scrum process workflow]

Figure 15-4. Scrum process workflow

Scrum works best when the following criteria are met:
	Team sizes of 3 to 12 members

	Projects that can be built in usable sections

	Projects for which delivery date is more important than
 ensuring specific functionality

	Projects for which the definition of the full product is
 unclear

	A corporate culture based on cooperation

	Projects for which marketing wants to leave options open
 and allow for later changes

	Projects for which testing can be accurately and rapidly
 completed

Other Processes and Approaches

Two other approaches that are not complete processes but are
 often included in process discussion are test-driven development and model-driven development.
Test-driven development describes the
 practice of first creating tests for each module, and then writing
 the code for the module. This is more a development practice than a
 full process. Creating tests up front aids in the creation of the
 code as it clarifies the definition of the functionality.
Model-driven development describes the
 practice of creating a software model to define the software, and
 then writing the code to match the model. This is effective when a
 model can be programmed at a high level to form a useful definition
 but not provide a usable software product.

Customizing a Process

The development manager can create a custom process by modifying
 one of the processes discussed in this chapter. Customization of a
 process can better align development with the company's needs and the
 served industry's requirements. Being familiar with multiple processes
 gives the development manager a number of different options and
 features to consider in the design.
Here are some guidelines to consider when customizing a standard
 process:
	Notify the right people at milestones, but keep sign-offs to
 a minimum.

	Accommodate changes to requirements.

	Keep definitions short and to the point.

	Allow for feedback loops and iteration.

	Plan to create prototypes early or create an early working
 version.

	Consider a small number of intermediate milestones and deliverables for each
 milestone.

	Use the minimum cycle time for releases that is practical
 given all the constraints.

	Ensure that milestones support efficiency, not
 control.

	Consider how quality assurance fits into the picture.

	Determine how to handle system integration in the
 process.

A customized process can provide advantages for your company
 because it can support specific company goals, allow for efficiency in
 development, meet the needs of other teams, and deal with regulatory
 requirements. However, a custom process should never be created purely
 for political reasons: It will lead to team resentment and will not
 solve core problems.
Waiting to Get Things Done
I worked for a company where I was the only engineer on my
 project and was, effectively, the project manager. This company used
 an extensive process that required many approvals at milestones.
 Most of the milestones required multiple signatures to get approval
 to move on. Some required eight different signature
 approvals.
One way to handle this was to route the forms with documents
 to eight different people. This process could take a week or two if
 a person was slow or out of the office. Making appointments was
 another slow and time-consuming approach. My solution was to walk
 the documents and sign-off forms around to each person and wait
 outside their office until they were available. I could typically
 finish this in one or two days.
I learned that many people signing really did not care to
 review the documents provided, but just wanted to ensure that they
 had a copy they could review. Others had only limited questions. My
 early conclusion was to minimize the signature approvals required in
 a process because they typically did not add value and did cost
 time.
—Engineer

Selecting a Process

A small company needs to properly choose and introduce a process
 so that team members understand how it works and what its benefits
 are. Scale your process introduction effort for the size of the development organization. A tiny team in a small
 company usually requires a minimal amount of training, review, and
 documentation as compared to a larger team with multiple differing
 roles and perspectives.
Choosing or improving the best process is not easy. Different
 processes meet different company needs and produce different
 results.
To plan process improvements, first examine the intrinsic needs
 and the constraints of your company. Then review common processes and
 techniques in use. Next, map out the process and create the training
 materials. Finally, train all staff who will be using the
 process.
Selecting a new process requires collecting information
 about the current processes and practices. A good approach is to
 compare the collected information against standard practices and make
 adjustments as needed. Consider the following when selecting or
 designing a new process:
	Length of release cycle

	Nature of development task

	Test and approval constraints

	Business requirements

	Company culture

	Team size and distribution

One more thought: Do not make the process choice alone. Get
 advice and feedback from your peers, your boss, your team, and people
 with process experience. This will help you set up a strong process as
 well as gain buy-in from your company.

Introducing a Process

Introducing a new process to your company is never as simple as
 telling the team to use a process you have chosen. Process
 introduction usually requires a fair amount of preparation and training. The steps in introducing a process usually
 go like this:
	Select and analyze a process.

	Document the process.

	Train the team on the process.

	Kick off the process.

Once the process is in place, maintaining the process requires
 the following:
	Promoting the process

	Monitoring and enforcing the process

	Training new team members

Let's review some of the areas not covered earlier.
To document a process, start with a one-page flow chart and a
 one- to three-page summary. When you have a more complex workflow,
 people using the process will have a more difficult time understanding
 the process during training and will not have a simple or useful
 reference. However, you can provide supplementary information or
 reference books that describe the process in more detail.
You can promote a documented process by talking about it,
 demonstrating the benefits, and highlighting the potential successes.
 The benefits of a new process are not always clear to the team. In
 some cases, people grumble about having to change the way they do
 their work. If you continue to promote the process, gaining your
 team's acceptance will be easier. Promoting a process may be your most
 important action toward assuring its acceptance.
Training people on the software development process is crucial to its success. The best
 approach is to train people with an in-service workshop instead of
 sending them material to read. At the workshop, you can step through
 the process in detail and answer questions. Failing to train the team
 on the process indicates that you are not serious about putting it in
 place.
After your team has been trained, let everyone know the start
 date for switching over to the new process. For many small companies,
 the switchover can start immediately. In other cases, however, waiting
 until the next release effort starts will minimize disruptions to the
 current product development cycle.
Found It on the Internet
The manager of our group was concerned that one of the engineering
 managers was not following a development process and it was affecting quality. The engineering manager
 did not want to put a process in place, so he continued to sidestep
 the issue. The group manager was not familiar with software
 processes, so he found one on the Internet and told the engineering
 manager to use it. However, the group manager never followed up, so
 the engineering manager and the team ignored the new process.
The result was continued development without a process by the
 engineering team. It also lowered the team's respect for the group
 manager because of his inappropriate choice and lack of enforcement.
 After this, his job became more difficult.
—Software engineer

A process succeeds only if you monitor it and enforce it. You
 must set up a definition, measurable schedule, and quality goals. When
 you detect problems, spend time understanding the core issues.
 Processes usually require enforcement, which can mean talking to
 people when the process isn't followed to understand what happened.
 (You may need to modify the process if problems are uncovered.)
 Without enforcement, some people will skip steps to wait to see if any
 repercussions follow. Ensuring that the team follows the process is
 key to its success.
A great topic for an end-of-project "post-mortem" discussion is
 a review of the process, especially if its first use was on this
 project. Ask team members to examine the process to see whether it
 meets the company's and team's needs. Actively review the process
 steps one at a time to ask for suggestions for improvement.
Establishing a new software development process can take six months to a
 year, depending on the situation. It usually takes that long for
 people to understand it, realize its benefits, and become familiar
 with using it during the development process. Stick with it through
 the difficult times and enjoy the rewards later when you are more
 productive as a team.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	Controlling Software Projects: Management,
 Measurement, and Estimates, by Tom DeMarco (Yourdon
 Press, 1986)
	Developing Products in Half the Time: New Rules,
 New Tools, by Preston G. Smith and Donald G. Reinertsen
 (Wiley, 1997)
	Introduction to the Team Software
 Process, by Watts S. Humphrey (Addison-Wesley
 Professional, 2008)
	Manage It!: Your Guide to Modern, Pragmatic
 Project Management, by Johanna Rothman (Pragmatic
 Bookshelf, 2007)
	The Mythical Man-Month: Essays on Software
 Engineering, Anniversary Edition, by Frederick P.
 Brooks, Jr. (Addison-Wesley Professional, 1995)
	Managing the Software Process, by
 Watts S. Humphrey (Addison-Wesley Professional, 1989)
	"Software Development Process," from Wikipedia, http://en.wikipedia.org/wiki/Software_development_process

Here is some additional reading on agile processes:
	Agile Alliance organization home page, http://www.agilealliance.org/
	Agile & Iterative Development: A Manager's
 Guide (Agile Software Development Series), by Craig
 Larman (Addison-Wesley Professional, 2003)
	Agile Project Management with Scrum,
 by Ken Schwaber (Microsoft Press, 2004)
	Extreme Programming Explained: Embrace Change,
 2nd Edition, by Kent Beck and Cynthia Andres
 (Addison-Wesley Professional, 2004)
	"Agile Software Development," from Wikipedia,http://en.wikipedia.org/wiki/Agile_software_development
	"Manifesto for Agile Software Development," http://agilemanifesto.org/
	ScrumAlliance home page, http://www.scrumalliance.org/
	"Scrum Development," from Wikipedia, http://en.wikipedia.org/wiki/Scrum_development

Chapter 16. PROCESS IMPROVEMENT

A process is not a static item that you design once and leave in
 place. You need to maintain it, and you need to review it periodically
 in search of opportunities for improvement. Any process, whether a
 development process or any other type, can benefit from analysis and
 improvement.
Improving a process can be exciting and fun for a
 development manager; it can have a significant impact on team and
 company productivity and morale. An improved development process can
 help make the development team more productive. Of course, when working
 with short development cycles and firm delivery dates, a significant
 process change can be risky. However, if the process is seriously broken
 or would benefit from a simple improvement, fixing it immediately can
 help you make a looming delivery date that once seemed
 impossible.
Larger companies often use heavy tools such as Six Sigma Analysis[6] to conduct thorough analyses and revisions of their
 processes. Some managers have been put off while working for larger
 companies, however, where encumbering process improvement programs took
 too much time and offered too few results. Some larger firms use
 fossilized processes with unnecessary steps. At these companies, a
 manager's attempt to improve the process can result in political
 maneuvering, unnecessary studies, and long delays. Worse yet, the
 Six-Sigma improvement approach is too often applied to problems better
 suited to a simple analysis. The result can be worker cynicism in
 general at the mention of "process improvement."
Process improvement need not be intimidating, but heavy Six
 Sigma–type analyses are usually too time-consuming for a small company.
 Instead, a small company can benefit from the simple modeling described in this chapter.
Creating a Process Model

Development managers in small companies rarely model processes.
 Many development managers do not focus on process modeling, because
 their primary focus is to deliver the required software on time. They
 also might not have the tools or experience required for simple
 process modeling.
By skipping this step, however, you'll miss an opportunity to
 make important time-saving adjustments before your company begins
 rapidly growing.
The steps involved in creating a process model are
 straightforward:
	Define the process boundaries.

	List the process steps.

	Create a flow chart.

	Estimate a range of times.

	Create a spreadsheet model.

	Verify the model.

Define the Process Boundaries

In defining the process boundaries, you identify the beginning
 and end points of the process: Which step initiates the process, and
 which step occurs at the end? This might seem like a trivial issue,
 but it is important and should be considered carefully. Improvement
 solutions can become difficult if the wrong boundary is chosen. For
 the inputs to the process, define a single item which initiates the
 process, when possible. This might be a detailed description of what
 is desired, or it could be a set of requirements. For the outputs of
 the process, multiple deliverables are acceptable, but define
 clearly what they should be. For example, an estimating process
 might start with a form describing the requirements of the estimate,
 while the output might be a high-level definition and a separate
 cost or delivery estimate.

List the Process Steps

Write down a list of steps and number them. Keep it brief: A
 single sentence for each step works well. If a step requires a
 decision that will affect two or more steps that
 follow, label the step as a decision step. If a
 step leads to parallel steps, label the next
 steps as parallel. Processes often include
 recursion (one step that repeats multiple times
 usually with changing input conditions) or
 iteration (one step that leads back to an
 earlier step); you should describe the decisions that lead to
 recursion or iteration when listing the steps.

Create a Flow Chart

For a simple analysis, a flow chart that uses boxes for steps
 and diamonds for decision points will do. Each box should correspond
 to a process step and use the same number scheme used for the
 process steps. Add a two- to three-word title in the box to
 represent the step, and add the name of the group, team, or person
 responsible for completing the step in brackets at the bottom. For
 decision steps, use a diamond-shaped box and add the decision
 keywords. Decision step boxes should show two or more arrows leaving
 them, showing the step choices resulting from the decision.

Estimate a Range of Times

Write down minimum, typical, and maximum (min-typ-max) times
 for each of the steps on the flow chart. At branch points, indicate
 the likelihood for each option as a percentage, along with its
 min-typ-max values. Be sure to indicate parallel workflow
 paths.

Create a Spreadsheet Model

Create the spreadsheet model with each step in the spreadsheet
 corresponding to the steps in the flow chart. Although a variety of commercial modeling programs can be used, a simple spreadsheet
 model works remarkably well to track the process at a small
 firm.
A simple approach is to use one row for each step in the
 process. Each row will use the appropriate step number, step name,
 and min-typ-max times expected. The total time for each step can be
 summed up at the bottom.
A decision branch point occurs in a
 process when a decision is made that results in more than one next
 step option as the outcome of the decision. In the spreadsheet,
 decision branch points can be handled by shifting their calculations
 out of the main path. You can put multiple calculations based on
 branch choices off to the side and list them all along with percent
 of time occurrence for each and min-typ-max times. With two or more
 branch decisions, the minimum for the different branches should be
 the shortest of the minimum choices. Similarly, the maximum times
 will be the largest of the maximum choices. Typical times will be
 the percentage weighting of the typical times of the different
 choices.
Processes often require parallel tasks,
 in which a task spurs multiple substeps that occur in parallel
 before the step is complete. For example, an estimation step might
 require that you ask two developers for estimates, and though each
 estimate can be created independently, both estimates must be
 completed before the step is complete. Parallel tasks can also be
 calculated to the side of the main column of a spreadsheet. To
 simplify calculations, consider all parallel items as a single
 process step. For the entire process step, the minimum total time
 will be the largest value of the minimums of the parallel tasks. The
 typical total time will be the largest value of the typical parallel
 tasks. The maximum time will be the largest value of the maximum
 parallel tasks.
Iteration or feedback paths are difficult to incorporate into
 a simple model. However, this situation can be modeled by turning
 the iteration path into its own workflow path. For example, if the
 steps in the process are A and then B, and B is a decision either to
 go back to A or go on to C, then you can convert the "go back to A"
 path to step D.
An example spreadsheet is illustrated in the next section,
 which should help clarify the spreadsheet layout potential.

Verify the Model

Pass the model through the "smell test." Does it "smell"
 right? Do reasonable inputs provide reasonable outputs? If you make
 changes to an element, does it produce reasonable results? Have you
 reviewed the model with stakeholders (anyone who works on a
 process step)? If so, then the model is ready for
 detailed analysis.

[6] Six Sigma Analysis involves a set of
 methods that were invented at Motorola for analyzing and improving complex processes. For readers who are
 statistically savvy, a Six Sigma book is included in "Additional
 Reading" on Getting It Going.

Analyzing the Process Model

Once the model is built, you should analyze it and look for
 opportunities to improve the result. Using the process model,
 investigate "what if " scenarios. Others may request specific
 improvement goals, and you will be asked to find ways to meet them.
 Here are some common examples:
	Reduce the maximum time throughout the process.

	Reduce the typical time.

	Reduce the minimum time throughout for special cases.

	Allow for an increase in time for one step and maintain the
 same time throughout the process.

	On a decision point, decrease the percentage of time for the more expensive decision.

	For parallel tasks, focus on the most expensive task for
 time reductions.

Let's look at a simple process example that moves through the
 analysis steps.
Process Analysis in Action

The process modeled in this example will be used for
 engineering estimates in response to sales team requests for quotes.
 The example illustrates a simple approach to modeling a process and making improvements.
Let's start by defining the boundaries of the process. In this case, the entry point is the
 sales manager submitting the request to the engineer you have
 designated as the quote engineer responsible
 for the quoting process. The exit point occurs when the development
 manager delivers the quote to the sales manager who asked for
 it.
With the process boundaries defined, you can step through the
 steps and assign who completes the step. These are the high-level
 steps in the process:
	[Entry point] The sales manager sends a request for an
 estimate.

	The quote engineer reviews sales information.

	[Decision] The quote engineer determines whether enough
 information is available to complete the quote.
	If information is sufficient, move on to the next
 step.

	If it is not, the engineer requests additional
 information from the sales manager and the quote stalls
 until a complete response is received.

	After a response is received, the quote engineer writes up
 a description of the request so that it is clear to the
 development team. This description will be used for the estimate
 and returned with the quote delivery. The description will
 include any assumptions that are made.

	The quote engineer requests estimates from a Java
 programmer and a database programmer.
	[Parallel] (A) The Java engineer makes his estimate
 and returns it to the quote engineer.

	[Parallel] (B) The database engineer makes her
 estimate and returns it to the quote engineer.

	When both estimates are returned, the quote engineer
 writes up the quote and sends it to the development manager for
 review.

	The development manager reviews and edits the
 quote.

	[Output] The development manager delivers the estimate to
 the sales manager.

If you write the process steps as a sequential list, they might look
 like those in Table 16-1.
 This example shows every step, including delivery steps. This simple
 process also illustrates parallel tasks in steps 6a and 6b. Note the
 decision point in step 3.
Table 16-1. Steps in Quote Process Example
	What
	Who

	1. Quote request to engineering
	Sales

	2. Quote request is reviewed
	Quote-Eng.

	3. [Decision] Quote needs more
 information
	Quote-Eng. -> Sales

	4. Quote write-up
	Quote-Eng.

	5. Estimate requests to DB and Java
 eng.
	Quote-Eng.

	6a. [PARALLEL STEP] DB eng.
 estimate
	DB Eng.

	6b. [PARALLEL STEP] Java eng.
 estimate
	Java Eng.

	7. Quote write-up prepared
	Quote-Eng.

	8. Quote eng. reviewed
	Dev. Management

	9. Quote delivered
	Dev. Management

Turning this table into a workflow is useful for visual
 analysis and discussion. Figure 16-1 illustrates the
 workflow.
Your next step is to write down the time required for each
 step in the workflow drawing. If you write min-typ-max time
 estimates, you can use an abbreviated format, such as 10-13-20. For
 decision points, show approximate percentage weighting of the typical time requirements of the different
 choices that go with each decision path.
After completing the drawing, you'll find it easier to
 visualize the process workflow and convert it into a spreadsheet.
 Figure 16-2 shows the
 workflow diagram directly translated to a spreadsheet. It also shows
 total min-typ-max times for the simple quote process at the bottom.
 The surprising thing is that while the typical time is a long 3.8
 days, the worst-case time for the process is more than 10 days!
 Stepping through the construction of this estimate shows how
 modeling works.
The decision point in step 3 has two different options: Half
 the time, more information will be required. For this decision
 point, the minimum is the smaller of the two options for more info
 needed—yes or no. The typical value is weighted for the typical
 of each option—50 percent each is typical. The maximum
 is the maximum for the two cases. A sales worst case takes 2 days to
 respond to requests, and this could cause a significant process delay.
[image: Workflow for quote process]

Figure 16-1. Workflow for quote process

The parallel tasks in 6a and 6b are estimates provided by the
 Java engineer and the database engineer. Given typical tasks and
 their schedules, these numbers suggest that the database estimate is
 shorter than the Java estimate. As the process shows the task steps in parallel, the
 calculation uses the larger of the two. Note that improving the min-typ-max values for the database
 engineer will have no impact on the process outcome, as they are all
 smaller than the Java engineer's values. The Java engineer's time
 values are in the critical path of the process for most
 quotes.
[image: Quote process workflow spreadsheet]

Figure 16-2. Quote process workflow spreadsheet

After you create the model, you should carefully examine it:
 Does the result seem reasonable? To verify, keep track of the quotes
 you receive and measure the delays through each step. Do the
 individual numbers look right and is the typical time close? If so,
 you know the model is reasonable. If not, you need to make
 revisions.

Using the Model to Improve the Process

You can use your spreadsheet model as a tool to help you
 improve the process schedule. By adjusting times, you can determine
 the impact on the process total schedule. In general, fine-grained
 tweaking of numbers won't yield significant reductions, but the
 model will help you identify bottlenecks and experiment with the
 impact of the reductions.
A few reduction cases follow, targeting reduction in maximum
 process time and the typical time.
Case 1: Reducing the Maximum Time

Sales is complaining about some quotes from engineering that
 take a week or more to produce. Your first goal is to reduce the
 maximum time from 7 days to 5 days for a quote. Start by examining
 the largest numbers in the maximum columns: the sales delay and
 the manager review. If you could reduce each of these to 8 hours maximum, then the maximum time
 is reduced to 5.1 days. The next potential reductions are either
 the Java engineer's maximum time or the quote engineer's write-up
 time, each at 8 hours max. Changing the Java engineer's time to 7
 hours maximum adjusts the total maximum to less than 5
 days.
If possible, further reduce maximums to allow time buffers
 for unexpected events. One common unplanned event is the absence
 of key people, which requires a backup person to complete each
 step. Providing a second or even a third person as backup for the
 person primarily doing the work can help considerably when the
 worst case time is critical. Figure 16-3 illustrates these
 reductions in steps 3, 8, and 6.
[image: Case 1: Reduction in maximum time]

Figure 16-3. Case 1: Reduction in maximum time

Case 2: Reducing the Typical Time

The sales team is pleased that the worst case will be less
 than a week for new quotes. However, the sales manager now says
 that they need most of their quotes in 2.5 days. Your goal is to look at
 the typical cases and determine what reductions you can make. For
 typical cases, look at decision points and determine whether you
 can reduce the percentage for the slower decisions. In this case,
 can you reduce the percentage of time that the quote engineer
 needs to ask sales for more information from 50 percent to 10
 percent?
One approach to doing this might be to create a standard
 form that the sales requestor must fill out so all the required
 information is present. Entering 10 percent for the time sales
 uses cuts the typical time down to 3.25 days. If you ask sales to
 give their responses in 4 hours on average, the time drops to 3.2
 days. The other expensive typical time is the manager review at 8
 hours. You could require that the manager complete review in 4
 hours or drop the step all together. Dropping the manager review
 time to 4 hours makes the total time typically 2.5 days, which
 meets the goal. Figure 16-4 illustrates
 this example.
[image: Quote process with typical improvement]

Figure 16-4. Quote process with typical improvement

You can also consider whether any steps can be dropped
 altogether or replaced with something else. Dropping the manager's
 review provides an interesting result. If the step is dropped, the
 total days dropped to a minimum of 0.96, typical of 1.75, and maximum of 5.61 days.
 Dropping the review might be a possibility if most of the delay is
 caused by the availability of the manager and not the total time
 it takes to perform the review. If the 4 hours is due to
 availability and the review is short, you can work with the
 manager to allow others to respond to a review request if the
 manager is unavailable. Understanding the reason for the review
 can provide some insight as well. If the step is due to the quote
 engineer not having enough experience to be trusted, perhaps the
 situation can be improved over time. If the delay is due to
 manager review, and the manager is the only expert at the firm who
 knows a lot about some particularly complicated issue, dropping
 the review may not be a good approach.
You can also look for ways of reducing the typical time
 required for a step. Approaches include adding more resources to
 the task, splitting up the work in a different way, providing
 improved tools for the person completing the step, redefining the
 step to reduce its effort, and providing training to the person
 who is completing the step.
Although these examples are simple, they illustrate
 effective approaches to analyzing process workflows. Using a spreadsheet allows for
 experimenting with "what-if " questions in pursuit of particular
 time goals. For a small company, direct effective approaches work
 the best.

Working with Other Teams

When the process workflow involves several teams, the
 challenge of making process improvements can be greater. If
 improving the overall process requires work shifting
 or reduction from someone other than an engineer, a development
 manager can lose perspective on the other team member's needs in the
 workflow. Instead of simply making requests, involve people outside
 your team in discussing process improvements and the impacts on
 their work. Negotiate for changes you would like others to make and
 be flexible in requests made of you. You might discover that changes
 in your team's steps can greatly ease the efforts for other
 groups.

Getting It Going

After you have made your process improvement design changes,
 spend some time planning how you will roll it out to the teams. You'll
 find more advice in Chapter 15, which deals
 with rolling-out processes.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	Developing Products in Half the Time: New Rules,
 New Tools, 2nd Edition, by Preston G. Smith and Donald
 G. Reinertsen (Wiley, 1998)
	The Mythical Man-Month: Essays on Software
 Engineering, Anniversary Edition, by Frederick P.
 Brooks, Jr. (Addison-Wesley, 1995)
	The Six Sigma Way: How GE, Motorola, and Other
 Top Companies are Honing Their Performance, by Peter S.
 Pande, Robert P. Neuman, and Ronald R. Cavanaugh (McGraw-Hill,
 2000)
	Winning at New Products: Accelerating the Process
 from Idea to Launch, 3rd Edition, by Robert G. Cooper
 (Basic Books, 2001)

Chapter 17. UNDERSTANDING QUALITY ASSURANCE

As a company matures and changes, quality requirements grow and
 change as well. From the early startup stage, to the foothold stage, to
 the growth stage, basic quality practices are required to keep the
 company from stagnating or failing to grow to the next level.
A quality assurance (QA) team is devoted to evaluating and
 improving the quality of the company's software product. Effective QA requires
 much more than simply testing new products, however. As discussed in
 earlier chapters, QA teams should also be involved in the product's
 definition, development process, and customer feedback.
In a small company, one manager is often in charge of both QA and
 development teams. In this role, the manager needs to coordinate both
 teams to locate and resolve core quality problems. A good foundation in
 QA practices provides insight in how to improve the productivity of the
 QA and development teams and the quality of the product. This chapter
 covers the basics of quality assurance for a small company development manager
 who has limited QA experience.
Importance of Quality

Small growing companies must focus on rapidly meeting their
 customers' needs. As customers continue to pour more requirements into
 the development mix, and as the company grows, the development manager
 faces challenges other than simply insuring that the team implements
 the new features. In fact, an exclusive focus on implementing new
 features is a trap that can make a manager lose focus on important,
 core issues. Continually adding new features and ignoring core issues
 is comparable to adding new floors to a building that has a weak
 foundation.
If a manager focuses solely on the short-term development goals
 and loses sight of the bigger picture, the result will be a
 poor-quality product. Engineers might produce more features rapidly,
 but the features aren't as quality built as they should be, and the
 product and customer will suffer. Lack of quality critically affects
 small companies and development departments, as old issues take up
 time that should be spent for ongoing development. Quality problems
 can consume huge amounts of the development and QA teams' time.
Engineering can "sweep poor quality under the rug" when the
 company has a single customer and is working on a groundbreaking new
 product, but as the customer list grows, past quality issues will come
 back to haunt you. They can also lead the company into a
 crisis mentality, where each new customer crisis
 results in the team scrambling to patch together a solution.
 Poor-quality products lead to lost sales and drive existing customers
 to other companies' products. Once customers label your company and
 its product's quality as poor, you will find it difficult to change
 their impressions.
QUALITY MATTERS
My company never left the startup phase of quality practices, although we had a number of
 large- and medium-sized customers. Poor quality cost us some of our
 earlier customers. Quality problems continue to affect our ability
 to work on new features; we are discovering major defects in our
 released software that require intense effort by engineering and QA
 to resolve. For a while, the development team spent half of its time
 fixing defects in the released software.
We are now setting up reasonable quality practices to dig
 ourselves out of this hole and are making some progress. The team
 noticed the improvements after about four months of effort.
—New QA manager

Quality Defined

What defines quality? Ask a dozen people and you'll often get a
 dozen different answers. Some will answer that quality means including
 the latest features in the product. Others will talk about mean time
 to failure or lack of defects. Others will describe a product that
 gives the customer a positive impression.
Defining quality ultimately comes down to the customer's
 perception. For most customers, a quality product meets the following
 criteria:
	Meets or exceeds the expectations of the customer (includes
 all aspects, such as capabilities, performance, and
 security)

	Functions as intended

	Handles unexpected conditions in graceful ways

	Is easy to use and intuitive

	Is easy to upgrade

	Is consistent across its feature set so customers are not
 surprised or confused by operations in different parts of the
 product

When measuring software quality, many developers focus on known
 defects, or problems in the software that prevent
 it from being used as intended or expected. Such an approach, however,
 has several problems: First, who defines the intended
 use of the product? And who determines whether an issue is
 a defect or merely a feature
 change? From a development perspective, an issue can look
 like a feature change, while the customer sees the same issue as an
 obvious defect.
By focusing only on defects, developers can miss other aspects
 of quality. Although keeping track of prerelease and post-release
 defects is very important, other aspects of quality should also be
 examined, such as accurate requirements, elegant design, utility, and
 long-term customer satisfaction. Finally, defects are only detected by
 way of focused efforts to locate them. Without a focused QA effort to
 reveal problems under the hood, a shiny new product's quality might
 appear better than it really is.
In addition, quality does not equate to the number of defects
 repaired in a release. Engineering and QA can identify and repair a
 large number of defects in a product, yet the product can still be of
 poor quality due to many undiscovered defects or because the product
 does not meet the customer's expectations. In fact, products with a
 large number of defects found and repaired are often still plagued
 with more defects yet to be found. Extensive testing of high-quality
 products often results in fewer defects, because they were built with
 quality in mind by a development team that used good design, best
 development practices, careful code construction, and attention to
 quality. A great QA team can assist by encouraging positive practices, providing valuable
 feedback, helping instill an attitude of quality, and measuring the
 results with thorough testing.
A high-quality product exceeds the customer's expectations and
 meets the customer's core needs. With the bar set so high for software
 quality, how do you create a truly quality product? It boils down to
 starting with a culture that values quality.

Valuing Quality

A company with a culture that values quality produces a
 high-quality product. A company that lacks this culture will not
 produce a high-quality product, because quality isn't the focus. If
 your company has a culture that values quality, your quality
 improvement effort will be easy. If not, talk to your CEO about the
 business impact of poor quality, and seek his support to improve
 quality overall.
To begin fostering a culture that values quality, train
 developers and QA staff to think about quality as an
 attitude rather than simply a product goal or
 state. Building a "quality attitude" among members of the development
 team improves quality more than even the best QA practices. Why?
 Because having an attitude that values quality from the start will
 encourage the development team to build a quality product by getting
 clear requirements and by spending time understanding those
 requirements—through thoughtful design and with careful coding and
 review. In contrast, quickly coded solutions that are only polished
 through limited testing and repair will result in a product with poor
 quality baked in.
In addition, a good QA team can be an effective partner to the
 development team; although both teams focus on quality, QA personnel
 consider the product requirements differently from how developers
 think about the product. Engineers often focus on getting the product
 to work properly, while QA focuses on finding ways to break the
 product.
You can promote a quality attitude in a number of ways.
 Encourage developers to focus on checking their code before sending it
 to QA. Pairing a QA engineer with a development engineer during unit
 testing can prove effective in producing higher-quality code. Show
 your concern for defects generated during coding; this will encourage
 the team to create fewer problems. Set up development processes and
 methodologies that encourage quality to emphasize its
 importance.
You can improve your team's attitude toward quality by
 encouraging people to view the entire product as the
 outcome, rather than the blocks of code each team member is writing.
 To encourage teamwork and help developers appreciate the product from
 a quality perspective, assign individuals as architects or leads for
 each product (or project when appropriate). The architect will
 coordinate the product coding and encourage the team members to act
 like a team rather than independent agents.
Improving quality can be a long and painful process if the issue
 backlog is high. Projects that suffered in the past from poor quality
 can serve as obstacles to success in many small firms. A development
 team cannot maintain a focus on quality if its products continue to be
 defective. Focus on fixing existing problems built into the product.
 Depending on the extent of the problems, you might be able to set
 aside time during a longer release cycle to undergo extensive bug
 repairs. If the problems are too extensive for a single release,
 schedule major defect repairs (sometimes called "bug scrubs") for the
 next few releases.
A key development control over product quality is the team's
 ability to repair defects. Improving the success rate of defect
 repairs by the development team will have a big impact on productivity
 and quality. Engineering attitude drives the repair success rate. This
 is addressed in detail later in "The Impact of Defects on Quality and
 Productivity" on The Impact of Defects on Quality and Productivity.
As the team's focus on quality improves, product and work
 quality will improve as well. Your team can make improvements with
 each release; realize, however, that major improvements can take
 months or longer. Keep up the focus on quality for the long
 haul.

Quality Assessment

After you have successfully encouraged a culture that values
 quality among members of the development and QA teams, you can assess
 the efforts toward that. A quality assurance assessment requires that
 you examine your teams and the tools, processes, practices, and
 measures they use to perform their work. Take note of the following
 specifics:
	QA Team
	Assess the background, skill, and organization of members
 of the QA team.

	QA Tools and
 Environment
	Assess tools used to measure and track software quality,
 especially a defect and enhancement tracking program. Additional
 tools can assist with testing automation.

	QA Activities and
 Processes
	Assess the activities and processes that describe the
 efforts the teams make to ensure quality.

	QA Metrics
	Assess the success of the quality effort. Quality metrics
 allow you to judge the product's quality and the processes used to create the
 product.

With these definitions in mind, let's examine each area in more
 detail, starting with the QA team.
The Quality Assurance Team

Your QA team can drive a major movement toward a culture of
 quality in your company. Build a team of experienced QA engineers
 who share that culture. The best QA people are passionate about
 quality as the most important aspect of their jobs. The best QA
 engineers take it personally when a problem eludes them. Because
 they are continually looking for ways to improve quality, good QA
 engineers want to work for companies that care about it. These
 engineers make the effort to learn more about and apply the best QA
 techniques and approaches.
In contrast, some QA engineers see their work as all about
 testing. They care about it, but not enough to go the extra mile.
 These engineers do not look for clever ways to break the product or
 improve it. A strong QA team will support you in your efforts to
 improve quality. A weak team will want to focus only on
 testing.
Team Skill Levels

Build a QA team of engineers who offer the skill levels and
 attitudes that best match the needs of the company and its
 products. QA engineers come in all skill levels—from
 "push-the-button" website testers to gurus who write code to test
 other code. Do not expect people with low QA skills to shine at testing complex systems.
Compare your QA team's abilities with the complexity of the
 work that needs to be accomplished to see if a mismatch exists.
 Review the artifacts they have created and observe the types of
 problems that get past them; this can help you assess their
 overall QA skills. QA artifacts include any item created to aid in
 testing, including documentation, test plans, test suites, test
 process, testing infrastructure, and test software. When talking
 with QA team members, assess their communication skills, as these
 are crucial to the job.
To assess your QA team's abilities, ask them the following
 questions:
	How many years of QA experience do you have?

	Do you consider yourself a senior QA engineer?

	How do you see the role of QA in the company?

	Could you review a test plan you created with me?

	What quality measurements do you recommend?

	How does the current process promote quality?

	How do you prefer to work with development engineers
 when resolving QA problems?

To understand your QA team's effectiveness, observe the
 team's work habits. Some engineers work hard at continually
 improving the product and are well integrated into all stages of
 the development process. Others work in binges: When the product
 reaches QA, these team members work long hours to test the
 product, but when the product is out the door, they invest little
 effort until the next binge. This behavior, however, is not good
 quality assurance, but is purely a testing function
 that occurs at the end of the line.

Staffing Levels

At each company growth stage, different QA staffing levels
 are required and should be anticipated. In the startup phase, the
 QA staff can comprise a single person; this QA engineer should be
 a senior engineer who is well versed in quality practices. Hiring
 junior QA engineers with the goal of keeping costs low is a
 mistake, as they will not position the department for high quality
 as the company grows.
When your company starts getting established in the
 marketplace—the "foothold" stage—hire an experienced QA manager to
 direct the team. A company in a growth stage should hire a small
 QA team with a manager and should employ well-established quality
 practices. A successful team needs a strong set of tools and the
 appropriate QA computing environment. Poor-quality products will
 consume too much of your development time and eventually drive
 fledgling customers away.

QA Tools and Environment

The QA software tools and computing environment provide the foundation
 for the quality effort. Don't skimp on providing your team with the
 appropriate equipment and enough use licenses to get their jobs
 done. Doing so is unwise—and plain foolish.
A number of quality-focused software tools are available. For
 a small company, the tools and environment should focus primarily on three
 aspects: a defect-tracking tool, QA test environment, and test
 automation software.
Defect-Tracking Tool and Process

The defect-tracking process defines the workflow for
 handling defects. The defect-tracking tool is the primary method
 of tracking the status of defects and issues discovered by QA and
 development teams. These factors must be aligned to work together
 to provide the quality required by your company and its products.
 Because the defect-tracking tool enforces and enables the process,
 this section discusses them together.
The defect process should follow a simple workflow, such as
 the following:
	Defect is reported.

	Defect is reviewed and ranked. It may be put on hold
 (for the future) or until more information is provided. If not
 held, the next step ensues.

	Defect assigned for investigation.

	Defect fixed.

	Defect fix verified.

	Defect closed.

Figure 17-1 shows this
 workflow as a flow chart, with the decision point at step
 2.
Your defect-tracking tool must serve the needs of the
 organization and should not be a general-purpose task entry tool.
 Task tracking is fundamentally different from defect tracking. Combining the two into one system
 leads to a system with too much information requested that is too
 difficult to use properly.
[image: Simple defect workflow diagram]

Figure 17-1. Simple defect workflow diagram

Your defect-tracking tool should be set up and used only for
 tracking defects or entering enhancements, not for other purposes.
 A dedicated defect-tracking tool improves the quality of the data
 collected and ensures that important information is easy to view,
 because the tool administrator can create data entry screens best
 suited for defect tracking. A dedicated defect-tracking system
 makes it easy to review and report on the data. In addition, a
 dedicated tracking system allows the defect workflow to match the
 stages defined in the defect-tracking tool.
Note
A variety of defect-tracking tools are
 available. Chapter 7
 discusses different tools and considerations. A list of
 resources appears in "Additional Reading" on Additional Reading.

To align the defect-tracking tool with the defect process,
 think systematically. Use your process workflow as your blueprint
 and make the defect tool conform to it. Then, follow this
 advice:
	Map each process step (block in the diagram) to tool
 states. This way, the tool will retain defect state
 information and step transition information as it goes through
 the process. With a clear map of process steps to tool states,
 the process workflow is encouraged and enforced by the tool
 workflow. If this isn't done, the tool workflow will be
 followed to the detriment of the process workflow.

	Choose states and process steps that clearly identify
 the activity.

	Define the current subsequent states in the workflow and
 set up the tool to enforce transitions. This eliminates people
 skipping states or putting items in the wrong states.

	Look at decision and branch points and check to see that
 proper decision paths are covered.

	Consider carefully what information is required at each
 process step and keep the information to a minimum. Limit the
 number of fields required for each entry screen. The more data
 requested and required, the less likely a submitter will fill
 them out completely and the more likely the defect won't be submitted at all.

	Consider who has access to the defect-tracking tool. The "submitter" might be a
 customer or anyone in the organization if a clear gatekeeper
 is assigned to clean up entry. Alternatively, entry can be
 restricted to development and QA team members to ensure that
 higher-quality data is entered, leaving people outside of
 development and QA to submit their problems to a designated
 development or QA team member.

	Before building the system, decide what reporting and
 quality metrics interest you and those that are required for
 the product. If you are not sure, review metrics first (see
 "QA Metrics" on QA Metrics). Retrofitting a
 system to capture metrics can be difficult and awkward.

Warning
Metrics may be required outside your company if
 your product has safety, medical, or public risk. In those
 cases, standards for reporting metrics are defined by external
 companies or agencies.

Your defect-tracking process should include a step for
 evaluating the defect. In this step, provide a simple rating
 mechanism that can be useful for comparing one defect's priority
 against those of other defects.
Some defect systems are set up to require that the submitter
 be responsible for closing the defect. This adds overhead to the
 process, however, because the submitter takes on a secondary role
 of reverifying the defect fix. This approach usually results in a
 backlog of defects waiting for the submitter to close them;
 submitters often do not want to verify many defect closures
 because of the time required, and the task typically is not their
 primary task. Avoid this approach, because it will result in many
 defects left unresolved.
Another system approach to avoid is using a separate state
 for verifying the defect after production release, because this adds complexity to
 the process. Instead, require that the QA engineer add a test for
 the defect into the test plan so that QA will automatically test
 for each defect repair in future releases.
Once you have set up the system, ask a member of the QA team
 to monitor the defects in each state. The monitor can review
 defects that "stall out" in any part of the system. The system can
 also be monitored to avoid a backlog of defects that surprise you
 at the end of the release cycle.
Keep the system simple and use it to track state
 information. Using a clearly mapped definition makes it easy to
 get statistics and to identify quality process problems.

Building a Test Environment

Small growing companies have limited money to invest in QA
 testing. Most initial technology investments go toward the
 workstations and servers that are required to create and deploy
 the software. With budgets tight, management often neglects to set
 up the environment needed to duplicate the customer's system,
 making the QA job of testing and evaluating problems very
 challenging.
A lack of a properly configured test environment may not
 lead to disaster in the short term if a company has only a few
 customers. With few customers, the team might hear about a few
 problems post-release directly, and the cost of fixing the errors
 might not be devastating. As the company grows, however, the costs
 of post-release problems left undetected because of an inadequate
 QA testing environment will increase significantly and affect the
 company's bottom line.
When a customer experiences a problem with a product
 post-release, that problem must become an immediate focus for your
 QA and development teams. Investigating and resolving production
 problems incurs a large immediate cost, especially if the
 customer's problem cannot be duplicated internally. Quickly
 setting up a test environment with the same equipment, memory,
 operating systems, application programs and settings, and program
 versions might not always be possible. Without the appropriate
 equipment, properly configured and available for immediate QA use,
 however, a post-release problem can prove devastating to
 productivity and customer perception of your product and your
 company.
Small companies benefit more from having the proper test
 environment set up from the start. Waiting until your company has
 grown to establish this environment will drag down productivity
 and customer satisfaction. As development manager, push to ensure
 that a proper QA test system is set up from the beginning.
SYNCHRONIZE YOUR SYSTEMS
My company had a major problem and had lived with it for
 years before I joined. The infrastructure did not match
 production in engineering, QA, or the preproduction staging. Too
 often, we were surprised in production by code behavior we could
 not see in test environments.
I pulled together a plan to build out a proper test
 environment in stages. The first stage was a properly configured
 QA environment. The second stage was a speed test environment.
 We started the QA environment work immediately. As the cost of
 the speed testing was expensive, we provided several scalable
 options to allow for partial system testing initially, and we
 then built up to full system testing.
—Development manager

Test Automation Tools

The requirements for test automation tools vary considerably
 for small companies. Test automation makes sense when the product
 is stable enough that repeatable testing is cost effective. For
 startups with rapidly changing products, test automation may not
 be effective because of the cost of maintaining a rapidly changing
 product. As the company enters the foothold and growth phases,
 test automation can be more practical and its value increases
 considerably. Automation can increase test accuracy while
 significantly reducing testing time.
QA uses automation tools to input a set of conditions into the software
 quickly and compare the resulting outputs against past results.
 Differences in results do not necessarily indicate an error in the
 code; differences can be caused by intended changes
 in the code since the last regression results were stored, for
 example. When QA has reviewed all the results for accuracy, the
 outputs are saved as the correct values for later
 comparisons.
Test automation tools are effective for graphical user
 interfaces (GUIs) that are relatively stable and for products
 available for use on multiple platforms. Commercial tools that
 focus on GUI testing are available, such as Borland SilkTest (http://www.borland.com).
Test automation can be effective for testing files and data.
 Either commercial tools or manually created scripts can quickly
 cycle through standard tests and identify the differences between
 releases. To see how effective automation will be for your
 product, evaluate the rate of change in the automation output per
 release versus the cost of maintaining the scripts. If more than
 20 percent of the automation output changes per release, the
 product may not be a good candidate for script automation.
Another test automation approach is white box
 testing, in which a test harness
 (a software framework to simplify the creation, running, and
 evaluation of unit tests) is used to test internal sections of the
 code. Often, the engineering team creates the unit tests and
 continues to maintain them. Test harnesses are worthwhile even if the GUI and
 features in code are changing, because maintaining them is not as
 expensive as maintaining external testing efforts. Test harnesses
 isolate code sections, many of which will not change per release.
 JUnit (http://www.junit.org)
 and NUnit (http://www.nunit.org)
 are example frameworks for unit test automation.
Test automation has huge advantages when the product is
 relatively stable but time consuming to test. Otherwise, think
 twice before investing in test automation.

QA Activities

The QA team performs key activities that are independent of the QA
 processes used. During the definition phase, QA should review
 requirements, specifications, and use cases created by product
 marketing. QA management should also review any outstanding defects
 and identify those that require repair in the next release. During
 the design and coding phases, QA should prepare test plans and work
 on test automation as required. During the testing phase, QA should
 execute test plans, identify defects, and back-check repairs made.
 In addition, QA should take measurements that identify the
 quality of the code during all phases.
Figure 17-2
 illustrates these activities against major steps of a software life
 cycle. The following sections discuss each of these activities in
 detail.
[image: QA activities versus software life cycle]

Figure 17-2. QA activities versus software life cycle

Requirements and Functionality Review

Organizations that emphasize quality will promote the QA
 team's efforts throughout the software development life cycle. QA
 team members can offer insight into product utility and ease of
 use, so allowing them to comment before engineering starts
 building the code will help ensure a higher-quality product. QA
 team members also need to understand exactly what engineering is
 building to determine how best to test the product. Before
 testing, QA will produce test plans to optimize the testing
 process and create a repeatable set of tests.
QA should be involved in reviewing the requirements and
 functional specifications of every product and should have an
 opportunity to review prototype designs. The development and QA
 teams should meet, listen to feedback, and make appropriate
 adjustments to the product definition.
The only thing worse than not allowing QA a voice in
 requirements and functionality is not listening to and heeding
 what QA has to say.

Test Plans

A test plan helps create a repeatable method for testing a product. Without a repeatable method,
 testing will be ad hoc—gaps will appear in the testing process
 that can result in post-release problems. Consequently, the QA
 team should create test plans for all products.
Each test plan should be based on a standard template (see
 the next section) to assure consistency across the team and from
 product to product. This will allow each team member to use a
 reliable test plan to ensure consistency in construction.
Determining the scope of the testing to do is not always
 easy; for example, in small companies, some parts of a system may
 be overlooked and not tested. QA often neglects to test the
 internal tools used to maintain the product. Internal tools can
 require less strict testing than customer-facing
 products—especially regarding error messaging. However, testing
 still is required if the maintenance tool affects customer
 outcomes. Consider the following questions regarding internal
 projects:
	Does the code function properly for the
 administrators?

	Will any usage side effects impact the customer?

	Is the entry error checking acceptable for an internal
 project?

Produce a list of all the products and modules you use and
 review it with both the engineering and QA teams. Maintain this
 list as the product line changes. Each item on this list should
 have its own test plan.

Test Plan Template

Standardizing the test plan format by using a template makes
 it easy for any member of the QA team to run the appropriate
 tests. A test plan template provides a common layout and format
 for all test plans. Using a template makes it easy to review and
 execute test plans consistently.
A spreadsheet-based template allows for easy data entry,
 status summaries, and progress tracking through summary
 worksheets. The layout should include multiple worksheets that
 correspond to different components to be tested. A Summary
 Worksheet can offer an overview of the entire test plan.
Summary Worksheet
Summarize the test plan data on this worksheet by collecting
 information from the component worksheets:
	Percent complete of all worksheets in the
 spreadsheet

	Name of the program or module being tested

	Build number of code being tested

	Date of the test

	Pass/fail summary showing tests and number that failed

Component Worksheets
Create a worksheet for each area of the product to test.
 Each worksheet ideally shows one test per row, so that the sheet
 is easy to work through and scan. Each test worksheet should cover
 these areas:
	Functional testing for the intended use cases

	Functional testing for edge cases (tests that push right
 to the edge of what is allowed)

	Functional testing for error cases

Each test in a component worksheet will use a unique number.
 The combination of the worksheet name and the number creates a
 unique identifier, which is useful for reporting and discussing
 problems. For example, Security worksheet, test 44, could be
 written like this: security-44.
Each worksheet will feature one test per row with multiple
 field columns. The choice of fields varies based on need, but
 here's a typical list of fields for the plan:
	Test number

	Description (with enough detail to describe the test
 clearly)

	Expected behavior (details the product behavior)

	Expected outcome (short description—for example, "the
 first line should be 53")

A row can include additional fields that are set each time
 the test plan is used:
	Actual outcome for this test run (for example, pass, or
 fail; sometimes it is useful to use a spreadsheet "pick list"
 to only allow a specific set of choices from a list)

	Defect-tracking number (from the defect-tracking system,
 where you find a problem and log it)

	Traceability matrix information (information on how this
 test corresponds to the requirements or functional definition;
 the nature of this varies considerably per project but can
 simplify evaluation of test completeness)

	Notes (notes about the test case not covered
 earlier)

Creating Automated Tests

Automated testing often requires a test plan strategy that
 differs from that of manual testing. QA can perform test
 planning with a higher level description, defining
 what types of tests fit the automated testing approach. The
 individual test instructions are encoded into the automated
 system, while the results of the testing are usually listed in an
 output file. It is still possible to create a summary worksheet
 that covers both automated and manual testing.
Increasing the percentage of automation can improve speed
 and accuracy of testing, because automated testing is faster to
 run and the tools identify correct results quickly. Automation
 improves the quality when multiple delivery platforms exist or
 when time to perform complete manual testing is limited.
The workflow for test automation should cover these
 steps:
	Collect information about the tests.

	Write test scripts.

	Edit and build test data.

	Run the automated tests.

	Correct problems in one of three ways: Fix the script,
 fix the correct results data, or have the engineer fix the
 problem the scripts identified.

Keep in mind that you can invest too heavily in automation
 at the expense of under-testing some parts of the product line.
 Review the cost of creating automation against the time saved
 during the test phase. Evaluate the benefit and cost of automation
 if more than 20 percent of an application is changing per
 release.

QA Processes

Basic QA processes are essential for any
 company, especially for small startups. Without a clear process
 defined, work will not be repeatable and cannot be improved over
 time. Good QA processes allow you to control, measure, and improve
 product quality.
Establish core QA processes as soon as you acquire the
 responsibility for the QA team. Set up a development process, a
 defect-handling process, a defect-ranking process, and a
 defect-selection process. The first two processes have been covered
 in earlier chapters and earlier in this chapter. The following
 sections cover defect-ranking and defect-selection processes.

Defect-Ranking Process

Defect ranking requires a method of determining in
 what order defects should be dealt with. Many different methods can
 be used to rank defects, including ranking each defect using several
 different categories, such as severity, priority, and business
 impact. Ranking scales vary considerably from company to company,
 with some choosing alphabetic ranking, some choosing text (such as
 Very Severe), and some using numeric ranking. The problem with a
 technique that uses multiple scales is that it engenders arguments
 about which defect to tackle first: How do you compare a 7 severity,
 B priority, 6 business, against a 2 severity, A priority, 8
 business?
One solution is to use a single number to encapsulate all the
 information. This number is the overall
 priority of the defect (or feature). As many companies
 already use the term priority for a specific
 purpose, this discussion uses a new term called
 ranking number or
 rank to distinguish this process. The ranking
 number is the overall ranking of one defect relative to the other
 defects.
The ranking number makes use of a simple range of numbers.
 Five categories works well, with 1 being the lowest and 5 the
 highest. Assigning a larger number to the most severe problem
 simplifies calculating defect impact, as
 described later. You can use more numeric categories, but you may
 end up wasting time trying to fit defects into the range (for
 example, with a scale of 10, it can be difficult to select whether
 the defect is a 3 or a 4, and so on).
You can use a table to encapsulate all the information into a
 ranking number. The table columns will list the categories of items
 to rank, and the rows will represent each ranking number. You can
 expand the number of categories as necessary by adding columns. Here
 are some potential categories:
	Security

	Business need

	Functionality broken
How important is the broken feature relative to how often
 the feature is used?

	Customer-facing GUI
A spelling error on a main page may not break the product,
 but it looks bad. Ranking GUI errors independently emphasizes
 their importance.

	Data integrity
Risks to internal or customer data may require a separate
 category.

	Safety

	Legal liability

Functionality and Usefulness as Specified and Built

Table 17-1
 shows an example table with sample categories. The example table
 does not show values in the boxes that need to be filled in with
 descriptions of the conditions to qualify for each rank. These
 values are decision drivers—they help you make
 the choice of appropriate rank value for each defect being
 considered. When you create your table, define appropriate drivers
 for each box.
Table 17-1. Corporate Quality Values Ranking Table
	Rank
	Security
	Business need
	How badly broken?
	Customer-facing GUI

	5
	 	 	 	
	4
	 	 	 	
	3
	 	 	 	
	2
	 	 	 	
	1
	 	 	 	

To create decision drivers, place a description of criteria that
 would represent that ranking for that category in each empty field. For
 example, a Business need rank of 4 could represent an important
 revenue opportunity of $100K or more; a Security rank of 5 could be
 a severe security risk that affects many customers with data
 exposure.
You can leave fields empty to indicate that the choice of
 category and value cannot be ranked. For example, a Security rank of
 1 may be omitted if no low-priority security issues exist.
After you have filled out the table corresponding to the
 company's values, you can use it to evaluate defects. You can consider defects in more than one
 category. For example, a defect can be a Business need as well as a
 Customer-facing GUI. To rank a defect, read down each relevant
 category column until a description matches what actually exists.
 The highest ranking becomes the defect's ranking number. So, for
 example, if a defect is a 4 in Security and 3 in Business need, its
 ranking number is 4.
Once a defect has been ranked, this information will be stored
 in your defect-tracking system. Most systems can show tables of
 outstanding problems, making it easy for you to sort outstanding
 defects by their rank, which allows you to focus on the
 highest-ranking defects first.
Ranking numbers provide for consistency over time. This method
 allows you to compare the ranks of defects found a year ago against
 those of new defects, so you can avoid long sessions of reviewing
 hundreds of historical defects with every release. A ranking number
 should be changed only if the information associated with it
 changes. In general, QA is the best arbiter of a ranking. Do not
 change a ranking because someone insists that the defect be repaired
 faster.
You can extend this approach to cover enhancements as well as
 defects by creating a ranking table for enhancements. Because of the larger
 cost associated with enhancements and the quality impact of defects,
 it is better to treat enhancements and defects as separate
 categories of decisions.
Defect Selection Process

If you have a long list of defects, you might find it
 difficult to select which to tackle first. You can use a
 systematic approach to ordering defect repair. The following
 system triages defects when it is clear that not enough time is
 available to remove them all in the release cycle. This system
 works well for defect lists of moderate length, with perhaps 200
 or fewer items.
The return-on-investment (ROI) project
 concept is the model for this approach. The
 return-per-cost (RPC) of effort allows you to
 rank different defects. RPC is a calculation of benefits that requires you
 to assign benefit values to ranking numbers. In this example, a
 rank 5 defect is twice as important as a rank 4. A rank 4 defect
 is twice as important as a rank 3. A rank 3 is twice as important
 as a rank 2. And a rank 2 defect is 1.5 times as important as a
 rank 1. This example assigns a rank 1 defect a value of 10 so that
 you can set up a relationship between defects and the repair
 benefit. (Using 10 as the smallest value has calculation
 advantages, which will be made apparent shortly.) Table 17-2 shows an
 example mapping of ranking numbers against a weighting factor.
Table 17-2. Importance Weight of Each Ranking Number
	Rank
	Weight

	1
	10

	2
	15

	3
	30

	4
	60

	5
	120

To implement the ranking tool, create a spreadsheet table
 with columns, as shown in Table 17-3. Ensure that all the
 defects have a ranking number. Next, make a quick estimate of the
 cost of the item. Many experienced developers can provide a rough
 estimate of costs by reading the description of the issue. The
 estimate does not need to be exact, because errors should average
 out over the entire list of defects.
Table 17-3. Table Column Setup Example
	Defect #
	Description
	Rank
	Weightedvalue
	Cost
	RPC

	432
	Button "continue" on error A page
 broken
	4
	60
	4
	15

You can calculate Weighted value directly from the Rank
 using a lookup table. The table manager can
 override and increase or decrease the Weighted value based on
 reading the description. For Cost, use estimated effort in hours.
 Calculate RPC as Weighted value divided by Cost. Figure 17-3 shows a simple spreadsheet
 example with ranked defects and RPC with the rows sorted by RPC.
 Note that defect 124 is the best one to tackle first, because it
 shows the best return for time spent. Occasionally, simple 1- and
 2-ranked defects are good choices to implement first if their
 costs are low enough. However, the heavy weighted values of rank 4
 and 5 defects will often be near the top of the list unless the
 cost of tackling them is huge.
[image: Defect RPC calculation]

Figure 17-3. Defect RPC calculation

You can extend the table to perform date calculations if you
 know how many engineers are available to perform the work. A
 simple approach is to total the hours and divide by the number of
 engineers available to work on the defects. From there, calculate
 how many hours per day the team will work on defects to translate
 days to repair. As described in Chapter 12, conversion of hours of effort on
 tasks into calendar days requires accounting for percentages of
 the time engineers can work on the project and what the normal
 work week looks like. The sorted list can then show estimated
 completion dates. You can estimate the number of defects likely to
 be repaired in the time available.
Figure 17-4
 shows an example calculation: Starting the effort on the morning
 of May 4 with one engineer working on the defects, let's figure out a timeline for defect
 repair. Assume that the engineer is able to work only 6 hours per
 day on defect repair. Delay in days becomes Cost in hours divided by 6 hours/day.
 Calculate Date done using the Excel function
 =WORKDAY(start date, day
 increment) with start date being the last day and
 day increment being your calculated days' effort for the defect.
 If the deadline is May 16 for finishing the defect work, then you
 can estimate how far down a long list of defects will likely be
 completed.
[image: RPC ordering with data calculation and deadline]

Figure 17-4. RPC ordering with data calculation and deadline

If your quality policy requires completing all higher-ranked
 defects ahead of lower-ranked defects, you can still use the table
 approach. However, you will not need to calculate RPC.
 Effectively, this policy says that a rank 5 defect is infinitely
 more important than a 4, a rank 4 defect is infinitely more
 important than a 3, and so on. In this case, sort by two fields:
 Sort by rank first, and then sort by cost, and work on the lower
 cost defects first.

QA Metrics

QA metrics are tools used by the QA team to
 "keep score" of the quality of the product or the development process.
 Proper metrics allow for better prediction of timelines for testing,
 development, and release. Metrics can also help the management team
 decide whether the product is ready for release. Metrics provide
 insight into problems the team is facing and how to improve
 performance and process. A well-run QA team will have collected
 metrics on many aspects of quality from past releases. In a strong,
 quality-oriented team, these metrics will be created and
 used.
Companies collect metrics based on need, processes used, and team
 preferences. In general, a small company needs only a small set of
 metrics targeted at its specific needs. This set should be designed to
 be easy to collect and review in a reasonable amount of time.
The following sections cover some common metrics that can be
 collected along with simple approaches for collecting the data. Use
 these approaches as starting points for your quality metrics. Not all are necessary and not all will
 work best in every situation. Don't stop with this list, either; look
 for other opportunities to create metrics consistently and act on the
 results. Your team's quality awareness will improve in no time.
Defects Found per Week Post-Release

Defects found per week post-release is a
 simple count of defects found after the release of the product until
 the next non-patch release. To calculate, start counting defects at
 the product release and stop counting at the next non-patch release.
 Group the defects into weekly totals and report the totals each
 week. You can organize this information in a table format and plot
 it, as shown in Figure 17-4. This data
 will help you anticipate what to expect for future releases.
[image: Defects found post-release]

Figure 17-5. Defects found post-release

If the defects per week continue to increase after a few
 weeks, the product may be in trouble. Sometimes, during the first
 three or four weeks, no defects will be reported. This can indicate
 an excellent release, or it could mean that customers have not yet
 fully used the product. Once you have collected data on one release,
 you can use it for planning for defect repair time with the next
 release.

Weighted Defect Count per Week

Weighted defect count per week is an
 ongoing count summing up the weighted value of each defect between
 releases. The weighted value represents the
 impact of each defect relative to that of other defects. The highest
 rated defect (5) can be many times more important than a middle-rank
 defect (3). Setting up a table in advance that shows relative impact
 to your company of ranked defects will allow you to weight the
 impact of problems found post-release.
Table 17-4 shows a
 sample weighting table. In this example, the highest ranked
 defect (5) has an impact 25 times more than the lowest level defect
 (1) and 2.5 times more than the next lower defect (4). Your
 weighting tables will vary, but most impacts will be different from
 the rank number.
Table 17-4. Rank vs. Impact Weighting Table
	Rank
	Impact

	1
	1

	2
	3

	3
	5

	4
	10

	5
	25

To calculate the weighted value, sum up the weighted values of
 all post-release defects. For example, if the post-release defects had ranks of
 3, 2, 4, 4, 2, 1, and 5 in week one, then the total would be: 5 + 3
 + 10 + 10 + 3 + 1 + 25 = 57. Track this information weekly and
 examine the totals. You can compare the data to past releases to get
 some insight into what to expect after the first few weeks
 post-release.
You can also use a spreadsheet to calculate weighted defects
 per week. Figure 17-6
 illustrates an example spreadsheet showing the proper formulas to
 use.
Weighted defect tracking post-release is also valuable for
 tracking post-release trends—tracking the
 length of time between the release and the peak of reported problems
 per week. This can vary based on product and customer. For products
 with simple setup and customers who are very anxious to use them,
 the peak will probably occur early.
[image: Calculating weighted defects]

Figure 17-6. Calculating weighted defects

Knowing when to expect the peak number of problems is useful
 for planning purposes. You can use the information to ensure that
 the proper staff is available to support customer issues and
 anticipate when the issues will require additional staff. You can
 also plot the data in a graph to compare the current release's
 quality and defect counts against those of past releases. These
 comparisons document the progress your teams are making to improve
 product quality.
Figure 17-7
 shows a sample graph of data. In this example, notice that the
 weighted customer-reported defects are higher six weeks post-release
 than they are at the earlier peak at three weeks. This could be a
 sign of serious quality problems that might not be easily noticed in
 a nonweighted chart.
Weighted defects per week can also be used as a prerelease
 measure during testing. It can tell you about the quality of the
 code before it is released and help you predict total testing time
 to lower the defect count to an acceptable range. The quality
 measure is useful for releases with substantial new functionality as
 well as older products. However, initial defect counts will likely
 be proportional to the amount of code changes. This can have a
 smaller effect for product lines with consistently long release
 cycles and a consistent amount of changes. But it can be significant
 for highly variable releases in terms of amount of changes, and you
 can apply a normalization factor to compare releases or set a
 standard. With a consistent testing approach and a normalization
 factor to account for scope of the change, you can use the data as a
 guide to help determine when a product is ready for release.
[image: Weighted defects per week post-release]

Figure 17-7. Weighted defects per week post-release

Setting a normalization factor can be tricky, as accounting
 for relative amounts of change in a release can't be based merely on
 lines of code written. Sometimes changes take considerable effort,
 and the effort involves refactoring existing code. A practical
 normalization approach is to use an approximate calculation of
 number of hours of development effort planned for the release. If a
 release has twice as many engineering hours planned as the last
 release, for example, use 2 as the normalization factor—divide
 defect counts by 2 to compare these against data from the last
 release.

Weighted Customer-Found Defects

A variation on the previous approach is to count only
 defects found by customers. This will reflect
 the customer's perception of the product. Sometimes the internally
 detected defects will skew the picture for better or worse relative
 to what customers have identified. Remember that customers do not
 report most defects; they tend to focus only on problems that annoy
 them or affect their work. Even so, customer-reported defects can give you a handle on how customers
 perceive your quality.

Percent of Tests Run During Test Pass

The QA team can execute test passes—which
 consist of a barrage of tests to evaluate the product, a log of
 found defects, repair of defects, and verification of the repairs.
 Releases often consist of multiple test passes; you will find it
 useful to know the percentage of total tests QA has completed,
 because the percentage is a progress indicator. Predicting the
 remaining length of time for the test pass is useful in terms of the
 schedule outcome.
In Figure 17-8,
 the test passes get shorter as the QA team finds fewer defects. For
 this product, the three test passes use a total of 19 work days, and
 the first test pass is 6 days long. A gap exists between passes 1
 and 2 to provide time to repair defects.
[image: Defects per week from start of testing]

Figure 17-8. Defects per week from start of testing

Defects Found in Test Passes

The number of defects found in each test
 pass is useful to chart. The first pass testing is
 predictive of the post-release quality as well as testing cycle
 time. If the same post-release techniques just described are used
 prerelease, you can predict the defects that QA will find.

Defects Repaired per Week During Testing

A graph showing the number of defects repaired per
 week during testing is another useful tool. If you plot
 repaired defects alongside defects found, the curve will follow the
 defects-found curve but be delayed. The time difference between the
 two curves represents the average delay in making repairs. Figure 17-9 shows about a
 one-week delay from defect identification to repair. This can be
 predictive of what to expect in the next round of testing.
[image: Defects found and repaired per week of testing]

Figure 17-9. Defects found and repaired per week of testing

The measurements presented here can help you prepare for
 defect identification and repair. Ultimately, you need to select the
 right set of metrics that fit your product's requirements.

The Impact of Defects on Quality and Productivity

The quality culture of the QA and engineering teams can be the
 key driver to overall quality and QA productivity for a small company.
 The quality of the code leaving engineering at the start of testing
 and the quality of the defect repairs drive the culture of the teams
 and the company. Unfortunately, many engineers do not give either of
 these issues enough thought.
A product's defect count as it enters the testing phase defines
 the quality of the shipped product and the schedule. The quality of
 the product is proportional to the quality of the product entering
 testing, because testing finds percentages of problems, not a fixed
 number of defects regardless of how many exist. Defect counts at the
 start of testing affect the schedule by adding to the overall cycle
 time for the testing team. Defects require identification and repair
 time, and large numbers of defects require more test passes to ensure
 quality code.
You can observe the effect of defect count at the start of
 testing on the total test schedule. Table 17-5 shows an example
 that compares starting defect counts of 300, 40, and 10 entering
 testing against the number of test passes. In all cases, assume that
 engineers will repair 85 percent of the defects properly, but they
 will repair 15 percent improperly, and these defects will require more
 work. Notice how starting with 300 defects requires four test passes
 to achieve zero defects. Starting with 40 defects needs three test
 passes. Starting with 10 defects requires two test passes. This
 illustrates how the initial defect count can have a big impact on schedule.
Table 17-5. Defect Reduction vs. Testing Passes with 15 Percent Error
 Rate
	Testing stage
	300 start #
	40 start #
	10 start #

	Pass 1 end count
	45
	6
	2

	Pass 2 end count
	7
	1
	0

	Pass 3 end count
	1
	0
	0

	Pass 4 end count
	0
	0
	0

Also important is the quality of the repairs. Repair quality can be measured in the test
 pass reduction rate—the percent of identified defects that
 are not properly fixed and new failures that are caused directly by
 the repair. It is fair to characterize an organization by its correct
 repair rate or, conversely, by the repair failure rate. For example, a
 25 percent failure rate indicates a sloppy organization in which
 engineers do not check their work or communicate with QA. A reasonably
 well-run organization should have a failure rate of 10 percent or
 lower. A 5 percent (1 failure in 20) organization is performing very
 well indeed: Development engineers are working closely with QA
 engineers before implementing a repair to make sure they understand
 the problem. Engineers are also checking their work to avoid
 introducing new problems.
Let's take a look at another example. Assume engineering builds
 100 defects into a project that QA finds in the first test pass. Each
 pass takes a week because a full regression test is undertaken on each
 pass to catch side effects of defect repairs. Consider the simple
 scenario shown in Table 17-6 with three
 different repair rates, 25 percent, 10 percent, and 5 percent,
 starting at 100 defects.
Table 17-6. Repair Failure Rate vs. Testing Passes
	Stages
	25% repair failure rate
	10% repair failure rate
	5% repair failure rate

	Start count
	100
	100
	100

	Pass 1 end count
	25
	10
	5

	Pass 2 end count
	6
	1
	0

	Pass 3 end count
	2
	0
	0

	Pass 4 end count
	0
	0
	0

The outcomes of the three approaches are considerably different. The 25 percent team takes four
 test passes before the product is ready to ship. The 10
 percent team takes three passes. The 5 percent team takes two passes
 through the code for success. If each pass takes 5 days, then the 5
 percent team takes 10 days less than the 25 percent team for the same
 initial defect count. In practice, the time difference is even
 greater, because this example does not include engineering time to
 make the repairs. If you assume 20 percent of a
 day spent per defect found and 5 days per test pass, you get the data
 illustrated in Table 17-7.
Table 17-7. Total Time vs. Different Repair Failure Rate
	 	25% repair failure
 rate
	10% repair failure
 rate
	5% repair failure
 rate

	Stages
	Defect Count
	Time (days)
	Defect Count
	Time (days)
	Defect Count
	Time (days)

	Start count
	100
	 	100
	 	100
	
	Pass 1
	25
	5.0
	10
	5.0
	5
	5.0

	Pass 1 repairs
	 	5.0
	 	2.0
	 	1.0

	Pass 2
	6
	5.0
	1
	5.0
	0
	5.0

	Pass 2 repairs
	 	1.3
	 	0.2
	 	
	Pass 3
	2
	5.0
	0
	5.0
	 	
	Pass 3 repairs
	 	0.3
	 	 	 	
	Pass 4
	0
	5.0
	 	 	 	
	Total days
	 	26.6
	 	17.2
	 	11.0

Wow! The team with a 5 percent repair failure rate closes a
 release 15 days faster than the team with a 25 percent rate. The time
 savings are much larger as the size of the project increases. You can
 clearly see that driving a positive engineering attitude toward
 defects entering the testing phase does cut schedule time and reduces
 post-release defects.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	Code Complete: A Practical Handbook of Software
 Construction, by Steve McConnell (Microsoft Press,
 2004)
	Controlling Software Projects: Management,
 Measurement, and Estimates, by Tom DeMarco (Yourdon
 Press, 1986)
	Effective Software Test Automation: Developing an
 Automated Software Testing Tool, by Kanglin Li and
 Mengqi Wu (Sybex, 2004)
	High Quality Low Cost Software
 Inspections, by Ronald A. Radice (Paradoxicon
 Publishing, 2004)
	Introduction to the Personal Software
 Process, by Watts S. Humphrey (Addison-Wesley
 Professional, 1996)
	Software Inspection, by Tom Gilb and
 Dorothy Graham (Addison-Wesley Professional, 1993)
	Software Release Methodology, by
 Michael E. Bays (Prentice Hall, 1999)

Part V. PLANNING THE FUTURE

Chapter 18
Chapter 19
Chapter 20
Appendix A
Appendix B
Appendix C
A key role for the development manager is planning the future of
 the company's product and company technology. At many small firms,
 planning is limited because of lack of time to take on the task. Even
 though day-to-day activities can be overwhelming, you should set aside
 some time on a regular basis to plan for the future.
This section discusses approaches and methods to help you make
 forward-looking planning more systematic. It includes techniques for
 selecting projects, project estimation and planning, and general
 technology planning.

Chapter 18. SETTING THE DIRECTION

The development manager must oversee the product and technical directions for the development team; he also
 works with marketing to set the product direction for the company.
 Developing the direction should be a collaborative effort that involves
 the technical leaders of the sales, marketing, and development teams.
 Important considerations in setting product direction include market
 requirements, customer requirements, industry technical direction, and
 company needs.
If you fail to set the direction, the direction will be set for
 you by default. Without specific direction, engineers can be influenced
 and motivated by factors that are not particularly business focused,
 such as the thrill of working with new technologies or approaches or
 rewriting code rather than reusing it. Engineers also have strong
 preferences for particular software and systems, and they may select third-party packages
 based on short-term utility while not considering
 long-term costs, effect on quality, and business risks.
If you're new to the company, take a look at how development made
 technology decisions in the past before you set the direction for the
 future. Try to understand the reasoning behind past decisions. Think
 about choices of language, operating systems, computers, third-party
 software, and data formats. Consider past "create-versus-buy" decisions.
 Knowing how decisions were made in the past can help you understand any
 biases of the team and will give you ideas for improving the technical
 decision-making going forward. In some cases, the reasons for past
 decisions may not be clear—but this should not prevent you from
 documenting decisions now or in the future.
You cannot set technical direction in a vacuum. As you consider a
 strategy, review it with the executive team and encourage input and
 support. Decisions are affected by high- and low-priority issues, with
 trade-offs and compromises being common. Proper communication with the
 executive team ensures that everyone is aware of the big picture,
 including its pros and cons.
As the technical leader, your decisions in setting the future
 technical direction require that you consider five elements: Listen to
 the market, create a whole product, defuse hidden technical time bombs,
 plan for required technical overhauls, and optimize customer
 setup.
Listen to the Market

As you plan a product and technology direction, consider the
 requirements of current customers and the current and future
 market.
Sales, marketing, and customer service teams can help you learn
 more about your customers' interests. Meet with customers. Spend time
 observing as users work with your product; this can provide great
 insight into how you might improve the product. Ask customers about
 their concerns, their future plans for using the product, and their
 ideas for new features. To appreciate the big picture, you can compile
 data gathered from multiple customers.
Current customers can provide great evolutionary advice about
 your product, and potential new customers can help identify key
 features that are missing. As most small companies grow by acquiring new customers
 and selling more products to current customers, looking ahead to new
 customers' needs should be an important part of your planning efforts.
 If you focus only on current customers' needs, you can run the risk of
 over-customizing your product to suit a smaller potential market. The
 product marketing team should regularly examine your company's
 markets, talking to current and potential customers.
 This information allows the team to identify different groups of
 customers with similar problems. For each group, the marketing team
 can examine the value a potential solution would bring, and the
 development team can determine practicality and potential costs of
 solutions. With different options identified, marketing can set the
 product direction.
This may sound like a straightforward process, but it often
 involves multiple iterations and examination of different ideas to
 isolate those with the best potential for the next product offering.
 With the cooperation of marketing and engineering, this process can
 occur in a systematic way.
As you examine potential markets, stretch your current product in different
 dimensions to consider potential for new opportunities. Some new
 opportunities require simplifying your product and offering it
 packaged at a lower price. Other opportunities require new specialized
 features. Still other opportunities include different industry
 "verticals"—meaning that your product can be used to solve a similar
 set of problems for a different industry.
Tackling new market verticals should not be considered lightly.
 Be prepared for a larger effort. Entering a new market vertical
 usually involves considerably more work than expanding a product line
 in an existing vertical—not just in customer sales efforts, but also
 in learning the problems and concerns of the new industry. The
 development team needs technical expertise in the requirements of the
 new industry before a new product is designed and built. Part of your
 planning should be to account for the engineering training time
 required to attack new verticals.
Investigating the product's future is an ongoing task for the
 development manager and others, and planning for the future should not
 be limited to an annual strategic planning session. These discussions
 provide valuable information that should be considered at least once a
 quarter. Failing to discuss the product future regularly can add huge
 time lags into planning processes and can make the product's (and
 company's) future less dynamic and less successful.

Create a Whole Product

As discussed in earlier chapters, the whole
 product concept[7] describes not only providing a software product that
 customers want to buy, but providing a complete solution to the
 customers' problems and needs. A whole product includes the software,
 customer services, technical support, appropriate technical
 interfaces, ease of integration with other tools, ease of
 installation, and a forward-looking plan. A development manager cannot
 focus solely on the product software. Instead, look at what it takes
 to expand the software into a whole product, with a focus on
 interfaces, integration with other tools, and ease of customer
 implementation.
If the costs and effort required to assist customers with
 implementation of your product are high, you should examine this area
 carefully and often. Small company sales are influenced by customer
 implementation difficulties and costs. Customers find enterprise
 systems difficult to implement in general, so a simplified system will
 attract sales. Company management can neglect to attack product
 implementation improvements early enough in the company's growth
 cycle. High implementation costs will stall out a small company's
 growth.
Some software categories require extensive numbers of interfaces
 to different systems to be accepted by the market. The next new
 interfaces are not necessarily as fun to implement as a new product feature, but they can result in high
 sales value. Examine your interface needs early with marketing and
 plan for growth.
For some software products, direct interfaces with other tools
 are essential for success. As with interfaces, this is not a glamour
 area for software engineering, but it is essential for maximizing your
 product's value for the customer and its overall success.
Looking ahead often requires marketing binoculars to identify
 future directions. However, sometimes it requires donning a flak
 jacket and looking for hidden problems.

[7] The whole product concept is the topic of the book
 Crossing the Chasm by Geoffrey A. Moore and
 is also covered in marketing texts.

Defuse Technical Time Bombs

Some past technology decisions might be ticking time bombs that
 will go off when you least expect it. These technology time
 bombs are caused by technical choices at the beginning of
 product development that result in problems that explode
 in the future. Engineers can create such problems by focusing on a
 quick product construction while ignoring the long-term effects of
 their choices. In addition, engineers making technical choices can
 have personal biases that might not represent the best long-term
 business choices for the current situation.
Technology time bombs have different delay times and different
 effects when they explode. Knowing what to look for as a development
 manager can help you spot these issues early enough so that the
 problem does not leave your company unable to support its customers.
 Consider the following areas when reviewing your technology and
 looking for potential problems:
	How standard is the data format chosen
 for communicating with customers? Does it add to customer costs
 when they integrate with your system?
	Sometimes data formats are not specified at the outset of
 the project, so the engineering team will use the most
 convenient format, which might prove to be very inconvenient for
 future customers.

	Did the team build code for a software
 component, even though a reasonable commercial component was
 available?
	This is referred to as "the not invented here syndrome."
 Some engineers want to re-create components for their own
 education or so that they have complete control over the
 code.

	Was an uncommon language used in your
 product's construction?
	This can result in difficulty finding and hiring
 appropriate replacement engineers. As a small growing company,
 actively avoid this problem, since use of common languages
 should be the norm. But uncommon languages may be used when a
 technologist has a personal interest in or preference for
 them.

	What are the reasons behind key
 technology choices?
	Sometimes technology is chosen for familiarity or
 for learning purposes, not because it is the best choice.

	How thoroughly has QA checked the API
 input error checking? Is the coverage solid?
	Both engineering and QA often conduct inadequate error
 checking with application programming interfaces. Because of the
 complexity of most APIs, making complete tests and checks can be
 difficult.

	Does the product have major features
 that current customers do not use?
	If this is the case, and if the features do get used
 eventually, you should expect customers to uncover new
 problems.

	How scalable is the data layer, front
 end, and middle layer?
	As the customer base increases, speed issues often appear
 in server-based software.

	Has anyone reviewed the system
 hardware choices for scalability?
	For software used on a server, development often
 focuses first on getting the functionality right and considers
 scalability later. Early testing of software scalability and
 recommended hardware is a good idea.

	How does third-party code performance
 scale with system volume increases? Has another customer of the
 third-party code used it on a system with the volume you are
 expecting?
	Sometimes scaling problems are tied to third-party
 packages incorporated into your system. Don't assume that these
 packages have been properly tested for higher speeds and
 customer loads.

	What are third-party code licensing
 costs when volume is high?
	Licensing of some components can include a painful price
 increase as more customers are brought online. Understand the
 per-customer and scaling costs for use of any third-party
 package.

	What is the reliability and quality of
 third-party code?
	As quality of commercial software code varies
 considerably, carefully review third-party code during testing;
 don't assume it's okay.

Finding and defusing technical time bombs before they explode requires some
 detective work. All aspects of your product's construction must be
 examined, including compatibility, scalability, quality, vendor
 reliability, and long-term costs. Although avoiding a blowup might not always be possible,
 minimizing the effects usually is.
Some technical choices can present serious technical flaws that
 are not easily repaired. When this happens, you might need to make
 major changes to the code base. It may be time for a technology overhaul.

Plan a Technology Overhaul

A technology overhaul
 involves the replacement of major sections of the current code or
 redesigning the product's architecture, while keeping the
 functionality of the code roughly the same. A new technology may be
 required to solve systematic design flaws. Consider an overhaul in
 response to major issues that cannot be fixed gradually along with new
 development.
The need for an overhaul can often occur on a legacy system you
 inherited. On the other hand, an overhaul can be a nightmare for a
 development manager who supervised building the system in the first
 place. In either case, explain to your boss and peers why the choices
 were made in the first place and why significant changes need to be
 made now.
Time and resources are always scarce in small companies, so
 competition for them can be intense. If you don't get peer and
 management buy-in, dealing with expensive problems that are not easily
 visible and do not produce short-term visible results can result in
 misunderstandings and mistrust.
Also consider the impact of an overhaul on your customers. These
 changes might (and often do) force changes in the customer's
 operations or technology. For example, your changes might require that
 the customer purchase a new third-party application, such as database
 software. You must consider the customer impact before starting the
 work and offer your customers sufficient notice of upcoming
 changes.
How the overhaul is handled depends on the projected cost and
 business needs. If the overhaul is "minor" and development can
 complete it in a single focused release over a three- to six-month
 period, implementing the changes at once makes the most sense. It will
 require the support of marketing and sales, because a release that
 does not improve the product features can cause problems with sales
 growth. You will need a strong business case for performing a
 technology overhaul, as doing so will displace other
 important product work.
If the changes are not minor and cannot fit into a single
 short-term cycle, your choices are more difficult. A one- to two-year
 overhaul project rarely makes business sense for a small company. It
 leaves the company's product features static for too long. The time
 delay of the overhaul invites a large amount of risk from competition
 and from loss of momentum with existing and future customers.
One approach for an overhaul is to map out the effort by major
 sections per release. This can be difficult to coordinate along with
 normal releases and will drag out the effort over a longer time if
 additional staff is not available. Another approach is to build the
 new system in parallel with work supporting the existing system. This
 can be logically simpler but requires extra staff and infrastructure
 that you may need to scale back at the end of the effort.
In summary, when you believe a technology overhaul is needed,
 you must create and present a clear business case for it and continue
 to push the issue toward resolution. Don't wait until the system blows
 up and hurts your product and customers.

Optimize Customer Setup

Although shrink-wrapped, mass-produced software is sold "as is,"
 many products and services require additional setup procedures before
 the customer can realize the full potential of the software. Companies
 that sell products that require or benefit from setup efforts often
 overlook the costs of such operations. If these costs are ignored,
 optimizing the customer setup is usually ignored as
 well.
Creating a great product that is expensive to deploy per
 customer may not be problematic if your customer base is small, since
 the costs in such a case could also be small. But as your customer
 base grows, so do the costs of these extra efforts—with increasing
 customizations, rollout times, and rollout costs. Most small companies cannot afford large
 time delays or high development costs with each new customer, and
 problems with implementation and setup can cause loss of sales, as
 more potential customers hear about problems associated with your
 product.
If customers are willing to pay for customization of your product, sales with more
 customization options might be viable. However, a product that
 requires heavy customization per customer means that your development
 staff must grow as sales increase. Such an approach defines a
 consulting business model, which requires a different consideration of
 costs, sales, and expenses than required for a one-size-fits-all
 software package.
Combining a consulting business model with a software product
 business model is a difficult task for a single software company.
 Customers will always try to push down the price of the custom coding
 or will expect it to be free with an expensive product. This will make
 the customization more of a cost than a sale for your company.
 Therefore, you must minimize customization efforts and costs early on,
 before the company's growth phase.
If customization is part of the company's business plan, create
 a separate group or business unit for customization efforts, with
 different price requirements determined for the product and service
 parts of the business. Top-level agreements about how concessions will
 be made will simplify the sales process when customers place pressure
 on the product or service element of a sale.
Whether paid for or not, delays from sale to rollout add time
 before a new customer can become a paying customer. Large delays
 during a growth phase will hurt your company's cash flow and ability
 to grow, even if the company has all the customers it wants. Growth
 strains cash flow because your company must spend cash well in advance
 of receiving payment from customers, and the current cash input will
 be less than the cash output.
The higher the growth rate and longer the delay from costs to
 revenues, the higher the profit required on past sales to sustain the
 company without outside investment. This situation is even worse for
 the software as a service (SaaS) model, in which customers pay your
 company over time instead of providing a lump sum payment.
Rollout and customization requirements affect not only the
 development team, but also the operations, support, documentation, and
 project management teams. The development team can usually find ways
 to help reduce the costs and delays that other teams face if
 developers focus on the most important problems.
If your business model requires customization to get users up and running, look for ways
 to optimize this process before you are inundated with orders. To cut
 time and costs, first figure out the current rollout time and cost per new customer. The process of
 calculating the costs will require that you examine the steps and the
 process to identify multiple ways of reducing time or minimizing
 error.
Other solutions vary for cutting times and cost depending on the
 analysis. Here are some examples:
	Change the bundling and scope of the product to reduce
 rollout times and costs.

	Do not target customers who by their nature require the most
 customization.[8] This could mean pursuing mid-sized companies instead
 of large companies, which expect more attention and customization
 with large software purchases. Large companies have the financial
 influence to demand free customizations while squeezing you on
 price. You can mitigate this effect by creating new features that
 also enhance the product for the general market, but avoid making
 such rationalizations if they are not truly the case. From a
 business risk perspective, a CEO often prefers several smaller
 sales over one large sale. More sales can reduce risk if something
 goes wrong with a deal. However, the CEO's strategy may prefer
 large sales over smaller ones if company credibility will benefit
 from large account references.

	Simplify the customer's integration efforts by writing a
 software program that automates the process. If the customer has
 to manipulate old data to use your system, make the process as
 automated as possible and part of your standard offering.

	Standardize your customization offerings to reduce
 deployment time. Instead of allowing full customization, include a
 few standard customizations and make them as simple as possible.
 This principle can apply to professional service organizations as
 well. Creating frameworks, methods, and standard customizations
 that speed up the deployment can greatly improve the company's
 profits. The basic rule boils down to "create once, sell many
 times."

	Create a customization or integration group that focuses on
 improving customer implementations by reducing their costs and
 shortening their deployment time. This group will scale up with
 sales increases as the company grows.

[8] An exception is the case in which your company's
 business strategy is focused on a mixed product/service market
 geared toward large customers. Make sure your company has deep
 pockets, as the sales and delivery cycles can be long in this
 situation.

Chapter 19. PRODUCT ROADMAP AND STRATEGY

Strategic planning requires more than sales predictions and a
 financial plan—it requires a product strategy and a product roadmap
 based on thoughtful analysis of where the company began, where it is
 heading in the future, and how it plans to get there. The development
 manager plays a critical role in the process by producing a realistic
 product roadmap that sets the course and coordinates business needs with
 development, marketing, sales, and other team strategies.
Senior management must look continuously at the road ahead while
 remembering the paths the company has already taken. As a senior
 manager, you must watch your step to avoid pitfalls while focusing on
 the horizon that leads to your company's future.
After you have determined your destination, planned your route,
 and scouted out the immediate path, you can complete a short-term (less
 than one year), middle-term (one to three years), and long-term (three
 to six years) strategic plan.
MISSING THE MIDDLE
At my company, I clearly observed the split between short-term
 and longer-term planning. The managers had no interest in aligning the
 two. Politics dictated the short-term tactics; investors wanted to see
 movement in selected areas. Management sold the long-term plan to
 investors as it showed a rosy future. Part of the reason for not
 aligning the two plans in the middle may have been management
 cynicism. If they built out the middle-term plan and saw a big gap
 between the longer-term promises and the direction they were heading,
 they could not tell investors they believed in the longer-term
 financial models.
Development met the short-term goals over the next nine months,
 but the company did not succeed in stepping toward its longer-term
 goal because management had no plan to get there.
—Project management director

Failing to see the short-term path in front of you can get you
 stuck in a hole, while a lack of long-term vision can leave you
 wandering; however, a common and dangerous problem at a small company is
 missing the middle term: No plan for getting from here to there (the
 destination) is determined and regularly updated. Without a complete
 strategic plan that includes the middle, you may seize short-term
 opportunities that lead away from longer term goals. Non-strategic
 short-term choices do not build on each other to increase corporate
 value. Instead, these choices bring in short-term revenue at the expense
 of future potential.
Creating a full strategic plan that includes a middle-term plan
 takes an executive team effort. The team will need to consider many
 aspects to provide a solution that meets the company goals, including
 the product roadmap, company finances, expected sales, and company
 staffing plan.
Even more important than creating the plan is reviewing it
 quarterly and making adjustments as needed. Many companies create
 strategic plans once a year and then file them away rather than updating
 them regularly. The process of replanning provides the real value in
 strategic planning, not the plan itself.
From a development leadership perspective, you will find it
 challenging to hold to the high road rather than go with the flow. It
 takes a bit of political skill to convince others that some short-term
 choices can be detrimental in the long term. However, don't simply and
 quietly accept short-term product choices that won't get your company
 where it wants to go; make your opinion heard on the big issues.
With this information in mind, let's look at the planning area in
 which development has the largest influence and concerns—the
 product roadmap.
Creating a Product Roadmap

Product roadmaps are usually developed with marketing to define
 the evolution of the product line(s) over time, and they focus on the
 major shifts that impact the product and its market. The roadmap must
 not be a marketing fantasy; it must be based on realistic development
 assumptions about a product course that is reasonable to achieve and
 that produces the product the company and its customers expect.
 Creating a product roadmap requires that you have a solid
 understanding of the current product goals, along with its flaws and
 limitations that can affect the course.
Start with the marketing strategy and consider several major
 product options. Also consider other major efforts that the company
 expects development to undertake, such as develop projects that
 improve productivity, repair faulty systems, close customer deals, and
 improve corporate image. All company project efforts should be
 considered while creating the product roadmap.
Let's look at a straightforward approach to comparing different
 options.

Evaluating Choices

Cost-benefit (CB) analysis is a classic
 tool with both formal and informal definitions. In this section, the
 discussion is not financially formal but uses a variation on the
 calculation to account for probability of seeing the benefit.
 CB analysis is used to determine which projects will
 create the most revenue. This analysis is underutilized in the software
 market because of the complexities in estimating potential benefits of
 any investment and the ability to accurately forecast the costs of
 vaguely stated objectives. However, CB analysis can be an effective
 sorting tool for small software companies.
Performing CB calculations on future product proposals offers
 insight into which projects are most likely to succeed. More
 important, these calculations can identify projects that
 will fail. CB calculations can reflect the
 overall management team's judgment about what will happen during each
 product cycle, and they also allow you to compare potential successes
 of multiple projects. This information is valuable to consider when
 thinking about future product planning.
Cost-benefit calculations can be wrong, but the relative
 values for projects proposed are likely to be close to actual relative
 values. You can use these calculations to make comparative choices on
 new project proposals. Some projects improve customer experience or
 simplify an internal task, but they need to be evaluated against all
 other projects and the returns compared before they can be
 selected.
Projects come in multiple types: Revenue
 projects bring in money. Productivity projects
 can improve the effectiveness of the team so they lower costs and
 improve services. Required projects describe
 projects with an external mandate—such as projects based on federal
 regulations for medical software companies and Year 2000 software
 upgrades. Risk Reduction projects reduce the
 chance of a disruption of your business. Image
 projects improve the company's image but do not increase revenue directly.
 Typically, small growing companies avoid image projects because the revenue is either zero or
 very difficult to define, but in some cases the right image project
 can be key to company success.
In small companies, revenue is usually emphasized. Some
 companies focus only on revenue and ignore productivity and risk
 reduction until after problems become acute. Should revenue always
 trump productivity and risk projections? The short answer is
 no—revenue can dominate but it should not always win. Failure to
 consider risk reduction or productivity issues can be fatal to a small
 growing company, because both risk and productivity issues increase as
 the company grows.
Many small companies do not use cost-benefit analysis to investigate future projects,
 relying instead on executive instinct or voting selection processes.
 Both instinct and voting can easily produce less-then-optimum results,
 however, when appropriate information hasn't been gathered. They also
 are subject to individual biases that may not be in the best interest
 of the company.
In general, cost-benefit analysis isn't the end-all solution,
 but it can offer good advice on what makes sense when planning an
 organization's future.
PROJECT SELECTION BY SALES
At my company, year-long projects were voted on by a sales
 staff of about 12. The company needed to make three sales for the
 product to break even on development costs. Most sales people knew
 of only a single potential sale for the project in their region, so
 they had a strong incentive to place their vote where the next sale
 would occur, even if they knew that the company could sell only one
 product.
My company needed a stronger marketing department to survey
 the sales people and talk to customers. This would have let them
 determine the overall market for each customer and then select
 products with the highest potential sales over a three-year period.
 Instead, we made big choices with little foresight and with no
 review of what happened.
—Engineering director

Cost-Benefit Calculation

When estimating the CB for a project, consider it in the context of all
 projects to ensure consistency. All project analyses should be
 weighted similarly for crucial factors.
One crucial factor is the time frame for the analysis—the
 length of time considered for benefits, risks, and costs. The choice
 of time frame can vary based on the type of business and on the size
 of the company's projects, with larger projects requiring longer
 time frames. For most small software businesses, using two or three
 years for the analysis works well. Use the time frame consistently
 for all projects you analyze.
The next step is to evaluate the time and expenses on the
 project for your standard time frame. This estimate will vary
 depending on the type of effort defined earlier: revenue, productivity, requirements, risk, and image projects. Then, for different types of projects,
 consider the financial benefits versus the probability (odds) of
 achieving those benefits. For a revenue project, you can estimate
 the total sales expected. For a risk reduction project, calculate the odds of the risk
 being realized and the financial penalty of the risk happening (the
 negative benefit). For a productivity project, look at the benefit
 of saved time and money versus any probability of not realizing this
 benefit. For required projects, do not calculate the benefit, but
 do estimate the costs; then assign a CB value to add at the top of the list. For image projects, calculating the benefits can be very
 difficult, but getting the best guess down on paper is
 useful.
With all of this information in hand, you can calculate the CB
 for a project using this formula:
	CB = Benefit dollar value x
 Probability of benefit ÷ Benefit
 dollar cost

For example, if a revenue project is projected to have $1
 million in sales over three years (benefit) with probability of
 sales success estimated at 70 percent and a cost of $200,000, then
 the CB is 3.5 ($1,000,000 x 0.70 ÷ $200,000). Alternatively, a risk
 reduction project with a cost of $1,000 to solve a problem that
 could cost $50,000 with a probability of 5 percent would have a CB
 of 2.5 ($50,000 x 0.05 ÷ $1,000).
Note
CB is a unitless value, as it divides money by
 money. Strictly speaking, financial calculations use "present
 value of money," found by discounting the value of future money
 when comparing it to money in the present. However, for most one-
 to three-year engineering projects, the estimates are so rough
 that adding the present value calculation is not
 necessary.

Cost-Benefit Comparisons

You can compare several types of projects using a CB approach.
 For all project types, estimating the cost is not as difficult as
 calculating the benefits of the project and the likelihood of
 experiencing those benefits. If you systematically create the
 estimates and then record them, you can make comparisons between
 project estimates made months apart. As new information becomes
 available, you can update the CB information. Although required projects are
 different from optional projects (in that you
 must do the required projects), they typically
 have a zero or low revenue benefit. Enter this information and set
 the CB to a large number such as 100 to ensure that these projects
 appear at the top of the CB list. Add a note indicating mandated
 task completion dates.
You can add all of the project information into a spreadsheet
 or chart. Table 19-1 illustrates a simple
 example that lets you compare different projects side by side. At
 the top of the table is a required project, with an artificial CB
 that forces it to the top of the list (of course, this doesn't mean
 that its true CB is 100).
Table 19-1. CB Table Example
	Description
	CB 3yr
	Total cost $K
	Probability
	Benefit $K
	Weighed benefit $K
	Type
	Notes

	HIPAA requirements
	100[a]
	$40
	100%
	$0
	$0
	Required
	By Jan.

	Release process time reduction
	8.6
	$23
	100%
	$200
	$200
	Process
	
	Add web interface
	5.0
	$50
	50%
	$500
	$250
	Revenue
	
	Multiple system backup
	5.0
	$100
	10%
	$5,000
	$500
	Risk
	
	[a] Set to 100 —not calculated

An ordered CB table can provide insight into the relative
 importance of tasks, but it shouldn't be used directly as a task
 planning or sequencing mechanism. Once the team reviews the table
 and makes project choices, task scheduling can begin. In some cases,
 required tasks will be scheduled after desirable projects with large
 benefit-cost ratios.
Warning
CB is very easy to fudge to make a project look
 better. Take a skeptical view of all numbers and test the
 underlying assumptions.

When reviewing calculated CB, perform a "smell test": If a
 product has a very high CB (greater than 10), retest the
 assumptions. If a product has a CB of 2 or less, be skeptical of the
 benefits and costs. As these are rough estimates, it would be easy
 for such a project to turn into a loser if the costs escalate and
 the benefits are lower. In general, look for projects that have CB
 values of 3 or more. In all cases, keep the assumptions and CB
 available in a table even if the project looks like a loser. As potential projects
 often seem to come up again in 6 to 12 months, you can revisit
 earlier assumptions to see what might have changed.

Creating One-Page Assessments

A useful adjunct to CB is the one-page assessment,
 which describes the underlying project at a high level and includes
 many of the assumptions. The one-page assessment is a useful tool that
 complements cost-benefit analysis. Each assessment provides a quick
 overview of the proposed project, its costs, and its benefits. The
 executive team can review the assessments along with the CB project
 summary table when determining which projects to authorize. The
 one-page assessment is the initial guide to whether the team should
 investigate the project further. It is also handy months later if an
 executive team member asks for information about a particular
 project's assessment.
Anyone on the executive team can collect the information for the
 one-page assessments; however, most of the assessments will require
 that the information be collected from several different executives.
 Marketing and engineering should be consulted for all
 assessments.
A typical one-page assessment describes these items:
	Title (at top)

	Author

	Date

	Version

	Type of project (keyword)

	Description (including dependencies)

	Benefit (statement of reason for doing project)

	Costs (in dollars and labor)

	Timeline

	Recommendations

Figure 19-1 shows a
 sample template for a one-page assessment.
[image: Template for a one-page assessment]

Figure 19-1. Template for a one-page assessment

Project Components

When you're preparing one-page assessments, some projects will contain multiple smaller projects. If
 you determine that the smaller projects can be broken down into
 independent projects, consider breaking them up before performing
 the final analysis.
Sometimes projects can be divided into smaller portions that
 can be easily analyzed. For large projects that span a year, for
 example, consider breaking them up into blocks of functionalities
 that offer distinct values to the customer. For each component,
 perform a cost-benefit calculation specifically focused on the
 perceived value of the product to the customer with only that
 functionality. This analysis approach is more difficult than project
 cost-benefit calculations, because calculating the financial return
 for pieces of functionality can be an abstract concept. However,
 discussing with marketing the relative value versus cost for
 functional blocks offers considerable utility, since it forces
 marketing to prioritize and record the effective values of different
 feature sets. Allowing marketing or management to indicate that all
 features must be included in the product in no particular order
 before it has any value lowers the project's chance for
 success.
Collecting the effective value of subcomponents will involve
 discussions with multiple customers to understand how they perceive
 the value of the product. After these discussions, write down the
 relative values of the subcomponents; this information can be very
 useful in the future. Management and new customers can often drive
 new feature requests into the product without considering the impact
 these may have on other planned features. A broader perspective lets
 the team choose implementation sequences that benefit your company
 the most.

Additional Reading

Here is some additional reading on topics presented in this
 chapter:
	The Entrepreneur's Manual: Business Start-Ups,
 Spin-Offs, and Innovative Management, by Richard M.
 White (Chilton Book Co., 1997)
	Maximizing ROI on Software
 Development, by Vijay Sikka (Auerbach Publications,
 2004)
	Software by Numbers: Low-Risk, High-Return
 Development, by Mark Denne and Jane Cleland-Huang
 (Prentice Hall PTR, 2003)
	Strategy Pure & Simple II: How Winning
 Companies Dominate Their Competitors, by Michel Robert
 (McGraw-Hill, 1997)

Chapter 20. GOING FORWARD

If you have read straight through this book, you have covered a
 lot of ground. With so much information to consider, the path forward
 can seem daunting. Fortunately, you have a guidebook on hand to help you
 find your way.
If you are a new manager, don't worry if that feeling of being
 lost in the woods is still with you. At ground level, the trees look
 similar and they all block your view, but don't wander around the forest
 floor hoping to find yourself somewhere you want to be. Instead, change
 your perspective regularly—climb a tree to get above the forest
 so you can view the landscape. A manager needs to be able to see the big
 picture and understand how his or her hard work relates to it.
 Consequently, make a regular effort to revisit the high-level view of
 your company and your development efforts. If you don't like what you
 see, make changes. To sum it up: Stop, assess, and then act.
A little retrospective thinking can also help. Think about where
 you've been and where you are now. If you like people, software,
 technology, and management, your job should be exciting and fun overall.
 If you haven't felt that way in a while, shake yourself awake and ask
 why work isn't energizing. This will lead you to change either where you
 are spending your time, what you are prioritizing, or how you are
 leading. It can also lead you away from your current company.
Remember that being the development manager isn't about ego, job
 perks, being in charge, or other direct benefits to you. It's about you
 guiding your team to success. Good management means supporting your
 team, helping development staff grow, treating team members fairly, and
 helping the business along. Treating others well may not always advance
 your career, but it will make you a good manager who earns the respect
 of your team, boss, co-workers, and ultimately yourself. And that will
 make the journey worthwhile.

Appendix A. SOFTWARE COMPANY STRUCTURE

Structuring the organizational aspects of a growing software
 company requires that you understand the tasks that the company needs to
 perform. When the company first starts, the leadership often distributes
 the tasks among the staff. As the company grows, these tasks will also
 grow in size and number, and new employees will need to be hired. As new
 employees are hired, the organization of the company will shift, and
 roles will become more specialized.
This appendix illustrates how company structure changes as a
 company grows. To illustrate the changes, some key small company sizes
 are examined along with their associated organizational structures. The companies described are
 modeled after small software product companies, rather than software
 contracting firms. Although the descriptions are detailed, they are not
 intended to define the only ways to structure a small company—in
 practice, other organizational structures can also be used
 successfully.
The sizes of companies discussed here are as follows:
	One-person software company

	Two-person software company

	Twelve-person software company

	Fifty-person software company

	Hundred-plus–person software company

The first four examples illustrate a
 functional/hierarchical[9] organization, as it is the most common structure for
 smaller firms. A hundred-plus–person software company often uses other
 organizational structures. Although you don't need to wait until your
 company has more than 100 people on staff to reorganize, the pressure
 that occurs at that point becomes large enough that the issue of an
 effective organization becomes particularly pressing.
Company Tasks

To understand companies of different sizes, you must first
 consider the business and software development tasks that are required
 to create a working software company. These tasks fall into two
 general categories: business tasks and software life cycle tasks. Software life cycle
 tasks include work needed to develop a viable software
 product and maintain it after development. Business
 tasks enable software development and keep the business
 financially viable—from getting the funding to paying the bills,
 hiring staff, and managing the effort.
The following lists of business and software life cycle tasks
 are not intended to be all encompassing, but they do cover tasks
 common to software companies of different sizes.
	Business Tasks
	Software Life Cycle Tasks

		Acquire funding

	Maintain financial accounts

	Deal with government regulations

	Handle human resources issues

	Supervise staff

	Sell products or services

	Plan for the future

	Purchase, maintain, and support computers and
 systems

	Manage, estimate, and track projects

	Define technical policies and processes

		Define product

	Design architecture

	Write and debug code

	Test product and assure quality

	Package software

	Release software

	Support customer

	Create technical documentation

Keep these types of work tasks in mind as we examine companies of different
 sizes, starting with the one-person company.

[9] Described in earlier chapters, a functional organization
 segments work by functions (for example, marketing, sales,
 engineering, accounting) while a hierarchical organization uses a
 top-down delegation of authority.

Typical One-Person Company

In a one-person company, the owner-operator does everything,
 from the business tasks to the development tasks. To succeed, this
 person must either be technically savvy with business skills or a
 businessperson who contracts out technical development. Some people
 can successfully sustain this type of company for a while, but most
 find that wearing two hats is very difficult and requires too many
 skills.
Some technical people run successful one-person, one-product
 companies with no interest in expansion. This structure can work acceptably well for a niche product
 that has very limited growth potential. But if the product has
 significant potential, other companies will eventually move into the
 market, and competition can pose challenges to the one-person
 company.

Typical Two-Person Company

A businessperson and a technical person can effectively
 run a two-employee software company with an appropriate division of labor. The
 technical person (often the chief technology officer, or CTO) handles
 all the operations and engineering, and the businessperson (often the
 president) handles running the business. The two must collaborate
 extensively.
The task requirements are about the same as those of a
 one-person company, but the software development tasks and some
 technical tasks that are not strictly development oriented (such as
 keeping the hardware in proper working order) go to the CTO.
 Everything else falls to the president. The tasks are split as
 follows:
	President—the businessperson
	CTO—the technical person

		Acquire funding

	Maintain financial accounts

	Deal with government regulations

	Handle human resources issues

	Sell products or services

	Support customer relations

	Plan for the future

		Purchase, maintain, and support computers and
 systems

	Manage, estimate, and track projects

	Define technical policies and processes

	Create technical documentation

	Define product

	Design architecture

	Write and debug code

	Test product and assure quality

	Package software

	Release software

	Support customers technically

	Plan for the future

As a company succeeds and grows larger, task sizes increase
 until more employees are hired to handle the load. Which tasks grow
 fastest with sales growth varies depending on the product and
 industry. Common functional areas that experience rapid staff growth
 as revenue grows are sales, customer support, and engineering.
 Engineering efforts can increase rapidly as the company grows, because
 customers often want customized features as part of the
 sale.
[image: Example of a 12-person software company]

Figure A-1. Example of a 12-person software company

Twelve-Person Software Company

At the 12-employee level, the software company is a small team. Employees are assigned some
 specialized tasks by function, which adds to the overall organizational efficiency. Administrative and support
 tasks are usually assigned first, but there is usually some overlap in
 roles and tasks for everyone in a small firm.
As the company size is small, all employees talk to each other
 constantly. Everyone has a good understanding of what other team
 members are doing, with the possible exception of the software
 engineers, who are heavily focused on building the software.
Figure A-1
 illustrates an example 12-person company organized along functional
 lines. The figure shows each staff person by title. Common employee
 tasks for each function are shown as bullet points on the first
 instance of the function. A number of different arrangements of
 responsibilities are possible with a 12-person company; one common
 variation is whether product definition is dominated by engineering or
 the sales and marketing person. Another variation is splitting the
 sales and marketing role between two people.

Twenty-four to Fifty-Person Software Company

As a software company grows larger than 12, staff is usually
 added to fill out functions. A 24-employee company will likely feature
 the same key functional areas used in a 12-employee company. The CEO
 or president may separate marketing from sales and HR from finance at
 this level. For the software-as-a-service model, the company may
 require an operations department. The following departments would be
 appropriate in this size of company:
	 	
		CEO

	Finance

	Sales

	Marketing

		HR

	Development (includes QA and documentation)

	Operations

As the company approaches 50 employees, the CEO will fill out
 all the functional areas with separate staff and management. The
 functional areas are more likely to be distinct, reporting to the CEO.
 In a 50-person company, engineers have more specialization (such as a
 build and release engineer) as some functions can add to efficiency at
 a lower cost.
Compared to a 12-person company, a 50-person company does not
 enjoy the continuous communication experienced by a small team. Too
 many communication paths are available with 50 people for everyone to
 keep in touch daily (that's 1,275 potential two-way
 conversations).
Figure A-2
 illustrates a sample 50-person company organized along functional
 lines. This example does not portray a "perfect" company organization
 but illustrates a common one. In this example, the number of people in
 a particular staff position is shown by the x N
 notation. For example, x 8 would indicate that eight people hold this
 position.
[image: An example of a 50-employee company]

Figure A-2. An example of a 50-employee company

Notice in this example that customer service and account management are separate.
 Customer service will support the user of the product, while account
 management will support the purchaser of the software. For many
 products, the user and purchaser are different entities, and even when
 the same person handles both tasks, different support skills are
 required for each.
Numbers of staff for each team and corporate structure vary
 considerably at the 50-person company size, often depending on the product offered,
 the industry, overall goals of the company, background of the CEO, and
 specific short-term needs of the company. For example, for product
 companies with a stronger emphasis on quality, the ratio of quality
 team to engineering staff will be closer to 1:1. In some firms, this
 ratio can be as high as 10:1 engineers to QA, but this is definitely
 not recommended.

Hundred-Plus–Person Software Company

At the 100-plus–employee size, the company requires large
 functional teams that experience communication fragmented by function.
 Employees do not know everyone else in the company. Communication is
 strong within the functional areas, but it is weaker between
 functional teams.
As companies grow to one hundred employees or more, management
 usually considers different methods of restructuring the organization.
 The CEO can choose multiple organizational approaches but typically chooses a
 straight hierarchy, a matrix structure, or segmenting by small product
 teams.
As companies grow, communication that worked with fewer staff
 ceases to work well. In a small company, instant messaging (IM), many
 rapid emails, yelling over the cube walls, or walking to someone's
 desk every time you have a question works well. In a larger company,
 however, such approaches can overwhelm employees with too much noise
 and too many communications from too many sources.
Managers sometimes try to shield their employees, demanding that
 all communications go up the ladder and back down so management can
 triage. This can seem isolating, as it creates workgroup "silos." This
 approach is an inefficient way to get work done.
Let's consider several different approaches to organizing a
 larger software company. Structured approaches include a hierarchy, a
 matrix, many small product teams, and a flexible product team. For all
 of these approaches, bear in mind the main functions of management:
 organizing work for sale (such as project work), supporting individual
 employees (mentoring and coaching), and improving the overall
 organization (process improvement and hiring).
Hierarchical Structure

A hierarchical structure for a company
 has each person reporting to a single manager. In a hierarchy, a
 clear chain of command exists. A hierarchy divides tasks by
 functional area. In each area, a manager controls the
 function.
Figure A-3 illustrates a
 simplified company hierarchy.
[image: Company hierarchy example]

Figure A-3. Company hierarchy example

A hierarchical structure has some advantages over other
 structures. First, a hierarchy offers a clear chain of command. The
 top management makes directives and sends them down the management
 chain. Second, management can reduce communication paths by creating
 separate functional teams, which reduces communication noise. The
 different functional teams communicate mostly internally at a
 smaller scale, while inter-team communication is reduced. In
 addition, functional areas can optimize internal workflow.
On the other hand, many problems can exist in a hierarchical
 structure. First, each manager can optimize his or her department to
 the detriment of the overall company. This happens because each
 functional team is part of a production chain required to deliver
 the product or service, but each team is managed independently. As
 each functional manager is focused on the efficiency of his or her
 team, the manager may not focus on the efficiency of the
 organization as a whole. For example, a functional team can push
 part of its work onto the next team by reducing the scope of what it
 delivers, completing it with poor quality, or completing 80 percent
 of the work and promising that the rest will come later. These
 tactics make it appear as though the team has completed a milestone
 on time so the statistics look good, but such approaches lower the
 overall efficiency of the company.
In addition, work is often backed up in functional areas
 because of staff limitations, a non-project focus, and different
 priorities for different teams. For example, if five projects are
 active, but only two QA engineers are on staff, situations may occur
 when all five projects require the full-time attention of the two QA
 engineers at the same time. This results in the delay of three or
 more projects.
Finally, project communication between different functional
 areas is slower and less reliable, if it happens at all. Depending
 on the company culture, many inter-team discussions go up to the top
 of the hierarchy and then back down in another functional
 area.
With these key deficiencies in functional and hierarchical organizations, companies often use other
 organizational structures. This is especially true in
 companies with large numbers of projects.

Matrix Organizations

A matrix structure solves some of the
 problems of a hierarchical structure. It supports project management
 as well as functional management. Both project managers and functional managers have
 authority in their respective roles: the project manager for the
 project development, and the functional managers for supplying
 staff, mentoring the team, and setting processes and
 polices.
Companies select a matrix structure based on many factors,
 including company size, company culture, and business requirements.
 Companies with less rigid cultures, many projects, and the need for
 speed often use a matrix structure. With the project managers
 driving the individual projects, efforts are less likely to stall
 out or fall into an "information hole."
Consider different variations of the authority given to the
 hierarchical management versus project management. One solution is
 to split the authority between the functional management and the
 project management in half. However, how much authority senior
 management gives project managers versus functional managers varies
 considerably from company to company. Project managers dominate at some
 companies, while executives give project managers little authority
 but all the responsibility at others. Authority can be split in a
 company with a cooperative culture, and this proves to be an
 effective combination.
The classic matrix organizational chart shows split authority with
 dotted lines from the project managers. When drawn, the organization
 chart resembles a grid or matrix—hence the name. Figure A-4 shows a sample matrix
 organization.
[image: Example of a matrix organization]

Figure A-4. Example of a matrix organization

Many effective methods can be used to split the authority of
 the functional manager from that of the project manager. One
 approach is to give the functional manager authority to set
 standards and choose staff. The functional manager defines how a
 project will be completed in general, sets the standards for
 success, and ensures that the projects are meeting a high standard.
 The project managers get to drive the projects with staff and focus
 on project success.
Matrix organizations do have problems, however. Staff
 employees can get contradictory instructions from direct managers
 and project managers. Who is actually "the boss" is not
 always clear, which can lead to politics and infighting between
 project managers and functional managers if the company culture is pushy.
In addition, matrix organizations can lead to significant morale
 problems. If the functional managers have most of the authority,
 project managers may believe they have all the responsibility but no
 control and will be demoralized. The reverse situation can happen as
 well in companies that have strong project management but weak
 functional management.
Finally, projects often collide in functional groups—multiple
 projects need the same staff to meet their timelines, forcing each
 project manager to demand top priority for particular projects.
 Often, the functional manager must make the call on the priorities
 of competing projects. Project collision can be time consuming to
 resolve and avoid because of the defused authority. Priority
 discussions can be much more difficult in matrix companies than in
 hierarchical companies.
Neither matrix management nor hierarchical structures are
 ideal. Finding the right combination of functional and project
 control can work reasonably well. However, keeping development
 organizations as small as is practical and then giving them
 independence is often the best approach.

Small Product Team

One alternative to large hierarchical or functional
 organizations is the small product team. The
 company organizes each product team around individual products and
 provides functional support for each. Management empowers the team
 to make all of the decisions about the product. In a 100-person
 company, the product team will be relatively small, and this is its
 advantage: It has scaled down a piece of the company to the small
 company structure.
Product teams excel at creating products that are
 revolutionary—products that break the existing models of how they
 are built and used. Developing products that are upgrades to
 existing ones works well in existing organizations; trying to build
 revolutionary products in the same product group will encounter
 roadblocks that will greatly impede progress, including limiting
 processes, working with older use models, being compelled in the
 overall profit/loss structure, changing team attitudes toward risk, and
 creating problems related to change. Separating revolutionary
 product teams into their own product groups enables the new team to
 drive the new product area to success.
Figure A-5 illustrates an
 example structure for the small product team. Note that the CEO
 splits off some functions to report directly to him or her.
 Typically, HR and Finance will still report directly to the CEO.
 Sometimes the CEO will also choose sales to be a corporate
 activity.
[image: Small product team]

Figure A-5. Small product team

The structure of product teams will vary: It can be
 functional, matrix, or flexible based on what the product manager
 wants. However, the team will include roles for sales, development,
 operations, marketing, and other product-related functions. Each
 product team consists of sufficient team members to handle all the
 functions needed for the product. This does not mean that the team
 consists of a team member from each functional discipline. A team
 member could handle more than one functional area, for example, such
 as programming and QA. In this structure, upper management works to
 define overall strategy and provides support as needed for each of
 the product teams. This approach works for software products that
 small- to medium-sized teams can create and support. Teams can
 create products effectively and with more enthusiasm because they
 have more control over their particular tasks. This approach avoids
 the prioritization and communication disadvantages of the functional
 or matrix organization and is favored by many team members.
The small product team approach can have disadvantages, too.
 It is often necessary to "overstaff" some areas to create the
 product teams, for example. A product line may require only
 one-third of a marketing person's time, but a full-time person is
 assigned. Small product teams can also have problems with
 coordinating their efforts with other product areas; this makes
 sense because each area was set up to optimize the product. In
 addition, cost savings may be missed through corporate purchasing of
 equipment and software, although this is a relatively small problem
 compared to the effectiveness advantages. Finally, once the team is
 set up, this method offers less flexibility in going after new
 product areas. To do so requires that a new team be formed, often by
 pulling people off existing successful product teams.
Overall, the small product team's disadvantages are minor compared
 to the advantages of a more effective organization that can produce
 quality software quickly. The small product team works best for
 companies with relatively stable products planned over a
 multiple-year time frame.

Flexible Project Teams

The flexible project teams approach can
 make a team nimble. As projects arrive, management chooses project
 team leaders based on the projects' needs. The project leaders then
 select teams as projects require and as team members are available.
 Project team membership often overlaps, with one team member
 belonging to other teams as each project progresses. This approach
 requires a higher percentage of people with project leadership
 abilities than other organizational structures.
The flexible project team approach works very well in
 companies with many varying projects that are looking for speed and
 flexibility. Flexible teams are empowered as they provide the
 opportunity to form rapidly and allow team members to make project
 decisions directly.
The flexible project structure requires separating the
 non–project management functions from the project leadership. This
 can be accomplished in several ways, and Figure A-6 illustrates one approach to
 separating the management functions of mentoring, coaching, and
 evaluating employees working on teams. While the project teams are
 flexible based on project need, the management structure stays in
 place as projects change. This allows employees to have a consistent
 relationship with their managers to work through long-term
 issues.
Management needs to handle process improvement in this
 organization as well. One approach is to assign the job to the
 managers who are working directly with employees. A good alternative
 is for management to assign flexible project teams to handle
 specific improvement tasks.
[image: Flexible project leadership]

Figure A-6. Flexible project leadership

Like the others, this approach has disadvantages. A company
 that has few projects on a yearly basis can wind up with excessive
 management overhead. Also, it may be difficult to find enough
 engineers willing to be project team leads, although mid-career and
 senior engineers usually like the opportunity to lead on a part-time
 basis. Staff corrective action can also be more difficult with the
 diffused authority as compared to that in a functional-hierarchical
 organization.

Conclusion

Having reviewed some basic organizational structures for small
 companies, you might be tempted to rate them overall from best to
 worst. In practice, however, each can be effective, depending on your
 company's culture and what it is trying to do. In each case, be aware
 of the disadvantages of each structure and work to mitigate those
 problem areas.

Appendix B. INTERNATIONALIZATION

Internationalization of a website or application is more
 complex than it might first appear. When thinking about
 internationalization, an engineering team's first instinct may be to
 focus on translating the program's English text into another
 language—and how hard could that be? Instead, however, the team
 encounters complex problems, with many details to investigate, and some
 of them can remain unclear until after the company actually ships the
 product.
Internationalization is more than language translation, as it
 requires knowledge of currencies, laws, formatting, images, data
 structures, timelines, and costs. The depth of work can be clarified by
 knowing what areas to investigate and what questions to ask. Until you
 have clear answers, do not provide concrete estimates. Conservative
 assumptions are warranted for your first internationalization project.
This appendix provides an introduction to internationalization
 questions and issues. It is divided into three parts: definitions,
 questions to ask, and some best practices. Review them all before you
 scope and plan your project. Better yet, find an engineer who has worked
 on internationalization and bring him or her into the team.
Here are some definitions of terms used in this appendix:
Internationalization This is the
 process of adapting your US English program for use in other
 countries. In general, this means dealing with other languages, laws,
 currencies, conventions, and graphics, among other considerations.
Locale This is the combination of
 language and country that uniquely identifies the information
 displayed by the application.

Internationalization Questions to Ask

The following questions deal with planning, the translation
 firm, costs, database issues, currency/dates/dimensions, and country
 and language issues:
	What is the long-term plan for the product's distribution
 internationally?

	What are the limits to the countries that might be
 considered?

	What languages does the company want to support in the
 future?

	For the countries that need to be supported, do some of them
 use multiple languages?

	How do language and country interact? Are a single language
 or multiple languages used in the same country?

	Will the company use US English for all English-speaking
 countries, or will it choose different versions for different
 countries (for example, UK English versus US English)?

	Who will be working with development to assist with the
 definition and support after deployment?

Translating Staffing and Costs

Translation is a continual effort. With each new
 release, additional translations are required. Getting clarity up
 front about who will pay for this additional work can save you grief
 later. Also, you should identify who is going to verify that the
 translations are correctly implemented.
	Who will perform the translation quality assurance?

	What is the strategy for maintaining the translation for
 future releases?

	Who will pay for future translations and
 maintenance?

Although it is not necessary to use an external translation
 firm, doing so is often a practical solution that can be better than
 having someone on staff perform the translation.
	How will we interact with the translation firm?

	What file format will the translation firm accept? Some
 firms will accept submissions only in Microsoft Word or Excel
 format, not in XML or another file format.

	What is the expected turnaround time for
 translations?

	Can we get a review of the final product?

	How will we provide context for the translator to perform
 the translation? The context can determine how some words and
 phrases are translated.

Database Considerations

Internationalization usually forces you to make changes to
 your program's database structure. Often new fields or different
 data types are required.
	How will you store the language data in your program to
 allow for easy updating?

	Are data format issues of concern? Software teams use
 several different formats for data storage including ASCII,
 Latin-1, UTF-8, and others. These have different bit
 requirements, so switching data format can have an impact on
 speed and data storage ability.

	How will engineering export the data to supply to the
 translator?

	How will the translated data be imported from the
 database?

	Are multilingual reports required?

Country and Language Requirements

Language requirements can involve subtleties. For example,
 dialects can be important, and conventions and layout can become
 significant issues.
	What will be the language impact on screen layout?
 Different languages take different length and form factors
 to say the same thing—for example, German words use 30 percent
 more space than English ones. Chinese has a different form
 factor altogether.

	What particular country laws are associated with the
 software offering?

	Who is reviewing the legal issues associated with your program or
 website's interactions with different countries? Consider
 privacy, security, and contract requirements.

	What are your plans for graphics and image changes per
 country? Different cultures can require that different graphics
 and images be used. Different countries may want different
 images as part of their marketing efforts. Who will select the
 images?

Currency Questions

Most internationalization projects involve purchases or
 tracking of different currencies. Consider these questions in your
 definition of the work:
	What currency will be used for purchases or
 reporting?

	How will the program display currency format? (For
 example, French Canada reverses the period and comma from US
 dollars: $2.333,44.)

	What are the currency symbols and layout?

	How will the currency be stored in the database?

	How will we report currency in data reports?

	How will the product update the currency relationship with US dollars?

Dates, Metric, and Dimension Issues

Date conventions are often not considered when
 internationalizing a product, but they do vary between countries. In
 some countries, for example, the Gregorian calendar is not the
 standard. US programmers may not consider metric versus English
 units, but that translation may be required as well.
	What date formatting is required for the countries
 supported?

	Does your program use units that may require conversion to
 the metric system?

	Do current user interface fields need to be resized to
 accommodate different dates, currencies, or text?

	Which calendar will be used?

	Which time zones need to be considered?

	Do time zone considerations exist for multiple users
 communicating between different countries?

	Does the application support the taxes required by the
 target country?

Best Practice Approach to Internationalization

Different solutions exist for different needs based on all the
 preceding questions. Here are some good general approaches to use when
 internationalizing.
Locales

Design the system around a locale. Each
 locale is a pairing of a country with a language to create a unique
 identifier. This may provide duplication of language data, but it
 offers the maximum amount of flexibility and avoids needing to
 change the code later. For example, Canada would have two locales:
 Canadian-English and Canadian-French. The US would have one locale:
 US-English.

Translation Process

Design the entire translation process in advance and write it up. The
 process should describe how to export, import, and translate the
 data. Consider the costs and turnaround time for the translators.
 This will help determine the future delivery schedule for your
 product. When engineering completes the code for a release, it can
 sometimes take weeks more to translate, verify, and repair.
 Translation mistakes and text changes are common, so assume time for
 iteration.

Quality Assurance

Plan a strategy for how QA will verify languages other than US English. A QA strategy will
 require that someone review the website or program and point out
 problems.

Database and Import/Export

Design the data format and database interface up front. Take
 the following elements into consideration when designing database
 changes and data exchange formats.
Select a data format for storing language information. Avoid
 choosing multiple formats based on history. Ideally, use a coding of
 UTF-8 or UTF-16 if a Kanji language is a possibility. However, in
 some situations, no single encoding will work for all of the
 countries being considered.
Use unique keywords in the program to identify different text
 elements. A switch in the code will select the language, which the
 keyword will reference from a table in the database.
Design the data import and export system in advance. Store and
 export not only the keywords and their English values, but also
 context phrases that clarify the intent for the translator. Example:
 Go could mean press the
 button or exit.

Translation Firm

If the translator will not support your ideal format, design a
 method of automatically converting it to the preferred format. For
 example, suppose the customer chooses the translator, but the
 translator supports only Microsoft Word and Excel files. Creating special interfaces or
 practices for these firms may be necessary, as
 translation is not a one-time task.
One potential solution for the translator who wants to use
 only Excel is to customize the program. Excel 2003 and later
 versions support XML import/export if the proper template is built
 in advance. You can set up a template such that XML import/export is
 easy to perform. The process would then be as follows:
	Your program can export an XML format.

	The translator can read the XML into an Excel program
 using a standard XML template you set up.

	The translator makes changes to specific boxes in the
 Excel program and returns it to you.

	You export the XML from Excel and read it back into your
 program.

A convenient way to lay out a translation table in Excel is
 illustrated in Table B-1,
 showing an English-to-Wingdings (
[image: Translation Firm]

) translation template. The Context column
 provides the translator with context if the English phrase is
 ambiguous.
Table B-1. English to Wingdings with Context
	Unique Name
	English
	[image: English to Wingdings with Context]

	Context

	TitleAP
	Accounts Payable
	[image: English to Wingdings with Context]

	
	 	 	[image: English to Wingdings with Context]

	
	EnterAP
	Go
	[image: English to Wingdings with Context]

	Submit the information on the page (not
 physically go somewhere)

	ClearAP
	Clear
	[image: English to Wingdings with Context]

	Remove data from page (this is not about
 understanding or transparency)

User Interface

Plan your layout of screens and pages with flexibility to
 allow larger-sized text as well as photo and graphics changes. A
 graphics team cannot just think about the US office and English
 layout considerations.
Consider graphics and photos as part of the locale swapping
 code. Store multiple images and allow references from different
 locales to the desired images. Multiple locales can point to the
 same image.
Finally, be sure to include error messages in your translation
 strategy. Development staff often overlook error messages because
 they are not always visible.

Summary

Don't take an internationalization effort lightly, even though
 it may seem easy on the surface. Review with the customer all the
 factors presented in this appendix. The customer might surprise you
 with new requirements based on your questions. This approach will also
 raise issues with the customer about any longer-term
 internationalization plans. An implementation that works well in
 Latin-based languages may not work well in Asia, for example. It is
 much better to ask questions up front than to be surprised and get
 stuck later.

Appendix C. CORPORATE WORKFLOW DIAGRAM

This appendix describes a simple approach to drawing corporate workflow diagrams, which can be useful for understanding
 how a company works and for training others about the process. They can
 also provide great help in identifying problems and figuring out
 solutions.
Specific company problems can lead to investigation of workflows related to that specific problem. However, you
 shouldn't wait until you have a problem before you put together a clear
 understanding of the overall corporate workflows.
For a small company, creating a simple workflow diagram is usually
 sufficient. A simple workflow diagram helps you understand how the
 company works, from creating estimates to shipping the product. Although
 complex methods exist for creating and analyzing these diagrams, the
 benefits of complexity are mostly realized by larger companies.
A good practice is to analyze several common workflows as part of your initial corporate orientation:
	Quote and estimation process

	Order-build-invoice process

	Internally defined product development process

	Customer change order process

Creating a Simple Workflow Diagram

To create a simple workflow diagram, start by talking to people
 in the organization to understand how the company works. Make sure you
 include input from sales, marketing, operations, and finance teams as
 well as customers and vendors. These conversations should clarify the
 steps in the workflow and the expectations of individuals
 participating. Then grab a pencil and paper and follow these
 steps:
	Create a large dashed box to represent your company.

	Create boxes for each team in the workflow, labeling each
 with the team name and the function performed in
 parentheses.

	Create boxes for external customers, users, and
 vendors.

	Draw lines with arrows to show requests for work and work
 delivery paths. Add notes to arrows to indicate items delivered as
 needed for clarity.

Figure C-1
 illustrates the building blocks used in a workflow. Although this is a
 fairly simple set of building blocks, it shows how you can map most
 workflows easily.

Workflow Example

Let's move on to an example diagram that can be used to
 investigate slow invoicing problems. For this example, suppose you
 have just joined a company that creates semi-custom web applications
 for US and international markets. You are in charge of the
 engineering, quality assurance, and operations teams. The company
 offers customized applications in a software-as-a-service (SaaS) model
 and hosts the applications on the company's servers. International
 customers want the application to be translated into the appropriate
 languages and want to use graphics that appeal to people in the host
 country.
[image: Building blocks of a workflow diagram]

Figure C-1. Building blocks of a workflow diagram

Your boss tells you that your company has been having difficulty
 invoicing customers in a timely fashion and asks you to investigate.
 She also tells you that some finger-pointing is going on between
 sales, operations, and accounts payable about who's to blame for the
 problem.
You start by drawing a high-level diagram of your company,
 showing the main interactions between the functional areas. Your
 sketch looks like Figure C-2. With this
 drawing as your initial reference point, you can mark it up with the
 specific workflow that you are investigating. In some cases, you
 can zoom in on specific details of a group and prune away functions
 that are not relevant to your problem.
To continue your investigation, you interview people involved in
 the complete order-build-invoice workflow. As you are talking to
 individuals, you sketch out the workflow in steps and ask each of them if you have
 properly captured each step.
[image: High-level view of your company's major workflow]

Figure C-2. High-level view of your company's major workflow

First, you talk to the sales team; they tell you that they
 receive orders from the customer and send a copy of the order over to
 finance, the accounts billable group, engineering, and
 operations.
Next, you talk with engineering and learn that they receive the
 orders and then create the web application, working with other teams.
 To complete an order, the engineering team needs to use the services
 of a translation vendor and the graphics team. Engineering also works
 with QA to complete the website. Engineering has to ask purchasing for
 translation vendor support. The translation vendor gets requests
 directly from your purchasing group in finance while finance's
 accounts payable team looks for payment.
Next, you talk to QA. QA tests the website and requests
 corrections from engineering. When QA determines that the website is
 acceptable, they send the information to operations for
 deployment.
Next you talk to operations team members, whose jobs seem cut
 and dried. Operations receives the website from QA and deploys it.
 Operations also lets accounts billable know when a website goes up,
 but because no particular order number is used in the process,
 operations sends over a general description of the site and a date
 deployed. As you are leaving the operations area, the operations
 manager also tells you that he gets no advance notice of orders and
 really has to scramble to schedule deployment work.
Finally, you talk with the accounts billable and accounts
 payable groups in finance. They tell a different story. Too often the
 accounts billable team has to ask sales for an order when it comes in.
 They also have difficulty understanding whom to bill when operations
 puts up a website, because they don't have a purchase order number
 from operations. So they have to call sales, operations, and sometimes
 engineering to figure it out.
All of this information is too confusing in the abstract, so you
 revise your high-level diagram to focus on the specifics of this
 workflow. You revise your sketch to remove groups not
 involved and to add specific subgroups when appropriate. Then, you add
 actions to each group to illustrate what they do in the workflow. Your diagram looks like Figure C-3.
[image: Example order-build-invoice workflow diagram]

Figure C-3. Example order-build-invoice workflow diagram

From the diagram, you can follow the workflow of the purchase
 order. With the diagram, it is easier to see that the gap occurs
 between sales, accounts billable, and operations. The diagram also
 makes it easier to experiment with potential solutions.
One approach is to get agreement from sales always to send order
 information to both accounts billable and operations. Operations now
 has the reference order number and some notice of the order being
 completed by engineering. Operations is then required to attached the
 order number to the deployment notice given to accounts payable.
 Operations will also be the backup check if it finds a web deployment
 but no corresponding order from sales—operations can talk to sales
 directly to request the order and have enough information to identify
 the appropriate order. Figure C-4 illustrates the
 addition of sales supplying the customer order to operations not shown
 in Figure C-3.
[image: Revised order-build-invoice workflow]

Figure C-4. Revised order-build-invoice workflow

Although this is a simple example, workflow diagrams can also be
 used to resolve more complex workflow issues. They are useful while
 training new employees, as well.
Simple workflow diagrams are easy to construct and provide a
 method for visualizing and improving workflows in your company.

COLOPHON
The fonts used in Growing Software are New
 Baskerville, Futura, and Dogma.
The book was printed and bound at Malloy Incorporated in Ann Arbor,
 Michigan. The paper is Glatfelter Spring Forge 60# Eggshell, which is
 certified by the Sustainable Forestry Initiative (SFI).

OEBPS/tagoreillycom20090324nostarchimages266075.png
Ttk Line
Requirements Description
Author: Auther name
Revision: Revision version
Issve Date: Today's dafe.
1. Inreduction
1.1 Purpose and Scope.
Far software, describe the infent of e project in two or free senfences. Also
add a short description of the audience for this document. For example, is it
only internal or for extemal cusiomers as well?
1.2 Assumptions
list of assumptions
1.3 Open llems
list of ifems that are incomplefe
1.4 Definifions
list of definiions used in the document
2. Feature Overview
This section should provide the reader with an overview of the soffware, without
providing too much defail
2.1 System Diagram, Workflow
Overview of the system, workflow, or site
2.2 Feaiure Overview
list of fatures in context of the system diagram
2.3 Other General Overview llams
Description of items that apply globaly fo the system
3. Detailed Descriptions
This section describes the defails o the scffware functionaliy

3.1 Feature 1
Detailed desaripiion of Feature 1
3.2 Feature 2

Detailed desaription of Feature 2
Confinve with 3N

4. General Requirements
This section includes requirements that are nct functional. For example, usabilly,
speed, access, and quality. Quentity al features with numbers.

OEBPS/tagoreillycom20090324nostarchimages266085.png
Sn234
Sn23.5

23,4 Gool ——]
| fetsazas

Rebana 234

OEBPS/tagoreillycom20090324nostarchimages266149.png
Waighted

defacs per week

70
s
50
0
20
0
10

567

Wesks after launch

OEBPS/tagoreillycom20090324nostarchimages266167.png
Senior Managemant

(oo (o o] [omar] [oar]
N\ N //

@@

OEBPS/tagoreillycom20090324nostarchimages266091.png
[MONTH
Dor17 | bemetd | Dopisa | bmszmas

R T

2. Weekly full backups A A AAAARAAAAMARAAAAAMRMIAANL

it daily difierenicls VPRI I [EET RN

OEBPS/tagoreillycom20090324nostarchimages266067.png
Propeet | [[Projeet |__[Prajet B
lead | lead2 || leod 3

zqz

OEBPS/tagoreillycom20090324nostarchimages266113.png.jpg
S T] s

Tk Pan e b Dot | Ros

oA 4 o x

o 3 3

o

ol 7 7 [5 [%

Toue 2 T Fomulas

o 7 S

ook W27 sz

oo 2 Copyiobaica

lCaldonforkon 8 | 6|38 D /4845

CepytoB10C10
Do

S P Dse | 7

i Esute Vo e WCRDAYBIZE10]

oy i Today' dts or STODAY()
(1] [T e v p ——— AT
T0ronerdban 2 20in WORKDAYB13.C104010)

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/tagoreillycom20090324nostarchimages266139.png
Rebase

5

. H

E ENE
LR

_an - (-

H i

Moy “mus e deocs

Recuirsmartsand s v

Dacde | Dofine
Moo ond deect kg

OEBPS/tagoreillycom20090324nostarchimages266187.png
Voo sonpony

[
forieq

Enginsaing

Doekr)

gt
(Crecte
Pt

Gty

e

T

TrorTaon
Vender
o o

Cperatons

(oeploy]

Purchasing
fordey

=
payoble
o

OEBPS/tagoreillycom20090324nostarchimages266131.png.jpg
[FEENE]

. e 0 L e v e 5
o o g Vo

- i | b

s "y

et ~sirwonion

i st e

Dearpion Vo i 4\\

Ty E o
Coprrovacs

st o

e - g
Coyriieite

v - e

Nt - Covroc16016

O 2 2 a3

e P . S ——

ot e T CoprioCat 021

I — 11 7]
T Coymczzon

s 8o, 7% il

OEBPS/tagoreillycom20090324nostarchimages266141.png.jpg
AT

FEEEE T

Dot
124
255
e
s
an

Descrion
Pl fome |

Gl preblom ..

Sorup Socu,
Export mec
Curomsr .

Costlid|_roC
750 ——=D2/E2

4
iz
2
0
O

500
500
am
168

Fomnula.

Copy to FaF6

OEBPS/tagoreillycom20090324nostarchimages266115.png.jpg
T ok
(2 s
[Fens
[Eknc
5 mncz
7>

[

Formukas and Notes

& T poingtho mame ot s o he o,
D o e e n s Wha e,

o 477-481,107.)
5 2+ Copy o ecangle G247

56 =)
CopyoBsDBGE

OEBPS/tagoreillycom20090324nostarchimages266125.png
Delivery

[iont] [Foaon?] - [ooton] [mmgrae }— Ton >
1 1 1

Code =3 =

OEBPS/tagoreillycom20090324nostarchimages266177.png.jpg
e (3) € 55 9)

OEBPS/tagoreillycom20090324nostarchimages266081.png
Release 3.5.2 build 13

NN

Mopr Minor Poh Rakoss
whona rleass el buld

OEBPS/tagoreillycom20090324nostarchimages266143.png.jpg
Fomular

7 o o o e
o Dy o

P e =e3/4cso
S en Vo Conlr M}{cwm“”
12 et 54 7| 06 ey “WORKDAYH2,GY]
255 Gl peble 4 s sm 2o oMey CopyloHANT
|| s25_ ez V2| 200 Lt dead

)

Wty

Copyto FiF6

OEBPS/tagoreillycom20090324nostarchimages266121.png
Define

——

Test

& pelvery

OEBPS/tagoreillycom20090324nostarchimages266165.png
Produet A Product

managee | | manoger | | manager

Produet A] [Produc 8] [Produer |
feam o =

OEBPS/tagoreillycom20090324nostarchimages266103.png
Projoct Tk

Avthor: Authorly name
Date: Revision dalo
Vorsion: Revison number
1. Purpose
Dascribe the purpose of the project i one fo wo paragraphs. This s nof funcional
spocifcation.
2. Daliverables
Provide a shortls o the projects delverables withlimited dfail,
3. Applicable Documerts
Describe refeence documents including the funchional specificaton.
4. Schedue
Provide the schedue range of outcomes based on the expecied and polential risks
5. Resources and Costs
st the staff and external costs required fo buld the profect.
6. Consraint Frioifes
Provide agreed.upon pricritzation of the profect consirains: schedule, coss,
resources, fatures, and qually.
7. Risks
listrisks idrtified at the sartof the projec,incldling fechnical risks, schedble risks,
axternal vendor risks, and rsks o saniy. Incude mitigation for fop risks
8. Open lfams and Assumplions
listany items included wit the project hat require fime or ofrt o clriy.

OEBPS/tagoreillycom20090324nostarchimages266101.png.jpg
-AVERAGECT2112]

T S - N O o |
£l Week Week Wk Week | Weck Week Week fle
—— FE R TP T R T Y

ERR— T F T T -
I E R -
T BT S TR
e o o o o o ws

T Al Overood (T T) o
6| " actn 0w w o o e m| SO

< et
i) Toik. 320 305 360 925 360 355 350|—— -SUMIRS)

Wl ok o P I 1T T T
T V- e RRRL /)

OEBPS/tagoreillycom20090324nostarchimages266061.png
Enginesring manager

4

OEBPS/tagoreillycom20090324nostarchimages266153.png
Nmber o dafects

a5
40
35
30
25
20

15

10

an
Dae

/8

815

&2

/29

OEBPS/tagoreillycom20090324nostarchimages266171.png.jpg
(6 E) R (6) @ (0

OEBPS/tagoreillycom20090324nostarchimages266065.png
zngmemg rtor

[| \Mmggummge, [1223] [Sonir snginer

EEE"

OEBPS/tagoreillycom20090324nostarchimages266069.png
Quick

Stinetss Raview
ool —— |
[—

Midevel

Ravisw

Fl
derled

Revi

[
inplanant

OEBPS/tagoreillycom20090324nostarchimages266129.png
1 Guote request

[oled]

I

2 Review
[GuoteEng]

Ne [T Akmdon
o S

Yer

4 Wiieup
[GuoteEng]

]

5 Request e
[QuareEng]

0 Edimets mods b Esinote made
Uewa Eng] [DE Eng]

7 Guots wieup
[GuoteEng]

I

8 Raview ond sdt
1Dev. Mgr]

!

9 Dalivary 1o Sales
1Dev.Mgr]

OEBPS/tagoreillycom20090324nostarchimages266179.png.jpg
€3 A3 9

OEBPS/tagoreillycom20090324nostarchimages266097.png.jpg
Fomvlas

| Dot format

- D S0 e

3 Wook| Wook| wesk| Weok| weokl _ west]
2 ok 10sen] 17hor]2tn il 81 I5h]
3 ropah o | mo s as s
4 ot | ool ol o o o o
5 Foeac | zool 7ol s o o o
& s [o] o] o o[o[sz
T Owheod |20l 5[3l o[w352
& Vom0l a0 40 o[@
9Tk | w0 3| m 3w [3w

|~ =sumHaHa)
Copy 10 896D

OEBPS/tagoreillycom20090324nostarchimages266133.png.jpg
T
&

ol

el

5

[3 o isni

[4 Dncion v

ol

1] 5 s

£l

(B8] e ot s

i

s

6| ¢ Exrors

R r—
OERT

3 5 oo

far ‘
% ot ot Vi 2 7006
=

T —T

5] oo o 7 sty

-ne
CopytoC16D16

CopyloC22022

OEBPS/tagoreillycom20090324nostarchimages266083.png
Independent component
numbering

Dependent component
numbering

VAR RN LN

I
|
|
Release 3.4 | Reloase 3.4
|
|
|
|

Conp. X [Come.Z | [Comi Comp. X | [Comp.Z | [Comp. &
4

PR
121 3.4 i 3.4 3.4 3.4

2

OEBPS/tagoreillycom20090324nostarchimages266089.png
Release

OEBPS/tagoreillycom20090324nostarchimages266173.png.jpg
L8793 Wl 1 B9 o I

OEBPS/tagoreillycom20090324nostarchimages266151.png
Parcan ofest st run %]

100

o0

&

40

20

|
| Vv

1

2345678 910111213141516171819

Days sincs tesing bagan

OEBPS/tagoreillycom20090324nostarchimages266111.png
fem Plan Complete History Today Prediction

OEBPS/tagoreillycom20090324nostarchimages266057.png.jpg
—sumK1zK19]
= \s\c\u\sw,\/m,ﬂw,m

ek T2 |3 la s) Nemen
Tloed | 2[5 &2 3
3 fork s s a5
EE 2 2 33 4\
s [2N\ _counmapure
5 2 Copro B2
| 7 |Today blun

e 5143

OEBPS/tagoreillycom20090324nostarchimages266093.png
Big

w

2d

1d

h

2

Th

OEBPS/tagoreillycom20090324nostarchimages266155.png
nme

Insructons: Replace alltalc ext with enered volues

Author: Author's name hare
Date: Date cracted
Versions Version #

Typo of Project: Revenve, Produciviy, Risk Reducton, Image, Required

Descriplion
‘Add a fow lines describing the ffort. The description willbe a business description
for the executive feam. List dependencies on ohr projects

Benefit

‘Add a stofement explaining the reason for this efori—the justifcafion. Describe benefis,
inclucing sals dolas and unit, productivity, and sk reducion. Use umerical vlves.
IFunknown, provide a range that i your bes estimale. Banefis in revenue or productiviy
will note how long bfors hese benefis occur:

Costs
Brifly st he pofentiol costs indolars and hours. Break down hours by feam performing
the work. Ranges of esimated costs along with the most likely coss aro wseful

Timaline
Describe poentia imelines for complstig this efort with caveats and options

Recommendation
Describe your recommendations for his effort in 3 o4 lnes

OEBPS/tagoreillycom20090324nostarchimages266169.png.jpg
SIOIOEIT ¢ $EEID)

OEBPS/tagoreillycom20090324nostarchimages266073.png
Tima.

Clt

el

Dred
ot ot
Vinkn

Inplanenition descrption
Concaptmodel and GUI prototypes

Furctionsl spscficaion and complte prochet defntion

Amcunt of datol

OEBPS/tagoreillycom20090804nostarchimages315786.jpg
PROVEN STRATEGIES For.

MANAGING
QOFTWARE ENGINEERS

OEBPS/tagoreillycom20090324nostarchimages266161.png

OEBPS/tagoreillycom20090804nostarchimages315787.gif

OEBPS/tagoreillycom20090324nostarchimages266063.png
Enginesring manager

|

= ==
Enginesr '“ L Engineer |

Engnesr

OEBPS/tagoreillycom20090324nostarchimages266117.png.jpg
X [BICIDE[F Tl IkIC[m]
7 AN Rereiniog

2 ek e tp mex Dot Aol mn hp max Who Noks
3 ik s o x| 3 B
Tliaka 22 3 7 I

6 [iake

& Tkc R I B

1| k2 a9 o x4 B

o ftakp P | 2 4 6

9 flock s e oa W8 7 n

10 s n ow o

Formulas 519480

Copy 109, 09,69, 19

Copytatiogio

OEBPS/tagoreillycom20090324nostarchimages266147.png.jpg
ETETOTETFEIRITTITE] Formias
PR 7y

[i o
B 24w s 73 3 1 2 of—=COUNTAKEKIT)
| | Capy onroes row o B2K2
[&l
-
[t
@ 0. INDEK($422 88826 J41)
[= Copy o B12KIO ecangll
[l

— —SUMKIZK19)
Copy 10820K20

[EEEEERE R

OEBPS/tagoreillycom20090324nostarchimages266185.png
fre—

Trarlon
endor
o o

7

om0 o I P R =
oy ol e g |
\ Cd FEAN ;
[3 8 el
TR S SN
RN e " !
N T N
SN Ao s [operatens Fuchosig |+
\UW,‘ it el o [T
= He
B |
ity o |

OEBPS/tagoreillycom20090324nostarchimages266123.png
Define.
) osien
s R

_k&)

& oelvery

OEBPS/tagoreillycom20090324nostarchimages266163.png
Content

mgr.

Projed
mgr. 1

Projed
mgr. 2

Projed
mgr. 3

OEBPS/tagoreillycom20090804nostarchimages315784.gif

OEBPS/tagoreillycom20090324nostarchimages266175.png.jpg
.16t 150"

OEBPS/tagoreillycom20090324nostarchimages266127.png
End
eyele

e Dons

Stort
erdle 30days
| Joeign | [code Uit [Final ;
T e 1 [fee 1 [e 1 [et i
{ o | Jede | fumten |
i | feare N featvre N featvre N i

s many
fecnures
arcanbs
done

OEBPS/tagoreillycom20090324nostarchimages266107.png
ID [Taskname | Duration g, [Gep 21 [Sep 28
5w T wT[FIs|sim TwT[F[s[smIT]
T skt Zaaps james.
2 [ask2 1 day
3 [laska 4days Mogan
T Jlasks Zdays Adam
5 [rasks Zaays John

Task 1 aay? James.

OEBPS/tagoreillycom20090324nostarchimages266159.png
P of g, Direcor o
e —

ok vy

* Deine bl plcioond

- Sopeim

Lty

D of g, . Momager

R acimatre
Morage prec

Deios bl plcis
Sipeie sl

Sl et

J ——
* Wi code

O pestdent

+ Ao bnding
© Hondego. regloens
© Rt e

© Selprduafsnice

+ Sopanise ot

ok i i
i e

P
g p——,

B Engeer

- Bald s

* Fockoge ond lose
i

Tecncl W <2

- Creae it
raumenaten,
ider,ord
apperingmondl

Do e, R0, Comprrcler
S —
© ok o e

[Epye—r

JT—

P o Marketng -+ Poy oo i cnd
s Merager JAr— i cmpony
- Purchoss, mabin,and : Gt e
o compons ond + Supanie [r———
oy sl - Hondi W
T Supein s
Tz [re—— L e
- M ond wgsert + Conmrico o marar B
s/ et H Generlt
e dfnion = Hondle HR ns
Q8 Dt Moneger +Desloihgo. g
il ad i Gt ol Sl
process + sllprekcnsnices Dracor o e Semvics
< Tt * Commicas o matet ot
et © Supanie sl fmnden,
Gy e S 26
< Tetprdent -l sopportng 2
+ Ao sy I
U sccomt -

P —
Bl oncciing b

[r——
- Suppaners

OEBPS/tagoreillycom20090324nostarchimages266079.png
Dufinion Eng.cods @ Fl
Sot complis complee comphie rehoss

B

Apha B Linesd

OEBPS/tagoreillycom20090324nostarchimages266183.png
Vour company

R

Merketing
.

Cusomer

Salls [+o| Enginsering [-—| Grophics

P
Gudliy
Assuranca

AN

Financa || Oparations

T

OEBPS/tagoreillycom20090324nostarchimages266105.png
e &30 645 7:00 715

Pizza delvery

Dinner complets

OEBPS/tagoreillycom20090324nostarchimages266119.png.jpg
.3 B S ——

e ke | mkme congn
| 3 s
1| e [y frcon Shee

2| ks v i | st

‘
. [N

Bl [e |

OEBPS/tagoreillycom20090324nostarchimages266087.png
Sn234

Sn23.5

23.4 Gool ——]
Changedio 236 | febose235
Rebana 236

OEBPS/tagoreillycom20090324nostarchimages266137.png
Dofect

romaned Fure

I

Hare nfa Roview. Not o problem;
needed and ronk con't duplcte

I

Enginsering
i

[

Verky
by GA

I

Closs

NN

OEBPS/tagoreillycom20090324nostarchimages266099.png.jpg
& o - S
Tl Wosk|_ Wosk| Wesk| Wask| _Wook| _weok| _weck
2 P i 0] 17 2edn[Tl &n] 152
: i)) P -
Pomid |0l o7l ol o o o 1
2T 2 N 7 7 I
ProeiD T oo o o 7|
o | | N | N N |
B | Vacoior o s e o o i ey
9 o G| _w _oas|_eis _ear| eao]

Fomdas

|+ Dot format
g 3, AIHS
Copy 1083 1018

|~ =sumiHa g
Copy 108950

OEBPS/tagoreillycom20090324nostarchimages266095.png
= = o
. [~

i s
S P e ot el MY
Hm— T e s S e AR S
e —
e e
P —— Sebdtverscin
e
P 3 e
o et e e e e)
B R
i P— oo

st

OEBPS/tagoreillycom20090324nostarchimages266077.png.jpg
Soles and
marketing
porception

Enginsaring
parcapton

OEBPS/tagoreillycom20090324nostarchimages266145.png
rRmgp—

Wasks ot lounch

OEBPS/tagoreillycom20090324nostarchimages266071.png
ool
ideos

Rl
ditalad
Satmates Raview

|

e 1o
mplanent

OEBPS/tagoreillycom20090324nostarchimages266181.png
Your company |

Team nome

(Action)

Vendor or
customer name

(Action)

—Dascrption—=

—When used—

‘Campony boundory—put company feams inside,
Vendors and cusomers outids

Worllw step—shonstcm nams above and
octon n poranheses bekw.

Similr 1o inemal eams, nom the cusomar/vendor
o show hair workllow, sep—it 1 somalimes ncessary
to speciyteoms nsids o vendor/cuslomer rther han
jus company name.

Communication/dslvery pah—odd deseription
s masdudtordrty "

Condltional poth—odd amncation indcating whan
Wiuad

OEBPS/tagoreillycom20090324nostarchimages266157.png
ceo/presden
+ Acqute fundng

© Hondlsgor raguonons
© Pl o s

+ ellprductsenis

+ g s

_— /l T

Do Fance, CFO, Comptolr

Acqure fnding
Mol fnondil aczours
Dol with gov. rgulatcns
Handis HR v

VP of . Dedor of Eng.

+ Dssianarchiscrs

- e productwih norkatng

+ st i sl process

+ Manage propets

© s tchricalpctes and
prcosis

- oprvee st

VP o ol and Nerketing
Sol produch/sries
Pl markt sty
Commmicce o market
Suporisesof

Dsfns prcuct i Eng.

SenorSohwars g,
Witscnd dabug coc

Fockoge scfwore

Rl sltars

- Craots el docs

SenorSofwars ng.

et

-+ Purchas, malntoi, and
Suppor compers and
sydns

Gualy Assrance

+ Tos prodist

. Btobleh ond ot
G process

L[Salr st

sl
]
sl

L[acount management

Costomar servie

+ Supportcustonas
Bl on g sces

OEBPS/tagoreillycom20090324nostarchimages266059.png
Technology
Scaling

Risk factors

Failire modes

System flaxiblty

List of thirparty packages
Inlrnationalizafion support
AP

Securly

System documentation
Data reporting/analysis

cooooooooo

Tools

Filo backup
Souree confrl versoning

Build method

Software release

Defectracking

Customer incident racking
Developer documentation storage
Infanet/wiki

Development fooks: compilers, DEs,
debuggers, profilers

coooooooo

Froducts
Froduct speciications

Froduct functions

Froduct documentation

Endl of Ifo review

Alpha and befa relcses
Lstof all estable products and
infernal ools

Quality
Specificatons

Test plans

Qualiy assessment
QA stoff

Defect process

QA measurements
QA tools

Degree of automaion

Frocess
Development process
Frocess measurements
Change order process
Froblems idertified

cooo

OEBPS/tagoreillycom20090324nostarchimages266109.png
e Complets Hidory Today Praciction

Parsar change

Mistons 1

OEBPS/tagoreillycom20090324nostarchimages266135.png.jpg
TAT 5 [EIBTE[Fr & TRITIITX
| B R
B Ty
& 5 oo omm
. = T 10
o e e e e
il ¢ e P &
i Cwacs
[comsrmaris s
(7
— o s
G
i D o
EES = Lwcioons
| e i
L R e s I 1] 21
B L Eich
[t ucuoss 56 Copr 022022
| ey

OEBPS/tagoreillycom20090804nostarchimages315785.gif
wwl W
‘erROMING
|SERTLIARE)

