Ll
w @

e L
P
R_mm
WO
o

WRITE PORTABLE CODE

WRITE PORTABLE
CODE

An Introduction to Developing
Software for Multiple Platforma

by Brian Hook
[:;_:’

NO STARCH
PRESS

San Francisco

WRITE PORTABLE CODE. Copyright © 2005 by Brian Hook.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

LA
e Printed on recycled paper in the United States of America
12345678910-07060504

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock

Managing Editor: Karol Jurado

Production Manager: Susan Berge

Cover and Interior Design: Octopod Studios
Developmental Editors: William Pollock, Elizabeth Zinkann
Technical Reviewer: Tom Forsyth

Copyeditor: Marilyn Smith

Compositor: Riley Hoffman

Proofreader: Stephanie Provines

Indexer: Kevin Broceoli

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloging-in-Publication Data

Hook, Brian, 1971-
Write portable code : an introduction to developing software for multiple platforms / Brian Hook.--
1st ed.

p. cm.
Includes bibliographical references and index.
ISBN 1-59327-056-9

1. Software compatibility. 2. Computer software--Development. I. Title.
QA76.76.C64H66 2005
005.1--dc22

2005012981

For my wife, Jennifer

BRIEF CONTENTS

PrefGCE ...t e XV
ACKNOWIBAGMENES ...ttt eree Xix
Introduction: The Art of Portable Software Developmentcoooiiiiiiiiiiiiieiec e 1
Chapter 1: Portability ConCeptsc..viiiiiiiiiiiieei e e 7
Chapter 2: ANSIC and C.oeiiiiiii ittt 19
Chapter 3: Techniques for Portability ... 25
Chapter 4: Editing and Source Controlcccciiieiiiiiiiiiiii e 63
Chapter 5: Processor Differencesccooiiiiiiiiiiiii e 77
Chapter 6: Floating POINEiiiiiiiii it 91
ChaPter 7: PrePrOCESSOT .. oo et ettt e e et e e e eeeeaeeaneeenaeens 109
Chapter 8: Compilersc..uiiiiiiiit it 119
Chapter 9: User INFEraCHONeoivie ettt ettt 141
Chapter 10: NetWOTKINGvviiieeiiiii ittt et 149
Chapter 11: Operating SYSIEMSoiiiiiiiiiiiiiie ettt ettt ee e ee bbb e e 155
Chapter 12: Dynamic LIbrariesoooooiiiiiiiiiiiciiit e 175
Chapter 13: Filesystemsoiiiiiit ittt e eeenees 187
Chapter 14: Scalability ... e 197
Chapter 15: Portability and Dataccoiuviiiiiiii e 201
Chapter 16: Internationalization and Localizationccccoeeiiiiiiiiiiiiiieiiiie e 207
Chapter 17: Scripting Languagescouuviiiiiiiie e 213
Chapter 18: Cross-Platform Libraries and Toolkits............cccoviiiiiiiiiiiiiiiiieciiie i 219
APPENix A: POSH ... 223
Appendix B: The Rules for Portabilitycoooioiiiiii i 229

REIEIENCES ...t e e

CONTENTS IN DETAIL

PREFACE XV
This BOok's AUIENCEoveiiiiiiiiieiiiet ettt xvi
ONliNg RESOUFCESiiiiiiiiiii ittt xviii
ACKNOWLEDGMENTS xix
INTRODUCTION
THE ART OF PORTABLE SOFTWARE DEVELOPMENT 1
The Benefits of Portability ..o 2
Elements of the Platform ..o 3
The Problem with ASSUMPHONScciuviiiiiiiiii it 4
Coding SIANAANASooiviieiiiie e e 4
The Framework for Portable Programmingcoooiiiiiiiiiiiiiiicc e 5
1
PORTABILITY CONCEPTS 7
Portability Is a State of Mind, Not a Statecccooiiiiiiiiiii 7
Develop Good Portability Habitscccccoiiiiiiiiiiie e 8
Good Habits Trump Specific Knowledge of Bugs or Standardsc..oooooviiiiinnnn. 9
Port Early and Port Oftenocciiiiiiiiiiii e 9
Develop in a Heterogeneous Environmentcccovvvviiiiiiiiieiiiniieieciiieeeeeens 9
Use a Variety of Compilersooooiiiiieeoiiiiieeicieeee e, 10
Test on Several Platformscocoiiiiiiiiiii 10
Support Multiple LIbrariesccccuivieeiiiiieeeiiiiieeiie e 11
Plan Portability for @ New Projectccoiiiiiiiiiiiiei e 11
Make Portability Easyoooiiiiiiiii e 11
Choose a Reasonable Level of Portabilitycccoooiiiiiiii 12
Don’t Wed Your Project to Proprietary Productsccceoiiiieiiiiiniiiinieen, 14
Port Old €ode ...ttt an 16
Assume Code Is Not Portable Until It Has Been Portedccocoviiiiiiiieninnne 16
Modify Only the Bare Essentialsc.cccueeiiiiiiiiiiiciicice e 16
Plan Your ARACk ...oooiiiiiiii i 17
Document Everything in Revision Controlc.coooiiiiiiiiiiiiii, 17
2
ANSI C AND C++ 19
Why Not Another Language?ccc.vviiiiiiiiieiiie e 19
C and C++ Provide Low-Level Accesscccoviiiiiiiiiiiiiiiin e 20
C and C++ Compile to Native Codecooviiiriiiiiiiiiiiiiieee e 20
Cand C DIAlEERS ... 21

Portability and C/Ca+ .ooiiiiiiiiiiii ettt ettt er e ens

3

TECHNIQUES FOR PORTABILITY 25
Avoid NeW FEATUFEScuvviiiiiiii ittt ettt ettt ereb e ee 26
Deal with Varying Feature Availabilitycoooiiiiiiii e 26
Use Safe Serialization and Deserializationcccccooiiiiiiiiiiiiii e 30
Integrate TESHNGocuviiiiiiiii e 32
Use Compilation OPHONScoiiuiiiiiiiiii ettt ee 34
Compile-Time ASSErONSccoiiiiiiiiiiii et 34
Strict ComPilationoi i 35
Segregate Platform-Dependent Files from Portable Filesccccooovieeiiiiiiiiie 35
Write Straightforward Codeccooiiiieiiiiiieci e, 36
Use Unique NAMES ... e 37
Implement ABSITACHON ..ottt 39
Dispatch Abstractioncoovuiiiiiiiiie e 40
Abstract Data Types [typedef) ..o 46
Use the C PreproCessoroiiiiiiiiiiiiiii ittt 47
Be Prepared for the Unforseencccccoeiiiiiiiiiiiiiiii e, 49
Communicating System-Dependent Informationcccooeiiieeiiiiiieeiiieenn, 50
Bridge FUNCHONSooviiiiiiie it 52
Low-Level Programmingcoouuiiiiiiii ittt en 52
Avoid SelfModifying/Dynamically Generated Code When Possible 53
Keep a High-Level Fallbackcoooiiii 57
The register Keywordcooiiiiiiiiii et 59
External versus In-Line asm Filescccoiiiiiiiiiiiiiii s 60
4
EDITING AND SOURCE CONTROL 63
Text File Line Ending Differencesooooiiiiiiiiiiiiiiiiiiii e 63
Portable Filenames ... 65
SOUFCE CONITOL ...t 66
Source Control SYSIEMSccueiiiiiciiiiii e 66
Checkout by ProXyooooeuiiiiieeiiiiie et 69
BUIld TOOIS .ottt et 70
Platform-Specific Build Toolsooiiiiiiiie e 70
Portable Build TOolsccoiiiiiiiiiiii i 71
EAIOrS .ottt e 74
SUMMQAIY Lottt e e e e e e e e e et e e e e e eeeeee e e e e et e e e eeeeeaee e 76
5
PROCESSOR DIFFERENCES 77
ABIGIMENT L.ttt 78
Byte Ordering and Endianesscccoiiiiiiiiiciie e 81
Big-Endian versus Litfle-Endian Valuescccooiiiiiiiiics 81
Standardized Storage Formatccooiiiiiiiiiiii 82
Fixed Network Byte Orderingccccueeuiiviiiiiiiiii et 84
Signed Integer REePresentalionc..ocuiciieiieetieeieeiee ettt enneas 85
SiZe OF INGHVE TYPES .ooiiiiviiiieiiiiie ettt ettt est e et eess e aeersabeee e e 85

Contents in Detail IX

AQAress SPACE ...uiiiiiiiii it e 89

SUMMAIY <ot e e e e e e e e e e e e e ee e e e e e e e eeeaeeeaeeeaeee e Q0
6
FLOATING POINT 91
History of Floahing Pointccoiuiiiiiiiie et ens 21
Standard C and C++ Floating-Point SUPPortccooiiiiiiiiiiiieei e 92
Problems with Floating Pointoiiiiii e 93
Inconsistent Evaluahoncoocoiiiiiiii e 93
Floating Point and Networked Applicationsc..ccooevieviiiiiieiiii e, 95
CONVEISIONS ...ttt ettt ettt ettt ettt e ettt e et e e et e e e e 95
Fixed-Point Integer Mathcooiiiiiiiiiii e 97
Extraction of Integer Bits from a Floatcccvvviiiiiiiiiiiii e 97
Implementation QUEEScc..eiiiiieiii et ettt ettt 100
Excephonal Resultscooiiiiiiiiiiii e 102
SPecial Valuesc...ooiiiiiiiiiiii e 103
EXCEPHONS L.ooiiiiiiii 105
Floating-Point ENvironment ACCESSoviveiiieiieeieciiee e 105
Storage FOMMAESu ittt 106
SUMIMQAIY < et e s e e e e e e e e e e e e e e oe e e ee e e ee e e e eeeeaeeeaeeeaaes 107
7
PREPROCESSOR 109
Predefined Symbols ..o 110
Header FIlesooiiiiii e 11
Header File Path Specificationcociiiiiiiiice e 113
Header FIlenamescoiiiiiiiieii e 113
Configuration MACIOSociiuiiiiieiiiie ettt era e e s e erstaeaeenes 114
Conditional CompilaHonoiiiii e 115
e T o T S 116
SUMIMOAIY Lottt et sb e st eee e e ee e e eeee e e e eeteeeseeeeeeteeeteeeaeeeaees 17
8
COMPILERS 119
Structure Size, Packing, and Alignmentcoooiiiiiiiiiiiiii e 120
Memory Management [diosynCrasiescciuieiiiiiiiiieiiiie e 123
Effect of free ..o 123
Aligned Memory Allocationccooiiiiieeiiiiiiieeiie e 123
TRE SHACK ettt ettt ene 124
SHACK SIZE .ottt 124
Problems with allocal)ccovveiiiie e 125
The printf ROUKNEcoveiiiieiiiie ettt e st e 125
Type Sizes and Behaviorc.ooiiiiiiiiii 126
The 64-Bit Infeger TYPeSc.oiiiiiieeieiiie ettt 126
Sizes Of BASIC TYPES .veiiuiiiiiiie ittt 127
Signed versus Unsigned char Typescccooviiiiiiiiiiiiiiiiieciiee e 130

X Contents in Detail

EIUMS TS INMES Lottt ettt eee et et s e e e ee et eaets ee s e st eaa e aeasee s es s sanse e aesennsennsn 131

Numeric CoNSIANTS ... e 132
Signed and Unsigned Right Shiftscccooiiiiiii 133
Calling CONVENIONSciuviiiieiiiiie ettt ettt ettt ettt eeertb b eeernbbeeeenes 133
Name Decorahion ... e 134
Function Pointers and Callbacksocoooiiiiiiii 135
POrtaBIlIY .o 135
REIUMNING SHUCIUES ..uiiiiiiiiiiitiiit s e ee e ee e ee e e et e e et e e e e e e e e e ae e ae e aeeeae e 137
Bitfields ..ot 137
COMMENTS .ttt ettt e h e eh b eb b e e eb b e e bbb e ebbn e eeenes 138
SUMMOIY oottt eb bbbt eabb e e e ebbb e e e eranes 139
9
USER INTERACTION 141
The Evolution of User Inferfacesccccciieeiiiiiiiiiiiiiiieeii e 142
CommMANd LiNEooiiiiiiiiiiiii e 142
WiINdow SysSIEMScouiiiiiii e 142
Native GUI or Application GUIZ ..o 143
Low-Level Graphicscoiiiiiiiiii e 144
DIgital AUGIO ... 144
3T U RSOOSR USPPRPPPRUTIN 145
Keyboard ...ttt 146
MOUSE . 146
Joystick and Gamepad ..o 146
Cross-platform Toolkitsoooiiiei e 147
SUMMGIY <ottt ettt et ettt e e ettt e e e et ae e e e e s 147
10
NETWORKING 149
The Evolution of Networking Protocolscccoviiiiiiiiiiiiece e 150
Programming INterfacesc....oioeeiiiiieeiie e 150
SOCKEES . ittt 151
RPC and RMI oottt e e e 153
Distributed Objectscoouiiiiiiii i 154
SUMMEAIY ©o ettt ettt ettt ettt ettt et e e e ettt e e e et e e e e eeae s 154
11
OPERATING SYSTEMS 155
The Evolution of Operating Systemsc..coiiiiiiiriaie et ee e 155
Hosted and Freestanding Environmentsc.ccooiiiiiiiiiiiie e 156
The Operating System Portability Paradoxcccoeeiiiiiiiiiiiiiccc e 157
IMBIMOMY it s 158
Memory LIMIAHONS ...c..uuiiiiiiii i 158
MEMOrY MAPPING - eeeeetiie ettt ettt 158
Protected MEMOTYccouvuiiiiiiiie e et e e ae e 159

Contents in Detail Xi

Processes and Threads ..o e 160

Process Control and Communication Functionsc..ccoeiiiiiiiinieiiiiinnen, 160
Interprocess Communication (IPC)ccooviiiiiiiiiiiii e 161
MUIITRrEading ...ocvviiieiiii e 161
Environment Variables ... e 166
Exception Handling ..o 167
C Exception Handlingcoooooiiiiiiii e 167
C+ Exception Handlingcccoiiiieeiiiieee e, 168
User DAt STOFGGE ©.ovviiiriiiiiiitiiit e ee et e et e e e ae e e e e e 168
Microsoft Windows Registrycoviiiiiiiaieie i 169
Linux User Dataoveeiiiii i 170
OS X Preferencesc.coiiii ittt 170
Security and Permissionsccoiiiiiiiiiiiiii it 171
Application Installationccooiiiiiiiiii e 172
Privileged Directories and Dataccooiiiiiiiiiiiiiiiie e 172
LOW-LEVEI ACCESS .oviiiiiiiieii ittt 173
SUMMQAIY <ottt et s e e e e e e e e e e e e e e et e eeeetetete e e e aeeeaeeeaeeeaaes 173
12
DYNAMIC LIBRARIES 175
Dynamic LINKING ..o 176
Dynamic Loading ...eoueeiieeie e 176
Problems with Shared Libraries (aka DLL Hell)cccccooiiiiiiiiiieieccccc e 177
Versioning Problemscocoviiiiiiiiiii 177
Proliferationcc.oiiiiiieie e 178
GNU LGPL oottt er et ern e ernn e e e ernn e e eres 179
WINAOWS DLLS ..ottt e e e e 179
Linux Shared ObjJECESciiiiiee ettt 182
Mac OS X Frameworks, Plug-ins, and Bundlescccooeioiiiiiiiicc e, 183
FrAMEWOTKS .ottt ettt 183
BUNIES ..o 184
PlUGAINS ettt e et e et e e 185
SUMIMGIY 1ottt st e e sb e st e ee e e ee e e ee e e e teeeeeeeeeeeeeeaeeeteeeteeeaees 186
13
FILESYSTEMS 187
Symbolic Links, Shortcuts, and Aliasesccccoeeiiiiiiiiiiiiiee e 188
Windows LNK Files ... 188
UNIX LINKS ©ovves e et 188
Path SPECIfICANON ... 189
Disk Drives and Volume Specifierscccoooiiiiiiiiiiiece e 189
Path Separators and Other Special Charactersccooooviiiiiiiiie, 189
CUrrent DIr@CIONY ...vvviiiiiiiiii i 190
Path Length ...oooceeeieee e 190
Case SENSHIVITY .oeeviiiiiiiii it 191
Security and Access Privilegeoccooiiiiiiiiii 191
Macintosh QUUITKSoioiiic e e 193
File AHFIBUIES ..ottt e 193

X Contents in Detail

SPECIal DIFECIOMIESeiiuiiiiieieiiii ittt ettt et eetb e e ettt eernb e eeenes 194

TeXt ProCeSSING ...oooiiiiiii e 194
The C Run-Time Library and Portable File Accesscccooiiiiiiiiiiiiiii e 195
SUMMAIY .ottt 195
14
SCALABILITY 197
Better Algorithms Equal Better Scalability ..o 197
Scalability Has Its LIMitsoo.eiieeieie e 199
SUMIMGAIY L1ttt et et e et e e et e et e e et e ee e e e e et eee e eeeeee et et e ee e ae e ee b baab e sbbeabbees 200
15
PORTABILITY AND DATA 201
Application Data and Resource Filesc...ooiiiiiiiiiiiiiiiiicci e 201
Binary Filescouvriiiiiii e 202
Text Files ...t 202
XML e 204
Scripting Languages as Data Filesccccooiiiiiiiiiiiiiiieee e 205
Creating Portable Graphicsccoiiiiiii e 205
Creating Portable Audioccoiiiiii 206
SUMIMGIY Lottt e st e eb et s e e e e e ae e e ee e e et e eeeeeeseee e e e eeeeteeeteeeaees 206
16
INTERNATIONALIZATION AND LOCALIZATION 207
Strings and UniCodeooiiiiiiiiiiie e 208
CUITEINCY .o oot oottt e et ae et enaee 209
Date and Timeoiii e 210
Interface Elementscooiiiiiiiiiii i 210
KeyYboardsviiiiiiie e 211
SUMMEAIY © ettt ettt ettt e a et e a et e e eat e e e e et e e e eeae s 211
17
SCRIPTING LANGUAGES 213
Some Scripting Language Disadvantagesooeiiiiiiiiiiiiieciii e 214
JavaScript/ECMASCHIP ..ot 215
PYIRON oo 216
LU e 216
RUBY .ot 217
SUMMGIY 1ottt ettt 217

Contents in Detail XN

CROSS-PLATFORM LIBRARIES AND TOOLKITS 219
LIBrArI@s ...t 220
Application Frameworksoiiiiiiiiiiiii e 220
QA s 220
GTK et ottt 221
LT e e 221
WXWIAGELS ... 221
SUMMAIY <o e e e e e e e e e e e e e ee e e ceaaae e e e aeeeaaeaaaaaaaes 221
A
POSH 223
POSH Predefined Symbolscccccoiieeiiiiiieiiiiiiecie e 224
POSH FIXEd-SIZ& TYPES .ovvviiiiiiiiie ittt ettt ettt e et ee e e et ae e e s 225
POSH Utility Functions and Macroscooeiiiiiiiiieiie i 225
B
THE RULES FOR PORTABILITY 229
REFERENCES 233
INDEX 235

Xiv Contents in Detail

PREFACE

I was having a conversation one day with a programmer colleague of mine
about the headache of moving software from one platform to another. While
complaining about the headaches of byte ordering, alignment restrictions,
and compiler quirks, this friend asked an innocent but important question:
“What book should I get if I want to write portable code?”

And the answer was startling: there were none.

With the hundreds of books on topics such as Java, C#, .NET, game
programming, DirectX, extreme programming, and agile development, not
a single modern book on cross-platform software development existed! This
astounded me, especially given the recent flurry of new or different operat-
ing systems running on servers, desktops, handhelds, and even cell phones.
Shouldn’t there be at least one book that talks about the principles of por-
table software development? Of course, there should be, but there wasn’t.

So, that’s how this book got its start.

There have been few times in my life when I felt I just needed to do some-
thing—a compulsion strong enough that I devoted a good chunk of a year to
researching and writing about cross-platform software development. I had a
very strong vision for how to approach the book, and what you are holding is
the end result.

xvi

This Book’s Audience

Preface

I wasn’t sure about my intended audience when I first came up with the
concept for Write Portable Code, but after finishing the book, my “typical”
reader became clear: an intermediate to advanced programmer interested
in writing software for different platforms. Here are some examples of
readers who will benefit from this book:

¢ A Windows programmer who wants to experiment with Linux at home

¢ A Mac OS X developer who needs to move her software to Windows to
gain access to a wider market

¢ A Sony PlayStation 2 game developer who must write the Solaris server
application for his game’s multiplayer component

¢ A Palm OS developer who has been contracted to port his software to the
Windows Mobile platform

* Alarge vertical integrator vendor that has just discovered its traditional
deployment platform has been discontinued and must now move its
products to a new system

There are countless reasons why developers may find themselves
needing or wanting to port to a new platform, but thankfully, most of the
same principles apply, regardless of the specific details. This book discusses
and teaches those universal principles of portable software development.

Write Portable Code is written with the intermediate to advanced
programmer in mind. However, I suspect that a lot of my readers may be
newer to programming, and thus have only heard about portability in the
abstract and aren’t quite sure how it affects them. In fact, they may not
understand what the problem is, since they haven’t run into it yet. This may
also be the case with more experienced programmers who have been
working with the same system for a while and have not needed to deal with
portability issues.

To help those of you who haven’t yet stubbed your toes on the portability
speed bump, I'll list a couple theoretical programmers and their situations. If
you can identify with any of them, you should be alarmed enough that
portability will elevate itself on your list of “Things to Be Concerned About.”

Bob, the Java programmer
Bob has been developing applications for Windows the past three years
using Borland’s JBuilder environment. He has been using the Sun pro-
vided Java Runtime Environment (JRE) and happily writing productive,
high-quality code. He is confident in his abilities as a Java programmer.
Then, one day, he is informed that his employer will be targeting
IBM AIX. He originally thinks that since Java is “high-level” and “portable”
and, infamously, “write once, run anywhere,” there shouldn’t be any
real problems with the transition—copy the code to a new machine
and run it, right?

Bob quickly finds that JBuilder is not available on AIX, some features
on the Windows JRE don’t behave the same with the AIX JRE, and some
packages that were available on Windows aren’t available on AIX. He
scrambles to identify the differences in features, performance charac-
teristics, bugs, and packages, and then must learn a whole new set of
development tools such as Eclipse. What was originally taken for granted
as “easy” has rapidly turned into a nightmare.

Janice, the Visual Basic programmer
Janice has been writing Visual Basic (VB) software for many years, pro-
viding forms that interact with Microsoft’s Access database. Portability is
not even a concept she’s aware of, since she has never considered the
world outside Microsoft Windows (or Microsoft products, period).

She has been asked to migrate her software to Mac OS X . Unfor-
tunately, she has been living a pretty insulated life as a Microsoft-centric
developer. She is alarmed to find that Mac OS X lacks both VB and
Access, and she is unsure how to get her software up and running on
that platform. Needless to say, the next few months are going to be
very difficult for Janice as she learns the ins and outs of cross-platform
development the hard way.

Reese, the user interface programmer
Reese has designed and implemented many user interfaces on Microsoft
Windows using Visual C++ and Microsoft Foundation Classes (MFC). He
has been using these tools and frameworks to rapidly prototype almost
any type of application requested.

One of his company’s biggest customers has decided to target
developing economies that prefer the low cost of Linux, so Reese has
been asked to move the suite of applications he has developed to that
platform. Reese has never had to work outside the Windows world, and
assumes that, given MFC'’s popularity, a reasonably compatible clone
exists on Linux. After some basic research, he finds that this is not true.
He must now learn a new development environment, operating system,
and variants of the C++ language. Of course, he also must find and
migrate to a replacement for MFC on Linux.

Jordan, the Linux/PPC developer
Jordan specializes in the development of server software. She has been
asked to port her suite of server applications to Windows, which she ini-
tially thinks should be easy, since her applications don’t even have user
interfaces.

She discovers that almost every major API she uses—sockets, file
I/0, security, memory mapping, threading, and so on—looks and acts
completely differently on Windows. She is stunned to learn this, having
originally thought that, since her applications were simple and used
GCC (which is available on Windows as well), a port would take only a
day or two.

Preface xvii

xviii

She then finds that Windows and Linux/PPC don’t even represent
data the same way in memory, and huge chunks of her code that rely
on memory-mapped file input fail on Windows. What was supposed to
be pretty simple is now looking like a line-by-line audit of her entire
code base.

In each of these cases, competent, talented programmers are suddenly
putin the position of feeling not so competent or talented, primarily due to
a lack of experience across multiple platforms. A common mistake is to
catastrophically underestimate the amount of work required to perform a
“simple” task requested by management.

In this book, I don’t cover specifics of Java or VB, but many of the concepts
hold true regardless of the language in question. This book reveals the issues
and obstacles related to porting software. Armed with this information, those
of you who are happily working in a single-platform world won’t be so shocked
when you're forced to move outside your area of immediate expertise.

Online Resources

Preface

The following book-related resources are available:

¢ Information about this book can be found at my website at http://
www.writeportablecode.com.

¢ The Simple Audio Library (SAL) is available from http://
www.bookofhook.com/sal.

¢ The Portable Open Source Harness (POSH) is available from http://
www.poshlib.org.

ACKNOWLEDGMENTS

This book is the culmination of a lot of hard work and a lot of research.
I would like to thank Bill Pollock and the staff of No Starch Press for
answering my questions and giving me guidance even though they had
no idea who I was or whether I would even end up selecting them as my
publisher. They were very open and responsive about the entire publishing
process.

Numerous friends and colleagues helped with the theme and content—
too many to list comprehensively, but I would like to point out a few impor-
tant ones. Casey Muratori, for being a good friend and letting me know when
[say or do something stupid. John Hall, for writing Programming Linux Games
and giving me good advice and feedback about the book writing process
(and introducing me to No Starch). David Hedbor, Joe Valenzuela, and
Ryan C. Gordon for providing valuable technical advice. The denizens of
#icculus.org (irc.freenode.net), gamedevlists-general@lists.sourceforge.net,
and the Book of Hook forums for providing answers, questions, opinions, and
intelligent discussion. Tom Forsyth for providing astute technical review.

Of course, in this day and age, the online resources at our disposal are
vast beyond imagination, including many software development—oriented
websites, forums, and mailing lists, along with the general power of search
engines. This book could not have been made in such a timely fashion
without the general contribution to global knowledge that is the Web and

the Internet. To anyone who has ever contributed their knowledge to the
world at large—be it in the form of a blog entry, website article, or simply an
answer to someone’s question on a list archive—thank you.

This book was written using Open Office 1.xand Subversion (for revision
control), both solid examples of high-quality open-source and cross-platform
software development.

I'd also like to thank Starbucks—specifically Dawn Lokey, Jena Kelly,
April Gresham, Eric Nyeste, and all the baristas at the Dallas Highway and
Powder Springs Road Starbucks locations—for giving me a comfortable
environment in which to work.

But most of all, I would like to thank my beautiful wife, Jennifer, for
supporting me and our family while I worked on yet another random project
to satisfy my own intellectual needs. I could not hope for a more supportive
and tolerant spouse. This book was for me, but I'm dedicating it to her.

XX Acknowledgments

THE ART OF PORTABLE
SOFTWARE DEVELOPMENT

There is a strong emphasis within the
software industry on getting things done as
quickly as possible (though indeed, it’s the

rare project that makes it out the door on time).
Emphasizing productivity and product delivery is
surely a good thing, but spending a bit more time on
that nebulous concept of portability has its advantages.

When we talk about writing portable software, we're referring to the
ability to move our software between different platforms. This is a chal-
lenging task, since unlike many other aspects of computer science, portable
software development relies heavily on experience and anecdotal data. My
goal is to assist you, the reader, by providing a single resource that covers the
art of portable software development.

The Benefits of Portability

Developing portable software may sound like a lot of work, and it can be. So
why is portable software even desirable? Here are some of the main reasons:

Portability expands your market
If you can get your code to run on Linux as well as Windows, you may
increase sales by some reasonable percentage. Not only that, but some-
times buyers have heterogeneous computing requirements, and the abil-
ity to support all of a customer’s systems provides you a considerable
advantage over competitors that support a fraction of those systems. For
example, if a company runs a combination of Macintosh- and Windows-
based computers, that company will likely prefer software that can run
on both systems, as opposed to just one or the other.

Portable software is more robust
Aside from the sales and marketing advantages reaped by your ability to
support new platforms, portable code has a major technical advantage: it
leads to better software. By revealing sloppy assumptions and lazy coding
habits, dormant bugs are exposed much faster. Often, serious bugs are
discovered very early in the process of moving to a new platform.

Portable software provides freedom
If your company has the ability to switch to a new platform at will, then
external forces that exert control over your platforms have a much
dampened effect on your own fortunes. If a new platform must be tar-
geted or a new tool suite used, the migration will be lubricated by porta-
ble coding habits.

Portability is sometimes necessary
Sometimes portability is not a luxury but rather a necessity. As the com-
puting landscape changes, new technologies arrive and demand their
support and attention. Consider moving from DOS to Windows, from
Mac OS to System X, from Macintosh to PC, and especially today, the
migration from 32-bit processors to 64-bit processors. The latter is a slow
but steady movement that most software developers must undertake in
the near future if they wish to remain competitive.

Portability provides options
You may find that a particular tool is absolutely essential to your develop-
ment process, but that it is not available on your preferred host platform.
I remember using OS/2 for DOS development because I needed to use
Emacs as my text editor, and the DOS version of Emacs wasn’t as full
featured or robust as the OS/2 version. Currently, some developers are
finding it worthwhile to port to Linux because of the Valgrind code-
analysis tool.

Some programmers like to write portable software since it appeals to the
geek elegance gene we carry, but there are also many practical reasons to do
s0. Very rarely does someone invest in the effort to develop portable software

2 Intreduction

and wind up regretting it. Larger markets, better software quality, and more
options are very powerful incentives to write cross-platform software.

A TALE OF TWO COMPANIES

Joe's company has been using Uberwhack C/C++ for a year now, and the
developers have finally grown tired of the compiler’s penchant for generating
incorrect code and poor adherence to standards. Because they’ve minimized their
dependency on Uberwhack’s proprietary libraries and compiler-specific extensions,
migrating fo the Muchgood C++ Development System is painless and easy. As a
result, the developers at Joe's company save months in otherwise lost development
time looking for bugs that aren't theirs.

Jane's company, unfortunately, committed to using Uberwhack’s proprietary
class library, Straitlacket Foundation Classes. The developers also used a few ill-
advised extensions fo the C++ language that Uberwhack created, and now that their
software has become so entwined with the Uberwhack system, it simply isn’t feasible
to move to a different development system in the near future. This costs them months
in development time as they waste time looking for bugs that are the result of the
Uberwhack compiler’s faulty code generator.

Joe is working on a vertical market hardware device currently based on the
Motorola 68000 CPU and OS 9 operating system. Because his code was written in
a portable, absiracted manner, when his manager asks how long it will take to
migrate the existing code to an Intel StrongArm processor running the Microsoft
Pocket PC 2003 operating system, Joe can truthfully answer, “A couple of months.”

Jane’s company has heard rumors that Joe’s company will be switching to the
StrongArm/Pocket PC 2003 platform and opis to follow suit. Unfortunately, she has
told management that migrating their existing code will be extremely difficult, since it
is hard-wired to their current platform. She estimates that it will take the better part of
a year before her software is running on the new farget system.

Finally, Joe’s hardware group doesn’t have working systems yet, but Joe has
been asked to start developing immediately anyway. Since Joe's code is abstracted
at a high level, he can use a target system emulator, making his code ready for
testing and debugging even before the hardware group delivers the first prototype,
saving valuable months of development time.

While this may seem like an overly contrived example, situations like this arise
all the time in many industries. Portable software that avoids tying itself to a single
platform provides valuable agility to a software developer, allowing rapid shifts to
new plaforms as circumstances dictate.

Elements of the Platform

So, portability is the ability to move software between platforms—the
environments required to build and run your code.
Porting between platforms involves dealing with some combination of
the following platform elements:
¢ Build tools, such as compiler, linker, and build/project management
tools
e Support tools, such as source control, profiler, and debugger tools

e Target processor

The Art of Portable Software Development 3

4

e Target operating system
¢ Libraries and APIs

Each of these has a significant impact on your ability to execute or build
software on a new platform. Compiler vendors may have proprietary class
libraries and language extensions. Build tools may not work on different
platforms. Operating systems may have radically different capabilities.
Libraries may not be available on all systems.

The Problem with Assumptions

With few exceptions, the root cause of the majority of problems encountered
when porting software is invalid implicit assumptions. These are assumptions
that are made for one platform that become invalid once the software is
moved to another platform. These assumptions include the following:

¢ Compile-time assumptions (“All integers are 32 bits”)

¢ Resource assumptions (“I'll be able to make 8 MB arrays on the stack”)
¢ Performance assumptions (“I can count on having a 3 GHz processor”)
¢ Feature assumptions (“I can use multithreading”)

¢ Implementation assumptions (“My target operating system uses main() as
its entry point”)

There are an alarmingly large number of ways you can make assump-
tions that bite you later.

With this in mind, I submit that portable software development is the act
of converting implicit assumptions to explicit requirements, coupled with
the use of abstractions to isolate the general from the specific. Your goal
should be to identify invalid assumptions, convert them to explicit require-
ments, and, whenever possible, introduce abstractions that isolate your
general architecture from specific implementations.

Coding Standards

Intreduction

For reasons I'll explain in Chapter 2, I use ANSI C and C++ as this book’s
demonstration languages. Portability problems with the C language, particu-
larly problems with different implementations, were well known. In 1989, the
ANSI/ISO committees ratified a standard (C89) to address many of these
problems. After another decade of use and evaluation, the standard was
revised (C99), but its full adoption has been slow. Even though C99 is not a
prevalent standard, I'll adopt some of its conventions simply to keep things
understandable. I'll use C99’s support for exact-sized types in the interest of
consistency. Table 1 shows the C99 data types.

Table 1: C99 Standard Data Types

Type Description

int8_t Signed 8-bit integer
uint8_t Unsigned 8-bit integer
int16 t Signed 16-bit integer
uint16_t Unsigned 16-bit integer
int32_t Signed 32-bit integer
uint32_t Unsigned 32-bit integer
inté4_t Signed 64-bit integer
uint64_t Unsigned 64-bit integer

I've developed a package, the Portable Open Source Harness (POSH)
(see Appendix A), which provides a set of C99-like type definitions (among
other things). The source code examples in this book will sometimes use
POSH features. A production application will need to come up with some-
thing very similar to POSH (or it can just use POSH, as it’s open source and
freely usable) if it intends to be ported to multiple platforms.

The Framework for Portable Programming

[t seems that most computer books live in one of two camps: the theoretical
or the practical. Much like advice from your parents, the theoretical books
(such as academic texts) have only marginal utility when solving specific
problems. A book about three-dimensional computer graphics in general
can be useful when you’re trying to understand the topic as a whole, but
when it comes time to write software, you often would like to see specific
examples that apply to your situation.

Books in the practical camp (such as trade books) are often great for
solving a problem right now, but (like my wardrobe) suffer from temporal
instability—it may look good now, but in a few short years, it’s going to be
embarrassingly inappropriate. There may not be much demand today for
books about IBM OS/2 or the PC BIOS, but in 1989, they were all the rage.

This book attempts to bridge the gap between the two camps by provid-
ing a conceptual framework for portable programming, while still giving
enough real-world details to provide relevance or, at the very least, context.

Timeliness and timelessness are sometimes at odds. Because of the
number of compiler bugs, portability problems, and general system differ-
ences, it is pretty much impossible to enumerate all of the different porta-
bility “gotchas” that programmers face today. In fact, this book directly
addresses only a small fraction of the problems that you might encounter
in practice. However, the concepts and strategies discussed will help you to
navigate the majority of real-world portability problems you may encounter.

The Art of Portable Software Development 5

6

Intreduction

My goal is to separate the theory of portability from specific real-world
instances. It is far too easy to get bogged down in the details of a single issue
when the focus should be directed at the higher-level problem. For this reason,
situations where there is lengthy discussion about concrete problems and
their solutions are placed in separate sidebars. These provide context with
the chapter’s higher-level discussion, but are not the focus of the book.

Along with POSH, mentioned in the previous section, I've written a
companion portable software library, the Simple Audio Library (SAL),
which illustrates many of the concepts discussed here. Where applicable,

I have included examples that illustrate the implementations of SAL or
POSH and how they relate to the principles discussed in this book. By
providing a functional piece of annotated cross-platform software, I hope
to appeal to those who learn by example better than they learn by reading.

PORTABILITY CONCEPTS

Before we get into the details of porting,
we need to take a step back and focus on
the concept of portability itself. Sure, it would

be easy to dive in and start showing specific
examples of converting a sample piece of Linux
software to run on a Windows machine, but then |
would have addressed only one problem hot spot.

This chapter discusses the various facets of portable development—
principles, techniques, and processes for portability—that will allow you to
write programs that easily move from one platform to another, regardless of
the specifics of the source and destination environments. I'll address specific
problems and their solutions once we lock down the basics.

Portability Is a State of Mind, Not a State

Programming is often a stateful endeavor. Your brain shifts gears as you edit,
compile, debug, optimize, document, and test. You may be tempted to make
porting a separate stage, just like editing or debugging, but “thinking

8

portably” is not a step—it’s an all-encompassing state of mind that should
inform each specific task a programmer performs. Somewhere in your brain,
between the “make variable names meaningful” and “don’t hardcode those
constants” rules, the “think portably” action should be active at all times.

Like weeds taking over a garden, portability issues have a habit of infil-
trating all aspects of the development process. If coding is the process of
coercing a computer into a specific set of actions by speaking a language it
understands, and portable software development is the process of avoiding
any dependencies or assumptions about a specific computer, then there is an
indirect but palpable tension between the two tasks. The requirement to get
something working on the current platform competes with the desire to get
it working on other platforms as well.

It’s important to recognize the difference between porting code and
writing code portably. The former is a cure; the latter is prevention. Given a
choice, I would rather inoculate a programmer against bad practices now
than try to fix the side effects of those practices later. This “vaccination” is
achieved by practicing portable coding habits so vigorously that the process
becomes second nature—a deeply embedded, intuitive understanding that
swims beneath the surface of a programmer’s thoughts at all times.

Develop Good Portability Habits

Chapter 1

Very often, programmers first introduced to the world of portable software
worry too much about specific techniques or problems, but experience
teaches them that portability is achieved more easily through habits and
philosophies that encourage, if not force, a programmer to write portable
code. To develop good portability habits, you must first resist the temptation
to stress about details like byte ordering or alignment problems.

No matter how much knowledge you have about portability in theory,
very often, the practice of porting will illustrate deficiencies in that theory.
Theoretically, writing standards-compliant code should make that code more
portable. However, making that assumption without testing it could lead you
to experience many different problems. For example, it doesn’t matter if the
ANSI C specification dictates a certain behavior if an uncooperative or buggy
compiler flatly refuses to adhere to that standard. Standards-compliant code
isn’t really helpful if you're dealing with noncompliant tools.

A classic example of this is Microsoft Visual C++ 6.0, which does not
properly support the C++ specification for scoping of variables inside a for
statement:

for ((int i = 0; i < 100; i++)

3

10; /* With MSVC++ 6.0, this variable still exists...with
compliant compilers the variable is out of scope
once the for loop exits and thus this line would
generate an error */

i

i

Microsoft developers “fixed” this behavior with version 7.x of its C++
compiler; however, this introduced backward-compatibility problems with
code written for version 6, so it made noncompliance the default behavior.
This means that a programmer can charge ahead writing what he feels is
safe, portable code on Microsoft Visual C++, only to find that it breaks when
compiled with the GNU Compiler Collection (GCC).

But you can catch problems like this easily if you practice good portability
habits, such as frequent testing and developing in multiple environments,
as you work. This saves you the trouble of remembering all the specific bugs
and standards quirks that you may encounter.

Good Habits Trump Specific Knowledge of Bugs or Standards

So, let’s look at just what these good portability habits are.

Port Early and Port Often

No code is portable until it has been ported, so it makes sense to port
your code early and often. This avoids the common mistake of writing
“portable” code and then testing it late in the development process, only
to find all the little portability problems at once. By testing your code’s
portability early, you can catch problems while you still have time to fix them.

Develop in a Heterogeneous Environment

It’s possible to dodge the two-stage write-then-port process by developing in a
heterogeneous environment. This habit also minimizes the risk of code base
atrophy, whereby one fork of your project evolves while another languishes
due to inattention from the developers.

For example, early in a project, you might run on Linux, Mac OS X, and
Windows, but due to time pressures, the Linux version is deprecated. Six
months later, you need to get your software working on Linux, but you find
that many changes that were made never propagated to that platform (for
example, due to conditional compilation directives).

The first step to developing in a heterogeneous environment is to make
sure that the developers are using as many different host systems and tools as
is practical. If you're shipping a project that will deploy on Solaris for Sun
Sparc, Microsoft Windows on Intel, and Mac OS X on Macintosh, then
ensure that your team members use a mix of those systems as their primary
development systems. If they are not required to use these systems as their
primary development systems, a penchant for the “get it working; we’ll port it
later” mindset tends to take root.

Even when working on similar systems—Windows PCs, for example—
it's often a good idea to have a mix of different hardware (video cards,
CPUs, sound chips, network adapters, and so on) and software, so that
more configuration bugs can be found earlier than later. This helps to fend
off the “Works on my machine!” cry from developers when bugs are later
reported in the field.

Portability Conceplts 9

10

Chapter 1

SAL EXAMPLE: HETEROGENEOUS DEVELOPMENT

| developed the Simple Audio Library [SAL) concurrently on a Windows XP-based
laptop using Microsoft Visual C++ 6.0, an Apple G4 Power Mac running OS X
10.3 (using XCode/GCC), an AMD Athlon XP-based Linux (ArkLinux, a Red Hat-
based distribution) workstation using GCC, and occasionally using Microsoft
Embedded Visual C++ for Pocket PC. The bulk of development occurred on the
Windows XP machine, with the occasional port and verification on the other
platforms every few days.

| occasionally performed quick verification tests using other compilers such as
Metrowerks CodeWarrior and Visual C++ 7.x, and sometimes problems or even
bugs would show up as a result.

The code never diverged or atrophied too much. However, the Pocket PC
support was introduced fairly late into SAL’s development and was the cause of
much tedium because so many of SAL’s assumptions weren't valid for that platform.
Specifically, the test program’s reliance on the existence of main() created a
problem, because Pocket PC does not have console applications, so you must
provide a WinMain() method. Other issues were caused by the Pocket PC's emphasis
on wide character strings (for infernationalization).

| used several different low-level APIs fo implement key features such as thread
synchronization. | found common abstractions and then put them info a separate
abstraction layer, which, in turn, layered itself on the actual implementation for each
platform. This meant that moving from a Win32-based mutex scheme to a POSIX
threads (pthreads) mutex scheme was very easy to accomplish, because SAL was not
riddled with Win32-specific code.

Use a Variety of Compilers

You will also want to use different compilers as much as possible. Different
host systems may often dictate this, but sometimes you can get away with
using the same compiler on disparate systems; for example, the GCC
compiler is fairly ubiquitous across a wide range of platforms.

By compiling successfully on a wide range of compilers, you can avoid
being left stranded if your preferred compiler vendor suddenly disappears. It
also ensures that the code base does not rely on new (and unproven)
language or compiler-specific features.

Test on Several Platforms

Most projects have a well-defined set of deployment targets determined by
market dynamics. This simplifies testing and quality assurance tremendously,
but it also starts you down the precarious path of implicit assumptions. Even
if you know you'll be running on a single target system, it doesn’t hurt to
target alternate platforms—processors, RAM, storage devices, operating
systems, and so on—strictly for testing.

And if your target system is altered due to marketing requirements or
changing business relationships, you'll find comfort knowing that your
software isn’t hardcoded to a single platform.

Support Multiple Libraries

Much of today’s software development is less about writing new code than it
is about gluing together big chunks of preexisting pieces. If you are depen-
dent on a group of proprietary libraries or APls, porting to a new platform
will be difficult. However, if you take the time early on to support multiple
alternative libraries that accomplish the same results, you will have a lot more
options in the event a library vendor goes out of business or refuses to make
its software available on another platform. There is also the minor side
benefit of being able to license or open source your code without worrying
about dependencies on closed-source third-party libraries.

A classic example of this is support for OpenGL versus Direct3D, the two
preeminent 3D graphics APIs available today. OpenGL is cross-platform and
available on a wide range of systems, including all major PC operating systems.
Direct3D, on the other hand, is the official 3D graphics API for Windows and
available only for Windows. This puts developers in a touchy situation: do
you optimize for Windows, the largest market of users in the world, or do you
try to support many platforms at once using OpenGL?

Ideally, you abstract the graphics layer so that it can function well on
either API. This can be a lot of work, so the ramifications of the abstraction
must be thought through clearly before you dive in. However, when it comes
time to move your software to a new platform, the abstraction work will pay
for itself many times over.

Plan Portability for a New Project

I derive a certain amount of geeky, purist joy from starting work on a new
project. There is a kind of “new car smell” when you create a new directory,
waiting to be populated with perfect source code built on years of prior
experience.

When you find yourself in that rare position of starting with a clean slate,
you have the opportunity to plan how to make your project portable. If you
take a few points into consideration before you start, you’ll save yourself a lot
of time and trouble down the road.

Make Portability Easy

As with many other kinds of good habits, the odds of sticking with good
portability habits are directly proportional to how easy it is to use them. If the
development methodology in place makes portable software development
tedious or inefficient, then it will be dropped faster than you can say “missed
milestone.”

It is important to create procedures, libraries, and mechanisms so that
writing portable code is second nature instead of an arduous, ongoing task.
For example, a programmer should not need to deal with byte ordering
unless she is actually dealing with things at that level.

Portability Concepts 11

Choose a Reasonable Level of Portability

While every attempt can be made to write code that is 100 percent portable,
practically speaking, this is nearly impossible to achieve without making
significant sacrifices to the software’s feature set.

You cannot be dogmatic about portability! Your software should be as
portable as is practical, but no more. Sacrificing time and effort in the inter-
est of ensuring portability with marginal utility is analogous to spending a
week optimizing a routine that is called only once. It’s just not an efficient
way to spend your time.

This is why establishing a fundamental and realistic baseline—a set of
ground rules that define reasonable portability—is so vital to a project.
Without this, a project will be doomed to wishy-washy, inoffensive coding
designed to run everywhere . . . poorly.

Every platform has its own set of peculiarities involving machines, com-
pilers, tools, processors, hardware, operating systems, and so on. There are
thousands of different ways in which a program can be broken by moving from
one platform to another. Thankfully, many of these peculiarities are shared,
which eases the task of writing portable software. Defining this common
ground is one of the first steps to designing and writing portable code.

As I'll talk about later in Chapter 14, a large part of portability is related
to scalability (ability to run on systems with a wide variance in performance
and features) within the baseline. Scalability is important, but it must be
within well-defined parameters to retain any semblance of relevance.

Aside from raw features, you must make assumptions about the under-
lying performance of your platforms. It is entirely possible to write software
that compiles and operates identically on both an 8 MHz Atmel AVR micro-
controller and a 3.2 GHz Intel Pentium 4 processor, but whether the result
will be meaningful and interesting in both contexts is questionable. The
algorithms and data structures used for a workstation class PC are going to
be radically different than those for an embedded microcontroller, and
limiting a high-powered machine to operations that are practical on radically
different architectures is inefficient.

CASE STUDY: FLOATING-POINT MATH

The ANSI C language supports floating-point, single- and double-precision operations
by use of the float and double keywords, respectively, along with their associated
mathematical operators. Most programmers take this support as a given. Unfortu-
nately, some devices today, and many devices not oo long ago, have extremely
poor floating-point math support. For example, the processors used in most personal
digital assistants (PDAs) are unable to execute floating-point instructions natively, so
significantly slower emulation libraries must be used.

12 Chapter 1

Now, it's entirely possible that very slow floating-point math is acceptable for a
particular project because it is used rarely (although even in these cases, an execut-
able may grow in size if a floating-point emulation library must be linked in even if
it's used a handful of times). But for projects where strong floating-point performance
is assumed, things can get ugly in a hurry when that code must be ported to a system
without intrinsic floating-point support.

One common method to address this dichotomy is to write all math operations
using special macros that call fixed-point routines instead of floating-point routines
on devices without native floating-point support. Here is an example:

#if defined NO_FLOAT

typedef int32_t real t;

extern real t FixedMul(real t a, real t b);
extern real t FixedAdd(real t a, real t b);
#define R_MUL(a, b) FixedMul((a),(b))
#tdefine R_ADD(a, b) FixedAdd((a),(b))
#else

typedef float real t;

#define R_MUL(a, b) ((a)*(b))

#define R_ADD(a, b) ((a)+(b))

#endif /* NO_FLOAT */

A three-element dot product would then be written as follows:

real t R _Dot3(const real t a[3], const real t b[3])

{

real t x =R MUL(a[0], b[0]);

rea TS tRvE=RRHI1(& || | 18])

real t z=RMIL(a[2], b[2]);

return R_ADD(R_ADD(x, ¥), Z);
}

However, the pure floating-point version is significantly easier to read and

understand:

float R_Dot3(const float a[3], const float b[3])
{
return a[0] *b[o0] +a[1] *b[1]+a[2]*b[2];

}

If you must support systems without floating-point capabilities, or if you feel
there is a very good chance that this will be necessary, then using the macros is
probably a good idea. But if you have the ability to specify native floating-point
support as part of your baseline, you would benefit from the increase in code
readability and brevity.

Portability is a good idea, and writing portable code is good practice, but if
you take it fo extremes or write excessively portable code in order to satisfy ideo-
logical dogma, your code may suffer as a result. Portability is a means to an end,
not an end unto itself.

Portability Concepts

14

Chapter 1

A network application that predicates its architecture on low-latency,
high-bandwidth communication will fail catastrophically when confronted
with a modem. So while this application can compile and run anywhere,
practically speaking, it is not portable to some classes of networks due to
fundamental assumptions made about the networks on which it will reside.

Establishing a baseline is a key element in portable software develop-
ment, because it creates some assumptions that are perfectly legitimate and
allow for the practical development of software effective on a limited class of
platforms.

There is a difference between portable to the point of distraction and
portable enough. If your project is aimed at a single target platform, but you
know you may need to change compilers at some point, then concentrate on
keeping your code portable between compilers, and don’t worry as much
about target systems that you're unlikely to support.

Don’t Wed Your Project to Proprietary Products

Modern software development is incredibly complex, and even simple
projects may consist of tens of thousands of lines of source code. This com-
plexity often requires the use of (ideally) well-tested and well-documented
third-party components such as libraries and tools. Using preexisting com-
ponents saves time, but it also introduces a host of new portability concerns.
Ensuring the portability of your own software is difficult and time-consuming
enough, but when you introduce foreign influences, it can be downright
daunting. Every time an outsider’s component is integrated into a project,
flexibility and control are incrementally reduced.

Even with the best-case scenarios—open-source libraries—you must
verify that the code compiles and runs everywhere you need it to run. And if
you require a platform yet to be supported by the open-source library’s
contributors, you’'ll need to do the porting work yourself (which, thankfully,
is still an option due to the nature of open source).

Unfortunately, the use of closed-source proprietary libraries removes this
alternative. In such a situation, you may find yourself painted into a corner
if the provider won’t or can’t (for instance, if the vendor has gone out of
business) support a platform you require. In the worst case, you’ll find that
you must reimplement the third-party component entirely from scratch for
the new platform. Tying your projects to third-party components can be very
dangerous in the long run. Many industry veterans can recite stories of
projects inexorably linked to an orphaned library or tool set and how that tie
affected the entire development process.

For example, many PC developers have used Microsoft’s DirectPlay
network library because it’s free and available, and it claims to provide a
large number of features that would take a long time to reinvent. The low-
hanging fruit of free and easy technology beckons, but those that grab it
run into a mess when trying to port to a non-Microsoft platform such as the
Macintosh or a game console. They often find themselves needing to rewrite
their entire networking layer from scratch to compensate for their ill-advised
commitment to a proprietary technology.

SAL EXAMPLE: THE BASELINE AND USE OF
PROPRIETARY APIS

SAL has a fairly modest feature and performance baseline. It is written in ANSI C89
(with the exception of one file written in Objective-C and limited to use on the Mac
OS X platform), availing itself to the widest range of platforms possible. The two key
technological components are the mixer and assumed threading model.

The mixer is integer-based and assumes that 32-bit integer operations,
especially multiplication, will be relatively quick. For this reason, it may not work
particularly well on a 16-bit platform such as Palm OS 4.

However, two key parameters—the maximum number of simultaneous voices
and the buffer length—are user-definable at run time, allowing SAL to scale cleanly
across a wide range of system capabilities. For particularly slow systems, the buffer
size can be increased at the cost of more latency. In addition, the number of active
voices can be reduced to minimize the amount of work performed in the inner
mixing loop. A high-powered system could trivially handle 128-voice polyphony, but
in a pinch, you could operate SAL in monaural mode on low-powered devices.

The basic implementation model for SAL creates a separate thread responsible
for pulling sample data from active voices. This is the conceptual model used on
most of its platforms; however, at least one platform (OS X) uses a callback to the
CoreAudio sound APl instead. (The callback is called from another thread, so tech-
nically another thread is used, but SAL does not create it.) Regardless of how the
audio system generates mixed data, there is still the underlying assumption that this
happens asynchronously, so there is an expectation that synchronization primitives
will be provided (in the form of mutexes). A simple single-threaded operating system
(such as Mac OS 9 or Microsoft MS-DOS) could, in theory, be supported, but this
would require careful planning, since those architectures use interrupts to drive the
audio system.

Parts of SAL expect a small amount of memory to be available at all time,
although nothing too excessive by PC standards)—on the order of a few hundred
kilobytes. The pulse code modulation (PCM) sample playback implementation
assumes that PCM data is resident; however, it is entirely possible fo use streaming
audio instead, thereby reducing the memory footprint significantly. This requires
more work on the part of the application programmer, but the option is there.

The core SAL implementation requires the C standard run-time library (free(),
malloc(), vsnprint(), memset(), fprintf(), and so on). However, it could operate
effectively in a freestanding (no C run-time library or operating system) environment
with minimal medification (primarily consisting of offering replacements for vsn-
printf() and memset()).

SAL does not use any proprietary APls for its core code. However, it does use
several platform-specific APls (Win32, pthreads, CoreAudio, Cocoa, OSS, ALSA,
and so on) to implement parts of the architecture. Internal SAL-specific APls are then
layered on top of these APIs. For example, _SAL_lock_mutex() calls WaitForSingle-
Object() on Win32 and pthread mutex_lock() on Linux.

There are no core elements to SAL that cannot be ported to a platform within its
baseline. However, libraries are often much easier to port than applications.

If you find yourself using a third-party component for a significant
portion of your work, you should abstract away from it by at least one level of
indirection so that its replacement or augmentation has a reduced impact on
the rest of the project. If you find that your project must use a proprietary
toolkit or library, look into getting a full source code license or, at the very

15

Portability Concepts

16

least, ensuring that the vendor will place the source code under escrow to
guard you against that company going out of business.

Port Old Code

Chapter 1

Unfortunately, reality rarely allows us the luxury of working on a brand-new
project. In many cases, we must deal with portability issues through no fault
of our own, as we move someone else’s unportable code from one platform
to another.

For that situation, some general guidelines and rules can help you
manage the process.

Assume Code Is Not Portable Until It Has Been Ported

Alot of programmers think they’re good at writing portable code, and many of
them are. But the problem is that they’ll often claim that their code is portable
and should “just compile and run” on a new platform. This is, sadly, rarely the
case. No matter how many assurances are given that a code base is portable,
always make the assumption that it’s not. Until the code has been moved to a
new platform and tested, it should be treated with extreme wariness.

During the development of SAL, I constantly ran into portability issues
every time I recompiled on another system or switched compilers. There are
simply too many things to keep track of mentally, and the proofis in the
pudding, as it were. The act of porting is the real litmus test for how portable
your code is.

Of course, you can claim that your code is “portability friendly,” which
is a reasonable description for software written with porting in mind but
that has not been ported to a specific platform. There is a large difference
between code that is known to be unportable (you tried to port it and
couldn’t), code that is unknown to be portable (no one has tried to portit),
and code that is known to be portable (it has been ported to new platforms).

Modify Only the Bare Essentials

Porting software requires a lot of editing and refactoring, and therefore the
possibility of introducing new bugs and breaking the software on its original
platform. As tempting as it may be to go through and clean up code unrelated
to the port, avoid this at all costs. Keeping a clean source base provides a
solid foundation for regression testing.

Working on a large source base that is already functional on one plat-
form can be tricky. Every time you edit a file, there is a small chance that
you’ve just broken something somewhere else. For this reason, extend the
rule of “don’t touch anything you don’t have to” to include “find the path
of least resistance.”

This means that there is, ideally, some logical division in the software’s
implementation that will allow you to cleanly delineate your new code from
the old code. If you can find this line, it will make porting much easier, since
you’ll be able to toggle back and forth between your modified code and the
“virgin” source.

Plan Your Attack

Before you write or change a single line of code, you must understand
exactly what it is you're trying to do. Porting software is different from
writing new software, and the approach you take will also be different.
Identify the likely portability hot spots so that you know exactly what tasks
will be required to move the software onto a new platform. Once you have
this itemized list, you can sit down and work out the exact plan of attack
you’'ll use for the porting process.

For example, porting an application from Windows to Linux might have
a (very general) checklist like this:

M Remove all references to Windows-specific header files.
Update Windows file-handling code to Unix-style file functions.
Isolate and update the entire CreateWindow path.

Update resource loading to use Unix-style file-access routines.

HEEE

Replace registry code with localized file-based preferences.

By having a well-defined checklist ahead of time, you can try to predict
what problems you’ll encounter later in the porting process and plan
accordingly.

Very often, the first instinct is to just get the software moved to the new
system and start compiling, fixing errors as the compiler and linker cough
them up. Once the progam compiles and links, then you start running itin a
debugger until you get it to work. But that’s not a very efficient way of han-
dling the porting process. You need to identify all the major areas that need
to be touched first to avoid going down one path so far that it interferes with
work that must be performed later.

For example, you may find that the first fix that came to mind for one
portability problem isn’t practical once a later, separate portability problem
comes to light. You now need to go back and undo your first set of changes
and devise a strategy that solves both portability problems.

Document Everything in Revision Control

In case I haven’t made this clear enough already, every change you make is
potentially destructive. For this reason, you must document all changes.

Using a revision control system is pretty much mandatory when develop-
ing any complex software that will evolve over time. During a port, however,
it is even more important, because every change might subtly break some-
thing unrelated to your current work, and identifying when this break occurs
is much easier if you have clean revision logs.

When starting a port, developers have a strong desire to see things up
and running as fast as possible on a new platform. But if you jump into the
task without proper planning, you may waste a lot of time exploring dead
ends and undoing previous work.

Portability Concepts 17

ANSI C AND C+ +

One of the most fundamental choices

affecting portability is that of programming
language. I use ANSI C and C++ as this
book’s demonstration languages since they are
ubiquitous and tend to contribute to portability
problems (without which this book wouldn’t have
much of a market). ANSI C and C++ are probably the
most unportable languages that were still intended to
be portable.

Why Not Another Language?

Given that C and C++ suffer from such massive portability problems (we’ll

get to the specific problems later), it would seem to make sense to migrate to
higher-level languages that isolate the user from many cross-platform issues.
And today, large classes of applications can and should do this. But there are
still many situations where C and C++ are clearly the optimal (or only) choice
for development. Why is this so?

20

Chapter 2

C and C++ Provide Low-Level Access

The C programming language was originally designed to untie the Unix oper-
ating system from a specific hardware architecture, and so C can probably be
considered the first important portable computer programming language.
Ratification by a standards body (such as ANSI, ISO, or IEC) and the wide
availability of documentation, libraries, compilers, and other development
tools have made C (and, later, C++) the prevalent choice for developers that
need to write cross-platform, high-performance applications.

C and C++ are the default implementation languages when you need to
deal with hardware at a bare-bones level without resorting to assembly code.
Higher-level languages have a very hard time letting the programmer work
with memory addresses, ports, or DMA buffers directly; in fact, they actively
discourage and prevent such manipulation.

ANSI, I1SO, IEC—WHAT’S THE DIFFERENCE?

There is some confusion when developers are faced with the difference between
an ISO, ANSI, ANSI/ISO, ISO/IEC, and ANSI/ISO/IEC standard. It can be
overwhelming when dealing with so many different standards organizations and
acronyms, but thankfully it's fairly simple once explained.

ANSI is the American National Standards Institute, and it accredits developers
to create standards for use in business and government in the United States. ANSI,
in turn, is a member of the International Standards Organization (ISO), so very
often, an ANSI standard will be elevated, with some necessary changes, to an ISO
standard.

Finally, the IEC (International Electrotechnical Commission) helps prepare and

publish the standards that are ratified by ANSI and I1SO.

C and C++ Compile to Native Code

Most C and C++ implementations generate native binary code, which is
necessary for embedded systems or when code size and performance are
of critical importance.

Many languages today compile to a generic, intermediate form (Java
bytecodes or early Pascal p-codes are examples), which is a great way to
maintain portability. Unfortunately, this has a cost of a significant increase
in code size and execution time. Furthermore, such generic codes must be
executed by a virtual machine or run-time environment. To compound
matters, each implementation of a virtual machine or run-time environment
may have subtle bugs or implementation differences, resulting in a portable
program that still suffers from platform dependencies.

Very high-level languages make writing portable software significantly
easier than C or C++ in the problem domains where they are appropriate.
But there will always be a place for low-level languages that offer hardware
access and high performance, and those languages still need to support
portability.

C and C++ Dialects

The seeds of the C programming language were first planted in the early
1970s by researchers at Bell Labs. At the time, it was developing a new
operating system called Unix, and the need for a high-level language for
development had been identified.

The researchers involved, including Ken Thompson, Brian Kernighan,
and Dennis Ritchie, were used to working with languages such as B, BCPL,
PL/I, and Algol-60. However these languages, for various technical reasons,
were not practical for the machines they were targeting at the time (DEC
PDP-7 and PDP-11).

As a starting point, the researchers took the B language and extended it
to provide additional features necessary for their work, and soon the C
language was formed. The Unix kernel was then converted to C code.

By 1978, the language had grown considerably in popularity, and
Kernighan and Ritchie published their famous C Programming Language,
which established the first semi-standard dialect of C.

During the next ten years, the C language evolved, outstripping the
rapidly out-of-date standard established by Kernighan and Ritchie. It became
apparent that the language needed a formal standard, to harness the myriad
implementations, and also for the more mundane reason that various organ-
izations and governments were loathe to adopt a computer language that
lacked any formal definition.

For this reason, in the early 1980s, the ANSI X3]11 committee was formed
to draft and ratify a standard. This work was completed in 1989 as the ANSI
X3.159-1989 “C Programming Language,” which, in turn, was approved by
ISO as ISO/IEC 9899-1990. ANSI Cis effectively the same as ISO C.

Ten years later, the standard was amended and updated to reflect a
decade’s worth of experience, and thus C99, aka ISO/IEC 9899:1999,
was born.

Of course, while C was evolving, other languages (often derived from C)
started to appear, most notably C++. C++ began as an experiment in the early
1980s by Bjarne Stroustrup, who was intrigued by the object-oriented capabil-
ities of languages such as Simula and how they might apply to system soft-
ware development. Much like C, the C++ language’s standardization process
was somewhat haphazard.

In 1985, Stroustrup published The C++ Programming Language, a direct
analog to Kernighan and Ritchie’s work, which provided the basis for
AT&T’s first commercial implementation. As the language gained in popu-
larity, the Annotated Reference Manual (ARM) by Stroustrup and Margaret Ellis
was published in 1990 as a much needed update to Stroustrup’s earlier work
and, more important, as a complete reference manual for the language itself,
not just a particular implementation.

The ARM became the base document for the new ANSI committee,
XJ316, which was formed to ratify a standard for C++. It took most of the
1990s before the standard was finally ratified as ISO/IEC 14822:1998.

ANSI C and C++ 21

22

NOTE

(Notice that this occurred roughly a year before the revised C99 standard was
putin place, which means that some minor but niggling semantic differences
between C99 and C++98 exist in the areas they overlap.)

For this book, the focus will be on the 1989 ISO/IEC/ANSI 9899:1999
specification of the C language, which I will refer to as C89, since it is by far
the most well supported today. Most annotations specific to the C99 specifi-
cation are presented in the form of sidebars. We'll still have the occasional
foray into C++ 98 as relevant or necessary, but when illustrating specific cases
that are somewhat independent of language, I'll lean toward C because of its
greater ubiquity, clarity, and brevity. In addition, C++ is still a rapidly growing
and evolving language, and much of the discussion of various implemen-
tation inconsistencies will be obsolete well within the shelf life of this book.

I won’t address portability to pre-ANSI C (“K&R C”). With the lack of a formal, rigor-
ous standard, the sheer number of differences—major and minor—make it nearly
impossible to discuss in a cogent manner.

Portability and C/C++

Chapter 2

There is a broad gap between theoretical portability and practical portability.
[tis all too easy to fixate on language details instead of writing portable
software that happens to use C/C++. The former emphasizes the language
itself, concentrating on whether particular constructs are portable, legal,
undefined, or implementation-specific. But writing portable software is
about architecture, design, and trade-offs when using a particular language;
understanding the nuances of a specific language is only a part of the
process.

This isn’t to devalue in-depth knowledge of a language, butitis important
to keep things in perspective and realize that you're trying to write working
software, not software that is perfectly portable. Portability is a means to an
ends, not an end unto itself.

I set out to write a book about writing portable software using the C and
C++ languages, not about writing portable C and C++ code. This is a subtle
but important distinction. At times, developers may write code that is tech-
nically unportable, but this is unavoidable in the real world. As long as you
are aware of and document any nonportable assumptions, you should be
fine. The reality is that even a “100 percent portable” program—one that
adheres to the letter of the law as defined by a language’s standard—can
still fail on different platforms due to bugs that are beyond the developer’s
control. This is why emphasizing structure, design, and process is more
important than dogmatically concentrating on language particulars.

For example, converting a pointer to a function to some other repre-
sentation, such as a pointer to an object or an integer, is pretty much a strict
no-no according to the ANSI standard, as the other representation may not
be large enough to safely hold a pointer to a function.

Here is an example:
#include <stdio.h>

void foo(void)

{
printf("Hello world!\n");

}

int main(int argc, char *argv[])

{
uint32_t f = (unint32_t) foo; /* not guaranteed to work! */
void (*fnc)() = (void (*)()) f; /* also not guaranteed to work */
/* the following works as you expect on most platforms, even */

though it's technically "bad" */

fnc();
return 0;

}

But this type of conversion is something that a lot of real code—even
pretty portable code—does. Many event or messaging systems have generic
parameter fields that are sometimes filled with pointer data. For example,
under Win32, the WM_TIMER message specifies that the LPARAM field of its MSG
structure points to a user-defined callback function (as specified with Set-
Timer()). That’s an integral part of the API, and it’s definitely technically not
portable, although that’s moot given that it's a Windows-specific feature.
(The “correct” way to implement this would have to use a union as part of
the MSG structure as defined by Microsoft, thereby ensuring the proper size
and alignment of any data type stored in the structure’s fields.)

The dlsym API returns a pointer to a void that may point to either data
or code, depending on the invocation. This technically may fail, but the X/
Open System Interface (XSI), which manages the dlfcn APIs, makes the
handy caveat that any pointer to data must also be able to contain a pointer
to code, neatly sidestepping the problem by using our first rule of portability:
convert an implicit assumption to an explicit requirement.

So, while technically there are things you shouldn’t do because a lan-
guage’s standard frowns on it, pragmatism may require that you use some
nonportable features with the knowledge that your code might break later.

Even though its roots were in portability, C is rife with portability issues.
Some of these are due to weak attempts at stricter standardization, and many
are due to its focus on being a high-level assembler suitable for writing sys-
tems software, But even with these concerns, ANSI C (and to a much lesser
extent, ANSI C++) can’t be beat as a baseline for writing high-performance,
compact, portable code. Therefore, ANSI C and C++ are the languages I'll
focus on in this book.

ANSI C and C++ 23

TECHNIQUES FOR PORTABILITY

One of my motivations for writing this

book was that I encountered so many
programmers who had solved portability

problems using very similar, but undocumented,

techniques. Each of these developers had to discover
these approaches independently or by word of mouth,
because very few books have been written on the topic
of portable software development—a glaring omission
in computer literature.

This chapter forms the backbone of this book, as it details various
practices and patterns commonly used today for portable software
development.

26

Avoid New Features

Regardless of the language you use, avoid new or experimental language
features and libraries. Support for new features tends to be sporadic and
buggy, and even when support has spread, there are often corner cases that
haven’t been properly tested or defined precisely.

Classic cases of this include early implementations of templates, name-
spaces, and exception handling in C++. Before that, the move from early C
to ANSI C felt interminable, since many platforms did not have ANSI C-
compatible compilers for quite some time. In some cases, the delay between
feature discussion/ratification and widespread implementation can be more
than half a decade.

Experience has taught us a reasonable rule of thumb: if a new feature
has been implemented for at least five years, it might be safe to rely on. Even
today, as I write this book, the C99 specification has been around for almost
five years, and there is still no fully C99-compliant compiler available.

Deal with Varying Feature Availability

Chapter 3

In the world of software development, every time someone writes a portable
library designed to run in multiple environments, developers invariably face
the philosophical question of how to deal with features available on one
platform yet missing on another. For example, consider Mac OS X/Cocoa’s
column-view data browser, the Windows tree controls and recursive mutexes,
the lack of threads on DOS, and the lack of transparent virtual memory on
earlier versions of Mac OS. These are typical examples of features available
or missing on certain platforms, which a cross-platform library or application
will need to reconcile.

One approach maps abstractions directly to the concrete implemen-
tation available on each target. For example, feature X on platform A would
result in using platform A’s implementation of feature X.

But what do you do when platform A doesn’t support feature X? An
application could query to see if a particular implementation is available
and avoid using it if it’s not present. However, this approach suffers from
numerous drawbacks, such as convoluted conditionals in your application
code and poor robustness if a feature you've come to rely on suddenly
disappears. The following code snippet illustrates this particular road to
madness.

api_feature features;
api_get features(&features);
if (features.feature x present)

{
/* Do things one way */
}
else if (features.feature y present)
{

/* Do things a different way */

}
else if (features.feature_z present)
{
/* Do things yet another way */
}
else
{

/* Don't do anything at all, possibly warning user */

This illustrates the conditional execution nightmare that can arise when
software tries to deal with widely varying feature availability.

SAL EXAMPLE:
EMULATED VERSUS REQUIRED FEATURES

SAL makes expectations about the underlying implementation in two key areas:
recursive mutexes and audio mixing.

Recursive mutexes are a form of mutex (a thread synchronization primitive)
that may be locked multiple times by the same thread without deadlocking.
Windows has recursive mutexes by default, and the Linux pthreads implementation
has them as a type of mutex. OS X provides this facility with its higherlevel Cocoa
NSRecursivelock class.

| could have taken a separate approach and implemented my own recursive
mutexes on top of nonrecursive mutexes, gaining some generality and, of more
direct help, being able to share the pthreads implementation between OS X and
Linux. However, this would have required testing and a larger implementation within
SAL itself, so | opted not to do that. If | need to support SAL on a platform that does
not have recursive mutexes, | will probably end up having to implement them myself
in an emulation layer, and then rely only on raw mutexes on the underlying platform.

Audio mixing is sometimes performed as a service by the operating system
(waveQOut or DirectSound) or a separate audio library (such as SDL_Mixer) within
an application. Since mixing is not available on all platforms as a native part of the
underlying digital audio subsystem, | felt it was important to implement it directly
within SAL, since it's such an important feature.

The downside of reinventing this wheel, surprisingly enough, is not code bloat.
SAL would likely be larger if it attempted to abstract and support each platform’s
mixing facilities. The problem is its inability to take advantage of accelerated
mixing. Some operating systems and libraries provide accelerated mixing routines in
the form of Single Instruction Multiple Data (SIMD) optimizations, and some sound
devices have hardware-accelerated mixing, removing the burden entirely from the
CPU. But the amount of complexity that abstracting platform-dependent mixing
would have entailed would not have been worth it, especially considering that many
implementations that should work do not. Many DirectSound drivers are notoriously
unreliable when it comes to hardware-accelerated mixing.

SAL takes the easy path. As long as it can send a single buffer of some format
to the hardware, everything should work. It removes mixing as a platform responsi-
bility entirely.

Techniques for Portability 27

28

Chapter 3

CASE STUDY: DIRECT3D AND OPENGL

In the late 1990s, there was a fierce rivalry between two competing 3D graphics
APls: OpenGL and Direct3D. OpenGL had a long history in the Unix workstation
market and was generally well thought out and well documented. Direct3D was
more ad hoc and shortsighted, a reaction fo the need to support consumer-level 3D
graphics while understanding that PCs were, by their nature, far more limited than
the types of workstations for which OpenGL was designed.

OpenGlL has a very rigid and clear policy when it comes to features: any
platform that wants to call itself OpenGL must comply completely with the OpenGL
standard, even if that platform cannot provide all those features optimally. For
example, if a particular video card does not support texture-mapped graphics, it
must still provide texture-mapped output if requested by the application—meaning
that it must emulate this feature entirely in software.

OpenGL extended this philosophy even further by refusing to expose what a
platform’s underlying feature set might be. In theory, this forced the programmer to
write extremely portable code that “just worked,” moving the onus of compatibility
and performance on each OpenGL implementor.

As you would guess, OpenGL's approach worked a lot better in theory than
in practice. It was common for a developer to enable a feature such as texture
mapping, only to find that his application had lost 95 percent of its performance.
(This is not an exaggeration—it was not uncommon to see frame rates drop from
60 Hz to 1 Hz or even slower.) Users would complain loudly, and the developer
would then spend a day or two tracking down the culprit on one particular machine.
Finally, some kind of detection code, in the form of querying the OpenGL implemen-
tation’s GL_RENDERER_STRING, would be wedged into the program to disable any slow
features on specific platforms, like this:

if (Istrcmp(glGetString(GL_RENDERER),
"That Bad Hardware Device Rev 3.0"))

{

features.use_texture _mapping = 0;

}

Microsoft approached this problem completely differently with Direct3D by
directly exposing each hardware implementation’s underlying capabilities through
a query mechanism known as capability bits, or cap bits. A program was expected
to query the platform’s individual capabilities before making any assumptions about
the available feature set.

Unfortunately, Direct3D’s approach didn't work very well in practice. For
example, drivers would often publish capabilities that they did not accelerate very
well, so even though a video card exported “Hey, | support texture mapping,” it was
no guarantee that its texture-mapping performance was adequate. Sometimes capa-
bilities were mutually exclusive, which is a concept that the capability bits could not
convey. Some hardware would claim both trilinear texture mapping and dual fexture
blending when, in fact, you could enable one or the other, but not both. Probably
the most frustrating problem was that a hardware device might provide unique
functionality that the DirectX API did not show (unlike OpenGL, which explicitly
supported the notion of additional abilities through an extensions mechanism),
frustrating developers and hardware manufacturers alike. There was no reward for
innovation, since Microsoft completely controlled which features were visible to the
developer.

OpenGlL allowed expansion from a guaranteed baseline, whereas DirectX
allowed variability within a delimited set of features. As a result, OpenGL was

considered far more innovation-friendly than DirectX, which was controlled entirely
by Microsoft.

Today, the two APls coexist quietly. Modern 3D acceleration hardware is no
longer rife with the hodgepodge of implementations prevalent almost a decade ago,
when dozens of products of wildly differing performance and features competed
with each other. With the stabilization in the market has come a stabilization in the
Direct3D API, but it is still far from perfect. Microsoft's attitude to improving it has
been fo effectively rewrite it with every new generation of hardware. This is a
practical and expedient approach, for sure, but one that leaves developers
relearning 3D graphics programming with each new generation.

Which approach is better comes down to philosophy, and both camps have
their detractors. At the time of this writing, DirectX is up to version 9 and has stabi-
lized remarkably well. Developers sfill need to deal with the ins and outs of each
hardware accelerator’s innate abilities and driver bugs/limitations, but the APl itself
is reasonably stable. OpenGL has been dying a slow death on the PC, but this has
been primarily for political, not technical, reasons. As such, DirectX is the clearly
dominant APl on Windows, although OpenGL is still the cross-platform 3D graphics
API of choice (it's used on Mac OS X and almost every major Unix variant).

Another approach is to completely refuse to use a sporadically available
feature, significantly simplifying development, but then you run the risk of
your software being inefficient on platforms where that feature is a key aspect
of the technology (not to mention catching grief from platform partisans
who expect you to support their platform’s unique characteristics).

Yet another approach is to factor out as much of each platform’s vagaries
as possible by implementing everything yourself, effectively allowing the
emulation to completely replace any native implementation of a given
feature. For example, a cross-platform graphical user interface (GUI) system
may eschew any native “widget” functionality and instead handle all widget
management internally. This frees the user from worrying about the specifics
of each platform, but again there are downsides.

One downside of allowing the emulation to completely replace any
native implementation is performance. If everything is being handled by the
portability software, then opportunities for using accelerated software or
hardware are lost. Another is that the developer has just signed on to tackle
the reimplementation of a huge amount of code that is already “done” on
each target, which results in duplicated effort, more code to be debugged,
and generally a lot more work to be done. Finally, the emulated implemen-
tation may lack the expected features or look and feel of a particular target
system.

The middle ground uses a native implementation (if available), and only
missing features are emulated. This may seem like the best option in most
cases (for example, it is not much work to emulate the Windows tree control
on the X Window System), but sometimes it can be grossly impractical. For
example, enabling a nonaccelerated feature with OpenGL will often drop
you down to a “slow path” that is performed completely in software,

29

Techniques for Portability

30

bypassing any hardware acceleration available. It is highly likely that in a
situation like this the user would prefer to run software with a particular
feature disabled than suffer a multiple order of magnitude difference in
performance.

Use Safe Serialization and Deserialization

NOTE

Chapter 3

One of the most common problem areas with cross-platform is saving
(serializing) and loading (deserializing) data in a safe, efficient manner.
When working with a single compiler and target, you can always resort to
furite/fread, but in the cross-platform world, this is not practical, especially
when you need to store to a destination other than a file, such as a network
buffer.

A portable implementation divides serialization into two parts. The first
is converting to a canonical reference format from the underlying platform’s
in-memory representation of an object. This conversion process should be
almost 100 percent portable. For example, suppose you wish to serialize a
user record:

#tdefine MAX_USER_NAME 30
typedef struct user record

{
char name[MAX_USER_NAME];
int16_t priv;

} user_record;
void serialize user_record(const user_record *ur, void *dst_bytes)
{

/* production code should have a size tied to

dst_bytes to prevent buffer overruns */

/* this section has been omitted for brevity */

uint8 t *dst = (uint8_t *) dst_bytes;

memcpy(dst, ur->name, MAX_USER_NAME));

dst += MAX_USER_NAME;

dst[0] = (uint8_t) ((ur->priv >> 8) & OxFF);
dst[1] = (uint8_t) (ur->priv & oxFF);

More complete implementations for user record serialization should have buffer over-
flow checking and, optionally, the ability to serialize to a text format for printing or
human editing.

The code in serialize_user_record copies the user record into dst_bytes
the same way, no matter on which platform you run it. A user_record serial-
ized on a PowerPC running Yellow Dog Linux should create an identical set
of bytes as a user_record serialized on an Intel xScale running Microsoft
Pocket PC 2003.

This would not necessarily hold true if the implementation were the
following instead:

void serialize_user_record(const user_record *ur, void *dst_bytes)

{
/* DANGER! DANGER! */

memcpy(dst_bytes, this, sizeof(*ur));

As T'll discuss in later chapters, a raw structure in memory may have
varying alignment, byte ordering, and packing properties, so this alternative
implementation would sometimes work and sometimes fail, depending on
the compilers used and the platform executing the code. Unfortunately the
brevity of the memcpy implementation is incredibly tempting when you’re just
trying to get something going.

There are different architectural approaches to implementing serializa-
tion interfaces. For example, a common idiom uses multiple inheritance
so that classes can inherit from input or output archival base classes as
necessary. This is an invasive procedure, requiring alteration of the class’s
basic inheritance structure, which a lot of programmers are loath to do.

Once the data is portably formatted in a buffer, you can then archive it
to its final destination. For example, if you're saving to disk, then you might
use furite; if you're broadcasting over a network, you might call send or
sendto, or you may pass it through more processing steps such as compression
and encryption before final delivery.

Deserialization operates the same way, but in reverse:

void deserialize_user_record(user_record **ur, const void *src_bytes)

{

/* production code should have a size tied to src_bytes to prevent buffer
overruns */

/* this has been omitted for brevity */
const uint8_t *src = (const uint8_t *) src_bytes;
*ur = (user_record *) malloc(sizeof(user_record));

memcpy((*ur)->name, src, MAX_USER_NAME));
src += MAX_USER_NAME;
(*ur)->priv = (((uinti6_t) src[0]) <<« 8) | (sxrc[1]);

Again, there is always the temptation to go with the shortcut, which
could be a structure copy through a pointer cast or a memcpy:

void deserialize_user_record(user_record **ur, const void *src_bytes)
{
/* production code should have a size tied to src_bytes to
prevent buffer overruns */
/* this segment has been omitted for brevity */
*ur = (user_record *) malloc(sizeof(user_record));

Techniques for Portability 31

32

**yr = * (user_record *) src_bytes; /* ouch, bad! */

As with the serialization example, the preceding code assumes that the
in-memory format of a user_record will match that of src_bytes, which is not
guaranteed due to alignment, size, and packing considerations.

When the performance of a load operation is a concern, it is reasonable
to assert, “I will guarantee that my archival format is byte-for-byte identical to
my in memory format,” and load straight from storage into preformatted
memory structures. If you can enforce appropriate preprocessing (data is
platform-specific, for example) and verify it with appropriate run-time
checks, then the portability is data-driven instead of code-driven, allowing for
faster performance without any real sacrifice in real-world portability.

Integrate Testing

Chapter 3

Porting software involves changing and writing a lot of code that may not be
tested on another platform for quite some time, which means that many bugs
have a lengthy gestation period. For this reason, it is vital that you perform
standardized testing to catch bugs as early as possible.

Unit tests are small pieces of code that exercise a particular function or
subsystem with known data to ensure that everything behaves as expected.
These tests should immediately catch any bugs you've inadvertently intro-
duced during development, and they act as a first line of defense when a
particular function works correctly on your Mac but dies a horrible death on
Windows. While it may seem like a tedious waste of time to write tests that
almost never fail, the few times they do fail, you’ll be glad you did.

POSH EXAMPLE: BYTE-ORDER TESTING

The Portable Open Source Harness [POSH) library attempts to determine a target's
byte ordering at compile time by inspecting a host of variables. However, it is
entirely possible for this guess to be wrong. If POSH then proceeds to act as if the
underlying machine uses one byte ordering when the byte ordering is actually very
different, things can get ugly in a hurry, since your software is effectively thinking
that it's running on the wrong machine!

For this reason, POSH has a quick sanity check for byte ordering:

/* This is taken from posh.c */

/* POSH_LITTLE_ENDIAN is defined during compilation by posh.h */
#if defined POSH_LITTLE_ENDIAN

define IS BIG ENDIAN 0

define NATIVE16 POSH_LittleU16

define NATIVE32 POSH_LittleU32

define NATIVE64 POSH_LittleU64

define FOREIGN16 POSH_BigU16

define FOREIGN32 POSH BigU32

define FOREIGN64 POSH_BigUé4

* R R B OB OB R

#else
define IS_BIG_ENDIAN 1
define NATIVE16 POSH_BigU16
define NATIVE32 POSH_BigU32
define NATIVE64 POSH BigU64
define FOREIGN16 POSH_LittleU16
define FOREIGN32 POSH_LittleU32
define FOREIGN64 POSH_LittleU64
#endif

®HOoR OB B OB B OB

static
int
s_testBigEndian(void)
{
union
{
posh byte t c[4 1;
posh_u32 t i;

}u;
u.i= 1;

if (uc[0] ==1)
{

return 0;

}
return 1;
}
static
const char *
s_testEndianess(void)
{
/* check endianess */
if (s_testBigEndian() != IS _BIG_ENDIAN)
{
return "*ERROR: POSH compile time endianess does not
match run-time endianess verification.\n";

/* make sure our endian swap routines work */
if ((NATIVE32(0x11223344L) != 0x11223344L) ||
(FOREIGN32(0x11223344L) != 0x44332211L) ||
(NATIVE26(0x1234) != 0x1234) ||
(FOREIGN16(0x1234) != 0x3412))

return "*ERROR: POSH endianess macro selection failed.
Please report this to poshlib@poshlib.org!\n";

33

Techniques for Partability

34

/* test serialization routines */

return 0;

The preceding code verifies that the compile-time environment's endianess
guess matches what the run-time environment discovers. A mismatch should never
happen in practice, but every now and then, a particular configuration or situation
creeps through, and the sanity check will fail.

Use Compilation Options

Chapter 3

It’s always nicer if we can force our tools to do the hard work for us, and as
luck would have it, our most common tool—the compiler—often provides
features that help us find questionable code in the way of warnings and error
messages.

Compile-Time Assertions

The art of portable programming is not about avoiding assumptions, but
rather about avoiding unreasonable or inaccurate assumptions. Once you
do make some assumptions, you need to verify that these assumptions are
valid as early as possible. Many assumptions, thankfully, can be validated at
compile time using a compile-time assertion.

I've seen numerous ways of implementing a compile-time assertion, butI
like the following:

#define CASSERT(exp, name) typedef int dummyi#name [(exp) ? 1 : -1];
This attempts to create a new type of the given name as an array of

integers. If the expression passed is false, then it will attempt to define a

type consisting an array of size —1, which is illegal and generates an error.
For example, if you entered the following:

CASSERT(sizeof(int) == sizeof(char), int_as_char)

it would expand to:

typedef int dummyint_as_char[-1];

which generates a compile-time error, just as you would expect. On GCC, the
error would be:

temp.c:3: error: size of array “dummyint_as_char' is negative

Microsoft Visual C++ reports:
temp.c(3) : error C2118: negative subscript or subscript is too large
And Metrowerks CodeWarrior reports:

##t# mwcc.exe Compiler:
File: temp.c

ommmmmmmmmmeoao-
3: of(int)==sizeof(char)) ? 1 : -1];;
Error: »

illegal constant expression

The error messages don’t tell you which assertion failed, but at the very
least, you’ll have a file and line number to investigate when your code mys-
teriously stops compiling—a much more desirable situation than if your
code compiled and then you ran into mysterious bugs and crashes.

The name parameter is required to avoid triggering a redefinition error
(the result of defining the same type multiple times), since under the C
language, multiple (even identical) type definitions of the same type are
illegal. With C++, this is not the case. If you are compiling only for C++, then
the name parameter may be omitted.

Strict Compilation

Many compilers provide a strict or ANSI-only compilation option that reports
questionable code. For example GCC has the -ansi and -pedantic parameters,
and Microsoft Visual C++ provides the /Xa switch. (Unfortunately, many
Windows applications cannot be compiled with /Xa since <windows.h> violates
the ANSI standard in countless places.)

When strict compilation is enabled, a compiler will issue either warnings
and/or errors when a compiler-specific or compiler-dependent feature is
used. This can assist portability greatly. It is also a good idea to enable as
many warnings of all types as possible.

Segregate Platform-Dependent Files from Portable Files

A simple technique to make porting and writing portable code much easier
is to segregate files based on their platform dependencies. This streamlines
the porting process by defining clear landmarks and platform “templates”
for programmers working on other platforms.

In addition, by enforcing this separation, you can quickly spot when non-
portable code sneaks into a project. If someone puts an #include <windows.h>
into SAL_linux.c, it will almost assuredly break the next time it is compiled
under Linux, sending up a red flag immediately.

Techniques for Portability 35

36

SAL EXAMPLE:
SEGREGATING PLATFORM-SPECIFIC FILES

SAL has numerous platform-specific files, segregated by operating system and back-
end API. The following are the operating system-dependent files:

® sal win32.c, Windows implementations of nonaudio features [threads,
sleep, and so on)

® sal_wince.c, Windows CE (Pocket PC) implementations of nonaudio
features

® sal linux.c, Linux implementation of nonaudio features

® sal osx.c, OS X implementation of nonaudio features

* sal pthreads.c, Linux and OS X pthreads thread-creation implementation
e sal _pthread mutex.c, Linux pthreads-based mutex implementations

® sal nsrecursivelock.m, OS X-specific mutex (NSRecursivelock)
implementation

Each of the files has #ifdef guards that prevent its compilation on the wrong
platform. This simplifies development, since you can just include all source files into
a makefile or project file without trying to sort out which files are necessary.

In addition fo the operating system-dependent files, there are the various audio
back-end files. These are guarded using various constants that are expected to be
defined by the developer during compilation. The following are the audio back-end
files:

® sal alsa.c, ALSA back-end support on Linux (SAL_SUPPORT_ALSA must be
defined)

® sal_coreaudio.c, CoreAudio back-end support on OS X (always used)

¢ sal_dsound.c, DirectSound back-end support on Windows
(SAL_SUPPORT DIRECTSOUND must be defined)

® sal oss.c, OSS back-end support on Linux (SAL_SUPPORT_0SS must be defined)

® sal waveout.c, waveOut back-end support on Win32 and Windows CE/
Pocket PC (SAL_SUPPORT_WAVEOUT must be defined)

In addition to the naming conventions indicating the type of file, the operating
system—specific files are placed in the os/ subdirectory, and the back-end specific
files are placed in the backend/ directory. If a new platform needs to be supported,
an implementor just needs to look at the files in those directories to get an idea of
what needs fo be written.

Write Straightforward Code

Chapter 3

Programmers, as a breed, enjoy being cute with their code. When some-
thing can be written in a clear, concise manner or a slightly cooler but
infinitely more obtuse way, all too often, programmers will choose the
latter to demonstrate their language prowess. Aside from general main-
tenance and debugging problems, such cute programming tricks often
cause headaches when it comes to portability.

Cute programming tricks often rely on compiler-specific features or
aspects of a language that may not be widely implemented. This aside, by

obfuscating the intent of a piece of code, someone trying to port to a new
platform may not be able to discern what the code does.

Use Unique Names

By definition, portable software often finds itself running in new, unfamiliar
environments. Sometimes it will need to be modified to call support libraries
and operating system APIs that were heretofore unknown, which means that
portable software must play nicely with other software packages.

A common source of conflict is identifiers. For example, when developers
ported their DOS applications to Windows, they suddenly found themselves
with strange compiler or linker errors having to do with CreateWindow, a
common function name that happened to collide with Windows’ own
function of the same name.

In a perfect world, Microsoft would have prefixed its entire Windows
API with something like Win or I or MSW. The odds of MSW_CreateWindow
colliding with some random developer’s internal libraries are much lower.

But since developers have little say over the naming conventions of
libraries and operating systems, the onus is on us to avoid these collisions.
In C, this means prefixing everything as much as possible with a somewhat
unique identifier. Just keep in mind that certain prefixes are very popular
(x_, z_, gr_, and Gr are a few examples), so the longer your identifier, the
lower your chances of a collision. In years past, long identifiers were frowned
upon, since the linkers prevalent at the time often truncated identifiers after
a handful of characters (often as few as six!). For example, Graphics_OpenWindow
and Graphics_CloseWindow might both end up as Graphi and clash at link time.
Thankfully, this is not as much of a problem today, as the C99 specification
allows 32 significant characters for identifiers with external linkage.

In C++, you can enclose all global functions as static functions inside a
pure static class:

class Mylibrary
{

private:
virtual ~MyLibrary() = 0; // prevent instantiation

MyLibrary() {}
public:
static void foo(void);

Then the foo function can be called automatically using the appropriate
prefix:

void func()

{
MyLibrary::foo();

Techniques for Portability 37

SAL EXAMPLE: UNIQUE IDENTIFIERS

SAL prefixes all identifiers with SAL. This is not particularly imaginative, but it is
eminently functional, as you can see here:

/** Standard error codes returned by most SAL functions */
typedef enum

{

SALERR_OK = 0x0000,
SALERR_INVALIDPARAM = 0x0001,
SALERR_WRONGVERSION = 0x0002,
SALERR_OUTOFMEMORY = 0x0003,

SALERR_SYSTEMFAILURE = 0x0004,
SALERR_ALREADYLOCKED = 0x0005,
SALERR_INUSE = 0x0006,
SALERR_INVALIDFORMAT = 0x0007,

SALERR_OUTOFVOICES = 0x0101,

SALERR_UNIMPLEMENTED = 0x1000,

SALERR_UNKNOWN = OxFFFF
} sal_error_e;
#define SAL_INVALID SOUND -1
#define SAL_LOOP_ALWAYS =il
#define SAL_PAN_HARD LEFT -32767
#define SAL_PAN_HARD_RIGHT 32767
#define SAL_VOLUME_MIN 0

Does this buy you anything over just calling it MyLibrary_foo()? Not
really, other than appeasing C++ purists. (Well, to be honest, you get one
tiny benefit, which is that you can drop the prefix when calling other
functions from within the same static class, but some would argue that’s
a bad thing.)

Or if you want to go nuts with C++, you can use a namespace:

namespace Mylibrary

{

void foo(void);

But this pretty much does the same thing as the static class, albeit in a
more C++-ish fashion.

38

Chapter 3

#define SAL_VOLUME_MAX 65535
typedef struct SAL_Devicelnfo_s
{
sal i32 t di_size;
sal_i32 t di_channels;
sal 132 t di_bits;
sal 132 t di_sample rate;
sal_i32 t di_bytes_per_ sample;
sal i32 t di_bytes per frame;
char di_name[SAL_DEVICEINFO_MAX_NAME];
} SAL_DevicelInfo;
SAL_PUBLIC_API(sal error e) SAL create device(
SAL_Device **pp device,
const SAL_Callbacks *kp cb,
const SAL_SystemParameters *kp_sp,
sal u32_t desired channels,
sal u32_t desired_bits,
sal_u32_t desired_sample_rate,
sal_u32_t num_voices);
SAL_PUBLIC_API(sal error e) SAL destroy device(SAL Device *p device);
SAL_PUBLIC_API(sal error e) SAL_get device info(SAL_Device *p device,
SAL DeviceInfo *p_info);

Almost everything has an appropriate prefix to minimize the odds of collision
with another library or API. A function name like destroy_device or a constant such
as UNKNOWN or INVALIDFORMAT has a dangerously high chance of being defined in
another package.

Implement Abstraction

The primary tool you'll use in your quest for portability is abstraction. This is
the process of isolating system specific elements from your more general
architecture. Abstraction allows you to write your mainline code in a clean,
system-independent manner.

Abstractions are a trade-off between power and ease of use. Abstractions,
by their nature, must take a lot of different implementations and present a
lowest common denominator. This makes programmers’ lives easier, but
since they no longer have access to the underlying implementation’s extra
features, they may find that their power is limited.

For example, the SAL audio API assumes 8- or 16-bit PCM data, since
that is prevalent on almost every major operating system and sound driver.
However, Apple’s OS X CoreAudio API supports 32-bit floating-point audio
formats, which are very powerful. Unfortunately, there is no clean way for
SAL to offer this without incurring significant overhead and complexity (via
emulating 32-bit floating-point formats on systems that don’t support it, or
alternatively by allowing that form only on OS X).

39

Techniques for Portability

40

Chapter 3

Throughout this section I'll be using examples from both SAL and
POSH to illustrate the power of abstraction.

Dispatch Abstraction

One of the areas where programmers often use conditional compilation
inappropriately is when selecting appropriate functions to execute on
different operating systems. Let’s use a simple example of emitting a beep
from a computer system’s speaker.

Under Windows, this is accomplished using the Beep() API. On
systems that support ANSI escape sequences, you can print a CTRL-G to
the console.

Unfortunately, too many programs would do a conditional at every point
a beep is needed:

#ifdef _WIN32

Beep(440, 100); /* 440Hz, 100 ms */
#else

printf(“Na”); /* use ANSI "bel" character */
ftendif

It doesn’t take too much imagination to realize that this is a recipe for
ugly code if beeping must happen frequently. Ideally, you would like a system
where you have a single call within your mainline code, and that call auto-
matically goes to the proper underlying routine—what I refer to as dispatch
abstraction.

Three common mechanisms for dispatch abstraction are link resolution,
function pointer tables, and C++ virtual functions.

Link Resolution

As its name implies, link resolution relies on the linker to resolve abstractions
statically, most likely through conditional compilation. A function is referred
to by the same name across multiple platforms, but its implementation is
provided by only a single platform. This is effective only when a single
resolution is possible on a specific platform.

For example, SAL uses this technique to abstract the creation and
initialization of device-specific data with SAL_create_device, which is a cross-
platform function.

/* NOTE: This creates a device, but is a non-system-specific
function since the abstraction is handled by the link-resolved
call to _SAL_create_device data */
sal_error_e
SAL create device(SAL Device **pp device,
const SAL Callbacks *kp_cb,
const SAL_SystemParameters *kp_sp,
sal_u32_t desired_channels,
sal_u32_t desired_bits,

sal_u32_t desired_sample_rate,
sal u32_t num_voices)

sal_error_e err;
SAL_Device *p_device = 0;

if (pp_device == 0 || kp_sp == 0 || num_voices <= 0)

{

return SALERR_INVALIDPARAM;

}
if (kp_cb == 0)
{
p_device = (struct SAL Device s *)
malloc(sizeof(struct SAL Device_s));
memset(p_device, 0, sizeof(*p_device));
p_device->device callbacks.alloc = s_alloc;
p_device->device_callbacks.free = s_free;
p_device->device_callbacks.warning = s_print;
p_device->device_callbacks.error = s_error;
}
else
{
if (kp_cb->cb_size != sizeof(SAL Callbacks))
{
return SALERR_WRONGVERSION;
}
if ((kp_cb-»>alloc == 0) != (kp _cb->free == 0))
{
return SALERR_INVALIDPARAM;
}
*pp_device = (struct SAL_Device s *)
kp_cb->alloc(sizeof(*pp_device));
memset(*pp_device, 0, sizeof(**pp_device));
}

/* allocate voices */
p_device->device_voices = (struct SAL Voice s *)
p_device->device_callbacks.alloc(
sizeof(struct SAL_Voice_s) * num_voices);
memset((*pp_device)->device voices, 0,
sizeof(struct SAL_Voice_s) * num_voices);
p_device->device max_voices = num_voices;

/* this will properly dispatch to the _SAL create_device data
implemented by a given platform */

if ((err = _SAL_create_device_data(

Techniques for Portability

M

42

Chapter 3

*pp_device,

kp_sp,

desired channels,

desired_bits,

desired_sample_rate)) != SALERR_OK)

{
p_device->device_callbacks.free(p_device->device_voices);
p_device->device callbacks.free(*pp device);
return err;

}

/* Dispatches through a function table */
_SAL_create_mutex(*pp_device, &(p_device->device_mutex));

p_device->device_info.di_bytes_per_ sample
p_device->device_info.di_bits / 8;

p_device->device_info.di_bytes_per_ frame
p_device->device_info.di_bytes_per sample *
p_device->device_info.di channels;

*pp_device = p_device;

return SALERR_OK;

The call to _SAL_create_device_data is resolved at link time, since it will be
defined only one time on any given platform (the other implementations are
protected by #ifdef guards). For example, on Windows, _SAL_create_device_data
is defined in sal_win32.c and is found only if POSH_0S_WIN32 is defined.

Link resolution provides good performance and robustness. (If the
function name cannot be resolved, it is caught at build time, not when the
program is being run.) However, it does not offer much flexibility if you
would like to resolve the abstraction at run time; that is, if you need to select
different implementations dynamically. For example, SAL supports the
waveOut and DirectSound audio APIs on Windows, and if you wanted to
select which subsystem to use at run time, static link resolution would not be
effective. (You could, however, ship two separate executables to resolve this.)

Function Tables

When you need to switch between implementations dynamically, a function
pointer table is a better solution than static link resolution. A function pointer
table consists of an array or a structure containing a set of pointers to func-
tions, which is used to provide a layer of indirection between the portable
and nonportable segments of a program.

SAL uses this technique for its core abstraction layer. Inside the
SAL_Device structure (in sal_private.h), you'll see this:

typedef struct SAL_Device_s

{
SAL_Callbacks device callbacks;

sal_mutex_t device_mutex;
void *device data;
SAL DeviceInfo device info;

struct SAL_Voice_s *device_voices;
int device_max_voices;

/* implementation callbacks */
sal error e (*device_fnc_create_mutex)

(struct SAL_Device_s *device, sal_mutex_t *p_mtx);
sal_error_e (*device_fnc_destroy_mutex)

(struct SAL_Device_s *device, sal_mutex_t mtx);
sal_error e (*device_fnc_lock_mutex)

(struct SAL Device s *device, sal mutex t mtx);
sal_error_e (*device_fnc_unlock_mutex)

(struct SAL_Device_ s *device, sal_mutex_t mtx);
sal_error e (*device fnc_create_thread)

(struct SAL Device s *device,

void (*fnc)(void *args), void *targs);

sal_error_e (*device_fnc_sleep)

(struct SAL_Device_s *device, sal_u32_t duration);
void (*device_fnc_destroy)(struct SAL_Device s *d);

} SAL_Device;

Each implementation is responsible for pointing the implementation
callbacks at the necessary functions. For example, the Win32 implemen-
tation of _SAL_create_device_data looks like this:

sal_error_e

_SAL_create device data(SAL Device *device,
const SAL SystemParameters *kp sp,
sal_u32_t desired_channels,
sal_u32_t desired_bits,
sal_u32_t desired _sample_rate)

{
device->device fnc create thread = SAL create thread win32;
device->device_fnc_create_mutex = _SAL_create_mutex_win32;
device->device_fnc_lock_mutex = _SAL_lock_mutex_win32;
device->device fnc_unlock mutex = SAL unlock mutex win32;

device->device fnc_destroy mutex = SAL destroy mutex win32;
device->device_fnc_sleep _SAL_sleep_win32;

if (kp_sp->sp_flags & SAL_SPF_WAVEOUT)
{
#ifdef SAL_SUPPORT_WAVEOUT
return SAL create device data waveout(

device,
kp_sp,
desired channels,
desired bits,

Techniques for Portability 43

44

Chapter 3

desired_sample_rate);
#endif
}
else
{
#ifdef SAL_SUPPORT_DIRECTSOUND
return _SAL_create_device_data_dsound(
device,
kp_sp,
desired_channels,
desired_bits,
desired_sample_rate);
#endif

}

return SALERR_UNIMPLEMENTED;

There is a single statically resolved function, _SAL_create_device_data,
which dynamically resolves the remainder of the implementation-specific
functions. In the case of SAL, this doesn’t buy anything, since most of these
functions could have been resolved statically. The exception is the device
destruction function, which needs to be dynamically selected.

In this particular case, SAL uses a function pointer table because it
provides flexibility for the future. For example, it would be very easy to
change it to use pthreads mutexes on OS X instead of the NSRecursivelocks in
use right now. Also, multiple documentation for the same function signature
interfered with the documentation tool’s ability to mark up each function for
each platform uniquely. (The documentation tool is Doxygen, available from
http:/ /www.doxygen.org.)

Although SAL uses a function pointer table, I would like to avoid calling
through it directly as much as possible. For example, SAL_sleep() is a public
function that I would like clients of the library to access, but I would prefer
not to expose the innards of the SAL_Device structure unnecessarily. So, I use
yet another layer of indirection by dereferencing the function pointers with
wrapper functions:

sal_error_e
SAL_sleep(SAL_Device *device, sal_u32_t duration)

{
if (device == 0 || device->device_fnc_sleep == 0)
{
return SALERR_INVALIDPARAM;
}
return device->device_fnc_sleep(device, duration);
}

Now both SAL users and SAL itself can call system-specific functions
without being exposed to the underlying implementation details or the
function table itself.

While SAL gained some flexibility, it also lost a small bit of performance
and robustness in the process. Indirect function calls are moderately more
expensive than direct calls, but on modern computers, this will hardly be
measurable. The other potential problem is that the function pointer table
may end up in an invalid state by having NULL or illegal entries, but this is
easy enough to test during development.

Virtual Functions

C++ provides support for polymorphism through virtual functions. Polymorph-
ism is the ability to perform different actions through a single interface,
where the function to be performed is determined by, say, an object’s type.
This is precisely what you want in an abstraction mechanism.

SAL is not written in C++, but it’s easy to conceive an inheritance
hierarchy where polymorphism would be used:

class SAL_Device
{
private:
virtual sal_error_e create_mutex(sal_mutex_t *p_mtx) = 0;
virtual sal error e destroy mutex(sal mutex t mtx) = 0;
virtual sal error_e lock mutex(sal mutex_t mtx) = 0;
virtual sal_error_e unlock_mutex(sal_mutex_t mtx) = 0;
virtual sal_error_e create_thread(void (*fnc)(void *args),
void *targs) = 0;
virtual sal_error_e sleep(sal_u32_t duration) = 0;
virtual void destroy(void) = 0;
public:
static sal_error_e create_device(SAL_Device **pp_device,
const SAL Callbacks *kp cb,
const SAL SystemParameters *kp sp,
sal_u32_t desired_channels,
sal_u32_t desired_bits,
sal u32 t desired sample rate,
sal_u32_t num_voices);

};

Where SAL previously used function pointers, it now defines pure virtual
functions in the private portion of the base class. To instantiate a SAL_Device,
you would need to call the static SAL_Device::create_device function (a factory
function), which would provide a pointer to some (unknown) subclass of
SAL_Device.

You define specific implementations by creating a new, concrete class
that inherits from SAL_Device. For example, you might define SAL_DeviceWin3z,
which would implement the required pure virtual functions except for the
specific device creation/destruction functions, which would then be provided
by yet another child class, SAL_DeviceDirectSound or SAL_DeviceWAVEOUT. SAL and
any clients would see only the interface presented by SAL_Device, preserving
the abstraction.

Techniques for Portability 45

46

Chapter 3

There are a couple minor problems associated with virtual function
dispatch. Compared with statically resolving abstractions, virtual functions
incur a slight performance hit since the appropriate function must be looked
up at run time. As with function pointers, this is not a major consideration
on modern computers. However, it still may be a concern with embedded or
purpose-built devices such as appliances, gaming consoles, and cell phones.

Another problem is that virtual functions are difficult to cleanly alter
after an object has been created. If you wanted to change a specific function
on the fly, you would need to use a “letter-envelope” idiom (which adds
complexity), re-create the object, or pass parameters to all the functions to
represent any dynamic information necessary. With a function pointer table,
it’s as simple as updating a variable.

Abstract Data Types (typedef)

Data types can be abstracted cleanly through the use of typedef. For example,
instead of blithely assuming that an integer has 32 bits, you can roll this
assumption into a type definition on platforms where this assumption is valid:

#if PLATFORM HAS 32BIT INT
typedef int int32;

typedef unsigned int uint32;
#endif

While the ANSI/ISO C99 specification has introduced standard defini-
tions for sized types through <inttypes.h>, many compilers at the time of this
writing still do not fully support C99 and its associated features.

POSH provides these types in a portable manner even on non-C99-
compliant systems, either using the C89+ standard <limits.h> or by inference
of the compilation environment:

#if defined POSH_USE_LIMITS H

1if CHAR_BITS > 8

error This machine uses 9-bit characters. This is a warning,\
you can comment this out now.

endif /* CHAR_BITS > 8 */

/* 16-bit */
if (USHRT_MAX == 65535)
typedef unsigned short posh_u16_t;
typedef short posh_i16_t;
else
/* In theory there could still be a 16-bit character type and shorts are
32-bits in size */
error No 16-bit type found
endif

/* 32-bit */
if (INT_MAX == 2147483647)

typedef unsigned posh_u32_t;

typedef int posh i32 t;
elif (LONG_MAX == 2147483647)

typedef unsigned long posh_u32_t;

typedef long posh i32 t;
else
error No 32-bit type found
endif

#telse /* POSH_USE_LIMITS H */
/* This makes fairly major assumptions */
typedef unsigned short posh _u16 t;
typedef short posh_i16_t;

if !defined POSH_0S_PALM

typedef unsigned posh_u32_t;
typedef int posh_i32_t;
else
typedef unsigned long posh_u32_t;
typedef long posh_i32_t;
endif
#endif

/* Verify we made the right guesses! */
POSH_COMPILE_TIME_ASSERT(posh_byte t, sizeof(posh_byte t) == 1);

POSH_COMPILE_TIME_ASSERT(posh_u8_t, sizeof(posh_u8_t) == 1);
POSH_COMPILE_TIME_ASSERT(posh_i8 t, sizeof(posh_i8 t) == 1);
POSH_COMPILE_TIME_ASSERT(posh_u16_t, sizeof(posh_ui6_t) == 2);
POSH_COMPILE_TIME_ASSERT(posh_i16_t, sizeof(posh_i16_t) == 2);
POSH_COMPILE_TIME_ASSERT(posh u32 t, sizeof(posh u32_t) == 4);
POSH_COMPILE_TIME_ASSERT(posh_i32_t, sizeof(posh_i32_t) == 4);

POSH uses the values defined by <limits.h> to determine the appropriate
native types that correspond to POSH’s sized types. If <limits.h> is unreliable
or unavailable, it will instead blindly assume some characteristics of the
underlying system, with the exception of the Palm architecture. After the
types are defined, POSH uses compile-time assertions to ensure that the
assumptions are valid.

Use the C Preprocessor

While the C preprocessor is much maligned by purists, the fact remains that
it is a simple yet powerful tool for managing source code. Two lines of
preprocessor code can blank out entire swaths of code, without worrying
about comment nesting rules. The preprocessor’s arbitrary substitution
capability means that minor syntactic differences between platforms can be
abstracted trivially.

For example, a case-insensitive string comparison function is available on
a wide variety of platforms under the name strcmpi, stricmp, or strcasecmp.

Techniques for Portability 47

48

Chapter 3

There are many different ways you can encapsulate this difference, but often
the simplest is straight macro replacement, as follows:

#ifdef MSC_VER
#define strcasecmp stricmp
#else
. etc. etc.
#endif

Granted, this is a rudimentary case that probably warrants just writing
and using your own version, but the idea still applies.

The preprocessor causes problems when overzealous programmers go
a little overboard with multiline macros that incorporate scoping, local varia-
bles, reference global variables, and other such nonintuitive things. In other
words, don’t do this:

#ifdef POSH_0S_WIN32
#define SYS_INIT() { \
extern HWND g_hlWnd; \
char oldtitle[1024];\
char newtitle[1024];\
\
GetConsoleTitle(oldtitle, sizeof(oldtitle));\
\
sprintf(newtitle, "SAL Test - %d:%d", GetCurrentProcessId(),
GetTickCount());\

\

SetConsoleTitle(newtitle);\

\

Sleep(100);\

\

g_hWnd = FindWindow(NULL, newtitle);\

\

if (g_hWnd == 0)\

0
fprintf(stderr, "Could not find window\n");\
exit(1);\

n

\

p_sp->sp_buffer length ms = 100;\
p_sp->sp_hWind = g_hWnd; }
#endif /* POSH_OS_WIN32 */

.

int main(int argc, char *argv[])

{
SYS_INIT();

}

Be Prepared for the Unforseen

As careful, thoughtful, and forward thinking as we may be when defining a
reasonable baseline, inevitably one of our requirements will change due to
unforeseen consequences. This is not necessarily due to bad planning or
foresight, but instead is an unfortunate side effect of our lack of omniscience
(at least, that’s how I've rationalized it in the past).

Here are some common assumptions that many programmers don’t
realize are nof true:

malloc and new are always available
PC developers especially tend to make this assumption, but some sys-
tems, like early Mac OS, 16-bit Windows, and Palm OS, don’t use malloc/
new. Instead, they require you to allocate memory and reference it indi-
rectly using handles that are locked for use, and then unlocked when
you’re not using them. This was a common architecture on systems with-
out virtual memory, where heap fragmentation was a constant worry. So,
this can be a dangerous assumption, especially if you need to target
embedded systems based on low-end microcontrollers where memory
management is often hardcoded.

stdio file management is available and complete
File input/output presumes the existence of both the stdio subsystem
and a filesystem. On embedded devices and many handheld devices,
neither is guaranteed to exist.

Graphics output will always be regular RGB (no palettes)
Modern graphics subsystems have been using RGB (red/green/blue)
output for years now, and even high-end handheld devices support this.
When designing a graphical application, it is much easier to support RGB
than it is to deal with the older palettized display formats (where a pixel
on the display contains a value that indexes into a separate table of
colors). When designing even a simple graphics application for a PC,
you can safely use the RGB format, but if you find yourself migrating to
a handheld or wireless format, you may need to refactor your entire
graphics back end to support palettized graphics (which consume much
less memory and thus are more popular on low-end hardware).

Networking will be done with TCP/IP
TCP/IP has been the de facto networking standard for a decade, and
other network protocols such as NetBEUI, IPX/SPX, and DECNet have
fallen by the wayside. When writing an application that requires net-
work communication, it is common to assume TCP/IP support. This is
often valid, since even very low-end devices will have working TCP/IP
network stacks, but there are many devices that may support only serial
or parallel port communications or a custom wire protocol. While this
is uncommon, you may find yourself scrambling to abstract your net-
work protocol implementation if your software needs to run on such
a system.

Techniques for Portability 49

50

NOTE

Chapter 3

Each of these is a reasonable assumption, but all it takes is one plat-
form that doesn’t work on that assumption to require a redesign, which
can have an exorbitant cost. However, there is little fault in this situation,
since at the time of development, the design requirements seemed com-
pletely reasonable and, more important, abstracting those subsystems “just
because” would have introduced a lot of indirection and extra code for no
quantifiable reason.

Sometimes even what seem to be the sanest, safest assumptions can end
up proving incorrect. You can’t predict the future, so just be aware of every
assumption you make.

Communicating System-Dependent Information

One complicating factor when trying to design clean, cross-platform
programming APIs is communicating system-dependent information from
the application to your own code. The DirectSound subsystem in SAL, for
example, requires the application's window handle when it calls IDirect-
Sound: : SetCooperativelevel(). Since SAL is not responsible for creating or
managing an application’s window, it must have that information passed in
somehow. There are several different ways to handle this in a semi-portable
manner.

In theory, it would be possible to infer the window bound to the curvent thread, but there
are a lot of corner cases where this might fail. Additionally, while it’s tempting to use
NULL or GetDesktopWindow() as the parameter, that is a very bad practice, since Direct-
Sound really does want to bind itself to your window, not just any window.

The first way to handle this communication is to register this informa-
tion using a separate API call available on only one platform, guarding with
appropriate compilation directives, as follows:

#ifdef POSH_0S_WIN32

SAL register HWND(hWnd); /* only on Windows */
#endif

SAL_create_device(...); /* portable portion */

While a bit cumbersome, a separate interface is workable and avoids
polluting your core APIs with system-dependent information (in exchange
for polluting the calling program with conditional code).

Of course, you can pollute your core APIs if you like. By adding every
possible system-dependent variable to various initialization routines, you can
fix it all at once, like this:

void create_device(void *hwnd_for_win32,
void *something_for_OSX,
int some_flag_for_linux);

While functional, this is a fragile strategy, since the API changes every
time a new parameter is added. For example, you may find later that you
need to support Palm OS, and it, too, has its own special parameter supplied
by the application. This means a new version of the API call with some
appropriate suffix must be introduced:

void create_device_ex(void *hwnd_for_win32,
void *something for O0SX,
int flag_for linux,
short palm_os_thing);

Then later on, you add support for Solaris, and now you have
create_device_ex_ex, and on it goes.

Another problem with this approach is that sometimes a particular
parameter may not be available at the time of the function call; for example,
the value for palm_os_thing may not be configured until after you call
create_device_ex.

A slightly cleaner method is to encapsulate all your system-dependent
information into a structure that is passed to your API call. SAL uses this
technique:

struct SAL_SystemParametersWin32

{
sal_i32_ t sp_size; /* size of this data structure */
sal_u32_t sp_flags; /* flags for the API call */
sal_i32 t sp_buffer_length_ms; /* sound buffer len */
void *sp_hWnd; /* HWND */

};

struct SAL_SystemParametersDefault

{
sal i32 t sp size;
sal_u32_t sp_flags;
sal_i32_t sp_buffer_length_ms;

};

#ifdef POSH_0S_WIN32

typedef struct SAL_SystemParametersWin32 SAL_SystemParameters;
#else

typedef struct SAL_SystemParametersDefault SAL_SystemParameters;
ftendif

The sp_size member allows revisions to the system parameters structure
later without breaking backward compatibility. By initializing the sp_size
variable before calling the API entry point, the API can deduce which version
of the SAL_SystemParameters structure was used by the client and react accord-
ingly; for example, by returning an error or performing a conversion to the

Techniques for Portability 51

52

newer format. The net effect is that you can keep a single API point without
continually having to add new entry points to reflect changes to various data
structures.

There remains a chance that there is an order dependency, where some
information that the API needs is not available until afteryou pass in the
system parameters structure. When dealing with this situation, you must
either use a separate entry point (as in the SAL_register HWND() example
earlier), or you must find a different communication vector.

Function calls are only one kind of communication system that a
program can employ. Other, more indirect, mechanisms are possible.
Scripting languages, registry/preference systems, and good, old-fashioned
global variables can function as well, without polluting your core APL

Regardless of the specific mechanism, the fact remains that there is an
exposed system dependency. This is often unavoidable; you can dress this up
to minimize the impact on the rest of your code, but it’s still there in one
form or another.

Bridge Functions

A common pattern for portable programs is partitioning a program into
system-dependent and system-independent portions, and then creating
bridge (or “glue”) functions that connect the two. This subtype of abstraction
is analogous to GUIs that follow the model-view-controller (MVC) paradigm,
where user-interface independent code (the model) is isolated from the
display code (the view) and connected with a controller that acts as a bridge
between the two.

The primary purpose of a bridge function is to transform system-
dependent data or formats into system-independent data (or the converse),
which is then fed into the portable layer (see Figure 3-1).

Low-Level Programming

Chapter 3

Even though high-level languages have become dominant for application
development, there are still occasions when a programmer needs to get
down and talk to a machine in its native language. Sometimes a higher-level
language, even one that is fairly close to the metal such as C, doesn’t expose
core hardware functionality such as the following:

¢ CPU instruction flags (carry bit, zero flag)

¢ New instruction sets like Intel MM X /SSE /SSE-2, AMD 3DNow, and
Motorola AltiVec

e The results of extended operations such as a 32-bit multiply, which on
some architectures will leave a 64-bit result that cannot be easily or
quickly retrieved by a high-level language

So, there are legitimate reasons for programming at a lower level. And
you’ll want to ensure that whenever you write at a lower level you do so as
portably as possible.

Portable

System independent

Nonportable

' Bridge function

System specific

Figure 3-1: Bridge function

Avoid Self-Modifying/Dynamically Generated Code When Possible

Early microcomputers had only a handful of registers, and register access was
many times faster than working with main memory. For this reason, registers
were valuable but scarce commodities, leading to developers using a lot of
interesting tricks in order to give themselves a bit more breathing room.

Imagine having a limited CPU architecture with only four general-
purpose registers and trying to write a loop like this:

mov d, object size ; size of an array element in bytes
mov ¢, num_objects ; number of objects in array

mov b, 0 ; initialize 'b' to ©

mov a, array ; 'a' will point to the current object
top:

; do some operations

add a, d ; increment 'a' by size of object

sub ¢, 1 ; decrement 'c'

jg top ; continue loop if 'c' is greater than 0

'b' is the only register available as a scratch variable, meaning that the
inner loop must access memory for storing any intermediate results. Parti-
cularly frustrating is that 'd" is effectively a constant which, if known ahead
of time, could be substituted into the instruction stream, thereby giving you
an extra register.

Techniques for Portability 53

54

Chapter 3

SAL EXAMPLE: BRIDGE FUNCTIONS

Multithreading APIs for various operating systems expect slightly different signatures
for their thread functions. The pthreads API, as implemented by Linux, Mac OS X,
and other Unix-based APIls, creates a thread using this function:

int pthread_create(pthread_t *thread,
const pthread attr t *attr,
void *(*start_routine)(void *),
void *arg);

Standard Win32, however, uses this function:

uintptr t _beginthread(void(_ cdecl *start_address)(void *),
unsigned stack_size,
void *arglist);

And Windows CE/Pocket PC prefers the Windows CreateThread API:

typedef DWORD (WINAPI *PTHREAD_START ROUTINE)(LPVOID lpThreadParameter);
typedef PTHREAD START ROUTINE LPTHREAD START_ROUTINE;
HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,

SIZE_T dwStackSize,

LPTHREAD_START_ROUTINE lpStartAddress,

LPVOID lpParameter,

DWORD dwCreationFlags,

LPDWORD 1pThreadId);

There are three distinct thread functions expected, depending on the operating
system:

/* return a void pointer, accept a void pointer,
default calling convention */

void *(*start_routine)(void *);

/* return nothing, accept a void pointer, cdecl calling convention */
void (_ cdecl *start routine)(void *);

/* return a DWORD, accept a void pointer, WINAPI calling convention */
DWORD (WINAPI *start_routine)(void *);

A developer cannot be expected to provide three variations of the same thread
function, since this violates the principle of abstraction (and is a pain in the butt as
well). The bridge function can come to your rescue here.

Each thread function accepts a pointer to void for its parameters and may
refurn something different on each platform, so the lowest common denominator is a
function that returns void and accepts a void pointer, with a calling convention that
you define (so that it is consistent for the user). SAL defines the thread start function,
as passed to _SAL _create_thread(), as follows:

typedef void (POSH_CDECL *SAL_THREAD_FUNC)(void *args);
sal_error_ _SAL_create_thread(SAL_Device *device,

SAL_THREAD_FUNC func,
void *targs);

Regardless of the platform, any user of SAL [in this case, SAL itself, since
_SAL_create_thread() is not exported for public use) can provide a thread start
function of the type SAL_THREAD_FUNC and not worry about the underlying imple-
mentation. This is achieved by each implementation providing a bridge thread start
function that dispatches to your generic one.

As an example let's look at _SAL_create_thread_wince:

typedef struct SAL WinCEBridgeFunctionParameters s

{
SAL_THREAD_FUNC bfp_fnc; /**< thread function */

void *bfp_targs; /**< pointer to thread arguments */
} _SAL_WinCEBridgeFunctionParameters;

static

sal_error e

_SAL_create_thread wince(SAL_Device *device,
SAL_THREAD_FUNC fnc,
void *targs)

HANDLE hThread;
_SAL_WinCEBridgeFunctionParameters bfp;

bfp.bfp_fnc = fnc;
bfp.bfp_targs = targs;
if (device == 0 || fnc == 0)

return SALERR_INVALIDPARAM;

if ((hThread = CreateThread(
/* lpThreadAttributes, ignored on WinCE */
NULL,
/* stack size, ignored on WinCE */
0,
/* thread start function */
s_bridge function,
/* lpParameter */
&bfp,
/* creation flags */
o,
NULL)) == (HANDLE)-1)
{
return SALERR_SYSTEMFAILURE;}

SetThreadPriority(hThread, THREAD_PRIORITY HIGHEST);

return SALERR_OK;

55

Techniques for Partability

56

Chapter 3

This demonstrates two important elements. The first is that the call to Create-
Thread dispatches to s_bridge_function, not to the user's thread function, since
the function signatures don’t match, whereas s_bridge_function is in a form that
CreateThread expects. The second is that the parameter passed to s_bridge function
contains the user’s thread function and the user’s thread function parameters.

s_bridge_function is trivially simple. It just unbundles the bridge parameters
and calls the user’s function direcily:

static

DWORD WINAPI

s_bridge function(LPVOID lpParameter)
{

_SAL_WinCEBridgeFunctionParameters *bfp =
(_SAL_WinCEBridgeFunctionParameters *) lpParameter;

bfp->bfp_fnc(bfp->bfp_targs);

return 1;

Assembly language programmers recognized this and used a technique
called self-modifying code. The programmer would assemble the instructions
and then look for, in this case, the add a, d instruction and note the address.
Then he would go back and patch the code in question in place with the
appropriate constant for that particular invocation, freeing up a register.

Aside from the obvious problem that this is tied directly to a particularly
CPU implementation, it brings up other issues. The main one is security.
Most operating systems won’t allow a program to write willy-nilly into its own
code, since this is the result of a bug in the vast majority of cases (for example,
writing through an uninitialized pointer). Of course, you can work around
this (with sufficient security privileges) using operating system calls such as
VirtualProtect() (Windows) and mprotect (Linux), but now you're getting
deeper into the portability hole.

An extreme form of this is dynamically generated code. As the name implies,
dynamically generated code is created and assembled at run time by filling a
buffer of data with processor instructions, flagging the memory as executable,
assigning a function pointer to it, and then executing it. Here is an example
under the Windows operating system:

unsigned char *add_two;
float (*fnc_add two)(float, float);

void test()

{
DWORD old protect; /* Windows-ism */

float c;

add_two = VirtualAlloc(NULL, 32, MEM_COMMIT, PAGE_READWRITE);

/* initialize to NOP */
memset(add_two, 0x90, 32);

/* The first four instructions equate to 'fld [esp+4] */
add_two[0] = 0xD9; /* co-processor escape */

add_two[1] = ox44; /* mod r/m byte */

add_two[2] = 0x24; /* SIB */

add_two[3] = 0x04; /* index */

/* the next four bytes equate to 'fadd [esp+8]' */
add_two[4] = 0xD8; /* co-processor escape */
add_two[5] = ox44; /* mod r/m byte */

add two[6] = ox24; /* SIB */

add_two[7] = 0x08; /* index */

/* this is a one-opcode RET instruction */
add_two[8] = 0xC3;

/* on Linux you would use mprotect */
VirtualProtect(add_two, 32, PAGE_EXECUTE, &old protect);
fnc_add_two = (float (*)(float,float)) add_two;

/* this should now work */
¢ = fnc_add_two(1, 2);
printf("c = %f\n", ¢);

Not only is this pretty scary stuff, but it’s also not portable for a host of
reasons.

You can also load executable code as data, using the same dynamically
generated code technique. Instead of filling in the buffer with constant
data, you load its contents from disk and mark it as executable. This can
be extremely dangerous, but it’s also a practical solution if you want to
load code on a host that may not support dynamic libraries (DLLs or
shared objects).

Needless to say, this is all hacky and not very portable, but at times, it's
necessary when trying to obtain maximum performance from limited
resources.

So even though it’s obvious, it’s still worth stating that if you can avoid
doing stuff like this, then you should.

Keep a High-Level Fallback

When using any type of assembly language, dynamically generated or
statically linked, retaining a high-level fallback version is vital. A fallback

is a default, working implementation of a feature, suitable for use as a
reference or checkpoint when working on a different implementation of
that feature. For example, if you're writing an optimized platform-specific

Techniques for Portability 57

58

Chapter 3

memory-copying routine, you might use memcpy as a fallback for testing or
when bringing up your code on a new target. Without this, you have no way
to perform regression tests to ensure that your low-level code is not subtly
diverging from your high-level implementation.

Assembly language code fragments have a tendency to act a bit differently
than their high-level analogs since they don’t have to adhere to a high-level
language’s semantics. For example, you may write a small piece of floating-
point assembly to add two numbers and store the result as an integer:

; sample code to compute a+b and store the resulting integer version
; into a variable called result. This is Intel 80x87 FPU code.

fld a ; load 'a' onto floating point stack

fadd b ; add 'b' to stop of stack

fistp result ; store result as an integer into 'result’

This works as you would expect with few surprises, yet it doesn’t actually
match the following C code:

result = (int) (a+b);

C imposes its own rules for floating point-to-integer conversion—
specifically, the result must be truncated (rounded toward zero). The
assembly language version, however, will use the current rounding mode in
effect, which is usually round to nearest integer, but may be different
depending on the current state of the FPU control register.

This means that the assembly language version might give a result of 6
when adding 4.5 and 1.1 (4.5 + 1.1 = 5.6, rounded to nearest integer is 6),
but the C version would produce a value of 5 since the fractional portion is
discarded.

With a C fallback, you can ensure that any surprises are caught early by
verifying the assembly version against the high-level version with a set of
regression tests. Using the prior examples as a sample, you might have
something like this:

extern int add_two_floats_C(float a, float b);
extern int add_two_floats_asm(float a, float b);
void test_add_two_floats()

{

int i;

/* use the same seed so this is reproducible if necessary */
srand(3);
for (i = 0; i < TEST_ITERATIONS; i++)
{

/* test using values from -RAND_MAX/2 to +RAND_MAX/2 with

a random fractional component thrown in */
float a = (float) (rand() - RAND MAX/2) +
(rand() / (float) RAND MAX);

float b = (float) (rand() - RAND_MAX/2) +
(rand() / (float) RAND MAX);
assert(add_two_floats C(a, b) == add_two_floats asm(a, b));

This is a trivial example that isn’t particularly robust, but it demonstrates
the intent of a regression test. A production implementation would be much
more thorough and provide a lot more features, such as logging and the
ability to specify tolerances.

Selecting between implementations can be done with conditional
compilation, function pointers, or virtual functions in a class hierarchy, as
described in the section called “Dispatch Abstraction” earlier in this chapter.

When strange bugs start creeping into a program with a lot of low-level
code, having a high-level fallback can save the day, especially for corner cases
that verification tests might not catch. When some odd behavior shows up,
you can at least discount the low-level implementation by substituting the
reference implementation. If the bug goes away, there’s a good chance that
the culprit lies in the low-level code.

Finally, the high-level reference implementation of equivalent low-
level code makes porting much easier when you have a new target. A code
base optimized for an Intel CPU that is then moved to a PowerPC archi-
tecture will be difficult to bring up without a high-level, portable reference
implementation.

High-level reference implementations reduce the effort to move to a
new platform considerably, even if you have a large chunk of otherwise
unportable low-level source. Without them, you're starting from scratch
every time you move to a new architecture.

The register Keyword

C and C++ allow a programmer to hint or request that a variable should be
stored in a register, on the assumption that the programmer knows the
variable will be used heavily, as follows:

register int counter;
for (counter = 0; counter < SOME_VALUE; counter++)

{

/* do something */

While the rationale for the register storage class was reasonably sound at
the time (“please make this fast without making me rewrite this routine in
assembly”), the advancement of compiler optimization technology has made
this feature somewhat moot for most of today’s software. In fact, with many
compilers, it is ignored outright (the C/C++ standards do not require that
the register keyword be honored), since forcing a variable into a register may
interfere with the compiler’s optimizer.

Techniques for Portability 59

60

Chapter 3

The register keyword is an anachronism and is best avoided unless there
is a demonstrable increase in performance from its use.

External versus In-Line asm Files

When assembly code must be integrated into a project, it is often placed
in separate, external files suitable for processing by a separate tool: the
assembler. Doing things this way has traditionally been annoying and
tedious, since other tools such as debuggers and profilers often don’t know
how to handle the assembly files. In addition, the programmer needs to
handle mundane details such as calling and naming conventions. To address
this, some compilers, including Microsoft Visual C++ and GCC, offer the
ability to place assembly language directly inside C/C++ code. For example,
on Microsoft Visual C++ you can do this:

int add_two_floats_C(float a, float b)

{
int result;
__asm fld a
__asm fadd b
__asm fistp result
return result;

}

In-lining the assembly directives this way has the advantage of often using
an internal assembler and overall tighter integration with the rest of the
project. Debuggers and profilers have less difficulty dealing with this than
working with separate files, and the compiler handles the tedious entry and
exit code associated with different calling conventions.

For example, the previous function would look like this in assembly,
much of which is minutiae that most programmers care little for:

PUBLIC _add two floats
_TEXT SEGMENT
_add_two_floats PROC NEAR
push ebp
mov ebp, esp
f1d DWORD PTR [ebp+8]
fadd DWORD PTR [ebp + 12]
fistp DWORD PTR [ebp - 4]
mov eax, DWORD PTR [ebp - 4]
mov esp, ebp
pop ebp
ret 0
_add_two_floats ENDP
_TEXT ENDS

The external assembler version is significantly wordier for little in return,
and since it is embedded directly into the C code, there are fewer oppor-
tunities for things to hiccup. The compiler is responsible for cleaning the
stack, allocating variables, locating variables on the stack, and otherwise
managing all the other mundane aspects of interfacing. The downside is that
now you're dependent on the compiler vendor not messing this up, which is
a somewhat iffy proposition, since in-line assembly is one of the more common
problem areas for compiler bugs. For example, sometimes in-line assemblers
don’t support newer instructions or, even worse, silently disable all optimiza-
tions when they encounter any in-line assembly.

Low-level system programming is a necessary evil in the real world, but
with the proper precautions and abstraction, it’s still possible to get at the
lowest level of the system without sacrificing ease of portability when moving
to a new host.

Techniques for Portability 61

EDITING AND SOURCE CONTROL

Before you even think about the issues
related to the code you write, you need to
deal with something even more fundamental:

getting the files onto your host platform so that
you can edit them. This task is often not as simple
as you would expect, unless you’re lucky enough to be
using a single-host, multiple-target environment. This
chapter covers the act of editing and managing your
source files while writing cross-platform software.

Text File Line Ending Differences

Text files created and edited on different operating systems need to deal
with multiple types of line endings (see also Chapter 13, which discusses
filesystems). DOS and Windows use carriage return/linefeed pairs (\r\n) to
note an end-of-line; Unix uses linefeeds (\n); and the Macintosh, prior to
OS X, uses carriage returns (\r).

64

Chapter 4

This becomes a problem when developing source code across a wide
variety of host operating systems. If a file is created on Unix, it may not be
edited correctly on a Windows machine.

For example, Figure 4-1 shows part of posh.h correctly loaded in Windows
Notepad.

B posh.h - Kotepad

Ele Ldt Format Yew Help

define FOSH _Littleldlix) III ~
if defined POSH_E4BIT,

define FOSH L.tucu ¢
define POSH _Litclelédi i
endif /4 defined POSH_€4BIT_ HTEGER e,

"

define FOSH_BigUlé(x) FOSH_Swaplllé(x)
define POSH_BigU3lix) FPOSH_SwapU3l (x)
fine FOSH_BigIl€ix) FOSH_SwapIlé(x)
define POSH_BigIdl(x) FOSH_Swapldl(x)
if defined POSH_G4BIT_INTIGER

e POSH_BigUed (x) POSH_SwapUéd (x)
define POSH_Bigl64ix) POSH_Swaplédix)
endif /¢ defined POSH_€4BIT_INTIGER +/

R

#alse

define POSH_BigUisix) (x}
define FOSH_BigUiZix) (x)
define POSH_BigIléix) (x)
define POSH_BigI3Zi(x) (x)

-

if defined POSH_E4BIT_INTZGIR
define FOSH_BigUed (x) |
define POSH_BigIéd ix)
andif /4 POSH_E4BIT_T

-

3]
GIR */

define FOSH_LiccleUl6(x) FOSH_Swaplllé(x)
define POSE(LittleU3d(x) FOSH_SwapU3l (x)
define FOSH_LirtleIl€ix) FOSH_SwapIléix)
define FPOSH Littlelldl(x) FOSH Swapl3iix)

"o

1f defined POSH_E4BIT_INTEZGE!
POSH_SvapUad (x)
(x}) POSH_Swapléd ix)
endif /4 POSH_E4BIT_INTZGER +/

"

#endif
#12def _ cplusplus
fendif

fendif /+ HAVE_SOSH M +/

Figure 4-1: Windows Notepad displays posh.h correctly when it has Windows-style line
endings.

Figure 4-2 illustrates what happens when Notepad attempts to load the
same file when it has Unix-style line endings.

On Windows, it is up to the application to properly handle different
line endings, both for loading and saving. For example, neither Emacs
nor Microsoft Visual Studio has any problem loading and displaying the
file shown in Figure 4-2.

Revision control systems try to help with this problem by converting to a
canonical line-ending format (usually Unix-style linefeeds) in the repository,
and then transforming the files back to an operating system native form
when they’re checked out from the repository. After the file has been edited
and checked back in, it is reconverted to the canonical format automatically.
This also helps when trying to view differences (diffs), since some diff pro-
grams will think two identical files are 100 percent different if they don’t use
the same line-ending format.

Ele Edt FQ'MI!I Yeur Help
care, we're justd triggering this assertion to make sure you're awvare of the situation,d soc feel free to delete it.00 ~
If this assecticn is triggesed on & kanovn 32 or €4-bit platform, O please let us know (poshlib@peshlib.czg) */0
FOSH_COMPILE_TIME_ASSERT/(34h1:_p91.m:lz, sizecf| wold +)} == 4);Ofendif00#if defined FORCE_DCXYGENDS define
POSH_€4BIT_] 200/ 4 FOSH
Ucilicy FuncticnsO*+0+* These are opticnal POSH urilicy functions that are not required if you don’tl** need anything except
static checking of your host and target environment.O** 0¢* These functicns are WOT wrapped with POSH_FUBLIC_AFI because I
didn't wantd** ©o enforce thelr expert 1f your own library i only using the= intesnally O+

0*/0fifdef _ cplusplusDextern “C* (Ofendifon
const char *POSH_GetArchString! veid);00#if ldefined POSH_NO_FLOATOOposh _u3l_t POSH LittleFlcatBits(flcat £) Oposh _uil_t
POSH_BigFlcatBits{ flcar £);0flcac FOSH_FlcatFrombiccleBits(posh _u3i_t bics };0flcat POSH_FloatFromBigBics(
posh_udl_t bits);OChvoid POSH_| DeubleBits| double d, posh _byte_t dst("B 1)iOdouble POSH_DoubleFromBits ([const
pesh_byte_t sxcl & 1 300/ unizplezenteddficat “POSH_] WriteTlcatTolivtle! vold *dat, flcat £);Oflcat

*POSH WriteFloatTeBig(void *dst, float £);Oflcat PCS“ ReadFloatFromlittle(const woid *src);Ofloat
FOSH_ReadFloatFroxBig! const void “sre),;00dsuble ‘wsﬁ;ﬂ#lt.:‘eul.?clltllf{ woid “dsr, double 4 };Odouble
*POSH_WriteDoubleToBig(woid *dst, double d);Odouble POSH_ReadDoubleFromlittle(const woid *src);Odouble
POSH_ReadDoubleFromBig(const woid *‘src };0/Ofendif /* !defined FPOSH_NO_FLOAT */00#if defined FORCE_DOMYGINDE define
POSH_NC_FLOATO# undef POSH_NO_FLOATOfendifOextern posh _ulé_t POSH SwapUls(posh_ulé t u);Oextern posh 116t

apIl€(posh_i16_t u };Oextern pash_udZ_v FOSH_SwapU3Z| posh_u3Z_t u);Dextern posh 132 v FOSH_SwapI3Z| pash 132 & u
£ defined FOSH_64BIT_INTEGEZROJextezn posh_ubd_t POSH_SwaplU6d | pesh_ufd_t u):Oextezn pesh_i64_t POSH_SwapI6d(
posh_i€4_t u);O0fendif /+FOSH_G4BIT_INTZIGER */Dextern posh_ulé_t *FOSH_WriveUléToLittle(woid *dst, posh_ulé_t walue };0
axcezn posh_ilé_t “POSH _WriteIl&Tolittle! weid “dst, posh_flé_t value };Dexcern posh_u32_t *POSH_WriteU32Tolictlel wveid
+dst, posh_u3Z_t value);Oextern posh_i3Z_t *PCSH_WriteI3iTolittle! woid *dst, posh_i13Z_t value);OJextern posh_ulé_t
+POSH_WriteUl6TcBigl veid *dst, posh_ulf_t value };Dextern posh_il6_t *FOSH_WriteIl§ToBig! void *dst, posh_i16_t value ;0
sxcern posh_u3Z_t *POSH _WriceU3iTeBig(woid *dsr, posh_u3Z_t walue);Dexcern pesh_i3i_t *FOSH WriceI3:TcBigl void *dst,
pash_i32_t value) ;O0extern posh_ulé_t FOSH_ReadUléFromLittle(const void *sre);Oextern posh_ilé_t
POSH_ReadIléFze=livtlel const vold ‘sze);Oextesn posh _u3l_t POSH_ReadU3IFremlivcle(const veld “szc) Oexvesn posh i3It
FOSH_ReadI3ZFromLittle! const void *sre);ODextern posh_ulé_t POSH_ReadUléFromBigi const void *sre);Dextern posh_ilé_t
POSH_ReadIl§fre=Bigl const void “sre);Oextesn posh_u3i_t POSH_Re IFrenBig(const veid “szc);Oextern posh_i32_c
POSH_ReadI32Fre=Bigl const woid -’zc }i00§if defined POSH_E4BIT_II ROextern posh _u6d_t *POSH WriteUEdTolittle! veid *dst,
posh_uéd_t value);Dextern posh _id€4_t “POSH | WriteIg4TeLittle! veid st, posh 184t valde);Dextern pash_ufd_t

*POSH, azuous(rosxgr woid *dst, pom uéd_t value);Dexcern posh i64_t *POSH wzuusﬂ'osxgu wold “dst, posh_; i _t value };00
extern posh _ufd_t FOSH | ReadUS4FromLittla(const void *src);Dextern posh_i€d_t POSH Readlé4Fromlittle! const “veid *src
}iQaxzezn Wlh_uii_! 20 adU§4FzonBig(const wveold *sre)/Oexrern posh l“\ t PQ’SI' ReadIé4FromBig! const veid *sxec)0
#endif /+ POSH_&4BIT_II “/00¢#if defined POSH_LITTLE_ENDIANOOF define mu Littlelfl&(x} (x}0¢% define POSH LitclelU3z (x)
(2)0¢ define POSH_Liztlelléix) (x)0¢ define POSH Lits1al3z(x) (x)0f 4f definsd POSH_G4BIT_INTEIGIROS define
POSH_LitcleUsd ix) (x)0% define POSH_Litclelédix) (x10§f endif /+ defined POSH_E4BIT_INTEGER +/00¢ define POSH_Biglls (x)
POSH_SwapUl€(x)0f define DCSH__BinSiIxI POSH_SwaplU3i (x)0¢ define POSH BigIléix) PCOSH Swaplléi(x)Of define POSH_BigIdlix)
POSH_SwapI32(x)Df 4if defined POSH_G4BIT_INTIGZRI# define FOSH_BigUed ix) FOSH_SwapUed (x)Or define FOSH_BigIéd ix)
POSH_Svapléd(x)0f endif /¢ defined POSH_€4BIT_INTEGER +/O0felsells define POSH BigUléix) (x)0# define POSH_Bigl3lix)
(210¢ define POSH _BigIlé(x) (x)0¢ define POSH_BLgI32ix) (x)00¢ 4if defined POSH_64BIT_INTEZGIRDe define POSH_BigUédix)
(=108 define FOSH BigIéd(x) (x)O0f endif [+ POSH_E4BIT_INTEGER */00¢ define FOSH LitcleUlé(x) FOSH_SwapUlé(xi0f define
POSH_LiteleU3l (x) POSH_SwaplU3dl (x)0¢# define POSH_Littlelld(x) POSH_Swapllé(x)0¢ define POSH_Littlel3dl(x) POSH_Swaplil (x)00e
if defined POSH_E4BIT_INTIGIROS define FOSH_Licclelléd (x) FOSH_Swaplled (x)O# define POSH_Litcleld(x) POSH_SwapIeéd(x)Of
endif /¢ POSH 6451'! INTEGEZR */0O¢ foosifdes _ Ceendi £ /* HAVE_POSH H */0

£l

Figure 4-2: Windows Notepad has problems when a file has Unix-style line endings.

Portable Filenames

Every filesystem today has a different idea about what constitutes an accept-
able filename. While we’re mostly past the dark days of MS-DOS’s 8.3 FAT
filesystem limitations, there are significant enough differences that you
should avoid “exotic” names.

Try to keep the overall name as short as possible. If you want to be totally
safe, going with the ancient and crusty 8.3 format won’t hurt, but it does lean
toward cryptic filenames. A reasonable limit is 31 characters, corresponding
to the limit on Mac OS; most other operating systems support much longer
filename lengths. Also, consistency about case doesn’t hurt, since some oper-
ating systems are case-insensitive (DOS), others are case-sensitive (Unix/
Linux), and yet others are case-insensitive but case-retentive (Windows).
Finally, avoid punctuation characters and spaces. Stick with letters, numbers,
and the underscore character if you want maximum compatibility. See the
discussion of filesystems in Chapter 13 for more specifics.

Filename extensions are another gotcha. DOS and Windows determine
a file’s type by its extension, such as .doc, .txt, .html, and so on. Unix and
Linux use filename extensions for data types, but differentiate between
programs and data with a file attribute. Mac OS 9 ignores a file's extension
and instead examines its metadata to determine how to run it. This carries
over to source filenames.

Editing and Source Control 08

66

For a while, there were a lot of different ways to denote a C++ source file:
.C, .cc, .cpp, .c++, and .cxx. Header files had extensions of .h, .hh, .hpp, or
.hxx. There is no official standard on this, but today the majority of compilers
accept .cpp/.h as the standard. If you’re working with an older development
environment with its own stubborn idea of acceptable C++ filenames, be pre-
pared to use a script to perform batch renaming or, if your operating system
allows it, to create a set of symbolic links with the appropriate extension.

Source Control

Chapter 4

As you work on the files on your new host platform, you’ll need to track your
changes with a revision control system. Every time a file is edited on one
system and checked back into the main source code repository, any and all
changes must be noted, stored, and easily retrieved. This lets you avoid situ-
ations where you ask, “Why does the Solaris version of my software think that
the database is corrupt after I made this tiny change on my Windows box?”

Source Control Systems

Supposedly, more than 300 different source control systems are out there.
However, only a handful are in common use. The ideal revision control
system, which often will both manage revisions and handle the task of
moving files onto a new platform (as opposed to copying the files manually),
should be cross-platform, and thankfully quite a few are.

res

The Revision Control System (rcs), originally developed by Walter Tichy in
the early 1980s, was the first widely adopted cross-platform source control
system. While it was influenced heavily by AT&T’s proprietary Source Code
Control System (SCCS), which shipped with Unix System V at the time, rcs’s
price (free) and open nature made it quite a bit more popular. It is still
possibly the most popular version control system in use today, primarily
because it is the bedrock on which some other higher-level version control
systems are founded. By today’s standards it’s fairly primitive, but its influ-
ence and ubiquity are hard to deny.

s

The Concurrent Version System (cvs) was originally a front end to rcs that
allowed simultaneous (nonexclusive) file editing. Both SCCS and rcs required
users to lock source files for exclusive access, so that when a file was locked
for writing, no one else could edit that file. (Well, they couldn’t edit a locked
file without using unsafe workarounds like breaking the lock locally and
locking the file later once the current owner relinquished the lock.)

With large projects, this exclusive lock policy became a serious impedi-
ment to development. Sometimes a programmer would need to edit many
source files at once, and thus would lock all those source files and begin
work. Five o’clock would roll around, and the programmer would go home,
leaving half the source repository inaccessible to the rest of the team until

his return. This type of situation was so common that specific, often
draconian, policies would be enacted to limit when and how many locks
could be acquired by an individual.

cvs is not without its annoyances. Ask any cvs user about it, and she will
probably rant for five minutes nonstop about its shortcomings. Common
operations such as file renaming, deletion, merging, branching, movement,
and addition are cumbersome and difficult. Updates to the repository are
not done atomically, which means backing out an entire set of changes can
be a complex task.

Additionally, binary files must be specially flagged, or they’ll often end
up corrupted. This requirement is a side effect of the way the cvs addresses
the problem of multiplatform textfile conversions: by automating the con-
version from host to canonical text formats. When cvs adds an unrecognized
binary file to a repository and the contributor forgets to specify the -kb flag
(for check in as binary), very bad things happen. Any binary values that
correspond to the carriage-return or linefeed characters may get tranformed,
often rendering the binary file unusable the next time it’s checked out. (It is
a sad statement when “automatically recognizes binary files” is considered a
major selling point for a revision control system.)

Despite these difficulties, cvs is the preeminent version control system
for cross-platform and/or open-source developers today. While crude, quirky,
problematic, and difficult to use, cvs has sufficient resources, books, front-
end user interfaces (TortoiseCVS is a popular example), and experienced
users that its integration and use are relatively straigh tforward for most
teams. Its wide availability on a huge number of platforms and its open-
source nature are also considerable advantages. cvs is the revision control
system of choice for SourceForge.net, the largest community open-source
repository in the world.

Perforce

Perforce (also called P4 by many of its users) is a commercial revision control
product that is popular with commercial developers due to its robustness, per-
formance, wide availability, and available support (Perforce has a reputation
for outstanding technical support). Unlike many commercial applications,
Perforce emphasizes portability; it is available on some pretty obscure plat-
forms (IBM OS/390, Amiga, OpenVMS, and so on).

Perforce also provides some features that cvs sorely lacks. It handles
binary files far more reliably than cvs, and it supports atomic operations.
Groups of files are checked in as a single unit (as a change set). If any file
cannot be committed to the repository, then all the files are held back, thus
preventing unsynchronized check-ins. Perforce also has its own security
model, whereas cvs relies on the server’s native operating system to provide
security. This internal consistency provides a more unified experience for
the Perforce user.

Perforce is a commercial tool with dedicated support available. In
contrast, cvs requires the generosity of the open-source community or
the services of a third-party support group like Ximbiot. Perforce is also

Editing and Source Control 67

68

Chapter 4

available free for use for open-source projects, an admirable move
(although largely moot since most open-source projects still prefer
noncommercial tools).

All that said, Perforce is not free for closed-source projects, nor is it open
software, and those two factors are often enough to dissuade its use by many.

BitKeeper

BitKeeper is another source control tool but with a controversial history
stemming from its license. BitMover, the parent company of BitKeeper,
made its software “mostly free,” meaning that BitKeeper could be used for
free but with some restrictions, which annoyed some open-source advocates.
One notable coup for BitKeeper was convincing the Linux kernel main-
tainers to use it for their source control. Technically speaking, it is superior
to cvs in pretty much all ways. As a commercial system (like Perforce), signifi-
cant resources are available to make it best in class. It supports distributed
development (instead of requiring the client/server model that most other
systems use), making it easier for remote developers to use. Its peer-to-peer
design and replicated database system also ensure a high degree of reliability
and performance difficult to achieve with the other, more traditional, systems.

Subversion

Subversion is positioned as “the new cvs.” It is superior to cvs in nearly all ways,
addressing most of the common complaints users have about cvs, but not
taking the “we need to reinvent revision control” attitude that the BitMover
folks adopted. Subversion also uses a database back end (BerkeleyDB) instead
of the file-oriented back end of cvs. This provides some gains but has the scary
side effect that if something happens to the binary database, you may not be
able to retrieve its contents.

Subversion has not attained critical mass yet. Because cvs owns such a
massive chunk of market share, especially with open-source projects, any
project choosing Subversion for source control runs the risk of alienating a
significant number of contributors. At the time of this writing, Subversion
has just reached 1.0.5 status, hopefully providing momentum and allowing it
to overtake cvs in time. I happen to use Subversion, but I'm sure that cvs will
continue to live for several more decades, just as SCCS is still in use for legacy
projects today.

GNU arch

While Subversion is “the new cvs,” the Free Software Foundation is posi-
tioning its own new version control system, arch, as the “the new, better
cvs.” Unlike Subversion, arch is willing to move away from the cvs-like
comfort zone.

For example, one of arch’s greatest strengths is that it employs a distrib-
uted repository model, unlike the single repository model that most other
systems use. This is a radical departure from the mainline, and provides a
lot of strength to the implementation (similar to BitKeeper). The other

advantages of arch are probably considered more esoteric, including entire
tree patches, global project names, and a more “assembly of lightweight
tools” architecture. However, at the time of this writing, is not considered
ready for mass consumption by many developers.

Checkout by Proxy

In a bad situation, you might be faced with a system that simply does not have
the source control system you're using or, even worse, you might be forced to
use a platform-dependent source control system such as Microsoft’s Visual
SourceSafe. While this should be a rare instance if you're using one of the
major source control systems, it's not completely unheard of. For example,
BitKeeper is not available for early versions of Mac OS.

So, if you find yourself in the rather unenviable situation of porting your
software to Mac OS 9, and you’ve been happily using BitKeeper now for your
entire project, you might wonder how to tackle the problem. Your first
option is to go crazy and move your entire source control system over to a
new package that you may not be familiar with, lacks the features you like
about BitKeeper, and may end up having its own incompatible systems.
That’s not very tempting.

If you're lucky, you'll be able to have the Macintosh mount your
filesystem remotely using software such as Thursby’s DAVE file-sharing
system. If you have a PC handy, you then check out your source code to the
PC, edit those files directly from the Macintosh, and once everything works,
check it back in from the PC. Not all computer systems can mount each
other’s filesystems, however, which means that you're looking at a rather
nasty last resort: checkout by proxy.

If your source control system is not compatible with a particular host and
you can’t mount the target platform’s filesystem (or have it mount another
machine’s), then you’ll need to proxy your files onto the new platform. This
involves performing any file locking or checkouts on a system (the proxy)
compatible with your source control software, then transferring all the files
over to the new host. Ideally, it’s on your network, so you can FTP your files
over. If not, you need to bundle the files into some archive format (.zip or
.tar.gz), and then copy (via tape, floppy disk, CD, or DVD-ROM) the files over.

Once there, you unpack the archive on the target system, get everything
working in a marathon coding session, pack it back up, return it to the proxy
system, and then check all your files back in, praying that nothing major
changed “while you were away.” You also must ensure that you don’t edit files
on the proxy system and on the remote system, because if you do, you'll need
to merge the remote and proxy system source trees before integrating the
changes back into the central repository.

This checkout by proxy method is neither pretty nor easy, but as a last
resort, it works. The moral here is to make sure that any revision control
system you plan on using supports all the platforms you think you might need
to support in the future.

Editing and Source Control 69

70

Build Tools

Chapter 4

Now that you've managed to get your files onto a new system without
mangling the line endings or running into case-sensitivity and other file-
naming problems, you can ago ahead and start compiling your source code,
The choice now is whether to go with platform-specific build tools or
portable build tools.

Platform-Specific Build Tools

Platform-specific build tools usually consist of some kind of integrated
development environment (IDE) responsible for managing files, projects,
and dependencies. IDEs often provide a host of other handy features
including integrated help, an API reference, a debugger, and a profiler.
Various IDEs are available for different operating systems:

¢ Windows has development environments from Microsoft (Visual Stu-
dio), Metrowerks (CodeWarrior), Borland (C++Builder), and the free
environment Dev-C++ (based on GCC using Cygwin and/or MinGW).

¢ Mac OS X offers the free ProjectBuilder and X-Code environments from
Apple (which are just fancy front ends wrapped around modified ver-
sions of jam, gdb, and gcc) and Metrowerks CodeWarrior.

¢ Linux possesses a wide selection of both commercial environments (Bor-
land C++Builder-X, Metrowerks CodeWarrior, and CodeForge) and free
environments (Anjuta Dev Studio, Eclipse, and KDevelop).

e Sun features the commercial Sun One Studio for Solaris and Linux.

In other words, there are a lot of options for both commercial and free
plattorm-specific integrated build environments.

IDEs attempt to hide the arcane details of source code dependencies,
compiler and linker switches, and debugging commands within a pleasant,
easy-to-use interface. For example, Figure 4-3 shows Microsoft Visual C++ 6.0,

Note the multiple panels that provide visual feedback for the build and
editing process. The workspace panel (left) has a list of all files in the project,
which can be edited by simply double-clicking the filename. The edit window
can contain multiple files for editing, and the output window (bottom)
shows the results of the build process. Recompiling requires only a single
keystroke or button click. Debugging occurs within the editor, so code may
be edited in the same environment in which it is debugged. Help is a single
keystroke (F1) away. Dependencies between different files are automatically
determined without any user intervention.

For developers new to a particular platform or tool chain, this type of
environment can be a lifesaver, since all of the gritty details are hidden from
view. For example, the compiler command line for this project is:

cl /nologo /MTd /W3 /ZI /0d /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D
" MBCS" /Fp"Debug/test.pch" /YX /Fo"Debug/" /Fd"Debug/" /FD /GZ /c

salitest\saltest.c]

B Ele £t ew Jsert Project uid Tock Yndow Hebp
[rest =] fwin3z Debug EIE-X-EYRE. e @ERIBT Sy 2R

2lx [& man][mangint arge, const char =argvl }{ > Go

[T wokspace o, 2 projecits) ~ j

main{ arge. argv):

& y
Fendif
int
niain{ int argc. const char #argvi])
int i:
SAL_SystenParansters sp: J

nenset{ &zp. 0, sizeof(=p)):
sp.sp_size = sizeof{ sp }:

sal_nssecussivelock m saltest_sys_startup{ &sp }:

% check comnand line arguments #
for { i = 1: i ¢ argc: i+

- iel:uhned.mmc ¢ if { stremp{ orgv(i). "=-alsa® } == 0)
3] sd_sunle;wwe.c p: £ s=p.sp_flags |= SAL_SPF_ALSA:
if { stremp{ argv([i). "--vave® } == 0 }
N sp.sp_flags |= SAL_SPF_VAVEOUT:
¥

test_sal{ &sp):

™ Chorsvion : return 0: _b_’j

F] | e——————— -Configuration: test - UiniZ Deb =

saltest.c
[Spavn Tine 0:00.9
Linking. ..
Spavn Tine 0:02.1

test exe = 0 error{s). 0 varning(s)
Build Time 0:07.5

[Z1¥]\ Buitd (Detug 5 Frd i Fles 1 5, Find i Fles]| 4 | | A [
Resdy

Figure 4-3: Microsoft Visual C++

This is necessary for each file! Most developers would rather not figure
that out on their own unless absolutely necessary.

IDEs are not all cookies and milk, however. Here are some of their
disadvantages:

¢ Due to their heavy integration, their use tends to be an all-or-nothing
prospect.

¢ Setting up a build system with each tool requires a lot of learning and
maintenance.

¢ They're often not particularly amenable to automation. Configuring
periodic builds across a group of machines can be cumbersome.

¢ Most of the high-quality IDEs are proprietary and expensive, which
makes them impractical for developers on a limited budget.

¢ Since many of these environments are tied to a specific compiler, migrat-
ing between compilers can be overly strenuous for the developer, because
it requires changing the build system as well.

Portable Build Tools

Portable build tools solve a lot of the problems associated with the pro-
prietary, host-specific build environments by pushing more of the work onto
the developer, thus lessening the burden on the tools. Common examples

Editing and Source Control n

7

Chapter 4

are scripts (custom programs written in Perl, Python, or a shell language
such as sh or REXX) that are processed by specialized build tools such as
make and jam.

Assuming that you can execute your script on all your desired host
platforms, building on a new platform simply means adding a new entry for
that particular host environment and tools. All higher-level dependency
checking and project management can then be handled portably.

make

make is the granddaddy of all build-management tools, finding its roots
during the early days of Unix development. As the story goes, make’s devel-
oper, Stuart Feldman of Bell Labs (developers of Unix), found that he and
many of his coworkers were running into the same “bug”: they would forget
to compile some files during development, inadvertently linking older, out-
of-date object modules into their binaries. So bugs would be fixed and features
added, and yet mysteriously these revisions would not show up in the final
executable.

To address this, Stuart wrote a handy little program called make that, in
theory, was simple enough to understand. It took a set of targets, depen-
dencies, production rules, and macros, defined in a makefile, processed them,
and made sure that anything that was out-of-date was updated appropriately.

For the relatively small, Unix-only projects of the time, make worked very
well. But as software projects have grown, the ability of make to keep up has
been limited. Every time a new feature is bolted on, makefiles become
increasingly fragile. In fact, if you were to survey most developers that use
make, the vast majority of them would probably admit that they don’t touch
their makefiles except to add files. And when a process gets to the point that
it’s considered somewhere between black magic and quantum physics, you
know things are bad.

As an example of how bad it can get, here’s an example from the GNU
tutorial on make. This rule is used for generating dependency files from .c
files:

%.d: %.c
@set -e; rm -f $@; \
$(CC) -M $(CPPFLAGS) $< > $@.$$%%; \
sed 's,\($*\)\.o[:]*%,\1.0 $@ : ,g' < $@.$3%% > $@; \
m -f $@.$$$$

If that doesn’t give you cold shivers, nothing will.

make’s inability to keep up with modern software projects led to the
arrival of helper utilities such as GNU’s automake and autoconf. These tools
perform tasks like generating makefiles and configuration scripts that, in
theory, make development easier for the programmer. Unfortunately, they
trade complexity for more complexity; creating the makefile is no longer
difficult, but the programmer now must learn how to edit automake and
configuration files.

make’s popularity has worked against it as well. The program itself has
become popular, and it has also spawned a plethora of make-like clones
(GNU make), substitutes (jam and scons, described later), variants (Microsoft
NMAKE), and commercial versions (Opus Make).

While make definitely has its faults and quirks, it’s still the most widely
used build tool today. Its ubiquity, popularity, and user base guarantee that it
is available on pretty much every platform under the sun.

SAL EXAMPLE: A SIMPLE MAKEFILE

Here is a very simple makefile that builds the test program included with SAL:

Simple example makefile that uses GCC and builds the SAL test

CC=gcc

CFLAGS=-g -DSAL_SUPPORT_0SS

LDLIBS=-1pthread

saltest: src/sal.o src/posh.o src/sal device.o src/sal mixer.o \
src/sal sound.o src/sal sample.o src/os/sal pthread.o \
src/os/sal_pthread mutex.o src/backends/sal oss.o \
src/backends/sal_alsa.o src/os/sal_linux.o src/sal sample wave.o \
test/saltest.o
$(LINK.o) $ $(LDLIBS) -o $@

This makefile says, “Build an executable named saltest, which is dependent
on the following object files.” The $(LINK.0) $* ($LDLIBS) -o $@ statement tells make
how to build the final executable, using make’s rather cryptic syntax for variables,
macros, and implicit rules. The first three lines define variables that are automatically
plugged into the build process by make. (It implicitly understands that CC is used for
compiling C source files, CFLAGS should be passed to the compiler, and LDLIBS are
libraries that should be passed to the linker.)

Production makefiles are considerably more complex, spanning multiple files
(recursive makes) with thousands of lines, multiple dependencies, variables, condi-
tional execution, and implicit and explicit production files for different file types.

.
jam

jam (“just another make”) is a highly portable open-source build manage-
ment tool from Perforce that, as you would guess from the name, has a lot of
similarities to make. But since it was developed after make became popular,
it has incorporated a slew of improvements and fixes that make it easier to
use and more powerful, including the following:

¢ jamfiles (jam equivalent of makefiles) have a cleaner and simpler syntax.

¢ Compiler- and platform-specific idiosyncrasies (such as path separators
and compiler flags) are kept out of the jamfiles and are instead stored in
a plattorm-specific jambase file.

e Itincludes automatic dependency checking with header scanning (no
more make depend).

e It’s very fast.

e It’s easy to perform builds in parallel.

Editing and Source Control 73

74

Editors

Chapter 4

The only real downside to using jam is that it isn’t as popular as make, so
requiring its use can sometimes make other developers balk. That said, it’s
an integral part of the Mac OS X development tools, free, and gaining

popularity.

Scripts and Batch Files

Of course, long before there were build management tools, there were
command-line shell scripts (also known as batch files). When it came right
down to it, if you really needed to manage a repetitive build, you could write
a simple script in your favorite shell language such as csh, sh, DOS BATCH,
or VMS DCL.

Slow, inefficient, and nonportable, shell scripts are also almost always
available in one form or another on any given platform. They are straight-
forward to implement, since they typically eschew such advanced notions as
dependency checking.

One step beyond basic shell scripts are scripts written in higher-level,
dedicated programming languages such as Perl and Python. These support
the development of customized build processes that provide more flexibility
than the more rigid, predefined rule sets available with make or jam. One
tool, scons, is a build management tool written in Python and uses Python as
its configuration language.

Whether you use Python, Perl, scons, or some other scripting language,
you’ll have an immense amount of power and portability on any system that
has your scripting language of choice. You’ll find Python and Perl on most
systems that are even remotely popular today.

Having a cross-platform editor isn’t nearly as important as a cross-platform
source control system, but it can help. How important such an editor is really
depends on how picky you are about your editing environment.

Some programmers will sit down and use pretty much any editor with
minimal complaint. Others spend hours or days configuring their environ-
ments precisely, and when forced to edit even a little bit of text on a foreign
system will whine and groan that they can’t get any work done because they
don’t have things just so.

If you're one of the latter, you should probably look into using a trans-
portable editor that is easy to install and configure in a short amount of time.
The obvious choice here is Emacs, which is jokingly referred to as a
“good operating system with a bad editor”—the point being that Emacs has

grown into something far more than a simple editor. Emacs is widely avail-
able and easy to install, and local configurations are easy to set up by simply
copying a customized .emacs file to the new system. Other cross-platform
editors do exist, including the minimalist but ubiquitous vi and VIM editors,
and of course, larger cross-platform IDEs such as CodeWarrior and Eclipse
have editing functionality built in with their project management features.

SAL EXAMPLE: SHELL SCRIPTS

SAL has a very simple shell script, written in sh, that does the same thing as a
makefile, although a bit less elegantly.
On the plus side, it's pretty clear what it's doing, since it's just a one command:

#/bin/sh

gce -g src/posh.c src/sal.c src/sal device.c \
src/sal_mixer.c src/sal_sound.c src/sal_sample.c \
src/os/sal_pthread.c src/os/sal_pthread mutex.c \
src/backends/sal_oss.c src/backends/sal_alsa.c \
src/os/sal_linux.c src/sal_sample wave.c test/saltest.c \
-lpthread -o test/test

Of course, shell scripts also offer conditionals, flow control, and variables, so
it's easy enough to add support for things like command-ine arguments:

#/bin/sh

if ["$1" = "cpp"]; then
CPPDEF="-x c++"
CPPLIB=-1stdc++

else
CPPDEF=
CPPLIB=

fi

ALSALIB=
ALSADEF=
0SSDEF=

if ["$2" = "alsa"] || ["$3" = "alsa”] ; then
ALSALIB=-1asound

ALSADEF=-DSAL_SUPPORT_ALSA

fi

i (ST = T) (] ST = Tees 1] s
OSSDEF=-DSAL_SUPPORT_0SS
fi

gcc $0SSDEF $ALSADEF $CPPDEF -g src/posh.c src/sal.c src/sal device.c \
src/sal_mixer.c src/sal_sound.c src/sal_sample.c src/os/sal_pthread.c \
src/os/sal_pthread_mutex.c src/backends/sal oss.c \
src/backends/sal_alsa.c src/os/sal_linux.c src/sal_sample_wave.c \
test/saltest.c $ALSALIB -lpthread $CPPLIB -o test/test

This example supports an optional ¢ or cpp command-line argument that
determines whether the source files should be compiled as C or C++ files. It also
supports the alsa and oss command-line arguments to determine which audio
subsystems should be supported.

Editing and Source Control 75

Summary

While much of the emphasis on portable software development is on pro-
gramming and coding habits, the “simple” first step of migrating source code
to and editing on a new host platform can be trying by itself. In this chapter
we’ve covered a lot of the issues that can come up during this process, from
editing files to working with source control on different systems.

76 Chapter 4

PROCESSOR DIFFERENCES

The differences between comparable
process architectures, such as desktop RISC
chips, can be dramatic, and when moving
code between high-end desktop processors
such as the IBM G5 and lower-end processors such as
the Intel xScale, the amount of work required for a
successful transition is often surprising.

Computer processor designs vary radically in their storage requirements
(alignment of data and ordering of bytes), data sizes and formats, and,
obviously, performance. This chapter covers some of the common issues
you’ll encounter when moving between processor architectures.

Note that when you're migrating from a high-performance system to a
lower-end one, the feature set may be portable, but your chosen algorithms
and data structures may not scale down as neatly. This issue is addressed in
the discussion of scalability in Chapter 14.

78

Alignment

NOTE

Chapter 5

Most processors prefer (or even require) that memory accesses be aligned.
This means that when the processor accesses a chunk of data n bytes in
length, the chunk’s beginning address must be some multiple of n. For
example, a four-byte variable should be on a four-byte boundary (address
is a multiple of four); a two-byte variable should be on a two-byte boundary
(address is a multiple of two); and so on.

However, processors often have different requirements for memory
accesses. For example, the Intel x86 architecture allows unaligned memory
accesses but imposes a significant performance penalty on unaligned oper-
ations. A misaligned access on many RISC processors will result in a proces-
sor fault, causing either a crash or, if the fault is handled by a software trap,
a very slow unaligned access (the access is handled entirely in software). And
on the ARM line of embedded processors, a misaligned access will result in
incorrect data, which is probably the least ideal outcome, since it can result
in incorrect behavior that is silently accepted.

Certain ARM implementations with memory management units will implement
optional alignment checking, but this feature is not ubiquitous across the entire ARM
Sfamily.

For maximum portability, alignment should be forced to the highest
granularity possible. Any tricks such as pointer manipulation should be
avoided, because they might incur unexpected misaligned accesses. One
of the more common memory-alignment errors occurs when accessing a
memory buffer via an invalid pointer cast.

A union is 2 handy mechanism that will guarantee alignment between
two different types. For example, Motorola’s SIMD AltiVec instruction set
requires 16-byte alignment when transferring data between the floating-
point and vector (SIMD) units:

/* Based on code from:
http://developer.apple.com/hardware/ve/alignment.html */
/* NOTE: "vector" is a keyword specific to the
Altivec enabled GCC compilers */
vector float FillVectorFloat(float f1, float f2, float f3, float f4)
{
/* this union guarantees that the 'scalars' array will be
aligned the same as the */
/* 'vector float v' */
union
{
float scalars[vec_step(vector float)];
vector float v;
} buffer;

/* copy four floating point values into array of scalars */

buffer.scalars[0] = f1;
buffer.scalars[1] = f2;
buffer.scalars[2] = 3;
buffer.scalars[3] = f4;

/* return vec float equivalent */
return buffer.v;

MISALIGNED ACCESSES THROUGH POINTER CASTING

SAL has a WAVE file-parsing function, _SAL_create_sample_from wave(), that could
have easily taken the buffer and simply cast it to the appropriate structure:

typedef struct

{
char wh_riff[4 1;
sal _u32_t wh_size;
char wh_wave[4];
char wh_fmt[4];

sal u32_t wh_chunk_header size;
} _SAL_WaveHeader;

sal_error_e

SAL_create_sample_from wav(SAL Device *device,
SAL_Sample **pp_sample,
const void *kp_src,
int src_size)

{

_SAL_WaveHeader *pwh = (_SAL WaveHeader *) kp_src;

/* verify that this is a legit WAV file
NOTE: wf_chunk_header size might be a misaligned access! */
if (strncmp(pwh->wh_riff, "RIFF", 4) ||
strnemp(pwh->wh_wave, "WAVE", 4) ||
pwh->wh_chunk_header_size != 16)

return SALERR_INVALIDPARAM;

Depending on the alignment of kp_src, the comparison statement using pwh-
>wh_chunk_header_size may result in a misaligned access. While this won't happen
in the vast majority of cases, since most buffers are allocated on paragraph or page
boundaries, if you've written a naive buffer allocation/free system that works on
byte boundaries, this could be a real problem.

Processor Differences 79

80

Chapter 5

The marginally slower, but safer, solution is to copy the incoming data into a
structure, which will be aligned correctly by the compiler:

sal_error e
SAL_create_sample_from wav(SAL Device *device,

SAL_Sample **pp_sample,
const void *kp_src,
int src_size)

_SAL_WaveHeader wh;

/* this still makes assumptions about padding, byte ordering, etc. */
memcpy(&wh, kp src, sizeof(wh));

/* verify that this is a legit WAV file
NOTE: wf_chunk_header size will be aligned correctly */
if (strncmp(wh.wh_riff, "RIFF", 4) ||
strnemp(wh.wh_wave, "WAVE", 4) ||
wh.wh_chunk_header size != 16)

return SALERR_INVALIDPARAM;

However, raw copies don't handle byte ordering or padding issues, so often
you need to parse the raw memory and transform it into the correct form, like so:

const sal _byte t *kp_bytes = (const sal byte t *) kp_src;

/* read out wave header */

memcpy (wh.wh_riff, kp_bytes, 4);

kp_bytes += 4;

wh.wh_size = POSH_ReadU32FromLittle(kp_bytes);
kp_bytes += 4;

memcpy(wh.wh_wave, kp bytes, 4);

kp_bytes += 4;

memcpy (wh.wh_fmt, kp bytes, 4);

kp_bytes += 4;

wh.wh_chunk_header_size = POSH_ReadU32FromLittle(kp_bytes);

kp_bytes += 4;

/* verify that this is a legit WAV file */

if (strnemp(wh.wh_riff, "RIFF", 4) ||
strnemp(wh.wh_wave, "WAVE", 4) ||
wh.wh_chunk_header size != 16)

return SALERR_INVALIDPARAM;

Byte Ordering and Endianess

Multibyte data types such as integers may be represented in one of two forms:
little-endian or big-endian, indicating the order bytes are represented within the
data type. On a little-endian architecture such as the Intel x86, the least signifi-
cant bytes are placed first (that is, at a lower address). A big-endian architec-
ture, like the Motorola PowerPC, places the most significant bytes first.

There are also mixed-endian and bi-endian machines. For example, the
PDP-11 stored 32-bit values as two big-endian shorts (most significant bytes at
the lower address), but with the least significant short stored at the lower
address (2-3-0-1 where 1 corresponds to the lowest address). Many modern
CPUs and coprocessors (network processors, graphics processing units,
and sound chips) support bi-endian operation, where they can operate in
little-endian or big-endian mode. This ability helps both performance and
portability. Unfortunately, rarely can an application control this feature;
the operating system or device drivers usually control the endianess mode
for specific hardware.

Big-Endian versus Little-Endian Valves

Consider the following example:

union

{
long 1; /* assuming sizeof(long) == 4 */
unsigned char c[4];

}ou;

u.l = 0x12345678;
printf(“c[0] = ox%x\n”, (unsigned) u.c[0]);

Here are the little-endian and big-endian values for this example:

Address Little-Endian Value Big-Endian Value

bc[0] 0x78 0x12
be[1] 0x56 0x34
&c[2] 0x34 Ox56
&c[3] Ox12 Ox78

When run on a little-endian machine, you would expect the output to be
as follows:

c[0] = ox78
And on a big-endian CPU, you would expect to see this output:

c[0] =ox12

Processor Differences 81

82

Chapter 5

This poses a significant problem: multibyte data cannot be shared
directly between processors with different byte ordering. For example, if
you were to write some multibyte data to a file and then read it back on
an architecture of different endianess, the data would be garbled, like so:

void write_ulong(FILE *fp, unsigned long u)

{
/* BAD! Storing to disk in 'native' format of the current CPU */
fwrite(&u, sizeof(u), 1, fp);
}
unsigned long read_ulong(FILE *fp)
{
unsigned long uj;
/* BAD! Blithely assuming that the format on disk matches the
processor's byte ordering! */
fread(&u, sizeof(u), 1, fp);
return u;
}

BYTE-ORDERING EXAMPLE:
POWERPC VERSUS INTEL X86

Now let's consider an example to demonstrate the effects of byte ordering. If you
were to execute the following on a PowerPC:

write ulong(fp, 0x12345678);

and then run it again on an Intel x86 like this:

unsigned long ul = read_ulong(fp);

you would be in for a surprise: the variable ul will contain 0x78563412 on the Intel
processor. The reason is that the bytes on disk are in “PowerPC format” (stored as
0x12,0x34,0x56,0x78), which will be backward when read and stored into ul
(0x12 in the lowest address, 0x34 in the next, and so on). This is probably one of
the most common—if not the most common—bugs programmers encounter when
migrating between platforms.

Standardized Storage Format

A solution to the problem of different byte ordering is to store data in a
standardized byte order. Software running on processors that do not match
this standardized format must then manually “swizzle” the bytes to convert
from the canonical format to the processor’s native format. Another option
is to store data in the platform’s native byte order and then mark what that
order is in the file’s header. Several file formats, such as TIFF, specify the
endianess this way.

NOTE

Some file formats, such as the TIFF graphics format, don’t have a fixed endianess.
Instead, a program must inspect the TIFF header to delermine its byle orvdering.

Now let’s assume that a standardized storage format is big-endian. You

could then write the code shown at the beginning of this section as follows:

void write_ulong(FILE *fp, unsigned long u)
{
unsigned char c[4 1;
c[0] = (unsigned char
c[1] = (unsigned char
c[2] = (unsigned char us 8);
c[3] = (unsigned char) u;
fwrite(¢, sizeof(¢), 1, fp);

(u> 24);
(u> 16);
(

)
)
)
)

}
unsigned long read_ulong(FILE *fp)

{
unsigned char c[4 1;
unsigned long u = 0;

fread(c, sizeof(c), 1, fp);

|= ((unsigned long) c[0
|= ((unsigned long) c[1
|= ((unsigned long) c[2
= ((unsigned long) c[3
return u;

u
u
u
u

This code example makes no assumption regarding the data’s organi-

zation in memory; instead, it directly extracts the relevant values by shifting

and masking. The only complaint with this code is that it exacts a perfor-
mance toll even when the storage format matches the processor’s native
format.

To optimize such situations, you can detect byte ordering and perform

manual construction/reconstruction only when necessary, as follows:

unsigned long read_ulong(FILE *fp)
{

unsigned char c[4];
unsigned long u;

fread(¢, sizeof(¢), 1, fp);

/* this function is discussed next */

if (is_big_endian())

{
/* this is fine, but only on big-endian systems */
/* Obviously you'd move this conditional outside */
/* this loop for performance */

Processor Differences

83

return * (unsigned long *) c;

}

u = ((unsigned long) c[0]) << 24;
u |= ((unsigned long) c[1]) << 16;
u |= ((unsigned long) c[2]) << 8;
u |= ((unsigned long) c[3]);
return u;

Now you simply write your is_big_endian() function, which you can base
on the initial code fragment that illustrated the problem:

int
is_big_endian(void)
{

union
{
unsigned long 1;
unsigned char c[4];
}ou;
u.l = 0xFF000000;
/* big-endian architectures will have the MSB at
the lowest address */
if (u.c[0] == OxFF)
return 1;
return 0;

NOTE [you control your storage format, then you can avoid byle-ordering concerns by using
a text format for data storage. This is discussed in more detail in Chapter 15.

Fixed Network Byte Ordering

The TCP/IP network protocol specifies a big-endian network byte order,
which means that parameters provided to the network layer (but not the
actual data being transmitted) must be in big-endian format.

For example, a 32-bit IPv4 address and 16-bit port specification, such as
the ones used in the sockaddr structure, must be in network order. This
means that this code:

struct sockaddr in svr;
/* UNPORTABLE: sin_port is expected to be in network byte order! */
svr.sin_port = PORT_NO;

will mysteriously fail on little-endian architectures, since PORT_NO is in the
incorrect byte order.

84 Chapter 5

In order to fix this, the BSD sockets and Winsock APIs provide helper
functions that convert from host to network byte ordering and back:

uint32_t htonl(uint32_t hostlong); /* host to network long */
uint16_t htons(uint16_t hostshort); /* host to network short */
uint32_t ntohl(uint32_t netlong); /* network to host long */
uint16_t ntohs(uint16_t netshort); /* network to host short */

The portable version of the port assignment statement would then be:

struct sockaddr in svr;
svr.sin_port = htons(PORT_NO); /* convert from host to network ordering */

Byte ordering should not be a concern for most programs unless they
are storing and/or loading binary data or directly extracting bytes by refer-
ence from larger multibyte values. As long as you convert to and from a
predefined byte-ordering format for storage and avoid directly extracting
bytes by reference from larger multibyte values, processor endianess should
not be a major issue.

Signed Integer Representation

Many programmers assume that a signed integer is represented in two’s
complement form, since this is the most common representation on
modern computer systems; however, the ANSI C and C++ specifications
do not dictate the format of a signed integer. Some processors do use
one’s complement or even sign-magnitude format. If your code might
run on those systems, you should not make assumptions about signed
integer ranges and bit formats.

For example, instead of assuming that a 16-bit signed value has a mini-
mum value of -32768, use the preprocessor constant SHRT_MIN defined in
<limits.h>. Another common case is the assumption that ~0 == -1, which is
not true on a one’s complement machine, where -0 == ~0.

Size of Native Types

Processors have a natural word size, corresponding to their internal register
size, which represents the optimal size of a variable. Originally, there was an
expectation that C compilers would make the int type correspond to this
word size, allowing a programmer to use int any time optimal performance
was desired (assuming no other constraints on the range of the variable in
question). This was true for many years; however, at some point, a critical
mass of programs made the assumption that sizeof(int)==4.

The assumption about int size played havoc with compiler writers who
needed backward compatibility but who were targeting 64-bit platforms.

Processor Differences 85

POSH EXAMPLE: BYTE-ORDERING CAPABILITIES

POSH provides a host of byte-ordering assistance functions and macros. First, it has
a slew of byte-swapping functions suitable for converting little-endian to big-endian
and back:

extern posh_u16_t POSH_SwapU16(posh u16_t u);
extern posh_i16 t POSH_SwapI16(posh i16 t u);
extern posh_u32_t POSH_SwapU32(posh_u32_t u);
extern posh_i32 t POSH_SwapI32(posh i32 t u);

In addition, it has serialization and deserialization functions that automatically
convert from the native format to a user-specified destination format:

extern posh_u16_t *POSH_WriteU16TolLittle(void *dst, posh_ui16_t value);
extern posh_i16_t *POSH_WriteI16TolLittle(void *dst, posh_i16_t value);
extern posh u32_t *POSH_WriteU32Tolittle(void *dst, posh_u32_t value);
extern posh_i32_t *POSH_WriteI32TolLittle(void *dst, posh_i32_t value);

extern posh_u16_t *POSH_WriteU16ToBig(void *dst, posh_ui6_t value);
extern posh_i16_t *POSH_WriteI16ToBig(void *dst, posh_i16_t value);
extern posh_u32_t *POSH_WriteU32ToBig(void *dst, posh_u32_t value);
extern posh_i32_t *POSH_WriteI32ToBig(void *dst, posh_i32_t value);

extern posh u16 t POSH ReadU16FromLittle(const void *src);
extern posh_i16_t POSH_ReadI16FromLittle(const void *src);
extern posh_u32_t POSH_ReadU32FromLittle(const void *src);
extern posh_i32_t POSH_ReadI32FromLittle(const void *src);

extern posh_ui6_t POSH_ReadU16FromBig(const void *src);
extern posh_i16_t POSH_ReadI16FromBig(const void *src);
extern posh u32_t POSH_ReadU32FromBig(const void *src);
extern posh_i32_t POSH_ReadI32FromBig(const void *src);

On top of these are macros that convert a value to native format. These macros
are redefined depending on the byte order of the current platform:

#if defined POSH_LITTLE_ENDIAN

define POSH_LittleU16(x) (x)
define POSH_LittleU32(x) (x)
define POSH_LittleI16(x) (x)
define POSH LittleI32(x) (x)
if defined POSH_64BIT_INTEGER
define POSH_LittleUs4(x) (x)
define POSH LittleI64(x) (x)
endif /* defined POSH_64BIT_INTEGER */

TR OB B OB B OB OB

define POSH BigU16(x) POSH_SwapU16(x)
define POSH_BigU32(x) POSH_SwapU32(x)
define POSH BigI16(x) POSH_SwapI16(x)
define POSH BigI32(x) POSH_SwapI32(x)

= OR BT =B

86

Chapter 5

if defined POSH_64BIT INTEGER
define POSH_BigU64(x) POSH_SwapU64(x)
define POSH_BigI64(x) POSH_SwapI64(x)
endif /* defined POSH_64BIT_INTEGER */

#else

define POSH BigU16(x) (x)
define POSH BigU32(x) (x)
define POSH BigI16(x) (x)
define POSH BigI32(x) (x)

B

if defined POSH_64BIT_INTEGER
define POSH BigU64(x) (x)
define POSH_BigI64(x) (x)

endif /* POSH_64BIT_INTEGER */

*r R OB B

define POSH_LittleU16(x) POSH_SwapU16(x)
define POSH_LittleU32(x) POSH_SwapU32(x)
define POSH_LittleI16(x) POSH_SwapI16(x)
define POSH_LittleI32(x) POSH SwapI32(x)

B

if defined POSH_64BIT_INTEGER
define POSH_LittleU64(x) POSH_SwapU64(x)
define POSH_LittleI64(x) POSH_SwapI64(x)
endif /* POSH_64BIT_INTEGER */

B

#endif

With these macros, an application can trivially convert to and from any byte
ordering without needing to explicitly detect the current platform’s endianess. The
previous function to read an unsigned long value then becomes:

unsigned long read_ulong(FILE *fp)

{
unsigned char c[4];
unsigned long u;
fread(c, sizeof(c), 1, fp);
return POSH ReadU32FromBig(c);
)
or
unsigned long read_ulong(FILE *fp)
{
unsigned long u;
fread(u, sizeof(u), 1, fp);
return POSH BigU32(u);
}

Processor Differences 87

88

NOTE

Chapter 5

As a result, numerous models were introduced for 64-bit architectures,
with varying emphasis on interoperability with 32-bit platforms versus ideal
performance for 64-bit platforms. These models have names like LP64,
ILP64, LLP64, ILP32, and LP32, which indicate the size of the core C data
types, as shown in Table 5-1. L corresponds to a long, P corresponds to
pointer size, I corresponds to int, and LL corresponds to a long long. (Other
models exist as well; these are just a few of the more common ones.)

long long is a type specific to a few compilers, notably GCC. Other compilers, such as
Microsoft Visual C++, use an _int64 type instead.

Table 5-1: Some Programming Models

Type LP64 ILP64 LLP64 ILP32 LP32
char 8 8 8 8 8
short 16 16 16 16 16
int 32 64 32 32 16
long 64 64 32 32 32
long long 64

pointer 64 64 64 32 32

Most programmers are familiar with the traditional 32-bit programming
model, ILP32, where integers, longs, and pointers are 32 bits in size. LP32,
originally used by the Winl6 C APL, is an even simpler specification designed
around the idiosyncrasies of the Intel 8086 family, which had 16-bit integer
registers but 20-bit (8086) or 24-bit (80286) addressing. (And, even more
idiosyncratic, the 8086 and 80286 processors used a segmented addressing
architecture.)

Since the ILP32 model lacks 64-bit types, it is inappropriate for 64-bit
CPUs, which have an address space beyond the 4 GB limit of 32-bit systems.
For 64-bit CPUs, you need 64-bit pointers, which all the other models have.
All that remains then is to decide what is more important:

¢ Maintaining the assumption that sizeof (int)==sizeof(long)==sizeof(void *)
¢ Maintaining the assumption that sizeof(int)==machine word size

¢ Maintaining the assumption that sizeof(int)==

Since the first two assumptions are mutually exclusive on 64-bit
architectures, confusion ensues (thus the proliferation of models).

Regrettably, the ANSI standard does not take a position on this issue,
leaving it up to each compiler writer (and compiler user) to deal with this on
a case-by-case basis. Sun, SGI, and Compaq/DEC use the LP64 model for
their Unix variants, whereas Microsoft uses the LLP64 (or, more accurately,
P64) model for 64-bit Windows support.

Microsoft was concerned primarily with a clean, easy, and safe migration
to Win64. To ensure this, the Microsoft developers wanted to avoid, as much
as possible, breaking assumptions in 32-bit code while still gaining 64-bit

pointers. The LLP64 model provides this by creating 64-bit integers only by
using the _int64 or long long types. Structures that do not contain pointers
retain the exact same size between ILP32 and LLP64, an important consid-
eration for backward-compatibility.

This puts you, the ostensibly portable programmer, in a predicament:
you must decide whether to use the C native types (short, int, and long)
or a set of sized types like those provided by C99 (inttypes.h), as shown in
Table 5-2.

Table 5-2: C99 Sized Types

Type Description

int8_t Signed 8-bit integer
uint8 t Unsigned 8-bit integer
int16_t Signed 16-bit integer
uint16_t Unsigned 16-bit integer
int32_t Signed 32-bit integer
uint3z_t Unsigned 32-bit integer
int64_t Signed 64-bit integer
uint64 t Unsigned 64-bit integer

As a rule, if you absolutely must enforce a particular size—for example,
when creating a rigidly formatted structure definition or when you require a
guaranteed range—use the sized types. If you do not require a specific range,
such as when you need an indexing variable that will reach only into the
thousands, the C native integer type should allow the compiler to make the
right choice for you, but, unfortunately, this is not always the case. Some
platforms err on the side of compatibility and provide 32-bit integers when
the architecture is natively 64-bit.

A program that requests a particular size variable, such as a 32-bit integer,
by using C99’s uint32_t type, may find itself suffering from very poor perfor-
mance when migrating to a lower-end platform that does not support the
operations on those sizes natively. For example, the 8086 processor is a 16-bit
processor, so 32-bit integer operations often required a function call. Be
careful to specify exact sizes only when you truly need them, such as when
you have range or packing concerns.

Address Space

One of the major signposts for the advancement of computer architectures
has been address space, or the total amount of memory a computer system can
easily access.

Early computers could access only the tiniest amount of memory due to
limitations with both the size of a pointer and the available hardware.

Processor Differences 89

POSH EXAMPLE: SIZED TYPES

POSH supplies analogs to the C99 (inttypes.h) definitions, as follows:

posh_byte t Unsigned 8-bit quantity
posh_i8_t Signed 8-bit infeger
posh_u8_t Unsigned 8-bit integer
posh_i16_t Signed 16-bit integer
posh u16 t Unsigned 16-bit integer
posh_i32 t Signed 32-bit integer
posh_u32_t Unsigned 32-bit integer
posh_i64 t Signed 64-bit integer
posh_u64_t Unsigned 64-bit integer

As a general, but inaccurate, rule, a computer system may access no
more memory than the size of a pointer will allow; that is, addressable bytes
are 2-to-the-pointer bits in size. However, there are many exceptions to this,
such as systems where pointers are larger than the actual address space. The
Motorola 68000 could address only 16 MB, even though it had 32-bit pointer
registers, and the Intel 8086 could address only 64 KB easily (with a single
pointer access) but up to 1 MB in total using its segmented memory archi-
tecture. Today, we're seeing machines with 64-bit pointers; however, even
those can access a much smaller range of memory, sometimes as low as 40
bits. Older computer systems used paged, windowed, or banked memory
access to reach more memory than was addressable natively.

Programs that work with large arrays or structures need to be aware of
any potential limitations as they migrate to lower-end platforms. This is often
a surprising gotcha that programmers don’t expect. For example, something
as innocuous as this:

static unsigned char buffer[o0x20000];

suddenly stops building when targeting a lower-end system with, say, 16-bit
pointers.

Summary

Along with operating system differences, the most fundamental component
of a platform is the choice of processor. Processors can differ radically in
performance, features, and implementations issues, and this is one of the
most common areas during portable software development. This chapter
covers the majority of key issues related to architectural differences between
processors.

90

Chapter 5

FLOATING POINT

The inconsistent performance and

accuracy of floating-point calculations,
along with their bit-wise representations,

have been a source of problems for computer

scientists for decades, and it wasn’t until the intro-
duction of the various IEEE standards in the early
1980s that they’ve come under control. This chapter
discusses some of the issues facing portable software
that relies on floating-point data and computations.

History of Floating Point

Throughout computing’s early years, especially from the 1960s onward,
nearly every minicomputer and mainframe manufacturer implemented its
own proprietary floating-point formats and conventions. Portability—both of
code and data—was nearly impossible with that state of events, which was
tenable solely because of the proprietary nature of software at the time.

92

NOTE

Custom applications for each system were the rule, not the exception, so
developers who needed to deal with a platform’s idiosyncrasies were not too
concerned, as they had little or no expectation of moving their software to a
competing machine.

The late 1970s saw the beginning of a steady migration of high-end mini-
computer and mainframe features to microcomputers (PCs), and floating
point was one of these. At about this same time, the lack of floating-point
arithmetic standardization became a serious concern. To address this issue,
the IEEE p754 committee was formed. It consisted of a group of engineers
from many of the major microprocessor and systems manufacturers of the
time, such as Intel, Zilog, and Motorola. This committee went on to define
the IEEE 754 floating-point specification, which has acted as the standard for
floating-point formats and computations ever since. (The IEEE 754 standard
was eventually rolled into the IEC 60559 standard, so the two are basically
synonymous; IEC 60559 is also sometimes referred to as IEC 559.)

There were still the occasional oddball computers that did floating point their own way,
such as some of Cray and DEC’s larger machines of the time. Gaming consoles such as
Sony’s PS2 also have their own proprietary formals, since portability is not a very big
concern for these manufacturers (in fact, they prefer to dissuade it).

The IEEE 754 specification took many years of politicking and compro-
mises to see the light of day, but in retrospect, it has proved to be a well-
crafted, precise, practical standard that does not impose any unreasonable
constraints. By defining storage formats, mathematical operations, rounding
modes, exceptions, and the bit-wise representation of special values, develop-
ment of portable software that uses floating point has become orders of
magnitude simpler.

Standard C and C++ Floating-Point Support

Chapter &6

Until recently, the C and C++ languages were agnostic on the issue of float-
ing point, defining the requirements in almost meaninglessly ambiguous
terms. The size and format of the basic floating-point types are loosely
specified, and the accuracy and operation of floating-point operations

(+, - *, and /) and library functions are implementation-defined. However,
starting with C++98 and C99, optional support for IEEE 754 has been added
(an application can query for the existence of IEEE 754 conformance).

So, as wonderful as the IEEE 754 standard may be, there is a fairly
significant stumbling block to its use in portable software: the C and C++
language specifications do not require it. CG++98 and C99 provide only
optional support for the standard. This is an inconvenient but under-
standable caveat, since floating-point, and especially IEEE 754-compliant
floating-point, support isn’t available on many platforms that are otherwise
C/C++ compatible.

This means that while float and double will often correspond to IEEE 754
single-precision and double-precision formats, respectively, it is not guaran-
teed. This also applies to the rounding modes, exceptions, and other aspects
of the IEEE 754 standard.

C++98/C99 AND IEEE 754

The lack of floating-point standards across C implementations has been perceived
as a fairly significant blemish, especially for use in graphics, simulation, and
scientific applications. To address this, the C99 revision of the language infroduced
nominal support of IEEE 754/1EC 60559. If a compiler predefines the constant
__STDC_IEC_559__, then you may assume that it adheres to IEEE 754 semantics for
floating-point operations.

The C99 standard also introduced a standardized API, <fenv.hs, for
interacting with a platform’s floating-point environment. Prior to <fenv.h>, each
compiler vendor provided its own header file and interfaces fo the floating-point
environment, such as <float.h> or <ieeefp.h>. (Note that __STDC_IEC 559 __ and
<fenv.h> are C99-specific and are not available under C++.)

For C++98 implemen’ruiions, numeric_limits<float>::is_iec559 may be
checked to achieve similar results. However, C++98’s IEEE 754 support is less full
featured than C99’s; for example, it lacks some of the functions found in <fenv.h>.

Another nice atiribute of the IEEE 754 standard is that it places accuracy
requirements on the evaluation of functions such as remainder, remquo, and sqrt.
Without this, a C implementation could evaluate these functions however it sees fit.
The IEEE 754 standard also imposes rigid rules for many of the other floating-point
operations, including the environment controls and classification routines.

Problems with Floating Point

Now that you have an idea of the general issues with floating point and the
attempts to standardize it—by both the IEEE and C and C++ standards—Ilet’s
look at some of the specific problems that applications may encounter with
floating point.

Inconsistent Evaluation

With C and C++, there are no hard-and-fast rules regarding the consistency
and nature of floating-point expression evaluations. This means you cannot
count on:

float add(float a, float b)
{

return a + b;

}

returning the same result as:
float add2(float a, float b)
{

float c = a + b;
return c;

The Intel x87 FPU architecture stores 80-bit precision intermediate
results on the floating-point stack, losing precision only when values are

Floating Point 93

94

Chapter &6

stored to memory. The first function in the preceding example, add(), can
generate a sequence of:

fld a ; load 'a' onto stack
fadd b ; add 'b' onto stack

with the expectation that the caller will pop the resulting value off the stack
and into an appropriate variable. If that variable is a double, then it is possible
that any extra precision will be retained.

The second function, add2(), stores to an intermediate value locally,
which could generate a code sequence such as this:

fld a ; load 'a’ onto stack

fadd b ; add 'b' to top of stack

fstp ¢ ; store result (and pop stack) to float variable 'c'

fld ¢ ; load 'c' back onto stack so that caller may retrieve result

The fstp/fld instruction pair will strip off any extra precision before
returning to the caller.
So a program that used these functions in an equality test:

if (add(x, y) !'=add2(x, y))
printf("Exrror: this shouldn't happen!");

may unexpectedly encounter unexpected behavior as the code is moved
from compiler to compiler, or even as different optimization switches are set.

With GNU GCC, the function add2() will generate different results with
optimizations enabled than it will with optimizations disabled:

; Optimizations DISABLED
pushl %ebp

movl %esp, %ebp
subl $8, %esp

flds 8(%ebp)

fadds 12(%ebp)

fstps -4(%ebp)

movl -4(%ebp), %eax
movl %eax, -8(%ebp)
flds -8(%ebp)

leave

ret

; Optimizations ENABLED
pushl %ebp

movl %esp, %ebp
flds 12(%ebp)

fadds 8(%ebp) ; Note that the store/load has been optimized away!
popl %ebp
ret

Programs cannot rely on the consistency and precision of floating-point
operations, especially in the context of comparison tests. This may work
sometimes on some systems, but it is a very easy area in which to embroil
yourself with portability woes and difficult to find bugs.

Floating Point and Networked Applications

Given that floating-point operations are often inconsistent, when two different
systems share floating-point data directly, all kinds of bad things can happen.

For example, a worst-case situation often arises when two computers
must run parallel simulations in lockstep. Each machine performs simula-
tions internally, occasionally receiving input from the other machine. (Peer-
to-peer networked computer games and simulators often operate this way.)

Once input is received, each machine simulates the world for one
discrete step and then broadcasts this state to the others.

Given identical input, a fixed update rate, and a known starting state, the
machines should have identical views of the simulation. Of course, sometimes
this isn’t the case, so the machines will have state verification checks, where
they examine their own simulation and compare it against the simulation
results of another machine; if the results don’t match, a synchronization
error is generated.

With floating-point math, synchronization becomes a very significant
issue, since subtle differences in calculations will arise as the result of archi-
tectural or compiler differences. Even though the differences may be so
small as to be negligible (although, occasionally, even tiny changes may be
the difference between “you are behind this wall” and “you are in this wall”),
when doing a bit-wise comparison for synchronization checking, these differ-
ences become show stoppers. You're either synchronized or you're not, and
even a single-bit discrepancy between two floating-point values is enough to
cause a synchronization error.

A more robust (but still imperfect) method is to quantize any floating-
point numbers to a more limited fixed-point representation that should
match between computers with slightly different floating-point evaluation
paths, as described in the “Fixed-Point Integer Math” section a little later in
this chapter.

Conversions

Under both the C and C++ standards, a floating point-to—integer conversion
is handled through truncation (round toward zero), where the fractional
portion of the floating-point value is chopped off:

float x = 1.33f, y = -1.33f;
/* ix will be 1 and iy will be -1 */
int ix = ((int) x, iy = (int) y;

Believe it or not, this has some pretty nasty performance side effects on
some systems.

Floating Point 95

Most modern CPUs have a configurable floating-point rounding mode.
The IEEE 754 specification declares four different rounding modes: up
(toward positive infinity), down (toward negative infinity), chop (toward 0),
and toward nearest representable value. The default rounding mode for
most situations is round toward nearest, but this causes problems, since C
and C++ require truncation for floating point—to—integer conversion. As a
result, it is often necessary for a compiler to generate appropriate floating-
point rounding mode changes to the CPU every time a floating-point value is
cast to an integer!

The simple function:

int round(float s)

{
return (int) s;
}
generates the following code:
_round:
pushl %ebp ; save EBP
mov1l %esp, %ebp ; put stack pointer into EBP
subl $8, %esp ; allocate space on the stack
fnstew -2(%ebp) ; store current FPU control word
movzwl -2(%ebp), %eax ; move the FPU control word to EAX
orwW $3072, %ax ; or EAX with 3072 (to set rounding mode)
movw %ax, -4(%ebp) ; mov AX into memory EBP[-4]
flds 8(%ebp) ; load 's' into the FPU
fldew -4(%ebp) ; load the control word from EBP[-4]
fistpl -8(%ebp) ; store 's' as integer back into EBP[-8]
fldew -2(%ebp) ; reload the old control word
movl -8(%ebp), %eax ; move return value into EAX
movl %ebp, %esp ; restore everything
popl %ebp
ret

That is a lot of code for what is a conceptually simple operation, but the
C/C++ rounding standards require this every time. Some of those instruc-
tions, such as fldcw, are far deadlier than you would expect, since they force
a flush of the floating-point unit’s (FPU’s) entire state, causing a hiccup in its
pipeline.

Contrast this with a noncompliant implementation:

_round:
pushl %ebp ; save EBP
movl %esp, J%ebp ; put stack pointer into EBP
subl $4, %esp ; allocate space on the stack
flds 4(%ebp) ; load 's' into the FPU
fistpl -4(%ebp) ; store 's' as integer back into EBP[-8]
mov1l -4(%ebp), %eax ; move return value into EAX
mov1l %ebp, %esp ; restore everything

9% Chapter &6

popl %ebp
ret

Some compilers offer the ability to perform fast but noncompliant
floating point-to—integer conversion (by eschewing all control word
manipulation and just calling fistp immediately with no setup); however,
these are proprietary and very nonportable extensions to the standards.

Fixed-Point Integer Math

With all the portability problems that floating point presents, it is sometimes
simpler to convert floating-point operations into integer or fixed-point ones.
The semantics of integer representations, while not perfect, are still much
clearer than that of floating point.

For example, instead of broadcasting a position as raw floating-point
values, you could use a quantized fixed-point value instead. The quanti-
zation process strips off unneeded precision bits, allowing for “imprecise”
comparisons:

int snap_to_quarters(float s)

{
s *= 4.0;
if (s»>»>0)
s =5 + 0.5;
else
s =5 - 0.5
return (int) s;
}

This code snaps a floating-point value to one-quarter precision and
returns its fixed-point value (an integer scaled up by a factor of four). So,
multiple values near the same quantization value will evaluate to the same
fixed-point number, allowing for equality comparisons with a well-defined
precision.

However, fixed point is not perfect either. Fixed-point representations
have a static range and precision, which is is not nearly as flexible as floating
point. In addition, there is no portable way to handle overflow conditions,
which are important since common fixed-point operations will frequently
overflow as part of their standard operations. For example, a 32-bit fixed-
point multiplication requires 64 bits of intermediate storage, which C and
C++ do not provide portably (at least until C99 implementations become
more popular).

Extraction of Integer Bits from a Float

Occasionally, it is useful or necessary to look at the integer representation
of a floating-point value’s raw bits. For example, you may wish to display a
floating-point value’s bits as an integer in a debugger, or you may want to

Floating Point 9?

98

NOTE

Chapter &6

perform a nominally nonportable performance optimization, such as
directly manipulating the sign bit or using an integer instead of floating-
point comparison.

With IEEE 754 floating- point values, you can dirvectly compare the bits of two floating-
point values for a magnitude comparison, as long as both values share the same sign.

The most straightforward method is to cast the floating-point value’s
address to an integer pointer (assuming sizeof(int) == sizeof(float)) and
then work with those bits directly:

uint32_t get float bits(float f)

{
/* this assumes that sizeof(float) == sizeof(int); the conversion */
/* will not result in a trap representation for an integer, and */
/* the alignment properties of int and float are identical */
return * (int *) &f;

}

Unfortunately, there is one problem with this approach: it’s technically
illegal. According to the C and C++ standards, int and float are considered
incompatible types, so there is no guarantee that a program won’t explode
when that line occurs.

But that's the language lawyer in me talking. Realistically, for the vast
bulk of popular computer architectures, the pointer cast will do the right
thing, since a 32-bit value is a 32-bit value. For example, with GCC on
Cygwin/x86, the integer representation for the 32-bit floating-point value
1.0 is 0x3f800000. If you write a piece of code that does this:

float foo(void)

{
float f = 1.0;
return f;

}

the actual unoptimized (optimized code simply does an fld1 and returns, but
that doesn’t really help me make my point) assembly code looks like this:

pushl %ebp ; save EBP

mov1l %esp, J%ebp ; move ESP into EBP

subl $8, %esp ; ESP = ESP - 8

movl $0x3f800000, %eax ; EAX = 0x3f800000

movl %eax, -4(%ebp) ; EBP[-4] = 0x3f800000

movl -4(%ebp), %eax ; EAX = 0x3f800000

movl %eax, -8(%ebp) ; EBP[-8] = 0x3f800000

flds -8(%ebp) ; top of stack=0x3f800000=1.0f
leave

ret

Ignoring the inefficiencies, the preceding code fragment clearly illus-
trates that for this platform, a regular integer value that is interpreted as a
32-bit floating-point value works.

Unfortunately, type incompatibilities aside, there is another problem:
some compilers aggressively optimize code by assuming no aliases. When a
compiler sees something like this:

/* Again, we're assuming that the conversion from float to integer bits */
/* is verified to do "what we expect" on this platform, even though the C */
/* standard says that this might explode */

float f;

int x;

f = 1.0f;

x = * (int *) &f;

itis free to assume that x is entirely independent of f (that is, any change to x
will not affect the value of f and vice versa), since the standard claims they
are incompatible types. With this assumption, the compiler might perform
the assignment to f after the assignment of x!

You can address the assumption of no aliases in several ways:

¢ Use a union, which forces many compilers to assume aliasing (GCC has
this as an extension). Technically, this is still just as illegal as the pointer
cast, but it has a few properties going for it that make it slightly less likely
to melt down. First, it will be aligned correctly for any of its members.
Second, it will also be large enough to contain its largest member, This
means that on a system where you might run into an alignment or over-
flow issue (for example, floats are 32 bits and integers are 16 bits),
instead of really bad behavior, you'll just get pretty bad behavior.

¢ Perform an intermediate cast to a void * or unsigned char * type, which
forces the compiler to assume that some type of aliasing might occur.
(If this were not allowed, far too many programs today would break.)

¢ Cast the address of the float to an unsigned char * and read the data
directly that way. This is 100 percent legal, but it only tells you what the
bits are, not necessarily what they mean (since their meaning is inher-
ently unportable).

e Use the compiler’s optimization switches to disable strict aliasing rules or
assume no aliasing.

The safest method to extract the bits from a float is to perform an
intermediate cast to a void * or unsigned char * type, as follows:

/* assumes that dst is at least as large as sizeof(float) */
void float_to bits(float f, unsigned char dst[])
{

int i;

unsigned char *c = (unsigned char *) &f;

Floating Point 99

100

for (i=0; i< sizeof(f); i++)
dst[i] =c[1];

This method extracts the raw bits, but does not attempt to reassemble
them into a different multibyte value such as an integer. There are no
violations of the type incompatibility or aliasing rules.

Using a union looks like this:

uint32_t float_to_bits(float f)

{
union
{
int i; /* again, assuming sizeof(int)==sizeof(float) */
float f;
you;
u.f = f;
return u.i;
}

According to the C and C++ standards, the results of executing this code
are still undefined (there is no guarantee what happens to other members of
a union after one member is written to), but at least it’s more defined than
casting arbitrarily through a pointer.

Additionally, C++ has the reinterpret_cast operator:

float f = 1.0f;
int i = reinterpret_cast< float & (f);

While this is very C++ish, it’s no safer than just doing a straight cast.

Implementation Queries

Chapter &

You could attempt to cover all your bases when writing floating-point code by
including <float.h> and examining the predefined symbols listed in Table 6-1.
This way, you could try to support all the different floating-point formats.

Table 6-1: C and C++ Constants for Floating-Point Format

Constant Meaning

FLT_ROUNDS Current rounding mode

FLT_RADIX Radix of the floating-point format’s exponent representation
FLT_DIG Number of decimal digits required to accurately represent a float
DBL_MAX Maximum value that may be represented by a double

EXAMPLE: POSH BIT EXTRACTION FROM A FLOAT

POSH uses the union method to extract the bits from a floating-point value.

posh_u32_t
POSH_LittleFloatBits(float f)

{

union
{
float f32;
posh_u32_t u32;
}ou;

u.f32 = f;

return POSH_LittleU32(u.u32);
}

posh_u32_t
POSH_BigFloatBits(float f)
{

union

{
float 32;
posh_u32_t u32;
}u;

u.f32 = f;

return POSH Bigl3z(u.u32);

This is not ideal, but as of this writing, this has not been a problem with any
POSH-supported architectures.

Under C++, you can include <numeric_limits> and examine a specifically
instantiated template. The template numeric_limits is defined as follows:

namespace std

{

template<class T> class numeric_limits
{
public:
static const bool is_specialized = false;
static T min() throw();
static T max() throw();
static const int digits = 0;

Floating Point

102

NOTE

static const int digitsio = 0;

static const bool is signed = false;
static const bool is integer = false;
static const bool is_exact = false;
static const int radix = 0;

static T epsilon() throw();

static T round_error() throw();
static const int min_exponent = 0;
static const int min_exponent10 =
static const int max_exponent = 0;
static const int max_exponent10 = 0;

static const bool has_infinity = false;

static const bool has_quiet_NaN = false;

static const bool has_signaling_NaN = false;

static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;

static T infinity() throw();

static T quiet NaN() throw();

static T signaling_ NaN() throw();

static T denorm_min() throw();

static const bool is_iec559 = false;

static const bool is_bounded = false;

static const bool is_modulo = false;

static const bool traps = false;

static const bool tinyness before = false;

static const float_round_style round_style = round_toward_zero;

0;

b
};

For example, with C, you would look at FLT_ROUNDS in <float.h>; with C++,
you could instead inspect numeric_limits<float>::round_style.

C+ still has the equivalent of <float.h> in its <cfloat> header file.

We could examine many more constraints, but in practice, any attempt
to support any and all conceivable floating-point formats is extremely tedious
and error-prone (which is effectively what the C and C++ standards allow). It
is much easier (and safer) to establish a baseline that includes only systems
with expected floating-point formats and operations or, better yet, to avoid
writing code that is dependent on a platform’s specific floating-point
implementation.

Exceptional Results

Chapter &

Many floating-point operations and functions generate special results—
infinity, not a number (NaN), and so on—if given improper inputs. For
example, the tangent of 90 degrees or the square root of a negative number
cannot return a proper value and may raise an exception as well.

The IEEE 754 specification defines five different kinds of exceptions:

Underflow conditions
Occur when an operation results in a value too small to represent in a
normalized floating-point value.

Overflow conditions
The opposite of an underflow condition: an operation occurs where
the resulting value is too large to represent in the desired destination
format.

Divide-by-zero conditions
Result when a valid, nonzero floating-point value is divided by zero. Note
this specifically excludes situations such as NaN/0 and 0/0, which gener-
ate invalid operation exceptions instead.

Invalid operation exceptions
Handle most of the illegal operations not covered by the other condi-
tions. These include operations such as infinity minus infinity, using a
NaN in a comparison operation, 0 divided by 0, and infinity divided by
infinity.

Inexact exceptions
Generated when the result of an operation is not exactly represented
by the binary floating-point value. This is very common (for example,
2.0/3.0), and thus this exception is often masked. It is also raised when
an overflow condition occurs and no overflow exception is raised.

When these exceptional situations are encountered, a special value is
returned and an exception may be generated.

Special Valves

Before IEEE 754 support, each compiler and platform could have its own
floating-point format, precluding a portable way to check for exceptional
alues (you can query errno after calling certain standard library functions,
but this doesn’t help you when dealing with a regular mathematical oper-
ation such as division). Each platform provides a set of functions or macros
to check for these special cases. Microsoft Visual C++ 6.0 provides functions
such as _isnan, _finite, and _fpclass. Other compilers and platforms might
provide similar functions such as isnan and fpclassify.

If identifying these different types of special values is important to your
application, you'll need to abstract the floating-point identification and error
functions, unless you can assume C99 support.

To address the confusion that arose from the plethora of floating-point
classification macros and functions, the C99 standard formalized a set of classi-
fication routines in <math.h>, along with predefined constants for floating-point
value classification, as shown in Table 6-2.

Floating Point 103

104

NOTE

Chapter 6

Table 6-2: C99 Floating-Point Classification

Classification L.
Routine Description

int fpclassify(x) Classifies the given argument and returns its type, such as FP_NAN,
FP_INFINITE, or possibly an implementation-defined valve

int isfinite(x) Returns nonzero if x is finite

int isinf(x) Returns nonzero if x is +/- infinity

int isnan(x) Returns nonzero if x is NaN

int isnormal(x) Returns nonzero if x is normal

int signbit(x) Returns 1 if x is negative; returns O if x is positive
FP_INFINITE Predefined constant indicates value is +/- infinity
FP_NAN Predefined constant indicates value is NaN
FP_NORMAL Predefined constant indicates value is normal
FP_SUBNORMAL Predefined constant indicates value is subnormal
FP_ZERO Predefined constant indicates value is +/- 0

Several nonnumeric values must still be represented in a floating-point
format. The IEEE 754 specification dictates them as shown in Table 6-3.

Table 6-3: Nonnumeric Values That Must Be Represented as Floating Point

Value Representation

Positive O All zero bits

Negative O One bit [sign bit) followed by 31 zero bits

Infinity Zero bit, followed by 8 one bits, followed by 23 zero bits
Infinity One bit, followed by 8 one bits, followed by 23 zero bits

NaN (not a number) Nonzero fraction with all one bits in the exponent; sign bit
determines signaling (0) or quiet (1)

Denormalized Nonzero fraction with all zero bits in the exponent; any sign

The IEEE specification differentiates between signaling NaNs and quiet NaNs.
Signaling NaNs will generale an exception when used in an arithmetic operation.
Quiet NaNs will propagate through the chain of most floating-point operations
without raising an exception.

It is generally much safer to use the classification macros available from
the language or a vendor than it is to examine a floating-point value’s bits
directly.

Exceptions

There are numerous situations where the result of a floating-point operation
may result in a bad thing happening (the classic example is divide-by-zero).
In these situations, an implementation may generate an exception (in
addition to any special values as a return value) but is not required to do so.

Many (but notall) C and C++ implementations allow the programmer to
use the signal() API to install a SIGFPE signal handler; however, this support
is neither mandated nor reliable, since it requires cooperation from both the
platform’s floating-point and its exception-handling implementation. <fenv.h>
defines the exceptions FE_OVERFLOW, FE_UNDERFLOW, FE_DIVBYZERO, FE_INVALID, and
FE_INEXACT, but only if the implementation supports that specific exception.

The C standard requires that floating-point exceptions be masked at
program startup, after which an application can enable specific exceptions
using either a platform-specific API or through use of the C99 <fenv.h> APL
For example, C99 allows a program to mask exceptions temporarily to
guarantee nonstop operation through the feholdexcept() function, whereas
Microsoft Visual C++ 6.0 on the Intel 80x86 platform has the proprietary
_control87() or _controlfp() function.

Floating-Point Environment Access

Prior to C99’s standardization of floating-point environment access, each
compiler vendor would offer its own set of macros, header files, and APIs to
manage this access. This isn’t nearly as bad as it sounds, since the number of
required functions is reasonably low. For example, Microsoft Visual C++ 6
exports the _controlfp, _statusfp, and _clearfp APIs to interface with the
floating-point environment. Even on systems that do not provide this API, it
is usually fairly easy to write equivalents with a few lines of assembler.

The C99 specification provides a set of macros and functions defined in
<fenv.h> to interact with the floating-point environment, as shown in Table 6-4.
Exceptions may be raised, masked, tested, and cleared, and the floating-
point rounding mode can be set and retrieved as well.

Table 6-4: C99 Floating-Point Exception Functions

Function Description

void feclearexcept(int excepts) Clears the specified floating-point exceptions
void fegetexceptflag(fexcept t Refrieves an implementation-defined

*flagp, int excepts) representation of the current floating-point state
void feraiseexcept(int excepts) Raises the specified exceptions

void fesetexceptflag(const fexcept_t Sets the current floating-point state
*flagp, int excepts);

int fetestexcept(int excepts); Tests the status word to see if any of the given
exceptions are raised

Floating Point 105

Table 6-4: C99 Floating-Point Exception Functions (continued)

Function Description

int fegetround(void); Gets the current rounding mode

int fesetround(int round); Sets the current rounding mode

void fegetenv(fenv_t *envp); Retrieves the entire Hoofing-poinf environment
(status and control words) with a single function
call

int feholdexcept(fenv_t *envp); Retrieves the current environment and stores it in

the given parameter, then sets the current state
to be “nonstop” so that no exceptions will be

raised

void fesetenv(const fenv_t *envp); Sets the current environment, presumcbly
refrieved previously with a call to fegetenv/
feholdexcept

void feupdateenv(const fenv_t *envp); Saves the currently raised floating-point
exceptions locally, installs the floating-point
environment specified by envp, and then raises
the saved floating-point exceptions

Storage Formats

The IEEE 754 specification defines two major storage formats—single
precision and double precision—and several optional higher-precision
forms, such as extended double precision (long double with some compilers)
and even quadruple precision.

With most IEEE 754 implementations, the C and C++ float type will
correspond to a 32-bit value formatted as shown in Table 6-5.

Table 6-5: I[EEE 754 Single-Precision Format

Bit Meaning

31 Sign bit (O=positive, 1=negative)
24-30 Exponent
0-23 Mantissa/fraction (implicit leading one)

106 Chapter 6

Table 6-6 describes the IEEE double-precision format, usually
represented as double in C and C++.

Table 6-6: IEEE 754 64-Bit Double-Precision Format

Bit Meaning

63 Sign (O=positive, 1=negative)
52-62 Exponent
0-51 Mantissa/fraction

Finally, the extended-precision format is 80 bits, as shown in Table 6-7.
It is not very common as a storage format. Some compiler implementations
support it with the long double type.

Table 6-7: IEEE 754 80-Bit Extended-Precision Format

Bit Meaning

79 Sign (O=positive, 1=negative)
78-64 Exponent

63 Always 1

0-62 Mantissa/fraction

Summary

The behavior of floating-point operations is one of those things that many
programmers give little thought to. They assume that 1.0 is just 1.0 and is
represented identically on all computers, but as this chapter demonstrates
this is often not the case. The ANSI C and C++ standards don’t address the
issue of floating-point operations definitively, so any program that must rely
on the accuracy of floating-point operations must be very careful.

Floating Point 107

PREPROCESSOR

Probably no single aspect of the C and
C++ languages is as maligned by computer
language purists as the preprocessor. Pre-
processors transform raw source text with little
or no regard for a language’s syntax or semantics,
often leading to difficult to find bugs or compilation

errors if (ab)used aggressively. Every new language
that comes out seems to make it a point to eschew the preprocessor, and
users of those new languages always complain that it’s missing. The reality is
that preprocessors provide a host of powerful features, such as conditional
compilation and raw text substitution, that are often difficult to emulate or
implement within a language proper. In this chapter we’ll get into the meat
of the C/C++ preprocessor and how you can leverage its power to make
porting easier, while avoiding some of the pitfalls associated with its use,

Predefined Symbols

Predefined symbols vary between compilers and platforms. For example,
every compiler vendor seems to have a need to define something different to
represent “generating code for an 80x86 target.” Some compilers use 1386;
others uses __i386__; and Microsoft Visual C++ uses _M_IX86.

The C standard defines only a few required portable preprocessor
constants. Table 7-1 lists the definitions as per the C89 language standard.

Table 7-1: C89 Predefined Macro Names

Macro Name Description

__DATE__ The date of translation of the preprocessing franslation unit: a
character siring literal of the form mmm dd yyyy, where the names of
the months are the same as those generated by the asctime function,
and the first character of dd is a space character if the value is less
than 10. If the date of translation is not available, an implementation-
defined valid date shall be supplied.

__FILE__ The presumed name of the current source file (a character string literal).

_LINE__ The presumed line number (within the current source file) of the current
source line (an integer constant).

__STDC__ The integer constant 1, intended to indicate a conforming
implementation.

__TIME__ The time of translation of the preprocessing translation unit; a
character string literal of the form hh:mm:ss, as in the time generated
by the asctime function. If the time of translation is not available, an
implementation-defined valid time shall be supplied.

C99 introduced several additional predefined constants and identifiers,
as shown in Table 7-2.

Table 7-2: Additional C99 Predefined Macro Names and Identifiers

Macro Name Description

__STDC_IEC_559__ The decimal constant 1, intended to indicate conformance to
the specifications in annex F (IEC 60559/IEEE-754 floating-
point arithmetic).

__ STDC_HOSTED__ The integer constant 1 if the implementation is a hosted
implementation or the integer constant O if it is not.

__STDC_IEC_559_COMPLEX__ The decimal constant 1, intended to indicate adherence fo
the specifications in annex G (IEC 60559-compatible

complex arithmetic).

_ STDC_VERSION _ The specific version of C implemented, such as 199901L for
C99.

110 Chapter 7

Table 7-2: Additional C99 Predefined Macro Names and Identifiers (continued)

Macro Name Description

_ STDC_ISO_10646__ A decimal constant of the form yyyymmL (for example,
1997121), intended to indicate that values of type wchar_t
are the coded representations of the characters defined by
ISO/IEC 10646, along with all amendments and technical
corrigenda as of the specified year and month.

__func__ A predefined identifier that can be used to discover the
unadorned name of the enclosing function; similar in purpose
to _FILE_ and _LINE__. One caveat is that this is defined by
the compiler, not the preprocessor, since the preprocessor
doesn’t understand the concept of functions or function
names.

In addition, __cplusplus is defined when compiling a C++ source file.

Older compilers may not define __STDC__, indicating that they were
developed before the C89 standard was popularized. This is actually nice,
since you can immediately bomb out if you find yourself on a compiler that is
pre-ANSI (realistically speaking, trying to support both early C and ANSI C is
just not worth the trouble).

#if !defined __STDC _
#error This source code requires an ANSI compliant compiler
#endif

There is one potential hazard with this, and that is the rather haphazard
way in which different compilers actually define _STDC__. Here are some of
the ways that __STDC__ may be treated:

¢ Define it, but don’t specify a value.
e Setthe value to 1.

e Setthe value to 0 unless compiling in strict mode; in that case set the
value to 1.

¢ Notsetitatall, unless compiling in strict mode.

Admittedly not setting __STDC__ is fairly rare. Today’s most popular
compilers generally set __STDC__ if they adhere to the ANSI specification as a
minimum, as opposed to adhering to it slavishly and disallowing extensions.

Header Files

Only a handful of header files are considered standard within the C
language. Prior to the C99 standard, you could count on only the header
files shown in Table 7-3, and even then, noncompliant implementations
would still occasionally omit some.

Table 7-3: Pre-C99 Standard Headers

Header Description

assert.h Assertion management
ctype.h Classification of characters
errno.h Error numbers and handling
float.h Floating-point environment

is0646.h For handling ISO 646 character sets
limits.h Definition of integer limits
math.h Standard math functions

string.h String handling

stdarg.h Variable argument lists
stdio.h Standard input/output functions
stdlib.h Standard library, miscellaneous functions

wctype.h Wide character analog of <ctype.h>
wchar.h Wide character string support
signal.h For managing exceptions/signal handling

stddef.h Useful macro and type definitions

time.h Time and date query and conversion
locale.h Localization support
setjmp.h setjmp/longjmp (nonlocal goto) support

C99 supports the header files listed in Table 7-3, and it adds those shown
in Table 7-4.

Table 7-4: C99 Additional Header Files

Header Description

complex.h Complex math support

fenv.h Floating-point environment

inttypes.h Functions for monipulufing greatest width integers
stdbool.h Defines bool type and true/false

stdint.h Defines integer types of specific widths

tgmath.h Type-generic math macros

Keeping straight which header files are portable, which are vendor-
specific, which are library-specific, and which are platform-specific can
become confusing. The standard header files <stdio.h>, <stdlib.h>, and
<string.h> exist on most platforms with a C compiler, but there are many

112 Chapter 7

other header files that are pseudo-standard (commonly found on a partic-
ular family of operating systems or in a particular vendor’s compiler imple-
mentation) but are still nonportable, such as <unistd.h>, <windows.h>,
<malloc.h>, <process.h>, ,<sys/stat.h>, and <varargs.h>.

Header File Path Specification

Header files reside in different locations depending on the platform. It is
unwise to assume that a particular file is in an absolute location such as:

#include "/usr/include/some_project.h"
#include "../src/local_header.h"

Use an absolute path only if you can guarantee that every source code
installation will have header files in the exact same location. Often, it is
easier to include the files by name only:

#include "some_project.h"
#tinclude "local_header.h"

Then specify the location of header files using compiler switches, such as
-I/usr/include and -I../src.

Atleast one compiler (Metrowerks CodeWarrior) has a very idiosyncratic
method for finding header files. Suppose you have two files—src/foo.c and
src/foo.h—and src/foo.c includes foo.h as such:

#tinclude "foo.h"

Then CodeWarrior, by default, will not be able to find foo.h correctly
unless you're compiling from within the src/ directory. You will need to
specify a special command-line switch, -cwd source, so that it searches for
header files in the same directory as the source file.

Header Filenames

Different operating systems and their filesystems behave differently when it
comes to case-sensitivity and path separators. If you compile this statement
on a machine running Microsoft Windows:

#include <STDIO.H»

there is a good chance it will successfully find and load stdio.h (note the
lowercase). However, it absolutely will not work on Linux, where filesystems
are case-sensitive. The compiler or preprocessor will complain that the file
cannot be found.

Preprocessor]]3

114

Similarly, be aware that path separators may change from system to
system. On Windows, the preferred separator is the backslash:

#include <MyLib\MyHeader.h>
On Unix-like systems (including Mac OS X)), the forward slash is used:
#include <MylLib/MyHeader.h>

And, of course, there’s always one in a crowd that has to be really dif-
ferent. In this case, it's Mac OS prior to OS X, which uses a colon as a path
separator:

#include <MyLib:MyHeader.h>

Thankfully, the C standard states that the backslash (V) is specifically
illegal in header file inclusion statements. Between that stipulation and the
huge amount of Unix-centric source code in the world, most compilers will
recognize the forward slash (/) separator properly. I would recommend
using the forward slash separator at all times.

Additionally, the caveats on acceptable filename length and characters
mentioned in Chapter 13 apply here as well.

Configuration Macros

Chapter 7

Oftentimes, projects have large-scale configuration changes dictated by a
handful of macros. For example, SAL looks for several symbols to determine
which audio subsystems to support (for example, SAL_SUPPORT_0SS and SAL_
SUPPORT_ALSA on Linux).

Variables such as these can be controlled either at the command line or
by simply setting them in a global location such as a common header file.
Most compilers support the former, but some compilers support only the
latter (Metrowerks CodeWarrior uses prefix files).

Setting the variables at the command line has two major benefits:

¢ Itallows you to build multiple versions of your software without editing
the source code.

¢ Youdon’t need to edit any files if you simply need to change some con-
figuration variables.

This latter benefit is a significant convenience when dealing with source
control systems. Needing to check out an important project file simply because
you want to comment out a #define is annoying and can lead to errors. For
example, programmers can “break the lock” on a file, edit it locally to change
some configuration variables, and make significant changes, forgetting that
the file isn’t really checked out.

Changing the variables through a prefix header or by having a configura-
tion section in a globally included header file has the added advantage of

readability and self-documentation. If a programmer is looking at some
unknown definition, she can simply search all the project files to find where
it’s defined and maybe learn about its usage. If its definition is not docu-
mented in the source code anywhere, then she may be at a loss when trying
to discern its purpose.

Conditional Compilation

One of the reasons that language purists dislike preprocessors is due to the
ease with which they can be abused. It’s tantalizingly easy to add quick fixes
to code that must compile on a wide range platforms. For example, you may
have some sockets code that needs WSAStartup() to execute if you're running
Windows:

void init_sockets()
{

#ifdef WIN32
WSAStartup();
#tendif

}

That is innocent enough, except WSAStartup() is a Windows function, so
you need to include <windows.h> as well:

#ifdef WIN32
#include <windows.h>
#endif

void init_sockets()

{
#ifdef _WIN32

WSAStartup();
#endif

}

Hmmm, the code is getting a bit uglier. Then as time goes on, the file
grows, with things like this:

#ifdef WIN32

{
DWORD count, flags = 0;
extern WSABUF wsabuffers[];
WSARecv(wsabuffers, 1, &count, &flags, NULL, NULL);
. copy out of wsabuffers into buffer ...
}
#else
recv(s, buffer, buf_size, 0);
#tendif

Preprocessor "5

116

And it has now spiraled out of control. This is exactly what abuse of
conditional compilation can lead to, and for obvious reasons, it’s something
you want to avoid.

This isn’t to say that conditional compilation is worthless. It’s incredibly
useful when used in moderation. For this particular example, it would be
much cleaner and safer to simply have two separate implementations of
socket functions: one file for Windows and one for other operating systems.
This approach minimizes the amount of #ifdef invasiveness in the core
source code without sacrificing portability.

The C/C++ preprocessor is a wonderfully simple yet powerful tool, but
it is far too easy to abuse its features, creating code that is difficult to read
and maintain. If you find your code riddled with conditional compilation
statements, it’s probably a good sign that you need to streamline your
implementation.

Pragmas

Chapter 7

C and C++ compilers provide the pragma facility to communicate directly
with the compiler in an implementation-defined manner. For example, on
Microsoft Visual C++, you can use #pragma warn(disable: xxxx) to disable a
particular compiler warning.

By their very nature, pragmas are not particularly portable, but the C
standard specifically states that all compilers must ignore pragmas they do
not understand. Unfortunately, some compilers will still choke on an
unrecognized pragma, so you'll want to use conditional compilation to
bracket pragmas:

#ifdef MSC_VER
#pragma warning(disable: 4786)
#endif /* _MSC_VER

C99 STANDARD PRAGMAS

C99 infroduced a set of standard pragmas (a bit of an oxymoron), in the form:

#pragma STDC [name] [option]

Here is an example:

#ipragma STDC FP_CONTRACT ON

As of this writing, the following are the three ratified standard pragmas:

* FP_CONTRACT controls whether floating-point expressions may be
contracted.

® FENV_ACCESS is used fo bracket operations that modify the floating-point
status or state.

® (X _LIMITED_ RANGE fells the compiler that certain assumptions about
complex number calculations are safe.

Summary

While often derided as crude, primitive, and unsophisticated, the C/C++
preprocessor is surprisingly effective for assisting cross-platform software
development. Conditional compilation, pragmas, raw text substitution, and
the availability of predefined symbols can radically ease the burden when
moving software from one system to another.

117

Preprocessor

COMPILERS

ANSI C and C++ have been around for
more than 15 years now, and many differ-
ent compilers have been written for these
languages. ANSI C is inarguably the most pop-
ular compiled programming language in the world,
and C++ is rapidly approaching C’s popularity.

With the number of compilers available, quirks and idiosyncrasies
between implementations are inevitable. Some compilers extend the
language to support the needs of a particular platform; others simply add
features and libraries that the developers felt would be useful to their users.
And, of course, there are always differences of opinion when it comes to how
a particular code fragment should be compiled.

This chapter examines some of the differences in behavior that you'll
encounter when porting from one compiler to another.

120

Structure Size, Packing, and Alignment

Chapter 8

The C struct aggregate data structure, along with C++’s class type, allows
programmers to manage complex data sets in a convenient, easy-to-maintain
format. However, there are subtle nuances regarding the size, packing, and
alignment of these types.

Early computer systems often restricted the total size of a structure to
some small number, such as 32 KB, due to addressing constraints or other
limitations. These constraints would often manifest themselves only after a
program had been ported to a new architecture, resulting in link errors or
very hard-to-find run-time bugs.

The C and C++ standards do not mandate how members within a
structure are aligned or packed. This means that two compilers for the
same architecture may format the following structure differently:

struct foo

{
int i;
char c[2];
short s;

};

Assuming that an int is 32 bits, a char is 8 bits, and a short is 16 bits,
compilers that pack structures tightly would format this structure as follows:

Member Byte Offset

i 0
1
2
3
c 4
5
s 6
7

This is intuitively correct, since
sizeof(foo) == sizeof(foo.i)+sizeof(foo.c)+sizeof(foo.s)
However, on many architectures, it is faster (or even required, depending

on the CPU design) to access “naturally aligned” data elements (as explained
in the “Alignment” section of Chapter 5). On such systems, a compiler will

pack the structure loosely, inserting unused padding bytes as necessary to
maintain optimal alignment. So, foo would be formatted using four-byte
natural alignment as follows:

Member Byte

i 0
1
2
3
c 4
5
[padding] 6
7
s 8
9
[padding] 10
11

Now we find that sizeof(foo) > sizeof(foo.i)+sizeof(foo.c)+sizeof(foo.s),
leading many programmers into the dark forest of compiler-specific
behavior.

These differences can hurt you in many ways. If you serialize data to disk
one way, and then load it with a different executable built with a different
compiler, the packing and sizes may be completely off, corrupting your data:

void read_foo(FILE *fp, struct foo *f)
{

/* sizeof(foo) may not be consistent across platforms! */
fread(f, sizeof(foo), 1, fp);
}

Assumptions about the layout through pointer arithmetic can also lead
to much pain:

struct foo f;
/* WARNING: assumes tight packing, may fail unexpectedly! */
short *s = (short *) (f->c + sizeof(f->c));

Third-party libraries expect structures to be packed and aligned a
certain way when passed to their APIs. This is why prebuilt libraries must
either explicitly force alignment/packing assumptions (through compiler
pragmas) or manually perform alignment by inserting dummy padding
bytes as necessary—and even then, they must be diligent about ensuring
that this works.

Compilers 121

Many compilers offer an appropriate command-line or preprocessor
function to enforce a specific alignment. For example, Microsoft Visual C++
offers the #pragma pack option:

/* This pragma may not work with all compilers */
#pragma pack(1)
struct foo
{
int i;
char ¢[2];
short s;

};

You may also attempt to enforce the padding yourself by inserting the
appropriate padding bytes:

struct foo

{
int i;
char c[2];
char padi[2];
short s;
char pad2[2];

This will ¢ry to force objects of type foo into alignment and guarantee a
size of at least 12 bytes, but although it’s better than the previous version,
it’s still not foolproof. For example, some compilers may use eight-byte
alignment, or the native types themselves may change in size (on some
Cray platforms all types were eight bytes in size except for characters).

EXAMPLE: MOTOROLA 68000 AND POWERPC

The Motorola 68K series of processors allows 32-bit infegers to appear on any
even address boundaries, instead of requiring four-byte alignment. However, the
Motorola PowerPC line of processors forces 32-bit integers to reside on four-byte
boundaries, which requires padding to ensure compliance in some situations. When
programmers migrated from the 68K (used in earlier Macintoshes) to the PowerPC
(used in modern Macintoshes), they found that sometimes their old “portable”

C software would crash unexpectedly due to alignment requirement differences
between the two processors.

Do not make assumptions about the size, packing, or alignment of
structures unless you have explicit control over these parameters by
specifying the appropriate compiler flags.

122 Chapter 8

Memory Management Idiosyncrasies

Memory management is another potential source of portability problems.

¥ g P P yp

Many machines have different ways to represent and manage memory, both
)) I g)

in the heap and the stack. It’s very easy to become accustomed to one

platform’s way of doing things, only to be bitten when moving to another

platform. Two differences to watch out for are the treatment of freed

pointers and aligned memory allocation.

Effect of free

Alot of older software assumed that a recently freed pointer could still be
used “for a while” (that is, until another memory allocation call was made):

typedef struct node struct

{
struct node_struct *next, *prev;
void *data;
} node;
void delete_node(node *n)
{
free(n);
n->prev->next = n->next; /* BAD! */
}

While this might work with some compilers, this technique is heavily
frowned upon, since different heap management implementations may
overwrite the freed pointer immediately for various bookkeeping purposes.
Some compilers will clear out the memory pointed to during debug builds,
so that any attempts to use that memory will result in a failure.

Aligned Memory Allocation

Both C’s malloc function and C++’s new operator must return maximally
aligned pointers, since the memory might be used for any type or size of
object. For example, if you do this:

char *c = (char *) malloc(sizeof(char) * 1);

the pointer returned will be aligned on the minimum alignment size required
to access any object, irrespective of the number of bytes requested. This way,
you can never have a misaligned access when using a pointer acquired
through dynamic memory allocation. (Of course, with sufficient pointer
casting, you can still force an unaligned access.)

Pragmatically speaking, this puts a floor on the minimum granularity for
allocations, so multiple small allocations will consume more space than a
single allocation of the same combined size.

Compilers 123

124

However, inevitably some compilers mess this up. At least one compiler
I'm aware of will always provide data aligned on four-byte boundaries, even
though some objects (double types) require eight-byte alignment.

If alignment is critical, or if your alignment needs exceed that of the
default alignment, it probably pays to implement a wrapper around malloc
and/or new to pad the requested bytes and return a pointer aligned to some
size parameter.

The Stack

Chapter 8

The C/C++ stack is a quirky little beast. Everyone uses it, and everyone knows
what it is, but it often has a huge set of limitations that many programmers
are not aware of,

Stack Size

Typically, a compiler and linker together will determine the available stack
size statically, and once that stack is exceeded, things go downhill quickly.
And, unfortunately, it is all too easy to blow through your stack when
running on limited hardware, such as embedded and handheld platforms.
For example, when developing for the early Palm OS, a developer could
rarely count on having more than a few kilobytes of stack space. Wireless
phone applications using the BREW API have only about 500 bytes of stack
with which to work.

The stack is consumed every time a local (automatic) variable comes into
scope. Programmers coming from desktop PC systems, where the available
stack may be measured by the megabyte, often don’t realize just how bad this
can be. It’s not uncommon for such a developer to casually declare a 1 KB
array for some temporary storage, only to see her program explode inglori-
ously on a BREW platform or by using a couple levels of recursion on a Palm
OS handheld.

Even desktop systems can run into stack exhaustion problems, especially
with programs that use heavy recursion. For example, a few years ago, I was
working with a team to develop an application we had to port from Windows to
the Macintosh (Mac OS 9). We were finding a mysterious crash that seemed
to occur only with our release builds. We tracked it down to a problem in the
audio system—at least, that’s where we thought the problem was. After over a
week of desperate, hair-pulling bug hunting, we finally found that the problem
was due to stack corruption. The compiler’s default small stack size on the
release build (64 KB) differed from that of the debug build (256 KB), and in
one critical section of our code, we were using 65 KB of stack. This was enough
to destroy some important internal data, a problem that manifested itself
much later (in the audio subsystem).

Stack-related crashes are often mysterious and difficult to track down,
since the damage can happen in a location far away from the location of the
actual error.,

Problems with alloca()

Related to the stack is the magical function alloca(), which is seductive in its
power and simplicity, but extremely dangerous. alloca() is, for all intents and
purposes, a malloc() for the stack. Instead of allocating data from the heap,
alloca() allocates it from the stack if possible, automatically freeing it when
the program exits the current scope.

Using alloca() is appealing for several reasons. For starters, it’s simpler; if
your function has a lot of different exit paths, you don’t need to remember
to call free(). That by itself is handy but not overwhelmingly compelling.
However, another enticement is that it doesn’t touch the heap, thereby
possibly avoiding fragmentation. It gives you the convenience of allocating
from the local stack frame and the power to make this allocation variable
length (instead of relying on a hardcoded stack array).

But alloca() has a host of problems. For starters, it’s not part of the
ANSI standard, meaning that it doesn’t work everywhere (although,
wickedly enough, it’s available on enough platforms that many people
assume that it is portable). As with malloc(), it doesn’t work with C++ classes
correctly. If alloca() fails to find enough stack space, there’s no guarantee
it will simply return NULL (unlike malloc()), so it may just decide to give you
the stack space anyway (if it’s a simple stack pointer adjustment) or may
throw a stack overflow exception. You just don’t know.

alloca() also often confuses debuggers trying to keep track of the local
stack frame for variable inspection. You may step over a call to alloca() and
suddenly find you can’t see your call stack or variables in a watch window.

The printf Routine

If there is a single function associated with the C programming language,
it would have to be the ubiquitous printf() routine, in part due to many
programmers’ first exposure to a “Hello world!” program and also because
it’s an immensely powerful and useful function.

The C standard identifies a set of compatible and standard printf() for-
mat specifiers for values such as integers, floating-point numbers, hexadeci-
mal values, and strings. However, there are subtle differences in behavior
among implementations, such as how they handle illegal values and print
compiler-specific data types.

Some compiler vendors silently support the proper handling of NULL
parameters. Consider this example:

printf("this is a string: %s\n", 0);
This may crash on some systems, but on other systems, the run-time
library will catch this condition and print “NULL” or “(null)” instead.

Since there are numerous compiler-specific type extensions, printing
these values will differ from platform to platform. A common example is

Compilers 125

126

NOTE

the treatment of 64-bit integers. With Microsoft Visual C++, the format
specifier for a 64-bit integer is:

_ int64 v = 0x0123456789ABCDEF;
printf("this is a 64-bit int: ¥I64i\n", v);

However, glibc (the C run-time library used by most implementations of
GCC) uses 11 instead:

long long v = 0x0123456789ABCDEFLL;
printf("this is a 64-bit int: %11li\n", v);

MinGW, a GCC derivative on the Windows system, actually uses the Microsoft run-
time library MSVCRT.DLL instead of glibc.

While very few modern commercial applications rely on printf due to the
proliferation of graphical user interfaces (GUIs), these caveats still apply to
its buffer-oriented variants—sprintf() and vsprintf()—which are heavily used
by many programmers.

One way to work around this is to use a constant format specifier, such as
the following:

#ifdef _MSC_VER

#define PRINTF_SPEC_64BIT "%I64i"

#elif defined _ GNUC__

fdefine PRINTF_SPEC_64BIT "%11i"

#endif

printf("this is a 64-bit int: "PRINTF_SPEC_64BIT"\n", v);

The ANSI C99 specification has introduced a set of constants specifically
to handle this situation, as described in the next section.

Type Sizes and Behavior

Chapter 8

Many portability problems arise from the compiler’s implementations of
types. These include handling of 64-bit types, as well as sizes and treatments
of basic types.

The 64-Bit Integer Types

The original ANSI C specification was written prior to the proliferation of
64-bit CPU architectures. The revised C99 specification has incorporated
support for 64-bit integers through the use of the <stdint.h> header file and
the associated int64_t, uint64_t, long long, and unsigned long long types.

Prior the C99 standard, however, compiler vendors provided different
implementations of 64-bit integers. Under DOS and Microsoft Windows, the
type was called __int64 (Microsoft, Borland, and Watcom compilers all used
this type). Compilers with a Unix heritage, however, preferred the long long

type. Of course, on native 64-bit compilers that support the LP64 model, it’s
also possible that the standard long integer type will be 64 bits, with int
remaining 32 bits. (See Chapter 5 for details on programming models.)
Portable code that uses 64-bit integers frequently should either abstract
the name of the 64-bit type (using typedef) or stick to the definitions defined
in <stdint.h> or <inttypes.h> if C99 compliance can be assumed. The C99
standard provides for the following:
¢ long long and official 64-bit types, such as int64_t and uinté4_t
e The 64-bit constant macros INT64_C() and UINT64_C()
¢ The 64-bit printf format specifiers PRIi64 and PRId64
Note that the standardized 64-bit types are a part of C99 and are
not available with C++. (At the time of this writing, I am not aware of any
available compilers that are fully compliant with the C99 specification.)
Along with different ways of specifying the type, there are also different
ways of specifying the constant. Compilers that use the __int6é4 type will
usually require a cast:

__inté4a x = (__int64) OxFEDCBA9876543210;
Compilers that use the long long type usually use the LL suffix:
long long x = OxFEDCBA9876543210LL;

Of course, compilers that possess 64-bit native long integers can use a
constant with no suffix.

Sizes of Basic Types

Every compiler implements its own ideas of the sizes of basic types and user-
defined structures. The C standard does not specify the sizes of specific types;
it guarantees only certain ranges. The standard header file <limits.h> includes
the predefined constants shown in Table 8-1.

Table 8-1: Sizes of Types Defined in the C Standard Header File

Constant Definition Value

CHAR_BIT Number of bits for a char >=8

SCHAR_MIN Minimum value for a signed <=-127
char

SCHAR_MAX Maximum value for a signed >= 127
char

UCHAR_MAX Maximum value for an >
unsigned char

255 (should equal 2CHAR-BIT_7)

CHAR_MIN Minimum value for a char If char is signed, then must be the same as
SCHAR_MIN; else O

Compilers 127

128

Chapter 8

Table 8-1: Sizes of Types Defined in the C Standard Header File (continued)

Constant Definition Value
CHAR_MAX Maximum value for a char If char is signed, then must the same as
SCHAR_MAX; else UCHAR_MAX
SHRT_MIN Minimum value for a short <=-32767
int
SHRT_MAX Maximum value for a short >= +32767
int
USHRT_MAX Maximum value for an >= 65535
unsigned short int
INT_MIN Minimum value for an int <=-32767
INT_MAX Maximum value for an int >= +32767
UINT_MAX Maximum value for an >= 65535
unsigned int
LONG_MIN Minimum value for a long int <= -2147483647, or —(2°'-1)
LONG_MAX Maximum value for a long int >= +2147483647 (2°1-1)
ULONG_MAX Maximum value for an >= 4294967295 (2%2-1)
unsigned long int
LLONG_MIN Minimum value for a long <= -9223372036854775807 or —(2%%-1)
(C99) long int
LLONG_MAX ~ Maximum value for a long >= 9223372036854775807 or (2%3-1)
(C99) long int
ULLONG_MAX ~ Maximum value for an >= 18446744073709551615 or (2%4-1)
(C99) unsigned long long int

The values shown in Table 8-1 allow you to infer some size parameters:

sizeof(char) <= sizeof(short int) <= sizeof(int) <= sizeof(long)
<= sizeof(long long)

In addition, the magnitude limits define the minimum sizes shown in

Table 8-2.

Table 8-2: Minimum Type Sizes

Type Minimum Size
char 8 bits

short 16 bits

int 16 bits

long 32 bits

long long 64 bits

EXAMPLE: POSH AND 64-BIT INTEGER SUPPORT

POSH provides a set of portable 64-bit abstractions encompassing type definition,
constant specification, and the printf format specifier.

#if defined (__ LP64__) || defined (_ powerpcéa) || \
defined POSH_CPU_SPARC64

define POSH_64BIT INTEGER 1

typedef long posh_i64_t;

typedef unsigned long posh_u64_t;

define POSH_I64(x) ((posh_i64_t)x)

define POSH_U64(x) ((posh_u64_t)x)

define POSH_I64 PRINTF_PREFIX "1"

#elif defined MSC VER || defined _ BORLANDC__ || \
defined _ WATCOMC__ || (defined _ alpha && defined _ DECC)
define POSH_64BIT_INTEGER 1

typedef _ int64 posh_i64 t;

typedef unsigned _ int64 posh_ub4_t;

define POSH_I64(x) ((posh_i64_t)x)

define POSH_U64(x) ((posh_u64_t)x)

define POSH_I64 PRINTF_PREFIX "I64"

#elif defined _ GNUC__ || defined _ MWERKS__ || defined _ SUNPRO_C \
|| defined _ SUNPRO_CC || defined _ APPLE_CC__ || defined \
POSH_0S_IRIX || defined LONG_LONG || defined _CRAYC

define POSH_64BIT_INTEGER 1

typedef long long posh_i64 t;

typedef unsigned long long posh_u64 t;

define POSH U64(x) ((posh_u64_t)(x##LL))

define POSH_I64(x) ((posh_i64 t)(xi#LL))

define POSH_I64 PRINTF_PREFIX "11"

#endif

/* hack for MinGW */

#ifdef _ MINGW32__

#undef POSH_I64

#undef POSH_U64

#undef POSH_I64 PRINTF_PREFIX
#define POSH_I64(x) ((posh_i64 t)x)
#define POSH U64(x) ((posh_u6a t)x)
#define POSH_I64 PRINTF_PREFIX "I64"
#endif

Using POSH's macros, you can portably specify and use 64-bit values:

posh_i64 t x = POSH _I64(0x1234567890ABCDEF);
printf("64-bit value = %"POSH_I64 PRINTF_PREFIX"d", x);

129

Compilers

130

Chapter 8

There is nothing that states that all sizes cannot be, say, 64 bits in length.
In fact, some architectures have been known to be particularly aggressive
with sizes (for example, some Cray variants had 32-bit shorts and 64-bit ints,
without any 16-bit types at all). A huge number of programs assume, for
example, that shorts are 16 bits and longs are 32 bits, which is not guaranteed
(but very likely, which is why the assumption exists).

For these reasons, you should never make hardcoded assumptions about
sizes, like so:

int *foo = (int *) malloc(4); /* will fail if int is 8-bytes! */
Instead, always uses sizeof:

int *foo = (int *) malloc(sizeof(int));

or

int *foo = (int *) malloc(sizeof(*foo));

If you require concrete sizes, use appropriate type definitions based on
the underlying platform and verify these assumptions using compile-time
assertions. C99 provides a set of guaranteed size types in <stdint.h>, and
POSH provides the same in <posh.h> (see also the “Abstract Data Types
(typedef)” section in Chapter 3).

Signed versus Unsigned char Types

The ANSI C standard does not dictate whether a char is signed or unsigned
by default. This can lead to some extremely confusing behavior due to
implicit promotion rules. Consider the following example:

char ¢; /* indetermine sign since it was not stated explicitly */
¢ = OxFF;
if (¢ == 0xFF) /* note: 'c' is promoted to int for the comparison */
{
/* sometimes this is never reached, depending on compiler */
printf(“Hello!”);

This fragment may or may not work the way you expect, depending on
the compiler’s choice of default signedness for characters. If char is implicitly
signed, then C promotion rules will expand it to a signed integer value of
OxFFFFFFFF for the comparison (on a system with 32-bit integers). The
resulting comparison is thus between 0xFF and OxFFFFFFFF, which will fail.

However, if characters are unsigned by default, then c retains the value
0xFF, and the test will succeed.

A common location to encounter this particular problem is the standard
library getchar() function.

char c;
while ((¢ = getchar()) != EOF)
processCharacter(c);

EOF is defined as —1 by default, so on a system where char values default to
nonnegative quantities, the while loop will never exit.

For obvious reasons, this isn’t particularly intuitive and can be the source
of some very hard-to-understand bugs. Either make no assumptions about
the signedness of char, or enforce this through global compiler options
(most compilers allow you to set the default sign for char) in conjunction
with a global compile-time assertion:

/* this ensures that characters are signed */

CASSERT((char)oxFF == (int)~0, char_signed);

/* this ensures that characters are unsigned */

CASSERT((unsigned char)oxFF == (int)oxFF, uchar_unsigned);

enums as ints

The enum data type is a very handy tool when you are creating large sets of
constants and want to generate new values automatically. However, the ANSI
C specification does not dictate the size of an enum, allowing the compiler to
select an optimal size based on the actual enumerated values. For example,
suppose you have this:

enum Color

{
RED, GREEN, BLUE

};

One compiler may deduce that the range of legal values is [0,2] and
decide that an 8-bit character is a better representation than an integer since
it consumes less space. Another compiler will instead decide that an optimal
implementation will be 32 bits, since that may align better on the target
platform.

Differences in the perceived size of an enum can lead to many different
and subtle errors. Structure packing, discussed at the beginning of this
chapter, becomes an immediate concern since:

enum Color { RED, GREEN, BLUE };

struct foo
{

enum Color a, b, c, d;
b

may result in a structure of 4 bytes or 16 bytes in size, depending on the
underlying size of the Color enum as chosen by the compiler.

Compilers 131

132

Chapter 8

Even something as simple as passing a parameter might run into
problems:

void set_color(enum Color c);

On most modern computer systems, parameters passed on the stack are
aligned and padded to 32 bits, so the opportunity for error is reduced.
However, simple platforms such as 8-bit microcontrollers can present an
opportunity for unexpected behavior. Using the previous example, if the
caller assumes that enum Color is 1 byte, but the called function expects 4
bytes, then bad things can happen.

Most compilers have an optional switch to treat enum values as int values,
which forces all enum values to be at least the size of an integer. Failing that,
you can force an enum to some minimum number of bits by using a dummy
constant:

enum Color
{
RED,
GREEN,
BLUE,
FORCE_INTEGER = OxFFFFFFFF /* force Color to be at least 32-bits */

b

Numeric Constants

Do not assume that certain numeric constants will share the same represen-
tation across all platforms. Programmers often assume that -1 is the same as
OxFFFFFFFF, but this is true only if integers are two’s-complement, 32-bit
quantities. OxFFFFFFFF is simply a very large positive value on a system with
64-bit integers.

Another common problem hot spot involves bit masks. If you want to
mask off the low 4 bits of a value, it is common to see something like this:

unsigned long x = some_value;
x = x & OxFFFFFFFO;

This is correct only on systems with 32-bit integers. Instead of hard-
coding the mask as in the preceding example, the following use of the
complement operator will ensure all one bits, except for the portion you
wish to mask:

unsigned long x = some_value;
x =x & (~0xF);

Likewise, avoid using -1 when you really want ~0 (all bits on).

Signed and Unsigned Right Shifts

The C standard allows an implementation to arbitrarily choose whether to
propagate (sign extend) the sign bit when right-shifting a signed integer:

int32_t x = 0x80000000;
x »»= 31; /* depending on implementation, x may be 1 or OxFFFFFFFF */

If you want an unsigned shift (for example, because you're working on
a bit mask), you should cast the value to an unsigned quantity before exe-
cuting the shift. If you’re trying to achieve a fast division by power of two
using a right-shift, you should use an arithmetic division and hope that the
compiler will generate an optimized machine-level shift instruction.

Calling Conventions

Function calls, while conceptually very simple to a programmer, are
surprisingly complex operations. The caller and the called function must
agree on a protocol that defines the following:

¢ How parameters are passed

¢ How return values are returned

¢ What state, if any, must be preserved

This is collectively known as the calling convention. Different platforms
will have varying calling conventions, and sometimes a single architecture
may have multiple calling conventions, depending on the compiler and/or
operating system,

For example, Microsoft’s PASCAL calling convention had the following
characteristics:

e Passed arguments from left to right
¢ Required the called function to clean up the stack

¢ Required the called function to preserve the direction flag and the EBX,
ES, FS, GS, EBP, ESI, and EDI registers

In addition, a PASCAL function had its name converted to uppercase, since
the Pascal language was not case-sensitive.

On most platforms, the compiler and linker adhere to one rigid calling
convention, which is often defined by the operating system as part of its
application binary interface (ABI). A single, agreed-upon protocol avoids a lot of
unnecessary complexity that can arise when different calling conventions
coexist. For example, if the calling convention for a program is different
than that of a library it calls, there will be errors (either at link time or run
time, depending on the nature of the incompatibility).

Unfortunately, the Intel x86 and other Complex Instruction Set
Computer (CISC) architectures such as the Motorola 68K, suffer from an
overabundance of calling conventions invented to solve different problems.
Some calling conventions are required for languages such as C (which

Compilers 133

134

Chapter 8

supports variable argument lists); other conventions were designed to
minimize space or maximize performance. Since neither C nor C++
standards address the issue of calling conventions, a compiler writer may
freely offer different calling conventions.

The Intel x86 architecture has at least three common calling
conventions:

s cdecl is the default calling convention since it is very flexible and allows for
rariable argument lists (variable argument lists require the caller to clean
up the stack, since the called routine may not know how many parameters
were passed). However, there is a slight performance penalty.

¢ The stdcall convention is reasonably fast and general. The Windows ABI
uses stdcall (in the form of the WINAPI macro) for most of its API entry
points.

¢ The register or fastcall convention passes some implementation-
dependent number of parameters in registers (usually two), with the
remainder spilling over onto the stack. This is theoretically the fastest
calling convention; however, in practice there are enough mitigating
factors that often there is little or no speed benefit. As the number of
parameters increases, the performance advantage over other conven-
tions decreases.

The characteristics of these conventions are summarized in Table 8-3.
Table 8-3: Intel x86 Common Calling Conventions

Convention Parameter Location Parameter Order Stack Responsibility

cdecl Stack Right to left Caller
stdcall Stack Right to left Called
fastcall/ Registers and stack Right to left Called
register

While these are common labels, keep in mind that different compilers

may still have slightly different interpretations of these conventions. The
register calling convention may be different from one compiler to another,
and sometimes even between different revisions of the same compiler. That
said, compiler vendors recognize the importance of interoperability, so you
will often find calling conventions implemented identically on multiple
architectures. In addition, operating systems promote their own standard
ABIs, so if Windows says stdcall means something, you can bet that compiler
vendors will use that definition.

Name Decoration

Because of the potential catastrophe that can arise if a program compiled
with one calling convention tries to link to a library that was compiled with a
different one, most tool chains will decorate function names differently
depending on the calling convention.

Microsoft Visual C++ will generate the following symbol names for a
function int test(int x):

Convention Decorated Name
cdecl _test

stdcall _test@s

fastcall @test@s

If a vendor builds a library assuming the cdecl convention and an appli-
cation is built with the stdcall calling function, calls to the vendor’s API will
fail to link. This is far better than linking successfully, only to collapse at run
time due to incompatibilities between their respective calling conventions.

Function Pointers and Callbacks

The calling convention doesn’t just affect static linkage; it can also become a
problem if you use function pointers. If you present an API to an application
that accepts a function pointer (such as to register a callback), you will need
to specify its calling convention:

/* NOTE: use a CDECL macro of some type so that it works on
multiple compilers/platforms */
void register callback(void (CDECL *func)(int a, int b, int c));

Portability

Portable software should avoid making any assumptions about calling con-
ventions. Never, ever assume anything about the format of parameters on the
stack, as the following example illustrates:

void func(int a, int b)

{
int *pa = 8a; /* what if a is in a register?! */
/* no guarantee that they're contiguous! */
int *pb = (int*)(((char*)&a) + sizeof(int));

If you are developing a library that is distributed in binary form, you
will likely need to deal with calling conventions unless you're working on a
platform with only a single convention. Very often, you will either need to
distribute multiple binaries compiled with the different calling conventions
or enforce a particular calling convention using the compiler’s proprietary
function signature modifiers, like this:

#ifdef MSC_VER
#define API_TYPE _ cdecl

Compilers 135

#telse

#define API_TYPE

#endif

void API_TYPE MyFunction(void);

EXAMPLE:
SAL’S HANDLING OF CALLING CONVENTIONS

SAL uses whatever calling convention is in effect when it is compiled, which is fine
since it is integrated as source into another project. If a binary version of the library
were distributed, then whoever packaged the library would need to note the specific
calling convention in use when it was compiled and linked.

SAL explicitly sets the calling convention of its user-defined callbacks:

typedef struct SAL_Callbacks

{
sal_i32 t cb_size;
void * (POSH_CDECL *alloc)(sal_u32_t sz);
void (POSH_CDECL *free)(void *p);

void (POSH_CDECL *warning)(const char *msg);
void (POSH_CDECL *error)(const char *msg);
} SAL_Callbacks;

SAL is dependent on POSH, which defines POSH_CDECL appropriately
depending on the compiler and platform:

#if defined POSH CPU_X86 && !defined POSH_CPU_X86 64

if defined _ GNUC__

define POSH CDECL _ attribute_ ((cdecl))

define POSH STDCALL _ attribute ((stdcall))

define POSH_FASTCALL _ attribute_ ((fastcall))

elif defined MSC_VER || defined _ WATCOMC__ || defined \

__BORLANDC__ || defined _ MWERKS _

define POSH CDECL _ cdecl

define POSH_STDCALL _ stdcall

define POSH_FASTCALL _ fastcall

endif

#else

/* This will likely have to be expanded if running on a system with
varying calling conventions and which was not x86 based, such as
68K Macintosh systems which had C, Pascal, and
0S calling conventions */

define POSH_CDECL

define POSH _STDCALL

define POSH_FASTCALL

#endif

136 Chapter 8

Returning Structures

Bitfields

Compilers vary as to how they return aggregate data types such as struct,
class, and union objects. Small objects are often returned in a single register,
but some compilers may always return any large objects on the stack.

Things get a bit more confusing returning large (greater than the size of
a register) structures by value. Some implementations pass a hidden pointer
to a local stack variable; others return the address of a static variable (this is
not multithread-safe, but was fine on single-threaded operating systems such
as MS-DOS or Mac OS). There is no standard for this, which is why it is a
good idea for the caller to pass a pointer to a local variable, instead of
attempting to get a copy by value:

struct thingy get a thingy by value(void)

{

struct thingy result;

/* do some stuff */

return result; /* how is this returned? Implementation dependent */
}
void get _a_thingy by copy(struct thingy *t)
{

struct thingy s;

/* do some stuff */

*t = s;
}

C and C++ provide the ability to identify specific bits inside a structure by
name using a construct known as a bitfield:

struct OpCode

{
int code: 4;
int operando: 4;
int operandi: 4;
int flags : 8;
}

There are so many problems with bitfields that I'm not sure where to
start. First of all, the language standards do not dictate whether the bitfields
are signed or unsigned by default, so confusion reigns if you attempt to
retrieve a value of 15 but find that the real range is +/- 7 due to a specific
implementation’s choice of bitfield sign.

Compilers 137

138

In addition, the order and packing of bits is up to each implementation.
It is possible that unnamed bits are automatically inserted into a structure by
a compiler to maintain alignment:

/* This is very unlikely to be 64-bits in size except with
systems using 64-bit native integers */
struct RegisterBits

{
int a : 31;
int b: 31;
int c: 2;
b

A common use of bitfields is to allow easy access to specific bit ranges
inside a register definition for a hardware device, often inside a union with
an integer the size of the register:

/* This will not give you the expected results on most 32-bit systems */
union RegisterSpec

{
struct RegisterBits register bits;
int64_t register direct;

b

Bitfields may sound neat, but they are rife with portability problems.
Don’t use them—they really aren’t that convenient.

Comments

Chapter 8

Surprisingly, even simple comments can be the source of portability prob-
lems. Nested comments, C++-style single-line comments (//) inside C source
files, and assumptions regarding the transformation of comments to white
space all contribute to errors.

The C and C++ specifications do not state whether nested multiline (/*)
comments are allowed. So this bit of code may work on one compiler, but fail
on another:

/* 1 have commented this out but the following /* may cause problems */

If a compiler supports nested comments, this comment will cause a
compiler error, since two comment open tokens (/*) exist, but only one
closing token (*/) is present. This can be the source of immense confusion
when previously functional code suddenly stops compiling on one platform
(with a cryptic error such as “unexpected end of file found inside comment”)
but works normally on another.

Some have only half-jokingly argued that the single greatest contribution
of the C++ language is the single-line comment:

// This line is commented out

It’s a small but very convenient feature that many other languages
possessed, yet C lacked. For this reason, many C compiler vendors added
support for single-line comments as a nonstandard extension. In fact, this
became so popular that many developers did not realize that it was non-
standard (most of the major compilers supported this even before its
ratification as part of the C99 standard).

The ANSI C99 specification formally added single-line comments to the
language. However, it’s possible that there are some compilers out there that
have not added this ability to their implementations (and maybe never will).
If you have an extensive base of source code that uses single-line comments,
and you find yourself needing to strip them, you’ll be in for a long night with
a good text processor.

Of course, you can happily ignore this if you program strictly in C++.

One final comment about comments. Under early C, an empty comment
was often used as a hack for token pasting:

/* this doesn't do what you want under ANSI C! */
#define combine(a, b) a/**/b

The intent is to substitute ab wherever combine(a,b) is encountered.
ANSI C provides a better way of accomplishing this by using its token
concatenation operator:

/* this works with ANSI C, but not under K&R C */
#define combine(a, b) a##b

If you insist on supporting old-style token pasting, you can always use a
__STDC__ guard:

#ifdef _ STDC__

#define combine(a, b) affttb
#else

#define combine(a, b) a/**/b
#endif

Summary

As rigorous as the C and C++ standards may seem, compiler authors have a
great amount of leeway when it comes to the interpretation of the standard
and the implementation of features. Dealing with different compiler imple-
mentations can be an adventure unto itself when developing portable soft-
ware, but with the proper knowledge, planning, and preparation much of
the pain can be mitigated.

Compilers 139

USER INTERACTION

One of the key components of any modern

software application is the face it presents
to the user, usually through the assistance

of the operating system’s graphical user interface

(GUI), if one exists. Examples of these include the
Microsoft Windows GDI, the Commodore Amiga
Intuition, the Atari ST GEM, Linux X11 with an
optional desktop manager such as GNOME or KDE,
and Palm OS.

While very basic command-line programs such as filters and batch

processors can get by with minimal facilities such as printf() and fgets(),
modern applications have sophisticated user interfaces that are inherently
system-dependent. Abstracting user interaction is a key architectural concern
for software developers.

142

The Evolution of User Interfaces

Chapter @

Before the popularization of glitzy user interfaces (1985 and 1990, depend-
ing on whether you were a Mac or PC user, respectively), users were expected
to interact with their computer systems through the command line or com-
mand prompt. The next step in the evolution of user interfaces was to move
away from the text-driven command line and into the world of the mouse-
driven GUI that nearly every computer user today knows.

Command Line

With the command-line interfaces, you typed in commands and then
watched the output scroll by on your display (or, if you're old enough to
remember, on a teleprinter). No mice, no windows, no dialog boxes—just a
bunch of text. Radical concepts like “responding immediately to key presses”
were not well supported and definitely not portable. Applications such as
FTP and Telnet embodied this approach.

While crude and simple, text-driven command-line user interfaces are
also, by their nature, reasonably portable, since they leverage the C standard
library’s standard 1/0 functions, such as fputs(), printf(), and fgets(). Itis
much easier to write a portable program when you can factor out the entire
concept of graphics and display systems.

For primitive or simple programs, a command-line interface may be
acceptable, but as a general rule, commercial applications require visually
pleasing and intuitive GUIs.

Window Systems

Originally developed in Xerox’s Palo Alto Research Center (PARC) research
group, the mouse-driven GUI was commercialized by Apple with the intro-
duction of the Macintosh computer in 1984—a milestone event in the history
of personal computing. Over the ensuing two decades, the GUI has pushed
the command line to the brink of extinction.

GUIs were considered proprietary by nature. Even discarding the various
patent and copyright protection actions undertaken by companies such as
Apple to protect what they considered unique concepts (for example, over-
lapping windows in a workspace), many companies were still loath to overtly
copy a competitor’s user interface (no one likes to seem like a follower
instead of a leader).

The result was that in the late 1980s, there were an incalculable number
of competing (and proprietary) GUI systems:

e Apple’s Mac OS (up through System 9)

o Apple’s Mac OS X/Cocoa (based on NeXT Computing’s NeXTStep)
¢ GEOS for C64 and the Apple II

¢ GeoWorks for the PC

¢ Digital Research’s GEM for the Atari ST and (in a limited fashion) on
the PC

¢ Commodore’s Amiga Intuition

e Microsoft Windows (which has evolved numerous times)

¢ X Window-based window managers such as Motif, Sun’s OpenLook/
OpenWindows, GNOME, and KDE

e IBM’s Presentation Manager for OS/2

¢ Adobe PostScript-based display systems like NeXT’s NeXTStep and
Sun’s NEWS

And that’s just on the desktop! The PDA /handheld market introduces
its own set of user interface factions.

When we speak of GUIs, we may actually be referring to one or more
components of a GUI implementation. GUIs can include as many as three
different and distinct layers:

¢ The windowing toolkit, which provides the raw rendering and event
management capabilities

¢ The window manager, which presents a common look and feel

¢ The desktop manager, which handles filesystem navigation and
management

Some operating systems, such as Apple Mac OS and Microsoft Windows,
have a single monolithic user interface that integrates all three layers into the
operating system. Other operating systems, specifically Unix and its deriva-
tives, keep the operating system independent of the GUI, and the GUI itself
may be stratified into independent layers. For example, a typical Linux desk-
top might use the X Window System as its window system, Sawfish for its
window manager, and GNOME as its desktop manager.

As with most burgeoning industries, the early user interface competitors
fought hard and killed each other, leaving a few survivors to emerge from the
rubble. Today, the predominant user interfaces for desktop computers are
Microsoft Windows and, to a much lesser extent, Apple’s Macintosh (both
the older Mac OS Classic look and the newer Cocoa). The various X Window
derivatives running on Unix and Unix-like operating systems (Sun Solaris,
IBM AIX, Linux, and so on) make up the remainder, forming a very small
niche on the desktop.

While a GUI is often intertwined with the operating system, such as
with Microsoft Windows, in some cases, the user interface is independent
of the operating system. The most common example of the latter is MIT’s
X Window System GUI toolkit, which can be layered on just about any
operating system, but is traditionally seen on Unix-like workstations (and is
the default interface library for most Linux distributions).

Native GUI or Application GUI?

Even though an operating system can provide a graphical interface, some-
times an application may wish to present its own. This requires a lot of
redundant work and has a lot of downsides, especially when it comes to
presenting a consistent look and feel with the rest of the applications on a

User Interaction]43

144

particular system. So when users engage your program with its custom inter-
face, they’ll often struggle or become aggravated due to its nonstandard
behavior.

On the positive side, by decoupling your application from the specifics
of an operating system’s user interface, you enhance your software’s porta-
bility. At the very least, you can ensure a consistency between your own
applications across platforms. If you have loyal users, they may appreciate
that your application works and looks the same, no matter which system
they’re running it on.

Low-Level Graphics

Even ignoring user interface needs, modern computer applications often
have a need to display high-quality graphics. Early computer systems allowed
direct access to the video card’s memory (the frame buffer); however, most
modern operating systems will deny a user-level process access to any of the
hardware at such a low level.

Instead, most special APIs provide access to the frame buffer indirectly
by managing in-memory “surfaces” that the application writes to, and then
“blits” to the back buffer using a special system call. Microsoft Windows
supports this with device-independent bitmaps (DIBs)in GDI and, at a lower
level, DirectDrawSurfaces (as part of the DirectX gaming API). Macintosh
and Linux systems offer similar functionality.

Conveniently enough, the basic concept of “draw to surface, then copy
to the video card” is constant across most operating systems, so porting from
one to another requires only a straightforward abstraction.

Even so, raw access to the video memory is sometimes possible, either on
an unprotected operating system or through the cooperation of a low-level
hardware access device driver. An application might request a pointer to a
back buffer, perform its operations on that buffer, and then when done, flip
it to the front buffer. This “flipping” consists of updating a pointer used by
the display refresh hardware. Updating this pointer is extremely fast, and by
flipping buffers you avoid the cost of an extra copy.

Today’s computer programs have graphics requirements that far outstrip
the ability of most programmers to code themselves, so accessing the frame
buffer directly is no longer as necessary as it was even a decade ago. Popular
3D libraries such as OpenGL and DirectX perform high-level, complex
rendering, using the full extent of the underlying hardware’s features,
thereby reducing the need to access the frame buffer at all.

Digital Audio

Chapter @

Sound has slowly become a more integral part of the computing experience.
As recently as 1998, digital audio was an optional component for PCs
(although Macintoshes and many other home computer systems such as

the Amiga and Atari ST had integrated digital audio support much earlier).

Input

Each operating system has one or more mechanisms to take a raw
waveform, usually encoded as pulse code modulated (PCM) sample data,
and send it to the speaker. Sometimes there is a hierarchy of APIs that
provide increasingly lower-level access to the sound subsystem. For example,
Microsoft Windows has the high-level PlaySound API, the medium-level
waveOut APIs, and the very low-level DirectSound buffer manipulation APIs.
An application can select the appropriate API based on its own requirements
of convenience and control.

Other operating systems usually have similar splits in functionality. For
example, the Cocoa API under Mac OS X has the NSSound class for basic
sound loading and playback. Beneath this is the medium-level (now depre-
cated) CarbonSound/SoundManager APIs. The lowest-level sound interface
is known as CoreAudio, which provides very raw, high-performance access to
the digital audio subsystem.

Most modern operating systems seem to adhere to this basic scheme.
They provide high-level, easy-to-use sound routines suitable for simple
functionality such as light sound effects or alert sounds, as well as low-level
routines for complex audio processing by the application. Wrapping all these
different libraries isn’t particularly difficult, but it can be tedious, especially
since sound is one of those areas that a lot of different implementations just
mess up in subtle ways. For cross-platform sound, there are commercial
libraries, such as Miles Audio and FMOD, and open-source libraries, like
SDL, OpenAL, PortAudio, and, of course, SAL.

However, some operating systems and devices do not provide an API at
all, requiring the programmer to access the hardware directly. In situations
like this, you will need to roll your own sound access, mixing, and buffer
management engine.

SAL EXAMPLE: HANDLING DIGITAL AUDIO

SAL does not abstract the capabilities of an underlying sound API, but instead wraps
those capabilities with its own. It uses a sound API's low-level buffer management
facilities to implement its own, higher-level, sample playback and mixing features.

Some sound APIs have their own mixing facilities built in, but their implemen-
tations are often tenuous and unreliable. SAL addresses this by implementing its own
mixer and relying on the back end solely for buffer playback.

Cross-platform applications must be acutely aware of the differences between
input devices. Even though it seems like every computer has a keyboard and
a mouse, minor differences between mouse and keyboard configurations
impact portability.

User Interaction]45

146

Chapter @

Keyboard

You would think that a keyboard is a keyboard, but that’s not the case when
dealing with cross-platform software development. Keys can move around
depending on the keyboard, even when those keyboards are for the same
computer system. Laptop keyboard layouts often have a radically different
design from their desktop counterparts, in order to minimize space. Many
keys that exist on one system may not exist on others. Here are a few
examples:

¢ Early Sun keyboards had 15 keys that were not present on PC keyboards.
¢ Early iMac keyboards did not have a numeric keypad.

¢ Early Macintoshes lacked the ESC and function keys common on PCs.

e The modern Apple Pro USB keyboard does not have NUM LOCK, PRT
SCRN, or SCROLL LOCK keys.

You cannot rely on the placement or existence of many types of these
keys, not to mention the issues with keyboards of different languages. (See
also the discussion of internationalization in Chapter 16.)

Movuse

For the most part, mice operate the same way across many different
platforms, but you still must deal with different configurations. At one
extreme is the Apple Pro one-button mouse, with its single button. At the
other extreme you have mice such as the Microsoft IntelliMouse Explorer,
with five buttons and a scroll wheel. And there are devices, such as Wacom
digitizing tablets or laptop touchpads, that act like mice to an application,
even though they are not really mice at all.

Applications that wish to run on a wide variety of systems should not rely
on the existence of more than one button and should support additional
buttons (and wheels and thumb wheels) only when available.

A typical desktop operating system provides access to mouse and key-
board information through its GUI toolkit’s event system. For example,
in Windows, an application handles WM_MOUSEMOVE, WM_KEYDOWN, and WM_KEYUP
messages in its message handler function. Cocoa/OS X applications over-
ride the appropriate keyDown:, keyUp:, mouseDown:, and mouseUp: methods
(although it is possible to directly retrieve NSEvent events). And an X
Window application system retrieves XEvent events using the XPending()
and/or XNextEvent() APIs.

Joystick and Gamepad

While the mouse and keyboard may be the most popular input devices
around, they’re not the only ones. Many computer systems also support
alternate input devices such as joysticks and gamepads. These devices are
rarely integrated into an event system, since few window systems consider
joysticks a high-priority input device.

For applications that must support alternate input devices, a plethora
of system-specific is APIs available. Windows has a standard Win32 API,
GetJoyPosEx(), and the entire DirectInput library. Linux treats joysticks as
devices accessed with the standard Unix file metaphor (an application opens
/dev/js0 or something similar, and then performs read() operations).

The most cumbersome aspect of abstracting input is that each operating
system has a different idea of when and how events are propagated to the
application. In Windows, there is a standard message loop that an applica-
tion may poll in addition to an application-specific message handling call-
back. Under the X Window System, an application may call the event system
directly, or it may set up a separate thread to “pump” the event queue.

And on top of all of these, polling a joystick device often must be done
outside the standard event loop.

Cross-platform Toolkits

Due to the difficulty and complexity inherent to managing the differences
between user interfaces, there have been numerous cross-platform toolkits
designed to abstract the differences. These include wxWindows, Qt, and
GTK+ for C++, and packages such as SWT, AWT, and Swing for Java. This is
discussed in more detail in Chapter 18.

Summary

While command-line programs that require no interactive user input still
have their place today, the vast majority of applications must present point-
and-click graphical interfaces, with sound, to their users. These interfaces
vary greatly between and within operating systems, and portable software
must be able to migrate between these GUIs.

User Interaction]4?

10

NETWORKING

Computers have been networked together
for decades, but it wasn’t until the popularity
of the Internet that networking became a

significant issue for cross-platform development.

Networked communication implies heterogeneity,
since two completely unalike systems may be connected.
When heterogeneous machines network with each other and exchange data
you're basically dealing with the same data storage and load problems that
you encounter when saving to disk. The topics covered in Chapter 15 apply
just as much to networked communication as they do to saving and loading
data. Writing software that can run on different networking layers and also
successfully communicate with different platforms is a tricky topic, which 1
address in this chapter.

150

The Evolution of Networking Protocols

When networking first appeared, the landscape consisted primarily of high-
powered, insular, and proprietary hardware, and software implementations,
all vying for market share and control of local area network (LAN) and
wide area network (WAN) standards. Digital Equipment Corporation had
its DECnet protocol suite; IBM had NetBIOS Extended User Interface
(NetBEUI); Apple had LocalTalk/AppleTalk and OpenTransport; Novell
had Internetwork Packet Exchange (IPX) and Sequenced Packet Exchange
(SPX); Banyan Systems provided VINES; and even DOS-based PCs had low-
cost networked operating systems such as Artisoft LANtastic.

However, most of these protocols were limited to LANs or proprietary WANs,
As you would guess, the sheer number of different protocols made
writing portable networked applications tedious and difficult, at least if you
wanted to support the different proprietary protocols directly. But since so

few programs were designed to be portable or work across heterogenous
architectures, this wasn’t a large concern.

During the 1980s, the focus began to shift to interoperable networks, so
a decision was made to declare the Transport Control Protocol/Internet
Protocol (TCP/IP) standard as the official protocol for the ARPAnet (the
predecessor to the Internet at the time). This standardization directly fueled
the ensuing rapid growth of the Internet.

In today’s environment, the only truly relevant networking protocol is
TCP/IP. It’s the standard networking implementation in use by the vast
majority of computers today; any computer connected to the Internet is
going to use TCP/IP. Proprietary protocols such as DECnet and IPX/SPX
are becoming increasingly rare, as their support is often relegated to legacy
applications and systems.

Programming Interfaces

Chapter 10

In the early 1980s, the 4.1c Berkeley Software Distribution of Unix included
the BSD Sockets API, which was to become the standard programming API
for Unix-based network applications. The simplicity and ease of use of the
sockets API led to its rapid propagation on other Unix variants, and even
on microcomputer operating systems such as BeOS, Amiga, OS/2, and
Windows.

If you are writing a portable networking application, odds are that you’ll
be using either the sockets API directly or, if your design allows it, a higher-
level API layered on top of sockets, such as Remote Procedure Call (RPC),
Java Remote Method Invocation (RMI), distributed objects (CORBA and
COM/DCOM), or Simple Object Access Protocol (SOAP).

Sockets

The BSD Sockets API is the most ubiquitous low-level TCP/IP programming
interface. It is available on every major platform that supports networked
computer systems, and it presents a standard interface across all Unix-like
implementations. Of course, this didn’t prevent Microsoft from imple-
menting its own version of the sockets API, WinSock. Abstracting between
WinSock and BSD Sockets is pretty much all that’s necessary if you're writing
an application with low-level network communication.

But even with a relatively stable API and a standardized conceptual
approach, different socket or TCP/IP stack implementations may exhibit
radical changes in behavior across platforms. Since there are no hard-and-
fast rules regarding the differences, they can often be very subtle (for
example, the default values for certain configuration variables).

WinSock is maddeningly close to the BSD Sockets standard—identical
in many respects, but just different enough that you still need to deal with
it. It straddles the line between “different enough to warrant abstraction”
and “close enough that a couple conditionals should make it all work.”

Abstracting between the two can be done easily enough, since they share
much the same concepts and syntax. Both WinSock and BSD Sockets are
thin wrappers around basic TCP/IP functionality, specifically the UDP and
TCP protocols. Both provide the ability to open and close connections, along
with sending and receiving data, even using similar syntax.

WinSock and BSD Sockets are a great case study of small, irritating
differences between otherwise similar APIs. For example, the fundamental
socket handle type differs between the two platforms. BSD Sockets defines
sockets as signed integers, which matches the Unix idiom of representing file
descriptors as integers. WinSock uses the SOCKET type definition, defined in
winsock.h or winsock2.h, which is an unsigned type. This means that the value
for an invalid socket changes depending on the platform: -1 on BSD Sockets
and OxFFFFFFFF on Windows.

To fix this, you can incorporate the SOCKET type and INVALID_HANDLE defi-
nition on BSD Sockets, making both feel more like the Windows version and
avoiding pollution of core code, as follows:

#if ldefined POSH_ 05 WIN32
#idefine INVALID HANDLE -1
typedef int SOCKET;
#endif

Networking]5]

This allows a single code path when allocating a socket on either system,
meeting your goal of having as much shared source as possible, without
relying on excessive conditional compilation directives. The following:

SOCKET s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
if (s == INVALID_HANDLE)
return -1;

/* the above code should compile and run identically on
BSD Sockets and WinSock */

is much more pleasant than:

#ifdef POSH_0S_WIN32
SOCKET s;
#else
int s;
#endif

s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
#ifdef POSH_0S_WIN32

if (s == OXFFFFFFFF)
#telse

if (s ==-1)
#tendif

return -1;

Another minor difference between WinSock and BSD Sockets is the
handling of header files. Under Windows, the WinSock definitions are in
either <winsock.h> or <winsock2.h>. BSD Sockets require a plethora of header
files, including <sys/types.h>, <sys/socket.h>, <netinet/in.h>, <netdb.h>, <arpa/
inet.h>, and <unistd.h>. If you have a lot of sockets-related files, having a
single local header file that provides the appropriate headers can help keep
your code clean.

#ifndef MYSOCKETS_H
#define MYSOCKETS_H
#ifdef POSH_0S_WIN32
#include <winsock2.h>
#else

include <sys/types.h>
include <sys/socket.h>
include <netinet/in.h>
include <arpa/inet.h>
include <netdb.h>
include <unistd.h>
#endif

#endif /* MYSOCKETS_H */

B oE B B BB

152 Chapter 10

Other minor differences exist as well. For example, Unix has traditionally
tried to unify device access using the file metaphor, so in keeping with this,
BSD Sockets uses the close() function to close a socket. On Windows, how-
ever, sockets are not considered files, so you must call a special API called
closesocket() to close a socket. Similarly, controlling some options such as
blocking versus nonblocking behavior requires the Unix-centric fentl() API
for BSD Sockets and the Windows-specific ioctlsocket() API for WinSock.

Error handling between the two APIs also has its subtle differences.

On Unix, the standard method to identify system errors is by examining the
global identifier errno. This value will correspond to one of the standard
error constants such as EWOULDBLOCK or EAGAIN. WinSock, however, requires
that you call the WinSock-specific function WSAGetLastError(), which returns
a constant similar to the standard Unix ones, such as WSAEWOULDBLOCK or
WSAEAGAIN.

You could conceivably encapsulate all these differences by using macro
substitution and type definitions, as in this example:

#if defined POSH_0S_WIN32

#define CLOSESOCKET(s) closesocket(s)
#tdefine SOCKERR() WSAGetlLastError()
/* etc. etc. */

#else

typedef int SOCKET;

#define INVALID_SOCKET -1

#define CLOSESOCKET(s) close(s)
#define SOCKERROR() errno

#define WSAEWOULDBLOCK EWOULDBLOCK
/* etc. etc. */

#endif

Scarily enough, you can just barely manage this with the preprocessor.
The result may or may not be very clean, and is sometimes hard to debug,
but it does work and leaves a minimal amount of platform-specific code to be
written. If the differences were the tiniest bit more pronounced, moving to a
larger-scale abstraction would be necessary.

RPC and RMI

RPC is a higher-level function call abstraction that sits on top of a lower-level
transport layer such as BSD Sockets. Remote procedure calls are designed to
be transparent, operating much the same way (to an application) as standard
function calls.

Specific RPC implementations are available through the use of toolkits
like Sun’s rpcgen and the Open Software Foundation (OSF) Distributed
Computing Environment (DCE). These toolkits are designed to handle most
of the grunt work associated with implementing a particular RPC relation-
ship. They accept an interface definition and then generate the appropriate

Networking 153

“stubbed” (functional but essentially empty) client and server code, which
handles marshaling/unmarshaling parameters and broadcasting them, and
do the same with return values.

XML-RPC, a precursor to the more heavyweight and cumbersome
SOAP, is an RPC specification that uses HTTP as its transport layer and XML
for parameter encoding. The motivation behind XML-RPC was to have a
human-readable encoding format (in this case, XML) carried over an
industry standard protocol (HTTP), theoretically allowing for smoother
interoperability between networked applications.

Many firewalls and routers block unexpected traffic on unknown ports,
which is what “raw” RPC implementations often require. For example, a
typical RPC implementation might require communication on TCP port
9822 (an arbitrary port number of no particular significance), but a firewall
will routinely block traffic to any ports not explicitly opened by an adminis-
trator. However, since HTTP port 80 is used by web traffic throughout the
world, traffic often flows through that port unimpeded. XML-RPC (and
SOAP) ride that port, so it is often much faster and easier to get XML-RPC/
SOAP-compliant programs up and running on a system, because they do not
require reconfiguring the network.

Distributed Objects

RPC abstracts the concept of function calls, a procedural programming
paradigm. A desire to provide an RPC-like capability that extends to object-
oriented programming has given rise to distributed objects. The two primary
distributed object implementations are the Distributed Common Object
Model (DCOM), pushed by Microsoft, and the Object Management Group
(OMG) Common Object Request Broker Architecture (CORBA), which is a
more open industry standard than DCOM.

Like RPC implementations, distributed object implementations provide
tools such as Interface Definition Language (IDL) compilers and code
generators, which create the stub (clientside) and skeleton (server-side)
code for a particular system.

Summary

The need for modern computer systems to communicate with each other is
inescapable. Networked computer systems pose their own portability concerns,
specifically with varying programming interfaces and even something as

simple as exchanging raw data.

OPERATING SYSTEMS

The core software run by almost every
modern computer system is the operating
system. Since the operating system is the focal

point for most computer systems, and also the
central arbiter for access to limited system resources,
it affects how software is written and operates at a
fundamental level. In this chapter, I'll talk about both
the functional aspects of an operating system and APIs
as they relate to portability.

The Evolution of Operating Systems

Technically speaking, operating systems are optional. Embedded software
running on specialized systems often consists of just a raw program pro-
grammed into EEPROM or flash memory, along with a minimal bootloader
that begins execution on bootup.

156

One step beyond no operating system are the very simple older
operating systems, such as Microsoft MS-DOS and Digital CP/M. MS-DOS
was nothing more than a thin veneer over the hardware. Very often, an
application would take over the entire machine and access many resources
directly. MS-DOS did not allow multiple programs to execute simultaneously
(multitasking) without the assistance of higher-level multitasking software
such as Quarterdesk, Microsoft Windows, or DRI's GEM.

One step beyond DOS are operating systems that provide useful features
such as simple multitasking, a GUI, and moderated access to low-level
devices. Operating systems like early Apple Mac OS, Microsoft Windows 2.x
(which was layered on MS-DOS), Commodore’s AmigaDOS, and Atari’s
TOS/GEM fall into this category. However, they all share the same trait of
still allowing an application to directly access any memory or devices desired.

Modern operating systems also incorporate important features, such as
support for multiple users, protected memory, and security. Microsoft
Windows XP, Linux, FreeBSD, and Apple Mac OS X share these features.

Among other things, the operating system may or may not do the
following:

¢ Manage the system’s resources such as memory, file descriptors, and
hardware devices

¢ Implement security protocols

¢ Limit the ability of a process to consume resources and space

e Multitask different simultaneously executing applications

¢ Provide a simplified, centralized application programming interface to

assist with memory management, input, output, process control, and
other mundane tasks that are commonly required by applications

Hosted and Freestanding Environments

Chapter 11

Not every computer has or requires an operating system. Those that do not
are sometimes known as freestanding environments, where program startup
and termination are implementation-defined. In addition, features that
many programmers take for granted (like much of the C/C++ standard
library) are often unavailable. Embedded systems—such as video game
consoles, portable MP3 players, and vehicle control software—are common
examples of freestanding environments.

On the other hand, a hosted environment, with which most users are
familiar, has an operating system that is responsible for loading and
executing programs, along with providing system services.

A system designer may opt for a freestanding environment when system
resources are so scarce that the additional overhead of an operating system is
not justifiable. As time marches on, however, even the lowliest of devices has
become powerful enough to run a limited operating system. Not too long
ago, PDAs and cellular phones were freestanding environments with a single-
purpose built application. Now, even these simple devices run operating
systems.

The Operating System Portability Paradox

One of the paradoxes of an operating system is that, like a portability library
(see also Chapter 18), it is simultaneously a facilitator of and an impediment
to application portability.

The first significant cross-platform operating system for microcomputers
was Gary Kildall’s Control Program/Monitor (CP/M) operating system,
which gained its popularity due to its portability between the myriad micro-
computers based on the Intel 8080 and Zilog Z80 microprocessors prevalent
at the time.

The Intel 8080 microprocessor heralded the arrival of the micro-
computer era. Numerous manufacturers used the 8080 as the core logic for
their systems, which became a significant problem, since each system was
slightly different architecturally. An application that ran on one 8080 system
would not run on another similar system due to variances in the floppy drive
controller or display circuitry.

The CP/M operating system was written to address this problem,
creating a consistent environment for applications across multiple 8080-
based microcomputer systems. The key to this innovation was the require-
ment of a BIOS supplied by each computer manufacturer. CP/M would
interface to each BIOS in a consistent manner, creating a cross-platform
API of sorts.

Applications would then, in turn, write to CP/M’s standard API (by way
of software interrupts), isolating themselves from the idiosyncrasies of any
one particular computer’s architectural nuances. This allowed the develop-
ment of cross-platform killer applications such as WordStar and dBase 1I,
which were now able to run on a wide variety of similar but still different
microcomputers. Without an operating system like CP/M, these applications
would have had a much harder time attaining critical mass. Instead of
appealing to “anyone who has a CP/M compatible machine,” they would
have needed to target the myriad different manufacturers in the Balkanized
world of personal computing.

The price for this portability was that writing for CP/M, well, required
CP/M. So portability to a new operating system (such as the up-and-coming
MS-DOS) was more difficult in some ways. In fact, MS-DOS borrowed many
features from CP/M in order to make the migration from CP/M as painless
as possible,

As operating systems become more all-encompassing, applications
become more dependent on them for system services such as user interface,
memory allocation and mapping, security and privilege access, sound, video,
and networking. If an application is littered with direct operating system API
calls, migrating to a new operating system will often necessitate a complete
rewrite of the code.

Of course, one of the goals of this book is to show you how to avoid just
this scenario.

Operating Systems]57

As software packages become larger and more complex, their memory
requirements often outstrip the available physical memory installed in typical
computer systems. Applications can adopt one of two attitudes when it comes
to memory: assume that it’s scarce or assume that there’s a near infinite
amount limited only by the system’s address space. This choice can have
significant ramifications on program’s portability. Other portability issues
involve memory mapping and memory protection.

Memory Limitations

Embedded systems and early personal computers had very limited amounts
of memory, and most of it was completely exposed to any running programs.
If a program had a working set larger than the available memory, it would
crash or fail to run, unless it implemented its own paging system.

Modern operating systems hide annoying memory limitations by giving
each application its own address space, effectively convincing each program
that it has a huge amount of memory all to itself. Behind the scenes, how-
ever, data is paged to and from disk on demand, allowing the application to
storm ahead, blithely allocating massive data structures. A system with X
amount of megabytes of memory might have total allocations among all
programs exceed that amount, with little deleterious effect, as long as
physical memory were not oversubscribed.

Memory Mapping

Memory-mapped files are another common portability hot spot. Memory
mapping, as the name implies, maps the contents of a file into memory,
avoiding explicit file operations altogether. This can have significant
advantages, including better performance and lower overall memory churn
compared to allocating a buffer and reading the contents of a file into it. In
fact, with very large files, it may not be feasible to load the entire contents
into memory.

For example, geographic information system height field data or
medical visualization volume data can often be many gigabytes in size—
beyond the capabilities of a typical desktop PC to load entirely.

There are different tacks to handling cross-platform development and
memory mapping:

Require memory mapping
You might require it, and then abstract its implementation, which is rea-
sonable if you're creating a medical visualization application that rou-
tinely operates on 16 GB files.

Assume memory mapping is available
You could assume memory mapping is there, build an abstraction, and
then emulate the feature if it’s not available. However, this is rarely
feasible, since emulating memory mapping can be painfully slow and

resource-intensive to the point of impracticality.

Prioritize portability
You can just say that while memory mapping is neat, portability is more
important. So, you write your application from the outset without mem-
ory mapping, predicating your software on the assumption that file
access is slow and cumbersome. This increases your software’s complex-
ity in exchange for portability to systems with memory management.

Protected Memory

Some of the most frequent errors of neophyte C and C++ programmers
involve accessing out-of-bound memory locations, such as stepping off
the end of an array or dereferencing freed points. Even experienced pro-
grammers are bitten by the occasional illegal memory accesses.

Early PC operating systems didn’t offer any protection from illegal
memory access errors, so a renegade bug could often bring down an entire
system by trashing important systemwide data structures. Apple Mac OS,
Commodore AmigaDOS, and Microsoft MS-DOS allowed applications to
peek and poke the computer’s memory willy-nilly with nary a slap on the
wrist. The CPUs of the time did not have the necessary logic for memory
protection, and it wasn’t until the widespread adoption of on-chip memory
management units (MMUSs) that the idea of protected mode desktop operating
systems became viable.

On these early operating systems, an application could poke and prod
about to its heart’s content, getting to interesting bits and pieces of infor-
mation, without needing permission. For example, on MS-DOS-based PCs,
an application could look at and even modify low memory, where important
system variables were kept. Or, more commonly, if a program wanted to
render graphics quickly, it would write directly to the video card’s frame
buffer at some magic memory location (0xA000:0000 for the VGA on 16-bit
real-mode DOS).

Of course, well-behaved programs on these systems tried very hard not to
muck about with memory that wasn’t their own. Accessing video memory
safely on these machines was done through the BIOS by way of the interrupt
10h interface, which was safe and efficient but very slow.

Commercial applications can’t make up for poor performance by saying,
“Hey, we might be slow, but we’re accessing your computer’s resources in a
very polite manner,” so hordes of programmers went about twiddling bits
they didn’t own in order to get as much performance as possible. As a result,
rogue programs could destabilize or crash a computer system very easily by
overwriting the stack or global memory locations.

On today’s computers, this type of behavior isn’t tolerated. Memory
errors will usually result in a little pop-up box to let you know that something
bad just happened—calling it a general protection fault, access protection
violation, bus error, or some other name. But instead of shutting down the
system or quietly corrupting data in memory, the offending program is
terminated without prejudice, while the user’s other programs continue on
with their little digital lives unperturbed.

Operating Systems 159

160

Protected memory access is a concern for portability if an application
relies on it, such as the aforementioned direct video memory manipulation.
This is rarely a consideration, however, since these types of access are simple
to abstract.

Processes and Threads

Chapter 11

The fundamental unit of work in an operating system is the process, which
often corresponds to a running program (but not always). Each process
encapsulates an entire state, consisting of code, data, stack, current instruc-
tion pointer, and registers. In a protected operating system, processes are
logically separated from each other’s memory spaces such that they do not
affect each other’s state (process A cannot directly modify the variables in
process B).

Primitive operating systems support only the notion of a single process.
For example, CP/M and DOS understand only the concept of the current
process, and multiple processes may not run concurrently. Modern operating
systems, however, allow for multitasking, or the ability to run multiple
processes concurrently.

Process Control and Communication Functions

Most programmers don’t have to think too much about the operating
system’s process model. Typically, they just know that they are running
inside a process, and that exiting the process is achieved by returning from
main() or calling an appropriate function such as exit(). However, there
are still some process control and communication functions that some
programs must perform, specifically process startup.

For example, a network server application may need to spawn a new
process for every user who connects. Or an application might wish to launch
another program, which would entail using something like the system()
(available in ANSI C) or spawn*() (a common, but nonstandard, extension
to the C and C++ standard libraries) functions. Unfortunately, those calls
do not inherit the data and state of the spawning process; in which case, a
system-specific process duplication (forking) API must be called. On Unix-like
systems, this has traditionally been the fork() call. Windows does not have
a direct analog to Unix fork(), but you can manually spawn a new process
using CreateProcess().

Unfortunately, these techniques have pretty important implementation
differences, specifically with how they inherit the parent process’s state at the
time of spawn. On Unix, it’s a full duplication. On Windows, there is no
duplication at all, so an important state must be passed to the child process
manually.

Other process-related tasks—such as killing, switching, communication,
and prioritization—also depend on nonportable system APIs.

Interprocess Communication (IPC)

Processes, either in a parent-child relationship or just multiple programs
running simultaneously, occasionally need to communicate with each other.
Depending on the underlying operating system, a developer can select any of
numerous mechanisms for this: pipes, mailslots, shared files, shared memory,
networking, remote procedure calls, or system events.

Unlike with networking, where the BSD Sockets API provides a de facto
pseudo-standard, there is no unifying, lightweight, cross-platform IPC system.
However, abstracting simple communication between two processes is not
very difficult.

Multithreading

Threads are a subset of a process, consisting of the register set, stack, thread-
specific data, and program counter—all the data necessary to represent a
thread of execution. Multiple threads can run simultaneously, sharing the
same address space, code, and operating system resources (such as window
handles and file descriptors). A process is essentially at least one thread and
these shared resources.

Early operating systems didn’t have an explicit concept of threads.
Instead, everything was tossed into the process model. The best you could
hope for were user threads, also sometimes known as coroutines, which were a
form of cooperative multitasking, where each thread would yield control
during certain operations. Native operating system support for threads,
called kernel threads, didn’t become popular until their introduction in the
late 1990s. Kernel threads, working the related lightweight process concept,
first appeared in modern architectures such as the Mach kernel, IBM OS/2,
and Microsoft Windows NT. The threads discussed here are of the kernel
thread type implemented as lightweight processes.

As with so many other new technologies, when multithreading was first
introduced to the computing world, every operating system vendor went off
and designed a proprietary implementation. The following were introduced
in rapid succession: Unix International (UI) threads (aka Solaris threads),
DCE threads (based on early POSIX definitions), C-Threads, Mach threads,
Win32 threads, OS/2 threads, Linux threads via clone(), and, finally, POSIX
pthreads, an attempt to standardize the threading API on Unix-like systems.
After the better part of a decade, we’re left with pthreads and Microsoft
Windows, although some pthread libraries for Windows are available,

By creating and supporting multiple threads of execution within a
process, you gain several advantages:

¢ Since threads are often lighter in weight than processes, switching
between threads is often significantly less taxing than switching between
processes, reducing overhead.

¢ Threads share the address space of their parent process, meaning they
can share and access the same data without relying on interprocess
communications.

Operating Systems]6]

162

Chapter 11

e When a thread is blocked on a resource (for example, waiting for bytes to
be read from disk), another thread can resume execution, providing
more responsiveness and efficiency.

¢ Multiple threads within the same program can run on multiple proces-
sors in a multiprocessor system, resulting in significantly faster perfor-
mance if the program was designed with parallelism in mind.

Since threads are a platform-specific feature, the ANSI C and C++
languages do not treat threads as first-class entities. In fact, they don’t treat
threads as anything at all, since they're not addressed by the standards. C and
C++ programmers must use either operating system native thread support or
a thread library such as pthreads (the POSIX threads library). More modern
languages such as Java and C# treat threads as a fundamental type, resulting
in more robust and full-featured thread support.

The advantage of threads—concurrent threads of execution that can
access the same data efficiently—is also their biggest disadvantage. Race
conditions and deadlocks can arise when two threads vie for the same
resource simultaneously. A deadlock occurs when one thread modifies data
that another thread has just read, invalidating the latter thread’s view.
Deadlocks happen when two or more threads end up waiting on each other
for more information and grind to a halt, unable to proceed since each
thread is dependent on the next. Common data structures that address these
problems include mutexes, critical sections, and semaphores. Each operating
system or thread library implements these data structures differently, both
syntactically and semantically.

Software developers must decide if multithreading is a net win. If you
choose to support multithreading, you must put a lot of effort into properly
abstracting the actions of thread creation, suspension, killing, prioritization,
and synchronization. Additionally, software that is dependent on multiple
threads is often difficult to port to single-threaded systems, whereas single-
threaded applications can move to multithreaded platforms transparently
(albeit with some potential inefficiency).

SAL EXAMPLE: THREAD HANDLING

SAL assumes that ifs core audio mix-and-send-to-hardware routine will be called
asynchronously, either by another thread or through an interrupt service routine.
[Actually, the interrupt service routine has not been implemented and would require
some work to get running, but other implementations all use the thread-calling
technique.) All implementations, except for OS X/CoreAudio, manually create a
separate thread for the background mixer and buffer update function. The OS X/
CoreAudio implementation registers a callback that is executed by a separate
thread created by the operating system.

SAL requires a back end to implement thread creation (if necessary) and
synchronization (via mutexes).

Creating a thread in SAL (which should be done by only SAL back-end
implementations; the thread and mutex APIs are not exposed outside of SAL) is as
simple as calling _SAL_create_thread(), which dispatches to the appropriate back-
end function.

sal_error_e
_SAL_create_thread(SAL_Device *device, SAL_THREAD_FUNC fnc, void *targs)
{
if (device == 0 || fnc == 0)
{
return SALERR_INVALIDPARAM;
}

return device->device_fnc_create_thread(device, fnc, targs);

SAL’s threading implementation assumes that a thread is defined as
SAL_THREAD_FUNC:

typedef void (POSH_CDECL *SAL_THREAD FUNC)(void *args);

Since this is an application/client-defined callback, you must specify the calling
convention POSH_CDECL) explicitly, because the application and client code might be
compiled with a different default calling convention. In addition, a SAL_THREAD_FUNC
accepts a single pointer to a void for any arguments (which are forwarded through
_SAL_create_thread()). Each back-end implementation of SAL_Device: :device_
fnc_create_thread must properly execute the SAL_THREAD_FUNC as a start thread
function. This is a direct mapping in Windows:

static

sal_error_e

_SAL_create_thread win32(SAL_Device *device,
SAL_THREAD_FUNC fnc, void *targs)

{
HANDLE hThread;
if (device == 0 || fnc == 0)
{
return SALERR_INVALIDPARAM;
}
if ((hThread = (HANDLE) _beginthread(fnc, 0, targs)) == (HANDLE)-1)
{
return SALERR_SYSTEMFAILURE;
}
SetThreadPriority(hThread, THREAD PRIORITY HIGHEST);
return SALERR_OK;
}

Operating Systems 163

164

Chapter 11

Under Linux and OS X, the thread start function is also a direct mapping with
an appropriafe cast. The thread start function passed to pthread_create() is expected
to return a pointer fo a void. Although a SAL_THREAD_FUNC returns nothing, it is harm-
less in this situation, since the returned value is never used.

sal_error_e
_SAL_create_thread pthreads(SAL_Device *device,
SAL_THREAD_FUNC fnc, void *args)

pthread_attr_t attr;
pthread t tid;
int result;
if (device == 0 || fnc == 0 || args == 0)
{
return SALERR_INVALIDPARAM;
pthread_attr_init(8attr);
result = pthread create(&tid, &attr, (void* (*)(void *))fnc, args);
if (result !=0)

{

return SALERR_SYSTEMFAILURE;

return SALERR_OK;

Mutexes serialize access to a shared resource (in this case, the SAL Device),
preventing race conditions. SAL requires recursive mutexes, which may be locked
multiple times by the same thread (nonrecursive mutexes will allow a thread to dead-
lock against itself, which is a pretty silly concept). Linux's pthreads support recursive
mutexes as an extension; Win32's mutexes are recursive. OS X's pthreads are not
recursive, so OS X uses a a higher-level implementation, NSRecursiveLock, instead.

SAL abstracts the mutex structure as a void pointer exported to the application.

typedef void *sal mutex_t; /**< mutex used for interthread synchronization */

The contents of the mutex depend on the underlying implementation. The
sal_mutex_t is a HANDLE under Windows, but it is a pointer to a pthread_mutex_t
under Linux. As with much of SAL’s back-end implementation, mutex management is
handled through a handful of functions which, in turn, dispatch dynamically to a
platform’s underlying mutex implementation. The following is the dispaich to a
specific thread-creation function:

sal_error_e
_SAL_create_mutex(SAL_Device *device, sal mutex_ t *p mtx)

if (device == 0 || p_mtx == 0)
{

return SALERR_INVALIDPARAM;
}

return device->device_fnc_create mutex(device, p_mtx);

Here is the Windows implementation:

static
sal_error_e
_SAL_create mutex_win32(SAL_Device *device, sal mutex_t *p_mtx)
{
if (p_mtx == 0 || device == 0)

{
return SALERR_INVALIDPARAM;

*p_mtx = CreateMutex(NULL, FALSE, NULL);

if (*p_mtx == 0)

{
return SALERR_SYSTEMFAILURE;
}
return SALERR_OK;
}
And here is the Linux implementation:
sal_error_e

_SAL_create_mutex_pthreads(SAL_Device *device, sal mutex t *p_mtx)
i
if (p_mtx == 0 || device == 0)
{
_SAL_warning(device, "Invalid parameters to SAL_create mutex\n");
return SALERR_INVALIDPARAM;

*p_mtx = (sal_mutex_t *)
device->device callbacks.alloc(sizeof(pthread mutex_t));

if (*p_mtx == 0)

{
_SAL error(device, "Out of memory allocating mutex\n");
return SALERR_OUTOFMEMORY;

#if defined POSH_0S_LINUX

Operating Systems 165

166

{

pthread mutexattr_t attr;
attr. mutexkind = PTHREAD_MUTEX_RECURSIVE_NP;

pthread mutex_init((pthread mutex_t *) (*p_mtx), &attr);
}

#else
#error pthreads mutexes currently only supported on POSH_0S_LINUX
#endif

return SALERR_OK;

Environment Variables

Chapter 11

Operating systems often provide a handy static communication and config-
uration mechanism known as environment variables. By setting an environment
variable, either on the command line or through some kind of control panel
application, you can configure an application directly, without using external
files or a user interface. And since an environment variable can be inter-
actively queried by a running program, it’s a convenient way to change a
running program without halting it.

For example, a simple server application may listen for traffic on a
particular port. Designing an entire user interface for it is overkill, but for
whatever reason, restarting it to change some parameters is not acceptable. A
simple compromise is to have the server periodically look at an environment
rariable and adjust its settings accordingly dynamically.

The need to set and retrieve environment variables is so common that
the ANSI C standard provides the putenv and getenv APIs for just this purpose.
The aforementioned server application might look like this:

int port = DEFAULT_PORT;
while (1)
{

const char *portenv = getenv("MY_PORT");
if (atoi(portenv) != port)
{
port = atoi(portenv);
update_port(port); /* let the application update its port value */

}
/* do other stuff */

Additionally, some operating systems will pass an array of environment
variables as the third parameter to main():

int main(int argec, char *argv[], char *enwp[])
{
}

However, this is not mandated by the ANSI specification.
POSIX.I-compliant implementations also provide a global variable:

const char **environ;

But since the latter two have spotty implementations, getenv and putenv
are the safer bets when accessing environment variables.

Exception Handling

During the course of program operation, certain “exceptional” situations (a
euphemism for bugs and severe errors) may arise. These can be due to errors
in the program (illegal memory access, divide-by-zero, floating-point
exceptions, and so on), user input (CTRL-C pressed, for example), or possibly
system errors external to the program. Different operating systems handle
and broadcast such exceptions uniquely; however, the ANSI C language
provides a limited but standardized method for trapping and handling such
circumstances: the signal and raise APlIs.

C Exception Handling

When an exceptional situation occurs, the operating system will look to see if
your program has installed a special handler for just such an event. If so, it
calls your handler and, in some cases, even allows it to attempt some kind of
recovery.

An application installs an exception handler with the signal API, passing
the type of signal to handle and the address of the handler. For example, if
you wish to trap illegal memory accesses in your handler (or at least know
when they might occur), you might code the following:

#include <signal.h>

/* this should get called when the *buf = OxCC line is executed */
/* You can test this out by running it in a debugger and

setting a breakpoint in the handler */
void handler(int x)

{
}

int main(int argc, char *argv[])

{

Operating Systems]6?

168

char *buf = 0;

/* install SEGV handler */
signal(SIGSEGV, handler);

/* test it out!! */
*buf = 0xCC;

Even though ANSI C provides a standardized exception management
system, there are still significant portability issues:

e Not all signals are catchable (SIGSEGV requires hardware-assisted memory
management).

¢ The scope of operations available during an interrupt handler may vary
(some implementations disallow the use of any C run-time library func-
tions inside a signal handler).

¢ Some implementations may provide more handling mechanisms than
the default set. For example, Microsoft Windows provides a comprehen-
sive and powerful exception-handling system using its proprietary Struc-
tured Exception Handling (SEH) mechanism based around the _try,
_except, and _finally keywords.

As a rule, portable programs should not rely on exception handlers to
do “real” work. Your programs should instead concentrate their efforts on
masking the effects of a signal handler as much as possible.

C++ Exception Handling

The C++ language has its own set of exception-handling mechanisms
using the try, catch, and throw keywords, but these are designed to catch
application-defined errors, not operating system exceptions. In fact, current
C++ exception-handling implementations are completely unrelated to oper-
ating system-generated exceptions. To make matters worse, you cannot
safely and portably throw exceptions from a signal handler.

User Data Storage

Chapter 11

Many personal computer operating systems support multiple user accounts

servers with multiple users, and even families are finding the need to share a
single computer among different members. This means that application
developers need to support per-user configuration and data.

For example, Betty and Dave may have drastically different preferences
for the desktop background, application settings, and audio. Neither relishes
the idea of resetting preferences every time he or she sits down at the
computer. In the past, each application had to implement its own “multiuser”
feature if it wanted to support user-specific customization, or users would be
forced to fight over the system’s configuration.

Unfortunately, there is no universal standard for storing per-user data;
in fact, there’s nothing even close, not even commonly used open-source
libraries that hide these details. For global application data, a developer
could store data in the application directory; however, this would fail if the
application’s directory were not writable or if multiple instances of the same
application were installed.

Microsoft Windows Registry

Microsoft Windows uses a central database, called the registry, to store system-
wide and per-user information. This was an attempt to address all the prob-
lems encountered with earlier versions of Windows, where configuration
data spread randomly through myriad files on a user’s system.

The registry stores and retrieves data by keys in a filesystem-like
hierarchical structure. For example, a user’s preference for the volume
setting in your application might be stored at HKEY_CURRENT_USER\Software\
MyCompany\MyProduct\volume:

unsigned char get_volume()

{
HKEY hKey;
DWORD dwDisposition;
unsigned char value;
DWORD dwSize = sizeof(value);
DWORD dwType;
/* error checking omitted for brevity */
RegCreateKeyEx(HKEY_CURRENT_USER,
"SOFTWARE\\MyCompany\\MyProduct",
oL,
REG_OPTION_NON_VOLATILE,
KEY_ALL_ACCESS,
NULL,
&hKey,
&dwDisposition);
RegQueryValueEx(hKey,
"volume",
NULL,
&dwType,
(BYTE *) &value,
&dwSize);
RegCloseKey(hKey);
return value;
}

Operating Systems]69

170

Chapter 11

Microsoft’s registry system has proved to be very unpopular with both
casual and power users alike. Since it’s a centralized repository for system-
wide information, any damage to it may result in an unusable system. In
contrast, application- or user-specific configuration file corruption localizes
the damage. Apart from this, the registry is difficult to navigate (it requires a
custom tool, Regedit, for examination and modification) and transfer from
machine to machine. Contrast this with a file-based configuration system,
where individual preferences are easy to transport by merely moving that
single file.

Linux User Data

Linux does not have a standard mechanism for supporting per-user prefer-
ences, but since it was designed as a multiuser operating system from the
start, it is relatively easy for an application to store configuration data in a file
such as ~/.MyApplication/preferences. This does require more work on the part
of the application, and it prevents a user from using a unified preferences
system, but since that’s not an option on Linux, it's a moot concern.

0S X Preferences

Apple has gone a different route with its user data system, Preferences, in
Mac OS X. Unlike the Microsoft Windows registry, Mac OS X uses an open
text-file format based on XML, so anyone with a text editor can open and
examine preferences files. In addition, instead of a single monolithic system
preferences file, OS X has multiple, targeted preferences files that contain
a limited amount of information. Systemwide preferences are stored in
/System/Library/Preferences, and user-specific preferences are stored in
~/Library/Preferences.

Programming the preferences system is, unfortunately, a bit
cumbersome:

unsigned char get_volume()

{
unsigned char value;
CFStringRef pref name, value name;
CFPropertyListRef plref;

/* error checking omitted for brevity */
pref_name =
CFStringCreateWithCString(NULL,
"com.MyCompany.MyProduct"”,
CFStringGetSystemEncoding());
value_name =
CFStringCreateWithCString(NULL,
"volume",
CFStringGetSystemEncoding());

plref = CFPreferencesCopyAppValue(value_name, pref_name);

CFDataGetBytes((CFDataRef) plref,
CFRangeMake(0, sizeof(value)), &value);

CFRelease(pref_name);
CFRelease(value_name);
CFRelease(plref);

return value;

Security and Permissions

The anarchistic technology buffet that defined computing throughout the
1980s and early 1990s slowly calmed down, giving rise to a handful of
predominant standards, Microsoft Windows (operating system), Internet
Explorer and Morzilla Firefox (web browsers), Microsoft Outlook (email
client), Apache and Microsoft IIS (web servers), sendmail and Exchange
Server (email servers), and JavaScript (client-side presentation for web
browsers) have staked claims as the dominant entities in their domains. But
with this homogeneity came an opportunity for exploitation by nefarious
individuals and organizations.

If a virus author, spam sender, identity thief, or similar “cyberterrorist”
wants to attack a large number of systems, targeting a vulnerability in a
commonly used application will reap huge returns. The first cataclysmic
Internet worm was distributed through an exploitin the ubiquitous sendmail
server. The standardizations we see today have led to even more exploits, as
worm and virus authors take advantage of security holes in popular applica-
tions such as Microsoft Outlook and Internet Explorer.

The rampant spread of spam, viruses, spyware, adware, worms, and
other malware emphasizes the flaws and holes in applications and oper-
ating systems. The adoption of secure (compared to earlier incarnations)
multiuser desktop operating systems has made the matter a primary con-
sideration for cross-platform application developers, who must contend
with security policies.

As noted in the previous section, multiuser operating systems allow
different users to use the same computer, sometimes simultaneously. For
obvious security and privacy reasons, it is undesirable to have a random user
modify or even access files he does not “own,” such as another user’s docu-
ments or key operating system files.

Some of the issues associated with security and privileges on modern
computer systems include application installation, data storage, and low-level
access.

Operating Systems]?]

172

Chapter 11

Application Installation

The first problem you may encounter is a relatively mundane one: simply
installing your application. A lot of developers try to install their software
into a global system directory—such as in C:\Windows or /usr/bin—by default.
The problem is that on a secure multiuser operating system, this is not
allowed without appropriate privileges or temporarily logging in as a
superuser, an administrator, or root.

If new or updated system software must also be installed (for example,
Windows games will often attempt to install the latest version of Microsoft’s
DirectX libraries by default), then the issue of privilege rears its head.

In many cases, this is just a temporary inconvenience for the user—
she must obtain sufficient privileges (using an operating system-specific
command)—Dbut sometimes, this can stop the installation dead in its tracks
if the user does not have sufficient rights. Instead of requiring a specific
installation directory, allow the user to specify a location (possibly relative to
their home directory) to which they have better access.

Privileged Directories and Data

Privilege and access aren’t the only concerns during installation. How users
access shared data or store their own data are issues that affect them after
installation. Some applications prefer to place data in their own directories—
for example, C:\Application\Data. However, many multiuser operating systems
do not allow this, at least, not easily or without compromising security in
some other fashion.

If it is feasible, data should be stored per user. That way, each user that
uses your software will have his copy of data files without fear of other users
inadvertently accessing or deleting those files. If data must be shared, make it
an explicit action on the part of the users: require them to place shared data
into special shared folders or directories. This way, there is no confusion as
to whether or not a file will be private.

EXAMPLE:
MICROSOFT WINDOWS REGISTRY PERMISSIONS

Access to the global system registry key HKEY_LOCAL_MACHINE on Windows is
restricted to users with administrator rights. With Windows 9x/Me, this wasn’t a
concern since all users, by default, had administrator rights. But when a lot of
software was installed on Windows NT, 2000, or XP, problems arose. Many
developers would store application global data in HKEY_LOCAL_MACHINE, instead of
the more appropriate HKEY_CURRENT_USER, which sometimes prevented their appli-
cation from running at all on multiuser Windows systems. Simply changing the
application key from HKEY_LOCAL_MACHINE fo HKEY_CURRENT_USER fixes the problem.

Other operating systems have analogous situations. For example Mac OS X
separates preferences in /System/Library/Preferences and ~/System/Library/
Preferences.

Low-Level Access

Programmers of embedded or older operating systems are used to accessing
or modifying global data or privileged CPU instructions directly. Early DOS
applications routinely performed low-level access to hardware ports (parallel,
joystick, serial, and VGA) using Intel 8086 instructions such as 0UT and IN.
Graphics were drawn by writing to certain constant addresses (0xA0000 for
VGA frame buffer access). BIOS functions were called by setting registers
and generating a software interrupt. Simple problems called for simple
solutions.

A secure operating system will not allow these types of actions, since they
could crash the system or subvert security policies. For example, file permis-
sions are irrelevant if an industrial spy can program an IDE controller to read
raw sectors from a hard drive.

A portable program should not be affected by these issues, as long as it
properly abstracts low-level access.

Summary

The operating system is the face of a platform, where the heart and soul

are the processor. Most software interacts with the operating system instead
of the hardware directly, and for this reason the operating system is a major
element of portable software development. In this chapter we’ve covered
many of the features that operating systems support and how to abstract
and move between different implementations of these features on different
platforms.

Operating Systems]?3

DYNAMIC LIBRARIES

Traditionally, applications have been
statically linked to any necessary libraries,
incorporating all the code in the library
into the program’s executable. When enough
applications started using the same libraries, devel-

opers wondered whether users were suffering from
unnecessary code bloat. If ten different applications were all using the same
string functions, each consuming space on disk or in memory, wouldn’tit be
great if all those libraries could share the same library, thereby reducing
their collective footprint?

This dilemma generated shared objects on Unix/Linux, import/shared
libraries on Mac OS, shared libraries on AmigaDOS, dynamic link libraries
(DLLs) on Windows and OS/2, and frameworks on Mac OS X. In fact, it is
the rare modern operating system that lacks shared library facilities.

Shared libraries also provide (in theory) the ability to fix bugs globally. If
there is a bug in a system-installed shared library, then the operating system
vendor can distribute a new version, and all applications that use that library
will automatically receive the bug fix.

176

Dynamic libraries also allow the creation of plug-ins, or dynamically
loadable pieces of code used to extend an application’s features.

As you might expect, shared libraries operate differently between
operating systems. In this chapter we’ll cover the task of writing portable
software that leverages the power of dynamic libraries.

Dynamic Linking

As the name implies, dynamic linkingbinds references from the application to
external libraries at run time. When the program is built, it is linked either to
an import library, which provides stubbed references so that the link process
may proceed, or directly to the dynamic library, so that the linker can ascertain
which functions need to be resolved dynamically and add appropriate startup
code as necessary.

When the program is run, the operating system notes which external
references must be resolved, loads the application and any dependent
dynamic libraries (which are not already resident), and then patches a jump
table (usually) so references to the dynamic library are properly resolved. If
the dynamic library cannot be found or is possibly of the wrong version, the
operating system will report an error at program startup.

Dynamic Loading

Chapter 12

Dynamic loading is similar to dynamic linking, but the application does not
explicitly link to imported functions and data. Instead, it loads a dynamic
library explicitly and manually binds any references.

This approach has a couple major advantages:

¢ The application can run even if some dynamic libraries are missing,
allowing the use of certain features only if present and ignoring them
otherwise.

¢ Specific dynamic libraries may be selected at run time, providing config-
uration options and application extensibility.

An example of the latter case would be if an application wanted to select
a math library based on the presence of different instruction sets of the host
CPU. If the CPU supported AMD’s 3DNow instruction set, then one library
could be loaded; if Streaming SIMD Extensions (SSE) were present, then
another could be loaded; and if SSE2 were present, yet another could be
loaded instead. This is far better than requiring a different version of the
program for each different optimized instruction set.

A very common and powerful use of dynamic loading is to acquire appli-
cation plug-ins, which are optional components that can be loaded at run
time. Spelling checkers, photo-editing filters, and file import/export
routines are common examples of plug-ins.

OPENGL32.DLL AND 3DFX INTERACTIVE

The computer game GLQuake originally linked implicitly to the OpenGL subsystem’s
opengl32.d11 module. One vendor of graphics cards, 3Dfx Interactive, could not use
the OpenGL subsystem as defined by Microsoft for various technical reasons, so
computer gamers were forced to overwrite the systemwide opengl32.d11 with the
one provided by 3Dfx. Quake 2, the sequel to Quake, rectified this by dynamically
loading a user-specified OpenGL subsystem, a much safer mechanism for all
involved.

Problems with Shared Libraries (aka DLL Hell)

While shared libraries are powerful and useful, they also create a whole new
set of problems, some of which have made many programmers question their
actual value. The main problems are associated with versioning and their
proliferation in various locations.

Versioning Problems

As mentioned earlier, one of the theoretical advantages of dynamic libraries
is that they can be updated to fix bugs and add new features. Any application
that uses the upgraded dynamic library automatically inherits the improve-
ments. Unfortunately, in practice, this can backfire.

As an example, suppose that your application Super Graphics Visualizer
uses a popular third-party shared library, math3d, which provides system-
optimized 3D mathematics facilities. Somewhere in your code, you initialize
math3d:

unsigned int flags;
if (M3D_Init(flags) == 0) /* flags is uninitialized! */
{

SGV_Error("Could not initialize math3d!!!");

}

The version of math3d that you've been using states, “The flags parameter
to M3D_Init() is currently unused but must be zero in this version of Math3D.”
Of course, you don’t notice this caveat, and even worse, the library doesn’t
enforce this requirement. So while your code works, it’s not adhering to the
letter of the law.

A user downloads your application and installs it. Part of the installation
process is putting the ever-so-popular math3d library in a systemwide shared
location to minimize redundancy. On Windows, you've probably installed
math3d to C:\Windows\System32; on Linux, maybe it’s in /usr/lib or /usr/lib/
share; and on Mac OS X, it’s in /System/Library/Frameworks.

177

Dynamic libraries

178

Chapter 12

Everything works fine for weeks. Then one day, the user installs another
application, Math Formula Express, which also happens to use math3d. The
installation program notices that there is an older version of math3d present
and “conveniently” updates it to the latest version, which is faster, smaller,
and less buggy.

After using Math Formula Express for a while, the user tries to run Super
Graphics Visualizer, only to see it crash with a cryptic error message. She
hasn’t modified or changed Super Graphics Visualizer at all, so why would it
suddenly stop working?! After calling tech support and spending a lot of time
and energy tracking down the problem, the culprit is identified:

Super Graphics Visualizer is now failing the call to M3D_Init(). Previous
versions of math3d did not enforce the edict of “the flags parameters must be
zero.” The new version does, resulting in this inexplicable failure. What used
to work now stops working, even though the application itself has not been
modified.

Applications become dependent on undefined or undocumented
behavior, often without realizing it, and then unexpectedly break when the
implicit underlying behavior changes.

Querying the dynamic library’s compiled version, while not fixing the
problem, at least identifies it quickly. The application can check its instance
of a version constant against the constant compiled into the library:

if (M3D_Version() != M3D_VERSION)

{

SGV_Exror("Incorrect version of math3d found!");
}
Proliferation

Shared libraries, like socks and loose change, have a habit of showing up in
the oddest, least expected places. As helpful as it would be to have all shared
libraries residing in the same location, users, installation programs, and
application developers often put shared libraries in arbitrary places.

In a Windows environment, an attempt to load a DLL will search
directories in the following order:

Application’s directory

Windows system directory (for example, C:\Windows\System32)
Windows directory (for example, C:\Windows)

Entire path

A e

Current directory

Accordingly, replacing a widely used shared library may or may not have
the intended results. If a DLL in the system directory is updated, local copies
stored in an application’s directory may still get loaded inadvertently. Or, if a

shared DLL is located in the path but not in the system or Windows directory,
updating it may not have the intended effect if another application, which
also has its own copy, is listed earlier in the path.

Linux uses a single search path defined by the environment variable
LD_SEARCH_PATH. Each system may have a different search path, possibly with or
without the current directory in it, so the behavior may change from system
to system as well.

Gnu LGPL

One of the unexpected uses of shared libraries came to light with the
promotion of the Gnu Library/Lesser General Public License (LGPL),
which, unlike the general GPL license, allows the distribution of closed-
source applications if they dynamically link to a library in question.

I’'m not a lawyer, so you should read the full text of the LGPL license
yourself if you're considering using or creating an LGPL-licensed work
(http://www.gnu.org/copyleft/lesser.html). The gist is that if you use
someone else’s LGPL-licensed library in your own application, anyone
must be able to modify the library and still use it with your application.

This forces the application developer to provide the source code to the
application (so it can be recompiled and relinked to the LGPL-licensed
library) or dynamically link to the library in question. For obvious reasons,
most closed-source developers prefer the latter.

Windows DLLs

The Microsoft Windows operating system supports shared libraries through
its DLLs. DLLs are built like any other library, with a few additional flags
specified, either in the IDE or at the command line.

The DLL developer must specifically indicate which functions are to be
exported (all other functions remain private to the DLL). Previously, this was
done by creating a .def (module definition) file:

LIBRARY MATH3D
DESCRIPTION "My simple math library"
EXPORTS

M3D_Init @1

M3D_Dot3 @2

M3D_Cross3 @3

M3D Normalize3 @4

M3D Version @5

As you can imagine, this became pretty cumbersome as the number of

exports continued to grow. Every time you added a new function, you had to
remember to add it to the .def file to ensure that it was exported.

Dynamic libraries 179

180

Chapter 12

Later versions of Windows compilers from Borland, Microsoft, and
Watcom simplified this by allowing the programmer to export a function
with a function signature statement:

/* math3d.h */

float __declspec(export) M3D_Dot3(const float a[3],
const float b[3]);

void _ declspec(export) M3D Cross3(const float a[3],
const float b[3],
float dst[3]);

float __declspec(export) M3D_Normalize3(const float a[3],

float dst[3]);

The __declspec(export) directive informs the compiler that that func-
tion must be exported from the DLL.

Compiling and linking the source code generates two libraries: the static
import library (with an .1ib extension) and the dynamic link library (with a
.d11 extension). In this example, the libraries would be math3d.1ib and
math3d.dl1l.

There is one unfortunate problem with __declspec(export): when an
application uses a DLL function, it’s not exporting that function, but trying to
import that function, so the previous header file won’t work. Instead, the
application must use __declspec(import). Now, you can manage this with brute
force and have two different header files—one for building the DLL and
another for using the DLL—Dbut this is clumsy and error-prone. Instead, most
library developers predefine a symbol when building the DLL—something
like BUILDING_LIBRARY or BUILDING_DLL—and set a shared predefined constant
appropriately, so that they are properly exporting or importing a function,
depending on the situation.

An application may then either dynamically link to the DLL or
dynamically load it. The former requires linking to the DLL’s import
library (math3d.lib in this example), and the latter requires manually
loading the library and searching for exported functions.

Dynamic loading is quite a bit more tedious than linking, but has the
advantage of working even if a DLL is not present. Windows provides the
LoadLibrary() and GetProcAddress() APIs for dynamic loading.

#include <windows.h>
float (*M3D_Dot3)(const float a[3], const float b[3]);
void (*M3D_Cross3)(const float a[3], const float b[3], float dst[3]);
float (*M3D_Normalize3)(const float a[3], float dst[3]);
HINSTANCE hM3D;
int load_math_library(void)
{

if ((hM3D = LoadLibrary("math3d.d1l")) == 0)

return 0;
M3D _Dot3 = (float (*)(const fleat a[3], const float b[3]))
GetProcAddress(hM3D, "M3D Dot3");

M3D_Cross3 = (void (*)(const float a[3], const float b[3], float dst[3]))
GetProcAddress(hM3D, "M3D Cross3");
M3D_Normalize = (void (*)(const float a[], float dst[]))
GetProcAddress(hM3D, "M3D_Normalize3");

return 1;
}
void unload_math_library(void)
{
FreeLibrary(hM3D);
}

POSH EXAMPLE: DLL EXPORT/IMPORT

POSH examines two symbols—P0OSH_BUILDING_LIB and POSH_DLL—and then sets
another, POSH_IMPORTEXPORT, appropriately. If POSH_BUILDING_LIB is defined as 1,
POSH knows that a library is being built. If POSH_DLL is defined, POSH knows that a
DLL is either being built or used. Based on this matrix, it sets POSH_IMPORTEXPORT as
follows:

POSH_BUILDING_LIB POSH_DLL POSH_IMPORTEXPORT

Not defined Not defined Empty
1 Not defined Emply
Not defined 1 _ declspec(import)
1 1 _ declspec(export)

An application may then prefix its functions appropriately for export/import:

void POSH_IMPORTEXPORT foo(void);

Some compilers change the location of the declspec statement, so POSH
wraps its usage inside another macro, POSH_PUBLIC API:

POSH_PUBLIC_API(void) foo(void);

Windows also provides DLL authors the ability to execute a specified
function under certain special circumstances. Specifically, a DLL may
provide a special function, DLLMain(), declared as follows:

BOOL WINAPI D11lMain(HINSTANCE hinstDLL,
DWORD dwReason,
LPVOID lpvReserved);

That is automatically called whenever a process first attaches to a
DLL, a process detaches from a DLL, or a thread in the current process

is created or destroyed. This allows a DLL to perform initialization and

Dynamic libraries]3]

182

cleanup functions without the assistance of any applications, and it also
allows a DLL to remain thread-safe by giving it the opportunity to allocate
thread local variables.

Linux Shared Objects

Chapter 12

Linux and other Unix flavors provide shared objects, which are shared library
files that have a .so extension and adhere to the convention of a 1ib prefix,
such as libmath3d.so. Static libraries use the .a extension, as in libmath3d.a.

Building a library as a shared object requires passing special flags to the
compiler:

$ gcc -shared -fPIC -o libmath3d.so math3d.c

This compiles math3d.c and creates a shared object 1libmath3d.so. The
-shared flag tells the linker that a shared object is being created (so it won’t
attempt to build an executable), and the -fPIC option tells it to generate
position-independent code that can be relocated (which is necessary since a
shared object does not know at what address it will be loaded).

Unlike Windows, the compiler and linker do not need to generate or use
a separate special import library. Instead, the appropriate library dependen-
cies are specified when building the program. The program is linked to the
.so file directly to resolve references and define dependencies:

$ gcc test.c -L. -lmath3d

This compiles test.c using the current directory (-L.) to search for
libraries, including libmath3d (-1lmath3d). The executable will dynamically link
to libmath3d.so at run time. If the shared object can’t be found, an error will
result, usually something like this:

$./a.out: error while loading shared libraries: libmath3d.so:
cannot open shared object file: No such file or directory

Dynamic loading can be implemented just as in Windows, but using the
<dlfcn.h> APL

#include <dlfcn.h>
float (*M3D_Dot3)(const float a[3], const float b[3]);
void (*M3D_Cross3)(const float a[3], const float b[3], float dst[3]);
float (*M3D_Normalize3)(const float a[3], float dst[3]);
void *hM3D;
int load_math_library(void)
{

if ((hM3D = dlopen("libmath3d.so", RTLD_NOW)) == 0)

return 0;
M3D_Dot3 = (float (*)(const float a[3], const float b[3]))
dlsym(hM3D, "M3D Dot3");
M3D Cross3 = (void (*)(const float a[3], const float b[3], float dst[3]))

dlsym(hM3D, “M3D_Cross3");
M3D Normalize = (void (*)(const float a[], float dst[]))
dlsym(hM3D, "M3D_Normalize3");

return 1;
}
void unload_math_library(void)
{
dlclose(hM3D);
}

And, like Windows, the Linux <dlfcn.h> API allows a shared object to
execute code optionally when loaded and unloaded. Instead of D11Main, a
shared object author implements the _init() and/or _fini() functions, which
are called when the shared object is loaded and unloaded, respectively:

void _init(void)

{
/* do startup code here */
}
void _fini(void)
{
/* do shutdown code here */
}

Which functions to export are determined with a simple process: all
nonstatic functions are exported, period. Development is easier, since
header files do not need to be littered with __declspec(import) and
__declspec(export), as on Windows, nor is there a need for a separate
.def file. However, an unfortunate side effect is that it’s difficult to keep a
nonstatic function private to the shared object.

Mac OS X Frameworks, Plug-ins, and Bundles

The shared library and plug-in situation on Mac OS X is a bit more confusing
than one would hope. Unlike with Linux or Windows, Mac OS X does not
offer a single shared library type that can be used as a dynamically linked
library or as a dynamically loaded piece of executable code. Instead, it uses
a rather mind-numbing array of different technologies to provide these
features, depending on the needs of the programmer. In fact, a d1fcn.h
compatibility library for OS X has already been developed and is widely used,
providing the dlsym style interface for OS X applications. We’ll look at some
the OS X specific technologies here.

Frameworks

Frameworks are versioned, hierarchical, dynamically linked shared libraries,
with a .framework extension. For example, the math3D shared library would be
called Math3D.framework.

Dynamic libraries 183

184

Chapter 12

Frameworks operate much like dynamically linked shared libraries on
Windows and Linux (DLLs and shared objects, respectively); however, they
contain more than just executable code. Frameworks may have header files,
resources, localization information, and documentation—all located inside a
standard folder hierarchy.

Frameworks may be installed in a systemwide directory (/System/Library/
Frameworks), in a user directory (~/Library/Frameworks), or inside an application
bundle, where they are private to the application. The latter minimizes
conflicts between multiple versions of the same framework on the same
system. Unfortunately, frameworks may not be dynamically loaded in the
same manner as shared objects or DLLs.

Bundles

NSBundle is an Objective-C (the Apple standard language for Mac OS X
development) wrapper around the CFBundle API. CFBundle is a middle-level
layer for managing loadable code and resources. It hides a lot of imple-
mentation details from the programmer (such as the executable file format,
which may be PEF or Mach-O), but is still low level enough that it doesn’t
dictate too much policy to the user.

Here is an example of using a bundle:

#include <Carbon/Carbon.h>

float (*M3D_Dot3)(const float a[3], const float b[3]);
void (*M3D_Cross3)(const float a[3], const float b[3], float dst[3]);
float (*M3D_Normalize3)(const float a[3], float dst[3]);

CFBundleRef m3d;

int load_math_library(void)
{
const char *bundlename = "math3d.bundle”;
CFURLRef ref = CFURLCreateFromFileSystemRepresentation(
NULL,
bundlename,
strlen(bundlename),
FALSE);

/* roughly equivalent to LoadLibrary/dlopen */
if ((m3d = CFBundleCreate(NULL, ref)) == 0)
{

printf("Could not load bundle\n");

exit(1);

}

/* roughly equivalent to dlsym/CetProcAddress */
M3D Dot3 = (float (*)(const float a[3], const float b[3]))
CFBundleGetFunctionPointerForName(m3d,

CFSTR("M3D_Dot3"));
M3D Cross3 = (void (*)(const float a[3], const float b[3], float dst[3]))
CFBundleGetFunctionPointerForName(m3d,
CFSTR("M3D_Cross3"));
M3D_Normalize = (void (*)(const float a[], float dst[]))
CFBundleGetFunctionPointerForName(m3d,
CFSTR("M3D_Normalize")

)3;
return 0;
}
void unload_math library(void)
{
/* no equivalent! */
}

Although the preceding code is analogous to the Windows and Linux
shared library functions, there are some notable differences and quirks. For
starters, the Mac OS X Core Foundation libraries seem to have an abhor-
rence for just accepting raw pointers to characters for strings. Instead, you
must use CFStringRef and CFURL. Additionally, there is no way to unload a
bundle once it’s loaded, nor is there a standard equivalent to D11Main(),
_fini(), and _init().

Code Fragment Manager loads PEF files (an older style PowerPC binary
format, compatible with both early Mac OS and Mac OS X).

Plug-ins

CFPlugln is tied directly to the CFBundle, but it operates at a higher level of
abstraction. For starters, it uses an interface query and factory system very
similar to Microsoft’s Component Object Model (COM). This has some
theoretical advantages, but for many developers, it’s overkill and extremely
tedious dealing with all of the universally unique identifiers (UUIDs, also
sometimes called IIDs or GUIDs), querying, and general hackery involved.

Simply loading a piece of executable code using the CFPlugIn API
requires dozens of lines of code. While in the end you may gain something
more robust, you definitely pay a price when it comes to usability.

dyld is the low-level Mach-O dynamic linker interface, which lacks the
backward compatibility with PEF binaries that CFBundle and CFPlugIn provide.

#include <mach-o/dyld.h>
NSModule m3d;
NSObjectFileImage m3d_image;
int load_math_library(void)

{
NSObjectFileImageReturnCode rc;
NSSymbol symbol;

rc = NSCreateObjectFileImageFromFile("math3d", &m3d_image);

Dynamic libraries 185

186

if (xrc != NSObjectFileImageSuccess)
return 0;

m3d = NSLinkModule(m3d_image,
"math3d",
NSLINKMODULE_OPTTON_RETURN_ON_ERROR);

if (m3d == 0)
return 0;

symbol = NSLookupSymbolInModule(m3d, "_M3D _Dot3");
M3D _Dot3 = (float (*)(const float a[3], const float b[3]))
NSAddressOfSymbol(symbol);
symbol = NSLookupSymbolInModule(m3d, " M3D _Cross3");
M3D_Cross3 = (float (*)(const float a[3], const float b[3]))
NSAddressOfSymbol(symbol);
symbol = NSLookupSymbolInModule(m3d, " _M3D Normalize");
M3D Normalize = (float (*)(const float a[3], float b[3]))
NSAddressOfSymbol(symbol);

}

void unload_math_library(void)

{
NSUnLinkModule(m3d_image, NSUNLINKMODULE_OPTION_NONE);
NSDestroyObjectFileImage(m3d_image);

}

Many operations that were previously one function call are now split into
two calls, For example, LoadLibrary()/dlopen() on Windows and Linux both
load a DLL and map it into the process’s address space, but these are separate
operations on OS X using NSCreateObjectFileImageFromFile() and NSLinkModule().
Likewise, looking up a symbol goes from a single call to GetProcAddress() /
dlsym() to a two-step, find-symbol/get-symbol-address procedure using NSLook-
upSymbolInModule() and NSAddressOfSymbol(). The only other visible difference
is that the Mach-O interfaces require the actual name of the symbol, post-
mangling, which is why there are underscores prepended to the function
names.

Believe it or not, there are still more ways of accomplishing related
functionality on OS X, including weak-linking and loading dynamic libraries
using the Mach-O image functions. Due to space and relevancy constraints, I
won’t go into those techniques here.

Summary

Chapter 12

As you can see from this chapter, dynamic libraries are conceptually very
similar across modern operating systems. Facilities must be present to load a
binary image, find a symbol within that image, and then finally bind to that
symbol. There are minor technical differences between the implementations,
and fairly significant syntactic ones, but developing an abstraction for this is
not that difficult.

FILESYSTEMS

Most computer systems today support the
notion of a file—a chunk of data stored
somewhere other than the computer’s main
memory, such as a floppy disk, CD-ROM, or
CompactFlash RAM. Each operating system may

support one or more types of filesystems, or formal
specifications that define how to access and manage individual files. Some
platforms, such as embedded systems that execute from ROM, may not have
any filesystem present.

Due to the different ways each operating system presents files to the
user, file access is one of the trickier points for portable software. Standard
filesystems provide access through the C standard library’s standard 1/0
routines, such as fopen(), fclose(), fread(), and fwrite(), but it is not
uncommon to use special APIs to access special filesystems, such as
networked or tape backup filesystems.

In this chapter, I'll go over some of the differences between filesystems
and how to deal with them in your portable code.

188

Symbolic Links, Shortcuts, and Aliases

Chapter 13

The hierarchical file folder system, seen on most modern consumer oper-
ating systems, is a conceptually simple but cumbersome way to manage large
amounts of data. A lot of “up folder, up folder, up folder, down other folder,
select file” type navigation occurs, which is often confusing and tedious for a
user working on multiple files in different locations.

To alleviate this problem, filesystem designers introduced symbolic links
(in Windows parlance, shortcuts), which are ways to link to a file in another
directory. This allows you to access a file from a directory in which it may not
be physically present, simplifying file management considerably. Not all
filesystems support links, and even those that do often differ significantly in
implementation. In fact, they’re different enough to break portable software
that might expect a certain type of behavior.

The best way to handle shortcuts and symbolic links depends greatly on
the particular application. If your application doesn’t open or manipulate
files through the command line and can instead rely on the operating sys-
tem’s file open/query/selection dialog mechanisms, then you're probably in
the clear. However, if you're writing a command-line application, you'll need
to decide on a policy for links: ignore the issue and open a file however you
want or, if you're feeling ambitious, handle links correctly depending on the
filesystem.

Windows LNK Files

Windows has the most primitive form of file aliases. It creates special files
with the .1nk extension that contain the name of the file to which they point.
If you access the link file from a standard Windows file-open dialog box,
things work the way you would expect. But if you try to process the link file
from the command line, you're actually operating on the link itself, not on
the file linked to. This means that if you do something like this:

C:\Documents and Settings\bhook\cd work

where work is actually a .1nk file that points to a directory elsewhere, you’ll
get an error message. If you use Notepad to open a file called Shortcut to
todo.txt.1lnk, you'll end up editing the .1nk file directly (which is ill-advised
since .1nk files are in binary format and not amenable to editing with a text
editor).

Unix Links
Many Unix-like systems have two different types of links:

Hard links
A hard linkis a synonym for the file in question, and any operations,
including deletion, will act on that file directly. A hard link is indistin-
guishable from a regular file.

Soft links
A soft linkis a pointer to another file and, at the same time, is a file in and
of itself. Soft links are identifiable as such, and some operations, such as
deletion, operate only on the link itself, not its target.

This disparity may lead to unexpected and possibly dangerous conse-
quences for the end user if your application expects one type of behavior
and gets another.

Path Specification

Filesystems uniquely identify files with a fully qualified path name. Different
filesystems provide different conventions for the layout of the path name,
which can lead to significant portability problems when working with files.

Disk Drives and Volume Specifiers

Some operating systems allow or require specification of a particular logical
or physical device in a qualified path name. This requirement and its imple-
mentation is not universal, so portable software should not rely on it.

Path Separators and Other Special Characters

Hierarchical filesystems use the notion of directories or folders, which are
special files that contain other files. Early filesystems did not provide this
structure, but it’s been a long time since those particular dark ages. Without
a hierarchical filesystem, all files inhabit the same location, making manage-
ment a nightmare. Directory listings of hundreds or thousands of files are
not pleasant.

Path separators distinguish between directories and are often different
depending on the operating system. For example, DOS and Windows use the
backslash (\) character; most Unix filesystems use the forward slash (/), and
Mac OS uses the colon (:).

In addition, each filesystem has special characters, directories, or files
that represent the root directory, the parent directory, and the current
directory. Table 13-1 shows how these directories are represented on some
common filesystems.

Table 13-1: Root, Current, and Parent Directory Representations

Operating Sysem Root Current Directory Parent Directory
DOS /Windows \ (of current disk)

Linux/Unix/OS X /

Mac OS Volume name N/A

VMS Volume name (1 [-]

Filesystems 139

190

Chapter 13

As you can see, nonalphanumeric characters often have radically
different meanings depending on the filesystem. For this reason, any files
and directories you create for your own use should not contain anything but
alphanumeric characters and possibly underscores (_). While it is tempting
to use the space character or special characters (such as ., |, #, or §), doing
so may create complications when moving between systems. The period
character also may be used as part of a filename one time or many times,
depending on the filesystem (FAT16 filesystems permit only a single period,
to delineate between the filename and its extension).

Current Directory

When a program opens a file using a relative path name (that is, not fully
qualified), as in the following example, there is an assumption that the file is
located in the current directory:

fp = fopen("myfile.txt", "r");

As you can see in Table 13-1, most filesystem implementations support
the notion of a current directory—the default directory in which to look for
an unqualified filename. Where this directory is located is another matter
altogether. When running from the command line, the current directory
is clear; however, when running a program through the GUI, such as by
double-clicking an icon, the current directory is vague. Sometimes you can
specify the current directory as part of the program icon’s properties; other
times, it's assumed that the working directory will be the directory in which
the program’s executable is located.

Some platforms, such as gaming consoles and the Microsoft Windows
CE/Pocket PC operating system, lack the concept of a current directory,
and all unqualified path names are assumed to be in the root directory.
Applications on this platform must infer or query their locations
(GetModuleFileName()) in order to find their data files.

Path Length

Along with the constraints of name format, each filesystem also limits the
maximum length of a path- or filename, from as low as 11 total characters to
as high as several thousand. Here are some examples:

¢ The MS-DOS/Windows FAT32 and Win32 NTFS filesystems allow up to
256 characters.

¢ The MS-DOS FAT16 filesystem used the infamous 8.3 format (8 charac-
ters in the name and 3 characters in the extension).

e The Linux ReiserFS filesystem supports 4,032 characters.

e The Linux ext2 and ext3 filesystems support up to 255 characters.

e Mac OS, depending on the particular flavor and application support,
usually supports 31 characters.

A portable application can either establish a baseline (the lowest
reasonable common denominator) or attempt to maintain compatibility
between all the different formats possible, but the latter can be very difficult
if you're trying to move files between different platforms.

Case Sensitivity

Some filesystems are sensitive to case, others are not, and yet others will
retain case for display but not for filename matching. Case-sensitive
filesystems consider Graphics.h, graphics.h, and GRAPHICS.H different files;
case-insensitive filesystems view those as the same files. Case-retentive
(but insensitive) filesystems would consider those the same file, but retain
case for display.

The moral here is that you should be rock-solid consistent about
handling case, when dealing with files in your application or even just
naming your source files. If you have a large project and you mistakenly
name two files in the same directory Globals.h and globals.h, you'll run into
an unpleasant surprise when you move your files to a case-insensitive
filesystem.

Security and Access Privilege

Security is becoming an increasingly important part of computing in today’s
world. Historically, personal computers have been, well, personal. Devel-
opers did not place any real effort into providing security and privacy,
leading to the plethora of problems encountered today: viruses, worms,
spyware, and other ill-behaved denizens of the computing universe. Contrast
this with business computer systems, where security and protection have
been first-order priorities.

A lot of personal computer software has been written assuming that the
user has unfettered access to any files on a system. That software, when
migrated to a more secure system, will often fail to run.

The primary culprit is software assuming that it can read and write to
systemwide locations, such as the operating system installation directory,
application directory, or root directory. For example, a decompression
program may blithely assume it may create a temp directory in the root
directory of the current drive for its work, but this will fail on a secured
operating system that prohibits arbitrary access to folders outside the user’s
home directory.

The only valid assumption that an application can make is that it should
be safe and legal to access files in the current user’s home directory. Access
to globally accessed locations, such as temporary directories or the user’s
home directory, must be handled in a platform-specific manner. For more
information about how to determine the user’s home directory, see the
“Special Directories” section later in this chapter.

Filesystems 191

PATH SPECIFICATION EXAMPLES

Under DOS and Windows, a fully qualified path name starts with a drive letter and
colon and then has a series of directory names separated by backslashes, finally
terminating with the filename and extension. Here's an example:

C:\Documents and Settings\brian\book\chapter.sxw

An application written for DOS or Windows would use this path when trying fo
open the file chapter.sxw on the C: drive, located in the directory \Documents and
Settings\brian\book.

The proliferation of networked computers adds some complexity. Using the
previous example, let's assume that the computer you're using is called PARROT and
you're sharing the C: drive under the name C_DRIVE. From another computer, you
could access the same file as follows:

\\PARROT\C_DRIVE\Documents and Settings\brian\book\chapter.sxw

Linux uses a different set of conventions. There are no drive letters, and the path
separator is a forward slash. So a comparable path name might look like this:

/home/brian/book/chapter.sxw

where the home directory is attached to a disk drive partition (specified in a mount
table, a detail mostly hidden from the application). Remotely networked computers
are usually mounted in the same fashion as a disk drive, so the format for a net-
worked file and a local file are identical.

Under Mac OS (prior to OS X), a fully qualified path consisted of the logical
volume followed by directories separated by colons:

Hard Disk:Local Users:brian:book:chapter.sxw

To show a more esoteric example, under the DEC/COMPAQ VMS operating
system, the same path might be as follows:

USERS$DISKO: [BRIAN.BOOK]chapter.sxw;8

Much like DOS and Windows, VMS allows you to specify a physical or logical
device volume followed by a colon. The name of the directory path is enclosed by
brackets, followed by the filename and an optional semicolon and version number.
Networked computers are accessed by a DECnet prefix followed by two colons:

PARROT : : USERS$DISKO: [BRIAN.BOOK Jchapter.sxw; 8

192

Chapter 13

Macintosh Quirks

Until the arrival of the Macintosh in 1984, operating systems treated files as
black boxes containing a chunk of bytes and nothing more. The contents of
these files were inferred by extension, through attribute bits (to differentiate
executable files from data files), or by searching the file’s first few bytes for
“magic cookies” indicating the file’s type.

The Macintosh approached this from a very different direction. Instead
of relying on—or even recognizing—file extensions, the Macintosh’s user
interface, Finder, relies on type and creator IDs stored in every file. When a
user double-clicks a file, the Finder’s desktop database is indexed by the file’s
ereator ID, returning the appropriate application to open that file. The appli-
cation is then launched, and it looks at the file’s type ID to determine how to
handle that particular file. While the type and creator IDs are stored in the
files, the specific mapping of the type ID to the application is handled by the
Finder.

In addition, Macintosh files are divided into two forks: the data fork and
the resource fork. The data fork’s contents are much like a file on any other
operating system, consisting of raw data read and used by the application.
The resource fork, however, is a structured database containing just about
anything an application may want to store there, such as fonts, thumbnails,
formatting information, or even program code. The intent was to separate
pure data from application-specific data.

Transporting files from early Macintosh (pre-OS X) systems to nearly
everything else became a severe headache. Macintosh users would need to
“flatten” their files with special utilities before those files could be copied to a
non-Macintosh system.

File Attributes

Files often have attributes assigned to them that control how they are inter-
preted by the filesystem. Under DOS, for example, a file can be marked as
read-only, hidden, or system. Whether a file is considered a program or
another type is determined solely by its extension.

Unix filesystems control a file’s visibility based on whether it has a
leading period in its filename, and a file's executability is determined by a
specific attribute bit. In addition, Unix filesystems categorize attributes based
on group, the world, and the owner. For example, the owner may have write
access, but the world (everyone who is not the owner) might have only read
access.

Cross-platform applications should not have to worry too much about
filesystem permissions, as long as they do not try to modify or access files
other than the current user’s files.

Filesystems 193

194

Special Directories

Some operating systems have special directories, or folders, where certain
files are expected to reside. Compliant applications must respect these loca-
tions and use them when possible instead of hardcoding their expectations.
For example, the Microsoft Windows operating system recommends install-
ing application files in the Program Files directory and storing user data

in the Documents and Settings folder in the user’s directory (for example,
C:\Documents and Settings\bhook) or somewhere similar, depending on the
specific Windows version.

Each operating system has a different way of querying these locations.
Windows provides the SHGetFolderPath API. On Unix-like operating systems,
the shell will typically expand a special character such as a tilde (~) to the
user’s home directory; however, this is shell-dependent and not viable in
code. Instead, you'll need to call getpwent() to inspect a user’s password file
entry, from which you can derive the user’s home directory.

Text Processing

Chapter 13

Surprisingly enough, simple text files often have a bigger problem moving
from platform to platform than binary files. There is no standard represen-
tation for text files across platforms (not even including the issues associated
with internationalization), so something like representing end-of-file or end-
of-line indicators can change from system to system.

On Unix systems, the standard for an end-of-file declaration is CTRL-D
(0x04). On Windows, however, the end-of-file character is CTRL-Z (0x1A).
Thankfully, this is not a major concern today, since most file APIs use the
actual file’s length to find its end instead of looking for special characters.

The end-of-line marker, however, is still a problem today. The three
common ways to mark the end of a line in a text file are shown in Table 13-2.

Table 13-2: Common End-of-Line Markers

Operating System End-of-Line Character(s)
DOS and Microsoft Windows CR-LF “\r\n’ (0xOA 0xQD)
Unix, Linux, and Mac OS X LF “\n" (OxQA)

Mac OS CR “\r’ (0xOD)

An application that operates on text files will need to handle all of the
different line-ending conventions. On DOS/Windows, the fopen() implemen-
tations will often accept a “text mode” flag, which automatically translates
CR/LF pairs into LF on read and the reverse on write, along with watching
for CTRL-Z as an end-of-file marker. If possible, this extension should be
avoided to retain maximum portability.

Applications simply need to deal with supporting all line-ending conven-
tions to remain as compatible as possible, especially if the program will need
to edit a file that might use any of those three line-ending conventions.

The C Run-Time Library and Portable File Access

The C standard library provides a set of functions to access files declared in
¢<stdio.h>, including fopen(), fclose(), fread(), fwrite(), ftell(), and fseek().
However, these functions, while portable across standard implementations,
have their own limitations.

First, these functions provide only an API to interface to the filesystem;
they do not dictate the path format. So while the semantics of these functions
may be similar or even identical between platforms, the filename parameters
will be system-dependent. Do not assume that fopen("/myfile.txt") will work
on anything but a Unix-like filesystem.

Of greater concern—especially with today’s hard drives that exceed a
hundred gigabytes of storage on even an inexpensive consumer computer—
is that functions such as fread(), furite(), and fseek() accept size_t param-
eters, which is analogous to an unsigned integer on most platforms, and
thus are limited to how far they can seek. On Win32, for example, a size_t
is 32 bits, meaning that a program can seek only up to 4 GB of a file. To
breach this limit, you must use a nonportable 64-bit-compatible API, such
as _lseeki64().

Summary

With all the confusion and opportunity for error that the different file-
systems present, a consistent strategy is vital in order to make file operations
manageable and safe. Aside from avoiding many of the invalid assumptions
outlined in this chapter, it is helpful if you require the user (or operating
system) to construct or specify filenames. The less manipulation of path
names an application does, the more portable it will be.

Filesystems 195

SCALABILITY

Portability is more than just a case of “does

it run correctly?” Users want the program
to run well. Performance expectations and
resource usage are major issues when develop-
ing software for a wide range of platforms. Designing
software that is scalable across a wide range of different
performance and feature profiles is a key element of
portable software development.

In this chapter I'll cover how variations in performance can greatly affect
a program’s portability, and how to work around some of these issues.

Better Algorithms Equal Better Scalability

Computers have become so mind-numbingly fast that differences in per-
formance may sometimes be perceived as academic for typical tasks. The
tangible difference in speed between a 1.7 GHz Pentium 4 and a 3 GHz

Pentium 4 is negligible for the vast bulk of applications, such as email and
web browsing. In contrast to even five years ago, today’s programmer can

198

Chapter 14

often get by with brute force or naive implementations of many tasks. The
concept of optimization is almost as anachronistic as the floppy disk drive.

This can lull a developer into a false sense of security.

When you have more horsepower than you can reasonably harness, it
is very easy to forget about efficiency. But when you need to migrate your
software to a lower-performance platform, you may find that some of those
assumptions are no longer valid.

To put this into numbers, say you need to search for duplicate entries
in a 1,000-element database. Originally, you implement this as an O (N?)
linear search, where each item must be compared against every other item.
The total time for this operation is formulated as follows:

(Nz(,)
2F

where Nis the number of entries, Cis the cost per entry in clock cycles, and F
is the clock speed of the processor. Suppose that each comparison takes 200
clock cycles, there are 10,000 items, and the CPU has a 2 GHz clock speed.
Plugging these values into the equation gives you a run time of about 5
seconds. That’s a reasonable length of time for an infrequent operation.

Now let’s assume your software is running on a 16 MHz Palm Zire PDA.
For argument’s sake, let’s assume 200 clock cycles as well (although it’s very
doubtful that the numbers would be even close to each other given the
radically different nature of the two architectures). This operation now takes
over 10 minutes, which would make even the most patient user somewhat
fidgety.

It’s easy to just chalk this up to the hardware and say, “Well, that machine
is much faster.” However, suppose you switch to a more efficient search algo-
rithm and data structure (in this case, a binary tree):

1 - (N(ogN)C)
F

Now the numbers change dramatically for the average case. So, for the
2 GHz CPU, the time drops down to approximate 0.007 seconds, which is
effectively intangible to the end user.

With the Palm Zire, the difference is far more dramatic: it drops to
approximately 1.66 seconds, which is much more acceptable to a user than
10 minutes.

By switching to a more efficient data structure, you've made a program
that was only theoretically portable become realistically portable. To a user
with a 2 GHz CPU, both implementations are reasonably fast. On the slower
machine, the change in performance is dramatic.

It’s not just raw clock speed that can make a scalability difference.
Assumptions about things such as the amount of available RAM can easily
come back and bite a developer. It is completely reasonable to implement

something that uses a 2 MB stack or a 32 MB temporary heap on a modern
desktop PC, but that assumption will fall flat on its face on a handheld or
embedded platform.

That said, scalability across an arbitrary range of hardware platforms is
nearly impossible to achieve. An extreme case is a game meant to run on a
wireless cellular phone and, say, an AMD Athlon 64 desktop system. How
are you expected to reconcile the monumental differences between the
architectures, where the total RAM in the cell phone is less than the level
two cache in the Athlon 64?7 Algorithms that perform well on the high-end
system may not be feasible on the low-end one, and practical choices made
for the low end may be too limiting for the high end.

Scalability Has Its Limits

Because there are limits to scalability, you need to define reasonable baselines,
as I suggested in Chapter 1. Code that can remain portable should probably
remain so, especially library and shared code that is easy to factor out of the
main code base, but entire programs are unlikely to port across completely
disparate platforms. It’s possible, but it’s probably not worthwhile.

Some developers will make a big effort to abstract out every possible sub-
system so that different, platform-appropriate modules can be plugged in.
However, in the end, this approach often imposes an unnecessary level
of indirection, where the abstraction interferes with implementation and
doesn’t buy the programmer any real benefits other than theoretical
elegance,

For example, imagine a game developer making a new computer game,
Tunnels of Destruction. He would like this game to run on his high-end
desktop system and, ideally, on his Pocket PC, which has less memory than
the video card in his other system! As powerful as the Microsoft Pocket PC
platform has become these days, it is still a far cry even from PCs that are five
years old today.

The developer has two choices: write the game twice, or write the game
once and abstract it sufficiently so that an appropriate implementation for
each subsystem is possible. In the latter case, the subsystems might include
artificial intelligence, storage, input, display, sound, and networking—
effectively, the entire game except for some very basic glue logic. A lot of
engineering effort could be wasted trying to retain what ends up being a
minimally useful level of portability.

Even so, some areas may still be portable, so you can’t discount it
altogether simply because two platforms are dissimilar. Certain subsystems
such as ZIP file loading or networking (the WinSock layer on a Pocket PC is
very similar to that of a PC) might be shared, but in that case, they should be
moved into separate projects and shared by the main game. Trying to force a
single source build is, in the long run, likely to cause more problems that it
solves.

Scalability 199

Summary

Portability must take practical considerations into account. The theoretical
elegance of a single source build system is not reason enough to incur the
extra complexity to achieve that goal if it doesn’t buy you anything in the real
world. Share code when it makes sense, but don’t force the issue needlessly.

200 Chapter 14

PORTABILITY AND DATA

Aside from code, applications rely

on external resources such as images,
sounds, and text (for internationalization).

Developing resources that are easy to move

between platforms is just as important as making sure
that the code compiles and runs correctly. This chapter
discusses the problems and techniques associated with
portably sharing data between platforms.

Application Data and Resource Files

Most applications will have some kind of custom data or resource files, often
with a custom file format. The first choice when specifying a resource file is
whether to use binary or text format for storage.

202

Chapter 15

Binary Files

Binary files are enticing since they are small, trivial to load and process, and
provide at least one level of obfuscation from prying eyes. A binary resource
file, if properly formatted, can often be loaded with a single file-read opera-
tion, along with associated adjustments for byte ordering. This will be signif-
icantly faster than loading and parsing even a simple text file.

For example, the AIFF/RIFF file format (used by WAV files) is a chunked
format. All data can be loaded in one fell swoop and easily parsed in binary
form once appropriate byte-ordering adjustments are made.

Text Files

Text files are often recommended as cross-platform proprietary file formats.
There is some validity to this, but not as much as many people think. Granted,
text files force the developer to avoid assumptions about byte order, size,
structure packing, and alignment problems, since there is no option to read
directly into an in-memory structure, but that’s mostly an issue of discipline,
not a fundamental advantage.

SAL EXAMPLE: PARSING A BINARY FILE

The following code snippet shows SAL parsing a binary buffer (presumably read
with a single call to fread):

sal_error_e

SALx_create_sample_from_wave(SAL_Device *device,
SAL_Sample **pp sample,
const void *kp_src,
int src_size)

int i;

int src_frame size;

int num_samples;

SAL DeviceInfo dinfo;

_SAL_WaveHeader wh;

_SAL_WaveChunk wc;

const sal_byte t *kp_bytes = (const sal_byte t *) kp_src;
sal _byte t *p_dst = 0;

if (device == 0 || pp_sample == 0 || kp_src == 0 ||
src_size < sizeof(_SAL_WaveHeader))

return SALERR_INVALIDPARAM;

*pp_sample = 0;

/* we can use memcpy() since it's four bytes */
memcpy(wh.wh_riff, kp bytes, 4);

kp_bytes += 4;

wh.wh_size = POSH_ReadU32FromLittle(kp_bytes);

kp_bytes += 4;

memcpy(wh.wh_wave, kp bytes, 4);

kp_bytes += 4;

memcpy(wh.wh_fmt, kp_bytes, 4);

kp_bytes += 4;

wh.wh_chunk_header_size = POSH_ReadU32FromLittle(kp_bytes);
kp_bytes += 4;

/* verify that this is a legit WAV file */

if (strnemp(wh.wh_riff, "RIFF", 4) ||
strnemp(wh.wh_wave, "WAVE", 4) ||
wh.wh_chunk_header size != 16)

return SALERR_INVALIDPARAM;

/* read in the chunk */

wc.wc_tag = POSH_ReadI16FromLittle(kp_bytes); kp_bytes += 2;
wc.wc_num_channels = POSH ReadI16FromLittle(kp_bytes); kp_bytes += 2;
wc.wc_sample_rate = POSH_ReadI32FromLittle(kp_bytes); kp_bytes += 4;
wc.wc_bytes per second = POSH_ReadI32FromLittle(kp_bytes); kp_bytes += 4;
wc.wc_alignment = POSH_ReadI16FromLittle(kp_bytes); kp_bytes += 2;
wc.wc_bits per sample = POSH ReadI16FromLittle(kp_bytes); kp_bytes += 2;
memcpy(wc.wc_data, kp bytes, 4); kp_bytes += 4;

wc.wc_data_size POSH ReadI32FromLittle(kp_bytes); kp_bytes += 4;

[etciat ey

Parsing the binary file is simplicity itself; bytes are processed sequentially and
reassembled into appropriate values. The parser is careful not fo assume anything
about alignment, padding, byte order, or sizes, other than what is rigidly defined for
the WAV file format. There is no need for an intermediate line or token buffer such
as you would expect with a text parser. Of course, there is still a lot of room for
error, especially if the file is malformed.

While blindly reading a file directly into a structure is very dangerous:

_SAL_WaveHeader wh;

fread(&wh, sizeof(wh), 1, fp);

sometimes it is reasonable; for example, on a fixed platform where you have
complete control over the structure and packing of both data and code. The
extra performance derived from this is sometimes worth it, and even though it's
theoretically unsafe, remember that portable programming is about converting
implicit assumptions to explicit edicts.

203

Partability and Data

204

Chapter 15

That said, text files are trivial to modify with easily available tools on most
systems, such as vi on Linux, Notepad on Windows, and TextEdit on Mac OS
X. This means that making configuration and last-minute changes is very
easy. In addition, large numbers of text files can be efficiently edited, searched,
and modified using standard tools such as Perl, sed, awk, head, tail, and grep.
This property of text files is very powerful and should not be underestimated.

However, text files present their own set of problems. Since there is
no universal standard for text file encoding (as discussed in Chapter 13),
dealing with all the different text file formats can become complex. In
addition, the developer must now write a text parser, which is a far more
complex and error-prone task than reassembling values from a binary byte
stream.

Finally, text files are usually significantly larger than their binary coun-
terparts. A 32-bit value in binary form consumes 4 bytes in binary, and it may
consume up to 10 bytes as decimal text. But text does compress well, so size
might not be much of an issue, assuming the developer is willing to incor-
porate file decompression into his application.

XML

When people talk about text data files, the discussion invariably ends up
at XML (eXtensible Markup Language), a more general version of the
ubiquitous HTML used on the Web. XML enforces rigid, standardized file
structures and has some advantages:

¢ Wide availability of XML parsing libraries and editing and inspection
tools

o Well-understood, popular, and standardized syntax

¢ Support for structured and nested data formats

However, these advantages mostly just make up for the disadvantages of
text file formats in general.

XML parsing libraries are often extremely large. In some cases, the XML
library alone may be larger than your application (but their presence at least
minimizes the problems associated with implementing a text file format).
Also, if XML is manageable only through the use of an external library then,
by definition, portability is reduced to the subset of platforms supported by
the specific library.

The following is an example of an XML configuration file:

<MyAppConfig>
<UserName>Brian Hook</UserName>
<RegCode>8812BBC520DCF71C</RegCode>
<SysConfig>
<FullScreen»>1</FullScreen>
<Mouselock>1</MouselLock>

<Volume>46</Volume>
</SysConfig>
</MyAppConfig>

As you can see, that’s quite a bit of verbiage for something simple. In
many cases, XML is overkill when a simple, line-oriented text file format can
be used instead. In the end, the right choice depends entirely on the needs
of the application and development team.

Scripting Languages as Data Files

If you’re already using an embedding scripting language such as Lua or
Python, you have a text file format and parser for free. Instead of loading and
parsing a data file, an application can load and execute a script, pushing the
responsibility of parsing and validation into the scripting language imple-
mentation. By leveraging the existing implementation and any additional
tools, instead of writing a parser from scratch, a developer can save a signifi-
cant amount of time and effort. See Chapter 17 for more on scripting
languages.

Creating Portable Graphics

When you’re developing portable software, your bitmap images, icons, splash
screens, and other graphics assets will need to move from platform to plat-
form. Each target system will have its own preferred display sizes, aspect
ratios, and color depth. Some may even prefer a specific file format. For
example, Binary Run-time Environment for Wireless (BREW) and Windows
both prefer the BMP format for bitmaps, whereas the Amiga used IFF/LBM.

Designing artwork so that it can be reformatted appropriately for a spe-
cific platform, either as a preprocess step or dynamically by the application,
is a difficult task. The standard technique is to create art files at the highest
resolution necessary, and then filter and quantize the images down depend-
ing on the requirements of a particular target system. Unfortunately, this
doesn’t always work, since the disparity between some platforms can be so
great that making meaningful art for both extremes is nearly impossible.
Some programs, such as Adobe Acrobat, work well across multiple plat-
forms, but they operate within a limited domain (text with some moderate
graphics) and limit themselves to scalable technologies such as PostScript
to achieve this.

For example, the original Palm OS PDA is a 160-by-160 square screen
with grayscale or 8-bit (256-color) paletted color graphics. A modern
Macintosh may have high-resolution displays (1920-by-1200) with 32-bit
color. Images created for the Palm will not look good on the Macintosh.
Images created for the Macintosh will often turn to unidentifiable mush if
resized and filtered down to meet the limitations of the Palm. So, when
dealing with wildly disparate platforms, sometimes single-source (or, in this
case, single-image) portability will not be practical.

Portability and Data 205

Creating Portable Audio

As digital audio becomes standard on most computers—even lowly PDAs
have modest sound capabilities these days—users increasingly expect audible
cues while working. From something as simple as a beep notifying the user of
an error, to full-featured sound while playing a game, audio is an important
part of the computing experience today.

As with computer graphics, sound capabilities can range from incredibly
primitive (monaural 4-bit PCM) to extremely advanced (Dolby Digital 5.1
surround sound). However, the feature difference isn’t quite as dramatic as
with graphics, so it’s a bit more manageable.

At the high end, while Dolby Digital 5.1 is finding traction in higher-end
personal computers, the bulk of users still use only a pair of speakers or
headphones, so stereo or even monaural sound is often sufficient. You’ll
want to start with the highest-resolution files reasonable, such as uncom-
pressed, stereo, 44.1 KHz, 16-bit PCM waveforms. From there, it’s easy to
use off-the-shelf tools to convert to lower-resolution, compressed formats
appropriate for each of your target platforms. As with graphics, some audio
assets do not convert down particularly well, so they may require manual
adjustment or tweaking. Sounds with a lot of high-frequency content will
often sound muddy or unintelligible when resampled, and quiet noises
may have too much noise when quantized to a lower-resolution format.

Summary

As if writing code that runs between multiple platforms isn’t enough of a
task by itself, simply trying to share data between platforms can turn into a
frustrating experience for developers and users alike. Files may have data
stored in different formats and byte ordering, and in some cases the files
themselves may be missing key data lost during the transition from one
system to another. Using text files exclusively can mitigate these problems
to some degree; however, this is at the cost of larger file size and increased
time to load and parse.

INTERNATIONALIZATION AND
LOCALIZATION

The rise of the Internet and the World
Wide Web has created a global software
market. The days of writing for just one
market are ending, especially with the increased
popularity of electronic software distribution (ESD)
for delivery. If you sell your software on the Web, you

won’t know if your customer is down the street or in a different country. In
this chapter we’ll go over some of the issues involved when trying to expand
your markets to cultures and locales outside your own.

The terms internationalization and localization are sometimes used inter-
changeably, although they are distinct (but related) processes. Internation-
alization consists of developing and preparing an application so that it can
be localized easily. Localization is the process of taking an internationalized
application and customizing it for a particular language, region, and/or
culture (collectively known as a locale). Often, the application will be devel-
oped by one group, but the localization itself will be contracted out to
another group that is familiar with a specific locale. So, internationali-
zation and localization are two steps in the process of making software
more accessible to a wider range of countries, cultures, and languages.

208

Internationalization and localization are very complex topics. Here, I'll
touch on the important issues related to portability.

Strings and Unicode

Chapter 16

The most obvious difference between regions is language—software written
for English speakers will not be very friendly for French-speaking users.
Much of the language-specific data is embedded as strings in an application.
Here is an example:

void load_file(const char *filename)

{
FILE *fp = fopen(filename, "r");
if (fp==0)
{
/* this assumes that the error is displayed to an English-
language user! */
my_error("Could not open file '%s'", filename)
return;
}
}

Changing the error message in this code fragment requires manually
altering the string and recompiling the executable. It’s marginally better if
you use a macro, like this:

#ifdef ENGLISH

#idefine COULD NOT _OPEN "Could not open file '%s'"

#elif defined FRENCH

#define COULD_NOT_OPEN "n'a pas pu ouvrir le dossier '%s'"

#endif
void load_file(const char *filename)
{
FILE *fp = fopen(filename, "r");
if (fp==0)
{
my_exrror(COULD_NOT_OPEN, filename)
return;
}

However, even though changing the message requires only setting a
global macro, a new executable is necessary for each language, which is far
from ideal.

Ideally, you could load the string dynamically based on the target
system’s locale setting. Microsoft Windows supports this through string
tables, and Mac OS X supports this through strings files (for text embedded
in the program) and .nib files (for the user interface).

Accessing a localized string is then performed with the appropriate
API call, such as LoadString() on Windows or NSLocalizedString()/
CFCopyLocalizedString() on OS X.

While platform-specific string-loading APIs do provide adequate
solutions, they also decrease portability by introducing another abstraction
layer and resource file to implement and manage. It’s just as easy to create
your own string table implementation that maps from one string to another
based on the locale.

For example, you could make a file format that consists of key/value
pairs, sectioned by language:

[English]
"Yes"= "Yes"
"No"="No"
[French]
"Yes"="0Qui"
"No"="Non"
[Spanish]
"Yes"="5i"
"No"="No"

Localized strings can then be retrieved through a simple API that
takes strings in the programmer’s native language and returns locale-
specific strings:

International_Setlocale("French");

my_message_box(International_GetString("Do you wish to quit?"),
International_GetString("Yes",
International_GetString("No"));

This has the advantage of working regardless of a particular operating
system’s underlying notion of string localization.

Currency

More than 180 currencies are in use throughout the world, many with differ-
ent names and formatting conventions. Hardcoding a particular currency can
lead to a cultural mismatch—not everyone understands what a dollar is.

In addition, different countries denote decimal portions of a value
differently. For example, in the United States, it’s common to write $1.23 for
one dollar and twenty-three cents; in Europe, this amount might appear as
1,23. The former might confuse non-American users, and the latter could
throw non-Europeans for a loop.

Internationalization and localization 209

210

Date and Time

Like currency, time and date have many different representations. Certainly,
every country agrees that time is divided into hours and minutes, but their
individual notations vary quite a bit.

Americans use the hour:minute format, sometimes with a 24-hour clock,
but often with a 12-hour clock, using AM or PM to denote morning versus
night. For example, 13:30 and 1:30 PM both represent one hour and thirty
minutes after noon. Some countries substitute a period for the colon (for
example, Finland would use 13.30). There is a slow but steady move to
support the ISO standard time format: a 24-hour time notation separated
by colons (13:30:00.00).

Dates are a bit trickier because of the many different permutations
for the order of month, day, and year. Separators also change, and, of
course, the names of months depend on the local language.

One of the most frequent areas of confusion is the ordering month/
day/year versus day/month/year. In the United States, the eleventh day of
the eighth month (August) is represented as 8/11/2005 or 8-11-2005. In
most other countries, this same date is formatted as 11/8/2005, 11-8-2005,
or 11.8.2005. So a non-American reader who sees 8-11-2004 would assume
November 8, 2005. This obviously affects Americans and non-Americans
equally, depending on the nationality of the writer.

As with time, an ISO standard is intended to help alleviate any ambiguity.
This standard dictates the form YYYY-MM-DD, as in 2005-08-11.

Portable software that is meant to run on international systems should
track the date and time numerically and then use a locale-specific formatting
function to convert from a canonical form to a locally compatible form.

This avoids all ambiguity. Conversely, code such as the following should
be considered a relic of bygone ages:

void get time_string(int h, int m, int s, char *buffer)

{
/*
For brevity I'm not checking for buffer safety here, but the
point is that you should not hardcode the colons or make
assumptions about the incoming range of values
*/
sprintf(buffer, "%o2d:%02d:%02d", h, m, s);
return buffer;
}

Interface Elements

Chapter 16

Localization issues aren’t limited solely to text. Since modern applications
depend more and more on graphical output to convey information, devel-
opers must contend with the localization of graphical content such as
bitmaps and icons.

Icons familiar to one developer aren’t necessarily relevant to someone
from another culture. An open hand, facing palm outward, might mean
“stop” to an American or European, but to someone from West Africa,
this is considered an insulting gesture. The picture of a rural mailbox
means “mail” to a lot of Americans, but in cultures where mail is delivered
to centralized stations or through door slots, it’s a meaningless reference.
These types of elements should be set up so they are easily substituted
during localization,

Keyboards

It is obvious that if a language has a different alphabet, then a different
keyboard will be required. Yet, it’s still quite common to see instructions that
say something like “Please press the ~ key to open this menu” or “Pressing
CTRL-$ performs this function,” when many of the world’s languages simply
don’t have a concept of the ~ or $ characters.

This problem is not limited to radically dissimilar languages such as
English and Tamil. There are notable differences, such as currency, between
keyboards in the United States and the United Kingdom, even though the
languages are extremely similar.

Even relying on the physical location of a key instead of the key’s assumed
meaning doesn’t always work. Scan codes (the raw value generated by a key,
prior to any translation to a character value) often move around on a key-
board depending on the language, manufacturer, and form factor (desktop,
notebook, or phone). The most common example is scan code 0x2B,
the backslash key on English language keyboards. This key is above the
ENTER/RETURN key on most United States keyboards, but to the left of
the ENTER/RETURN key on non-United States English keyboards.

Summary

The increasing accessibility to international markets has allowed software
developers to reach more and more distant (and foreign) customers. Small
software organizations often don’t have the expertise necessary to under-
stand and create localization procedures, and thus their software suffers
from cultural selfishness, because it’s designed to interact with users of the
same cultural and language background as the developers.

To avoid confusing and discouraging foreign users, software developers
should move as much locale-specific information out of their executables and
into data files that can be selected by the end user via a localization menu
(or, better yet, automatically by querying the system for its locale information).
Avoid hardcoded assumptions or dependencies on particular keyboard,
date, and time formats. Design bitmaps and other interface elements to
be as culturally neutral as possible, since some common idioms may be
more culturally biased than many developers realize.

Internationalization and localization 2]]

SCRIPTING LANGUAGES

ANSI C and C++ suffer from many porta-

bility problems, primarily because they are
low-level languages specifically designed to
allow, or even encourage, binding tightly to a
particular system. System-level APIs and in-memory
object layouts are exposed directly to the developer, so
when an application is written entirely in one of these
languages, it is often implicitly tied to the underlying
platform.

If, instead, you write your application using a much higher-level
language—one that doesn’t truck in concepts such as memory layout,
pointers, packing, alignment, or low-level system APIs—many portability
problems vanish. Of course, many of the advantages of C and C++—such
as higher performance and access to the very facilities that make portability
difficult—are also lost.

A good compromise is to code in C/C++ only those parts of the program
that need maximum performance and/or low-level access, and then develop
the rest of the application using a portable high-level scripting language,

214

such as Ruby, Python, or Lua. Languages such as these tend to be robust,
system-agnostic, and embeddable (easy to integrate with another code base),
while still retaining acceptable performance.

Hundreds of different high-level languages are in use today. Some are
application-specific scripting languages, such as Autodesk AutoCAD’s Alisp,
GNU Emacs’s Elisp, AliasilWavefront Maya’s MEL, and Discreet 3ds Max’s
MaxScript. Others, including Java, LISP, OCaml, and C#, are more general
and suitable for high-level application development. The ones we're inter-
ested in are a subset known as embeddable scripting languages, specifically
designed to integrate easily with a larger application. They have well-defined
interfaces to low-level languages and often provide extensive support for
utility packages. In this chapter, we’ll take a look at a few of the more popular
languages: Lua, Ruby, Python, and ECMAScript/JavaScript. Visit the Great
Computer Language Shootout website (http://shootout.alioth.debian.org/
great/index.php?sort=fullcpu) to compare the performance of various
programming languages.

Some Scripting Language Disadvantages

Chapter 17

By converting large swaths of code to a portable scripting language, an appli-
cation can isolate itself from platform-specific idiosyncrasies. Why deal with
low-level details if low-level access is not a requirement?

But you won’t be surprised to hear that there are some downsides to using
a scripting language. The first is performance. Most scripting languages are
either interpreted or compiled to a generic bytecode, which is then executed
by a virtual machine. Script interpretation or virtual machine execution is
much slower than executing native instructions generated by a compiler.
However, many applications don’t need this level of performance exceptin a
few core places, which may be written in a traditional compiled language. So,
the difference in performance is often more of a theoretical concern than a
practical one.

A much greater problem is the lack of high-quality tools for many script-
ing languages. Debuggers, profilers, and syntax checkers are often unavail-
able for scripting languages, and even when they are, they're often crude.
The tools for scripting languages are not nearly as mature or popular as tools
for more prevalent languages such as C, C++, and Java. This means that while
you might save a lot of time by avoiding portability problems, some of that
time is lost again due to the inefficiencies of using a less mature development
environment,

Finally, by their very nature, scripting languages are “above the metal,”
which means that if you do need to do some low-level operation—such as
execute a system API or simply twiddle some bits—you’ll need to implement
some circuitous hacks or find a package that provides the necessary low-level
features. For example, the Lua language does not offer low-level features
such as bit manipulation. As a result, this feature must be emulated clumsily
in the scripting language or implemented through a helper library written in
a lower-level language.

JavaScript/ECMAScript

JavaScript is a lightweight, embeddable scripting language originally devel-
oped by Netscape in the mid-1990s. Originally intended to act as a hook for
Java applets, it quickly became used (abused?) as a way to make web pages
dynamic and animated. Many developers don’t realize that JavaScript is a
language on its own, capable of standing apart from the Web, browsers, and
HTML. Granted, these are the applications for which JavaScript is most
famous, but they are not required environments for a JavaScript program.

The name JavaScript was a political/marketing invention. The language
was originally called LiveScript, but because of Netscape's close relationship
with Sun, and to capitalize on the hype generated over Java, LiveScript
became JavaScript.

Microsoft, loath to let a perceived threat develop a standard without
Microsoft’s input, implemented its own variant, called]Script, which was a
lot like JavaScript but different enough to annoy and irritate users and
developers alike. Since then, there has been a constant struggle among
various factions, as the different dialects slowly converge and drift apart
between browser revisions.

Netscape submitted JavaScript to the European Computer Manufacturers
Association (ECMA) for standardization, and both Netscape and Microsoft
have agreed to adhere to ECMA’s standards (ECMA-262). The language
name changed again, this time to ECMAScript.

Thankfully, much of the fuss associated with JavaScript can be ignored
by application developers who want to embed its functionality inside their
applications.

JavaScript is easy to embed into larger programs if you use the open-
source SpiderMonkey Engine, available at http://www.mozilla.org/js/
spidermonkey. It is a well-tested and documented, 100 percent C imple-
mentation of the JavaScript language, and it has a very friendly license
(the Mozilla Public License).

So, as a language, how does JavaScript stack up? First off, it’s not blazingly
fast. It’s completely interpreted, so it lacks even the basic compilation-to-
bytecode performance optimization that other languages possess. I would
not recommend writing performance-sensitive modules in JavaScript. How-
ever, it is sufficient for higher-level application control.

JavaScript is also a fairly primitive language in terms of features. It is
loosely typed, has automatic memory management, and supports exceptions.
It is also prototype-based, which means that a programmer does not define new
types (as in C, C++, or Java), but instead clones another object (the prototype)
and modifies the new object. Variables are typeless and do not need to be
explicitly declared.

The language has intrinsic support for hash tables (also known as associative
arrays or dictionaries), which is a pretty powerful feature. In fact, all objects are
basically just name/value pairs stored in hash table format. JavaScript has all
the standard control flow features: if/else statements, switches, for, do/while,
and while. In most respects, the syntax should be very familiar to a C, C++, or
Java programmer.

Scripting languages 215

Python

Lua

JavaScript also has another major advantage: monumental amounts of
documentation. Dozens of books and websites are devoted to the language,
so finding sample source code for JavaScript is never difficult. There is also
an abundance of JavaScript programmers as well, so finding experienced

JavaScript programmers is not that difficult. (Most JavaScript programmers

are actually web designers who have little formal training with programming,
so the numbers can be misleading.)

Python is one of the most popular dedicated scripting languages available
today. This popularity is due in large part to its comprehensive feature set,
robustness, and mind-boggling number of support libraries available for
almost every purpose. The user community’s size guarantees that the
language is well documented, both on the Web and in print.

Python is a fairly modern language and provides many of the features
a programmer would expect from a compiled language: classes, multiple
inheritance, exception handling, native data types for dictionaries and lists,
lambda functions, modules/packages, strong typing, garbage collection, and
generators/list comprehensions. Python is easy to embed in an application,
but it also operates effectively as a stand-alone application language.

The biggest complaint with Python is that many consider it bloated—the
language’s power comes at a price in terms of memory footprint. Also, the
sheer complexity of the language can make it somewhat daunting for first-
time programmers, but numerous tutorials are specifically aimed at the
novice programmer.

For more information about Python, visit http://www.python.org.

Lua is a relatively new scripting language rapidly gaining popularity,
particularly with game programmers. The authors of the language are
staunch minimalists, and one of Lua’s greatest strengths is its diminutive
footprint. In many ways, Lua is similar to JavaScript in terms of features,
although it is much smaller and faster than JavaScript. Like SpiderMonkey,
Lua uses a very friendly license (the MIT License—more information at
http:/ /www.opensource.org/licenses/mit-license.php).

Lua programs are compiled from source code into bytecodes, which are
then executed by the Lua virtual machine, providing a considerable speed
boost. Lua is particularly adept at table operations. Its core data structure is
the hash table (much like JavaScript). In fact, Lua has only seven data types:
threads, user data, functions, booleans, numbers, strings, and tables. Lua is
also a garbage-collected language, so memory management is automatically
handled by the implementation.

Lua lacks many of the features that are provided by larger languages—
such as classes, inheritance, and exception handling—but it does possess the
capability to emulate these properties. You can find a growing number of

support packages for tasks such as debugging, math, networking, database
interfacing input/output, and operating system calls. There is also a very
active (if small) user community. More information on Lua can be found at
http://www.lua.org.

Ruby

Ruby shares many of the same properties as Python. It has a very large, dedi-
cated user base, can be embedded, and provides many of the same features.
Philosophically, Ruby comes from the Smalltalk “everything is an object”
school of thought. In some ways, Ruby is the bastard child of Smalltalk and
Perl, supporting the latter’s strong text-processing and pattern-matching
abilities with the former’s object hierarchy.

Unlike Python, Ruby supports only single inheritance, which simplifies
large portions of the language. Ruby is more object-oriented than Python
and has a slightly cleaner syntax. It is considered a bit more modern, but it
has significantly slower performance than Python.

The Ruby website is http:/ /www.ruby-lang.org.

Summary
The use of higher-level scripting languages is a great way to reduce porta-
bility problems when migrating an application between platforms. The

downside is reduced performance and a dependency on the makers of the
scripting languages to support each platform that you will target.

Scripting languages 217

CROSS-PLATFORM LIBRARIES
AND TOOLKITS

After reading this book, you may be think-

ing, “Hey, portable software development
can be pretty complicated stuff, but it’s not

impossible—so how come it’s not a solved

problem?” To some degree, it has been solved, with
the move to higher-level languages that isolate the
programmer from system-specific information. But
when you must use a lower-level language, the issues
described in this book still rear their heads with
alarming frequency.

To alleviate some portability problems, various entities have developed
numerous cross-platform libraries and frameworks, which are available either
commercially or for free. In this chapter, we'll look at using libraries and
application frameworks to develop portable code.

220

Libraries

NOTE

Libraries are packages of related code and data designed to address a
particular problem. Cross-platform libraries typically provide a universal
interface to an abstraction, which, in turn, is implemented on each target
system transparently. Many cross-platform libraries, both commercial and
open source, are available today. Some have gained almost universal
adoption due to their portability, robustness, and usefulness. For any
conceivable task, there is probably an existing library to make it easier to
implement that task on a wide range of platforms.

In fact, in many cases, the operating system itself was developed as a portability library.
CP/M was designed in the late 1970s as an aid to portability for developers targeting
Zilog Z80-based microcompulers (see Chapter 11), and Microsoft’s original Windows
NT operating system was envisioned to run across a wide range of microprocessors
(MIPS R4000, Intel 386, and DEC Alpha), largely isolating the developer from the sys-
tem choice of an end user.

The hardest part is integrating the various libraries, since each library
has a tendency to redefine many of the same types and symbols, or has
particular expectations about how it will be built and integrated with an
application.

Application Frameworks

Chapter 18

Beyond libraries are application frameworks (not to be confused with Mac OS
X'’s frameworks), whose key difference from libraries is that they are meant
to subsume the entire application in their architecture. Developers don’t call
an application framework the way they might a library; instead, their code is
absorbed by the framework. There is a much larger commitment when
choosing to use an application framework.

Numerous application frameworks have been developed to bridge the
differences between the various flavors of Unix, Windows, Macintosh, and
other operating systems. For the most part, they attempt to abstract and unify
access to the window system (widgets, gadgets, controls, windows, and so on),
input, event handling, multithreading, file I/O, networking, and 2D /3D
graphics. Some are commercial, but a good bulk of them are open source.
Here, we'll look at a few examples.

at

Trolltech’s Qt is a C++ cross-platform operating system abstraction library
that allows developers to make a single-source application that can easily
retarget Windows, Linux, HP-UX, and Solaris.

One of the nice things about Qt is that, while it is a commercial library, it
is also open source and free for noncommercial use. If you plan on develop-
ing a commercial application that is closed source, you need to pay for a
license. For more information, visit http:/ /www.trolltech.com.

GTK+

GTK is a C library that was originally developed as a cross-platform user-
interface library for GIMP, the GNU Image Manipulation Program, but has
since grown into a separate library outside GIMP. It supports Linux, Windows,
BeOS, and Mac OS X.

GTK+ is licensed under the GNU LGPL (http://www.opensource.org/
licenses/Igpl-license.php), which makes it palatable for most commercial,
closed-source development. You can find GTK+ documentation and source
code at http://www.gtk.org.

FLTK

FLTK (Fast Lightweight Toolkit) is a cross-platform library written in C++
that supports Microsoft Windows, Unix/Linux (X Windows), and Mac OS X.
As the name indicates, it is intended to be very lightweight, so that linking it
into an application has minimal impact on its footprint.

FLTK is released under the FLTK License, which is basically the GNU
GPL with an exception stating that you can statically link to FLTK without
needing to distribute the source code to your own programs or libraries. The
FLTK website is www.fltk.org.

wxWidgets

Formerly known as wxWindows, wxWidgets is one of the most popular cross-
platform toolkits. It’s a C++ application framework that has been around
since 1992. wxWidgets is available for Windows and Linux, and it even sup-
ports sitting on top of GTK+. OS/2 and WinCE versions are also available in
various states of completion.

The wxWidgets license is one of the more commercial friendly ones,
effectively allowing developers to use it with very few restrictions. You can
read more about wxWidgets at http://www.wxwidgets.org.

Summary

Libraries and frameworks present an interesting dilemma to developers: are
the short-term gains of these tools greater than the long-term risk of losing
control over an important part of your code base?

For example, the Qt library by Trolltech allows you to write an applica-
tion that almost transparently compiles and runs on Mac OS X, Linux, and
Microsoft Windows. Programmers who don’t have the resources or experi-
ence to perform three native ports may find something like Qt a lifesaver.
However, these same developers are now tied to a particular API, for better
or for worse. If they find themselves with an urgent need to target an
unsupported platform, they might be out of luck.

Cross-Platform Libraries and Toolkits 22]

222

Chapter 18

Relying on a third-party toolkit is not an action to be taken lightly. You
must ensure the following:
e The library is available for platforms that you must support.

e Source code is available, so in the event you must support a new plat-
form, you may do so.

You must take great care when committing to something that will give
you “instant” cross-platform support, since such ease often comes with the
cost of limited future portability.

A lot of work goes into writing a cross-platform code.
However, every project seems to repeat the same effort
when it comes to abstracting fundamental types, func-
tion signatures, and utilities to swap bytes; determining
byte ordering; and performing the other mundane
tasks associated with cross-platform development.

To avoid this, I've developed a completely free library, the Portable
Open Source Harness (POSH) that automatically detects (within reason)
the host and target platforms at compile time and provides appropriate
types, macros, and functions as necessary.

POSH consists of a single header file (posh.h) and an optional source
file (posh.c). Documentation and source code can be found at hup://
www.poshlib.org. I would have liked to include the source code for posh.h
and posh.c here, but combined, they are about 2,000 lines. That would
consume a lot of printed pages—a waste of paper and space. I think it's
fairly reasonable to assume that anyone reading this book can access the
website to download the most recent versions of those files.

POSH examines the compilation environment (predefined symbols)
through a chain of #ifdefs to infer the host and target specifications. It's
fairly robust, although still quite a bit of hackery (but that’s the life of a
portable software developer).

In this appendix, I'll provide an overview of POSH, including its
exported and imported symbols, fixed-size types, and helper macros and
functions.

POSH Predefined Symbols

The primary goal of POSH is to export its own symbols and types for pro-
grams that wish to be portable but don’t have the luxury of relying on the
C99 header files stdint.h and inttypes.h.

After posh.h has been included, the symbols listed in Table A-1 are
defined.

Table A-1: POSH Exported Symbols

Preprocessor Symbol Meaning

POSH_0S_STRING Textual description of the target operating system

POSH_CPU_STRING Textual description of the target CPU

POSH_CDECL Synonym for appropriate function name decoration
indicating C-style argument passing (x86-specific)

POSH_STDCALL Synonym for appropriate function name decoration
indicating stdcall-style argument passing (x86-specific)

POSH_FASTCALL Synonym for appropriate function name decoration
indicating fastcall-style argument passing (x86-specific)

POSH_IMPORTEXPORT Function signature decoration to determine import or export
for use of a DLL/shared library

POSH_BIG_ENDIAN Set to 1 if target is big-endian

POSH_LITTLE_ENDIAN Set to 1 if target is litle-endian

POSH_ENDIAN_STRING Textual description that should match the POSH_BIG_ENDIAN or

POSH_LITTLE_ENDIAN sefting

POSH_64BIT_INTEGER Set to 1 if target supports 64-bit integers (not necessarily
natively, but at least as a data type)

POSH_64BIT_POINTER Setto 1 if target supports 64-bit integers (but not necessarily
addressing)

In some instances, POSH may require the programmer’s assistance when
configuring the compile-time environment. Table A-2 lists the macros that
should be defined.

224 Appendix A

Table A-2: POSH Imported Symbols

Macro Purpose

POSH_BUILDING_LIB Should be defined when building any libraries. Controls the
definition of PosH_IMPORTEXPORT when building a DLL/shared library.

POSH_DLL Should be defined when building or using a DLL/shared library.

POSH_NO_FLOAT Disables floating-point support if set to 1.

POSH Fixed-Size Types

In addition to predefined symbols, POSH provides global exact-sized type
identifiers, as listed in Table A-3.

Table A-3: POSH Exact-Sized Type Identifiers

Type Definition Meaning

posh_i6a t 64-bit signed integer
posh_u64_t 64-bit unsigned integer
posh_i32 t 32-bit signed integer
posh_u32_t 32-bit unsigned integer
posh_i16_t 16-bit signed integer
posh_u16_t 16-bit unsigned integer
posh_i8 t 8-bit signed integer
posh_u8_t 8-bit unsigned integer
posh_byte_t 8-bit unsigned integer

POSH Utility Functions and Macros

Not all cross-platform work can be abstracted into a few symbols and types.
POSH includes some optional helper macros and functions that streamline
operations such as serialization, deserialization, and byte swapping. The only
nonvital function is POSH_GetArchString(), which returns a pointer to a const
string describing the current platform (after performing a basic sanity check
on the run-time environment, such as ensuring that the run-time deter-
mination of byte ordering matches the compile-time assumption). This is
handy when debugging code on a new system.

Table A-4 lists the POSH helper macros.

Table A-4: POSH Helper Macros

Requires

Macro Purpose posh.c?
POSH_COMPILE_TIME_ Compiletime assertion macro No
ASSERT(name, exp)

POSH_164(x) Defines x as a 64-bit signed constant No
POSH_U64(x) Defines x as a 64-bit unsigned constant No
POSH_LittleU16(x) Converts unsigned x to litle-endian form Yes
POSH_LittleU32(x) Converts unsigned x to little-endian form Yes
POSH_LittleU64(x) Converts unsigned x to litle-endian form Yes
POSH_LittleI16(x) Converts signed x to little-endian form Yes
POSH_LittleI32(x) Converts signed x to litfle-endian form Yes
POSH_LittleI64(x) Converts signed x to litfle-endian form Yes
POSH_BigU16(x) Converts unsigned x to big-endian form Yes
POSH_BigU32(x) Converts unsigned x to big-endian form Yes
POSH_BigU64(x) Converts unsigned x to big-endian form Yes
POSH_BigI16(x) Converts signed x fo big-endian form Yes

POSH BigI32(x) Converts signed x to big-endian form Yes
POSH_BigI64(x) Converts signed x to big-endian form Yes

Table A-5 lists the floating-point helper functions. All of these functions
require posh.c and may be selectively disabled (for example, for systems that
lack floating point) by defining POSH_NO_FLOAT.

Table A-5: POSH Floating-Point Helper Functions

Function Purpose

POSH_LittleFloatBits Extracts 32-bit floating-point representation as little-endian
integer bits *

POSH_BigFloatBits Extracts 32-bit floating-point representation as big-endian
integer bits*

POSH_FloatFromLittleBits Converts a 32-bit litle-endian integer pattern to a floating-

point value*
POSH_FloatFromBigBits Converts a 32-bit big-endian integer pattern to a floating-
point value*
POSH_DoubleBits Converts a 64-bit double to a sequence of 8 bytes*
POSH_DoubleFromBits Converts a sequence of 8 bytes to a double-precision

floating-point value*

POSH_WriteFloatToLittle Writes a floating-point value in litle-endian form to a byte
stream

226 Appendix A

Table A-5: POSH Floating-Point Helper Functions (continued)

Function Purpose
POSH_WriteFloatToBig Writes a floating-point value in big-endian form to a byte
stream

POSH_ReadFloatFromLittle Reads a floating-point value from a litle-endian byte stream
POSH_ReadFloatFromBig Reads a floating-point value from a big-endian byte stream

POSH_WriteDoubleToLittle Writes a double-precision floating-point value to a little-
endian byte stream

POSH_WriteDoubleToBig Writes a double-precision floating-point value to a big-
endian byte stream

POSH_ReadDoubleFromLittle Reads a double-precision floating-point value from a little-
endian byte stream

POSH_ReadDoubleFromBig Reads a double-precision floating-point value from a big-
endian byte stream

* Present only if 64-bit computing is available

Table A-6 lists the serialization and deserialization functions
implemented in posh.c.

Table A-6: POSH Serialization and Deserialization Functions

Function Purpose

POSH_SwapU16 Byte-swaps an unsigned 16-bit value
POSH_SwapI16 Byte-swaps a signed 16-bit value
POSH_SwapU32 Byte-swaps an unsigned 32-bit value
POSH_SwapI32 Byte-swaps a signed 32-bit value

POSH_WriteU16ToLittle Writes an unsigned 16-bit quantity to a litle-endian buffer
POSH_WriteU32Tolittle Writes an unsigned 32-bit quantity to a little-endian buffer
POSH_WriteUs4Tolittle Writes an unsigned 64-bit quantity to a litfle-endian buffer
POSH_WriteI16Tolittle Writes a signed 16-bit quantity to a litle-endian buffer
POSH_WriteI32ToLittle Writes a signed 32-bit quantity to a little-endian buffer

POSH_WriteI64Tolittle Writes a signed 64-bit quantity to a litle-endian buffer

POSH_WriteU16ToBig Writes an unsigned 16-bit quantity to a big-endian buffer
POSH_WriteU32ToBig Writes an unsigned 32-bit quantity to a big-endian buffer
POSH_WriteU64ToBig Writes an unsigned é4-bit quantity to a big-endian buffer
POSH_WriteI16ToBig Writes a signed 16-bit quantity to a big-endian buffer
POSH_WriteI32ToBig Writes a signed 32-bit quantity to a big-endian buffer
POSH_WriteI64ToBig Writes a signed 64-bit quantity to a big-endian buffer

POSH_ReadUi6FromLittle Reads an unsigned 16-bit quantity from a little-endian buffer

posH 227

Table A-6: POSH Serialization and Deserialization Functions (continued)

Function Purpose

POSH_ReadU32FromLittle Reads an unsigned 32-bit quantity from a little-endian buffer
POSH_ReadUs4FromLittle Reads an unsigned 64-bit quantity from a little-endian buffer
POSH_ReadI16FromLittle Reads a signed 16-bit quantity from a litfle-endian buffer
POSH_ReadI32FromLittle Reads a signed 32-bit quantity from a litfle-endian buffer

POSH_ReadI64FromLittle Reads a signed 64-bit quantity from a litfle-endian buffer

POSH_ReadU16FromBig Reads an unsigned 16-bit quantity from a big-endian buffer
POSH_ReadU32FromBig Reads an unsigned 32-bit quantity from a big-endian buffer
POSH_ReadU64FromBig Reads an unsigned 64-bit quantity from a big-endian buffer
POSH_ReadI16FromBig Reads a signed 16-bit quantity from a big-endian buffer
POSH_ReadI32FromBig Reads a signed 32-bit quantity from a big-endian buffer
POSH_Readl64FromBig Reads a signed 64-bit quantity from a big-endian buffer

223 Appendix A

THE RULES FOR PORTABILITY

Never assume anything. Convert implicit assumptions to explicit require-
ments by using appropriate run-time and compile-time checks.

Portability is a means to an end, not an end unto itself. Write portable
software because it provides tangible benefits: larger markets, higher-
quality software, and more flexibility. Avoid the portability-as-dogma
mindset, since programs in the real world need to have nonportable
elements in order to run effectively.

Establish a reasonable baseline. Don’t try to make an application porta-
ble across a ridiculous range of platforms. It is rare that meaningful
software can run unchanged from a handheld system to a powerful
supercomputer, yet for some reason, obsessive portability geeks will try
to do this. To make the process palatable define a sane set of minimum
requirements (“32-bit integers, virtual memory, and multithreading”
and so on) and just accept that you will not be able to port your soft-
ware easily to systems that don’t meet that baseline.

Never read or write structures monolithically from or to memory. Always
read and write structures one element at a time, so that endian, align-
ment, and size differences are factored out.

Never cast raw bytes to a structure. This relates to rule 2, but due to byte
ordering, alignment, and size differences, casting a raw set of bytes to a
structure will often cause difficulties when migrating to new platforms.

230

Appendix B

10.

11.

12.

14.

15.

Always convert to or from a canonical format when moving data in or out
of memory. Applications that must compile, run, and share data between
disparate platforms must deal with the different native data type differ-
ences. Converting to a known size and byte-ordering transferring to and
from memory ensures this.

Good habits trump specific knowledge of bugs and standards. All the
esoteric portability knowledge in the world isn’t relevant if the tools or
platforms don’t cooperate. And the only way to ensure that the platforms
cooperate (or are at least functional) is to adhere to strong practices and
habits that root out problems as soon as possible.

Avoid new language or library features. Whenever a new language fea-
ture is ratified or accepted by the development community, it still takes a
long time for that feature to propagate successfully, limiting portability.
Integrate testing. The easiest way to catch bugs is by installing “bug traps”
designed to find failure cases and exceptional situations. This is doubly
important when working on cross-platform software, where a piece of
code may work fine on one system but fail inexplicably on another.

Use compile-time assertions. Finding invalid assumptions during compi-
lation is preferable to finding those invalid assumptions at run time. The
earlier you can find an error, the better.

Use strict compilation. Use the tools available to you when looking for
portability problems. One of the best tools is the compiler. Most compil-
ers have switches you can enable that tell them to generate errors or
warnings when they encounter nonstandard constructs or compile-
specific extensions.

Write straightforward code. The cleaner, more concise, and easier to
read your code, the easier it is to identify any invalid assumptions and for
programmers working on other platforms to understand what you're
doing.

Do not expect floating-point code to operate the same way on different
platforms. Floating point is a compatibility and standards nightmare, and
the probability is very high that a set of floating-point operations on one
system will not generate the same results on a different system. Expect-
ing this type of consistency can lead to a lot of difficult-to-find bugs.
Avoid excessive conditional compilation statements. The C/C++ prepro-
cessor is a wonderfully simple yet powerful tool, but it is far too easy to
abuse its features, creating code that is difficult to read and maintain. If
you find your code riddled with conditional compilation statements,
that’s probably a good sign that you need to refactor and abstract your
implementation.

Understand that almost anything can change between compilers. Basic
things like the size of basic types; size, alignment, and packing of struc-
tures; availability and size of stack; and so on can change unexpectedly.

16.

17.

18.

19.

20.

Leverage portable third-party libraries, but be careful. Third-party librar-
ies can do a lot of the work necessary when writing a cross-platform library,
but they put your project in a very vulnerable position. Be careful that
including such libraries is the right choice.

Performance and resource usage must be as portable as your features.
It’s relatively easy to get something working on two different platforms,
but guaranteeing that the performance will be adequate across a wide
range is a lot more difficult. An algorithm that is fine on a dual-processor
desktop machine might need to be rethought when porting to a cell
phone.

Portability means supporting other cultures, regions, and languages.
Software development isn’t just about code and processors and APIs any-
more. Programmers and software developers are expected to understand
that their software may be used by residents of other countries. You must
consider simple things like languages and keyboard layouts, along with
far more subtle issues, such as the appropriateness and meaning of icon
graphics and sounds.

Consider using a language more suited to the task. A lot of programmers
today use C and C++ simply due to familiarity. However, the perfor-
mance of modern computers has made higher-level languages such as
Java, Python, C#, and Ruby appropriate for many kinds of development
tasks. Consider investigating these languages if you do not need the low-
level access and performance of C and C++.

Systems are becoming more secure. Don’t assume that you can install
files anywhere, take over a user’s system at will, or access all parts of the
filesystem. Many users don’t have administrative access to their own
machines, so applications must be cognizant of limitations when access-
ing privileged areas or files outside the current user’s control,

The Rules far Portability 23]

REFERENCES

ANSI. “ISO/IEC 14882: Programming Languages—C++.” ANSI, 1989.
The first draft ANSI standard for the C++ programming language.

ANSI. “ISO/IEC 9899:1990: Programming Languages—C.” ANSI, 1990.
The first ANSI standard for the C programming language.

ANSI. “ISO/IEC 9899:1999: Programming Languages—C.” ANSI, 1999,
The second ANSI standard for the C programming language.

Ellis, Margaret A. and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley Professional, 1990. Before the C++ standard, there was the
ARM. Interesting primarily for its historical value; much of the book’s
content is obsolete by today’s standards.

Giencke, Patricia. Portable C++. McGraw-Hill, 1996. A decent but short
overview of portability issues specifically as they apply to the C++ language.

Harbison, Samuel P. and Guy L. Steele. C: A Reference Manual (5th Edition).
Prentice Hall, 2002. A good, straightforward reference on the C
programming language.

Horton, Mark R. Portable C Software. Prentice Hall, 1990. An early attempt
to talk about portable software development with the C programming
language. Horton’s book looks at portability from a more implementation-
specific point of view, specifically restricting much of his discussion to
porting software between Unix variants.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language,
Second Edition. Prentice Hall, 1988. The definitive classic text on the C
programming language.

Prasad, Shashi. Multithreading Programming Techniques. McGraw-Hill Osborne
Media, 1997. A concise, well-rounded discussion of multithreading
programming techniques across a wide range of platforms. Several of the
platforms and APIs discussed are not relevant today, but the bulk of the
book is still valuable and interesting.

Ritchie, Dennis M. “Development of the C Language.” http://cm.bell-
labs.com/cm/cs/who/dmr/ chist.htm. Originally presented at the Second
History of Programming Languages conference, Cambridge, MA, 1993.

A fascinating look at the evolution of the C language.

Stroustrup, Bjarne. The C++ Programming Language (Special 3vd Edition).
Addison-Wesley Professional, 2000. The C++ equivalent of Kernighan and
Ritchie’s classic text on the C language.

Stroustrup, Bjarne. The Design and Evolution of C++. Addison-Wesley
Professional, 1994. An interesting historical perspective on the early
design of C++. It’s largely out-of-date, since the language has changed
dramatically in the past decade.

Tribble, David R. “Incompatibilities Between ISO C and ISO C++.” http://
david.tribble.com/text/ cdiffs.htm, 2001. A very good summary of the
differences between C and C++ as per the latest standards for each.

Van Der Linden, Peter. Expert C Programming: Deep C Secrets. Prentice Hall,
1994. Thorough coverage of a lot of the trickier and more confusing parts
of the C programming language.

234 References

Characters

_ (underscores), 190

\ (backslash), 113, 189

: (colon), 189

/ (forward slash), 113, 189, 192
. (period) character, 190

Numbers

3D graphics APIs, 28
32-bit multiply, 52
64-bit integer types, 126-27

A

abstraction implementation, 39-52
abstract data types (typedef), 46-47
being prepared for the unforeseen,

49-50
graphics output as regular RGB
(no palettes), 49
malloc/new, 49
overview, 49
stdio file management, 49
TCP/IP networking, 49-50
bridging functions, 52
communicating system-dependent
information, 50-52
dispatch abstraction, 40-46
function tables, 42—45
link resolution, 40-42
overview, 40
virtual functions, 45-46
overview, 39-40
using C preprocessor, 47-48

Acrobat, 205

add2(), 94

address space, 89-90

Adobe Acrobat, 205

adware, 171
AIFF/RIFF file format, 202
algorithms, and scalability, 197-99
AliaslWavefront Maya’s MEL, 214
aliases, 188
alignment, 78-80, 120-22
alloca(), 125
American National Standards Institute
(ANSI), 20
AmigaDOS, 156
Annotated Reference Manual (ARM),
21-22
ANSI (American National Standards
Institute), 20
ANSI C and C++. See C and C++
programming language
ANSI X3]11 committee, 21
APIs
communicating system-dependent
information, 50-51
pthreads API, 54
AppleTalk, 150
application binary interface (ABI), 133
application data and resource files,
201-5
binary files, 202
overview, 201
scripting languages as data files, 205
text files, 202—4
XML, 204-5
application frameworks, 220-21
FLTK, 221
GTK+, 221
overview, 220
Qt, 220
wxWidgets, 221-22
application GUI, vs. native GUI, 143-44
application plug-in, 176
ARM (Annotated Reference Manual),
21-22

236

INDEX

<arpa/inet.h», 152

asm files, external vs. in-line, 60-61

assembly language, placing inside
C/C++ code, 60

assert.h, 112

associative arrays, 215

assumptions about platforms, 4

attributes, file, 193

audience of this book, xvi—xviii

audio, 27, 144-45, 206

audio API, SAL, 39

autoconf tool, 72

Autodesk AutoCAD’s Alisp, 214

automake tool, 72

backslash (), 113, 189
backslash key, 211
batch files, 74
Beep() API, 40
Bell Labs, 21
benefits of portable software
development, 2-3
BerkeleyDB, 68
binary files, 202-3
Binary Run-time Environment for
Wireless (BREW), 205
BIOS, 157
bit extraction from a float, POSH, 101
bitfields, 137-38
BitKeeper, 68
bitmaps, 205
BMP format, 205
BREW (Binary Run-time Environment
for Wireless), 205
bridging functions, 52, 54-56
buffer, flipping, 144
buffer length, 15
build tools, 70-74
overview, 70
platform-specific build tools, 70-71
portable build tools, 71-74
jam, 73-74
make, 72-73
overview, 71-72
scripts and batch files, 74
bundles, Mac OS X, 184-85
byte ordering and endianess, 81-85
big-endian vs. little-endian values,
81-82
fixed network byte ordering, 84-85

overview, 81

standardized storage format, 82-84
byte-order testing, 32-34
byte-ordering capabilities, POSH, 86-87

C

Cand C++ programming language
benefits of, 19-20
compilation to native code, 20
exception handling, 167-68
history of, 21-22
low-level access provided by, 20
and portability, 22-23

C preprocessor, 47-48

C Programming Language (book), 21

Cs+ Programming Language, The (book),

21

C++498 standard, 22, 92, 93

C89 standard, 4, 22, 110-11

C99 standard, 4-5, 21, 22, 89, 139
floating-point classification, 104
floating-point exception functions,

105-6

and IEEE 754 standard, 92, 93
pragmas, 117

callbacks, 135

calling conventions, 133-36
function pointers and callbacks, 135
name decoration, 134-35
overview, 133-34
portability, 135-36

capability bits, 28

carriage returns, 63-64

case sensitivity, 65, 191

catch keyword, 168

caveats, 113

cdecl, 134

CFBundle API, 184

CFCopylocalizedString(), 209

CFPlugIn API, 185

CFStringRef, 185

CFURL, 185

char, 128

CHAR_BIT, 127

CHAR_MAX, 128

CHAR_MIN, 127

checkout by proxy, 69

chunked file formats, 202

class, returning values, 137

class type (C++), 120-22

_clearfp API, 105

close(), 153
closesocket(), 153
code
See also editing and source control
“cute programming tricks,” 36-37
dynamically generated, 56
self-modifying/dynamically
generated, avoiding, 53-57
straightforward, writing, 36-37
Code Fragment Manager, 185
CodeWarrior, 113, 114
coding standards portable software
development, 4-5
colon (:), 189
COM (Component Object Model), 185
command line, 142
comments, 138-39
Common Object Request Broker
Architecture (CORBA), 154
compilation
compilation options, 34-35
conditional, 115-16
compilers, 119-39
alignment, 120-22
bitfields, 137-38
calling conventions, 133-36
function pointers and callbacks,
135
name decoration, 134-35
overview, 133-34
portability, 135-36
comments, 138-39
memory management idiosyncrasies,
125-24
overview, 119
packing, 120-22
printf routine, 125-26
returning structures, 137
stack, 124-25
overview, 124
problems with alloca(), 125
size, 124
structure size, 120-22
type sizes and behavior, 126-33
64-bit integer types, 126-27
enums as ints, 131-32
numeric constants, 132
overview, 126
signed and unsigned right shifts,
133
signed vs. unsigned char types,
130-31
sizes of basic types, 127-30
using variety of, 10

compile-time assumptions, 4
Complex Instruction Set Computer
(CISC), 133
complex.h header, 112
Component Object Model (COM), 185
Concurrent Version System (CVS),
66-67
conditional compilation, 115-16
configuration macros, 114-15
Control Program/Monitor (CP/M),
156, 157, 160, 220
_control87() function, 105
_controlfp() function, 105
_controlfp API, 105
CORBA (Common Object Request
Broker Architecture), 154
CoreAudio API, Mac OS X, 39
coroutine, 161
CP/M (Control Program/Monitor),
156, 157, 160, 220
CPU instruction flags, 52
create_device ex function, 51
CreateProcess(), 160
CreateWindow, 37
creator 1D, 193
cross-platform libraries and toolkits,
219-21
application frameworks, 220-21
FLTK, 221
GTK+, 221
overview, 220
Qt, 220
wxWidgets, 221-22
overview, 219
cross-platform toolkits, 147
ctype.h, 112
currency, 209
current directory, 189, 190
CVS (Concurrent Version System),
66-67
-cwd source switch, 113
CX_LIMITED_RANGE, 117
cyberterrorists, 171

data, portability and, 201-6
application data and resource files,
201-5
binary files, 202
overview, 201
scripting languages as data files,
205

INDEX 237

238

INDEX

data, pormbilily and, continued

application data and source files, cont.

text files, 202—4
XML, 204-5
creating portable audio, 206
creating portable graphics, 205
overview, 201
data files, scripting languages as, 205
data fork, of Mac files, 193
data storage. See user data storage
date, 210
DATE, 110
DAVE file-sharing system, 69
dBase II, 157
DBL_MAX constant, 100
DCOM (Distributed Common Object
Model), 150, 154
deadlock, 162
DECnet protocol, 150
.def (module definition file), 179
deserialization, safe, 30-32
DIB (device-independent bitmap), 144
dictionaries, 215
Direct3D, 11, 28-29
directories, 189
DirectPlay network library, 14
DirectSound, 27, 50
DirectX, 144
Discreet 3Ds Max’s MaxScript, 214
disk drives, 189
dispatch abstraction, 40-46
function tables, 42—-45
link resolution, 40-42
overview, 40
virtual functions, 45-46
Distributed Common Object Model
(DCOM), 150, 154
Distributed Computing Environment
(DCE), 153
distributed objects, 154
divide-by-zero condition, 103
<dlfen.h> API, 182, 183
DLLMain(), 181
dlopen(), 186
dlsym(), 186
dlsym API, 23
documentation
Doxygen documentation tool, 44
for POSH, 223
when porting old code, 17-18
Dolby Digital 5.1, 206
DOS, 160
path specification, 192

root, current, and parent directory
representations, 192
and text file endings, 63-64
double types, 124
Doxygen documentation tool, 44
dynamic libraries, 175-86
dynamic linking, 176
dynamic loading, 176-77
Gnu LGPL, 179
Linux shared objects, 182-83
Mac OS X bundles, 184-85
Mac OS X frameworks, 183-84
Mac OS X plug-ins, 185-86
overview, 175=-76
problems with shared libraries,
177=79
overview, 177
proliferation, 178-79
versioning problems, 177-78
Windows DLLs, 179-82
dynamically generated code, 53-57

EAGAIN, 153
ECMA (European Computer Manufac-
turers Association), 215
ECMASecript, 215-16
editing and source control, 63-76
build tools, 70-74
overview, 70
platform-specific, 70-71
portable, 71-74
editors, 74-76
overview, 63
portable filenames, 65-66
source control systems, 66-69
BitKeeper, 68
checkout by proxy, 69
Concurrent Version System (cvs),
66-67
GNU arch, 68-69
overview, 66
Perforce, 67-68
Revision Control System (rcs), 66
Subversion, 68
text file line ending differences,
63-65H
electronic software distribution (ESD),
207
Elisp, 214
Emacs, 64, 74

Emacs’s Elisp, 214

embeddable scripting languages, 214

emulated vs. required features, SAL, 27

endianess. See byte ordering and
endianess

end-of-line markers, 194

enum data type, as int values, 131-32

environment variables, 166-67

errno, 153

errno.h, 112

ESD (electronic software distribution}),
207

European Computer Manufacturers
Association (ECMA), 215

EWOULDBLOCK, 153

_except keyword, 168

exception handling, 167-68

extensions, to filenames, 65

external vs. in-line asm files, 60-61

F

fallbacks, 57-59
Fast Lightweight Toolkit (FLTK), 221
fastcall, 134
FATIS6 filesystem, 190
fclose(), 195
fentl(), 153
features
assumptions about, 4
new, avoiding, 26
varying availability, 26-30
feholdexcept(), 105
Feldman, Stuart, 72
FENV_ACCESS, 117
fenv.h, 112
<fenv.h>, 105
FILE, 110
files, platform-dependent, segregating
from portable files, 35-36
filesystems, 187-95
file attributes, 193
Mac OS quirks, 193
overview, 187
path specification, 189-91
case sensitivity, 191
current directory, 190
disk drives and volume specifiers,
189
overview, 189
path length, 190-91
path separators and other special
characters, 189-90

security and access privilege, 191-92
special directories, 194
symbolic links, shortcuts, and aliases,
188-89
overview, 188
Unix links, 188-89
Windows LNK files, 188
text processing, 194-95
_finally keyword, 168
Finder user interface (Mac), 193
_fini(), 183
fixed network byte ordering, 84-85
fixed-point integer math, 97
fixed-size types, POSH, 225
f1d function, 94
fldcw, 96
float.h, 112
<float.h>, 100
floating point, 91-107
exceptional results, 102-6
exceptions, 105
floating-point environment access,
105-6
overview, 102-3
special values, 103-4
extraction of integer bits from float,
97-100
fixed-point integer math, 97
history of, 91-92
implementation queries, 100-102
overview, 91
problems with, 93-97
conversions, 95-97
floating point and networked
applications, 95
inconsistent evaluation, 93-95
overview, 93
standard C and C++ floating-point
support, 92-93
storage formats, 106-7
floating-point math, 12-13
FLT DIG, 100
FLT_RADIX, 100
FLT_ROUNDS, 100
FLTK (Fast Lightweight Toolkit), 221
folders, 189
foo function, 37
fopen(), 194, 195
fork(), 160
forking, 160
format specifier constants, 126
forward slash (/), 113, 189, 192
FP_CONTRACT, 1 17

240

INDEX

frame buffer, 144

frameworks, Mac OS X, 1835-84

fread(), 195

FreeBSD, 156

freestanding environment, 156-57

fseek(), 195

fstp, 94

ftell(), 195

__func__, 111

function pointers, 135

function tables, 42-45

functions
bridging, 52, 54-56
converting pointers to, 22-23
indirect function calls, 45
virtual, 45—-46

furite(), 30, 31, 195

G

gamepad, 146-47
GEM, 156
getchar(), 130
GetDesktopWindow(), 50
getenv API, 166
GetModuleFileName(), 190
GetProcAddress(), 180, 186
getpwent(), 193
GIMP (GNU Image Manipulation
Program), 221
glibc, 126
GNOME, 143
GNU arch, 68-69
GNU Emacs’s Elisp, 214
GNU Image Manipulation Program
(GIMP), 221
GNU LGPL, 179, 221
GNU Library/Lesser General Public
License (LGPL), 179
graphical user interfaces (GUIs), 143
graphics
and internationalization, 211
low-level, 144
portable, creating, 205
regular RGB (no palettes), 49
GTK+, 221
GUIs (graphical user interfaces), 143

habits of good portability, 8-11
develop in heterogeneous
environment, 9-10

port early and port often, 9
support multiple libraries, 11
test on several platforms, 10
use variety of compilers, 10
hard links, 188
hardware, benefits of having mix of, 9
hash tables, 215, 216
header files, 111-14
file path specification, 113
filenames, 1135-14
overview, 111-13
heterogeneous environment, 9-10
hierarchical filesystems, 189
high-level fallback, 57-59
high-level languages, 20
hosted environment, 156-57
HTTP, 154

icons, 211
identfiers, 37, 38
IDEs (integrated development
environments), 70-71
IDirectSound: : SetCooperativelevel(), 50
IDL (Interface Definition Language),
154
IEC (International Electrotechnical
Commission), 20
IEC 559 standard, 92
IEC 60559 standard, 92
IEEE 754 standard, 92
64-bit double-precision format, 107
80-bit extended-precision format,
107
and C++498 standard, 92, 93
and C99 standard, 92, 93
fixed-point values, 98
floating-point rounding modes, 96
nonnumeric values that must be
represented as floatin £ point,
104
single-precision format, 106
IEEE p754 committee, 92
#ifdef guards, 36
IFF/LBM format, 205
illegal memory access, 159
ILP32, 88
images. See graphics
implementation assumptions, 4
indirect function calls, 45
inexact exceptions, 103
inheritance, multiple, 31

_init(), 183
in-line vs. external asm files, 60-61
in-lining assembly directives, 60
input, 145-47
joystick and gamepad, 146-47
keyboard, 146
mouse, 146
overview, 145
int, 128
int fegetround(), 106
int feholdexcept(), 106
int fesetround(), 106
int fetestexcept(), 105
int size, 8b
int values, enum data type as, 131-32
INT_MAX, 128
INT MIN, 128
int8_t type, 89
int16_t type, 89
int32_t type, 89
_int6a, 127
INT64 C(), 127
int64_t, 89, 126
integers, converting pointers to, 22-23
integrated development environments
(IDEs), 70-71
integrating testing, 32-34
Intel X86, byte ordering, 82
Intel X87 FPU architecture, and
floating points, 93-94
Interface Definition Language (IDL),
154
interface elements, 210-11. See also
programming interfaces; user
interaction
International Electrotechnical
Commission (IEC), 20
International Standards Organization
(ISO), 20
internationalization and localization,
207-11
currency, 209
date and time, 210
interface elements, 210-11
keyboards, 211
overview, 207-8
strings and unicode, 208-9
Internetwork Packet Exchange (IPX),
150
interprocess communication (IPC), 161
<inttypes.h>, 46, 112
invalid operation exceptions, 103

ioctlsocket(), 153

IPC (interprocess communication), 161

IPX (Internetwork Packet Exchange),
150

is big endian(), 84

ISO (International Standards
Organization), 20

iso646.h, 112

J

jam tool, 73-74
Java, 214
JavaScript, 215-16
joystick, 146-47
JScript, 215

kernel thread, 161
Kernighan, Brian, 21
keyboards, 146, 211

L

LAN (local area network), 150
language-specific data, 208-9
LAN tastic, 150
LD_SEARCH_PATH, 179
LGPL (GNU Library/Lesser General
Public License), 179
libraries
See also SAL (Simple Audio Library)
cross-platform, and toolkits, 219-21
application frameworks, 220-21
libraries, 220
shared, problems with, 177-79
overview, 177
proliferation, 178-79
versioning problems, 177-78
supporting mu]liplc, 11
<limits.h», 112,127
__LINE_, 110
linefeed, 63-64
link resolution, 40-42
linking, dynamic, 176
LISP, 214
LLONG_MAX, 128
LLONG_MIN, 128
LLP64 model, 88
.1nk file, 188
loading, dynamic, 176-77

LoadLibrary(), 180, 186
LoadString(), 209
local area network (LAN), 150
locale.h, 112
localization. Seeinternationalization and
localization
LocalTalk, 150
long, 128
long long, 88, 126, 128
LONG_MAX, 128
LONG_MIN, 128
low-level programming, 20, 52-61
avoiding self-modifying/dynamically
generated code, 53-57
external vs. in-line asm files, 60-61
keeping high-level fallback, 57-59
overview, 52-53
register keyword, 59-60
Lua, 214, 216-17

M

macros, POSH, 225-28
make tool, 72-73
malloc, 49, 123, 125, 130
malware, 171
mapping, memory, 158-59
market, expanding via portability, 2
math.h, 112
MaxScript, 214
MEL, 214
memcpy, 31, 58
memory, 49, 123-24, 158-60
address space, 89-90
aligned memory allocation, 78-80,
123
freed pointers, 123
limitations, 158
mapping, 158-59
overview, 123, 158
Metrowerks CodeWarrior, 113, 114
Microsoft Visual C++
#ipragma pack option, 122
#pragma warn(disable: xxxx), 116
interface of, 71
lack of proper support of C++
specification for scoping of
variables, 6-7
placing assembly language directly
inside C/C++ code, 60
Microsoft Visual Studio, and text file
endings, 64

Microsoft's Direct3D. See Direct3D

Microsoft’s DirectPlay network library,
14

Microsoft’s JScript, 215

MinGW, 126

misaligned accesses through pointer
casting, SAL, 79-80

MIT License, 216

MMU (On-chip Memory Management
Unit), 159

module definition file (.def), 179

Motorola 68000 processors, 122

Motorola PowerPC processors, 122

Motorola’s SIMD AltiVec instruction
set, 78

mouse, GUI events, 146

MS-DOS FATI6 filesystem, 190

MS-DOS/Windows FAT32 filesystem,
190

MSVCRT.DLL, 126

multiple inheritance, 31

multiple libraries, 11

multitasking, 160

multithreading, 161-66

name decoration, 134-35
name parameter, 35
names, unique, 37-39
namespaces, 38
NaNs, 104
native GUI, vs. application GUI, 143-44
natural word size, 85
NetBIOS Extended User Interface
(NetBEUI), 150
<netdb.h>, 152
<netinet/in.h>, 152
Netscape, 215
network byte ordering, fixed, 84-85
networking, 149-54
evolution of networking protocols,
150
overview, 149
programming interfaces, 150-54
distributed objects, 154
overview, 150
RPC and RMI, 153-54
Sockets, 151-53
networking protocol, 49-50
new features, avoiding, 26
new operator, 123

NSAddress0fSymbol(), 186
NSCreateObjectFileImageFromFile(), 186
NSLinkModule(), 186
NSLocalizedString(), 209
NSLookupSymbolInModule(), 186

NULL, 50

numeric constants, 132

numeric_limits template, 101-2

0

Object Management Group (OMG),
154
objects, converting pointers to, 22-23
OCaml, 214
old code, porting. See porting old code,
guidelines for
OMG (Object Management Group),
154
On-chip Memory Management Unit
(MMU), 159
Open Software Foundation (OSF), 153
Open Transport, 150
OpenGL, 11, 28-29, 144
operating systems, 155-73
environment variables, 166-67
evolution of, 155-56
exception handling, 167-68
hosted and freestanding
environments, 156-57
memory, 158-60
limitations, 158
mapping, 158-59
overview, 158
overview, 155
portability paradox, 157
processes and threads, 160-66
interprocess communication
(IPC), 161
multithreading, 161-66
overview, 160
process control and
communication functions, 160
security and permissions, 171-73
application installation, 171
low-level access, 173
overview, 171
privileged directories and data,
171-72
user data storage, 16871
Linux, 170

Microsoft Windows registry,
169-70
OS X preferences, 170-71
overview, 168-69
options, provided by portability, 2
OSF (Open Software Foundation), 153
overflows, 103

P

P64 model, 88-89
packing, of C struct and C++ class type,
120-22
PARC (Palo Alto Research Center), 142
parent directory, 189
parsing binary files, 202-3
parsing binary files, SAL, 202-3
PASCAL, 133
path specification, 189-91
case sensitivity, 191
current dirccmry, 190
disk drives and volume specifiers, 189
examples, 192
overview, 189
path length, 190-91
path separators and other special
characters, 189-90
PCM (pulse code modulation), 15
Perforce, 67-68
performance assumptions, 4
period (.) character, 190
permissions. Seesecurity and
permissions
planning portability for new project,
11-16
choosing reasonable level of
portability, 12-14
making portability easy, 11
not wedding project to proprietary
products, 14-16
overview, 11
platform-dependent files, segregating
from portable files, 35-36
platforms
assumptions about, 4
testing on several, 10
plug-ins, Mac OS X, 185-86
pointers
and address space, 90
casting, misaligned accesses through,
79-80

INDEX 243

244

INDEX

pointers, conlinued
converting to function, object, or
integer, 22-23
function pointer table, 42
polymorphism, support for, 45
portability rules, 229-31
portability techniques, 25-61
avoiding new features, 26
dealing with varying feature
availability, 26-30
implementing abstraction, 39-52
abstract data types (typedef),
46-47
being prepared for unforeseen,
49-50
bridging functions, 52
communicating system-dependent
information, 50-52
dispatch abstraction, 40—46
overview, 39—40
using C preprocessor, 47-48
integrating testing, 32-34
low-level programming, 52-61
avoiding self-modifying/
dynamically generated code,
53-57
external vs, in-line asm files, 60-61
keeping high-level fallback, 57-59
overview, 52-53
register keyword, 59-60
overview, 25
segregating platform-dependent files
from portable files, 35-36
using compilation options, 34-35
using safe serialization and
deserialization, 30-32
using unique names, 37-39
writing straightforward code, 36
portable build tools, 71-74
jam, 73-74
make, 72-73
overview, 71-72
scripts and batch files, 74
portable files, segregating platform-
dependent files from, 35-36
Portable Open Source Harness. See
POSH (Portable Open Source
Harness)
porting early and often, 9
porting old code, guidelines for, 16-17
assume code is not portable until it
has been ported, 16

document everything in revision
control, 17
modify only bare essentials, 16
plan your attack, 17
POSH (Portable Open Source
Harness), 223-28
bit extraction from a float, 101
byte-order testing, 32-34
byte-ordering capabilities, 86-87
DLL export/import, 181
documentation for, 223
fixed-size types, 225
overview, 5, 223-24
predefined symbols, 224-25
sized types, 46-47, 90
utility functions and macros, 225-28
<posh.h>, 130
POSIX, 162
PowerPC, 82, 122
ftpragma pack option, 122
#pragma warn(disable: xxxx), 116
pragmas, 116-17
pre-ANSI C ("K&R C7), 22
predefined symbols, 110-11, 224-25
prefixing file names, 37, 39
preprocessor, 47-48, 109-17
conditional compilation, 115-16
configuration macros, 114-15
header files, 111-14
file path specification, 113
filenames, 113-14
overview, 111-13
overview, 109
pragmas, 116-17
predefined symbols, 110-11
PRId64, 127
PRIi64, 127
printf routine, 125-26
processes and threads, 160-66
interprocess communication (IPC),
161
multithreading, 161-66
overview, 160
process control and communication
functions, 160
processor differences, 77-90
address space, 89-90
alignment, 78-80
byte ordering and endianess, 81-85
big-endian vs. little-endian values,
81-82

fixed network byte ordering, 84-85

overview, 81

standardized storage format, 82-84

overview, 77
signcd integer representation, 85
size of native types, 85-89
programming interfaces, 150-54
distributed objects, 154
overview, 150
RPC and RMI, 153-54
sockets, 151-53
promotion, char, 130
protected mode, 159
pthreads, 54, 162
pulse code modulation (PCM), 15
putenv API, 166
Python, 214, 216

Q

Qt, 220
quantized fixed-point values, 97
Quarterdesk, 156

quiet NaNs, 104

raise API, 167

res (Revision Control System), 17-18,
66

recursive mutexes, SAL, 27

red/green/blue (RGB) output, 49

register keyword, 59-60

registers, 53

Remote Method Invocation (RMI), 150

Remote Procedure Call (RPC), 150

resource assumptions, 4

resource fork, of Mac files, 193

returning structures, 137

Revision Control System (res), 17-18,
66

RGB (red/green/blue) output, 49

Ritchie, Dennis, 21

RMI (Remote Method Invocation), 150,
155-54

root directory, 189

RPC (Remote Procedure Call), 150,
153-54

rpcgen, 153

Ruby, 214, 217

rules for portability, 229-31

S

s_bridge_function, 56
SAL (Simple Audio Library)
audio API, 39
audio mixing, 27
bridging functions, 54-56
calling conventions, 136
digital audio, 145
DirectSound subsystem, 50
emulated vs. required features, 27
heterogeneous development, 10
misaligned accesses through pointer
casting, 79-80
overview, 6
parsing binary files, 202-3
performance baseline and use of
proprietary APls, 15
recursive mutexes, 27
segregating platform-specific files, 36
shell scripts, 75
simple makefile, 72
thread handling, 162-66
unique identifiers, 38
sal _alsa.c file, 36
sal_coreaudio.c file, 36
SAL_create_device, 4042
_SAL_create_sample_from wave(), 79
_SAL_create_thread(), 54-55
_SAL_create_thread_wince, 55
SAL Device structure, 42—44
SAL_Device::create_device, 45
SAL_DeviceDirectSound, 45
SAL_DeviceWAVEOUT, 45
sal_dsound.c, 36
sal_linux.c, 36
sal_nsrecursivelock.m, 36
sal_oss.c, 36
sal_osx.c, 36
sal_pthread mutex.c, 36
sal pthreads.c, 36
SAL_SystemParameters structure, 51-52
sal_waveout.c, 36
sal win32.c, 36
sal wince.c, 36
Sawtish, 143
scalability, 197-200
and algorithms, 197-99
limitations, 199-200
overview, 197
scan codes, 211
SCHAR_MAX, 127

INDEX 245

246

INDEX

SCHAR_MIN, 127
scoping of variables, 6-7
scripting languages, 213-17
as data files, 205
disadvantages, 214
JavaScript/ECMAScript, 215-16
Lua, 216-17
overview, 213-14
Python, 216
Ruby, 217
scripts, 74
security and permissions, 171-73
application installation, 171
filesystems, 191-92
low-level access, 173
overview, 171
privileged directories and data,
171-72
segregating platform-specific files, SAL,
36
SEH (Structured Exception Handling),
168
self-modifying code, 53-57
send function, 31
sendto function, 31
Sequenced Packet Exchange (SPX),
150
serialization, safe, 30-32
setjmp.h, 112
shared libraries, problems with, 177-79
overview, 177
proliferation, 178-79
versioning problems, 177-78
shared objects, Linux, 182-83
shell scripts, SAL, 75
SHGetFolderPath API, 193
short, 128
shortcuts, 188-89
SHRT_MAX, 128
SHRT_MIN, 128
SHRT_MIN constant, 85
SIGFPE signal handler, 105
sign propagation, 133
signal() API, 105, 167
signal.h, 112
signed char types, vs. unsigned char
types, 130-31
signed integer representation, 85
signed right shifts, 133
SIGSEGV, 168
SIMD (Single Instruction Multiple
Data) optimizations, 27

SIMD AltVec instruction set, 78

Simple Audio Library. See SAL (Simple
Audio Library)

Simple Object Access Protocol (SOAP),
150, 154

Single Instruction Multiple Data
(SIMD) optimizations, 27

size of native types, 85-89

size_t parameter, 195

sized types, 46-47, 90

sizeof(), 128, 130

skeleton, server-side, 154

SOAP (Simple Object Access Protocol),
150, 154

sockets, 151-53

soft links, 189

software, benefits of having mix of, 9

sound library, 145

source control. See editing and source
control

sp_size, 51

space character, 190

spam, 171

spawn*(), 160

special directories, 194

SpiderMonkey Engine, 215

sprintf(), 126

SPX (Sequenced Packet Exchange),
150

spyware, 171

stack, 124-25

_statusfp API, 105

stdarg.h header, 112

stdbool.h header, 112

__STDC_, 110

__STDC_HOSTED__, 110

_ STDC_IEC 559, 110

_ STDC_IEC_559 COMPLEX_ _, 110

__STDC_ISO_10646_, 111

__STDC_VERSION_ , 110

stdcall, 134

stddef.h, 112

<stdint.h>, 112, 126, 130

stdio file management, 49

<stdio.h>, 112, 113, 195

storage format, standardized, 82-84

string tables, 209

string.h, 112

strings and unicode, 208-9

strings files, 209

Stroustrup, Bjarne, 21

struct, returning values, 137

struct type (C)
alignment of, 120-22
packing of, 120-22
size of, 120-22
structure packing, 131
Structured Exception Handling (SEH),
168
structures, returning, 137
stub, clientside, 154
Subversion, 68
symbolic links, 188-89
symbols, predefined, 110-11
synchronization, and floating-point
math, 95
<sys/socket.h>, 152
system(), 160
system-dependent information,
communicating, 50-52
<sys/types.h>, 152

T

TCP/IP (Transport Control
Protocol/Internet Protocol),
150

TCP/IP networking, 49-50

techniques for portability. See portability
techniques

temp directory, 191

testing

integrating, 32-34
on several platforms, 10

text files, 202-4

text processing, 194-95

texture mapping, 28

tgmath.h, 112

Thompson, Ken, 21

threads. See processes and threads

3D graphics APIs, 28

throw keyword, 168

Thursby’s DAVE file-sharing system, 69

Tichy, Walter, 66

TIFF graphics format, 82-83

time, 210

__TIME_, 110

time.h, 112

TOS/GEM, 156

Transport Control Protocol/Internet
Protocol (TCP/IP), 150

Trolltech’s Qt, 220

_try keyword, 168

type ID, 193

type sizes and behavior, 126-33
64-bit integer types, 126-27
enums as ints, 131-32
numeric constants, 132
overview, 126
signed and unsigned right shifts, 133
signed vs. unsigned char types, 130-31
sizes of basic types, 127-30

UCHAR_MAX, 127
UINT_MAX, 128
uint8_t type, 89
uinti6_t type, 89
uint32_t type, 89
UINT64_C(), 127
uint64_t, 89, 126
ULLONG_MAX, 128
ULONG_MAX, 128
underflows, 103
underscores (_), 190
unicode, and strings, 208-9
union, 78, 99, 100, 137
unique identifiers, 38
unique identifiers, SAL, 38
<unistd.h>, 152
unit tests, 32
unsigned char types, 99-100, 130-31
unsigned long long, 126
unsigned right shifts, 133
user data storage, 168-71
Linux, 170
Microsoft Windows registry, 169-70
OS8 X preferences, 170-71
overview, 168-69
user interaction, 141-47
cross-platform toolkits, 147
digital audio, 144-45
evolution of user interfaces, 142-43
command line, 142
overview, 142
Window systems, 142-43
input, 145-47
joystick and gamepad, 146-47
keyboard, 146
mouse, 146
overview, 145
low-level graphics, 144
native GUI vs. application GUI,
143-44
overview, 141

user thread, 161
USHRT_MAX, 128
utility functions, POSH, 225-28

\

variables, scoping of, 6-7
versioning problems, 177-78
VINES, 150

virtual functions, 45-46
virtual machine, 214
viruses, 171

void * type, 99-100

void feclearexcept(), 105
void fegetenv(), 106

void fegetexceptflag(), 105
void feraiseexcept(), 105
void fesetenv(), 106

void fesetexceptflag(), 105
void feupdateenv(), 106
volume specifiers, 189
vsprintf(), 126

w

/AN (wide area network), 150
'AV file format, 202
wchar.h, 112
wctype.h, 112
wide area network (WAN), 150
Win32 NTFS filesystem, 190
WINAPI, 134
Window systems, evolution of user
interfaces, 142—-43
WinSock API, 151
<winsock2.h>, 151
<winsock.h>, 151
WordStar, 157
worms, 171
WSAEAGAIN, 153
WSAEWOULDBLOCK, 153
WSAGetLastError(), 153
wxWidgets, 221-22

X

X Windows, 143
XML, 154, 204-5
XSI (X/Open System Interface), 23

248 inpex

Electronic Frontier Foundation
Defending Freedom in the Digital World

Free Speech. Privacy. Innovation. Fair Use. Reverse Engineering. If you care about these rights in the
digital world, then you should join the Electronic Frontier Foundation (EFF). EFF was founded in 1990 to
protect the rights of users and developers of technology. EFF is the first to identify threats to basic rights
online and to advocate on behalf of free expression in the digital age.

The Electronic Frontier Foundation Defends Your Rights!
Become a Member Today!
http://www.eff.org/support/

Current EFF projects include:

Protecting your fundamental right to vote. Widely
publicized security flaws in computerized voting
machines show that, though filled with potential, this
technology is far from perfect. EFF is defending the
open discussion of e-voting problems and is coordinat-
ing a national litigation strategy addressing issues
arising from use of poorly developed and tested
computerized voting machines.

Ensuring that you are not traceable through your
things. Libraries, schools, the government and private
sector businesses are adopting radio frequency
identification tags, or RFIDs - a technology capable of
pinpointing the physical location of whatever item the
tags are embedded in. While this may seem like a
convenient way to track items, it's also a convenient
way to do something less benign: track people and their
activities through their belongings. EFF is working to
ensure that embrace of this technology does not erode
your right to privacy.

Stopping the FBI from creating surveillance backdoors
on the Internet. EFF is part of a coalition opposing the
FBI's expansion of the Communications Assistance for
Law Enforcement Act (CALEA), which would require that
the wiretap capabilities built into the phone system be
extended to the Internet, forcing ISPs to build backdoors
for law enforcement.

Providing you with a means by which you can contact
key decision-makers on cyber-liberties issues. EFF
maintains an action center that provides alerts on
technology, civil liberties issues and pending legislation
to more than 50,000 subscribers. EFF also generates a
weekly online newsletter, EFFector, and a blog that
provides up-to-the minute information and commentary.

Defending your right fo listen to and copy digital music
and mavigs. The entertainment industry has been
overzealous in trying to protect its copyrights, often
decimating fair use rights in the process. EFF is
standing up to the movie and music industries on
several fronts.

Check out all of the things we're working on at http://www.eff.org and join today
or make a donation to support the fight to defend freedom online.

ELECTRONIC FRONTIER FOUNDATION - 454 SHOTWELL STREET - SAN FRANCISCO, CA 94110 - 415.436.9333

d

Maore No-Nonsense Books from ‘ :i;J NO STARCH PRESS

—

WRITE GREAT CODE, VOLUME 1

WRITE GREAT | Understanding the Machine

c 0 D E by RANDALL HYDE

UMBERSTANDING 100 MAEHINE

Many of today’s programmers lack a formal education in computer science.
The Write Great Code series is here to fill those gaps in education. Volume 1
of this series teaches machine organization, including numeric representa-
tion, binary arithmetic and bit operations, floating point representation,
system and memory organization, character representation, constants and
types, digital design, CPU instruction set and memory architecture, input
and output, and how compilers work.

NOVEMBER 2004, 464 pp., $39.95 ($55.95 CAN)
ISBN 1-59327-003-8

WRITE GREAT CODE, VOLUME 2

WRITE GREAT | Thinking Low-Level, Writing High-Level

C 0 D E by RANDALL HYDE

weLuME 32
LOW LTI RRINNE HOGH G

Today’s computer science students aren’t always taught how to carefully
choose their high-level language statements to produce efficient code. Write
Great Code, Volume 2: Thinking Low-Level, Writing High-Level shows software
engineers what too many college and university courses don’t: how compilers
translate high-level language statements and data structures into machine
code. Armed with this knowledge, they will be better able to make informed

choices concerning the use of those high-level structures, which will help the
compiler produce far better machine code, all without having to give up the
productivity and portability benefits of using a high-level language.

SEPTEMBER 2005, 752 pp., $44.95 ($60.95 CAN)
ISBN 1-59327-065-8

HOW NOT TO PROGRAM IN (++

HOW NOT TO |y Broken Programs and 3 Working Ones, or Why Does 2+2-5986?
oSty

f)}‘ STEVE OUALLINE

Based on real-world errors, the 101 fun and challenging C++ puzzles in How
Not to Program in C++ range from easy (one wrong character) to mind twisting
(errors with multiple threads). Match your wits against the author’s and pol-

ish your language skills as you try to fix broken programs. Clues help along
the way, and answers are provided at the back of the book.

APRIL 2003, 280 pp., $24.95 ($37.95 CAN)
ISBN 1-886411-95-6

SILENCE ON THE WIRE

A Field Guide to Passive Reconnaissance and Indirect Attacks
by MICHAL ZALEWSKI

Author Michal Zalewski has long been known and respected in the hacking
and security communities for his intelligence, curiosity, and creativity, and
this book is truly unlike anything else out there. Silence on the Wire is no hum-
drum technical white paper or how-to manual for protecting one’s network.
Rather, Zalewski’s book is a fascinating narrative that explores a variety of
unique, uncommon, and often quite elegant security challenges that defy
classification and eschew the traditional attacker-victim model.

FEBRUARY 2005, 312 pp., $39.95 ($53.95 CAN)
ISBN 1-59327-046-1

HACKING

The Art of Exploitation

by JON ERICKSON

Hacking: The Art of Exploitation is for both technical and non-technical people
who are interested in computer security. Unlike many so-called hacking
books, this book explains the technical aspects of hacking, including stack
based overflows, heap based overflows, string exploits, return-into-libc,
shellcode, and cryptographic attacks on 802.11b. Erickson’s goal is to
instruct—not to promote any illegal activity. If you're serious about hacking,
this book is for you.

OCTOBER 2003, 264 pp., $39.95 ($59.95 CAN)
ISBN 1-59327-007-0

PHONE: EMAIL:

800.420.7240 OR SALES@NOSTARCH.COM
415.863.9900

MONDAY THROUGH FRIDAY, WEB:

9 AM.TO5 P.M. (PST) HTTP:/ / WWW.NOSTARCH.COM
FAX: MAIL:

415.863.9950 NO STARCH PRESS

24 HOURS A DAY, 555 DE HARO ST, SUITE 250

7 DAYS A WEEK SAN FRANCISCO, CA 94107

USA

Silence on the wire

JACKING

THEART-OF £XBLO)I TATION

JON ERICKSON

UPDATES

Visit http:/ /www.nostarch.com/wpc.htm for updates, errata, and other
information.

COLOPHON

Write Portable Code was written using OpenOffice.org Writer and laid out in
Adobe FrameMaker. The font families used are New Baskerville for body text,
TheSansMono Condensed for code text, Futura for headings and tables, and
Dogma for titles.

The book was printed and bound at Malloy Incorporated in Ann Arbor,
Michigan. The paper is Glatfelter Thor 60# Antique, which is made from
50 percent recycled materials, including 30 percent postconsumer content.
The book uses a RepKover binding, which allows it to lay flat when open.

	Cover
	Title Page
	Main Title Page
	Copyright
	Dedication
	Brief Contants
	Contents in Detail
	Preface
	Acknowledgments
	The Art of Portable Software Development
	The Benefits of Portability
	Elements of the Platform
	The Problem with Assumptions
	Coding Standards
	The Framework for Portable Programming

	1 Portability Concepts
	Portability is a State of Mind, Not a State
	Develop Good Portability Habits
	Good Habits Trump Specific Knowledge of Bugs or Standards
	Plan Portability for a New Project
	Port Old Code

	2 ANSI C and C++
	Why Not Another Language?
	C and C++ Dialects
	Portability and C/C++

	3 Techniques for Portability
	Avoid New Features
	Deal with Varying Feature Availability
	Use Safe Serialization and Deserialization
	Integrate Testing
	Use Compilation Options
	Segregate Platform-Dependent Files from Portable Files
	Write Straightforward Code
	Use Unique Names
	Implement Abstraction
	Low-Level Programming

	4 Editing and Source Control
	Text File Line Ending Differences
	Portable Filenames
	Source Control
	Build Tools
	Editors
	Summary

	5 Processor Differences
	Alignment
	Byte Ordering and Endianess
	Signed Integer Representation
	Size of Native Types
	Address Space
	Summary

	6 Floating Point
	History of Floating Point
	Standard C and C++ Floating-Point Support
	Problems with Floating Point
	Fixed-Point Integer Math
	Extraction of Integer Bits from a Float
	Implementation Queries
	Exceptional Results
	Storage Formats
	Summary

	7 Preprocessor
	Predefined Symbols
	Header Files
	Configuration Macros
	Conditional Compilation
	Pragmas
	Summary

	8 Compilers
	Structure Size, Packing, and Alignment
	Memory Management Idiosyncrasies
	The Stack
	The printf Routine
	Type Sizes and Behavior
	Calling Conventions
	Returning Structures
	Bitfields
	Comments
	Summary

	9 User Interaction
	The Evolution of User Interfaces
	Native GUI or Application GUI?
	Low-Level Graphics
	Digital Audio
	Input
	Cross-platform Toolkits
	Summary

	10 Networking
	The Evolution of Networking Protocols
	Programming Interfaces
	Summary

	11 Operating Systems
	The Evolution of Operating Systems
	Hosted and Freestanding Environments
	The Operating System Portability Paradox
	Memory
	Processes and Threads
	Environment Variables
	Exception Handling
	User Data Storage
	Security and Permissions
	Summary

	12 Dynamic Libraries
	Dynamic Linking
	Dynamic Loading
	Problems with Shared Libraries (aka DLL Hell)
	Gnu LGPL
	Windows DLLs
	Linux Shared Objects
	Mac OS X Frameworks, Plug-ins, and Bundles
	Summary

	13 Filesystems
	Symbolic Links, Shortcuts, and Aliases
	Path Specification
	Security and Access Privilege
	Macintosh Quirks
	File Attributes
	Special Directories
	Text Processing
	The C Run-Time Library and Portable File Access
	Summary

	14 Scability
	Better Algorithms Equal Better Scalability
	Scalability Has Its Limits
	Summary

	15 Portability and Data
	Application Data and Resource Files
	Creating Portable Graphics
	Creating Portable Audio
	Summary

	16 Internationalization and Localization
	Strings and Unicode
	Currency
	Date and Time
	Interface Elements
	Keyboards
	Summary

	17 Scripting Languages
	Some Scripting Language Disadvantages
	JavaScript/ECMAScript
	Python
	Lua
	Ruby
	Summary

	18 Cross-Platform Libraries and Toolkits
	Libraries
	Application Frameworks
	Summary

	A Posh
	POSH Predefined Symbols
	POSH Fixed-Size Types
	POSH Utility Functions and Macros

	B The Rules for Portability
	References
	Index
	Updates
	Colophon

