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PRAISE FOR THE MANGA GUIPE TO DATABASES

“Without a doubt, The Manga Guide to Databases was the most enjoyable tech book |'ve
ever read . . . | loved this book and highly recommend it.”
—RIKKI KITE, LINUX PRO MAGAZINE

“Whether you're new to the whole concept of databases, or a hard-core database geek, you
need to have The Manga Guide to Databases. Really, you want this book.”
—JOSH BERKUS, POSTGRESQL CORE TEAM

“For an American audience, this is certainly an off-the-beaten-path approach to technical
training. However, its ability to effectively plunge into a topic that can be a morass of arcane
theory is undeniable. Over the years, we've learned to expect the unexpected from No
Starch Press.” )
—MACDIRECTORY

“This is a fun book, there is no denying that. If you're in the market to learn more about
databases and you hate normal tech books this is a great pickup.”
—THE CAFFINATION PODCAST

“If | was going to teach a class or introduce a non-technical person to the world of data-
bases, | would most likely start here.”
—BLOGCRITICS.0RG

PRAISE FOR THE MANGA GUIPE TO
STATISTICS

“This is really what a good math text should be like.
Unlike the majority of books on subjects like statistics,
it doesn't just present the material as a dry series of
pointless-seeming formulas. It presents statistics as
something fun, and something enlightening.”

—GOOD MATH, BAD MATH

“The Manga Guide to Statistics is a solid introduction to
the world of statistical analysis done in a fun and acces-
sible way.”

—ACTIVE ANIME

“Inoue’s art is clean, cute and simplified, and it works with
machine-like efficiency—the artist not only knows and
speaks the language of manga, but does so fluently.”
—NEWSARAMA

“The Manga Guide to Statistics offers a visualization of
statistics that can't be found in any mere textbook.”
—anIME 3000
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PREFACE

It is essential to the understanding of physics to correctly “see” what you wish to examine.
In classical mechanics, in particular, you need to understand how physical laws apply to
transient, moving objects. But unfortunately, conventional textbooks rarely provide adequate
images of such motion.

This book attempts to conquer the limits of those conventional textbooks by using
cartoons. Cartoons are not just simple illustrations—they are an expressive and dynamic
medium that can represent the flow of time. By using cartoons, it is possible to vividly
express changes in motion. Cartoons can also transform seemingly dry laws and unreal
scenarios into things that are familiar, friendly, and easy to understand. And it goes without
saying—cartoons are fun. We have emphasized that in this book, as well.

As an author eager to know whether or not my intent has succeeded, | can only wait
for readers to make their judgments. This work has been finished to my deep satisfaction,
except for the omission of one chapter—due to page count constraints—featuring a trip to an
amusement park to explain circular movement and the noninertial system.

The main character of this book is a high school student named Megumi Ninomiya who
finds physics rather difficult. It is my sincere desire that this book reaches out to as many
readers as possible who think “physics is tough” and who “don't like physics,” helping them
find pleasure in physics like Megumi does—even if it's only a little.

Last but not least, | would like to express my deep appreciation to the staff at the OHM
Development Office, scenario writer re_akino, and illustrator Keita Takatsu—their combined
efforts have resulted in this wonderful cartoon work that would have been impossible for
one individual to complete.

HIPEO NITTA
NOVEMBER Z006&
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e
SEVERAL HOURS HOW DID
AGOQ... YOU PO ON
THE PHYSICS
TEST?

WHAT WAS YOUR
ANSWER FOR
QUESTION 97

COMPARING
ANSWERS,

9) Suppose you are hitting a ball with a tennis racket. Which is greater, the force
of the ball pushing the racket or the force of the racket pushing the ball? Select
the correct answer.

The farce of the racket pushing the ball is greater than the force of
the ball pushing the racket.

The force of the ball pushing the racket is greater than the force of
the racket pushing the ball.

The force of the ball pushing the racket is the same as the force of
the racket pushing the ball.

The relationship between the force of the ball pushing the racket
and the force of the racket pushing the ball depends on the weight
of the racket and the speed of the ball.

1 PICKED A.



FEELING S0 BRILLIANT

WHAT DO
YOU MEAN,
SAYAKA?

OH DEAR,

NEGUMI HAVE YOU
FORGOTTEN
NEWTON'S THIRD

DONT YOU
REMEMBER?! IT'S

THE LAW OF ACTION
AND REACTION.

THE FORCE OF THE
RACKET ON THE BALL
AND THE FORCE OF
THE BALL ON THE
RACKET ARE ALWAYS
EQUIVALENT.

THEREFORE, THE > - /;
RIGHT ANSWER
15 Ci
JEEZ!

4 PROLOGUE



BY THE
WAY, HAVE
YOU ALSO

FORGOTTEN

SCREW UP IN THE
GAME, TOO!

ABOUT OUR
MATCH AFTER
SCHOOL?

£ el
o
b i
AN h

OF, OF...OF
COURSE NOT!

CAREFUL
NOT TO...




- OH, NO. I CAN'T
CONCENTRATE.

CAN'T HELP
THINKING
ABOUT IT...

=~ THE FORCE ON
THE BALL AAZ TO
BE LARGER!

IF THE FORCES ON THE
RACKET AND THE BALL
-~ ARE EQUIVALENT...

& PROLOGUE




IF THEY ARE
EQUIVALENT.

WOULDN'T THEY
CANCEL EACH
OTHER OUT?

BUT THEN THE =
BALL WOULDN'T
MOVE? THAT =g
DOESN'T MAKE =
SENSE!

GAME, SET,
MATCH!

ALL RIGHT. THE
LOSER HAS TO
CLEAN UP.




LATER THAT
AFTERNOON...

I LOST AGAINST
SAYAKA...

AND I STILL
DONT GET IT.

THE...?!

8 FROLOGUE

RYOTA e =
NONOMURA, MY =
CLASSMATE? .




HE 15 WELL KNOWN

AT SCHOOL, HAVING  INTERNATIONAL

WON A SILVER PHYSICS
MEDAL OLYMPIC GAMES.

WELL,
LET ME SEE...
WHY DID YOU...

WELL, EH...
I FOUND A BALL
BY MY FEET.

I THOUGHT 1

MIGHT HELP, IT WOULD HAVE
AND I MEANT TO BEEN BETTER IF
THROW IT INTO YOU'D JUST HANDED

IT TO ME LIKE A
NORMAL PERSON.

THE BASKET.

WELL...
I GUESS
YOU'RE RIGHT.

/  BUT I'M SO
UNCOORPDINATED.

DOES PHYSICS BOTHER YOU? g



BUT IT'S OKAY,
SINCE IT WAS AN
ACCIDENT, WHAT ARE YOU
DOING HERE,

ANYWAY?

I WAS CALCULATING
THE MOTION OF
THE BALL WHILE
WATCHING YOUR

WOW! JUST LIKE A

PHYSICS OLYMPICS

SILVER MEDALIST
WOULD!

50...
YOU SAW ME
LOSE, TOO!

LISTEN!

LET ME TELL
YOU WHY I LOST
THAT GAME.




REMEMBER IN THE
PHYSICS TEST WE
HAD TODAY, THERE
WAS A QUESTION
L ABOUT TENNIS,

I COULDN'T
CONCENTRATE
ON THE GAME
AT ALL.

NONOMURA-KUN,
CAN YOU HELP
ME UNDERSTAND
PHYSICS?

I GOT IT WRONG.
THAT BOTHERED
ME WHILE T

PLAYED.

BOTHERED

YOU ARE A SILVER
MEDALIST, AREN'T
YOU? PLEASE
HELP ME!




ACUTE PAIN. IT MUST

OUCH...I FEEL AN

BE WHERE YOU HIT
ME WITH THAT BALL. /

WHAT? YOU'RE
HOLDING YOUR
TUMMY, NOT WHERE

THE BALL HIT!

OKAY, ALL RIGHT!
TLL PO IT!

be

REALLY?

BUT YOU MUST
PROMISE ME
SOMETHING. WILL
YOU TRY YOUR BEST
TO UNPERSTAND? [

12 PROLOGUE




LAW OF ACTION
AND REACTION




LAW OF ACTION AND REACTION

..YOU KNOW,
NONOMURA-
KUN,

* LABORATORY

1 GET THE
IMPRESSION THAT
YOU HARDLY GO
TO CLASS. DO YOU
HANG OUT HERE?

&,

'.-\":y"' 5

IT'S NICE WITH ALL
THESE EXPERIMENTS
AND INSTRUMENTS.
BUT THE BEST PART
IS THAT IT'S QUIET.

-4

IS IT OKAY
FOR US TO
STUDY HERE?

14 CHAPTER 1 LAW OF ACTION AND REACTION

YES, CERTAINLY.
I ALREADY HAVE
OUR TEACHER'S
PERMISSION.

THEY MUST
REALLY TRUST
You!




I HEAR A LOT

ABOUT YOU, TOO,
NINOMIYA-SAN,
AS AN ALL-STAR

ATHLETE.

NO KIPDING...?
WELL, IT'S JUST
WHAT I LIKE,
YOU KNOW,

HOW THE LAW OF ACTION AND
REACTION WORKS

WELL, THEN,
PLEASE STUDY
PHYSICS AS MUCH
AS YOU PRACTICE

"I WILL! AND
THANK YOU
FOR YOUR

NOW, LET'S GET
STARTED.

YOU WANT TO LEARN
'ABOUT THE LAW OF
ACTION AND REACTION,
RIGHT?

AT LEAST THAT'S WHAT
SAYAKA MENTIONED...

BEFORE WE THINK
ABOUT IT USING
A RACKET AND A




LET'S FEEL
HOW THE LAW
WORKS ON OUR
BODIES.

ON OUR
BODIES?

ARE THOSE...
ROLLERBLADEST!

LESSON 15
GETTING

ABIT ..NO, NO, YOU'VE
WEIRD.. GOT ME ALL
WRONG.

OOPSY-DAISY.
LIKE THIS?

GOOoPD.
I WILL PUT
SOME ON,
TOO.

16 CHAPTER 1

SEE, I HAVE A
MASS OF ABOUT
60 KG.

AND YOU,
NINOMIYA-
SAN, ABOUT...

..LET'S SAY, YOU'RE
40 KG. YOU MUsT
BE LIGHTER THAN

IAM.




i

NOW...AS I HOLD MY
HANDS IN PLACE LIKE
THIS, PUSH ME WITH
YOUR HANDS. A

DO YOU THINK
YOU CAN MOVE
ME WITHOUT
MOVING YOURSELF,
NINOMIYA-SANT

WITH A MASS OF
40 K&, I WILL PUSH
YOU, NONOMURA-
KUN, WHO HAS A
MASS OF €0 KG.

EXACTLY.

WHY ARE YOU
GRINNING AT ME
LIKE THAT?

SEE, BOTH OF US
ARE MOVING.

AND YOU'VE GONE
FARTHER AWAY,
NINOMIYA-SAN.

HEY, YOU'RE
RIGHT...

HOW THE LAW OF ACTION AND REACTION WORKS 17



LET'S TRY IT THE
OPFPOSITE WAY.

IF 1 PUSH, BOTH
OF US WILL MOVE
BACKWARD AGAIN.

WHEN YOU
ATTEMPT TO USE
FORCE ON ME,

EVEN IF I DON'T
MEAN TO PUSH
YOU BACK,

HOWEVER AND
WHENEVER EITHER
OF US APPLIES
FORCE TO THE

18 CHAPTER 1 LAW OF ACTION AND REACTION

FORCE WILL
BE APPLIED TO
YOUR BODY,
NINOMIYA-SAN.

DIRECTION.

THE OTHER ONE
WILL RECEIVE THE
SAME FORCE IN
THE OPPOSITE

SO I CAN'T
MOVE YOU

WITHOUT BEING
MOVED MYSELF.




IN ADDITION, THE

OBJECTS.

.«‘-‘- ¥
i

THIS 15 CALLED THE
MAGNITUPE OF THE LAW OF ACTION AND
FORCE IS ALWAYS THE  zep 70N, AND IT ALSO
SAME ON BOTH SIDES. " expl AING WHY FORCE
15 ALWAYS GENERATED
BETWEEN A PAIR OF

THAT'S NEWS

TO ME.

@O'“

HMM...

WE CAN
SUMMARIZE IT
CLEARLY AS

THIS LAW DESCRIBES
THE NATURAL BEHAVIOR
OF TWO OBJECTS. WHEN
OBJECT A EXERTS A

FORCE ON OBJECT 8,
OBJECT B EXERTS AN A

FOR EVERY ACTION,
THERE 1S AN EQUAL AND
OPPOSITE REACTION.

EQUAL AND OPPOSITE
FORCE. Q
8
\ R LY

U
O

7

™




IT'S A LAW IN THE
NATURAL WORLD, EH?

555LICK

“mJ

N ﬁ
el

| T : SK-SKD-DD

THAT'S RIGHT.

ARE YOU ALL
RIGHT?

THAT LOOKED SO
PAINFUL.

EQUILIBRIUM

OOF. UH...
LET ME PULL MYSELF
TOGETHER.

20 CHAPTER 1 LAW OF ACTION AND REACTION



WHEN OBJECTS
ARE STATIC, IT'S
EASY TO MIX
UP THE LAW OF

ACTION AND
REACTION

WITH
EQUILIBRIUM,
OR A BALANCE
OF FORCES.

BALANCE...OF

LET ME ILLUSTRATE
THE FORCE APPLIED
TO A BALL IN THE
PALM OF MY HAND.

FORCE HAS A
DIRECTION IN ADDITION
TO A MAGNITUDE.

THE PIRECTION
OF THE FORCE

A QUANTITY HAVING
A MAGNITUDE AND
PIRECTION |15 CALLED
A VECTOR.

THE MAGNITUDE
OF THE FORCE

AS REPRESENTED
BY THE ARROWS
IN YOUR
ILLUSTRATION, I
SUPFPOSE.

THE MAGNITUDE
OF THE FORCE

THE PIRECTION
OF THE FORCE




DRAW AN ARROW
THAT POINTS IN THE
DIRECTION OF THE
FORCE, WITH ITS LENGTH
REPRESENTING THE

MAGNITUDE.

50 THE
ILLUSTRATION
SHOWS...

THE FORCE OF
GRAVITY AND THE
FORCE FROM THE
HAND HAVE THE
SAME MAGNITUDE,
DON'T THEY?

REFERS TO A
RELATIONSHIP OF
FORCES LIKE WHAT

YOU SEE IN THIS
ILLUSTRATION.

TOTAL FORCE
ON THE BALL
wE
g

THE FORCES
CANCEL EACH
OTHER OUT.

NOW GRAVITY IS
THE ONLY FORCE
ACTING ON THE
BALL, SO IT
FALLS.

IF I WITHDRAW MY
HAND QUICKLY TO
STOP SUPPORTING
THE BALL,

W
H
/

N




EQUILIBRIUM V5. LAW OF ACTION
AND REACTION

NOW LET'S THINK
ABOUT THE
DIFFERENCE BETWEEN
EQUILIBRIUM AND THE
LAW OF ACTION AND
REACTION.

OOPSy_
PAjsy

TO MAKE IT EASIER
TO SEE, T'LL
COMPARE THE TWO
USING TWO BALLS.

WHEN CONSIDERING
EQUILIBRIUM, JUST FOCUS
ON THE FORCE APPLIED
TO THE BALL.

FORCE FROM
THE HAND

FORCE OF
GRAVITY
(WEIGHT)

EQUILIBRIUM

FOR THE LAW OF ACTION

AND REACTION, HOWEVER,

~ YOU NEED TO CONSIDER

BOTH THE BALL AND THE
HAND.

FORCE FROM
THE HAND

FORCE FROM
THE BALL
(WEIGHT?

LAW OF ACTION AND
REACTION

EQUILIBRIUM V3. LAW OF ACTION AND REACTION



THE CONCEPT
OF EQUILIBRIUM
INVOLVES FORCE

APFLIED TO A
SINGLE OBJECT.

50 THAT'S THE
DIFFERENCE
BETWEEN
EQUILIBRIUM AND
THE LAW OF ACTION
AND REACTION.

ON THE
OTHER HAND, THE
LAW OF ACTION AND
REACTION INVOLVES
FORCES AFFECTING
SEPARATE OBJECTS
LIKE THE BALL AND
THE HAND.

WHEN You
HOLD A BALL,
YOU FEEL THE

WEIGHT OF THE

BALL, DON'T
you?

THAT'S THE -
EVIDENCE THAT AS THE FORCE FROM

YOUR HAND 15 ALso  THE BALL PUSHING

YOUR HAND.
RusHiNe THE BALL, ., YoLEEHE: A

WE CAN
WITH A FORCE OF ACTION AND 7 g
OF THE SAME REACTION
MAGNITUDE. Z EASIER TO

UNDERSTAND
LIKE THIS.

IT INVOLVES
A DIFFERENT
VIEWPOINT FROM
THE CONCEPT OF
EQUILIBRIUM.




/' AS 1 SUDDENLY
LOWERED MY
HAND, THE BALL
ALSO WENT
DOWN.

YOU'VE JUST WITNESSED
A STATIC OBJECT THAT
STARTED MOVING. CAN

YOU EXPLAIN WHY?

PERHAPS...IT

©OES WHEREVER

YOUR HAND
GOES?

YOU COULD PUT
IT THAT WAY. BUT
JUST THINK OF
THE RELATIONSHIP
BETWEEN FORCES
OF DIFFERENT
MAGNITUDES.

BETWEEN
FORCES? HMM...

FORCE FROM

A THE HAND

FORCE OF
GRAVITY

STATIC STATE
(THE FORCES ARE BALANCED.)

MOTION OF THE

...THE DOWNWARD
HAND RESULTS IN

WHEN THE HAND
GOES DOWN...

FORCE FROM
2, THE HAND

FORCE OF
GRAVITY

THE FORCE
FROM THE HAND
SUPPORTING THE
BALL SUDDENLY
DECREASING.



WHOOPEE!

AM L...
AM I RIGHT?

EXACTLY!
YOU'VE GOT IT.

AS THE FORCE FROM
THE HAND APPLIED TO

E Fi
THE BALL BECOMES FRIDHM T*%REEND
SMALLER, THE BALANCE SUPPORTING
OF FORCES 1S BROKEN, THE BALL

AND A GREATER
DOWNWARD FORCE
EMERGES.
FROM THE VIEWFOINT
OF EQUILIBRIUM, WE CAN
EXPLAIN THE FALLING OF
A BALL THAT WAY.

50 THE BALL 15
NO LONGER IN
EQUILIBRIUM.

— | NOW WHAT WOULD
IT LOOK LIKE WHEN
VIEWED FROM A
STANDPOINT OF THE
LAW OF ACTION AND
REACTION?

50 WE TAKE
BOTH THE BALL
AND THE HAND
INTO ACCOUNT.

EXACTLY! WHEN
YOU LOWER YOUR
HAND, HOW DOES

THE WEIGHT OF THE
BALL FEEL?




THE FORCE FROM THE
HAND BEING IMPOSED
Tl ON THE BALL

U

IT FEELS LIGHTER
FOR A MOMENT. HAS
THE FORCE FROM
THE BALL BEING
APPLIED TO THE HAND
BECOME SMALLER?

THE FORCE FROM THE

BALL BEING IMPOSED BOTH FORCES
ON THE HAND BECOME
SMALLER.

ACCORPING TO THE LAW OF
ACTION AND REACTION, THE
FORCES ON TWO PAIRED
OBJECTS ARE EQUAL IN
MAGNITUDE, REMEMBER? 50O THE
FORCE FROM THE HAND BEING
APFLIED TO THE BALL SHOULD
ALSO BECOME SMALLER.

WATSON,

IN TURN, IF YOU
SUDDENLY RAISE THE
BALL, WON'T YOU
SUDDENLY FEEL THE
BALL BECOMING
HEAVIER?

YEF,

IT FEELS
HEAVIER.
IN ORPER TO BREAK
EQUILIBRIUM AND MOVE THE I FEEL
BALL UPWARD, A FORCE s A LITTLE
GREATER THAN THE FORCE | FROM THE HAND E'MBARRA?&ED.

SUPFPORTING

OF GRAVITY ON THE BALL THE BALL

NEEDS TO BE IMPOSED
FROM THE HAND.

REALLY.

e m——————— I
1 = !
] = I
I I
I
I RESULTANT THE FORCE] *\ _
1 FORCE THE HANU@: it |!:“'—"—|: Ir_"_-f‘_
l UPPORTIN
| THe BALL | @;AV”Y@'
| GRAVITY" I ORCE
| FORCE :
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THEN THE RESULTING
REACTION FORCE
BECOMES GREATER, TOO.
THAT'S WHY YOU NOTICE IT
FEELS HEAVIER.

NOW DOES
THIS HELP YOU
UNPERSTAND THE
EXAM QUESTION
///f INVOLVING A RACKET
AND A BALL?

THE FORCE
FRCOM THE
HAND BEING
IMPOSED
ON THE
BALL
'f YOU SEE, THE FORCE
FROM THE BALL IMPOSED
[ ON THE HAND INCREASES
BALL BEING JUST AS MUCH AS THE
i FORCE FROM THE HAND
HAND IMPOSED ON THE BALL
INCREASES.

NONE
OF YOUR
JA\BUSINESS!

b -1
“@)

WHAT'S THE
MATTER WITH YOU,
NINOMIYA-SAN?

9) Suppose you are hitting a ball with a tennis racket. Which is
greater, the force of the ball pushing the racket or the force of
the racket pushing the ball?

AHEM. SORRY.
I THINK THE
QUESTION WENT
LIKE THIS.
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ALTHOUGH THE BALL 15
IN CONTACT WITH THE
RACKET FOR A SMALL

AMOUNT OF TIME, IN THAT

ONE MOMENT, YOU CAN

SEE THE RELATIONSHIP
BETWEEN FORCES

CHANGE CONSTANTLY.

7 YOU SEE, WHEN YOU

; HIT THE BALL, THE
FORCE OF THE RACKET

IMPACTING THE BALL

VARIES DEPENDING ON

YOUR STROKE AND THE

HOWEVER, AT ANY ONE
TIME, THE FORCES
OF THE TWO ARE

EQUAL IN MAGNITUDE
AND OPPOSITE IN

PIRECTION.

NATURALLY, THE FORCE
EXERTED ON THE BALL
BY THE RACKET ALSO
KEEPS CHANGING.

ON THE
RACKET o

THE FORCE

FROM THE
RACKET
EXERTED
ON THE THE FORCE
BALL FROM THE
RACKET
EXERTED
ON THE

BALL

THE START OF
CONTACT WITH THE
RACKET

THE MOMENT WHEN
THE FORCE REACHES
THE MAXIMUM
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50, IF YOU LOOK AT
EACH MOMENT AS IF

TIME WERE STOPPED,

IT 1S JUST LIKE WHEN YOU CAN ALWAYS FIND

A BALL SITS STILL ON THE LAW OF ACTION
YOUR PALM. AND REACTION EITHER

IN MOTION OR IN STATIC

AT LAST, T FULLY Y
UNDERSTAND IT.

GRAVITATIONAL FORCE AND THE
LAW OF ACTION AND REACTION

YEAH, THAT'S

ACCORDING TO
THE LAW OF ACTION
AND REACTION, YOU
SAID FORCES ARE
ALWAYS GENERATED
IN PAIRS.,
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IT COMES FROM
THE EARTH.

> g
(7]

WHERE DOES

THEN WHAT 15 THE IT COME

COUNTERPART TO FROM?
GRAVITY'S FORCE
ON THE BALL? THAT'S A WHAT?
VERY GOOD THE EARTH?

QUESTION.

NOT ONLY A BALL BUT

ALSO YOU, ME, AND EVEN Fﬁé‘i‘k"ﬁ”p‘é‘?&'&
AN AIRPLANE IN THE SKY :

ARE PULLED DOWN BY THE AND JUST AS THS }'__’UTlﬁléNB@AESF;CE
EARTH. THE FORCE OF GRAVITATIONAL el sl o

THE EARTH 15 THE FORCE FORCE PULLS DOWN %
OF GRAVITY, WHICH WE ON A BALL, EARTH.

COMMONLY CALL AN

OBJECT'S WEIGHT.

THE FORCE FROM
THE EARTH BEING
IMPOSED ON THE

BALL BEING
IMPOSED ON
THE EARTH

HMM. M NOT
| | SURE IF I REALLY
)\ UNDERSTAND IT..



ANY OBJECTS THAT
. HAVE MASS ARE
PULLING EACH
OTHER IN THE FORM
OF UNIVERSAL
GRAVITATION.

THE BALL IS
PULLING THE
EARTH?

SURE., IT'S HARD TO

BECAUSE BELIEVE THAT
THEY MAKE ABALL IS
A PAIR. PULLING...

WELL, A BALL COULD
NEVER MOVE THE
EARTH, SINCE THE

MASS OF THE EARTH

IS TREMENDOUS.

50, UNIVERSAL
GRAVITATION MUST BE
WORKING BETWEEN
YOU, NONOMURA-KLUN,
AND ME, CAUSING US TO
GET CLOSER.

WHAT HAPPENED TO
YOUR PROMISE TO
TRY TO UNDERSTAND
SERIOUSLY?

OOPS! HOW

.UNIVERSAL

GRAVITATION 15 THE MASS OF A
PR%’S?)’EONﬁTg PERSON IS EXTREMELY
TO oD SMALL, SO UNIVERSAL
OF MASSES OF

GRAVITATION CANNOT
BE FELT BETWEEN
PEOFPLE!

ELEMENTS PULLING
EACH OTHER. A




NEWTON'S THREE LAWS OF MOTION

THE LAW OF ACTION
AND REACTION
1S SOMETIMES
REFERRED TO AS
NEWTONS THIRD LAW
OF MOTION.

YOU SAY THIRD. YOU
MEAN THERE ARE

OTHER LAWS, LIKE THE

FIRST AND SECOND?

), Y THERE ARE THREE
g 3 IN ALL. THEY ARE

REFERRED TO AS
NEWTON'S THREE
LAWS OF MOTION.

BEFORE EXAMINING
THESE LAWS...MAY 1
ASK, NINOMIYA-SAN?

WHAT DO You
THINK PHYSICS IS

il ALL ABOUT?




MEMORIZING LOTS
OF EQUATIONS

FOR TESTS.

1 USED TO SEE

IT THAT WAY.

'LISTENING TO YOUR

EXPLANATION,
NONOMURA-KUN,
MY VIEW MAY HAVE
CHANGED A LITTLE.

50, MAYBE IT'S TO
HELP UNDERSTAND
THE MECHANICS OF

MOTION. RIGHT? THAT'S GREAT.

PHYSICS SHOULDN'T
BE LEARNED BY
ROTE.

IN MY OPINION,
PHYSICS MEANS,
“EXPLAINING
NATURAL
PHENOMENA
USING LAWS—

OR PREDICTING
THEM BASED ON
MATHEMATICAL DATA.”

WOW! THAT'S
CONVINCING
ENOUGH.

AND THE
FOUNDATION OF
PHYSICS 1S CLASSICAL
MECHANICS—WHAT
WE'RE STUDYING IN
CLASS.




THE OBJECTIVE OF
PHYSICS 1S TO PREDICT

THE MOTION OF AN
OBJECT. IN OTHER WORDS,

WE LEARN PHYSICS IN

ORDER TO CORRECTLY
TELL WHEN AND WHERE
THAT OBJECT
WILL BE.

IT SOUNDS
DIFFERENT FROM
WHAT I THOUGHT

BEFORE.

S5UPPOSE, HOWEVER, YOU
NEED TO PREDICT WHERE
THE BALL YOU ARE GOING
TO THROW WILL BE ONE
SECOND LATER.

IT'S EASY TO TAKE A

VIDEO OF A MOVING

BALL AND SEE WHERE
IT WAS AT A PARTICULAR
TIME, ISN'T IT?

I elUess..

IN THAT CASE, YOU NEED
TO KNOW THE RULES
BEHIND THE MOTION OF
THE BALL.
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THE LAW OF ACTION
AND REACTION 15
ONE OF THEM.

NEWTON'S THREE { : 4

LAWS ARE THE '

BASIC RULES OF
MOTION.

IS IT REALLY THAT
LATEPWESHOULD §. 0 e SRS
GO HOME NOW!

THANKS A LOT.
1 FIND PHYSICS MORE

INTERESTING NOW THAN
! I DID BEFORE,

1 HOPE
YOU'LL GIVE
ME ANOTHER

LECTURE SOON.

0

THEY'RE LEAVING
THE PHYSICS LAB
TOGETHER...
HOW CURIOUS.

SEE YOU
SOON, THEN.

ISN'T THAT
MEGUMI...AND
NONOMURA, THAT
PHYSICS GEEK?
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SCALAR QUANTITIES VS. VECTOR QUANTITIES

Physics involves measuring and predicting various quantities (or physical values) like force,
mass, and velacity. These values can be classified into those having only magnitude and
those having both magnitude and direction. A quantity that has magnitude without a direc-
tion is referred to as a scalar quantity. Mass is a scalar quantity. Energy and work, which
we'll learn about in Chapter 4, are also scalar quantities.

On the other hand, force is a value with a direction. You can see that from the fact
that the motion of an object changes if you apply force from a different direction. A quan-
tity that has a direction is called a vector. Velocity and acceleration (which are introduced in
Chapter 2) and momentum (discussed in Chapter 3) are also vector quantities, as they have
direction. You may forget the terms scalar and vector, but you should keep in mind that
there are two types of values in physics: those with just a magnitude and those with both a
magnitude and a direction.

VECTOR BASICS

A vector is represented using an arrow. The length of the arrow represents the magnitude of
the vector, and the point represents its orientation, or direction. Two vectors with the same
magnitude and direction are equivalent to one another, even if they do not have the same
origin.

Orientation

2y

Magnitude | a|

A vector is equivalent after a parallel move.

Also note that the magnitude of a vector (represented by the length of the arrow) can
be noted with absolute value symbals, like |dl, or simply as a.

ssssnns CECERTRRTTTTRT T

The sum of two vectors (@ + b) is shown by joining the head of vector @ to the tail
of vector b, and then extending a line from the tail of @ to the head of b, as shown in the
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figure on the left here. As this vector is a diagonal of the parallelogram in the figure, it is
obvious that it is also equivalent to b + d. Therefore, we know that the following is true:

COMMUTATIVE LAW: d+b=b+d

The order in which you add vectors doesn't matter! You can find the sum of three or
more vectors in the same way.

NEGATIVE VECTORS

Vector -a, or d preceded by a minus sign, yields a sum of zero when added to vector @. In
an equation, the relationship looks like this:

a+(-a)=0

In terms of geometry, -@ is simply a vector of the same magnitude as @, but in the
exact opposite direction. The O on the right side of this equation represents zero as a vector,
referred to as a zero vector. When vectors cancel each other out in this way, an abject is said
to be in equilibrium.

By

=)

<

DIFFERENCE BETWEEN TWO VECTORS

The difference between two vectors (g - b) can be defined as follows:

E—b=5+(—5)

Thus, we can find the result of the equation using the same process for summing
vectors.
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MULTIPLYING VECTORS BY SCALARS

Doubling vector @ means doubling its magnitude without changing its direction. The result is
represented as 24.

a

2

> >

2a

Generally, k multiplied by d@ (ka) represents a vector with a magnitude k times greater
than @ but in the same direction.

EQUILIBRIUM AND VECTOR FORCES

In discussing the total forces on the tennis ball on page 22, we saw the following equation:

total force on the ball = force of gravity + force from the hand = 0

Do you think the plus sign is an error and there should be a minus sign there instead?
It's not an error! Remember that forces are vectors—this equation is true as is. Considered
as vectors, the total forces working on an object must equal the sum of all the forces.

Fhand Fr t
.. (The force from the hand el
being imposed on the ball) A

Ei (The force of gravity)

gravity

Let’s look into the balance between the forces on the ball and the hand hold_ing it. Let's
call the force from the hand on the ball £, and the force of gravity on the ball f,;,. The
resultant force (F ., ) acting on the ball is expressed as follows:

Tl

esultant — " hand * Fgr.lvily

The resultant force is also called the net force. If the forces on a ball are balanced, it
means the resultant force has reached zero:

F esuitane = 0 O, to put it another way, £, + F.

gravity =

o
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Yes, that's exactly it. In short, £, and £,

opposite directions, resulting in zero when added:

are vectors of the same magnitude in

the force exerted by the hand on the ball + force of gravity on the ball = zero

Now, let's look at forces in terms of magnitude only, not as vectors with direction.

As explained on page 37, the magnitude of a force is expressed as |f,4| or il

using absolute value symbols. Developing these expressions further, you get equations

like |Fyngl = Frang @nd |Foraviy| = Forauiey- Now you know the two forces have an equivalent

magnitude, which can be expressed as follows in an equation for a subtraction:

Fhand =

gravity

F

and ~ Tgravity =

or F, 0

Note that these forces are represented without arrows, which indicates that they are
magnitudes. When giving equations for balanced forces, we need to make a clear distinction
between cases where farces are considered to be vectors and cases where they are con-
sidered to be simple magnitudes without direction (scalars).

NEWTON'S THREE LAWS OF MOTION

Isaac Newton was an English physicist born in 1643, Based on his observations of motion.
he developed the following laws.

The first law (law of inertia): A body at rest tends to stay at rest unless acted upon
by an outside net force. A body in motion tends to stay in motion at a constant velocity
unless acted on by an outside net force.

The second law (law of acceleration): The net force on an object is equal to the
mass of the object multiplied by its acceleration.

The third law (law of action and reaction): For every action there is an equal and
opposite reaction.

Let me explain in terms of the ball held in my hand in this chapter. (We'll discuss this
further in Chapter 2.)

Given the first law, we can tell that the total forces on a static object have reached zero
in magnitude. Because the ball is in a state of equilibriumn, it is static and remains so: this is
the first law of motion in action. Because the ball is not moving, there must be no resultant
force from the sum of the force of my hand and the force of gravity.

As we learned in this chapter, the law of action and reaction is the third law of mation.
This law tells us that the force from the hand acting on the ball and the force from the ball
acting on the hand are equivalent in magnitude and opposite in direction. The law of action
and reaction is always present. It is also working when you keep a ball in motion by moving
your hand.

The second law of mation tells us that an object receiving a net force begins moving
with acceleration. If you suddenly lower your hand while holding a ball, the force from the
hand on the ball (F,,,) suddenly decreases in magnitude, but the force of gravity on the
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gravity

ball (F,,,) stays the same. Therefore, the balance of forces is broken, and the sum of F_;,
and F,,; on the ball attains a nonzero value while the ball is moving. Thinking in terms of

magnitude:

Free = F,

net = Mgravity ~

F.

hani

4>0

The above equation represents the magnitude of the force applied downward. At this
time, given the second law of motion, which states that an object receiving a force attains
acceleration proportional to that net force, the ball should begin accelerating, or start mov-
ing. This is how mechanics explains the motion of a ball caused when the hand retaining it
is suddenly lowered. This same idea can be applied when a hall is suddenly lifted.

|

Acceleration Frand aravity
s
= = =
net

) R IIIN [ERPae
When | lower my hand suddenly, the E
equilibrium is broken, causing the ball 2
to start accelerating downward. e RaavesiTRises . SRR, EY

There is one thing you need to keep in mind. When a ball moves up and down at a '
constant speed, you should note that the net force (resultant force) on the ball remains zero,
as the forces are balanced; the ball is not accelerating. The first law of motion tells us that.
A nonzera net force is acting on the ball when the speed of the object's motion varies or any
acceleration occurs. When the object moves at a constant speed, the acceleration is zero,
and so is the net force. In other words, the forces applied are balanced, even though the ball
is moving.

A force must be applied to an object for it to begin moving from a static state. Starting
motion means the object transitions from a zero-velocity state to one with a velocity. When
this occurs, the object has accelerated.

DRAWING A FREE-BODY DIAGRAM

In the figure showing vectors of forces acting on a ball in the previous section, 4 and
rEgraww have different starting points. Physicists call drawings like this free-body diagrams.
When you draw a vector to represent the force of the hand on the ball, you start it at the
point where the two come into contact with each other. That's not so confusing, but why do
you think the starting point for gravity is located at the center of the ball?

In basic physics, an object is treated as a point of mass without a volume; it doesn’t
matter where the vector starts. We draw that mass point as an object with a certain volume

simply because it is easier to see that way in a figure or illustration.
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Ball

L !E;ravi(y e
F

v gravity

Let's cansider an object with volume, and how we can represent forces imposed on it.
In the case of a ball on my hand, the force of gravity is imposed on the center of the ball's
mass (which also called the center of gravity). You can see in the diagram above that this
is where the force vector is acting. However, the upward force of my hand is acting on the
outside of the ball, as that is the point of contact. We'll draw the force vector starting there
in our diagram.

But to simplify our calculations, we'll treat this object as a mass without volume—that
is, a single point with mass. We'll simplify all objects with volume similarly, as the calcula-
tions for objects with valume can become very complicated. A diagram that represents this
simplified free-body diagram is on the right. Bear in mind that we will simplify all the exam-
ples in this book in this way in our calculations, even if our diagrams appear more complex.

EXPRESSING NEWTON'S THIRD LAW WITH AN EQUATION

To express the law of action and reaction in correct wording, we need a lengthy phrase like
“When an object impacts another object, both objects receive a force of the same magnitude
but in opposite directions.” So let's try to express the law of action and reaction as a simple
equation instead. When object A imposes force JE_B on object B and object B imposes force

Fs_., on object A, the law of action and reaction is expressed as follows:

":_A ~g = _FE“‘A

So, you can express the law in a single equation, as shown above. In fact, comparing
the elements in this equation in terms of absolute values, you get:

“_:A—‘B' = I_F‘B—A|
Now you can see that the action and the reaction are equivalent in magnitude, and the

minus sign tells you that their directions are opposite. Using equations can help you express
Newton's laws in a simpler and mare precise manner than verbal expression.
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GRAVITY AND UNIVERSAL GRAVITATION

In the narrowest sense of the term, gravity is the force of the earth attracting objects toward
itself. But the force of the earth comes from universal gravitation between all objects of
mass, not just the earth itself. Between two objects, there is an attractive force proportional
to the product of the objects’ masses and inversely proportional to the distance between
them, raised to the second power. This attractive force is universal gravitation, as discovered
by Newton. It's called universal gravitation because it works on all objects with mass—it's not
affected by the type of object. Its value only depends on the mass of objects affecting each
other and the distance between them.

As shown in the figure, when two objects with mass M and mass m are separated from
each other by distance r, a force of F attracts the two objects. The equation is as follows:

G is a universal constant referred to as the universal gravitational constant:
G =6.67 x 107" (N x m?/kg®)

For an explanation of the unit newton (N), see page 92.

Universal gravitation satisfies the law of action and reaction, as it exerts a force on both
masses M and m. The equation above can be used to calculate the force on either object.
As their directions are obviously opposite, they satisfy the law of action and reaction. Thus,
we should note that forces working between objects at a distance from each other (not just
objects that come into contact with each other) also satisfy the law of action and reaction.

Universal gravitation is a very small force compared to electromagnetic force. While
electromagnetic forces may be attractive or repulsive depending on a combination of posi-
tive and negative charges, universal gravitation always works as attractive force—that is,
objects are always drawn closer to each other.

Because of universal gravitation, cosmic dust in outer space gathers into giant masses
over time—such as the earth or the other planets.
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FORCE AND
MOTION

Qo
e,




VELOCITY AND ACCELERATION

SIMPLE MOTION

BEFORE WE CAN
UNDERSTAND THE LAWS
OF MOTION, WE NEED TO
KNOW WHAT VELOCITY AND
ACCELERATION ARE.
FIRST, LET'S TALK ABOUT
VELOCITY. TO GET THE
SIMPLEST IDEA
OF VELOCITY,

WE SHOULD THINK
ABOUT THE MOTION
OF AN OBJECT WHEN
IT MOVES STRAIGHT

AT A CONSTANT '
,.,E;.eM /]ﬂ

2N

LET ME SEE...IS
THAT SO-CALLED

EXACTLY! YOU CAN
OBTAIN THE SPEED
OF SIMPLE MOTION
AS FOLLOWS:

UH-HUH.
THAT'S EASY.
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HOWEVER, EVEN WHEN

MY SPEED |15 THE SAME,
MY DESTINATION MAY BE 50, IN ORDER TO TAKE
DIFFERENT IF I MOVE IN  THE DIRECTION INTO
A DIFFERENT DIRECTION. ACCOUNT AS WELL,
WE CAN REPLACE
SPEED WITH VELOCITY
AND D/STANCE WITH
DISPLACEMENT IN OUR
EARLIER EQUATION.

SURE...WAIT!

DISPLACEMENT

VELOCITY =

TIME

ARE SPEED AND
VELOCITY REALLY
TWO DIFFERENT

HEE-HEE!
YOU'VE GOTTEN
CAUGHT, IT SEEMS.

SIMPLE MOTION 47



S0 LET ME
SHOW YOU THE
DIFFERENCE
BETWEEN SPEED
AND VELOCITY.

.YOU,
NONOMURA-KUN...YOU
BRING ALL SORTS OF
THINGS TO SCHOOL.

WE'LL USE THIS.

THIS CAR 15,
UH...

EDUCATIONAL!
NOTHING BUT A
LEARNING TOOL,
YOU KNOW.

NOW...THIS RADIO-
CONTROLLED CAR CAN
BE PROGRAMMED TO

MOVE IN DIFFERENT
WAYS.

REALLY? THAT'S
HIGH TECH.

CURRENTLY, IT IS SET TO
MOVE AT A SPEED OF
50 CM PER SECOND
(OR 0.5 M/%), DRAWING

A SQUARE.

”‘. SO

NOW LET'S HAVE

48 CHAPTER 2 FORCE AND MOTION
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FROM A BIRD'S-
EYE VIEW, IT LOOKS
LIKE THIS. A 05 m/s

05 m/s

05 m/s

UNITS FOR SPEED: M/S

WHILE ITS SPEED (METERS PER SECOND)

IS CONSTANT, UNITS FOR DISTANCE: M (METERS)
THE CAR MOVES UNITS FOR TIME: S (SECONDS)

IN DIFFERENT

PIRECTIONS,

VELOCITY IS A VECTOR (IT HAS
A DIRECTION AND MAGNITUDE),
SO IT CAN BE EXPRESSED AS
AN ARROW. SPEED IS JUST A
MAGNITUDE.

THE LENGTH OF
THE ARROW IS THE
OBJECT'S MAGNITUDE

(OR SPEED).

L

THE ARROW POINTS IN
THE DIRECTION OF THE
VECTOR'S ORIENTATION.

WHEN TRAVELING ON SIDES
AB AND cD IN THE DIAGRAM,
THE CAR'S SPEED 1S THE
SAME, BUT ITS VELOCITY IS
OPFOSITE. DO YOU SEE?
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P/ 2

ACCELERATION

AN INCREASE IN VELOCITY
IS CALLED ACCELERATION,
WHICH YOU CAN CALCULATE
USING THE EQUATION
BELOW:

CHANGE IN
VELOCITY

ACCELERATION =

TIME

LET'S CHANGE THE
SETTING S0 AS TO
STEADILY INCREASE THE
VELOCITY UP TO 0.5 M/5.

THE UNIT FOR
ACCELERATION 15 METERS
PER SECOND SQUARED,
WRITTEN AS M/S7, IT
REPRESENTS HOW THE
VELOCITY (M/S) HAS
INCREASED PER

50 CHAPTER 2 FORCE AND MOTION

SECOND.

50 WE ARE
DIVIDING THE
CHANGE IN
VELOCITY BY
TIME.

YEP. IF VELOCITY
STAYS THE SAME,
THERE 15 NO
CHANGE, AND SO
THE ACCELERATION

IS ALSO ZERO.




AS VELOCITY
INCREASES,
ACCELERATION HAS A
POSITIVE VALUE. WHEN
IT PROPS, OR THE

ACCELERATION HAS A
NEGATIVE VALUE.

MOTION SLOWS DOWN,

ALSO INVOLVES
NEGATIVE VALUES?

YEP! YOU CAN CALL
IT PECELERATION.

JUST THINK

OF NEGATIVE
ACCELERATION AS
BEING EQUIVALENT
TO A DECREASE IN
VELOCITY.

ACCELERATION

MOTION WITH A CONSTANT

INCREASE IN VELOCITY 15
REFERRED TO AS UNIFORM
ACCELERATION MOTION.

AND YOUR CAR CAN
DO THAT WITH THE
RIGHT PROGRAM?

SLOW AND STEADY (
WINS THE RACE!

HEY! HOW'D YOU
GET S0 FAR
AHEAD?
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OH, YEAH, MY CAR
CAN DO THAT. NOW
WE'LL CALCULATE
THE ACCELERATION
OF THE CAR USING
THE RULE.

HERE WE
©o!

LET ME SEE...THE
RAPIO-CONTROLLED
CAR INCREASES
VELOCITY FROM
O M/5 TO 05 M/S IN
4 SECONDS.

ACCELERATION =

50 A CHANGE OF
05 M/S OVER 4 5
IS 0125 M/
IS THAT RIGHT?

CHANGE IN VELOCITY |

TIME

WE CAN ASSIGN
THESE VALUES TO
THE RULE.

YOU SHOULD BE
MORE CONFIDENT.

THIS VALUE MEANS THAT
VELOCITY IS INCREASING
BY 0.125 M/S PER
SECOND,
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BY APPLYING THIS
RULE, WE CAN FIND
THE PISPLACEMENT OF
OBJECTS WITH VARIABLE

VELOCITY.




LABORATORY

FINDING THE DISTANCE TRAVELED WHEN VELOCITY VARIE

\ Let’s change the setting so as to steadily increase the velocity up to
e@ 0.5 m/s. Here's a quiz for you. Given that velocity has attained 0.5 m/s in

four seconds, how far has the radio-controlled car moved?

Hmm . . . starting at 0 m/s, the peak velocity is 0.5 m/s. So let me calcu-
late, assuming the average speed, 0.25 m/s, for the velocity. 0.25 m/s x 4 s
=1m!

: That's right! You are so sharp. But can you explain why you can get the
f@ right answer with that calculation?

Uhm . . . remember, teaching me is your job, Nonomura-kun!

Ha ha, true enough. Before giving you a direct answer, let me explain how
we can find the distance traveled when the velocity varies. When veloc-

3 ity is constant, we've learned that the distance traveled can be found by

calculating the expression (speed = time). Now, given that d m (meters)
= represents the distance traveled in t s (seconds) and the constant velocity

is v m/s, then distance = speed x time can be expressed in the following

equation:

d=vt

Well, duh!
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If you plot that relationship with velocity on the vertical axis and time on
the horizontal axis, you get the following graph.

Velocity 4

Distance traveled

B
>

0 t Time

The shaded area represents the distance traveled. This chart is commonly
referred to as a v-t graph, as it graphs velocity and time. That's the area of
a rectangle having a horizontal length of ¢ and a vertical length of v.

| see. It seems a little strange that an area represents a distance.

The area here is not a typical geometric area—this is a graph, like the ones
you've seen in math class. The area of a geometric rectangle might be

i measured in square meters (m?). But in our example, the units are time
G (seconds) for the horizontal axis and velocity (m/s) for the vertical axis.
So the product of these two is equal to s x m/s = m. That's our unit for

distance.

It's easy to find a distance when an object goes at a constant speed. But
what about finding the distance when the speed is variable?

The only tool available to us is this equation:

distance = speed x time
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So we can divide the time inta segments to create a lot of “small rect-
e angles” and then calculate distances respectively, assuming a constant -
: velocity for each time segment.

What do you mean?

Look at the chart on the left below.

Distances traveled in respective

Velocity short time segments Velocity 1
VR ’ v \_/
HaREN
Distance traveled (m) Distance traveled (m)
0 t  Time 0 t  Time

So we can find the area of each slender rectangle created by dividing time
into short segments, and then adding up the areas to find the distance
traveled.

It bothers me that those little rectangles won't exactly fit the graph.
Wouldn't they bring about errors?

| see your concern. Then we can sub-divide the rectangles into smaller
segments. By repeating division into even smaller segments until every-
thing fits as shown in the chart on the right above, the distance we get
becomes more and more precise.

Well, | guess so . . . if you could do that . . .

If we divided them into infinitely slender rectangles, we'd find exactly how
far the object has moved. After all, the ultimate answer we get by divid-
ing distance = speed x time into short time segments is the area created
under a v-t graph. That's how we can find the distance traveled by finding
the corresponding area. In summary,

distance traveled = area under a v-t graph

Just like that.”

* Students of calculus may notice that this process of finding an area under a graph
is identical to integration.
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Now, keeping in mind what we've learned so far, let's examine the reason
why the distance you got intuitively is the right answer.

All right!

Your original calculation is the same as calculating an area on a velocity-
time graph. The example with a radio-controlled car can be plotted into a
chart like this ane.

Velocity 4
0.5 m/s

b
>

0 4s  Time

The area under the graph, as obtained from the rule for the area of a tri-
angle, is as follows:

1 x base (time) = height (max velocity) =2 x 45sx0.5m/s =1 m

This represents the distance traveled.

We got 1 meter for the answer, just as we should.

Let’s find a general expression for the distance traveled, rather than using
specific numeric values. Assuming velocity to be v and acceleration to be
*@ a. the relationship between the velocity and time for uniform accelerated

motion is v = at.
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‘ That can be plotted into a v-t graph, as shown below.
G Velocity 4

B
Ll

0 t Time

Let's assume d is the distance traveled in time t; its value should be
equivalent to the area of a triangle with a base of ¢ and height of at (which
equals the final velocity of the object).

d=laf’

Velocity 4

at

= it x at)
Distance traveled (m)

L

t Time

You see?

Ummmm . . . oh, | see how that works! The value we get by calculating }
0.125 m/s? x (4 5)2 = 1 m. As it should be!

: Now, Ninomiya-san, you can also calculate a distance traveled in uniform
‘e accelerated mation not by intuition but by the proper method.

FINDING THE DISTANCE TRAVELED WHEN VELOCITY VARIES




NEWTON'S FIRST AND SECOND LAWS

FIRST, THE WHEN AN OBJECT

15 AT REST, THE
Fital;?r“g;@ NET 'FORCE ON
THAT OBJECT

TRUE: EQUALS ZERO.

NOW, LET'S THINK
ABOUT MOTION.

BUT LET'S NOTE THAT THE
FORCE 1S ZERO BECAUSE
DIFFERENT FORCES ON
THE OBJECT ARE ACTUALLY
CANCELING EACH OTHER.

ALL FORCES ON THE

FORCE OBJECT ARE ADDED,
Eﬁﬂ&tIEKEW.I‘I-’HHEA FROM AND THE NET FORCE
THE HAND 15 ZERO. THE FORCE

BALL, RIGHT? VECTORS ARE EQUAL

AND OPPOSITE.

GRAVITY




]

S0 AN OBJECT AT
REST CAN HAVE
FORCES IMPOSED

ON IT, PROVIDED THAT

THE SUM OF THOSE

FORCES |15 ZERO.

WHAT ON

LOOK WHAT 1
HAVE PREPARED!

YOU DON'T HAVE
TO BE APPALLED.
IT'S JUST A
BALL WITH TWO
STRINGS COMING
OUT OF IT.

YOU MEAN THE
TENSION OF THE
STRING |15 EQUIVALENT
TO THE FORCE OF L
GRAVITY?

TENSION OF
THE STRING

HOW CAN YOU
SAY SO WITHOUT
TAKING ANY
MEASUREMENTS?

TENSION
OF THE
STRING

AT THE MOMENT, 50 A FORCE MUST BE
THE BALL IS IMPOSED FROM THE
STATIC. STRING THAT CAN CANCEL
THE FORCE OF GRAVITY
(THE BALL'S WEIGHT) TO

YIELD A RESULT OF A
ZERO MAGNITUDE.

THAT'S MY
POINT.




="

YOU CAN CHECK
THAT THE TENSION
OF THE STRING
IS EQUIVALENT
TO THE BALL'S
WEIGHT USING AN
INSTRUMENT.

IN FACT, AN OBJECT
AT REST, SUCH AS THIS
BALL, IS RELATED TO
NEWTON'S FIRST LAW
OF MOTION.

vy:.'f*u

BUT THE FIRST LAW
OF MOTION TELLS Us
THAT THE NET FORCE

ON AN OBJECT IN A

STATIC STATE MUST
BE ZERO.

50..1 WONDER |IF THE
NET FORCE COULD BE
ZERO |IF THE OBJECT
WAS PULLED BY THE
SECOND STRING?

I THOUGHT I'P
EXPLAIN IT...

BUT INSTEAD, LET'S
ACTUALLY PULL THE
STRING TIED TO

THE BALL.




LOOKING AT ALL THREE FORCES
ACTING ON THE BALL, WE SEE
THAT GRAVITY 1S WORKING
VERTICALLY ON THE BALL, AND
THE FORCE FROM THE HAND |5
WORKING HORIZONTALLY.

FORCE OF TH
HAND PULLING THE
OBJECT

RESULTANT OF WEIGHT
AND FORCE OF THE
HAND PULLING THE
OBJECT

FORCE OF TH
HAND PULLING THE

THOSE TWO FORCES
ARE BALANCED BY
THE TENSION OF THE
STRING.

THE BALL STAYS

STILL IN THIS
STATE,

SO THE NET
FORCE SHOULD
BE ZERO.

IN OTHER WORDS, THE
BALL'S WEIGHT AND
THE HAND'S FORCE CAN
BE MERGED. OR CAN
WE SPLIT THE TENSION
OF THE STRING INTO

W
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WE CAN DO BOTH.

z "f/

LET'S LOOK AT
A FIGURE.

LET'S COMBINE TWO
VECTORS INTO ONE. WE CAN
ADD VECTORS BY SIMPLY
PUTTING THE TAIL OF THE

hand

SECOND VECTOR ONTO THE
HEAP OF THE FIRST. THIS IS
CALLED THE HEAD-TO-TAIL

v

hand + weight

TAIL

weight

HEAD WL

resultant

hand weight

TalL

Fan

DRAWING A
FIGURE MAKES
IT EASIER TO
UNDERSTAND.

IN OUR EXAMPLE OF THE
SUSPENDED WEIGHT, THE
COMBINED FORCE OF MY
HAND AND THE WEIGHT HAS AN
EQUIVALENT MAGNITUDE (IN THE
EXACT OPFOSITE PIRECTIOND TO
THE TENSION OF THE STRING. WE
KNOW THAT THE OBJECT 15 AT
REST, SO THE TOTAL RESULTANT
FORCE MUST EQUAL ZERO.

UH-HUH. 5O THE
RESULTANT WORKS IN
THE PDIRECTION IN WHICH
THE STRING 1S ANGLED
RELATIVE TO THE
CEILING.
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THAT'S RIGHT.




IF, WHEN FORCES

BUT IT'S POS5IBLE

ARE IMPOSED, THE
OBJECT REMAINS
STATIONARY,

THE SUM OF
THE FORCES 1S
ZERO.

FOR AN OBJECT TO
BE IN MOTION EVEN
WHEN FORCES ARE

FOR EXAMFLE,
THINK OF OUTER
SPACE.

HAVEN'T YOU SEEN
FOOTAGE OF THE
INTERIOR OF A SPACE
SHUTTLE?

SURE 1 HAVE!
THERE ARE ALWAYS
VARIOUS THINGS
SUSPENDED IN
THE AlR.

RELATIVE VELOCITY*

* IN ORBIT, OBJECTS ARE IN A STATE
OF CONSTANT FREE FALL, MAKING
THEIR APPARENT WEIGHT ZERC.

IN A SO-CALLED
WEIGHTLESS STATE,
AN OBJECT THAT HAS

STARTED MOVING
TRAVELS STRAIGHT
AHEAD AT A CONSTANT

IT LOOKS
LIKE YOU MAY
BE RIGHT.




NORMALLY, FRICTION
FROM THE AIR OR
COLLISION WITH THE
GROUND WILL STOP
AN OBJECT (UNLESS
YOU KEEP APFLYING
A FORCE).

BUT IN DEEP OUTER
SPACE, IT 1S POS5IBLE
TO ACHIEVE A ZERO-
FORCE STATE, AS
THERE IS NO GRAVITY
OR AIR RESISTANCE

TO CONSIDER.

YES, INDEED! IN THAT
CASE, YOU MEAN, WE
COULD KEEP MOVING
FOREVER, EVEN
WITH NO FORCE
IMPOSED?

A CONSTANT-VELOCITY,

OR UNIFORM, MOTION

OCCURS WHEN THE NET
FORCE 1S ZERO.

HE LOOKS
LIKE HE'S
LEAVING.




YOU KNOW, ALL
THESE PHENOMENA
CAN BE EXPLAINED

USING NEWTON'S

FIRST LAW.

IT DESCRIBES
THE BEHAVIOR OF
AN OBJECT WHEN
THE NET FORCE
ON IT IS ZERO.

IT IS ALSO CALLED
THE FIRST LAW OF
MOTION, OR THE LAW
OF INERTIA.

AN OBJECT CONTINUES TO
MAINTAIN ITS STATE OF REST
OR OF UNIFORM MOTION
UNLESS ACTED UPON BY AN
EXTERNAL NET FORCE.

WE CALL THIS
QUALITY OF
OBJECTS TO
RESIST CHANGES

IN THEIR VELOCITY

INERTIA.

THE LAW OF
INERTIA SOUNDS
FAMILIAR!

THAT'S THE SAME
THING AS NEWTON'S
FIRST LAW OF
MOTION.

THAT'S RIGHT.
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| YOU COMMUTE BY
sl | ( BICYCLE, DON'T YOU,

LAW OF NINOMIYA-SAN?
ACCELERATION

b i

NEXT, LET'S EXAMINE
THE MOTION OF AN
OBJECT WHEN A NET
FORCE /5 WORKING.

YES, I DO. THOUGH TS
A RATHER LONG WAY
% FROM HOME.

OF COURSE, YOU
INTUITIVELY KNOW THAT A
BICYCLE AT REST MUST
BE PEDALED TO START

MOVING.

IN OTHER WORDS,
YOU CAN SAY THAT
ITS VELOCITY HAS
CHANGED.

YOU COULD SAY THAT
THE APPLICATION OF
FORCE (FROM YOUR
LEGS) HAS GENERATED
ACCELERATION,




AND THE GREATER
THE FORCE |15,
THE GREATER THE
ACCELERATION
BECOMES.

IN TURN, TO STOP YOUR
BIKE, YOU NEED TO APPLY
A FORCE IN THE OPFOSITE

DIRECTION OF YOUR

VELOCITY-THIS IS YOUR

BRAKES.

CREATING AN

ACCELERATION
OPPOSITE TO YOUR
VELOCITY (THAT 15, A
NEGATIVE ACCELERATION,
OR DECELERATION) LEADS
TO A SLOWER VELOCITY
AND WILL EVENTUALLY
BRING YOUR BIKE
TO A HALT.

WHEN YOU LOOK
AT IT THIS WAY,
YOUR BRAKING 15
CREATING A NEGATIVE
ACCELERATION, NOT
REDUCING YOUR INITIAL
ACCELERATION.

GIVEN THESE
OBSERVATIONS, WE
CAN SAFELY SAY THAT
THE FORCE 15 DIRECTLY
PROPORTIONAL TO THE
ACCELERATION.

f /7///;/”’/////

W %,,/%
/
W,/J//////%/ il

OKAY...
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NOW, LET'S FOCUS
ON MASS,

THAT'S HUGE!
AND HEAVY!

WITH A HEAVY LOAD PUFF
IN YOUR BASKET, YOU
MUST EXERCISE A HUGE b

FORCE WHEN YOU
INITIALLY TRY TO PUSH
THE PEDAL.

PUFF
WHEEZE

GIVEN THAT, WE CAN
ASSUME THAT THE
MASS |S INVERSELY
PROPORTIONAL TO

--ﬂ-@% ACCELERATION.

o
s

THAT MEANS THE
- LARGER THE MASS,

THE SMALLER THE
ACCELERATION.

WAIT,
WHAT'S THE
DIFFERENCE
BETWEEN
WEIGHT AND
MASS?

SEE, THE LOAD
MAKES IT HARDER
TO ACCELERATE.

THIS MEANS AN
OBJECT WILL
HAVE A DIFFERENT
WEIGHT ON THE
MOON THAN ON
: EARTH.

TO PUT IT SIMPLY,
WEIGHT IS5 A
FORCE IMPOSED
ON AN OBJECT BY




MAS5 15 A QUANTITY THAT N\

IN DEEP OUTER DETERMINES AN OBJECT'S
SPAcE, AN gt
OBJECT WEIGHS AN INHERENT QUALITY

HOWEVER, TO
MOVE IT, YOU
STILL NEED A

NOTHING. OF AN OBJECT THAT
DOES NOT DEPEND ON

CRAVITATIONAL PULL.

WEIGHT AND MASS
SEEM SIMILAR,
BUT THEY MEAN

DIFFERENT THINGS,

DONT THEY?

LET'S SUM UP
WHAT WE'VE

THE ACCELERATION OF AN OBJECT
IS PROPORTIONAL TO THE FORCE
APPLIED TO IT AND INVERSELY
PROPORTIONAL TO ITS MASS.

THIS IS THE
SECOND LAW OF
MOTION.

HAS IT CAUGHT YOUR FANCY
BY ANY CHANCE? JUDGING
FROM YOUR POSE...



ASSUME ACCELERATION IS
a (N M/53, FORCE IS F (N
NEWTONS, A UNIT EQUAL TO
[KG X M1/ 5%. MAS5 1S m
(N K@). THEN,

NOW LET'S
EXPRESS IT IN AN
EQUATION.

WE GET THE
FOLLOWING.

OH NO, AN
EQUATION?

THE EQUATION SHOWS

THIS: WHEN FORCE F 15 F
DOUBLED, ACCELERATION a /8 2
15 ALSO DOUBLED. YOU SEE, >
WHEN MASS m |5 DOUBLED, 2 e

ACCELERATION a IS REDUCED

NOTHING LIKE AN
EQUATION TO RUIN
YOUR DAY.
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THIS

Y OH, IT'5 NOT 50
DIFFICULT, LET'S
REARRANGE IT.

TO SAY IT
ALOUD...

THEN YOU GET

EQUATION.

LET ME SEE...

FORCE EQUALS
MASS TIMES
ACCELERATION,

EXACTLY.

THIS EQUATION
EXPRESSES THE
CHARACTERISTICS OF
THE SECOND LAW OF
MOTION IN A MORE
CONCISE AND PRECISE
FORM.

BUT I STILL CAN'T SEE
IT. I MEAN, WHAT'S A
FORCE ANYWAY, IF
IT'S JUST EQUAL TO
MASS MULTIPLIED BY
ACCELERATION?
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WELL, IT 15 A
DIFFICULT CONCEPT
TO GRASF.

BUT LET ME EXPLAIN—
THE NEWTON, OUR
UNIT FOR FORCE, IS
DERIVED FROM THE
EQUATION F = ma.

ONE NEWTON
IS THE FORCE
NEEDED TO
ACCELERATE A
1 K& OBJECT BY
1 M52,

OH, I SEE. 50 IT'S
A UNIT THAT MAKES
FORCE EQUAL TO THE
VALUE OF MASS TIMES
7 ACCELERATION.

AND USING THIS EQUATION,
WE CAN FIND THE MASS
OF AN OBJECT BY
DIVIDING THE NET FORCE
APFPLIED BY THE OBJECT'S
ACCELERATION!

GEE!
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LET'S LOOK AT
A REAL-LIFE




LABORATORY

FINDING THE PRECISE VALUE OF A FORCE

Earlier, we pushed each other while we were on roller blades. Let’s say
that | captured our motion on video.

| didn't realize you were taping us!

Oh, that’s just the scenario I'm setting up.

Jeez, don't scare me. How does that relate to the
second law of motion?

Suppose | have analyzed the video, and I've created a v-t graph of your
motion.

r 3
Megumi's velocity

f Time
The time when they started
pushing each other

5

We can see that velocity increases sharply from
zero, which must be when I'm at rest, and

then drops gradually after that. But the initial
increase in velocity is wobbly.
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In a case like this, it may be a good idea to draw a line segment that rep-

e@ resents the average increase in velocity. In other words, we'll simplify the
™ scenario to assume this is a case of uniform acceleration.
Megumi's 4
velocity Average velocity
The point ~ The point Time
when when

thearm  the hand
was fully left the
outstretched partner

| see.

You can find acceleration by calculating the change in acceleration over
time—acceleration = change in velocity / time. In this case, let's assume

e that your acceleration is equal to 0.6 m/s°. To find the force | applied to
your hands, let's also assume your mass is 40 kg, Ninomiya-san.

F=ma=40kg x 0.6 m/s® = 24 kg x m/s°, or 24N

We've found the precise value of the force! So, this is important! We can
measure the exact force on an object by measuring its acceleration and its
mass.

Now, if you know that | weigh 60 kg, can you predict my acceleration, due
to the application of an equal and opposite 24N of force?

Oh, | see. We're combining the second and third laws of motion. Fyjem
must equal Fg .. Since F = ma. we know that £/ m = a. In your case,
that's 24N / 60 kg, or 0.4 m/s°. So we can use these laws to predict the
movement of objects. Neat!
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MOTION OF A THROWN
BALL

NOW, LET'S N
EXPLORE OTHER
APPLICATIONS
OF FORCE.

FIRST, LET'S
THINK ABOUT AN
OBJECT MOVING
IN A PARTICULAR
DIRECTION.

FORCE ON THE
OBJECT BE IN THE
SAME DIRECTION AS
», TS MOTION?

YES, A BALL
MOVES IN THE SAME
DIRECTION AS THE
INITIAL FORCE THAT
WAS IMPOSED ON IT.

IMAGINE 1 THROW
THIS BALL IN THE AIR.
SUPPOSE THE BALL 1S5 AT
POINT A, B, OR C. DRAW
THE ORIENTATION OF
THE FORCE IMPOSED
ON THE BALL.

LET'S
IGNORE AIR
RESISTANCE.

ORIENTA‘HON r

OF THE |
THROWING |
I

—

FORCE

B THE POSITION
AFTER
0.4 SECONDS

THE POSITION

0.2 SECONDPS
AFTER LEAVING
THE HAND

LET ME SEE...
THE BALL MOVES
FORWARD AS A
FORCE 1S WORKING
ON IT.

THE POSITION
AFTER
0.6 SECONDS

-
-
—




WELL, SINCE THE
BALL'S VELOCITY
LOOKS LIKE THIS, THE
FORCE MUST LOOK
THE SAME.

OH, NO, YOU
HAVE BEEN
TRICKED BY MY
QUESTION.

WHY ARE
= YOU ALWAYS
_ TRICKING ME?!

IN YOUR
DIAGRAM ABOVE,
WHERE |5 THE
FORCE OF
GRAVITY ON THE
BALL?

LET ME SEE..I GUESS 1
THOUGHT 1 DREW THE
RESULT OF ALL FORCES,
INCLUDING GRAVITY. BUT
NOW I'M NOT S0 SURE.

AT POINT A, YOU DREW
A FORCE WORKING ON
THE BALL, DIAGONALLY
UPWARD. WHERE DOES o
THAT FORCE COME i
FROM?

WELL...IT'S THE
FORCE OF YOUR
HAND BEING
IMPOSED ON THE

BALL, RIGHT?
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f
L
- THAT'S THE o '
) MOST COMMON THE MOMENT THE
b MISUNDERSTANDING! BALL LEAVES MY '

HAND, THE FORCE ON
THE BALL STOPS.

You sAID IT'S JUST A -

YOU WERE DAYDREAM.
BAD AT

sPORTS... =

50 YOU MEAN

I'VE GOT THINGS

COMPLETELY
WRONG?

YES, YOU HAVE.
THE ANSWER I15...

OH NO, I FORGOT
ABOUT THE FORCE
OF GRAVITY!

THE
ORIENTATION i/
OF THE ! \
THROWING | !
FORCE : d

THAT'S RIGHT. THE
MAGNITUDE AND
ORIENTATION OF THE
FORCE |5 THE SAME
FOR ALL THESE
POINTS.




BUT DOESN'T THE
BALL FORM A
PARABOLA AS IT
MOVES THROUGH
THE AIR?

DON'T THINK OF
VELOCITY AS
CORRESPONDING

TO THE ORIENTATION

OF THE FORCE.

THE ORIENTATION
OF THE VELOCITY,
YOU SAY...

FOR EXAMPLE, THE
FORCE STOPPING AN
OBJECT WORKS IN THE
OPFOSITE DIRECTION

OF ITS VELOCITY,
RIGHT?

BECAUSE THE
ORIENTATION OF THE
VELOCITY CHANGES,
NOT THE FORCE.

INDEED, THE CHART
YOU'VE DPRAWN INDICATES
THE ORIENTATION OF
THE VELOCITY, NOT THE
FORCE.

\ \

=22

YES, INDEED,
THAT'S TRUE.

ya.

THE ORIENTATION OF THE
VELOCITY OF AN OBJECT
DOES NOT NEED TO MATCH

THE ORIENTATION OF THE
FORCE IMPOSED ON IT. THE ORIENTATION OF

THE FORCE ALWAYS
MATCHES THAT OF THE

HOWEVER, ACCELERATION.




IF I DIVIDE THE
VELOCITY INTO TWO

MOTION IN THE

Whir PARTS, HORIZONTAL HORIZONTAL
AND VERTICAL, I DIRECTION STAYS
TN T BT CANGEE HOWIT.. o HE e WHLE BALL MOVES
THIS... WORKS. DOWNWARD
ACCELERATION.

THAT'S
EXACTLY MY

WHEN THE BALL 15

RISING IN THE AIR, IT5

| vermicaL veLocrTy 15
- DECREASING.

ONCE IT STARTS
FALLING, IT
GAINS VELOCITY
DOWNWARD.

TO FIND HOW THE VELOCITY
IS CHANGING IN THE VERTICAL
DIRECTION, WE NEED TO TAKE
ACCELERATION INTO ACCOUNT.
e

ACCELERATION
OF AN OBJECT IN

FREE FALL.

THE POWNWARD
ACCELERATION IS5 A
RESULT OF THE FORCE
OF GRAVITY.




LR
T
lllilll LY
y

l] i}
Wi ! *I
i

YES. THE ACCELERATION OF
GRAVITY 1S CONSTANT AND
IS CALLED g. IT'S EQUAL TO

e ACCELERATION DUE

TO GRAVITY DOES
NOT DEPEND ON
THE MASS OF THE

OBJECT.

IT ALWAYS
ACCELERATES
DOWNWARD AT

a.8 M/5* AS LONG AS
YOU'RE ON EARTH!

S0 IT'S ALWAYS
FIXED?

IF YOU MEASURED THE
ACCELERATION OF ANY
OBJECT AS YOU LET
IT FALL, YOU'D FIND IT
ACCELERATES AT
a.8 M/52.

GO!
GO!

LET ME DRAW A VECTOR
DIAGRAM SHOWING YOU
HOW THE VELOCITY
CHANGES ACCORPDING
TO THIS POWNWARD
ACCELERATION.

My
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VELOCITY -
0.3 SECONDS
LATER ;'

VELOCITY
0.2 SECONDS
LATER

)" VELOCITY
, 0.3 SECONDS

CHANGE IN VELOCITY
IN 0.1 SECONDS

VELOCITY
0.4 SECONDS
LATER

CHANGE IN VELOCITY
IN 0.1 SECONDS

VELOCITY
+. 05 SECONDS
Ny LATER

\ _ veLocrry
THE ORIENTATION W2 ™
OF THE CHANGE IN o A
VELOCITY 15 CONSTANT. LATER i e ——
4| veLocy IN
‘| 01 SECONDS

AS THE
ACCELERATION 15
SIMPLY A MEASURE OF
A CONSTANT CHANGE
IN VELOCITY OVER
TIME, THE CHANGE IN
VELOCITY IS5 ALWAYS
DOWNWARPD.

AHA.

VELOCITY 15
DECREASING AT EACH
POINT IN THE DIAGRAM,

AS THE HASHED
ARROWS SHOW.

SURE, THAT'S WHY THE
SPEED DECREASES
ON THE WAY UP AND

INCREASES ON THE WAY

DOWN.

MOTION OF A THROWN BALL &1



5INCE ACCELERATION DUE
TO GRAVITY 15 ABOUT
a.8 M/5%,

IN 1 SECOND,

COMPONENT OF
ITS VELOCITY BY

A BALL WILL IN 0.1 SECONDS,
DECREASE ITS VERTICAL
THE VERTICAL VELOCITY WILL

DECREASE BY
0.48 M/5.

THE VELOCITY
IS CHANGING
DOWNWARD.

50 THE PIRECTION
OF THE FORCE ON
AN OBJECT AND THE
VELOCITY OF THAT
OBJECT ARE TOTALLY
DIFFERENT THINGS.

1 USED TO THINK THAT
A BALL COULDN'T BE
MOVING WITHOUT THE
APPLICATION OF A

WHILE AN OBJECT
AT REST REQUIRES
FORCE TO START
MOVING, ONCE IT
IS IN MOTION, THE
LAW OF INERTIA
WORKS.

IF WE HAD NO w

GRAVITY, ABALL YOU %, ™

THREW INTO THE AIR i
WOULD CONTINUE




NOW, MAY I ASK

YOU SOMETHING,
NINOMIYA-SANZ

DO YOU UNDERSTAND
THE DISTINCTION
BETWEEN THE TERM
“FORCE" IN DAILY
SPEECH, AND THE
“FORCE"” WE USE IN
PHYSICS?

NOW THAT YOU KNOW
NEWTON'S THREE LAWS,
YOU KNOW THE BASICS.
DON'T FORGET THE LAW
OF INERTIA, F = ma, AND
THE LAW OF ACTION AND
REACTION.

HIF, HIP,
HURRAY!

YES, THANKS TO
YOUR LESSON, IT'S
QUITE CLEAR.

YOU'VE GIVEN ME
SUCH A HELPFUL
EXPLANATION,
NONOMURA-KUN.
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THE PHYSICS OF
MOTION IS MADE OF
THREE LAWS—THE
ONES WE'VE LEARNED.
NO EXAGGERATION!

WOW, REALLY?
THEY MUST BE
PRETTY GREAT
LAWS!

NEXT, WE'RE GOING TO
LEARN ABOUT MOMENTUM.

ALL RIGHT!
HA, HA.

T

LET'S KEEP UP
THE PACE!

1////;

i

BSOS

. WHY ARE
Ul e B o S
AGAIN! ] STUDYING
1| \ ToeetHER IN
THE PHYSICS
LAB?

SUSPICIOUS...
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THREE RULES OF UNIFORM ACCELERATED MOTION

Let's look at the uniform accelerated motion of an object traveling in a straight line.
Assuming the initial velocity of the object is v,. the velocity after time t is v, the distance
traveled in time t is d, and the uniform acceleration of the object is a, the following three
rules are true:

® v,=at+v,
® d=vit+iat
3] vzz—v12=2ud

Let's derive these rules. First, let's look at rule @. If the acceleration is constant, the
following is true:

change in velocity = acceleration = time

Since the change in velocity is equal to v, - v;, acceleration is a, and time is ¢, we can
derive the following equation to get rule ©:

vy =at+ v,
Next, let's derive rule ®. On page 54, we learned that the distance an ohject travels can

be expressed as the area under a v-t graph. According to rule @, the v-t graph should look
like the following figure.

Velocity 4
\
L
Ny
Area = iat?
II"I',‘II
Area = vt
0 t Time

The area of this v-t graph is equal to the distance the object travels.
Since the area of the rectangular portion in the lower section of the v-t graph is v,t,
and the area of the triangular portion above is 3 at?, we get the following equation:

d=wvt+ 1qt?

NOTE Technically, d represents displacement and not distance.
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Rule © can be derived by remeving t from rules @ and @. First, let’s solve equation @
for t:

(v, - wy)

=t
a

|f we substitute this value into rule @, the following equation will be the result:

Vy - V. vy - v
2= Vi 2™V
d=v|——|+ta[ =]

a a
2 2 2
ViVy = vy Voo = 2uV, + vy
R
a a,

2
2VVy = 2v12 + v22 = 2wV, + vy

2a

2a

Voila! Simply multiply both sides by 2a, and you've just derived rule ®!

ADDING VECTORS: THE HEAD-TO-TAIL METHOD

Because force is a vector, we need to make calculations according to the rules of vectors |
explained in Chapter 1. If two vectors are parallel, adding them is simple—you can either
add their magnitudes or subtract one from the other (if the two vectars are in opposite
directions).

However, in the real world, we'll have to add vectors pointing in all different directions.
To do this, we'll use the head-to-tail method. To illustrate, let's assume that an object is
receiving two forces, F, and F,, as seen below.

Object Fy
The total force on the object is equal to one combined force, represented by the arrow
shown on the right. This arrow is the sum of the forces F, + £, and we'll call it F, But

resultant
how can we find its exact magnitude and direction?
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Head

Tal  F,  Head

To determine the magnitude and the direction of a resultant force, you can simply place
the head of one vector anto the tail of the second. The resultant force connects from the tail
of the first vector to the head of the second. The resultant vector "Eresukant forms a triangle
with F, and £, as you can see on the right. You can use the head-to-tail method for any
vector, not just forces, and you can find the resultant force from three or more forces by
repeatedly applying the head-to-tail method.

THE COMPOSITION AND DECOMPOSITION OF FORCES

To make forces easier to understand and analyze, we'll often split them into their horizontal
and vertical constituent parts. That's because the head-to-tail method also works in reverse.
That is, we can split a single diagonal force into the addition of its horizontal and vertical
parts. Let's look at an example.

tension

gravity

Let’s look at the balance of forces when a weight hanging from the ceiling is pulled
harizontally (see page 61). As shown on the right in the figure above, let's assume gravity
is F;mw the force from the hand pulling horizontally is £_,, and the tension of the string is
Fension- When the weight is stationary, the three forces are balanced. Thus, adding the three

forces as vectors yields zero:

7 Fhand 3 ’E

gravity 2l tension

=0

You can rewritg/this equation as the following:

Fhand = _Fiension

Fgravity *
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With this in mind, let's revisit our diagram, thinking in terms of horizontal and vertical
forces. Because the object is at rest, forces in the horizontal direction must equal zero. In the
same way, the sum of the forces in the vertical direction must equal zero.

What are the horizontal forces in play? F,,., and the horizontal component of the ten-
sion of the string, ... They are acting in opposite directions, and the object is at rest. so
these two forces must be equal:

Fi.ng = horizontal component of F_....

What are the vertical forces acting on the object? The force of gravity downward and
the vertical portion of the tension of the string. F,,.,,. They are acting in opposite direc-
tions, and the object is at rest, so these forces must also be equal:

Faravity = Vertical component of F,

ension

So, how can we actually “"decompose” the force of the tension into its horizontal and
vertical parts? We'll use concepts from trigonometry, the study of triangles.

Horizontal companent
of tension

Vertical component
of tension

Remember the head-to-tail method of addition of vectors? Here we'll decompose
our diagonal force, F, . into its horizontal and vertical parts, forming a right triangle. If
the angle of this triangle is represented by 6, we can represent the horizontal and vertical
constituent parts in terms of this angle! Recalling the previous two equations, we get the

following:
o Fhand = sin & Ftension
e Fgrav:ty = c0s § x Ftensmn

Now, if we simply divide equation @ by equation @, we'll be able to discount the force
of the tension:

sin @ T

cos f ) F

gravity

This is equal to the following:

hand
tan @ =

F gravity

That means we can then represent the force of the hand in terms of the force of
gravity and the angle of the string!

s
Fhaﬂd =tan 0% Fgrnwly
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WAIT A SECOND,
WHAT’S ALL THIS SINE AND COSINE STUFF?

If you've never studied trigonometry, don't worry—it's not too difficult to understand.
Trigonometry is simply the study of the relationship between the length of a triangle’s
sides and its angles, especially right triangles. Because we often split forces and velocities
into their horizontal and vertical parts, we'll use trigonometry frequently.

Opposite
side

0

Adjacent side A

Let’s look at the example below. Consider a right triangle with an angle of 6.

Sine, cosine, and tangent (the three main trigonometric functions) are simply repre-
sentations of the ratios of the three sides of this triangle.

The sine of the angle theta (sin #) is equal to the ratio of the opposite side (0) to the
hypotenuse (H). In an equation, it looks like this:

sin@=—
H

The other trigonometric functions are simply representations of different ratios! For
example, the cosine of theta (cos 8) is equal to the ratio of the adjacent side (4) to the

hypotenuse, and the tangent of theta (tan @) is the ratio of the opposite side to the adja-
cent side. The equations loak like this:

cos =

tan # =

>|lo T|>

If you have trouble remembering these dif-
ferent ratios and what they mean, try using the
mnemonic device SOHCAHTOA.

5 ma@\cab /SLay 15
°©

sn=0/H cos=A/H tan=0/A

Whenever you're confused about whether
to use sine, cosine, or tangent, just think about
SOHCAHTOA, the magic triangular island of -

trigonometry. \ SOHCAHTOA!

SOHCAHTOA!

eq



NEWTON'S FIRST LAW OF MOTION

Newton'’s first law of motion states, "An object continues to maintain its state of rest or of
uniform motion unless acted upon by an external net force.” An isolated object in outer
space, where no gravity is being exerted, will eternally stay at rest or travel with uniform
velocity unless another force is imposed on it. A stationary object can have forces acting on
it—however, the sum of these forces must be equal to zero. For example, a stationary object
sitting on a desk is subject to the downward pull of gravity. The object remains stationary
because it receives a vertical upward force from the desk, yielding a resultant force of zero.

Now that we understand the forces acting on a stationary object, we can move on to
understanding what happens when the net force on an object is not zero.

NEWTON'S SECOND LAW OF MOTION

When a force is imposed on an object, that object starts moving with a uniform acceleration
proportional to the net force applied and inversely proportional to its mass. Assuming the
vector of a force imposed on the object is F, the acceleration of the object is a, and the mass
of the object is m, the second law of mation yields the following equation:

F=ma

Mass is a quantity that has only a magnitude, so it is a scalar guantity. However, recall
that force and acceleration are vectors—so pay special attention to the acceleration of the
object and the orientation of the force. They will be in the same direction!

The radio-controlled car you saw on page 49 moves in a square and attains a uniform
velacity while it travels in a straight line. At this time, the net force on the car is zero. How-
ever, when the car turns around a corner, a force must be exerted to change the direction
of its velacity. This is an important distinction: Acceleration does not have to change the
magnitude of a velocity! It can simply change the direction of a velocity!

THE ORIENTATION OF VELOCITY, ACCELERATION, AND FORCE

According to the second law of motion, the arientation of acceleration always matches the
orientation of the force. However, the orientation of velacity does not directly correspond to
the orientation of either the force or the acceleration. From the relationship between accel-
eration and velocity (explained on page 52) comes the following equation:

change in velocity = acceleration x time

q0 CHAPTER Z FORCE AND MOTION



This means that the orientation of the change in velocity matches the orientation of
acceleration! It's a subtle distinction, but an important one.

Let’s look at an example. Suppose there is an object in motion at constant velocity v
When na force is acting on the object, it moves in a straight line at velocity v,, according to
the first law of motion. If a vertical force is imposed on the object for time t, how would the
object’s velocity change? Assuming that the acceleration created by the force is a and the
velocity after the force is imposed is v, you can derive the following equation:

vy — vy =at
or
vy = vy +at
b
vy Flight path when no force is working (linear)
Downward force
V._
Velocity v,
I Change in velacity at
before a fgrce Velocity v, g Y
I5:mpose after a force
is imposed

Flight path when a force is imposed
{notice that the velocity’s orientation
has changed)

Thus, the addition of a force changes the direction of an object's mation. We can easily
predict this object’s motion by splitting v, into its constituent horizontal and vertical parts. Its
horizontal velocity must be egual to v, as there has been no force in the horizontal direc-
tion. The change in the object’s vertical velocity is simply at!

In the example of throwing a ball on page 75, the force of gravity continues to act on
the ball, even when the ball is moving upward. When the ball is rising in the air, its vertical
velocity is decreasing due to the force of gravity. Once it starts falling, it gains velocity down-
ward. The ball's horizontal velocity does not change; only its vertical velocity varies. The ball's
motion follows the shape of a parabola, as shown in the following figure.
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The velocity of the ball Path of the ball

t=0

t=02
The arientation of
the force of gravity
t=0.4 {which is also the
orientation of
acceleration)
t=06

t=08

Matice how the horizontal component
of this vector does not change!

AN OBJECT DOES NOT HAVE ITS OWN FORCE

Those wha have not studied physics tend to think, “An object in motion has a force.” This is a
common but incarrect notion. As we learned in Chapter 1, force is generated between paired
elements whose movement affects each other. An object in motion does not have an inter-
nal force that causes it to stay in motion—it's simply the result of the first law of mation.
Let's look at the example of a ball being thrown up in the air. The ball receives a force
from the hand until the moment it leaves the hand. (In response, due to the law of action
and reaction, the hand receives a force from the ball—but this force has nothing to do with
the ball's motion.) Once the ball leaves the hand, it only receives the force of gravity from the
earth. The force on the ball from the hand does not remain after the ball leaves the hand.

THE UNIT FOR FORCE

Newton's second law gives us the unit for force:
force = mass x acceleration
In this equation, the unit for mass is kilograms (kg), while the unit for acceleration is
meters per second squared (m/s°). Therefore, the unit for force is equal to kg x m/s®. To rep-
resent this more easily, we can use a unit called a newton (N):
1 newton = 1 (kg x m/s?)
You can use newtons to represent forces. As you can probably guess, this unit is named

after the great Isaac Newton, who established the foundations of physics. A force of 1N is
equivalent to the force required for accelerating an object with a mass of 1 kg by 1 m/s°.
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MEASURING MASS AND FORCE

How can we determine the mass of an object?
Mass can be measured with a scale, which takes
into account the fact that the force of gravity work-
ing on an cbject (that is, its weight) is propartional
to its mass. Mass that is measured based on
gravity is referred to as gravitational mass.
However, mass that is calculated using
Newton's second law represents a measurement
of the resistance of an object against acceleration;
this mass has no direct relation to gravity. Mass as
calculated by Newton's second law (mass = force /
acceleration) is referred to as inertial mass.

Gravitational mass

Inertial mass can be measured by combining < 1 % >
Newton's second law and the law of action and
reaction. First, we need an object with a known @ ﬂ
mass (we'll call it the reference object and label o il
it m, in our diagram). Then, we'll arrange the ! £
object whose mass we want to measure (we'll call q,
it the measurement object and label it m, in our m, =7 m,
diagram) and the reference object so that their :
forces work on each other through a collision. In Inerti
nertial mass

this collision, there are no external forces working
on the objects.

At this time, the forces of the reference object and the measurement object working on
each other are subject to the law of action and reaction. That is, they must be equal:

If F; = mya, and F, = m,a,, we know that F, = £, due to the law of action and reac-
tion. Therefore, we can express that relationship like so:

mya, = mya;

Since we're trying to solve for m,, our measurement object, we'll rearrange that equa-
tion as follows:

mqa,

m, =
a;

Of course, these accelerations are actually in opposite directions, so we'll consider their
magnitude alone.

The acceleration of an object can be found by measuring the distance the object travels
and the time it takes to travel that distance. If you have these measurements, you can find
the inertial mass of the measurement object.

Although experiments have shown that gravitational mass is the same as inertial mass,
Newton's Laws don't say that this has to be the case. Our understanding of this relationship
comes from Einstein, who founded general relativity on the equivalence principle—the idea
that inertial and gravitational mass are the same. This is still an active area of research.
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Once we've determined the mass of the objects in the collision, we can determine the
force they've applied to each other. As the force causes the object to accelerate, we can
measure this acceleration. We can then substitute this value into the following equation to
determine an exact value of the force we've applied:

mass = acceleration = force

DETERMINING WEIGHT

The force of gravity from the earth acting on an object with mass m is expressed as follaws:

® fF=mg

In this equation, g is the magnitude of gravitational acceleration—about 9.8 m/s® when
measured near the ground surface. This relationship is derived from the equation for uni-
versal gravitation.

hom m

Center of the earth!

Consider an object with mass m located at an altitude h above the earth.

Assume that the earth is a perfect sphere with radius R, mass M, and a uniform den-
sity. Daing this, we can also assume that the gravity generated outside the surface of the
earth by the entire globe is equivalent to the gravity of a point with mass equivalent to M.
Using the equation that describes universal gravitation, which we saw on page 43, we can
calculate the forces and acceleration due to the earth’s gravitational pull.

Therefore, the magnitude of gravity from the earth acting on an object is equal to the
value expressed below:

Mm
F=6 ——
(R + 1"l}|2
Also note that the force of gravity on an object near the earth's surface (where h = 0) is
as follows:
Mm M
E=lG — where G - =g
R R
)
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Since we know that force here is also equal to mass times acceleration, we can set this
equation equal to @.

NOTE Remember from page 43 that G is the universal gravitational constant.

Mm

mg:G?
M
9=G?

The radius of the earth is about 6.38 x 10° m, and its mass is about 5.98 x 10%* kg.
Using these values, you can calculate the value of g, the acceleration of an ohject due to
gravity:

M 598 x 10%

= T = x _11 x A e _ 2
g= G R2 6.67 x10 (638 ] 105,)2 9.8 m!'s

This is gravitational acceleration—notice that it does not depend on the mass of the
smaller object (m). Strictly speaking, because the earth is not a perfect sphere, gravitational
acceleration close to the earth's surface varies slightly, depending on the location. Even so,
you can safely approximate this value as 9.8 m/s2.

Now try to find the magnitude of gravitational acceleration at a point in the orbit of a
space shuttle going around the earth. A space shuttle travels about 300 to 500 km from the
earth’s surface.

Assume h = 500 km above the earth's surface. R + h = (6.38 x 10° m) + (0.5 x 10° m)
= 6.88 x 10° m. Using this calculation, you can find the acceleration due to gravity at this
altitude:

M 5.98 x 10

9= oy =847+ 10" (g P <84

In other words, a space shuttle is affected by gravity that is about 86 percent (8.4 / 9.8
= 0.86) the strength of the gravity warking on the earth's surface. Since the distance from
the earth to a traveling space shuttle is about one-tenth of the radius of the earth, it is only
reasonable to assume that the space shuttle is still heavily affected by the earth’s gravity.

Then why does it feel like there is no gravity inside a space shuttle? It is because the
shuttle is always “falling” as it is pulled by the earth’s gravity. Einstein theorized that if the
cable holding an elevator breaks, a person inside the falling elevator would find himself in a
weightless environment much like outer space. Just like an elevator with a broken cable, the
space shuttle’s acceleration is oriented toward the center of the earth due to gravity. How-
ever, it always falls with a velocity oriented perpendicular to the direction of gravity; it does
not move directly downward.
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Velocity v

Acceleration a Acceleration a

Acceleration

Path of the space shuttle

For this reason, the space shuttle travels around the earth along a circular (or, more
specifically, elliptical) path. The feeling of so-called zero-gravity is created because the space
shuttle and everything inside it, including the astronauts, are “falling” at the same gravita-
tional acceleration.

UNDERSTANDING PARABOLIC MOTION

We examined a ball in flight on page 75—that ball's motion is something we call parabolic
motion. Here, let’s take a more in-depth look at the ball’s flight using some real numbers
and equations.

In the figure below, the distance in the horizontal direction is expressed as x, the verti-
cal direction as y, and the ball's mass as m. The force of gravity on the ball works downward
along the y-axis, with a magnitude of mg. Represented in terms of its constituent parts, the
force vector on the ball is expressed as follows:

force in x direction
F=1(0.-mg)
e force in y direction

Similarly, we can represent acceleration in terms of component elements as a = (a, uy)_
We know the following:

Acceleration in the x direction is a, = 0.
Acceleration in the y direction is a,=-g.

In short, the ball has a uniform velocity in the % direction, and uniform accelerated
motion occurs in the y direction.
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Given that we know these values, we can find the velocity of the ball at any time. When
the ball is released, t = 0 and the velocity for throwing it is v, = (vjx‘ vly}, from rule @,
you get:

Vo, =V

x
v, =V, —gt
2, = Ve, 7l

These equations indicate that velocity does not change in the x direction, but it does
change downward in the y direction by -9.8 m/s in one second (gt = -9.8 mis’x1s=
-9.8 m/s).

v=(v.v)

a=(0.-g)

y direction

F=(0.-mg)

% direction
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Next, let's find the location of the ball. Let's split it into constituent parts in the x and y
directions:

Now, if there were only some way to eliminate the time variable in this second equa-
tion. Perhaps we should rearrange that first equation!

t=—
vy,
Substituting that into the second equation, we get the following:
X X 15
s, (-3l
i Y1

This is actually a guadratic function, and it will show a parabola when plotted. The ori-
gin is at the point where the ball leaves the hand.

From this eguation, you can tell where the thrown ball will land. Actually, we can take
the term [-:—] out of this equation like so:
:lX

X X
- i)
Vi, Vi,

And given that we know that the ball's landing point should be where y = 0 and x # 0,
let's set y equal to O:

0Ll -sof]

X
Vi '= %9(—)
4 v
1){'

Given this equation, we can solve for x, the distance that the ball travels!
. 2v1xv1y

0 x-=
g

By rewriting the expression and assigning ¢ to the angle of the throw, you can find the
angle that would enable the ball to reach the farthest point for a given velocity. The initial
velocity can be expressed as follows:

vy =y, vly) = (v, cos 6, v, sin 0)
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You can use this to re-define the landing point in equation @:

2 x v, cos @ x v, sin g vjz sin 26
X = =
g g

This value reaches a maximum when sin (26) = 1. Therefore, when throwing a ball
at this fixed velocity, the ball reaches the farthest distance when thrown at an angle of
45 degrees.

USING CALCULUS TO FIND ACCELERATION AND VELOCITY

WARNING: Normally, the velocity of an object changes over time. In this example, let’s say At is a short
CALCULUS amount of time during which we can assume the velocity is constant. Then we get the fol-
AHEAD! lowing approximation, where Ax represents the displacement created in time At:
Ax
V =
At

In this equation, the smaller the value you assign to At, the more precise approxima-
tion you can get for the velocity. In an experiment, At can only have a finite value. Thus, we
can only find the velocity to be an average value. But mathematically, we can assume a case
where At infinitely approaches zero. In other words, we can define the velocity for a given
moment as follows:

Ax o odx
® v=I|m-—=— This is the very definition of a derivative.
*0 AL dt

The same is true with acceleration. Let’s assign Av to a short amount of time At, during
which the velocity can be assumed to be virtually constant. Then acceleration a is expressed
as follows:

When acceleration is not uniform, we can make the change in t infinitely small:

Av  dv
a=lim—=—
w0AE dt

This represents acceleration for a given instant. Also note that by substituting expres-
sion @ in this expression, we get the following:

d ,dx, dx
= — (— = —
dt ‘dt! g2
* If you were confused by the math in these equations, remember that sin (26) = 2 sin  cos 6.
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Thus, acceleration can be expressed as the second derivative of the displacement.
Newton's second law (F = ma) can be expressed in differential calculus as follows:

dv d’x
m—=F o m—-=F
dt dt?

USING THE AREA OF A V-T GRAPH TO FIND THE DISTANCE
TRAVELED BY AN OBJECT

Next, let's examine how we can find the distance an object travels if we already know its
velocity (see page 54). When the velocity is uniform, we know that the following equation
holds true, and we can find the distance traveled (Ax) over a change in time (At).

Velocity 4 Velocity 1

Jlﬂtth

. O A LTt : "

.- t Time 0 t Time

(o]
—~

For a velocity that's changing magnitude, we can find an approximation by summing up
the distances traveled in At-long time segments. In other words, we divide the time interval
between point O and point ¢ into n segments, assign ¢, to the ith point in time, and assign v,
to the velocity at that moment.

Express the time as At, the velocity as v; and the distance as Ax; to yield the following
equation:

X= AL+ AL+ L+ VAL L+ v AL

The distance x traveled between point O and point t can be found using the following
approximation:

Xzivlﬁt
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When the rectangle is divided into infinitely small segments to allow At to infinitely
approach zero (when n or the number of segments approaches infinity), the results will be
much more precise:

x = im ¥ vAt = [ 'vdt
ekttt

This is the very definition of integration. This equation shows that you can find the dis-
tance traveled using integral calculus representing the area under the v-t graph.

Now, given uniform accelerated motion with acceleration a, velocity v, at time t = 0,
and velocity v, at time t, we know the following:

Vo- vy
u:

t
From this equation, we can immediately tell that v, = v, + at, or rule ® on page 85.

Now that we have an equation for final velacity as a function of time, we may substitute it
into the integral equation to calculate displacement:

ye f{;'[v1 + at)dt

Since v, and a are constants, this is a relatively simple integral to evaluate:
x = vt + 3at?],

The lower limit of t = 0 makes evaluating this equation quite simple:
x=vt+lat

We have just derived a rule that should lock very familiar‘to you!
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MOMENTUM AND IMPULSE

= XY _ARENTYOUA

BUSY LITTLE BEE
THESE DAYS!

WANT TO HANG

* GIRLS' LOCKER ROOM

OUT AT NORN,

GRAB A PiECE | ER SORRY.
OF CAKE OR ]
SOMETHING? M AFRAID I CANT

COME WITH. I HAVE b
TO GO MEET MY [/

\/" oHvear?
TOO BAD..

— WHAT ARE YOU
TALKING ABOUT, |
SAYAKA?
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I KNOW ABOUT
YOUR LITTLE
SECRET.

OH, FORGET 1
SAID ANYTHING.

JUST DON'T
FORGET ABOUT
OUR CHALLENGE
MATCH!

YOU'RE NUMBER
TWO ON THE

TEAM FOR A

REASON!

ARE YOU
TRYING TO
PSYCH ME

out?!

I JUST HOPE
YOU'VE BEEN
PRACTICING TENNIS,
TOO, EGGHEAD...

’Qf

ME AND RYOTA
STUDYING
TOGETHER!




|/ e

UNDERSTANDING
MOMENTUM

SAYAKA'S

GOING DOWN,

HAVING ANOTHER REVENGE.
MATCH WITH

KODA-SAN?

BY THE WAY,

I WANTED TO
ASK YOU ABOUT

SOMETHING.

A BALL IN MOTION
HAS NO FORCE
BEING IMPOSED

ON IT, RIGHT?

I CAN FEEL
IT ON MY

ISN'T THE BALL '\
CREATING
SOMETHING LIKE
A FORCE AGAINST
THE RACKET?



A BALL IN MOTION HAS
AN ATTRIBUTE CALLED
MOMENTUM.

15 THAT WHAT'S
CREATING A FORCE
AGAINST MY RACKET?

WHEN A FAST-MOVING
BALL STRIKES YOUR
RACKET, THE MOMENTUM
OF THE BALL IMPACTS
THE RACKET.

2xW

IMPACT!

AND SO INDEED, IT
CREATES A FORCE.

1 +

1 T =

s o

T et
i ] e

BUT MOMENTUM
AND VELOCITY ARE
DIFFERENT THINGS,

AREN'T THEY?

--MOMENTUM

YES, MOMENTUM 1S
DEFINED AS:

-
X VELOCITY
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EVEN |IF THEIR
VELOCITY WERE
EQUIVALENT, A
TENNIS BALL...

I THOUGHT ALL WE
NEEDED TO CALCULATE
MOMENTUM WAS THE
VELOCITY.

I DIDN'T REALIZE
WE NEEDED AN
OBJECT'S MASS
TOO!

WELL, JUST
THINK ABOUT IT
A BIT.

o

AND A PING-
PONG BALL HAVE
MOMENTUM OF
VERY DIFFERENT
MAGNITUDES.

..YEAH, A PING- = b ) NOW..TO
PONG BALL i = coLLECT
TENNIS COURT MURDER: MYSTERIOUS HER LIFE
WOULDN'T HURT 28 INSURANCE.

VERY MUCH IF IT HIT
SOMEONE'S HEAD.

ARE YOU STILL
RESENTFUL
ABOUT THAT
INCIDENT?

BRUISE ON THE VICTIM'S HEAD

NO NO, IT WASN'T

I WAS SIMPLY
TRYING TO HELP
YOU, NINOMIYA-SAN.
IT LOOKED LIKE A
LOT OF WORK FOR
ONE PERSON.

GETTING
SULKY...

EASILY.

ANYTHING LIKE
I
Teew)
THAT Bl&.
o /
YOU KNOW, 77,77
NONOMURA-KUN, & /?///
YOU TEND TO GET 7 )
SULKY RATHER &

N

y
1

HERE SHE
GOES
AGAIN...

OH, I'M JUsT
KIDDING.




LABORATORY

DIFFERENCE IN MOMENTUM DUE TO A DIFFERENCE IN MASS

: To help you understand how momentum works, I've brought in a softball
‘@ and a tennis ball.

Let's examine the momentum of a softball traveling slowly and a tennis
ball traveling quickly.

Light
(Small mass)
Fast
Tennis ball B
Softball =
Slow
Heavy
(Large mass)

Let me see, the softball is much heavier than the
tennis ball, right?

Yes, of course. We know the following about the two balls:

Meottbatl > Miennis ball

Veotthall < Yiennis ball

DIFFERENCE IN MOMENTUM DUE TO A DIFFERENCE IN MASS 109



. However, we can't tell which ball has the greater momentum. Recall that
,@ momentum can be calculated as mass multiplied by velocity (p = mv). Wed
= need to know numerical values to determine the difference precisely.

Well, | know that a tennis ball has a mass of about 60 g.

And a softball is about 180 g.

So we're almost there, It's 60 g versus 180 g—the mass of a softball is
about three times as great as that of a tennis ball.

Given these new facts and the relationship p = mv, to have an equivalent
momentum, the tennis ball must have a velocity three times as great as
the softball.

Oh, | see.

Softhall

Momentum

Tennis ball
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CHANGE IN MOMENTUM

AND IMPULSE

WELL, NOW LET'S
CONSIDER IT IN MORE
DETAIL. AFTER STRIKING
THE RACKET, THE BALL
MOVES AWAY AT A
PDIFFERENT VELOCITY

BEFORE IMPACT.

THE MOMENTUM
OF THE BALL HAS
CHANGED.

THAN THE VELOCITY IT HAD

DO You
UNDERSTAND HOW A
BALL CAN IMPACT A
RACKET

CLEARLY.

BECAUSE
IT HAS
MOMENTUM?

LET'S EXAMINE THE

CHANGE IN MOMENTUM

USING NEWTON'S
SECOND LAW.

CHANGE IN MOMENTUM AND IMPULSE

m



OH, I THINK I
REMEMBER THAT
ONE. IT GOES
LIKE THIS:

F=ma

FORCE = MASS X ACCELERATION

RIGHT, AND YOU
KNOW THAT
ACCELERATION
IS SIMPLY THE
CHANGE IN
VELOCITY OVER
TIME. S0...

[

JRIXCN

IF ACCELERATION
IS CONSTANT, WE
CAN REPLACE THAT IN

NEWTON'S SECOND
LAW TO EQUAL

P

CHANGE IN
VELOCITY
FORCE = MASS X
TIME LET ME SEE...
SO THAT
MEANS...
OR
('t"'z = Vj)
F =m=

IF WE REARRANGE
THIZ JUST A LITTLE BIT
(BY MULTIPLYING EACH

SIDE BY t), WE GET THE

FOLLOWING.

DIFFERENCE?

CAN YOU
TELL THE

i
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MASS X CHANGE IN VELOCITY = FORCE X TIME

mx[vz—vl)zFr

WELL, WHAT
©00P DOES
THAT DO?




WE KNOW THAT
MOMENTUM IS MASS
MULTIPLIED BY VELOCITY.

50 MASS MULTIPLIED
BY THE CHANGE IN
VELOCITY 1S REALLY JUST
THE CHANGE IN MOMENTUM,
PROVIDED THAT MASS m IS

1 SEE.

LET'S TAKE A LOOK AT
THAT EQUATION AGAIN,
AND THIS TIME WE'LL
EXPAND THE TERMS ON
THE LEFT SIDE.

YES, FORCE MULTIPLIED BY
TIME 1S CALLED IMPULSE.

&/ 1 SEE-THE CHANGE IN

MOMENTUM IS EQUAL TO
THE FORCE APFLIED TO
THAT OBJECT MULTIPLIED
BY TIME.

IMPULSE CAUSES THE
MOMENTUM OF AN OBJECT
TO CHANGE.

IN THE MOMENT THAT
THE BALL IS IN CONTACT
WITH THE RACKET, ITS
MOMENTUM CHANGES. THIS
IS THE FORCE YOU FEEL ON
YOUR ARM.




o
LET'S EXAMINE THE | ;i’;j,y/'
SCENARIO IN MORE 5%, —— =2 ¢ ——

SPECIFIC TERMS.

LET'S SAY THAT THE
BALL'S MASS 1S m, THE
BALL'S VELOCITY BEFORE

HITTING THE RACKET IS v,,
AND THE VELOCITY AFTER
BEING STRUCK 15 v,.

THE FORCE FROM THE
RACKET IS F, AND THE

MOMENTUM
AFTER
STRIKING:

AND BALL ARE IN
CONTACT IS ¢,

STRIKING:
mv,

e

P

LET'S FIGURE OUT
THE MOMENTUM OF
THE BALL BEFORE
AND AFTER IT
STRIKES THE RACKET.

SAY...ARE YOU STILL
FOLLOWING ME,
NINOMIYA-SAN?

WHAT? YES,
I'M LISTENING.

MOMENTUM OF
THE BALL...SURE.




p=mv, AS WE
KNOW, 50

THE MOMENTUM (p)
| | OF THE BALL BEFORE

URM-. & Q IT STRIKES THE
4 RACKET 15 mv,.
oA

AND THE MOMENTUM
AFTER STRIKING THE
RACKET IS mv,...50
THE VARIATION IS
EQUAL TO mv, - mv,,
RIGHT?

THE IMPULSE 1S
EXPRESSED AS Ft.

AND WE CAN GET
THIS EQUATION
BECAUSE WE
KNOW THAT...

THE CHANGE N
MOMENTUM 15
EQUAL TO IMPULSE.

IN FACT, THIS
EXPRESSION IS NOTHING
BUT ANOTHER WAY OF
EXPRESSING NEWTON'S

SECOND LAW, F = ma.

BUT IT IS VERY USEFUL

WHEN YOU WANT TO FIND

THE CHANGE IN MOMENTUM
FROM A KNOWN FORCE—

OR TO FIND THE FORCE
FROM A KNOWN CHANGE
IN MOMENTUM.




FOR EXAMPLE, IF YOU
KNOW THE VALUES OF THE \
BALL'S VELOCITY BEFORE
AND AFTER STRIKING THE

RACKET, v, AND v,, AND

THE TIME THAT THE BALL /]
5 IN CONTACT WITH THE 4
- RACKET... £

YOU CAN EASILY FIND
THE FORCE F THAT THE
RACKET IMPOSES ON
THE BALL.

50.. THAT MEANS
WE CAN FIND OUT
EXACTLY HOW HARD
I'M HITTING THE
BALL!
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SURE, IF YOU KNOW
THE SPECIFIC VALUES
OF VELOCITY AND THE
TIME OF CONTACT.

THAT SOUNDS VERY
USEFUL.




LABORATORY

FINDING THE MOMENTUM OF A 5TROKE

Let's actually analyze this scenario. Ninomiya-san, and find out the force
you're applying to the ball. During your match with Sayaka, | filmed your
mation with a high-speed camera. We'll analyze a time when you returned
her smash.

Here you go again. Yet another make-believe scenario.

This time, | really did shoot the footage.

What on earth...?

It's all in the name of science. Anyway, | analyzed the images and learned

that the velocity of the ball when it hit the racket was about 100 km per
‘e hour, and you returned the ball at about 80 km per hour. And | measured

the time that the ball was in contact with your racket—it was 0.01 second.

So we should have all the numbers we need!

Using these values, we can find the

. magnitude of the force your racket Force 4
imposed on the ball. But it's actually
= not so simple. A graph of the force
over time looks like this.

.
L

0 Time
—0.01 second —
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>

However, we'll assume an average Force 4
magnitude of F in this example.

That makes the calculation much
easier. ¥

v v
Impulse

Time
}— 0.01 second —

First, let’s calculate the momentum of the ball before you hit it. The mass
of a tennis ball is 0.06 kg. The velocity is negative 100 km per hour, as
viewed from the direction of the return. As 1 km = 1000 m, and 1 hour =
= 3600 seconds, we'll convert our units for velocity into meters per second
(m/s) as follows: 1 km/h = 1000 m / 3600 s. The calculation looks like this:

-100km 1000m  1h m

x x & 778

h km 3600 5
p=mv

p=0.06 kg x -27.8 m/s

p=-17 kg xm/s

Now we know the ball's initial mormentum. It's a little weird that the value
is negative, but | guess it just indicates the direction from my point of view.

So now let’s calculate the momentum of the ball after you've
struck it. Given that the velocity of the ball afterwards is 80 km/h,

&

= and its orientation is positive, the result is as follows:
80km 1000 m 1h m
x * =222 —
h km 3600 s 5
p=mv

p=006kgx222m/s

p=13kgxm/s
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Now we can find the change in these two values.

a‘ The change in momentum can be calculated like so:
1.3 kg xm/s - (-1.7 kg = m/s) = 3.0 kg x m/s = Ap

So that's the change in the ball's momentum. And since the force was
working for 0.01 seconds, we can figure out the force, using this equation:

Ap = Ft or — =F
t

In our example, that means (3.0 kg x m/s) / 0.01 s = 300N, That's the
force on my racket, | bet.

Yes, that's it. Since you probably don't

. know what a newton feels like, let's find But why is the
the equivalent force generated by 1 kg force generated
- weight, assuming that 1 kg is about equal by one kilogram
to 9.8N: 9.8 newtons . .. ?

Nevermind, | think | see.

We did that before . . . F = ma.
Acceleration due to gravity is
9.8 m/s°.

300N =

= 30.6 kg

Wow, that's a lot to ljft!

Well. remember, the force from gravity
is constant—this is just momentary. And
R you're using your muscles in a very differ-
' ent way, in a different direction.
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THE CONSERVATION OF MOMENTUM

NEWTON'S THIRD LAW AND THE
CONSERVATION OF MOMENTUM

I UNDERSTAND HOW A BALL
HAS MOMENTUM. BUT I'M
CONFUSED—WHERE DOES
THE MOMENTUM LOST FROM

THE BALL GO7

LET'S EXAMINE IT
IN DETAIL.

IT'S THAT WEIRD
GUY AGAIN.

MOMENTUM 15
EXCHANGED BETWEEN
ANY OBJECTS THAT ARE
IMPOSING FORCE ON
EACH OTHER! IT'S NOT
JUST WHEN YOU HIT A
TENNIS BALL!

THE FOLLOWING |5
TRUE—ALL OF THE
MOMENTUM LOST
FROM THE BALL IS
TRANSFERRED TO THE
RACKET.

AND MOREOVER,
THE SUM OF THE
MOMENTUM EXCHANGED
IS CONSTANT AND
PREDICTABLE.

: -fcii;'f'lﬁ'l:lilfl /] ﬂ‘

/ " DO YOU MEAN
THE TOTAL
A MOMENTUM DOES



LET'S TALK
ABOUT IT USING
A SIMPLE

EXAMPLE, A

HERE ARE A
100 YEN COIN
AND A 500 YEN
COIN.

PLEASE TRY TO HIT

THE 500 YEN COIN

WITH THE 100 YEN
COIN,

WELL...
TLL TRY.

SHAZAM!

THE 500 YEN COIN
MOVED FORWARD,
AND THE 100 YEN
COIN'S VELOCITY
REVERSED
DIRECTION,

THIS HAPPENS
BECAUSE THE 100 YEN
COIN HAS MOMENTUM
WHEN IT HITS THE
500 YEN COIN, RIGHT?
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WHEN ONE OBJECT

STRIKES ANOTHER,
FORCE FROM THE WE KNOW THAT THE
100 YEN COIN TO THE TWO FORCES IN PLAY THAT'S NEWTON'S
Q0 YEN COM MUST BE EQUAL AND IN  THIRD LAW, THE LAW
OPPOSITE DIRECTIONS. OF ACTION AND

REACTION.

FORCE FROM THE
500 YEN COIN TO THE
100 YEN COINN

AH, NEWTON AGAIN!

AS THE CHANGE IN

MOMENTUM |1S EQUAL
TO THE FORCE

MULTIPLIED BY THE TIME
(Ap = Ft), THE CHANGE IN
MOMENTUM FOR EACH CHANGE IN THE MOMENTUM
OBJECT SHOULD BE ; OF THE 500 YEN COIN

THE SAME! 2 MUST EQUAL ZERO!

IN OTHER {APago *+ APsoo = 0
WORDS...

/ THE SUM OF THE CHANG
IN THE MOMENTUM OF THE
100 YEN COIN AND THE
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WHEN THE 500 YEN
COIN WAS AT REST,
IT5 MOMENTUM WAS O.
THEN THE 100 YEN
COIN CRASHED

INTO IT...

AS FORCE WAS
IMPOSED, THE
MOMENTUM OF BOTH /
COINS CHANGED. /

+ {1IT'S NOT A PRETTY
IMAGE, BUT I GET
THE IDEA.

50 THE SUM OF THE
MOMENTUM OF THE TWO
COINS AFTER IMPACT 15
THE SAME AS THE INITIAL
MOMENTUM OF THE 100 YEN
COIN.

EXACTLY!

CONSERVATION OF
MOMENTUM? WHAT

?
WE CALL THIS DOES THAT MEANT

THE LAW OF
CONSERVATION OF
MOMENTUM.

IN PHYSICS, WHEN
A QUANTITY DOES
NOT CHANGE OVER
TIME, IT IS CALLED
CONSERVATION.

HA! HA! HA!
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WELL, LET'S LOOK
AT THE RULE,
MOMENTUM 15

CONSERVED.

FIRST, READ IT
ALOUD.

Change in momentum of the 100 yen coin
= Momentum after the collision - its initial momentum

This, in turn, must offset the following:

Change in momentum of the 500 yen coin
= Momentum after the collision - its initial momentum

THEIR CHANGE IN
MOMENTUM MUST
EQUAL ZERO,
WE KNOW THE
FOLLOWING:

AP1g0 + APsge = 0

(mv, - mv,) + (MV, - MV,) = 0

REWRITING THAT
EXPRESSION EVEN
FURTHER, WE GET

mvy + MV, = mv, + MV,

Initial momentum = Final momentum

IT'S A LITTLE
CONFUSING IN
TEXT.
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veLocry V, THEN WE GET AN
EXPRESSION LIKE THIS:

ASSUME THAT THE MASS OF
THE 100 YEN COIN IS m, AND
THE MASS OF THE 500 YEN
COIN IS M. LET'S REPRESENT
THE VELOCITY OF THE
100 YEN COIN AS v, AND THE
500 YEN COIN AS V.

mv, + MV, = mv, + MV,

AND AS BEFORE, WE'LL
REPRESENT BEFORE AND
AFTER VELOCITIES AS
vi AND v, AND Vi AND V5,
RESPECTIVELY.

VELOCITY v,

74

j VELOCTY V,

AND WE KNOW THAT V, = O, SINCE THE 500 YEN COIN
WAS AT REST, SO WE CAN FURTHER SIMPLIFY THE
EQUATION TO THE FOLLOWING:

AH, THAT MAKES

mi, = mi, + MV, PERFECT SENSE!

THE TOTAL MOMENTUM
FOR THE SYSTEM 1S
THE SAME BEFORE ANP
AFTER THE COLLISION,
IT DOESN'T INCREASE
OR DECREASE!

NOW YOU KNOW
ABOUT A SPECIFIC
APPLICATION OF THE |
LAW OF ACTION AND /.
REACTION.

IT'S THE
CONSERVATION
OF MOMENTUM.




LABORATORY

OUTER SPACE AND THE CONSERVATION OF MOMENTUM

Let’s think about outer space for our next example of the conservation of
momentum,

What is this, space camp?

Sigh. Let’s just suppose you are an astronaut, Ninomiya-san. During vehi-
- cle repairs outside the space craft, your tether has become disconnected,
@ leaving you floating away from your space shuttle. All you have in your
= hand is the wrench you've been using to repair your ship. How can you get
back to your ship?

Maybe | can swim back.

Oh, ho ho ho, it's quite impossible to “swim” in a vacuum. Recall the first
- law of motion: An object at rest tends to stay at rest unless a force is
,é imposed. No matter how hard you mave your arms and legs, you won't
w have anything to push against. You'd just be rotating around your center of
gravity, flailing your arms around.

Oh no! Things are really looking bad!
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Never give up hope! Your physics knowledge may save your life. You have
that wrench, remember? Throw it in the direction opposite to the rocket.
Thanks to the conservation of momentum, you will move.

Really? I'm gonna make it?

To confirm that this works, let's assume that you're at rest, in outer space.
Then let's set the wrench's mass as m and assume you throw it away from
you at velocity v. Your mass and subsequent velocity are represented by M
and V.

Since we are starting with no momentum, the momentum of both objects
afterward must equal zero, right?

Indeed! Given the law of conservation of momentum, the sum of the
momentum of both bodies should equal zero. If we put that in an equa-
tion, it looks like this:

mv+ MV =0

To find V, or your velocity back to your ship, we rearrange the equation:

m

This value is negative because it indicates that your motion is in the oppo-
site direction of the wrench.
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Can you see why you'd want to throw the wrench as hard as you could?
The faster its v, the faster your V.

Yes, that makes sense.

Let’s assign some numeric values and try to predict things. We'll say the
wrench has a mass of 1 kg and give you a mass of 60 kg with that heavy
@ space suit on. Assuming that the tool's velocity when thrown is 30 km/h.
" we get the following:

1 kg
V=- x 30 km/h = -0.5 km/h
60 kg

So that would be your velocity back to the ship.

Let’s say | have a whole toolbox. If | throw tools one after another, will |
move faster?

That's a great idea. Yes, you would go faster and faster that way. In fact,
‘e that's basically how a rocket moves. The exhaust that is belched out the
= rear of a rocket is equivalent to an object being thrown.

Gee, | never thought of it that way.

. A rocket can continue to accelerate by belching exhaust continuously. As
i@ long as fuel continues to discharge, the rocket will accelerate. When the

rocket stops discharging exhaust, the rocket’s velocity becomes uniform.
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REAL-WORLD EXPLORATIONS OF IMPULSE

|

REDUCING THE IMPACT

COMPARED TO THE
LAW OF CONSERVATION
OF MOMENTUM, THE
RELATIONSHIP BETWEEN

IMPULSE (I MEAN,
FORCE MULTIPLIED BY

TIMEY AND A CHANGE OF
MOMENTUM I5...

h

OH, BUT NOT
AT ALL!

FOR EXAMPLE,
LET'S SAY YOU'RE
JUMPING FROM A
GREAT HEIGHT. THE
MOMENTUM YOU
HAVE DEPENDS ON
YOUR VELOCITY AND
YOUR MASS.

HOW SHOULP
IPUT IT.2

IT'S DIFFICULT TO SEE
IN REAL LIFE.

WHEN YOU WANT TO
REDUCE THE FORCE
OF IMPACT, THAT'S
WHEN THIS 1S5 MOST
IMPORTANT!

| TIME IS ALSO ZERO.

UPON LANDING, YOUR
VELOCITY IS ZERO.
THIS MEANS THAT YOUR

MOMENTUM AT THIS

Z '
///Q A

ANEN
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YOUR CHANGE IN
MOMENTUM IS FIXED—YOU
CANNOT ALTER IT. HOWEVER,
YOU CAN REDUCE THE
FORCE ON YOUR BODY
FROM THE LANDING.

REALLY?
HOW WOULD 1
DO THAT?

YOU'P MAKE THE
TIME THAT YOU
RECEIVE THE
FORCE FROM THE
GROUND AS LARGE
AS POSSIBLE.

THAT SOUNDS
PRETTY SIMPLE.

APFLYING THE LAW
OF Ap = IMPULSE,
WE GET CHANGE
N MOMENTUM
(m x Av) EQUALS
FORCE MULTIPLIED
BY THE TIME. NOW,
TIME IN THIS CASE |15
THE TIME THAT YOU'RE
RECEIVING FORCE.

THIS EQUATION
CAN BE .
REWRITTEN AS: 7
m = Av

o

THAT MEANS THE
LARGER THE
t VALUE, THE
SMALLER THE
F VALUE YOU
RECEIVE.




_-

JUST THINK ABOUT GYM
CLASS. FOR THE HIGH
JUMP, YOU USE SOFT
FOAM MATS TO BREAK

YOUR FALL, RIGHT?

WITHOUT THEM, YOU
COULDN'T DARE
JUMP SO HIGH.

WE COMMONLY THINK,

“MATS ABSORB IMPACT
BECAUSE THEY'RE SOFT
AND FLUFFY.”

BUT FROM THE VIEW
OF MECHANICS, THEY
ARE EXTENDING THE
TIME YOU RECEIVE i

THAT SHEDS NEW
LIGHT ON THE
MATTER.
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LET'S ASSUME THAT
THE TIME TO RECEIVE
A STOPPING FORCE
HAS INCREASED FROM
0.1 SECONDS TO 1 SECOND,
THANKS TO THE LANDING

MAT. '

WITH THAT SMALL

CHANGE, THE NEW i
FORCE |15 JUST ONE
TENTH OF ITS INITIAL
STRENGTH.

A CAT CAN SAFELY LAND
WHEN IT JUMPS FROM A
HIGH PLACE. PERHAPS ITS
FLEXIBLE BODY HELPS
TO EXTEND THE TIME OF

IMPACT.

THAT'S RIGHT. BECAUSE
THE CAT BENDS ITS LIMBS,
THE TIME THE CAT'S BODY
RECEIVES FORCE IS
INCREASED SLIGHTLY. BUT
THIS RESULTS IN MUCH LESS
FORCE ON IMPACT WITH
THE GROUND.

THINKING
LIKE THIS...

PHYSICS 15
APPLICABLE TO

MANY SITUATIONS IN
DAILY LIFE.
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IMPROVING MEGUMI'S
SERVE

YES,
I HOPE YOU
UNDERSTAND
THIS.

WE KNOW ABOUT
THE RELATIONSHIP
BETWEEN THE
CHANGE OF
MOMENTUM AND
IMPULSE.

THAT MEANS I CAN
APPLY IT TO MY
TENNIS GAME!

RECALL HOW
WE EXAMINED THE
MOMENTUM OF A
STROKE.

GIVEN THE IMPORTANCE
OF CHANGING A BALL'S
\  MOMENTUM, T WANT
A\ TO FIND OUT A BETTER
WAY TO SERVE!

15 THAT
REALLY THE
KIND OF SERVE
YOU WANT TO
DELIVER?



WELL, IF THAT'S THE 'éf‘
CASE, WE SHOULD TALK
ABOUT YOUR MATCH
WITH SAYAKA. YOU TWO
ARE EVENLY MATCHED
AND SEEM TO HAVE
THE SAME PHYSICAL
STRENGTH.

ARE YOU SAYING
I'M NOT AS GOOD
AS SAYAKA?

BUT KODA-SAN WAS
USING THE SPRING OF
HER BODY WHILE SHE
SERVED. HER SERVE 1S /

MUCH MORE POWERFUL

THAN YOUR OWN. &

I JUST MEAN THAT'S
ONE AREA TO
IMPROVE. YEOW!

ALL RIGHT THEN. TLL
EXAMINE MY SERVE
IN THE CONTEXT OF

MECHANICS. SOUNDS

GO0D TO ME.

WELL, WE KNOW THAT
CHANGE IN MOMENTUM
EQUALS FORCE MULTIPLIED
BY TIME, SO ONE IDEA FOR
IMPROVING YOUR SERVE...

WE'RE OFTEN
TOLD TO HIT THE
BALL WITH ALL OUR
MIGHT!

IS TO IMPOSE A
FORCE ON THE BALL
FOR AS LONG AS
POSSIBLE.




THAT WAY, YOU'RE
INCREASING THE
DURATION OF
CONTACT BETWEEN
BALL AND RACKET.

SIMPLY USING THE
SAME FORCE OVER A
OREATER TIME WILL
RESULT IN A FASTER
SERVE.

1 SEE. DO YOU
HAVE ANY OTHER
HINTS?

AN OBVIOUS WAY TO

INCREASE THE CHANGE

IN MOMENTUM IS TO
INCREASE THE FORCE

YOUR WAY OF \
SERVING THE BALL |
IS VERY WASTEFUL
NINOMIYA-SAN.

REALLY?!

AT DIFFERENT POINTS
IN YOUR SERVE, YOU'RE
EXERTING DIFFERENT
AMOUNTS OF FORCE.

YOU APPLY.
YOUR CURRENT
SERVE
YOU'RE HITTING
THE BALL TOO
EARLY—LOOK AT
THESE IMAGES

OH, I DIDN'T
REALIZE THAT.

']
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50, BY MAKING YOUR
BODY MORE FLEXIBLE
AND HITTING THE BALL AT
THE RIGHT TIME, YOU CAN
MAXIMIZE THE FORCE YOU
EXERT ON THE BALL AND
THE DURATION OF IMPACT.

FLEXIBLE, EH...

STRIKE THE BALL

[ HIT THE BALL LIKE AN

OVERHEAD SMASH, AND
TRY TO EXTEND THE
TIME OF IMPACT. THIS

JUST WAITING A
BIT LONGER TO

cou £ 1S WHY YOU SHOULD
OALEOI-_IL ke “*FOLLOW THROUGH" THEN THE
YOUR STROKES. IMPULSE
INCREASES!

OF COURSE, TENNIS
IS A COMPLICATED
GAME, AND WE
CAN'T REPRESENT
EVERYTHING 5O
SIMPLY...

AND DESPITE THE

STILL, THE PHYSICS INVOLVED, YOU
PRINCIPLE OF STILL HAVE TO KEEP
CHANGE IN YOUR EYE ON THE BALL

MOMENTUM = IMPULSE
EXPLAING HOW THE
BALL MOVES.

DURING THE GAME...
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IN MY CASE, 1 DON'T
THINK I HAVE THE
COORPDINATION TO PO
THIS. BUT I THINK YOU CAN,
NINOMIYA-SAN...

IT’S NICE TO HEAR
THAT! THANK YOU...
RYOTA!

A\
RYO—WHAT? YOU... \
WHAT ON EARTH, ALL

OF A SUDDEN?

YOU MUST BE
ANGLING FOR
SOMETHING
AGAIN...1I!

DON'T YOU THINK IT'S
TIME WE START CALLING
EACH OTHER BY OUR

FIRST NAMES?

YOU CAN CALL
ME MEGUM,
YOU KNOW.

NO, NO, IT'S
NOT THAT!

THAT'S TOO
MUCH FOR ME.

COME ON!
DONT BE 50O
SQUARE.




YOU CAN JUST CALL
ME MEGU THEN,
IT'S MY NICKNAME,
OKAY?

COME ON, RYOTA,
PLEASE?

AHEM

NEXT SESSION, N
WE'LL CONCLUDE
THE BASICS OF

MECHANICS.

1 HOPE YOU
HANG IN THERE!
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LESSON WILL BE
OUR LAST.

THAT'S RIGHT.




MOMENTUM AND IMPULSE

Momentum is a guantity representing the magnitude and orientation of the motion of an
object. Assuming that an object with mass m and velocity v has momentum p, the relation-
ship among them can be represented as follows:

p=mv

Since velocity is a vector, momentum is also a vector. An object’s momentum and
velocity will have the same orientation.

As mentioned in Chapter 2, an object in motion does not have force inside of it—it has
momentum. The momentum of an object varies as an external force is imposed on it, and a
change in momentum is called impulse. So, let's derive the relationship between momentum
and impulse, starting by examining Newton's second law.

Suppose a ball with mass m hits a racket. Assume v, for the velocity of the ball before
it hits the racket and v, for the velacity of the ball after it hits the racket. Also assume F for
the force imposed on the ball from the racket.

Given Newton's second law,

F:ma

the ball undergoes acceleration a. Generally, force Fis not constant, but for our purposes,
let's assume that Fis constant at its average value (see page 118). If Fis assumed to be con-
stant, then acceleration @ is also constant. If we let ¢ equal the time that the ball receives a
force from the racket, acceleration @ can be expressed as follows:

(v, - 7,)

a=
t

We can substitute this value for @ into Newton's second law:

If we multiply both sides by t, we get the following:
mv, - mv, = Ft

The expression mv, - mv, represents the object’s change in momentum. When we call
quantity Ft the impulse, the following relationship is true:

change in momentum = impulse
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Note that momentum mv, - mv, and impulse F follow the rule of composition of vec-
tors, as shown in the figure below.

We can see from the way this equation is derived that the relational expression of
change in momentum and impulse is an application of Newton's second law, in a situation
where force is constant. When | said the equation for impulse is “nothing but another way of
expressing Newton's second law” on page 115, this is what | meant.

IMPULSE AND MOMENTUM IN OUR LIVES

As we learned on page 129, the relationship between the change in momentum and impulse is
useful when we want to determine how to reduce the impact of a collision.

In order to minimize the force imposed on an object while the object is in motion and
up until the mament the motion stops, we must maximize the collision period because of
the following relationship:

change in momentum of an object = imposed force x time duration of imposed force

Assume you are jumping from a high place, and your velocity immediately before land-
ing is v. Once you land and are in a stationary state, the change in your momentum is mv.
(How do we know this? Well, at rest, you must have no momentum at all, since you have no
velocity: m x O = 0.) This change in momentum is generated by the force from the ground,
and your body must withstand this impact force that it receives. If we assume F for the
impact force and ¢ for the period of time the force is being withstood, the following expres-
sion is true;

mv = Ft

When mv is constant, F becomes smaller as t becomes larger. For example, the mats
used for the high jump function as a tool for extending the time period t from the point
where the body's impact on the mat starts to the point where momentum mv becomes zero.
As the body sinks into the mat, the jumper continues to receive force F. As Ft is constant, the
greater time period t, the smaller force F becomes.

We can find examples of the fact that a change in momentum equals impulse every-
where in our daily lives. When catching a ball, we tend to unconsciously withdraw our hand.
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We are actually trying to reduce the force by extending the time duration from the point of
the ball's contact with the hand to the point where the ball stops. Similarly, the gloves used
in baseball and boxing extend the time period of the impact and reduce the force. Ukemi
(the judo art of reacting to an attack by falling strategically), the crumple zones of madern
cars, and air bags are all designed to reduce the impact of the force accompanying the
change in momentum by extending the time of collision. Similarly, the safety ropes used in
rock climbing are designed to stretch when a climber falls, so the collision time will be lon-
ger. This also prevents a sudden force from being imposed on the climber’s waist. It would
be very dangerous to use a rope that does not stretch instead of a special rope for climbing.

DERIVING THE LAW OF CONSERVATION OF MOMENTUM

Let's derive the law of conservation of momentum by applying our knowledge that the
change in momentum equals impulse to two colliding objects.

\;After collision
il ’M/f/'

-

mv. MV

i
Object A o O Object B

Before collision 1

As in the preceding figure, assume that objects A and B collide without any external
force being impased and without the dissipation of any momentum in their impact.

First, let’s focus on object A (the object on the left in the preceding figure). Assume m
for the mass of object A and v, and v, for its velocity before and after collision. Also assume
Ffor the force received by object A from object B. The relational expression showing that the
change in momentum equals impulse can then be written as follows:

mv, - mvy = Ft

Here, ¢ represents the time of the collision of objects A and B, and force approaches
a constant value. Create an equation for object B (the object on the right in the preceding
figure) using the knowl_edge that the change in momentum equals impulse. Assume M for

the mass of object B, V; and V, for the velocity before and after collision, and f for the force
received by object B from ohject A:

MV, - MV, = ft
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Note that the collision time is equal for both objects. It must be, since A cannot touch
B without B touching A. But wait, why is the force the same for bath as well? It's simply the
law of action and reaction—f = F!

| Focusing on Object A | Focusing on Object B

—-ﬁ
\ ft
L MU, .
& @
mv, - mv, = Ft MV, - MV, = Ft
Momentum variation and impulse of both objects
.". mFE MV? k‘.
£ = = ->y Ft=-ft
., Ft i o
““ mf,; ._,—' MDI

Substitute the previous two expressions representing the relationship between the
change in momentum and impulse into the preceding expression to get the following:

MV, = MV, = ~(m¥, - mv,)
Consolidate this expression:
mv, + MV, = mv, + MV,

The momentum of the objects before impact must be equal to their momentum after-
ward. This is the law of conservation of momentum shown on page 125.

* We can omit the vector signs in the case of a collision between objects moving on the same
straight line.
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mv, + MV, = mv, + MV,

These equations can be represented as vectors, as shown in the preceding figure on
the left. The vectors can be rearranged to combine the change in momentum and impulse
for objects 1 and 2, respectively, with the law of action and reaction, to get the vector on the
right.

ELASTIC AND INELASTIC COLLISION

It's important to note that problems involving collision cannot always be solved using the law
of conservation of momentum. In the real world, we must consider the dissipation of kinetic
energy and other factors. We'll learn more about kinetic energy in the next chapter.

However, we can apply the law of conservation of momentum in two ideal situations—a
perfectly elastic collision, or a perfectly inelastic one. The first example here was a perfectly
elastic one—twao objects that move separately after their collision, losing no energy in the
process. Think of an elastic collision as something like two super-balls hitting each other—in
the real warld, the collision of atoms is said to be elastic. Now let's take a look at an example
to better understand what an inelastic collision is.

An inelastic collision is one where the colliding objects combine to form a singular
object in motion after their collision. An example of this would be a tackle in football, where
after striking each other, the two players travel together as one.

Combined mass
Object A Object B of A+ B

S >

e =2y

In this example, assume that object A with mass m and velocity v is combined with
object B with mass M and velocity V. At this time, we get the following equation:

p=(m+ MV,

The two objects achieve velocity V, after they are combined. Applying the law of con-
servation of momentum, we get the following equation:

mv + MV, = (m + M)V,
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Therefare, the velocity after the two objects are combined is as follows:

mv + MV,

=V2
m+ M

UNITS FOR MOMENTUM

Let's think about the unit we use to measure momentum. Recall that force is represented in
newtons (N), but momentumn doesn't use a special unit of measure. But from the equation
momentum = mass = velocity, you can tell that:

units for momentum = units for mass x units for velocity
= (kg) x (m/s) = (kg x m/s)

You can also use the fact that a change in momentum equals impulse to determine
the units for momentum. The units for momentum are the same as the units for impulse.

Therefore, the following expression is also true:

units for momentum = units for impulse = units for force = units for time
=(N)x (s} = (N x 5)

This seems different from the units we just calculated, (kg = m/s). However, given (N) =
(kg = m/s°), you get:

(kg x m/s%) x (s) = (kg x m/s)

Both units are identical. We've learned that the units for momentum are (kg x m/s),
or (N = s).

LAW OF CONSERVATION OF MOMENTUM FOR VECTORS

Since momentum is a vectar, to follow the law of conservation of momentum, we must con-
sider the orientation of momentum as well. In other words, when momentum is conserved,
we must conserve both its orientation and its magnitude. Therefore, if the orientation of
momentum changes (as in the example of a collision of coins on page 121), you need to calcu-
late this change by dividing momentum into separate horizontal and vertical components, as
vectors.

Assume a perfectly elastic collision in which object A collides with stationary object B, as
shown in the following figure.

Assume m for the mass of object A, v, and v, for its velocity before and after the colli-
sion, M for the mass of object B, and V for its velocity after the collision. Place the x-axis on
the vector representing the velocity of object A before the collision, assume g and f for the
angles made by object A and object B after the collision, respectively, and assume vy = [vgl,
vy = vl Vs = V).
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We'll then split the velocities into their constituent parts, like so, in the form of
v=1(v, )

v=1{vy, 0). v, = (v, cos 6, v, sin 8), V; = (V cos g, -V sin ¢)
Now that we've dane that, consider that the law of momentum must hold true in both
the x and y directions. Note that the object initially has no momentum in the y direction. So

that means that the following must be true:

For the x direction: mv; = mv, cos 8 + MV cos ¢

For the y direction: 0 = mv, sin @ - MV sin ¢

When a 500 yen coin collides with a 100 yen coin, the 100 yen coin often bounces

backward. In this case, & > 90°, so cos # < 0. The following figure shows an example where
< 90°,

@ Object A

(x-axis) |

» (x-axis)

Object A Object B
(at rest)

@ Object B

Let’s see how we split the abjects’ momentum into horizontal and vertical parts.

Object A Mge cos ¢
- -*:
M'|.7_ MV, sin @
mv, cos @
Object B

If we place these head-to-tail, we can visually see what
we already know: Momentum has been conserved in the
system. g

In other words, in the y direction, the momentum of e
objects 1 and 2 must offset each other. And the sum of their ALt
momentum in the x directions must equal mv,.

We need to know more than the law of conservation of momentum to predict the
velocity and the angle at which the objects move after the collision. We'll look at this in more
detail in the next chapter.
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LAW OF ACTION AND REACTION VS. LAW OF CONSERVATION OF
MOMENTUM

WARNING: Using differential and integral calculus, we can easily derive the law of conservation of
CALCULUS momentum. Assume v and m for the velocity and mass of object 1 and V and M for those
AHEAD! of object 2. Suppose no external force is working on these objects. Assuming F,, .., for

the force imposed on object 2 by object 1 and .EMW for the force imposed on object 1 by
object 2, we can apply Newton's second law as follows:
di W
m—=F,. . and M—=F__
dt i dt s

Substitute these two equations into the following equation for the law of action and
reaction:

The following will result:

dv av
m—=-M—
dt dt

As mass is a constant, the above expression can be transformed into the following:

dimv)  d(MV)

dt dt
Consolidate these two eqguations:

d ~
—(mv+MV)=0
dt

This equation indicates that the sum of the momentum of objects 1 and 2 (mv + MV)
will not change over time. From this equation, you can derive the law of conservation of
momentum:

mv + MV = constant

A constant derivative means that the momentum does not change! The law of con-
servation of momentum is derived from both the law of action and reaction and Newton's
second law. So you can also say that the law of conservation of momentum stems from the
law of action and reaction.

You can use the same method to derive the law of conservation of momentum for
three or more objects.
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PROPULSION OF A ROCKET

In the Laboratory section on page 126, we learned that an astronaut in space will move in the
opposite direction of an item he has thrown. This phenomenon occurs according to the same
principles that drive rocket propulsion. A rocket increases its velocity by belching exhaust at
a high rate out of its engine, and it moves in the opposite direction of its exhaust. Let’s look
into this phenomenon in depth.

V=0
i)

First, assume that a stationary rocket in outer space discharges a small ohject with
mass m at a velocity of v. Then assume M for the sum of mass of the small object and the
rocket and V, for the velocity of the rocket after the exhaust discharge. Given the law of
conservation of momentum (and knowing that these velocities are in the exact opposite
direction), you get the following equation:

3

0=(M-mV, -mv

mv
o Y

_M—m

We've solved for the rocket’s subsequent maotion, V;. Now, suppose this rocket dis-
charges another object of mass m at relative velocity (velocity as viewed from the rocket)
-vand in the same direction as the previous discharge. At this time, assuming V, for the
rocket’s velocity and noting that the total mass of the rocket before and after discharging the
second ohject is M - m and M - 2m, respectively, you get the following equation:

M-m)Vy=(M=-2m)V, + m(V, - v)

Note that the small object moves at a velocity of V; - v when the rocket is advancing at
velocity V,. From the expression above, you can find the value of V, as follows:

my
e V=V~

M-2m

Substituting the value of V, from that equation into this equation, we find the following:

mv mv
Vz: +
M-m M-2m
1
® V,=mvl + )
M-m M-2m

We've found the velocity of the rocket after discharging two small objects.
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A real rocket will continue to discharge small objects—so let's derive a general expres-
sion for the rocket’s velocity after discharging n small objects. Let's assume that the rocket
continues to discharge small objects with mass m at relative velocity v.

V.| e— Vi =¥ V, m—
M-(n-1)m ; M- nm
, : m

As viewed from the rocket with velocity V . the small
object is discharged at velocity -v to the rear of the rocket.

Assuming V, for the velocity of the rocket when it discharges n small objects, the law of
conservation of momentum is expressed as follows:
M-(n-1mlV, ,=M-m)V,+ m(V,_ -V
Thus, V, is expressed as follows:

m

v
M- nm

By using this expression repeatedly, you can find the following:
1 1 m

o V= +...+ )mv=i
‘ M-m M- nm k=t M - km

v

A real rocket continuously discharges exhaust from its rear engines, so we will trans-
form expression @ for such a case. Assume that the rocket emits a jet of small mass Am at
one-minute intervals At at relative velocity -v. Assuming t for the time from the stationary
state to the nth jet exhaust, t = nAt is true. Assume V(t) is a function describing the rocket’s

velocity with respect to time, and transform expression @ into m — Am, V, = — V(t) to find
the following:
WARNING: Afi
CALCULUS O P
AHEAD! ® Vd=2 ¥ o ran”

At a point where the jet interval At is divided into infinitely small sections—that is, when
At — 0, you can find the sum using integral calculus.” To work with integral calculus, note
the following transformations: n becomes « and Am / At becomes dm / dt (mass lost in

* The expression At — O can be read aloud as "the change in time approaches zero.”
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unit time, or mass that is discharged in the form of fuel exhaust). Transform the equation as
follows: Am — (dm / dt) dt. The following equation will result:

dm

® Vi)=v| —— (—)adt
M- (dm/dt)t dt

; 1
v ————a
M (dm /dt)= -t
If exhaust discharge in unit time is uniform, the following is true:

dm/dt =« (a constant value)

This means that alpha (a) is a measure of how much mass the engine is discharging
per unit time:

1 2
@ )= vf; (—— dt = v(-log, (M/a - t)],

fa)-t

M
)

= vlog, (
M - at

Expression @ represents the velocity of a rocket with initial velocity V(0) = 0. Note
that at is the total mass of the exhaust emitted by the rocket in time interval t. Therefore,
assuming that the initial total mass of fuel carried in the rocket is m, the rocket consumes
all the fuel in time ¢ (t = my /a) and then shifts to uniform motion from accelerated motion
(as shown in the following figure).

V{f:] A

~Y
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WORK AND ENERGY

AWESOME!
WHAT A VIEW.

WE CAN SEE
EVERYTHING
FROM HERE.

AND IT'S NOT
EVEN A FAR
DRIVE.

DO You
COME HERE
OFTEN?

IT'S BEAUTIFUL.
THANKS FOR

SHOWING ME THIS

PLACE!

YEAH...

ZV/HEN 1 GET STUCK
ON A PROBLEM T
JUST CAN'T SOLVE,
I COME HERE
FOR A CHANGE IN
SCENERY.

WELL, I DIDN'T
BRING YOU
HERE JUST TO...

NEVERMIND.,
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.IT'S QUIET
HERE.

JUST RIGHT
FOR OUR LAST

S
NOW, YOU :
KNOW THAT = IS FAR MORE
WALKING UP A = - o TIRING THAN
SLOPE OR A WALKING ON
STAIRCASE FLAT GROUND.

IN FACT, WE KNOW
THAT THE HUMAN BODY

CONSUMES ABOUT THREE
TIMES AS MUCH ENERGY |
WHEN CLIMBING STAIRS LOOK
COMPARED TO JUST owmich  WWL
WALKING. ENERGY IT
TAKES!
A A
3 :
61
() DEPLETED!

MEGUMI'S
ENERGY
METER




BUT WE SEE THE TERM
ENERGY ALL OVER THE
PLACE, DON'T WE?

YEAH!
LIKE ENERGY-
EFFICIENT CARS,
GREEN ENERGY, AND
ENERGY DRINKS!

ENERGY |15 A WORD A
LOT LIKE FORCE. PEOPLE
USE THE TERM RATHER
LOOSELY TO DESCRIBE
THINGS, BUT...

WAIT!
YOU MEAN...

ENERGY HAS A
SPECIFIC MEANING
IN PHYSICS?

/ JUST LIKE HOW
|| FORCE IS DEFINED
ACCORDING TO
THE LAWS OF
MOTION,

ENERGY ALSO
HAS A STRICT
DEFINITION.
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THAT REMINDS
ME-T'VE HEARD
THE TERMS KINETIC
ENERGY AND
POTENTIAL ENERGY
BEFORE.

A MOVING OBJECT

CONTAINS ENERGY
THAT IS REFERRED TO
AS KINETIC ENERGY.
IT REPRESENTS
THE ENERGY OF

YOU MEAN THAT
THERE'S A LAW
DESCRIBING THE
CONSERVATION OF
ENERGY, TOO?

IT SOUNDS SIMILAR
TO MOMENTUM. BUT
KINETIC ENERGY
MUST BE DIFFERENT,

WANT A %

YES, THEY ARE
DIFFERENT. MOMENTUM
IS GOVERNED BY THE
LAW OF CONSERVATION
OF MOMENTUM. BUT
ENERGY MUST ALSO
BE CONSERVED.

YES. ENERGY CAN

TAKE MANY FORMS, EN%”;;SAEW
THOUGH. THERE'S ¢
MANY MORE.

KINETIC ENERGY,

POTENTIAL
ENERGY, CHEMICAL ¢
ENERGY, THERMAL
ENERGY,

DON'T YOU
LIKE IT?

UH, ARE YOU
OKAY?




AHEM. ENERGY
EXISTS IN MANY
FORMS,

(0
&

AND IT IS
POSSIBLE TO
TRANSFORM IT
BETWEEN THESE
FORMS.,

SO ENERGY 1S
LIKE A SHAPE
SHIFTER...

EVEN THOUGH THESE
FORMS ARE VERY
DIFFERENT, THE TOTAL
AMOUNT OF ENERGY STAYS
THE SAME. THIS 1S THE
LAW OF CONSERVATION
OF ENEROGY.

LET'S USE A THE HEADLIGHT

Z CONVERTS THE
%iﬁh#{? KINETIC ENERGY OF
THE TURNING BICYCLE

WHEEL INTO ELECTRICAL
ENERGY AND THEN INTO
LIGHT ENERGY.

LIKE A
HEADLIGHT ON

A BICYCLE.
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A GASOLINE-

IN THE SAME WAY, POWERED
AN ELECTRIC CAR WHAT ABOUT CAR USES A
CONVERTS ELECTRIC REGULAR COE“N%@ON

CARS?

ENERGY INTO KINETIC
ENERGY.

TO CONVERT
THERMAL ENERGY
INTO KINETIC
ENERGY.

BUT THAT THERMAL
ENERGY 1S5 TRANSFERRED
FROM THE CHEMICAL
ENERGY STORED IN
GASOLINE.

AGAIN, THE TOTAL
AMOUNT OF ENERGY
IS CONSERVED,
THROUGHOUT THE
PROCESS.

THE HUMAN BODY DOES
THE SAME THING, USING
FOOD AND OXYGEN AS
ENERGY SOURCES. THE
BODY CONVERTS THIS
CHEMICAL ENERGY

INTO THE KINETIC
MOTION OF OUR
MUSCLES, AND
THERMAL ENERGY,
WHICH MAINTAINS
OUR BODY
TEMPERATURE.
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S0 EVEN IN OUR
BODIES, ENERGY 15
CHANGING FORM. J=

50 WHEN WE
YCONSUME”
ENERGY...

WE'RE REALLY
JUST CHANGING IT
INTO A DIFFERENT
FORM.

BUT LET'S GET

A LITTLE LESS

ABSTRACT AND
PIscUss

7 POTENTIAL ENERGY
AND KINETIC ENERGY.
THESE ARE BOTH
KINDS OF MECHANICAL
ENERGY,

WE'LL TALK
ABOUT THAT
LATER.
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NERGY IS ALWAYS
CIRCULATING, BUT
THE TOTAL AMOUNT
OF ENERGY REMAINS
CONSTANT.,

FOTENTIAL
ENERGY?

LET'S START
WITH KINETIC
ENERGY.




THE ENERGY OF AN
OBJECT IN MOTION
CAN BE EXPRESSED
AS FOLLOWS:

KINETIC ENERGY = )z X MASS X SPEED X SPEED

KE = 3mv*

N

YOU SAID SPEED,
NOT VELOCITY!

GOOP POINT!

SINCE SPEED 1S A QUANTITY
WITH ONLY A MAGNITUDE,
KINETIC ENERGY MUST
ALSO BE A QUANTITY WITH
ONLY A MAGNITUDE. WE'LL

USE THE VARIABLE v FOR
SIMPLICITY'S SAKE.

IT WILL NEVER BE
NEGATIVE.

WHAT DO
YOU MEAN?

LET'S COMPARE
KINETIC ENERGY
TO MOMENTUM.

Do You
REMEMBER THIS
EQUATION?

MOMENTUM = MASS X VELOCITY

p=mv

OF COURSE!

WHAT 15 ENERGY? 159




MOMENTUM IS A \

VECTOR QUANTITY | . Ac
THAT HAS BOTH {
MAGNITUDE AND
DIRECTION.

KINETIC ENERGY
DOESN'T HAVE
'\ AN ORIENTATION.

|~

RIGHT. ALSO,
EVEN WHEN THE
MOMENTUM OF
ONE OBJECT 15
EQUIVALENT TO THAT
\. OF ANOTHER,

THEIR KINETIC
ENERGY
MAY NOT BE
EQUAL!

OH, YEAH?

FOR EXAMPLE, COMPARE THE
MOMENTUM OF AN OBJECT
WITH A MASS OF 1 KG AND A

VELOCITY OF 1 M/S WITH...

AN OBJECT WITH A
MASS OF 0.5 K@ AND
A VELOCITY OF 2 M/5.
THE TWO HAVE THE
SAME MOMENTUM:

1 K& X M/5,

[ (m/s) BUT, IN THE CASE OF
KINETIC ENERGY, THE VALUE
p=1kgxm/s FOR THE FIRST BALL 15
% X 1KG X (1 M5 = 0.57.
ﬁ KE = 0.5) FOR THE SECOND BALL...
ENERGY |9 EQUAL TO
2lm/s) % % 05 K& X (2 MG =17
7,87 >
05 kg
p=1kgxm/s
KE =1J
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19 =1 K@ X Mz/sz!
ACCORDING TO
ITS ESTABLISHED

WHAT'S A J? DEFINITION.

WAIT!

J STANDS FOR
JOULE, A UNIT
FOR MEASURING
U, ENERGY.

ONE JOULE I5
EQUIVALENT TO THE
- ENERGY REQUIRED
TO LIFT A10Z &
OBJECT DIRECTLY

UPWARD 1 METER.

ENERGY IN JOULES
CAN BE CONVERTED INTO
VALUES IN KILOWATT
HOURS (HOW ELECTRICAL
ENERGY |15 MEASURED)
OR INTO CALORIES, WHICH
WE USE FOR FOOD.

A PIECE OF CAKE
s WEIGHING 50 & HAS
§| ABOUT 170 KILOCALORIES, 1J

f OR 710,0007.

2.78 X 107 KWH

a0

BECAUSE THESE
ARE UNITS FOR
MEASURING ENERGY,
YOU CAN EASILY SHOCKED
CONVERT THEM.

THE CALORIC Yoot
VALUE OF A PIECE H.;*--.‘[
OF CAKE 15.,, —ay

—

“\‘\/ 77 A
. -.Q-‘IUL N' .

-

QUITE HIGH.




LABORATORY

WHAT'S THE DIFFERENCE BETWEEN MOMENTUM AND
KINETIC ENERGY?

The difference between momentum and kinetic energy is easy to see when
we consider two or more objects together.

Oh, yeah?

Let's recall the scenario where you were stranded outside your spaceship
(page 126), and you used the law of conservation of momentum to return to

the ship. Your momentum changed as a result of the momentum of the
e wrench, which you threw in the opposite direction. And, as I'm sure you
recall, we use the equation p = mv to express the relationship between

momentum, mass, and velocity.

Sure, | remember.

- Before you threw the wrench, the momentum for both objects was zera
W o (as v = 0). After throwing the wrench, given the law of conservation of
= momentumn, we know the following:

the sum of the momentum of the wrench and astronaut
=mv+MV=0

Thus, we know that mv = -MV. In other words, the momentum of the
wrench (mv) and your momentum (MV) are equivalent in magnitude and
opposite in direction. They must equal zero when added together.

Since momentum is a vector, it has an orientation! So two momentums
with equivalent magnitude and opposite directions will cancel each other
out.
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Now, let’s think about the kinetic energy of the wrench and that of the
PPy astronaut. Before throwing the wrench, both are stationary, and the
e@ momentum is zero for both objects. After throwing the wrench, the sum of
the energy of the two objects in motion is not zero:

KE,

wrench

= 12
& KEastrDrlaut =zmy + %MVQ >0

But you said energy is always conserved!

This kinetic energy was generated when you threw the tool. Consider the
; law of conservation of energy—the amount of energy lost in your body
‘e should be the same as the amount of kinetic energy gained in these two
objects.

Well, okay.

While it's difficult to accurately measure the energy expended by the
human body, we can say that it's possible to determine a decrease of
energy in the body by finding the energy transferred by that body:.

In other words, | know that my body has lost at least as much energy as |
have gained in the objects I've thrown, right?

; Yes, that's it. Now you need to remember, we must keep in mind the dif-
‘e ferences between energy and momentum.
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POTENTIAL ENERGY gg%i%:g Ig:éggy

AS THE ENERGY OF

POSITION.

EARLIER, I MENTIONED
THAT MECHANICAL
ENERGY INCLUDES

KINETIC ENERGY AND

POTENTIAL ENERGY.

WHAT DOES
THAT MEAN?

POTENTIAL
REFERS TO THE
STORED ABILITY

TO PO WORK.,

50 DOES POTENTIAL
ENERGY MEAN
STORED ENERGY'?

LET'S USE YOUR
HIGH JUMP AS AN
EXAMPLE.
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AT THE MOMENT YOU
REACH THE HIGHEST
POSITION IN YOUR JUMP,
YOUR KINETIC ENERGY
DISAPPEARS (v = O).

50 THAT'S
POTENTIAL ENERGY.

AT THIS POINT,
YOU POSSESS
GRAVITATIONAL

POTENTIAL ENERGY,

NOT KINETIC

ENERGY.

BUT AS YOU FALL, YOUR
KINETIC ENERGY INCREASES.
IN OTHER WORDS, AT THE
HIGHEST POINT, YOU ARE
STATIONARY. 50 THERE MUST BE
SOME HIDDEN STORED ENERGY
THAT CAN GENERATE KINETIC
ENERGY.

A FALLING OBJECT.

IF RYOTA HOLDS AN OBJECT

AT THIS HEIGHT, HE STORES

FPOTENTIAL ENERGY IN THAT
OBJECT.

THE OBJECT IN RYOTA'S
HAND HAS POTENTIAL
ENERGY.

WHEN THE OBJECT FALLS,
ITS POTENTIAL ENERGY
TRANSFORMS INTO KINETIC
ENERGY.

YES, THE POTENTIAL ENERGY
OF A PARTICULAR HEIGHT
CREATES KINETIC ENERGY IN




THE POTENTIAL
ENERGY THAT
COMES FROM
HEIGHT |15 CALLED
GRAVITATIONAL
POTENTIAL ENERGY

BECAUSE ITS
SOURCE IS THE
GRAVITY OF EARTH.

YOU MEAN THERE
ARE OTHER KINDS OF
POTENTIAL ENERGY?

CERTAINLY. FOR
EXAMPLE, CONSIDER
A RUBBER BAND OR
A SPRING.

HE HAS SO
MANY TOY5...

WHEN YOU RELEASE
THE SLINGSHOT, THE
POTENTIAL ENERGY
OF THE RUBBER BAND
TURNS INTO KINETIC
ENERGY FOR THE SHOT.

WHEN IT'S
STRETCHED OUT,
A RUBBER BAND

STORES POTENTIAL

ENERGY.

A RUBBER BAND OR

SPRING HAS ENERGY FOR
RESTORING ITSELF TO ITS
ORIGINAL LENGTH. THIS KIND

OF POTENTIAL ENERGY IS
CALLED ELASTIC POTENTIAL
ENERGY,
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YOU MUST LIFT AN OBJECT
OR PULL THE END OF A
RUBBER BAND TO GIVE
AN OBJECT POTENTIAL

ENERGY.

IN THE SAME WAY,
YOU MUST IMPOSE
A FORCE ON AN
OBJECT TO CREATE
KINETIC ENERGY.

THUS, IN ORDER TO
TRANSFORM ENERGY,
YOU MUST IMPOSE
A FORCE OVER A
DISTANCE.

THIS 1S
REFERRED TO

AS WORK.

’ WELL, IT DOESN'T

SEEM TO HAVE
ANYTHING TO DO
WITH BUSINESS

CASUAL.

YOU'RE RIGHT. WORK
IN MECHANICS 15
PEFINED PRECISELY
AS FOLLOWS:

COMPONENT OF
FORCE APFLIED IN
THE DIRECTION OF

DISPLACEMENT

WORK =

IN THE SAME DIRECTION

PISPLACEMENT OF AN OBJECT %
THE COMPONENT OF FORCE APPLIED

OBJECT

= m e emey
]
1
L]

/i

/@_
DISPLACEMENT OF THE OBJECT

SIMPLY PUT, WORK 15
EQUAL TO THE DISTANCE
MULTIPLIED BY THE
FORCE...

WELL, YES, BUT WE

HAVE TO CONSIDER
THE ORIENTATION OF
THAT FORCE, TOO.
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\

MOVING

WHEN YOU LIFT AN
OBJECT DIRECTLY
UPWARD, THE WORK DONE
1S EQUAL TO THE FORCE
APPLIED MULTIPLIED BY
THE DISTANCE LIFTED.

HOWEVER, IF WE SIMPLY

HOLD AN OBJECT WITHOUT

MOVING [T, WE ARE NOT
DOING WORK IN THE
SENSE OF MECHANICS...
EVEN IF WE GET
REALLY TIRED.

YOU DO WORK
WHEN LIFTING
A BAG.

BUT HOLDING
THAT BAG 15
NOT WORK.,

FORCE

HOLDING

1 SEE. EVEN THOUGH
I GET TIRED, THAT
DOESN'T MEAN I'VE

DONE WORK.

RYOTA'S BAG |15 HEAVY!

/" YOU SHOULD THINK OF
WORK AS A MEANS
OF INCREASING OR

OBJECT'S ENERGY.
AFTER DOING WORK ON
AN OBJECT, YOU CAN

DECREASING AN

SAY THAT...

THE OBJECT MUST HAVE
KINETIC OR POTENTIAL
ENERGY. BUT YOU
CAN'T SAY, AN OBJECT

HAS WORK.” WORK

1S PERFORMED ON

OBJECTS BY A
FORCE.

PUFF

WHEW/ ( (




WORK AND POTENTIAL ENERGY FOR EXAMPLE, LET'S

CONSIDER THAT BAG AGAIN.

50, YOU CAN INCREASE
POTENTIAL ENERGY BY
DOING WORK.,

FORCE FROM THE HAND
RAISED

K
HEIGHT THE OBJECT 19

YEAH, IF YOU DO WORK
TO LIFT AN OBJECT,
ITS POTENTIAL ENERGY
INCREASES.

HERE, WORK HAS
BEEN DONE.

THE ORIENTATION OF
THE FORCE AND THAT OF
MOVING THE BAG RESULTS
IN A POSITIVE VALUE FOR
THE AMOUNT OF WORK.

THAT MEANS THE
POTENTIAL ENERGY
HAS INCREASED.
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15 THE VALUE OF WORK
NEGATIVE IF I LOWER
THE BAG?

EXACTLY.

POTENTIAL
ENERGY
INCREASES

POTENTIAL
ENERGY
DECREASES

FPOSITIVE WORK

WHEN YOU DECREASE THE
BAG'S POTENTIAL ENERGY, THE
ORIENTATION OF THE FORCE
IS OPPOSITE THE DIRECTION
OF MOTION, MEANING
THAT NEGATIVE WORK 15
DONE ON THE BAG.

NEGATIVE WORK

SIMILARLY, WHEN
YOU PULL A RUBBER
BAND, YOU ARE
DOING POSITIVE

SINCE POTENTIAL
ENERGY 1S
STORED.




BUT LET ME BE

UPWARD.

CLEAR: WORK IS5 NOT
LIMITED TO FORCES
IMPOSED DIRECTLY

WELL, LET ME THINK...
WE COULD USE A
PULLEY—OR A RAMP.

YES, BY USING THESE
METHODS, YOU REDUCE
THE AMOUNT OF FORCE
YOU HAVE TO AFPPLY TO
AN OBJECT TO GAIN
POTENTIAL ENERGY.

IS SMALLER.

IN THESE CASES, THE
DISTANCE THAT THE OBJECT
MUST MOVE 1S GREATER,
BUT THE FORCE APPLIED

HOWEVER, THE TOTAL
WORK DONE |5 THE SAME,
IF THEY'RE BEING RAISED

TO THE SAME HEIGHT.

\

THIS IS A

CONSEQUENCE
OF THE

CONSERVATION

OF ENERGY.
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LABORATORY

WORK AND THE CONSERVATION OF ENERGY

Let's consider a scenario in which we are lifting a heavy load to a certain
height. The simplest way to do this is to lift straight up. The following dia-
gram shows how it looks.

Lifting force

mg

We are lifting a load with mass m to height h.

Let's consider how much work we must do to lift the load to a height of h
by impaosing a force equal to the force of gravity of the mass—that is, we'll
impose a force upward equivalent to the force downward from gravity.
Assuming g for gravitational acceleration, we know that the force down-
ward is mg:

work upward = force of lifting = height h = mgh

Note that for simplicity's sake, we won't take into account friction or air
resistance in these examples. But this is a hard way to lift something so
heavy!

Hmm . .. maybe it'd be easier if we pushed the load up a ramp.

Yes, let's consider the case of pushing the load up an incline.
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Lifting
force (F)

Component of A
weight (PR)

Look at this diagram. The magnitude of the force needed to push the load
' up this ramp (F) is equal to the component of the force of gravity parallel
@e to the ramp (PR). So, if the ramp has a length of d, the work required to
: move the load to height h can be represented as:
work = Fd
Now, you know intuitively that F is smaller than mg, and d is larger than h.

That makes sense. Is that why it takes the same amount of work to push
the load up a ramp as it does to lift the load straight up?

Yes, indeed. Now let's show why this works, mathematically. AABC repre-
! sents the ramp in the figure, and A PQOR represents the composition of the
‘ force mg. These two triangles are similar—this means that £CAB = ZRPQ.
‘@ This also means that the proportion of their corresponding sides must be
the same, as well. Thus, the following must be true:

AB PQ

AC PR
Let's make this a little less abstract. The line segment AB equals d (length
of ramp) and AC equals h (height). Similarly, the line segment PQ equals

mg (the force downward, due to gravity), while PR equals F (the force
applied to offset a portion of that force).
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; That means:
- d mg
h F

Loak, with just a little rearranging of this equation we get the following:
Fd = mgh

Therefore, the work to lift a load using a ramp must be equal to the wark
to lift that load straight upward.

Also, please nate that our results are the same, regardless of the angle
of the ramp. Given the conservation of energy, regardless of the lifting
route, the work done for lifting an object with mass m to height h is equal
to the following:

force required to balance gravity » height = mgh

50, whatever method you use to lift something, the amount of work you
do is the same.

To put it another way, your work increases the potential energy of the load
by mgh.

And | bet it works for negative work, too. That is, you'd see a decrease in
potential energy of mgh if you lower an object by mgh.

' Yep, that's right.
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WORK AND ENERGY

WHAT'S
HAPPENING?
I FEEL
LIKE ITM
SHRINKING...

WORK ISN'T
ONLY DONE WHEN
INCREASING OR

DECREASING
POTENTIAL
WORK CAN
ENERGY.  ALsO AFFECT THE

KINETIC ENERGY
OF AN OBJECT!

WHAT THE...?

7 YOU MEAN WORK 15

%A

ALSO DONE WHEN
WE MOVE AN OBJECT
OR BRING A MOVING
OBJECT TO A HALT?

ARE YOU STILL
LISTENING TO ME,
NINOMIYA-SANT

YES, GO ON
WITH THE
LESSON.

WHILE YOU IMPOSE A
FORCE FOR A GIVEN
DISTANCE ON AN OBJECT
AT REST, THAT OBJECT'S
KINETIC ENERGY
INCREASES.

=

IMPOSING A

FORCE ON AN
OBJECT

SQUEEEEAL

Il

GENERATES
KINETIC ENERGY.




WHOA. THIS 1S TRUE
FOR OBJECTS IN
MOTION AS WELL. IN
OTHER WORDS, THE
KINETIC ENERGY OF
AN OBJECT INCREASES
EVEN MORE

IF YOU IMPOSE \

A FORCE IN THE L .
DIRECTION OF THE ' -
OBJECT'S MOTION

FOR SOME
REASON, YOU

REMIND ME OF A
PACHINKO BALL.

SINCE ENERGY |15
CONSERVED, WE KNOW
THE FOLLOWING:

WORK DONE ON THE OBJECT =
CHANGE IN THE OBJECT'S KINETIC ENERGY

THIS RELATIONSHIP
MUST HOLD TRUE.

IF THE FORCE WE
IMPOSE ON AN
OBJECT IS IN THE
DIRECTION OF THE
OBJECT'S
MOTION—

/ THAT 15, WHEN THE
FORCE AND VELOCITY

ARE PARALLEL—WE
WILL DO POSITIVE
WORK.

76 CHAPTER 4 ENERGY



WE KNOW THAT
FEIDEE I wanT STOP AN OBJECT IN
SO, MOTION BY IMPOSING A
POSITIVE CHANGE IN E
= FORCE IN A DIRECTION
KINETIC ENERGY—THAT Ocky OPPOSITE TO IT5

IS, THE OBJECT IS
SPEEDING UP.

LIKEWISE, YOU CAN

REDUCING ITS
KINETIC ENERGY,
1 SUPPOSE.

| 14
.

|
I

—|
1

Ililll_l']

AT THIS TIME, THE
ORIENTATION OF VELOCITY
AND THE FORCE ARE
OPPOSED TO EACH OTHER,
S0 THE VALUE OF WORK
WILL BE NEGATIVE.

CHANGE IN KINETIC
ENERGY ALSO TAKES
A NEGATIVE VALUE—

THEREFORE, THE

IT DECREASES.

THAT WAS
BIZARRE.
I'M GLAD T'M
BACK TO MY
OLD SELF
AGAIN.

do

WHEW!
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LABORATORY

THE RELATIONSHIP BETWEEN WORK AND KINETIC ENERGY

Let’s examine how we can derive an equation that expresses the relation-
ship between work and kinetic energy. Suppose we continue to impose
force £ on a cart in motion, in a direction parallel to that cart's velocity.
That cart has mass m and starts with an initial, uniform velocity of v.

Initial velocity v, Final velocity v,

>

Distance d, the distance that a force is applied

That means an additional force is imposed on the object in motion.

At this time, the following is true:

o

work done on the object = Fd

Alsa, since we've represented the final velocity as v, We can represent the
change in the object’s kinetic energy as the following:

change in kinetic energy = %mv22 - gmvj2

And since we already know that the change in kinetic energy is equal to
the work done on the object, we can express the following relationship:

: 2
imv,* - imv,° = Fd

Aha,
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We can also derive this equation another way. Since F is defined as con-
stant, the cart is experiencing uniform acceleration. Therefore, if we rep-
“ resent the cart's acceleration with a, we know that the following must be

o

true:
2_ .2
v," - v," = 2ad

(Why is this so? See expression @ on page 85.) To get closer to our original
expressian, we'll substitute using Newton's second law:

F
F = ma, or rearranged just a little, g = —
imn

And we'll get the following:

Then if you simply multiply both sides by 1, you're there!

2
imv,? - imv,” = Fd

I can get it right if | calculate very carefully.
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i S

BRAKING DIS /" USING WHAT WE
KNOW ABOUT THE

AND SPEED
| KINETIC ENERGY AND
: WORK, LET'S CONSIDER
A CAR'S BRAKING
DISTANCE.

WHAT DO You
MEAN, EXACTLY?

WELL, I GUESS IT'S
NOT JUST FOR CARS,
IT'S THE DISTANCE THAT
ANY OBJECT IN MOTION
REQUIRES TO STOP,

CHANGE IN KINETIC ENERGY
IS EQUAL TO THE WORK
PERFORMED, WE KNOW THAT
THE FOLLOWING MUST BE TRUE
OF BRINGING AN OBJECT IN
MOTION TO REST:

|
GIVEN THAT WE KNOW A

GIVEN A CERTAIN
FORCE IN THE
OPPOSITE DIRECTION.

% MASS X SPEED? = FORCE OF THE BRAKES X
DISTANCE THE BRAKES ARE APPLIED

Ad _
2mv = Fbrakes x d




IF WE REARRANGE
THE EQUATION, WE
CAN SOLVE FOR THE
BRAKING DISTANCE!

2

THIS EQUATION MEANS THAT

(m) AND THE SPEED () OF
THE VEHICLE BECOME, THE

THE GREATER THE MASS

GREATER THE REQUIRED
DISTANCE TO BREAK (d).

AND THE LARGER THE
FORCE OF THE BRAKES
(Firakesy THE SHORTER THE
DISTANCE REQUIRED TO
COME TO A COMPLETE

BUT WE'VE
MULTIPLIED
THE SPEED BY
ITSELF!?

o imv
Fbrakes
THAT MEANS THAT THE

BREAKING DISTANCE (d)
IS PROPORTIONAL TO THE
SPEED RAISED TO THE

SECOND POWER.

WHEN THE INITIAL
SPEED 1S DOUBLED...
DOES THAT MEAN THE
BRAKING DISTANCE 15

QUADRUPLED? -

THE BRAKING
DISTANCE |15
PROPORTIONAL TO
THE SPEED RAISED
TO THE SECOND
POWER,




AHA, THAT 1S EXCELLENT
INSIGHT INTO THEIR
RELATIONSHIF. IT IS

PANGEROUS TO ASSUME
THAT THE BRAKING

DISTANCE |5 LINEARLY
PROPORTIONAL TO

A CAR'S SPEED. @
O

DEFINITELY.

THE BRAKING DISTANCE
IS IN FACT QUADRUPLED
WHEN YOUR SPEED 15

DOUBLEPD.

FOR A BICYCLE, IT'S
NOT SUCH A BIG DEAL,
BUT FOR AUTOMOBILES,
IT CAN HAVE SERIOUS
CONSEQUENCES.

FOR EXAMPLE, SUPPOSE A
CAR |15 TRAVELING AT 40 KM/H,
AND TS BRAKING DISTANCE
15 10 M. IF THIS SAME CAR IS
TRAVELING AT 120 KM/H,
OR AT A VELOCITY THREE
TIMES HIGHER, WHAT 15 THE
BRAKING DISTANCE?

UMMM...
SINCE THE SPEED |15
THREE TIMES HIGHER, WE
JUST HAVE TO SQUARE
THAT. 50 3 X 3 = 9 TIMES
GOREATER, OR
IOMXg=90 M.




SAFE DRIVERS
WOULD PO WELL
TO KEEP THIS
PRINCIPLE IN MIND.

IF WE MISTAKENLY ASSUMED

THAT OUR STOPPING DISTANCE
WAS LINEARLY RELATED TO
SPEED, WE'D THINK IT WAS
ONLY 30 M. WE'D BE OFF

DESPITE THIS DRIVER'S
CONFIDENCE, A GRISLY
ACCIDENT IS VERY
POSSIBLE, SINCE THE
BRAKING PISTANCE |5
S0 LARGE.

I HEAR THAT ALL
THE BEST DPRIVING
SCHOOLS TEACH THAT
THE BRAKING DISTANCE
IS PROPORTIONAL
TO THE VELOCITY
SQUARED.
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THE CONSERVATION OF MECHANICAL ENERGY

TRANSFORMING ENERGY

50, NOW WE KNOW
HOW KINETIC ENERGY
AND POTENTIAL
ENERGY CAN BE
TRANSFORMED INTO
EACH OTHER.

ENERGY MUST BE
CONSERVED, JUST
LIKE MOMENTUM.

WHEN YOU JUMP OFF
THE GROUND, YOUR
MUSCLES WORK TO
GIVE KINETIC ENERGY

AL 1O YOUR BODY.

LET'S RECONFIRM
THAT LAW USING
THE EXAMPLE OF
YOUR HIGH JUMP.
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AFTER LEAVING THE
GROUND, THE HIGHER YOU
ARE, THE LESS KINETIC
ENERGY YOU HAVE.

YOU HAVE NO KINETIC
ENERGY AT THE PEAK
OF YOUR JUMPF, SINCE
YOUR VELOCITY IS
ZERO.

'lWI ’//// I

AT THIS TIME, YOUR
POTENTIAL ENEROY 15
AT ITS MAXIMUM!

YOU SEE, THIS
IS HOW KINETIC
ENERGY CHANGES TO
POTENTIAL ENERGY.

AFTER FALLING FROM
YOUR PEAK POSITION, YOUR
POTENTIAL ENERGY 1S
CONVERTED INTO KINETIC
ENERGY. DURING YOUR LANDING,

THE MAT DOES NEGATIVE WORK
ON YOUR BODY, AS YOUR
KINETIC ENERGY DECREASES.
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POTENTIAL ENERGY
CAN TAKE OTHER
FORMS BESIDES

GRAVITATIONAL.

WHAT'S THIS
ONE GOING

SRR

I HAVE SOMETHING
JUST FOR THE
OCCASION. LET'S
TRY ANOTHER
EXPERIMENT.

HERE YOU
ARE.

REALLY?
FOR ME?

ITs A
.| PRESENT
FOR YOLU.

PRESS THE
BUTTON TO OPEN | a7

WOwW, YOU
DIDNT HAVE
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THIS TOY WORM
HAS A SPRING

VELOCITY

FOTENTIAL ENERGY

FOTENTIAL ENERGY
IS PRESENT

BECOMES KINETIC

WHILE IT 15 IN THE
BOX, THE SPRING 15
CONTRACTED, STORING
POTENTIAL ENERGY. WHEN THE LID 15
REMOVED, THE POTENTIAL
ENERGY BECOMES

KINETIC ENERGY.

o1

AS A RESULT
THE TOY HAS A
VELOCITY! IN
THIS CASE, INTO

YOUR FACE.

CONSERVATION OF
MECHANICAL ENERGY

BOY, I NEVER THOUGHT
THAT AN ATHLETE LIKE YOU
WOULD BE...
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SO SCARED BY
A LITTLE TOY

HARUMPH.

NOT TO CHANGE
THE SUBJECT, BUT
I'M WONDERING IF

WE CAN TALK ABOUT
THE CONVERSION OF

KINETIC AND POTENTIAL
ENERGY IN MORE
DETAIL...

DON'T EVER PLAY SUCH
A CHILDISH PRACTICAL
JOKE ON ME AGAIN!

I WON'T DARE!
I PROMISE!

OKAY, FINE. 50?7

OUR EARLIER HIGH-
JUMP EXAMPLE
INVOLVED THE

HUMAN BODY, WHICH
COMPLICATES
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SIMPLER EXAMPLE:
A BALL THROWN
INTO THE AIR.

RELIEVED




WHEN A BALL 15
THROWN STRAIGHT
UPWARD, THE HIGHER
IT GOES, THE MORE
POTENTIAL ENERGY
IT GAINS.

AND OF
COURSE,
IT LOSES

KINETIC
ENERGY IN
THE SAME
WAY.

[ JUST LIKE ME AND
MY HIGH JUMP.

AT THE PEAK, ALL
KINETIC ENERGY HAS
BEEN CHANGED INTO
POTENTIAL ENERGY.

DOWN, THAT POTENTIAL
ENERGY |S CONVERTED

AS THE BALL COMES

INTO KINETIC ENERGY. 4

WHEREVER THE
BALL IS, THE SUM

OF THESE TWO 4 m
FORMS OF ENERGY
15 CONSTANT. e

IT IS REFERRED
TO AS THE LAW OF
CONSERVATION
OF MECHANICAL
ENERGY*

£

KINETIC
ENERGY

Om

* THIS IS SIMPLY AN APPLICATION OF THE
LAW OF CONSERVATION OF ENERGY!

MECHANICAL ENERGY

75 %
50 % Sosi|
257 75%
/o0 %




HOWEVER,
IN ORDER FOR THIS
LAW TO HOLD TRUE,
WE MUST CONSIDER
AlIR RESISTANCE AND
OTHER FRICTION TO BE
NEGLIGIBLE.

FRICTION AND AIR
RESISTANCE CAN CAUSE
ENERGY TO CHANGE
FORMS, TOO.

I GUESSED!

IN THIS CASE, THE LAW
OF CONSERVATION
OF ENERGY |5 STILL
WORKING—JUST AT A
MICROSCOPIC LEVEL!

AIR RESISTANCE CAN
BE THOUGHT OF AS
COLLISIONS WITH
MOLECULES OF AIR,
WHICH GIVES THEM
KINETIC ENERGY. THIS 1S
A CHANGE IN ENERGY.

IMPORTANT LAW,
ISN'T IT?
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LABORATORY

THE LAW OF CONSERVATION OF MECHANICAL ENERGY IN
ACTION

Ry Let’s prove that the law of conservation of mechanical energy applies
when throwing a ball straight upward.

First, we know that the equation for a change in kinetic energy and work is
as follows:

0 imv,”-imv,’=Fd
That is:

the change in KE = work

Yes, we confirmed that earlier.

In this case, the work Fd represents the work done by gravity. Assume that
: the ball starts at height h, with velocity v,. After traveling distance d, it is
‘6 at height h,, and its velocity has diminished to v,. The distance d can be

thought of as the change in height—or h, - h,.

T Velocity v, at point A,

h, —
Force of gravity
F=-mg
d=h,-h
T Velocity v, at point h,
oo 2R

Yeah, so what's the big deal? Are you trying to show that the force of grav-
ity is doing negative work on the ball?
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Exactly. The force of gravity is acting against the direction of the velocity.

e@ So it's expressed as:

F=-mg

That means that the work done by the ball (force = distance) is equal to:
Fd = -mglh, - h,)

Substituting values from the first equation @, we get the following:

2~ 3imv,® = -mglh, - h,)

imv,
Now, let’s rewrite it a few times, first expanding the terms on the left side:

2 2
Imv,® - imv,” = mgh, - mgh,

Then, make a little switcheroo, and we have something that should be
familiar:

%ﬂwz2 + mgh, = 3mv,* + mgh,

Yes, it is. It's showing that the sum of the kinetic energy and potential
energy at both h; and h, must be the same.

Yes, that's it exactly.

So the left side of this equation is the total mechanical energy at point h,,
and the right side is the total mechanical energy at point h,.

Yes, we've derived an equation that indicates that the sum of the mechani-
@ cal energy must be equal at any two points of a ball's path, when it is
= thrown directly into the air.

Yes, | see that.
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Now, let's use this equation to calculate something a bit different—the
; velocity (v,;) at which you need to throw a ball to reach a certain maximum
’@ height (h,). Since the ball's velocity reaches zero at the peak, we know it
i has no kinetic energy at that time.
And for simplicity’s sake, let’s set h; equal to O—that is, we'll measure h,
from the ball's launching point. That is, h, will equal d, the distance the ball

travels.

This means that the kinetic energy the ball has at its launching point must
equal the potential energy it has at its height.

Therefaore, the following is true:
PE, = KE,
1 2
mgd = imv,
Wait, | think | see something interesting here—mass appears on both

sides of this equation. That means that the mass does not affect the
relationship!

You're right! Let’s salve for the initial velocity v.:

mgd = %mvlz

2gd = vlz

J2gd = v,

If we just use real numbers in this equation, we
can find the required initial velocity to reach a
particular height!
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E R R R

FINDING THE SPEED AND

HEIGHT OF A THROWN BALL ||

NOW LET'S APPLY THE
EQUATION WE JUST
DERIVED

TO FIND THE SPEED AT
WHICH A BALL MUST BE
THROWN TO REACH A
HEIGHT OF 4 M.

15 THAT
RIGHT?

LET'S ASSUME
THAT WE ARE
THROWING IT FROM
A REFERENCE POINT
OF O M,

GO THAT hZ‘ = d;
AS WE DID BEFORE,

V“.:m

AND WE KNOW THAT
g = a.8 M/S* AND
d=4M.

LET ME SEE...
v, =+/2gd
vy =2%x9.87, x4m

v, = 89 m/s!

CONVERTING THAT TO
KILOMETERS PER HOUR,
YOU GET 849 M/S %

3600 1 oo M
S/H X 1KM / 10 AHA

USING THIS EXPRESSION,
MAYBE WE CAN
CALCULATE HOW HIGH A
BALL WOULD GO WITH
AN INITIAL VELOCITY OF

YES,
LET'S SEE...
WE KNOW

d=v,°/2g
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39 M.

YOU'RE SO
FAST! JUST
LIKE A PHYSICS
OLYMPIAN.




LABORATORY

CONSERVATION OF MECHANICAL ENERGY ON A SLOPE

The law of conservation of mechanical energy holds true, even when
you're not talking about halls in the air, right? Wouldn't it work for lots of
other situations, too, like an object on a slope?

Well, let's examine a case where you slide a box from height h to height 0.

e On the way down, let's assume that the box attains velocity v, at height h,,
= velocity vy at height hg, and so on.

Since v = O at the highest height, the initial potential energy the box has
is equal to all its mechanical energy. But we also know that the potential
energy at point h is mgh, so we could express that as:

PE, = mgh
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Now. how can you express the kinetic energy (KE,) the box has at point 0?

We already know that kinetic energy is equal to this:

Exactly! And we know that kinetic energy at h = 0 must equal the potential
energy at point h:

PE, = KEg
But furthermore, due to the conservation of energy, we know that the sum

of the mechanical energy must stay the same at all intermediate points on
this slope. That is:

KE, + PE, = KE; + PE,
%vaz + mgh, = %mvﬂz + mghg
And this also implies that the potential energy is equivalent at two points
of the same height, like point B in the figure. At these two points, the

box's kinetic energy is equivalent, even if the orientation of its velocity is
different.

At the same height, kinetic energy is equivalent
even if the orientation of velocity is different.
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Kinetic energy is not associated with the orientation of velocity!

Yes, sirl Er, maam. Kinetic energy only has a magnitude. Similarly, poten-
ie tial energy only depends on height.

If we extended this slope, would it be possible for the box to go back up to
its original height again?

_ Yes, it would be possible, provided that friction and air resistance are neqli-
E_G gible. Of course, itd be impossible to go beyond that original height of h.
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UNITS FOR MEASURING ENERGY

The units for energy can be found by applying the definition of mechanical energy, which is
as follows:

kinetic energy = 3 x mass x (speed)’

From the expression above, we find the following:
units for energy = units for mass = units for speed x units for speed
1 joule = kg x m®/ s°
NOTE As 4 does not affect the units, you can omit it when determining the units.

Since energy is a very common physical quantity, a special unit, the joule (J), is
assigned to it. On the other hand, given the fact that the variation in kinetic energy equals
the work done (which we learned on page 176), the following is true:

units for energy = units for work
Therefore, the following expression is also true:
units for work = units for force = units for distance = (N) x (m) = (N x m)

At first glance, this unit, (N x m), looks different from a joule (kg x m?/s°). However,
recall that a newton (N) is simply equal to 1 kg x m/s*. So by multiplying force and distance,
we do indeed have the same unit.

To get an idea about how much energy is represented by 1J, it is useful to keep in mind
that 1J equals 1 (N x m). In other words, you can say, “1J represents energy generated from
work that moves an object by 1 m and continues to impose a force of AN on it.”

Additionally, given that the force of gravity on an object with mass of 1 kg is 9.8N, the
mass of an object under exactly 1N of gravity is 1 / 9.8 kg = 0.102 kg = 102 g. This is what
| meant when | said, “One joule is equivalent to the energy required to lift a 102 g object
directly upward 1 meter” (on page 1671).

Besides the joule, another common unit for measuring energy is the calorie (cal), which
is used for thermal appliances such as heaters and food. One calorie (1 cal) represents the
thermal energy required for increasing the temperature of one gram of water by 1°C under
one atmosphere of pressure (1 atm). Relative to a joule, this unit is defined as follows: 1 cal
=42

When talking about food, the kilocalorie (kcal) is used. One kilocalorie is defined as
1,000 calories. Although the term calorie is used informally when talking about food and
diet, the scientific unit being referred to is in fact the kilocalorie.

For example, the energy in 50 g of ice cream is about 100 kcal. If you convert it into
joules, you get the following:

100 kcal = 100000 cal = 4.2 » 100000J = £20000J

Z00 CHAPTER 4 ENERGY



It seems like quite a high value, but it isn't really, if you compare it to the amount of
energy we need to survive. According to data from the Japanese Ministry of Health, Labor
and Welfare, the daily energy requirement is about 2,200 kcal for a 17-year-old female and
about 2,700 kcal for a 17-year-old male. Kilocalories are converted into joules like this:

2200 kcal = 1000 cal/keal = 4.2J/cal = 9240000

Let's see how much that is. Since the energy required to lift a load with mass of 1 kg
one meter is 9.8J, that value is nearly the amount of energy required to lift a mass of one
million kilograms just one meter! That indicates we need a tremendous quantity of energy
every day in order to maintain life.

POTENTIAL ENERGY

Kinetic energy resides in an object in motion. In contrast, potential energy is not stored
inside an object—it's usually energy that comes from an object’s position. Typical forms of
potential energy include gravitational potential energy and the potential energy of an elec-
trostatic field, which provides the attractive and repulsive force of electricity.

You can also regard the elastic energy of springs and rubber as a form of potential
energy. However, different factors are involved in storing this potential energy in different
materials. The resilience of springs comes from the spring’s contraction to its original state—
a spring wants to recover its stable initial position after gaps between atoms (dependent on
the potential energy of the electrostatic field working among atoms) are slightly displaced.

A coil-type spring used in the real world is designed to transform minor distortion occurring
on a straight metal rod into greater displacement by adopting a coiled shape.

I'"""'"""'"""""“"‘"‘"'"; """"""""" { Natural state

Expanded

Contracted
Force

—a—@—o— State with wider gaps between atoms (unstable, with a high potential energy level)

1 " "

—Q—W Natural state of gaps between atoms (stable, with a low potential energy level)
-O—M State with smaller gaps between atoms (unstable, with a high potential energy level)

Distorted

On the other hand, the elasticity of rubber originates in the activity of polymer mol-
ecules to recover the initial state with a greater “disorder,” where they are very closely curled
up, after a state with a lower “disorder,” in which molecules are expanded and aligned.
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Palymer molecules of rubber

State with higher disorder

Expand l I Release

e o Teran Yot

State with lower disorder

SPRINGS AND THE CONSERVATION OF ENERGY

Let's think about resilience of a spring as an example of the conservation of energy.

5 Ly , Spring at rest

y ' Length [,

i L , %X . Compressed spring
) J ' Length [,

m} x (displacement) = [, - |,

When you compress* a spring with spring constant k (you can think of k as a measure
of how springy your spring is in N/m) by x (the distance beyond its natural length), the
potential energy stored in the spring can be expressed as follows:

PE = 3kx*

This stored energy is called elastic potential energy. If we place a mass m next to
this spring and the opposite side is fixed, what is the force it will receive? And what will its
velocity be?

* Note that springs work the same way if you stretch them, as well. These equations will hold true in
cases of stretching and compression.
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The spring wants to return
to its natural state and will
exert a force on mass m.

Well, we know that due to the conservation of energy. that mass's kinetic energy must
be equal to the spring’s potential energy. That means that the following must hold true:

PEsprinq = KErnass
2 2
1kx" = imv

Solving for v, we get:

kx?
V=, [—
m

WARNING: Also, as the spring expands, we know that the ohject is subject to force:
CALCULUS
/ ”
AHEAD! P

Cdx

Without saying, calculation of work done when the spring with resilient force F = -kx
expands by amount x relative to its natural length gives us the following:

W = j‘[:{ - kx)dx = L kx?

This matches potential energy. This is only reasonable, given the conservation of
energy.

VELOCITY FOR THROWING UPWARD AND HEIGHT ATTAINED

On page 194, in response to Megumi's question about how high a ball would go if it was
thrown with an initial velocity of 200 km/h, | answer that it is 39 m.

Let's find out why. Given that we know that the following equation holds, you can solve
for h, the height attained by the object thrown:

v,* = 2gh
2
%
et
29

SPRINGS AND THE CONSERVATION OF ENERGY 203



Now, plugging in some real numbers for this, we know that 100 km/h equals the
following:

km m 1h m
x 1000 x =2778 —
h km 3600s s

Now let's put that value into our equation and see what we find:

100

2

Vy
h=—
29
27782
e ——
2 % 9.8 mfs®
h=3936m

THE ORIENTATION OF FORCE AND WORK

As you know, we represent work in terms of force and the distance (or the displacement)
a force is applied to an object. Let's consider an object being moved over displacement d,
undergoing a force £ as shown below.

Force E

—_—a———
Displacement

F S
Fsin@=F
6 ¥

Er:os 0= rE;

When the orientations of a force and displacement do not match, we must take this
into account, In the example above, work (W) is represented as follows:

W=Fd+Fgd,

We've split the forces and displacements into their horizontal (x) and vertical (y) compo-
nents. However, in this case, we know that the vertical displacement of the box is 0, as the
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box is moving on level ground. Therefore, we can neglect that term in our calculation of the
total work done on the box:

sz_:;(dx
W = Fcos 6 x d,

It's also worth noting that we just performed a dot product. So . . . what's that? Well,
work and energy are scalars—they have no orientation. But force and displacement are both
vectars, as they have an orientation. The multiplication of two vectors in this way is called a
dot product.

In a case where the force is in a direction opposite to the displacement, the work is said
to be negative. This kind of work results in a deceleration.

Additionally, when the orientation of force is perpendicular to the displacement, given
that cos 90 = 0, no work is done. A typical case in which the orientation of force is perpen-
dicular to that of displacement is uniform circular motion. While force is working toward the
center of the circle (centripetal force), kinetic energy does not change because the value of
work is zero. Because of this, an object can move in a circular direction at a uniform speed.

The arientation of the velocity
matches that of the displacement.

Orientation

of the force

FINDING AN AMOUNT OF WORK WITH NONUNIFORM FORCE

(ONE-DIMENSIONAL)
WARNING: In the case of a uniform force, we can express work as the product of the displacement and
CALCULUS  the force in the direction of the displacement. But many times, forces are not constant.
AHEAD! To deal with nonuniform forces, we can break up the force into short segments. If we

break it up into tiny enough pieces, we can say the force is constant during each segment.
We can look at any one of these segments, which we will label with a subscript /, and the
work can still be expressed as the product we have seen before:

i

1 2 _ 1y =
MV, -smv = FAx
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Of course, this is true for every segment /, so we can add up all of these to find the
work done across the entire displacement, from x, to x:

Emv? -2mv,?)+ G, -2mv,) + Amv, -1mv )+ =
FiAx+FAx+ FAx +...

By looking closely at the left-hand side, you can see that most of the terms will cancel!
We are left with just two terms:

1

I 2
smv." - 5mvy

So we can rewrite this equation as:
2 2 4
We have added up the little pieces of work done at each instant to get the total change
in energy—the work W. You'll see that this looks awfully similar to the definition of an inte-
gral. It turns out that if we make the sections infinitely small by making n go to infinity, then
we can change the summation to an integral by the rules of calculus:

Wk 2 hig

Ne=pea '

W = J'x Flx)dx

NOTE F here does not denote a function. Remember, that F stands for force!

This is much easier to see graphically, as all we are doing is adding up the area under
the curve on a plot of F vs. x. An integral is exactly this, in the limit of making the width
of the segment go to zero.

F n F X
W=Y FAx W= | Flx)dx

r s I r s

v

v

206 CHAPTER 4 ENERGY



In conclusion, the statement, the change in kinetic energy between two points is equiv-
alent to the work done on the object within that segment, means the following:

W= J': Fx)dx

When the above is assumed, the statement can be expressed as:

Note that v in the equation above equals the object’s final velocity, v,,.

NONCONSERVATIVE FORCE AND THE LAW OF CONSERVATION OF
ENERGY

Not all forces can be expressed as having a potential. Forces such as these are said to be
nonconservative. Friction is a typical nonconservative force. When a nonconservative force

is doing work, the energy of a system goes down. For example, if you push a book across a
table, it will slide to a stop. This doesn't mean that energy is not conserved—just that it went
somewhere that you can't easily get it back. For example, the book gave kinetic energy to
the molecules of the table in the form of heat.

FRICTION: A NONCONSERVATIVE FORCE

Now let's examine the force of friction, an example of a nonconservative force. First, let's
assume a mass of m is in motion with velocity v,.

Yy

— | m+—

If the object had no forces working on it, it would continue to travel with velocity v,
forever—that's just Newton's first law in action. But life isn't so simple. Let's assume this
object’s motion is impeded by the force of friction between the bottom of the object and the
surface that it's traveling on.

_  friction 1

< m
AN

SCREEEECH!

v

The magnitude of this force depends on two factors: the normal force and the coef-
ficient of friction. But what are those, you ask? Well, the normal force is simply the force
perpendicular to the surface a body travels on. The larger an object’s mass, the larger the
normal force, and the larger the force of friction itself. In the example above, the normal
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force is simply the weight of the mass, (F = ma, so in this case, F, ..y = M * g). We'll look
at a more complicated example of normal forces shortly to see how the normal force differs
from the weight of an object.

The coefficient of friction is simply a measure of how “sticky” two surfaces are. Rubber
on concrete, for example, has a very high coefficient of friction. But the coefficient of fric-
tion between ice and an ice skate is very low. We use the following formula to determine the
frictional force working on an object:

F=puxF,
force of friction = coefficient of friction x normal force

Since F = ma, we know that the normal force is simply the mass times the acceleration
due to gravity. Thatis, £, = m x g:

F=uxmx=g

The variable 1 we use to represent the caefficient of friction is the Greek letter mu
(pronounced “mew"). Scientists can determine the coefficient of friction of two objects
through direct observation and experimentation. The coefficient of friction ranges from very
close to zero to greater than one.

But wait, how do we determine the direction of that frictional force? And what hap-
pens when the object finally comes to rest? Well, let's use common sense: Friction works to
oppose motion. It's always in the opposite direction of velocity or an imposed force (includ-
ing cases when the object is at rest). And the equation above isn't true in every case. This is
simply the maximum possible force exerted hy friction on the object. When it's at rest with
no outside forces imposed, there will be no frictional force. Friction won't move the object
backwards, of course!

FRICTION ON A 5LOPE

Now let's consider a more complicated scenario. A small mass of m is on a ramp with
angle . The mass m is attached to a larger mass M by a rope, which exerts a force on the
smaller mass, in a direction parallel to the ramp.
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If there are no other forces to consider, the only forces on mass m are the force of
gravity, m x g, and the force of the tension of the string, M x g. To determine the accel-
eration of the mass m, we'll decompose the force of gravity into a force that opposes the
direction of motion (that is, one parallel to the direction of the ramp and the tension of the
rope attached to mass M), and a force perpendicular to the ramp itself.

mg sin

gravity = mg

mg cos ¢

We know that the right triangle formed by the decomposition of this force is similar to
the triangle formed by the ramp (that is, it has the same angle, ). This means that the force
opposing the tension of the rope is equal to mg sin 6. The force that's perpendicular to the
ramp and the motion of mass m is equal to mg cos . If there's no friction at work, we can
ignore this force, as it's offset by a force perpendicular to it, imposed by the ramp itself. This
is simply Newton's third law in action.
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Naow that we know all this, can you determine how this system works if we take into
account the friction between mass m and the ramp? First, let's think about the normal force.
Earlier, | said that it's the force perpendicular to the surface. That means that the force of
the object perpendicular to the ramp, mg cos #, is equal to our normal force. The force of
friction for this object is as follows:

F.

friction = & Mg €os &

Taking into account all forces on the object parallel to the ramp (mg cos @ is offset by
the normal force), we have the following relationship:

Fret = Mg -mg sin & -y mg cos 0

net force = tension of the rope - component force of gravity - force of friction

Knowing all this, we can determine how quickly object m will accelerate up the ramp!

COLLIDING COINS AND THE CONSERVATION OF ENERGY

WARNING: In Chapter 3, we examined collision of coins, the conservation of momentum, and how it

SERIOUS must hold true in two dimensions (page 144). In this example, we know that the 100 yen

ALGEBRA coin’s initial momentum in the x direction must match the final momentum of both coins in
AHEAD! the x direction. In the following equations the 100 yen coin has mass m and the 500 yen

coin has mass M:
® mv, =mv,cosf+MV,cosep

And because the 100 yen coin has no initial momentum in the y direction, we know
that the momentum of both coins in the y direction must offset each other:

® 0=mv,sin@-MV,sing
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Assumning that this is a completely elastic collision (that is. kinetic energy is conserved),
we also know the following:

initial kinetic energy = final kinetic energy
© imv,°=1mv,’ + 1MV’

For these three equations (@, 8, and ®) we have four unknowns—v,, V., 6, and g. It's
not possible to find exact solutions, since we have too many variables to solve for and nat
enough equations. However, we can explore the relationships between these variables. So
let's examine the 100 yen coin and the relationship between the ratio of its initial and final
velocity (v, / v;) to the subsequent scattering angle (6). For simplicity, we'll assume that
m < M. (The collision of the 100 yen and 500 yen coins satisfies this condition.)

First, let's solve our equations to get rid of the variable ¢. We'll solve for sin ¢ and
cos g, for simplicity’s sake. First, let's consider equation @, where it looks like we can easily
solve for cos ¢:

MV, cosp = mv, —mv, cosf
mv, —mv, cosé
MV,

2

4] cosep =

Now let's solve for sin ¢ in equation @:

MV, sing = mv, sinf
mv,sin@

e sing = MV

With these two relationships in hand, we can substitute these equations (@ and ®) into
a basic trigonometric relationship, which holds true for any angle:

® sinfp+cosip=1

Be warned that the algebra required in this section is tricky! After solving for V22. you
should get the following:

@ V) =(2F(v,”-2v,v,cos0 +v,’)
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We know energy has been conserved, so we know that equation ® must hold true. So
let's substitute equation @ into equation ®. Then we'll only have three variables to consider:
vy, V5, and 6, just as we wanted. Try solving for v.. (Hint: You may need to use the quadratic
formula.)

After all your work, you'll discover the following relationship:

— (#)cosO + /1~ (2) sin® 0

2
1+m

V.
1

Additionally, assign @ = 0 for this expression, and you'll find v, = v,. This is relevant to a
case where object 1 passes by object 2 without colliding.

On the other hand, assuming a case where the objects bounce back in opposing direc-
tions and @ = 180°, you get the following:

This equation indicates that as mass M becomes much larger than mass m, the fol-
lowing relationship holds true: v, = v,. (This is because the term (m / M) approaches zero.)
This means that an object with smaller mass having a head-on collision with a huge object
bounces back at the same velocity it had before it hit the larger object. On the other hand,
when M = m, v, = 0. You can reconfirm this relation by causing a head-on collision of two
100 yen coins by replacing the 500 yen coin with another 100 yen coin, taking care not to
allow an oblique course. After the collision, the 100 yen coin halts and the other 100 yen
coin previously in a stationary state starts traveling at the same speed. In this case, we can
easily find that V, = v, from equation @. The two coins essentially swap velocities.

Now let's plot on a graph the relationship between the scattering angle (6) and the
velocity ratio v, / v, for the 100 yen coins before and after the collision. Since the mass of
a 100 yen coin is 4.8 g, while that of a 500 yen coinis 7.0 g, wegetm/M=48/70 =
0.69. We'll use this result in equation @, then solve for v, / v, and plat the results. Here's
the actual equation that we'll graph:

v, _0.69cosf ++/1 —0.69°sin’ 0

v, 1+0.69

L10]
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Velocity ratio: v, / v,

o T PR T )

. e
0 45° 90° 1357

180°
Scattering angle #

This graph should make intuitive sense to you after some consideration. If the scatter-
ing angle is greater (that is, the coins’ collision is a glancing strike), the secondary velacity of
the coin (v,) will be smaller, thus the relationship of v, / v, will be smaller as well. Note that

if you use objects of different masses, this relationship (and the graph that represents it) will
change.

I AM 50 READY FOR
THIS REMATCH!
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77/ NO MATTER
il HOW POWERFUL
HER SMASH 15...

VELOCITY ’ ‘ ’:
AFTER
STRIKING
IMPULSE GIVEN

BY THE RACKET

FORCE

MOMENTUM
AFTER

STRIKING MOMENTUM
AFTER

STRIKING

BEFORE
STRIKING

THE
RELATIONSHIP

DETERMINES THE

BETWEEN
MOMENTUM AND 44 VELOCITY OF MY
FORCE... RETURN.
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YOINKS!

THE VELOCITY
ALSO
DETERMINES ITS
SUBSEQUENT

RYOTA TAUGHT
YOU WELL!

OH, THAT'S
VERY
OBSERVANT
OF YOU.

YOU KNOW
. EVERYTHING YOU NEED
HE DIDN'T TO KNOW. ALL YOU
MAKE IT TOPAY, W HAVE TO DO TO WIN
DID HE? IS CONCENTRATE!
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NOT YET,

I'VE GOT You,
YOU DONT.

MEGUMI.

i, oy




RYOTAIZI?!

TEE-HEE!
THAT'S GREAT.

REMEMBER, JUST
CONCENTRATE ON
THE GAME.

'01 ““:’:"’;00 5

YOU'RE HERE!!

I ASKED THE
ORGANIZERS
TO DELAY MY

PRESENTATION.

ALL RIGHT!

I CAN WIN THIS
THING. IT'S MY
SERVE.




HEY, YOU

FINALLY CALLED |
ME MEGU!

GOING ON
BETWEEN
THESE TWO
WEIRDOS?

SMASH THE
BALL!

~ DESTROY IT,
CRUSH IT!

NN

g
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Rty

o
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SHE'S SO MUCH
BETTER!

I WONDER WHO
HER NEW TENNIS
INSTRUCTOR 15!

THAT WAS
SO FAST.




1EERT OO
DOWN L]KE

ACE/
ADVANTAGE TO
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LET'S DO THIS
THING. JUST
ONE Mo
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I REMEMBER
YOUR LESSONS
PERFECTLY,

MAKE MY BODY
FLEXIBLE.

MAXIMIZE FORCE
WHEN THE RACKET
. STRIKES THE BALL!
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Nk

GAME, SET,
MATCH!

WON BY MEGUMI!

I1DDIT!
I WON, RYOTA!
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YOU CAN'T GET
AWAY FROM ME,
YOU KNOW.

HEY, YOU!

WILL YOU BE MY

PARTNER FOR THE

NEXT DOUBLES
MATCH?

'.\}_\\\ !‘ /f
¢ < O ) e =]
N
[ \\H‘Q @ N
) SURE, A\ S
/ IT'6 A DONE DEAL. |o /
N
N\
-
&aﬂ-\#ﬂ

YOU KNOW
RYOTA,

THIS FEELS LIKE
A FORCE OF
ATTRACTION.

{ WHAT ARE YOU
TWO TALKING
ABOUT?!
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MAKING SENSE OF UNITS

When it comes to classical mechanics, there are only three base units. Using these three
simple measurements, you can derive more complicated units of measure like the newton
and the joule. The three base units are as follows:

meters, m —
{which measure distance)

seconds, s kilograms, kg
(which measure time) (which measure mass)

VELOCITY AND ACCELERATION

Let's explore how we can combine these three units to derive new ones. First, let's explore
velocity and acceleration:

change in distance (m)
velocity= — —  =m/s
time (s)

change in velocity (m/s)
acceleration= @——m8—— =m/s
time (s)

2

Given these relationships, you can see that velocity is defined as a change in distance,
and acceleration is simply the change of that change! Students of calculus know that this
means that velocity is the first derivative of distance, and acceleration is the second deriva-
tive of distance (both with respect to time).

FORCE

Given Newton's second law, we know force equals mass times acceleration (F = ma):
force = mass (kg) x acceleration (m/s®) = kg x m/s° = N

To save ourselves a headache, we call a kg = m/s’ a newton (N). Remember this rela-
tionship, as it will be important in deriving other units!

1 kg x m/s® = IN



MOMENTUM AND IMPULSE

Momentum is an important physical quantity to measure, especially when considering colli-
sions, landings, and impact. It is defined as:

momentum = mass (kg) x velocity (m/s) = kg x m/s

Impulse, as you've already read in Chapter 3, is just a change in momentum, and it can
be calculated like so:

impulse = force (N) x time (s) = kg x m/s

Why does this calculation work? Remember that 1N = 1 kg x m/s°. Note that the unit
for momentum, kg = m/s, has no shorter name.

ENERGY AND WORK
Kinetic energy is defined like so:
kinetic energy = 3 x mass (kg) x velocity’ (m/s) = kg x m*/s* = J
Just as we did with force, we'll use a simpler name for the unit of energy—the joule (J),
which is named after English physicist James Prescott Joule. Gravitational potential energy
can be calculated like this:
potential energy = weight (N) x height (m) = kg x m%/s° = J
And naturally, our units match those of kinetic energy. Work is a measure of the energy
transferred by a force over a distance. Notice the similarities in this equation to the previous
one:

work = force (N) x distance (m) = kg x m?/s” = J

The result of all these calculations is the joule, our unit for energy—just as it should be!

2Z6 MAKING SENSE OF UNITS



51 PREFIXES

You can add a prefix to a unit in order to increase or decrease its magnitude. These prefixes
for different powers of 10 are called S/ prefixes, and they come from internationally deter-

mined rules for units called the International System of Units (S| units). For example, 1 kilo-
meter (km) is equal to 1,000 meters, 7 megajoules (MJ) are equal to 7,000,000 joules, and

3 nanograms (ng) are equal to 0.000 000 003 grams.

NOTE The symbols for prefixes higher than kilo are capitalized.

Symbol Name Power of ten
y yocto- 107
z zepto- 1074
a atto- 1078
f femto- 107"
p pico- 1071
n nano- 1077
il micro- 107°
m milli- 1/1000
centi- 1/100
d deci- 1/10
da deka- 10
h hecto- 100
k kilo- 1000
M mega- 10°
G giga- 107
T tera- 10
p peta- 10%
E exa- 10+
Z zeta- 104
Y yotta- 10%

S1 PREFIXES Z2Z7






A

absolute value symbols, 37,
40, 42
acceleration (a)
defined, 37, 46-47, 50-52,
66-69, 112, 225
downward, 25-26, 41,
79-82, 88, 90-91, 95-97,
172-173
gravitational, 80, 82,
94-96, 172
law of, 40-41, 58, 66-72,
90-93, 100, 111-116,
139-140, 146, 179
arientation of, 78-84, 90-92
three rules of, 85-86
uniform accelerated motion,
51, 85-86, 90, 101
units for measuring, 50, 92
using calculus to find, 99-100
velocity and, 50-52, 90, 225
action and reaction, law of, 4,
15-20, 33-36, 40, 42,
43,74, 83, 92, 93, 142,
143, 209
vs. equilibrium, 23-30
vs. law of conservation of
momentum, 120-125, 146
atoms, 143, 201
attractive forces, 43, 201

B

balance of forces, 21, 25-26,
39-41, 61, 87

base units, 225

body temperature, 157
braking distance (d), 180-183

c

calculus, 55, 99-100, 101, 146,
148, 203, 205-207

calories (cal), 161, 200, 201

center of gravity, 42, 126

INDEX

centripetal force, 205

circular motion, 96, 205

coefficient of friction (u), 207-208

collisions

coin, 210-213
elastic and inelastic, 143-144

commutative law, 38

conservation of energy, law of,
155-156, 163, 171-174,
189, 190, 196, 202-203,
207, 210-212

conservation of mechani-
cal energy, law of, 184,
187-193, 195-197

conservation of momentum,
law of, 120-128, 141-149,
155,162, 210

constant velocity. See uniform
velocity

cosine, 89

D

deceleration, 51, 67, 205
direction
of a force, 18, 21-22, 29,
37-39, 40, 42-43, 47, 49,
62, 67, 75,78-79, 82
horizontal (x), 61-62, 87-92,
96-98, 144-146, 204, 210
vertical (y), 61, 79, 87-91, 92,
96-98, 144-146, 204, 210
disorder state, 201-202
displacement, 47, 52, 85, 99,
100, 101, 167, 201, 202,
204-206
distance
braking (d), 180-183
calculating using v-t graphs,
100-101
calculating when velocity
varies, 53-57
defined, 47
energy and, 167, 168, 171.
175,178,191, 200

downward acceleration, 25-26,
41, 79-82, 88, 90-91,
95-97,172-173

E

Einstein, Albert, 93, 95
elastic collisions, 143, 210-213
elastic potential energy, 164-165,
166, 202
electrical energy, 156-157,
161, 201
electromagnetic forces, 43
electrostatic fields, 201
energy
conservation of, law of,
155-156, 163, 171-174,
189, 190, 196, 202-203,
207, 210-212
conservation of mechanical,
law of, 184, 187-193,
195-197
defined, 153-161, 200-201
elastic potential, 164-165,
166, 202
electrical, 156-157, 161, 201
friction and, 207-210
gravitational potential,
165-166, 226
kinetic, 178-180, 184-185,
187, 189-193, 196-197,
200, 201, 203, 205, 207,
211, 226
light, 156
mechanical, 158, 164,
184-193, 195-197, 200
vs. momentum, 159-163
nuclear, 155
potential, 155, 158, 164-171,
174,175, 184-189,
192-197, 201-203, 226
thermal, 155, 157, 200
transforming, 184-187
units for measuring, 161,
200-201



equilibrium
breaking, 27, 41
defined, 20-22

vs. law of action and reaction,

23-30
vector forces and, 38, 39-40
equivalence principle, 93
equivalent magnitudes, 40,
62,162

F

forces (F), 18, 43
attractive, 43, 201

balance of, 21, 25-26, 39-41,

61, 87
composition and decomposi-
tion of, 87-88
defined, 3, 6-7, 21, 71-72,
92,112
electromagnetic, 43
equilibrium and, 38, 39-40
finding precise value of, 73

gravity, 21-27, 30-32, 39, 40,
42,58-59,76,77.79, 88,
91-94, 96,172,173, 191,

200, 209-210
horizontal, 87-88
maximum possible, 208
net, 39, 40-41, 58, 60-61,

64-66, 72, 90, 210
nonconservative, 207
nonuniform, 205
nonzero net, 41
normal, 207-208, 210
orientation of, 75-78, 90-92,

169, 204-205
repulsive, 43, 201
splitting, 87-89
units for measuring, 43, 70,

72, 92,119, 144, 200
vertical, 87-88

free-body diagrams, 41-42
friction
air resistance and, 64,

190, 197
coefficient of, 207-208
energy and, 207-210

230 INDEX

G

general relativity, 93

gravitation, universal, 32, 43,
94-95

gravitational acceleration, 80, 82,
94-96, 172

gravitational mass, 93

gravitational potential energy,
165-166, 226

gravity, center of, 42, 126

gravity, force of, 21-27, 30-32,
39, 40, 42, 43, 58-59,
76,77,79, 88, 91-94,
96,172,173, 191, 200,

209-210

H

head-to-tail method, 62, 86-87,
88, 145

height, determining, 165, 169,
171-174, 189, 191197,
203-204

horizontal (x) direction, 61-62,
87-92, 96-98, 144-146,
204, 210

I

impulse and momentum,
104-105, 111, 113-116,
118, 129-130, 132, 136,
139-144, 215, 225

inelastic collisions, 143

inertia, law of, 40, 41, 58-65, 69,
82-83, 90-92, 126, 207

inertial mass, 93

integral calculus, 101, 146, 148

International System of Units (SI),
prefixes, 227

J

Joule, James Prescott, 226
joules (J), 161, 200-201, 226

K

kilocalories (kcal), 161, 200, 201
kilograms (kg), 92, 119, 201, 225
kilowatt hours (kwWh), 161

kinetic energy, 178-180,
184-185, 187, 189-193,
196-197. 200, 201, 203,
205, 207, 211, 226

L

laws

conservation of energy,
155-156, 163, 171-174,
189, 190, 196, 202-203,
207, 210-212

conservation of mechanical
energy, 184, 187-193,
195-197

conservation of momentum,
120-128, 141-149, 155,
162, 210

Newton's first, 40, 41,
58-65, 69, 82-83, 90-92,
126, 207

Newton's second, 40-41,
58, 66-72, 90-93, 100,
111-116, 139-140, 146,
179, 225

Newtaon's third, 4, 15-20,
23-30, 33-36, 40, 42, 43,
74,83, 92, 93, 120-125,
142, 143, 146, 209

light energy, 156

M
magnitude, 19, 21-22, 24, 25,
27,29, 37-42, 49, 59, 77,
86-87, 90-96, 100, 108,
117,118, 139, 144, 159,
160, 173, 207
mass (m), 32, 43, 90
defined, 41-42, 68-69,
90, 207
determining weight with,
94-96
gravitational, 93
gravity and, 43, 80
inertial, 93
kilograms (kg), 92, 119,
201, 225
measuring, 68-72, 74, 80,
93-94



maximum possible force, 208
measurement, 68-72, 93-94
measurement units
base, 225
calories (cal), 161, 200, 201
joules (J), 161, 200-201, 226
kilocalories (kcal), 161,
200, 201
kilograms (kg), 92, 119,
201, 225
kilowatt hours (kWh), 161
meters (m), 49, 53, 225
meters per second (m/s),
49,118
meters per second squared
(m/s2), 50, 92
newtons (N), 43, 70, 72, 92,
119, 144, 200, 225
seconds (s), 49, 53. 54, 75,
81-82, 118, 132, 225
S| prefixes for, 227
mechanical energy, 158, 164,
184-193, 195-197, 200
mechanics. 34, 41, 134, 138,
167,168, 198
meters (m), 49, 53, 225
meters per second (m/s), 49, 118
meters per second squared
(m/s?), 50, 92
momentum (P)
calculating, 107-110,
117-119, 225
changes in, 111-116, 119,
121-122, 134-136, 140
collisions, 143-144, 145, 146
conservation of, law of,
120-128, 141-149, 155,
162, 210
vs. energy, 159-163
defined, 37, 84, 106-110,
139-140, 159, 225
impact reduction, 129-132
impulse and, 104-105, 111,
113-116, 118, 129-130,
132, 136, 139-144,
215, 225

mass differences, 109-110
orientation of, 139, 144-145
outer space and, 126-128,
147-149
velocity and, 107-110,
112-113, 113116
motion. See also acceleration;
Newton's three laws of
motion
calculating, 10, 75-84
circular, 96, 205
parabolic, 96-99
simple, 46
uniform, 65, 90, 149
uniform accelerated, 51,
85-86, 90, 101
units for measuring, 144, 226
mu (u). 207-208

N

negative vectors, 38

net forces, 39, 40-41, 58, 60-61,
64-66, 72, 90, 210

Newton, lsaac, 40, 43, 92, 122

newtons (N), 43, 70, 72, 92, 119,
144, 200, 225

Newton's first law, 40, 41,
58-65, 69, 82-83, 90-92,
126, 207

Newton's second law, 40-41,
58, 66-72, 90-93, 100,
111-116, 139-140, 146,
179, 225

Newton's third law, 4, 15-20,
33-36, 40, 42, 43, 74, 83,
92, 93, 142, 143, 209

vs. equilibrium, 23-30
vs. law of conservation of

momentum, 120-125, 146

Newton's three laws of motion,
33-35, 40-42, 83-84, 90

nonconservative forces, 207

nonuniform forces, 205

nonzero net forces, 41

normal forces, 207-208, 210

nuclear energy, 155

(0]

orientation
of acceleration, 78-84, 90-92
of force, 75-78, 90-92, 169,
204-205
of momentum, 139, 144-145
of velocity, 76, 78, 81-82,
90-92, 196, 197
of work, 204-205
outer space, 43, 63-64, 69, 90,
95,126-127, 147

P

parabolas, 78, 91, 98
parabolic motion, 96-99
physics, defined, 34-36, 83
potential energy, 155, 158,
164-171, 174, 175,
184-189, 192-197,
201-203, 226
propulsion, rocket, 147-149

Q

guadratic functions, 98

R

reaction forces. See action and
reaction, law of

relative velocity, 63, 147-148

repulsive forces, 43, 201

rubber/rubber bands, 166-167,
170, 201, 202, 208

S

scalars, 37-39, 40

seconds (s), 49, 53, 54, 75,
81-82, 118,132, 225

S| (International System of Units),
prefixes, 227

simple motion, 46

sine, 89

space. See outer space

speed

braking distance and,

180-183

INDEX 2Z31



speed, continued
defined, 3, 29, 41, 46, 47-49,
53-55, 81, 159
finding, 194, 200, 205
springs, 166, 187, 201-203
static state, 21, 25, 30, 40, 41,
59-62, 65
stored energy. See elastic poten-
tial energy

T

tangent, 89

thermal energy, 155, 157, 200

time, 49, 53-57, 75, 81-82,
85-86, 100-101, 118, 132

trigonometry, 88-89

U

uniform accelerated mation, 51,
85-86, 90, 101
uniform motion, 65, 90, 149
uniform velocity, 53, 55, 64, 81,
90, 91, 96, 99, 100, 178
units. See also measurement
units
base, 225
converting, 225-226
S| prefixes for, 227
universal gravitation, 32, 43,
94-95

v

vectors, 21, 37-40, 49, 160
adding, head-to-tail method,
62, 86-87, 88, 145

Z3Z INDEX

velacity (v), 37, 85-86
acceleration and, 50-52,
90, 225
change in, 50-52, 74, 81, 85,
90-91, 112-113
defined, 46-49, 225
orientation of, 76, 78, 81-82,
90-92, 196, 197
relative, 63, 147-148
uniform, 53, 55, 64, 81, 90,
91, 96, 99,100, 178
units for measuring, 49, 118
using calculus to find, 99-100
vertical (y) direction, 61, 79,
87-91, 92, 96-98,
144-146, 204, 210
v-t graphs, 53-57, 73, 85,

100-101

W

weight, determining, 60-62, 68,
94-96

weightless state, 63, 69, 93
work (W)
conservation of energy and,
172-174
defined, 167-169, 226
kinetic energy and, 175-179,
180, 226
orientation of, 204-205
potential energy and,
169-171, 175177, 226

z

zero-gravity feeling, 63, 96
zero vectors, 38
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