

N o S t a r c h p r e ss
e a r ly a c c e ss p r o g r a m :

F e e d b a c k w e l c o m e !

Welcome to the Early Access edition of the as yet unpublished 2D Unity by
Jeff W. Murray! As a prepublication title, this book may be incomplete and
some chapters may not have been proofread.

Our goal is always to make the best books possible, and we look forward
to hearing your thoughts. If you have any comments or questions, email us
at earlyaccess@nostarch.com. If you have specific feedback for us, please
include the page number, book title, and edition date in your note, and
we’ll be sure to review it. We appreciate your help and support!

We’ll email you as new chapters become available. In the meantime,
enjoy!

mailto:earlyaccess%40nostarch.com?subject=2D%20Unity%20Feedback%2011/20/15

2 D U n i t y
J e ff W. Mu r r a y

Early Access edition, 11/20/15

Copyright © 2015 by Jeff W. Murray.

ISBN-13: 978-1-59327-701-7

Publisher: William Pollock
Production Editor: Serena Yang
Cover Illustration: Josh Ellingson
Interior Design: Octopod Studios
Developmental Editor: Hayley Baker
Technical Reviewer: Mike Desjardins
Copyeditor: Anne Marie Walker
Compositor: Susan Glinert Stevens
Proofreader: Paula L. Fleming

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

C o n t e n t s

Introduction
Chapter 1: Getting Started in Unity . 1
Chapter 2: Graphics for Your Games . 17
Chapter 3: Using Unity to Animate 2D Sprites 37
Chapter 4: Introduction to Programming . 51
Chapter 5: Programming Player Controls and Game Physics 71
Chapter 6: Introduction to Unity’s User Interface System
Chapter 7: Building a Tile-Based Level System
Chapter 8: Making a Platform Game
Chapter 9: Enemies and Coins
Chapter 10: Building an In-Game User Interface
Chapter 11: Extras

The chapters in red are included in this Early Access PDF.

C o n t e n t s i n D e t a i l

1
Getting Started in Unity	 1
Creating a Unity Project . 1
The Main Editor . 3
Anatomy of a Unity Project . . 5
Project Directories . 5
Navigating a Scene . 6
Selecting and Manipulating Objects . 7

The Hierarchy Panel in Depth . 7
Rotation and Scale . 8

Snap and Grid Settings . 9
Copying, Pasting, Duplicating, and Deleting . 10
Adding Components . . 11

Gizmos . 12
Previewing Aspect Ratio and Screen Resolution . 13
Checking Your Game’s Stats . 14
Closing Thoughts . 15

2
Graphics for Your Games	 17
Key Graphical Elements in 2D Games . 18
Image Formats in Unity . 19
Choosing Image Size . 19
Obtaining Premade Graphics . 20

Buying Stock Assets . 20
Using Royalty-Free or Public Domain Assets . 20

Create Classic Pixel Art with GrafX2 . 20
Downloading and Installing GrafX2 . 21
Getting Started with GrafX2 . 22

Making a Brick Tile . 24
Set the Image Size . 24
Draw the Brick Tile . 25

Making an Animated Player Sprite . 27
Set the Image Size . 27
Draw Your Character . 28
Animate! . . 31
Generate a Sprite Sheet with Piskel . 33

Closing Thoughts . 36

3
Using Unity to Animate 2D Sprites	 37
Cameras . 37
Importing Images . 39
Optimizing Your Images . 42

Import Settings . 42
Texture Type . 43
Sprite Mode . 43
Pixels To Units . 43
Pivot . 44
The Sprite Editor Button . . 44
Generate Mip Maps Checkbox . 44
Filter Mode . 44
Max Size and Formats . 44

Character Animation . 45
Slicing Spritesheets Automatically . . 45
Create an Animation File for Your Character . 47
Slicing Spritesheets Manually . 47

Closing Thoughts . 49

4
Introduction to Programming	 51
What Is C#? . . 52
Getting Started . 52
Bouncing a Ball . 52

Libraries . 53
Classes and Inheritance . 53
Variables . 54
Game Logic . 57

Controlling a Moving Bat . 60
More About Objects . . 60
The Game Loop . 62
Move the Bat . 63

Breaking Bricks! . 64
Use a Loop to Make Bricks . 65
Color Your Bricks with Arrays . 67

Closing Words . 70

5
Programming Player Controls and Game Physics	 71
Dodging Falling Bricks . . 72

Add the Player Sprite to the Scene . 73
Programming Player Controls . 74

Game Physics . 78
Setting Up Physics and Collisions . 79

Add Physics to the Player . 79
Add the Ground . 79
Create the Brick Object Prefab . 79

Creating a Game Controller Script . 81
Adding Polish . 85

Create a Smashing Brick Particle Effect . 85
Flip the Player . 90

Closing Thoughts . 92

1
G e t t i n g S t a r t e d i n U n i t y

Unity signaled the beginning of a major
shift in who had access to high-end tools.

Today, virtually anyone has access to this
free and amazing development environment

capable of making commercial games. In this chapter,
you’ll start by learning your way around Unity’s main
editor, also known as the integrated development environment (IDE),
where almost everything happens. Then you’ll explore a Unity project and
learn how to manipulate objects.

Creating a Unity Project
Start Unity and you should see its splash screen followed by the login win-
dow. If you don’t already have a Unity account, you can set up one now.
The process is simple, so I won’t outline it here; just follow the instructions

2D Unity (Early Access), © 2015 by Jeff W. Murray

2 Chapter 1

on the screen. Once you’re logged in, Unity will display a project loading
screen (Figure 1-1). Recently opened projects will appear in the Projects
section, which makes it easy to pick up where you left off. To open a project
that’s not in the recent projects list, you would click Open other.

Figure 1-1: The Unity project loading screen

Let’s make a new project. Click the New Project button to get started.
The New Project window (Figure 1-2) appears and contains two choices for
the type of project you want to create, 2D or 3D.

Figure 1-2: The New Project window

2D Unity (Early Access), © 2015 by Jeff W. Murray

Getting Started in Unity 3

Enter the project name Making2DGamesProject in the Project name
text field. Below that you’ll see the default file location for your project.
To change it, click the three dots to the right of the text field. Next, click
the 2D button and then click Create project.

The Main Editor
Before I explain each of the main editor’s panels, let’s change the layout.
When Unity creates a project for the first time, the editor loads the default
layout (Figure 1-3). The default layout is nice, but it can be a little difficult to
use because it forces you to toggle between two of the panels you’re going to
be spending a lot of time with. Thankfully, just about everything in Unity is
customizable, so you can tailor the panel layout to your liking.

Figure 1-3: The main window of the Unity editor in a blank 2D project

A selection of preset layouts is available, but use the same 2-by-3 layout
that I use so that your experience matches what you see in this book. Click
the Layout button at the top right of the editor and change it to 2 by 3.

N OTE 	 When you finish this chapter, be sure to test drive the other layout options. But for
now, stick with 2 by 3 so you can see all of the main panels as I describe each one.

The layout should now look like the one in Figure 1-4. This layout has
five main panels, drop-down menus at the top left, and several tools along
the top.

2D Unity (Early Access), © 2015 by Jeff W. Murray

4 Chapter 1





  

Figure 1-4: The Unity editor’s 2-by-3 layout in a blank 2D project

You should see two stacked panels on the left. The Scene panel u is a
gateway to your game world. It provides a place to build and edit objects in
a scene using a free-roaming camera and some tools.

The Game panel v is where you test your game to see how it looks to
the player. Press the Play button at the top of the screen to test your game
at any time.

The Hierarchy panel w lists every GameObject that the currently
loaded scene contains. GameObject is the base class for the objects that make
up your game’s models, cameras, particle effects, sounds, and so on, and
the Hierarchy lets you select, change, and create new GameObjects. The
Hierarchy displays GameObjects in the order in which they were added
to the scene, so the first object you add appears at the top and subsequent
items appear underneath. However, you can drag and drop items to place
them in any order you like.

The Project panel x shows all the assets—the files and folders that con-
tain your game’s content—that belong to your Unity project. Just as with a
regular file browser, you can create, copy, drag, and drop your files in this
panel. The Create menu at the top left of the Project panel lets you add new
assets and subfolders to the currently selected folder.

The Assets panel, a separate panel within the Project panel, shows cur-
rently selected items. The Project panel is fully searchable. The search box
runs along top of the panel; you can search by asset name, type of asset, or
both by clicking the drop-down arrow next to the magnifying glass.

The Inspector panel y is context sensitive: when you select an item in
the Project or Hierarchy panel, any editable properties will appear in the
Inspector.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Getting Started in Unity 5

Anatomy of a Unity Project
Now that you know your way around Unity’s interface, let’s explore a
Unity project. First, download the book’s files from http://www.nostarch
.com/2DUnity/. Then click File4Open.

Browse to the Chapter_1_Project directory, which contains the example
for this chapter. Click once to highlight the Chapter_1_Project folder and
then click Open. Keep this project open for the rest of the chapter.

N OTE 	 If you double-click the Chapter_1_Project folder, the Open button may be disabled.
If so, go back to the previous folder and select the project folder as I described.

Project Directories
The files that make up a new Unity project are split into three main direc-
tories: Assets, Library, and Project Settings. The Assets folder (see Figure 1-5)
contains all the graphics, sound effects, scripts, and more. The Library
folder contains vital information that Unity uses: do not modify this folder
in any way. The Project Settings folder tracks configuration information, such
as keyboard mappings, how the panels appear in the editor, sound volume,
and graphics settings.

Figure 1-5: The Assets folder as displayed in
the Project panel

The Assets folder is where you’ll keep all the files you use in your game.
A best practice is to store all of your Assets folder’s files in subfolders with
names based on what the files inside do. Doing so helps you find a file
based on the function it serves in the game.

It’s important to keep your project as organized as possible. By naming
your folders in a logical manner and creating separate folders for different
pieces of your project, you can find assets quickly. Staying organized makes
it easier for you to return to a project later and helps a lot if you’re collabo-
rating with someone else.

Next, let’s jump into the scene.

2D Unity (Early Access), © 2015 by Jeff W. Murray

6 Chapter 1

Navigating a Scene
The Scene panel is at the heart of the Unity editor. It’s where you can visu-
ally edit everything that makes up your game’s scenes.

Unity stores your GameObjects in scenes. You can use scenes to build
levels, menus, and high-score boards.

With Chapter_1_Project still open, find the Scenes folder in Unity’s Project
panel. Expand the Scenes folder, click the Main folder, and look for a Unity
logo icon labeled ObjectScene in the Assets section. (The icon that looks like
the Unity logo represents scene data files.) Double-click the ObjectScene
icon to open the scene.

Along the top of the Scene panel is a toolbar containing the scene con-
trol tools (Figure 1-6).

Figure 1-6: The scene control tools at the top left
of the Unity editor

Starting from the left, the five tool buttons are as follows:

•	 Camera Pan: To drag and move the camera

•	 Move: To move GameObjects

•	 Rotate: To rotate GameObjects

•	 Scale: To scale GameObjects

•	 Rect tool: To use with UIs or sprites and to scale and move 2D elements
in the Scene panel

Let’s put these scene control tools to use. Click the hand icon to engage
Camera Pan mode. In Camera Pan mode, you can move about the scene
without affecting any objects. Some additional controls are also available
for the mouse and keyboard:

•	 Use the arrow keys to move the scene camera. Hold down shift to
move faster.

•	 In any mode, you can access Camera Pan mode by holding down the
alt key or the middle button on your mouse to drag the camera with
the mouse. You can also hold alt-ctrl on a PC or alt-z on a Mac.

•	 To zoom in or out of a scene, either roll the mouse wheel or hold the
alt key and right mouse button at the same time.

Practice moving around the scene. Then continue to the next section
to start moving, changing, and deleting objects.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Getting Started in Unity 7

Selecting and Manipulating Objects
Manipulating GameObjects in Unity is a
breeze. We’ll start by selecting objects in a
scene.

Select a GameObject by clicking it. Try
it now: click the Move icon in the scene con-
trol tools and then click any of the visible
GameObjects in the Scene panel. If you’re
unsure about which icon to select, refer to the
previous section to find the Move tool. After
selecting an object, a tool handle appears
on top of it, which you can use to move it
(Figure 1-7).

Click any axis and drag it around to move
the object along that axis, or click the cube
in the middle of the axis to freely drag the
object in any direction.

Notice that the name of the GameObject
you have selected is also highlighted in the
Hierarchy panel: you can select items in the Scene panel or find them in
the Hierarchy and select them there. Let’s explore the Hierarchy panel.

The Hierarchy Panel in Depth
The Hierarchy panel helps you organize your scenes. Without it, you’d have
only a visual world to navigate, which would make accessing objects in a
complex scene a nightmare.

Find the object named ClickMe in the Hierarchy and click it to highlight
it. You probably aren’t seeing the object in the Scene panel. Fortunately,
this is easy to fix. Unity can automatically center the view onto the currently
selected item. Move the mouse over the Scene panel and press the F key to
center the ClickMe object in the Scene panel (Figure 1-8).

Figure 1-8: Centering the ClickMe GameObject makes it visible in both the Scene and Hierarchy panels.

Figure 1-7: The tool handle is
a visual aid that allows you
to manipulate the currently
selected object in the Scene
panel.

2D Unity (Early Access), © 2015 by Jeff W. Murray

8 Chapter 1

Now press Play on the playback controls; some objects should move
around in the scene while ClickMe remains static. That’s because ClickMe
doesn’t have any Components attached to it. If you want to make your
GameObjects do things, you must attach Components to them. Let’s look at
a more interesting GameObject that does have a Component attached to it.

Look for ClickMeNext in the Hierarchy and click it. ClickMeNext is a child
object under the empty GameObject named Some Grouped Objects. Grouping
objects this way is called parenting. Notice that the Hierarchy shows this
parent/child relationship in the same way that a file browser shows an item
within a folder.

After selecting ClickMeNext in the Hierarchy, look at the Inspector panel
to see the Components attached to it. The Components list looks like this:

•	 Transform: The Transform Component is automatically attached to
all GameObjects. It provides the GameObject’s position, rotation, and
scale information.

•	 Sprite Renderer: Sprite Renderer draws the sprite to the screen.

•	 Spin (Script): A script is a bit of code you can attach to an object to
make it do something.

The spin script is a very simple script I added to rotate the snowman
around its z-axis. I made the speed available to the Inspector, so you can
adjust it by changing the value in the Speed field.

In the Inspector, the Speed text field shows a default value of 5. Change
the Speed value in the Inspector and press Play to see what happens. Try a
negative number too!

Let’s continue with our Unity tour and look at how to rotate and scale
objects.

Rotation and Scale
Click ClickMeNext in the Hierarchy, if it isn’t
still selected. Look at the Scene panel. If the
snowman is not centered, hover the mouse
over the Scene panel and press F to automati-
cally center it. If nothing happens, check the
Hierarchy to make sure the object is still high-
lighted. You may have to expand Some Grouped
Objects to find it.

Once the object is centered in the Scene,
click the Rotate button in the scene control
tools. A tool made up of an outer circle and an
inner circle with two lines intersecting at its
center appears over the snowman (Figure 1-9).

Click and drag the lines inside the inner
circle; either line will do. Dragging the circle
around should spin the GameObject. Watch the live update of the trans-
form’s properties in the Inspector panel as you drag the circle—the numbers

Figure 1-9: The rotation tool
handle on the ClickMeNext
object in the Scene panel

2D Unity (Early Access), © 2015 by Jeff W. Murray

Getting Started in Unity 9

in the rotation text fields should change. You can also modify the trans-
form in the Scene panel by typing the values into the Inspector.

To the right of the Rotate button, on the scene control tools, is the
Scale button. When you select Scale mode, a Scale tool handle appears on
top of the selected object. You can click and drag the scale axis to resize the
object, just as you did with the position and rotation handles.

Snap and Grid Settings
Lining up and spacing objects as well as making sure graphics are aligned
correctly can be tricky to get right by sight alone. Unity includes a grid to
help you with this process.

The Scene panel shows the default grid, which looks like faint lines in
the background. Each square on the grid represents a unit. As you zoom
in and out, the grid scale automatically changes (you can try this using the
middle mouse wheel).

You can use the grid as a visual guide to help you line up GameObjects.
Note that there’s no option to change the size of the grid. The only option
is to toggle it on or off in the Gizmos drop-down menu by checking or
unchecking the Show Grid box.

The Snap system is also helpful for aligning objects. It helps to position
them by snapping movement to a specified number of units. In Unity, units
are an arbitrary measurement that you can set to the size you want. You’ll
learn more about units in Chapter 4, but for now we’ll use the default value.

Usually, you can move objects anywhere you’d like by pretty much any
amount. If you want to use the Snap system, hold down the ctrl key(or
z key on a Mac). Turning on snapping moves objects based on the snap
sizes set in the Snap settings menu. To change the Snap settings, click
Edit4Snap settings (Figure 1-10).

Figure 1-10: The Snap settings
window

Try changing the Move X value to 10. Select an object in the Hierarchy.
Next, select Move mode from the scene control tools. Hold down the snap
key (ctrl, or z on a Mac) and drag the selected object around. Note how
it moves just 10 units at a time. Return to the Snap settings window and
change the Move X value back to 1. Try dragging the same object around;
now it moves in 1-unit steps.

2D Unity (Early Access), © 2015 by Jeff W. Murray

10 Chapter 1

Snapping isn’t just for positioning. Whenever the snap key is held down,
snapping will apply to an object’s scale and rotation, too. In the Snap settings
window, you can change the snap values for scale and rotation separately. At
the bottom of the Snap settings window is a row of buttons that lets you set
which axis to apply snap to. Click the Snap All Axes option to apply it to
all axes.

Copying, Pasting, Duplicating, and Deleting
The copy, paste, duplicate, and delete functions are a big part of everyday
life as a developer. Most of these functions are available by right-clicking
a GameObject in the Hierarchy. Doing so brings up a menu of common
actions you can perform on a GameObject (Figure 1-11).

Figure 1-11: Right-click a GameObject in the
Hierarchy panel to display a menu.

You’ll do a lot of copying, pasting, duplicating, and deleting objects in
Unity, so memorizing the keyboard shortcuts for these actions will save you
a lot of time:

•	 Copy: ctrl-C or cmd-C

•	 Paste: ctrl-V or cmd-V

•	 Duplicate: ctrl-D or cmd-D

•	 Delete: delete or cmd-backspace

2D Unity (Early Access), © 2015 by Jeff W. Murray

Getting Started in Unity 11

Let’s try duplicating: right-click the ClickMeNext object in the Hierarchy,
and then select Duplicate from the menu. A copy is automatically named
ClickMeNext 1 and is selected and ready for use.

Next, give it a more descriptive name. With the ClickMeNext 1 GameObject
already highlighted in the Hierarchy, click the ClickMeNext 1 text to change
its name, just as you would in a file browser (Figure 1-12). Change the dupli-
cate GameObject’s name to MyCopy.

Figure 1-12: Renaming a file in the Hierarchy
panel

N OTE 	 You can rename GameObjects in the Inspector, too. A selected GameObject’s name is
shown in an editable text field at the top of the Inspector.

By default, a duplicated object appears at the same position as the origi-
nal. It’s difficult to select the duplicate in the Scene panel, but it’s easy to
accidentally select the original. In this case, it’s best to select objects in the
Hierarchy. With the MyCopy object still selected in the Hierarchy, hover the
mouse over the Scene and press F to center the view on the sprite.

Select the Move icon in the scene control tools. Click and drag the hori-
zontal axis on the handle to move the model to the side just enough to see
the two objects separately in the scene.

Adding Components
Click Play to preview the current scene. Right now, MyCopy just remains in
one location and spins. Let’s make it do even more!

Click Stop to stop the preview. Select MyCopy in the Hierarchy and look at
the Inspector. Find and click the Add Component button in the Inspector,
and you should see all the available Component categories. Let’s add a script
to make this object move. Note that you’re not actually creating a script but
instead just adding an existing script to the GameObject.

In the Add Component drop-down menu, click the Scripts category
to find the Bouncer script, which is a bit of code I wrote to make an object
bounce. Select Bouncer to add it to the GameObject.

The Bouncer script makes a GameObject move back and forth along
either its x- or y-axis. It uses a sine wave to calculate how much to move the
object each frame; you can open it and take a look if you want, but at this
stage the actual workings of the script aren’t very important.

2D Unity (Early Access), © 2015 by Jeff W. Murray

12 Chapter 1

Now that you’ve added Bouncer to the GameObject, a new Component
appears in the Inspector, and you can access a few of its parameters:

Wave amplitude  Specifies the size of the waves (how much the object
will move)

Bounce speed  Specifies the rate, or how quickly the object will move

Movement direction  Select either Horizontal or Vertical to specify
whether to move the GameObject along its x- or its y-axis

Click the Play button in the playback controls. By default, MyCopy should
move up and down, but only a little. While the game preview plays, change
the movement direction to horizontal or vary the values in the Bounce speed
or Wave amplitude boxes. The ability to edit Component values as the game
is running to see instant results is one of Unity’s best features.

But Unity stores values only while the game preview is stopped. If you
click the Stop button on the playback controls now, any values you’ve changed
will be lost, and the engine will reset them to their original values. If you
want to retain some values you changed during playback, jot them down so
you can enter them again after playback is stopped.

In the last part of this chapter, I’ll describe some useful visual aids and
preview functions. Find the GameObject named OCTOPUS in the Hierarchy,
center it in the Scene, and let’s wrap up!

Gizmos
Along with the OCTOPUS GameObject you should see two other icons
(Figure 1-13), which are called gizmos.

Figure 1-13: Gizmos shown in the Scene panel on the OCTOPUS
GameObject for directional light and particle effects

2D Unity (Early Access), © 2015 by Jeff W. Murray

Getting Started in Unity 13

What are gizmos? Well, you don’t have to worry about feeding them
after midnight! In Unity, gizmos are visual debugging and setup aids that
make it easy to find GameObjects. Recall from “Snap and Grid Settings” on
page 9 when you turned the grid on and off: the grid is a gizmo, too.

The Scene panel should show two types of gizmo for the OCTOPUS object:
a sun and some little shurikens (yes, the traditional Japanese throwing
stars). The sun represents a directional light in the scene. The direc-
tional light is a GameObject that you can move and rotate with a light
Component.

The shuriken gizmo icon represents Unity’s particle system. Click a
shuriken in the Scene panel to select the GameObject containing the par-
ticle system Component. The gizmos will disappear and the particle system
will run in its place, letting you preview the effect: you should now see a
small army of octopi particles. In the Hierarchy panel, you’ll see that the
particle system is a child object of OCTOPUS. Because the particle system is the
parent of OCTOPUS, whenever the OCTOPUS moves, the particles should move
with it.

When you select a particle system, you should see a particle effect pop-
up window in the bottom right of the Scene panel. This window lets you
control the particle system so you can make and test effects. The particle
pop-up window has two buttons—a Simulate/Pause toggle and the Stop
button—and two text fields for setting the playback time and speed of the
effect.

Two gizmos toggle buttons are located in the main editor: one in the
top right of the Game panel and another in the top right of the Scene
panel. When a gizmos button is highlighted, the helpful gizmo graphics
will appear. A drop-down arrow next to each gizmos toggle button provides
options for which gizmos will be drawn (in a checklist format) and their
sizes via slider bars.

Previewing Aspect Ratio and Screen Resolution
Let’s explore how GameObjects in your scene will look at different screen
sizes or on different platforms. Click the Free Aspect drop-down menu at
the top left of the Game panel (Figure 1-14).

The Free Aspect option lets you expand the game’s view to fill the
entire Game panel, whereas the other options scale the view based on a
ratio, such as 5:4, 4:3 or 16:9, or a specific screen resolution. Here, the reso-
lution is set to the default stand-alone player at 1024×768. In this context,
Unity uses the term player to refer to the final build file. Along with screen
resolution settings, you can find all the player settings in Edit4Project
Settings 4Player.

If you want to use screen resolutions or aspect ratios that aren’t in the
drop-down menu, click the + (plus) icon at the bottom of the drop-down
menu to add new ones. Any resolutions or ratios you add will be saved in
your project settings, but they’ll only be available in this project.

2D Unity (Early Access), © 2015 by Jeff W. Murray

14 Chapter 1

Figure 1-14: The Game preview panel showing playback and the Free Aspect drop-
down menu

For this demo we don’t need to change the aspect ratio, so if you changed
it, set it back to Free Aspect. Then click the Maximize on Play button (to
the right of the Free Aspect button in Figure 1-14) to toggle the button on.
Click the Play button in the playback controls. The Game panel should
expand to fill the entire editor.

The maximized play mode is great for getting a better view of your
game, but because it doesn’t quite fill the entire screen, you can still access
the playback controls to stop, pause, or step frame by frame. When you
stop playback, the Maximize on Play function will automatically return the
Game panel to the size it was before playback started.

Now let’s take a quick look at some of those stats to see which ones you
need to keep an eye on.

Checking Your Game’s Stats
With your game running, click the Stats button at the top right of the
Game panel. The Statistics window (Figure 1-15) gives you information
about how your game uses its resources, including the volume level, tris
(short for triangles, referring to the number of triangles the renderer is
drawing), and so on. It’s a great place to get a bird’s-eye view of your game’s
performance.

For example, a high number of SetPass calls (under the Graphics
header) can directly affect how well your game runs. SetPass calls are calls
to the graphics card to send information telling it what to draw, and they’re
sent every time a frame update occurs as well as when the screen needs to
be updated.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Getting Started in Unity 15

Figure 1-15: The Statistics window in the
Game panel

Perhaps surprisingly, triangles are another statistic to keep an eye on.
Every sprite in front of the game’s camera, rendered to the screen, uses tri-
angles, even though it’s a 2D graphic. I’ll discuss this in more detail later in
the book, but for now let’s just say that in Unity, 2D sprites are made up of
flat 3D shapes that are rendered by an orthographic camera to make them
look 2D. For that reason, if you’re drawing numerous sprites and your game
starts having performance issues, check the numbers in the Statistics win-
dow first for bottlenecks.

Many other useful stats are provided in the Statistics window, but
they’re beyond the scope of this book. If you want or need more specif-
ics, the Unity documentation (Menu Help4Unity Manual) provides some
great information about it.

Closing Thoughts
Phew, you’ve just learned a lot about Unity. Congratulations! If you think
you need a bit more practice before moving on, play around with the editor
until it makes sense to you. The best way to learn Unity is to use it.

This book’s example files are available at http://www.nostarch.com/
2DUnity/ for you to experiment with, so download the projects, open them
in Unity, tweak them, and dismantle them. If the editor breaks or a file
stops working, you can always redownload the files and start again, so you
have nothing to worry about.

The intent of this tour was to introduce you to Unity. Once you get into
hands-on, practical game making, you’ll be more comfortable navigating
the interface. As you add sprites, gameplay logic, and Components, you’ll
get used to how all the elements fit together. In the next chapter, I’ll show
you some free graphics programs you can use to make sprites. You’ll create
some graphics, and then you’ll go back to the editor to start making games!

2D Unity (Early Access), © 2015 by Jeff W. Murray

2D Unity (Early Access), © 2015 by Jeff W. Murray

2
G r a p h i c s f o r Y o u r G a m e s

In this chapter, you won’t use Unity very
much. Before digging into Unity to create

animations, we’ll explore some options for
making graphics for your games. Tons of tools

make it easy to design sprites, tiles, textures, and any-
thing else you might want to create!

I’ll describe some basic aspects of 2D animation and walk through the
graphics formats you’ll be using in this book. I’ll also discuss ways to obtain
premade images and introduce two useful tools to help you create your
own: GrafX2, a powerful, free graphics program, and Piskel, a sprite sheet
generator. The chapter ends with two projects: you’ll create a brick tile
graphic and an animated player sprite that you’ll use to create a platform-
ing game in later chapters. If you don’t feel very artistic, the finished images
are also included in this chapter’s files.

Let’s get started!

2D Unity (Early Access), © 2015 by Jeff W. Murray

18 Chapter 2

Key Graphical Elements in 2D Games
Three key elements of 2D game graphics used in Unity are textures, sprites,
and sprite sheets. You’ll see them a lot. To help you follow along, here’s a
quick primer.

A texture is an image inside Unity. The texture doesn’t do anything in a
game until it is referenced by some code to draw it onto the screen. A sprite
is an image in your game. It’s a texture that’s being drawn to the screen by a
Sprite Renderer Component. The Sprite Renderer Component is one of Unity’s
built-in scripts. In this book, you’ll create player sprites, object sprites, and
even sprites for effects such as explosions.

2D animators create the illusion of movement by displaying a series of
images. Each image in your game takes up memory, so game developers
often conserve resources by using a sprite sheet, a single texture file made up
of every image used to animate a particular object (see Figure 2-1 for an
example).

Figure 2-1: A sprite sheet for a spinning candy cane from my game Santa vs. The
Meanies

2D Unity (Early Access), © 2015 by Jeff W. Murray

Graphics for Your Games 19

In Figure 2-1, the candy cane sprites on the sprite sheet are equally
spaced apart. Throughout an animation, the game displays one sprite from
the sprite sheet at a time so you don’t need a separate file for each one.
Sprite sheets reduce the amount of memory your game will use.

In this chapter, you’ll learn how to make your own sprite sheet, and in
the next chapter, I’ll show you how to use this sprite sheet to create an ani-
mated sprite.

N OTE 	 The term sprite dates back to the 1980s when it was first used to refer to graphics
overlaid on top of background images. Images “floated” around without affecting the
background image, as if they were ghosts, or sprites.

Image Formats in Unity
Unity supports JPEG, PNG, BMP, GIF, IFF, TGA, PICT, and many other
image formats, even Adobe Photoshop PSD and TIFF files. Of course, some
file formats work better for certain functions than others. In this book, I’ll
use GIF files to make animations and convert them to PNG files when I
want to import them into Unity.

The reason I use PNG files is that PNG files support transparency. To
allow for curves and other shapes, images contain transparent pixels. Pixels
can be transparent to different degrees, from slightly see-through to invis-
ible. You can take advantage of this to achieve a wide range of visual effects,
such as making images that look like glass. Player sprites usually have a
transparent background, so Unity only draws the character.

When developing in Unity, you should be able to use the same image
files for any platform, from desktop PCs to mobile devices and consoles. Unity
usually handles any necessary platform-specific conversions automatically.

Choosing Image Size
Image size is another detail to consider when making your game graphics,
because it can affect how your game runs and how much memory it will use.
If you’re using the free version of Unity, I recommend creating images that
use a square canvas whose dimensions are a power of two (2, 4, 8, 16, 32,
64, 128, 256, and so on) to help the engine move your image data around
faster.

If you’re using Unity Pro to build sprite sheets for you, you shouldn’t
need to worry about image sizes. Normally, Unity Pro can do all the resizing
for you. Make sure the images are 2048×2048 pixels or smaller to avoid any
issues with older or limited hardware.

2D Unity (Early Access), © 2015 by Jeff W. Murray

20 Chapter 2

Obtaining Premade Graphics
If you’d rather focus on designing your game instead of creating art for it,
you can use premade graphics or stock art. Lots of online resources are
available to get graphics at a low cost or for free. You even can buy them
directly within Unity!

Stock assets have their pros and cons. They are great for getting up and
running quickly so you can focus on designing your game. The downside
is that you’re sharing assets with other people, which means you risk your
game looking the same as someone else’s. It’s a bit of a trade-off between
quality and originality, but it’s your choice.

Buying Stock Assets
If you have a little money to spend, you can buy assets from the Unity Asset
Store. You can pick up graphics from as low as $2, and you have hundreds
of choices.

To access the Asset Store from Unity, click Window4Asset Store. If
you’re not already logged in to your Unity account, you’ll be prompted to
do so. As soon as you’re logged in, you’re ready to shop. Anything you buy is
added to your account for you to download as a .unitypackage file. Be sure to
keep an eye on any licensing restrictions when you buy something, because
special terms might apply.

Using Royalty-Free or Public Domain Assets
Another great way to get graphics is to download royalty-free or public
domain images, which are also free. Here are some great resources:

2D Game Art for Programmers  http://www.2dgameartguru.com/

BackYard Ninja Designs  http://www.dumbmanex.com/bynd_freestuff.html

Lost Garden  http://www.lostgarden.com/

Open GameArt  http://opengameart.org/

Some amazing free assets are available to you, but make sure you read
an asset’s license terms carefully before using it in a game project. If you’re
not sure whether you can use an asset in your game, try to contact the artist
directly or get some advice from a copyright expert. It’s very generous of the
creators to share these assets for free, so please respect their wishes. If an
artist asks for credit to use their material, be sure to oblige.

Create Classic Pixel Art with GrafX2
If you haven’t run off to get some premade artwork for your game by now,
you must want to create your own. Awesome! For the rest of this chapter,
you’ll use GrafX2, a free program that’s great for drawing classic pixel sprite
graphics. It’s very simple compared to other tools, such as Photoshop or

2D Unity (Early Access), © 2015 by Jeff W. Murray

Graphics for Your Games 21

Gimp but it gets the job done, and it’s fun to use. For example, when I
designed sprites for a game called My Nuclear Octopus (Figure 2-2), I aimed
for an arcade game vibe, and GrafX2’s blocky pixels suited that style.

Figure 2-2: My Nuclear Octopus, by PsychicParrot Games

The platforming game you’ll build in Chapter 9 will need some art,
and in this chapter, you’ll create a brick tile and a character as part of that
game. In this section, you’ll install GrafX2 so you can start drawing those
assets.

Downloading and Installing GrafX2
GrafX2 is a neat program based on an old-school, pixel art program called
Deluxe Paint, which was originally created for the Commodore Amiga 1000
in 1985. It’s always fun to explore new tools, but of course you can use any
program you like when you make your own graphics. Just make sure you
save your images as PNGs or a similar format suitable for Unity.

To get started, download and install GrafX2 from the Download sec-
tion of the GrafX2 website at http://pulkomandy.tk/projects/GrafX2/downloads/.
You should see a list of versions available for different platforms, including
Windows, Mac, and Linux. For Windows, download the installer (named
something like Graf<X2-X.X.XXX>.win32.exe) and run the installation pro-
gram. The file you need is in the Bin folder. Run the GrafX.exe file to get
started.

On a Mac, download the binary file (named GrafX2-svn<XXXX>-macosx
.tgz) and extract it in a suitable location, such as your Applications folder.
Browse to wherever you extracted the file and launch the GrafX2 applica-
tion from there.

2D Unity (Early Access), © 2015 by Jeff W. Murray

http://pulkomandy.tk/projects/GrafX2/downloads

22 Chapter 2

Getting Started with GrafX2
After launching GrafX2, you should see its multipurpose splash screen
(Figure 2-3).

Figure 2-3: The GrafX2 user interface

Click the Anim button to begin drawing, and you’ll be greeted with an
empty screen. Welcome to GrafX2!

GrafX2 starts with a blank canvas and a default 256-color palette.
When you click and drag the mouse around the screen, it should draw pix-
els. But the default canvas size is too big, so let’s fix that.

Click the icon that looks like a computer monitor
(Figure 2-4) to bring up the Picture & Screen Sizes
dialog (Figure 2-5). Click the Width field u, use the
backspace key to delete the existing number, and enter
16. Then click the Height field v, use the backspace key
again to clear the field, and enter 16. Finally, click the
Pixel Size drop-down menu w and select Normal 1x1.

Below the Pixel Size drop-down menu is a list of
commonly used screen sizes. These options are for
drawing large images, and because we’re working on
small sprites, you won’t need them right now. Click OK
to create a new canvas set to the new size.

Figure 2-4: The
Picture & Screen
Size icon is at
the top left of the
System tools.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Graphics for Your Games 23







Figure 2-5: The Picture & Screen Sizes dialog.

A small image preview box should appear in the top left of the main
GrafX2 window. Right now the window is pretty small, and it’s difficult to
work at this size, so let’s zoom in.

Press the M key to enter Magnifier mode (Figure 2-6). In magnifier
mode, the + and – keys on the keyboard’s numeric pad zoom in or out of
the image. If you’re using a mouse with a mouse wheel or touch scroll, you
can use the mouse wheel to control zoom.

Figure 2-6: The GrafX2 interface in Magnifier mode

2D Unity (Early Access), © 2015 by Jeff W. Murray

24 Chapter 2

The magnified image should appear on the right side of the screen; the
dotted border represents the edges of the sprite. You can draw anywhere inside
the border using the Drawing tools in the bottom-left corner (Figure 2-7).

Figure 2-7: The Drawing
tools with the Freehand
Draw tool selected

You’ll probably use the Freehand Draw tool the most, which is the wavy
line icon on the top row of the toolbar. This tool lets you draw with the
mouse. To the left of the Freehand Draw tool is the Paintbrush tool. Click
it to choose brush styles, such as pixels, small squares, circles, dots, or lines.
For now, just select the single-pixel image from this menu.

In GrafX2 you can select a foreground color and a background color to
work with. Look at the color palette at the bottom of the screen (Figure 2-8).
To set the foreground color, click any of the color blocks. To set the back-
ground color, right-click a color block. To draw using the foreground color,
click inside the canvas; to use the background color, right-click inside the
canvas.

Figure 2-8: The color palette

Making a Brick Tile
In this section, I’ll show you how to make a simple brick tile you can use to
build platforms in your games. A tile is a small rectangular image. Back in
the day, arcade games were made of grids of tiles, as shown in Figure 2-9.
This is still a common approach to game design, and I’ll discuss it in depth
in Chapter 8.

The tile-based level system that you’ll create calls for all tiles to be the
same size and same square shape. The level tiles will be 16 pixels wide by
16 pixels high.

Set the Image Size
If you followed along earlier and resized your canvas, you should be ready
to go. You’ll be working with a 16×16 canvas. If you need to resize your can-
vas, follow the steps in “Getting Started with GrafX2” on page 22.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Graphics for Your Games 25

Figure 2-9: A level built of brick tiles

Draw the Brick Tile
Tile graphics are usually repeated in a pattern, so
we need to make sure they fit together nicely. This
feature is called seamless tiling. In its simplest form,
seamless tiling ensures that pixels align correctly on
all four sides of the image to make a pattern that’s
pleasing to the eye. In this project you’ll create a
simple brick pattern, as shown in Figure 2-10.

Draw an Outline

The brick pattern we’ll use is a traditional artistic method of representing
bricks. This pattern looks like builder’s bricks piled on top of one another.

To start drawing, first compose the lines that will form the cement
between the bricks. Select the Lines tool from the main toolbar and draw
four lines, like this:

1.	 Enter Magnifier mode to zoom in.

2.	 Draw a horizontal line across the top of the image.

3.	 Draw a horizontal line across the image along the 9th pixel from the top.

4.	 Connect both horizontal lines with a vertical line along the far left side.

5.	 Draw a vertical line from the bottom to the middle horizontal line
along the 9th pixel from the left.

Figure 2-10: A simple
brick pattern

2D Unity (Early Access), © 2015 by Jeff W. Murray

26 Chapter 2

Color the Bricks

Once the lines are in place, you’ll color in the spaces. Select red from the
palette, and then select the Flood Fill tool (which looks like a little bucket
pouring paint—see Figure 2-11) on the toolbar.
Click each empty area, being careful not to click
on the actual lines, to fill out the image and create
seamless tiling.

Check Your Seamless Tiling

To make sure your fantastic brick tile works the way
it’s supposed to, use the Adjust tool (the hand icon
underneath the Brush tool) to move your image
around. By clicking the mouse and moving your
image, you can see whether the edges match up and
correct any mistakes. Try moving the image around so
it looks like the one in Figure 2-12.

After you’ve checked out your fancy new brick
pattern, make sure the image is back to how it was
before you used the Adjust tool. That is, if it’s off-
center, use the Adjust tool to recenter it.

Save Your Work

Alright! Now you need to save the brick pattern as a PNG file (Figure 2-13).
Follow these steps to save any of the drawings you create in GrafX2:

1.	 Click the S in the Save/Load icon.

2.	 Select png from the Format drop-down menu.

3.	 Click Select drive u to change to the drive you want to save your work to.








Figure 2-13: The Save Picture dialog

Figure 2-12: Move the
image around with
Adjust tool to make
sure the edges match.

Figure 2-11: The
Flood Fill tool

2D Unity (Early Access), © 2015 by Jeff W. Murray

Graphics for Your Games 27

The current save location is shown as a file path v. Below the file
path is a window containing files and folders at the current save loca-
tion w. Click the files or folders in the window to navigate to where you
want to save your image.

GrafX2 uses an old-school file-saving UI, which you might not be
accustomed to. To access a folder you’re familiar with on Windows, like
Pictures, click C:\, then Users, and then your username (which defaults
to User if you haven’t set it on your computer). You should see a list of
folders familiar to you. Select the one you want to save to. When you
click the Select drive button on a Mac, you’ll see available folders in
the files section in the bottom left. To access familiar folders, such as
Documents or Desktop, click Users/username followed by the folder you
want to save to.

To save time, you can assign save destinations to Favorite buttons,
which are the small white stars in the top right of the window x. Right-
click one and select Set to save the selected file location. Next time you
need to access this folder, you can skip right to it by clicking the button.
Now you can continue with the instructions:

4.	 Name your file brick_tile. Although a file extension (.png) appears in
the filename field to start with, you don’t need to add the file extension;
GrafX2 will do that for you.

5.	 Click the Save button to save the image.

That’s it. Let’s move on to a more ambitious task: creating a player sprite!

Making an Animated Player Sprite
To create a player sprite, you’ll use a simple pixel art style. When you’re
working at this level of resolution, too many details can make your char-
acter look strange. Give your character blocky, exaggerated features so
they stand out! Look back at some of the most iconic arcade game charac-
ters, and you’ll notice they have exaggerated features for the same reasons.
Imagine how the original Mario sprite would look without his mustache or
what Mega Man would look like with smaller eyes.

Of course, designing a character is an artistic process, and everyone has
their own style and inspiration. As you follow along in this section, you’ll
pick up some techniques that you can use in your own graphics.

Set the Image Size
Before you start creating the sprite, you need to set up a suitable image size.
Follow the same resize instructions from “Getting Started with GrafX2” on
page 22 and set the width to 16 and the height to 20. Make sure the pixel
size is set to Normal 1x1.

2D Unity (Early Access), © 2015 by Jeff W. Murray

28 Chapter 2

Draw Your Character
In this section, you’ll draw and animate Max (Fig
ure 2-14), the star of the platforming game we’ll create
in later chapters. Max’s walk cycle is two frames of ani-
mation, which is just enough to provide a satisfying illu-
sion when he’s moving around the screen.

GrafX2 lets you draw with a single pixel, or you
can use the built-in brush shapes. For this character,
let’s use a circle brush to lay out his body and then draw
with a single pixel to fill in the details.

Draw the Body

Open the Paintbrush menu by clicking the Brush tool and click the circle
in the fourth column on the second row down (Figure 2-15). Your brush
should now be a circle. Next, select a skin color for Max from the color pal-
ette; I chose a peachy pink.

Figure 2-15: The Paintbrush tool menu

Using your circle brush, make the character’s head and body by draw-
ing two circles, as in Figure 2-16.

Now we have a basic template that we can build on: a head and the
main part of the body. Treat this as a side view of the character, with his
body pointing to the left. Next, we’ll fill in the rest of the body, basically by
doodling!

Connect the two circles to form a two-pixel-wide neck. Also, draw a two-
pixel-wide leg and a foot. This produces the character’s full body, shown in
Figure 2-17.

Figure 2-14: The
completed Max
character

2D Unity (Early Access), © 2015 by Jeff W. Murray

Graphics for Your Games 29

Design a Stylish Outfit and Hairdo

Let’s add some color to give Max pants, a shirt, and hair. I chose brown for
the pants. If you draw a brown line across Max’s waist, you can select the
Flood Fill tool and click on his legs to fill in the rest of his pants. You can
add a shirt using the same technique.

Click the Freehand Draw tool and draw
a line of pixels just below his neck. Then
choose a color for his shirt (I chose red),
select the Flood Fill tool, and click on his
body to fill in the shirt. This is just an easy
way to color entire sections.

It’s time to give this fine chap some hair.
But first, let’s change the shape of his face a
little. Clear the far left pixel at the top of the
head by right-clicking it with the Freehand
Draw tool. It will look like you’re deleting it,
but you’re just setting that pixel to the back-
ground color so it’s no longer visible. For
this to work correctly with transparent back-
grounds, make sure the background color is
set to black. If you’re not sure, just right-click
black in the top left of the color palette.

Next, draw a straight line at the top of
the head. Figure 2-18 shows what Max looks
like so far.

Figure 2-16: Two circle brushes
will form the head and body of
the Max character.

Figure 2-18: Now Max has
trousers and a shirt. Note the
cleared pixel just below the
left of the hairline.

Figure 2-17: The Max character
is starting to take shape.

2D Unity (Early Access), © 2015 by Jeff W. Murray

30 Chapter 2

Doodle Some Details

Next, fill in some details in Freehand
Drawing mode: add more hair, a mustache,
an eye, and an arm. Just make sure you draw
with black pixels if you want an element to
appear black in your game. If you delete
a pixel in GrafX2, it will look black in the
editor, but once you export, it will be trans-
parent in Unity. To draw Max’s eye, I used a
white pixel on top of a dark gray pixel. You
can see these details added in Figure 2-19.

Max is looking pretty good, and you
could stop here and start animating. But let’s
add a little extra shading to simulate lighting.
Varying the shades of pixels at the edges and
corners can make a huge difference and give
the sprite more depth.

To simulate lighting effects, imagine a
light is shining on your sprite from a fixed
position. You can change the color of your
pixels to shade your sprite, as though it was
being affected by that light. For example, if
light was coming from the top right, shadows
would be cast down to the lower left. Use
darker shades for pixels that are farther away
from the light, as shown in Figure 2-20 for a
simple sphere.

You don’t have to shade everything.
Sometimes all it takes to add richness is
a subtle color change along the edge of a
sprite. For example, I colored the left side
of Max’s trousers darker than the right so it
looks like a shadow is wrapping around the
legs, giving them more depth.

The final Max sprite design has a few
extra bits of shading in the hair, face, and
body (Figure 2-21). I didn’t follow any strict
rules to add those details; I just experi-
mented until I was satisfied with the over
all look. You don’t have to be a great artist
to experiment, so play around and see what
you come up with!

The image file of the final, fully shaded
character (Player_Full.gif ) is in the Chapter 2/
Source Images folder in the example files for
the book, which you can download from
http://www.nostarch.com/2DUnity/.

Figure 2-20: An example of a
shaded sprite that simulates a
light source casting from the
top right

Figure 2-19: The Max charac-
ter before shading

Figure 2-21: The completed
Max character with some
simple shading to add depth

2D Unity (Early Access), © 2015 by Jeff W. Murray

http://www.nostarch.com/

Graphics for Your Games 31

Animate!
Next, I’ll show you how I drew a simple walk animation (also known as a
walk cycle) of just two frames. The two frames for Max’s walk cycle are shown
in Figure 2-22.

Figure 2-22: The two frames of ani
mation for the Max character sprite

At this point, your character sprite design should be finished. If you
want to make any major design changes to your sprite, it’s best to do that
before you start animating. Otherwise, you’ll have to adjust each frame sep-
arately. (That wouldn’t be so bad for this simple, two-frame walk cycle, but
it’s a lot more tedious when you’re working with more than 50 frames!)

Add a New Animation Frame

Click the Add Animation Frame button, which is
below the screen size button (see Figure 2-23), to
have GrafX2 copy your current image into a new
animation frame. Notice that the frame number
has increased in the animation information bar; it
should read #2 in the third row of tools. You could
use the frame navigation buttons to step through
the animation, but for now keep the frame num-
ber on frame #2.

Modify and Animate Graphics

In this second frame, we’ll place Max’s legs into a stepping
position. Do this by using the Brush Grab tool (Figure 2-24),
as follows:

1.	 Select the Brush Grab tool from the toolbar.

2.	 Select the leg, as shown in Figure 2-25, to make a new
brush in the shape of Max’s leg. The brush will move
around with the mouse pointer.

Figure 2-24:
The Brush
Grab tool

Figure 2-23: The Frame
tools, from left to right:
Add animation frame,
Delete animation frame,
Step back a frame, and
Step forward frame

2D Unity (Early Access), © 2015 by Jeff W. Murray

32 Chapter 2

Figure 2-25: Selecting leg pixels
using the Brush Grab tool

When you’re drawing multiple animation frames, the Brush Grab tool
makes it easy to move large chunks of pixels. It allows you to copy sections
of the character to paste onto other frames, so you can rework certain
areas without having to redraw the entire sprite for each frame. Next, fol-
low these steps:

1.	 Move the leg-shaped brush on top of the leg in the image.

2.	 Right-click to erase the old leg. Max should end up as just a body, arm,
and head.

3.	 Click the Brush Effects button on the toolbar (the FX icon with a dot-
ted box around it). The Effects popup will appear.

4.	 Select Rotate any angle from the Shape Modifications section.

5.	 The Rotate tool changes the mouse pointer to a box.
Drag and drop the box to rotate the new leg-shaped
brush so the leg is in a stepping position.

6.	 When you’re satisfied with the angle, right-click to
confirm the rotation.

7.	 For the second leg, click the Brush Effects button
again to bring up the Effects popup.

8.	 Select Rotate any angle from the Shape Modifications
section of the Effects popup.

9.	 Rotate the brush so the leg is facing in the opposite
direction (Figure 2-26).

The only downside to this animation approach is
that the pixels can get jumbled, so we’ll need to tidy
things up.

Figure 2-26: After
you rotate the
legs, the pixels
look pretty messy!

2D Unity (Early Access), © 2015 by Jeff W. Murray

Graphics for Your Games 33

Tidy Up

If the character looks a bit odd, take the time to shift some pixels around to
make it look better.

At this stage, you should have two animation frames
drawn, and you can now watch your animation. Use the
frame navigation buttons in the animation information bar
to check how your animation flows. Right-click and hold on
the Go To Next Frame button (Figure 2-27) to automati-
cally cycle through the frames and see how the character
moves.

When you’re working on an animation, it helps to play
the animation often. Professional animators do something
called scrubbing, which is moving forward and backward
through the animation to make sure it flows well.

Save the Animation File

Save the image by clicking the S part of the Save/Load icon. Follow the
same steps in “Save Your Work” on page 26, only this time save the image
as a GIF file to keep all the image data intact. Saving in another format
might save only the first frame, so you’d lose any extra frames.

Generate a Sprite Sheet with Piskel
In this section, I’ll show you how to use Piskel, a browser-based pixel editor,
to generate a sprite sheet. Piskel is an open-source app that can import GIF
files containing multiple animation frames and output them all on a sprite
sheet.

Unity ships with the Sprite Packer, which can copy many images onto a
single sprite sheet. But the Sprite Packer doesn’t work with GIF files, which
is the approach I’m taking in this book. The reason I use Piskel is simply
that it’s much easier to export an animated GIF file into Piskel instead of
importing each animation frame individually using Unity’s Sprite Packer.

You can even use Piskel to make character sprites from scratch if you
prefer, but the extra functionality in GrafX2 works best for me.

N OTE 	 Piskel is available both offline and online, where it has a lively community. You can
create a public gallery to show off your creations to the world!

Import Your Sprite

Go to the Piskel website at http://www.piskelapp.com/ and click the Create
a Sprite button. The Piskel editor window opens, as shown in Figure 2-28.
To see what each button does, hover your mouse over it to make a tooltip
appear.

Figure 2-27:
The Go To
Previous Frame
and Go To
Next Frame
buttons

2D Unity (Early Access), © 2015 by Jeff W. Murray

http://www.piskelapp.com/

34 Chapter 2

Figure 2-28: On the right-hand side of the Piskel editor, there are menu functions, such as
the folder icon to import images with.

To import an image, click the folder icon at the bottom of the menu
along the right edge of the window. A new menu should open that contains
your options for loading files. In the Import from Picture section, click
Browse Images to bring up a file browser dialog, as in Figure 2-29.

Figure 2-29: The Import from Picture feature allows you to import graphics into Piskel.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Graphics for Your Games 35

Find your Max character file in the file browser and click Open. The
Import Image popup should appear with import options (Figure 2-30).

Figure 2-30: The Import Image popup

Uncheck the Smooth resize checkbox. The size settings should already
be set to 16 by 20 pixels, and you should see a little animated preview of
your character sprite. He may look fuzzy in the preview window, but once
the file is imported into Unity, he should look just fine. Click Import to
continue.

Export the Sprite Sheet as a PNG

The editor should now show your player sprite and an animation preview in
the top right (Figure 2-31).

Figure 2-31: After importing the player sprite, Piskel shows the main editing area and ani-
mation previews.

2D Unity (Early Access), © 2015 by Jeff W. Murray

36 Chapter 2

Click Export (Figure 2-32). It’s the fourth button down, the one that
looks like a floppy disk with an image in front of it. The Export Image
popup should open (Figure 2-33). In the Export spritesheet section of the
Export Image menu, click the Download PNG button to save a completed
sprite sheet to your hard drive.

Figure 2-32: The Export Image
popup

Closing Thoughts
In this chapter, you looked at different ways of obtaining graphics, as well
as how to create and export them yourself in GrafX2. You’ve learned about
sprite sheets, which you can use to manage graphics more efficiently, and
how to export them using Piskel.

The pixel art techniques I’ve introduced are just the beginning of a
very rich subject. Pixel art is an art form, after all. Master these tools and
then practice, practice, practice.

The next chapter takes you on a guided tour of Unity’s 2D features and
some of the main features you’ll use to make your games. Oh, and don’t for-
get to keep those graphics handy—you’ll use them later in the book!

Figure 2-33: Near the top of the
Export Spritesheet menu is the
Download PNG button.

2D Unity (Early Access), © 2015 by Jeff W. Murray

3
U s i n g U n i t y t o

An i m a t e 2 D S p r i t e s

This chapter explores how Unity
handles 2D projects. You’ll learn more

about the 2D interface, about the camera,
and how to optimize and import images.

Finally, you’ll animate a sprite.

Cameras
Unity draws everything in 3D, including 2D sprites: the engine automati-
cally builds flat models and displays sprites on them, just like cardboard
cutouts. Each sprite is fixed on the same position on the z-axis in 3D space,
and an orthographic camera displays the sprites without perspective. When
you see the sprites onscreen, they appear to exist in 2D space rather than in
3D space.

When you select the Empty 2D project type to set up Unity’s editor con-
figuration for 2D game making, Unity shields you from the complexities
that occur under the hood. As a result, you don’t have to work around 3D
tools that may not have been intended for making 2D games.

2D Unity (Early Access), © 2015 by Jeff W. Murray

38 Chapter 3

Figure 3-1 shows the difference between how Unity deals with sprites in
its 3D world (left) and how the orthographic 2D view displays them (right).

Figure 3-1: How a 2D game scene is constructed in 3D space (left) versus how the game looks through an
orthographic camera (right)

Choosing Empty 2D sets the Scene view to 2D. It’s possible to switch
between 2D and 3D views by using the 2D button, which is the small button
labeled 2D just above the Scene panel. Because you’re making 2D games in
this book, you won’t need to use this button.

A game is like a movie in that players see all the action through a cam-
era. Every scene needs at least one camera, and you can use multiple cam-
eras for different views. In Unity, a camera is a GameObject with a Camera
Component attached to it. Both 3D and 2D games use the same type of
camera, but the Camera Component’s properties are set up differently for
2D games. See Figure 3-2 to view these properties in the Inspector panel.

When Unity is set up to build a 2D project, all cameras default to 2D
settings. In Figure 3-2, the Projection setting v is set to Orthographic and
is followed by the Size value. The Size value w affects the viewing volume of
the camera. Increasing the Size property zooms out of a scene, and decreas-
ing its value zooms into the scene. You’ll have the opportunity to experi-
ment with this value later in the book when you make your own scenes.

When more than one camera is in the same scene, the Depth value x
decides the order in which to draw the camera views. A camera with a lower
depth draws what it sees to the screen first, and cameras with higher depth
values draw what they see on top of that. If you overlay cameras on top of
each other in this way, you can build a screen made up of several views. For
example, you may want one camera to draw a background, another camera
to draw clouds on top of the background, and a third camera to draw the
main game. To do this, you could use three separate cameras and adjust
each camera’s Depth setting to arrange them appropriately.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Using Unity to Animate 2D Sprites 39








Figure 3-2: A typical Camera Component
setup for a 2D game

Also, note in the Transform section u in Figure 3-2, the Position
along the z-axis is set to −10. If this value were set to zero, the camera would
be at the same position on the z-axis as the sprites and the camera would
look past the scene. At −10, the camera is positioned so it can see the scene.
Keep this setting in mind: if you find your camera isn’t rendering your 2D
scene, check the Position z-axis.

Now that the editor set up for making a 2D game, let’s look at how to get
sprites into the editor and how to move, scale, and rotate them onscreen.

Importing Images
Open Unity and click the New Project button. Name the project 2dTour,
select a location to save the project, and then choose the Empty 2D project
type. Click the Create button to get started.

After the project loads, you should see the standard 2 by 3 view
(Figure 3-3); if not, select it from the Layout drop-down menu at the
top right of the interface. This is the layout you’ll use in this section of the
book. Open an Explorer window (or Finder on a Mac) and browse to wher-
ever you saved the brick tile image you created in Chapter 2. Or you can
grab the brick_tile.png image from the Images folder in the example source
files included with this book (see http://nostarch.com/2DUnity/).

2D Unity (Early Access), © 2015 by Jeff W. Murray

40 Chapter 3

Figure 3-3: The 2 by 3 view in the Unity editor

To import the brick_tile.png file into Unity, drag it from the file browser
window into the Project panel’s Assets folder. Unity will import it for you.
Another way to import the image is to right-click on the Project panel’s
Assets folder and select Import New Asset from the menu.

Click the newly imported brick_tile object in the Project panel; the
Inspector panel shows all the import options for this type of asset (Figure 3-4).
A preview of the sprite is shown at the bottom right of the panel.

Let’s look at how the Pixels To Units setting affects the brick_tile sprite.
In Unity, scale is unspecified. It is measured in units, which you can choose.
A unit could be a pixel, a meter, a light year, or another unit measurement:
it doesn’t make a difference to the engine. In this case, let’s set it to 16 so
one of our pixel bricks is one unit. In the Game panel, the brick sprite
appears in the center. It’s small right now because the default Pixels To
Units size is 100 pixels per unit. Although this size works for games with
detailed graphics and larger images, it doesn’t work for the simplistic retro
graphics we’ll be using in this book.

First, click the brick_tile item in the Project panel’s Assets section.
Then click and drag the item into the Hierarchy panel to add it to the
scene. To make the brick sprite bigger, click the brick_tile item again. In
the Inspector panel, change the Pixels To Units value to 16. Now, one brick
will be a unit wide and a unit high.

Click the Apply button in the Inspector panel. The brick_tile sprite
becomes much larger in the Game panel. Perfect! The number of units
your sprites take up in the Scene also impacts how your objects react to your
game’s physics simulation, which I’ll discuss later in the book.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Using Unity to Animate 2D Sprites 41

Figure 3-4: The Inspector window shows the Import Settings of the selected brick_tile asset.

To display the sprite in your game, click the brick_tile GameObject
in the Hierarchy. The Inspector panel should show its Components and
properties. Two Components are attached to the brick_tile GameObject:
a Sprite Renderer and a Transform.

The Sprite Renderer Component draws the sprite onscreen. If you
removed that Component, the GameObject would still exist in the Hierarchy,
but the brick sprite would no longer be visible in the Game or the Scene views.

All GameObjects have the Transform Component, which stores
and accesses position, rotation, and scale information. You can change
Transform properties in the Inspector panel or alter them visually in the
Scene panel using the Rect tool (on the right in Figure 3-5). The Rect tool
acts as an all-in-one positioning, scaling, and rotation tool specifically for
2D GameObjects.

Click the Rect tool now; handles should appear
around the brick_tile GameObject in the Scene panel.
You can drag the handles to change the scale and rota-
tion of the sprite, or you can click inside the sprite to
drag the entire image. The Rect tool is the fastest and
easiest way to modify your 2D graphics.

Figure 3-5: The Rect
tool on the right is the
selected tool in the
Scene tools.

2D Unity (Early Access), © 2015 by Jeff W. Murray

42 Chapter 3

Although you can scale sprites using the Rect tool, when you’re devel-
oping games for devices with limited memory, such as mobile phones or
tablets, choosing the correct sizes for images before you import them into
Unity is best for performance and memory use.

Optimizing Your Images
The brick_tile image you imported into the editor is 16 by 16 pixels square,
which is a power of 2 (16 = 2 × 2 × 2 × 2). If you try to import an image with
dimensions that aren’t powers of 2, such as the player_spritesheet.png you made
in Chapter 2, it will import successfully, but the editor will warn you that
the image can’t be compressed.

Powers of 2 are very efficient as image dimensions in computer graphics.
It takes less computation to manipulate the numbers that make up their
underlying data, which means graphics cards can handle these images faster.
As the speed of modern graphics cards increases, performance becomes
less and less of a problem. But if you’re targeting mobile platforms, efficient
image dimensions can make a huge performance difference. Using images
with dimensions that are not a power of 2 can cause your game to slow down,
and because you’re unable to compress these images, they’ll take up a lot
more memory.

The player_spritesheet.png you use in this book is not optimized for
mobile devices. But because you’ll be using just a few small images, the
performance difference won’t be noticeable.

N OTE 	 If you want to rescale player_spritesheet.png, load the image into a paint program
(such as Paint.NET) and change the size of the canvas size to a power of 2.

You’ve used the Import Settings to get sprites onto the screen, but
you’ll need to know more about Import Settings to do complex tasks, like
animation.

Import Settings
To explore the Import Settings in more depth, use the player_spritesheet.
png image that you created in Chapter 2 (you can also find it in the Images
folder of the book’s resources). Right-click the Project panel’s Assets section
in the editor. Click Import New Asset and then find and import the player
animation file.

Recall that the image is a spritesheet containing multiple images in the
same graphic, so you’ll tell Unity to split the graphic into the frames of ani-
mation you want it to play.

If player_spritesheet isn’t highlighted in the Assets section, click it to
highlight it. The Inspector panel shows player_spritesheet.png’s Import
Settings (Figure 3-6).

2D Unity (Early Access), © 2015 by Jeff W. Murray

Using Unity to Animate 2D Sprites 43














Figure 3-6: Import Settings for player_spritesheet.png

Any changes you make to these settings won’t be saved until you
click the Apply button, and you can undo changes by clicking Revert.
But not that clicking Revert only brings back the version you last applied.
The Revert and Apply buttons are grayed out until you actually make
modifications.

Let’s start at the top and work through the Import Settings for 2D
games that you’ll be using most often in this book.

Texture Type
When you’ve chosen to build a 2D project, the default option, and the one
you want to use, is Sprite (2D and UI) Texture Type u. This setting is the
only texture type you’ll need in this book. The following settings appear
only when the import texture type is set to Sprite (2D and UI).

Sprite Mode
The two options for Sprite Mode are Single or Multiple v. Graphics that
contain a single image (such as the brick_tile sprite) should be set to
Single, whereas graphics that contain multiple images—like the player_
spritesheet.png—should be set to Multiple. I’ll discuss the Multiple option
in more detail in “Character Animation” on page 45, where I talk about
player animation.

Pixels To Units
Recall that the Pixels To Units setting w was explained in “Importing
Images” on page 39. To give you a quick recap, this value specifies the
number of pixels that make up a single unit in Unity space.

2D Unity (Early Access), © 2015 by Jeff W. Murray

44 Chapter 3

Pivot
The Pivot setting x lets you choose where to place the pivot point for a
sprite. The pivot point is the point at which a sprite will rotate. By default,
the pivot point is in the center of the sprite, but you can choose another
typical pivot point locations or you can even use the Custom option to place
the pivot point manually. Having a flexible pivot system comes in handy
when you need to rearrange your scenes to exactly.

The Sprite Editor Button
Clicking the Sprite Editor button y brings up a visual editor for trimming
unused space around a sprite, positioning a custom pivot point, or slicing
up a single image into multiple sprites. I’ll discuss the visual editor in more
depth in “Slicing Spritesheets Automatically” on page 45.

Generate Mip Maps Checkbox
When you select the Generate Mip Maps checkbox z, the engine creates
multiple sizes of texture automatically and uses the lower-resolution images
for objects that are far away from the camera. It increases rendering speed
and reduces some of the quality loss that occurs when you’re trying to ren-
der large images at a small size. With the relatively simple graphics we’ll use
in this book, mip maps don’t make much difference. Also, it’s best to turn
them off when you’re not using them so the system won’t generate and store
unnecessary images. In future game projects, if you decide to move the
camera in and out of a 2D scene filled with complex graphics, you may want
to experiment with this setting.

Filter Mode
Graphics used in a game are usually filtered or smoothed in some way.
Processing images with filters helps to make images look smoother when
they’re drawn at different sizes on the screen. Without filtering, images
can sometimes appear pixelated or even have small artifacts left over from
rescaling or image compression processes. Your filter choices are Point,
Bilinear, or Trilinear {. I like to think of these as meaning “no smoothing,”
“normal smoothing,” and “highest-quality smoothing,” respectively. This
book uses Point because it doesn’t filter or smooth out the images, which
is perfect for that crunchy pixel look!

Max Size and Formats
Selecting a maximum size | for images will cap your images at that size
automatically if any of them happen to exceed this setting.

The Format drop-down menu } provides you with different methods
of storing the image depending on the platform you’re targeting. For desk-
top games, you can choose from Compressed, 16 bit, and TrueColor. When

2D Unity (Early Access), © 2015 by Jeff W. Murray

Using Unity to Animate 2D Sprites 45

I’m using images no bigger than a few hundred pixels (like the ones in this
book), I’ll always choose TrueColor for quality, even though it consumes
more memory. The amount of memory these tiny images use is minimal.
But if you use lots of graphics in future projects, you might need to com-
press some or all of them to reduce file size or memory use.

If you’re producing games for console or mobile devices, you’ll see a lot
more image choices depending on the target device. As they’re specific to
those target devices, I won’t be going into detail about them here.

With a better understanding of the Import Settings and some of the
available options for getting your graphics into the engine, it’s time to bring
these settings to life. Next, you’ll have Unity split up the Max character
spritesheet and make Max walk!

Character Animation
Prepare to shout out “It’s alive!” just like Dr. Frankenstein when you’re
done with this section. You’ll slice the animation spritesheet you created in
Chapter 2 and play it as an animation in Unity.

Let’s start by setting up the Import Settings for player_spritesheet.png.

1.	 Select player_spritesheet in the Assets section.

2.	 In the Inspector panel, change Sprite Mode to Multiple to tell Unity
you want multiple sprites from this single image.

The default Filter Mode will make your images fuzzy. For your tiny
sprites, you’ll need to use a mode that doesn’t smooth out the image:

3.	 Click the Filter Mode drop-down menu and change it to Point.

4.	 Click the Apply button.

Next, you need to tell the editor how to slice up this image to create
multiple sprites, which is done in the Sprite Editor. Click the Sprite Editor
button to open it.

Slicing Spritesheets Automatically
When you open the Sprite Editor, a window appears with a preview of your
image and a few buttons surrounding the window. A Slice button and Trim
button are at the top left and are initially grayed out. To the right of these
buttons are the Revert and Apply buttons. These apply changes or revert to
a saved version when you want to undo a change.

First, you need to tell Unity how you want to slice the image:

1.	 Click the Slice button to bring up the Slice menu (Figure 3-7). Set the
default slice Type to Automatic. In Automatic, the editor will guess
where the edges of sprites are.

2D Unity (Early Access), © 2015 by Jeff W. Murray

46 Chapter 3

Figure 3-7: The Sprite Editor and the Slice menu

2.	 Click the Slice button again. Some lightly colored rectangles (which
can sometimes be difficult to see) should appear around the areas that
Unity thinks are your sprites. These rectangles are the slices.

3.	 Click the Apply button. The slices will be used to generate two new
sprites that will become visible in the Project panel’s Assets section.
In the Project browser, a drop-down arrow appears next to the player_
spritesheet. When you click the arrow, two new sprites should be dis-
played from the images in your spritesheet.

4.	 Close the Sprite Editor.

To make sure the images have been sliced correctly, click either one of
the new sprites in the Assets section to see a preview in the Inspector.

Now let’s combine these individual images into an animation.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Using Unity to Animate 2D Sprites 47

Create an Animation File for Your Character
Drag and drop the player_spritesheet from the Assets section into the Scene
panel. Usually, you can drag items into either the Scene panel or Hierarchy
panel to add them to the scene, but this is one of the rare cases in which
the outcome will be different for each panel. So make sure you drag the
player_spritesheet item directly into the Scene panel, not the Hierarchy.

From the Create New Animation dialog that opens, choose where to
save the animation (Figure 3-8). By default, the filename is New Animation.
anim. Change it to playerwalk.anim and click Save. The default save location
for animations is your project’s Assets folder. Later in the book, you’ll learn
better ways to organize and manage your files. For now, as long as the file is
stored in the project files, Unity will be able to use it.

Figure 3-8: The Create New Animation save dialog

Now you should be able to see player_spritesheet in the Scene panel, the
Hierarchy panel, and the Game preview. Click the Play button to start the
game, and you’ll see Max walk!

Automatic slicing can be very helpful, but notice that Max jitters for-
ward one pixel in the second frame. The reason is that automatic slicing
didn’t slice the image quite right. Max looks okay when he isn’t moving, but
he might look strange when he walks around a game level. To fix this, you’ll
need to keep his body in the same place between frames, which is a job for
the manual slicing method in the Sprite Editor.

Slicing Spritesheets Manually
Using the manual slicing system requires some extra time, but it’s often the
best way to make sure your animations display properly and the images are
sliced correctly.

2D Unity (Early Access), © 2015 by Jeff W. Murray

48 Chapter 3

Click player_spritesheet in the Assets section to bring up its Import
Settings in the Inspector. Next, click the Sprite Editor button. Figure 3-9
shows that the automatic slices you made earlier are tight around the two
images.

Figure 3-9: The Sprite Editor showing slices around the two sprites in player_spritesheet.png

From the top left of the Sprite Editor, click the Slice button. Change
the Type from Automatic to Grid in the drop-down list. Next, click any-
where on the right image (the one of Max in the stepping pose) to select
the slice. Handles will appear around it.

The Sprite information panel at the bottom right of the Sprite Editor
provides some useful data about slice parameters. Similar to the Inspector
panel, you can enter values to rename the slice, view or set its Position and
size, set a Border, or select the position of the slice’s Pivot point.

The Sprite information panel shows you that the width of the image
slice on the right side of the spritesheet is 8 pixels. Click the image slice on
the left and you’ll see in the information panel that its width is 7 pixels.
This slice is one pixel narrower. To prevent the sprite from jittering between
frames, you want to make the boxes around each image the same width.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Using Unity to Animate 2D Sprites 49

Let’s make the left slice a bit wider to match the width of the right slice.
We can do that in the Sprite information panel:

1.	 With the left slice selected, click the Position X box and enter 4. The
slice rectangle around the image should move one pixel to the left.

2.	 Click the W box and enter 8. The right side of the slice rectangle will
move a pixel to the right.

N OTE 	 It’s also possible to set these values visually by dragging and dropping the boxes. I
chose to enter number values because it’s easier to explain.

Click the Apply button at the top right of the Sprite Editor to save the
changes you’ve made to the slice.

Click the Play button in the Unity editor. Now when Max walks, he
should stay in the same place without the single-pixel wobble. Awesome!

Closing Thoughts
In this chapter, you discovered how Unity handles 2D projects. You imported
a spritesheet into Unity, sliced it up, and created an animation in Unity. You
also corrected a small glitch caused by the automatic slicing tool by slicing
the sprites manually. You’ll use all of this information to make the platform
game coming up. Everything you’ve learned so far will also prepare you for
creating great games in general.

In the next chapter, you’ll learn to program in C# and explore some of
the core concepts you’ll need to be a full-fledged Unity game developer.

2D Unity (Early Access), © 2015 by Jeff W. Murray

2D Unity (Early Access), © 2015 by Jeff W. Murray

4
In t r o d u c t i o n t o

P r o g r a m m i n g

In this chapter, we’ll start to breathe some
life into our Unity games with code. I’ll

introduce you to some C# programming
basics and object-oriented programming. By

the end of the chapter, you’ll have programmed your
own brick-breaking game using Unity scripts, loops,
and variables.

You won’t come away from this chapter knowing everything there is to
know about programming. Programmers become skilled through a mix of
knowledge and, more important, practice. I started programming in the
1980s by typing and running game source code from magazines, which
inspired me to create my own games. Many of my early games didn’t work
well, but I kept practicing and eventually learned how to make my own games.

This chapter is part reference and part tutorial. I’ll teach you how the
example code works; there’s more to programming than typing someone
else’s code, so I hope you’ll be inspired to practice and learn more after
completing this book.

2D Unity (Early Access), © 2015 by Jeff W. Murray

52 Chapter 4

This chapter is divided into three small projects. To begin your jour-
ney, you’ll open the example Unity project for this chapter and make a
ball bounce around the screen. In the second project, you’ll make a player-
controlled bat hit a ball, and in the third project, you’ll create bricks to
make a brick-breaking game. In each project, you’ll learn some technical
skills for making games and have a little fun along the way!

What Is C#?
Unity supports two programming languages: JavaScript and C#. This book
uses C# (pronounced C sharp). Both languages have their pros and cons,
but C# is the language used by most Unity-powered game studios and is my
language of choice.

N OTE 	 C# was originally named Cool, which stood for C-like Object Oriented Language.
It is rumored that the name was changed before launch due to copyright reasons, but
I wonder if it was just too cool for all those business application developers to take
seriously!

C# is an object-oriented programming language, which means it’s based
on the principle of constructing code and data using objects. In program-
ming, objects are scripted Components that are combined to do something,
and making those combinations is what programmers mean when they
refer to object-oriented development.

Getting Started
The three projects in this chapter are all in a single Unity project file.
Click File4Open Project, browse to Projects/Example Files/, and select the
example project for this chapter. If you ever get stuck or would rather follow
along with the full code, you can look at the finished project files.

In the Project panel’s Scenes folder, you should see three scene files
named Part 1, Part 2, and Part 3. Double-click the scene named Part 1. With
Part 1 open, notice that there’s just a ball in the scene. When you click Play,
it doesn’t move. You’ll program it to move!

Bouncing a Ball
Let’s open a script to get started. Scripts are easy to identify in your Project
panel because Unity displays a small C# icon next to them along with a .cs
file extension.

In the Project panel, open the Scripts_1 folder and double-click the
SimpleBallControl script. It will open in MonoDevelop, which is the default
program for writing and editing scripts in Unity.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Introduction to Programming 53

N OTE 	 As of version 5.2, the Unity installer software offers Microsoft Visual Studio as a free
alternative script editing program for PC users only. The script development processes
shown in this book are the exact same for either Visual Studio or MonoDevelop, but
I’ve chosen to stick to MonoDevelop.

Libraries
Let’s look at the first two lines of the program:

using UnityEngine;
using System.Collections;

These two lines are automatically added whenever you create a script.
They tell the Unity engine about any additional code libraries that the script
needs access to. Libraries are built-in collections of code that handle impor-
tant technical information. They let your scripts talk to the engine and
provide Unity-specific classes like GameObject and Transform, as well as other
important elements you’ll need for your games.

Notice the semicolon at the end of both lines. The semicolon is com-
monly known as a terminator. In C#, the semicolon tells the engine where
a statement ends. A statement is a single piece of code (normally a single
line of code). You must end each statement with a semicolon so the engine
knows where one statement ends and another begins.

Let’s move on and discuss class declaration.

Classes and Inheritance
C# code is split into classes, which are essentially chunks of code. Note
that the script is not the class; a class is a section of code inside a script. A
single script could contain many different classes. To keep things simple,
each script file in this book will contain just one class.

Take a look at the third line of code in the SimpleBallControl script:

public class SimpleBallControl : MonoBehaviour {

This is a class declaration, where you decide how the class can be
accessed from other scripts, declare what type of class it is, and name the
class. The word public tells the engine that this part of the script is acces-
sible from “outside” this script, which is a process known as scoping. I’ll dis-
cuss scope in more detail later in “Variable Scope” on page 55.

After public, the word class tells the engine that you’re making a class.
Now you need to name your class. The class name is mandatory, because
it separates the chunk of code between the curly brackets from any other
code you’ll write.

The name of the class here is SimpleBallControl, which is the same as the
filename for the script file. When you create a script, the skeleton code that
Unity adds will automatically assume the script’s filename as its class name,
but you can change it if you want to. It isn’t essential for the filename and

2D Unity (Early Access), © 2015 by Jeff W. Murray

54 Chapter 4

class name to match, but it’s always useful to name script files descriptively
so you know what’s inside them just from reading names in Unity’s project
file browser.

After public class SimpleBallControl is a colon and another class name,
MonoBehaviour. MonoBehaviour is one of Unity’s built-in classes that handles
important Unity functionality. Including MonoBehaviour like this makes
SimpleBallControl have all of the functionality of MonoBehaviour in addition to
whatever functionality you’ll program into that class. This is called inheri-
tance. In your class declaration, you can tell Unity that your new class should
use, or inherit, the properties of another class.

As an analogy for inheritance, imagine that your favorite breakfast
cereal is called Unity-O’s. Now imagine a new product comes on the market
called Peanut Butter Unity-O’s. The peanut butter version inherits all of the
properties and behaviors of your favorite breakfast cereal: it has the same
consistency, crunch, and is fully compatible with milk. The only difference
is that it includes peanut butter.

You can do the same with classes, essentially setting up your new class
(SimpleBallControl) to have all the functions and properties of the parent
class (MonoBehaviour) without your having to retype all of the content from
the MonoBehaviour class. Inheriting from MonoBehaviour also allows you to use
your scripts as Components.

At the end of the class declaration is a curly bracket. Curly brackets
wrap up chunks of code. You tell the engine where the code starts with a
{ and where it ends with a }. For example, the curly bracket after the class
declaration indicates where the code for the class starts, and the curly
bracket at the end of the code indicates where the code for the class ends.

Variables
When programming, you’ll spend a lot of time manipulating data. For
example, to get the ball to bounce around your screen, you’ll modify data
about its position and its speed using variables, which store data.

The SimpleBallControl script uses several variables to make the ball
move. To tell the engine about a variable, you declare it in a similar way as
the class. Let’s add our first variable. Add the following variable delcaration
below the SimpleBallControl class delcaration:

 public int moveSpeed = 10;

I’ve named this variable moveSpeed. When naming variables, you should
use names that reflect what the variable holds. Names like thing1 and thing2
won’t help you solve problems in the code. Instead, it’s best to be descriptive
and name variables in relation to their use, such as bounceCounter for count-
ing bounces. Notice that I start variable names with a lowercase letter and
capitalize every word thereafter. This pattern is called camel case, and makes
it easy to glance at my code and identify where my variables are being used.

This variable also has a scope (public) and a data type (int), which I will
discuss in greater detail in the following sections.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Introduction to Programming 55

N OTE 	 You may have noticed that this line of code is indented. In programming, indentation
is important because it’s used to group code together. When you’re writing scripts in
MonoDevelop, indentation is added automatically. Just type the code, and when you
press enter on the keyboard, the code will be indented.

Variable Scope

When you declare a variable or a class, you decide how accessible it is to
other scripts or other parts of the engine. This is known as scope. moveSpeed
is set to a public scope, which means other scripts with access to this class
can access this variable. For example, later in the book you’ll use a game
control script that will need to find out the name of the current level. The
level-builder script stores the level name as a public variable so the game
control script can access it to display it on the screen.

If your class is derived from MonoBehaviour, when the script is attached to
a GameObject, you’ll also be able to access public variables in the Inspector,
right inside Unity. This is ideal for scripts where you may need to tweak
variables to try out different values as the game is running, because you can
change them in the Inspector without having to pause the preview.

So far you’ve seen a public class and a public variable, but there’s also
private scope, which means the variable will be accessible only within the
class it is declared inside. In addition to public and private, variables and
classes can be static, which means the variable belongs to the class but is
available to any other class.

An example of a static variable might be one that stores a score. A class
that contains all the code for running the game could hold the player’s
score in a static variable. Other classes can access the score or modify it.
The static variable will always belong to the game control class, but it could
be modified elsewhere by other scripts.

Let’s consider a more complicated example. Let’s say you have 10
GameObjects that all have the same script attached to them. The script has
a public variable in it. Each public variable is dedicated to the GameObject
the script belongs to, say health. If you hit 1 of those GameObjects, it loses
some health, but the other 9 aren’t affected. But if that public variable were
static, hitting 1 of the 10 GameObjects would decrease the health of all of
them because they share the same public static variable.

Data Types

After you set the scope of your variable, you then need to tell the computer
what you’ll store in the variable. This process is called typing. You can think
of variables as storage boxes. Just like there are different types of boxes to
store different types of items, there are different types of variables to store
different kinds of data.

You’ll see a few types of variables in this book, but for now I’ll just
cover the three main ones: numbers, strings, and Booleans. Let’s look at
numbers first.

2D Unity (Early Access), © 2015 by Jeff W. Murray

56 Chapter 4

Numbers

I use two types of number variables in this book: integers and floats. Integers
(int) are whole numbers without decimals—for example, 1, 2, 3, and so on.
Floats include decimals—for example, 3.14159265359. The variable moveSpeed
that we defined earlier is an integer. The moveSpeed integer-type variable will
set the speed of the ball.

Add the following line after the moveSpeed variable declaration to set up
another integer variable called bounceCounter:

 public int bounceCounter;

The bounceCounter variable will count how many times the ball bounces.
The method for setting floats is a little different from setting integers.

You write the scope, followed by the keyword float, followed by your vari-
able’s name. Use an equal sign (=), followed by the letter f, to set its value.
The SimpleBallControl script needs four float-type variables. Add the follow-
ing four variable declarations under the bounceCounter variable:

 private float boundaryLeft = -17f;
 private float boundaryRight = 17f;
 private float boundaryTop = 13f;
 private float boundaryBottom = -13f;

These variables specify the screen’s boundaries. The four bound-
ary variables are all declared as public so you can update them in Unity’s
Inspector pane without having to open the script. Note that in these vari-
ables, I’m referring to positions in units, not pixels.

Modifying Number Variables

Now let’s learn how to manipulate float and integer variables. To add or
subtract from a variable, you can use this shorthand:

bounceCounter += 1;
bounceCounter -= 1;

This construct might look a little strange if you’ve never seen it before,
but it’s very common in programming. Basically, you’re setting a variable to
its current value plus or minus a number. In this example, we’re adding (+=)
and subtracting (-=) 1 from bounceCounter, but you could add or subtract any
number.

If you just need to add or subtract 1, you can use another convenient
shorthand. In the example project’s SimpleBallControl script, I keep track of
how many times the ball bounces by using ++ to add 1 to the bounceCounter
variable each time the ball changes direction:

bounceCounter++;

2D Unity (Early Access), © 2015 by Jeff W. Murray

Introduction to Programming 57

You’ll see this in action later in the chapter. You can decrease a variable
by 1 using similar shorthand:

bounceCounter--;

Next, we’ll look at how to store and modify text.

Strings

In the example game, I create a string to display how many times the ball
bounces. A string stores text or symbols. Strings can hold all kinds of text,
from player names to the names of planets in a space game. Here’s what a
simple greeting looks like:

string myGreetingString = "Hello world.";

To set a string, first write string, followed by a name for your string vari-
able. Then, using = , set the string by adding quotes around text you want
the string to display.

You can also join strings, which is called concatenation. In the last chunk
of code in the ball bounce script, I combine a string and an integer to dis-
play the current number of bounces:

 string bounceString = "Bounces " + bounceCounter;

Here, I declare a string named bounceString and set it to the text
“Bounces.” The next part of the code adds the value of the integer vari-
able bounceCounter to the string. The engine will automatically convert
bounceCounter into a string for you and join the two strings together to pro-
duce something like Bounces 3 on the screen.

Booleans

There is another type of variable known as a Boolean variable, which has
just two possible states. A Boolean may be set to either true or false. In the
next section, you’ll look at game logic that works in a similar way to how a
Boolean variable works: the result of a statement can either be true or false.

Why the funny name? The Boolean type gets its name from George
Boole, who developed an algebraic system of logic in the mid-19th century.
As he wouldn’t have had a computer back then, there was no way he could
have known just how important Booleans would be for videogame program-
ming! Game developers use them in just about every project.

Game Logic
All right, let’s use what you’ve learned so far! You’ll add four if statements
to the SimpleBounceControl script to make the ball bounce off the walls. An
if statement checks conditions and runs code based on the result.

2D Unity (Early Access), © 2015 by Jeff W. Murray

58 Chapter 4

You’ll add these if statements to the Update function, so find the Update
function in the SimpleBounceControl script. A function is a chunk of code that
does something. A function might count coins, update a player’s position,
or shoot lasers out of a cow’s eyes. Enter the following code to make the
Update function look like this:

 // Update is called once per frame
 void Update () {
 myRB.velocity = moveDirection * moveSpeed;
 // Move right
 if (moveDirection.x == 1 && myTransform.position.x >= boundaryRight) {
 moveDirection.x = -1;
 bounceCounter++;
 }

Lines that start with two forward slashes (//) don’t do anything—
they’re comments. Programmers usually write comments between lines of
code to explain how the code works. Comments may be for the benefot
of other programmers or for the benefit of thep rogrammer herself when
returning to the code in the future. It’s good practice to write lots of code
comments. Here, one comment tells us how often the Update function is
called and another indicates where the code deals with moving the ball to
the right.

This code checks the position and direction of the ball to see if it’s hit
the right-hand wall and should bounce off it. To do that, the code compares
values using if statements. if statements can compare variables to see when
things change, when limits are reached, or when items are picked up. They
are used in most programs and games.

To make a function, you first have to tell the engine what the function
is and how it should work. This is known as the function declaration. A decla-
ration starts with what, if anything, this new function will return as output.
If the function doesn’t return output, we use the keyword void. If the func-
tion should return output, all we have to do is declare the function with the
type of data it will return. In this case, Update doesn’t return anything, so it
is declared as a void function.

To write an if statement, use if , followed by the condition you want
to check wrapped in parentheses. In this case, we’re comparing two pairs of
variables. Look at the first pair at . To compare two variables, you use two
equal sign operators (==), which means is equal to. Note that this is differ-
ent from the single equal sign (=), which means set to. In this code, the first
condition is moveDirection.x == 1, which checks the direction of the ball. If
moveDirection.x is equal to 1, the ball is moving to the right.

The period in moveDirection.x is called dot notation; it’s a way of accessing
properties or functions of an object or class. In this case, the statement asks
moveDirection to tell us the value of the x variable.

You can combine the conditions of if statements using logical operators.
For example, you might want to compare two or more conditions, which is
what we need to do in this example. To compare two statements and run

2D Unity (Early Access), © 2015 by Jeff W. Murray

Introduction to Programming 59

some code if both are true, you can use the AND expression, &&. Essentially,
&& means if this statement AND this statement are true, then run the code between
the curly brackets.

The logical operator && at  adds a second condition to the statement,
myTransform.position.x >= boundaryRight. This part of the conditional state-
ment asks if the x position of the ball is greater than or equal to the value
in boundaryRight. Basically, it asks if the ball has hit the right side of the screen.

To summarize, we’re asking, “Is the ball moving to the right, and has it
hit the right edge of the screen?” If these conditions are true, then the code
between the if statement’s curly brackets runs.

Most if statements use curly brackets, just like class declarations, to
indicate what code belongs to the if statement. Inside the curly brackets,
the first line of code reverses the direction of the ball along the x-axis by
setting moveDirection.x to −1.

After the direction of the ball is changed, the last line of code in the
body of the if statement increments the bounceCounter variable so we can
keep track of how many times the ball bounces. The entire if statement
ends with a curly bracket to enclose those two lines of code. Now we need to
do the same thing for the left, top, and bottom boundaries.

After the if statement we just wrote, add the following code to check if
the ball bounces off the left side:

 // left
 if (moveDirection.x == -1 && myTransform.position.x <= boundaryLeft){
 moveDirection.x = 1;
 bounceCounter++;
 }

This code checks if moveDirection.x is −1 this time (instead of 1), which
indicates if the ball is moving to the left. Then it asks has the ball hit the left
side of the screen? If both conditions are met, moveDirection.x is set to 1 to
move the ball to the righ and 1 is added to the bounceCounter variable.

Next, add this code to make the ball bounce off the top and bottom of
the screen:

 // top
 if (moveDirection.y == 1 && myTransform.position.y >= boundaryTop){
 moveDirection.y = -1;
 bounceCounter++;
 }
 // bottom
 if (moveDirection.y == -1 && myTransform.position.y <= boundaryBottom) {
 moveDirection.y = 1;
 bounceCounter++;
 }

The only change in this code is that it now checks the y-axis instead
of the x-axis, using moveDirection.y and myTransform.position.y to track and
change the ball’s vertical movement.

2D Unity (Early Access), © 2015 by Jeff W. Murray

60 Chapter 4

Save the script and go back to the Unity editor. Click Play and the ball
will bounce around the screen. You just created your first program! Take a
moment to bask in the ball-bouncing glory.

Now let’s make the ball-bouncing program into a game.

Controlling a Moving Bat
In this project, you’ll add player control and some other feature to the ball-
bouncing program. In the Project panel’s Scenes folder, double-click the
scene named Part 2.

The scene contains three walls, a ball, and a bat (Figure 4-1). The bat
doesn’t have the code to make it do anything yet, and the ball doesn’t spin
quite right. You’ll add the code to move the bat and fix the ball spin.

Figure 4-1: A simple bat and ball game, only the bat doesn’t move yet—that’s your job!

In the Project panel, click the Scripts_2 folder and then double-click the
spinBall script to get started.

More About Objects
As mentioned previously, C# is an object-oriented programming language,
which means that chunks of code, or classes, are thought of as objects. For
something to happen, these objects need to communicate with each other,
especially in games, which rely on many scripts to make the game work.
You’ll need to write code that communicates between objects. For example,
you have to write code to update a score display or make an explosive object
explode.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Introduction to Programming 61

Most elements in Unity are objects—Components, instances of classes,
GameObjects, and so on. In “Modifying Number Variables” on page 56,
you learned how to use variables to store data. You can also use variables to
reference objects so your scripts can communicate with them and tell them
what to do.

Next, we’ll write some code that will change the way that the ball looks
as it bounces around the screen. You’ll write a short script that commu-
nicates with the ball’s Transform Component to make the ball look like it’s
spinning through the air.

When you open the spinBall script, you’ll see a skeleton structure. The
script doesn’t do anything yet, but you’ll get to work on this. First, you need
to add variables to hold references to the ball’s Transform and Rigidbody2D
Components. These are the two objects your script needs to communicate
with to create the spinning effect.

Let’s set up some variables inside our class declaration. Enter the fol-
lowing code at the beginning of your script:

using UnityEngine;
using System.Collections;

public class SpinBall : MonoBehaviour {
 private Transform myTransform;
 private Rigidbody2D myRB;

The two variables at  and  are used later in the code to set up refer-
ences to other objects that the script needs to work.

Next, you’ll add code to two different functions. The SpinBall class
you’re working on contains two functions by default, Start and Update. The
game engine will call both functions automatically. But you can only have
one of them in a class at any time: you can’t have multiple Start functions
for example, or the engine wouldn’t know which one it was supposed to
call when the game starts.

First, let’s look at the Start function. Add this code to the Start func-
tion’s skeleton:

 // Use this for initialization
 void Start () {
 myTransform = GetComponent<Transformu> ();
 myRB = GetComponent<Rigidbody2Dv> ();
 }

The two variables inside the Start function store references to other
objects so the script can communicate with them, and the built-in com-
mand GetComponent sets up the object references.

You tell GetComponent the type of Component you’re looking for, and
GetComponent returns a reference to whichever Component it finds. To use
this commands, you set the Component type you’re looking for between
angle brackets, and then you add an empty set of parentheses at the end to

2D Unity (Early Access), © 2015 by Jeff W. Murray

62 Chapter 4

let the engine know you’re calling a function. myTransform uses GetComponent
to find the Transform Component attached to the same GameObject as this
script u, and myRB looks for a Rigidbody2D Component v.

Now you have variables you can use to interact with the Transform or
Rigidbody2D Components.

The Game Loop
Let’s turn to our game loop. Game loop is a term for code that runs continu-
ously during game play to update the game’s state (player score, health,
enemies, and so on) and react to player input. In Unity, that loop is handled
by the Update and FixedUpdate functions.

There’s one major difference between Update and FixedUpdate. Update is
called when the screen updates, and FixedUpdate is called when the game’s
physics engine updates. The difference is in the timing: screen updates
occur a certain number of times per second, and the intervals between each
call can vary wildly depending on the performance of the machine the pro-
gram’s running on. The physics engine, on the other hand, is updated at
fixed intervals, which makes FixedUpdate perfect for code that needs to hap-
pen at set times. Code that isn’t particularly time-sensitive (like code used
to update an onscreen display, for example) is better suited to Update, as
screen update time varies depending on the frame rate of the game.

Unity calls many functions as it runs through its regular update loop.
The Unity documentation has an in-depth list of the different kinds of
functions and when they’re called. You can find the full list in the help files
under Execution Order or in the online documents at http://docs.unity3d.com/
Manual/ExecutionOrder.html.

For this example, you’ll modify the skeleton code slightly. Change the
Update function to FixedUpdate by renaming it in the function declaration.
Then add the following code so the function looks like this:

 // Update is called once per frame
 void FixedUpdate () {
 float rotateAmount = myRB.velocity.x;

 myTransform.Rotate (0, 0, -rotateAmountw);
 }

In the FixedUpdate function, the ball rotates and its velocity is set.
Because I wanted these updates to happen at the same time on any sys-
tem, I put them in FixedUpdate. If you changed the function name to Update,
the code would still work, but the ball would rotate at a different speed.

The variable rotateAmount stores the ball’s velocity . You’ll use this
value to decide how much to rotate the ball. The rotation will change its
direction based on the ball’s movement to create a simple rotation effect.
Notice that rotateAmount doesn’t have a scope declared. This is because
scope is declared inside the FixedUpdate function. When you create a vari-
able inside a function, it only exists when the function is called, and it stops
existing when the function ends.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Introduction to Programming 63

To get the ball’s velocity, you’ll communicate with its Rigidbody2D
Component—the Component that deals with movement and speed. Using
the variable myRB, you can use all the accessible properties and functions
of the Rigidbody2D Component. To access the horizontal velocity from the
Rigidbody2D Component, you’ll use dot notation: myRB.velocity.x.

Earlier, in the Start function, you set up myTransform to reference the
ball’s Transform Component. You can now use this variable to access the pub-
licly available properties and functions of a Transform Component . One
of the items you can access on a Transform is the Rotate function. The Rotate
function might be a bit confusing at first, because it’s set up for 3D rotation,
but for now, all you need to know is that you rotate the ball along its z-axis w
to make it spin.

Save the script. Go back to the Unity editor and click Play in the scene
controls. You should see the ball rotating as it moves. That’s much better. A
little polish makes all the difference!

Move the Bat
Now, you’ll make the bat follow the mouse pointer. Open the batControl
script from the Scripts_2 folder. You’ll get the mouse position and set the
bat’s position to match the mouse’s position. To do that, you’ll need to use
vectors.

To help you understand vectors, imagine you’re standing in a room in
the dark and someone is explaining where the door is by telling you how
much to move to the side and how much to move forward or backward.
Let’s say you’re told to move three steps to the right and two steps forward.
You could represent these instructions as a vector: (3, 2). The amount to
move horizontally is a positive number, which means you should go right;
a negative number would mean go left. The next number is also a positive
number, which means you should move forward; a negative number would
mean step backward.

Vectors can be used to hold information about positions in your game
world. The format of a vector is (x, y), which just happens to be how we
describe two-dimensional space to the game engine. Vectors are part of a
larger family of variables known as data structures. Structures store groups of
data (such as x- and y-coordinates) in a way that uses only a single variable
rather than having to store each piece of data separately. If you think of
variables as a box, this type of box has several compartments in it.

Near the top of the batControl script, inside the class declaration, are
three variables you need to declare. Two of these are Vector2 variables you’ll
use to set up the bat position, one to find the position of the mouse and
another to set the position of the bat. The variable type you need is called
Vector2.

 private Transform myTransform;
 private Vector2 myPosition;
 private Vector2 mousePosition;

myPosition holds the position of the bat in a Vector2 variable.

2D Unity (Early Access), © 2015 by Jeff W. Murray

64 Chapter 4

Now, jump down to the Update function. Here you’ll add code to make
the bat interactive:

 void Update () {
 // get the position of the bat from the transform

 myPosition = myTransform.position;
 // get the mouse position (converted from pixels to world units)

 mousePosition = Camera.main.ScreenToWorldPoint (Input.mousePosition);
 // set myPosition to have the same x position of the mouse

 myPosition.x = mousePosition.x;
 // update the transform’s position to move it where it should be
 myTransform.position = myPosition;
 }

When you get the position of the mouse pointer, the game engine
returns a value in pixel/screen space. The position of the bat needs to be
in game world units, so we have to make a little conversion using the built-
in function ScreenToWorldPoint. ScreenToWorldPoint can be called on a camera
and will return converted coordinates based on the camera’s position and
rotation, combined with the pixel coordinates that you have to pass in as a
parameter. I used a shortcut to get the main camera in the scene—instead
of providing an exact reference I just used Camera.main to let Unity figure it
out for me. The returned converted mouse position from ScreenToWorldPoint
is stored in the variable mousePosition. You only need the x position of the
mouse pointer, which you’ll grab using dot notation: mousePosition.x.

Click Save and go back to Unity. Click Play in the scene controls. The
bat should now move with the mouse so you can stop the ball from going
out of the play area. Welcome to your own version of a classic arcade game!

N o t e 	 If you’ve been snooping around the project, you’ll find that this scene has a different
ball bouncing script that uses collisions rather than ball positions to decide when to
change direction. Because you needed the ball to detect collisions against the bat this
time around, I snuck in a more complex version. I won’t explain the script here, but
the collision system it uses will appear in Chapter 8 when we build the player script
for the platforming game.

Breaking Bricks!
In Unity, find the Project panel’s Scenes folder and double-click the Part 3
scene. This is the third and final mini-project for this chapter. In this proj-
ect, you’ll add some bricks to create a brick-breaking game. This scene also
adds a score display. Figure 4-2 shows the final game.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Introduction to Programming 65

Figure 4-2: The brick-breaking game needs scripts to add these bricks to it!

Use a Loop to Make Bricks
In the Part 3 scene, there’s not much of a game yet. The score display never
increases, and the ball just bounces off the walls like it did in Part 2. To
make the game more interesting, you’ll use a loop (specifically, a for-next
loop) to add bricks for the ball to break. In the Project panel’s Scripts_3
folder, double-click the GameController script.

The function you’ll build here will be called by the GameController
class’s Start function. Let’s talk about that Start function for a moment.

The Start function is called automatically before anything is updated
and before graphics are rendered to the screen. This makes it the perfect
place for setup code, such as code that creates dynamic-level objects (like
breakable bricks). Because Start is called before graphics are drawn to the
screen, the level will be built before the player sees it happen. When the
game starts, the player will already see bricks on the screen.

Let’s move on to loops. You’ll find lots of loops in programming. Loops
give you the ability to repeat a piece of code without having to enter it over
and over. In this script, you’ll split the code into two loops. The first keeps
track of rows and the second keeps track of columns, because that’s how the
bricks will be presented (Figure 4-3).

2D Unity (Early Access), © 2015 by Jeff W. Murray

66 Chapter 4

Figure 4-3: Bricks appear as three rows and six columns.

A C# loop contains three parts separated by semicolons:

•	 The initialization

•	 The condition

•	 The afterthought

A loop will look something like this:

for (initialization; condition; afterthought) {
 // Here, between the curly brackets, is the code that gets repeated
}

The initialization sets up a variable to keep track of how many times
the code is looped until the condition is met. The condition states what
you’re testing. After each loop through the code, the afterthought runs. The
afterthought usually increases or decreases the initialized variable that’s
counting the number of completed loops. The BuildLevel function will use
two loops (called nested loops, because one is inside the other) to create the
bricks and lay them out on the level.

Just after the curly bracket that closes the Update function, add the fol-
lowing code:

 void BuildLevel() {
 for (int by = 1; by<totalRows; by++) {
 for (int bx = 1; bx<totalColumns; bx++) {
 MakeBrick (bx, by);
 totalBricks++;

 }
 }
 }

The BuildLevel function doesn’t need to return anything, so its type is
void. Because we don’t need to pass anything into it, the BuildLevel function
has just an empty set of parentheses to tell the engine that it’s a function .
Then a curly bracket signifies the start of the code that will run whenever
the function is called.

Following the curly bracket are two nested loops. In the first loop, the
variable by decides which row to draw v, and in the second, the variable bx
counts the columns . (b stands for brick, x for x-axis, and y for y-axis.)

Now you can use the bx and by variables to create and position the
bricks with the MakeBrick function at . Don’t worry too much about how
the MakeBrick function works just yet; I’ll come back to this later in the
section.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Introduction to Programming 67

The code at  increments the variable totalBricks. totalBricks counts
how many bricks have been made. The GameController script needs to know
how many bricks are in the scene so it can add more when the ball has bro-
ken all of the bricks. Because the bricks are added to the scene in the new
function, it’s the best place to count how many are made. Finally, two curly
brackets close the loops.

Although the BuildLevel code is ready to go, it won’t do anything
until the BuildLevel function is actually called from another function. To
call BuildLevel, add the following line to the Start function, after the line
bricksDestroyed = 0;:

 BuildLevel ();

You need to call BuildLevel in one more place—when the number of
bricks that have been destroyed is greater than or equal to the total number
of bricks in the level. Destroying all of the bricks in the level can happen at
any time, so you’ll need a condition in the Update function that will check
the number of destroyed bricks regularly and react accordingly. In this case,
when the bricks are all destroyed, the Update function needs to call BuildLevel
to make a new set.

Add the following code inside the Update function:

 if (bricksDestroyed >= totalBricks) {
 BuildLevel ();
 }

When all of the bricks have been broken, BuildLevel will be called to
make more bricks for the player to destroy.

Save the script and then return to Unity. Every time you save a script,
the engine will automatically recompile it, so there might be a slight delay.
Games containing large numbers of scripts can take several seconds to
recompile. However, because this script features just a few small scripts, the
compile delay should be minimal.

Click the Play button in the scene controls and do some brick breaking.
Enjoy!

Next, I’ll introduce you to another key concept in programming, the
array. Data storage is an important part of game development, and for
small-scale data storage, game developers usually opt to use arrays. You’ll
use an array to add a little extra shine to the brick-breaking game.

Color Your Bricks with Arrays
When you need to store more than just a single number or string, you might
need to use an array. An array is a type of variable used for storing mul-
tiple objects in an easily accessible way. Those objects might be numbers,
strings, instances of classes—any type of object the Unity engine allows you
to access.

For example, let’s say I want to store the layout for a level made of tiled
blocks. Using a grid of 10×10 tiles (100 tiles in total), I also want to use a

2D Unity (Early Access), © 2015 by Jeff W. Murray

68 Chapter 4

number to indicate each tile type. Rather than making 100 variables to store
these numbers in, I can make a single variable to hold an array of 100 num-
bers. Because numbers, strings, objects, and structures can be stored in a
variable, they can also be stored in an array.

Many kinds of arrays exist, but for the purposes of this book I’ll use
two array types, the built-in array and the Generic List. In a nutshell, built-in
arrays are ideal for storing items that you want to access via the Inspector in
Unity. Generic Lists are useful for storing any kind of data that only needs
to be accessible via code (not the Inspector). A Generic List has the smallest
impact on performance and memory use.

Although the brick-breaking game is fun, the bricks look a bit dull.
Let’s do something about that by building a script that uses random colors
to add some pizzazz. We’ll store the colors in a Generic List array and have
the script pick a color at random to pass to the brick’s Sprite Renderer
Component. Then the Sprite Renderer will color the brick.

Find the Scripts_3 folder in the Project panel and double-click the
ColorBrick script file to open it. At the top of the script, under the line that
reads using System.Collections;, add this line to access the System.Collections
.Generic library:

using System.Collections.Generic;

Right now, the class ColorBrick is empty. Enter the following code to
add the variable declarations for the array and one for the reference to the
brick’s SpriteRenderer Component inside the class:

 private SpriteRenderer myRenderer;
 public List<Color> colorList;

Every sprite in Unity uses the SpriteRenderer Component to draw its
image. This Component has a public color property you can access to
tint sprites, which is perfect for what you want to do here. To access the
SpriteRenderer, you need a variable containing a reference to it, which in
this code is called myRenderer.

Next, you declare the Generic List. A Generic List takes a scope (here, it’s
public so you can easily add color either inside the Inspector panel or in the
code), followed by the word List. The type of object you’ll be storing in the
list goes inside angle brackets. Then you need to name the Generic List—in
this case, it’s colorList—and add a semicolon to end the line.

Now, move down to the Start function and add the following code:

 colorList.Add(new Color(255,0,0,255));

To add items to a Generic List, you write the list’s name followed by a
period and the Add command. After Add, use parentheses around the item
you want to add to the list. In this case, it’s a color. Color is a built-in struc-
ture. To create a color, you must use the new keyword to tell Unity you’re

2D Unity (Early Access), © 2015 by Jeff W. Murray

Introduction to Programming 69

creating a new structure. Then, enter Color followed by four numbers
wrapped in parentheses. These numbers are the parameters that the Color
function uses to describe a color. The first three numbers represent red,
green, and blue values, which is a standard way of representing colors on
computers. The fourth number is an alpha value. The alpha value deter-
mines how transparent the sprite should be. The Color structure takes
values between 0 and 255 for each color you want to add.

In the preceding code line, I set the red value to 255 to make this color
pure red. Because you don’t want any of the bricks to be transparent, the
alpha value is also set to 255.

Next, enter the following lines of code to add blue, green, and yellow to
the colorList:

 colorList.Add(new Color(0,0,255,255));
 colorList.Add(new Color(0,255,0,255));
 colorList.Add(new Color(255,255,0,255));

Now, add a line of code to grab a reference to the SpriteRenderer and
store it in the myRenderer variable declared earlier:

 myRenderer = GetComponent<SpriteRenderer> ();

Everything is ready to use: you’ve set up the variables, added some col-
ors to the array, and grabbed a reference to the SpriteRenderer.

The next step is to make the script pick a random color from the list:

 int colorIndex = Random.Range(0, colorList.Count);

Random.Range is a built-in function that takes minimum and maximum
number values, and then picks a random number between the two. Here,
the minimum number is zero because the first item in the array starts at 0
and the maximum number is provided by colorList.Count. A list’s .Count
property returns the number of items that the list contains, meaning that
the Random.Range function should return a number between zero and the
number of colors in colorList. That return value then gets stored as an inte-
ger in colorIndex.

To get an item from a list, you need to put it into a variable of the same
type. Add this line:

 Color theBrickColor = (Color) colorList [colorIndex];

theBrickColor is a Color type variable, which is used to hold the color
the code gets using the colorIndex number. After the equal sign is a type in
parentheses, telling the engine the next object will be this type. Because
the engine doesn’t always know what kind of object is coming next, the type
makes sure that theBrickColor variable gets the right value. To access a color
in colorList, write colorIndex (which is an integer) inside square brackets.

2D Unity (Early Access), © 2015 by Jeff W. Murray

70 Chapter 4

theBrickColor should now hold a randomly chosen color. The final step
is to use the SpriteRenderer to color the brick. Add this line:

 myRenderer.color = theBrickColor;

The .color property of the Sprite Renderer Component referenced by
the variable myRenderer is set to the Color object in theBrickColor.

And that’s how you use an array to set a sprite to be tinted to a ran-
dom color. Click Play in the scene controls to see all the colorful bricks!

The ability to store different types of objects or values in Generic Lists
makes them perfect for all kinds of uses. Arrays will come in handy for your
future game development.

Closing Words
Believe it or not, that’s really about all the programming knowledge you’ll
need to make games. The reality is that code is just a tool we use to tell com-
puters how we want to solve problems. Anyone can learn to program, and
with practice, solving game-related problem gets easier and easier.

Like most arts, programming requires knowledge of basic principles to
help your imagination flourish. In this chapter, you made some fun things
happen in the brick-breaking game, and you explored principles of pro-
gramming such as variables, functions, and classes.

You’ve learned a lot and you’re doing great, so don’t be afraid to do
battle with programming! In the next chapter, you’ll set up some game play
using your new programming skills. You’ll continue to build those skills,
and you’ll be coding your own games in no time.

2D Unity (Early Access), © 2015 by Jeff W. Murray

5
P r o g r a m m i n g P l a y e r

C o n t r o l s a n d G a m e P h y s i c s

So far, you’ve created an animated player
sprite and learned some programming

basics. In this chapter, I’ll show you how to
program Max so you can control him using

the keyboard. You’ll add some gameplay by creating
simple objects and learn about game physics and collision detection, an
important concept for developing any kind of game. Collision detection
is when you check whether two objects in your game world are touching
each other; it’s the bread and butter of game development. You’ll learn how
Unity handles collisions so you can apply collision code and components to
your own games. This is an exciting chapter!

You’ll make a simple game where the player dodges bricks as they fall
from the sky (see Figure 5-1). The goal is to avoid the falling bricks for as
long as possible. The catch? The bricks fall faster and faster as the game
goes on.

2D Unity (Early Access), © 2015 by Jeff W. Murray

72 Chapter 5

Figure 5-1: The simple brick-dodging game we’ll build in this chapter

All of the action will take place in a single scene. The player needs to
move left or right so poor Max doesn’t get bonked on the head. We won’t
create any fancy scoring, levels, or user interfaces just yet. This game is
purely for the fun of it and will get you started with the basics of creating a
playable demo.

Dodging Falling Bricks
Open Unity and use Open Project to find the example from the source
files provided in Examples/Chapter 5/. Recall that organization is key to your
projects, so let’s start with a quick look at the project structure. Figure 5-2
shows the Project panel with four appropriately named folders for Graphics,
Prefabs, Scenes, and Scripts.

As you move through the project, try to keep track of where Unity
saves your files. Unity tends to save new files you create in the Assets folder,
so be sure to move them into the proper folders as you make them. In the
example project files, the graphics you’ll need are in the Graphics folder
already. You’ll need to be aware of save locations for all other files you
create.

Let’s create a new scene for all the action to happen in. To do this, go
to File4New Scene. Unity prompts you to save the changes on the current
scene, but because we haven’t made any changes, just click the Don’t Save
button to continue.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Programming Player Controls and Game Physics 73

Figure 5-2: An orderly project structure

Unity makes a new, empty scene, but it isn’t saved to a file until you tell
it to. To save the file, go to File4Save Scene. Click the Scenes folder and then
enter myGame into the File name box. Click the Save button (Figure 5-3) to
save the scene.

Figure 5-3: Saving a new scene into the Scenes folder

The project is ready to go. Let’s turn those graphics into objects, sprites,
and animations.

Add the Player Sprite to the Scene
The first step is to add the player sprite. In the Graphics folder, click and
drag the player_spritesheet object and drop it into the Scene (not the
Hierarchy; it has to be in the Scene panel for the animation to work right).
A Create New Animation window should appear. Name it playerwalk.anim
and click Save.

2D Unity (Early Access), © 2015 by Jeff W. Murray

74 Chapter 5

The Max character sprite should now be in the Scene. Click Play to
watch his walk animation. Unity automatically named your sprite 1, which is
not the most useful description, so you need to rename it in the Inspector.
Select Max and then rename the sprite Player using the text field at the top
of the Inspector.

Next, let’s create a script to make him move around.

Programming Player Controls
Make sure the player sprite is selected in the Hierarchy. Then, in the Inspector,
click the Add Component button (Figure 5-4) and select New Script.

Figure 5-4: The Add Component pop-up menu

2D Unity (Early Access), © 2015 by Jeff W. Murray

Programming Player Controls and Game Physics 75

Name the script PlayerControl. The default script type should be C Sharp
(C#), but double-check that C Sharp is selected in the Language drop-down
menu. Click the Create and Add button. The Inspector should now show a
new Component—your script!

N o t e 	 Unity editor calls the language C Sharp, which is the way C# is pronounced. Both
C Sharp and C# refer to the same language.

Double-click the script name in the Inspector. Your script editor program
(MonoDevelop or Visual Studio) opens to a skeleton script (Figure 5-5),
which is the same as the skeleton C# script you saw in Chapter 4.

Figure 5-5: MonoDevelop and the PlayerControl.cs script

As mentioned in earlier chapters, Components are attached to Game
Objects to make them do things. We’ll make a script that will become a
Component on the player GameObject (your sprite) so you can control it
using keyboard input. To do that, we need to access the player’s Transform
Component.

The Transform Component holds position, rotation, and scale infor-
mation about your GameObject. Transforms are attached to every Game
Object automatically, and to access them, you’ll need to store a reference
to the Transform in a variable. At the top of the script, just after the class
declaration, enter the following code to declare a variable that holds the
Transform reference:

 public class PlayerControl : MonoBehaviour {
 private Transform myTransform;
 private float gameWidth = 6;

2D Unity (Early Access), © 2015 by Jeff W. Murray

76 Chapter 5

The line private Transform myTransform; sets up a variable that holds the
Transform reference. Because we don’t need to access the variable anywhere
else, you can declare it as a private variable.

The gameWidth variable is a float that is used to set how far left or right the
player can move. The middle of the game play area is at zero, so –gameWidth
indicates where the left boundary of the play area is, and gameWidth indicates
where the right boundary is. For this game, the play area is 6 units wide.
Later in this chapter, you’ll write code to check the player position.

The size of the graphics in the game world impacts how the play area is
used. In this case, all the graphics’ Pixels To Units ratios are set to 16 (as in
previous chapters). That means you can convert the play area of 6 units wide
into its pixel equivalent by calculating 6 units × 16 pixels wide, resulting in a
play area that is 96 pixels wide. How those 96 pixels are displayed onscreen
depends on the camera settings. But this calculation of actual pixels in the
game world can be useful, for example, for creating correctly sized back-
ground graphics in a graphics program like GrafX2.

The next step is to grab a reference to the Player Transform Component
and store it in the variable myTransform. To make sure that the myTransform
variable is set up before you try to access it, grab the reference in the Start
function. Add the following line of code on the line just after void Start ():

 myTransform = GetComponent<Transform> ();

myTransform will now hold whatever the GetComponent command returns.
The GetComponent command will search for the Component you specify in
angle brackets <>, and it will only look for Components attached to the
GameObject that this script is attached to, which in this case is Player.
Remember that GetComponent is a function, so you need to include the paren-
theses at the end of the command to call it. Now when the scene starts and
the GameObject is initialized, myTransform should be ready to access the
Transform Component.

Next, you’ll add some code to the Update function. Recall from Chapter 4
that the Update function is where you can put code that needs to be called
constantly throughout the game. Code in Update is called automatically by
the game engine every time it goes through its normal update loop.

On the next line, inside the Update function’s curly brackets, you’ll
check for player input. Enter these lines into the Update function:

 float moveInputAmount = Input.GetAxis ("Horizontal");
 if (moveInputAmount>0 && myTransform.position.x < gameWidth)

 {
 myTransform.Translate (new Vector2(0.1f, 0));

 }

Input.GetAxis checks what Unity calls a virtual axis, which you can use for
checking keyboard input (or joystick or controller input). The default input
settings provide two axes named Horizontal and Vertical. You can access

2D Unity (Early Access), © 2015 by Jeff W. Murray

Programming Player Controls and Game Physics 77

axes values using the GetAxis function, as shown at . GetAxis returns a value
between −1 and 1. If the value is 1, the right key is pressed. If the value is −1,
the left key is pressed. If no key is pressed, the value is 0.

Figure 5-6 shows a visualization of the Horizontal axis. In plain English,
the code at  asks Unity for the horizontal input amount and stores it in a
variable named moveInputAmount.

−1 0 1

RightLeft

Figure 5-6: The default Horizontal axis setup has left input as
a negative number and right input as positive. This same logic
can be applied to the Vertical axis by replacing left and right
with down and up, respectively.

The first condition at  asks what the state of the Horizontal axis is, as
stored in moveInputAmount. It checks whether the value returned by GetAxis is
greater than zero. If that condition is true, the user has pressed the right
key and the player should move right.

The second part of the condition (everything after &&) checks the
player’s x position against the variable gameWidth to see whether the player
is in the game play area, because we want to keep the player within those
boundaries. If both conditions are met, the code between the curly brackets
runs, and the player moves to the right. Note that if the second condition is
false, the player is up against the edge of the screen, and the code between
the brackets is skipped.

Now that we’ve detected user input and made sure that it’s safe to move
Max, let’s investigate the actual movement code. In the body of the condi-
tion , I use the Transform Component, whose reference is held in the
variable myTransform, to move the player. To do so, you can call a function
called Translate. In vector math, the term translate just means to change or
move a vector. The Translate function takes three parameters: x, y, and z.
You don’t need to worry about the z-axis, which is for 3D movement. You
only need to move along the x- or y-axis to go left or right.

When you use Translate, the x, y, and z values set up a vector that tells
Unity how much the player should move from its current position. To go
right, I give Translate an x value of 0.1. The reason the value is so small is
that I don’t want the player to move too quickly. Passing higher values to the
Translate function will make the player zoom off the screen.

Let’s look at the code for the player to move left. Enter the following
code right after the code you just added to the Update function:

 if (moveInputAmount<0 && myTransform.position.x > -gameWidth)
 {
 myTransform.Translate (new Vector2(-0.1f, 0));
 }

2D Unity (Early Access), © 2015 by Jeff W. Murray

78 Chapter 5

In the first condition, we check the value of moveInputAmount for a nega-
tive value instead of a positive one. In the second part of the condition,
the transform’s x position is compared to -gameWidth. If the result from
moveInputAmount is less than zero and the player has enough room to move
left, the code in the curly brackets runs, and Translate moves Player to
the left because we’ve passed −0.1 to it for its x value.

That’s all the code it takes to move the player left or right, though it
won’t work in the game until the GameObject has Components attached
to it that allow the Player object to work as part of the physics engine.

Game Physics
For an object to behave in a realistic way, a whole lot of math needs to be
done. The physics engine handles the math to simulate your game world, and
the game engine uses that information to make objects move. The physics
engine also handles events, like collisions.

In this book, you’ll be using one of Unity’s two physics engine libraries,
Box2D. Because Unity has two physics engines, there are two sets of physics
and collision commands, which can be confusing at first. To avoid any con-
fusion, just keep in mind that all 2D physics collisions Components, or func-
tions, have 2D in their name, such as RigidBody2D, BoxCollider2D, and so on.

Unity’s implementation of the Box2D engine provides a number of
Components. Here are the main ones you’ll use in this book:

RigidBody2D  Enables GameObjects to act under the control of the
physics engine. For any objects to react to each other, they must have
a RigidBody2D Component.

SphereCollider2D  Provides the GameObject with a simple sphere-based
collision shape.

BoxCollider2D  Provides a simple box shape as the collision shape.

EdgeCollider2D  Creates platforms in a 2D platform game. It pro-
vides a collision shape based on a collection of points along a line.
For example, imagine a line along the top of a platform that a player
walks on.

Unity’s 2D physics system has quite a bit more functionality, but I won’t
cover it here. As you become more advanced, the Unity documentation is a
great place to learn about new and wonderful features. If the basic collision
or physics systems discussed here aren’t working well for your game, check
out other options under the RigidBody2D or Collider2D classes in the game
engine documentation.

In our falling bricks game, the player and brick GameObjects need a
RigidBody2D Component attached so they can react to collisions. In addition,
the player and brick GameObjects will have a collider Component attached.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Programming Player Controls and Game Physics 79

Setting Up Physics and Collisions
We’ll add gravity to the game so bricks fall from the sky, and to add more
excitement, we’ll make the bricks explode when they hit the ground. But
first, let’s make sure the player is set up with the right physics and colliders.

Add Physics to the Player
Switch back to Unity if you’re still in your script editor. Select Max in
the Scene. In the Inspector, click Add Component and select Physics 2D4
Rigidbody 2D. This tells the physics engine that the player is a physics object
that needs to be controlled by the physics system, but it still needs a colli-
sion component. Without collision, the physics engine will apply gravity to
the player, and the player object will drop off the screen. Let’s prevent that
from happening.

Click Add Component again and select Physics 2DBox Collider 2D.
The BoxCollider2D Component automatically matches the size of the sprite.
Now Max should act like a solid object in the game.

Add the Ground
With the myGame scene open, right-click in the Hierarchy and select 2D
Object4Sprite. Name this new sprite GroundSprite. With GroundSprite still
selected in the Hierarchy, look in the Graphics folder in the Project panel
and find the Sandy sprite. Drag Sandy into the Inspector’s Sprite field to set
the GroundSprite’s sprite to the sand tile.

Before adding a collider, we need to move GroundSprite down to the bot-
tom of the screen so it looks like the ground that the player is standing on.
In the Inspector, enter the following numbers in the Position fields:

X: 0

Y: −5.1

Z: 0

The bottom of the play area should now be nice sandy ground. The
only problem is that the bricks will just go right through it, so let’s prevent
that by adding a 2D collider. With GroundSprite still selected, click the Add
Component button in the Inspector. Select Physics2DBox Collider 2D to
add the BoxCollider2D to the GameObject.

With the ground set up, click Play to see the player move around a bit
and click Stop when you’re ready to continue with the next step, in which
you’ll set up the bricks.

Create the Brick Object Prefab
Creating a prefab is the easiest way to reuse GameObjects in different
scenes. Prefabs are like templates of GameObjects that you can drag into
a scene; they retain the same properties as the original GameObject. For

2D Unity (Early Access), © 2015 by Jeff W. Murray

80 Chapter 5

example, you might build a character with a head, a body, and limbs.
Instead of rebuilding the same character in every game scene, you can put
the head, body, and limbs into a prefab. Whenever you load a new level, you
can add the prefab to the scene (called instantiation), and it should appear
as you originally made it.

Instead of creating lots of bricks, we’ll create a prefab brick object and
tell a script to create instances of the prefab.

First, you’ll add the brick object to the scene. From your Assets/Graphics
folder, drag the brick_tile object into the Hierarchy. The brick sprite will
appear in the center of the Scene preview, and brick_tile should be listed
in the Hierarchy. Next, you’ll add the physics and collision Components
you need.

Make sure the brick_tile is selected in the Hierarchy panel so you
can see it in the Inspector. Click the Add Component button and select
Physics2D4RigidBody2D. Next, add a BoxCollider2D Component. Click the
Add Component button again and select Physics2DBoxCollider2D.

The brick should now have a collision Component and physics. When
you click Play, the brick will fall and hit the ground. Click the Stop button
before continuing.

When the brick hits the ground, it just sits there. Let’s write a script to
make it disappear when it hits the ground. This will make the game play-
able. (We’ll revisit the brick collision later to add a nice explosion particle
effect.)

When the physics engine detects a collision, it automatically makes
a call to all Components attached to the affected GameObjects. By add-
ing a function to a GameObject’s script to “catch” the call, you can create
collision-based events. In this case, you’ll destroy the brick GameObject
when it hits the ground.

Click Add Component. At the bottom of the menu, click New Script.
Make sure you select C Sharp as the language and name the script Hazard.
Create the script by clicking the Create and Add button.

A script named Hazard should appear in the Inspector. Click the script
to open your script editor. You’ll see the familiar template script to start.
To make bricks disappear when they hit the ground, simply add the follow-
ing code after the class declaration (you don’t need to change the Start or
Update functions):

 void OnCollisionEnter2D() {
 Destroy (gameObject);
 }

The function OnCollisionEnter2D is one of Unity’s built-in functions.
Unity calls OnCollisionEnter2D whenever a collision involving the associated
GameObject occurs.

To remove the sprite from the scene, destroy the GameObject using
the Destroy function. Notice that this is done by passing the gameObject to
the Destroy function. This tells the Destroy function to destroy whatever
GameObject it’s attached to. That’s it for the brick script!

2D Unity (Early Access), © 2015 by Jeff W. Murray

Programming Player Controls and Game Physics 81

Save the script and then close or minimize your script editor to return
to Unity. Create a prefab by dragging the brick_tile GameObject out of
the Hierarchy and dropping it into the Prefabs folder in the Project panel.
This should add a new file to the project in the Prefabs folder. As long as the
brick_tile prefab exists in that folder, you can delete the original one in
the Hierarchy. Right-click the brick_tile GameObject in the Hierarchy and
choose Delete from the drop-down menu.

Creating a Game Controller Script
Because you just deleted the brick_tile GameObject, when you click the
Play button, nothing happens. Let’s build a game controller script to create
falling bricks. In game development, a game controller script refers to code
that keeps track of the game’s core logic, and it’s best to keep all of the
game’s logic in this script. For example, the game controller script could
be code that keeps track of the score or code that keeps track of the game’s
state, like whether the game is active or paused. Figure 5-7 shows a regular
structure I use in its simplest form: separate scripts are attached to players,
enemies, and other scene objects. The game controller script is central to
this structure.

Enemy scripts Player scripts

Game controller script

Other level-
object scripts

User interface
drawing scripts

Figure 5-7: A typical componentized scene structure based on a game
controller script

Always attach the game controller script to its own GameObject
called GameController so it’s easy to find in the Hierarchy. First, create the
GameObject by right-clicking in the Hierarchy. From the pop-up menu,
click Create Empty.

Why choose an empty GameObject? Empty GameObjects are a great
place to put scripts that have no associated sprites in a scene. For example,
this GameController script will only spawn new brick objects. The script isn’t
a physical object in the game. To keep the project organized, it gets its own
GameObject so it won’t get mixed in with a bunch of other Components.

The other important reason to attach your game controller script to
an empty GameObject is that scripts that derive from the Monobehaviour
class—like the game controller—need to be attached to a GameObject in
the Scene to access Monobehaviour functionality, such as the Start, Update, or
FixedUpdate functions.

2D Unity (Early Access), © 2015 by Jeff W. Murray

82 Chapter 5

Rename the new GameObject to GameController. Its default name is
GameObject, so find it in the Hierarchy and either left-click its name to
rename it or highlight GameObject and change its name in the Inspector.

Now let’s get back to more programming. Make sure the GameController
GameObject is selected, and then click the Add Component button in the
Inspector panel. Choose New Script from the menu. In the Name field, type
GameController. Make sure that C Sharp is selected in the Language drop-
down menu and click the Create and Add button.

Double-click the script to open the script editor and edit the code. The
GameController script starts out as the regular template you saw earlier in
this book. It will need several variables to work. Inside the public class dec-
larations, declare all those variables like this:

public class GameController : MonoBehaviour {

 public GameObject hazardPrefab;
 public float gameAreaWidth = 5;
 public float startingHeight = 6;
 public float timeBetweenDrops = 1f;
 public float dropGravity = 1f;
 private Vector2 theNewObstaclePosition;

I’ll discuss each variable’s purpose as it comes up in the script. For now,
let’s just zip ahead to the Start function. Start gets called only once when
the GameObject is initialized, so it’s a good place to take care of anything
that needs to be set up before the main update functions are called.

In the Start function, add an Invoke statement to make the first brick
drop after two seconds:

 void Start () {
 Invoke ("DropBrick", 2);
 }

Invoke takes a function name in quotation marks as one of its argu-
ments, followed by the number of seconds before the function is called.
It’s like having a timer built into your code. In this case, a function called
DropBrick will be called two seconds after the Start function is called.

You don’t need to add anything to the Update function, so you can
ignore it. On the line after the Update function, add the following code to
create the DropBrick function:

 void DropBrick() {
 // set up a Vector2 to use for positioning the new brick
 theNewObstaclePosition.x = uRandom.Range (-gameAreaWidth, gameAreaWidth);
 theNewObstaclePosition.y = vstartingHeight;

First, we declare a variable named theNewObstaclePosition.x, which we’ll
use to make bricks randomly appear along the top of the screen. It’s a
Vector2 type variable, which means we can use it to store position data (like
x- and y-coordinates) to use with the Transform Component. In this case, we’ll

2D Unity (Early Access), © 2015 by Jeff W. Murray

Programming Player Controls and Game Physics 83

use it to build a position vector with a random x value using the Random.Range
function u. Random.Range returns a randomly generated value in the range
that you pass to it. Here, we pass in the width of the game (held in the
variable gameAreaWidth) in negative and positive form (Figure 5-8).

X = -gameAreaWidth Y = gameAreaWidthX : 0

Gameplay area

Figure 5-8: The gameplay area and how gameAreaWidth is used to
find the left and right sides of it

To set the height of this new brick, we use the variable startingHeight v,
which holds a value to set the height bricks should fall from. I set this value
to 6 in the variable declarations, but I didn’t use any kind of scientific pro-
cess to get that number. I tested a few different values until it looked right.

The next part of the DropBrick function will actually create a brick in
the game. Add this code to the DropBrick function:

 theNewGameObject = (GameObject) Instantiate (hazardPrefab,
theNewObstaclePosition, Quaternion.identity);

To create a brick, this code uses the Instantiate function. When
Instantiate is used to add a new GameObject to the scene, it returns a
reference to the new object. The variable named theNewGameObject will hold
that returned reference.

N OTE 	 The Instantiate function makes a copy of the prefab you pass into it, adding the copy
to the scene for you to use in your game. Game developers often refer to this process
as spawning.

Notice that immediately before the Instantiate call is a (GameObject). The
game engine doesn’t know what type of object Instantiate will return, so you
have to tell it. In this case, it’s a GameObject, but it’s possible for Instantiate
to return a Transform if that’s what your code calls for. Make sure that the
variable you’re putting the reference into is of the same type. In this case,
we want to use the new object’s GameObject Component in the next line of
the code, so we enter it as (GameObject).

In the next line, we call GetComponent on the new GameObject to access
its RigidBody2D Component:

 theNewGameObject.GetComponent<Rigidbody2D> ().gravityScale = dropGravity;

2D Unity (Early Access), © 2015 by Jeff W. Murray

84 Chapter 5

We need to access the Rigidbody2D Component so we can scale the way
the brick reacts to gravity. As the game progresses, we’ll want the bricks to
fall faster. To achieve this, we’ll increase this gravityScale value so gravity
has a greater effect on the falling bricks.

Let’s add more to the DropBrick function. Enter these lines to set up
future brick drops:

 // make sure any previous calls to drop a brick are cancelled out
 CancelInvoke ("DropBrick");

 // schedule a new brick drop at timeBetweenDrops
 Invoke ("DropBrick", timeBetweenDrops);

 // speed up the drop time to make bricks drop sooner
 if (timeBetweenDrops > 0.5f)
 timeBetweenDrops -= 0.05f;

To make sure there’s only one active call set up for the DropBrick func-
tion, we use the CancelInvoke command . CancelInvoke takes the name of
the function and removes all calls scheduled by Invoke, ensuring that only
one will be waiting in the queue. This just makes all the events easier to
manage.

After the queue is cleared by CancelInvoke, there’s a new call to Invoke
at  that schedules a call to the DropBrick function at the time held in the
variable timeBetweenDrops.

We want timeBetweenDrops to decrease as the game progresses so that
bricks drop more frequently and the game gets more difficult. To do this,
an if statement  checks whether the value of timeBetweenDrops is greater
than 0.5. If it’s more than 0.5, timeBetweenDrops decreases by 0.05 . Once
timeBetweenDrops is less than 0.5, we stop subtracting from it; otherwise, the
game would become way too hard to play.

Finally, let’s add the code to increase dropGravity to make the bricks
fall faster, which also makes the game harder as it goes on:

 dropGravity += 0.1f;
 }

The closing curly bracket ends the function. That’s all the code you
need to make it rain bricks! Don’t forget to save your script before you
return to Unity.

Next, you need to tell Unity which prefab to use for instantiating
bricks by adding a reference to the brick prefab in the Inspector panel.
Click the GameController in the Hierarchy panel. The Inspector should
show the Component and its publically available properties, which will
look something like Figure 5-9. The Hazard Prefab field will display None
(GameObject), meaning that there’s no reference set up yet for the brick
object. Let’s fix that now.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Programming Player Controls and Game Physics 85

Figure 5-9: The Inspector shows the GameController
Component.

Click the Prefabs folder in the Project panel to highlight it. The asset
browser should show its contents. Click and drag the brick prefab into the
Hazard Prefab field in the Inspector. Drop it there to change the entry
from None (GameObject) to brick (GameObject).

Time to give the game a go! Click Play to preview the game. You
should be able to move the player left and right to avoid the falling bricks.
Congratulations on completing the game!

Adding Polish
In game development, once all the main features of a game are working,
the final stages include the polish phase. This phase can include fixing bugs,
but it’s more about adding finishing touches, such as inserting transitions
between levels, smoothing out movement, or generally improving the flow
of the game.

At this stage, the game we’ve been working on feels a bit rough. The
way the bricks just disappear when they hit the ground doesn’t make much
sense: why are they disappearing? Are they leaving this dimension? Being
stolen by aliens? By adding a simple particle effect, the bricks will smash
and break apart when they hit the ground. Although this isn’t a critical
addition to the game, it is a nice feature to give the game a little polish.

Create a Smashing Brick Particle Effect
Unfortunately, the particle system is still intended to be used primarily in
3D games. For that reason, it’s not set up to use the 2D sprite system, and
any image you want to use in a particle effect needs to be set up as a 3D tex-
ture. To do this, let’s grab the brick image you already have and duplicate it.

2D Unity (Early Access), © 2015 by Jeff W. Murray

86 Chapter 5

Select brick_tile in the Project panel, and press ctrl-D (cmd-D on
a Mac) to duplicate the file. Click the new brick_tile 1 object to view its
Import Settings in the Inspector (Figure 5-10).

Figure 5-10: The Import Settings for the texture selected in the Project panel are shown in
the Inspector.

Click the Texture Type drop-down menu and change its value from
Sprite (2D and UI) to Texture; then click the Apply button.

Add the Particle Effect

Next, you’ll add the particle effect. Right-click anywhere in the Hierarchy
panel to show the drop-down menu; then select Particle System. The stan-
dard particle texture is a little white blob: you should see lots of them in
the Scene and Game panels. You need to change the texture to that brick
texture you just duplicated.

In the Graphics folder in the Project panel, click and drag the new brick_
tile 1 texture on top of the Particle System object in the Hierarchy. When
you drop the texture onto the Particle System, those white blobs will turn
into the brick pattern.

What actually happened was that the texture you dragged onto the
GameObject was automatically placed into the Material used by the particle
system. In the Inspector, you’ll see the Particle System Component. Scroll
down to find the Renderer section and click it to see its options. In this sec-
tion is a Material field, and it’s set to the brick material! Unity put it there
for you.

Figure 5-11 shows the settings I used for my particle effect: copy them
into yours. But feel free to experiment. Play around with the numbers in
the Inspector to get creative!

Next, to make sure the particle effect goes away when the brick
GameObjects are destroyed, you’ll need to add a script to the Particle
System object.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Programming Player Controls and Game Physics 87

Figure 5-11: The Particle System settings I used to
make an exploding brick effect

Add a Script

Select the Particle System from the Hierarchy. In the Inspector, click the
Add Component button. In the drop-down menu, select New Script, name
the new script DestroyInTime, and click the Create and Add button. Double-
click the script to open it in the script editor.

You’ll create a function to destroy the particle effect that this Component
is attached to. Add a float variable called destroyTimeSecs to use as the timer
to the body of the DestroyInTime class declaration:

 public float destroyTimeSecs = 1;

2D Unity (Early Access), © 2015 by Jeff W. Murray

88 Chapter 5

Next, add this code to the Start function:

 Invoke ("DestroyThis", destroyTimeSecs);

Now when the Start function is called, this Invoke statement will call the
DestroyThis function in the time set by destroyTimeSecs.

The DestroyThis function has a simple statement that tells Unity to
destroy the GameObject that this script is attached to. Add this code after
the Start function’s closing bracket:

 void DestroyThis () {
 Destroy (gameObject);

 }

It’s important to note the difference between the capitalized GameObject
and gameObject. When you use the lowercase versions of transform or gameObject,
as we do here, you’re referring to the Transform or GameObject that the
script is attached to. When you use the capitalized version, you’re saying
“the type of object is a GameObject” or “the type of object is a Transform.”
The capitalized versions of GameObject or Transform tell the engine what
type of object you are either creating or expecting as a return value from
another function and don’t refer to a particular instance of either.

The full script looks like this:

using UnityEngine;
using System.Collections;

public class DestroyInTime : MonoBehaviour {

 public float destroyTimeSecs = 1;

 // Use this for initialization
 void Start () {
 Invoke ("DestroyThis", destroyTimeSecs);
 }

 void DestroyThis () {
 Destroy (gameObject);
 }
}

Double-check that your code looks right. Then save your script and
head back to Unity.

Drag Particle System from the Hierarchy into the Prefabs folder in the
Project panel to make a new prefab. Right-click the Particle System object
in the Hierarchy and then click Delete to remove it from the scene. Don’t

2D Unity (Early Access), © 2015 by Jeff W. Murray

Programming Player Controls and Game Physics 89

worry! The prefab has all the necessary information, so the game will be
able to add new effects to the scene as needed. Add the particle effect to
the Hazard script.

Now you need to use the Instantiate command to trigger the explo-
sion when the brick is destroyed. Earlier in this chapter, you added the
Hazard script to the brick so that the brick would be destroyed when it hit
something.

In the Prefabs folder in the Project panel, click the brick prefab so the
Inspector panel changes to show the properties of brick. You should see the
Hazard script as a Component in the Inspector. Double-click the script to
open it in the script editor program.

Add the following variable to hold a reference to the new particle effect
prefab, just before the Start() function:

 public Transform particlePrefab;

The collision system triggers a function named OnCollisionEnter2D
when the brick hits something. You’ll instantiate the particle effect
there, just before the Destroy statement that you wrote earlier. The full
OnCollisionEnter2D function should look like this:

 void OnCollisionEnter2D() {
 Instantiate (particlePrefab, transform.position, Quaternion.identity);
 Destroy (gameObject);
 }

Save the script and then return to Unity. A
small spinning icon appears in the bottom right
of the editor window (Figure 5-12) to indicate
that the scripts are being compiled. It disappears
quickly, so if you didn’t see it, don’t worry.

The next task is to tell the Hazard script
where to find the particle effect by creating a
reference to it in the Inspector.

In the Prefabs folder in the Project panel, click the brick prefab to show
its properties in the Inspector. You’ll see the hazard Component again.
Find the Particle System prefab back in the Prefabs folder and then drag
and drop it into the Particle Prefab field on the hazard Component. The
Inspector for the brick prefab should now look something like Figure 5-13.

Test the game by clicking the Play button in the scene tools. Now, when-
ever a brick hits the ground or the player, your particle effect should occur
when the brick disappears. It’s a small effect that adds to the overall feel of
the game: it makes more sense for bricks to explode on impact than just
disappear!

Figure 5-12: The spinning
icon appears in the bot-
tom right when the editor
is busy compiling scripts.

2D Unity (Early Access), © 2015 by Jeff W. Murray

90 Chapter 5

Figure 5-13: The brick prefab in the Inspector panel.
Note the Hazard (Script) Component and its Particle
Prefab field.

Flip the Player
You’re almost done polishing your brick-dodging game. Right now, the
player looks a bit silly because he’s always facing left, even when he moves to
the right. A little extra programming can fix this. By modifying the scale of
the Transform Component either in the Inspector or through code, you can
flip sprites around.

Select the player sprite if it isn’t already selected. Then look in the
Inspector for the Transform section. Change the x value of Scale from 1
to −1. The sprite flips around to face the right side of the screen. Change
the value of scale back to 1, and the sprite flips to face left again. You can
access this value in code as well, which is exactly what the PlayerControl
script will do to change the sprite’s direction whenever it needs to.

2D Unity (Early Access), © 2015 by Jeff W. Murray

Programming Player Controls and Game Physics 91

In the Scripts folder (Figure 5-14) in the Project panel, double-click the
PlayerControl script to open it in the script editor.

Figure 5-14: The PlayerControl script in the Scripts folder

Scroll down to the Update function to add two lines of code. You’ll place
the first one inside the curly brackets to move right. Add the following just
after myTransform.Translate (0.1f, 0, 0);:

 myTransform.localScale = new Vector3(-1, 1, 1);

The second line sets the x scale in the opposite direction, which goes
between the curly brackets to move left:

 myTransform.localScale = new Vector3(1, 1, 1);

Your updated Update function should now look like this:

 // Update is called once per frame
 void Update () {
 // move right
 if (Input.GetAxis("Horizontal")>0 && myTransform.position.x < gameWidth)
 {
 myTransform.Translate (0.1f, 0, 0);
 myTransform.localScale = new Vector3(-1, 1, 1);
 }
 // move left
 if (Input.GetAxis("Horizontal")<0 && myTransform.position.x > -gameWidth)
 {
 myTransform.Translate (-0.1f, 0, 0);
 myTransform.localScale = new Vector3(1, 1, 1);
 }
 }

Test the game to make sure the character faces the same direction
that he moves when you press the left or right arrow keys. Flipping a sprite
through code is pretty neat, huh?

2D Unity (Early Access), © 2015 by Jeff W. Murray

92 Chapter 5

Closing Thoughts
You’ve completed a brick-dodging game. Good job! You learned how to pro-
gram some player controls and learned basic collision handling. You know
how to add a player character and move it around the screen, as well as how
to apply some simple physics from the 2D physics engine to create falling
blocks.

You also practiced building a very basic game structure. The game con-
troller controls all the main game functions. I use this structure for all my
games, and it works for just about anything.

Organizing your project structures can make future game development
and debugging more straightforward. When problems occur, it’s easier to
pinpoint where they’re happening when you use separate specialized scripts
rather than large scripts that lump many purposes together.

In Chapter 6, I’ll introduce you to Unity’s graphical user interface. We’ll
look at the available user interface elements and some helpful tools for
building interfaces.

2D Unity (Early Access), © 2015 by Jeff W. Murray

	Chapter 1: Getting Started in Unity
	Creating a Unity Project
	The Main Editor
	Anatomy of a Unity Project
	Project Directories
	Navigating a Scene
	Selecting and Manipulating Objects
	The Hierarchy Panel in Depth
	Rotation and Scale

	Snap and Grid Settings
	Copying, Pasting, Duplicating, and Deleting
	Adding Components

	Gizmos
	Previewing Aspect Ratio and Screen Resolution
	Checking Your Game’s Stats
	Closing Thoughts

	Chapter 2: Graphics for Your Games
	Key Graphical Elements in 2D Games
	Image Formats in Unity
	Choosing Image Size
	Obtaining Premade Graphics
	Buying Stock Assets
	Using Royalty-Free or Public Domain Assets

	Create Classic Pixel Art with GrafX2
	Downloading and Installing GrafX2
	Getting Started with GrafX2

	Making a Brick Tile
	Set the Image Size
	Draw the Brick Tile

	Making an Animated Player Sprite
	Set the Image Size
	Draw Your Character
	Animate!
	Generate a Sprite Sheet with Piskel

	Closing Thoughts

	Chapter 3:
Using Unity to Animate 2D Sprites
	Cameras
	Importing Images
	Optimizing Your Images
	Import Settings
	Texture Type
	Sprite Mode
	Pixels To Units
	Pivot
	The Sprite Editor Button
	Generate Mip Maps Checkbox
	Filter Mode
	Max Size and Formats

	Character Animation
	Slicing Spritesheets Automatically
	Create an Animation File for Your Character
	Slicing Spritesheets Manually

	Closing Thoughts

	Chapter 4: Introduction to Programming
	What Is C#?
	Getting Started
	Bouncing a Ball
	Libraries
	Classes and Inheritance
	Variables
	Game Logic

	Controlling a Moving Bat
	More About Objects
	The Game Loop
	Move the Bat

	Breaking Bricks!
	Use a Loop to Make Bricks
	Color Your Bricks with Arrays

	Closing Words

	Chapter 5: Programming Player Controls and Game Physics
	Dodging Falling Bricks
	
Add the Player Sprite to the Scene
	
Programming Player Controls

	Game Physics
	Setting Up Physics and Collisions
	Add Physics to the Player
	Add the Ground
	Create the Brick Object Prefab

	Creating a Game Controller Script
	Adding Polish
	Create a Smashing Brick Particle Effect
	Flip the Player

	Closing Thoughts

