

N o S t a r c h p r e S S
e a r ly a c c e S S p r o g r a m :

F e e d b a c k w e l c o m e !

Welcome to the Early Access edition of the as yet unpublished Arduino
Playground by Warren Andrews! As a prepublication title, this book may
be incomplete and some chapters may not have been proofread.

Our goal is always to make the best books possible, and we look forward
to hearing your thoughts. If you have any comments or questions, email us
at earlyaccess@nostarch.com. If you have specific feedback for us, please
include the page number, book title, and edition date in your note, and
we’ll be sure to review it. We appreciate your help and support!

We’ll email you as new chapters become available. In the meantime,
enjoy!

mailto:earlyaccess%40nostarch.com?subject=Arduino%20Playground%20Feedback%209/8/16

a r d u i N o p l a y g r o u N d
w a r r e N a N d r e w S

Early Access edition, 9/8/16

Copyright © 2016 by Warren Andrews.

ISBN-10: 1-59327-744-X
ISBN-13: 978-1-59327-744-4

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Josh Ellingson
Developmental Editor: Jennifer Griffith-Delgado
Technical Reviewer: Scott Collier
Copyeditor: Julie Jigour

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

B r i e f C o n t e n t s
Chapter 1: The Reaction-Time Machine .1

Chapter 2: An Automated Agitator for PCB Etching . 17

Chapter 3: The Regulated Power Supply .45

Chapter 4: A Watch Winder . 65

Chapter 5: The Garage Sentry Parking Assistant . 105

Chapter 6: The Battery Saver . 133

Chapter 7: A Custom pH Meter

Chapter 8: The Ballistic Chronograph

Chapter 9: The Square Wave Generator

Chapter 10: The Rainbow Thermometer

Appendix

C o n t e n t s i n D e t a i l

1
The ReacTion-Time machine 1
Parts List . 2
Downloads . 3
Reaction vs . Reflex . 3
How Does the Game Work? . 3

Measuring Time with the Arduino Nano . 4
Expected Speed Ranges . 5

The Schematic . 5
The Breadboard . 6
The Arduino Sketch . 7

Customized Reaction Commentary . 10
What Happens in the Loop . 12

Construction . 12
Preparing a Sturdy Case . 13
Mounting the Hardware . 14

Ideas for Customization . 15

2
an auTomaTed agiTaToR foR PcB eTching 17
Special Tools . 19
Parts List . 19
Downloads . 20
How Automatic Motor Reversal Works . 20
The Schematic . 21
Determining the Reversal Threshold . 22
Using an H-Bridge . 25
The Breadboard . 26
The Sketch . 29
The Shield . 33

PCB Layout . 33
Shield Design Notes . 34

Construction . 37
The Limit Wires . 38
The Crank Bushing . 39
Packaging . 41

The Etching Process . 42

3
The RegulaTed PoweR SuPPly 45
Parts List . 46
Required Tools . 47
Downloads . 47
A Flexible Voltage Regulator Circuit . 48
The Schematic . 49
How the Circuit Works . 51

iv Chapter

The Breadboard . 53
Preparing the Arduino Pro Mini and LCD . 53
Building the Breadboard . 53

The Sketch . 56
The Shield . 57
Construction . 59

Preparing the Enclosure . 60
Mounting the Circuit Board . 61

4
a waTch windeR 65
Why a Watch Winder? . 66
Required Tools . 69
Parts List . 69

Acrylic . 69
Other Hardware and Circuit Components . 70

Downloads . 71
Basic Watch Winder Requirements . 71
Using an Arduino to Control Winder Revolutions . 72
Using a Hall Effect Sensor to Monitor Rotations . 72
The Schematic . 73
The Breadboard . 74
The Sketch . 78
The Shield . 84
Overview of the Motor Assembly . 86
Construction . 87

Preparing the Motor Plate and Bearing Box Acrylic . 87
Bonding the Acrylic for the Bearing Box . 90

The Stand . 91
Preparing the Motor and the Driveshaft . 92
Making the Watch Basket . 96
Adding the LEDs . 98
Leaving the Components on Display . 99
Keeping the Watches in the Basket . 100

Design Notes . 100
Total Rotation Adjustment . 100
How Many LEDs to Use and Where to Put Them . 101
Motor Voltage . 102
How Many Rotations Does the Watch Winder Make? 102

Closing Thoughts . 103

5
The gaRage SenTRy PaRking aSSiSTanT 105
Required Tools . 106
Parts List . 106
Optional Parts . 108
Downloads . 108
Basics of Calculating Distance . 108
How the Garage Sentry Works . 109
The Schematic . 111

Contents in Detail v

The Breadboard . 112
The Sketch . 114

Inside the setup() Function . 116
Inside the loop() Function . 116
Determining Distance . 117
Triggering the Alarm . 118

Construction . 119
Drilling Holes for the Electronics . 119
Mounting Options . 121
Soldering the Transistors and Current-Limiting Resistors 123
Wiring the Pieces Together . 123

The Deluxe Garage Sentry . 124
The Deluxe Schematic . 125
A Bigger Box . 126
The Shield . 127
The Sketch for the Deluxe Garage Sentry . 128

6
The BaTTeRy SaveR 133
Boats, Tractors, and Other Vehicles . 135
Parts List . 137
Special Tool Requirements . 139
Downloads . 139
The Schematic . 139

How the Battery Saver Prevents Draining . 141
Arduino to the Rescue . 142

The Breadboard . 142
The Sketch . 145
The Shield . 147

The PCB Layout . 147
Preparing the Shield and Pro Mini Controller . 148

Construction . 148
Preparing the Enclosure . 149
The Contact Support . 150
Preparing the Copper Contact Assembly . 151
Mounting Supplies for the Solenoid . 152
Preparing the Release Rod, Springs, and E-Clip . 153
Making the Release Lever and Pylon . 154
Assembling All the Parts . 156

Installing the Battery Saver into a Vehicle . 159
Operating the Battery Saver . 159

Normal Operation . 159
Setting the Threshold Voltage . 160
Protection from the Environment . 160
Applying Cool Amp . 161

1
t h e r e a C t i o n - t i m e m a C h i n e

In this chapter, I will show you how to
build a time machine—that is, a Reaction-

Time Machine. I’d love to say that this
project will bring you “back to the future,”

but alas, it won’t. The “time” it’s looking at is the time
it takes you to react to a stimulus, which makes for a
fun game. This project is designed to accurately mea-
sure an individual’s reaction time and provide an area
for comments on the level of the individual’s perfor-
mance (see Figure 1-1). There is also plenty of room
to personalize the game to make it even more fun for
you, your friends, and your family.

Arduino Playground (Early Access), © 2016 by Warren Andrews

2 Chapter 1

Figure 1-1: Completed Reaction-Time Machine

Parts list
This project has one of the smallest parts counts of all the projects in this
book, but don’t let that attenuate its value for you. My family and friends
have enjoyed playing the game repeatedly, and it’s portable, so you can take
it with you to get-togethers and other events.

Here’s what you’ll need:

•	 One Arduino Nano or clone

•	 Two SPST momentary switches (preferably one with a red button and
one with a button of a different color)

•	 One SPST toggle switch

•	 One red LED

•	 Two 10-kilohm resistors

•	 One 470-ohm resistor

•	 (Optional) One audible annunciator, Mallory Sonalert or similar

•	 One 4 × 20 LCD display

•	 One I2C adapter, if not included with the display (see “LCD Displays”
on page XX)

•	 One 9V battery

stop button

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Reaction-Time Machine 3

•	 One 9V battery clip

•	 One 3.5 mm jack (if remote switch is used)

•	 One Hammond 1591 BTCL enclosure

•	 28–30 gauge hookup wire

•	 Solder

downloads
Before you start this project, check the following resource files for this book
at https://www.nostarch.com/arduinoplayground/:

•	 Sketch file: Reaction.ino

•	 Drilling template for case: Filename

Reaction vs. Reflex
People often confuse reactions and reflexes, so I will start by defining both.
Reflexes are involuntary, automatic responses to a stimulus. In a reflex action,
the stimulus bypasses the brain and travels from the source of the stimulus
to the spinal cord and back to the receptor that controls the response, with-
out any cognitive acknowledgment. (Though I know many people for whom
almost all stimuli—and information—seem to bypass the brain, often just
getting lost instead.) Think of the doctor hitting your knee with a patellar
hammer to trigger your knee-jerk reflex.

Reactions, on the other hand, take the stimulus to the brain to be pro-
cessed, and then a return reaction travels to a receptor to result in some
motor action. This process takes somewhat longer than a typical reflex,
though some athletes are said to have reaction times so fast that it’s possible
their response is more similar to a reflex than a reaction.

n o t e Sports Illustrated has done interesting work in this area, with eye-opening articles
on baseball players and other athletes who have what appear to be exceptional reac-
tion times.

how does the game work?
The Reaction-Time Machine game measures how long it takes an individual
to press a button in response to a visual stimulus—in this case an LED. With
a minor modification, you can add an auditory stimulus to the game: simply
replace the LED with an audible annunciator, such as a Mallory Sonalert.
Reaction time is measured in milliseconds or seconds (your choice), and it
is the time between the moment the stimulus is activated and the moment
the participant presses the button.

Arduino Playground (Early Access), © 2016 by Warren Andrews

4 Chapter 1

Measuring Time with the Arduino Nano
While there are many ways to measure elapsed time, this project takes advan-
tage of the Arduino Nano’s ability to keep accurate time. Microcontrollers
keep time exceptionally well, and they measure the time that elapses between
one input and another with a minimum latency. In addition to timing your
reactions, the Nano shows the result on an LCD display.

The Nano does almost all of the work in this project; the other compo-
nents are basically passive. After testing some early builds, I added features to
the sketch to make the game more interesting and accurate. For example, I
initially used a simple push button to reset the Nano and start a counter. The
participant would press the red stop button as soon as the LCD display indi-
cated so, and the Nano measured the time between pressing the reset and
stop buttons. I found, however, that the player could anticipate the reset but-
ton being pushed and come up with some amazing reaction times.

To prevent the player from anticipating when the stimulus is about to
occur, I had the Nano start the timer on a delay instead. The version in this
book generates a random delay from when the reset button is depressed,
activates the stimulus after the random delay, and counts the time from the
stimulus to the moment the participant responds by depressing the stop
button. That solved one problem.

Then, one of the participants tried to jump the gun and get an early
start by holding down the stop button. I solved this problem by setting
a minimum reaction time in the sketch. Any time under that minimum
throws an error, and the LCD displays “Jumped the Gun” to indicate that
the player pressed the button too soon.

I used a relatively large display—4 lines with 20 characters each—so
there would be enough room to display the reflex time and some commen-
tary on the relative prowess of the player. You can make your commentary as
funny or serious as you want, but it must not exceed 60 characters in length—
that is, three lines of 20 characters each. While I leave the commentary up to
you, the sketch for this project includes some ideas that I used when putting it

his tory of r e aC t ion-t ime De v iCe s

Over the years, there have been many devices to measure reaction time . One
of the simplest I remember from years ago required you to keep your fingers
on either side of a ruler held by another person in mid-air . When the ruler was
dropped, you would see how far it traveled before you could grasp it . The dis-
tance was translated to time using the algebraic equation

S AT=
1
2

2 ,

where S is the distance traveled, A is the acceleration due to gravity, and T
is the reaction time . After you build this project, try both the ruler test and the
Reaction-Time Machine to see how close your times are between devices .

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Reaction-Time Machine 5

together. You can always edit the commentary and reload the sketch to show
comments specific to a set of users, like friends or relatives.

Expected Speed Ranges
Most individuals’ reaction times seem to vary greatly, based on the small
sample I tested. Interestingly, age doesn’t seem to be a factor. The average
reaction time was around 200 ms, and that is the average reaction time
identified by many researchers.

The fastest response of anyone I sampled was 105 ms; however, the indi-
vidual was not able to repeat that performance. Several individuals scored
between 105 and 125 ms, but not consistently. Significantly lower reaction
times may well be anomalous or the result of an individual actually antici-
pating the stimulus. My players’ failure to repeat extremely fast reaction
times would tend to bolster that idea. (I wouldn’t want to accuse anyone of
successfully pre-guessing the release moment.)

The Schematic
While the display could have been wired directly, using the I2C inter-
connect made it a lot simpler and reduced the interface to only four wires:
positive, ground, data, and clock (see Figure 1-2).

Figure 1-2: Schematic diagram of the Reaction-Time Machine

Arduino Playground (Early Access), © 2016 by Warren Andrews

6 Chapter 1

The only components needed are the Nano, three switches (one toggle
switch for power and two momentary push-button switches for activate and
reset), an LED, the display, and three resistors. Despite the relatively sparse
parts count, the project performs elegantly.

The Breadboard
As is the case for most of my Arduino projects, the first step is to prepare a
breadboard to prove the concept and test the sketch. Here’s how to wire up
the breadboard:

1. Connect the red strips (5V) on the breadboard together.

2. Connect the blue strips (GND) on the breadboard together.

3. Insert the Arduino Nano (or clone) in the breadboard, leaving two
rows on one side and three on the other. (If the Nano does not come
with stakes soldered in, prepare the board according to “Preparing the
Nano and Pro Mini for Use” on page XX.

4. Connect the 5V terminal on the Nano to one of the red strips on the
breadboard.

5. Connect the GND terminal on the Nano to one of the blue strips on
the breadboard.

6. Connect the negative wire from the battery connector to the blue strip
(GND). Remember that the breadboard has no switch, so you must dis-
connect the battery to turn it off.

7. Connect the positive lead from the battery connector to VIN on the
Nano. (Do not connect the positive terminal of the battery to the red
strip—it could permanently damage the Nano.)

8. Attach 5-inch wires to two normally open momentary push-button
switches. (I use #22 solid conductor wire so it can plug in to the bread-
board directly.)

9. Prepare a wire harness for the LCD display (see “Preparing LCD
Displays” on page XX).

10. Connect the red wire from the LCD display to the red strip on the
breadboard (5V) and the black wire from the LCD display to the blue
strip (GND).

11. Insert the yellow wire from the display (SDA) to pin A4 on the Nano.

12. Insert the green wire from the display (SCL) to pin A5 on the Nano.

13. Connect one side of each push-button switch to the blue strip (GND).

14. Connect the other side of the red reaction switch (SW2) to pin D7 on
the Nano.

15. Connect the other side of the yellow reset switch (SW1) to pin D2 on
the Nano.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Reaction-Time Machine 7

16. Connect a 10-kilohm resistor from pin D7 on the Nano to the red
strip (5V).

17. Connect a 10-kilohm resistor from pin D2 on the Nano to the red
strip (5V).

18. Connect the anode side of the LED (the longer leg) to the red strip
on the breadboard (5V) and the cathode side to an empty row on the
breadboard.

19. Connect a 470-ohm resistor from the cathode side of the LED to pin D4
on the Nano.

Upload the Reaction_19.ino sketch to the Arduino Nano (see “Uploading
a Sketch to the Arduino” on page XX), and you should now be ready to go.
Figure 1-3 shows the breadboard laid out with the switches dangling from
their wires.

Figure 1-3: The breadboard setup for the Reaction-Time Machine. Because there is no
on/off switch, you have to disconnect the battery to shut it off.

The arduino Sketch
The sketch is the actual computer program that tells the Arduino what
to do and when to do it. It is written in a language of its own that com-
prises structures, variables, arrays, functions, and so on, which represent a
recipe for the microcontroller to follow. This language is converted into a
sequence of zeros and ones that are routed to various parts of the control-
ler and can perform storage, timing, comparison, arithmetic functions,
and more.

Arduino Playground (Early Access), © 2016 by Warren Andrews

8 Chapter 1

The process of converting a computer language to a sequence of zeros
and ones is called compiling. The compiling routine in the Arduino Integrated
Development Environment (IDE) is activated when you click the Verify and
Compile buttons in the upper-left side of the Sketch window.

The sketch gets pretty long because of all the comments that can be
inserted when it checks the score; however, the basic operation uses only a
handful of code lines. You can use the scoring function as is, modify it, or
copy and paste it to make a new scoring function. As you’ll see in my com-
ment options, I’ve had fun with it.

The following code has been truncated to minimize the number of lines.
However, you can simply go to https://www.nostarch.com/arduinoplayground/ to
download the entire sketch, which includes a number of comments.

/*
Includes score function, random number generation, false start
"jump the gun" indicator, and multiple comments spaced 10 ms apart

Mod for "jump the gun" gives response if time <70 ms
*/

#include <Wire.h> //Libraries included
#include <LiquidCrystal_I2C.h>

int start_time = 0;
int stop_time = 0;
int reacttime = 0;
int x;
int R;
int randnumber1;
int z;

LiquidCrystal_I2C lcd (0x3F, 20, 4); //Initiate LCD

void setup() {
 Serial.begin (9600);
 pinMode(2, INPUT);
 pinMode(4, OUTPUT);
 pinMode(7, INPUT);
 lcd.init();
 lcd.backlight();
}
//Begin function "score"
void score() {
 lcd.clear();
 lcd.print("Reaction Time ");
 lcd.print(reacttime);
 lcd.print(" ms");
 lcd.setCursor (0, 1);

 if((reacttime >= 105) && (reacttime < 135)) {
 lcd.print("Approaching Superman");
 lcd.setCursor(0, 2);
 lcd.print("but you can still do");

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Reaction-Time Machine 9

 lcd.setCursor(0, 3);
 lcd.print("a lot better");
 }

 if((reacttime >= 135) && (reacttime < 180)) {
 lcd.print("Superhero Status");
 lcd.setCursor(0, 2);
 lcd.print("but not yet");
 lcd.setCursor(0, 3);
 lcd.print("Superman");
}

 if((reacttime >= 180) && (reacttime < 225)) {
 lcd.print("You are trying ??");
 lcd.setCursor(0, 2);
 lcd.print("but not hard enough");
 lcd.setCursor(0, 3);
 lcd.print("still a loser");
 }

 if(reacttime > 225) {
 lcd.print("Lost your touch");
 lcd.setCursor(0, 2);
 lcd.print("If you ever had it");
 lcd.setCursor(0, 3);
 lcd.print("on the border of wimpy");
 }
}

//Begin main program
void loop() {
 digitalWrite(4, HIGH);
 lcd.clear();
 lcd.print("System is Armed");
 delay(1000);
 lcd.setCursor(0, 1);
 lcd.print(" READY ");
 lcd.setCursor(0, 2);
 lcd.print(" Push Red Button");
 lcd.setCursor(0, 3);
 lcd.print("When Red lamp lights");

 randnumber1 = random(5, 25); //Generate random number between 5 and 25
 R = randnumber1;
 for(x = 0; x < R; x++);
 delay(5000);
 if(x == R) {

 digitalWrite(4, LOW); //Turn on start lamp
 start_time = millis(); //Initiate timer
 lcd.clear();
 lcd.print("Mash React Button");
 lcd.setCursor(0, 1);
 lcd.print(" ");
 lcd.setCursor(0, 2);

Arduino Playground (Early Access), © 2016 by Warren Andrews

10 Chapter 1

 lcd.print(" ");
 lcd.setCursor(0, 3);
 lcd.print(" ");

 while(digitalRead(7) == 1); //Wait for response

 stop_time = millis(); //Complete timing cycle
 }

 reacttime = stop_time - start_time;

 if(reacttime < 70) { //Jump the gun indicator
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Too anxious. You");
 lcd.setCursor(0, 1);
 lcd.print("(Jumped the Gun)");
 lcd.setCursor(0, 3);
 lcd.print("Could be Fatal!");
 }
score();
Halt:
 while(digitalRead(2) == 1);
}

The #include lines initiate the libraries: the I2C library, Wire.h, establishes
the rules for I2C communications, and the LiquidCrystal library allows the
Arduino to control LCDs. Then, we define the seven variables used to calcu-
late reaction time. Next, setup () sets up the serial communication—in case
you want to adjust the code and view it on the serial monitor—and defines
various pins as inputs and outputs. Inputs are required for the reset and
stop buttons, and an output pin is defined for the LED that tells the player
when to press the stop button.

Customized Reaction Commentary
One of the most entertaining aspects of this project is the chance to get
creative when displaying the player’s reaction time. After setup(), the sketch
shows a function called score(), which lists different comments that could
be displayed on the LCD based on the participant’s response speed. A func-
tion may not necessarily be the most efficient approach (a look-up table or
other approach could also have been used), but it works well enough. I used
only a single scoring function in this iteration; however, you could easily
define as many as you like and change your sketch to select one. For example,
you might write a second function called score1() that could include a dif-
ferent set of comments and timing. Then, to switch from one function
to the other, you’d have to change only the line that calls score() to call
score1() instead.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Reaction-Time Machine 11

To customize the sketch to include comments that could refer to your
own friends or family members, you can simply enter your comments in
place of the ones that are in my sketch. Don’t forget to keep the text you
want to print to the LCD in quotes so the Arduino recognizes the printable
characters.

A word on the reaction time itself: each comment is for a range of reac-
tion times of either 5 or 10 ms. I selected these ranges arbitrarily. After
you play with the Reaction-Time Machine for a bit, you may wish to change
these ranges based on the fact that users’ responses may cluster around
a particular area, such as from 195 to 225 ms. I found that many reaction
times were in the 190 to 250 ms range, but your friends and family may be
different. In that case, you can separate the comments by as little as 1 or
2 ms so players don’t keep getting the same comment.

You can add as many comments as you wish, up to one comment per
milli second. If you accidentally overlap the times, the sketch may not compile.

n o t e You can find reaction-time measurement tools on the Web if you want to see how
your game’s measurements compare. However, their accuracy is suspect because of
the latency in the PC itself.

on W r i t ing CoDe to se t Up lCDs

There are a few points to note about the setup of the LCD display . The sketch
uses a LiquidCrystal library, LiquidCrystal_I2C.h . If this library is not included
in your Arduino IDE, you can easily download it using the instructions pro-
vided in the reference section on the Arduino website (http://www.arduino
.cc/reference/) .

In addition, each I2C device comes with its own I2C address . This allows
several I2C devices to be used on a single serial line . Usually the device docu-
mentation provides the address—in the case of the I2C LCD I used, the address
was 0x3F . Thus, when the sketch initiates the LCD, the code looks like this:

LiquidCrystal_I2C lcd (0x3F, 20, 4);

However, different displays come with different addresses . If you have an
I2C device that you do not have an address for, you can easily find the address
by hooking up the device to an Arduino, downloading a scanner sketch from
http://playground.arduino.cc/Main/i2cScanner/, and running the sketch . The
scanner sketch should display the I2C address on the serial monitor .

Many projects in this book use similar code to work with an LCD, so refer
to this box any time you need a refresher on how that code works .

Arduino Playground (Early Access), © 2016 by Warren Andrews

http://playground.arduino.cc/Main/I2cScanner

12 Chapter 1

What Happens in the Loop
Now let’s look at the sketch’s loop. After void loop () initiates the start of
the program, the program calls digitalWrite (4, HIGH) to turn off the active
light. Then, the LCD screen is cleared, and text is written to the LCD to
indicate that the system is armed and ready for a player to push the reaction
button as soon as the red LED illuminates, as shown in Figure 1-3.

Next, a random number between 5 and 25 is generated, and the pro-
gram calls delay(5000) to count every five seconds from zero to the random
number. As soon as the random number is reached, three things happen:
first, the annunciator lamp illuminates; second, an internal timer is started
in the Nano; and third, the display then changes to read “Mash the React
Button.”

n o t e A wider range of random numbers might make this game even more interesting for
players. You can easily experiment by changing the random number count, the delay,
or both.

The Nano is then instructed by while (digitalRead (7) == 1); to wait
until the reaction button is depressed. After the button is depressed, the
Nano calculates the reaction time with reacttime = stop_time - start_time.
This time will be displayed on the LCD and used to select the appropriate
comment in the score() function. Also, if the player’s reaction time is less
than 70 ms at this point, then the conditional statement looking for a par-
ticipant to be “ jumping the gun” displays appropriate wording for the LCD.
The system is then halted and ready to be reset.

Otherwise, the serial print block is included in case you want to
adjust the code and view it on a serial monitor. It also helps for debugging
purposes.

Finally, the score() function is invoked, followed by the Halt command,
and the system is ready to have the reset button depressed.

construction
Building the Reaction-Time Machine can be as simple or as complex as
you want. Initially, I placed all the components in the vinyl package that
a flexible wrist brace came in. I cut a hole for the display connectors with
an X-ACTO knife and punched the holes for the switches and LED with a
paper punch, followed by a tapered reamer. The result was somewhat crude,
as shown in Figure 1-4.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Reaction-Time Machine 13

Figure 1-4: This was the Reaction-Time Machine’s original, primitive package, which
worked but turned out to be too flimsy. The vinyl was only 0.018 inches thick.

Preparing a Sturdy Case
Of course, a real case makes the game much sturdier, which is important
when you have competitive players mashing those buttons. To keep things
as simple as possible, I employed one of the clear ABS plastic cases from
Hammond (1591 STCL). The clear top of the case allowed me to place the
display behind the cover rather than machining out a hole for the display to
protrude through. To mount the components, I simply drilled holes in the
cover according to the drawing in Figure 1-5.

0.75"

1/4" 3/8"

1/4"

1/4"

1/4"

0.75"

Figure 1-5: Drilling template for the Reaction-Time Machine

Arduino Playground (Early Access), © 2016 by Warren Andrews

14 Chapter 1

Quarter-inch holes work well for the momentary push-button switches,
as well as for the toggle switch and 3.5 mm jack. For the 10 mm LED, I used
a 3/8-inch drill and then reamed the hole out to make a tight fit. No other
mounting hardware for the LED was necessary.

n o t e The 3.5 mm jack is wired in parallel to the execute switch. If you want to use an
external stand-alone switch, it can simply plug in to the jack. I abandoned the effort,
however, as most participants preferred to hold the box in their hands.

Mounting the Hardware
To mount the display to the case, I used two-sided 3M Indoor/Outdoor
Super Heavy Duty mounting tape. I cut two sections the size of the LCD
display’s end bezel sections and bonded the display directly to the cover.
The tape is difficult to remove, so make sure to place it right the first time.
I used the same tape to mount the Nano and the battery holder to the
back of the display. When mounting the display, I also used wire cutters
to carefully cut off the corners of the display circuit board so it would fit
far enough into the case without hitting the cover mounting pylons. See
Figure 1-6 for the finished product, viewed from the underside.

Figure 1-6: This is the rear of the unit mounted in the ABS plastic enclosure. Notice that
the corners of the display (lower left and right) have been clipped off to fit around the
top mounting pylons. The 3.5 mm jack is not wired, as I decided not to use it in this
implementation.

Battery Arduino NanoDisplay

I2C adapterPush buttons LEDToggle3 .5 mm jack

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Reaction-Time Machine 15

Once all the components are in place, all that remains is to solder the
components together, inserting the resistors where required. Take par-
ticular note of the I2C adapter, which is the black paddleboard just below
the switches and LED. While I could have bent the connectors and used a
header to wire that up, the case may not have closed, depending on how
carefully I crimped the connectors. Instead, I elected to solder the wires
directly. It was only four wires, and it worked without much trouble. Finally,
I printed out and attached labels from a Brother label maker. Figure 1-7
shows the completed unit.

Figure 1-7: The completed Reaction-Time Machine mounted in the Hammond 1591 STCL
clear plastic enclosure

ideas for customization
There are many variations you could implement to increase the versatility
and enjoyment of the Reaction-Time Machine. For example, as I developed
it, I connected a Hall effect switch to one of the analog inputs and modi-
fied the sketch to automatically decrease the reaction time by a percentage
when the Hall effect switch is activated. Then, I taped a small magnet to my
finger that sat opposite the Hall effect switch so as I grabbed the box, it acti-
vated the switch. When I played, my reaction time was reduced by around
20 percent, while others had an actual reading. Far be it from me to suggest
that readers try to hoodwink their adversaries, of course!

Arduino Playground (Early Access), © 2016 by Warren Andrews

16 Chapter 1

There are other modifications that can be made, such as incorporating
a tone sound, or beep, as the sketch counts up to the random number. This
can easily be accomplished with the addition of an annunciator and a few
lines of code. If you’re ingenious, there are other sound effects you could
add, such as a vulgar sound that plays when poor scores are achieved.

You can also exercise your brain and add code to the sketch that will
average scores after, for example, three tries before you reset it. I experi-
mented with many variations as I played with the device, but I would cau-
tion that you can spend a great deal of time for minimal advantage. Put the
game together and enjoy.

Arduino Playground (Early Access), © 2016 by Warren Andrews

2
a n a U t o m a t e D a g i t a t o r

f o r p C B e t C h i n g

This project uses the Arduino micro-
controller to sense change in a motor’s

current drain and then reverse the direc-
tion of the motor. There are numerous applica-

tions for the measurement and use of current drain,
and this project provides an example method that
can prove useful in the development of future elec-
tronics projects.

“Designing and Building Your Own Circuit Boards” on page XX illus-
trates different ways to design and make circuit boards at home for a very
modest cost using readily available and environmentally safe household
products. Part of this process includes etching the copper off a clad board.
The process is more efficient when the board is agitated in the etching solu-
tion, resulting in a laminar flow of liquid across the surface of the board
in both directions. Depending on the chemical activity of the etchant and
thickness of copper to be etched, this process can take anywhere from

Arduino Playground (Early Access), © 2016 by Warren Andrews

18 Chapter 2

10 or 15 minutes to well over half an hour! Standing there stirring the pot is
pretty boring, but you can create a device that dunks the board in and out
of the solution for you (see Figure 2-1).

Etchant Etchant

Circuit board Circuit board

Line

Motor

Crank

Limit

Screw holding crank
Set screw

Hub to hold crank

Etching vessel

Line

Crank

Rotation

Limit Limit

Motor

Etching vessel

Figure 2-1: Illustration of the motor, crank, and etching vessels set up to dip a circuit board
in and out of the etchant. While there are many ways to agitate a circuit board, dipping it
into and out of the etching solution works well, especially for small boards.

In this project, the Arduino microcontroller, under the control of
a sketch, waits to get real-world information from a system. The micro-
controller then processes that information and uses it to make something
happen.

inspir at ion Be hinD t he

aU tom at iC motor r e v e rs a l projeC t

This project has its roots in a problem my friend had with a model train set
accessory . The accessory included a tramway to take make-believe skiers up
and down a miniature mountain . The original mechanism failed, so I created
a little circuit to drive a DC motor that moved the skiers up and down . My
idea was that when the tramcar reached either the top or bottom of its run, the
motor would slow down or stall, resulting in an increase in current drain . That
excessive current drain would reverse the motor by changing the polarity and
thereby send the car back the other way . To date, the skiers are still at the bot-
tom of the mountain because my friend and I never installed the board, but the
core circuit works well and promises other interesting applications .

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 19

The ability to receive an input, process the information, and produce
an output is the fundamental function of any microcontroller. In this case,
the Arduino starts the motor turning, waits until it detects the motor draw-
ing more current than usual, and then reverses the motor’s rotational direc-
tion. This simple function has a number of different applications: you could
use the voltage drop to provide a safety turn-off for an overloaded motor,
create a system to limit motion, and more.

Special Tools
There are only a couple of special tools you will need. One is a 6-32 tap you
can buy at Ace Hardware for a little over $1. But if you want a complete tap
and die set for future projects—which is probably a good idea, as they’re
also just handy to have around the house—you can pick up a set at Harbor
Freight (http://www.harborfreight.com/) for under $10 (item #69679). Other
vendors offer similar items.

A handful of drill bits are also required. You can purchase drill bits
individually, or you might think about getting an entire set. Once again,
our friends at Harbor Freight have drill sets starting at under $4. It’s always
useful to have some drill bits around, so if you can afford it, a numbered
drill set—#1 through #60—would be a good investment.

Of course, a drill is also useful—and necessary. See “Tools” on page XX.

Parts list
•	 One Arduino Nano (Available from Newegg, Mouser Electronics,

and other retailers. You could also purchase a clone on eBay for just
under $6.)

•	 One SN754410 quad H-bridge IC, with socket if desired (Available from
eBay, Newark Electronics, Mouser Electronics, Digi-Key Electronics,
and other suppliers. Note that if you use the socket, you lose whatever
value the PCB offers as a heat sink.)

•	 One printed circuit board (PCB) or perf board

•	 One current-limiting resistor (You should have a selection available
for experimentation, from 1 ohm to 10 ohm. You can buy resistors
from many suppliers, including Jameco, MCM, Mouser, Digi-Key, and
Newark, for under $0.05. A 1/8 W resistor will work for smaller motors,
but get a 1/4 or 1/2 W resistor for larger loads.)

•	 Two 330-ohm, 1/8 W resistors (Available through previously listed
suppliers)

•	 Two LEDs, one red, one green (Available on eBay and elsewhere for
under $0.10 each. Consider buying an assortment, as we’ll use them in
upcoming projects.)

Arduino Playground (Early Access), © 2016 by Warren Andrews

20 Chapter 2

•	 One LM7805 voltage regulator (Many suppliers—including eBay,
Amazon, Jameco, MCM, Mouser, Digi-Key, Newark, and others—will
have this part.)

•	 One plastic box (I recommend the Hammond 1591 XXATBU available
from Newark Electronics, Mouser Electronics, and Digi-Key.)

•	 Two 2-pin female headers to connect the motor to the shield (Pololu
Robotics & Electronics item #1012)

•	 Four 4-pin female headers to plug the Nano into (Pololu Robotics &
Electronics item #1014)

•	 One small solder lug

•	 One 3.5 mm, 2-conductor jack and plug for power supply (Any supplier
listed previously should carry this.)

•	 One SPST toggle switch (Any supplier listed previously should carry
this.)

•	 One plug-in wall adapter with an output of 5 to 12V at 200 mA or bet-
ter (Try eBay, Jameco, MCM, or Electronic Goldmine. Refer to “The
Voltage Regulator” on page XX for some important considerations
before buying an adapter.)

•	 One gear head motor (I used a 6V motor from Amazon, the Amico
20 RPM 6VDC, and I’ve seen similar motors on eBay for about $6 and
change. Later projects use the same motor, so you might buy a few. You
can find motors as low as 8 RPM and on in the same price range. There
are many places to buy motors with 10 to 50 RPM and 5 to 15V on the
Web, including surplus houses like Electronic Goldmine.)

downloads
Before you start this project, check the following resource files for this book
at https://www.nostarch.com/arduinoplayground/:

•	 Sketch: Reverse_IV_3.ino

•	 Shield (PCB): Reverse.pcb

•	 Template: Motormount.pdf

how automatic motor Reversal works
The Arduino is perfect for this project because it can control the whole
system, and it simplifies the problem of accommodating different motors
with different current requirements. Implementing the project in discrete
components would require several more components than the equivalent
Arduino circuit. Further, changing values for different motors or differ-
ent reversal thresholds would mean changing a lot of hardware, but with
Arduino, you just have to make a simple program change. The Arduino also
provides the flexibility to add delays at each end of the run if desired.

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 21

The motor circuit you’ll connect to the Arduino uses a resistor between
the power supply and the motor (see Figure 2-2). When the motor slows or
stalls, the current increases, creating a voltage drop across the resistor.

Motor

R
Voltage drop

measured here

Figure 2-2: A voltage is created across the resistor
between the positive supply and the input to the
motor. It is this voltage that triggers the operation
of the circuit.

The voltage drop across resistor R is the real-world input to the micro-
controller. In this project, that voltage drop is fed to the Arduino Nano’s two
analog input pins that straddle the dropping resistor. The micro controller
digests this input and creates an output designated by your program.

n o t e You could implement the circuit with only a single analog input, but that would
curtail some of the flexibility of the circuit—particularly if you use motors that run
at different voltages.

The Schematic
The agitator circuit feeds the voltage that appears across resistor R1 into
two of the Arduino’s analog input pins, A0 and A1, setting up the real-world
input (see Figure 2-3).

All grounds in this circuit are connected together, and the voltage
across pins A0 and A1 is the voltage your program will use to decide
when to reverse the motor’s direction. Note that this voltage is not refer-
enced to either the positive or negative rail, but it must be between 0 and
5V to prevent damage to the microcontroller. If you get stuck on wiring the
H-Bridge, see “Using an H-Bridge” on page 25.

Arduino Playground (Early Access), © 2016 by Warren Andrews

22 Chapter 2

Figure 2-3: The completed schematic for this project shows the 5.6-ohm voltage-drop resistor (R1), the two
LEDs (D), the 330-ohm current-limiting resistors (R2 and R3), and the quad H-bridge (SN754410), of which
half is used.

The analog-to-digital converter (ADC) behind each analog pin pro-
vides 10 bits of resolution, which means the converter can deliver up to
1,024—that is, 210—different values, from 0 to 1,023, depending on the
input.

Thus, if the power supply is 5V, each increment is roughly

5 1 023 0 0048V V÷ ≈, . .

determining the Reversal Threshold
In order to write a program that tells the Arduino when to reverse your
motor, you have to determine that point yourself, with some math and a
little bit of faith.

First, determine the current drain of the motor you’re using. It’s usually
printed on the motor’s label. The motor I used has a current drain of about
40 milliamps (mA), or 40 thousandths of an ampere (see Figure 2-4). Now
we get into the heavy math. You’re going to have to use a formula known as
Ohm’s law to determine the voltage threshold to set in the sketch.

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 23

Figure 2-4: I used an Asian import motor, shown here with
one limit pin installed, that has demonstrated reliability and
performance. The screws are M3 – 0.05.

I used a 5.6-ohm resistor in series with my motor circuit. Using Ohm’s
law, which states that voltage equals current times resistance (V = IR, with
voltage in volts, current in amperes, and resistance in ohms), we’re able to
calculate that 40 mA times the resistance of 5.6 ohm is about 0.224V:

40
1000

5 6 0 224
A

V. .× =Ω

Now, go back to the ADC. It has 1,024 units to represent 5V, so each
unit represents 0.0049V. A little arithmetic reveals that the 0.224V dropped
represents about 46 units out of the 1,024:

0 224
0 0049

45 85
.

.
.

V
V per unit

units=

There are some estimates you have to take on faith—at least until you
confirm with a test. This is one. As a motor is slowed or stalled, the current
drain increases. Depending on the motor, the increase in current is typi-
cally somewhere between two and four times the normal current drain, but
possibly more.

n o t e With no load (or minimal load), current drain on the motor is minimal. With a
usual running load, current can be four to five times the no-load current. With a
heavy load, current can be as much as 10 times that, depending on the motor design.

So according to our good-faith model, a good place to start setting the
threshold for reversing the motor would be in the area of 90 to 100 units of
the ADC’s 1,024 units.

Alternatively, you could use a digital multimeter to measure the exact
current drain first (see Figure 2-5). To use a multimeter to measure current
drain, set its indicator to 200 mA to start; you may need to set it as high as
10A if the motor doesn’t move when you build the circuit described here.

Arduino Playground (Early Access), © 2016 by Warren Andrews

24 Chapter 2

Figure 2-5: Multimeters are handy for
many projects and useful to have around
the house. They’re available from a variety
of sources at a range of prices. I use this
cheap one from Electronic Goldmine, but
if you plan to do high-voltage experiments,
invest in a really good multimeter.

Build the circuit as shown in Figure 2-6, and then connect the red
lead of the multimeter to the power supply. Connect the black lead of the
multimeter to the motor lead to complete the circuit. If the reading is nega-
tive, reverse the red and black leads of the multimeter. Depending on your
power supply voltage and the motor’s voltage requirement, you may also
need to connect the motor to power through a voltage regulator circuit, as
described in “The Voltage Regulator” on page 34.

Motor Digital multimeter
200 mA scale

Power supply/battery

Black lead Red lead

Positive terminalNegative terminal

Figure 2-6: Connection diagram for measuring the current drain of the motor

To check the current drain, hold the shaft of the motor to slow it, and
watch the readout on the multimeter. You can get an accurate indication of
the number of ADC steps by plugging your readout in to Ohm’s law, calcu-
lating the voltage, and converting into steps, as I did.

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 25

n o t e In the sketch, I use a value of 100 as the threshold for reversing. You could also calcu-
late the absolute value of the voltage drop by multiplying 100 by 0.0049V:

100 steps 0.0049V per step = 0.49V

Remember, the exact threshold depends on the type of motor you
use. Different motors will have different current capabilities and may even
require a different value resistor. The description and model of the motor
I used is included in the “Parts List” on page 19. Also, note that the value
of current drain is not precise. The nature of permanent magnet motors is
such that the current drain under load will be a range, not an exact number.

As the current increases, the voltage drop increases until it reaches the
point where the microcontroller is instructed to do something. At that point,
the difference in analog voltage that appears between A0 and A1 is above the
preset threshold, which will set the Arduino into action. Once the threshold
is reached, the Arduino tells the H-bridge to reverse the current to the motor.

using an h-Bridge
You’ll likely encounter an H-bridge driver in future projects because it’s a
very versatile part and can serve numerous functions. There is quite a selec-
tion of H-bridge chips available, but I’ve been using the Texas Instruments
SN754410 quad H-bridge. It’s popular because it operates over a wide volt-
age range and is extremely flexible—and inexpensive. The logic operates at
a 5V level, while the drive can be as much as 36V with a continuous output of
1A (and a peak output of 2A), making it capable of driving a wide variety of
hobby motors, solenoids, and even relays. It comes in a standard 16-pin dual
inline package (DIP). The DIP package was a longtime standard but is slowly
being replaced by newer types (see “Dealing with Small ICs” on page XX).
It’s the conventional centipede-looking circuit.

Figure 2-7 shows the pinout for the SN754410 H-bridge, and Table 2-1
shows its function table. You’ll find more information in Texas Instruments’
data sheet at http://www.ti.com/lit/ds/slrs007b/slrs007b.pdf.

16

15

14

13

12

11

10

 9

1

2

3

4

5

6

7

8

Heat sink
and ground

Heat sink
and ground

VCC1

4A

4Y

3Y

3A

3,4ENVCC2

2A

2Y

1Y

1A

1,2EN

Figure 2-7: The pinout for the SN754410 quad H-bridge chip
used in this project. Note that pin 1 is in the top-left corner of
the chip when viewed from the top with the notch pointing up.

Arduino Playground (Early Access), © 2016 by Warren Andrews

26 Chapter 2

Table 2-1: Function Table for the SN754410

Inputs Output (Y)

A EN

H H H

L H L

X L Z

According to the data sheet, in this function table, H stands for high
level, L stands for low level, X means the level is irrelevant to the circuit
behavior, and Z indicates high impedance, which turns the motor off.

The H-bridge is an elegant motor-control solution for several reasons.
It allows you to reverse the polarity from a single supply, and it provides for
different logic and control voltages. In addition, if both inputs of the dual
H-bridge are either high or low, there will be no output. The sketch takes
advantage of that in a function written to stop the motor. Other projects in
this volume also use this capability.

The Breadboard
For most Arduino projects, I suggest building the circuit on a breadboard
first to make sure you’re going in the right direction and to prove your ini-
tial hypothesis. Use a standard breadboard and the plug-in wires that are
sold as accessories for the breadboard (see Figure 2-8).

Figure 2-8: Typical small breadboard and plug-in wires

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 27

Before you begin building the circuit on the breadboard, look over
your Arduino. Many Arduino boards come complete with the male headers
already soldered in place. However, that’s not always the case; some Asian
suppliers include the headers loose with the processor board. If your board
lacks headers, see “Preparing Arduino and LCD Boards” on page XX for
complete instructions on attaching them.

Most breadboards include a red and blue strip on the entire length of
each side of the board; the holes next to these strips are used for power (+)
and ground (-), respectively. Before you hook up the circuit, use a wire to
connect the red column on the right to the red column on the left. Connect
the blue columns to each other, too.

W a r n i n g Do not connect the red column to the blue column! This will cause a short circuit and
will burn out the electronics.

Figure 2-9 shows my breadboard for this project, and the schematic
from Figure 2-3 lays out the connections.

Figure 2-9: This is the breadboard I used as a proof-of-concept to make sure every-
thing worked as anticipated.

W a r n i n g Don’t plug the Arduino in to the computer while it is actually receiving power from
the voltage regulator. This could burn out the Arduino.

I suggest prototyping your circuit as follows:

1. Insert the Nano board into the breadboard, leaving a couple of rows of
holes at one end.

2. Place a wire from the pin labeled 5V on the Nano (pin 27) to the posi-
tive (red) strip on the breadboard.

Arduino Playground (Early Access), © 2016 by Warren Andrews

28 Chapter 2

3. Place a wire from GND on the Nano (pin 29) to the negative (blue)
strip on the breadboard.

4. Find three consecutive holes on the board where they will not connect
to anything and insert the three leads of the LM7805 into them.

5. The input lead of the LM7805 will go to the 9V power supply, the
ground of the LM7805 will go to the blue negative rail, and the output
of the chip will go to the red stripe. (See Figure 2-11 for the LM7805
pinout.)

6. Insert the H-bridge into the breadboard with the notch facing the
Nano, and leave a couple of rows between the H-bridge and the Nano.

7. Use a wire to connect pin 1 and pin 16 of the H-bridge together (see
Figure 2-7). Then, use another wire to connect pin 1 to the positive
connection on the breadboard. This connection from pins 1 and 16
provides the voltage to run the logic on the H-bridge and also to enable
the section of the H-bridge used.

8. Use a wire to connect pins 4 and 5 of the H-bridge, and then connect
them to the negative terminal on the breadboard. Running a wire from
either pin 4 or pin 5 to ground will do the trick.

9. Similarly, connect pins 12 and 13 of the H-bridge together, and connect
them to ground.

10. Use a wire to connect one side of the motor (it doesn’t matter which) to
pin 3 of the H-bridge, and connect pin 6 of the H-bridge to the other
side of the motor.

11. Connect digital pin D12 of the Nano to pin 2 of the H-bridge.

12. Connect digital pin D13 of the Nano to pin 7 of the H-bridge.

13. Connect one side of the 5.6-ohm resistor (R1) to pin 8 of the H-bridge.

14. Connect the other side of resistor R1 to the breadboard’s positive strip.

15. Insert a wire from pin 8 of the H-bridge to analog pin A0 of the Nano.

16. Insert a wire from the positive (red) connector to analog pin A1 of
the Nano.

17. Insert the positive side (long lead) of one LED to D12 of the Nano.

18. Insert the negative side of the LED into an empty row on the
breadboard.

19. From that row with the negative side of the LED, connect a 300-ohm
resistor (R2) to ground (blue strip).

20. Insert the positive side (long lead) of the second LED to D13 of
the Nano.

21. Insert the negative side of the second LED into an empty row on the
breadboard.

22. From that row with the negative side of the second LED, connect a 330-
ohm resistor (R3) to ground.

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 29

The VCC2 supply drives the output to the motor. It goes from the posi-
tive side of the supply—the output pin of the regulator in the schematic—
through resistor R1 to pin 8 of the H-bridge. VCC2 becomes the low-voltage
side of resistor R1; it will have a lower voltage as the load on the motor
increases because the other end of the resistor is attached to the positive of
the power supply. The VCC2 supply voltage can be anywhere from the 5V
that the logic uses to the 36V limit of the H-bridge. For this project, I simply
tied the voltage-drop resistor directly to the 5V supply, which worked well
with a 6V motor.

The Nano’s D12 and D13 output pins drive the A inputs of the
H-bridge, while A0 and A1 inputs straddle the voltage-drop resistor, R1.
It’s this voltage-drop value that tells the Arduino to change the outputs
to instruct the H-bridge to reverse the motor. When output D13 is high
and D12 is low, output pin 2Y on the H-bridge becomes positive while 1Y
remains negative. When D12 is high and D13 is low, the reverse happens,
and 1Y becomes positive while 2Y stays negative. When both pins have high
or low output, they are at the same potential (or voltage), and the motor is
not driven. (Refer to the function table in the H-bridge chip’s data sheet, or
see Table 2-1.)

The Sketch
The following sketch is written so that when the motor reaches its limits
in one direction, both outputs go low, and when it reaches its limits in the
other direction, both outputs go high. When both outputs are either high
or low, there is no potential across the motor and it is stopped for a speci-
fied delay time. After the delay is satisfied, the motor starts in the other
direction. Because LEDs are wired to pins D12 and D13, you’ll also get a
visual indication. Both LEDs are illuminated when the motor pauses in
one direction, and both LEDs are off whe the motor pauses in the other
direction.

/* Sketch for the Automatic Motor Reversal Project
*/

//Identify pins that will not change
const int ledPin1 = 12; //LED1 in schematic
const int ledPin2 = 13; //LED2 in schematic
const int analog0 = A0;
const int analog1 = A1;
int analogValue0 = 0; //Identify variables for analog inputs
int analogValue1 = 0;
int analogdifference = 0;
int threshold = 100; //The threshold value calculated to stop the motor

int reading;
int state;
int previous = LOW;

Arduino Playground (Early Access), © 2016 by Warren Andrews

30 Chapter 2

int count = 0;
int numberstops = 250;
int time = 0; //The last time the motor reversed

//Amount of time to wait to get rid of the jitters when the motor reverses
int debounce = 400;

u void setup() { //This is the setup routine
//Initializes pins as input or output
 pinMode(analog0, INPUT);
 pinMode(analog1, INPUT);
 pinMode(ledPin1, OUTPUT);
 pinMode(ledPin2, OUTPUT);

 Serial.begin(9600); //Was used in setting up the parameters
}

v void loop() { //This begins the processing section
 //Enter an endless do-nothing loop after the counter reaches the limit
 while(count > numberstops) {
 digitalWrite(ledPin1, LOW);
 digitalWrite(ledPin2, LOW);
 }

 analogValue0 = (analogRead(analog0)); //Read the analog values
 analogValue1 = (analogRead(analog1));

 //Setting up the analog difference
 analogdifference = analogValue1 - analogValue0; //This is the voltage drop
//analogValue1 will be greater than analogValue0

 //These were added to view what was happening on the serial monitor
 Serial.print("count = ");
 Serial.println(count);
 Serial.print("analogdifference = ");
 Serial.println(analogdifference);
 Serial.println();
 Serial.print("numberstops = ");
 Serial.println(numberstops);

//This comparator looks at the difference or drop across the resistor
 if(analogdifference > threshold) {

 reading = HIGH;
 }
 else {
 reading = LOW;
 }

 //Toggles the output and includes the debounce

y if(reading == HIGH && previous == LOW && millis() - time > debounce) {
 if(state == HIGH) {
 state = LOW;
 }
 else {
 state = HIGH;

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 31

 }
 //Increments the counter each time the motor reverses

z count++;
 time = millis();
 }

 //Writes the state to the output pins that drive the H-Bridge
 digitalWrite(ledPin1, state);
 digitalWrite(ledPin2, !state);

 previous = reading;

}

This sketch sets up human-understandable aliases for the pins the proj-
ect uses and adds convenient constants and variables for referencing analog
inputs and other key values. After the sketch defines and initializes the input
and output pins at u, it starts the main loop at v.

Inside the main loop, the sketch finds the voltage drop across the resis-
tor in terms of analog steps . At , the sketch determines whether the
reading was high or low. Threshold values from 100 to 120 work reliably for
the 6V, 20 RPM motor I used, but you may need to experiment to find the
right value for your motor. See “Determining the Reversal Threshold” on
page 22 for more on how to estimate the threshold value. The reading
at y dictates whether to reverse the motor.

When the sketch checks reading to see whether the motor needs revers-
ing, it also uses the debounce value to assure that a high reading wasn’t caused
by electrical noise created by the motor’s commutator or brushes during a
legitimate reversal. I set debounce to 400, but you may have to adjust that for
different motors. For larger motors specifically, this may need to be set a
little higher.

t he Dropping r e sis tor is Ke y to se nsing CUr r e n t

I’ve tried this reversing circuit with several similar motors, and I’ve only ever
needed to make a slight adjustment to the threshold value in the sketch . But
for a motor with extremely high or low current drain, you may need to antici-
pate a much different value for analogdifference and/or use a different drop-
ping resistor, which was R1 in the schematic . You might need to reduce the
value of the dropping resistor to something like 2 .2 ohm, which then requires
a reduction in the value you compare analogdifference to .

For most small motors, the lower the value of the dropping resistor—which
is usually between 1 and 10 ohm—the better, as the analog difference tends
to be more stable . For other motors, experiment to find the resistor value that
works best .

Arduino Playground (Early Access), © 2016 by Warren Andrews

32 Chapter 2

This sketch also includes a few functions that aren’t strictly necessary to
reversing the motor but are helpful when using the motor as a PCB agitator.
These aspects of the project may appeal to you in other applications, too, so
let’s look at them in more detail.

One of the things that I added was a counter to track the number of
times that the motor reversed. In the sketch, the count increment appears
at z as count++. In the project, when a certain value of count is reached,
the motor stops (if count = numberstops). If you wanted to set off an alarm,
such as an audible noisemaker, to tell you it’s finished, that can easily be
accomplished by adding a line to write to one of the digital outputs. I set
a maximum count value in the sketch, using numberstops = 250, so the motor
will reverse 250 times and then stop. That provides a little more than 15
minutes of etching time with the motor I’ve selected running at 5V, which
should be enough to etch most circuit boards.

The stop function is just a do-nothing loop: when the maximum count
is reached, the sketch enters the while loop at the beginning, stopping the
agitation. This basically stalls the processor, and you have to hit the power
switch to restart, or reset, the agitator. The placement of this loop near the
beginning of the software is just a reminder that it’s there.

moD: a DjUs ta Bl e s top a moUn t

If setting a fixed stop maximum in a sketch doesn’t leave you satisfied, try
connecting a potentiometer between power and ground with the adjust pin,
which is usually the center pin on the potentiometer, to the A2 input pin of the
Arduino . Then, set numberstops equal to the value of A2, which should range
from 0 to 1,023, depending on the position of the potentiometer wiper .

Here’s how the sketch would differ . First, change

numberstops=250

to

numberstops = setNumber;

Then, add the following:

int setNumber;
int analogPin2 = A2;
int analogValue2;
setNumber = analogRead (analogPin2);

Because the timing is relative, you could use a 270-degree rotation linear
potentiometer and make some rough markings on the enclosure to indicate the
number of counts .

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 33

The thinking behind the count, optional alarm, and stop capabilities
is that a reminder to check on your board is helpful. If the board has com-
pleted etching, continued agitation would speed undercutting of the traces,
which is not a good thing because it weakens (and can break!) small copper
traces. On the other hand, if it fails to etch in a reasonable time, you might
need to refresh the etchant.

The Shield
For this project, I recommend making a small PCB shield, which is basically
a host board designed to plug into the Arduino Nano. With a shield, your
motor reversal project can remain compact, and you can design and build it
with a minimum of effort.

PCB Layout
You could just solder the parts for your project directly to a piece of perfo-
rated project board, but I believe creating and populating the shield takes
less time than putting the parts on a perforated board and wiring them by
hand. You’ll also gain invaluable experience by preparing, etching, drill-
ing, and assembling your own PCB. And in the end, some projects are com-
plex enough that wiring by hand just won’t be an attractive option. (See
Figure 5-12 on page 69 for an example.)

To make my printed circuit layouts, I use a free software program
called ExpressPCB. If you’ve never laid out a PCB before, check out
“Making Your Own PCBs” on page XX to learn how to use ExpressPCB.
Figure 2-10 shows my layout of the PCB.

Figure 2-10: This is the actual PCB pattern I used in the
project. The Arduino Nano can be soldered directly to
the board or can plug in if you use header connectors.

Arduino Playground (Early Access), © 2016 by Warren Andrews

34 Chapter 2

If you don’t want to lay out your own PCB but still want to make
the board, download the Reverse.pcb file from https://www.nostarch.com/
arduinoplayground and follow the directions in “Making Your Own PCBs”
on page X. When you’ve made your PCB, just solder all the components
to it in the right places, and you’ll be done with the shield.

Shield Design Notes
If you lay out your own shield, there are a few design factors you should
definitely keep in mind.

Analog Inputs

Be certain to connect the A1 and A0 inputs to the correct sides of resis-
tor R1, according to the schematic in Figure 2-3. A1 should attach to the
power supply side and A0 to the H-bridge side. In the sketch, to compare
the analog values, we take the difference as analogdifference = analogValue1 –
analogValue0, with analogValue1 as the input at the high end of the resistor. In
this case, analogValue0 is A0, and analogValue1 is A1.

Grounding and Heat Sink

Pins 4, 5, 12, and 13 are ground on the H-bridge, and they are also a heat
sink to keep the chip from overheating. A small area on the proposed shield
is included to increase the heat sink area. If you’re using a relatively small
motor—such as the 6V, 20 mA unit—no more heat sinking is required. If
you’re using a much larger motor or driving a heavy load, consider using
the second side of the PCB as a heat sink.

The Voltage Regulator

This project uses its own 5V regulator to supply power to the Nano. A 9V,
200 mA plug-in wall adapter is connected to the voltage regulator LM7805
on the shield, which reduces the voltage from about 9V to 5V. An external
regulator is included so a more powerful regulator than the one built into
the Nano can be used. Make sure to connect the pins of the regulator cor-
rectly. Figure 2-11 shows the pinout of the regulator.

Output
Common
Input

Figure 2-11: Pinout of LM7805 5V regulator

You could feed a 7.5V DC or 9V DC wall supply directly to the VIN pin
of the Nano and use the onboard regulator, which worked with my motor.
But if you use a larger motor—or higher-current LEDs—it might tax the
onboard regulator and could conceivably burn it out.

The higher the voltage of the power supply, the more work the regula-
tor has to do to bring it down to 5V. Overtaxing the regulator could cause

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 35

it to heat up and fail. For example, feeding the regulator 12V is probably
at the high end for 5V regulation. A 9V input is better, and a 7.5V input
is better yet. If the regulator chip gets warm, add a heat sink to the tab. A
small piece of aluminum is often sufficient, but a regular heat sink can be
used (see “The Mini Voltage Regulator” on page X). And while it’s good to
have the supply voltage as close to the output voltage as possible, remember
that the regulator needs at least 1V above the regulated output to work, so
it must be fed with at least 6V, which is a 5V-regulated output plus 1V. Input
voltages above 12V are feasible, too, but just be sure not to exceed the limits
of the device.

moD: Using a highe r voltage

If you use a higher-voltage motor for this project, it will turn faster, have more
torque, and so on . But you can’t simply connect the higher voltage to the high
end of the dropping resistor connected to pin 8 of the H-bridge . That would
cause the voltage between both A0 and A1 and ground to exceed 5V, which
is hazardous to the health of the ATmega328 microcontroller on the Arduino .
(This is the only time that the voltage referenced to ground is important .) Thus,
a modification is required . Look at R1 in the schematic in Figure 2-12 . The sup-
ply first goes to resistor R2; R2 joins with resistor R3, which goes to ground .

Figure 2-12: If you elect to use a higher voltage and drive a
faster motor, you will have to modify the circuit by adding
voltage dividers in front of both the A0 and A1 inputs.

(continued)

Arduino Playground (Early Access), © 2016 by Warren Andrews

36 Chapter 2

Directional LEDs

Of course, what Arduino project would be complete without blinking
LEDs? As you’ll see in the schematic and on the shield PCB, I included
two LEDs: a red one for clockwise rotation and a green one for counter-
clockwise rotation. But which direction belongs to which LED is your
choice: simply reverse the motor leads to change the LED status.

To avoid damage to the Nano processor, you will want to keep the volt-
age that appears at that joining point under 5V, referenced to ground . The
easiest way to do this is to use a voltage divider . Two resistor pairs divide the
higher voltage: the first pair is R2 and R3; the second is R4 and R5 . The value
of these resistors should be such that the output at the joining of each pair—R1
and R2, and R4 and R5—is somewhat less than 5V for whatever value of input
voltage you use .

Use this formula:

V Vout in
R

R
= ×

+ R
2

1 2

and the schematic in Figure 2-13 to determine the values of the resistors to use
in a voltage-divider circuit .

For example, if you start with 9V and arbitrarily
select a 10-kilohm resistor in series, you would have to
shunt it with a 12 .5-kilohm resistor to ground, accord-
ing to the calculator . The closest resistor I had was
12 kilohm, and it worked fine . If you can’t find a stan-
dard resistor to fit your needs, you can also combine
two standard values in parallel to achieve the value you
want with this formula:

R R1 R2
R Rtotal = +1 2

If you don’t want to do the algebra yourself, you
could use one of the convenient online voltage-divider
calculators such as http://www.sengpielaudio.com/
calculator-paralresist.htm or http://www.raltron.com/
cust/tools/voltage_divider.asp . SparkFun also has an
excellent tutorial on voltage dividing, with a calcula-
tor of its own: http://learn.sparkfun.com/tutorials/
voltage-dividers/ .

Ground

Vout

Vin

R1

R2

Figure 2-13: A basic
voltage divider. To
find the resistors you
should use, plug the
values from your
own divider into the
formula as if your
divider were this
circuit.

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 37

construction
For this project, you’ll use the motor-reverse technique to create an agitator
that accelerates the etching of PCBs. To do this, you’ll suspend a PCB from
an Arduino-driven motor over etching solution, as shown in Figure 2-1. A
small box will contain the Arduino Nano, the shield, the motor with limit
wires, direction LEDs, a power switch, and the power jack.

After assembling the box, you just have to mount it somewhere above
your etching setup and attach the reverser, either directly to the PCB or to
a tray. I clamped my box to a cabinet door above my workspace, with a place
for the etching vessel below (see Figure 2-14). The entire system can be
assembled and disassembled quickly.

Figure 2-14: For larger PCBs, try etching in a tray for a more con-
ventional approach. Just attach the motor reverser to your tray to
agitate the board rather than using the reverser to dip the board
in and out of the solution.

Construction of the rest of this project takes a little bit of patience and
perhaps some ingenuity in scavenging some of the parts required. You will
need a couple of M3 screws to mount the motor to the motor plate—in
this case, a small aluminum L bracket—and some limit wires, preferably
made of 0.039 piano or spring wire. You’ll also need a small block of scrap
brass or aluminum—round or rectangular, doesn’t matter—to attach to

Arduino Playground (Early Access), © 2016 by Warren Andrews

38 Chapter 2

the motor shaft and crank, a long 4-40 or 6-32 screw to act as the crank,
and an M3 standoff and solder lug to attach the agitator line to the crank.
Figure 2-15 shows the nearly-finished, unmounted product.

Figure 2-15: Wire up your components and lay them out for a final test before you put
them in a box. For the test, I held the motor in a clamp so the crank was free to move.
The regulator heat sink obscures much of the shield.

The Limit Wires
The limit wires will create resistance to the motor’s rotation by essentially
bumping into the motor crank. The point in the rotation where they strike
the crank is the limit of rotation. When the crank runs up against the limit
wire, the wires prevent the motor from turning and initiate the reversal.

I recommend piano or spring wire to provide a little spring as the crank
hits it at the extent of rotation. Use a pair of needle-nose pliers to bend two
pieces of the limit wire into shape (see Figure 2-16). These wires will fit on
the motor mount screws outside of the motor mounting bracket. You can
change the limit of rotation by loosening the screw and rotating the wire.

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 39

Figure 2-16: This is how the limit pins are formed. A good pair of
needle-nose pliers does the trick.

The Crank Bushing
The crank bushing is simply what transfers the rotation of the motor to the
crank. Figure 2-17 details the construction of the bushing, the standoff, and
the solder lug.

Drill with #36 and tap with 6-32

Drill hole for motor shaft

Rectangular solid optional

Crank screw

Locks against motor shaft

Motor shaft

Locking nut
Drill with #36 and tap with 6-32

Thread onto crank
M-3 threaded spacer

M-3 screw binds to crank

Bushing

Solder lugM-3 threaded
spacer installed

Figure 2-17: The detail of the drive mechanism that transfers the rotation of the motor to
the lifting motion of the agitator

While there can be a number of different variations in your approach
to assembling this part of the project, here’s the sequence I used to put it
together:

1. Drill a hole for the motor shaft through the center of the bushing,
which can be a small piece of brass or aluminum round stock about
0.5 inches in diameter and 0.75 inches long. A rectangular piece will
work just as well. Use a drill that is as close to the size of the motor shaft
as possible. For example, if your motor shaft is 0.157 inches in diameter
like the one I used, then a 11/64-inch drill bit is close enough. It isn’t
important to get the hole exactly on center—just close.

Arduino Playground (Early Access), © 2016 by Warren Andrews

40 Chapter 2

2. In the bushing, perpendicular to the motor shaft hole, use a #36 drill
to drill a hole. Then, tap the hole you drilled so a long 6-32 screw can
serve double duty as a setscrew and crank. You can also use a sepa-
rate setscrew to move the crank farther from the motor, as I did in
Figure 2-18.

Figure 2-18: A photograph detailing the head of the crank. Note the solder
lug used to hold the wire and the alligator stop clip on the left side.

3. Thread the crank screw into the bushing so it bears tightly against the
motor shaft, and use a locking nut to hold the screw in place (see
Figure 2-18).

4. At the end of the crank, you are ultimately going to attach the line
that will pull the PCB in and out of the etchant. This fitting can be
just a nut, or even an alligator clip, attached to the crank. However, in
the detail, I used an M3 hex female-female
standoff that was 7 mm long. I drilled clean
through the standoff to one side, starting on
one of the flat surfaces with the same #36 drill.
I then tapped the hole with the 6-32 tap and
threaded it onto the crank.

5. Take an M3 × 0.5 mm machine screw and put
it through the solder lug (see Figure 2-19 for
the lug itself and Figure 2-18 for the lug in
place). Screw it into the standoff all the way
so it binds on the crank screw.

My local Ace Hardware store had all of the
accessories I needed, with the exception of the M3
standoff, which I got from eBay. You should be able
to find the same items at Home Depot or Lowe’s.

Threaded bushing Setscrew

Limit wire

Solder lug

Figure 2-19: The solder
lug used to hold the
wire that holds the
etching board. If you
can’t purchase some-
thing similar, you can
easily make one with
a piece of scrap metal
or plastic.

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 41

Packaging
The shield and Nano fit in a standard plastic box (see Figure 2-20). Drill
holes in the enclosure for the 3.5 mm power jack, the SPST switch that
serves as a power switch and reset, the indicator LEDs, and the motor wires.

Figure 2-20: Completed box with motor, limit wires, direction LEDs, power switch (reset),
and power jack. The LEDs light up, with one for each direction. When the motor pauses in
one direction, both LEDs turn on; when it pauses in the other direction, both LEDs turn off.

Most 3.5 mm jacks use approximately a 1/4-inch hole, which is the
same sized hole as the switch. If you want a tight fit, 15/64 inches is closer.
Whether you use a 5 mm or 10 mm LED will dictate the size of the holes
required for those. It’s been my experience that different brands tend to
have slightly different diameters, so you might want to try a smaller drill first
and test whether the LED fits. The arbitrary English-sized drill bits for the
5 mm and 10 mm LEDs are 3/8 inches and 3/16 inches, respectively. If you
have a set of tapered reamers, you can start with a smaller hole and ream it
out to make a tight fit for the LEDs (see “Tools” on page XX).

Mount the motor on a small piece of aluminum angle, readily available
at most hardware stores. I purchased a 1-inch section of 1.5 × 1.5–inch alumi-
num angle and cut it down to size with a hacksaw. If you’re using the motor
I use, you can copy the template in Figure 2-21 or download and print it
from https://www.nostarch.com/arduinoplayground/, cut it out, tape it to the
aluminum angle bracket, and carefully mark the hole positions on the

Arduino Playground (Early Access), © 2016 by Warren Andrews

42 Chapter 2

bracket with a center punch or nail. Now, drill the holes—1/8 inches for
the motor mount and 5/16 inches for the center hole. If you use a different
motor, you will have to measure and mark out the mounting holes.

Figure 2-21: Template for motor mount

Just use some double-sided foam tape to secure the shield to the enclo-
sure if you think you’ll want to use it in another project. Otherwise, attach it
to the inside with standoffs and screws in any size you like.

The etching Process
There are a number of techniques for making PCBs. The most common is
a subtractive approach, which involves starting with a copper clad board,
or a copper foil bonded to an electrically insulating substrate, from which
the copper is selectively removed to leave a pattern on the board. While the
copper can be mechanically milled off, the most common approach is to
selectively etch the pattern on the board chemically.

In the chemical etching process, the circuit pattern is printed on the
blank board with a chemical resist so that the copper is removed by the
etchant in the areas not treated with the resist. The etchant is a chemi-
cally active material that attacks the untreated copper on the clad board,
leaving you with only the copper you need for your circuit. I describe how
to etch circuits step-by-step in Chapter 0, and this project makes that pro-
cess easier.

Our goal is to suspend an unetched circuit board over the etchant in
the vessel and keep it in the etchant for the maximum time as the agitator
goes up and down, resulting in a laminar flow of etchant across the surface
of the circuit board. I suggest using a nylon cable tie to hold the circuit
board during the etching process, as nylon is relatively impervious to the
etchant. You could attach the tie, in turn, to the motor shaft with an alliga-
tor clip so the board is easy to remove (see Figure 2-22).

Arduino Playground (Early Access), © 2016 by Warren Andrews

An Automated Agitator for PCB Etching 43

Figure 2-22: This Arduino-based etcher-agitator etches a board. The etchant
should turn emerald as the copper is etched. The board is held by a wire tie
that is attached to a wire by an alligator clip. The wire goes through a hole
on the crank and is held in place with another alligator clip. One of the LEDs
is lit.

I used a 250 mL beaker as an etching vessel. For very small boards, this
works extremely well. For larger boards, I recommend a large measuring
cup, such as a 2 qt Pyrex cup. A 600 mL beaker works for intermediate-
sized boards. For even larger boards, you can use a tray, as illustrated in
Figure 2-14.

Arduino Playground (Early Access), © 2016 by Warren Andrews

44 Chapter 2

The switch and power input are located on the left-hand side of the
box. To hold the board being etched, I suspended a wire through the solder
lug and attached that wire to the board with a small alligator clip. On the
back of the lug, you can either tie a small knot in the wire or attach a clip
of some sort to make sure the wire doesn’t fall through the lug and into the
acid. In my setup, a clamp (behind the motor in the photo) holds the box
to an overhanging door.

Note that the etching vessel is sitting on a hot plate. Though etching
will occur at room temperature, it’s accelerated somewhat by heating. Be
careful not to get the etchant too hot: if you set the hot plate on low to keep
the liquid at about 100–120 degrees, it will speed etching without soften-
ing the resist.

Arduino Playground (Early Access), © 2016 by Warren Andrews

3
t h e r e g U l a t e D p o W e r s U p p ly

Whether you use a standard bench power
supply or run your Arduino off the USB

port of your computer, sooner or later you’re
going to need a stand-alone, regulated power

supply capable of providing a variable voltage. This
project shows you how to make exactly that, using only
a handful of inexpensive parts. A variable power supply is one of the most
frequently used tools in many workshops. This one is easy and fun to build,
and you will find that you end up using it over and over again.

When set for 5V or 3.3V, the Regulated Power Supply can power
most Arduino projects with ease. You can also use it to power some ancil-
lary piece of equipment, to vary a particular voltage in a system while
the main power is fixed, or simply to test a lamp circuit, LED, motor, or
other device.

Arduino Playground (Early Access), © 2016 by Warren Andrews

46 Chapter 3

The circuit uses the extremely versatile LM317 regulator chip. If
you ever find yourself in the need of a precision voltage regulator with
some unusual demands, look up the LM317 on the web. The JavaScript
Electronic Notebook has a particularly good article titled “LM 317 Voltage
Regulator Designer” by Martin E. Meserve, which can be found at http://
www.k7mem.com/Electronic_Notebook/power_supplies/lm317.html.

Parts list
The Regulated Power Supply is capable of providing an adjustable voltage
from 1.25V to about 12V at up to 1.5A, depending on the fundamental
power you use. It uses the LM317 single-chip voltage regulator to set the
voltage. To build it, you will need the following parts:

•	 One Arduino Pro Mini (or clone)

•	 One LM317 voltage regulator IC

•	 One LM7805 5V voltage regulator IC

•	 Two 2.2 ohm 5 W resistors

•	 Three 10 kilohm 1/8 W, 1% tolerance resistors

•	 Three 6.8 kilohm 1/8 W, 1% tolerance resistors

•	 One 68 µF tantalum capacitor

•	 Three 0.1 µF ceramic capacitors

•	 One 1 µF tantalum capacitor

•	 One 16×2 LCD display

•	 One LCD-I2C adapter board

•	 Four 4-40 screws

•	 Eight 4-40 nuts

•	 One 5 mm LED (for power indicator)

•	 One SPST switch

•	 One 470 ohm resistor

•	 One 10 kilohm potentiometer

•	 One Hammond panel/case (#1456CE3WHBU)

•	 Two banana plug jacks

•	 One 3.5 mm jack

•	 One 12V 2A AC adapter

•	 One power adapter jack

•	 One PCB/shield

•	 Six 1 × 4 headers (Pololu, #1014)

•	 Four 1 × 4 housings (Pololu, #1903)

•	 Four 1 × 2 headers (Pololu, #1012)

Arduino Playground (Early Access), © 2016 by Warren Andrews

http://www.k7mem.com/Electronic_Notebook/power_supplies/lm317.html
http://www.k7mem.com/Electronic_Notebook/power_supplies/lm317.html

The Regulated Power Supply 47

•	 One heavy-duty TO-220 heat sink (available from many suppliers,
including Amazon and Futurlec)

•	 One medium-duty TO-220 heat sink (available from many suppliers,
including Amazon and Futurlec)

•	 Four male crimp connectors (Pololu, #1931; it’s a good idea to get some
spares of these)

•	 Four female crimp connectors (Pololu, #1930; it’s a good idea to get
some spares of these)

•	 30-gauge hookup wire

•	 Solder

•	 One knob to cover the potentiometer shaft

•	 Double-sided foam tape

A note on heat-sink selection: there are a wide variety of heat sinks
available. The one pictured in Figure 3-2 is the Futurlec TO220ST, which
works okay but runs pretty warm as you approach the 1A range. A larger
one that will still fit in an enclosure may be better. Futurlec TO220SMAL,
the heat sink for the LM7805, is sufficient for the job.

Required Tools

•	 Soldering iron

•	 Drill

•	 Drill bits: 3/8 and 1/4 inches

•	 Hacksaw or keyhole saw (nibbler or other)

•	 Philips head screwdriver

•	 (Optional) Tapered reamer set

•	 (Optional) Crimping tool

downloads
You will find the following files in this book’s online resources to help you
complete this project:

•	 Templates: Power Supply Front.DXF, PS front bottom.DXF

•	 Sketch: vol reg 5-30.INO

•	 Shield file: Voltage Regulator.PCB

Arduino Playground (Early Access), © 2016 by Warren Andrews

48 Chapter 3

W h at t he r egUl at e D poW e r sUpply is a nD isn’t

The power supply in this project is not intended to replace a regular bench
power supply . It does not provide any current limiting and is rated up to 1 .5A,
due to the current capacity of the LM317 . However, for a wide variety of appli-
cations—including all of the projects in this book—it works very well . If you’re
new to Arduino, it will provide a solid power supply and save you a lot of bat-
teries, if that’s how you’ve been powering your projects . If you already have a
full-sized bench supply, this project will be indispensable as a second supply .
The Regulated Power Supply can be used for several projects in this book that
require a secondary power supply .

I have used the Regulated Power Supply in other applications, and at the
end of this project, I’ll illustrate a more simplified version that can be used as
a remote supply . There are times when you just don’t have the proper voltage
supply for a project, and this build fits the bill .

a flexible voltage Regulator circuit
The basic LM317 regulator circuit in Figure 3-1 is the heart of this voltage
regulator. Though it is relatively rudimentary, the chip’s simplicity belies
what a powerful and versatile tool it can be.

Figure 3-1: This is the schematic diagram for the regulator
component of the Regulated Power Supply. The complete
schematic with the display is shown in Figure 3-3.

I have used some variation of this circuit for many applications, from a
stand-alone variable supply to an integrated part of a larger system, always
with good results.

In the shop, I sometimes use kind of a “hair-wired” version, shown in
Figure 3-2 (left), for testing LEDs and controlling things like motor speed

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Regulated Power Supply 49

and lamp intensity. I’ve also used a breadboard version, shown in Figure 3-2
(right), to implement the regulator circuit. In both cases, I used a trimmer
potentiometer, which requires an alignment tool or screwdriver to make
adjustments.

Figure 3-2: The “hair-wired” version of the voltage regulator circuit with a heat sink
screwed to the LM317 (left) and a breadboard version of the regulator (right). I used this
in an application with minimal power requirements and thus did not include the heat sink.

While those regulator circuits worked, one reason for using the more
refined Regulated Power Supply format in Figure 3-1 was to eliminate the
awkward trimmer potentiometer and instead use a standard 270 degree
potentiometer and knob so that I could make adjustments quickly, easily,
and repeatedly. But the main reason I built it was to have a secondary
variable-voltage power supply with digital readout readily available on the
bench.

The Schematic
While I wanted the Regulated Power Supply to be relatively robust, I didn’t
want it to be overly complex or hard to build. The hair-wired and bread-
board versions did well in temporary or emergency applications when used
with a digital multimeter (DMM), but I sought to build something more
permanent that would have its own voltage and current readout, and that
would stay on the workbench or sit on my desk as a regular addition to
the tool set. Figure 3-3 shows the full schematic for the Regulated Power
Supply.

Arduino Playground (Early Access), © 2016 by Warren Andrews

50 Chapter 3

Arduino Pro Mini
16-2 LCD/I2C display
U1: LM317
U2: LM7805
R1: 1.2 ohm 5 W resistor (two 2.2 ohm resistors in parallel)
R2, R4, R7: 10 kilohm 1/8 W resistor
R3, R5, R8: 6.8 kilohm 1/8 W resistor
R6: 470 ohm 1/8 W resistor

R7: 10 kilohm potentiometer
C1: 68 µF tantalum capacitor
C2: 1 µF tantalum capacitor
C3, C4, C5: 0.1 µF ceramic capacitor
SW: SPST switch
D1: LED
R11: 470 ohm resistor

Figure 3-3: Schematic for the Regulated Power Supply

For reference, Figures 3-4 and 3-5 show the pinouts of the LM317 and
the LM7805, respectively.

Figure 3-4: Pinout of the LM317 regulator

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Regulated Power Supply 51

LM7805

Output

Ground

Input

Figure 3-5: Pinout of the LM7805 5V regulator

how the circuit works
The circuit for this project is not overly complex. In essence, it measures the
voltage at the output of the LM317 regulator using the onboard analog-to-
digital converter (ADC) and compares it to an internal reference voltage.
The result is sent to the LCD screen. However, the Arduino Pro Mini 5V
version can accept a maximum of only 5V at the analog inputs. We there-
fore use a voltage divider to make sure that the voltage at the analog input
pin doesn’t exceed 5V. (Make sure voltage supplied to the LM317 is no
greater than 12V.)

In this case, a voltage divider comprises two resistors connected in
series, straddling the output of the LM317 and the ground rail of the
breadboard (see the schematic in Figure 3-3). The voltage coming from
the LM317 gets divided across the two resistors, R2 and R3. As you will
note in the sketch, converting from the divided voltage back to the origi-
nal levels for the display is simply a matter of reversing the arithmetic.

As shown in the schematic in Figure 3-3, the output of the LM317 con-
nects to both the R2-R3 voltage divider and to resistor R1. Together, resistor
R1 in parallel with R9 and the load, or whatever you want to power with
the power supply, can be seen as another voltage divider. The R1-R9 volt-
age divider has a resistance of only 1.1 ohms, so the voltage drop across it is
going to be relatively small. According to Ohm’s Law (I = E/R) the voltage
across R1 and R9 is going to be 1.65V for a maximum current drain of 1.5A
(the maximum supported by the regulator IC): 1.5 A = 1.65V/1.1Ω.

This means that when the LM317 provides about 12V and the load
draws 1.5A, there will be a 1.65V voltage drop across R1 and R9, leaving
10.45V at the power supply’s output.

Looking at the circuit in Figure 3-3, we are comparing the voltage at
analog inputs A0 and A2 of the Pro Mini. If you use the same values for the
voltage divider for A0 and A1, you can eliminate one of the sets of resistors
and simply connect A0 to A1.

Arduino Playground (Early Access), © 2016 by Warren Andrews

52 Chapter 3

voltage Di v iDe r r e sis tor va lUe s

The values of the resistors needed to achieve a certain voltage are determined
using this formula:

Vout = Vin ×
R2

R1 + R2

A schematic is shown in Figure 3-6 .

R1

Vin

R2

Vout

Figure 3-6: A typical voltage divider circuit

You can do the algebra if you’d like, but it’s easiest to use an online cal-
culator, such as the one at http://www.daycounter.com/Calculators/Voltage-
Divider-Calculator.phtml . In this project, the objective is to achieve an output of
around 5V . We’ll start with a 12V input and a 10 kilohm resistor, represented
by R1 in the formula and marked R2 in the schematic . Fill in the calculator
fields with this information, and the formula will give you a resistor value of
7 .1 kilohm for R2 (R3 in the schematic) . The closest standard resistor value is
6 .8 kilohm, so the project uses that along with the 10 kilohm resistor in its volt-
age divider .

But why start with a 10 kilohm resistor? The first reason is to avoid draw-
ing too much current . Even if the entire 12V dropped across the 10 kilohm resis-
tor, it would result only in a nominal drain of 1 .2mA . Second, I have a lot of
10 kilohm resistors in the parts bin, and I am sure you do, too .

I use three sets of voltage dividers in this circuit . The first looks at the volt-
age at the output of the regulator, which is ultimately displayed on the LCD .
The other two divide the voltage in front of and behind the voltage-dropping
resistor so that the amperage can be measured according to the formula
I = E/R, where E is the voltage drop across resistors R1and R9 and R is the
value of those two resistors combined . Could I have eliminated one set of volt-
age dividers? Yes, by joining A0 and A1 together . I thought, however, that I
might want to change those values at some point to increase the accuracy of
the ammeter by bringing the value closer to the Arduino reference voltage, so I
did not join them in my version of the project .

Arduino Playground (Early Access), © 2016 by Warren Andrews

http://www.daycounter.com/Calculators/Voltage-Divider-Calculator.phtml
http://www.daycounter.com/Calculators/Voltage-Divider-Calculator.phtml

The Regulated Power Supply 53

The Breadboard
As in all of my Arduino projects, I began with the standard breadboard. To
make life easy, I used a standard potentiometer with pins that would fit into
the 0.100-inch-spaced breadboard holes. With a little effort, a standard 16
mm rotary potentiometer (R7 in the schematic) with printed circuit board
connectors will just about fit into every other hole in a breadboard.

Preparing the Arduino Pro Mini and LCD
The Arduino Pro Mini may or may not come with the male headers attached.
If it doesn’t, you’ll have to solder them yourself. For more on preparing CPU
boards, see the appendix on page XX. Make sure the number of header pins
in your strip matches the corresponding holes in the Pro Mini; you may have
to cut the strip to the proper number of pins if the included strip is too long.
Trim two strips of headers to size and place the long ends of the two header
strips into a breadboard, spaced so that the Pro Mini board will fit over
them. Put the Pro Mini in place, and solder all the header pins. Then, take
two header pins (use the surplus from the longer header or purchase these
separately), insert them in the A4 and A5 holes in the Pro Mini, and solder.
These are the pins used for the LCD display.

Finally, install five header pins on the edge of the board (at the TX0
and RXI end). Some boards come with straight headers, others with the
long pins bent at a 90 degree angle. In most of the applications, I have
found it easier to work with straight headers. You can use right-angle
headers, but it may be more difficult to plug in the connector for pro-
gramming the board, so I recommend replacing any right-angle pins
with straight ones. You also might want to take a 1/2-inch length of #22
wire and solder it to the short end of the RST pin so it sticks up. A female
header connector will connect to this during programming.

You will now have to get the LCD/I2C assembly ready. If you purchased
the display and adapter separately, you will have to assemble them. Go to
“CPU Assembly,” on page XX for instructions. If you purchased the display
with the I2C adapter, it’s ready for assembly.

Building the Breadboard
Figure 3-7 shows an overhead view of the finished breadboard before you
power it.

Here’s the step-by-step guide to putting together the breadboard:

1. Insert wires to connect the two positive rails (red strips) together.

2. Insert wires to connect the two negative rails (blue strips) together.

W a r n i n g Be careful not to cross the two and connect the positive rails to negative rails. That
could cause a short circuit and damage the hardware.

Arduino Playground (Early Access), © 2016 by Warren Andrews

54 Chapter 3

Figure 3-7: The breadboard for the Regulated Power Supply. The capacitors in the
schematic—C1, C2, and C3—are not included in the breadboard but should be
included in the completed unit.

3. Insert the 10 kilohm rotary potentiometer into the breadboard.

4. Insert the LM317, with or without heat sink attached, near the poten-
tiometer, as shown in Figure 3-7. (See Figure 3-4 for the pinout of the
LM317.)

5. With the potentiometer shaft facing you, connect the leftmost pin and
center pin of the potentiometer together, and then connect both to the
adjustment (ADJ) pin of the LM317.

6. With the potentiometer in the same orientation, connect the rightmost
pin to the blue negative rail (ground).

7. Connect a 470 ohm resistor from the output pin to the ADJ pin on the
LM317.

8. Connect a 1.2 ohm resistor (R1 in Figure 3-3—I used two 2.2 ohm
resistors in parallel) from the output pin of the LM317 to a load of your
choosing. For test purposes, I used a 1/8 W resistor and connected a 5V,
30mA incandescent indicator lamp for the load. (You may want to use
the actual R1 and R9 resistors that you will use in the finished unit, so
you can adjust the sketch before completing the unit.)

9. Connect the input pin of the LM317 to the 12V system input voltage.
This is the wire going from the LM317 to the upper alligator clip in
Figure 3-7.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Regulated Power Supply 55

10. Connect the blue negative rails to the negative side of the input power
(probably a wall plug).

11. Insert the LM7805 into the breadboard, as shown in Figure 3-7. (See
Figure 3-5 for the pinout of the LM7805.)

12. Connect the output pin of the LM7805 to the red positive rail of the
breadboard.

13. Connect the input pin of the LM317 to the input pin of the LM7805.
This is the point at which the input voltage from the power source will
be connected.

14. Connect the ground pin of the LM7805 to the blue negative rail of the
breadboard.

15. Insert a 6.8 kilohm, 1% tolerance resistor, and connect one side to the
blue negative rail. This is resistor R3; the other side will connect to
resistor R2. See Figure 3-8 for a top view of the breadboard.

16. Insert a 10 kilohm, 1% tolerance resistor (R2) into the breadboard with
one side connected to the LM317 output pin and the other side con-
nected to resistor R3 from Step 15.

17. Connect resistor R1 from Step 7 from the output pin of the LM317
to a blank hole in the breadboard. This row will be the output of the
regulator.

18. Connect the voltage divider: first, insert a 10 kilohm, 1% tolerance
resistor (R4) into the breadboard. Then, connect one side of resistor R4
to the same row as R1 (you’ll have to use a jumper wire) and the other
side to an empty row on the breadboard.

19. Insert a 6.8 kilohm, 1% tolerance resistor (R5) into the board with one
side connected to the open side of R4 and the other side of R5 con-
nected to the blue negative rail.

20. Insert the Arduino Pro Mini in the breadboard so that it straddles the
center break, as shown in Figures 3-7 and 3-8.

21. Use a jumper to connect the VCC terminal of the Pro Mini to the red
positive rail.

22. Use a jumper to connect the GND pins of the Arduino Pro Mini to
the blue negative rail. (There are at least two to choose from—one is
located between RST and D2, and the other is located between RAW
and RST on the other side. Take your pick.)

23. Use a jumper wire to connect the joining point of R4 and R5 to pins A1
and A0 on the Arduino Pro Mini.

24. Find the junction point of R2 and R3, and use a jumper to connect that
junction point to the A2 terminal on the Arduino Pro Mini.

25. Load the sketch onto the Arduino Pro Mini. (I often remove the
Pro Mini from the circuit completely to program it. It’s a little less
confusing.)

26. Connect the LCD/I2C display by connecting VCC and GND to the red
positive and blue negative strips on the breadboard, respectively.

Arduino Playground (Early Access), © 2016 by Warren Andrews

56 Chapter 3

27. Connect the SDA to analog pin A4 on the Arduino Pro Mini and SCL
to analog pin A5.

28. Connect the input of the LM7805 voltage regulator to some pin where
the +12V will be attached.

29. Connect the output of the LM7805 to the red positive strip, and con-
nect the ground to the blue negative strip.

Once all of those connections are in place, you’re set to go. Upload the
sketch and test the circuit.

The Sketch
The Regulated Power Supply sketch is about as simple as I could make it. The
only difficulty is that although I use 1% tolerance resistors throughout, I’ve
found some variation in resistance value. So be aware that you may need to
make an adjustment to the sketch to accommodate for this.

Here is the sketch:

// Regulated Power Supply with volt and current read

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd (0x27, 16, 2); // Check your library for specific LCD
 // code both here and in setup.

float low_side_res = A0;
float volt_two;
float volt_three;
float volt_disp;
float low_side_res_2 = A1;
float hi_side_res = A2;
float volt_drop_1;

float amp;
float amp_3;
float amp_4;
float amp_disp;

void setup ()
{
 lcd.init ();
 lcd.backlight();
 // pinMode (amp_one, INPUT);
 // pinMode (amp_two, INPUT);
}

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Regulated Power Supply 57

void loop ()
{
 volt_two = analogRead (low_side_res);
 volt_three = (volt_two*5)/1024.0;
 volt_disp = volt_three*(10000+6800)/6800; // Actual voltage reading
 amp_3 = analogRead (low_side_res_2);
 amp_4 = analogRead (hi_side_res);
 amp = amp_3 - amp_4;
 amp_disp = amp *5/1024*(10+6.8)/6.8/1.22*.9; // Calculation of amperage I=E/R
 // *0.9 = adjustment for random error in ref voltage in pro mini

 lcd.setCursor (1,0);
 lcd.print ("Volt ");
 // lcd.print (amp);
 lcd.setCursor (12, 0);
 lcd.print (volt_disp);
 lcd.setCursor (1, 1);
 lcd.print ("mA ");
 lcd. setCursor (11, 1);
 lcd.print (amp_disp*1000,2);

}

First, this sketch imports some libraries and sets up the LCD (see “On
Writing Code to Set Up LCDs” on page XX). It then defines a series of
variables, all floats, to use when setting the voltage, reading from the ana-
log pins, calculating values to display on the LCD, and so on. The setup()
loop is very short: it has only two lines for initializing the LCD. The main
loop() reads the battery voltage and current, and performs the necessary
calculations to display on the LCD. The volt_disp value is the voltage to be
displayed on the LCD.

The Shield
While the circuitry is not overly complex, using a shield will simplify many
of the connections for driving the LCD and constructing the voltage divid-
ers, and it will make the assembly of the Regulated Power Supply easier
than point-to-point wiring. Figure 3-8 shows the shield I designed, though
you could also design your own, of course. The PCB file is available at
https://www.nostarch.com/arduinoplayground/.

Arduino Playground (Early Access), © 2016 by Warren Andrews

58 Chapter 3

Figure 3-8: The PCB shield used in the Regulated Power Supply. Black is the top
layer, dark gray is the bottom layer, and light gray is the silkscreen layer.

While I used two layers to construct the shield, with a little effort and
a slightly larger board, the circuitry could be accommodated on a single
layer.

The shield doesn’t need to be populated in any particular sequence,
but some components will be easier to fit before others. I suggest soldering
in this order:

1. First, insert 2.2 ohm 5W, 1% resistors R1 and R9 into the PCB. These
are voltage-dropping resistors that create the voltage for the ammeter
(mA), which provide a total resistance (R1 in the schematic) of 1.1 ohms
at 10 W. The resistors are a little longer than the configuration on the
board, so you’ll have to bend the leads to make them fit. When the
Regulated Power Supply is running close to its maximum rating,
expect these resistors—and the LM317 itself—to get a little warm.

2. Capacitor C1, a 68 µF tantalum capacitor, will be a tight fit for the
holes. To make sure it doesn’t interfere with the LM317, install the
capacitor first. Then, install the LM317, making sure to leave room for
the heat sink. Remember that the heat sink is likely to get pretty warm.

3. Make sure to install the LM317 with the pins correctly oriented accord-
ing to the pinout in Figure 3-4 and the schematic in Figure 3-3. If you
use the provided shield files, the thick line on the LM317 silkscreen
corresponds to the metal tab on the IC. If you insert the part the wrong
way, the system won’t work, and the part could burn out. It would also
be a pain to remove.

4. Install the LM7805 in the upper-right section of the PCB, and
make sure it matches the pinout in Figure 3-5 and the schematic in
Figure 3-3. You can use the heavy line in the silkscreen image of the
PCB as a guide.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Regulated Power Supply 59

5. Try both voltage regulator ICs in the shield with the heat sinks installed
(at least temporarily) to make sure they can fit without touching any
active components. Remember that the heat sinks are active: the heat
sink (tab) of the LM7805 is at ground potential, and the heat sink (tab)
of the LM317 is at the output potential.

6. Install resistors R2, R3, R4, and R5. It’s easier to place those before
installing the female headers for the Arduino Pro Mini.

7. Then, solder in C1 and C2, and solder in the wires that will connect the
Arduino Pro Mini to potentiometer R6, which you will mount on the
chassis. You can leave the wires a little long and trim them when you
install the shield in the enclosure. Install capacitors C4 and C5 as indi-
cated in the schematic.

8. Next, solder the female headers that comprise the mount for the Pro
Mini and the connector for the LCD display. The LCD connections are
the SDA, SCL, –, and + connections in the bottom right of the PCB. I
used male stakes and a female-to-female connector cable to connect
from the LCD to the shield. (To learn how to make the custom connec-
tor, see the section on connectors on page XX.)

For the LCD and Arduino Pro Mini, I usually insert the headers into the
board, solder just one pin, and then, with my finger on the top, heat that one
pin and push on the connector to make sure it fits flush against the board.
For the pins of the Pro Mini, I use only female headers for those that are
active—that is, that have copper traces going to them. I also like to place
one pin (I usually use a 1 × 4 pin header) right at the last pin on the Pro
Mini to make alignment easy. This would translate to pins RAW, GND,
RST, and VCC. In addition, I like to place at least two headers diagonally
for mechanical stability. This would correspond to pins D8 and D9 on the
Pro Mini. The male headers on the Pro Mini for A4 and A5 are located just
above pins A2, A3, and VCC on the main row of connections.

construction
When the Regulated Power Supply is all soldered together, you will need
to prepare an enclosure and mount the circuit inside. I selected a nice-
looking, powder-coated metal enclosure, approximately 2 1/4 × 3 1/4 ×
4 3/4 inches.

Bear in mind, though, that while the case is not delicate, the paint is
easy to scratch, so be careful. It’s also a little pricey—coming in around
$20—but as I will have it on my workbench all the time, I thought it was
worth it. Of course, you could also use a different enclosure of your choos-
ing and modify the templates provided with this book accordingly.

Arduino Playground (Early Access), © 2016 by Warren Andrews

60 Chapter 3

Preparing the Enclosure
The front panel of the enclosure is sloped, so you will need to put a piece
of scrap wood behind the areas you need to center punch and drill to
help hold it in place. Make sure to measure, center punch, and drill holes
carefully.

The templates for this project are shown in Figures 3-9 and 3-10, and
they can be downloaded from https://www.nostarch.com/arduinoplayground/.

Figure 3-9: Sloping face of the Regulated Power Supply enclosure

Figure 3-10: Front and bottom of the Regulated Power Supply enclosure

Arduino Playground (Early Access), © 2016 by Warren Andrews

https://www.nostarch.com/arduinoplayground/

The Regulated Power Supply 61

Here is how I suggest you prepare the enclosure:

1. Center punch and drill holes for the potentiometer, on-off switch
(1/4 inches), and power indicator LED. See Figure 3-9 for the front
panel dimensions.

2. Center punch and drill the hole for the power input jack in the rear of
the panel (see Figure 3-9).

3. Drill holes for the output binders and 3.5 mm jack on the front of the
case, as shown in Figure 3-10.

4. Carefully measure and mark the cut out for the LCD display, as shown
in Figure 3-9. Center punch and drill 1/2-inch holes in the corners of
the LCD screen area to help initiate saw cutting. You can eyeball this
based on the diagram in Figure 3-9 or download a PDF file of the tem-
plate. Either trace the image onto your enclosure with carbon paper or
simply mark the corners with a center punch and connect the punch
marks.

5. Carefully cut out a hole for the LCD display. There are a variety of tools
you can use to do this. I first drilled holes A and B and then used a key-
hole saw with a fine hacksaw blade (available at local hardware stores)
to cut between the holes. Remember that the cutting occurs on the out-
ward thrust, so you needn’t keep pressure on the blade on the return
stroke. You can clean up the burs with a file.

6. Carefully fit the display into the window, and file where necessary to
get a secure fit. The backlight protrudes on one side of the display, so
in order to avoid crushing the backlight, you can use nuts as spacers to
keep it separated from the panel.

7. Drill holes f, g, h, and i, and fasten the display in place. As you do so,
check carefully that the spacer nuts are wide enough (4-40 nuts come
in different dimensions), and, if necessary, use two nuts or a nut and a
washer to space out for the backlight.

Mounting the Circuit Board
Once you have assembled and tested the shield and mounted the LCD dis-
play, install the potentiometer, on-off switch, LED, and power jack. Then it’s
time to mount the shield in the enclosure. Originally, I drilled four holes
in the board so that I could screw it into the enclosure, but I’ve found that
3M double-sided mounting tape also does the trick. I mounted the entire
board, heat sinks and all, with a 1 1/4-inch length of the 3/4-inch wide
double-sided adhesive. (The manufacturer claims it will hold 2 pounds.)

The adhesive is relatively aggressive, so before applying it, make sure
you plan carefully where you want to mount the board so it will not be in
the way of other components. I mounted the board upside down on the top
section of the case so all components and connections were on the same
platform (see Figure 3-11).

Arduino Playground (Early Access), © 2016 by Warren Andrews

62 Chapter 3

The final step is to connect the on-off switch, LED pilot lamp, LED
current-limiting resistor, potentiometer, power input jack, and output con-
nectors to the PCB according to the project schematic. I used #28 hookup
wire to tie everything. The two binding posts / banana plug jacks and the
3.5 mm jacks are wired in parallel. Figure 3-11 illustrates how I mounted
the shield. Note that I used small wire ties, which are optional, to keep the
wires neat.

Figure 3-11: The completed (upside-down) assembly with the board, LCD display, output
connectors, potentiometer, on-off switch, LED, and output power jack all mounted on the
inside of the top of the enclosure.

Before closing up the enclosure, make sure there are no areas that
might result in a short circuit. For example, I placed a small piece of
insulating tape between the LCD screen and the shield. They might not
be touching at the time of assembly but could touch when you close the
enclosure. You can apply insulating tape to prevent this kind of short.

After testing for short circuits, all that remains is to put the two
halves of the case together. The connections for the output—the binding
terminal / banana jack and 3.5 mm jack—are in parallel. The final step is
to screw the two pieces together, and you’re off and running. I put a pointer
knob on the potentiometer even though there are no markings on the case.
You can add a dial if you want, but I find the digital readout sufficient.

And, the coup de grâce: remove the protective paper from the adhesive
on some rubber feet, and install them on the bottom of the enclosure. Voilà!
Figure 3-12 shows the completed unit driving a couple of incandescent
panel lamps.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Regulated Power Supply 63

Figure 3-12: The completed Regulated Power Supply

The full Regulated Power Supply project will take up a decent amount
of space on your workbench, but you will find the digital readout and
banana jacks invaluable. If you’re feeling adventurous, however, you can
build a smaller version of the same circuit, minus the jacks and LCD,
shown in Figure 3-13.

Figure 3-13: This is the quick-and-dirty power supply with the top off. I made it before
biting the bullet and making the full-fledged Regulated Power Supply.

You can find instructions on how to build the Mini Regulated Power
Supply at https://www.nostarch.com/arduinoplayground/.

Arduino Playground (Early Access), © 2016 by Warren Andrews

Arduino Playground (Early Access), © 2016 by Warren Andrews

4
a W a t C h W i n D e r

If you’re a collector of automatic, or self-
winding, watches, you’re probably famil-

iar with watch winders and what they do.
But, why have a watch winder in a book on

Arduino microcontroller projects? The answer to
that will become increasingly clear as we look at the
technology in this project. Further, over the course of this project, we’ll
take a quick look at some automatic watch lore and how these seemingly
anachronistic devices have survived and prospered in the digital age. Even
if you do not collect such treasured timepieces, this project may just inspire
you to start your own collection.

Arduino Playground (Early Access), © 2016 by Warren Andrews

66 Chapter 4

why a watch winder?
Because, as a collector, you own more than a single automatic watch, you
might want to think about keeping the watches that aren’t currently on your
wrist wound. If you read up on mechanical watches and winders, you will
find many pros and cons (probably more pros) of using a watch winder.
One big pro is that multifunction watches can take a long time to set if
they run down. There are also arguments that if a mechanical watch sits
in one position and doesn’t run, the lubricant tends to migrate to a low
point. Regular motion from a watch winder or from being worn keeps the
lubricant distributed and in the bearings where it belongs. While many sub-
scribe to this viewpoint, there is no real evidence either way.

There is yet another compelling argument for a watch winder. As a col-
lector, it’s nice to be able to display more of your collection than just one-at-
a-time on your wrist. Many of the commercial winders available come inside
exotic wood cases to show off the watches. But inexpensive winders tend not
to be reliable, and the expensive ones are, well, expensive.

I took a chance and bought one of the more economical models and
put two of my mechanical watches—a real and a faux Rolex—in it and fig-
ured I was done. But after less than six months, the winder failed. I took
it apart, and it appeared to be very poorly designed and made. Even if I
replaced the failed motor, the rest of the mechanism would probably not
be reliable. While using the winder, the faux Rolex did not wind all the way
and did not keep good time.

At that point, the question was whether to dig deep in my pockets for
the $400 or $500 winder (there are even models that sell well in excess
of $1,500, $2,000, or more) that promise reliability or to try to do better.
So the gauntlet was, metaphorically, thrown down. The challenge was to
design and build a reliable watch winder that would provide both a show-
case for my watches and have the flexibility and control over timing that
I wanted in a robust mechanical format. Arduino was the obvious choice
for controlling the frequency of watch turns, and the mechanics went
around that.

As you build your Watch Winder, you will find a lot of room for per-
sonalization both in the mechanical construction and the sketch. While
a watch winder is a utilitarian device made to keep your watches wound,
this version provides an elegant display platform for your timepieces—and
it is itself a work of art, a kinetic sculpture. You can see the final result in
Figure 4-2.

Because I selected Arduino as the logical timing element, I had to plan
the other electronics and software around that. We will revisit the H-bridge
circuit from Project 2 to drive the motor in both directions, and we’ll use
transistors for increased drive for the high-output LEDs. We’ll also use a
Hall effect sensor to measure the rotation of the watches.

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 67

Figure 4-1: The finished Watch Winder. Unfortunately the black and white image doesn’t
do it justice: the brightly colored LEDs illuminate the device using the acrylic as a light
guide to transport the various colored LEDs.

The sketch developed for this project uses functions and arrays to flash
the LEDs in repeating patterns. The sketch also instructs the controller to
read the state of the Hall effect sensor, which is either zero or one. Knowing
this state allows the controller to decide when to wind the watches and to
keep count of the number of turns to ensure that the watches don’t get
over- or underwound.

Arduino Playground (Early Access), © 2016 by Warren Andrews

68 Chapter 4

t he m ys t iqUe of t he aU tom at iC WatCh

The automatic watch was invented in the early 1920s and was commercial-
ized several years later . Over the next several years, many improvements
were made until it reached the level of sophistication of today’s instruments .
Automatic watches operate by using a pendulum attached to a ratchet assem-
bly: the ratchet assembly winds the watch’s mainspring as the pendulum
swings . A built in slip-clutch mechanism prevents overwinding . See Figure 4-1
for a look inside one of these watches .

Figure 4-2: An automatic watch with the back removed, expos-
ing the pendulum and the fulcrum (the screw in the center),
which combine with a ratchet assembly to wind the watch’s
mainspring

Automatic watches from just about all watch manufacturers enjoyed broad
success for several decades . However, in the early 1960s, Bulova developed
its Accutron tuning-fork electronic watch, and the digital quartz electronic
watch from Pulsar followed shortly after .1

Despite the influx of electronic watches (and now smart watches), leading
makers of mechanical watches have survived—and even prospered—in this
age . Today, automatic watches are sold anywhere from under $100 to tens or
even hundreds of thousands of dollars .

Why would someone pay a premium for a watch that is not particularly
accurate, is heavy, is often bulky, and has to be kept wound when not in use?
I’m sure the answer is different for every collector, but I’d guess that they, like
me, enjoy the elegance, prestige, sophistication, sense of history, and fine
mechanical machinery that can’t be achieved with its electronic counterparts—
though the iWatch comes close in some respects . And like any collectible, one
automatic watch is never enough—which brings us to the watch winder .

1 . The transition from mechanical to electronic watches has been described as a prime
example of Thomas Kuhn’s concept of a paradigm shift, which he describes in his 1962
book The Structure of Scientific Revolution .

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 69

Required Tools
•	 A drill and set of standard bits

•	 A set of tapered reamers

•	 Assorted hand tools (See “Section name” on page XX.)

•	 Weld-On 4 and Weld-On 16 acrylic bonding fluid

•	 Assorted sandpaper, including grades from 220 to 600 and grade 1500
for final polish

•	 Jewelers rouge or other liquid plastic polish

•	 (Optional) Thread-locking fluid (You can find it in any auto supply
store.)

•	 (Optional) Wire-wrap tool (These can be a little pricey. I bought a
spare from OK Industries, but Techni-Tool also offers a relatively good
price. Shop around but expect to pay upward of $15. This may well be
valuable on other projects.)

•	 (Optional) Rotary tool (For example, you could get a Dremel with an
abrasive cutoff wheel. Some tools are available for under $10.)

Parts list
If you want to build a Watch Winder like the one pictured, you will need
several pieces of acrylic and some other hardware, which I detail in this
section.

Acrylic
The following acrylic parts can easily be cut from a standard sheet of
acrylic. Without the disks, which I recommend you purchase separately,
everything can be cut from two 12×12-inch acrylic sheets (one 3/8-inch
thick, one 1/4-inch thick). If you prefer, you can find vendors that will laser
cut acrylic to your dimensions. (ZLazr, among many others, is equipped to
do that.) It will cost a little more than doing it yourself but will make it both
cutting and finishing easier.

•	 Four pieces with dimensions 1/4×2×1 1/2 inches (long sides of the
watch basket; can be 3/8 inches)

•	 Four pieces with dimensions 1/4×1×2 inches (short sides of the watch
basket; can be 3/8 inches)

•	 Two pieces with dimensions 3/8×3×2 inches (bearing holders of bear-
ing box)

•	 Two pieces with dimensions 3/8×2×1 1/2 inches (mounting side of
bearing box)

•	 One piece with dimensions 1/4×1×2 inches (motor mount)

•	 Two round pieces, 3/8 inches thick and 5 inches in diameter (watch
basket ends)

Arduino Playground (Early Access), © 2016 by Warren Andrews

70 Chapter 4

•	 Two pieces with dimensions 1/4×1 5/8×5 inches (side supports for
stand)

•	 One piece with dimensions 3/8 x 3×5 1/2 inches (base for stand)

•	 One piece with dimensions 3/8×3×1 inches (lightbar)

•	 One piece with dimensions 3/8×1 1/4×1/14 inches (shield mounting)

•	 Two 3.5 mm standoffs with M/F M3-05 threads (motor mounts)

•	 Three 1.5 mm standoffs with M/F M3-05 threads (shield mount)

There are several online vendors you could purchase the acrylic for this
project from; just search for “acrylic sheet” on Google to find one near you.
In the United States, http://www.ZLazr.com/ seems to be good. At the time of
this writing, I talked with the owner personally, and he said he can handle
the kind of cutting required for this project with no problem.

Other Hardware and Circuit Components

•	 One Arduino Nano or clone

•	 One driveshaft, 8 inches long and 1/4 inches in diameter with 28 threads
per inch (I suggest brass because it’s easy to work. Amazon sells brass-
threaded rods that are 24 inches long.)

•	 Two ball bearings (R4A-2RS, available from Amazon)

•	 Six jam nuts, 1/4-inch-28 (Buy these at your local hardware store.)

•	 Two decorative bolts, 1/4-inch-28, 1 inch long (I used chromed Allen
bolts from a hardware store.)

•	 Ten 649 transistors (Try Digikey; I found them for a cheap price there.)

•	 One 754410 quad H-bridge (Available from Mouser, Digikey, SparkFun,
eBay, and others. I recommend shopping around.)

•	 Ten 470-ohm resistors (Multiple sources, including Jameco, Digikey,
Mouser, import stores, and so on, should sell resistors cheaply.)

•	 One 10-kilohm 1/8 W resistor

•	 One 0.1 µF ceramic capacitor C1

•	 One 10 µF tantalum capacitor C2

•	 One custom shield as described in “The Shield” on page 84, or perf
board (If you use perf board, I recommend buying from Jameco.) You
can also have the shield custom fabricated from ExpressPCB. (See
“Making Your Own PCBs” on page XX.)

•	 One gear head motor (Surplus websites such as Electronic Goldmine
should have this, though I used a 6V, 20 RPM motor from Amazon
called the Amico 20 RPM 6VDC 0.45 A. I’ve seen the same motor, or
one very similar, on eBay for only about $6 and change, too.)

•	 Fourteen LEDs, in assorted colors (You can get these from multiple
sources; I’ll discuss this in detail after the list.)

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 71

•	 Assorted hookup wire and wire-wrap wire (I buy these from OK
Industries and Pololu. eBay also has a good selection of wire-wrap
wire in different colors and at low prices.)

•	 Ten stakes for LED wire wrap or soldering (Try Pololu, item #966, or
Electronic Goldmine, item #G19870, though other shops should have
them. These are very inexpensive.)

•	 One length brass round that’s 3/8 or 1/2 inches in diameter and
approximately 3/4 inches long (I used one with a 3/8-inch diameter.
Brass stock is readily available from many hobby shops and from
Amazon in 6- and 12-inch lengths, which can be cut to size with a
hacksaw.)

•	 One 6-inch length of piano wire that’s 0.39 inches in diameter (This
is readily available from any hardware store. A 36-inch length sells for
under $1.)

•	 One niobium, or neodymium, magnet, approximately 3/8 inches round
and 1/8 inches thick

•	 (Optional) One Amico H7EC-BCM counter (You can get this from
Amazon.)(Optional) Eight 270-ohm resistors (Use these when you
build the breadboard prototype if you choose to follow my exact
instructions in “The Breadboard” on page 74.)

When you choose your LEDs for this project, you can pick any colors
you like, so take this chance to personalize. I ordered a number of LED
packages from eBay. Prices for a package of 10 to 20 LEDs ranged from
$1.50 to $4. Many were high-output LEDs, and I purchased both clear and
frosted versions. The higher-output units tended to be clear.

downloads
Before you start building, go to http://www.nostarch.com/arduinoplayground/,
download the resource files for this book, and look for the following files
for Chapter 4:

•	 PDF of drilling templates

•	 PDF of mechanical drawings

•	 Express PCB layout of shield

•	 Sketch for Watch Winder

Basic watch winder Requirements
Some initial research suggested that a watch winder should rotate a watch
between 600 and 1,200 revolutions per day to keep it in top shape. But
that is not completely correct. I subsequently discovered that the range
was actually much wider, and according to at least two websites of lead-
ing automatic watches, watches cannot be overwound because they have a

Arduino Playground (Early Access), © 2016 by Warren Andrews

72 Chapter 4

built-in protection system. I also learned that watches should be rotated in
both directions, clockwise and counterclockwise to keep lubricant in the
right places and to avoid possible uneven wear over a very long period of
time. There is a wealth of information about this subject on the Web, both
on sites for individual watch manufacturers as well as on sites for watch
winders.

Apparently the total number of turns is the important part, not neces-
sarily the sequencing of the turns or getting exactly the same number of
turns in each direction. (There is a possible downside to winding, if a watch
is wound too much over an extended period.) That doesn’t sound so daunt-
ing, right? I thought so, too.

using an arduino to control winder Revolutions
A purely utilitarian watch winder just has to serve its function, rotating the
watches so the pendulums swing. But it’s more interesting to have a winder
with extra features. As mentioned in “Why a Watch Winder?” on page 66,
some winders are dressed up with fancy exotic wood boxes to display the
watches.

However, this is an Arduino project, and extra technical features and
LEDs should reflect the flexibility and versatility of the platform. In a devel-
opmental model, the original sketch instructed the electronics to turn a
motor first in one direction and then the other, using delays to ensure that
the requisite 650 to 1,000 revolutions occurred each day.

But it turns out that some watches need more than the minimum
number of revolutions, and some can get away with less. The easiest way to
change the number of revolutions is by adjusting the various delays in the
sketch as needed. You could even add hardware to the circuit to allow you
to adjust the number of turns per day with a potentiometer, as I describe in
“Design Notes” on page 100.

To drive the motor itself, I used an H-bridge IC. It accepts control logic
from the Arduino and lets you reverse the polarity to the motor from a
single power supply to allow the motor to rotate in both directions.

n o t e For more information on H-bridges, see “Using an H-Bridge” on page XX.

using a hall effect Sensor to monitor Rotations
Then, there was the matter of how to meter the number of turns the device
made to assist the timing and give some more information to the sketch.
The number of turns per unit time is a function of the motor, and while the
timing I provided for the motor specified could conceivably work, it might
not be consistent for all motors.

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 73

For example, I sampled three motors of the same model at the same
voltage, and each ran at a slightly different speed. Further, if you elect to
substitute another motor with a different rotational speed, the rotation
count would be different. And, in beta testing, one user experienced dif-
ficulty running a 6V motor on 5V. (See the note on page XX.) Because the
number of turns per unit time is a function of the motor, these inconsisten-
cies could present a problem if timing alone determined the total number
of rotations; some mechanism to monitor the number of revolutions is
needed.

To assure consistent timing, I decided to meter the number of turns
the device made. Thus, I attached a small magnet to the rotating shaft that
turns the watches and mounted a Hall effect device, or a sensor that detects
a magnetic field, in line with the magnet. A small reed switch could be sub-
stituted for the Hall effect sensor if you wanted.

When the watch and the magnet rotate, the Hall effect switch turns on
only when in close proximity to the magnet, causing the switch to turn on
and off once per rotation. Each time the Hall effect switch changes state,
the Arduino increments an internal counter. Combined with the sketch, this
ensures the proper number of turns per day is made in all cases, regardless
of the speed of the motor. Unlike the reed switch, the Hall effect switch does
not require any buffering or debounce, as discussed in “The Sketch” on page
78, because a Schmitt Trigger is included in the device’s circuit. If you elect
to use a reed switch, you may have to add the debounce into the sketch.

When using a Hall effect switch with a permanent magnet, you just
have to be careful how you move the magnet around. Some mechanical
watches are damaged by close proximity to a strong magnetic field because
the hairspring becomes magnetized, resulting in a change in physical char-
acteristics that cause timing to be off. While the magnet specified is small
and unlikely to cause a problem, I strongly recommend you keep any mag-
net at least an inch away from any watch—mechanical or electronic.

The Schematic
Figure 4-3 shows the schematic diagram of the circuit used for the Watch
Winder. Notice that the output from the Hall effect device has a pull-up
resistor tied to the positive supply. This holds the input to Arduino pin
A0 high until the Hall effect switch, or reed switch, encounters a strong
enough magnetic field, which closes the switch and brings the pin low. The
Hall effect device uses what is essentially an open collector on its output, so
without the pull-up resistor, the collector would be left floating and could
give a false trigger.

The two capacitors prevent the LM7805 regulator from oscillating on
its own and drawing excessive power. Although I looked at both the input
and the output of the regulator with an oscilloscope and saw no oscillation,
I decided to add the capacitors as a preventative measure. I selected them
based on previous projects, and they work well.

Arduino Playground (Early Access), © 2016 by Warren Andrews

74 Chapter 4

Figure 4-3: The Watch Winder circuit. The transistors connect to the digital outputs of the
Nano, while A0 is tied high through the 10-kilohm resistor.

I was trying to develop a spectacular look for the Watch Winder, as befits
some of the timepieces it holds, so I used higher-power LEDs, as described in
the “Parts List” on page 69. These LEDs have a light output of as much as
100,000 to 200,000 or more millicandela (MCD). But that raised yet another
problem. The Arduino Nano’s processor chip, an ATmega328, can source
or sink only 40 mA per output pin. Further, the entire chip is rated at only
200 to 300 mA for its entire current drain. Because the 100,000+ MCD LEDs
draw around 30 to 60 mA each, something had to be done.

One 1 A transistor per LED is included in the schematic to pick up the
load. The collectors of the NPN transistors—the positive side—go to VIN
rather than the 5V that powers the Nano and H-bridge, so the LEDs take
no toll on the voltage regulator, even though the emitters follow the base
and send 5V to the LEDs.

The Breadboard
Just like other projects we’ve discussed, the Watch Winder started out as a
breadboard, shown in Figure 4-4. This allowed me to sound out the tech-
nology and do the preliminary tuning of the sketch.

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 75

Figure 4-4: The Watch Winder breadboard was used as a proof-of-concept for the proj-
ect. Here, I powered it with Project 4, the Regulated Power Supply.

I suggest building a breadboard for this project first so you can see
where everything goes and why. With a breadboard, you also get to play with
the sketch and LEDs without having to unsolder and resolder with each
change. I used a 6.5-inch long breadboard to hold everything. I did take a
couple of shortcuts on the breadboard, which are noted in the instructions;
you can also just build straight from the schematic, instead.

To wire up the breadboard, take the following steps:

1. Connect the red strip on the right side of the breadboard to the corre-
sponding red strip on the left. These are your positive rails.

2. Connect the blue strip on the right side of the breadboard to the corre-
sponding blue strip on the left. These are your ground connections.

3. Insert the Arduino Nano at one end.

4. Connect the 5V pin of the Nano to the red strip.

5. Connect the GND pin of the Nano to the blue strip.

6. Insert the LM7805 regulator, and connect the output pin to the red strip.

7. Connect the ground terminal of the regulator to the blue strip.

8. The input terminal of the regulator will connect to a blank row in the
breadboard, which will connect to the + 7.5V to 9V supply.

9. Connect capacitor C1 from the input of the regulator to ground.

10. Connect capacitor C2 from the output of the regulator to ground.

11. Insert the SN754410 H-bridge several rows away from the Nano, strad-
dling the gutter in the middle of the breadboard.

Hall effect
sensor

magnet

nano

H-bridge

Arduino Playground (Early Access), © 2016 by Warren Andrews

76 Chapter 4

12. Connect pins 4, 5, 12, and 13 of the H-bridge to ground.

13. Connect pins 8, 9, and 16 of the H-bridge to the positive rail.

14. Attach pins 14 and 11 of the H-bridge to the motor with leads at least
10 to 12 inches long. The connections to the motor will have to be
soldered unless you use alligator clips or clip leads.

15. Attach approximately 8-inch wires to all three leads of the Hall effect
sensor. Connect the leads attached to the positive and negative leads
of the Hall effect sensor to the positive and negative, or red and blue,
strips, respectively.

16. Connect the wire attached to the third pin of the Hall effect sensor to
pin A0 on the Nano. The Hall effect sensor will be taped (I used mask-
ing tape) to the motor body (this works because the leads are insulated)
in such a position that the active part of the device will be close to the
magnet attached to the shaft as it goes around.

17. Connect a 10-kilohm resistor from pin A0 on the Nano to the red strip.

18. Connect pin 10 of the H-bridge to pin D13 on the Nano.

19. Connect pin 15 of the H-bridge to pin D12 on the Nano.

20. Insert five ZTX 649 transistors, each using three rows, on one side of
the breadboard.

21. Connect the collector of each transistor to the red strip.

n o t e These transistor connections differ from the final schematic, where the collectors will
be tied to the 9V input voltage.

22. Take five LEDs, and connect the positive terminal of an LED to the
emitter of each transistor.

23. Connect the negative terminal of each LED to ground through a 270-
ohm resistor.

24. Connect three additional transistors, LEDs, and 270-ohm resistors on
the opposite side of the breadboard in a similar manner to the five
groups connected in Steps 20–23.

n o t e Steps 20–25 are different than the schematic, as the LEDs are driven directly from the
Nano, for ease of experimentation. In the schematic, they are connected using a tran-
sistor. Using the 470-ohm resistor instead of the 270-ohm resistor limits the current to
the Nano.

25. Connect the positive terminal of another LED to pin D12 of the Nano.

26. Connect the negative terminal of the pin D12 LED to an empty row on
the breadboard.

27. Connect one end of a 470-ohm resistor to the negative terminal of the
pin D12 LED, and connect the other end of the resistor to ground.

28. Connect the positive terminal of another new LED to pin 13 of the Nano.

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 77

29. Connect the negative terminal of the pin 13 LED to an empty row on
the breadboard.

30. Connect one end of a 470-ohm resistor to the negative terminal of the
pin 13 LED, and connect the other end of the resistor to ground.

31. Connect pins D4, D5, D6, D7, D8, D9, D10, and D11 on the Nano to the
bases of the transistors feeding the LEDs.

Because the breadboard is for illustration only, the order that the
connections are made in doesn’t matter unless you want to reprogram
the Arduino while the circuit is on the breadboard. Figure 4-5 shows the
H-bridge pinout, Figure 4-6 shows the regulator pinout, and Figure 4-7
shows the transistor pinout.

16

15

14

13

12

11

10

 9

1

2

3

4

5

6

7

8

Heat sink
and ground

Heat sink
and ground

VCC1

4A

4Y

3Y

3A

3,4ENVCC2

2A

2Y

1Y

1A

1,2EN

Figure 4-5: SN754410 H-bridge pinout in a DIP form factor

Output

Common
Input

Figure 4-6: LM7805 regulator pinout in a TO-220 package

EC

B

Figure 4-7: ZTX 649 transistor pinout in a TO 92 package

Arduino Playground (Early Access), © 2016 by Warren Andrews

78 Chapter 4

The magnet was mounted to a plug on the motor shaft using double-
sided adhesive foam tape. For the plug, you can use almost anything—a
cork, a rubber stopper, and so on—as long as it puts the magnet in a posi-
tion so it will be about 3/8 inches from the sensor as the magnet rotates.

After you complete the breadboard, upload the WatchWinder.ino sketch
to the Arduino. Just follow the instructions in “Uploading a Sketch to an
Arduino” on page XX.

The Sketch
The Watch Winder employs functions and arrays to show different flashing
sequences on the LEDs without rewriting the sequence each time. There
are also some excruciatingly long delays: about 829 rotations in 24 hours
translates to a motor at 20 RPM being on for 32.5 minutes out of 1,400 min-
utes in the day. This means that if the sketch were to handle an entire day
of turning, it would be idle for 1,367 minutes a day.

But you can divvy up the rotations so that the sketch can be repeated
and need only some fraction of the 24 hours to complete. For example, if
an hour is selected as the length of time it takes for the sketch loop to com-
plete, the motor has to do some 24 turns. It could do 12 each way or some
other combination.

In the following sketch, I also made an effort to make the lights and
motor movements as visually interesting as possible, leaving very little time
when nothing is happening—but that’s an artistic choice.

/*This gives about 829 revs/day*/

const int HallPin = A0; //Identify those things that will not change
const int CWpin = 12;
const int CCWpin = 13;

const int LED11 = 11;
const int LED10 = 10;
const int LED9 = 9;
const int LED8 = 8;
const int LED7 = 7;
const int LED6 = 6;
const int LED5 = 5;
const int LED4 = 4;

int autoDelay = 1000;
int timer = 500;
int timer2 = 3000;
int repeats = 10;

int previous;
int HallValue = 1; //Response from the Hall effect sensor
int time = 0;
int state;
int count = 0;

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 79

int q = 0;
int i;
int j;

int ledPins[] = {
 11, 4, 7, 6, 8, 10, 5, 9,
};
int pinCount = 8;

void blinkIt()
{
 //Initiate rapid blink sequence
 for (int thisPin = 0; thisPin < pinCount; thisPin++) {
 //Turn the pin on:
 digitalWrite(ledPins[thisPin], HIGH);
 delay(timer2);
 //Turn the pin off:
 digitalWrite(ledPins[thisPin], LOW);
 delay (timer2);
 }

 //Loop from the highest pin to the lowest:
 for (int thisPin = pinCount - 1; thisPin >= 0; thisPin--) {
 //Turn the pin on:
 digitalWrite(ledPins[thisPin], HIGH);
 delay(timer2);
 //Turn the pin off:
 digitalWrite(ledPins[thisPin], LOW);
 delay (timer2);
 }
}

void flashIt()
{ //Initiate rapid blink sequence
 for (int thisPin = 0; thisPin < pinCount; thisPin++) {
 //Turn the pin on:
 digitalWrite(ledPins[thisPin], HIGH);
 delay(timer2);
 //Turn the pin off:
 digitalWrite(ledPins[thisPin], LOW);

 }

 //Loop from the highest pin to the lowest:
 for (int thisPin = pinCount - 1; thisPin >= 0; thisPin--) {
 //Turn the pin on:
 digitalWrite(ledPins[thisPin], HIGH);
 delay(timer2);
 //Turn the pin off:
 digitalWrite(ledPins[thisPin], LOW);

 }
}

Arduino Playground (Early Access), © 2016 by Warren Andrews

80 Chapter 4

void allatOncefast() {
 {
 digitalWrite (LED4, HIGH);
 digitalWrite (LED5, HIGH);
 digitalWrite (LED6, HIGH);
 digitalWrite (LED7, HIGH);
 digitalWrite (LED8, HIGH);
 digitalWrite (LED9, HIGH);
 digitalWrite (LED10, HIGH);
 digitalWrite (LED11, HIGH);

 delay (500);

 digitalWrite (LED4, LOW);
 digitalWrite (LED5, LOW);
 digitalWrite (LED6, LOW);
 digitalWrite (LED7, LOW);
 digitalWrite (LED8, LOW);
 digitalWrite (LED9, LOW);
 digitalWrite (LED10, LOW);
 digitalWrite (LED11, LOW);

 delay (500);

 }
}

void allatOnce() {
 {
 digitalWrite (LED4, HIGH);
 digitalWrite (LED5, HIGH);
 digitalWrite (LED6, HIGH);
 digitalWrite (LED7, HIGH);
 digitalWrite (LED8, HIGH);
 digitalWrite (LED9, HIGH);
 digitalWrite (LED10, HIGH);
 digitalWrite (LED11, HIGH);

 delay (4000);

 digitalWrite (LED4, LOW);
 digitalWrite (LED5, LOW);
 digitalWrite (LED6, LOW);
 digitalWrite (LED7, LOW);
 digitalWrite (LED8, LOW);
 digitalWrite (LED9, LOW);
 digitalWrite (LED10, LOW);
 digitalWrite (LED11, LOW);

 delay (2000);

 }
}

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 81

void setup()
{

 pinMode (HallPin, INPUT); //Identifies inputs and outputs
 pinMode (CWpin, OUTPUT);
 pinMode (CCWpin, OUTPUT);

 Serial.begin (9600);

 for (int thisPin = 0; thisPin < pinCount; thisPin++) {
 pinMode(ledPins [thisPin], OUTPUT);
 }
}

void loop()
{
 int HallValue = (digitalRead (HallPin)); //Sets the value of the

 if (HallValue == HIGH && previous == LOW) {
 if (state == HIGH)
 state = LOW;
 else
 state = HIGH;

 //Increments the counter each time the Hall effect sensor passes the
magnet

u count++;
 }

 /* The "Serial.print" line was used in development. I left it in so that
 you can experiment and look at some of the values on a serial
 monitor. You might even want to change the parameters of what you
 are looking at in the monitor.
 */
 Serial.print ("HallValue ");
 Serial.println (HallValue);
 Serial.print ("count ");
 Serial.println (count);
 Serial.print ("CCW ");
 Serial.println (" ");

 if (count == 1) {
 digitalWrite (CCWpin, HIGH);
 digitalWrite (CWpin, LOW);
 }

 if (count == 3) {
 digitalWrite (CWpin, HIGH);
 digitalWrite (CCWpin, HIGH);
 }
 if (count == 3) {
 for (i = 0; i < repeats; i++) {
 allatOncefast ();

Arduino Playground (Early Access), © 2016 by Warren Andrews

82 Chapter 4

 }
 count = count + 1;
 }
 if (count == 3) {
 digitalWrite (CWpin, LOW);
 digitalWrite (CCWpin, HIGH);
 }
 if (count == 4) {
 digitalWrite (CWpin, HIGH);
 digitalWrite (CCWpin, HIGH);
 }
 if (count == 4) {
 for (q = 0; q < repeats; q++) {
 blinkIt();
 }
 count = count + 1;
 }
 if (count == 5) {
 for (j = 0; j < repeats; j++) {
 allatOnce();
 }
 delay (50);
 count = count + 1;
 }

 if (count == 6) {
 digitalWrite (CCWpin, LOW);
 digitalWrite (CWpin, HIGH);
 }

 if (count == 7) {
 digitalWrite (CWpin, LOW);
 digitalWrite (CCWpin, LOW);
 }

 if (count == 7) {
 for (i = 0; i < repeats; i++) {
 flashIt();
 }
 count = count + 1;
 }

 if (count == 8) {
 digitalWrite (CCWpin, HIGH);
 digitalWrite (CWpin, LOW);
 }
 if (count == 10) {
 for (i = 0; i < repeats; i++) {
 allatOncefast();
 }
 count = count + 1;
 }

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 83

 if (count == 11) {

 digitalWrite (CCWpin, LOW);
 digitalWrite (CWpin, LOW);
 }

 if (count == 11) {
 for (i = 0; i < repeats; i++) {
 blinkIt();
 }

 delay (2000);
 count = count + 1;
 }

 if (count == 12) {
 digitalWrite (CCWpin, LOW);
 digitalWrite (CWpin, HIGH);
 }

 if (count == 13) {
 digitalWrite (CCWpin, HIGH);
 digitalWrite (CWpin, HIGH);
 }
 if (count == 13) {
 for (i = 0; i < repeats; i++) {
 flashIt();
 }
 count = count + 1;
 }

 if (count == 14) {

 for (i = 0; i < repeats; i++) {
 allatOnce();
 }
 }

 if (count == 14) {
 digitalWrite (CWpin, LOW);
 digitalWrite (CCWpin, HIGH);
 delay (autoDelay);
 }
 if (count == 17) {
 digitalWrite (CWpin, HIGH);
 digitalWrite (CCWpin, HIGH);
 }
 if (count == 17) {
 for (i = 0; i < 20; i++) {
 blinkIt();
 }
 }
 {

Arduino Playground (Early Access), © 2016 by Warren Andrews

84 Chapter 4

 for (i = 0; i < repeats; i++) {
 allatOncefast();
 }
 count = count + 1;
 }
 if (count == 18) {
 digitalWrite (CCWpin, HIGH);
 digitalWrite (CWpin, LOW);
 delay (2000);
 digitalWrite (CCWpin, LOW);
 digitalWrite (CWpin, HIGH);
 delay (2000);
 }
 if (count > 20) {

v count = 0;
 }
 previous = HallValue;
}

First, the sketch creates several constants, integers, and arrays, which
assist with timing turns by reading from the Hall effect sensor and counting
the turns. Next, come a few function definitions: blinkIt() and flashIt() blink
the LEDs in different patterns, while allatOnceFast() and allatOnce() blink the
LEDs all at the same time with different delays.

As usual, the setup() function tells the Arduino which pins are inputs
and outputs. At the start of the loop() function, the Hall effect sensor is
read, and the sketch increments the counter at u as needed, printing a few
useful debugging values to the serial monitor along the way. This sketch
uses the count value to turn different sequences on or off and limit the rep-
etitions. However, because count is reset at the end of the sequence at v, it
cannot be used as a totalizer.

Finally, for various counts, the sketch uses if statements to hard-code
different patterns for turning the watches and flashing the LEDs; I show a
few here, but I encourage you to set up your own. The sketch is written with
many functions you can use as-is or repeat in a for loop to give multiple
iterations.

The Shield
As in some of the other Arduino projects, the shield is not terribly complex,
but it looks a little busy. For simplicity, this shield is a single-sided board.
The circuit uses an LM 7805 voltage regulator to handle excess current that
could result from using a different motor. The on-board regulator built into
the Nano is intended only for currents less than 300 mA.

n o t e I have used the regulator in this project at up to 500 mA, but the regulator tends to
get pretty warm, and I don’t feel comfortable using it at that level.

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 85

You may be able to leave the regulator out; the collectors of the transis-
tors feeding the high-output LEDs are configured as emitter-followers and
wired directly to the positive 9V supply, so they are not contributing to the
load on the regulated 5V.

Figure 4-8 shows the foil pattern for the shield (left), and the silk-
screen layer (right).

Figure 4-8: The foil pattern of the shield (left) and the silk-screen layer (right). The Watch Winder shield’s silk-
screen layer shows the approximate placement of the Nano, H-bridge, contacts for the external counter, Hall
effect sensor, potentiometer, LED connections, jumpers, input voltage (VIN), and ground (GND). The PCB
Express file is available to download from http://www .nostarch .com/arduinoplayground/.

Notice the contacts for the Hall effect switch at the top of the board,
labeled Hall, I soldered wires that connected the Hall effect device directly
to the PCB, though you could use a connector if you prefer.

In the center of the board, I left connections for a potentiometer (POT)
for external adjustment of the period, an option I describe in “Total Rotation
Adjustment” on page 100. The numbers of the digital outputs are labeled at
the left-hand side.

If you choose to assemble the Watch Winder shield, note that the Nano
is meant to be plugged into female headers soldered onto the shield and
that the transistors are underneath the Nano board. Push the transistors
down far enough before you solder them so they will not be in the way of
the Nano when it’s plugged in. I had to place the transistors fairly close
to fit all the connections into the PCB layout. The ZPT 649 transistors I
selected fit well enough within the 0.100-inch spacing allowed by the foot-
print of the Nano.

You will also have to add a few jumper wires to complete the con-
nections on the shield. They are marked on the silk-screen pattern. In
Figure 4-8, those appear as five black lines. Don’t forget to include them

Arduino Playground (Early Access), © 2016 by Warren Andrews

http://www.nostarch.com/arduinoplayground

86 Chapter 4

when wiring up the board. I also left out the capacitors from the LM7805
regulator’s input and output to ground; in the finished board, they are sol-
dered on externally. If you want those capacitors, simply solder a 10.0 mF
tantalum and a 0.1 mF ceramic capacitor directly to the pins of the regula-
tor, as shown in the schematic in Figure 4-2.

overview of the motor assembly
When you’ve had enough fun watching the LEDs blink on the breadboard,
watching the motor start and stop, and playing with the sketch, it’s time
to address the mechanical side of this project, which offers a few special
challenges. This winder won’t be functional until the motor has something
to turn; see Figure 4-9 for a detailed diagram of the motor, motor mount,
transmission, bearing box, and driveshaft, which comprise the turning
assembly.

jam nut

ball bearing

vinyl tubing
piano wire

motor shaft

bushing
set screw

piano wire

motor

Not to scale

Figure 4-9: The construction entails making a small box that retains the bearings through
which the driveshaft is mounted and held in place by jam nuts. The motor, mounted on
standoffs, is connected to the driveshaft, and the watch basket will be attached to the
other end of the driveshaft.

The driveshaft will need to be mounted through the bearings, and the
two can be held together with jam nuts. I chose a fairly standard R4A-2RS
bearing, which is a relatively common part and has a 3/4-inch outer
diameter, a 1/4-inch inner diameter, and a 9/16-inch thickness. I suggest
ball bearings because the prebuilt winder I bought used the brass bush-
ing of the motor as the only bearing, and that’s what failed. Because the
inside diameter of the bearing was 1/4 inches, I decided to use a standard
threaded rod at a 1/4-inch × 20 tpi (turns per inch) or 1/4-inch × 28 tpi
rather than attempt to press-fit a 1/4-inch bar into the bearing.

n o t e I used jam nuts to fasten the rod to the bearings because they were thinner and less
obtrusive looking than regular nuts, but you could also use standard nuts.

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 87

construction
Construction of the winder provided a number of challenges, particularly
working with the acrylic material—which was unfamiliar to me before this
project. Though there were some rough spots to get over, I learned by trial
and error some ways to get the job done. The toughest part was cutting the
acrylic and drilling the holes for the ball bearings.

There are several ways to cut acrylic, and none of them is particularly
easy. If you use a supplier that will laser cut the acrylic parts for you, this
will be a lot easier. Several companies offer that service for a little more
than the price of the raw materials. I mentioned one of them, ZLazr,
earlier.

If you have access to a circular saw, that’s about one of the easiest DIY
approaches. Otherwise, just about any saw will do. I’ve used a hacksaw,
which works better than most if you take your time. (If you go too fast, the
acrylic will heat up and start to melt, causing the saw to bind.) I even know
some people who have had success scoring and snapping the acrylic sheet.
Just use whichever approach works best for you.

See “Acrylic” on page 69 for a list of acrylic shapes needed for the bear-
ing box, the watch basket, and the stand. Cut these pieces now, if you’ve not
done so already, and take the following steps to build the pieces.

Preparing the Motor Plate and Bearing Box Acrylic
First, print the motor mount template from this chapter’s folder (see
Figure 4-10), cut it out, and align it on the acrylic for the motor plate
using the centerline.

D E
F

A B
C

0.33 in

0.69 in

Motor Mount

Bearing Box

Figure 4-10: Templates for motor mount and
bearing box. You can download the templates at
http://www .nostarch .com/arduinoplayground/.

Tape the template to the acrylic, lining up the centerline on the center
of the acrylic piece, and mark the drill centers for holes A, B, D, E, and F.
To mark the holes, just punch the centers with a center punch or nail. Now,
drill them; use a 1/8-inch bit for A, B, D and E and a 3/8-inch bit for F.

Then, set this piece aside, and gather the acrylic for the bearing box.
The final bearing box will look like Figure 4-11 once we put it all together.

Arduino Playground (Early Access), © 2016 by Warren Andrews

88 Chapter 4

Figure 4-11: Completed bearing box, before final trim and polish.
One bearing is temporarily in place.

Use the bearing box template to mark the drill centers for holes A, B,
and C on one of the bearing mount pieces. C will be the bearing hole, and
A and B will be for the standoffs that mount to the motor plate. Center
punch and drill one of the bearing plate’s two smaller holes with a 2.5 mm
(or # 39) drill and tap the hole with a M3-05 tap. These holes will accept the
standoffs for mounting the motor. Use the same template to mark only the
bearing hole (C) on the acrylic for the opposite side of the bearing box (see
Figure 4-12). Then, take the two pieces of bearing box acrylic that won’t hold
bearings, and mark the center by drawing lines from corner to corner. Center
punch them, and drill 1/4-inch holes for mounting to the stand.

Figure 4-12: Drilling a large hole in the acrylic. Note that the acrylic piece is
securely clamped down.

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 89

W a r n i n g When drilling any size hole in the acrylic, securely clamp the piece, as shown in
Figure 4-12. Do not hold it manually. If the drill or hole saw binds, the acrylic will
want to spin. In any case, keep the drill at a slow speed and advance it very gradu-
ally into the work.

The best solution I found to make the holes for the bearing and other
large holes in the acrylic is to drill a relatively small hole—perhaps 1/4
or 3/8 inches—and ream them out with a tapered reamer to the finished
dimension (see Figure 4-13). This is, by far, the safest and easiest approach
and the one I strongly recommend.

When you ream out the bearing hole, make sure to ream from both
sides. This will result in the center of the hole being a slightly smaller diam-
eter than the outsides. Ream until the bearing is a tight fit and then, if nec-
essary, you can use an anaerobic bonding agent to fill in around the edges.

Figure 4-13: Using a tapered reamer to enlarge the bearing hole
to the finished dimension

The final prep stage for the acrylic is to sand and finish it. How you
cut the acrylic originally will determine how much finishing it will take to
get the edges ready. If you had the pieces laser cut, little finishing will be
required. For all finishing, I used ascending grades of sandpaper, starting
with 220 grit and going up to 1500—that is, 220, 320, 400, 600, and then
1500. Automatic sanders—orbital, belt, vibratory, and so forth—often are
too rough, and without special care, they will melt the acrylic. If you use one,
try it on a scrap piece first. The sanding process worked well even though
some extra sanding was required on roughly cut sections. Additional sand-
ing was required on the opposing piece to make everything fit together as a
rectangle—or as a cube in the case of the bearing box.

Arduino Playground (Early Access), © 2016 by Warren Andrews

90 Chapter 4

Use a liquid polish or jewelers rouge to achieve the final polish. Make
sure to remove all the wax from the polish from the surface before bond-
ing. Try not to round the edges of the sections so the thinner bonding
agent (Weld-On 4) will work well. You want to assure that you have suffi-
cient bonding surface in contact to make a secure bond.

Bonding the Acrylic for the Bearing Box
Now, it’s time to use a bonding agent to connect the pieces of your bearing
box. Fortunately, bonding the acrylic actually turned out to be somewhat
easier than I anticipated.

Where the edges are smooth but not too badly rounded, Weld-On 4
thin bonding fluid should work quite satisfactorily. It partially dissolves
the acrylic and forms an actual weld. The most difficult part is keeping the
fluid from running where it shouldn’t go. If you have larger gaps, or have
rounded the edges, try Weld-On 16, which has a higher viscosity and a clear
acrylic filler, to fill gaps and voids where necessary.

In both cases, you should follow the instructions on the product, but
here’s how the acrylic weld works in general: just clamp the dry pieces of
acrylic together, and then, using a needle applicator included with the
bonding agent, apply a thin layer of acrylic cement to each joint. Capillary
action will draw the cement into the joint. For joints where the surfaces are
a little more uneven, you can apply the thicker Weld-On 16 to one surface
and then attach it to the other surface. Clamping is required for only a few
minutes, but allow several hours for final curing.

The system doesn’t need a lot of strength, but it should not fall apart
when touched. For the parsimonious, a paint stripper like Klean Strip also
works well to bond the acrylic. (The chemical behind the bonding agent in
Weld-On is methyl chloride, which is the key ingredient in the paint strip-
per.) Klean Strip is less than one-fourth the price of Weld-On.

n o t e There are several tutorials on bonding acrylic on the web, too. If in doubt, look one
up, and experiment with a few scrap pieces of acrylic first before trying it out on the
pieces you worked so hard on.

After bonding the bearing box, as shown in Figure 4-9, and bonding
the side pieces to the bottom, check the alignment. Run the threaded rod
through the bearings, and put the jam nuts in place without over tightening
them. Make sure the bearings don’t bind. If they are not well centered, this
can happen, but usually, they will align themselves as you tighten the jam
nuts a little. If your alignment is off, you may need to adjust the holes a little
with the reamer and touch up with some acrylic cement, but I never ran
into that problem. For now, remove the driveshaft from the bearing box.

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 91

The Stand
The stand is the least complex part of the project. It comprises the two verti-
cal members, 1 1/2 × 5 × 1/4 inches, and the base, 5 1/2 × 3 × 3/8 inches. I
included the lightbar, 3 × 1 1/2 × 3/8 inches, and the piece of acrylic that
I mounted the shield to, 2 1/2 × 2 1/2 × 3/8 inches, with the stand (see
Figure 4-14).

First, drill 1/4-inch holes in each vertical member of the stand 1/2 an
inch from the top, centered left to right. Then, bond the two vertical mem-
bers to the base 1 1/2 inches in from the edge of the base that will be the
back. Next, drill the holes for the LEDs in the lightbar. I used five LEDs
(red, blue, white, yellow, and green) that were 10 mm in size. You can use
whatever color combination you choose.

Finally, drill and mount the shield. To find the center of the piece, mark
from corner to corner. Then, in the center, drill a #43 hole and tap for a 4-40
screw. Drill a corresponding hole, centered and 2 inches from the rear edge,
in the base. Next, use the shield itself, or the drawing from the ExpressPCB
print, as a template to drill a hole for the three mounting screws. In design-
ing the board, I failed to leave room for a fourth screw. However, three are
more than sufficient, as there is no mechanical force on the board. I used a
2.5 mm (#39) drill and tap for a M3-05 screw that the standoffs will fit into.
Figure 4-14 shows the dimensions of the parts and the partially assembled
base, including supports, the lightbar, and the shield mount. Figure 4-15
shows the completed Watch Winder on its side.

Figure 4-14: The components and configuration of the base and lightbar for the Watch
Winder

Arduino Playground (Early Access), © 2016 by Warren Andrews

92 Chapter 4

Figure 4-15: The completed Watch Winder on its side, showing the base fabrication,
bearing box, motor mount, and watch basket

Preparing the Motor and the Driveshaft
Despite a concerted effort to mark and drill the holes accurately, you may
still end up with misalignment between the motor and driveshaft, so this
build aims to keep the coupling flexible. My solution might not be on the
hit parade of industrial engineers, but I used a length of vinyl tubing to
couple the motor to the drive shaft. This coupling has been working for
over a year with no sign of deterioration or problems.

A 1-inch length of heavy-wall vinyl tubing with an outside diameter of
7/16 inches and an inside diameter of 3/16 inches should do the job.

It won’t fit the motor shaft or the 1/4-inch threaded shaft without a
bit of work, though. (I drove the sales clerk at Lowe’s batty buying six of
each size they had in stock.) We simply need to reduce the diameter of the
threaded shaft and craft a small bushing for the motor shaft.

Trimming the Threaded Shaft

First, trim the diameter of the threaded shaft. Clamp a hand-held electric
drill in a vice or parallel clamp, using a folded towel to keep from damag-
ing the drill, and place the shaft where the drill bit would normally go
(see Figure 4-16). Then, turn on the drill, and use a sharp file to trim the
shaft.

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 93

Figure 4-16: Reducing the diameter of the threaded shaft

It should take only a minute or two to reduce the shaft diameter to a
little over 3/16 inches for a tight fit on the vinyl tubing.

Creating the Motor Bushing

Next, take a small piece of round stock approximately 3/4 inches long and
3/8 to 1/2 inches in diameter. (I used a 3/8-inch diameter, as it required
less work.) Drill a 11/64-inch (#21) hole in the end approximately 3/8 inches
deep. The bushing hole needs to be as close to the center as possible, so you
might want to mark it with a center punch first (see Figure 4-17).

Figure 4-17: Clamp the shaft of the piece used as the bushing in a vice
or pair of vise-grip pliers, and center punch a mark before drilling the
hole. Get as close to the center as possible.

Arduino Playground (Early Access), © 2016 by Warren Andrews

94 Chapter 4

Then, place the short piece of stock you cut in the drill as you did the
threaded shaft with the center hole toward the drill. File the end without
the hole in it. Reduce the diameter by about 1/4 inches to approximately
equal the filed end of the drive shaft.

Next, drill a 0.041-inch hole through the bushing, about 3/8 inches
from the edge of the bushing.

While you’re at it, drill a corresponding hole in the drive shaft. To cen-
ter punch and drill the drive shaft and the bushing holes, file the end flat
so the center punch can find a purchase (see Figure 4-18). These are the
holes that will accept the piano wire through the vinyl tubing.

Figure 4-18: The easiest way to drill the holes in the threaded rod and bushing is to
file a small flat on the shaft and center punch.

Finally, drill a 2.5 mm (#39) hole and tap an M3-.05 hole in the bush-
ing, perpendicular to the hole drilled for the motor shaft. This will accept a
set screw for the motor shaft. If you prefer, you can drill a #43 hole and tap
for a 4-40 set screw. This set screw holds the bushing in place on the motor
shaft, and the two 0.041-inch holes drilled in the drive shaft and motor
bushing, respectively, will pin the vinyl tubing in place with piano wire.

Cutting Piano Wire Pins and Completing the Motor Assembly

Cut two pieces of 0.039-inch wide piano wire, 1/2 to 5/8 inches long. This
can be a bit of a job. I used an abrasive cutoff wheel on a Dremel. Using
the corner of a small grinding wheel attached to the drill should work to
put a groove in the wire. Once you have a groove in the wire, you can snap
it by hand. You can also use any sharpening stone to score the wire, and it
should easily snap.

flat-filed

center
punch

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 95

Once that’s done, the rest of the assembly should go easily. First, mount
the bushing to the motor; put a drop of thread-lock liquid on the set screw
before tightening. Then, fit one end of the vinyl tubing over the bushing,
and run the piano wire through the 0.041-inch hole in the bushing. Hold
one end of the wire tightly in a pair of pliers (small vise-grip pliers work
well), and force it through the vinyl, into the hole in the motor bushing,
and into the vinyl on the other side. If this proves difficult, try heating
the piano wire with a small flame, and then it should go through easily.
Figure 4-19 shows the tubing over the motor bushing.

Figure 4-19: The motor shaft with the bushing comprises half of the transmission to the
winder. The other half is the reduced driveshaft that goes through the bearing and holds
the watch basket.

Mount the motor plate to the motor using M3 × 3/8-inch screws. Next,
screw the motor standoffs into the bearing cage; see Figure 4-20 for how
to place them. Take the motor assembly—that is, the motor, mounting
plate, bushing, and vinyl—and fit it to the bearing cage standoffs using
M3-05 × 1/2-inch screws.

To make the holes in the vinyl for the drive shaft, just install the
driveshaft into the bearing box without the jam nuts, push the vinyl tub-
ing onto it, and install the piano-wire pin as I described in the previous
section. If you are concerned about the piano-wire pins coming out, you
can wrap a wire tie over them or cover them with a piece of tape. (I never
had a problem.) For now, remove the piano-wire pin from the driveshaft
and remove the driveshaft from the bearing box until you’re ready for the
final assembly.

motor shaft
bushing

set screw
reduced diameter
of bushing with
vinyl tubing

piano wire

motor

Arduino Playground (Early Access), © 2016 by Warren Andrews

96 Chapter 4

Figure 4-20: Motor and motor plate connected to bearing box with standoffs.
The standoffs are threaded into the bearing box while the motor plate is fas-
tened with 3 mm × 1/2-inch screws and washers. The bearing box is mounted
to stand with 1 inch long, 1/4 inch × 28 screws and nuts (see below).

Making the Watch Basket
There are many ways to construct the part of the project that holds the
watches. I chose to make my watch basket from acrylic. The construction is
relatively straight forward, though it does require some patience. First, take
two 5 × 3/8-inch acrylic disks and carefully mark the center on each. Drill
1/4-inch holes in the center of each. Then, on what will be the top disk,
mark the rectangles shown in Figure 4-21 (left).

If you’ve not done so already, cut the rectangular acrylic pieces I
described in the “Parts List” on page 69 for the watch boxes and assemble
them following the same instructions given under “Bonding the Acrylic for
the Bearing Box” on page 90. (In most of the samples I’ve made, I used
1/4-inch acrylic; however, 3/8-inch acrylic works fine.) Then, carefully mark
out the openings on the disk (see Figure 4-21). Now, bond the watch baskets
to one disk, as shown in Figure 4-22. Then, cut the openings to match up
with the inside of the watch baskets.

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 97

The simplest way to cut the rectangles out is to drill a hole at the cor-
ners, being careful not to drill into the watch basket, and use a keyhole
or coping saw (or if you’re careful, a Saber saw) to cut the openings. They
have to be cut only on one disk, which will be the top. You can clean up the
edges of the cuts a little with a file or sandpaper, but don’t spend too much
time as it will not be noticeable with the watches and cushions in place.

3.00 in

0.25 in

0.25 in
2.00 in

1.00 in

1.00 in

Figure 4-21: Cut out dimensions for the watch holder basket. This pattern can be down-
loaded as a PDF file on http://www .nostarch .com/arduinoplayground/.

Figure 4-22: The watch holder baskets mounted to the acrylic disk.
Above them is the fully assembled motor, bearing box, and drive shaft.

Arduino Playground (Early Access), © 2016 by Warren Andrews

98 Chapter 4

Finally, mount the basket on the drive shaft. First, thread two nuts onto
the driveshaft and lock them against each other—that is, tighten one nut
against the other. Then, add a washer, followed by the lower disk of the bas-
ket, the top assembly with the watch baskets, a washer, and a nut at the top.
If you desire, go to the hardware store to search for a decorative nut to cap
off the project.

n o t e Bonding the bottom disk isn’t necessary if you use locking nuts as I described and
tighten the basket securely. I didn’t bond the boxes to the lower disk, and it has not
been a problem.

At this point, you can mount the finished assembly to the stand using
the two decorative 1/4 inch × 28 bolts and nuts. You can also bond the light-
bar to the base using acrylic cement and drill the hole for mounting the
shield mounting plate.

Adding the LEDs
You’re just about done. Locate and mount the LEDs on the acrylic any-
where you like, and wire them up to the shield. You can see where I placed
mine in Figure 4-1 on page 67. (The way the acrylic conducts the light
produces some neat effects.) You may want to drill some blind holes to
mount the LEDs in. Simply drill a hole the diameter of the LED but not
completely through the acrylic. If you’re careful , you can probably do a
neat job in running the wires so they can barely be seen.

Because the LEDs are critical to the ultimate appearance of the winder,
their placement and mounting is an important component of the finished
product. Drilling the holes for mounting the LEDs can be a little tricky
because if you bought a variety, they may have slightly different diameters.
As a starting point, try 3/16-inch holes for 5 mm LEDs and 25/64-inch
holes for 10 mm LEDs. I found the best way to get the right size was to drill
a sample hole in a scrap piece of stock and try it before venturing to drill
into a finished piece. If the hole is a bit small, a simple touch up with the
tapered reamer should fix that. If a hole ends up a little large, try filling it
in with some acrylic cement, such as Weld-On 16.

If you have some wire-wrap wire and a wire-wrap tool, you can wire-
wrap the LEDs to the shield instead of soldering. This makes a neat con-
nection to the back of the LEDs and is relatively inconspicuous because of
the small diameter of the wire. It also lets you connect the wire close to the
LED, as in shown Figure 4-23. If you soldered it, you might risk overheating
the junction of the LED.

Wire-wrap or solder the leads from the LEDs to the shield. I soldered a
header to the shield so that it was easy to wire-wrap or solder the leads from
the LEDs to the shield directly. You do have to solder leads from the motor
to the other end of the shield, but it should not be a problem.

The wires from the Hall effect sensor can be soldered to the shield and
to the leads of the sensor. Measure the wires so they fit neatly where you

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 99

plan to mount the Hall effect sensor. You can use a connector, but let’s keep
it simple. The sensor itself and the magnet are mechanically mounted using
double-sided foam tape.

Figure 4-23: Wire-wrap wire on an LED. These wires are very fine
(#30) with thin insulation, so they are unobtrusive. Small wire ties
can neaten up the wiring. I suggest marking the LED’s positive termi-
nal ahead of time, as I’ve done here, and wiping it off later.

Leaving the Components on Display
Now, what to do with the shield and Nano? The theme of this project has
been transparency, so I suggest letting everything hang out: mount the bare
board on standoffs right out in the open with the switch and power jack at
the back (see Figure 4-24).

Figure 4-24: The Nano and shield mounted on the completed Watch Winder.
Only three standoffs were used on the shield.

Arduino Playground (Early Access), © 2016 by Warren Andrews

100 Chapter 4

I placed the electronics directly under the bearing box, between the
uprights holding the entire assembly to the base. Then, I mounted the
board on a separate piece of acrylic screwed to the base with a flat-head
4-40 screw.

Keeping the Watches in the Basket
To hold the watches in the watch basket, I simply cut a block of fine foam
sponge, and it worked well. If you want something a little dressier than a
sponge, you can sew small pillows that you put the watch band around. I
don’t have any sewing ability, so I stuck with the sponge.

n o t e The open frame works well overall, but it could collect dust. If you have a fastidious
streak, you could build an acrylic box to cover the entire winder from 3/16-inch thick
acrylic sheet. Or you could just buy a can of dust spray, as I did. Some have also sug-
gested to me that the entire winder could be mounted on a piece of hardwood, such as
walnut or some other decorative hardwood, to add a finishing touch.

design notes
Now that you’ve seen how I built the Watch Winder, I’ll walk you through
some key design decisions I made that you might want to do differently.

Total Rotation Adjustment
It’s possible to vary the total number of turns the Watch Winder makes
without changing the sketch, though I chose not to do this

You can use a potentiometer to create a variable voltage and input it
to one of the analog inputs of the Arduino. Then, you can substitute that
value for one of the delays in the sketch to vary the number of revolutions
per day. Here’s how to install the potentiometer and the tweaks you’d need
to make to the sketch.

Hardware Changes

Connect the upper and lower terminals of a potentiometer to the positive
and negative rails of the system. Solder pads have been included on the
shield for this purpose. You needn’t use a full-size potentiometer; a small
trimmer (10 turn is best) will do nicely, and it saves a lot of space. Connect
the potentiometer’s center pin (in the shield) to an analog pin of the Nano.
Because the Hall effect switch uses pin A0, I suggest using analog input A1.
Solder points have been provided in the shield.

Software Changes

On the sketch, there are several things you must do. First, tell the Nano that
input A1 is in play. Go to the top of the sketch to add the following:

const int revSet = A1

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 101

Then, a little further, identify the value the potentiometer is set at as
follows:

int revNumber = 0

revSet is the arbitrary name I gave to the input A1, and revNumber is the
arbitrary name I gave to the number you will substitute in the sketch for
one of the delays.

The potentiometer will give values from 0 to 5 volts. Because the analog
input, A1, is connected to a 10-bit ADC, it will generate 1,024 digital values
between 0 and 1,023. In other applications, it’s been necessary to map these
1,024 values to some other set of values. However, in this particular situa-
tion, it’s easiest to use the values as is.

In the sketch file, move to the line after void loop() { and assign the
value of A1 to revNumber as follows:

revNumber = analogRead (revSet);

Go back to where we define some of the delays in the sketch. Change

int timer = 500

to

int timer = 0

Finally, go back to where you entered revNumber = analogRead (revSet);
and after that, enter the following:

timer == revNumber

Now, each time the sketch calls for the timer value, the revNumber value
should be used automatically, which will give you a wide variation in delay.
The resulting variation runs from 200 to 1,200 revolutions per day.

How Many LEDs to Use and Where to Put Them
I originally imagined the Watch Winder having only two LEDs to indicate
the direction of rotation. The first version used LEDs attached to the motor-
direction pins, D12 and D13, of the Nano (see Figure 4-2 on page 68). One
pin was on for the duration of rotation in one direction, and vice versa. Red
and green LEDs were used to indicate which direction the winder was going
in, like running lights on a boat.

But that’s still pretty boring, and there were all those pins sitting there
not doing anything. Furthermore, if you invited a friend over to see your
winder, it would sit there, doing nothing most of the time—and so would
your visitor. So I decided to spice up the project with several more deco-
rative LEDs. I also decided to add more variability by having the sketch

Arduino Playground (Early Access), © 2016 by Warren Andrews

102 Chapter 4

provide some animation, calling for the watches to turn a varying number
of times—sometimes shorter but more often. I even added a “ping-pong
effect.”

Because the half of my brain dealing with artistic matters apparently
never developed, I’ll leave the placement of the LEDs to you. On the unit
in Figure 4-1 on page 67, there are four in the bearing box and five in a
lightbar, but you could place them anywhere.

I arbitrarily chose nine LED channels, and in some cases, I use two
LEDs per channel. I used two LEDs for each direction of the motor—the
two channels, D12 and D13, that serve double duty driving the LEDs as well
as driving the motor. D2 and D13 power two LEDs each. D4 through D10
power the other LEDs, the two behind the watch basket—D9 and D10, each
with two LEDs—and the five out in front in the lightbar—D4–D8. D11 is
reserved for future developments you may want to include.

Motor Voltage
One beta tester of the Watch Winder experienced difficulty running a 6V
motor from the 5V supply. The complaint was insufficient torque. The solu-
tion, should you run into this problem, is to run the second supply (VCC2)
of the H-bridge directly from the 9V supply. To do this, you are either going
to have to cut the traces to pin 8 or remove that pin and solder it sepa-
rately to the 9V supply. Because the motor runs so intermittently, there is
little risk of burning it out. It may not be an elegant solution, but it works.
Incidentally, out of about 20 different motors sampled, that was the only
one that experienced that problem. And as addressed earlier, the higher
speed of the motor at the higher voltage will have no, or little, effect on the
number of rotations.

How Many Rotations Does the Watch Winder Make?
If you really have to know how many rotations the Watch Winder makes,
here’s a solution. The internal counter serves to sequence the sketch but
does not accurately reflect the total number of revolutions the motor makes.
While we could have counted the rotations internally, it would have required
a separate readout or being hooked up to the serial monitor. But if you need
to keep count, you can add a small external counter. Because you will need it
only on rare occasions when changing the revolution count, you can plug it
in—a provision is made in the shield—when you need it and save it for other
projects when you don’t. The external counter in Figure 4-25 is self-powered
and costs under $8. See the “Parts List” on page 69 for details.

The external counter is not required; however, it could be a nice acces-
sory to include for this and other projects. It is not included in the design
because it is used only on occasion and can be plugged in. I used a two-pin
female header on the shield—the connections are labeled GND and X-ctr
on the screen layer of the shield—and included a two-pin plug on wires
from the counter. The count connection goes from ground to pin 4 of the
counter and from the Hall effect sensor to pin 1. You can add a reset button

Arduino Playground (Early Access), © 2016 by Warren Andrews

A Watch Winder 103

from ground to pin 3 of the counter. The counter comes from the manufac-
turer with little information, so Figure 4-22 shows a view from the back with
the push-button reset on the counter on your right.

Figure 4-25: An external hardware counter with a reset button added

closing Thoughts
Even if this Watch Winder didn’t keep my watches wound, I think it would
still be a great sculpture. And when you are done with this project, perhaps
your next Arduino build will be just that: a kinetic, blinking, moving piece
of art.

Pin 1

Pin 4

Arduino Playground (Early Access), © 2016 by Warren Andrews

Arduino Playground (Early Access), © 2016 by Warren Andrews

5
t h e g a r a g e s e n t r y
p a r K i n g a s s i s t a n t

This project is a reliable electronic device
to gauge the distance you need to pull

your car into your garage. If you park in
a garage, you’re probably familiar with the

problem: how far do you pull your car into the garage
to make sure there’s room in front for whatever is
there and enough space behind so the garage door
will close? Some people suspend a tennis ball on a string from the ceiling
and stop at the point when the ball meets the windshield. That works fine,
but the ball is a pain to set up and adjust, and it often gets in the way if you
want to use the garage for something other than parking the car.

Arduino offers a better solution. This Garage Sentry project is the elec-
tronic version of the classic tennis-ball-on-a-string device, only better. The
Garage Sentry accurately detects when your car reaches exactly the right
position in the garage and sets off an alarm that blinks so you know when
to hit the brakes.

Arduino Playground (Early Access), © 2016 by Warren Andrews

106 Chapter 5

In addition, at the end of the chapter, I’ll show you how to modify the
basic Garage Sentry into a deluxe version that alerts you when you’re get-
ting close to the perfect stopping point.

Required Tools
This project doesn’t require many tools or materials, but you will need the
following tools for both the standard and deluxe versions:

•	 A drill with a 3/8-inch or 1/2-inch chuck (powered by battery or with
110/220V from the wall)

•	 Drill bits for potentiometer (9/32 inches), power input (1/4 inches),
and LED (3/8 inches)

•	 Soldering iron and solder

•	 Tapered reamer

•	 Screwdrivers (See the Introduction for screwdrivers you should have
on hand.)

•	 Pliers (I recommend needle nose.)

•	 28- or 30-gauge hookup wire

•	 (Optional) Wire-wrap tool and wire

•	 (Optional) 1/4-inch tap

Parts list
You’ll need the following parts to build the basic Garage Sentry:

•	 One Arduino Nano

•	 One HC-SR04 ultrasonic sensor (Try eBay, Adafruit, Sparkfun, and
so on.)

inspir at ion Be hinD t he g a r age se n t ry

This project evolved out of playing with an ultrasonic transceiver module, a
device that emits sound waves and then detects them after they travel to an
object, reflect off that object, and travel back to the module . The output of the
module allows a microcontroller to measure the time it takes to travel to and
from the object and, knowing the speed of sound, determine the distance . To
test the ultrasonic transceiver’s sensitivity and limits, I used the battery-operated
breadboard version in my garage, which had enough space to move objects
around for different distances . It turns out cars are great reflectors for ultrasonic
energy . From this experimentation, I was inspired to turn my test apparatus into
a Garage Sentry .

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 107

•	 Two high-intensity LEDs (>12,000 MCD; available from eBay and other
online stores)

•	 Two 1/4 W (or more), 270-ohm resistors (to limit current to the LEDs)

•	 One 1/8 W, 20-ohm potentiometer

•	 Two NPN-signal transistors rated for a collector current of at least 1.5 A
(I used ZTX-649 transistors, which you can find at Mouser, Digikey, and
Newark.)

•	 One enclosure (I recommend a blue Hammond 1591 ATBU, clear 1591
ATCL, or something similar.)

•	 (Optional) One 0.80-inch aluminum strip for mounting bracket

•	 (Optional) Two 1/4-inch × 20-inch × 3/4-inch bolts with nuts

•	 One section (approximately 1 inch × 1 inch) perforated board (can
include copper-foil rings on one side)

•	 One 3.5 mm jack for power

•	 Two 2-56 × 3/8-inch screws and nuts

•	 Two additional 2-56 nuts to use as spacer

•	 One 9V, 100 mA plug-in wall adapter power supply (Anything from
7.5V to 12V DC at 100 mA or upward should work well.)

•	 One length double-sided foam tape

•	 One LM78L05 (TO-92 package) regulator (for the breadboard
build only)

Because the basic version doesn’t require a lot of additional compo-
nents, I suggest building the circuit on a standard perforated circuit board
instead of a shield. To power your circuit, you can use a 9V, 100 mA wall
adapter plugged into a 3.5 mm jack (see Figure 5-1). You shouldn’t need an
on/off switch.

Figure 5-1: I used a Magnavox AC adapter, but any similar power supply with a DC out-
put from 7.5V to 12V should work. These are readily available online and cost from under
$1.00 to about $3.00.

Arduino Playground (Early Access), © 2016 by Warren Andrews

108 Chapter 5

Be sure to use two bright LEDs that are clearly visible, even when a car’s
headlights are on. Bright LEDs range from 10,000 MCD (milli candela)
to more than 200,000 MCD. The brighter, the better; just remember that
brighter LEDs require more power, so the current-limiting resistor will
need a higher power rating for the brighter lamps. The 270 W current-
limiting resistors result in a current drain of about 30–40 mA each with the
12,000 MCD LEDs I used at 5V. (Remember that power equals volts times
amps, or P = VI, so at 40 mA and 5V, you’d have 0.20 W.) It’s best to use a
1/2 W or greater resistor even though you can easily get by with a smaller
value—as I did with 1/4 W—because the LEDs are on only intermittently.

optional Parts
In addition to the components for the basic Garage Sentry, you’ll need the
following extra components if you want to build the deluxe version:

•	 Two high-intensity green LEDs

•	 Two high-intensity amber LEDs

•	 Two additional 270-ohm resistors (1/4 W)

•	 Two additional transistors (ZTX-649)

•	 One enclosure Hammond 1591 BTCL (to replace the 1591 ATCL)

•	 One PCB (shield)

downloads
•	 Sketches: GarageSentry.ino and GarageSentryDel.ino

•	 Drilling template: Transducer.pdf

•	 Drawing: Handle.pdf

•	 Shield file for Deluxe Garage Sentry: GarageSentreDel.pcb

Basics of calculating distance
This project measures the time it takes for a sound to originate, bounce off
an object, and be received back at the point of origin, and it uses that time
to calculate the distance between the object and the sensor.

The basic distance calculation is not much different from determining
the distance of a storm by counting the seconds between a lightning flash
and a thunderclap. Each second represents a distance of 1,125 feet, or about
0.2 miles. Given that sound travels at 1,125 feet per second in air at sea level,
if there’s a five-second delay between a lightning flash and the thunderclap,
you can determine that the storm is roughly a mile away. In the case of the
Garage Sentry, once you know how long it takes for the sound to make a

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 109

round trip and know the speed of sound, you can calculate the distance
according to the time-speed-distance formula:

Distance = Speed × Time

how the garage Sentry works
This project takes advantage of ultrasonic sound, which, unlike thunder, is
above the hearing range of most individuals. If your hearing is good, you
can detect sound ranging from about 30 Hz to close to 20 kHz, although
hearing attenuates quickly above 10 kHz or 15 kHz.

n o t e For reference, middle C on the piano is 261.6 Hz. Young children (and most dogs)
can often hear high frequencies, but hearing, especially in the upper registers, deterio-
rates quickly with age.

The ultrasonic transceiver module used in this project sends out pulses
at a frequency of about 25 kHz and listens for an echo with a microphone.
If there is something for the signal to bounce off, the system receives the
return echo and tells the microcontroller a signal has been received and
to calculate the distance. For the Garage Sentry, the unit is placed in the
front of the garage, and the signal is sent out to bounce off the front—or
rear if you are backing in—of your vehicle. To calculate your car’s distance
from the ultrasonic transceiver, the Arduino measures the time it takes
for the signal’s round trip from the transceiver to the target and back. For
example, if the Arduino measures a time of 10 milliseconds (0.010 sec-
onds), you might calculate the distance as:

Distance ft s s ft= × =1 125 0 010 11 25, . .

Ah, but not so fast. Remember the signal is traveling to the car and
then back to the microphone. To get the correct distance to the vehicle,
we will have to divide by two. If the controller measures 10 ms, then the dis-
tance to your car would be:

Distance
 ft s s

ft=
×

=
1 125 0 010

2
5 625

, .
.

The HC-SR04 ultrasonic module sends out a signal at the instruction of
the Arduino (see Figure 5-2). Then, the sketch instructs the transmitter to
shut down, and the microphone listens for an echo.

If there is an object for the signal to bounce off, the microphone picks
up the reflected signal. The Arduino marks the exact time the signal is sent
out and the time it is received and then calculates the delay.

The HC-SR04 module is more than a speaker and microphone, though.
The module includes transducers—a loudspeaker and mic—and a lot of

Arduino Playground (Early Access), © 2016 by Warren Andrews

110 Chapter 5

electronics, including at least three integrated circuits, a crystal, and sev-
eral passive components. These components simplify its interface to the
Arduino: the 25 kHz tone is actually generated by the module and turned
on and off with the microcontroller. Some of the components also enhance
the receiver’s, or the microphone’s, sensitivity, which gives it a better range.

Figure 5-2: The ultrasonic sensor module. The back of the module
(bottom) has connection terminals at the bottom.

The range of the HC-SR04 ultrasonic transducer is approximately
10 to 12 feet. The returning signal is always a lot weaker than the transmit-
ted signal because some of the sound wave’s energy dissipates in the air
(see the dotted lines in Figure 5-3).

The arithmetic to calculate the distance between the sender and the
object is not difficult. You take the number of microseconds it takes for the
signal to return, divide by the 73.746 microseconds it takes sound to travel
an inch, and then divide by two because the signal is going out and coming
back. The full arithmetic for this appears later in “Determining Distance”
on page 117.

The sketch provides a response in inches or centimeters depending on
your preference. We’ll use inches for setting up the distance for the alarm,
but converting to centimeters simply requires a remapping of the analog
input and setting the numbers a bit differently. The sketch also does the
basic arithmetic for determining the centimeter measurement for you.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 111

With the high-level overview out of the way, let’s dig in to how you’ll
wire the Garage Sentry.

Distance r

Reflected wave

Original wave

Sender/
receiver

Object

Figure 5-3: In this project, sound is transmitted from a sender, bounces off an object,
and is received.

The Schematic
Figure 5-4 shows the schematic for the Garage Sentry.

Figure 5-4: Schematic diagram of the Garage Sentry

Arduino Playground (Early Access), © 2016 by Warren Andrews

112 Chapter 5

R1 and R2 are the 270 W resistors for the LEDs and should be 1/4 W or
larger. If a higher wattage resistor is not available, you could place several
resistors in parallel to gain the required wattage. First, find the right resis-
tor value with the formula:

1 1 1 1 1

1 2 3R R R R Rtotal n

= + + +…+

You can also use an automatic calculator, such as the one at http://
www.1728.org/resistrs.htm, which is a lot easier than doing the math yourself.

To avoid extra calculations, select resistors of the same value. This way,
the same amount of current flows through each one. For example, two
1/8 W resistors in parallel will give you a 1/4 W value.

If you do use resistors of different values, you will have to calculate the
current flowing through each and the total dissipation.

This schematic also leaves you with room to customize your alarm.
While this version of the project uses LEDs to create a visual alarm, with a
slight modification, you can easily create an audible alarm as well. Simply
replace either the red or blue LED with an audible device, such as a
Sonotone Sonalert, and the alarm will sound. To replace an LED, you
would need to connect the Sonalert across that LED’s connections; just
make sure to get the polarity correct. Alternatively, you could keep both
LEDs and add an audible device for a third warning.

n o t e In this project, the Nano takes advantage of its on-board voltage regulator, which is
why there’s no external regulator in the schematic.

The Breadboard
The entire Garage Sentry fits on a small breadboard, so you can set it up,
program it, power it with a battery, and walk around to test it out. As you
play with it, I’m sure other applications of ultrasonic technology will come
to mind. The breadboard I assembled appears in Figure 5-5.

In Figure 5-5, the breadboard is powered by a 9V battery. Usually, you
could wire the battery directly to the VIN of the Nano and use the Nano’s
built-in voltage regulator. But you’ll power the Nano with a USB cable when
you program and test it for the first time, so on the breadboard, you’ll set
up the positive and negative rails for 5V for both the Nano and the ultra-
sonic module. To avoid risking damage to the Nano or the module and
avoid overcomplicating the build, I included a single-chip external voltage
regulator (LM78L05) so the entire breadboard runs on 5V. Take a look at
Figure 5-6 to see how it’s wired up.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 113

Figure 5-5: Here’s the breadboard wired up. I used a 9V battery so I could experiment in
different environments. Both LEDs look illuminated because of the length of the exposure
of the camera.

Figure 5-6: This is how the LM78L05 TO-92 regulator is wired up on the breadboard.
Bypass/filter capacitors are not required.

Here’s a blow-by-blow list of the steps to wire the breadboard:

1. First, put the ultrasonic module at the lower end of the breadboard fac-
ing out, and plug the Nano in to the breadboard, leaving four rows of
connections above it.

2. Make sure the positive and negative (red and blue) strips on the left
and right are connected properly—red to red, blue to blue. If you con-
nect red to blue, it will cause a major problem.

3. Connect the red strip to the 5V power supply (pin 27 of the Nano,
labeled 5V). This is necessary if you are operating from the USB
connector.

Arduino Playground (Early Access), © 2016 by Warren Andrews

114 Chapter 5

4. Connect pin 4 of the Nano (labeled GND) to the breadboard’s negative
rail (blue strip).

5. Connect VCC of the HC-SR04 transducer to the positive rail.

6. Connect GND of the HC-SR04 transducer to the negative rail.

7. Connect TRIG of the HC-SR04 transducer to pin 15 (D12) of the Nano.

8. Connect ECHO of the HC-SR04 transducer to pin 14 (D11) of the Nano.

9. Insert two ZTX-649 transistors into the breadboard. Select an area
where all three pins of each transistor can have their own row.

10. Connect pin 12 (D9) of the Nano to the base of transistor Q1.

11. Connect pin 13 (D10) of the Nano to the base of transistor Q2.

12. Connect the collectors of both transistors to the positive rail (red strip).

13. Connect the emitter of transistor Q1 to one end of a 270-ohm resistor.

14. Connect the other end of the 270-ohm resistor connected to the emit-
ter of transistor Q1 to a blank row on the breadboard.

15. Connect the emitter of transistor Q2 to one end of another 270-ohm
resistor. Connect the other end of the 270-ohm resistor connected to
the emitter of transistor Q2 to another blank row on the breadboard.

16. Connect the + (long end) of LED (D1) to the 270-ohm resistor and the
other end to ground (blue strip).

17. Connect the + (long end) of LED (D2) to the second 270-ohm resistor
and the other end to ground (blue strip).

18. Connect one end of the 20 kW potentiometer to
the positive rail (red stripe).

19. Connect the opposite end of the potentiometer
to the negative rail (blue stripe).

20. Connect the wiper (center) of the potentiom-
eter to analog pin A0 (26) of the Nano.

You should be good to go! If you use the AC
connection, simply connect it to the VCC connec-
tion of the Nano.

To add a battery connection, include the 78L05
with its center pin to ground (negative rail), the
input to the positive side of the battery, and the out-
put to the positive rail (see Figure 5-7). Connect the
negative terminal of the battery to the negative rail.

The Sketch
Once the breadboard is complete, the sketch can be loaded onto the
Nano. Download the GarageSentry.ino file from http://www.nostarch.com/
arduinoplayground/. To load the file onto the Nano, follow the instructions

78L
05

inout

gnd

Figure 5-7: Pinout of
the 78L05 voltage
regulator

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 115

outlined in Chapter 0 on page XX. Remember to select the correct board
type. Once it’s loaded, the unit is ready for experimentation.

The sketch for the Garage Sentry serves several functions. It tells the
ultrasonic sensor to generate a wave and detects how long it takes the echo
to return. It then calculates the distance based on that time and, if neces-
sary, alerts you to stop by turning on the LEDs. Here’s the sketch in full; I’ll
walk you through it next.

/* Garage Sentry 3b
*/

int ledPin = 10;
int ledPin1 = 9;
int count;
int analogPin = A0;
int val;
int y;

void setup() {

 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
 pinMode(ledPin1, OUTPUT);
 pinMode(analogPin, INPUT);
}
void loop() {
 val = analogRead (analogPin);
 long duration, inches, cm;
 //Give a short LOW pulse beforehand to ensure a clean HIGH pulse:

u pinMode(12, OUTPUT); //Attach pin 12 to Trig
 digitalWrite(12, LOW);
 delayMicroseconds(2);
 digitalWrite(12, HIGH);
 delayMicroseconds(5);
 digitalWrite(12, LOW);

 pinMode(11, INPUT); //Pin 11 to receive Echo
 duration = pulseIn(11, HIGH);

 //Convert the time into a distance
 inches = microsecondsToInches(duration);
 cm = microsecondsToCentimeters(duration);
 val = map (val, 0, 1023, 0, 100);
 if(inches == 0)
 digitalWrite(ledPin, LOW);

 if(count == 0 && inches > 0 && inches < val) {
v for(y = 0; y < 200; y++)

 {
 digitalWrite(ledPin, HIGH);
 digitalWrite(ledPin1, LOW);
 delay(100);
 digitalWrite(ledPin, LOW);

Arduino Playground (Early Access), © 2016 by Warren Andrews

116 Chapter 5

 digitalWrite(ledPin1, HIGH);
 delay(100);
 }
 count = count + 1;
 }

 digitalWrite(ledPin1, LOW);
 if(inches > 10) {
 //delay(1000);
 count = 0;
 }
 Serial.print(inches);
 Serial.print(" inches ");
 Serial.print(count);
 Serial.print(" count ");
 Serial.println();
 Serial.print(" Val ");
 Serial.println (val);
 delay(100);
}
long microsecondsToInches(long microseconds)
{
 return microseconds / 74 / 2;
}
long microsecondsToCentimeters(long microseconds)
{
 return microseconds / 29 / 2;

First, we define several variables, establish parameters, and load libraries
(if any). In this case, define LED1pin and LED2pin, which will serve as the alarm.
Other definitions (int) include cm and count (a variable that will be used inter-
nally), analogPin (as A0), val (to hold the limit information), and y (used in
the loop).

Inside the setup() Function
Next is the setup() function. Here, you set up Arduino features that you
might want to use; this sketch includes the serial monitor, which you prob-
ably will not need in the final product but is often useful in debugging
code, particularly if you want to change the code. This sketch sets the rate
of the monitor at 9600 baud, which is standard in many applications. It also
defines the mode of the pins you’ll use as either input or output. You could
set the pinMode values at almost any point in the code, including before or
inside the setup; they’re also often defined within the main loop, particu-
larly if the definitions are expected to change.

Inside the loop() Function
The loop() function is where everything really happens. The loop continu-
ally executes unless it’s delayed or halted by a command. So even when it
appears that nothing is happening, the controller is continually cycling

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 117

through the code. In this application, one of the first tasks the controller
performs in the loop is to set the variable val to store the input from the
potentiometer connected to the analog pin (analogPin).

In order to initiate the ultrasonic module’s transmit/receive function,
the sketch first calls for a low signal to be sent to the transmitter (Trig) to
purge the module to assure that the following high signal will be clean. You
can see this in the lines starting at u.

Next, there’s a delay to let things settle before the sketch writes a high
to the transmit pin, which orders the transmitter to transmit an ultrasonic
signal. This is followed by another delay, and then the sketch drives digital
pin 12 low to turn off the transmitter and activates the receiver by calling
the pulseIn() method.

Determining Distance
If there’s no echo—that is, if inches == 0 or inches approaches infinity—
the controller continues to run the code until it reaches the end and
then starts again at the beginning. If it detects an echo, the number of
microseconds between turning the transmitter on and receiving signal
(duration) is then converted to both inches and centimeters. This gives
us a measurement of how far the transceiver is from the object. Note that
throughout this explanation, I will refer to inches, but you could follow
along in centimeters, too.

The microsecondsToInches and microsecondsToCentimeters commands convert
the time measurement to inches and centimeters, respectively, according
to the arithmetic discussed in “How the Garage Sentry Works” on page 109.
The data type long is used, as opposed to int, because it provides 4 bytes
of data storage instead of just 2, and the number of microseconds could
exceed the 2-byte limit of 32,767 bits. So far, so good.

In a regular formula, the distance arithmetic looks like this:

 inches
time s

inch

centimeters
time s

centi

= ÷

= ÷

2
74

2
29

µ

µ
mmeters

In either case, we first divide by 2 because the signal travels from the
transducer to the target and back, as previously discussed. In the inches
function, we then divide the halved number of microseconds by 74, and
in the centimeters function, we divide by 29. (It takes 74 µs for the signal
to travel 1 inch, and 29 µs for it to travel 1 cm; I arrived at those numbers
by following the arithmetic in “Time-to-Distance Conversion Factors” on
page 118.)

Arduino Playground (Early Access), © 2016 by Warren Andrews

118 Chapter 5

Triggering the Alarm
The sketch is not done yet. Now we have to look at the number of inches (or
centimeters) measured and compare it to the predetermined value—val,
in this case—to see whether the alarm should be activated. To establish the
variable val as a numeric value, take a potentiometer (R2) straddling the
power supply on either end and tie the wiper to pin A0 (see Figure 5-4).
Because A0 is the input to a 10-bit analog-to-digital converter, it converts
that voltage (between 0V and 5V) to a numeric digital value between 0 and
1,023. Reading that value with an analogRead command results in a value
between 0 and 1,023 depending on the position of the potentiometer.

That value is then used to establish the trigger point for the alarm. But
allowing all 1,024 values would essentially allow the distance to be set from
0 to 1,023 inches. Because the control rotates only 270 degrees, to adjust
between, say, 40 and 42 inches would represent a very minuscule rotation—
beyond the granularity of most potentiometers.

To scale this for the potentiometer, the sketch maps the value so the
entire rotation of the potentiometer represents a distance of only about
100 inches with the following line of code:

val = map (val, 0, 1023, 0, 100);

t ime-to -Dis ta nCe Con v e rsion faC tors

You could simply trust my math and copy the time-to-distance conversion code,
but you can apply this arithmetic to any project using a similar ultrasonic mod-
ule or other sensor, so I encourage you to work through the math yourself .

As I describe in “How the Garage Sentry Works” on page 109, the
speed of sound is roughly 1,125 feet per second . Multiply that by 12 inches
per foot to get 13,500 inches per second .

To get the number of seconds per inch, you simply divide this value by
13,500 inches:

1
13 500

0 000074 s
in

 s in
,

 .=

It takes about 74 microseconds, or 0 .000074 seconds, for sound to travel
an inch . To determine the distance in centimeters, go through the same exercise,
but use 343 meters per second for the speed of sound, multiply it by 100 centi-
meters per meter, and take the reciprocal .

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 119

Mapping the potentiometer value changes the maximum distance from
1,023 inches down to 100 inches while leaving the minimum distance of
0 inches unchanged. You can map any set of values so the Garage Sentry’s
target distance can be from X to Y, with full rotation of the potentiometer,
so when you set up your Garage Sentry, you may want to test it and this
range until it’s right for your garage.

A conditional control structure sets the limit for the alarm. This struc-
ture makes sure that the LED is turned off when the measured distance is
0, regardless of whether the sketch is using inches or centimeters. First, the
value inches is compared to val in the following expression:

count == 0 && inches > 0 && inches < val

If this statement is true, the alarm is set off and the for loop at v is acti-
vated (see page 115), which alternately blinks the LEDs 200 times before
timing out and turning the LEDs off.

The for loop just counts from 0 to 200, but that can be easily changed.
After each count, it turns on an LED, delays briefly and turns off the same
LED, delays slightly and turns on a second LED, delays slightly and turns
off the LED, and then goes to the next count. At the end of the 200 count,
the system turns off the LEDs and the program continues to the next line
where it is reset. That is, the program starts again at the beginning.

construction
The trickiest part of the Garage Sentry is mounting the ultrasonic module
on the box. Because the module can send out sound waves only in a straight
line, you need to be able to adjust its direction so that the ultrasonic sensor
can hit its target and receive the echo. But the module includes only two
mounting holes, diagonally opposed from each other, so there’s no easy way
to fasten it to a flexible mounting. We’ll tackle that first.

Drilling Holes for the Electronics
To solve this problem, I mounted the transceiver directly to the box and
just aimed the box as required. To mount the module, drill 5/8-inch holes
in the mounting box and use standoffs to hold the board securely. See
the template in Figure 5-8 for drilling measurements. A PDF of the tem-
plate is available in this book’s online resources at http://www.nostarch.com/
arduinoplayground/, in case you want to print it and lay it over your box as a
guide. The box I recommend is made of polycarbonate plastic and is less
likely to crack than styrene or acrylic; however, it tends to catch the drill,
so be careful.

Arduino Playground (Early Access), © 2016 by Warren Andrews

120 Chapter 5

Figure 5-8: Template for drilling transducer holes

There are several ways to drill the 5/8-inch holes. If you are good
at drilling, you could simply use a 5/8-inch drill bit and bore the holes
directly. But I discovered that the holes can be bored safely and easily by
first drilling a hole about 1/4 to 3/8 inches in diameter and then enlarging
it with a tapered reamer, available from Amazon for under $15. The larger
reamer in the Amazon set will ream a hole up to 7/8 inches in diameter,
and it is handy to have around for other projects. Use a 1/8-inch drill to
drill the holes for the standoffs, as shown in the drawing, which you can
use as a template.

If you ream out the hole, make sure to ream from both sides. Enlarge
the hole to a size that holds the transducer elements tightly—but not too
tightly. While this is not the most precise way to bore a hole and would
probably be frowned upon by professional machinists, it works well
enough here.

W a r n i n g Regardless of the size of the hole, do not hold your work piece with your hand when
drilling. Always clamp it securely. If the drill binds, the work will want to spin or
climb up the drill. Drill at a slow speed and go gently.

Next, drill the holes for the potentiometer, power jack, and two LEDs.
Select a drill size based on the particular power jack and potentiometer you
have. I used a 9/32-inch drill for the potentiometer, a 1/4-inch drill for the
3.5 mm jack, and a bit of approximately 25/64 inches for the LEDs. The size
of the 10 mm LEDs tends to vary a bit from manufacturer to manufacturer,
so I would recommend that you select a smaller drill bit, say 3/8 inches, and
ream until the LED fits tightly. Because the LED is tapered, ream from the
rear of the box so that the LED will fit better.

FPO

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 121

The location of both the potentiometer and power jack is not impor-
tant, but make sure that neither crowds the transducer or Nano. You want
them to be on the bottom of the enclosure so that they are accessible after
the box is mounted (see Figure 5-12).

Mounting Options
Before you stuff the Arduino, ultrasonic sensor, and perforated board circuit
into your enclosure, figure out how you want to mount the Garage Sentry.
There are several ways to mount the box onto whatever surface you need.

Velcro Strips

If you have a good flat surface to mount the assembly to, you could simply
affix the box with adhesive Velcro (see Figure 5-9). Two sentries have been
in place in my garage that way for several months, with no sign of slippage
or deterioration.

Figure 5-9: Adhesive Velcro mounting strips used to mount the Garage
Sentry enclosure

A U-Bracket That Can Be Aimed

If you don’t have a good surface and need to aim the module at an angle,
mounting it on a U bracket that lets the sensors swing up and down or left
and right will work. In this section, I’ll describe how to build the U bracket
mount shown in Figure 5-10.

Arduino Playground (Early Access), © 2016 by Warren Andrews

122 Chapter 5

1.75"
or 2.0"

1/4" hole Bend here Center mounting hole

2" × 4" or 2.2" × 4.4" enclosure

1/4" Nut1/4" Bolt

U clamp

1.75" for 2" x 4" enclosure

1.50"
or 1.75"

Same on
other side

2.0" for 2.2" x 4.4" enclosure

0.75"

Figure 5-10: This drawing illustrates the size and shape of the optional U bracket handle
and how it connects to the enclosure. Where you see two measurements for a single
dimension, the smaller applies to the Standard Garage Sentry, while the larger applies
to the deluxe version.

To make the U bracket for the 1591 ATCL 2 × 4-inch box, take a strip
of 3/4-inch × 0.080-inch ×5 1/2-inch long aluminum (available at Ace
Hardware, Home Depot, or Lowe’s), and drill 1/4-inch holes 5/16 inches
from the ends of the aluminum strip. Drill corresponding holes with a No. 7
or 15/64 drill in the side of the enclosure centered on the ends, and thread
the holes with a 1/4-inch-20 tap. Bend the aluminum strip 1.5 inches from
each end for the standard version and 2 inches for the deluxe version (see
Figure 5-10). Using a vise is the easiest way to bend the metal, but if that’s
not convenient, you can sandwich it between a bench and piece of metal,
clamp it down, and bend it by hand (see Figure 5-10).

For the U bracket for the 1591 BTCL 2.2 × 4.4-inch box, use a 6 3/8-inch
long strip of the same material, and drill the 1/4-inch holes 1/2 inches from
the ends. Then, bend the aluminum at right angles at 3/4 inches from either
end for the standard version and 1 inch from each end for the deluxe version.

To fasten the U bracket to either enclosure, you can start by drilling
a hole in the center of each end of the enclosure. It’s simplest to drill a
No. 7—15/64 is close enough—hole at either end of the box. The easiest
way to center the holes is to draw a line along each diagonal on both ends.
Where the lines intersect is the center. Thread the holes with a 1/4-inch-
20 tap, and you’ll be able to fasten the box to the U bracket directly. The
threads in the thin ABS plastic will not be very strong, so be careful not to
overtighten the bolts.

When you’re finished attaching the bracket to your enclosure, it should
look like Figure 5-11.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 123

Figure 5-11: The enclosure for the Garage Sentry can be
mounted with the bracket so it can be tilted or rotated to
point the transducers in the correct direction.

Soldering the Transistors and Current-Limiting Resistors
After testing your circuit on a breadboard and deciding how to mount the
Garage Sentry, solder the driver transistors and current-limiting resistors to a
small section of perforated phenolic or FR-4 predrilled board. Use the sche-
matic in Figure 5-4 or the instructions in “The Breadboard” on page 112 as
a guide to wiring and soldering the components in the perforated board.

Make the connections in the schematic, but otherwise, there is no right
or wrong way to assemble the perf board. I do recommend using perforated
board with copper pads for each hole to simplify soldering. Solder all the
hookup wires for the power, potentiometer, Nano, ultrasonic module, and
LEDs before attempting to mount the board on the inside of the box.

When you’re done soldering, mount the perforated board anywhere in
the box where you can find room. I used double-sided foam adhesive, and it
worked well. Mount the Nano, LEDs, and ultrasonic module next.

Wiring the Pieces Together
Finally, use 30-gauge hookup wire to connect the Nano, ultrasonic sen-
sor, perforated board circuit, and LEDs according to the schematic in
Figure 5-4. Optionally, you can use wire-wrap wire and a wire-wrap tool
to wire up the sections, but it is not necessary and can be expensive if you
don’t already have the tool and wire.

Arduino Playground (Early Access), © 2016 by Warren Andrews

124 Chapter 5

Wiring the components and fitting them in the box may be a little
messy, but it saves building a shield. Figure 5-12 shows the box as it was
being assembled.

Figure 5-12: The Standard Garage Sentry uses wire wrap for the final connections.

The deluxe garage Sentry
That’s it! Or is it?

I have been using the standard model in my garage for several months;
it does what it’s supposed to do and does it well. But it seems like some-
thing’s missing. The alarm goes off when you reach the desired spot in the
garage, but why not have it give you a little warning before you get there so
you can slow down as you approach the stopping point?

The idea is to have the system warn you at some pre-established dis-
tance from the stopping point so you don’t have to stop suddenly. It isn’t
much extra effort to add two more LEDs to go off at different distances.
Figure 5-13 shows the Deluxe Garage Sentry.

Now, let’s discuss how to assemble the Deluxe Garage Sentry.

Arduino Nano

Ultrasonic module

Perforated
circuit board

Distance target control3 .5 mm
Power jack

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 125

Red and Blue LEDsGreen LEDs Amber LEDs

Sockets for Nano

Figure 5-13: The Deluxe Garage Sentry sets off three stages of alarms.

The Deluxe Schematic
Hand-wiring everything in the standard version is tedious. So for the
deluxe version, I developed a shield (PCB) that holds the LEDs, potenti-
ometer, Nano, transistors, and current-limiting resistors (see Figure 5-13).
Adding the LEDs and extra transistors required some changes in the cir-
cuitry. Figure 5-14 shows the revised schematic.

Figure 5-14: The deluxe schematic has additional LEDs, driver transistors, and current-
limiting resistors on the right-hand side.

Arduino Playground (Early Access), © 2016 by Warren Andrews

126 Chapter 5

Note that this circuit drives the transistors as emitter followers. As
such, the base shows a high resistance, and therefore no resistor is required
between the Arduino and the resistors Q1 through Q4. If you were driving
using a common emitter, however, you would need a resistor, as current
would flow through the base-emitter junction, short out the driver, and
burn out the transistor.

n o t e To improve the Garage Sentry further, you could also conceivably double or otherwise
increase the range using special transducers and electronics, but in this application,
the 10-foot operating range is more than enough.

A Bigger Box
Both the green and amber LEDs operate as pairs, so only a single driver
transistor is required for each pair. But with all this new circuitry, the deluxe
board does not easily fit in the same enclosure as the standard version.

You’ll need to find a larger box for the deluxe version, which provides
you with some other benefits. With a larger, clear polycarbonate enclo-
sure, like Hammond 1591 BTCL, the LEDs can stay inside the box and
still be visible so you won’t have to drill holes to mate with the LEDs in the
PC board. You’ll have to drill only four holes: the two large holes for the
ultrasonic sensor, a hole for the power jack, and one for the potentiometer.
These holes make it possible to mount the ultrasonic sensor on top of the
Nano board with double-sided foam tape, which is in turn mounted to the
shield (see Figure 5-15). In other words, you create a sandwich with the
Nano in the middle, the shield on the bottom, and the ultrasonic module
on the top. This design eliminates the need for the mounting screws used
in the first version.

Figure 5-15: Compared to the Standard Garage Sentry, there is virtually
no hand wiring in the deluxe version. The driver transistors and current-
limiting resistors for the LEDs are located under the Nano board.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 127

Simply use the same template you used in the standard version, and
drill (and/or ream) the two 5/8-inch holes for the two ultrasonic elements.
The shield itself can be fastened to the bottom of the box with small flat-
head screws and nuts or with more double-sided foam tape. When you affix
the potentiometer to the box, it should hold the board in place, as its leads
are soldered to the shield. Figure 5-15 shows the deluxe version; note how
much neater it is than the standard version from Figure 5-12.

Before drilling the hole for the potentiometer, carefully measure the
height of the potentiometer hole and drill the hole slightly oversized so
that the shaft and screw can be inserted at an angle into the box. You’ll also
note in Figure 5-15 that the corners of the printed circuit board have been
clipped off so as not to get in the way of the studs used for the top screws of
the enclosure.

I suggest mounting the power connection on the same surface of the
box as the potentiometer—that is, the bottom. Here, the power connection
and potentiometer will be accessible after mounting, leaving the top free
to fit snugly against a shelf. The unit can just as easily be mounted upside
down with the adjustment and power jack on the top.

The Shield
Figure 5-16 shows the shield for the Deluxe Garage Sentry. If you want
to build this shield, download this book’s resource files, look for the file
GarageSentryDel.pcb, follow the etching instructions in “Making Your Own
PCBs” on page XX, and solder your components to the board. You can also
take the file and send it out to one of the service bureaus to have the board
made for you.

Figure 5-16: This is the shield for the Deluxe Garage Sentry, which simplifies the individual
wires that had to be soldered to complete the earlier version.

Arduino Playground (Early Access), © 2016 by Warren Andrews

128 Chapter 5

The potentiometer is soldered directly to the shield, though you’ll still
have to solder wires to the power jack and to the ultrasonic module. As you
can see in Figure 5-16, the connections for the ultrasonic sensor are located
on the left-hand side.

The green LEDs are on the outermost edges, the amber LEDs are next,
and the flashing red and blue LEDs are in the middle. The connections
for the potentiometer are on the lower right-hand side, next to the first two
connections, which are ground and VIN (from left to right). The potenti-
ometer helps hold the shield in place in the enclosure.

This version uses high-power LEDs that draw a fair amount of current.
Because the sentry uses the 5V voltage regulator on the Nano, the transis-
tors driving the LEDs are wired directly to the 9V input voltage, allowing
the unit to function without a separate voltage regulator. The LEDs are
configured with the driver transistors as emitter followers, so the voltage
to the LEDs will “follow” the voltage on the base of the transistor—that is,
5V—and not present LEDs with 9V.

There are several jumpers required on this shield, including the jumper
for the power, which connects to the collectors of the transistors and con-
nects the raw input to the (VIN) Nano. There are also jumpers to connect
the ground to the LEDs.

I mounted the transistors and current-limiting resistors under the Nano
to save some space. Also, note that the connections for the ultrasonic mod-
ule in the standard version call for a right-angle female header, but doing
that in the deluxe version means the length of the male part gets in the way
of the LEDs, so I simply soldered the connections to the PC board and to
the ultrasonic module to keep the wires out of the way.

The Sketch for the Deluxe Garage Sentry
Before you build the Deluxe Garage Sentry, download GarageSentryDel.ino
from this book’s resource files at http://www.nostarch.com/arduinoplayground/,
and upload it onto your Arduino Nano according to the instructions pro-
vided in Chapter 0 on page XX. The sketch is basically the same as the
Standard Garage Sentry sketch, but it’s updated to include the new LEDs.

/* Deluxe Garage Sentry: goes with the shield PCB
*/

int ledPin = 8;
int ledPin1 = 7;
int ledPin2 = 10;
int ledPin3 = 9;
int count;
int analogPin = A0;
int val;
int y;

Arduino Playground (Early Access), © 2016 by Warren Andrews

http://www.urltbd.com

The Garage Sentry Parking Assistant 129

void setup() {
 // initialize serial communication:
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
 pinMode(ledPin1, OUTPUT);
 pinMode(ledPin2,OUTPUT);
 pinMode(ledPin3,OUTPUT);
 pinMode(analogPin, INPUT);
}

void loop() {
 val = analogRead(analogPin);

 long duration, inches, cm;

 pinMode(12, OUTPUT);
 digitalWrite(12, LOW);
 delayMicroseconds(2);
 digitalWrite(12, HIGH);
 delayMicroseconds(5);
 digitalWrite(12, LOW);

 pinMode(11, INPUT); //attached to Echo
 duration = pulseIn(11, HIGH);

 // convert the time into a distance
 inches = microsecondsToInches(duration);
 cm = microsecondsToCentimeters(duration);

 val = map(val, 0, 1023, 0, 100);
 //map the value of the potentiometer to 0 to 100

 if(inches == 0)
 digitalWrite(ledPin, LOW);

u if(count == 0 && inches > 0 && inches < val + 15)
 digitalWrite(ledPin2, HIGH);
 else digitalWrite(ledPin2, LOW);

v if(count == 0 && inches > 0 && inches < val + 7.5)
 digitalWrite(ledPin3, HIGH);
 else digitalWrite(ledPin3, LOW);

 if(count == 0 && inches > 0 && inches < val) {
 for(y = 0; y < 200; y++) //repeating blink sequence {

 digitalWrite(ledPin, HIGH);
 digitalWrite(ledPin1, LOW);
 delay(100);
 digitalWrite(ledPin, LOW);
 digitalWrite(ledPin1, HIGH);
 delay(100);
 }

Arduino Playground (Early Access), © 2016 by Warren Andrews

130 Chapter 5

 count = count + 1; //turn off instruction
 }
 digitalWrite(ledPin1, LOW);

 if(inches > 10) { //reset if inches > 10
 delay(1000);
 count = 0;
 }

 Serial.print(inches);
 Serial.print(" inches ");
 Serial.print(count);
 Serial.print(" count ");
 Serial.println();
 Serial.print(" val ");
 Serial.println(val);
 delay(100);
}

long microsecondsToInches(long microseconds) {
 return microseconds / 74 / 2;
}

long microsecondsToCentimeters(long microseconds) {
 return microseconds / 29 / 2;
}

The most notable difference between the deluxe sketch and the stan-
dard sketch is that in the two if-else statements at u and v, the green
and amber LEDs are activated at different distances, based on the stop-
ping point. For example, if the stopping point is set to 36 inches, or Val in
the sketch, then the green LED turns on at VAL + 15, or 52 inches, and the
amber LED turns on at VAL + 7.5, or 43.5 inches. This way the green LEDs
will turn on when the car is 15 inches from the final stopping point, and
the amber LEDs will turn on when the car is 7.5 inches from the stopping
point. These numbers were selected arbitrarily, and you can change them.

The red and blue LEDs start flashing when the car has reached the
stopping point. You can see how the LEDs are flashed at .

Figure 5-17 shows the completed Deluxe Garage Sentry mounted on my
garage workbench with the car in place.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Garage Sentry Parking Assistant 131

Figure 5-17: Completed Deluxe Garage Sentry mounted on my garage workbench with
the car in place

The completed sentry unit works flawlessly. Depending on your particu-
lar garage and where you place the unit, you might want to adjust the sketch
to make the green and amber lights turn on at different distances. The unit
pictured has been working perfectly for almost six months now, and I don’t
know how I’d be able to pull my car in the garage without it.

Mounted and functioning
Deluxe Garage Sentry

Arduino Playground (Early Access), © 2016 by Warren Andrews

Arduino Playground (Early Access), © 2016 by Warren Andrews

6
t h e B a t t e r y s a v e r

This project was actually born back in the
1970s, when I built a very similar device for

the first time. Its purpose is to disconnect
a vehicle’s battery when an inadvertent drain

would discharge the battery to the point where the
vehicle would not start. Before the advent of com-
puterized automobiles, it was common for drivers
to park and leave the lights turned on only to come back to find a dead
battery. Then, they had to find a way to call a service station (cell phones
weren’t available) and get a boost. Worse, if the battery died and the car
was left sitting long enough, the battery would become useless and have
to be replaced. After remaining in a discharged state between 12 and
18 hours, most lead-acid batteries would go totally dead and could not
be rejuvenated.

But that was then. Now, many vehicles—particularly those equipped
with automatic lighting systems—protect against such inconveniences with
automatic (often delayed) shutoff for electrical systems. However, several

Arduino Playground (Early Access), © 2016 by Warren Andrews

134 Chapter 6

types of vehicles still don’t have automatic shutdown systems or alarms to
warn you that the lights are on. This project, shown in Figure 6-1, is particu-
larly useful for those vehicles.

Figure 6-1: The finished Battery Saver, boxed and ready to go, as well as a look inside

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 135

Boats, Tractors, and other vehicles
Many road-worthy vehicles could benefit from the Battery Saver, but this
project is targeted at other systems where an accidental discharge of a
battery could be annoying—and expensive. Boats are particularly vulner-
able. Even my small runabout has experienced problems. On more than
one occasion, the running lights were left on during the day, and I did not
notice until a couple of days later. The battery was totally dead, and it had
to be replaced.

Leaving the running lights on isn’t the only way to accidentally drain
a boat battery. Most inboard boats have a blower system designed to safely
expel potentially explosive gases and fuel vapors from the bilge. Conventional
wisdom (and the Coast Guard) says to keep the bilge blowers on before
starting the engines, the entire time the boat is in service, and for at least
10 minutes after shutdown. It’s very easy to forget the blowers are on and
then find you need to replace the battery or batteries the next time you use
the boat.

n o t e Before building the Battery Saver for a safety system like the blowers on a boat, read
“Notes of Caution” on page 136. There are some considerations to keep in mind that
may require some minor wiring changes to the electrical system.

Boats aren’t the only vulnerable vehicles, though. Riding mowers and
tractors are also at risk for three reasons:

•	 They are usually used only intermittently.

•	 Parking and/or headlight switches are often placed where it’s easy
to accidentally bump them when getting on or off the vehicle. The
switches can also be damaged by flying debris or rough terrain.

•	 They are usually used in daylight hours, so it can be hard to tell when
the lights are on.

The Battery Saver can also protect powered tools, like tow-behind
sprayers. It’s easy to leave these tools turned on when finished, and while
most sprayer pumps don’t take too much current, leaving one on for, say, a
day or two, will likely drain the battery.

Arduino Playground (Early Access), © 2016 by Warren Andrews

136 Chapter 6

not e s of C aU t ion

If you create the Battery Saver as described in this chapter, it should work well .
However, it is always possible for Murphy’s Law to cause a problem, so here
are a few points to consider before you build .

Should the Battery Saver fail, it can be reset, but in the meantime, it will
remove all power to the vehicle’s electrical system . Do not use the Battery Saver
on any system where an electrical failure could cause catastrophic problems
(such as on an aircraft) or result in bodily harm or property damage . That said,
I have used the following unit in a car, on three agricultural tractors, and on
two boats for well over a year (and earlier versions for several years) with no
failures .

The Battery Saver includes a very high-current switch . It is possible that,
under certain conditions, a resistance could develop such that when current
is applied, the switch becomes extremely hot—perhaps hot enough to be a
fire hazard . (For what it’s worth, this has never happened even on prototype
versions .) All efforts have been made to eliminate problems like this—for
example, the block that holds the Battery Saver’s copper contacts is made of a
fire- and melt-resistant phenolic material—but overheating remains a hazard .
Always check the heat of the Battery Saver before you touch it to make certain
that it is not hot enough to burn you . Even the reset plunger could become
warm enough to burn if the vehicle or Battery Saver malfunctions .

This last warning is specific to mariners . If you keep your boat in the
water, chances are it has a built-in bilge pump and automatic float switch to
keep it afloat when you’re not aboard . If you have multiple batteries, make
sure the bilge pump is wired to a battery that isn’t in the circuit with the Battery
Saver, as in Figure 6-2 . Otherwise, find the wire that provides current to the
bilge pump/switch, and simply bypass the battery saver .

Figure 6-2: Wiring the Battery Saver on a boat

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 137

Parts list
This parts list might look somewhat like a scavenger hunt, but everything
can be found easily from a variety of sources. Getting the particular size
or quantity, however, may be challenging, so read the list carefully to make
sure you have everything before you start. And before shopping, look ahead
to Figure 6-13 on page 149 to see some of the more unusual parts, like the
copper contacts.

•	 One Deek-Robot Pro Mini Arduino clone
microcontroller board (There are several
available, and some have different pinouts—
particularly for pins A4 and A5. Figure 6-3
shows the pinout for the one I used; it’s
available from eBay and other retailers.
Other units with different pinouts should
work, but the connections on the shield
must be changed.)

•	 12V solenoid (This project uses an
Electronic Goldmine G19852, but I have
seen several others on eBay that were
cheaper.)

•	 One 1/2-inch phenolic sheet (Many ven-
dors package this in a greater amount than
you need for this project. I found a 1/2 ×
6 × 12–inch piece on eBay from a company
called Nova Plastics.)

•	 One 6 × 3/4 × 3/16–inch copper bar, which is part of a high-current
switch (This is actually a piece of copper bus bar that is generally
used in large electrical installations. See Figure 6-4 for an example.
To find this, you may need to do a little digging with an online search
for “copper bus bar.” I suggest starting with eBay. At a modest price, I
bought a piece that was 3 feet long.)

Figure 6-4: A copper bus bar, drilled out for the Battery Saver

Figure 6-3: Pinout of the
Deek-Robot Pro Mini
Arduino clone

Arduino Playground (Early Access), © 2016 by Warren Andrews

138 Chapter 6

•	 One ABS plastic enclosure, Hammond 1591 STCL (Available at elec-
tronic suppliers like Mouser, Digi-Key, Newark, and so on.)

•	 One 1/4-inch brass round (I’ve been able to pick up small pieces like
this at a surplus scrap metal dealer, but eBay usually has all lengths
available, starting at $1.50.)

•	 The pylon (Another 1/4-inch brass round.)

•	 The release (I purchased a small piece of sheet metal from Ace
Hardware, but the same is available from many other hardware
stores.)

•	 One e-clip (I purchased an assortment of 300 e-clips on eBay. This will
probably be a lifetime supply with enough left over for several future
generations. If you don’t want that many, you can probably find one at
your local hardware store. Home Depot and Ace Hardware sell them
individually.)

•	 One 1/2-inch, 4-40 flathead screw (Available at almost any hardware
store. You can also purchase a box of 100 on Amazon cheaply.)

•	 One 3/8-inch, 4-40 roundhead screw (Available at your local hardware
store.)

•	 3 oz of Permatex Silicone RTV sealant

•	 One matching pair of inline connectors (You can buy simple, cheap,
inline connectors online, or you can make your own. I used Pololu’s
1×2 connector housing and male and female crimp pins, shown in
Figure 6-5. See the appendix for crimping techniques. You can also
use telephone-style chicklets if you can find them.)

Figure 6-5: A pair of mating connectors used to connect the solenoid

•	 Assorted #28 hookup wire (Check your local hardware store or online
electronics hobby supply shops like Jameco, Pololu, and so on.)

•	 One solder lug (Check your local hardware store; if you can’t find one,
you can work around it by following the instructions in the project.)

•	 One battery cable to fit your storage battery on one side and a lug to
attach to the Battery Saver on the other

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 139

Special Tool Requirements

•	 Countersink (Almost any 82° countersink will do. The material being
formed is relatively soft, so no special materials are required.)

•	 Needle files (While only one is required, they usually come in sets and
can be purchased inexpensively at Harbor Freight and other discount
tool outlets. See Figure 6-18 on page 154.)

•	 Triangle file (This can be found in any hardware store.)

downloads

•	 Sketch: Battery_Saver_Rev_3.ino

•	 Templates: release lever.pdf, Enc template.pdf

•	 Shield: Battery Saver.PCB

The Schematic
While the circuit is relatively simple, as shown in Figure 6-6, there are a
couple of key design elements to be aware of.

Figure 6-6: Schematic for the Battery Saver

Notice that the circuit uses an LM7805 voltage regulator. In theory, the
small regulator included in the Pro Mini board would be more than satis-
factory because the load is relatively light. But under the hood of a car, and
around high-current systems and high-voltage electronics, there is a lot of

Arduino Playground (Early Access), © 2016 by Warren Andrews

140 Chapter 6

stray electromagnetic energy bouncing around. While it’s improbable that
this energy would cause a problem for the Battery Saver, it is well within the
realm of possibility. The more robust 1.5A LM7805 regulator offers the Pro
Mini another level of protection. In addition, capacitors C1 and C2 have
been included to bypass any AC sneaking into the circuit and to prevent
unwanted oscillation. Similarly, the 4.7V Zener diode (D1) protects the
input of the Arduino from a voltage spike—which is very likely—on the
12V supply. It limits the voltage to A0 to only 4.7V.

The configuration of resistors R1 and R2 may look familiar from other
projects. They comprise a voltage divider to lower the 12V supply to a level
below the 5V maximum the Arduino input can tolerate. To be on the safe
side, I selected a value of 10 kilohm for R1 and 5.6 kilohm for R2. Both are
standard values. This design should allow the battery voltage to jump to 14V
before reaching the point where the Zener diode kicks in.

Diode D2 (1N4002 or equivalent) provides yet another level of defense:
it protects against an inverse current that could be created when the mag-
netic field in the solenoid collapses. This is a standard protection device in
inductors with an iron core, which can store magnetic energy and release
it rapidly into the coil. The reverse voltage can reach relatively high levels
and create significant currents which could, in this case, damage the driver
transistor and other components in the system.

Transistors Q1 and Q2 are both ZXT 649 silicon NPN transistors. I
chose these transistors because they have sufficient drive capability and are
inexpensive and readily available. I used the same model as in other proj-
ects. The high side of Q2 is brought to the 5V rail (VCC), as the LM7805
regulator supplies plenty of current. (You could just as easily connect the
high side, or collector, of Q2 to the 12V supply, because Q2 is wired as an
emitter follower and the voltage at the emitter will follow only the voltage at
the base.) R4, a 470 ohm resistor, limits the current to LED 1.

LED1 indicates when the unit is operating. The circuit containing Q2
and LED1 provides a blinking LED with a very short on cycle, which is con-
sistent with this volume’s goal of blinking LEDs as often as possible.

n o t e The Deek-Robot Pro Mini also has a red LED that indicates when it is turned on.
This additional, although very small, constant current drain could contribute to the
discharge of the battery. In the units that I installed, I unsoldered one end of the Pro
Mini’s LED, which is kind of a delicate operation.

Transistor Q1, wired as a common emitter circuit, provides the drive
for the solenoid. Resistor R3 (4.7 kilohm) drives the transistor and also pro-
tects it—a direct connection would allow too much current to flow in the
base-emitter junction, resulting in potential damage. The high side of the
solenoid is connected to positive 12V to allow maximum voltage and cur-
rent to flow through the solenoid coil without taxing the voltage regulator.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 141

How the Battery Saver Prevents Draining
The Battery Saver comprises a very high-current switch that can be electri-
cally turned off and a sensor circuit to detect when the battery is in jeop-
ardy of dying. The high-current switch is required because it interrupts the
main power from the battery, which includes the feed to a starter motor
that can draw up to several hundred amps.

The high-current switch—which could also be considered a relay—is
made of the three pieces of copper bus bar: a release bar, a solenoid, and a
release lever. When the pieces of copper bus bar are connected, the battery
is connected to its circuit as normal. When the solenoid is pulled in, the
power is disconnected.

The sensor circuit uses the power of the Arduino microcontroller. The
Arduino continually monitors the battery, and if it senses that the power is
diminishing, it calls for the high-current switch (relay) to be thrown. There
are many ways to determine when a battery is reaching exhaustion, and this
project simply looks at the voltage left in the battery. Table 6-1 shows the
voltage versus the remaining charge in a standard 12V, lead-acid storage
battery.

Table 6-1: Battery Charge State Versus Voltage

Battery Charge Level Battery Voltage

100% 12 .7V

90% 12 .5V

80% 12 .4V

70% 12 .3V

60% 12 .2V

50% 12 .1V

40% 11 .9V

30% 11 .8V

20% 11 .6V

<10% 11 .3V

The battery charge level quickly deteriorates with only a minimal
reduction in voltage. In order to have at least 40 to 50 percent of the charge
remaining, the drain on the battery must be stopped somewhere between
11.9V and 12.2V, a voltage I will refer to from now on as the trigger point. In
practical applications, empirical evidence shows that there is still plenty of
juice left, even when battery voltage drops to 12.0V, 11.90V, or even below.
A battery in good condition under ideal circumstances could perform with
perhaps as little as 30 percent of its capacity, but that would depend on the
load, ambient temperature, and other factors, so I’m taking a very conserva-
tive view of about 12+V. Newer design batteries tend to do better.

Arduino Playground (Early Access), © 2016 by Warren Andrews

142 Chapter 6

While the state of charge is a good indication of remaining capacity
in a battery, other factors—like internal resistance, battery discharge rate,
and so on—could impact the usable state of charge remaining in a bat-
tery. A more accurate measurement of the capacity remaining in a fully
charged battery might be current used, which can be calculated if the total
energy in the battery is known. For example, if a battery has a capacity of
1100 ampere-hours (A×h), you could calculate the point where 550A×h
remain and disconnect the battery then. However, because this project
targets systems with batteries that range widely in capacity, I decided that
measuring the battery voltage would be more than adequate.

Arduino to the Rescue
The Arduino microcontroller steps up to the task of measuring the battery
voltage and throwing the disconnect switch at the appropriate voltage, but
if that’s all it did, you could be in trouble. When turning on a vehicle, the
starting motor uses a lot of current. Depending on the state of the battery
(internal resistance and so on) and ambient conditions (temperature, for
example) during the cranking process, the battery voltage can conceivably
fall well below the critical shut-off voltage. The Battery Saver depends on
the Arduino to give the vehicle enough time to start the motor.

Further, should the system shut down due to an inadvertent drain,
you’ll need to ensure that when the Battery Saver is reset, it doesn’t imme-
diately sense a critical battery voltage and shut down again. All of these
functions are handled by the microcontroller, under orders from the
sketch. While there are probably several different ways of handling it,
the sketch implements timing sequences—rules to follow for when to take
certain actions—to allow for the voltage drop during engine cranking.
Similar timing rules give the user time to restart the engine after the
Battery Saver is reset.

The Breadboard
Even though this project doesn’t require a lot of extra components and
peripheral equipment, I still believe it’s useful to go through the exercise
of wiring a breadboard. A working prototype gives a definitive proof of
concept, and it allows you to play with the hardware and software prior to
committing to the finished version. When working with the breadboard,
I tested the circuit with a solenoid similar to the one used in the finished
product (see Figure 6-7).

Figure 6-8 shows the breadboard operating the high-current switch;
“Construction” on page 148 describes how to build that switch. To test the
circuit without making the high-current switch first, or to use a solenoid by
itself (see Figure 6-7), you can connect a lamp, LED, relay, or some other
component in place of the switch. Remember: if you use an LED or other
polarized device, make certain to get the polarity correct.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 143

Figure 6-7: The breadboard I used to test the Battery Saver concept and put the
software together. Testing your circuit with a solenoid is not required.

Figure 6-8: The breadboard circuit operating the solenoid after the high-current switch
has been assembled. Note the use of clip leads to hook up the Battery Saver to the
breadboard. Diodes D1 and D2 and capacitors C1 and C2 were not included in
the breadboard primarily because they are needed only when the project is in use.

Arduino Playground (Early Access), © 2016 by Warren Andrews

144 Chapter 6

The basic breadboard is fairly straightforward. Just follow these instruc-
tions to assemble it:

1. Connect the breadboard’s positive rails (red strips) together, and con-
nect the negative rails (blue strips) together. Do not connect the posi-
tive rails to the negative rails as that will result in a direct short circuit.

2. Insert the LM7805 voltage regulator so that the three terminals span
three different rows. (See “The Schematic” on page 139 for why an
external voltage regulator was used rather than the Pro Mini’s onboard
regulator.)

3. Connect the input of the regulator to a positive 12V source. (See
Figure 6-9 for the pinout of the LM7805.)

Figure 6-9: Pinout of the LM7805 voltage regulator

4. Connect the center pin of the regulator to ground (blue stripe) and
the output pin to the positive rail (red stripe). When you power the
circuit, the positive rail should have 5V coming from the output of the
regulator.

5. Insert the Pro Mini microcontroller board in the breadboard. Its posi-
tion is not critical; anywhere in the general vicinity of where it is in
Figure 6-7 is fine.

6. Insert resistors R1 (10 kilohm) and R2 (5.6 kilohm) into the bread-
board. It’s easiest to insert them near the regulator. Then, connect one
side of R1 directly to the regulator (input pin). The joining point of R1
and R2 should be located in an independent place on the board, and
the other side of R2 goes directly to ground.

7. Connect a jumper from the point where R1 and
R2 join to pin A0 of the Pro Mini.

8. Insert transistor Q1 (ZTX649) into the bread-
board in an area with three open rows (see
Figure 6-10 for the pinout).

9. Connect resistor R3 from the base of Q1 to
pin D9 of the Pro Mini.

10. Connect the emitter of Q1 to ground.

11. Connect the collector of Q1 to the load
(solenoid or other).

12. Connect the other side of the load to
positive 12V.

Figure 6-10: Pinout of
ZTX649 transistor

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 145

13. Insert transistor Q2 into the breadboard. Connect its collector to one of
the positive 5V rails (red strip).

14. Connect the base of Q2 to pin D12 of the Pro Mini.

15. Connect the emitter of Q2 to the positive side of LED1.

16. Connect the negative side of LED1 to R4 (470 ohm).

17. Connect the other end of R4 directly to ground (blue strip).

18. Connect the negative side of the 12V supply to ground (blue strip).

Now, load the sketch onto the Pro Mini (see “Uploading Sketches to
Platforms Without a USB Interface” on page XX), and take it for a test run.
If you have a variable power supply with a voltage readout, setting the volt-
age will be easy; if you don’t have a variable power supply, I suggest building
the Regulated Power Supply project in Chapter 3. If you use a variable sup-
ply without a readout, just use your multimeter to monitor the voltage and
observe the trigger point.

Start the power supply at 13V (12.7V is normal for a charged 12V lead-
acid storage battery), and the monitor LED should blink slowly. Gradually
lower the voltage, and write down the voltage when the flashing goes from
slow to rapid. That voltage is the trigger point, and it should be around
11.9V to 12V.

The Sketch
In developing the Battery Saver sketch, I went through several iterations to
assure reliable functionality. One difficulty was avoiding false triggers when
the sensed voltage jumped around because an engine or an accessory, such
as a hydraulic tilt, was activated.

I used functions to adjust various sequences of operation independent
of the main program. This isn’t a complex sketch, but writing simple func-
tions is a useful technique when you want to avoid repeating code. I could
have avoided functions in the final sketch, but I let them remain because
they work well, and writing the sketch this way provides a good lesson in the
use of functions.

/*The Battery Saver sketch, which uses multiple functions
 to create timing sequences */

int led = 12;
int Battin = A0;
int Relay = 9;
int volts = 0;
int volts2 = 0;
int volts3 = 0;
int B = 387; // Threshold trigger set point

void timer3 () { // Shut off timer function
 delay (200);
 volts = analogRead (Battin); // Reset trigger point

Arduino Playground (Early Access), © 2016 by Warren Andrews

146 Chapter 6

 volts3 = map (volts, 0, 1023, 0, 500);
 if (volts3 > B) {
 digitalWrite (Relay, LOW);
 }
 else {
 digitalWrite (Relay, HIGH);
 }
}

void timer2 () { // Fast blink timer function -- low voltage
 if (volts2 < B)
 {
 for (int j = 1; j < 1800; j++)
 {
 digitalWrite (led, HIGH);
 delay (10);
 digitalWrite (led, LOW);
 delay (90);
 }
 }

}

void timer () { // First timer function -- high voltage
 if (volts2 > B)
 { digitalWrite (led, HIGH);
 delay (200);
 digitalWrite (led, LOW);
 delay (1000);
 }
}
void setup ()
{
 Serial.begin (9600);
 pinMode (Relay, OUTPUT);

}
void loop () {
 delay (1000);
 volts = analogRead (Battin);
 volts2 = map (volts, 0, 1023, 0, 500);

 timer ();
 if (volts2 < B) // Set trigger point
 {
 timer2 ();
 }
 if (volts2 < B)
 {
 timer3();
 }
}

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 147

In this sketch, timer, timer2, and timer3 are the three functions used. The
timer function is for normal operation when the battery voltage is above the
trigger point. The trigger point is the voltage at which the Battery Saver goes
into timeout mode prior to shutting down. The timer2 function sets off a
rapid flashing sequence once the trip threshold is reached and provides the
timing—the fast LED sequence—prior to shutoff. Once timer2 has finished,
timer3 is invoked, provided the voltage remains below the threshold; this dis-
connects the battery by activating the solenoid. If the voltage increases above
the trigger point at any time during the timeout period, the Battery Saver
returns to normal operation after timer3 times out. Many of the variables in
this sketch can also be changed to vary blinking and delay sequences and
threshold; they’re addressed in “Operating the Battery Saver” on page 159.

The Shield
As you might guess from the breadboard, the shield is straightforward, too.
Compared with handwiring, however, I believe it’s a lot easier and faster.

The PCB Layout
Figure 6-11 shows my finished PCB, and Figure 6-12 shows the layout
image with silkscreen indicating the placement of the components. You
can download a PCB layout for the shield at http://www.nostarch.com/
arduinoplayground/.

Figure 6-11: The unpopulated Battery Saver
board. The RLY connection is where you
would connect the solenoid.

Figure 6-12: The foil pattern for the shield
on the Battery Saver. The silkscreen image
is in gray.

Most of the components are located under the Pro Mini to save space.
Other than that, there is nothing special about populating the shield. As
in other projects, it’s not necessary to include headers for all the Pro Mini
pins. Use all the pins that have connections with board traces and enough
other pins to add mechanical stability. I always try to use at least one header
for the very first pin, to aid in aligning the board while plugging it in.

Arduino Playground (Early Access), © 2016 by Warren Andrews

http://www.nostarch.com/arduinoplayground
http://www.nostarch.com/arduinoplayground

148 Chapter 6

The LED can be mounted directly to the board or can be mounted
somewhere remotely with long wires. Just be sure to observe polarity. The
Battery Saver may be located in an area where the operator can’t see the
LED, so placing it in a remote location is a practical solution.

Preparing the Shield and Pro Mini Controller
If you want to use a PCB, you can make the shield according to the layout
provided with this book’s resource files, whether you etch that yourself or
send it off to be professionally manufactured. You could also design your
own shield PCB if you’re feeling ambitious, or just solder everything to the
prototyping board, but if you are using everything else from the Parts List,
just make sure your board has the same dimensions as the provided shield
layout.

If you etch the PCB design I provide, drill the component holes next.
I usually use a #66 drill. Solder a 2-inch wire to the plus 12V side of the
shield, and solder the other side of the wire to a small solder lug. Solder a
15-inch wire to the ground terminal and then connect two wires to the sole-
noid connections. I used a small inline connector—made with Pololu #1950
crimp connector housings, #1931 male crimp pins, and #1215 female crimp
pins—so I could remove the board easily if necessary. Almost any connector
can be used.

Both transistors are located under the shield, so when you solder them,
make sure to push them down enough that they clear the bottom of the Pro
Mini. See Figures 6-11 and 6-12 for the transistor placement on the PCB.

I soldered the monitor LED directly to the board so it could be seen
through the box. However, you could also solder wires to the board and
place the monitor LED in a location where it might be more visible outside
your vehicle.

construction
Building the rest of the Battery Saver involves a few mechanical challenges
and requires the wits of a scavenger (see the Parts List on page 137 for
supply details). Figure 6-13 shows all the parts of the Battery Saver laid out.
There is nothing complex about any of the parts.

There are only a handful of components in the Battery Saver: the enclo-
sure, the phenolic contact support, the shield and Pro Mini controller, the
copper contact assembly, the solenoid and mounting, the release lever and
pylon, the release rod, and the springs and e-clip. The assembly instructions
that follow are a little involved, but if you get stuck, just use Figure 6-13 to
keep things in perspective.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 149

Figure 6-13: The components of the Battery Saver, completely disassembled. The cover of
the enclosure is under the clear box. Note the short screws for fastening the spacer to the
solenoid, so they don’t damage the solenoid coil.

Preparing the Enclosure
Because the enclosure, a Hammond 1591 STCL, is an integral part of
the design, I suggest starting there. Beyond a couple of holes and slots
machined into the box, there is very little else to do. Figure 6-14 shows the
holes I cut in detail; a template is included in this project’s resource files.
There are only a few holes to cut, though, so you should be fine without the
template if you follow these instructions carefully.

Figure 6-14: The holes and slot in the Battery Saver enclosure

Arduino Playground (Early Access), © 2016 by Warren Andrews

150 Chapter 6

On the long sides of the enclosure, measure approximately 1 1/8 inches
from the top—that is the side where the reset plunger will protrude through.
This should locate you roughly at the fourth mounting rib. In the center
of that rib, drill two #30—approximately 1/8-inch—holes 3/8 inches from
either edge, and countersink both for a 4 screw. Do this on both sides of the
enclosure.

On each side, at the top of the next rib (going toward the top of the
enclosure), cut a 1-inch-deep groove for the copper contact assembly. The
shaded part of the side view in Figure 6-14 shows where the groove should
go on each side.

The ABS plastic enclosure cuts easily with a hacksaw. Remove the cover
and cut from the opening of the box toward the back. For each groove,
make two cuts so that when you remove the material between them, you will
have a 3/16-inch-wide channel in both sides of the enclosure. A little over
1 inch from the edge at the opening will do, but it’s not necessary to cut
down to the back of the enclosure. You can even cut both sides at once, but
just make sure the channels are directly opposite each other. Don’t worry
if your cuts are a little off; that can be corrected later with a file. After you
make the cuts, break off the material in the center and clean up the chan-
nel with a small triangle or flat file.

Now, drill a 1/4-inch hole in the top of the enclosure, where the reset
button will go, exactly centered on the top surface. Draw lines along that
side’s diagonals from corner to corner, as illustrated in Figure 6-14, and
drill where the lines intersect. This hole is where the brass release rod for
the reset plunger will go.

The Contact Support
The contact support is perhaps the easiest part to make. First, cut the
phenolic to a 3 × 1 3/8–inch block. The phenolic material cuts easily with
a hacksaw. Insert the block in the enclosure so the two holes you drilled
through the ribs are in the center of the block. Mark the holes on both
sides, drill them with a #43 drill bit, and tap them for a 4-40 screw. While
you are working on the phenolic contact support, you can cut two grooves,
or channels, for the power and ground wires on either side, as shown in
Figure 6-16. The location is not critical as these are used only to run the
positive and negative wires for the shield. I used the small Dremel saw in
Figure 6-23 to cut the grooves. Use two 4-40 × 3/8-inch flathead screws on
each side to screw the phenolic piece in place.

With the phenolic contact support screwed in place, hold the drill as
close to vertical as possible in the center of the largest face of the contact
block. Drill a 1/4-inch hole that lines up with the 1/4-inch hole you previ-
ously drilled in the top of the enclosure. The easiest way to do this is to
mount the contact support block and then use the hole in the top of the
enclosure as a guide to drill the hole in the block. After drilling, put the
contact support aside until you’re ready for the copper contact assembly.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 151

n o t e The enclosure is not a perfect rectangle because some relief is included to allow it to
come out of the mold easily. Factor this in as you line up to drill the center hole. When
I drilled the hole, I held the enclosure in a vise to eliminate the effect of the relief.

Preparing the Copper Contact Assembly
The copper contact assembly requires only a handful of holes. Cut a 4 3/4-
inch section of the 3/16 × 3/4–inch copper bar, and drill the holes along
the center of the 3/4-inch dimension, as outlined in Figure 6-15.

A B C D E F G

1 1/16" 3/4" 1/2" 1/2" 3/4" 1 1/16"

Figure 6-15: The base of the copper contact assembly, showing holes and spacing

For holes A and G, use a 9/32-inch bit. Holes B, C, E, and F should be
drilled with a #30 bit; make sure to countersink them deeply enough for
a 4-40 flathead screw. Finally, drill hole D with a 1/2-inch bit. Tap holes A
and G for a 5/16 × 18–inch bolt, which will hold the battery cables.

C a U t i o n While copper is not hard, it tends to grab a drill bit and climb up the bit. Always
hold the copper piece in a vise, a clamp, or with pliers when drilling. Never attempt
to hold the copper with unprotected hands.

When all seven holes are drilled, set the base of the copper contact on
the phenolic contact support so that the 1/2-inch center hole in the copper
is centered as closely as possible on the 1/4-inch center hole in the pheno-
lic support and the bar is centered along the entire length of the contact
support. Make sure the bar is equidistant from both sides of the support,
hold the two pieces together firmly, and mark holes B, C, E, and F. Center
punch the marks you just made in the contact support, drill them with a
#43 drill, tap them for a 4-40 screw, and set the contact support aside again.

Now, mark the exact center of the copper contact, which should
perfectly bisect the 1/2-inch hole. Cut the piece in two at this marker; a
hacksaw should work well for this. Then, cut a 3/4 × 3/4–inch square of
your leftover 3/16 × 3/4–inch copper bar, and mark the center by making

Arduino Playground (Early Access), © 2016 by Warren Andrews

152 Chapter 6

diagonal lines from corner to corner. Center punch and drill a 1/4-inch
hole where those lines intersect. This copper square will become the actual
contact.

The final hole to make in the copper contact assembly is somewhere
between holes E and F, on the outer edge of the bar; look for the little screw
sticking out of the contact bar in Figure 6-16 (circled). Drill a #43 hole and
tap for a 4-40 screw. This is where the switched positive voltage to the Pro
Mini comes from. Figure 6-16 shows all the contact and mounting hardware
drilled.

Figure 6-16: The contact and support hardware ready for assembly

Mounting Supplies for the Solenoid
Depending on your solenoid, the mounting process may vary slightly from
the one described here. The frame of the solenoid I used had two holes
tapped for a 4-40 screw in the bottom (see the Parts List on page 137).
However, there was precious little room between the frame and the coil, so
I elected to look for an alternative mounting approach—a very aggressive
double-sided adhesive. If you still want to mount the solenoid with screws,
judge the screw length carefully. With either mounting approach, the sole-
noid was not high enough to line up with the release mechanism, so I had
to add a platform.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 153

Preparing the Release Rod, Springs, and E-Clip
As with the other mechanical components of the Battery Saver, the release
rod to reset the contacts just needs a little TLC. Begin with a section of 1/4-
inch brass rod, and cut it to 4 1/4 inches in length. Measure 1 1/8 inches
down from one end, and make a groove for the spring retaining clip to fit
into, as shown in Figure 6-17.

In order to cut the groove, I
mounted the bar in the chuck of an
electric drill that I clamped to my work-
bench and used a hacksaw blade to
carefully groove the piece, guiding the
hacksaw blade with my fingers. The set
on the hacksaw blade is a little wide, but
the depth of the groove, not the width,
is the important part. That said, the
groove doesn’t have to be very deep. I
recommend you cut the groove in small
increments and keep trying the retain-
ing clip until it fits snuggly.

Figure 6-17 also shows the configu-
ration of the springs. The bottommost
spring will rest on the phenolic block
and keep the copper contact off the
contact areas until the release rod is
depressed. It should be small enough
that it does not touch either side of the
copper contacts. (Remember, the hole
in the square contact is 1/2-inch wide,
so the spring needs to be smaller than
that.) When depressed, the top spring
overrides the lower spring and keeps the
upper part of the switch in firm contact
with the lower sections. You can make
fine adjustments of the spring length
on a small grinder, or you can use your
Dremel tool or a hand whetstone.

Now, measure 4 inches from the same end, and file the release groove
in the lower half of the 1/4-inch release bar using a small needle file.
Figure 6-18 shows both the needle file used and the shape of the release
groove. (You might want to use a hacksaw first to make the groove, and
shape the upper side with a file.)

The shape of the release groove is not overly critical, but make sure
there is a slight bevel on the top side. The swirls you see on the shaft were
made with 400-grit sandpaper I used to smooth the rod so it slides smoothly
through the phenolic block and hole in the case and contact piece.

Groove for spring
retaining clip

Figure 6-17: The upper section of the
release bar. There are two grooves in
the bar; the lower one was made in
error. The springs used on the release
rod were selected from a standard
spring assortment from Ace Hardware
and cut down to fit the project

Arduino Playground (Early Access), © 2016 by Warren Andrews

154 Chapter 6

Figure 6-18: A close up of the release groove in the bottom
of the release rod (top) and the small needle file used to
make the groove (bottom)

Making the Release Lever and Pylon
The release lever is made of a small piece of light-gauge steel sheet metal,
approximately 0.060 inches thick. Use the pattern in Figure 6-19 to cut
the lever. In this book’s resource files, you can find a PDF file of the lever
template. Because the template is pretty small, you might try bonding
the template to a blank piece of similarly sized stock, hold it in a pair of
pliers (vise grips work well), and shape the piece on a grindstone. Once
you’ve bonded the template to the stock, you can also use a file to shape it.

Figure 6-19: The release lever was shaped initially with a
pair of tin snips and finished with a file. Some of the marks
are from holding the piece tightly with the vise-grip pliers.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 155

With a pair of tin snips, I cut a rectangle first and then cut the shape of
the release lever. I firmly clamped the piece in place with a vise so I could
finish shaping it with a file. Mild steel files easily with a satisfying feel. (You
could also shape the lever with a small grinding wheel or a Dremel tool with
an abrasive wheel.) Make the piece a little oversized at first, as indicated
in the template, as it may require some adjustment in the final assembly.
The lever should be under pressure from the tension spring, and should
securely hold the release rod so that the square copper piece is firmly in
contact with the both sides of the bottom copper contact assembly. Both
pivot holes in the lever—one to attach to the solenoid and one to attach to
the release pylon—are drilled with a #30 drill.

The pylon is for mounting the release lever to the enclosure, and it can
be made of any scrap brass or aluminum you may have around. The pylon
in Figure 6-20 was made from a 3/8-inch diameter brass rod. I reduced the
top section’s diameter because I didn’t want the pylon to rub on the release
rod, but that probably was not necessary.

Figure 6-20: The release lever, the pylon, and two screws

Cut the pylon to a length of about 0.61 inches so that when mounted
inside the enclosure, the end attached to the release lever hits the release
rod just below the center of its diameter. This dimension is dependent on
how precisely the release rod hole is drilled into the center of the top of the
enclosure. Run the release rod through the hole, and measure how far from
the back of the enclosure its center is. The pylon should be a little shorter
than that.

You can make the top of the pylon smaller by chucking it into a drill
like a bit and spinning it on a file. When you finally assemble the Battery
Saver, you may also have to adjust the height of the pylon slightly to accom-
modate the thickness of the release lever and altitude of the release rod if
the hole was not drilled perfectly straight.

Drill a #43-sized hole near the center of the pylon all the way through,
and tap for a 4-40 screw from both sides. One side will mount to the back
of the enclosure, and the other will hold the release lever. To make sure the
screw doesn’t go down too far and tighten against the release lever, I tapped
down only about 3/16 inches so the screw bottomed out and jammed.
Figure 6-21 illustrates what the tapped pylon should look like.

Arduino Playground (Early Access), © 2016 by Warren Andrews

156 Chapter 6

Figure 6-21: Inside the pylon

You can adjust either the length of the tapped hole or the length
of the screw to make sure the release lever is free to move but secure,
using the screw head as a bearing surface. For fastening both the release-
lever bearing screw and the pylon mounting screw, I recommend using an
anaerobic adhesive (such as Loctite Threadlocker) to secure the threads.

Assembling All the Parts
Now, we’re ready to start putting all the parts from Figure 6-13 together
and fastening them where they belong. When you’re done, the Battery Saver
should look like Figure 6-22.

The order of assembly is not overly critical, but more a matter of com-
mon sense. I’ll go through it step by step:

1. Start by screwing the copper contact pieces into the phenolic support.
Make sure the screw heads are below the surface of the copper. This is
critical to assure good contact with the contact bar. Prior to assembly,
as an added measure to improve the contact area, I sanded both the
contact pieces and contact cap with a 400-grit sandpaper. To assure flat-
ness, I put the sandpaper on a flat surface and rubbed the copper on it.

2. Slide the phenolic support into the enclosure, and fasten it with the
four 4-40 × 1/2-inch screws.

3. Insert the release rod through the enclosure, then thread it through
the pressure spring, then through the copper contact, and finally
through the release spring and down through the phenolic base.
Insert the e-clip. This may be a little tricky. You’ll have to hold the
clip with a pair of needle-nose pliers.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 157

Figure 6-22: The completed Battery Saver with the cover off and the switch in the operat-
ing position. In this iteration, grooves were carved in the phenolic block for the positive
and ground wires.

4. Measure for the location of the pylon, and mount it to the enclosure
with a 4-40 × 1/2-inch flathead screw. The pylon should be inside the
enclosure, and the screw should be threaded in from the outside.

5. Screw the release lever to the pylon, and check by hand that it engages
the release groove and secures the release rod. This is a little tricky, and
you may have to adjust the release lever by grinding or filing it a little
to fit in the release rod’s groove. Once you have the lever in place, you
can operate it with your fingers and assure that it locks tightly to the
release-rod groove.

6. Install the spacer on the solenoid.

7. Temporarily mount the solenoid to the enclosure, and screw the release
lever to the solenoid. To do this, I first unfastened the release lever
from the pylon and fastened the other end to the solenoid plunger. I
then applied double-sided tape to the bottom of the spacer, juggled
everything in place, and loosely placed the screw through the release
lever and into the pylon.

8. Exercise the release mechanism with the solenoid held in place. Once
the release rod holds the top switch contact firmly down, mark the
holes for the solenoid spacer.

9. Drill and tap holes in the enclosure to securely mount the solenoid
and spacer to the enclosure. Alternatively, fasten the solenoid with the
double-sided adhesive (3M outdoor double-sided adhesive).

Arduino Playground (Early Access), © 2016 by Warren Andrews

158 Chapter 6

10. Run the wires that will connect the solenoid to the Pro Mini circuit
under the release rod, and connect them to the solenoid using the
connectors.

11. Run the ground wire from the Pro Mini circuit under the release rod
and out through the slotted opening for the copper bar. (It’s the dark
wire sticking out of the enclosure on the left in Figure 6-22.) You may
want to either drill small holes in the phenolic for the wires or carve
small grooves to run the wire through, using a Dremel tool and a small
circular saw blade like the one in Figure 6-23. You can also make a
groove with a file or hacksaw.

Figure 6-23: Dremel tool with small circular saw blade attached

12. Attach the red, positive voltage wire with the lug to the copper switch
pole at the last hole you tapped in “Preparing the Copper Contact
Assembly” on page 151. Use a 4-40 × 3/8-inch screw.

13. Mount the shield using small spacers. If you can’t find a solder lug, you
can solder-tin the wire, form it so it fits around the screw snugly, and
then tighten the screw.

Compare your Battery Saver to the finished device in Figure 6-22 to
make sure everything looks right. When the battery voltage reaches the
trigger point, the Arduino triggers the solenoid, which releases the lever.
Freed from the release lever, the rod pops up from the spring tension
of the lower spring. The lower spring holds the contact piece above the
copper mounted to the phenolic block, opening the circuit. To reset the
Battery Saver, just push the rod back down again. Before doing a final
test, check the latching of the release lever and rod several times.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 159

installing the Battery Saver into a vehicle
Connecting your Battery Saver to your vehicle takes only minutes. First, dis-
connect both the positive and negative terminals from your battery. Then,
take a short battery cable (see the Parts List on page 137) and connect
from the positive side of the battery to the input side of the Battery Saver.
Take the output side of the Battery Saver and connect it to the cable that
originally connected to the battery. Connect the black wire to the negative
terminal that will be reconnected to the battery.

Mounting the entire enclosure will depend on where and how your
vehicle’s battery and/or battery box are located. In many cases, the Battery
Saver can simply hang from the battery cables. In other applications, I’ve
used a heavy-duty cable tie to wrap around the entire battery and Battery
Saver to hold it in place. In some cases, double-sided Velcro works well.

operating the Battery Saver
In operation, once the Battery Saver is installed (see Figure 6-24), restore
the ground connection to the battery and hook that ground connection
to the Battery Saver. Then, set the Battery Saver by depressing the reset
button—that is, the top of the release bar—until the unit is armed. You
should hear or feel a click as you depress the reset button and the release
lever engages.

Normal Operation
As long as the battery is fully charged and above the threshold voltage,
the “on” indicator will blink at the rate established in the timer() function,
which is approximately once every 2.2 seconds. When the battery voltage
drops below the threshold level, which is set at approximately 11.9V via vari-
able B in the sketch, the indicator LED begins flashing rapidly. When the
LED sequence finishes, which is after about 3 minutes, the voltage will be
checked once again. If the voltage is still below the threshold, the battery is
disconnected; otherwise, it just returns back to normal operation.

When you reset the Battery Saver after it has shut off, it will resume
operation. After reset, if the battery voltage is above the threshold, the indi-
cator will blink at the usual rate of once every 2.2 seconds. Often when the
drain is removed from a battery discharged to some level, the battery recov-
ers somewhat on its own after a relatively short time. If, however, the voltage
is below the threshold level, the indicator will blink rapidly for the timeout
period, as indicated earlier, to allow for the operator to start the boat, trac-
tor, or other vehicle. You can set the timeout period by changing the value
of j in the timer2() function.

The maximum value of the j variable is set at 1,800 in the initial sketch,
and incrementing or decrementing j will add or subtract 100 ms from the
total timeout period. Thus, to set the timeout period to 5 minutes, you
would set the maximum value of j to 3,000.

Arduino Playground (Early Access), © 2016 by Warren Andrews

160 Chapter 6

Setting the Threshold Voltage
The threshold voltage is established by resistors R1 and R2 with values
of 10,000 and 5600 ohms, respectively (see the schematic in Figure 6-6).
These are set up as a voltage divider. According to the voltage divider cal-
culation, whether you use a calculator or work it out with the formula, the
voltage will be approximately 4.31V for a 12V input. Thus, you can calculate
the exact threshold voltage at which you want the device to shut off the bat-
tery current by setting the threshold trigger point, which is B in the sketch,
to whatever value you wish. While I calculated the theoretical value of the
threshold, I experimented and found that a value of 387 establishes the
shutoff threshold point at about 11.9V.

on Bat t e ry t y pe s

I experimented with several batteries and loads and found setting B to 387 con-
sistently leaves at least half the energy in the battery after shutdown to restart
the engine . On several different batteries, ranging from the small battery on
a portable generator to large-capacity batteries for starting a truck, the same
value seemed to work well .

That said, however, I have little experience with deep-cycle batteries and
know that they have very different discharge parameters . If you want to attempt
to use the Battery Saver for such batteries, take a look at their discharge rates
and voltages, and set the threshold accordingly .

Protection from the Environment
Unfortunately, the Battery Saver is not weatherproof, and most applications
call for it to be used in somewhat hostile environments. There are, however,
a couple of possible solutions. On a variety of vehicles, including boats and
tractors, I have wrapped the device in a plastic bag and tightly wrapped
wire ties around the cables where they enter and exit the device.

But that’s not terribly attractive, and I took some abuse from the distaff
side of the family, so I applied Permatex silicon RTV sealant around all the
openings where the copper bar comes through—but not where the reset
(brass) rod comes through—and sealed all the screws.

For the reset button, I had difficulty finding a protective covering nipple
(you would be surprised at what I found on the web), so I settled for affix-
ing the top of an eye dropper to the enclosure with the silicone sealant.
This also keeps the reset bar—which is hot to 12V when depressed—from
shorting out.

Arduino Playground (Early Access), © 2016 by Warren Andrews

The Battery Saver 161

Applying Cool Amp
While the copper-on-copper contacts work well, I burnished them with
very fine sandpaper (400 grit) before assembly. Even though the untreated
contacts have been used on a number of versions of the Battery Saver and
have never failed, I decided to use Cool Amp, a simple-to-use silver-plating
compound, for this version.

For very little cost, I was able to silver-plate the contact area of the con-
tact bar and plate and thus reduce their resistance. Figures 6-24 and 6-25
show the difference between unplated and plated copper.

Figure 6-24: Battery Saver contacts after burnishing but before treatment with
Cool Amp

Figure 6-25: Battery Saver contacts after silver plating with Cool Amp

Arduino Playground (Early Access), © 2016 by Warren Andrews

162 Chapter 6

While this additional lowering of resistance is probably not necessary,
all the current for the vehicle passes through this contact, so I figured
it wouldn’t hurt to be on the safe side. Further, I have used the Battery
Saver in marine applications around saltwater, and the copper parts have
acquired a green patina while the silver-plated areas have not.

I have used Cool Amp on a number of contacts, from motor-starting
contacts to heavy-duty relay contacts, and it works well. You can learn more
about Cool Amp at http://www.coolamp.com/.

n o t e Copper does not oxidize too rapidly and the most common oxide of copper is highly
conductive, which is one reason it is commonly used for current switching. Silver has
the same properties—only better.

DisCl a ime r

I hold a U .S . patent (4,149,093, now expired) on a device similar to the Battery
Saver . The patent drawing is shown in Figure 6-26 . Notice how similar it is to
this project, despite being made decades earlier . It had essentially the same
function, even though microcontrollers hadn’t been invented yet!

Figure 6-26: A patent drawing of the Battery Saver’s predecessor

Arduino Playground (Early Access), © 2016 by Warren Andrews

http://www.coolamp.com

	1
	The Reaction-Time Machine
	2
	An Automated Agitator for PCB Etching
	3
	The Regulated Power Supply
	4
	A Watch Winder
	5
	The Garage Sentry Parking Assistant
	6
	The Battery Saver
	1
	The Reaction-Time Machine
	Parts List
	Downloads
	Reaction vs. Reflex
	How Does the Game Work?
	Measuring Time with the Arduino Nano
	Expected Speed Ranges

	The Schematic
	The Breadboard
	The Arduino Sketch
	Customized Reaction Commentary
	What Happens in the Loop

	Construction
	Preparing a Sturdy Case
	Mounting the Hardware

	Ideas for Customization

	2
	An Automated Agitator for PCB Etching
	Special Tools
	Parts List
	Downloads
	How Automatic Motor Reversal Works
	The Schematic
	Determining the Reversal Threshold
	Using an H-Bridge
	The Breadboard
	The Sketch
	The Shield
	PCB Layout
	Shield Design Notes

	Construction
	The Limit Wires
	The Crank Bushing
	Packaging

	The Etching Process

	3
	The Regulated Power Supply
	Parts List
	Required Tools
	Downloads
	A Flexible Voltage Regulator Circuit
	The Schematic
	How the Circuit Works
	The Breadboard
	Preparing the Arduino Pro Mini and LCD
	Building the Breadboard

	The Sketch
	The Shield
	Construction
	Preparing the Enclosure
	Mounting the Circuit Board

	4
	A Watch Winder
	Why a Watch Winder?
	Required Tools
	Parts List
	Acrylic
	Other Hardware and Circuit Components

	Downloads
	Basic Watch Winder Requirements
	Using an Arduino to Control Winder Revolutions
	Using a Hall Effect Sensor to Monitor Rotations
	The Schematic
	The Breadboard
	The Sketch
	The Shield
	Overview of the Motor Assembly
	Construction
	Preparing the Motor Plate and Bearing Box Acrylic
	Bonding the Acrylic for the Bearing Box

	The Stand
	Preparing the Motor and the Driveshaft
	Making the Watch Basket
	Adding the LEDs
	Leaving the Components on Display
	Keeping the Watches in the Basket

	Design Notes
	Total Rotation Adjustment
	How Many LEDs to Use and Where to Put Them
	Motor Voltage
	How Many Rotations Does the Watch Winder Make?

	Closing Thoughts

	5
	The Garage Sentry Parking Assistant
	Required Tools
	Parts List
	Optional Parts
	Downloads
	Basics of Calculating Distance
	How the Garage Sentry Works
	The Schematic
	The Breadboard
	The Sketch
	Inside the setup() Function
	Inside the loop() Function
	Determining Distance
	Triggering the Alarm

	Construction
	Drilling Holes for the Electronics
	Mounting Options
	Soldering the Transistors and Current-Limiting Resistors
	Wiring the Pieces Together

	The Deluxe Garage Sentry
	The Deluxe Schematic
	A Bigger Box
	The Shield
	The Sketch for the Deluxe Garage Sentry

	6
	The Battery Saver
	Boats, Tractors, and Other Vehicles
	Parts List
	Special Tool Requirements
	Downloads
	The Schematic
	How the Battery Saver Prevents Draining
	Arduino to the Rescue

	The Breadboard
	The Sketch
	The Shield
	The PCB Layout
	Preparing the Shield and Pro Mini Controller

	Construction
	Preparing the Enclosure
	The Contact Support
	Preparing the Copper Contact Assembly
	Mounting Supplies for the Solenoid
	Preparing the Release Rod, Springs, and E-Clip
	Making the Release Lever and Pylon
	Assembling All the Parts

	Installing the Battery Saver into a Vehicle
	Operating the Battery Saver
	Normal Operation
	Setting the Threshold Voltage
	Protection from the Environment
	Applying Cool Amp

	_GoBack
	_GoBack
	_GoBack
	_GoBack

