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Preface

This book is for anyone who would like to get a good overview of linear algebra in 
a relatively short amount of time.

Those who will get the most out of The Manga Guide to Linear Algebra are:

•	 University students about to take linear algebra, or those who are already tak-
ing the course and need a helping hand

•	 Students who have taken linear algebra in the past but still don’t really under-
stand what it’s all about

•	 High school students who are aiming to enter a technical university

•	 Anyone else with a sense of humor and an interest in mathematics!

The book contains the following parts:

Chapter 1: What Is Linear Algebra?
Chapter 2: The Fundamentals
Chapters 3 and 4: Matrices
Chapters 5 and 6: Vectors
Chapter 7: Linear Transformations
Chapter 8: Eigenvalues and Eigenvectors

Most chapters are made up of a manga section and a text section. While skip-
ping the text parts and reading only the manga will give you a quick overview of 
each subject, I recommend that you read both parts and then review each subject 
in more detail for maximal effect. This book is meant as a complement to other, 
more comprehensive literature, not as a substitute.

I would like to thank my publisher, Ohmsha, for giving me the opportunity to 
write this book, as well as Iroha Inoue, the book’s illustrator. I would also like to 
express my gratitude towards re_akino, who created the scenario, and everyone at 
Trend Pro who made it possible for me to convert my manuscript into this manga. 
I also received plenty of good advice from Kazuyuki Hiraoka and Shizuka Hori. I 
thank you all.

Shin Takahashi
November 2008
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Hanamichi 
University

Nothing to be 
afraid of...

Okay!

It's now or never!

Seyaaa!

* 
H
a
n
a
m

ic
h
i 
K
a
r
a
t
e
 C

l
u
b

*

Ei!
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Excu—

what do we 
have here?

Wha—

Ba-dum

Ba-dum

Rattle

Bump



4  Prologue

I... 
I'm a freshman... 
My name is Reiji 

Yurino.

  Would you by 
any chance be 

Tetsuo Ichinose, 
the karate club 

captain?

Indeed.

I want to join the 
karate club!

I don't have any 
experience, but I 

think I—

Are you 
serious? My 

students would 
chew you up and 

spit you out.

Wow...
the Hanamichi 

Hammer himself!

I can't back 
down now!

U-um...
?

Bow

Yank
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Please! I—

I want to get 
stronger!

...

Hmm?

Uhh...

Haven't I seen 
your face 

somewhere? Aha!

Shake

Shake



6  Prologue

Aren't you that guy? 
The one on my sister's 

math book?

Oh, you've seen 
my book?

So it is you!

Y-yes.

I may not be 
the strongest 

guy...

I see...

Wha—?

I might 
consider 

letting you 
into the club...

but I've always 
been a whiz 

with numbers.

By students— For students

Mathematics for everyone
        Author: Reiji Yurino

hmm



Let the Training Begin!  7

Really?!

...Under one condition!

You have to 
tutor my little 
sister in math.

Err

She's 
never 

been that 
good with 
numbers, 
you see...

So if I tutor 
your sister 

you'll let me in 
the club?

And she 
complained 

just yesterday 
that she's been 
having trouble 
in her linear 

algebra class...



8  Prologue

Would that be 
acceptable 

to you?

If you try to make 
a pass at her...

Even once...

Of course!

I suppose I 
should give 

you fair 
warning...

  I... 
wouldn't 

think of it!

We won't go 
easy on you, 

ya know.

I'm in!Of 
course!

We'll start 
right away!

In that 
case... 

follow me.

Crack

Snap
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1
What Is Linear Algebra?

Vectors

Matrices



Okay! That's all 
for today!

Bow!

Yurinooo!
Still alive, 

eh?

You're free to 
start tutoring my sis 

after you've cleaned the 
room and put everything 

away, alright?

O-ossu...

Ossu!  
Thank you!

Ossu!*

* Ossu is an interjection often used in Japanese martial 
arts to enhance concentration and increase the power 
of one's blows.

She's also a 
freshman here, 
but since there 

seem to be a lot 
of you this year, 
I somehow doubt 
you guys have met.

I told her to 
wait for you at...

Pant

Grab

Wobble

Pant

Shake



Pleased to 
meet you.

I'm 
Misa Ichinose.

mmh...

Oww.

Umm...

Excuse me, are 
you Reiji Yurino?

Wha—

I wonder 
what she'll 

be like...

She looks 
a little like 

Tetsuo...

Thump
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Sorry about 
my brother 

asking you to 
do this all of 

a sudden.

 No problem! 
I don't 

  mind at all!

Well, I wouldn’t 
exactly say 
famous...

I've been looking 
forward to this a lot!

 How could this 
girl possibly be 

his sister?!

But...

I had no idea that I 
went to school with the 

famous reiji Yurino!

Err... 
would it be 

awkward if I asked 
you to sign this?

Like...an 
autograph?

Only if you 
want to. If it’s 

too weird—

No, it's my 
pleasure.

Gulp.

Touch
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...

Big 
brother!

So—

Sor—

Sorry Misa, 
but I think I'll 

head home a bit 
early today.

—ry

Yep!

Yurinooo

You remember our little talk?



Well then, when 
would you like 

to start?

Your brother said that 
you were having 

trouble with linear 
algebra?

and there are 
some hard-

to-understand 
concepts...

How about 
right now?

Yes.

But!
It is true that 
linear algebra 

is a pretty 
abstract 
subject,

I don't really 
understand 
the concept 
of it all...

And the 
calculations 

seem way over 
my head.

An Overview of 
Linear Algebra

Subspace

Linear 

independence

Basis

Let’s see...
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The 
calculations 
aren't nearly 

as hard as 
they look!

Really?

Oh! Well, 
that's a 
relief...

But I still don't 
understand... 

what is linear 
algebra exactly?

You said it!

I wouldn't say it's 
middle school level, 
but it's not far off.

Um...

err...

That's a tough 
question to 

answer properly.
Really? 
Why?

Well, it's pretty 
abstract stuff. 

But I'll give it my 
best shot.

And once you 
understand 

the basics, the 
math behind 
it is actually 
very simple.
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Broadly speaking, Linear algebra 
is about translating something 

residing in an m-dimensional space 
into a corresponding shape in an 

n-dimensional space.
Oh!

We’ll learn 
to work with 

matrices...

And 
vectors...

with the goal of 
understanding the 
central concepts of:

•	 Linear 
transformations

•	 Eigenvalues and 
Eigenvectors

I see...

From three to 
two dimensions

From two to 
three dimensions

From two to the 
same two dimensions

Matrices
Vectors

Matrices

Vectors

Eigenvalues and 
eigenvectors

Linear
transformations
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So...

?

What exactly is it good 
for? Outside of academic 

interest, of course.

...

You just had 
to ask me 

the dreaded 
question, 

didn't you?

While it is useful for a 
multitude of purposes 

indirectly, such as 
earthquake-proofing 
architecture, fighting 
diseases, protecting 
marine wildlife, and 

generating computer 
graphics...

Oh?

And mathematicians 
and physicists are the 
only ones who are 

really able to use the 
subject to its fullest 

potential.
Aww!

It doesn't stand that 
well on its own, to be 

completely honest.

Eh?
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So even if I 
decide to study, it 
won't do me any 
good in the end?

That's not what 
I meant at all!

For example, for an aspiring 
chef to excel at his job, he 
has to know how to fillet 
a fish; it's just considered 

common knowledge.

The same  
relationship holds for 

math and science students 
and linear algebra; 
we should all know 

how to do it.

I see...

Like it or not, it's just 
one of those things 
you've got to know.

Best not to fight 
it. Just buckle 

down and study, 
and you'll do fine.

I'll try!
There is also a lot of 

academic literature that you 

won't understand if you don't 

know linear algebra.
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Regarding 
our future 
lessons...

I think it would 
be best if we 

concentrated on 
understanding linear 
algebra as a whole.

Most books and 
courses in the 

subject deal with 
long calculations and 

detailed proofs.

I'll try to avoid 
that as much as 

possible...

Whew.

...and focus 
on explaining 
the basics as 
best I can.

Great!

Which 
leads 
to...

Matrices

Vectors

Eigenvalues and 

eigenvectors

Lineartransformations
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Well, I don't want 
to overwhelm you. 
Why don't we call 

it a day?

We'll start with some 
of the fundamentals 
next time we meet.

Okay.

Oops, 
that's 
me!

It's 
from my 
brother.

Oh?

“Come home
now     ”

Well, uh... 
tell him I said 

hello!

The 
sensei 
texts?!

hard to 
imagine...

Ring
Ring

Ring
Ring



2
The Fundamentals

2
The Fundamentals



97

98

99

You've 
got to 

know your 
basics!

Gghh

100…

D- 
done!

You wish! After 
you're done with the 
pushups, I want you 
to start on your 
legs! That means 

squats! Go go go!

Hey... 
I thought 

we'd start off 
with...

Reiji, you 
seem pretty out 

of it today.

Are you 
okay?

I-I'll be fine. 
take a look 

at thi—

Whump

22  Chapter 2 
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Ah—

Sorry, 
I guess I 

could use a 
snack...

Don't  
worry, pushing 

your body 
that hard has its 

consequences.

Just give me 
five minutes...

 I don't mind. 
take your 

time.

Well then, 
let's begin.

Take a look 
at this.

Rrrr umble

Om 

nom 

nom
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I took the liberty 
of making a 

diagram of what 
we're going to be 

talking about.

Wow!

I thought today we'd 
start on all the basic 
mathematics needed to 

understand linear algebra.

We'll start off 
slow and build our 
way up to the more 

abstract parts, 
okay?

Don't worry, 
you'll be fine.

Sure.

Course layout

B
a
s
ic

s
P
r
e
p

M
a
in

Matrices

Fundamentals

Vectors

Linear 
Transformations

Eigenvalues and 
eigenvectors

Course layout

Matrices

Fundamentals

Vectors
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Number Systems

Let's talk 
about number 
systems first.

...

Complex 
numbers...I've 
never really 

understood the 
meaning of i...

Well...

I don't know 
for sure, but I 
suppose some 

mathematician made 
it up because he 
wanted to solve 
equations like

Complex numbers
Complex numbers are written in the form 

a + b · i
where a and b are real numbers and i is the imaginary unit, defined as i = √−1.

Real 
numbers

Imaginary 
numbers

Integers

•	Positive natu-
ral numbers

•	0

•	Negative 
natural 
numbers

Rational numbers* 
(not integers)

•	Terminating 
decimal numbers 
like 0.3

•	Non-terminating 
decimal numbers 
like 0.333...

•	Complex num-
bers without 
a real com-
ponent, like 
0 + bi, where 
b is a nonzero 
real number

* Numbers that can be expressed in the form q / p (where q and p are 
integers, and p is not equal to zero) are known as rational numbers. 

Integers are just special cases of rational numbers.

x2 + 5 = 0

?

Irrational 
numbers

•	Numbers like  
and √2 whose 
decimals do not  
follow a pattern  
and repeat 
forever

They're organized 
like this.
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So...

Using this new symbol, these 
previously unsolvable problems 
suddenly became approachable.

Why would you want to 
solve them in the first 
place? I don't really 

see the point.

I understand where 
you're coming from, 
but complex numbers 

appear pretty 
frequently in a variety 

of areas.

Sigh

I'll just have 
to get used 
to them, I 
suppose...

Thanks!

Don't worry! I think it'd 
be better if we avoided 
them for now since they 
might make it harder to 
understand the really 

important parts.



Implication and Equivalence

I thought 
we'd talk about 
implication next.  But first, 

let’s discuss 
propositions.

A proposition is a declarative 
sentence that is either true 

or false, like...

“one plus one equals two” or 
“japan's population does not 

exceed 100 people.”

“That is either 
true or false..."

Let's look at a 
few examples.

A sentence like 
“Reiji Yurino is male” 

is a proposition.

But a sentence 
like “Reiji Yurino is 
handsome” is not.

To put it simply, 
ambiguous sentences 

that produce different 
reactions depending 
on whom you ask are 

not propositions.

That kind of 
makes sense.

Propositions

“Reiji Yurino 
is female” 
is also a 

proposition, 
by the way.

< 100 Umm

T
T TT TT

F F

T F
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My mom 
says I’m 
the most 
handsome 

guy in 
school...
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Let's try to apply this knowledge 
to understand the concept of 

implication. The statement

“If this dish is a schnitzel  
then it contains pork”

is always true.

But if we look at its Converse...

“If this dish contains pork  
then it is a schnitzel”

...it is no longer necessarily true.

Yeah.

I hope 
not!

In situations where 
we know that “If P 
then Q” is true, but 

don't know anything 
about its converse 

“If Q then P”...

we say that “P entails Q” and that  
“Q could entail P.”

When a proposition like 
“If P then Q” is true, it is 
common to write it with 
the implication symbol, 

like this:  
P ⇒ Q

True

Not 
necess

arily 
true

It is a 
schnitzel

It contains 
pork

Could entailEntails

Pigs’ 

feet!

Implication

I think I 
get it.

It is a schnitzel

It contains pork

It contains pork

If P then Q

This is a 
schnitzel

This dish  
contains pork

It is a schnitzel
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If both “If P then Q”  
and “If Q then P” 

are true,

That is, P ⇒ Q  
as well as Q ⇒ P,

Then P and Q are equivalent.

So it’s like the 
implication symbols 

point in both 
directions at the 

same time?

Exactly!  
It's kind of 

like this.

Don’t worry. 
You’re due for 
a growth 
spurt...

And this is the 
symbol for 
equivalence.

All 
right.

Reiji is 
shorter than 

Tetsuo.

Tetsuo is 
taller than 

Reiji.

Reiji is shorter than Tetsuo. Tetsuo is taller than Reiji.

Equivalence
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Set Theory

Another 
important field 

of mathematics is 
set theory.

Oh yeah...I think 
we covered that 
in high school.

Probably, but 
let's review it 

anyway.

Just as you might think, 
a set is a collection 

of things.

The things that 
make up the set are 
called its elements 

or objects.

Hehe, 
okay.

This might 
give you a 

good idea of 
what I mean.

Slide

Sets
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Example 1

The set “Shikoku,” which is the smallest of Japan’s four islands, consists of 
these four elements:

•	 Kagawa-ken1

•	 Ehime-ken

•	 Kouchi-ken

•	 Tokushima-ken

Example 2

The set consisting of all even integers from 1 to 10 contains these five 
elements:

•	 2

•	 4

•	 6

•	 8

•	 10

1. A Japanese ken is kind of like an American state.

Kagawa

Tokushima

KouchiEhime



To illustrate, the set 
consisting of all 

even numbers between 
1 and 10 would look 

like this:

These 
are two 
common 
ways to 

write out 
that set: Mmm...

It's also 
convenient to 
give the set 
a name, for 
example, X.

With that in mind, 
our definition 

now looks 
like this:

X marks 
the set!

This is a good way to express 
that “the element x belongs 

to the set X.” Okay.

For example, 
Ehime-ken Shikoku

All even numbers
Set Symbols

32  Chapter 2

between 1 and 10



And then 
there are 
subsets.

Let's say that all 
elements of a set X 
also belong to a 

set Y.

X is a subset of Y  
in this case.

And it's 
written like 

this.
I see.

Set Y 
(Japan)

Set X 
(Shikoku)

Hokkaidou 
Aomori-ken 
Iwate-ken 
Miyagi-ken 
Akita-ken 

Yamagata-ken 
Fukushima-ken 
Ibaraki-ken 
Tochigi-ken 
Gunma-ken 
Saitama-ken 
Chiba-ken 

Toukyou-to 
Kanagawa-ken 

Niigata-ken 
Toyama-ken 

Ishikawa-ken 
Fukui-ken 

Kouchi-ken

For example, 
Shikoku Japan

Subsets

Tokushima-ken

Kagawa-ken

Ehime-ken

Yamanashi-ken 
Nagano-ken 

Gifu-ken 
Shizuoka-ken 

Aichi-ken 
Mie-ken 

Shiga-ken 
Kyouto-fu 
Oosaka-fu 

Hyougo-ken 
Nara-ken 

Wakayama-ken 
Tottori-ken 
Shimane-ken 
Okayama-ken 

Hiroshima-ken 
Yamaguchi-ken 
Fukuoka-ken 

Saga-ken 
Nagasaki-ken 

Kumamoto-ken 
Ooita-ken 

Miyazaki-ken 
Kagoshima-ken 

Okinawa-ken

Set Theory  33
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I think we're 
about halfway 

done for today... 
Are you still 

hanging in there?

You know it!

Example 1

Suppose we have two sets X and Y:

X = { 4, 10 }
Y = { 2, 4, 6, 8, 10 }

X is a subset of Y, since all elements in X 
also exist in Y.

Example 2

Suppose we switch the sets:

X = { 2, 4, 6, 8, 10 }
Y = { 4, 10 }

Since all elements in X don’t exist in Y,  
X is no longer a subset of Y.

Example 3

Suppose we have two equal sets instead:

X = { 2, 4, 6, 8, 10 }
Y = { 2, 4, 6, 8, 10 }

In this case, both sets are subsets of each 
other. So X is a subset of Y, and Y is a sub-
set of X.

Example 4

Suppose we have the two following sets:

X = { 2, 6, 10 }
Y = { 4, 8 }

In this case neither X nor Y is a subset of 
the other.

Y
X

4

10

2

6

8

X
Y

4

10

2

6

8

X
Y

2   4   6

8   10 

X

2

6

10

Y

4

8
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Functions

I thought we'd talk 
about functions 
and their related 
concepts next.

It's all pretty 
abstract, but you'll 
be fine as long as 
you take your time 

and think hard about 
each new idea.

Got it.

Let's start by 
defining the 

concept itself.

Sounds 
good.

Functions
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Imagine the 
following 
scenario: Captain Ichinose, in 

a pleasant mood, 
decides to treat us 
freshmen to lunch.

So we follow him 
to restaurant A.

This is the 
restaurant 

menu.

Udon  500 yen Curry 700 yen
Breaded pork

1000 yen
Broiled eel 

1500 yen

But there is 
a catch, 

of course.

What 
do you 
mean?

Since he's the one paying, 
he gets a say in any and 

all orders.

Kind of 
like this:

Follow 
me!

?
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We wouldn't rea�y be able to say no if he 
told us to order the cheapest dish, right?

Or say, if he just told us a� to order 
di�erent things.

Yurino

Yoshida

Yajima

Tomiyama

Udon

Cu�y

Breaded pork

Broiled  l

Udon for 
everyone!

Yurino

Yoshida

Yajima

Tomiyama

Udon

Cu�y

Breaded pork

Broiled  l

Order 
di�erent 

stu�!
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Even if he told us to order our favorites, 
we wouldn't rea�y have a choice. This might 
make us the most ha�y, but that doesn't 
change the fact that we have to obey him.

You could say that the captain's ordering 
guidelines are like a “rule” that binds 
elements of X to elements of Y.

Yurino

Yoshida

Yajima

Tomiyama

Udon

Cu�y

Breaded pork

Broiled ­l

Order what 
 you want!

Yurino

Yoshida

Yajima

Tomiyama

Udon

Cu�y

Breaded 
pork

Broiled ­l

Rule!

?

?

?

?

X Y
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And that 
is why...

We define a “function from X to Y ” as the rule 
that binds elements in X to elements in Y,  
just like the captain’s rules for how we 

order lunch!

This is how 
we write it:

f is completely 
arbitrary. g or h  
would do just 

as well.

Gotcha.

Functions
A rule that binds elements of the set X to elements of the set Y is called “a 
function from X to Y.” X is usually called the domain and Y the co-domain or 
target set of the function.

function!

or

Menu
Rule

Club 
member

Menu
Club 

member

!

Ruleor
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Next up are 
images.

Images?

Let’s assume that 
xi is an element of 

the set X.

The element in Y that 
corresponds to xi 

when put through f...

is called “xi's image under f in Y.”

Also, it's not uncommon 
to write “xi's image 

under f in Y”...
As f(xi).

xi's image 
under f 

in Y

Okay!

Images



Functions  41

Yurino

Yoshida

Yajima

Tomiyama

Udon

Cu�y

Breaded pork

Broiled �l

fX Y
And in our case...

Like this:

I hope you 
like udon!

Image

This is the element in Y that corresponds to xi of the set X, when put through 
the function f.

f  (Yurino) = udon

f (Yoshida) = broiled eel

f  (Yajima) = breaded pork

f (Tomiyama) = breaded pork
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By the way, do you 
remember this type of 

formula from your high 
school years?

Oh...
yeah, sure.

Didn't you ever 
wonder why...

...they always used 
this weird symbol f(x) 
where they could have 
used something much 

simpler like y instead?

“Like whatever! 
Anyways, so if I want 
to substitute with 2 

in this formula, 
I'm supposed to write 

f(2) and...”

Actually... 
I have!

Inside 

Misa’s brain

?
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Well, 
here’s 
why.

What  
f(x) = 2x − 1  

really means is this:

Oh!

So that's what 
it meant!

Similarly,  
f(2) implies this:

I think I'm 
starting to 

get it. So we were using 
functions in high 

school too?

Exactly.

The function f is a rule that says: 
 

“The element x of the set X  
goes together with the element  

2x − 1 in the set Y.”

The image of 2 under the function f is 2 ∙ 2 − 1.
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Yurino

Yoshida

Yajima

Tomiyama

Udon

Cu�y

Breaded pork

Broiled �l

fX Y

On to 
the next 
subject.

In this 
case...

This set is usually called 
the range of the function f, 

but it is sometimes also 
called the image of f.

Kind of 
confusing...

Udon

Breaded 
   pork

Broiled 
eel

We're going to work 
with a set 

   
{udon, breaded pork, 

broiled eel} 

which is the image of 
the set X under the 

function f. *

Domain and Range

* The term image is used here to describe the set of elements 
in Y that are the image of at least one element in X.
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Yurino

Yoshida

Yajima

Tomiyama Cu�y

Udon

Breaded 
pork

Broiled 
�l

Range

DomainX Y
co-Domain

And the set X is denoted 
as the domain of f.

Hehe.

Ossu!

We could even have described this function as

Y = { f (Yurino), f (Yoshida), f (Yajima), f (Tomiyama)}

if we wanted to.

Range and Co-domain

The set that encompasses the function f ’s image {f(x1), f(x2), … , f(xn)} is 
called the range of f, and the (possibly larger) set being mapped into is called 
its co-domain. 

The relationship between the range and the co-domain Y is as follows:

{f(x1), f(x2), … , f(xn)} ⊂ Y

In other words, a function’s range is a subset of its co-domain. In the spe-
cial case where all elements in Y are an image of some element in X, we have

{f(x1), f(x2), … , f(xn)} = Y
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Yurino

Yoshida

Yajima

Tomiyama

f
Hanamichi
University

University A Hanamichi
University

University B

Yurino

Yoshida

Yajima

Tomiyama

f
Hanamichi
University

University C

Yurino

Yoshida

Yajima

Tomiyama

fX Y X Y X Y

Next we’ll talk 
about onto and 

one-to-one 
functions.

Right.

Let's say our karate club 
decides to have a practice 
match with another club...

And that the captain’s mapping 
function f is “Fight that guy.”

You're 
already 
doing 

practice 
matches?

N-not really. 
This is just an 

example.

Still working 
on the basics!

Onto and One-to-One Functions
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Onto Functions

f

Yurino

Yoshida

Yajima

Tomiyama

Hanamichi
University

University A

f

Yurino

Yoshida

Yajima

Tomiyama

Hanamichi
University

University B

One-to-One Functions

One-to-One and Onto Functions

f

Yurino

Yoshida

Yajima

Tomiyama

Hanamichi
University

University A

f

Yurino

Yoshida

Yajima

Tomiyama

Hanamichi
University

University C

f

Yurino

Yoshida

Yajima

Tomiyama

Hanamichi
University

University A

A function is onto if its 
image is equal to its 
co-domain. This means 
that a� the elements 
in the co-domain of an 
onto function are being 
ma�ed onto.

If xi ≠ xj leads to 
f(xi) ≠ f(xj), we say that 
the function is one-
to-one. This means 
that no element in 
the co-domain can be 
ma�ed onto more 
than once.

It’s also po�ible for 
a function to be both 
onto and one-to-one. 
Such a function creates 
a “bu�y system” betw�n 
the elements of the 
domain and co-domain. 
Each element has one 
and only one “partner.”

X Y X Y

X Y X Y

X Y
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Now we 
have inverse 
functions.

Inverse?

This time we're 
going to look at 
the other team 

captain's orders 
as well.

gf

Yurino

Yoshida

Yajima

Tomiyama

Hanamichi
University

University A

Yurino

Yoshida

Yajima

Tomiyama

Hanamichi
University

University A

X Y X Y

We say that the function g 
is f 's inverse when the two 
captains' orders coincide 

like this.

I see.

Inverse Functions

g

Yurino

Yoshida

Yajima

Tomiyama

Hanamichi

University

University A

X Y
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To specify 
even further...

f is an inverse of g  
if these two relations hold.

Oh, it’s like the 
functions undo 

each other!

This is the symbol used to 
indicate inverse functions.

There is also a 
connection between 
one-to-one and onto 
functions and inverse 

functions. Have a 
look at this.

So if it’s one-to-
one and onto, it has 
an inverse, and vice 

versa. Got it!

or

You raise it 
to –1, right?

The function f  
has an inverse.

The function f 
is one-to-one 

and onto.
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I know it's late, but 
I'd also like to talk 

a bit about linear 
transformations if 
you're okay with it.

Linear 
transformations?

Oh right, one 
of the main 
subjects.

We're 
already 
there?

But don't be fooled and 
let your guard down, 

it's going to get pretty 
abstract from now on!

O-okay!

Fundamentals

Matrices

Linear 
Transformations

Eigenvalues and 
eigenvectors

B
a
s
ic

s
P
r
e
p

M
a
in

We'll go into more 

detail later on.

No, we're just going 
to have a quick look 

for now. 

Linear Transformations
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Behold...linear 
transformations!

Gah...

Linear Transformations

Let xi and xj be two arbitrary elements of the set X, c be any real number, and 
f be a function from X to Y. f is called a linear transformation from X to Y if it 
satisfies the following two conditions:

u  f(xi)+ f(xj) = f(xi + xj)

v  cf(xi) = f(cxi)

Hmm... 
so that 
means...

I think we'd 
better draw a 
picture. What 
do you say?

This should clear 
things up a bit.

That’s a little 
easier to 

understand...

Condition u is 
when the sum of  

these two 
equals this.

And condition v  
is when the 
product of  
this and a  
scalar c  

equals this.
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An example of a linear transformation

An example of a function that is not a linear transformation

Let's have a l
k at a couple of examples.

The function f(x) = 2x is a linear transformation. This is because it satisfies 
both  and , as you can see in the table below.

Condition 

Condition 

f(xi) + f(xj) = 2xi + 2xj

f(xi + xj) = 2(xi + xj) = 2xi + 2xj

cf(xi) = c(2xi) = 2cxi

f(cxi) = 2(cxi) = 2cxi

The function f(x) = 2x − 1 is not a linear transformation. This is because it 
satisfies neither  nor , as you can see in the table below.

Condition 

Condition 

f(xi) + f(xj) = (2xi − 1) + (2xj − 1) = 2xi + 2xj − 2

f(xi + xj) = 2(xi + xj) − 1 = 2xi + 2xj − 1

cf(xi) = c(2xi − 1) = 2cxi − c

f(cxi) = 2(cxi) − 1 = 2cxi − 1

...

Are you 
all right?

Yeah, 
don't 

worry!

Thanks,  
Reiji.

My  
pleasure.

Phew

 That's 

all
for 

today.
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Reiji?

Um...

 Do you always 
eat lunch in 
the school 
cafeteria?

I live alone, 
and I'm not 

that good at 
cooking, so 
most of the 
time, yeah...

Well, next time we 
meet you won't 

have to. I'm making 
you lunch!

Don't worry 
about it! 

Tetsuo is still 
helping me 
out and all! You 

don't want 
me to?



Oh...How 
lovely.

I make a lot 
of them for my 

brother too, you 
know—stamina 

lunches.

On second 
thought, 

I’d love for 
you to...

...Make me 
lunch.

Great!

No, that's not 
it, it's just...

Uh...
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Combinations and Permutations

I thought the best way to explain combinations and permutations would be to give 
a concrete example.

I’ll start by explaining the  ? Problem , then I’ll establish a good  * way of  

 thinking , and finally I’ll present a  ! Solution .

?  Problem

Reiji bought a CD with seven different songs on it a few days ago. Let’s call the 
songs A, B, C, D, E, F, and G. The following day, while packing for a car trip he had 
planned with his friend Nemoto, it struck him that it might be nice to take the 
songs along to play during the drive. But he couldn’t take all of the songs, since 
his taste in music wasn’t very compatible with Nemoto’s. After some deliberation, 
he decided to make a new CD with only three songs on it from the original seven.

Questions:

1.	 In how many ways can Reiji select three songs from the original seven?

2.	 In how many ways can the three songs be arranged?

3.	 In how many ways can a CD be made, where three songs are chosen from a pool of 
seven?

* Way of Thinking

It is possible to solve question 3 by dividing it into these two subproblems:

1.	 Choose three songs out of the seven possible ones.

2.	 Choose an order in which to play them.

As you may have realized, these are the first two questions. The solution to 
question 3, then, is as follows:

In how many ways can 
Reiji select three songs 
from the original seven?

In how many ways can 
the three songs be 
arranged?

In how many ways can 
a CD be made, where three 
songs are chosen from a 
pool of seven?

Solution to Question 1 · Solution to Question 2 = Solution to Question 3
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!  Solution

1.	 In how many ways can Reiji select three songs from the original seven?

All 35 different ways to select the songs are in the table below. Feel free to 
look them over.

Pattern 1 A and B and C

Pattern 2 A and B and D

Pattern 3 A and B and E

Pattern 4 A and B and F

Pattern 5 A and B and G

Pattern 6 A and C and D

Pattern 7 A and C and E

Pattern 8 A and C and F

Pattern 9 A and C and G

Pattern 10 A and D and E

Pattern 11 A and D and F

Pattern 12 A and D and G

Pattern 13 A and E and F

Pattern 14 A and E and G

Pattern 15 A and F and G

Pattern 16 B and C and D

Pattern 17 B and C and E

Pattern 18 B and C and F

Pattern 19 B and C and G

Pattern 20 B and D and E

Pattern 21 B and D and F

Pattern 22 B and D and G

Pattern 23 B and E and F

Pattern 24 B and E and G

Pattern 25 B and F and G

Pattern 26 C and D and E

Pattern 27 C and D and F

Pattern 28 C and D and G

Pattern 29 C and E and F

Pattern 30 C and E and G

Pattern 31 C and F and G

Pattern 32 D and E and G

Pattern 33 D and E and G

Pattern 34 D and F and G

Pattern 35 E and F and G

Choosing k among n items without considering the order in which they are 
chosen is called a combination. The number of different ways this can be done 
is written by using the binomial coefficient notation:

n

k

which is read “n choose k.” 
In our case, 

7

3
= 35



Combinations and Permutations  57

2.	 In how many ways can the three songs be arranged? 

Let’s assume we chose the songs A, B, and C. This table illustrates the 
6 different ways in which they can be arranged:

Song 1 Song 2 Song 3

A B C

A C B

B A C

B C A

C A B

C B A

Suppose we choose B, E, and G instead:

Song 1 Song 2 Song 3

B E G

B G E

E B G

E G B

G B E

G E B

Trying a few other selections will reveal a pattern: The number of possible 
arrangements does not depend on which three elements we choose—there are 
always six of them. Here’s why:

Our result (6) can be rewritten as 3 · 2 · 1, which we get like this:

1.	 We start out with all three songs and can choose any one of them as �our 
first song.

2.	 When we’re picking our second song, only two remain to choose from.

3.	 For our last song, we’re left with only one choice.

This gives us 3 possibilities · 2 possibilities · 1 possibility �= 6 possibilities.
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3.	 In how many ways can a CD be made, where three songs are chosen from a  
pool of seven?

The different possible patterns are

The number of ways 
to choose three songs 
from seven

The number of ways 
the three songs can
be arranged

∙

= 35 ∙ 6

= 210

= ∙ 6
7

3

This means that there are 210 different ways to make the CD.

Choosing three from seven items in a certain order creates a permutation of 
the �chosen items. The number of possible permutations of k objects chosen 
among �n objects is written as

nPk

In our case, this comes to

7P3 = 210

The number of ways n objects can be chosen among n possible ones is 
�equal to n-factorial:

nPn = n! = n · (n − 1) · (n − 2) · ... · 2 · 1

For instance, we could use this if we wanted to know how many different 
�ways seven objects can be arranged. The answer is

7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040
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I’ve listed all possible ways to choose three songs from the seven original 
ones (A, B, C, D, E, F, and G) in the table below.

Song 1 Song 2 Song 3

Pattern 1 A B C

Pattern 2 A B D

Pattern 3 A B E

... ... ... ...

Pattern 30 A G F

Pattern 31 B A C

... ... ... ...

Pattern 60 B G F

Pattern 61 C A B

... ... ... ...

Pattern 90 C G F

Pattern 91 D A B

... ... ... ...

Pattern 120 D G F

Pattern 121 E A B

... ... ... ...

Pattern 150 E G F

Pattern 151 F A B

... ... ... ...

Pattern 180 F G E

Pattern 181 G A B

... ... ... ...

Pattern 209 G E F

Pattern 210 G F E

We can, analogous to the previous example, rewrite our problem of count-
ing the different ways in which to make a CD as 7 ∙ 6 ∙ 5 = 210. Here’s how we 
get those numbers:

1.	 We can choose any of the 7 songs A, B, C, D, E, F, and G as our first song.

2.	 We can then choose any of the 6 remaining songs as our second song.

3.	 And finally we choose any of the now 5 remaining songs as our last song.
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The definition of the binomial coefficient is as follows:

n

r

n n n r

r r

n n n r

r r









 =

⋅ −( ) − −( )( )
⋅ −( ) =

⋅ −( ) − +( )
⋅ −( )

1 1

1 1

1 1

1







1

Notice that

n

r

n n n r

r r

n n n r

r r









 =

⋅ −( ) − −( )( )
⋅ −( )

=
⋅ −( ) − −( )( )

⋅ −

1 1

1 1

1 1

1







(( ) ⋅
−( ) ⋅ − +( )
−( ) ⋅ − +( )

=
⋅ −( ) − −( )( ) ⋅ −









1

1 1

1 1

1 1

n r n r

n r n r

n n n r n r(( ) ⋅ − +( )
⋅ −( )( ) ⋅ −( ) ⋅ − +( )( )

=
⋅ −( )

n r

r r n r n r

n
r n r

1 1

1 1 1 1



 

!
! !

Many people find it easier to remember the second version:

n

r
n

r n r









 = ⋅ −( )

!
! !

We can rewrite question 3 (how many ways can the CD be made?) like this:

7 3

7

3
6

7

3
3

7
3 4

3
7
4

7 6 5 4 3 2 1
4

P =








 ⋅ =









 ⋅ =

⋅
⋅ = = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅
! !

! !
! !

! 33 2 1
7 6 5 210

⋅ ⋅
= ⋅ ⋅ =
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Not All “Rules for Ordering” Are Functions

We talked about the three commands “Order the cheapest one!” “Order different 
stuff!” and “Order what you want!” as functions on pages 37–38. It is important 
to note, however, that “Order different stuff!” isn’t actually a function in the 
strictest sense, because there are several different ways to obey that command.

Yurino

Yoshida

Yajima

Tomiyama

Udon

Cu�y

Breaded pork

Broiled �l

Yurino

Yoshida

Yajima

Tomiyama

Udon

Cu�y

Breaded pork

Broiled �l





3
Intro to Matrices

3
Intro to Matrices



Ei!
Ei!

Put your 
backs 
into it!

Don't rely on 
your hands.

Use your waist!

 I thought 
he'd quit 

right away...

I guess I was 
wrong.

Yurino!

Ossu!

heheh

64  Chapter 3 
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You must be really 
tired after all that 

exercise!

Wow!  
But...I could 
never eat 
something 

so beautiful!

Hehe, don't be 
silly.

I don't know what to 
say...thank you!

Awesome!

So good!
Thanks.

Don't 
worry 

about it.

 Misa, really... 
thank you.

Ta -da !

Joy

Om 

no
m

nom nom
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What Is a Matrix?

Ah...

 I feel a lot 
better now. Are 

you ready to 
begin?

Sure, 
why not.

We'll be 
talking about 

matrices 
today.

And I'd really 
like to take my 
time on this one 

since they appear 
in most parts of 
linear algebra.

I don't think 
you'll have any 
problems with 
the basics this 

time around 
either.

but I'll talk a 
little about 

inverse matrices 
toward the end, 

and those can be 
a bit tricky.

Okay.

A matrix is a 
collection of 

numbers arranged 
in m rows and n 

columns, bounded 
by parentheses, 

like this.

 Fundamentals

Matrices Vecto

Course layout

B
a
s
ic

s
P
r
e

M
a
in

Row 1

Row 2

Row M

column 
1

column 
2

column 
n

These are 
called 

subscripts.

Linear 
Transformations

Eigenvalues
eigenvectors
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A matrix with 
m rows and 
n columns is 

called an “m by n 
matrix."

Ah.

The items inside 
a matrix are 
called its 
elements.

I've marked the (2, 1) elements of 
these three matrices for you. I see.

A matrix that has an 
equal number of rows 
and columns is called a 

square matrix.

Uh huh...

2×3 matrix 4×1 matrix m ×n matrix

Element
Row 1

Row 1 Row 1

Row 2

Row 2

Row 3

Row 4

Row 2

Row m

col 
1

col 
2

col 
3

col 
1

col 
1

col 
2

col 
n

The grayed out elements in 
this matrix are part of what 
is called its main diagonal.

Square matrix 
with two rows

Square matrix 
with n rows
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Hmm... 
Matrices aren't as 

exciting as they seem 
in the movies. Yeah. Just 

numbers, no 
Keanu...

Exciting or not, 
matrices are very 

useful!

Why is 
that?

Well, these are 
some of the 
advantages.

So people 
use them 

because they're 
practical, huh?

 Yep.

Um...

•	 They're great for writing linear 
systems more compactly.

•	 Since they make for more compact 
systems, they also help to make 
mathematical literature more compact.

•	 And they help teachers write faster 
on the blackboard during class.
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 Instead of writing 
this linear system 

like this...
We could write it like 
this, using matrices.

 It does 
look a lot 
cleaner.

Exactly!

So this... becomes this?

Not bad!

Writing Systems of Equations as Matrices

is written

x1

x2

xn

b1

b2

bm

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

 =

is written

x1

x2

xn

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

am1x1 + am2x2 + ... + amnxn = bm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a11x1 + a12x2 + ... + a1nxn

a21x1 + a22x2 + ... + a2nxn

am1x1 + am2x2 + ... + amnxn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

•

•

Skritch

Skritch
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Matrix Calculations

Now let's 
look at some 
calculations.

The four relevant 
operators are:

•	 Addition

•	 Subtraction

•	 Scalar 
multiplication

•	 Matrix 
Multiplication

A�ition

Note that A�ition and 
subtraction work only 
with matrices that have 

the same dimensions.

1

3

5

2

4

6

6

4

2

5

3

1

1 + 6

3 + 4

5 + 2

2 + 5

4 + 3

6 + 1

1

3

5

2

4

6

6

4

2

5

3

1

+

Examples

1 + 6

3 + 4

5 + 2

2 + 5

4 + 3

6 + 1

1

3

5

2

4

6

6

4

2

5

3

1

7

7

7

7

7

7

+ = =

(10,  10) + (−3,  −6)  =  (10 + (−3),  10 + (−6))  =  (7,  4) 

10

10

7

4

−3

−6

10 + (−3)

10 + (−6)
+ = =

•

•

•

Let's a� the 3×2 matrix

to this 3×2 matrix

That is:

The elements would be a�ed 
elementwise, like this:

Addition

Examples
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Subtraction

1

3

5

2

4

6

6

4

2

5

3

1

1 − 6

3 − 4

5 − 2

2 − 5

4 − 3

6 − 1

1

3

5

2

4

6

6

4

2

5

3

1

−

Examples

1 − 6

3 − 4

5 − 2

2 − 5

4 − 3

6 − 1

1

3

5

2

4

6

6

4

2

5

3

1

−5

−1

3

−3

1

5

− = =

(10,  10) − (−3,  −6)  =  (10 − (−3),  10 − (−6))  =  (13,  16) 

10

10

13

16

−3

−6

10 − (−3)

10 − (−6)
− = =

•

•

•

Let's subtract the 3×2 matrix 

from this 3×2 matrix

That is:

The elements would similarly 
be subtracted elementwise, 
like this:

Subtraction

Examples
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Scalar Multiplication

10 · 1

10 · 3

10 · 5

10 · 2

10 · 4

10 · 6

Examples

10

30

50

20

40

60

= =•

•

•

1

3

5

2

4

6

1

3

5

2

4

6

10

1

3

5

2

4

6

10

10 · 1

10 · 3

10 · 5

10 · 2

10 · 4

10 · 6

2 (3, 1) = (2 · 3, 2 · 1) = (6, 2) 

2
3

1

6

2

2 · 3

2 · 1
= =

Let's multiply the 3×2 matrix

by 10. That is: 

The elements would each be
multiplied by 10, like this: 

Examples

Scalar Multiplication
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Matrix Multiplication

Example

1x1 + 2x2

3x1 + 4x2

5x1 + 6x2

1y1 + 2y2

3y1 + 4y2

5y1 + 6y2

=

1

3

5

2

4

6

x1

x2

y1

y2

•

The product

Can be derived by temporarily separating the 

two columns        and       , forming the two products

and then rejoining the resulting columns:

1

3

5

2

4

6

x1

x2

y1

y2

=

1x1 + 2x2

3x1 + 4x2

5x1 + 6x2

1y1 + 2y2

3y1 + 4y2

5y1 + 6y2

x1

x2

y1

y2

1

3

5

2

4

6

x1

x2

=

1x1 + 2x2

3x1 + 4x2

5x1 + 6x2

1

3

5

2

4

6

y1

y2

=

1y1 + 2y2

3y1 + 4y2

5y1 + 6y2

and

1x1 + 2x2

3x1 + 4x2

5x1 + 6x2

1y1 + 2y2

3y1 + 4y2

5y1 + 6y2

There's 
more!

Example

Matrix Multiplication
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As you can s� from the example below, 
changing the order of factors usua�y 
results in a completely di�erent product.

8

2

−3

1

24 − 3

6 + 1

8 − 6

2 + 2

3

1

1

2

8 · 3 + (−3) · 1

2 · 3 + 1 · 1

8 · 1 + (−3) · 2

2 · 1 + 1 · 2
= =

21

7

2

4
=

8

2

−3

1

24 + 2

 8 + 4

−9 + 1

−3 + 2

3

1

1

2

3 · 8 + 1 · 2

1 · 8 + 2 · 2

3 · (−3) + 1 · 1

1 · (−3) + 2 · 1
= =

26

12

−8

−1
=

•

•

And you have 
to watch out.

Matrices can be multiplied only if the 
number of columns in the left factor 

matches the number of rows in the 
right factor.

an m×n matrix times an n×p matrix
yields an m×p matrix.
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This means we wouldn't 
be able to calculate the 
product if we switched 
the two matrices in our 

first example.

Huh, really?

Well, 
nothing 
stops 

us from 
trying.

Oops...

One more thing. 
It's okay to use 
exponents to 

express repeated 
multiplication of 
square matrices.

factors

Product of 
3×2 and 2×2 

factors

is the 
same as

in the same matrix.

in the same matrix.

Product of 
2×2 and 3×2 

factors

and
which is the 

same as

is the 
same as

and   
which is the 

same as

We run into a problem here:  
there are no elements 

corresponding to these 
positions!

and
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Like this.

Oh, so...

This is all 
right then?

Yeah.

 Um...but how 
am I supposed 
to calculate 

three of them 
in a row?

Well...

Oh, of course!

pretty 

confusing

The easiest way would 
be to just multiply 
them from left to 

right, Like this:

3
1
3

2
4

=
1
3

2
4

1
3

2
4

1
3

2
4

=
1 · 1 + 2 · 3
3 · 1 + 4 · 3

1 · 2 + 2 · 4
3 · 2 + 4 · 4

1
3

2
4

7
15

10
22

1
3

2
4

=
  7 · 1 + 10 · 3
15 · 1 + 22 · 3

  7 · 2 + 10 · 4
15 · 2 + 22 · 4

=
37
81

54
118
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Special Matrices

There are many 
special types of 

matrices.

To explain them 
all would take 
too much time...

So we'll look at only 
these eight today.

Let's look at them 
in order.

Okay!

① ゼロ行列

A zero matrix is a matrix where all elements are equal to zero.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 Zero matrices

Zero matrices

Transpose matrices

Symmetric matrices

Upper triangular matrices

Lower triangular matrices

Diagonal matrices

Identity matrices

Inverse matrices
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The easiest way to understand transpose matrices is to just look at 
an example.

If we transpose the 2×3 matrix

we get the 3×2 matrix

As you can see, the transpose operator switches the rows and columns 
in a matrix.

The transpose of the n×m matrix 
 

is consequently 

The most common way to indicate a transpose is to add a small T 
at the top-right corner of the matrix.

For example:
 

1

3

5

2

4

6

1

2

3

4

5

6

a11

a12

a1n

a21

a22

a2n

am1

am2

amn

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

T

1

2

3

4

5

6

T

=

1

3

5

2

4

6

 Transpose matrices

 Ah, T for 
transpose. 

I see.
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Lower Triangular Matrices

Symmetric Matrices
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Symmetric matrices are square matrices that are symmetric around their 
main diagonals.
 

Because of this characteristic, a symmetric matrix is always equal to its 
transpose.

1

5

6

7

5

2

8

9

6

8

3

10

7

9

10

4

Triangular matrices are square matrices in which the elements either above 
the main diagonal or below it are all equal to zero.

This is an upper triangular matrix, since all 
elements below the main diagonal are zero.

This is a lower triangular matrix—all
elements above the main diagonal are zero.

1

0

0

0

5

2

0

0

6

8

3

0

7

9

10

4

1

5

6

7

0

2

8

9

0

0

3

10

0

0

0

4

 Sy�etric matrices

 U�er triangular and 
 lower triangular matrices
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A diagonal matrix is a square matrix in which all elements that are not part 
of its main diagonal are equal to zero.

For example,                            is a diagonal matrix.

Note that this matrix could also be written as diag(1,2,3,4).

1

0

0

0

0

2

0

0

0

0

3

0

0

0

0

4

 Diagonal matrices

Multiplying 
diagonal 

matrices by 
themselves is 
really easy.

Why?
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See for 
yourself!

Hmm...

Like this?

2

0

0

3

2 2

0

0

3

3

2

0

0

3

p
2p

0

0

3p
=

Weird,  
huh?

Uh...

Try calculating

2

0

0

3

2 2

0

0

3

3

2

0

0

3

p
2p

0

0

3p
=

2

0

0

3

2 2

0

0

3

3

2

0

0

3

p
2p

0

0

3p
=

and

to see why.

You're right!
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1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

Identity matrices are in essence diag(1,1,1,...,1). In other words, they are 
square matrices with n rows in which all elements on the main diagonal 
are equal to 1 and all other elements are 0.

For example, an identity matrix with n = 4 would look like this:

 Identity matrices

Multiplying 
with the 
identity 
matrix 

yields a 
product 
equal to 
the other 
factor.

What 
do you 
mean?

It's like the number 
1 in ordinary 

multiplication.

It stays the same, 
just like you said!

Unchanged

Try multiplying

1

0

0

1

x1

x2

if you'd like.
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Let's try a few other examples.

x11

x12

1

0

0

1

1 · x11 + 0 · x12

0 · x11 + 1 · x12

1 · x21 + 0 · x22

0 · x21 + 1 · x22

1 · xn1 + 0 · xn2

0 · xn1 + 1 · xn2

=
x21

x22

xn1

xn2

=
x11

x12

x21

x22

xn1

xn2

•

• = =

x1

x2

xn

x1

x2

xn

1

0

0

0

1

0

0

0

1

1 · x1 + 0 · x2 + + 0 · xn

0 · x1 + 1 · x2 + + 0 · xn

0 · x1 + 0 · x2 + + 1 · xn

•
1

0

0

1
= =

x11

x21

xn1

x12

x22

xn2

x11

x21

xn1

x12

x22

xn2

x11 · 1 + x12 · 0  x11 · 0 + x12 · 1

x21 · 1 + x22 · 0 x21 · 0 + x22 · 1

xn1 · 1 + xn2 · 0 xn1 · 0 + xn2 · 1

Were you able 
to follow? Want 
another look? No way! 

Piece of 
cake!



Let's take a break. 
We still have inverse 

matrices left to 
look at, but they're 
a bit more complex 

than this.

No, I wasn't 
trying to 

get you to—

Fine by me.

 I'll make 
you another 
tomorrow if 

you'd like.

Don't worry 
about it. the best 
part of cooking 

something is 
seeing someone 

enjoy it.

It'd be a 
pleasure.

Thanks again 
for lunch. I had 

no idea you 
were such a 
good cook.

Th-thanks...

No 
problem!

 What do you 
say? Ready 
for more 
matrices?

Sure.

Ah!



Gather 'em up...
And sw�p...

4
More Matrices

4
More Matrices
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Inverse Matrices

Inverse matrices 
are very important 

and have a lot 
of different 
applications.

Explaining them 
without using 
examples isn't 

all that easy, but 
let's start with the 
definition anyway.

If the product of two square matrices is an identity matrix, then the two 
factor matrices are inverses of each other.

This means that                    is an inverse matrix to              if
1

3

2

4

1

3

2

4

x11

x21

1

0

0

1
=

x12

x22

x11

x21

x12

x22

 Inverse matrices

Ooh.
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And that's it.

Huh?

Didn't you say 
something about 
examples? We're 
done already?

Don't worry, that 
was only the 

definition!

Since they're so 
important, I thought 
we'd go into more 
detail on this one.

I'll teach you how 
to identify whether 
an inverse exists or 

not—and also how to 
calculate one.

Should we get 
right down to 

business?

Sure!



Calculating Inverse Matrices  There are two main ways to 
calculate an inverse matrix:

Using Cofactors or using 
Gaussian elimination.

The calculations 
involved in the 

cofactor method can 
very easily become 
cumbersome, so...

 Ignore it as long as 
you're not expecting 

it on a test.

Can 
do.

 In contrast, 
Gaussian 

elimination is 
easy both to 
understand 

and to 
calculate.

In fact, it's 
as easy as 

sweeping the 
floor!*

Anyway, I won't talk 
about cofactors at 

all today.

Gotcha.

In addition to 
finding inverse 

matrices, Gaussian 
elimination can also 

be used to solve 
linear systems.

Let's have a 
look at that.

Cool!

cofactor 

method

Gaussian elimination

 Cofactor method

Sh-shh

* The japanese term for Gaussian elimination is Hakidashihou, which 
roughly translates to ”The sweeping out method.” Keep this in mind 
as you're reading this chapter!

Shh



gaussian elimination
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Gau�ian eliminationThe co�on method
The co�on method

expre�ed with matrices

=
3

1

1

2

x1

x2

1

0

3x1 + 1x2 = 1

1x1 + 2x2 = 0

=
6

1

2

2

x1

x2

2

0

=
5

1

0

2

x1

x2

2

0

2

0
=

5

5

0

10

x1

x2

=
5

0

0

10

x1

x2

2

−2

Start by multiplying the top 
equation by 2.

3x1 + 1x2 = 1

1x1 + 2x2 = 0

Subtract the bottom equation from
the top equation.

6x1 + 2x2 = 2

1x1 + 2x2 = 0

Multiply the bottom equation by 5.

5x1 + 0x2 = 2

1x1 + 2x2 = 0

Subtract the top equation from the
bottom equation.

5x1 +   0x2 = 2

5x1 + 10x2 = 0

Divide the top equation by 5 and 
the bottom by 10.

5x1 +   0x2 =   2

0x1 + 10x2 = −2

1x1 + 0x2 = 

0x1 + 1x2 = −

2
5
1
5

=
1

0

0

1

x1

x2

2
5
1
5

−

3

1

1

2

1

0

6

1

2

2

2

0

5

1

0

2

2

0

5

5

0

10

2

0

5

0

0

10

2

−2

1

0

0

1

2
5
1
5

−

Solve the following linear system:

K�p 
comparing 
the rows 

on the left 
to s� how 
it works.

OKay.

And we’re done!

Problem??

Solution!!

So you just 
rewrite the 

equations as 
matrices and 
calculate as 

usual?

Well... Gaussian 
elimination is 
about trying 
to get this 

part here to 
approach the 

identity matrix, 
not about 

solving for 
variables. Hmm...

Done!

Gather 
'em up and 

sweep.

Gather 
'em up and 

sweep.

?  Problem

!  Solution
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3

1

1

2
Find the inverse of the 2×2 matrix

Problem??

 Let's try to find an 
inverse next.

Okay.

 Think about it  
like this.

=
3

1

1

2

x12

x22

x11

x21

x12

x22

x11

x21

1

0

0

1

We need to 
find the matrix

that
satisfies

3

1

1

2
We’re trying to find the inverse of 

x11

x21

x12

x22

3

1

3

1

=
1

2

x11

x21

1

0

=
1

2

x12

x22

0

1

that satisfyor and

3x12 + 1x22 = 0

1x12 + 2x22 = 1

We need to solve 
the systems

and
3x11 + 1x21 = 1

1x11 + 2x21 = 0






 Ah, right.

Let's do 
the math.

Skritch skritch

?  Problem
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The co�on method Gau�ian elimination
The co�on method

expre�ed with matrices

Multiply the top equation by 2.

3
1

1
2

1
0

0
1

6
1

2
2

2
0

0
1

5
1

0
2

2
0

−1
1

5
5

0
10

2
0

−1
5

3x11 + 1x21 = 1

1x11 + 2x21 = 0

3x12 + 1x22 = 0

1x12 + 2x22 = 1

Subtract the bottom equation from the top.

6x11 + 2x21 = 2

1x11 + 2x21 = 0

6x12 + 2x22 = 0

1x12 + 2x22 = 1

Multiply the bottom equation by 5.

5x11 + 0x21 = 2

1x11 + 2x21 = 0

5x12 + 0x22 = −1

1x12 + 2x22 =   1

Subtract the top equation from the bottom.

5x11 +   0x21 = 2

5x11 + 10x21 = 0

5x12 +   0x22 = −1

5x12 + 10x22 =   5

Divide the top by 5 and the bottom by 10.

5x11 +   0x21 =   2

0x11 + 10x21 = −2

5x12 +   0x22 = −1

0x12 + 10x22 =   6

1x12 + 0x22 = −

0x12 + 1x22 = 

1
5
3
5

1

0

0

1

2
5
1
5

−

− 1
5
3
5

5
0

0
10

2
−2

−1
6

=
3
1

1
2

1
0

0
1

x12

x22

x11

x21

=
6
1

2
2

2
0

0
1

x12

x22

x11

x21

=
5
1

0
2

2
0

−1
1

x12

x22

x11

x21

=
5
5

0
10

2
0

−1
5

x12

x22

x11

x21

=
5
0

0
10

2
−2

−1
6

x12

x22

x11

x21

=
1
0

0
1

x12

x22

x11

x21

2
5
1
5

−

− 1
5
3
5

This is our inverse matrix; we’re done!

1x11 + 0x21 =

0x11 + 1x21 = −

2
5
1
5

Solution!!

So the inverse we 
want is

2

5

1

5

−

−

1

5

3

5

That was a lot 
easier than I thought 

it would be...

Great, 
but...

Huff  

Done.

Yay!

Huff  

!  Solution
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Let's make sure that the product of the 
original and calculated matrices rea
y 
is the identity matrix.

 It s�ms like they both become the 
 identity matrix...

That’s an important point: the order of 
the factors doesn't ma�er. the product is 
always the identity matrix! Remembering this 
test is very useful. You should use it as often 
as you can to check your calculations.

The product of the original and inverse matrix is

= =
3

1

3 ·

1 ·

3 ·

1 ·

+ 1 ·

+ 2 ·

+ 1 ·

+ 2 ·

1

2

1

0

0

1

2
5
1
5

−

1
5
3
5

− 2
5
2
5

1
5
1
5

−

− 1
5
1
5

3
5
3
5

−

−

The product of the inverse and original matrix is

= =
· 3 +

· 3 +

· 1

· 1

3

1

1

2

1

0

0

1

2
5
1
5

−

1
5
3
5

− 2
5

3
5

1
5

1
5

−

− · 1 +

· 1 +

· 2

· 2

2
5

3
5

1
5

1
5

−

−

•

•

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

−1

The symbol used to denote inverse matrices 
is the same as any inverse in mathematics, so...

the inverse of is wri�en as

By the way...

To the 
power of 
minus one, 

got it.
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That's too 
bad...

Actually...we also 
could have solved

−1a11

a21

a12

a22

with...

...this formula 
right here.

Huh?

Let's apply 
the formula 

to our 
previous 
example:

3

1

1

2

We got 
the same 

answer as 
last time.

 Why even bother with 
the other method?

Ah, well...

This formula only works 
on 2×2 matrices.

If you want to find 
the inverse of a 
bigger matrix, I'm 

afraid you're going 
to have to settle for 
Gaussian elimination.

Hmm
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Next, I thought 
I'd show you how 

to determine 
whether a matrix 
has an inverse 

or not.

So...some matrices 
lack an inverse?

−1
3

1

6

2 Let's 
see...

Oh, the 
denominator 

becomes zero.  
I guess you're 

right.

One last thing: 
the inverse of an 
invertible matrix 

is, of course, 
also invertible.

Makes 
sense!

Invertible

Not 
invertible

Yeah. Try to calculate the 
inverse of this one with the 
formula I just showed you.



Determinants

Now for 
the test to 
see whether 
a matrix is 
invertible 
or not.

We'll be using 
this function.

det? It's short for 
determinant.

det

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

≠ 0 exists.

−1

means that

The inverse of 
a matrix exists 
as long as its 
determinant 
isn't zero.

Hmm.

It's also 
written 

with 
straight 
bars, like 

this:

Does a given matrix have an inverse?
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There are several 
different ways to 

calculate a determinant. 
Which one's best depends 
on the size of the matrix.

Let's start with the 
formula for two-

dimensional matrices 
and work our way up.

Sounds 
good.

To find the 
determinant of 

a 2×2 matrix, 
just substitute 
the expression 

like this.

Holding your 
fingers like 

this makes for 
a good trick to 
remember the 

formula.

Oh, 
cool!

Calculating Determinants
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y

xO

2

3

y

a22

a21

a12 a11 xO

It does, since det 

Incidenta�y, the area of the para�elogram 
spa
ed by the fo�owing four points...

•   The origin

•   The point (a11
, a

21
)

•   The point (a12
, a

22
)

•   The point (a11
 + a

12
, a

21
 + a

22
)

...coincides with the absolute value of

Let's s� whether            has an inverse or not.
3

0

0

2

3

0

0

2
det

3

0

0

2

= 3 · 2 − 0 · 0 = 6

≠ 0.

6

3

0

0

2

a11

a21

a12

a22

det

l�ks like 
this?

So
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To find the determinant of 
a 3×3 matrix, just use the 

following formula.

 This is sometimes called 
Sarrus' Rule.

I'm supposed 
to memorize 

this?
Don't worry, 
there's a nice 
trick for this 

one too.

Check it out.
Well, that's 

a relief.

Phew

a11

a21

a31

a12

a22

a32

a13

a23

a33

a11

a21

a31

a12

a22

a32

Sarrus’ Rule

Write out the matrix, and then write its first two columns again 
after the third column, giving you a total of five columns. Add the 
products of the diagonals going from top to bottom (indicated by 
the solid lines) and subtract the products of the diagonals going 
from bottom to top (indicated by dotted lines). This will generate 
the formula for Sarrus’ Rule, and it’s much easier to remember!
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Let's s� if                      has an inverse. 

So this one has an 
inverse t�!

Each pair of opposite faces on 
the parallelepiped are parallel
and have the same area.

det = 1 · 1 · 3 + 0 · (−1) · (−2) + 0 · 1 · 0 − 0 · 1 · (−2) − 0 · 1 · 3 − 1 · (−1) · 0

= 3 + 0 + 0 − 0 − 0 − 0

= 3

1

1

−2

0

1

0

0

−1

3

1

1

−2

0

1

0

0

−1

3

det

1

1

−2

0

1

0

0

−1

3

≠ 0

And the volume of the para�elepiped* spa�ed 
by the fo�owing eight points...

•   The origin

•   The point (a11
, a

21
, a

31
)

•   The point (a12
, a

22
, a

32
)

•   The point (a13
, a

23
, a

33
)

•   The point (a11
 + a

12
, a

21
 + a

22
, a

31
 + a

32
)

•   The point (a11
 + a

13
, a

21
 + a

23
, a

31
 + a

33
)

•   The point (a12
 + a

13
, a

22
 + a

23
, a

32
 + a

33
)

•   The point (a11
 + a

12
 + a

13
, a

21
 + a

22
 + a

23
, a

31
 + a

32
 + a

33
)

...also coincides with the absolute value of

a11

a21

a31

a12

a22

a32

a13

a23

a33

det

* A parallelepiped is a three-dimensional figure  
formed by six parallelograms.
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So next up are 
4×4 matrices, 
I suppose...

Yep.

More of this 
perhaps?

 I'm afraid not... 
The grim truth is that the 

formulas used to calculate 
determinants of dimensions 
four and above are very 

complicated.

So how do we 
calculate them?

To be able to 
do that...

Nope!

Tee hee
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You'll have to learn 
the three rules of 

determinants.

Three 
rules?

Yep, the terms in 
the determinant 

formula are formed 
according to 
certain rules.

Take a closer look at 
the term indexes.

Pay special 
attention to the 

left index in each 
factor.

The left 
side...

Flllip

?

Rule 

1
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Oh, they all go 
from one to 

the number of 
dimensions!

Exactly.

And that's rule 
number one!

Now for the right 
indexes.

Hmm... 
They seem 
a bit more 
random.

Actually, they're not. Their orders are all 
permutations of 1, 2, and 3—like in the table 

to the right. This is rule number two.

I see it 
now!

Permutations of 1–2

Permutations of 1–3

Pattern 1

Pattern 2

Pattern 1

Pattern 2

Pattern 3

Pattern 4

Pattern 5

Pattern 6

Rule 

2
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The third rule 
is a bit tricky, 
so don't lose 
concentration.

Okay!

Let's start 
by making an 
agreement.

?

The next step is to find 
all the places where two 
terms aren't in the natural 
order—meaning the places 
where two indexes have to 
be switched for them to be 

in an increasing order.

We gather all this 
information into a 

table like this. Whoa.
Then we count 

how many switches 
we need for 
each term.

 If the number is 
even, we write the 
term as positive. If 
it is odd, we write 

it as negative.

Squeeze

We will say that the right index  
is in its natural order if

That is, indexes have to be in  
an increasing order.

Switch

Switch

Pattern 1

Pattern 2

Pattern 3

Pattern 4

Pattern 5

Pattern 6

Pattern 1

Pattern 2

Permutations 
of 1–2

Permutations 
of 1–3

Corresponding term 
in the determinant

Switches

Switches

and

and

and

and

and

and

and

and

and

and

Corresponding term 
in the determinant

Rule 

3
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 Like this. Hmm...

Try comparing our earlier 
determinant formulas with the 

columns “Corresponding term in 
the determinant” and “Sign.” Ah!

Wow,  
they're  

the same! Exactly, and that's 
the third rule.

Number of 
switches

Number of 
switches

Sign

Sign

Sign

Sign

and

and

and

and

and

and

and

and

and

and

Pattern 1

Pattern 2

Pattern 3

Pattern 4

Pattern 5

Pattern 6

Pattern 1

Pattern 2

Permutations 
of 1–2

Permutations 
of 1–3

Corresponding term 
in the determinant

Switches

Switches

Corresponding term 
in the determinant

Corresponding term 
in the determinant

Corresponding term 
in the determinant



Calculating Determinants  105

These three rules can 
be used to find the 
determinant of any 

matrix. Cool!

So, say we wanted 
to calculate the 

determinant of this 
4×4 matrix:

Using this information, 
we could calculate 

the determinant if we 
wanted to.

Agh!

Pa�ern 1 

Pa�ern 2

Pa�ern 3

Pa�ern 4

Pa�ern 5

Pa�ern 6

Pa�ern 7

Pa�ern 8

Pa�ern 9

Pa�ern 10

Pa�ern 11

Pa�ern 12

Pa�ern 13

Pa�ern 14

Pa�ern 15

Pa�ern 16

Pa�ern 17

Pa�ern 18

Pa�ern 19

Pa�ern 20

Pa�ern 21

Pa�ern 22

Pa�ern 23

Pa�ern 24

2 & 1

2 & 1

2 & 1

2 & 1

2 & 1

2 & 1

2 & 1

2 & 1

2 & 1

2 & 1

2 & 1

2 & 1

3 & 1

3 & 1

3 & 1

3 & 1

3 & 1

3 & 1

3 & 1

3 & 1

3 & 1

3 & 1

3 & 1

3 & 1

3 & 2

3 & 2

3 & 2

3 & 2

3 & 2

3 & 2

3 & 2

3 & 2

3 & 2

3 & 2

3 & 2

3 & 2

4 & 1

4 & 1

4 & 1

4 & 1

4 & 1

4 & 1

4 & 1

4 & 1

4 & 1

4 & 1

4 & 1

4 & 1

4 & 2

4 & 2

4 & 2

4 & 2

4 & 2

4 & 2

4 & 2

4 & 2

4 & 2

4 & 2

4 & 2

4 & 2

4 & 3

4 & 3

4 & 3

4 & 3

4 & 3

4 & 3

4 & 3

4 & 3

4 & 3

4 & 3

4 & 3

4 & 3

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

a
11

a11

a11

a11

a11

a11

a12

a12

a12

a12

a12

a12

a13

a13

a13

a13

a13

a13

a14

a14

a14

a14

a14

a14

a22

a22

a23

a23

a24

a24

a21

a21

a23

a23

a24

a24

a21

a21

a22

a22

a24

a24

a21

a21

a22

a22

a23

a23

a33

a34

a32

a34

a32

a33

a33

a34

a31

a34

a31

a33

a32

a34

a31

a34

a31

a32

a32

a33

a31

a33

a31

a32

a44

a43

a44

a42

a43

a42

a44

a43

a44

a41

a43

a41

a44

a42

a44

a41

a42

a41

a43

a42

a43

a41

a42

a41

2

2

3

3

4

4

1

1

3

3

4

4

1

1

2

2

4

4

1

1

2

2

3

3

3

4

2

4

2

3

3

4

1

4

1

3

2

4

1

4

1

2

2

3

1

3

1

2

4

3

4

2

3

2

4

3

4

1

3

1

4

2

4

1

2

1

3

2

3

1

2

1

0

1

1

2

2

3

1

2

2

3

3

4

2

3

3

4

4

5

3

4

4

5

5

6

+

−

−

+

+

−

−

+

+

−

−

+

+

−

−

+

+

−

−

+

+

−

−

+

Permutations
of 1–4 

Switches Sign
Num. of 

switches

 Co�esponding term
in the determinant



106  Chapter 4  More Matrices

If this is on 
the test, I'm 
done for...

Don't worry, 
most teachers 
will give you 

problems 
involving only 

2×2 and 3×3 
matrices.

I hope so...

I think that's 
enough for 

today. We got 
through a ton 

of new material.

Thanks, Reiji. 
You're the best!

Time really 
flew by, 
though...

...

Maybe I 
can...

Phew
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Jeez, 
Look at 

the time...

There 
shouldn't 
be anyone 

left in 
there at 

this hour.

Pow!
Do you 

need a bag 
for that?

Smack!

Biff!
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Calculating Inverse Matrices Using Cofactors

There are two practical ways to calculate inverse matrices, as mentioned on  
page 88.

•	 Using cofactors

•	 Using Gaussian elimination

Since the cofactor method involves a lot of cumbersome calculations, we 
avoided using it in this chapter. However, since most books seem to introduce 
the method, here’s a quick explanation.

To use this method, you first have to understand these two concepts:

•	 The (i, j)-minor, written as Mij

•	 The (i, j)-cofactor, written as Cij

So first we’ll have a look at these.

Mij

The (i, j)-minor is the determinant produced when we remove row i and column j 
from the n×n matrix A:

a11

a21

ai1

an1

a12

a22

ai2

an2

a1j

a2j

aij

anj

a1n

a2n

ain

ann

Mij = det

All the minors of the 3×3 matrix 

1

1

−2

0

1

0

0

−1

3

 are listed on the next page.
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Cij

If we multiply the (i, j)-minor by (−1)i+j, we get the (i, j)-cofactor. The standard way 
to write this is Cij. The table below contains all cofactors of the 3×3 matrix

1

1

−2

0

1

0

0

−1

3

M11 (1, 1) 

1

0

−1

3
det = 3

M31 (3, 1) 

0

1

0

−1
det = 0

M32 (3, 2) 

1

1

0

−1
det = −1

M21 (2, 1)

0

0

0

3
det = 0

M12 (1, 2)

1

−2

−1

3
det = 1

M13 (1, 3)

1

−2

1

0
det = 2

M23 (2, 3) 

1

−2

0

0
det = 0

M22 (2, 2) 

1

−2

0

3
det = 3

M33 (3, 3) 

1

1

0

1
det = 1

C11 (1, 1) 

1

0

−1

3
= (− 1)1+1 · det = (− 1)1+2 · det = (− 1)1+3 · det

= 1 · 3

= 3

= (− 1) · 0

= 0

= 1 · 3

= 3

= (− 1) · 0

= 0

= (− 1) · 1

= − 1

= 1 · 2

= 2

C31 (3, 1) 

0

1

0

−1
= (− 1)3+1 · det = (− 1)3+2 · det = (− 1)3+3 · det

C32 (3, 2) 

1

1

0

−1

C21 (2, 1)

0

0

0

3
= (− 1)2+1 · det = (− 1)2+2 · det = (− 1)2+3 · det

C12 (1, 2) 

1

−2

−1

3

C13 (1, 3) 

1

−2

1

0

C23 (2, 3) 

1

−2

0

0

C22 (2, 2)

1

−2

0

3

C33 (3, 3) 

1

1

0

1
= 1 · 0

= 0

= (− 1) · (− 1)

= 1

= 1 · 1

= 1
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The n×n matrix 

C11

C12

C1n

C21

C22

C2n

Cn1

Cn2

Cnn

which at place (i, j) has the (  j, i)-cofactor1 of the original matrix is called a 
cofactor matrix.

The sum of any row or column of the n×n matrix

a11C11

a12C12

a1nC1n

a21C21

a22C22

a2nC2n

an1Cn1

an2Cn2

annCnn

is equal to the determinant of the original n×n matrix

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

Calculating Inverse Matrices

The inverse of a matrix can be calculated using the following formula:

−1

= 1

C11

C12

C1n

C21

C22

C2n

Cn1

Cn2

Cnn

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

det

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

1. This is not a typo. (  j, i )-cofactor is the correct index order. This is the transpose of the matrix with 
the cofactors in the expected positions.
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For example, the inverse of the 3×3 matrix

1

1

−2

0

1

0

0

−1

3

is equal to

1
1

1

−2

0

1

0

0

−1

3

3

−1

2

0

3

0

0

1

1

3

−1

2

0

3

0

0

1

1

−1

= =
1
3

det

1

1

−2

0

1

0

0

−1

3

Using Determinants

The method presented in this chapter only defines the determinant and does 
nothing to explain what it is used for. A typical application (in image processing, 
for example) can easily reach determinant sizes in the n = 100 range, which with 
the approach used here would produce insurmountable numbers of calculations. 

Because of this, determinants are usually calculated by first simplifying them 
with Gaussian elimination–like methods and then using these three properties, 
which can be derived using the definition presented in the book:

•	 If a row (or column) in a determinant is replaced by the sum of the row 
(column) and a multiple of another row (column), the value stays unchanged.

•	 If two rows (or columns) switch places, the values of the determinant are mul-
tiplied by −1.

•	 The value of an upper or lower triangular determinant is equal to the product 
of its main diagonal.

The difference between the two methods is so extreme that determinants that 
would be practically impossible to calculate (even using modern computers) with 
the first method can be done in a jiffy with the second one.

Solving Linear Systems with Cramer's Rule

Gaussian elimination, as presented on page 89, is only one of many methods 
you can use to solve linear systems. Even though Gaussian elimination is one 
of the best ways to solve them by hand, it is always good to know about alterna-
tives, which is why we’ll cover the Cramer’s rule method next.�
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3x1 + 1x2 = 1

1x1 + 2x2 = 0

Use Cramer’s rule to solve the following linear system:

3x1 + 1x2 = 1

1x1 + 2x2 = 0

Step 1

Step 2

Step 3 Replace each column with 
the solution vector to get the 
corresponding solution:

Make sure that

If we rewrite

We have

a11x1 + a12x2 + + a1nxn = b1

a21x1 + a22x2 + + a2nxn = b2

an1x1 + an2x2 + + annxn = bn

x1

x2

xn

b1

b2

bn

=

xi =

Column i

=
3

1

1

2

x1

x2

1

0

Rewrite the system

like so: we get

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

det ≠0

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

det = 3 · 2 − 1 · 1 ≠ 0
3

1

1

2

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

b1

b2

bn

det

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

a1i

a2i

ani

det

x1 = = =
3

1

1

2
det

1

0

1

2
det

1 · 2 − 1 · 0

5

2

5
•

x2 = = = −
3

1

1

2
det

3

1

1

0
det

3 · 0 − 1 · 1

5

1

5
•

Problem??

Solution!!

?  Problem

!  Solution
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One more 
minute!

Ossu!

Ossu!

You can 
do better 
than that!

Put your back 
into it!

Great!

M-more!
 Let's leave 

it at that for 
today.

Pant

Smack

Bam

Bam

Pant

Pant

Pant
Wheeze
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 Just one more 
round!

 I can do 
more!

You can 
barely even 

stand!

Ossu!

Heheh,  
fine by me!

I haven't 
gotten stronger 

at all yet!

 Uwa!!

Thump
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What Are 
Vectors?

They appear quite 
frequently in Linear 

algebra, so pay close 
attention.

Of course!

reiji, are you 
okay?

Do you want 
to meet 

tomorrow 
instead?

No, I'm okay. 
Just give me 
five minutes 
to digest 

this delicious 
lunch, and I'll 

be great!

Sorry 
about that! 

Ready?

Let's talk 
vectors!

vectors  
are actually just a 

special interpretation 
of matrices.

really?

Fundamentals

Matrices Vectors

Linear 
Transformation

Eigenvalues and 
eigenvectors

5 minutes 
later

We're going to 
take a look at 
vectors today. 

b
a
s
ic

s

Fundamentals

Matrices Vectors

Linear 
transformation

Eigenvalues and 
eigenvectors

b
a
s
ic

s

course Layout

Fwump

Revived
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What kind 
of inter-

Pretation?

I think it'll 
be easier 
to explain 
using an 
example...

Minigolf 
should make 
an excellent 

metaphor.

Minigolf?

don't be 
intimidated—my 
putting skills 

are pretty 
rusty.

Haha— 
mine 
too!

Our course 
will look 
like this.

We'll use 
coordinates to 

describe where the 
ball and hole are 
to make explaining 

easier.

That means that 
the starting point 
is at (0, 0) and that 
the hole is at (7, 4), 

right?

Starting point

x2

4

7 x1
O
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Player 1

Reiji Yurino

Replay

Stroke information

I went first. 
I played conservatively 
and put the ba� in with 

thr� strokes.

x2

4

1

3 7 x1
O

first stroke Second stroke Third stroke
x2

4
3

4 7 x1
O

x2

4

7 x1
O

First stroke

Point (3, 1)

(3, 1)

Second stroke 

Point (4, 3)

Third stroke

Point (7, 4)Ball position

Ball position 
relative to its 
last position

Ball movement 
expressed in the form 
(to the right, up)

   (3, 1) + (1, 2)
= (4, 3)

1 to the right and 
2 up relative to (3, 1)

   (3, 1) + (1, 2) + (3, 1) 
= (7, 4)

3 to the right and 
1 up relative to (0, 0)

3 to the right and 
1 up relative to (4, 3)
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Player 2

Misa Ichinose

REPLAY

Stroke information

first stroke Second stroke

Point (10, 10)

(10, 10)

Point (7, 4)

   (10, 10) + (−3, −6)
= (7, 4)

−3 to the right and 
−6 up relative to (10, 10)

10 to the right and 
10 up relative to (0, 0)

Ball position

Ball position 
relative to its 
last position

Ball movement 
expressed in the form 
(to the right, up)

You gave the ba� a g�d 
wa�op and put the ba� in 

with two strokes.

x2

4

10

107 x1
O

x2

4

10

107 x1
O

Ah—

First stroke Second stroke

T� 
hard!
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Player 3

Tetsuo Ichinose

REPLAY

Stroke information

And your brother got 
a hole-in-one...of course.

x2

4

7 x1
O

first stroke

First stroke

Point (7, 4)

(7, 4)

Ball position

Ball position 
relative to its 
last position

Ball movement 
expressed in the form 
(to the right, up)

7 to the right and 
4 up relative to (0, 0)

Yay
big bro!Observe  

my exercise 
 in skill!
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Well, at least we 
all made it in!

Try to remember 
the minigolf 

example while 
we talk about the 
next few subjects.

Vectors can be 
interpreted in four 
different ways. Let 
me give you a quick 

walk-through of all 
of them.

7

4

I'� use the 
1×2 matrix (7, 4) 

and the 2×1 matrix     

to make things 
simpler.

Okay.

1×n matrices and n×1 matrices
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The point (7, 4)

x2

4

7 x1
O

x2

4

7 x1
O

x2

4
3

743 x1
O

x2

4

1

10

107 x1
O

Interpretation 1

Interpretation 2

Interpretation 3

interpreted as a point in space.

7

4
(7, 4) and       are sometimes

In other cases, (7, 4) and
7

4

are interpreted as the 
“a
ow” from the origin

to the point (7, 4).

(7, 4) and
7

4

can mean the 
sum of several 
a
ows equal 

to (7, 4).

And in yet 
other cases, 



What Are Vectors?  123

x2

4

7 x1
O

Interpretation 4
7

4
Fina�y, (7, 4) and       can also 

be interpreted as any of 
the a	ows on my left, or

a� of them at the same time!

Hang on a second.  
I was with you until 

that last one... 7

4

How could a�
of them be

representations of

(7, 4) and        

when they start 
in completely 

di	erent
places?

While they do start 
in different places, 

they're all the same in 
that they go “seven to 
the right and four up,” 

right?

Yeah, I guess 
that's true!
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Vectors are 
kind of a 

mysterious 
concept, don't 

you think?

Well, they may 
seem that way 

at first.

but...

Once you've got the 
basics down, you'll be 
able to apply them to 

all sorts of interesting 
problems.

For example,  
they're frequently 
used in physics to 
describe different 
types of forces.

Cool!

Putting force

Gravitational force
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Vector Calculations

Even though vectors  
have a few special 

interpretations, they're all 
just 1×n and n×1 matrices...

And they're 
calculated in the 
exact same way.

= (3 · 1 + 1 · 2) = 5

•  (10, 10) + (−3, −6) = (10 + (−3), 10 + (−6)) = (7, 4)

•  (10, 10) − (3, 6) = (10 − 3, 10 − 6) = (7, 4)

•  2(3, 1) = (2 · 3, 2 · 1) = (6, 2)

•  

•  

•  

•  

•  (3, 1)

•  

A�ition

10

10

7

4

−3

−6
+

10 + (−3)

10 + (−6)
= =

Subtraction

10

10

7

4

3

6
−

10 − 3

10 − 6
= =

Scalar multiplication

6

2

3

1
2

2 · 3

2 · 1
= =

Matrix Multiplication

3

1

6

2

3

1

1

2

3 · 1   3 · 2

1 · 1   1 · 2
(1, 2) = =

8

2

−3

1

3

1

3

1
=

21

7

8 · 3 +  (−3) · 1

2 · 3 +      1 · 1
= = 7

Simple!
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Horizontal 
vectors like this 
one are called 
row vectors.

And vertical 
vectors are 

called column 
vectors.

Makes 
sense.

We also call the set of  
all n×1 matrices Rn.

Sure,  
why not...

Rn appears a 
lot in linear 
algebra, so 

make sure you 
remember it.

No 
problem.

W
h
e
n
 w

r
it

in
g

 v
e
c
t
o

r
s
 b

y
 h

a
n
d
, 
w

e
 

u
s
u
a
ll

y
 d

r
a
w

 t
h
e
 l

e
f
t
m

o
s
t
 l

in
e
 

d
o

u
b
l
e
, 
l
ik

e
 t

h
is

.

All 2×1 
vectors 

All 3×1 
vectors

All n×1 
vectors
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Geometric 
Interpretations

Let's have a look at 
how to express points, 

lines, and spaces 
with vectors.

The notation might 
look a bit weird at 
first, but you'll get 

used to it.

 the point (0, c)

x2

x1
O

x2

x1
O

0

1
c

x2

x1
O

x2

x1
O

0

1

the x2-axis

x2

x1
O

x2

x1
O

x1 = 3

A point

An axis

A straight line

Let's say that c is an 
arbitrary real number. 
Can you s� how
the point (0, c)
and the vector c 
are related?

0

1
c

c is an arbitrary 
real number

Do you understand 
this notation?

0
1

c c is an arbitrary 
real number

Even the straight line x1 = 3 
can be expre�ed as:

+ c
1

0

0

1
3

c is an arbitrary 
real number

+ c
1

0

0

1
3

c is an 
arbitrary 
real number

“|” can be read 
as “where.”

Yup.

Yeah.

No 
problem.
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x2

x1O

0

1
+ c2

1

0
c1

c1, c2 are arbitrary 
real numbers

And the x1x2 plane R2 can be expre�ed as:

0

1
+ c2

1

0
c1

c1, c2 are arbitrary 
real numbers

It can also be wri
en another way:

1

2
+ c2

3

1
c1

c1, c2 are arbitrary 
real numbers

1

2
+ c2

3

1
c1

c1, c2 are arbitrary 
real numbers

x2

x1
O

A plane

Another plane

Sure 
enough!

Hmm... 
so it's like a 

weird, slanted 
drawing board.
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The thr�-dimensional space R3 is the natural next step. 
It is spa	ed by x1, x2, and x3 like this:

Now try to imagine the n-dimensional space Rn, 
spa	ed by x1, x2, ..., xn: 

x2

x3
x1

A vector space

Another vector space

c1 + c2

1

0

0

0

1

0

0

0

1

+ c3

c1, c2, c3 are arbitrary 
real numbers

+ c2  + … + cnc1

1

0

0

0

1

0

0

0

1

c1, c2, ..., cn are arbitrary
real numbers

c1 + c2

1

0

0

0

1

0

0

0

1

+ c3

c1, c2, c3 are arbitrary 
real numbers

Sounds 
familiar.

I understand 
the formula, 
but this one's 
a little harder 
to visualize...
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Whoo, I'm beat!

Let's take a 
break, then. Good 

idea!

By the way, 
Reiji...

why did you 
decide to join 

the karate club, 
anyway?

Eh?

Um, 
well... No special 

reason 
really...

Hey!

We'd better 
get back to 

work!

?
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6
More Vectors

we're 
linearly...

independent!

They're 
bases.

Yeah,  
bases!

Definitely 
bases.
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Linear Independence

Well then, 
let's have a 

look at linear 
independence 

and bases.

The two are 
pretty similar...

 I'll try 
not to.

Why don't we start 
off today with a 

little quiz?

Sure.

Problem 1??
Find the constants c1 and c2 satisfying 
this equation:

0

1
+ c2

1

0
= c1

0

0

Question one.

Right.

But we don’t 
want to mix 

them up, okay?

?  Problem 1



Correct!

It is.

Well then, 
question two.

Last one.

...

Problem 2??
Find the constants c1 and c2 satisfying this equation:

1

2
+ c2

3

1
= c1

0

0

c2 = 0

c1 = 0

Problem 3??
Find the constants c1, c2, c3, and c4 satisfying this equation:

0

1
+ c2

1

0
= c1

0

0

3

1
+ c3

1

2
+ c4

That's easy.

c2 = 0

c1 = 0

Isn't that also
?  Problem 2

?  Problem 3



c2 = 0

c1 = 0

c4 = 0

c3 = 0

Not quite.

?

0

1
+ 2

1

0
= 1

0

0

3

1
+ 0

1

2
− 1

0

1
− 3

1

0
= 1

0

0

3

1
− 1

1

2
+ 2

2

x2

1 x1O

x2

1 x1O

−3

−4

− 2

 Try to keep this 
in mind while we 
move on to the 
main problem.

You're 
right...

Again?

c2 = 0

c1 = 0

c4 = 0

c3 = 0

isn't 
wrong, 

but...

c2 =   2

c1 =   1

c4 = −1

c3 =   0

c2 = −3

c1 =   1

c4 =   2

c3 = −1
and

are other 
possible answers.
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 Linear 
independence is 

sometimes called 
one-dimensional 
independence...

Ah...

And linear 
dependence 
is similarly 

sometimes called 
one-dimensional 

dependence.

As long as there is 
only one unique solution

to problems such as 
the first or second examples:

c2 = 0

c1 = 0

cn = 0

..
.

..
.

..
.

..
.

..
. = c1 + c2 + … + cn

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

0
0

0

are linearly independent.

We say that its vectors

..
.

a11

a21

am1

..
.

a12

a22

am2

..
.

a1n

a2n

amn

, and,

..
.

a11

a21

am1

..
.

a12

a22

am2

..
.

a1n

a2n

amn

, and,

are called linearly dependent.

Their vectors

c2 = 0

c1 = 0

cn = 0

..
.

As for problems like the 
third example, where there 
are solutions other than

No 
matter 
what 

we do!

We can  
never return 

to the  
origin.

Linear independence

Linear dependence

If we

All work 
together 

we can Get 
back to

the 
origin!

Weee!
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Here are some examples. Let's l�k at 
linear independence first.

Example 1

x2

x3

1

1

1
O

x1

The vectors       ,      , and            

1

0

0

0

1

0

0

0

1

give us the equation

which has the unique solution             

The vectors are therefore linearly independent.

c1 = 0

c2 = 0

c3 = 0

= c1 + c2 + c3

1

0

0

0

1

0

0

0

1

0

0

0

Example 1
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x2

x3

1

1

O
x1

Example 2

The vectors        and

1

0

0

0

1

0

give us the equation

which has the unique solution

These vectors are therefore also linearly independent.

c1 = 0

c2 = 0

= c1 + c2

1

0

0

0

1

0

0

0

0

This one 
too?

Example 2
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And now we’� l�k at linear dependence.

x2

x3

1
3

1

O

x1

The vectors      ,      , and            

1

0

0

0

1

0

3

1

0

give us the equation

which has several solutions, for example              and

This means that the vectors are linearly dependent.

c1 = 0

c2 = 0

c3 = 0

= c1 + c2 + c3

1

0

0

0

1

0

3

1

0

0

0

0

c1 =   3

c2 =   1

c3 = −1

Example 1Example 1
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Example 2

are similarly linearly dependent because there are several 
solutions to the equation

Suppose we have the vectors      ,      ,      , and 

1

0

0

0

1

0

0

0

1

a1

a2

a3

as well as the equation = c1 + c2 + c3

1

0

0

0

1

0

0

0

1

0

0

0

+ c4

a1

a2

a3

The vectors are linearly dependent because there are several 
solutions to the system—

for example,               and

c1 = 0

c2 = 0

c3 = 0

c4 = 0

c1 = a1

c2 = a2

c3 = a3

c4 = −1

The vectors       ,       ,       , and

a1

a2

am

1

0

0

0

1

0

0

0

1

+ … + cm= c1

a1

a2

am

0

0

0

1

0

0

0

1

0

0

0

1

+ cm+1+ c2

Among them is                   but also

c1    = 0

c2    = 0

 

cm   = 0

cm+1 = 0

c1    = a1

c2    = a2

cm   = am

cm+1 = −1

Example 2
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Bases

Here are three 
more problems.

Mhmm.

First one.

Problem 4??
Find the constants c1 and c2 satisfying this equation:

0

1
+ c2

1

0
= c1

7

4

It kinda looks 
like the other 

problems...

x2

4

7 x1
O

0

1
+ 4

1

0
= 7

7

4

c1 = 7

c2 = 4

Correct!

should work.

?  Problem 4
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Here's the 
second one.

Let's see...

Problem 5??
Find the constants c1 and c2 satisfying this equation:

1

2
+ c2

3

1
= c1

7

4

x2

4

7 x1
O

1

2
+ 1

3

1
= 2

7

4

c1 = 2

c2 = 1

Correct 
again!

You're 
really 

good at 
this!

Well those were 
pretty easy...

Right?

?  Problem 5
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Problem 6??
Find the constants c1, c2, c3, and c4 satisfying 
this equation:

0

1
+ c2

1

0
= c1

7

4

3

1
+ c3

1

2
+ c4

Last one.
Ah, it has lots of 

possible solutions, 
doesn't it?

Sharp 
answer!

c1 = 7

c2 = 4

c3 = 0

c4 = 0

c1 = 0

c2 = 0

c3 = 2

c4 = 1

c1 =   5

c2 = −5

c3 = −1

c4 =   5

There's             and             and of course               ...

That's 
enough.

x2

4

7 x1
O

0

1
− 5

1

0
= 5

7

4

3

1
− 1

1

2
+ 5

Hm!
?  Problem 6
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Linear dependence and independence are 
closely related to the concept of a basis.
Have a look at the following equation:

where the left side of the equation is an 
arbitrary vector in Rm and the right side 
is a number of n vectors of the same 
dimension, as well as their coefficients. 

If there's only one solution
c1 = c2 = ... = cn = 0 
to the equation, then our vectors 

make up a basis for Rn.

= c1 + c2 + … + cn

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

y1

y2

ym

, , … ,

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

Does that mean that the solution 

for problem 4 

for problem 5 are bases, 
but the solution 

and the solution 

1

0

0

1
,

3

1

1

2
,

1

0

0

1

3

1

1

2
, , ,

for problem 6 isn't? Exactly!

Here are some 
examples of what 
is and what is not 

a basis. Okay.

Point

Point

Point

Basis

There's 
only one 

solution to 
c1 and c2

For us!

For us

too!

Which  
ones 

should 
we use...

There are so 
many different 

ways!

oo,  
I don't 
know!

What do we 
dooo?
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A� these vector sets make up bases 
for their graphs.

In other words, a basis is a minimal set of 
vectors n�ded to expre� an arbitrary 
vector in Rm. Another important feature of 
bases is that they're a� linearly independent.

1

0

0

1
,The set

3

1

1

2
,

The set ,
1

0

0

,
0

1

0

0

0

1

The set ,
3

0

0

,
0

0

−5

1

2

−1

The set

x2

1

1 x1
O

x2

1

2

1 3 x1
O

x2

x3

1

1

1
O

x1

x2

x3

1
3

2 −5

−1

O

x1
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The vectors of the fo�owing set do not 
form a basis.

1

0

0

1
, 3

1
, 1

2
,The set 

To understand why they don't form a basis, 
have a l�k at the fo�owing equation:

x2

1

2

1 3 x1O

= c1

y1

y2

1

0

0

1
+ c2

3

1
+ c3

1

2
+ c4

where        is an arbitrary vector in R2. 

      can be formed in many di�erent ways 

(using di�erent choices for c1, c2, c3, and c4). 

Because of this, the set does not form “a 
minimal set of vectors n�ded to expre­ 
an arbitrary vector in Rm.” 

y1

y2y1

y2
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Neither of the two vector sets below is able 

to describe the vector      , and if they can’t

describe that vector, then there's no way that 
they could describe “an arbitrary vector in R3.” 
Because of this, they're not bases.

,The set

1

0

0

0

1

0

,The set

1

0

0

,
0

1

0

1

2

0

0

0

1

,

1

0

0

,

0

1

0

0

0

1

Just because a set of vectors is linearly 
independent doesn't mean that it forms a basis. 

For instance, the set                     forms a basis, 

while the set                does not, even though 

they're both linearly independent.

,

1

0

0

0

1

0

x2

x3

1

1

O
x1

x2

x3

1

1

O

2

x1



Bases  147

Linear Independence

= c1 + c2 + … + cn

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

0
0

0

c1 = 0
c2 = 0

cn = 0

where the left side is the zero vector of Rm.

to the equation

if there’s only one solution

We say that a set of vectors                                          is linearly independent

, … ,

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

,A set of vectors                                          forms a basis if there’s only

y1

y2

ym

where the left side is an arbitrary vector          in Rm. And once again, a basis 

is a minimal set of vectors needed to express an arbitrary vector in Rm.

y1

y2

ym

= c1 + c2 + … + cn

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

one solution to the equation

, … ,

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

,

Since bases and linear independence are 
confusingly similar, I thought I'd talk a bit 
about the di�erences betw�n the two.

Bases
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So...

While linear 
independence is about 

finding a clear-cut path 
back to the origin, 

We're

linearly 
independent!

They're 
bases.

They 
are.

Yep.

Exactly!

Not a lot of 
people are 

able to grasp 
the difference 
between the 

two that fast! 
I must say I'm 

impressed!

No big deal!

That's all for 
tod—

Ah, wait a 
sec!

bases are about finding 
clear-cut paths to any 

vector in a given space Rm?



Dimension  149

Dimension

You know, 
I've been 
thinking.

It's kind of obvious 
that a basis is made 
up of two vectors 
when in R2 and three 
vectors when in R3.

2 dimensions 

R2

3 dimensions 

R3

 Set

 Set

But why is it that 
the basis of an 
m-dimensional 

space consists of n 
vectors and not m?

Oh, wow... 
I didn't think 
you'd notice...

To answer that, 
we'll have to take 
a look at another, 

more precise 
definition of 

bases.

There's also a 
more precise 
definition of 

vectors, which 
can be hard to 

understand.

I'm up 
for it!
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You sure? I— 
I think so.

It's actually not 
that hard—just a 
little abstract. 

But first we have to 
tackle another new 
concept: subspaces.

So let's talk 
about them.

Subspace

It's kinda 
like this.

So it's 
another 

word for 
subset?

No, not 
quite. Let me 

try again.

Let's have a look, 
since you asked 

and all.

Subspaces

O-okay...
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This is the 
definition.

This picture 
illustrates 

the 
relationship.

Umm...

What Is a Subspace?

Let c be an arbitrary real number and W be a nonempty subset of 
Rm satisfying these two conditions:

   An element in W multiplied by c is still an element in W. (Closed 
under scalar multiplication.)

If both of these conditions hold, then W is a subspace of Rm.

If           ∈ W, then c           ∈ W

a1i

a2i

ami

a1i

a2i

ami

If           ∈ W and           ∈ W, then           +           ∈ W 

a1j

a2j

amj

a1i

a2i

ami

a1j

a2j

amj

a1i

a2i

ami

   The sum of two arbitrary elements in W is still an element in W. 
(Closed under addition.)
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, in other words, the x-axis.

Let’s have a look at the subspace in R3 defined by the set

If it really is a subspace, it should satisfy the two conditions we talked 
about before.

It seems like they do! This means it actually is a subspace.

This Is a Subspace

It's pre�y abstract, so you might have to read it a 
few times before it starts to sink in. 

Another, more concrete way to l�k at one-
dimensional subspaces is as lines through the origin. 
Two-dimensional subspaces are similarly planes through 
the origin. Other subspaces can also be visualized, but 
not as easily. 

I made some examples of spaces that are subspaces—
and of some that are not. Have a l�k!

α is an 
arbitrary 
real number

α
0

0

   c        =          ∈
α is an 
arbitrary 
real number

α
0

0

α1

0

0

cα1

0

0

         +        =             ∈
α is an 
arbitrary 
real number

α
0

0

α1

0

0

α2

0

0

α1+α2

0

0

α
0

0

x2

x3

O

x1
α
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This Is Not a subspace

Let’s use our conditions to see why:

The set doesn’t seem to satisfy either of the two conditions, 
and therefore it is not a subspace!

The set                                   is not a subspace of R3.
α is an 
arbitrary 
real number

α
α2

0

I'd imagine you might think that “Both  and  hold 
if we use α1 = α2 = 0, so it should be a subspace!” 

It's true that the conditions hold for those values, 
but since the conditions have to hold for arbitrary 
real values—that is, a� real values—it's just not 
enough to test with a few chosen numerical examples. 
The vector set is a subspace only if both conditions 
hold for a� kinds of vectors. 

If this sti� doesn't make sense, don’t give up! This 
is hard!

   c          =            ≠             ∈
α is an 
arbitrary 
real number

α
α2

0

α1

α1
2

0

cα1

cα1
2

0

cα1

(cα1)
2

0

            +          =                 ≠                 ∈
α is an 
arbitrary 
real number

α
α2

0

α1

α1
2

0

α2

α2
2

0

α1+α2

α1
2+α2

2

0

α1+α2

(α1+α2)
2

0

 I think 
I get it...

It'll make  
more sense after 

solving a few 
problems.
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The fo�owing subspaces are ca�ed linear 
spans and are a bit special.

What Is a Linear Span?

We say that a set of m-dimensional vectors

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

         ,           , ... ,            span the following subspace in Rm:

c1 + c2 + … + cn

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

c1, c2, and cn are 
arbitrary numbers

This set forms a subspace and is called the linear span of the n original
vectors.

3

1

1

2

x2

1

2

1 3 x1
O

Example 1

3

1

1

2
c1 + c2

c1 and c2 are 
arbitrary numbers

The x1x2-plane is a subspace of R2 and can, for example, be spanned by using 

the two vectors       and        like so: 

Example 1
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Rm is also a subspace of itself, as you might 
have gue�ed from example 1.

A� subspaces contain the zero factor, 
which you could probably te� from 
l�king at the example on page 152. 
Remember, they must pa� through the 
origin!

0

0

0

x2

x3

1

1

O
x1

Example 2

The x1x2-plane could also be a subspace of R3, and we could span it using the 

vectors         and       , creating this set:

x
1x2-plane

1

0

0

0

1

0

c1 + c2

1

0

0

0

1

0

c1 and c2 are 
arbitrary numbers

Example 2
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Sorry for 
the wait.

Here are the 
definitions of basis 

and dimension.

What Are Basis and dimension?

Suppose that W is a subspace of Rm and that it is spanned by the 

This could also be written as follows:

When this equality holds, we say that the set                                           
forms a basis to the subspace W.

The dimension of the subspace W is equal to the number of vectors 
in any basis for W.

linearly independent vectors          ,           , and          .

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

,          , … ,

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

c1 + c2 + … + cn

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

c1, c2, and cn are 
arbitrary numbers

W =

“The dimension of the 
subspace W ” is usually 

written as dim W.

I’m a little 
lost...

Hmm...

Basis and Dimension
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This example might clear things up a li�le.

Example

Let’s call the x1x2-plane W, for simplicity’s sake. So suppose that W is 
a subspace of R3 and is spanned by the linearly independent vectors

       and       .

x2

x3

O

x1

1

1

3

2
x

1x2-plane

We have this:

The fact that this equality holds means that the vector set

is a basis of the subspace W. Since the base contains two vectors, 
dim W = 2.

,

3

1

0

1

2

0

3

1

0

1

2

0

W = c1 + c2

3

1

0

1

2

0

c1 and c2 are 
arbitrary numbers

I see!

Example
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What do you 
think? Were 
you able to 

follow?

Sure!
It's like this, 

right?
You 

got it!

 That's enough 
for today.

Thanks for all 
the help.

Let's talk 
about linear 

transformations 
next time.

It's also an 
important 

subject, so come 
prepared!

Of 
course!

Oh, looks 
like we're 
going the 
same way...

three dimensions If the subspace's basis 
has two vectors, then the 
dimension of the subspace 

has to be two.

Fun as 
always!
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…

Umm, I didn't 
really answer 
your question 

before...

?

 I joined the 
karate club 
because...

I'm tired of 
being such 

a wimp.

I want to get 
stronger.

That way I can...

Well...
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I guess 
you'll be 
needing...

...a lot more 
homemade 

lunches, then!

Wha—?

To survive my 
brother's reign 

of terror, that is. 
Don't worry, I'll 

make you my super 
special stamina-lunch 
extravaganza every 
week from now on!

Thank you,  
Misa.

Hehe, don't 
worry 'bout it!
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Coordinates

Coordinates in linear algebra are a bit different from the coordinates explained 
in high school. I’ll try explaining the difference between the two using the image 
below.

O

x2

4

7 x1
O

u2x2

1
2

u1

x1xO

point (7, 4)

point

0

1
+ 4

1

0

7

4
= 7

point (2, 1)

1

2
+ 1

3

1

7

4
= 2

When working with coordinates and coordinate systems at the high school 
level, it’s much easier to use only the trivial basis: 

 , … ,

1

0

0

0

1

0

0

0

1

,

In this kind of system, the relationship between the origin and the point in 
the top right is interpreted as follows:

O

x2

4

7 x1
O

u2x2

1
2

u1

x1xO

point (7, 4)

point

0

1
+ 4

1

0

7

4
= 7

point (2, 1)

1

2
+ 1

3

1

7

4
= 2
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It is important to understand that the trivial basis is only one of many bases 
when we move into the realm of linear algebra—and that using other bases pro-
duces other relationships between the origin and a given point. The image below 
illustrates the point (2, 1) in a system using the nontrivial basis consisting of 

the two vectors
1

2
and u2 =

3

1
u1 = .

This alternative way of thinking about coordinates is very useful in factor 
analysis, for example.

O

x2

4

7 x1
O

u2x2

1
2

u1

x1xO

point (7, 4)

point

0

1
+ 4

1

0

7

4
= 7

point (2, 1)

1

2
+ 1

3

1

7

4
= 2
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A practice match 
with Nanhou 
University?

That’s Right!  
We go head-to-head 

in two weeks.

A match, huh? 
I guess I'll 
be sitting 

it out.

Yurino!

You're 
in.

 What?!

For 
real?

Um, sensei? 
Isn't it a bit 
early for...

Are you telling 
me what to do?

Oh no! Of 
course not!

S 
l 
a 
m

164  Chapter 7
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I'll be 
looking 
forward 
to seeing 

what you've 
learned 
so far!

Understood?

Ossu! 

Of  
course!

Great.  
Dismissed!

A match...

What am I 
going to do... Stop thinking 

like that! He’s 
giving me this 
opportunity.

I have to do 
my best.

Shudder



It seems we've 
finally arrived 

at linear 
transformations!

Let's start with 
the definition.

Sounds good.

We touched 
on this a bit in 

Chapter 2.

Yeah...

But this 
definition 
is actually 
incomplete.

What Is a Linear 
Transformation? Course layout

Fundamentals

Matrices Vectors

Linear 
transformations 

Eigenvalues and 
eigenvectors

P
r
e
p
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Linear Transformations

Let xi and xj be two arbitrary elements, c an arbitrary 
real number, and f a function from X to Y.

We say that f is a linear transformation from X to Y if it 
satisfies the following two conditions:

 f(xi) + f(xj) and f(xi + xj) are equal

 cf(xi) and f(cxi) are equal
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I think you’re 
ready for the 
real one now!

Eep!

x1i

x2i

xni

x1j

x2j

xnj

Linear Transformations

Let          and          be two arbitrary elements from Rn, c an arbitrary real 
                                    number, and f a function from Rn to Rm. 

We say that f is a linear transformation from Rn to Rm if it satisfies the 
following two conditions:

A linear transformation from Rn to Rm is sometimes called a linear map or 
linear operation.

 f            + f            and f                   are equal.

x1i + x1j

x2i + x2j

xni + xnj

x1j

x2j

xnj

x1i

x2i

xni

 cf            and f  c          are equal.

x1i

x2i

xni

x1i

x2i

xni

So... 
we're dealing with 
vectors instead of 

numbers?

Exactly!

L i n ea r

sfor m at io n s
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And if f is a linear 
transformation from 

Rn to Rm...

Then it shouldn't be a 
surprise to hear that f can be 

written as an m×n matrix.

Um...it 
shouldn’t?

Have a look at 
the following 

equations.
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x1j

x2j

xnj

x1i

x2i

xni

x1i + x1j

x2i + x2j

xni + xnj

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

x1i + x1j

x2i + x2j

xni + xnj

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

x1i

x2i

xni

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

x1j

x2j

xnj

+

a11x1i + a12x2i + … + a1nxni

a21x1i + a22x2i + … + a2nxni

am1x1i + am2x2i + … + amnxni

a11x1j + a12x2j + … + a1nxnj

a21x1j + a22x2j + … + a2nxnj

am1x1j + am2x2j + … + amnxnj

+=

=

a11(x1i + x1j) + a12(x2i + x2j) + … + a1n(xni + xnj)

a21(x1i + x1j) + a22(x2i + x2j) + … + a2n(xni + xnj)

am1(x1i + x1j) + am2(x2i + x2j) + … + amn(xni + xnj)

=

 We’ll verify the first rule first:      f           + f           =  f

We just replace f with a matrix, then simplify:

Uh-huh.
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x1i

x2i

xni

x1i

x2i

xni

 Now for the second rule:       cf           =   f  c

c

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

x1i

x2i

xni

=

a11(cx1i) + a12(cx2i) + … + a1n(cxni)

a21(cx1i) + a22(cx2i) + … + a2n(cxni)

am1(cx1i) + am2(cx2i) + … + amn(cxni)

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

cx1i

cx2i

cxni

=

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

=

x1i

x2i

xni

c

c=

a11x1i + a12x2i + … + a1nxni

a21x1i + a22x2i + … + a2nxni

am1x1i + am2x2i + … + amnxni

Again, just replace f with a matrix and simplify:

Oh, 
I see!
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We can demonstrate the same thing visua�y. 

We’� use the 2×2 matrix               as f.

 We’ll show that the first rule holds:

x2

x1

x2j

x2i

x1ix1jO

R2

x2

x1

a11(x1i + x1j) + a12(x2i + x2j)

a21(x1i + x1j) + a22(x2i + x2j)

O

R2

x2

x1

x2i + x2j

x1i + x1jO

R2

x2

x1

a11x1i + a12x2i

a21x1i + a22x2i

a11x1j + a12x2j

a21x1j + a22x2j

O

R2

If you 
multiply 
first...

then 
multiply...

If you 
a� first...

then 
a�...

You get the same final result!

a11

a21

a12

a22

x1i

x2i

x1j

x2j

+ =
x1i + x1j

x2i + x2j

a11

a21

a12

a22

a11

a21

a12

a22

a11

a21

a12

a22
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If you 
multiply 
by the 
matrix
first...

then 
multiply 
by the 
matrix...

If you multiply 
by c first...

then multiply 
by c...

x2

x1

x2i

x1iO

R2

x2

x1a11x1i + a12x2i

a21x1i + a22x2i

O

R2

x2

x1

cx2i

cx1iO

R2

x2

x1
a11(cx1i) + a12(cx2i)

a21(cx1i) + a22(cx2i)

O

R2

You get the same final result!

c And the second rule, too:  c                         =
x1i

x2i

a11

a21

a12

a22

x1i

x2i

a11

a21

a12

a22

Awesome!
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So when f is a linear transformation from 
Rn to Rm, we can also say that f is equivalent 

to the m×n matrix that defines the 
linear transformation from Rn to Rm.

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

Now I get it!

Why We Study Linear Transformations

So...What are 
linear transformations 

good for, exactly?

They seem pretty 
important. I guess 
we'll be using them 
a lot from now on?

Well, it's not 
really a question 
of importance...

So why do 
we have to 
study them?

Well...

That's  
exactly what I 
wanted to talk 

about next.



Consider the linear transformation from Rn to Rm 
defined by the following m×n matrix:

y1

y2

ym

x1

x2

xn

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

If        is the image of         under this linear transformation, 

then the fo�owing equation is true:
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Image?

Yep. Here’s a 
definition. We talked 

a bit about 
this before, 
didn't we?

Yeah, in 
Chapter 2.

Flip!

Images

Suppose xi is an element from X.

The element in Y corresponding to xi under f is called 
“xi’s image under f.”



But that 
definition is a 

bit vague. Take a 
look at this.

Okay.

Doesn't it kind 
of look like a 
common one-
dimensional 

equation y = ax 
to you?

maybe if 
I squint...

What if I put it 
like this?

I guess that 
makes sense.

Multiplying an n-dimensional space 
by an m×n matrix...

turns it m-dimensional!

Why We Study Linear Transformations  175



We study linear 
transformations in 
an effort to better 

understand the concept 
of image, using more 

visual means than simple 
formulae.

Huh?

I have to 
learn this 

stuff because 
of...that?

Ooh, but ”that” 
is a lot more 

significant than 
you might think!

Take this linear transformation 
from three to two dimensions, 

for example.

You could write it as this linear 
system of equations instead, if 

you wanted to.

But you have to agree 
that this doesn't really 
convey the feeling of 
”transforming a three-
dimensional space into 
a two-dimensional one,” 

right?
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Ta-da!
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Ah...

I think I'm 
starting to 

get it.

Linear transforma-
tions are definitely 

one of the harder-to-
understand parts of 

linear algebra.  
I remember having 
trouble with them 

when I started study-
ing the subject.

is the 
same 
as...

This!

I wonder 
what these 

linear systems 
are supposed 

to be?

Multiplying a  
three-dimensional 

space...

By
 a 

2×3 

mat
rix...

Turns  
it two-

dimensional!

So that's 
what it is!
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Special Transformations

I wouldn't want you thinking 
that linear transformations 
lack practical uses, though. 

Computer graphics, for 
example, rely heavily on 

linear algebra and linear 
transformations in particular.

Really?

Yeah.  
As we're already on 

the subject, let's have 
a look at some of the 

transformations that let 
us do things like scaling, 

rotation, translation, 
and 3-D projection.

Let's use one of 
my drawings.

Let (x1, x2) be some 
point on the drawing. 

The top of the 
dorsal fin will do!

Click

Aww! cute!  

The point
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y1 = αx1 

y2 = βx2 

Multiply all x1 values by α
Multiply all x2 values by β

Let’s say we decide to

This gives rise to the interesting relationship

Uh-huh...

y1 = αx1 

y2 = βx2 

Could be 
rewritten like 

this, right?

Yeah, 
sure.

 So that means that applying the set of rules 

onto an arbitrary image is basically the 
same thing as passing the image through a 
linear transformation in R2 equal to the 

following matrix!

α
0

0

β

Multiply all x1 values by α
Multiply all x2 values by β

The point

The point

the point

the point

Oh, it’s a 
one-to-

one onto 
mapping!

Scaling

and
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Rotation

I hope 
you’re up 
on your 
trig...

You 
know 

it!

the point 
(x1cosθ, x1sinθ)

the point 
(x1, 0)

θ

the point 
(−x2sinθ, x2cosθ)

the point (0, x2)

θ

the point 
(x1cosθ − x2sinθ, x1sinθ + x2cosθ)

the vector

the vector

O

O

x1

0

x1cosθ
x1sinθ

•  Rotating          by θ* degrees gets us

0

x2

−x2sinθ
x2cosθ

•  Rotating          by θ degrees gets us

O

x1

x2
•  Rotating        , that is         +       , 
    

by θ degrees gets us

0

x2

x1

0

+

x1cosθ − x2sinθ
x1sinθ + x2cosθ

=

−x2sinθ
x2cosθ

x1cosθ
x1sinθ −x2sinθ

x2cosθ

x1cosθ
x1sinθ

* θ is the Greek letter theta. 
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So if we 
wanted to 
rotate the 

entire picture 
by θ degrees, 

we'd get...

...Due to this 
relationship.

Aha.

cosθ   −sinθ
sinθ     cosθ

Rotating an arbitrary image by θ degrees 
consequently means we’re using a linear 
transformation in R2 equal to this matrix:

the point

the point

the point

the point

 Another 
one-to-

one onto 
mapping!
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If we instead decide to
Translate all x1 values by b1

Translate all x2 values by b2

y1 = x1 + b1

y2 = x2 + b2

we get another interesting relationship:

That’s true.

If we wanted 
to, we could 
also rewrite 
it like this:

Seems silly, 
but okay.

Translation

The point

the point

And this can 
also be 

rewritten 
like so:



Special Transformations  183

onto an arbitrary image is basically the same thing as 
passing the image through a linear transformation in R3 

equal to the following matrix:

1

0

0

0

1

0

b1

b2

1

So applying the set of rules
Translate all x1 values by b1

Translate all x2 values by b2

Hey, wait a minute! Why 
are you dragging 

another dimension into 
the discussion all of a 

sudden?

And what was the 
point of that weird 

rewrite?
 “ y = ax !”

the point

the point

Yet 
another 
one-to-

one onto 
mapping...



We'd like to express 
translations in the 

same way as rotations 
and scale operations, 

with 

instead of with 

The first formula 
is more practical than 
the second, especially 

when dealing with 
computer graphics.

=
a11

a21

a12

a22

y1

y2

x1

x2
y a x

b1

b2
b=

a11

a21

a12

a22

y1

y2

x1

x2
y a x +

A computer 
stores all 

transformations 
as 3×3 matrices...

...even rotations and 
scaling operations.

Not too 
different, 
I guess.

conventional 
Linear transformations

Linear Transformations used by 
computer graphics systems

Scaling

Rotation

Translation

y1

y2

1

=

x1

x2

1

α
0

0

0

β
0

0

0

1

y1

y2

1

=

x1

x2

1

1

0

0

0

1

0

b1

b2

1

y1

y2

1

=

x1

x2

1

cosθ
sinθ
0

−sinθ
cosθ
0

0

0

1

=
y1

y2

x1

x2

α
0

0

β

= +
y1

y2

x1

x2

b1

b2

1

0

0

1

=
y1

y2

x1

x2

cosθ   −sinθ
sinθ     cosθ

* Note: This one isn’t actua�y a linear transformation. You can verify this by se�ing 
b1 and b2 to 1 and checking that both linear transformation conditions fail.

*

Errr...
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3-D Projection

Next we’ll very 
briefly talk about 
a 3-D projection 
technique called 

perspective 
projection.

Don’t worry too 
much about the 

details.

Perspective projection 
provides us with a way to 

project three-dimensional 
objects onto a near plane by 
tracing our way from each 
point on the object toward 
a common observation point 
and noting where these lines 
intersect with the near plane.

The math is a bit 
more complex 
than what we’ve 

seen so far.

So I’ll cheat  
a little bit and skip 
right to the end!

−s3

0

0

0

0

−s3

0

0

0

0

0

−s3

s1

s2

0

1

1

x3 − s3

The linear transformation we use 
for perspective projection is in 

R4 and can be written as the
following matrix:

Coool.

Oh,  
an onto 
mapping!

the point

the point

the point

-the plane
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And that's what 
transformations 

are all about!

so much 
to learn...

Yeah...but 
that's enough 

for today, 
I think.

We'll be talking about 
eigenvectors and 

eigenvalues in our next 
and final lesson.

Final 
lesson? 
So soon?

Don't worry,  
we’ll cover all 
the important 

topics.

Hehe, why would 
I worry? You're 

such a good 
teacher.

You shouldn't 
worry either, 

you know.

Hm?

About the 
match.

Oh, you heard?

Yeah, my 
brother 
told me.

Heh. Thanks. 
I'm going to the 
gym after this, 
actually. I hope 

I don't lose 
too badly...

Beam

zz
zz

zip
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Don’t say 
that!

You’ve got to 
stay positive!

I know you 
can do it.

Th-
 thanks...

I'll do my 
best!
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Some Preliminary Tips

Before we dive into kernel, rank, and the other advanced topics we’re going to 
cover in the remainder of this chapter, there’s a little mathematical trick that 
you may find handy while working some of these problems out.

The equation

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

y1

y2

ym

x1

x2

xn

=

can be rewritten like this:

=

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

y1

y2

ym

x1

x2

xn

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

1

0

0

0

1

0

0

0

1

= x1 + x2 + ... + xn

a11

a21

am1

a12

a22

am2

a1n

a2n

amn

= x1 + x2 + ... + xn

As you can see, the product of the matrix M and the vector x can be viewed as 
a linear combination of the columns of M with the entries of x as the weights.

Also note that the function f referred to throughout this chapter is the linear 
transformation from Rn to Rm corresponding to the following m×n matrix:

a12

a22

am2

a1n

a2n

amn

a11

a21

am1
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Kernel, Image, and the Dimension Theorem for Linear 
Transformations

The set of vectors whose images are the zero vector, that is 

x1

x2

xn

0

0

0

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

x1

x2

xn

=

is called the kernel of the linear transformation f and is written Ker f. 
The image of f (written Im f ) is also important in this context. The image of f 

is equal to the set of vectors that is made up of all of the possible output values 
of f, as you can see in the following relation:

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

x1

x2

xn

=

y1

y2

ym

y1

y2

ym

(This is a more formal definition of image than what we saw in Chapter 2, but 
the concept is the same.)

An important observation is that Ker f is a subspace of Rn and Im f is a sub-
space of Rm. The dimension theorem for linear transformations further explores 
this observation by defining a relationship between the two:

dim Ker f + dim Im f = n

Note that the n above is equal to the first vector space’s dimension (dim Rn).*

Rn

Ker f

Rm

Im f

0

0

0

0

0

0

* If you need a refresher on the concept of dimension, see “Basis and Dimension” on page 156.
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Example 1

Suppose that f is a linear transformation from R2 to R2 equal to the matrix            . 
Then:

And:

n = 2

dim Ker f = 0

dim Im f = 2

3

1

1

2

Ker f = = = =
x1

x2

x1

x2

= x1  + x2

0

0

3

1

1

2

x1

x2

0

0

0

0

3

1

1

2

Im f = = = = R2
y1

y2

y1

y2

x1

x2

= x1  + x2

y1

y2

y1

y2

3

1

1

2

3

1

1

2

Example 2

Suppose that f is a linear transformation from R2 to R2 equal to the matrix            . 
Then:

And:

n = 2

dim Ker f = 1

dim Im f = 1

3

1

6

2

= c
c is an arbitrary 
number

−2

1

Ker f = = =
x1

x2

0

0

x1

x2

3

1

6

2
= [x1 + 2x2]

x1

x2

0

0

3

1

Im f = = =
y1

y2

y1

y2

x1

x2

y1

y2

y1

y2

3

1

6

2

3

1
= [x1 + 2x2]

= c
c is an arbitrary 
number

3

1
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Example 3

Suppose f is a linear transformation from R2 to R3 equal to the 3×2 matrix             . 
Then: 

And:

1

0

0

0

1

0

n = 2

dim Ker f = 0

dim Im f = 2

x1

x2

0

0

0

Ker f = = =
x1

x2

x1

x2

1

0

0

0

1

0

0

0

0

= x1

1

0

0

+ x2

0

1

0

=
0

0

Im f =

1

0

0

0

1

0

y1

y2

y3

x1

x2

= =

y1

y2

y3

y1

y2

y3

y1

y2

y3

1

0

0

0

1

0

= x1 + x2

= c1

1

0

0

0

1

0

c1 and c2 are
arbitrary numbers

+ c2
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Example 4

Suppose that f is a linear transformation from R4 to R2 equal to 

the 2×4 matrix                        . Then:

And:

1

0

0

1

3

1

1

2

Ker f =

Im f =

x1

x2

x3

x4

=
1

0

0

1

3

1

1

2

x1

x2

x3

x4

y1

y2

=

= = R2

y1

y2

y1

y2

y1

y2

1

0

0

1

3

1

1

2

= c1 + c2

−3

−1

1

0

−1

−2

0

1

0

0

= = x1 + x2 + x3

x1

x2

x3

x4

0

0

1

0

0

1

3

1
+ x4

1

2

=

x1

x2

x3

x4

x1 + 3x3 + x4 = 0,  x2 + x3 + 2x4 = 0

1

0

0

1

3

1

1

2

x1

x2

x3

x4

c1 and c2 are  
arbitrary numbers

= x1 + x2 + x3 + x4

n = 4

dim Ker f = 2

dim Im f = 2
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Rank

The number of linearly independent vectors among the columns of the matrix M 
(which is also the dimension of the Rm subspace Im f ) is called the rank of M, and 
it is written like this: rank M.

Example 1

The linear system of equations                           , that is                             ,         

can be rewritten as follows:

The two vectors        and        are linearly independent, as can be seen on 

pages 133 and 135, so the rank of              is 2.

Also note that                                                    

y1

y2

=
3x1 + 1x2

1x1 + 2x2

3

1

1

2

det = 3 · 2 − 1 · 1 = 5 ≠ 0.
3

1

1

2

3x1 + 1x2 = y1

1x1 + 2x2 = y2

3

1

1

2

y1

y2

= = = x1

x1

x2

3

1

1

2

3x1 + 1x2

1x1 + 2x2

3

1
+ x2

1

2

Example 2

The linear system of equations                           , that is                             ,       

can be rewritten as follows:

So the rank of               is 1.

Also note that                                              

y1

y2

=
3x1 + 6x2

1x1 + 2x2

3x1 + 6x2 = y1

1x1 + 2x2 = y2

y1

y2

= =
x1

x2

3

1

6

2

3x1 + 6x2

1x1 + 2x2

3

1

6

2

det = 3 · 2 − 6 · 1 = 0.
3

1

6

2

= x1

3

1
+ x2

6

2

= [x1 + 2x2]
3

1

= x1

3

1
+ 2x2

3

1
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Example 3

The linear system of equations                           , that is                             ,        

can be rewritten as:

The two vectors        and        are linearly independent, as we discovered 

on page 137, so the rank of               is 2.

The system could also be rewritten like this: 

Note that                               

=

y1

y2

y3

1x1 + 0x2

0x1 + 1x2

0x1 + 0x2

1x1 + 0x2 = y1

0x1 + 1x2 = y2

0x1 + 0x2 = y3

1

0

0

0

1

0

1

0

0

0

1

0

= 0. det

1

0

0

0

1

0

0

0

0

= x1

x1

x2

+ x2
=

y1

y2

y3

=

1

0

0

0

1

0

1

0

0

0

1

0

1x1 + 0x2

0x1 + 1x2

0x1 + 0x2

=

y1

y2

y3

x1

x2

x3

=

1

0

0

0

1

0

0

0

0

1x1 + 0x2

0x1 + 1x2

0x1 + 0x2
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Example 4

The linear system of equations                                             , that is  

                                              , can be rewritten as follows:  

The rank of                          is equal to 2, as we’ll see on page 203.

The system could also be rewritten like this:

Note that                                      .

The four examples seem to point to the fact that

This is indeed so, but no formal proof will be given in this book.

a12

a22

an2

a1n

a2n

ann

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

a11

a21

an1

det                                     = 0 is the same as rank                                      ≠ n.

=
y1

y2

1x1 + 0x2 + 3x3 + 1x4

0x1 + 1x2 + 1x3 + 2x4

1x1 + 0x2 + 3x3 + 1x4 = y1

0x1 + 1x2 + 1x3 + 2x4 = y2

1

0

0

1

3

1

1

2

1

0

0

0

0

1

0

0

3

1

0

0

1

2

0

0

x1

x2

x3

x4

=

y1

y2

y3

y4

1x1 + 0x2 + 3x3 + 1x4

0x1 + 1x2 + 1x3 + 2x4

0

0

=

=
y1

y2

1x1 + 0x2 + 3x3 + 1x4

0x1 + 1x2 + 1x3 + 2x4

=
1

0

0

1

3

1

1

2

x1

x2

x3

x4

= x1

1

0
+ x2

0

1
+ x3

3

1
+ x4

1

2

= 0det

1

0

0

0

0

1

0

0

3

1

0

0

1

2

0

0
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Calculating the Rank of a Matrix

So far, we’ve only dealt with matrices where the rank was immediately apparent 
or where we had previously figured out how many linearly independent vectors 
made up the columns of that matrix. Though this might seem like “cheating” 
at first, these techniques can actually be very useful for calculating ranks in 
practice.

For example, take a look at the following matrix:

1

2

3

4

5

6

4

8

12

It’s immediately clear that the third column of this matrix is equal to the first 
column times 4. This leaves two linearly independent vectors (the first two col-
umns), which means this matrix has a rank of 2.

Now look at this matrix:

1

0

0

0

3

5

It should be obvious right from the start that these vectors form a linearly 
independent set, so we know that the rank of this matrix is also 2.

Of course there are times when this method will fail you and you won’t be 
able to tell the rank of a matrix just by eyeballing it. In those cases, you’ll have to 
buckle down and actually calculate the rank. But don’t worry, it’s not too hard!

First we’ll explain the  ? Problem , then we’ll establish a good  * way of thinking , 
and then finally we’ll tackle the  ! Solution .

?  Problem

Calculate the rank of the following 2×4 matrix:

1

0

0

1

3

1

1

2

* Way of Thinking 

Before we can solve this problem, we need to learn a little bit about elementary 
matrices. An elementary matrix is created by starting with an identity matrix and 
performing exactly one of the elementary row operations used for Gaussian elimi-
nation (see Chapter 4). The resulting matrices can then be multiplied with any 
arbitrary matrix in such a way that the number of linearly independent columns 
becomes obvious.



Rank  197

With this information under our belts, we can state the following four useful 
facts about an arbitrary matrix A:

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

Fact 1

Multiplying the elementary matrix

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

Column i Column j

Row i

Row j

to the left of an arbitrary matrix A will switch rows i and j in A.
If we multiply the matrix to the right of A, then the columns will switch places 

in A instead.

•	 Example 1 (Rows 1 and 4 are switched.)

0

0

0

1

0

1

0

0

0

0

1

0

1

0

0

0

a11

a21

a31

a41

a12

a22

a32

a42

a13

a23

a33

a43

=

a41

a21

a31

a11

a42

a22

a32

a12

a43

a23

a33

a13

=

0·a11 + 0·a21 + 0·a31 + 1·a41 

0·a11 + 1·a21 + 0·a31 + 0·a41 

0·a11 + 0·a21 + 1·a31 + 0·a41 

1·a11 + 0·a21 + 0·a31 + 0·a41 

0·a12 + 0·a22 + 0·a32 + 1·a42 

0·a12 + 1·a22 + 0·a32 + 0·a42 

0·a12 + 0·a22 + 1·a32 + 0·a42 

1·a12 + 0·a22 + 0·a32 + 0·a42 

0·a13 + 0·a23 + 0·a33 + 1·a43 

0·a13 + 1·a23 + 0·a33 + 0·a43 

0·a13 + 0·a23 + 1·a33 + 0·a43 

1·a13 + 0·a23 + 0·a33 + 0·a43 
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•	 Example 2 (Columns 1 and 3 are switched.)

=

=

a11·0 + a12·0 + a13·1

a21·0 + a22·0 + a23·1 

a31·0 + a32·0 + a33·1 

a41·0 + a42·0 + a43·1 

a11·0 + a12·1 + a13·0

a21·0 + a22·1 + a23·0 

a31·0 + a32·1 + a33·0 

a41·0 + a42·1 + a43·0 

a11·1 + a12·0 + a13·0

a21·1 + a22·0 + a23·0 

a31·1 + a32·0 + a33·0 

a41·1 + a42·0 + a43·0 

0

0

1

0

1

0

1

0

0

a11

a21

a31

a41

a12

a22

a32

a42

a13

a23

a33

a43

a11

a21

a31

a41

a12

a22

a32

a42

a13

a23

a33

a43

Fact 2

Multiplying the elementary matrix 

1

0

0

0

k

0

0

0

1

Column i

Row i

to the left of an arbitrary matrix A will multiply the ith row in A by k.
Multiplying the matrix to the right side of A will multiply the ith column in A 

by k instead.
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•	 Example 1 (Row 3 is multiplied by k.)

=

=

1·a11 + 0·a21 + 0·a31 + 0·a41 

0·a11 + 1·a21 + 0·a31 + 0·a41 

0·a11 + 0·a21 + k·a31 + 0·a41 

0·a11 + 0·a21 + 0·a31 + 1·a41 

1·a12 + 0·a22 + 0·a32 + 0·a42 

0·a12 + 1·a22 + 0·a32 + 0·a42 

0·a12 + 0·a22 + k·a32 + 0·a42 

0·a12 + 0·a22 + 0·a32 + 1·a42 

1·a13 + 0·a23 + 0·a33 + 0·a43 

0·a13 + 1·a23 + 0·a33 + 0·a43 

0·a13 + 0·a23 + k·a33 + 0·a43 

0·a13 + 0·a23 + 0·a33 + 1·a43 

1

0

0

0

0

1

0

0

0

0

k

0

0

0

0

1

a11

a21

a31

a41

a12

a22

a32

a42

a13

a23

a33

a43

a11

a21

ka31

a41

a12

a22

ka32

a42

a13

a23

ka33

a43

•	 Example 2 (Column 2 is multiplied by k.)

=

a11·1 + a12·0 + a13·0

a21·1 + a22·0 + a23·0 

a31·1 + a32·0 + a33·0 

a41·1 + a42·0 + a43·0 

=

a11·0 + a12·k + a13·0

a21·0 + a22·k + a23·0 

a31·0 + a32·k + a33·0 

a41·0 + a42·k + a43·0 

a11·0 + a12·0 + a13·1

a21·0 + a22·0 + a23·1 

a31·0 + a32·0 + a33·1 

a41·0 + a42·0 + a43·1 

1

0

0

0

k

0

0

0

1

a11

a21

a31

a41

a12

a22

a32

a42

a13

a23

a33

a43

a11

a21

a31

a41

ka12

ka22

ka32

ka42

a13

a23

a33

a43
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Fact 3

Multiplying the elementary matrix 

1

0

0

0

0

1

k

0

0

0

1

0

0

0

0

1

Column i Column j

Row i

Row j

to the left of an arbitrary matrix A will add k times row i to row j in A.
Multiplying the matrix to the right side of A will add k times column j to 

column i instead.

•	 Example 1 (k times row 2 is added to row 4.)

=

1·a11 + 0·a21 + 0·a31 + 0·a41 

0·a11 + 1·a21 + 0·a31 + 0·a41 

0·a11 + 0·a21 + 1·a31 + 0·a41 

0·a11 + k·a21 + 0·a31 + 1·a41 

1·a12 + 0·a22 + 0·a32 + 0·a42 

0·a12 + 1·a22 + 0·a32 + 0·a42 

0·a12 + 0·a22 + 1·a32 + 0·a42 

0·a12 + k·a22 + 0·a32 + 1·a42 

1·a13 + 0·a23 + 0·a33 + 0·a43 

0·a13 + 1·a23 + 0·a33 + 0·a43 

0·a13 + 0·a23 + 1·a33 + 0·a43 

0·a13 + k·a23 + 0·a33 + 1·a43 

=

a11

a21

a31

a41+ ka21

a12

a22

a32

a42+ ka22

a13

a23

a33

a43+ ka23

1

0

0

0

0

1

0

k

0

0

1

0

0

0

0

1

a11

a21

a31

a41

a12

a22

a32

a42

a13

a23

a33

a43
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•	 Example 2 (k times column 3 is added to column 1.)

=

a11·1 + a12·0 + a13·k

a21·1 + a22·0 + a23·k 

a31·1 + a32·0 + a33·k 

a41·1 + a42·0 + a43·k 

=

a11 + ka13

a21 + ka23

a31 + ka33

a41 + ka43

a12

a22

a32

a42

a13

a23

a33

a43

a11·0 + a12·1 + a13·0

a21·0 + a22·1 + a23·0 

a31·0 + a32·1 + a33·0 

a41·0 + a42·1 + a43·0 

a11·0 + a12·0 + a13·1

a21·0 + a22·0 + a23·1 

a31·0 + a32·0 + a33·1 

a41·0 + a42·0 + a43·1 

1

0

k

0

1

0

0

0

1

a11

a21

a31

a41

a12

a22

a32

a42

a13

a23

a33

a43

Fact 4

The following three m×n matrices all have the same rank:

1.	 The matrix:

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

2.	 The left product using an invertible m×m matrix: 

b12

b22

bm2

b1m

b2m

bmm

b11

b21

bm1

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

3.	 The right product using an invertible n×n matrix:

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

c12

c22

cn2

c1n

c2n

cnn

c11

c21

cn1

In other words, multiplying A by any elementary matrix—on either side—will 
not change A’s rank, since elementary matrices are invertible.
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!  Solution

The following table depicts calculating the rank of the 2×4 matrix:

1

0

0

1

3

1

1

2

1

0

0

0

0

1

0

0

0

0

1

0

0

−2

0

1

1

0

0

1

0

0

0

2

1

0

0

1

0

0

0

0
=

1

0

0

1

3

1

1

2

Add (−1 · column 2) to column 3

1

0

0

0

0

1

0

0

0

−1

1

0

0

0

0

1

1

0

0

1

3

1

1

2

1

0

0

1

3

0

1

2
=

Add (−1 · column 1) to column 4

1

0

0

0

0

1

0

0

0

0

1

0

−1

0

0

1

1

0

0

1

3

0

1

2

1

0

0

1

3

0

0

2
=

Add (−3 · column 1) to column 3

1

0

0

0

0

1

0

0

−3

0

1

0

0

0

0

1

1

0

0

1

3

0

0

2

1

0

0

1

0

0

0

2
=

Add (−2 · column 2) to column 4

Begin with
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Because of Fact 4, we know that both                         and                         have 
the same rank. 

One look at the simplified matrix is enough to see that only        and        
are linearly independent among its columns.

This means it has a rank of 2, and so does our initial matrix.

1

0

0

1

3

1

1

2

1

0

0

1

0

0

0

0

1

0

0

1

The Relationship Between Linear Transformations 
and Matrices

We talked a bit about the relationship between linear transformations and 
matrices on page 168. We said that a linear transformation from Rn to Rm 
could be written as an m×n matrix: 

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

As you probably noticed, this explanation is a bit vague. The more exact rela-
tionship is as follows:

The relationship between linear Transformations and matrices

If          is an arbitrary element in Rn and f is a function from Rn to Rm,

then f is a linear transformation from Rn to Rm if and only if 

for some matrix A.

x1

x2

xn

=

x1

x2

xn

x1

x2

xn

a12

a22

am2

a1n

a2n

amn

a11

a21

am1

f





8
Eigenvalues and 
Eigenvectors

8
eigenvalues and 
Eigenvectors

z

x

y

Times 4
Ba

ck
w
ar

d

Ti
m

e
s
 2



And 
Jumonji 
from 

Nanhou 
University!

Yurino 
from 

Hanamichi 
University!

Ready!

He looks 
tough.

I'll have 
to give it 
my all.

Begin!

Sta re
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 Guh...

Ngh...

I have to 
win this!

I’ve got to show 
them how strong 

I can be!

Enough!

S
e
y
a
a
a
a

Baff

Sm ack

Sh udder

S n u h

Y
a
a
a
a
a

Pow
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Nanhou 
University!

Thank you... 
very much...

Damn...

Good 
match.



Eigenvalues and Eigenvectors  209

I'm sorry 
about the 

match...

Yeah...

My brother 
said you fought 
well, though.

Really?

Don't worry 
about it.

You’ll do 
better next 

time.

I  
know  

it!

I'm sorry!  
You're 

completely 
right!

Sulking won't 
accomplish 
anything.
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Anyway... 
today's our 
last lesson.

And I thought we'd 
work on eigenvalues 

and eigenvectors.

Okay. I’m ready 
for anything!

Studying eigenvalues 
and eigenvectors comes 

in handy when doing 
physics and statistics, 

for example.

They also make these 
kinds of problems 

much easier.

Finding the pth 
power of an 
n×n matrix.

 It's a pretty abstract topic, 
but I'll try to be as concrete 

as I can.

I 
appreciate 

it!

Fundamentals

Matrices    Vectors

Linear trans-
formations 

Eigenvalues and 
eigenvectors

B
a
s
ic

s
 

P
r
e
p
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What Are Eigenvalues and 
Eigenvectors?

What do you say we 
start off with a few 

problems? Sure.

 Hmm...

Like this?

So close!

Oh, like 
this?

Exactly!

So...the answer can 
be expressed using 

multiples of the 
original two vectors?

Okay, first problem. 
Find the image of         

using the linear 
transformation 

determined by the 
2×2 matrix

3

1

1

2
c1       + c2

8
2

−3
1

(where c1 and c2 
are real numbers).



Like so.

Oh...
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That’s right! So you 
could say that the 

linear transformation 
equal to the matrix

8

2

−3

1

...transforms All points 
on the x1 x2 plane...



Like this?

Correct.

So this solution can 
be expressed with 
multiples as well...

Hmm

Let's move on to another problem.

Find the image of                               using 

      

(where c1, c2, and c3 are real numbers).

c1       + c2       + c3

1

0

0

0

1

0

0

0

1

4

0

0

0

2

0

0

0

−1

the linear transformation 
determined by the 3×3 matrix                
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4

0

0

0

2

0

0

0

−1

...transforms every
point in the 

x1 x2 x3 space...

So you could 
say that the 

linear transformation
equal to the matrix

Like this.

I get 
it!

4

0

0

0

2

0

0

0

−1

...transforms every
point in the 

x1 x2 x3 space...

So you could 
say that the 

linear transformation
equal to the matrix

Times 4
Loo

ki
ng

 

ba
ck

Ti
m

e
s
 2



keeping those 
examples in mind.

Eigenvalues and eigenvectors

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

x1

x2

xn x1

x2

xn

x1

x2

xn

If the image of a vector          through the linear transformation determined by the matrix

                                    is equal to λ        , λ is said to be an eigenvalue to the matrix,

and          is said to be an eigenvector corresponding to the eigenvalue λ. 

The zero vector can never be an eigenvector.

Rn Rn

x1

x2

xn

λ

x1

x2

xn

So the two 
examples could 
be summarized 

like this?

Exactly!
You can generally 

never find more than n 
different eigenvalues 
and eigenvectors for 

any n×n matrix.
Oh...

g s and Eigenvect
ors

Let's have a 
look at the 
definition...

Matrix

Eigenvalue

Eigenvector

4

0

0

0

2

0

0

0

−1

8

2

−3

1

λ = 7, 2 λ = 4, 2, −1

the vector 
corresponding 

to λ = 7

3

1

the vector 
corresponding 

to λ = 2

1

2

the vector 
corresponding 

to λ = 4

1
0
0

the vector 
corresponding 

to λ = 2

0
1
0

the vector 
corresponding 

to λ = 1

0
0
1
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Calculating Eigenvalues and 
Eigenvectors The 2×2 matrix 

will do fine as 
an example.

8

2

−3

1

Okay.

Let's start 
off with the 
relationship...

Between the 
determinant and 
eigenvalues of 

a matrix.

λ is an eigenvalue of the matrix

The relationship between the determinant and eigenvalues of a matrix

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

if and only if det = 0

a11 − λ
a21

an1

a12

a22 − λ

an2

a1n

a2n

ann − λ

Let's have a look at 
calculating these vectors 

and values.
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This means that 
solving this 

characteristic 
equation gives us 
all eigenvalues 
corresponding 

to the underlying 
matrix.

It's pretty cool.

Go ahead,  
give it a shot.

Okay...

So...

The values 
are seven 
and two?

Correct!
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Finding eigenvectors is also pretty easy.

For example, we can use our previous values in 
this formula:

                          , that is = λ
8

2

−3

1

x1

x2

x1

x2

0

0

8 − λ
2

−3

1 − λ
=

x1

x2

Find an eigenvector corresponding to λ = 7.

Let’s plug our value into the formula:

This means that x1 = 3x2, which leads us to our eigenvector

where c1 is an arbitrary nonzero real number.

1

2

−3

−6

1

2

0

0

8 − 7

2

−3

1 − 7

x1

x2

x1

x2

x1 − 3x2

2x1 − 6x2

= = == [x1 − 3x2]

3

1

x1

x2

3c1

c1

= = c1

Find an eigenvector corresponding to λ = 2.

Let’s plug our value into the formula:  

This means that x2 = 2x1, which leads us to our eigenvector 
 

where c2 is an arbitrary nonzero real number.

6

2

−3

−1

3

1

0

0

8 − 2

2

−3

1 − 2

x1

x2

x1

x2

6x1 − 3x2

2x1 − x2

= = == [2x1 − x2]

1

2

x1

x2

c2

2c2

= = c2

Problem 1

Problem 2

Done!
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Calculating the pth Power of an 
nxn Matrix

 It's finally time to 
tackle today's real 
problem! Finding the 
pth power of an n×n 

matrix.

We've already found the 
eigenvalues and eigenvectors 

of the matrix

8

2

−3

1

So let's just 
build on that 

example.

Makes 
sense.

for simplicity’s 
sake, Let's 

choose 
c1 = c2 = 1.

Using the two 
calculations above...

Let’s multiply

to the right of both sides 
of the equation. Refer to 

page 91 to see why

exists.
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Try using 
the formula 
to calculate

2
8

2

−3

1

Hmm...
okay.

Is...this it?

Yep!

Yay!

Looking at your 
calculations, 

would you say this 
relationship might 

be true?

Uhhh...



It actually is!  
This formula is very useful 
for calculating any power 
of an n×n matrix that can be 

written in this form.

Got it!

Oh, and by 
the way...

When p = 1, we say that the formula 
diagonalizes the n×n matrix 

a11

a21

an1

a12

a22

an2

a1n

a2n

ann

Nice!

And  
that's it!

 The eigenvector corresponding to λ1

The eigenvector corresponding to λ2

The eigenvector corresponding to λn

The right side of the equation is the diagonalized 
form of the middle matrix on the left side.
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That was the 
last lesson!

How do you 
feel? Did you 
get the gist 

of it?

Yeah, thanks 
to you.

 Awesome!

Really, though, 
thanks for helping 

me out.

I know you're 
busy, and you've 

been awfully tired 
because of your 
karate practice.

 Not at all! How 
could I possibly 
have been tired 
after all that 

wonderful food 
you gave me?

 I should 
be thanking 

you!

I'll miss these 
sessions, you know! 
My afternoons will 
be so lonely from 

now on...



Well...we 
could go out 

sometime...

Hmm?

Yeah...to look 
for math books, 
or something... 

you know...

If you don't 
have anything 
else to do...

Sure, 
sounds 
like fun!

So when 
would you 
like to go?
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Multiplicity and Diagonalization

We said on page 221 that any n×n matrix could be expressed in this form:

The eigenvector corresponding to λ1

The eigenvector corresponding to λ2

x11

x21

xn1

x12

x22

xn2

x1n

x2n

xnn

x11

x21

xn1

x12

x22

xn2

x1n

x2n

xnn

λ1

0

0

0

λ2

0

0

0

λn

=

−1
a11

a21

an1

a12

a22

an2

a1n

a2n

ann

The eigenvector corresponding to λn

This isn’t totally true, as the concept of multiplicity1 plays a large role in 
whether a matrix can be diagonalized or not. For example, if all n solutions of 
the following equation

det = 0

a11 − λ
a21

an1

a12

a22 − λ

an2

a1n

a2n

ann − λ

are real and have multiplicity 1, then diagonalization is possible. The situation 
becomes more complicated when we have to deal with eigenvalues that have mul-
tiplicity greater than 1. We will therefore look at a few examples involving:

•	 Matrices with eigenvalues having multiplicity greater than 1 that can be 
diagonalized

•	 Matrices with eigenvalues having multiplicity greater than 1 that cannot be 
diagonalized

1. The multiplicity of any polynomial root reveals how many identical copies of that same root exist in 
the polynomial. For instance, in the polynomial f(x) = (x − 1)4(x + 2)2x, the factor (x − 1) has multiplicity 
4, (x + 2) has 2, and x has 1.
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A Diagonalizable Matrix with an Eigenvalue Having Multiplicity 2

?  Problem 

Use the following matrix in both problems:

1

1

−2

0

1

0

0

−1

3

1.	 Find all eigenvalues and eigenvectors of the matrix.

2.	 Express the matrix in the following form:

x11

x21

x31

x12

x22

x32

x13

x23

x33

x11

x21

x31

x12

x22

x32

x13

x23

x33

λ1

0

0

0

λ2

0

0

0

λ3

−1

!  Solution 

1.	 The eigenvalues λ of the 3×3 matrix

1

1

−2

0

1

0

0

−1

3

are the roots of the characteristic equation:

 

1 − λ
1

−2

0

1 − λ
0

0

−1

3 − λ
det = 0.

λ = 3, 1

= (1 − λ)(1 − λ)(3 − λ) + 0 · (−1) · (−2) + 0 · 1 · 0 

   − 0 · (1 − λ) · (−2) − 0 · 1 · (3 − λ) − (1 − λ) · (−1) · 0

= (1 − λ)2(3 − λ) = 0

1 − λ
1

−2

0

1 − λ
0

0

−1

3 − λ
det

Note that the eigenvalue 1 has multiplicity 2.
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a.	 The eigenvectors corresponding to λ = 3

Let’s insert our eigenvalue into the following formula:

= λ =

0

0

0

1 − λ
1

−2

0

1 − λ
0

0

−1

3 − λ

x1

x2

x3

x1

x2

x3

x1

x2

x3

1

1

−2

0

1

0

0

−1

3

, that is

This gives us:

1 − 3

1

−2

0

1 − 3

0

0

−1

3 − 3

−2

1

−2

0

−2

0

0

−1

0

−2x1

x1 − 2x2 − x3

−2x1

= = = 

x1

x2

x3

x1

x2

x3

0

0

0

The solutions are as follows:

x1 = 0

x3 = −2x2

= = c1

0

c1

−2c1

0

1

−2

x1

x2

x3

and the eigenvector

where c1 is a real nonzero number.

b.	 The eigenvectors corresponding to λ = 1

Repeating the steps above, we get

1 − 1

1

−2

0

1 − 1

0

0

−1

3 − 1

0

1

−2

0

0

0

0

−1

2

0

x1 − x3

−2x1 + 2x3

= = = 

x1

x2

x3

x1

x2

x3

0

0

0

and see that x3 = x1 and x2 can be any real number. The eigenvector conse-
quently becomes

= = c1 + c2

x1

x2

x3

c1

c2

c1

1

0

1

0

1

0

where c1 and c2 are arbitrary real numbers that cannot both be zero.
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3.	 We then apply the formula from page 221:

The eigenvector corresponding to 3

−1
1

1

−2

0

1

0

0

−1

3

0

1

−2

1

0

1

0

1

0

0

1

−2

1

0

1

0

1

0

3

0

0

0

1

0

0

0

1

=

The linearly independent eigenvectors corresponding to 1

A Non-Diagonalizable Matrix with a Real Eigenvalue Having 

Multiplicity 2

?  Problem 

Use the following matrix in both problems:

1

−7

4

0

1

0

0

−1

3

1.	 Find all eigenvalues and eigenvectors of the matrix.

2.	 Express the matrix in the following form:

x11

x21

x31

x12

x22

x32

x13

x23

x33

x11

x21

x31

x12

x22

x32

x13

x23

x33

λ1

0

0

0

λ2

0

0

0

λ3

−1

!  Solution 

1.	 The eigenvalues λ of the 3×3 matrix

1

−7

4

0

1

0

0

−1

3

are the roots of the characteristic equation: 

1 − λ
−7

4

0

1 − λ
0

0

−1

3 − λ
det = 0.
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λ = 3, 1

= (1 − λ)(1 − λ)(3 − λ) + 0 · (−1) · 4 + 0 · (−7) · 0

   − 0 · (1 − λ) · 4 − 0 · (−7) · (3 − λ) − (1 − λ) · (−1) · 0

= (1 − λ)2(3 − λ) = 0

1 − λ
−7

4

0

1 − λ
0

0

−1

3 − λ
det

Again, note that the eigenvalue 1 has multiplicity 2.

a.	 The eigenvectors corresponding to λ = 3

Let’s insert our eigenvalue into the following formula:

= λ =

0

0

0

1 − λ
−7

4

0

1 − λ
0

0

−1

3 − λ

x1

x2

x3

x1

x2

x3

x1

x2

x3

1

−7

4

0

1

0

0

−1

3

, that is

This gives us

1 − 3

−7

4

0

1 − 3

0

0

−1

3 − 3

−2

−7

4

0

−2

0

0

−1

0

−2x1

−7x1 − 2x2 − x3

4x1

= = = 

x1

x2

x3

x1

x2

x3

0

0

0

The solutions are as follows:

x1 = 0

x3 = −2x2

= = c1

0

c1

−2c1

0

1

−2

x1

x2

x3

and the eigenvector

where c1 is a real nonzero number.
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b.	 The eigenvectors corresponding to λ = 1

We get

1 − 1

−7

4

0

1 − 1

0

0

−1

3 − 1

0

−7

4

0

0

0

0

−1

2

0

−7x1 − x3

4x1 + 2x3

= = = 

x1

x2

x3

x1

x2

x3

0

0

0

and see that 
 

x3 = −7x1

x3 = −2x1

But this could only be true if x1 = x3 = 0. So the eigenvector has to be 

= = c2

x1

x2

x3

0

c2

0

0

1

0

where c2 is an arbitrary real nonzero number.

3.	 Since there were no eigenvectors in the form

c2 + c3

x12

x22

x32

x13

x23

x33

for λ =1, there are not enough linearly independent eigenvectors to express 

 

1

−7

4

0

1

0

0

−1

3

 in the form 

x11

x21

x31

x12

x22

x32

x13

x23

x33

x11

x21

x31

x12

x22

x32

x13

x23

x33

λ1

0

0

0

λ2

0

0

0

λ3

−1

It is important to note that all diagonalizable n×n matrices always have n 
linearly independent eigenvectors. In other words, there is always a basis in 
Rn consisting solely of eigenvectors, called an eigenbasis.





Hey there, 
been waiting 

long?

Reij—

Kyaa!

That 
voice!

Aww, don't be 
like that!

Stop it! 
Let me go!

We just want 
to get to 
know you 
better.

Misa!

Looks like 
I got here a 
bit early...



 I have to do 
something...

But... What if it 
happens all 
over again?

And 
fast! Those jerks...

On my first date with Yuki, 
my girlfriend in middle 

school...
Hey, let 
me go!

 I already 
have a date.

We just want 
to hang out...

Yuki!

tremble

!



Those 
jerks...

 I have to do 
something!

You... 
stop it!

Uh...who 
are you?

Guh?

Time to 
go.

Lemme 
go!

You 
there!

Kick

Crash

Seriously? 
One kick? 

What a 
wuss...

 Haha



Stop.  
Can't you see 
she doesn't 
want to go 
with you?

 Jeez, who 
is it now?

Oh no!

Y-you're...

The legendary 
leader of 

the Hanamichi 
karate club.

“The Hanamichi 
Hammer!”

In the 
flesh.

 Messing with that 
guy is suicide!

Let’s get 
outta here!

 T-thank you!

Don't worry 
about it...but 
I think your 
boyfriend 

needs medical 
attention...

Unng...

Hanamichi 
Hammer?

Moan...
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Listen... 
I'm glad you 
stood up for 

me, but...

It just 
wasn’t 

enough.

 I...
...don't think 
I can see you 

anymore.

...

I'm so sorry... 
I couldn't do 

anything...
Not this time.

I’ll show 
them—

I’m so much 
stronger 

now—

Come on, 
sweetie...

Help!

This time will be 
different!

LET HER GO!

Yank



Wha—?

 come on, 
let's go.

Reiji!
Hey! Stop 

right there.

Just who 
do you think 

you are?!

Stay away 
from her, all 

of you!

Haha, look! 
He thinks 

he's a hero!

Let’s get 
him!

Baff

!

Smack



Run!

Be careful, 
Reiji!

Ooph

You little...

Stop it!

Please!

Let me 
go!

Stubborn, 
huh?

Enough!

Thump

Grab

Smack



Attacking my 
little sister, 

are we?

Tetsuo!

Sensei?

I don't like 
excessive 

violence...but in 
attacking Misa, 

you have given me 
little choice...

It's 
Ichinose!

The Hanamichi 
Hammer!

 Mommy!

 Run!

He’s out 
cold.

Crack
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Reiji?

Reiji, 
wake up.

Reiji!

You’re okay!

Whoa!

Yurino...Misa 
told me what 

happened. 

 Thank you.

Um...no 
problem.

but I don't 
deserve your 

thanks...
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I couldn't help 
Misa...I couldn't 

even help myself...

I haven't changed 
at all! I'm still a 

weakling!

Well, you may 
not be a black 

belt yet...

But you're 
definitely no 

weakling.

Putting Misa's 
safety before your 
own shows great 

courage. That kind of 
courage is admirable, 

You should be 
proud!

Reiji!

He’s right.

I don't know 
what to say... 

Thank you.
Misa...

But—
even though 

the fight 
itself was 

unnecessary.
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Thank 
you for 

everything!

Ah...

What the—!

I thought I 
was pretty 
clear about 
the rules...

Huh?! 
I, Uh...

Heh...

Well, I guess it's 
okay...Misa's not 
a kid anymore.

Thanks, 
Sensei...

By the way, would 
you consider 

doing me another 
favor?

 S-sure.



242 E pilogue

Math, 
I mean.

I'd like you to 
teach me, too.

What?

He could really 
use the help, 

being in his sixth 
year and all. 

If he doesn't 
graduate soon...

So. What 
do you 
say?

It'd mean 
a lot to 
me, too.

Sure! Of 
course!

Great! 
Let's start 
off with 
plus and 

minus, then!

Um... 
plus and 
minus?

Sounds 
like you’ll 
need more 
lunches!
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The Appendixes

The appendixes for The Manga Guide to Linear Algebra can be found online at  
http://www.nostarch.com/linearalgebra. They include:

Appendix A: Workbook
Appendix B: Vector Spaces
Appendix C: Dot Product
Appendix D: Cross Product
Appendix E: Useful Properties of Determinants

Updates

Visit http://www.nostarch.com/linearalgebra for updates,  
errata, and other information.

There's 
more!



No need to 
get violent...

I still don't 
get it!

You can 
do it, 
bro!

Snap!
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implication, 27–28
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132–139, 143, 
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inverse functions, 48–49
inverse matrices

calculating using 
Gaussian 
elimination, 88–94

calculating using 
cofactors, 108–111

overview, 86–87
invertible matrices, 94
irrational numbers, 25

K

kernel, 189–192

L

linear algebra, overview, 
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linear dependence, 135, 
138–139, 143

linear independence,  
132–139, 143, 
146–147

linear map, 167
linear operation, 167
linear spans, 154–155
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linear transformations
3-D projections of, 185
applications of, 173–177
dimension theorem for, 

189–192
functions and, 50–61
overview, 166–173
rank, 193–203
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relationship with 

matrices, 168, 203
rotation, 180–181

scaling, 179
translation, 182–184

lower triangular 
matrices, 79

M

main diagonal
diagonal matrices 

and, 80
identity matrices and, 82
overview, 67
symmetric matrices 
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triangular matrices 

and, 79
matrices

calculations with, 70–76
determinants, 95–105, 

111–112
diagonal, 80–81
diagonalizable, 225–227
eigenvalues and 

eigenvectors, 215
identity, 82–84
inverse

calculating using 
Gaussian 
elimination, 88–94

calculating using 
cofactors, 108–111

overview, 86–87
lower triangular, 79
multiplication with, 

72–76, 125
overview, 62–69
rank of, 196–203
relation of linear 

algebra to, 24
relationship with linear 

transformations, 
203

symmetric, 79
transpose, 78
upper triangular, 79
writing systems of 

equations as, 69
zero, 77

multiplicity, and 
diagonalization, 
224–229

multiplication
with diagonal matrices, 

80–81
with identity matrices, 

82–83
with matrices, 72–76
with vectors, 125

N

natural order, 103
non-diagonalizable 

matrices, 227–229
number systems, 25–26

O

objects, in sets, 30
one-dimensional 

dependence, 135, 
138–139, 143

one-dimensional 
independence,  
132–139, 143, 
146–147

one-to-one functions, 46–47
onto functions, 46–47

P

permutations, 55–60
perspective projection, 185
planes, 128
points, 127
polynomial roots, 224
propositions, 27

R

range, 44–45
rank

of matrices, calculating, 
196–203

overview, 193–195
rational numbers, 25
real numbers, 25
Rn, 126
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rotating linear 
transformations, 
180–181, 184

row vectors, 126
rules

of determinants, 101
functions as, 39

S

Sarrus’ rule, 98
scalar multiplication

with matrices, 72
with vectors, 125

scaling linear 
transformations, 
179, 184

set theory
sets, 30–31
set symbols, 32
subsets, 33–34

square matrices
multiplying, 75
overview, 67

straight lines, 127
subscripts, 66
subsets, 33–34
subspaces, 150–155
subtraction

with matrices, 71
with vectors, 125

symbols
for equivalence, 29
for functions, 39
f(x), 40–43
for imaginary units, 

25–26
for inverse functions, 49
for propositions, 28
of sets, 32
for subsets, 33
for transpose 

matrices, 78
symmetric matrices, 79
systems of equations, 

writing as matrices, 69

T

target set, 39
term indexes, 101
theta (θ), 180
3-D projections of linear 

transformations, 185
transformations, linear. See 

linear transformations
translating linear 

transformations, 
182–184

transpose matrices, 78
triangular matrices, 79

U

upper triangular 
matrices, 79

V

vectors
basis, 140–148
calculating, 125–126
dimensions of, 149–162
geometric interpretation 

of, 127–130
linear independence, 

132–139
overview, 116–124
relation of linear algebra 

to, 24
vector space, 129

Z

zero matrices, 77
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