
TH
E leg

o
® m

in
d

sto
rm

s
® EV3 Lab

or
atory

THE LEGO® MINDSTORMS®
EV3 LABORATORY
build, program, and experiment with
five wicked cool robots!

daniele benedettelli

benedettelli

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

 “I LIE FLAT.”

This book uses RepKover—a durable binding that won’t snap shut.
Price: $34.95 ($36.95 CDN) Shelve in: Robotics/Hobbies

THIS BOOK IS NOT AUTHORIZED OR ENDORSED BY THE LEGO GROUP.

The LEGO® MINDSTORMS® EV3 set offers so many new
and exciting features that it can be hard to know where to
begin. Without the help of an expert, it could take months
of experimentation to learn how to use the advanced
mechanisms and numerous programming features.

In The LEGO MINDSTORMS EV3 Laboratory, author
Daniele Benedettelli, robotics expert and member of the
elite LEGO MINDSTORMS Expert Panel, shows you how to
use gears, beams, motors, sensors, and programming blocks
to create sophisticated robots that can avoid obstacles, walk
on two legs, and even demonstrate autonomous behavior.
You’ll also dig into related math, engineering, and robotics
concepts that will help you create your own amazing robots.
Programming experiments throughout will challenge you,
while a series of comics and countless illustrations inform
the discussion and keep things fun.

As you make your way through the book, you’ll build and
program five wicked cool robots:

N	ROV3R, a vehicle you can modify to do things like follow a
line, avoid obstacles, and even clean a room

N	WATCHGOOZ3, a bipedal robot that can be programmed
to patrol a room using only the Brick Program App (no
computer required!)

N	SUP3R CAR, a rear-wheel-drive armored car with an
ergonomic two-lever remote control

N	SENTIN3L, a walking tripod that can record and execute
color-coded sequences of commands

N	T-R3X, a fearsome bipedal robot that will find and
chase down prey

With The LEGO MINDSTORMS EV3 Laboratory as your guide,
you’ll become an EV3 master in no time.

about the author

Daniele Benedettelli is known worldwide for his original
LEGO robots, including his Rubik’s Cube solvers and
his humanoid robots. As a LEGO MINDSTORMS Com-
munity Partner (MCP), he helps to test and develop new
MINDSTORMS products. He earned a master’s degree in
Robotics and Automation from the University of Siena in
Italy. He holds educational presentations and workshops
on Information and Communications Technology around
the world and teaches robotics at the high school level.

Requirements:	One LEGO MINDSTORMS EV3 set
	 (LEGO SET #31313)

FOR AGES 1O+

SERIOUS
MINDSTORMS.
SERIOUS FUN.

THe lego® mindstorms® EV3 Laboratory

The lego®
mindstorms® EV3
Laboratory
build, program, and experiment with
five wicked cool robots!

daniele benedettelli

The LEGO® MINDSTORMS® EV3 Laboratory. Copyright © 2014 by Daniele Benedettelli.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written

permission of the copyright owner and the publisher.

Printed in USA

First printing

17 16 15 14 13   1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-533-1

ISBN-13: 978-1-59327-533-4

Publisher: William Pollock

Production Editor: Riley Hoffman

Cover Design: Tina Salameh

Interior Design: Octopod Studios

Cover Photograph: Francesco Rossi

Comic Illustrations: Arte Invisibile

Developmental Editor: William Pollock

Technical Reviewer: Claude Baumann

Copyeditor: Paula Fleming

Compositors: Riley Hoffman and Alison Law

Proofreaders: Emelie Burnette and Nancy Sixsmith

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Benedettelli, Daniele, 1984-

 The LEGO Mindstorms EV3 laboratory: build, program, and experiment with five wicked cool robots! / by Daniele

Benedettelli.

 pages cm

 ISBN 978-1-59327-533-4 -- ISBN 1-59327-533-1

 1. Robots--Design and construction--Amateurs’ manuals. 2. Robots--Programming--Amateurs’ manuals. 3. LEGO

Mindstorms toys. I. Title.

 TJ211.B46325 2013

 629.8’9--dc23

 2013030612

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and com-

pany names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol

with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the

trademark owner, with no intention of infringement of the trademark.

LEGO®, MINDSTORMS®, the brick configuration, and the minifigure are trademarks of the LEGO Group, which does not

sponsor, authorize, or endorse this book.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken

in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity

with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

All characters in this publication are fictitious, and any resemblance to real persons, living or dead, is purely coincidental.

To the memory of Nari

about the author
Daniele Benedettelli is an Italian robotics engineer known
worldwide for his LEGO MINDSTORMS creations, such as the
LEGO Rubik Utopia (2007), Cyclops (2011), and LEGONARDO
(2013). He prefers to be called Danny, mainly to avoid being
mistaken for a girl named Danielle. (He once received an
appreciation plaque in Bahrain “for sharing her expertise
and knowledge in robotics.”)

In 1992, his creation “Tom the cat” lost early in a LEGO
competition held in a toy store in his hometown, but he didn’t
give up. He kept playing well until he hit the “dark age of
LEGO”—a period in the life of an adult fan of LEGO (AFOL)
when real-life interests (girls, in his case) replaced his passion
for the plastic bricks. That is, until 2001—when he discovered
the LEGO MINDSTORMS RCX.

Since 2006, Benedettelli has collaborated with The LEGO
Group in testing and developing the LEGO MINDSTORMS
products as a MINDSTORMS Community Partner (MCP).
In 2012, he was hired as an external programmer for LEGO
Education. He was selected as one of 12 experts to test the
LEGO MINDSTORMS EV3, and he created the EL3CTRIC
GUITAR, one of the bonus models for the Retail set 31313.

In 2012, with the help of the openPICUS team,
Benedettelli crowdfunded and brought to market the

NXT2WIFI, a Wi-Fi adaptor for the NXT, which makes it pos-
sible to control robots with any browser-enabled device (such
as computers, Android smartphones, iPhones, and iPads) and
to build huge swarms of networked robots.

He currently works as a high school electronics and
systems teacher and as a freelance LEGO designer for the
Bricks4Kidz franchise. He has participated in many LEGO
events, and he has been invited to ICT Education conferences
around the world as a keynote speaker and workshop facilita-
tor. His YouTube channel has millions of views, and his creations
have been featured in many TV shows worldwide. Benedettelli
sometimes plays piano and composes music (mainly soundtracks
for his videos). He likes origami and drawing comics, the latter
a passion that proved useful when creating this book. He is the
author of two previous books: Creating Cool LEGO MINDSTORMS
NXT Robots (Apress, 2008) and LEGO MINDSTORMS NXT Think
ing Robots (No Starch Press, 2009). You can learn more about
him at these links:

http://robotics.benedettelli.com/
http://music.benedettelli.com/
http://www.facebook.com/robotics.benedettelli/
http://twitter.com/DBenedettelli

about the technical reviewer
Claude Baumann has taught advanced LEGO MINDSTORMS
robotics in after-school classes for 15 years. He participated
in beta testing for the ROBOLAB software developed at the
Center for Engineering and Outreach (CEEO) at Tufts University
(http://ceeo.tufts.edu/). He created ULTIMATE ROBOLAB, a
cross-compiler environment that allowed graphical program-
ming of LEGO RCX firmware, and with it conceived the world’s
only self-replicating program for the LEGO RCX (some call it
a virus). Claude also served as a co-developer on the CEEO

NXT Module team. More recently, he has participated as a
MINDSTORMS Community Partner (MCP) during the develop-
ment of the new EV3 Intelligent Brick. He has been the asses-
sor of various high school robotics projects and is the author of
Eureka! Problem Solving with LEGO Robotics (NTS Press, 2013),
several articles, and conference presentations. His special
interest is robotic sound localization. He is the head of a net-
work of high-school boarding institutions in Luxembourg (EU),
and he’s married with three children and three grandchildren.

about the comic designers
Arte Invisibile or Invisible Art (http://www.arteinvisibile.com/;
http://www.facebook.com/AssociazioneArteInvisibile/) is a
nonprofit association formed in 2007 by young artists living
in Tuscany, Italy. It has over 100 members.

Arte Invisibile coordinates courses for comic design, illus-
tration, digital art, screenplay writing, and animation with the

goal of bringing young people into the field of art and related
professions. Over the years, the association has produced vari-
ous publications and organized exhibits and workshops with
world-famous artists. It also manages a well-supplied comic
library with many rare comic books.

https://www.facebook.com/AssociazioneArteInvisibile

acknowledgments
I didn’t remember how tough it was to write a LEGO
MINDSTORMS book, especially with a comic story inside!
There are many people I need to thank for making this possible.
First, thanks to my family for their support and patience during
this period: to my completely newbie parents, who tested the
robots’ building instructions and helped make them crystal
clear; to my brother, who kept telling me to get a real job; to
my grandparents, who were dismayed to see what toys have
become (especially my ninja-like grandma who stealthily
approached my LEGO work desk from behind and whispered
“What’s up? Are you working?” turning my hair a few shades
grayer). And let’s not forget the tiresomely affectionate family
dog, who covered my floor with fur and drool and barked at my
LEGO robots as if they were alive.

Thanks to the No Starch Press team, especially to Bill for
believing in this project and for his reviews and suggestions,
and to Riley for her tireless and kind support.

A big thanks to Claude Baumann, renowned school
manager, teacher, and author, who punctually and meticulously
reviewed the technical aspects of this book. Thanks to the
twelve monkeys group, of which I am proud member, for
their friendship and inspiration. Thanks to John Hansen, for
his early EV3 screen capture tool. And thanks to the LEGO
MINDSTORMS team, especially Lee (for hiring me as a pro-
grammer for LEGO Edu); Steven (for endorsing my projects);
and Camilla, Flemming B., Henrik, Jesper, Lars Joe, Linda,
Marie, Oliver, Pelle, and Peter.

A huge thanks to all the LDraw community members who
developed the bits and tools to create high-quality LEGO-like
building instructions. Special thanks to master builder and book
author Philippe Hurbain (Philo), a master in modeling 3D LEGO
elements, and to Kevin Clague, developer of LPUB4.

Thanks to my dear photographer friend Francesco Rossi
(http://www.fr-ph.com/) for the great photo on the book cover!
He’s helped me with the crazy and beautiful photos for my
top models, like Cyclops and LEGONARDO. Girls don’t believe
it’s me portrayed in his photos and want to meet him at once!
True story.

Thanks to Marco and Susanna for helping me transform
a first-draft script into a full-blown graphic narrative and to
Nicola for his last-minute help.

And finally, thanks to the unaware Eddie for inspiring the
character of Dexter. Regarding the other comic characters, any
resemblance to real persons is purely coincidental. No apprentices
were harmed in the making of this book.

brief contents

introduction...xix

comic: the EV3L scientist’s apprentice.. 1

chapter 1	 your LEGO MINDSTORMS EV3 set... 5
chapter 2	 building ROV3R... 17
chapter 3	 programming... 47
chapter 4	 advanced programming with the brick program app...61
chapter 5	 EV3 programming... 69
chapter 6	 experimenting with the EV3 infrared components...85
chapter 7	 the math behind the magic!..95
chapter 8	 LEGO recipes.. 103
chapter 9	 building WATCHGOOZ3... 131
chapter 10	 programming WATCHGOOZ3..177
chapter 11	 building the SUP3R CAR..191
chapter 12	 programming the SUP3R CAR.. 231
chapter 13	 building the SENTIN3L...249
chapter 14	 programming the SENTIN3L... 295
chapter 15	 building the T-R3X.. 309
chapter 16	 programming the T-R3X... 363
appendix A	 the EV3 31313 set bill of materials... 381
appendix B	 differences between the education set and retail set... 389

index... 403

contents in detail
introduction..xix
playing without a computer..xix
whom is this book for?...xix
what do I need to use this book?..xix
the EV3 software..xix
the structure of this book..xx
the companion website...xx
let’s start already!...xx

comic: the EV3L scientist’s apprentice.. 1
continued......................15, 45, 66, 84, 94, 101, 129, 175, 189, 228, 247, 293, 307, 358, 380, 402

1
your LEGO MINDSTORMS EV3 set.. 5
the studless way of building... 5

studless vs. studded: the structural differences.. 5
naming the pieces... 6

beams.. 6
connectors.. 8

crosses and holes... 9
gears..11
wheels, tires, and treads..12
decorative pieces..13
miscellaneous pieces...13
electronic pieces...13

the differences between the EV3 retail and education sets .. 14
conclusion.. 14

2
building ROV3R... 17
base module... 19
ROV3R with wheels..23
touch sensor bumper...25
ROV3R with touch sensor bumper...27
line-following module...28
line-following ROV3R ..28
front IR sensor...30
ROV3R with front IR sensor...31
wall-following module..32
wall-following ROV3R ...32

alternative: ROV3R with wall-following and line-following modules...33
Dexter’s cleaning tool...34

xii	 contents in detail

ROV3R with cleaning tool..36
alternative #1: ROV3R with cleaning tool and touch sensor bumper...38
alternative #2: wall-following ROV3R with cleaning tool...39

ROV3R with treads...40
secret project: grabber module...44
conclusion..44

3
programming.. 47
the building blocks of any program.. 47

sequences...48
choices...48
loops...48

programming with the brick program app...48
your first brick program.. 49

a quick guide to the brick program app..50
the block palette..53

the action blocks...54
the wait blocks..56

experiment 3-1...58
experiment 3-2... 59

the loop block...58
conclusion.. 59

4
advanced programming with the brick program app... 61
ROV3R with touch sensor bumper...61
making ROV3R drive along geometric paths...62

experiment 4-1 ..62
making ROV3R follow lines...62

using the brick program to follow lines..63
improving the motion..63

experiment 4-2...63
making ROV3R follow walls..64

improving the motion..64
experiment 4-3...65

conclusion..65

5
EV3 programming... 69
EV3 software setup.. 69
EV3 software overview.. 69

the lobby... 69
the programming interface..70

compiling programs...71
the hardware page...71
the tools menu..72

	 contents in detail	 xiii

the programming palettes ..73
project properties...75

connecting the EV3 brick to your computer..75
importing a brick program.. 76

analyzing the imported brick program .. 76
get rid of that block!..77

editing the imported brick program..77
going for precision..78

digging deeper: computing the degrees parameter to drive precisely..78
digging deeper: computing the degrees parameter to steer precisely...79

experimenting with action blocks...79
controlling the program flow ..81

the switch block..82
experiment 5-1...82
experiment 5-2...83

conclusion..83

6
experimenting with the EV3 infrared components.. 85
remote IR beacon ...85
using the remote IR beacon as a remote..86
using sensor blocks and data wires..87

untangling data wires.. 87
experiment 6-1...88

EV3 software features for debugging programs..88
displaying data nicely with the text block...88
understanding data types...89

data type conversion...89
digging deeper: decimal numbers...90

following the remote IR beacon...90
digging deeper: robot localization... 92

using the basic operations of the math block..92
experiment 6-2... 93
experiment 6-3... 93

conclusion..93

7
the math behind the magic!.. 95
dealing with measurement noise ...95
the math block in advanced mode..96
the round block..96

digging deeper: handling errors from math blocks... 97
the compare block...98

converting numeric values to logic values...98
embedded compare blocks ...98

the constant block...98
improving our wall-following program..98

digging deeper: feedback controllers...100

xiv	 contents in detail

experiment 7-1...100
experiment 7-2...100
experiment 7-3...100

conclusion... 100

8
LEGO recipes... 103
the angular beams unveiled.. 103

digging deeper: angular beams mystery solved!...104
triangles vs. rectangles... 104
extending beams...107
bracing... 108
cross blocks.. 110
gears revisited... 111

getting gears to mesh together well.. 111
assembling gears... 113
gear combinations..114
90-degree-coupled gears... 115
gear trains... 118
the worm gear...119
motion transformation... 121

building ideas for the motors.. 123
medium motor with front output #1... 123
medium motor with front output #2..124
medium motor with single lateral output... 125
medium motor with double lateral output... 125
medium motor with single geared-down lateral output.. 126
medium motor with gearbox.. 126
medium motor with multiple outputs.. 127
large motor with horizontal output.. 128
large motor gearing options .. 128

conclusion... 128

9
building WATCHGOOZ3.. 131
how does WATCHGOOZ3 walk?.. 131

10
programming WATCHGOOZ3.. 177
the brick program for WATCHGOOZ3..177

the program...177
how it works..177
running and troubleshooting the robot..178

importing and editing the program in the EV3 software...178
making a backup...179
modifying the program...179

creating My Blocks with the My Block Builder tool... 180
creating My Blocks with inputs and outputs.. 181

	 contents in detail	 xv

automatically adding inputs and outputs to My Blocks.. 183
additional configuration of a My Block... 184

creating an advanced program... 184
the ResetBody My Block.. 184
creating the advanced My Block for walking.. 185
the final program for WATCHGOOZ3... 187

the logic operations block... 187
the timer block.. 187

experiment 10-1..187
digging deeper: motor speed regulation..188
experiment 10-2..188

conclusion... 188

11
building the SUP3R CAR.. 191
building the R3MOTE.. 222
conclusion... 227

12
programming the SUP3R CAR.. 231
electronic vs. mechanical differentials.. 231

digging deeper: computing wheel speeds for an electronic differential...232
using variables.. 232
using arrays... 233

using the variable block with numeric and logic arrays.. 233
using the array operations block... 233

using the switch block with multiple cases... 234
running parallel sequences (multitasking)... 234
building the My Blocks.. 235

the ResetSteer My Block... 235
the Steer My Block.. 236
the Drive My Block.. 236
the ReadRemote2 My Block.. 237

programming the car to drive around.. 239
programming the car for remote control... 240
using arrays to clean up the ReadRemote My Block.. 240
programming the car to follow the beacon..242

the Sign My Block...242
the Saturation My Block...242
the ReadBeacon My Block..242
the range block... 244
the FollowBeacon program... 244

experiment 12-1 ...244
adding a siren effect to the SUP3R CAR...245

the loop interrupt block... 246
the stop program block.. 246

experiment 12-2..246
conclusion... 246

xvi	 contents in detail

13
building the SENTIN3L...249
building the COLOR CUB3.. 290
conclusion... 292

14
programming the SENTIN3L.. 295
the file access block... 295

creating and deleting a file and writing data... 295
reading data from a file... 296
detecting the end of a file... 296

the random block.. 296
building the My Blocks.. 296

the ResetLegs My Block... 296
digging deeper: how “power” relates to speed...297

the WalkFWD My Block... 298
the Laser My Block... 298
the Turn My Block... 299
the PowerDownFX My Block.. 299
the WaitButton My Block.. 299
the SayColor My Block... 300
the ExeCode My Block.. 300
the MakeProgram My Block... 300
the RunProgram My Block.. 301
the MakePrgFile My Block... 303
the ParseFile My Block... 303
the RunPrgFile My Block... 304

programming the SENTIN3L to patrol .. 304
color-programming the SENTIN3L at runtime.. 304

experiment 14-1.. 305
experiment 14-2.. 305

making permanent runtime color programs ... 306
experiment 14-3.. 306
experiment 14-4... 306

conclusion... 306

15
building the T-R3X.. 309
conclusion..357

16
programming the T-R3X.. 363
building the My Blocks for the Wander program... 363

the Reset My Block... 363
the MoveAbsolute and MoveAbsolute2 My Blocks... 363
the Step My Block.. 364
the Roar My Block... 364
the Chew My Block.. 364

	 contents in detail	 xvii

the Look My Block... 365
the Right My Block.. 365
the Left My Block.. 366
the TurnUntil My Block.. 366

programming the T-R3X to wander...367
designing the behavior of the T-R3X...367

digging deeper: behavior modeling using state machines.. 368
implementing a state machine...369

general structure..369
starting state...369
state variable...370
transitions...370
sensor events..370
timer events...370
timer-filtered events...371
actions ..371

digging deeper: computing complex logic operations using the math block.....................................371
digging deeper: De Morgan’s laws..373

making the My Blocks for the final program.. 373
the Turn My Block... 373
the ReadBeacon My Block... 373
the INIT My Block...374
the IDLE My Block..374
the HUNGRY My Block..374
the SEEK My Block...376
the CHASE My Block..376

ordering state transitions by priority...377
programming the T-R3X’s behavior.. 377

experiment 16-1...379
experiment 16-2..379
experiment 16-3..379
experiment 16-4..379

conclusion..379

A
the EV3 31313 set bill of materials... 381

looking up pieces on Brickset..381

B
differences between the education set and retail set... 389
electronic devices .. 389
the EV3 software... 389
turning the retail set into the education core set ... 389
turning the education core set into the retail set...394
turning the education expansion set into the retail set... 398

index... 403

introduction
The idea for this book was born in 2012 during a sandstorm
in Saudi Arabia. I was locked in my hotel room waiting for the
weather to improve and listening to Paul Dukas’s symphonic
poem The Sorcerer’s Apprentice. At that time, I was involved
in helping The LEGO Group in developing and testing the new
LEGO MINDSTORMS EV3. I began drafting the story of a
kid given the chance to become the apprentice of a scientist;
I wanted this story to be the background of my next book about
LEGO MINDSTORMS.

playing
without a
computer

The LEGO Group’s idea for the EV3 set is that it should be fully
usable if you have a computer with a fast Internet connection.
Unlike previous versions, the EV3 Software is available only
as a download. You also won’t find a printed user guide, only a
booklet with partial building instructions for the simplest official
robot, TRACK3R, and a few hints about on-brick programming.

Even if you don’t have a computer available, however, you’ll
still be able to enjoy playing with the robots in this book, thanks
to the new EV3 on-brick programming. This is an effective (if
limited) way to program the robots using the EV3 Brick menu.
Chapters 1 through 4 and 8 through 10 offer numerous ways
to play with your robots without a computer.

whom is this
book for?

This book is for anyone with a passion for robots! No matter
your age, this book can teach you how to build and program
robots using the LEGO MINDSTORMS EV3 Retail set 31313.

Besides specific building and programming instructions,
you’ll learn general LEGO building techniques, as well as basic
and advanced concepts of computer programming. Experts and
more experienced robot makers will find sections scattered
throughout the book that delve into topics a bit more deeply.

what do I need
to use this
book?

To use this book, you will need the LEGO MINDSTORMS EV3
Retail set 31313. You’ll also need an Internet-connected
computer to download and install the EV3 programming
software, including the tutorials to build and program the five
official models in the set. If you are a teacher or a student
building with LEGO MINDSTORMS Education Core set 45544,
see Appendix B for a list of the additional LEGO elements you’ll
need to make your set equivalent to the Retail set 31313.

You should find a USB cable in your set that will allow you
to connect the EV3 Brick to your computer. To connect with
a Bluetooth connection, your computer should have a built-in
or external Bluetooth dongle. To connect the EV3 Brick to the
computer using Wi-Fi, you must purchase a USB Wi-Fi dongle
separately. As of this writing, the only dongle known to work
with the EV3 Brick is the NETGEAR WNA1100.

the EV3
software

The EV3 Software was developed by National Instruments,
creators of the LabVIEW development environment. The EV3
language is based on its visual dataflow programming language
called G. National Instruments also developed the NXT-G

xx	 introduction

programming language for the previous LEGO MINDSTORMS
NXT generation.

If you are an NXT user and you have programmed with
NXT-G, you will find EV3 programming much clearer: Now
all the blocks show all settings at once, and you don’t have to
select a block to see its settings in the Configuration Panel. The
software allows you to zoom and pan through the programs to
explore them more easily. You’ll also find additional program-
ming features.

the structure
of this book

This book is both a manual and a workbook. It introduces
new concepts as the story in the comics develops. (Look at the
comics carefully, as they include hidden clues to downloading
bonus material from the companion website, including AUDR3Y,
the people-eating plant; the L3AVE-ME-ALONE box; and many
more.) “Digging Deeper” sidebars explain some advanced topics
in depth. If you’re an expert, you may want to skip some of
the more introductory chapters and go directly to Chapters 9
through 16, where you learn how to build and program the
four main robots. The chapters also contain experiments to
apply and deepen what your knowledge. Here’s what you’ll find
in each chapter:

N	 Chapter 1: Contents of the 31313 set; identifying LEGO
Technic elements.

N	 Chapters 2, 3, and 4: Build ROV3R, a wheeled robot that can
be built quickly and programmed without a computer.

N	 Chapters 5, 6, and 7: Introduction to EV3 programming using
the computer.

N	 Chapter 8: LEGO building techniques.
N	 Chapters 9 and 10: Build and program WATCHGOOZ3, a

walking robot that can be programmed with or without a
computer.

N	 Chapters 11 and 12: Build and program the SUP3R CAR,
a steering car.

N	 Chapters 13 and 14: Build and program the SENTIN3L,
a walking defense robot.

N	 Chapters 15 and 16: Build and program the T-R3X, a fear-
some walking dinosaur.

the companion
website

The companion website, http://EV3L.com/, contains the EV3
projects for the robots, errata, additional tips and tricks, and
the bonus models for this book.

let’s start
already!

Welcome to the journey! Follow Dexter and Danny through
their adventure and become an EV3L scientist’s apprentice!

http://EV3L.COM/

2	T he EV3L Scientist’s Apprentice

	T he EV3L Scientist’s Apprentice	 3

4	T he EV3L Scientist’s Apprentice

1
your LEGO MINDSTORMS EV3 set

Your LEGO MINDSTORMS EV3 31313 set includes a collection
of LEGO elements, a printed manual (with instructions for build-
ing the official robot, TRACK3R, and some hints about how to
get started with the EV3 Intelligent Brick), a USB-to-miniUSB
cable to connect the EV3 Brick to your computer, and a paper
test pad (just unroll the sleeve surrounding the box)—but no
software. Where is the software? You can download it from
the Downloads section of the LEGO MINDSTORMS EV3 official
website (http://LEGO.com/mindstorms/). The LEGO Technic ele
ments in the box are beams, pins, gears, and wheels as well as
electronic components like motors, sensors, cables, and the
EV3 Intelligent Brick itself.

the studless
way of building

As you may already know, there are no classic LEGO bricks in
the EV3 box, and the beams don’t have any studs. So how do
you connect them?

Since 2000, LEGO Technic sets have been composed
mainly of “studless” parts. The good old sharp-edged Technic
bricks with studs (called studded) have slowly been replaced
by smooth, studless Technic beams, which give the models a
sleeker look (Figure 1-1).

I remember when I first switched from studded to stud-
less building: Despite years of experience with “classic” LEGO
Technic, I suddenly felt as though I could not build even the
simplest thing. I was so frustrated! But as I took a close look
at the official LEGO Technic models, I became more and more
familiar with the parts. Sure, I had to learn a completely differ-
ent way of building, but it was worth the effort. Studless build-
ing produces models that are lightweight, solid, and beautiful.
Once you get started with studless building, you’ll wonder how
you could have lived without it!

studless vs. studded:
the structural differences

Technic bricks have an even number of studs and an odd num-
ber of holes (a two-stud brick has one hole, a six-stud brick
has five holes, and so on), and you measure and name them by
counting their studs. Technic beams are like a minimalist, stud-
less version of Technic bricks. Measure them by counting their
holes, as shown in Figure 1-1. Like the studs on a LEGO brick,
Technic pins act as the “glue” for your LEGO creations, as you
can see in Figure 1-2.

The round ends of Technic beams allow you to build
structures and mechanisms that are more compact and lighter
than the ones you might build with standard LEGO bricks. For
example, in order for two studded bricks to rotate next to each
other on pegs, the pegs need to have two empty holes between
them (see Figure 1-3). In contrast, the studless beams’ pegs
can be right next to each other.

Figure 1-1: A classic 8M Technic brick compared to a 7M studless beam.

Building with studless parts isn’t always as intuitive as the classic way of build

ing with LEGO by stacking bricks and plates from bottom to top. In fact, studless

technique requires you to think three-dimensionally, from the inside out.

6	C hapter 1

On the other hand, you can make sturdier, more rigid
structures using standard bricks and plates. Depending on
what you want to make, you might use studded, studless,
or a combination of both techniques.

naming the
pieces

Imagine that we’re building a LEGO robot together and you
find that you’re missing a LEGO part. You ask me if I have one,
but all you can muster is “Danny, would you pass me that . . .
something, thingamajig, whatchamacallit, doodad, a habba
whatsa?” and I don’t understand what you need! Or worse,
if you need to buy parts online (from a site like BrickLink;
http://www.bricklink.com/) and you don’t know how to refer to
the parts, you’ll be at a loss and unable to finish your robot.

Names are important. It’s much easier to master LEGO
building techniques if you know how to classify, name, and
measure LEGO parts. You can’t write a novel if you don’t know
grammar and vocabulary, and the same holds true for LEGO.
You’ve got to know the parts.

The pieces in the EV3 31313 set can be divided into these
categories:

beams  straight beams, angular beams, frames, thin
beams, and links
connectors  pins, axles and bushes, axle and pin connec-
tors, and cross blocks
gears  spur gears, bevel gears, and worm gears
wheels and treads  wheels, treads, and tires
decorative pieces  panels, teeth, swords, and so on
miscellaneous pieces  balls, ball magazine, ball shooter,
rubber band
electronic pieces  the EV3 Intelligent Brick, motors,
sensors, and cables

Note	 For these categories, I’ve chosen to use the names
that I think are the easiest to remember. For the official
LEGO names, see Appendix A.

I’ll describe the categories briefly, with a minimum of bor-
ing chatter.

beams

As mentioned earlier, beams are the studless equivalent of
Technic bricks. This category includes straight beams, angular
beams, and frames. We’ll include thin beams and links in this
category too. Beams can have round holes, which can fit pins,
or cross holes, which can fit axles or axle pins. Links have ball
sockets that fit pins with towballs.

Figure 1-2: Like studs are for bricks, pins are the “glue” for studless beams.

Figure 1-3: Technic beams occupy less space than bricks, allowing you to build

more compact structures.

	 your LEGO MINDSTORMS EV3 set	 7

straight beams

Figure 1-4 shows the straight beams; their names are listed
in Table 1-1. The beams are measured by counting their
holes. For example, a straight beam with three holes is a 3M
beam (and you can omit the adjective “straight”). The number
of holes in a beam corresponds to the length of the beam as
expressed in Fundamental LEGO Units, or modules (1M = about
8 mm). In all LEGO building instructions, you’ll see a box for
each building step that lists the parts needed in that step. The
length of a beam is noted at its top-right corner.

table 1-1: the straight beams

Label in Figure 1-4 Name Color

A 15M beam Black

B 13M beam Black

C 11M beam Red

D 9M beam Black

E 7M beam Black

F 5M beam Black

G 3M beam Black

H 2M beam with cross hole Black

angular beams

Figure 1-5 and Table 1-2 show the angular beams and their
names. An angular beam with three holes before and seven
holes after the bend is a 3×7 angular beam. The same naming
pattern is used for the other angular beams. Notice that some
angular beams have cross holes at their ends.

table 1-2: the angular beams

Label in Figure 1-5 Name Color

A T beam Black

B 2×4 angular beam Black

C 3×5 angular beam Black

D 4×4 angular beam Black

E 3×7 angular beam Black

F Double angular beam Black

The angular beams labeled A, B, and C have right angles,
while F has two 45-degree bends. But what about the others?
What kind of strange angle is that, and how do you use it to
build? You’ll learn the secrets of working with the various
angular beams in Chapter 8.

frames

We also have special beams called frames, as shown in Fig-
ure 1-6. We refer to these based on their shapes as O-frames
(or simply frames) and H-frames. Once you know how to work
with them, you’ll find that they allow you to build rock-solid
structures that will not come apart!

A B C D E F G H

1M

Figure 1-4: The straight beams

A
B

C

D

E

F

Figure 1-5: The angular beams

8	 Chapter 1

thin beams and links

The thin beams and links
are shown in Figure 1-7
and Table 1-3. Thin beams
have cross holes at each
end, and they are one
half-module thick. Think
of the 6M and 9M links as
beams with ball sockets at
their ends. These fit pins
with towballs (items D and
H in Figure 1-8). Ball joints
allow for a wide range of
motion and rotation, simi-
lar to your shoulder or hip
joints.

table 1-3: the thin beams and links

Label in Figure 1-7 Name Color

A Cam Black

B 3M thin beam Grey

C 6M link Black

D 9M link Black

connectors

Most parts in the EV3 set are connectors. When building
with wood or metal, we use nails, glue, staples, screws, bolts,
washers, and so on to connect the various pieces. In the won
derful world of LEGO Technic, we use pins, axles and bushes,
axle connectors, and various cross blocks.

pins and axle pins

Pins hold beams together when fitted inside the beams’ round
holes. Pins are divided into two groups: pins with friction and
pins without friction (also called smooth pins). Figure 1-8 and
Table 1-4 show 2M and 3M pins, axle pins, pins with towballs,
and a special 3M pin with a stop bush (also called a bushing).

table 1-4: the pins and axle pins

Label in Figure 1-8 Name Color

A Pin without friction Grey

B 3M pin without friction Tan

C Axle pin without friction Tan

D Axle pin with towball Grey

E Pin with friction Black

F 3M pin with friction Blue

G Axle pin with friction Blue

H Pin with towball Black

I 3M pin with stop bush Red

Figure 1-6: The O-frame and the H-frame

A

D

B

C

Figure 1-7: The thin beams and links

A E

F

G

H

I

B

C

D

Figure 1-8: The renowned

Technic pins. The straight

line signifies the pins

without friction (A–C); the

wavy line indicates pins with

friction (E–I). The axle pin

with towball (D), while not

technically a smooth pin, is

listed here for comparison

with the pin with towball (H).

	 your LEGO MINDSTORMS EV3 set	 9

Pins without friction (labeled A, B, and C in Figure 1-8) turn
smoothly and freely in the Technic holes. They are color coded:
2M pins are always grey, while 3M pins and axle pins are tan.
Pins without friction are mainly used to connect moving beams.

NOTE	 The EV3 set has no axle pins without friction,
labeled C in Figure 1-8, but I’ve included it here for the
sake of completeness. Axle pins without friction can be
used to hold a gear so that it can turn freely.

The pins with friction (labeled E, F, G, H, and I) have ridges
that increase friction and make it harder for them to turn in the
Technic holes. The ridges also prevent the pins from rattling.
2M pins with friction are always black, and 3M pins with fric-
tion and axle pins with friction are blue. 3M pins with stop bush
come in many colors, but they’re red in the EV3 set. The pins
are color coded to help you identify their function at first sight.

Pins with friction are great for building stable structures
because they hold beams together better than pins without
friction. In the following chapters, you’ll learn many ways to
use pins and axle pins.

axles and bushes

Axles are designed to transfer rotational movement, for example
from a motor shaft to a wheel. Axles can also be used to hold
structures together. Their cross section looks like a cross (their
complete name is actually cross axle), and they fit perfectly into
parts that have cross holes, such as gears, angular beams, and
cross blocks.

Like beams, axles come in many lengths. You can measure
them by putting them next to a beam and counting the holes in
the beam. Once you get used to working with them, you will be
able to sort them by size at a glance, even without measuring
them. This superpower really amazes people!

crosses and holes

Build the following assemblies. Each one has a symbol to
help you pick the right pieces. Wavy lines indicate a pin
with friction (black or blue) and straight lines indicate
smooth pins (grey or tan). A plus (+) indicates axle pins
and a circle indicates round pins.

N	Once you’ve built the assemblies, hold them and try
to make the inclined beam swing. What happens in
each case?

N	 In the rightmost assembly, which 2×4 angular beam is
the easiest to turn?

10	C hapter 1

Like pins, axles are color coded, as shown in Figure 1-9:
The 2M axle is red, odd-length axles are light grey (3M, 5M,
7M, 9M), and larger even-length axles are black (4M, 6M, 8M,
10M, 12M). The EV3 set doesn’t have normal 4M and 8M axles;
it includes a tan axle with a cylindrical stop in the middle (4c),
as well as some axles with a stop at one end (3s, 4s, and 8s).
Unlike the 4M and 8M axles with stop (4s and 8s), the 3M axle
with stop (3s) has a protruding stud. In the 3s, 4s, and 8s axles,
the stop looks like a built-in bush, and it stops the axle from
passing through a hole or a cross hole. In the 4c axle, the stop
in the middle stops the axle from passing completely through a
cross hole.

Figure 1-9 also shows two bushes, labeled B1 (yellow,
one half-module thick) and B2 (red, one module thick). You’ll
usually fit these bushes over axles to prevent the axles from
coming out of holes, or you’ll use them to keep space between
two or more elements of a structure. Because the bushes are
mainly used with axles, I’ve listed them together.

axle, pin, and angle connectors

Figure 1-10 shows the axle, pin, and angle connectors, and
Table 1-5 lists their names. Each angle connector (those
labeled E, F, G, and H) is identified by a number embossed
on its body.

table 1-5: the axle, pin, and angle connectors

Label in Figure 1-10 Name Color

A Connector with axle holes Grey

B Connector hub with 3 axles Grey

C Pin connector Grey

D Axle connector Red

E Angle connector #1 Red

F Angle connector #2 Red

G Angle connector #4 Red

H Angle connector #6 Red

cross blocks

Here comes the fun! Cross blocks are essential to studless
building because they allow you to build—and think—in three
dimensions. Remember, studless building isn’t about simply
stacking bricks; we’re adding parts from all sides, as shown in
Figure 1-11.

B1 B2

2

3

3s

4c

4s

5

5.5

6

7

8s

9

Figure 1-9: The axles and bushes (with 13M beam shown for comparison)

A B C

D E F

G H

Figure 1-10: The axle, pin, and angle connectors

	 your LEGO MINDSTORMS EV3 set	 11

Figure 1-12 shows the cross blocks in the EV3 set, and
Table 1-6 lists their names. Some entries also list a nickname
for the piece; for example, “Mickey” and “Minnie” are funny
names for parts D and E, respectively. (Thanks to LEGO
MINDSTORMS Education designer Lee Magpili for these nick-
names.) The part labeled L can be used as a gearbox to hold
90-degree-coupled 12z and 20z bevel gears (for example, see
“Medium Motor with Gearbox” on page 126).

It would be nearly impossible to show you all of the combi-
nations you can build with cross blocks. The best way to learn
how to use them is to draw your inspiration from the projects
in this book and from the many Technic models in the wild.

gears

When people think of complicated machines, gears often pop
into their minds, even if the machine is a computer with few
moving parts! And when a machine stops working, people
often blame its (sometimes imaginary) gears.

Gears are rotating wheels with teeth that mesh with
other toothed parts (like gears, gear racks, and worm gears)
to transmit movement. Figure 1-13 shows the gears included
in the EV3 set, with their corresponding names in Table 1-7.
LEGO gears are identified by number of teeth, as indicated in
their name followed by z; for example, a 24-tooth gear is called
a 24z gear.

table 1-6: the cross blocks

Label in Figure 1-12 Name Color

A 2M beam with 4 pins Grey

B 3M beam with 4 pins Grey

C 3M pin with hole Grey

D 2×1 cross block (“Mickey”) Red

E 2×2 fork cross block (“Minnie”) Red

F 3×2 cross block Grey

G 2M cross block Red

H 3M cross block Red

I Double cross block Red

J 2×2×2 fork cross block Grey

K 3M cross block, steering Grey

L Gearbox cross block Black

Figure 1-11: With cross blocks, you can build in any direction, not just from

bottom to top.

A

D E

G H I

J K L

F

B C

Figure 1-12: The cross blocks

12	C hapter 1

table 1-7: the gears

Label in Figure 1-13 Name Color

A 12z bevel gear Tan

B 20z bevel gear Tan

C 12z double-bevel gear Black

D 20z double-bevel gear Black

E 36z double-bevel gear Black

F 4z knob wheel Black

G Worm gear (1z) Grey

H 24z gear Dark Grey

Most gears are 1M thick, with the exception of the 12z
and 20z bevel gears, which are both one half-module thick. The
24z gear (labeled H) is a spur gear, but “spur” can be omitted
from the name (8z, 16z, and 40z spur gears also exist in the
LEGO system). The worm gear is a particularly tough gear.
You’ll learn more about it and how to combine gears in Chap-
ter 8 and while building the robots in this book.

wheels, tires, and treads

The simplest and most efficient way for your robots to move is
on wheels. The EV3 set contains four large wheels with tires,
three medium wheels with tires, four small wheels with two
small tires, and two rubber treads. Figure 1-14 shows the vari-
ous types of wheels, tires, and treads in the set, and Table 1-8
lists their names.

table 1-8: the wheels, tires, and treads

Label in Figure 1-14 Name Color

A Rubber tread Black

B Small wheel Grey

C Medium wheel Grey

D Large wheel Black

E Small tire Black

F Medium tire Black

G Large tire Black

The large tires have their dimensions printed on their
edge; for example, 43.2×22 ZR. These measurements are
in millimeters: In this example, 43.2 mm is the tire diameter
and 22 mm is the width of the tire. The medium tire has a
30 mm diameter and is about 3 mm wide. The small tire has
a 14 mm diameter and is 6 mm wide.

A

E

1M

F

G

H

B

C

D

½M

Figure 1-13: The gears

A

G

B

C

D

E

F

Figure 1-14: The wheels, tires, and treads

	 your LEGO MINDSTORMS EV3 set	 13

decorative pieces

The EV3 set contains several decorative pieces. In addition to
the teeth with axle holes, there are many white panels, blades,
and swords, as you can see in Figure 1-15. Their names are
given in Table 1-9. The panels come in mirrored pairs and are
identified by a number embossed on the concave side. Because
these panels have many connection holes, you can even use
them as large cross blocks when building.

table 1-9: the decorative pieces

Label in Figure 1-15 Name Color

A Long panel #5 White

B Long panel #6 White

C Medium panel #3 White

D Medium panel #4 White

E Right mudguard White

F Left mudguard White

G Sword Red/Grey

H Curved blade White

I Tooth White

J Tooth Red

miscellaneous pieces

The miscellaneous pieces are special elements: a ball magazine,
a ball shooter, three balls, and a rubber band. LEGO rubber
bands are color coded; the red one included in the EV3 set has
a 24 mm diameter. These parts are shown in Figure 1-16 and
listed in Table 1-10.

table 1-10: the miscellaneous pieces

Label in Figure 1-16 Name Color

A Ball magazine Black

B Ball shooter Black

C Ball Red

D Rubber band Red

electronic pieces

Finally, here’s what makes a MINDSTORMS set a real robotics
tool kit: the electronic pieces! These pieces are shown in Fig-
ure 1-17 and their names are listed in Table 1-11. The 31313
set contains two Large Servo Motors and seven cables: four
25 cm (10 in) cables, two 35 cm (14 in) cables, and one 50 cm
(20 in) cable.

The EV3 Intelligent Brick is a microcomputer that acts
as the brain for your robotic creations. It features the Linux
operating system running on a 300 MHz ARM9 controller. It
has 64MB of RAM and 16MB of flash memory, expandable with
a microSD card up to 32GB! The screen resolution is 178×128
pixels (black and white).

A

B

C
D

E

F

G

H

JI

Figure 1-15: The decorative pieces

A

D

B

C

Figure 1-16: The miscellaneous pieces

14	C hapter 1

table 1-11: the electronic pieces

Label in Figure 1-17 Name

A EV3 Intelligent Brick

B Large Servo Motor

C Touch Sensor

D Color Sensor

E Medium Servo Motor

F Remote IR Beacon

G IR Sensor

H Connector cable

You can connect the EV3 Brick to a computer with a mini
USB 2.0 port, and you can connect other devices (daisy-chained
EV3 Bricks or a Wi-Fi Dongle) to the USB 1.1 host port on its
side. You can also connect up to four motors and four sensors
to the Brick. The EV3 Brick can recognize which motor or sen
sor is attached to its ports, thanks to the Auto-ID feature. You
can use 6 AA batteries to power it (LEGO Education sells a
rechargeable battery; see Appendix B for details).

The EV3 Servo Motors are not plain LEGO motors: They
have a built-in rotation sensor (1 degree resolution) to allow
precise motion control. The Large Servo Motor runs at 160 to
170 rpm, with a running torque of 20 N∙cm and a stall torque
of 40 N∙cm. The Large Servo Motor is slower but stronger than
the Medium Servo Motor, which runs at 240 to 250 rpm with a
running torque of 8 N∙cm and a stall torque of 12 N∙cm.

A motor is in stall (or is stalled) when it is commanded to
turn but the shaft is blocked by some mechanical stop and is
unable to move. This consumes a lot of battery power, and you
should avoid this situation by, for example, turning the motor
off before it gets stuck or removing the block that’s preventing
the shaft from turning freely.

The sensors give your robots the ability to touch and see.
The Touch Sensor is basically a switch that your robot can use
to detect contact with objects. The Color Sensor can measure
ambient light, measure the amount of light reflected by objects,
and recognize the color of objects. The IR Sensor can measure
distance, detect the distance and the bearing to the Remote IR
Beacon, and receive remote commands from the Remote IR
Beacon. I’ll describe the various sensors in detail later in the book.

the differences
between the
EV3 retail and
education sets

The EV3 set comes in two versions: Retail set 31313 (the set
used in this book) and Education Core set 45544. The sets have
different assortments of parts, and they also differ in which
EV3 sensors they include. While in the Retail version you have
a Touch Sensor, an IR sensor with a Remote IR Beacon, and a
Color Sensor, in the Education set you have two Touch Sensors,
a Color Sensor, an Ultrasonic Sensor, and a Gyroscopic Sensor.
The differences between the two sets are listed in detail in
Appendix B.

conclusion
This chapter has provided an overview of the contents of
the LEGO MINDSTORMS EV3 31313 set. You learned how
to identify the various elements in the set. You’ve also been
introduced to the unique aspects of studless Technic parts:
round and cross holes, connection blocks, pins with and with
out friction, and so on. In Chapter 2, you’ll build a simple
mobile robot to start exploring the world of robotics with
LEGO MINDSTORMS EV3.

A

B

C D E

F

G H

Figure 1-17: The electronic pieces

	T he EV3L Scientist’s Apprentice	 15

16	T he EV3L Scientist’s Apprentice

2
building ROV3R

Now that you’re familiar with the pieces that come in the EV3
set, it’s time to build your first robot: ROV3R, a mobile robot
that is built with just a few parts. Thanks to its modular design,
reconfiguring it for various missions is a snap. In this chapter,
I’ll show you how to combine the wheeled version of ROV3R
with different sensors and tools (see Figures 2-1 and 2-2),
but you can easily swap out ROV3R’s wheels for treads. In the
chapters that follow, you’ll learn how the added sensors and
tools work and then program these ROV3Rs to accomplish
various tasks.

Along with the building instructions that follow, you’ll find
many tips and tricks. As you read through the instructions,
you’ll learn various building techniques, tips for making good
design choices, and some rules of thumb for building robots
with studless LEGO Technic pieces.

Although this book is printed in grayscale, the contrast
and readability of the images have been maximized. Almost all
of the parts in the 31313 set are white, black, or red. When
knowing the color of a certain element is important —for
example, to distinguish pins with friction from pins without
friction (or axle pins)—I’ve added labels to indicate the color
(see Table 2-1).

Figure 2-1: An overview of ROV3R’s modules

18	C hapter 2

When not otherwise specified, pins are black pins with
friction, axle pins are blue axle pins with friction, and 3M pins
are long blue pins with friction. And remember that odd-length
axles (3M, 5M, 7M, 9M) are light grey.

Note	 This color legend applies to all elements throughout
this book.

table 2-1: labels used to designate colors
in the building instructions

Color Label

White W

Grey G

Dark grey DG

Yellow Y

Red R

Blue B

Tan T

with wheels
(page 23)

with Touch Sensor Bumper
(page 25)

with Front IR Sensor
(page 30)

wall follower
(page 32)

line follower
(page 28)

floor sweeper
(page 34)

Figure 2-2: ROV3R can be reconfigured in many ways, thanks to its modular design. These are just a few of the possible combinations.

	b uilding ROV3R	 19

base module
First you’ll need to build the Base Module, which can be used
with wheels (see “ROV3R with Wheels” on page 23) or treads
(see “ROV3R with Treads” on page 40).

At the top of an axle, you will see a num-
ber indicating its length. To determine
the length of an axle, first place it next to
a long beam and then count the holes in
the beam that lie alongside the axle. You
can also use these real-scale pictures to
measure axles.

The parts list box shows
the elements you’ll need
for that particular step. The EV3 Large Servo Motor is internally

geared down, with a built-in one-degree-
resolution rotation sensor. The Large
Motor runs at 160 to 170 rpm, with a
running torque of 20 N∙cm and a stall
torque of 40 N∙cm.

The O-frame holds the
motors together. This tech-
nique is called bracing.

The exploded-view arrows
show how the parts should
be assembled.

DG

1:1

B

20	C hapter 2

When you see this symbol,
rotate the model to look like
the picture.

Always build the subassemblies
shown in the callouts first. Then
add them to the main model.

Inserting an axle pin into the
cross hole of a 3M pin with stop
bush gives you a sort of four-
module-long pin.

RR B

	b uilding ROV3R	 21

The double angular
beam’s ends form a
right angle, since each
bend is 45 degrees.

The 9M beam braces the motors
so that you can no longer pull
them apart. This is another
example of bracing.

7

9
1:1 9

7

22	C hapter 2

Lock the EV3 Brick with the 3M pins with stop
bush. Thanks to the bush, these pins can be
easily grabbed and pulled out with little force.

The Base Module
is complete.

	b uilding ROV3R	 23

ROV3R with wheels

These small caster wheels
support the robot. They
are passive, meaning that
they don’t propel the robot
but just follow the robot’s
motion. Like shopping cart
wheels, these wheels some-
times swivel when the robot
reverses direction, causing
the robot to jiggle.

G

Y

24	C hapter 2

The ROV3R with Wheels
is now complete. You can
attach the modules in this
chapter to this version of
ROV3R or to the ROV3R
with Treads.

The EV3 Brick has four output
ports, labeled A, B, C, and D. Use
the short cables to connect the
right driving motor to port C and
the left driving motor to port B.

	b uilding ROV3R	 25

touch sensor bumper

The Touch Sensor is simply a
switch that is normally open.
It returns a value of 1 if pressed
and 0 if released.

1:1

R

R

26	C hapter 2

The Touch Sensor Bumper
is now complete.

1:1

R

	b uilding ROV3R	 27

ROV3R with touch sensor bumper

The Brick Program App allows
you to program your robots
without a computer by using
the EV3 Brick menu. When
using the Brick Program App,
you must connect motors and
sensors to the default ports. The
Touch Sensor default port for
the Brick Program App is 1. The
EV3 system’s Auto-ID feature
allows the EV3 Brick to recog-
nize the type of sensor attached
to an input port. If you connect
a motor to a sensor port, or vice
versa, you’ll see a warning.

The ROV3R with Touch
Sensor Bumper is now
complete.

You can add the Touch
Sensor Bumper to the
ROV3R with Wheels or
the ROV3R with Treads.
The ROV3R with Wheels
is shown.

28	C hapter 2

line-following ROV3R

line-following module

The Color Sensor has a built-in RGB
LED that can emit red, green, or blue
light. The sensor detects different
colors by flashing all three colors in
a very fast loop and measuring the
light returned by the surface being
scanned. When the sensor is measur-
ing the amount of reflected light, the
LED glows red. You’ll learn more about
how ROV3R uses the Color Sensor to
follow a line in Chapter 4.

R

Using an axle pin instead of
another black pin makes it
easier to attach or detach
this module from ROV3R.

You can add the Line-
Following Module to the
ROV3R with Wheels or
the ROV3R with Treads.
The ROV3R with Wheels
is shown.

	b uilding ROV3R	 29

The Color Sensor default port for
the Brick Program App is 3.

The Line-Following ROV3R
is now complete.

When using the Brick Program App, you
must connect motors and sensors to their
default ports. The app sends a fixed amount
of power to the motors on ports B and C,
while it allows you to control the level of
power for the motors attached to ports A
and D independently. This will come in handy
when you try to fine-tune the Line-Following
ROV3R’s movements in Chapter 4.

30	C hapter 2

front IR sensor

The digital Infrared (IR) Sensor detects infrared light reflected from
solid objects and receives commands from the Remote IR Beacon.
The IR Sensor can be used in three modes: Proximity mode, Beacon
mode, and Remote mode.

In Proximity mode, the IR Sensor emits bursts of infrared light and
uses the amount of light reflected from an object to estimate that
object’s distance from the sensor. It reports the distance using
percentage values between 0 (very close) and 100 (far away), but it
does not give a specific number of centimeters or inches. In Beacon
mode, the sensor can estimate the heading (values from –25 to 25)
and proximity to the beacon (0–100 percent). In Remote mode, it
receives the numeric commands sent by the Remote IR Beacon.

1:1

The Front IR Sensor
is now complete.

7

	b uilding ROV3R	 31

ROV3R with front IR sensor

The IR Sensor default port for
the Brick Program App is 4.

The ROV3R with Front IR Sensor
is now complete.

You can add the Front IR Sensor
to the ROV3R with Wheels or the
ROV3R with Treads. The ROV3R
with Wheels is shown.

32	C hapter 2

wall-following ROV3R

wall-following module

Here I’ve used an axle pin and 2M
axles to make it easy to disassemble
the IR Sensor and this module from
ROV3R. For a sturdier assembly, you
should use pins that snap into holes,
like pins with friction or axle pins.

You can add the Wall-
Following Module to the
ROV3R with Wheels or
the ROV3R with Treads.
The ROV3R with Wheels
is shown.

	b uilding ROV3R	 33

alternative: ROV3R with
wall-following and line-following
modules

You can attach both the Line-
Following Module and the
Wall-Following Module to allow
ROV3R to detect differently
colored spots on the ground
while following a wall. You
might use this technique to
allow a robot to determine its
position in a room: Home base
could be marked by a green
spot, the robot’s destination by
a red spot, and so on.

The Wall-Following
ROV3R is now
complete.

34	C hapter 2

Dexter’s cleaning tool

	b uilding ROV3R	 35

Wrap an electrostatic cleaning
cloth around the frames. This
allows you to pick up dirt and
dust without using moving parts.
Such cloths are typically treated
with chemicals that give them a
negative charge, which readily
attracts dust particles as the
robot moves around the room.

Lock the cloth into place
using two 11M beams.

R

Dexter’s Cleaning Tool is
now complete.

1:1

36	C hapter 2

ROV3R with cleaning tool You can add Dexter’s
Cleaning Tool to the
ROV3R with Wheels or
the ROV3R with Treads.

	b uilding ROV3R	 37

The ROV3R with Cleaning
Tool is now complete.

38	C hapter 2

alternative #1: ROV3R with cleaning tool and touch sensor bumper

	b uilding ROV3R	 39

alternative #2: wall-following ROV3R with cleaning tool

When using the Brick Program App, you
must connect motors and sensors to their
default ports. The app sends a fixed amount
of power to the motors on ports B and C,
while it allows you to control the level of
power for the motors attached to ports A
and D independently. This will come in handy
when you try to fine-tune the Line-Following
ROV3R’s movements in Chapter 4.

40	C hapter 2

ROV3R with treads
DG

Y

To build the ROV3R with
Treads, start with the Base
Module (step 8 on page 22).

You can attach any of the mod-
ules in this chapter either to
the ROV3R with Wheels or the
ROV3R with Treads.

1:1

	b uilding ROV3R	 41

42	C hapter 2

1:1

You might need to bend
the axles a little bit to
put the treads on.

	b uilding ROV3R	 43

The ROV3R with Treads is
now complete.

44	C hapter 2

secret project:
grabber module

conclusion
In this chapter, you built ROV3R and equipped it with a variety
of sensors and tools. As you followed the building instructions,
you learned some fundamental building techniques, like brac-
ing, and you got an overview of the LEGO MINDSTORMS EV3
system. Next you’ll learn how to program ROV3R using the
Brick Program App.

This grabber module allows
ROV3R to pick up and lift objects
with a single Medium Motor.

Visit http://EV3L.com/ for bonus
material!

	T he EV3L Scientist’s Apprentice	 45

3
programming

To bring a robot to life, you need to tell it what to do by writing
a computer program for it. A program is a step-by-step list of
basic instructions designed to produce a result. These instruc-
tions are written in a programming language, an artificial
language that a computer can understand.

For example, the instruction “prepare some tea” on its
own would not be sufficient for a robotic butler. This would be
considered a high-level instruction for that robot, meaning that
it would need to be broken down into a sequence of lower-level
instructions to actually control the robot.

The high-level instruction “prepare some tea” can be bro-
ken down into a list of well-defined, discrete, elemental steps
like these:

N	 Pick up a pot.
N	 Fill it with water.
N	 Turn on the stove.
N	 Put the pot on the stove.

N	Wait until the water temperature reaches 95°C (203°F).
N	 Turn off the stove.
N	 Pour 200 mL of water into a cup.
N	 Put the tea bag in the cup.
N	Wait 4 minutes.
N	 Remove the tea bag.
N	 Add 4 teaspoons of sugar to the tea.
N	 Squeeze 10 drops of lemon juice into the tea.
N	Wait until the tea temperature falls to 45°C (113°F).
N	 Place the cup in front of the person who will be drinking

the tea.

All the above steps seem basic to us, but even they need
to be broken down further for our robot. For example, “Pick up
a pot” should be broken into lower-level commands like “Turn
motor A 90 degrees clockwise.”

Programs usually have inputs and outputs: In the case
of a robot, basic outputs can be turning a motor on and off
or rotating a shaft by a certain number of degrees. Inputs
are readings from the sensors or commands coming from
the master—that is, you.

the building
blocks of any
program

Even if you don’t know a programming language, you can still
design a program. How? You can use a flowchart, a type of dia-
gram that represents a program by showing the steps as boxes
connected with arrows.

You can describe the flow of any program using three
basic structures: sequences, choices, and loops.

48	C hapter 3

sequences

Sequences are lists of basic actions or commands—like “Turn
that motor on” or “Go forward”—written inside rectangular
boxes, like those in Figure 3-1.

choices

Choices are used to switch between different actions depending
on a test (for example, a test might check an input value). In
Figure 3-2, a choice is represented as a question mark inside a
diamond. The program flow is switched to one of two branches,
as indicated by arrows marked with an X, meaning the test
failed, or a check mark, meaning the test succeeded. In the
tea-making example, you could add a choice in which you tell
the robot whether or not you want to add sugar.

loops

Loops repeat a group of actions until a certain condition
becomes true. That condition is represented in Figure 3-3(a)
as a question mark inside a diamond. In Figure 3-3(b), you can
see a loop that repeats a sequence of actions N times: N can be
1, 2, 3, or even infinity, meaning the sequence will be repeated
forever. You can also use a loop to do nothing while waiting for
a condition to become true, as in Figure 3-4. For example, in
the program for the tea-making robot, you told it to wait for the
tea temperature to reach 45°C before serving it.

programming
with the brick
program app

In the case of your EV3 robots, you won’t actually write any
code, but you will assemble the program just as you do LEGO
elements! You can build a program for your robot using the
EV3 Brick Program App (the BP App) directly on your EV3
Brick. The Brick Program App will make your programming
experience easy and smooth. You don’t always need a PC to
have fun with robots!

Figure 3-1: A flowchart sequence

�

�

Figure 3-2: A flowchart choice

?
�

� N

(a) (b)

? �
�

Figure 3-3: A conditional loop (a) and a loop that repeats a sequence

N times (b)

Figure 3-4: A waiting loop

	 programming	 49

Note	 You can also tell your robot what to do using the
EV3 graphical programming language (see Chapter 5).

Programming with the Brick Program App is based on the
idea that robots do nothing but perform certain basic actions
and wait for certain things to happen. Even if somewhat limit-
ing, this assumption works great! In the Brick Program App,
you can do the following:

N	 Place a maximum of 16 blocks, each one commanding an
action or waiting for a certain sensor reading.

N	Have just one main loop: You can run the sequence once,
twice, and so on. You can even run the sequence forever,
batteries permitting.

N	 Build a single sequence of actions, such as starting and
stopping motors, playing sounds, and displaying images
on screen.

N	 Add Wait blocks like the loop in Figure 3-4.
N	 Customize one parameter for each programming block.

A parameter is a configurable setting that changes the
operation of a block.

But you can’t make choices that split the program flow
in two. That may seem limiting, but I assure you that for the
robots we will program, you won’t miss the choices. Even a
robot that walks and avoids obstacles can be programmed to
work without making any choices.

your first brick
program

Let’s see how to build a program using the Brick Program App.
Figure 3-5 shows the EV3 Brick buttons:

N	 The Enter button allows you to accept changes or select
options.

N	 The Escape button allows you to exit menus and discard
options.

N	 The navigation buttons (Up, Down, Left, and Right) are used
to navigate through the various menus.

If it’s not already on, turn on your EV3 Brick by pressing
the Enter button, and then wait for it to start up. Browse the
EV3 Brick menu using the Right button, and go to the third tab
(see Figure 3-6); this contains the Port View, Motor Control, IR
Control, and Brick Program Apps. Select the Brick Program
App using the Down button, and open it by pressing the Enter
button. You should see the empty BP sequence, as shown on
the right of Figure 3-6.

On the left of the programming sequence, you can see
the icons to open or save a Brick Program. You can navigate
through these choices using the four arrow buttons, the Enter
button, and the Escape button. Depending on which element
of the sequence you select, the buttons will have different
functions.

To get started with the Brick Program App, let’s give
ROV3R the ability to use the IR Sensor to detect and then avoid
the obstacles in a room. Build the version of ROV3R with the
Front IR Sensor (as in Figure 3-7) according to the instructions
in “ROV3R with Front IR Sensor” on page 31. Make sure the
left motor is attached to port B, the right motor to port C,
and the IR Sensor to port 4. Then try to sketch a flowchart
for a program that makes ROV3R go straight until it sees an
obstacle, drive backward on a curved line, and then go straight
again. It should look similar to the one in Figure 3-8.

Escape

Up

Left

Enter

Right

Down

Figure 3-5: The EV3 Brick buttons

Figure 3-6: From the Apps tab in the EV3 menu (left), you can select the Brick

Program App, which will show you the empty sequence on the right.

50	C hapter 3

Now I’ll guide you through building this program, step by
step. You should start with a screen similar to the one on the
right of Figure 3-6.

1.	 Press Up to access the Block Palette, which contains all
the programming blocks you can place into your sequence.
(You’ll learn more in “The Block Palette” on page 53.)

2.	 The Block Palette is now open. Select the Move Action
block by pressing Right.

Figure 3-7: ROV3R with Front IR Sensor

START Go
straight.

Go back
and turn.

IR dist
<

25%?

�
�

0.25 s
elapsed?

�
�

∞

Figure 3-8: The flowchart of the obstacle avoidance program and its BP

implementation

A quick guide to the Brick Program App

adding a block

N	 Select a Sequence Wire.
N	 Press Up to access the Block Palette.
N	 Select a block using the arrow buttons.
N	 Add the selected block to the sequence by pressing Enter.

deleting a block

N	 Select the block you want to delete.
N	 Press Up to access the Block Palette.
N	 Select the trash bin icon.
N	 Press Enter.

replacing a block

N	 Select the block to replace.
N	 Press Up to access the Block Palette.
N	 Select a new block from the Block Palette.
N	 Press Enter.

editing the parameter of a block

N	 Select the block to edit.
N	 Press Enter to go into edit mode.
N	 Change the only editable parameter with the Up and

Down buttons.
N	 Press Enter to confirm and exit edit mode.

	 programming	 51

3.	 Add the block to the program by pressing Enter.

4.	 The parameter is already set to Forward. Press Right
to select the next Sequence Wire. (The Sequence Wire
connects the blocks of the sequence.)

5.	 Press Up to open the Block Palette.

6.	 Press Up three times and Left once to select the Wait IR
Sensor block. Then press Enter to add it to the program.

7.	 Press Enter to edit the distance threshold parameter.

8.	 Press Down once to change the threshold to <25; press
Enter to accept.

52	C hapter 3

9.	 Now press Right to select the next Sequence Wire. Add
another Move block, repeating steps 1 through 3.

10.	 Press Enter to edit the Move block, pressing Down twice
to make the robot go backward while turning right. Press
Enter again to accept.

11.	 Add a Wait Time block and edit it to wait for 0.25 sec-
onds. Then select the Loop block by pressing Right twice.

12.	 Press Enter to change the number of times you want the
program to repeat.

13.	 Press Up six times to set the Loop block to repeat the
sequence forever.

14.	 The infinity icon (∞) means that the program will repeat
forever. Press Enter to accept.

	 programming	 53

15.	 Go to the Start block by pressing Left 10 times or by
simply pressing Escape once.

16.	 Press Enter to start the program.

When you start the program, ROV3R will start traveling
forward. Place your hand in front of the IR Sensor, and ROV3R
will back up, turn a bit, and then start going forward again. To
stop the program, press Escape. To save your program, press
Left and then Enter to select the Save icon. The Brick Pro-
gram Save Dialog should pop up. Now enter the name for your
program like this:

N	Highlight the letters on
the onscreen keyboard
using the navigation
buttons.

N	 Insert the highlighted
letter by pressing Enter.

N	 Delete a letter by high-
lighting the Backspace
key (left-pointing arrow)
and pressing Enter.

N	 Switch to capital letters by highlighting the Shift key
(upward-pointing arrow) and pressing Enter.

N	 Switch to the numbers and symbols keyboard by highlighting
the 123 button and pressing Enter.

N	 Confirm the name and save by highlighting the Enter key
(check mark) and pressing Enter.

Congratulations! You’ve just finished your first Brick
Program! Now why not try to modify the program settings—
for example, by changing the IR Sensor block threshold param-
eter or the Wait Time block parameter? Also, take some time
to explore the Block Palette. In the next section, I’ll describe in
detail all the blocks available in the Block Palette.

the block
palette

You can access the Block Palette of the Brick Program App by
pressing the Up button while a block or a Sequence Wire is
selected. To return to the programming sequence, press Enter
(thus selecting a block) or Escape. The complete Block Palette
is shown in Figure 3-9. Each block has only one customizable
parameter.

For example, for the Move block, you can decide the direc-
tion the robot will move, but you can’t customize the wheels’
maximum speed or the output ports the motors are attached
to. This simplifies the work it takes to program your robot,
although it can be limiting.

The programming blocks can be divided into two groups:
Action blocks and Wait blocks. In the following sections, I’ll
describe the blocks in detail. Each block is shown as it appears
in the Brick Program App, and tables list the various icons and

Wait
blocks

Action
blocks

Figure 3-9: The complete Block Palette of the Brick Program App

54	C hapter 3

meanings of the blocks’ parameters. The parameter icons with
borders are the defaults.

the action blocks

The Action blocks allow you to move your robot, display images
on the EV3 screen, turn the EV3 Brick light on and off, and
play sounds. There are six Action blocks: Move, Large Motor,
Medium Motor, Display, Sound, and the Brick Status Light.

the move block

This block allows you to control a pair
of Large Motors to drive a wheeled
robot like ROV3R. Unlike a car with
normal steering, ROV3R can go
straight, steer, or spin in place if the
two driving wheels turn at different
speeds. If both wheels turn in the same
direction at the same speed, the robot

goes straight; if the wheels turn at different speeds, the robot
will travel along a curved path; if the wheels turn in opposite
directions, the robot will spin in place. A robot with two motors,
each driving a wheel, is called a differential drive robot. Real-
world examples of differential drive vehicles are tracked exca-
vators and tanks.

Usually, wheeled robots don’t drive in a straight line,
because the motors don’t turn at the same speeds. Using the
Move block, the EV3 Brick keeps the two Large Motors’ speeds
synchronized to improve the robot’s ability to drive straight. To
see this in action, set the parameter to drive straight and then
try to block a motor hub: You should see the other motor slow-
ing down, waiting for the other to catch up.

Note	 Even if the motors’ speeds are synchronized, a
wheeled robot may still fail to travel straight due to uneven
ground, small differences between the radii of the wheels,
or other factors.

The parameter of this block is the direction of the move-
ment, as shown below.

Go backward.

Spin right: The motors spin in opposite directions.

Back up left: The right wheel spins backward; the left
wheel is still.

Steer right: The left wheel spins forward; the right wheel
is still.

Go straight, keeping the motors’ speeds synchronized.

Steer left: The right wheel spins forward; the left wheel
is still.

Back up right: The left wheel spins backward; the right
wheel is still.

Spin left: The motors spin in opposite directions.

Stop the motors.

Note	 If you directly attach wheels to the motor hubs
without gears, the left wheel motor must be connected
to port B, and the right wheel motor must be connected to
port C. Otherwise the robot will turn right when the pro-
gramming block is set to turn left, and vice versa.

the large motor block

This block controls a Large Motor
attached to port D. Its parameter is
the power and the direction of the
motor, in steps of 25 percent of the
full power, as shown below.

Forward at 100% power

Forward at 75% power

Forward at 50% power

Forward at 25% power

Stop and hold position

Backward at 25% power

Backward at 50% power

Backward at 75% power

Backward at 100% power

	 programming	 55

the medium motor block

This block controls a Medium Motor
attached to port A. Its parameter is the
power and the direction of the motor,
in steps of 25 percent of the full power.

The parameter icons for this block
are the same as the ones for the Large
Motor block.

Note	 You can safely attach a Medium Motor to port D
or a Large Motor to port A. You can even connect two
Large Motors to ports A and D and use them to propel a
differential-drive robot. You can make the robot perform
all kinds of maneuvers by setting different power levels for
the motors. (Notice that the motors’ speed will not be syn-
chronized in that case.)

the display block

This block displays one of 12 available
images or clears the display. You can
select an image by changing the block
parameter as listed in the table below.
Using the Display block and the Sound
block, you can make expressive robots.

No image, reset the display

Neutral

Pinch right

Awake

Hurt

Accept

Decline

Question mark

Warning

Stop 1

Pirate

Boom

EV3 icon

the sound block

This block plays one of 12 available
sounds. You can select a sound by
changing the block parameter as listed
below.

No sound, stop playing

Hello

Goodbye

Fanfare

Error alarm

Start

Stop

Object

Ouch

Blip 3 (electronic beeps)

56	C hapter 3

Arm 1 (servo motor noise)

Snap (pneumatic noise)

Laser (laser “gunshot”)

Note	 If you place the Sound block as the last block in a
sequence that is executed just once, add a Wait Time block
after it. (See “The Wait Time Block” on page 57.) Other-
wise, the program will terminate before you can hear a
sound played.

the brick status light block

This block turns the status light sur-
rounding the EV3 Brick buttons on and
off. The chosen parameter allows you
to change the light color and tell it to
blink or not.

Blinking red light

Blinking orange light

Blinking green light

Steady red light

Steady orange light

Steady green light

Turn light off

the wait blocks

The Wait blocks pause the program until a certain condition
becomes true. They wait for a time period to pass or for a sen-
sor reading to be equal to, greater than, or less than a specified
value. The program can also wait for an EV3 Brick button to be
pressed or for the built-in rotation sensor of the Servo Motor
connected to port A to reach a certain value.

Note	 Even if the program execution is paused by a Wait
block, the motors turned on by a previous Move block or
Motor block in the sequence keep running.

Some Wait blocks present in the Block Palette are needed
by sensors that are not included in the EV3 31313 set, like the
Gyroscopic Sensor, the Ultrasonic Sensor, and the Temperature
Sensor.

the wait touch sensor block

This block waits for the Touch Sen-
sor connected to input port 1 to be
pressed, released, or bumped (pressed
and then released).

Wait for the Touch Sensor to be pressed and released.

Wait for the Touch Sensor to be released.

Wait for the Touch Sensor to be pressed.

the wait reflected light sensor block

This block waits for the Color Sen-
sor connected to input port 3, used
in Reflected Light Intensity mode, to
measure a value beyond a certain
threshold expressed as a percentage.
The sensor measures the light of the
(red) LED reflected by surfaces. For
greatest accuracy, the sensor must be

held at a right angle, 5–10 mm above the surface it is measur-
ing. Lighter surfaces will return higher values than darker
surfaces.

	 programming	 57

the wait color sensor block

This block waits for the Color Sensor
connected to input port 3 to detect the
color that you have specified as the
parameter. For greatest accuracy, the
sensor must be held at a right angle,
5–10 mm above the surface it is
measuring.

To detect colors, the Color Sensor flashes the built-in RGB
LED, switching among all three colors (red, green, and blue)
in a very fast loop and measuring the light returned by the
object’s surface. Depending on its color, the surface will return
different reflection levels of red, green, and blue, which the
sensor uses to estimate the color.

Wait until Color Sensor detects a brown object.

Wait until Color Sensor detects a white object.

Wait until Color Sensor detects a red object.

Wait until Color Sensor detects a yellow object.

Wait until Color Sensor detects a green object.

Wait until Color Sensor detects a blue object.

Wait until Color Sensor detects a black object.

Wait until Color Sensor does not detect any object.

the wait brick buttons block

This block waits for an EV3 Brick but-
ton to be pressed.

The parameter is the button you
specify the robot should wait for.

Wait for the Right button to be pressed.

Wait for the Left button to be pressed.

Wait for the Down button to be pressed.

Wait for the Up button to be pressed.

Wait for the Enter button to be pressed.

the wait motor rotation block

This block waits for the built-in rotation
sensor of the Servo Motor attached to
port A to measure a change in the shaft
angle equal to the threshold specified
as a parameter, expressed in degrees
clockwise (CW) or counterclockwise
(CCW). The block works in a relative
way: It does not wait for the shaft

to reach an absolute angle but, instead, waits for the shaft’s
angular position to change. You can combine Wait Motor Rota-
tion blocks to specify other angles, like 45° + 10° = 55° CW.

360° CW 360° CCW

270° CW 270° CCW

180° CW 180° CCW

90° CW 90° CCW

45° CW 45° CCW

10° CW 10° CCW

the wait time block

This block waits for a certain number
of seconds, as specified by the param
eter. You can combine these blocks to
wait for other intervals, like 0.50 +
0.25 = 0.75 seconds.

58	C hapter 3

the wait infrared sensor block

This block waits for the IR Sensor
connected to input port 4 to measure
the distance from an object lesser or
greater than the specified value. The IR
Sensor measures distances expressed
as a percentage that does not cor-
respond precisely to a distance (unlike
the EV3 Ultrasonic Sensor included
in the EV3 Education set 45544). The

reading is affected by the color of the object the sensor is look-
ing at. On a white surface, it reads 1% at about 2 cm distance,
50% at about 40 cm, and 100% above 90 cm.

the wait infrared remote block

This block waits for the IR Sensor
connected to input port 4 to receive a
command from the Remote IR Beacon
on channel 1. (The remote has four
channels to select from, so you can
use up to four remote-controlled
EV3 robots in the same room without
interference.) You can specify the block
parameter as the pressing of a Remote
IR Beacon button.

Wait for the IR Remote’s central button to be pressed.

Wait for the IR Remote’s bottom-right button to be
pressed.

Wait for the IR Remote’s top-right button to be pressed.

Wait for the IR Remote’s bottom-left button to be
pressed.

Wait for the IR Remote’s top-left button to be pressed.

Wait for all the IR Remote buttons to be released.

the loop block
There’s one more block that I haven’t covered yet:
the Loop block. This is the last block in every Brick
Program sequence. You can’t move or delete it,
only change the number of times you want the
program sequence to repeat. This block doesn’t
appear in the Block Palette.

Repeat forever.

Repeat 10 times.

Repeat 5 times.

Repeat 4 times.

Repeat 3 times.

Repeat 2 times.

Don’t repeat; execute just once.

experiment 3-1

Make a traffic light program. Hint: Use the Brick Status
Light block to change the color from green to yellow to
red; use the Wait Time block to keep the light on for a
good amount of time.

	 programming	 59

conclusion
In this chapter, you learned the basics of robot program-
ming. In particular, you discovered how the Brick Program App
allows you to program your EV3 robots without using the EV3
programming environment on a PC. Following a step-by-step
tutorial, you made your first Brick Program for ROV3R. The
final section described in detail the blocks included in the Block
Palette of the Brick Program App. In the next chapter, you will
learn more tips and tricks about programming with the Brick
Program App and how to make ROV3R follow lines and walls!

experiment 3-2

Build ROV3R with Cleaning Tool and Touch Sensor
Bumper as described in Chapter 2 (see Figure 3-10).
Slightly modify the tutorial program from page 49 to
make the ROV3R sweep the floor and avoid obstacles
with the Touch Sensor Bumper. Hint: Just replace the
Wait IR Sensor block with a Wait Touch Sensor block,
and set the parameter appropriately.

Figure 3-10: ROV3R with Cleaning Tool and Touch Sensor Bumper (page 38)

4
advanced programming with the

brick program app
In Chapter 3, you learned how to program a ROV3R that you
built in Chapter 2 to travel across a room and avoid obstacles.
You discovered that the EV3 Brick can be programmed without
a PC, using the Brick Program App. In this chapter, you’ll learn
more about on-brick programming. You’ll learn how to make
ROV3R drive in a particular pattern, follow lines on the floor,
or follow walls to explore a whole house!

ROV3R with
touch sensor
bumper

At the end of Chapter 3, I offered you a challenge (“Experi-
ment 3-2” on page 59): to modify the program to make
ROV3R sense obstacles with the Touch Sensor Bumper
assembly instead of the IR Bumper. I give you the solution
here. Figure 4-1 shows ROV3R equipped with the Touch Sen-
sor Bumper, with and without the cleaning tool. (Chapter 2
has the building instructions for ROV3R and its modules.)

As you can see in Figure 4-2, the obstacle avoidance
sequence is as follows: Go forward, wait for the Touch Sensor
to be pressed, drive backward on a curved line, turn, and wait
0.25 seconds. The sequence is repeated forever in a loop. You
can build this program using the Brick Program App. (See
“Your First Brick Program” on page 49 for instructions.)

Figure 4-1: ROV3R with the Touch Sensor Bumper, without the cleaning tool (a)

and with (b)

(a)

(b)

62	C hapter 4

making ROV3R
drive along
geometric
paths

Although you can’t control precisely how many degrees the
wheels on your robot will turn, you can—with the program
shown in Figure 4-3—use the Wait blocks to adjust the wait
time and make ROV3R drive along a square path. The robot
should turn approximately 90 degrees at each bend.

To tweak the turn precisely, slightly increase the physical
distance between the wheels by pulling them out along their
axles. By keeping the motor on for the same amount of time
(0.75 seconds) and increasing the distance between the wheels,
you’ll make the robot turn at a smaller angle because the
wheels will have to travel along a bigger circumference.

making ROV3R
follow lines

One of the greatest challenges of robotics research is that of
teaching a robot to navigate from one point to another. The
easiest way to accomplish this is to have a robot travel along
a predetermined path by following a line on the ground. This
approach, which creates a line-following robot, is used even for
real, goods-handling mobile robots in warehouses, to make

them travel precisely from one point of the production line to
another. In fact, the LEGO Group itself uses robots like these!
(These robots usually follow painted lines on the ground by
detecting them with cameras or follow metallic wires embed-
ded in pavement by detecting them with magnetic sensors.)

ROV3R can follow the edge of a line on the floor by using
a downward-pointing Color Sensor. The line to be followed
must stand out with enough contrast for the Color Sensor to
distinguish it from the surrounding floor. You can use either a
dark line set against a light background or a light line on a dark
background. Optimal colors are black and white; red lines on
white (as on the EV3 paper test pad) may not work as well.

You could easily create paths to be followed by attaching
some black tape (say, electrical tape) to a light surface or by
printing thick black “paths” on white paper.

Figure 4-4 shows the Line-Following ROV3R (building
instructions on page 28).

Figure 4-2: The Brick Program to avoid obstacles with the Touch Sensor

Bumper

Figure 4-3: The Brick Program to drive ROV3R along a square path

experiment 4-1

Which parameter would you change to increase the
length of a side of the square? Which parameters
would you change to make ROV3R drive in different
patterns, like a triangle or a pentagon?

Figure 4-4: ROV3R equipped with the Color Sensor for line following. The

motor cables should be attached to ports B and C or A and D, depending on

the program.

	 advanced programming with the brick program app	 63

Figure 4-5 shows how ROV3R follows a line. As the robot
moves forward, it turns toward the dark line if the Color Sen-
sor sees a light color (a) or toward the light ground if the Color
Sensor sees a dark color (b). The result is a zigzag motion along
the edge of the line (c).

using the brick program to
follow lines

Now let’s make ROV3R follow lines using just Action and
Wait blocks from the Block Palette of the Brick Program App.
Remember from Chapter 3 that when using the Brick Program
App, you can’t choose to have your robot perform different
actions depending on the sensor reading. So how can you
get it to react to different sensor readings in a fast loop?
Simple! You set the robot to turn right until (not if) it sees the
line edge, and then you switch it to turn left until it sees the
light ground, and so on, in a loop. You can use Wait blocks to
detect the change in the sensor reading and Action blocks to
make the robot steer. The program repeats forever, using the
infinite repetitions setting in the final Loop block as shown in
Figure 4-6 and described below. Four blocks do all the work!

Note	 For this program, the right motor should be
attached to port C and the left motor to port B.

N	 The first Move block makes the robot steer right.
N	 The Wait block waits until the Color Sensor (in Reflected

Light Intensity mode) reads a value less than 10 percent (a
dark color). When it does, the program continues.

N	 The second Move block makes the robot steer left.
N	 The second Wait block waits until the Color Sensor reads a

value equal to or greater than 25 percent (a lighter color).
Since the Loop block is set to forever (∞), when the second
Wait block lets the program continue, the sequence starts
again from the first Move block.

If the robot is not behaving correctly (if it is missing the
line or traveling in circle, for example), try to fine-tune the pro-
gram by changing the parameter thresholds of the Wait blocks.
For example, try changing the threshold for the darker color
from <10 to <25 or <5. Or you could change the threshold
related to the lighter color from ≥25 to ≥35 or ≥10.

improving the motion

You might notice that the robot’s motion is nervous and jerky
and that its abrupt change in direction causes some skidding.
This is because the Move blocks drive the motors at high power
and make the robot turn by stopping one wheel while driving
the other.

To improve this behavior, switch the right motor to port D
and the left motor to port A, and replace the Move blocks with
Action blocks that control motors A and D separately: The
Large Motor block will control the motor attached to port D,
and the Medium Motor block will control the motor attached
to port A. (These blocks can drive either the Large or Medium
Motors and allow you to control the power separately.) By
modifying the power levels, you’ll be able to smooth out the
robot’s motion. You can see the improved Brick Program for
line following in Figure 4-7.

As you can see, instead of using a single Move block to
steer right, we use two Motor blocks. The left motor (port A)
is set to turn faster than the right one (port D), which makes
the robot proceed forward while steering slightly to the right.
Similarly, we replace the second Move block that steers left
with two Motor blocks that drive the right motor (D) faster
than the left motor (A). The Wait blocks remain the same as
in the previous program. The resulting motion is smoother
because the motors are driven at different speeds and they
never stop, as they did when commanded by the Move blocks
in Figure 4-6.

(a) (b) (c)

Figure 4-5: ROV3R using a simple line-following approach

Figure 4-6: The Brick Program to follow dark lines

experiment 4-2

Try setting the Color Sensor’s threshold to <10 and ≥10.
How does the robot’s performance change?

64	C hapter 4

making ROV3R
follow walls

Let’s make ROV3R explore a space and return to its starting
point. How? By making it follow walls!

As you can see in Figure 4-8, the robot can explore any
environment (your room, your house, your school) by trying to
keep a constant distance from walls or any other objects (such
as furniture, shoes, cats, and so on) that it sees with the IR
Sensor.

The method for wall following is similar to the method
used for line following, as shown in Figure 4-9. The robot
turns toward the wall until the measured distance drops below
a certain threshold (a), at which point it turns away from the
wall until the measured distance rises above the threshold (b).
The resulting movement is a wiggling path at an average con-
stant distance from the wall (c). As long as the robot keeps a
good distance from the wall, it can deal with corners and edges
without getting stuck (d).

Build ROV3R with the IR Sensor mounted as a wall-
following sensor, as shown in Figure 4-10 (see “Wall-Following
ROV3R” on page 32). The IR Sensor placed diagonally on
the right side of your robot will see objects ahead of it. For the
program, just replace the Wait Reflected Light Sensor blocks
used in the line-following program (Figure 4-6) with Wait IR
Sensor blocks to produce a program that looks like the one in
Figure 4-11.

improving the motion

As in the line-following program shown in Figure 4-6, this
wall-following program uses Move blocks to drive the motors
attached to ports B and C, and the resulting movement is quite
abrupt. To smooth out ROV3R’s path, try the program shown
in Figure 4-12. As in the program in Figure 4-7, you can use
separate blocks to set the motors on ports A and D to run at
slower speeds and thereby avoid stopping one wheel in order
to turn.

If you lower the thresholds to <25 and ≥25, the robot
will follow the wall more closely and will try to explore nar-
row passages, but it could get stuck when passing near edges
(convex corners) or going around thin walls. If you increase the
thresholds to <75 and ≥75, it will stay farther from walls and
objects, which will smooth out its travel around corners, but it
could end up traveling through the middle of a room and may
skip narrow passages.

+50% +25% +25% +50%

Figure 4-7: The improved Brick Program to follow dark lines

(b) (c) (d)(a)

until
<
threshold

until
≥
threshold

Figure 4-8: ROV3R can explore a space and return to its starting point if its

path is not too cluttered.

Figure 4-9: ROV3R using a simple wall-following strategy

	 advanced programming with the brick program app	 65

conclusion
In this chapter, you learned how to make ROV3R drive in pat-
terns and follow lines and walls. A wall-following robot can
explore any environment autonomously, transmit video back to
the base, and even help get you out of trouble. What trouble?
Read on!

Figure 4-10: ROV3R equipped with the IR Sensor assembly for wall following.

The motor cables should be attached to ports B and C or A and D, depending on

your program.

Figure 4-11: The wall-following program. The motor cables should be attached

to ports B and C.

+50% +25% +25% +50%

Figure 4-12: Alternative wall-following program. The motor cables should be attached to ports A and D.

experiment 4-3

Build a frame to hold a video camera facing forward.
Then switch recording on and let ROV3R explore. When
your robot returns, you’ll have a video of the trip. If
you use a smartphone with video chat software (for
example, Skype), you can even transmit the live video
of ROV3R exploring its environment!

A
D

C B

66	T he EV3L Scientist’s Apprentice

	T he EV3L Scientist’s Apprentice	 67

5
EV3 programming

In this chapter, we’ll cover programming with the EV3 Software.
I think you’ll find that the EV3 Software allows you to program
your robots in an easy and intuitive way. It also gives you the
tools to document your projects with comments, pictures, and
videos.

The official EV3 User Guide, which gives you a basic
understanding of the EV3 Brick interface and software, is
provided in digital format (PDF) with the EV3 Software. Since
I think it is very useful to have a printed manual and to make
sure we’re all starting in the same place, in this chapter I’ll give
you an overview of the EV3 Software’s essential features.

I’ll also show you how to move easily from the limited
programming with the Brick Program App to proper, complete
EV3 programming.

EV3 software
setup

Before you begin, make sure that your Windows or Macintosh
computer meets the minimum system requirements listed
on the back of the EV3 set box. The EV3 Software does not
come on CD, so you’ll have to download the installer from the
Downloads section of the LEGO MINDSTORMS official website
(http://LEGO.com/mindstorms/). Once the download is finished,
double-click the installer file to begin installation, and then follow
the onscreen instructions. In addition to the EV3 Software, the
installer will also install the drivers that let your computer com-
municate with the EV3 Brick.

EV3 software
overview

Once the software has been installed, double-click its icon
to open the LEGO MINDSTORMS EV3 Home Edition software.

The main parts of the software that we’ll work with are the
Lobby, the Programming Interface, and the Project Properties.
I’ll describe each in detail in the following sections.

the lobby

Every time you launch the software, you should see (and
unfortunately hear) the Lobby. This is a welcome screen that
lets you access the main working features quickly, as you can
see in Figure 5-1.

1.	 Menu bar: This includes File, Edit, Tools, and Help items.
You’ll use the menu bar mostly while programming. (See
“The Tools Menu” on page 72.)

2.	 Lobby tab: Click here to return to the Lobby at any time.

3.	 Add Project tab: Click the tab with a plus sign (+) to cre-
ate a new project.

4.	 Missions: Here you can learn more about the five official
models that come with the set. This area is interactive:
Click the robots to access more information and to get
started with their tutorials.

5.	 Open Recent: Click here to quickly open your recent
projects.

6.	 Quick Start, News, and More Robots tabs: The Quick
Start tab gives you access to the official video tutor
ials, the guide, and documentation. The News and More
Robots tabs give you access to online content from the
LEGO MINDSTORMS website, including 12 bonus models,
among which is the EL3CTRIC GUITAR I designed.

7.	 User Guide: The EV3 User Guide (in PDF format) is an
essential manual, containing information about the EV3
system and how to use the EV3 Brick and connect it to
your computer. You’ll also find a brief introduction to the
EV3 Software and the complete list of the LEGO elements
included in the set.

8.	 EV3 Help: This contains details about the EV3 Software’s
features, tools, and programming blocks.

70	C hapter 5

Note	 Be sure to consult the EV3 User Guide and EV3 Help
for detailed documentation. I’ve chosen not to duplicate
their information in this book.

To get started, create a new project by clicking the Add
Project tab [see Figure 5-1(3)]. This takes you to the Pro-
gramming Interface, and an empty program called Program is
created automatically.

the programming interface

The Programming Interface shown in Figure 5-2(a) is where
you build the programs for your robots. You’ll find descriptions
of its various controls below.

1.	 Programming Canvas: This is where you build your
programs by adding programming blocks.

2.	 Content Editor: This is like a workbook built into your
project where you can document your projects with descrip-
tions, videos, images, and even building instructions! Hide
it by clicking the EV3 icon to the right of the Edit icon (a
pencil icon). When collapsed, this tab shows a book icon.

3.	 Programming Toolbar: Use this to see all open docu-
ments, switch between the Selection and the Pan tools,
add comments to your programs, save a project, undo/redo,
zoom out/in, and change the program view to the original
magnification.

4.	 Programming Palettes: These contain all the blocks
you need to program your robots. You’ll learn more about
these in “The Programming Palettes” on page 73.

5.	 Hardware Page: Use this to manage the connection to
your EV3 Brick, see sensor and motor readings in real time,
browse the EV3 Brick’s memory, and more. Even when col-
lapsed, this still shows the Controller (Figure 5-3), allowing
you to Download (1), Download and Run (2), and Download
and Run Selected blocks (3). When a program is running, the
(2) button changes to Stop. The Download command sends
all project data (including other programs, images, and
sounds) to the EV3 Brick before running the program. Using
Download and Run sends all the project data and runs the
program you are currently working on. Using Download and
Run Selected is quicker because it allows you to download
and run only the selected chunk of a program. When a
project gets large, downloads can become time consuming,
especially if you just need to test a couple of blocks!

6.	 Lobby tab: Click here to return to the Lobby.

7.	 Project Properties: Click here to see Project Properties
(see “Project Properties” on page 75).

8.	 Add Project tab: Click here to create a new project.

9.	 Add Program tab: Click here to add a new program to
your project.

2

3

6

87

1 5

4

Figure 5-1: The Lobby welcomes you every time you open the EV3 Software.

	E V3 programming	 71

the hardware page

The Hardware Page is located at the bottom right of the Pro-
gramming Interface. When no EV3 Brick is connected, most of
the icons and controls are grayed out. The Hardware Page has
three tabs:

N	Available Bricks tab (Figure 5-4): From here, you can
search for EV3 Bricks that are Bluetooth enabled or that are
connected to your computer via USB, Bluetooth, or Wi-Fi.

(a)

8

9

6

7

(b)

Figure 5-2: The EV3 Programming Interface with the Content Editor window

expanded on the right (a); a zoomed-in view of the Project and Program tabs,

the Lobby, and the Project Properties tab (b)

Figure 5-3: The Controller is shown when

the Hardware Page is collapsed. The buttons

are Download (1), Download and Run (2), and

Download and Run Selected (3).compiling programs

To be understood by a computer, programs must
be compiled. A compiler is software that translates
human-readable programming code into binary digits.
When you click Download and Run, all the compiling
happens behind the scenes.

72	C hapter 5

N	Brick Information tab (Figure 5-5): When the EV3 Brick
is connected, use this tab to check the battery level, the
amount of memory available, and the firmware version of
the EV3 Brick. You can change the name of the EV3 Brick,
set up the wireless network, and browse files in the EV3
Brick’s memory.

N	Port View tab (Figure 5-6): When the EV3 Brick is con-
nected, use this tab to check the readings of all the sensors
and motors attached to it in real time. This feature is really
useful when you need to set thresholds in your programs
for Wait blocks or when you need to measure how much a
motor shaft should rotate. When you connect a sensor or
a motor to an input or an output port on the EV3 Brick, the
EV3 Brick recognizes the type of device automatically, thanks
to the Auto-ID feature. You can change the mode of the sen-
sors (for example, the Color, Reflected Light Intensity, and
Ambient Light modes for the Color Sensor) by clicking the
related icons. You can also reset the Motor Rotation sensor
values by clicking the port names. When Daisy-Chain mode
is enabled (see “Project Properties” on page 75), the Port
View tab shows the sensors of all the daisy-chained EV3
Bricks [Figure 5-6(b)].

the tools menu

The Tools menu is located in the menu bar [see Figure 5-1(1)].
You’ll find many useful tools here:

N	Sound Editor: This allows you to record or import a sound
and save it to your project, thus enabling your robot to play
custom sounds using the Sound block.

N	 Image Editor: This allows you to create, import, or edit an
image and save it to your project. Images can be shown on
the EV3 Brick screen using the Display block.

N	My Block Builder: This allows you to create custom blocks
(called My Blocks) that contain small subprograms. Grouping
blocks into a single My Block is useful for creating a small
sequence that can be used as a module in many parts of a
project or to make your programs look tidier. My Blocks can

Disconnect Type of connection

Connected

Refresh

Connected

(a)

(b)

(c)

Figure 5-4: The Available Bricks tab of the Hardware Page: EV3 Brick

connected via USB (a), searching for EV3 Bricks available on Bluetooth (b),

EV3 Brick connected over Bluetooth (c)

Figure 5-5: The Brick Information tab of the Hardware Page

Brick name Battery level

Expand/
Collapse

Memory
bar

Wireless
setup

Memory
browser

(b)

(a)

Figure 5-6: The Port View tab of the Hardware Page without (a) and

with (b) Daisy-Chain mode enabled.

	E V3 programming	 73

also have inputs or outputs for data. (You’ll use this tool a
lot, so I’ll describe it in detail in Chapter 10.)

N	Firmware Update: This allows you to update the firmware
of your EV3 Brick. The firmware makes the EV3 Brick work,
and it should be updated if the LEGO Group releases new
versions to fix bugs or add new features.

N	Wireless Setup: This allows you to configure the Wi-Fi net-
work to connect the EV3 Brick using the Wi-Fi Dongle. (You
can access the same tool from the Brick Information tab of
the Hardware Page.)

N	Block Import: This allows you to import new programming
blocks made by the LEGO Group or third-party developers
(for example, to program your robot to work with a new
sensor).

N	Memory Browser: This allows you to manage the files stored
in the EV3 Brick’s memory. (You can access the same tool from
the Brick Information tab of the Hardware Page.)

N	Download as App: Using this tool, you can download a
program as an app, making it appear in the Brick Apps
menu together with Port View, Motor Control, IR Control,
and Brick Program Apps.

N	I mport Brick Program: This tool will be our
launchpad to proceed smoothly from Brick pro-
gramming to actual EV3 programming! In fact,
it allows you to import a Brick Program saved in
the EV3 Brick’s memory to the EV3 Programming
Canvas so that, instead of starting from scratch,
you can improve an existing program by using the
full EV3 Software programming capabilities.

the programming palettes

The Programming Palettes include all the program-
ming blocks you need to create programs for your
robots. You may recall from Chapter 3 that the basic
structures that make every computer program work
are sequences of actions, choices, and loops. Pro-
grams have inputs and outputs, and they can store,
retrieve, and transform data. Programming blocks
are grouped in the Palettes according to their func-
tion, so they’re easy to find and use.

Each palette has a different color, and all the
programming blocks belonging to the same palette
have headers of the same color. For example, all
the Action blocks have green headers, and all the
Flow blocks—like loops and switches—have orange
headers.

The programming blocks will be described as
soon as you use them in the following chapters. To
find information about a particular block, look it up
by name in the index.

the action blocks

The Action blocks (Figure 5-7) control the output of your robots’
programs. They rotate motors, display text and images on the
EV3 Brick screen, play sounds, and light up the EV3 Brick Status
Light.

the flow control blocks

The Flow Control blocks (Figure 5-8) control the flow of the
program. Every program sequence begins with a Start block.
(You’ll learn in Chapter 12 how to get multiple sequences of
blocks to run in parallel by placing more than one Start block
in a program.) As in the Brick Program App, here you find a
Wait block and a Loop block. There is also a Switch block that
changes the program flow according to conditions that you
specify. The Loop Interrupt block stops the execution of a Loop
block even if some blocks inside the loop are still running; the
program will continue with the blocks after the Loop. You can
set the Loop Interrupt block to interrupt a specific Loop by
name, as every Loop block has a name label on top.

Medium
Motor

ACTION BLOCKS (Green)

Large
Motor

Move
Steering

Move
Tank

Display Sound Brick
Status
Light

Figure 5-7: The Action blocks palette

Start

FLOW CONTROL BLOCKS (Orange)

Wait Loop Switch Loop
Interrupt

Figure 5-8: The Flow Control blocks palette

74	C hapter 5

the sensor blocks

The Sensor blocks (Figure 5-9) allow you to read the inputs
for your program. In addition to the blocks that read the
Touch, Color, and Infrared Sensors, you’ll find blocks to read
the EV3 Brick buttons and Motor Rotation sensors and a block
to read time intervals from the EV3’s internal timer. We will
learn about these blocks when programming the robots in
Chapters 10, 12, 14, and 16.

You can download additional Sensor blocks from the
Downloads section of the LEGO MINDSTORMS official website

(http://LEGO.com/mindstorms/) and from third-party sensor
producers’ websites, like http://www.hitechnic.com/ and http://
www.mindsensors.com/.

the data operations blocks

Use the Data Operations blocks (Figure 5-10) to write and read
variables and arrays, manipulate data with Math and Logic
Operations blocks, compare values, combine strings of text, and
generate random numbers. (Each of these will be explained in
the following chapters.)

the advanced blocks

The Advanced blocks (Figure 5-11) let you manage files and
Bluetooth connections, send Bluetooth messages, keep the EV3
Brick awake (it turns off automatically according to the sleep
setting), invert a motor’s direction, read raw sensor values (for
third-party sensors), drive the motors without internal speed
regulation, and stop the program.

My Blocks

The last palette on the right contains the My Blocks you create
or import into a project. Initially, it’s empty. You’ll learn how to
create My Blocks in Chapter 10.

Brick
Buttons

SENSOR BLOCKS (Yellow)

Color
Sensor

Infrared
Sensor

Motor
Rotation

Touch
Sensor

Timer

Figure 5-9: The Sensor blocks palette

Variable

DATA OPERATIONS BLOCKS (Red)

Array
Operations

Logic
Operations

Math Compare Range Text RandomConstant Round

Figure 5-10: The Data Operations blocks palette

File
Access

ADVANCED BLOCKS (Blue)

Bluetooth
Connection

Unregulated
Motor

Invert
Motor

Stop
Program

Keep
Awake

Messaging Raw
Sensor
Value

Figure 5-11: The Advanced blocks palette

	E V3 programming	 75

project properties

An EV3 project file is actually an archive that contains all the
programs, custom blocks, sound files, image files, videos,
and documentation for your robot. When you’re working on
a project, you can access Project Properties (Figure 5-12) by
clicking the tab with the wrench icon [Figure 5-2(7)]. Project
Properties features the following:

1.	 Project Description: Here you can document your project
by giving it a name and adding a main picture, a video, and
a description.

2.	 Share Project button: Click this button to share your
project with other LEGO MINDSTORMS users.

3.	 Daisy-Chain Mode: Check this box to enable the software
to program a single EV3 Brick to control up to three slave
EV3 Bricks connected together. (Each slave brick is con-
nected to its master using a USB cable that goes from the
master’s USB host port to its miniUSB port.)

4.	 Project Content: Here is a list of all assets included in
the project, grouped in categories—Programs, Images,
Sounds, My Blocks, and Variables. From here, you can
manage the project’s files and variables.

connecting the
EV3 brick to
your computer

Let’s connect the EV3 Brick to your computer using the Available
Bricks tab in the Hardware Page (refer to Figure 5-4). The EV3
Brick must be on for the computer to detect it.

To connect via USB, just plug the USB-to-miniUSB cable
into the miniUSB port of the EV3 Brick and the other end into
any available USB port on your computer [Figure 5-4(a)].

Figure 5-12: Project Properties is available at any time by clicking the wrench icon at the top-left portion of the screen.

76	C hapter 5

To connect using Bluetooth, enable Bluetooth on the EV3
Brick (see the EV3 User Guide for details) and make sure that
your computer is Bluetooth enabled. Click the Refresh button
with a two-arrow icon [Figure 5-4(b)], and once the EV3 Brick
is found and paired (you’ll be asked to enter a passkey on the
EV3 Brick and in the software), you can connect to it by clicking
the square corresponding to Bluetooth [Figure 5-4(c)]. The entire
Bluetooth scanning, pairing, and connection process is handled
by the EV3 Software, not by your operating system.

To connect using Wi-Fi, you must insert a Wi-Fi USB
Dongle (to be purchased separately) into the EV3 USB host
port located on the side of the EV3 Brick.

note	 If the EV3 Software fails to find, pair, or otherwise
connect to the EV3 Brick via Bluetooth, try to disable and
reenable Bluetooth from the menu on the EV3 Brick. Alter-
natively, close and reopen the EV3 Software.

importing a
brick program

Now that you have a complete overview of the EV3 Software,
it’s time to learn how to use the Programming Palettes’
blocks. We’ll start by importing the Brick Program you built
in Chapter 4, which makes ROV3R travel along a square path
(duplicated in Figure 5-13). If you didn’t save the program
earlier, build it again now and save it on the EV3 Brick with
the name SQUARE. (You’ll find instructions on how to make a
Brick Program in Chapter 3.)

To import your Brick Program, create a new project by
clicking the Add Project (+) tab as shown in Figure 5-1(3).
Then, connect the EV3 Brick using USB or Bluetooth. Now
select Tools4 Import Brick Program, and you should see
a dialog similar to Figure 5-14.

If the EV3 Brick is connected, the dialog should show a list
of the Brick Program files stored in the EV3 Brick’s memory.
Select your SQUARE program and click Import. You should
see that program imported into your project, as shown in
Figure 5-15.

analyzing the imported
brick program

Now, before we begin modifying this program, let’s analyze
it. Right after the Start block, you have a Loop block, which
includes all the other programming blocks.

At the right side of the Loop block is a button with a hash
mark (#) on it. This is the Mode Selector, set to Count mode.
The Loop block input beside the Mode Selector lets you specify
how many times you want the sequence inside the loop to
repeat—4 times in this case, as in the original program. The
Loop block supports many modes, so you can also repeat the
inner sequence of blocks for a certain period of time, for a
certain number of times, forever, until a certain logic condition
becomes true, or until one of the sensors reads a specified
value.

Inside the Loop block are Move Steering blocks and Wait
blocks. The Move Steering blocks can be set to many modes:
Off, On, On for Seconds, On for Degrees, and On for Rotations.
Here the Move Steering blocks are in On mode: The blocks turn
on the motors attached to the specified Motor Ports, and then
the program continues.

In On mode, the block shows two inputs, Steering and
Power, which let you control the steering direction and the
power applied to the motors of a differential drive robot (like
ROV3R), respectively. The first Move Steering block has the
Steering input set to 0 and the Power input set to 70, which
makes the robot travel straight with motors at 70 percent
power. The second Move Steering block has the Steering input
set to 45 and the Power input set to 50, which makes the
robot turn by almost stopping the right motor and driving the
left motor at 50 percent power.

The Steering input accepts values from –100 to 100.
A value of 0 makes the robot go straight, a positive value
(>0) makes the robot turn to the right, and a negative
value (<0) makes it turn left. The farther the Steering value

Figure 5-13: The Brick Program for ROV3R to drive in a square

Figure 5-14: The Import Brick Program dialog

	E V3 programming	 77

is from 0, the tighter the curve will be. (A value of 100 or
–100 will make the robot spin in place.)

The Wait blocks are in Time mode, so their inputs let you
specify how many seconds they should pause the program
flow before the program continues. The time is expressed in
seconds, but you can specify values as fractions of a second,
like 0.25 seconds or 0.5 seconds.

Save the project now with the name myROV3R, and test
the program on ROV3R by pressing the Download and Run
button in the Hardware Page Controller [Figure 5-3(2)].

The program should work just like the Brick Program from
Chapter 3.

Note	 To download and run a program, you can also click
the green arrow on the Start block or use the keyboard
shortcut ctrl-R (⌘-R on Mac).

Note	 Blocks that have multiple modes might change their
appearance as the modes change, showing different inputs.
The EV3 graphical language is designed so that you can
check the configuration of the blocks at a glance. When you
place the mouse over the blocks or buttons, corresponding
hints will pop up to guide you. (For details, see EV3 Help
from the menu: Help4Show EV3 Help.)

editing the imported
brick program

Let’s modify the program shown in Figure 5-15. Select the
Loop block and then select Edit4Copy (keyboard shortcut
ctrl-C, or ⌘-C on Mac OS) to copy the loop and its contents.
Click the Add Program button [Figure 5-2(9)]; then paste the
Loop block using Edit4Paste (ctrl-V or ⌘-V), and drag it to
snap it to the Start block of the new empty program. (When
blocks are not connected to the Start block, they appear faded
out.) Rather than use the Wait blocks, let’s set the Move blocks
to On for Seconds mode to produce the same robot behavior
(that is, drive along a square path). In this mode, the Seconds
and Brake at End inputs are also shown. In each Move block’s
Seconds input, enter a time interval that’s the same as that of
the Wait blocks right after it, and then delete the Wait block.
Leave the Brake at End input set to True so that the motors
stop when the motion is complete. In this mode, the Move
Steering blocks pause the program flow until the duration has
elapsed. You can see the complete program in Figure 5-16.

Figure 5-15: The imported Brick Program in EV3 language form

get rid of that block!

To remove blocks from a program, select them and
press del on the keyboard. Alternatively, drag them
away from the sequence and into the Programming
Palette area. The remaining blocks should move
together to fill the space left by the deleted block.

Figure 5-16: The modified program for ROV3R to drive in a square

78	C hapter 5

Now try changing the Power and the Steering parameters.
When you click an input, you should see a slider that allows you
to change the value quickly. You can also enter a new value from
the keyboard.

going for precision

In Chapter 4, we tweaked the precision of the 90-degree turn
by increasing the distance between the ROV3R’s wheels. Now
that we have full control of the motors, let’s make the robot turn
a precise number of degrees by changing the software rather
than the hardware. In order to make ROV3R travel and turn by
a precise number of degrees, change the Move blocks’ mode
to On for Degrees. Their inputs should change again, as the
Seconds input is replaced by the Degrees input. Now tweak the
Degrees parameter of the second Move Steering block to make
the robot turn by 90 degrees, as shown in Figure 5-17. You’ll
see why this works in just a bit.

note	 The Degrees input of the second Move Steering
block controls the rotation of the faster of the two motors,
not the number of degrees the robot turns. The change
in the robot’s direction also depends on the wheel radius
and the distance between the wheels.

How can you set the Degrees parameter of the first Move
Steering block to make the robot travel a precise distance?
For that matter, how can you set the Degrees parameter of the
second Move Steering block to make the robot change its head-
ing by precisely 90 degrees, without proceeding by trial and
error? The easiest way is to use the Port View App on the EV3
Brick or the Hardware Page Port View tab in the EV3 Software
to measure the degrees of the Motor Rotation sensors as you
move the robot by hand. But first you’ll need to reset the rota-
tion count of these motors.

On the EV3 Brick, go the Apps tab (third from left) and
open the Port View App. Use the arrow buttons to select the
motor port you want to view (Figure 5-18). To reset the rotation
reading, just unplug the motor and plug it in again or close the
Port View App and open it again. In the EV3 Software, open

the Port View tab in the Hardware Page and reset each motor
rotation count by pressing the corresponding port letter to
reset the port.

traveling a precise distance

To tune the parameter for the first block, move the robot
20 cm by hand, using a ruler for reference. The Port View
should show about 520 degrees for each motor. That’s the
measure of how much each wheel has turned to travel 20 cm
forward; enter this value in the Degrees input of the first Move
block. The actual value might differ due to wheel slippage and
other mechanical accidents, so try the Move Steering block by
selecting it and clicking Download and Run Selected [Fig-
ure 5-3(3)]. With a ruler, measure the distance traveled, and
adjust the Degrees parameter as necessary.

Figure 5-17: The program to drive ROV3R in a square by turning the motors a precise number of degrees

Figure 5-18: The Port View App on the EV3

Brick allows you to read all the sensors’

values in real time.

Digging Deeper:
computing the
degrees parameter to
drive precisely

Here’s how to compute the Degrees parameter—
using a little math! Measure the wheel radius (for the
ROV3R’s tires, R = 21.6 mm) using a ruler, or just
halve the dimension that you see embossed on the
tire (43.2 mm). To travel X millimeters, you should use
the Move Steering block with the Steering input set to
0 (the wheels spin forward at the same speed) and the
Degrees input set to X / R × 57.3. (The 57.3, an approxi-
mation of the constant 180 / π, is needed to convert
radians to degrees.) In the example above, to travel by
20 cm (200 mm), the formula is 200 / 21.6 × 57.3 ≈
530 degrees. You’ll probably need to tweak the calcu-
lated value a bit to allow for uncertainties in your mea-
surements or even wheel slippage.

	E V3 programming	 79

Note	 The distance traveled by a wheel attached to a motor
is proportional to the amount of rotation of the motor shaft
(in degrees or rotations) and to the wheel radius.

turning a precise number of degrees

To make the robot turn by a precise number of degrees, you
can apply a similar method to tweak the settings of the second
Move Steering block shown in Figure 5-17. To do so, open the
Port View in the EV3 Software or on the EV3 Brick and reset
the motor rotation count. While pivoting the robot in place on
its right wheel (which must not rotate), measure the number
of degrees the left motor needs to turn in order to change the
ROV3R’s heading by 90 degrees clockwise. Use the number of
degrees read in the Port View as the value to set the Degrees
input of the second Move Steering block, with the Steering
parameter set to 50 (to keep one wheel still). The Move Steering
block will run until the faster motor (in this case, the left one) has
turned by the number of degrees specified by the Degrees input.

Now try executing the Move Steering block alone by
selecting it and clicking Download and Run Selected [Fig-
ure 5-3(3)]. The EV3 Brick executes only the Move Steering
block that is responsible for making the robot turn. Check the
angle turned by the robot, and adjust the Degrees parameter
as necessary to achieve the 90-degree heading change.

Instead of pivoting on a wheel, you can also have ROV3R
change its heading by spinning in place around its center. To do
so, set the Steering input to 100 and the Degrees input to ___?
I’ll leave it to you to discover the value to fill in here! (You’ll find
the answer in the box below.)

experimenting
with action blocks

The best way to learn the features of the Action blocks is
to experiment with them. Using Figure 5-19 as your guide,
add a new program to your project by clicking the Add Pro-
gram (+) tab (1). Next, drag and drop a Display block to the
sequence (2). Hold down the left mouse button while dragging
the block; when the block is in almost in place, a gray shadow
should appear. Release the mouse, and the block should snap
into place automatically.

By default, the new Display block is in Image mode. To
change the image it displays, click the File Selection field (3)
and choose from the available images. You can also change the
block’s inputs (4) and switch between available modes: Text
Pixels, Text Grid, Shapes Line, Shapes Circle, Shapes Rectangle,
Shapes Point, Image, and Reset Screen (this last mode simply
resets the screen to the Info screen when a program is running).

Now, following the procedure outlined above, add pro-
gramming blocks from the Action blocks palette, from left to
right, to produce the program in Figure 5-20. Because the
page has limited space, I put some blocks below the others
and then connected them using a Sequence Wire, which
defines the program flow, like the arrows that connect the
blocks in the flowcharts in Chapter 3. This is called snaking.
Laying out the program in this way can save space horizontally
and separate groups of blocks for better readability.

Digging Deeper: computing
the degrees parameter
to steer precisely

In addition to the trial-and-error method discussed above,
we can use math to steer ROV3R precisely. To do so, mea-
sure the wheel radius R and the distance L from the cen-
ter of the tire tread to the center of the robot (for ROV3R,
R = 21.6 mm and L = 50 mm, respectively). To change the
robot heading by a precise angle T, you can use the Move
Steering block with the Steering input set to 100 or –100
(the wheels spin at the same speed in opposite directions)
and the Degrees input set to (T × L) / R.

T × L is the length of the arc of the circumference of
radius L, corresponding to the central angle T in degrees.
To determine how many degrees a wheel should rotate in
order to travel on that arc, divide the length by the radius
R of the wheel.

L

R

T

T × L

In the example of Figure 5-17, to turn the robot
90 degrees, the equation is (90 × 50) / 21.6 ≈ 208 degrees.
Tweak the calculated value to allow for uncertainties in
measurement, especially due to the fact that it’s hard to
know the exact point at which the flat tires contact the
ground.

80	C hapter 5

To connect blocks with a Sequence Wire, click the Sequence
Exit Plug of the last block of the first row and drag it to the
Sequence Entry Plug of the first block of the second row, as
shown in Figure 5-21(a, b, c). The mouse cursor should change
into a spool while performing this action. You can move
the straight pieces of wire by clicking and dragging them
[Figure 5-21(d)].

To improve the readability of your program, click the
Sequence Exit Plugs of the blocks connected side by side to
make a short, straight Sequence Wire appear between them,
as shown in Figure 5-21(e). Click the Block Exit Plug again to
collapse the wire and move the blocks close together again.
Click the end plug of a Sequence Wire to disconnect the blocks.

Note	 To fit more blocks on the Programming Can-
vas, change the zoom factor by using the mouse scroll
wheel while holding down the ctrl (⌘) key or by using
the Zoom control buttons in the Programming Toolbar
[Figure 5-2(a)(3)]. To move the Canvas, you can pan by
dragging the mouse in an empty area while holding down
the alt key, or you can use the Pan tool in the Program-
ming toolbar, next to the Select tool. When a program is
large, the Programming Canvas will show small triangular
arrows near its edges. Click these arrows to shift the pro-
gram in the corresponding direction so you can view it in
its entirety.

Figure 5-19: Adding and configuring blocks: the first steps in building a new program

Figure 5-20: A program for experimenting with all the Action blocks

Display Preview

	E V3 programming	 81

In the program in Figure 5-20, the first Move block is a
Move Tank block, not a Move Steering block. These two blocks
have slightly different properties: The Move Tank block allows
you to configure the power of the two driving motors sepa-
rately, but for the Move Steering block, you must set the power
and the amount of steering for both motors together. The Move
Steering block computes the power of each motor for you.

Notice that the Display block can display a preview of what
will appear on the EV3 Brick screen. To show this preview, click
the Display Preview button in the top-left corner of the Dis-
play block. (In Figure 5-20, a preview of the EV3 icon is shown.)

What does this collection of Action blocks do? To find out,
run the program and try changing the parameters of the vari-
ous blocks. For example, change the EV3 Brick Status Light
color, change the displayed image, or change the sound file
played by the Sound block.

controlling the
program flow

The Flow blocks in the Palette with the orange tab can control
program flow by pausing the program, repeating sequences,
or choosing to execute different actions depending on a condi-
tion. To better understand these blocks, let’s import the wall-
following program from Chapter 4 (Figure 4-11 on page 65)
using the Import Brick Program tool. The imported program
is shown in Figure 5-22.

The Loop block is configured to repeat the inner sequence
forever (as marked by the infinity symbol). The Wait blocks
are in Infrared Sensor Compare Proximity mode. Their
Compare input is set to Less Than (4) and Greater Than

(a)

(b)

(c)

(d)

(e)

expand/
contract

update
delete

Figure 5-21: How to connect blocks with a Sequence Wire (a, b, c, d) and how to expand, contract, delete, or update a

Sequence Wire (e)

82	C hapter 5

or Equal To (3), while their Threshold inputs are set to 50.
Configured this way, the Wait blocks compare the IR Sensor
proximity value against the specified threshold, and when the
test succeeds (proximity < 50 or proximity ≥ 50), they let the
program continue.

the switch block

In Chapter 4, when we first considered the challenges of building
a wall-following robot, we determined that the algorithm should
check a condition and act accordingly. To allow an EV3 program
to choose between two different actions, we use a Switch block.
Let’s see how that works.

Build the program shown in Figure 5-23 as follows:

1.	 Place a Loop block (from the Flow Control blocks palette)
and leave it set to its default mode, Unlimited (repeat
forever).

2.	 Place a Switch block inside the loop.

3.	 Change the Switch block’s mode to
Infrared Sensor Compare Prox-
imity. Set the Compare input to
Less Than (4) and the Threshold
input to 45.

4.	 Drag a Move Steering block into the
True case of the Switch block at the
top, indicated by a check mark.

5.	 Change the Move Steering block’s
mode to On and set Steering to 25
and Power to 40.

6.	 Add another Move Steering block
inside the False case of the Switch
block at the bottom, indicated by
an x.

7.	 Change this second Move Steering
block’s mode to On, and set Steer-
ing to –25 and Power to 40.

Figure 5-22: The imported wall-following program

True
case

False
case

Flat/Tabbed
Selector

Figure 5-23: The wall-following algorithm implemented with a Switch block

experiment 5-1

Starting from the imported program shown in Fig
ure 5-22, try smoothing out the robot’s jerky move-
ment by changing the Move Steering blocks’ Steering
input to 25 and –25, respectively, and changing the
Wait block’s Threshold inputs to something less than
50, like 45 or 40. Keep experimenting to see how the
robot’s wall-following behavior changes. How would
you make the robot follow a wall more closely? How
would you make it travel faster?

	E V3 programming	 83

The Switch block is shown in Flat view by default, which
means that every case is visible. To change to Tabbed view,
click the Flat/Tabbed Selector button (shown in Figure 5-23).
Tabbed view takes up less space, but you’ll see just one case at
a time. If only one case contains programming blocks, you can
keep it in Tabbed view, showing only the case filled with blocks.
Otherwise, Flat view should be fine.

To fit all the blocks inside them, resize the Loop blocks and
the Switch blocks by dragging their Resize Handles, as shown
in Figure 5-24. In the Switch block, each case can be resized
independently. The Resize Handles are shown when the block
(or case) is selected.

conclusion
This chapter has given you a complete overview of the EV3
Software features, tools, and work areas. You learned how
the programming blocks are organized in the Programming
Palettes and, by importing Brick Programs, you took your first
steps toward proper EV3 programming. You also learned how
to use Action and Flow Control blocks. In the next chapter,
you’ll discover all the features of the Remote IR Beacon, as
well as some new programming concepts.

(a) (b)

Resize Handles

Figure 5-24: How to resize the Loop (a) and Switch (b) blocks using the Resize Handles

experiment 5-2

Import the Brick Programs that you made in Chapters 3
and 4 into the EV3 Software. In the imported line-
following program, notice how the Wait blocks are
configured to wait for certain Color Sensor readings
(in Compare Reflected Light Intensity mode). Try to
create a line-following program using a Loop block and
a Switch block, as you did for the wall-following pro-
gram in Figure 5-23.

84	T he EV3L Scientist’s Apprentice

6
experimenting with

the EV3 infrared components
In this chapter, you’ll learn about the Remote Infrared (IR) Bea-
con and the Infrared (IR) Sensor. In addition to measuring the
proximity of objects, the IR Sensor can detect infrared signals
from the Remote IR Beacon, allowing you to send commands
to your robot just as you send commands to a television with
a remote control. The IR Sensor can also estimate its distance
and orientation with respect to the Remote IR Beacon; this cool
feature will allow you do fun things with your robots like play
tag, chase prey, or locate and reach a mission base.

remote IR
beacon

The Remote IR Beacon is powered by two AAA batteries. It has
holes on each side, which make it easy to incorporate into a
LEGO Technic model. As you can see in Figure 6-1, it has four
small buttons (labeled 1, 2, 3, and 4), a large button (9), and a
red Channel Selector switch (12). The Channel Selector lets you
choose among four channels, so you can use up to four Remote
IR Beacons at once. A number engraved in red plastic in the
small circular window shows the current channel. (As long
as each remote is set to a different channel, its signal won’t
interfere with other remotes’ signals.)

The large button (9) turns on Beacon Mode. When in
Beacon Mode, the device transmits a continuous signal until any
button is pressed or until one hour has elapsed. The IR Sensor
can estimate the proximity and the heading to a beacon set in
Beacon Mode. This feature allows a robot to follow a moving
beacon or find its distance and heading relative to a fixed beacon.

The four small buttons (1, 2, 3, and 4) send commands
(the numbers in the following list) to the IR Sensor using two
infrared light-emitting diodes (LEDs) at the front of the remote.
(The plastic that houses these LEDs is a dark blue filter that
lets only infrared light pass through it.)

0  No button is pressed and Beacon Mode is off.
1  Button 1
2  Button 2
3  Button 3
4  Button 4
5  Buttons 1 and 3
6  Buttons 1 and 4
7  Buttons 2 and 3
8  Buttons 2 and 4
9  Beacon Mode is on.
10  Buttons 1 and 2
11  Buttons 3 and 4

9

1

6

5

10 11
12

8 2

3

4

7

Figure 6-1: The Remote IR Beacon

86	C hapter 6

using the
remote IR
beacon as
a remote

Let’s see how we can use the Remote IR Beacon as a simple
remote control for your robot using only the IR Control App
(and no programming—yet). In the EV3 Brick menu, go to the
Apps Tab (third from the left) and open the IR Control App.
You should see a screen like Figure 6-2(a).

There are two modes to choose from, as shown in Fig-
ure 6-2. In the mode shown in Figure 6-2(a), you can control
the motors using Remote IR Beacon channels 1 and 2; in the
mode shown in Figure 6-2(b), you can control the motors using
channels 3 and 4. To switch between modes, press the Enter
button on the EV3 Brick.

In the first mode, with the Remote Channel Selector
(labeled 12 in Figure 6-1) on channel 1, you can control a motor
connected to port B with buttons 1 (forward) and 2 (backward),
and you can control a motor connected to port C with buttons
3 (forward) and 4 (backward). While in the same mode, you can
control motors connected to ports A and D with another remote
on channel 2. The second mode works similarly but receives
commands from remotes set on channels 3 or 4.

The IR Control App makes it easy to remotely control
a wheeled robot like ROV3R. You’ll also find it useful when
building and testing a motor-powered mechanism, since you
can test the mechanism by turning the motor forward and
backward without having to build a test program.

To test out the remote control, build ROV3R in any of the
versions from Chapter 2 and connect the motors to ports B
and C. Now start the IR Control App on the EV3 Brick, take the
Remote IR Beacon, and select channel 1. You should be able to
use the small buttons on the remote to drive ROV3R around.
Table 6-1 shows how you would control ROV3R.

table 6-1: controls for a differential drive robot
such as ROV3R

Buttons pressed Motion

1 & 3 Drive forward.

2 & 4 Drive backward.

1 & 4 Spin right.

2 & 3 Spin left.

1 Turn right by pivoting on the right wheel.

2 Turn left by going backward and pivoting on the
right wheel.

3 Turn left by pivoting on the left wheel.

4 Turn right by going backward and pivoting on
the left wheel.

Note	 If the controls aren’t working at first, make sure
that the IR Sensor is connected to port 4 and that the IR
Control App is in the right mode, receiving commands from
channel 1 (or channel 2, if you connected the motors to
ports A and D).

See? Now you can use the Remote IR Beacon as a remote
control for ROV3R, without having to create a program for it!
This same setup works for real-world vehicles, such as tanks
or tracked vehicles like excavators. The human driver controls
these vehicles by moving two levers, and each lever controls
the motor that drives the track on the corresponding side. This
is just like pressing the Remote IR Beacon’s buttons 1 and 2 or
3 and 4. With the Remote IR Beacon and some extra program-
ming, you can also control vehicles with different steering, as
you’ll see in Chapter 12 with the SUP3R CAR.

(a)

(b)

Figure 6-2: The IR Control App. To switch between

controlling channels 1 and 2 (a) and channels 3 and 4 (b),

press the Enter button on the EV3 Brick.

	 experimenting with the EV3 infrared components 	 87

using sensor
blocks and
data wires

A robot uses the data provided by its sensors to perceive the
world around itself. In Chapters 3, 4, and 5, we compared sen-
sor readings against thresholds to trigger Wait blocks or Switch
blocks. To directly access sensor readings, we can use the Sensor
blocks (found in the Programming Palette with the yellow tab).

Each Sensor block has several modes that serve different
functions. In Measure mode, Sensor blocks provide measure-
ments as numeric values to other blocks. In Compare mode,
they compare measured values against a threshold to provide
logic values (see “Understanding Data Types” on page 89
for a discussion of these). Some Sensor blocks (like the Motor
Rotation block and the Timer block) also have a Reset mode,
which resets their measured values to 0.

The IR Sensor block has a Proximity mode (which measures
the distance to the nearest object), a Remote mode (which
receives commands from the Remote IR Beacon), and a Beacon
mode (which estimates the robot’s proximity and heading in
relation to the Remote IR Beacon).

Let’s get some data from the IR Sensor block. Build ROV3R
with Front IR Sensor (page 31), and create the program shown
in Figure 6-3 by adding blocks as described in Chapter 5. The
IR Sensor block is set in Measure Proximity mode, while the
Move Steering block is in On mode. The key idea of this simple
program is to take the Proximity value provided by the IR Sensor
block and send it to the Move block for use as a Steering input.
ROV3R should steer according to the distance the sensor mea-
sures to an object. This simple program makes ROV3R spin in
place until you place your hand in front of the IR Sensor; then it
will follow your hand, going straight until you remove your hand.

To send the sensor output to the Steering input, we need
to set up a Data Wire. (Data Wires carry values from one block
to another.) To create the Data Wire, use your mouse to click

and hold the Sensor block output and drag the wire—left to
right—to the Steering input (Figure 6-4). When you place the
mouse cursor on an output, its shape should change into a wire
spool. When you click an output, a wire plug appears. When you
drag the wire near a block’s inputs, all inputs that can accept that
type of data should be highlighted in blue. Place the plug on your
desired input, and release the left mouse button.

Figure 6-3: This program makes the robot steer according to the distance

measured by the IR Sensor.

Figure 6-4: To add a Data Wire, click a block output. A plug

appears on the end of the wire. Drag the plug to another block’s

input. The wire automatically follows the plug on the screen.

untangling data wires

To delete a Data Wire, click and drag its end slightly
away from the input (the reverse of what we did in the
last two steps shown in Figure 6-4). To move a Data
Wire, just click and drag it. To make the EV3 software
rearrange and compact the wire (in case things are
getting messy), double-click the wire.

Remember that the block that provides the output
value must precede the block that receives the value in
its input and that the blocks are executed in sequence
from left to right: The output block where the wire
begins must be to the left of the input block where it
ends. However, a Data Wire can skip over many blocks
and connect distant blocks.

88	C hapter 6

Download and run the program in Figure 6-3. What
happens? ROV3R should spin until you put your hand near
the sensor. Once your hand is near, ROV3R should go toward
your hand and follow it as you slowly pull it away.

How does this all work? When the IR Sensor measures a
large distance (when no object is near), its Proximity output
sends a high value, around 80 to 90 percent. When you place
your hand in front of the sensor, its Proximity output drops
closer to 0 percent. The Proximity value is carried by the Data
Wire into the Steering input of the Move Steering block, which
accepts values from –100 to 100 (percentage of steering). When
the value is high, the robot spins; when it’s low, the robot will go
almost straight.

EV3 software
features for
debugging
programs

In Chapter 5, you learned that the Port View tab in the Hardware
Page lets you see the values of sensors even while a program is
running. But the EV3 Software allows you to do even more!

Since the Data Wires carry data, you can display the sen-
sor’s current readings on the wire. Place the mouse pointer
over a Data Wire, and a small window pops up displaying the
current value, as shown in Figure 6-5. The number in the pop-
up window changes continuously because the blocks are inside
a loop that runs forever, very quickly. Note that this feature
works only if you run the program from the EV3 Software
using the Controller (Figure 5-3 on page 71). It won’t work
if you run the program from the EV3 Brick menu, even if the
Brick is connected to the EV3 Software.

Notice in Figure 6-5 that the header of each block contains
diagonal stripes (they are animated in the software). These
animated stripes indicate the blocks currently being executed.
Both this Execution Highlight feature and the real-time Data
Wire pop-up display really help with debugging programs (that
is, finding and fixing errors, or bugs in programming jargon).

For example, you can use these features to see whether a Data
Wire is carrying the expected values or whether the program is
stuck somewhere due to a stalled Wait block.

Note	 The origin of the terms bug and debugging is curious
and controversial. It’s rumored that the term bug originated
back in the 1950s, when computers were as big as walk-in
closets. Back then, real bugs (moths and roaches) sometimes
snuck into those huge relay-based computers, causing elec-
trical and mechanical problems. Engineers had to literally
remove the bugs to get the computer to work correctly!

displaying data
nicely with the
text block

Let’s add some blocks to the program in Figure 6-5 that will
display the IR Sensor values on the EV3 Brick screen as the
robot follows a hand. Using Figure 6-6 as reference, add a Text
block (Data Operations palette, red header) and a Display block
to the program.

Text blocks have only one mode, Merge mode, which com-
bines strings of text provided by its inputs a, b, and c. A string
is just a bit of text with any combination of letters, numbers,
spaces, or symbols: !”#$%&’()*+,-./:;<=>?@[\]^_°{|}~. To
enter characters into the Text block, you can either type text
into one of its input fields or connect a Data Wire from another
block to one of its inputs.

If we had connected the IR Sensor output directly to
the Display Block Text input, the numeric values would have
converted to text automatically. However, when many numeric
values are displayed, what they mean is not always clear. You
can use the Text block to generate more meaningful strings

experiment 6-1

What does the program in Figure 6-3 do if you connect
the Data Wire to the Power input, setting the Steering
input to 0?

Figure 6-5: Place the mouse pointer over a Data Wire to display a pop-up

window with the wire’s current value. The blocks currently being executed are

highlighted with animated diagonal stripes.

	 experimenting with the EV3 infrared components 	 89

by wrapping text around numeric values. For example, you
could create a string like Proximity is 20%, where the number
20 comes from a Data Wire, or the Text block could report
Distance = 40, where 40 is a sensor reading.

Let’s give this a try. Enter Dst = (with a space after the
equal sign) into Text field A. Set the Display block to Text Grid
mode. Then select Wired instead of static text by clicking the
Text field in the header (as shown in Figure 6-7). The Display
block should show a new Text input, where you will provide the
variable text data to be displayed. Set the Clear Screen input to
True (as indicated by the check mark under the eraser icon) so
that the block will clear the screen every time it is executed.

Text Grid mode allows you to display the text aligned to a
grid of rows (Y input) and columns (X input). The dimension of
a cell grid is one character (Normal font = 0; Bold font = 1). A
character set in Large font (2) is two rows and two columns wide.

Now drag a new Data Wire from the IR Sensor output
to the Text block’s second input, and drag another Data Wire
from the Text block’s output to the Text input of the Display
block. (You’ll now have two Data Wires coming from one
output.) Download and run the program. The robot’s behavior

should be the same as before, but onscreen you should see a
nice big report of the IR Sensor’s distance readings.

Warning	 You can have many Data Wires coming out of a
single output, but you cannot connect multiple Data Wires
to a single input.

understanding
data types

In the programs above, you used either numbers or text as
data. There’s a third type of data: logic values (true or false),
which are often used to express the result of a comparison. To
help differentiate the data types, Numeric, Text, Logic, Numeric
Array, and Logic Array inputs have different plug shapes, and
the corresponding Data Wires have different colors. These are
shown in Figure 6-8.

The plug shapes and colors are as follows:

N	Numeric inputs/outputs have a rounded shape, and the wire
is yellow.

N	 Logic inputs/outputs have a triangular shape, and the wire is
aqua.

N	 Text inputs/outputs have a square shape, and the wire is
orange.

N	Numeric Array inputs/outputs have a double rounded shape,
and the wire is thick and yellow.

N	 Logic Array inputs/outputs have a double triangular shape,
and the wire is thick and aqua.

note	 You will learn about arrays in Chapter 13.

data type conversion

The EV3 Software will not allow you to attach a Data Wire
to the wrong type of input. For example, you can’t connect a

Figure 6-6: You can display meaningful messages on the EV3 Brick screen using the Text block. This program is similar to the one in Figure 6-3.

Clear Screen
Column

Row

Font

Figure 6-7: Configure the Display block to show text on

a grid, with the text input coming from a wired input.

90	C hapter 6

Text output to a Numeric input with a Data Wire. However,
you can convert some types of data from one to another other
automatically simply by connecting an output of one type to an
input of another type.

As a visual guide, a data type can be converted if its
plug can fit into another. For example, because the triangular
shape can fit into the round or square shape, we know that a
logic value can be converted into a number or text. Likewise,
because the square shape does not fit into the round or trian-
gular shape, we know that text can’t be converted to a number
or logic value. Table 6-2 lists all possible conversions.

table 6-2: the automatic type conversions

From To Resulting data

Numeric Text A number becomes a text string.
For example, 3.1415 would
become the text string “3.1415”.

Logic Numeric The logic value True becomes 1;
the logic value False becomes 0.

Logic Text The logic value True becomes
the text string “1”; the logic value
False becomes the text string “0”.

Logic Logic
Array

The logic value becomes the
first and only element of the
resulting logic array.

Numeric Numeric
Array

The numeric value becomes the
first and only element of the
resulting numeric array.

As you can see, numeric and logic values can be con-
verted into text (shown in quotation marks), but text cannot
be directly converted into a numeric or logic value. Also, a
logic value can be converted to a numeric value—but not the
other way around. Computers (like the EV3 Brick) represent
all kinds of data using only the binary digits 0 and 1, which are
equivalent to the truth states False and True, respectively. By
convention, we convert the True logic value to 1 and False to 0,
but the EV3 Software doesn’t know how to directly convert any
numeric value to a logic value. In fact, there could be several
options. For example, should any nonzero number be converted
to True? Or should any number less than a certain threshold be
converted to False?

With some programming effort, we can overcome the
limits of direct data conversion: You’ll learn how to convert
numeric values into logic values in Chapter 7 and how to con-
vert text into a numeric value in Chapter 14.

following
the remote
IR beacon

By using the IR Sensor in Measure Beacon mode, you can make
ROV3R follow the Remote IR Beacon. ROV3R will drive toward
the remote as long as it can detect it. The Remote IR Beacon
can be thought of as a kind of landmark the robot can use to
determine its relative position and orientation.

You can reuse this concept in many creative ways. For
example, you could build a robot that plays tag by attaching
the Remote IR Beacon to your belt and having the robot chase
you! Or you could put the beacon in the corner of a room and
have the robot return to it, even after a long exploration, like
a home base.

Digging Deeper:
Decimal numbers

The Numeric type represents numbers that can be
positive or negative and can have digits after the deci-
mal point; that means the EV3 Brick supports floating-
point arithmetic operations, such as dividing 3 by 10,
the result of which is 0.3. If you did the same opera-
tion on a system that supports only integers (numbers
without digits after the decimal point), the result would
be 0. Pretty different, isn’t it?

Numeric

Numeric
Array

Logic
Array

Logic Text

Figure 6-8: Different data types are distinguished by

their input/output plug shape and wire color.

	 experimenting with the EV3 infrared components 	 91

Warning	 The Remote IR Beacon must be in Beacon Mode
to be detected by the IR Sensor in Measure Beacon mode!
To enable Beacon Mode, press button 9 on the Remote IR
Beacon. To disable Beacon Mode, press any other button.

The key to creating programs like these lies in using
the Proximity and Heading outputs of the IR Sensor block (in
Measure Beacon mode) as Power and Steering inputs for a
Move Steering block. For example, in the program shown in
Figure 6-9, the robot will steer toward the beacon with steering
action that is proportional to the measured heading: The greater
the heading, the greater the steering action. When the heading is
near 0 (frontal), the robot will drive straight toward the beacon.

Likewise, the robot’s speed will be proportional to its dis-
tance from the beacon. When the beacon is far away, the robot
will travel fast; when it’s close by, the robot will slow to a stop.
If the beacon is not detected, the robot will glide to a stop. (This
program would be clearer if the Switch block was in Flat View,
but I had to set it in Tabbed View to pass Data Wires into it.)

Note	 Data Wires can pass through a Switch block when the
Switch block is in Tabbed View. As soon as you drag a Data
Wire through the border of a Loop block or a Tabbed Switch
block, a tunnel appears. To pass values through Switch blocks
in Flat View, you need to use variables. (You’ll learn how to
use variables in Chapter 12.)

Here’s how the program works. First of all, the entire
sequence is set to repeat forever by using a Loop block in
Unlimited mode.

The IR Sensor block in Measure Beacon mode has its
Channel input set to 1. It has three outputs:

N	 The first output, Heading, provides the sensor’s heading to
the Remote IR Beacon. The values range from a low of –25
(indicating that the beacon is directly to the left of the bea-
con) to a high of 25 (which indicates the beacon is directly to
the right). A value of 0 says that the beacon is directly ahead
of the sensor.

N	 The second output provides the Proximity of the Remote IR
Beacon. Its values range from 0 (the nearest position) to 100
(the farthest).

True case

Math block

False case

Figure 6-9: The beacon-following program. Both the True and False cases of the Tabbed Switch block contain blocks. Data Wires can go in and out of

a switch only in Tabbed View.

92	C hapter 6

N	 The third output provides the Detected state. The value is
False when Beacon Mode is off or the signal is not detected,
and it is True when the Beacon Mode signal is detected.

We need to take these three outputs and send them to
other blocks in the program. First, we’ll send the IR Sensor
block Heading output to the Steering input in the Move Steer-
ing block. However, we can’t use the raw data, because we
need a number from –100 to 100 for the Steering input and
the Heading output only ranges from –25 to 25. To solve this
problem, we use a Math block in Multiply mode to multiply the
value coming from the IR Sensor block Heading output by 4
before sending that value to the Steering input.

Next, we want to send the Proximity output to the Power
input of the Move Steering block. Since the ranges of the values
are the same, we use a Data Wire to connect them directly.

We use the Detected output of the IR Sensor block to
choose between two cases of a Tabbed Switch block. When
the Detected state is True, a Move Steering block in On mode
is executed. Since the Move Steering block’s Power and Steering
inputs are connected to Data Wires coming from the IR Sensor
block, the robot’s speed and direction will change according to its
distance and heading relative to the Remote IR Beacon.

When the Detected state is False, a Move Steering block in
Off mode is executed, and the robot will stop moving.

The Move Steering block has the Brake at End input set
to False, so the robot will glide to a stop when the beacon
disappears or when Beacon Mode is turned off.

using the basic
operations of
the math block

The Math block is a Data Operations block. Depending on its
mode, it performs mathematical operations on numeric inputs,
producing the result as an output. The Math block can handle
both integers and numbers with significant digits after the
decimal point. The available operations are listed in Table 6-3.

table 6-3: basic operations of the math block

Mode Inputs Output

Add a, b a + b

Subtract a, b a – b

Multiply a, b a × b

Divide a, b a / b

Absolute Value a a if a ≥ 0, –a if a < 0
(Result is always positive.)

Square Root a

Exponent a, n an

You’ll learn about the Advanced mode of the Math block in
Chapter 7. In Advanced mode, you can enter a formula in the
Block Equation field that involves up to four operands.

Digging Deeper:
Robot Localization

A robot that is aware of its position and can navigate
through an environment is one of the most interesting
and challenging topics in mobile robotics research. Why
not take up the challenge with EV3?

For the purposes of this experiment, you could
use up to four Remote IR Beacons, set at known coor-
dinates and on different channels, to build a robust
localization system for your EV3 robot. This would give
you up to four proximity and heading measurements
from the IR Sensor. However, heading measurements
to beacons are very inaccurate, so use them only as
a very rough reference. On the other hand, proxim-
ity measurements should be reliable, as long as the IR
Sensor’s line of sight to the beacon is unobstructed and
the beacon is more or less straight ahead of the sensor.

For best performance, avoid building things around
the IR Sensor that could shield the beacon’s signal. You
want to maximize the sensor’s field of view (especially
sideways).

By merging the eteroceptive (external) measure-
ments that the robot takes of its environment with its
proprioceptive (internal) measurements of the distance
it traveled and changes in orientation (using the rota-
tion sensors in the Servo Motors, for example), you can
create a robot with the ability to precisely determine
its location and navigate. This technique requires some
complex math, but the LEGO EV3 has enough compu-
tational power to handle it.

a

	 experimenting with the EV3 infrared components 	 93

Warning	 If you divide a number by zero, the result will
be an error shown as Inf (infinite) on the Display block,
with a sign depending on the dividend. If you use this value
for the Rotations input of a Move block, the motors will
turn forever. If you compute the square root of a negative
number, the output will be an error displayed as ---- on
the Display block. Errors displayed as ---- are interpreted
as zero when they are used as inputs. (Errors are still sent
through Data Wires connected to the output.)

conclusion
In this chapter, you learned all the features of the Infrared
devices included in the EV3 set, the Remote IR Beacon and the
IR Sensor. You learned how the Remote IR Beacon can be used
with the IR Sensor to build a remote-controlled robot, and you
discovered how to make your robot follow the beacon. You also
learned how to read sensor data and how to transmit data
between blocks using Data Wires. You read about the different
types of data that you can use in your programs, how to pass
them from one block to another, and how to display them on
the EV3 screen. Finally, you saw how to use the Math block to
perform simple operations. Along the way, you learned how to
drive a tracked excavator!

experiment 6-2

Expand the program in Figure 6-9 to display the
IR Beacon’s Proximity and Heading outputs on the
EV3 Brick screen. You’ll need Display blocks and Text
blocks. To display more lines of text without having
them overlap, you’ll have to set different values for the
Row input of the Display blocks (the input with the red
Y icon). Experiment with various ways to display the
messages using the fonts (Normal, Bold, and Large) and
colors. And because you will probably use more than one
Display block, remember to set the Clear Screen input to
False in any Display block that follows. Otherwise, that
block will clear the text displayed by the preceding one.

When a Display block with the Clear Screen input
set to False shows a text string on a row that previ-
ously contained a longer string, the old string will not
be cleared completely. Any characters from the old
string that are beyond the length of the new string will
remain displayed, and the screen will look messy. To
avoid that without completely clearing the display, just
enter a series of spaces in the Text block’s c input field
when building the text string. For example, if one of the
Text blocks has “DIST = ” as input a and a Data Wire
carrying the data from the Proximity output of the IR
Sensor block as input b, enter a few blank spaces as
input c.

experiment 6-3

Create a program that plays a tone whose frequency is
proportional to the Proximity output of the IR Sensor
in Proximity mode. You’ll need a Sound block in Tone
mode, with the Proximity output wired to a Math block
whose result is wired to the Sound block’s Frequency
input. Try a frequency range from 300 to 3000 Hz. For
example, use the formula

Frequency = 10 * Proximity + 330

94	T he EV3L Scientist’s Apprentice� ﻿

7
the math behind the magic!

“I’m afraid we need to use . . . math!”
—Prof. Farnsworth in Bender’s body,
Futurama, season 6, episode 10

In Chapter 6, you learned how to use Data Wires and how to
work with the Math block. In this chapter, you’ll learn about the
Compare block and the Advanced mode of the Math block. Then
we’ll develop new programs for the Wall-Following ROV3R.

dealing with
measurement
noise

Build the Wall-Following ROV3R (page 32), turn on the EV3
Brick, and open the Port View App. Go to the Input 4 tab, and
set the IR Sensor into IR-PROX mode. You will find that the
IR Sensor’s proximity readings vary from one sampling to the
next—the last digit changes frequently—even if the sensor’s
distance from an object doesn’t change. This is normal: All sen-
sor output is affected by measurement errors, called measure-
ment noise.

Just as ambient noise may interfere with your ability to
enjoy music, measurement noise interferes with the sensor’s
ability to measure. We call the interference noise because
it’s random. One good way to reduce, or filter, measurement
noise is to take multiple measurements of the distance to
one object and average them; in other words, add up the
measurements and divide the sum by the total number of
readings.

For example, imagine you are measuring the length of a
corridor with a measuring tape. You repeat the procedure a few
times, trying to do everything the same way (you stretch the
tape with the same hand, you align the end of the tape at the

same wall edge, and so on). Astonishingly, your measurements
differ from each other: for example, 5.10, 5.12, 5.09, 5.11, 5.08.
To average the measurements, divide the sum of that list of
numbers by the length of the list; that is, A = (5.10 + 5.12 +
5.09 + 5.11 + 5.08) / 5 = 5.10.

This result is the arithmetic mean. Calculating the mean is
an effective method for reducing measurement noise because
these random repeated errors tend to be distributed evenly
around zero; that is, positive and negative errors are equally
likely to occur. We can implement this filtering technique in a
wall-following program, as shown in Figure 7-1.

I’ll describe each programming block in more detail in the
following sections, but let’s start with a high-level overview. In
this program, three IR Sensor blocks provide three Proximity
measurements that are fed into a Math block in Advanced mode.
This block averages the measurements using the following for-
mula (the output is called Result):

Result = (a+b+c)/3

One cool thing about using the Math block in Advanced
mode is that you can enter a mathematical formula into the
Formula field, so you won’t need three separate Math blocks
to compute the average.

As you can see in Figure 7-1, the result of this calcula-
tion is carried by a Data Wire into input a of a Compare block,
which compares it against a fixed threshold (40) as specified in
input b. The logic output of the Compare block, which is carried
by a Data Wire into the input of a Switch block (shown in Flat
View), is used to choose between the logic cases True or False.
These cases, in turn, make the robot steer left or right, adjust-
ing its trajectory to keep the wall at the correct distance.

Build, download, and run this program on your ROV3R to
test it. You should find that ROV3R, by averaging the sensor
readings, becomes less sensitive to random sensor noise and
thus moves more smoothly.

96	C hapter 7

the math block
in advanced
mode

We saw above that by setting a Math block in Advanced
mode, we could use just one Math block to compute several
math operations by entering a formula into its Formula field. In
Advanced mode, the Math block has four numeric inputs: a, b,
c, and d. You can use these inputs as operands in either lower-
or uppercase. The EV3 Software will give the operands the
actual numeric values from the inputs and then compute the
result according to any valid formula in the Formula field. In
addition to using the Math block in Advanced mode for common
operations, you can access several built-in functions by clicking
the Formula field. Table 7-1 lists these functions by name (as
shown in the block’s function list), showing the symbols added
to the formula and an example of each operation.

the round
block

Some functions in Table 7-1 are equivalent to using the Round
block (Data Operations palette, red header). The Floor function
is equivalent to using the Round block in Round Down mode,
the Ceil (ceiling) function is equivalent to using the Round block
in Round Up mode, and Round is equivalent to using the Round
block in To Nearest mode. The Round block also has the Trun-
cate mode, which truncates the value, keeping only the number
of digits after the decimal point specified by the Number of
Decimals parameter. For example, truncating 3.2 to 0 decimals
returns 3, and truncating –3.34 to 1 decimal returns –3.3.

Result = (a+b+c)/3

Formula field Compare block

Figure 7-1: This wall-following program uses an average of three IR Sensor readings.

	 the math behind the magic!	 97

table 7-1: the functions available from the math block in advanced mode

Name Symbol Example

Add + a + b

Subtract – a – b

Multiply * a * b

Divide / a / b

Modulo % a % b computes the remainder of the integer division. For example, 4 % 2 = 0, 10 % 3 = 1, 4 % 7 = 4.

Exponent ^ a^b computes a to the power of b.

Negate – –a (adds a minus sign, like Subtract)

Floor floor(floor(a) brings the real number a to the greatest integer smaller than a. For example, floor(3.2) = 3,
floor(3.5) = 3, floor(–3.2) = –4, floor(–3.5) = –4.

Ceil ceil(ceil(a) brings the real number a to the smallest integer greater than a. For example, ceil(3.2) = 4,
ceil(3.5) = 4, ceil(–3.2)= –3, ceil(–3.5) = –3.

Round round(round(a) brings the real number a to its nearest integer, with a half unit as the decision point. For
example, round(3.2) = 3, round(3.4999) = 3, round(3.5) = 4, round(–3.2) = –3, round(–3.4999) = –3,
round(–3.5)= –4.

Absolute abs(abs(a) returns a if a ≥ 0 and –a if a < 0. The result is always positive.

Log log(log(a) computes the base 10 logarithm of a.

Ln ln(ln(a) computes the natural logarithm of a.

Sin sin(sin(a) computes the sine of angle a (where a is given in degrees).

Cos cos(cos(a) computes the cosine of angle a (where a is given in degrees).

Tan tan(tan(a) computes the tangent of angle a (where a is given in degrees).

Asin asin(asin(a) computes the arcsine of a (result in degrees).

Acos acos(acos(a) computes the arccosine of a (result in degrees).

Atan atan(atan(a) computes the arctangent of a (result in degrees).

Square Root sqrt(sqrt(a) computes the square root of a.

digging deeper:
handling errors from
math blocks

Some operations will produce errors as output when the
inputs are not legal. All error values propagate through
Data Wires and will affect the results of other Math blocks.
You can track down which Math block produced an invalid
value by connecting a Data Wire from a Math block output
to a Display block in Text mode.

One potential error situation occurs when you divide
by zero. The result will be an error value displayed as Inf,

or infinite, with a sign that depends on the sign of the
quotient. Also, the result of log(0) and ln(0) is –Inf. If you
use this value for a Rotations input on a Move block, the
motors will run forever.

As another example, if you compute the square root
of a negative number or you make a syntax error in a
formula (by misspelling a function name or using an
unbalanced parenthesis), the output will be an error dis-
played as ---- on the Display block. Such errors will be
interpreted as zero by other inputs. Also, be careful with
the results of functions that are usually implemented as
approximate. For example, the result of tan(90) should
be Inf, but it turns out to be a huge negative number
(–22,877,332).

98	C hapter 7

the compare
block

The Compare block lets you compare two numbers using its
inputs a and b to see if they’re equal or if one is greater than
the other. The result of the comparison is a logic value that can
be True or False. Table 7-2 lists the six comparisons you can
perform by changing the mode.

table 7-2: the comparisons available on the
compare block

Mode Result

Equal To True if a = b; False otherwise

Not Equal To True if a ≠ b; False otherwise

Greater Than True if a > b; False otherwise

Less Than True if a < b; False otherwise

Greater Than or Equal To True if a ≥ b; False otherwise

Less Than or Equal To True if a ≤ b; False otherwise

converting numeric values to
logic values

Recall from Chapter 6 that
a numeric value can’t be
automatically converted into
a logic value. However, you
can perform that computa-
tion with the Compare block
(Figure 7-2) by setting it to
Not Equal To mode and set-
ting input b to zero. In this
way, any number provided to
input a other than zero will
be converted to True. Any
number equal to zero will be
converted to False.

Note	 Treating any nonzero number as True is just one
of many options, but it’s exactly how a C or Java compiler
would perform the conversion.

embedded compare blocks

We used the functionality of Compare blocks in previous
chapters without seeing these blocks themselves. In fact,
some programming blocks embed the comparison functionality.
Let’s see how the Switch and Wait blocks use the code of the
Compare blocks.

In Figure 7-3(a), the Switch block selects which case to
execute by comparing the sensor value against a threshold.
This is equivalent to a Sensor block in Compare mode that
provides a logic value to a Switch block, as shown in (b), or to a
Sensor block and a Compare block connected to a Switch block,
as in (c). Similarly, a Wait block (d) is equivalent to a Loop block
that checks for the exit condition with a comparison (e). The
Loops in (f) and (g) function equivalently to (d), with (g) showing
the Compare block explicitly.

the constant
block

The Constant block simply provides a constant output as speci-
fied in its top Text Field. Depending on its mode, a Constant
block can provide all kinds of data types, numbers, logic values,
strings of text, and arrays. (See “Understanding Data Types” on
page 89.)

improving our
wall-following
program

Now to improve our wall-following program to make it
smoother and more intelligent than ever! Our current wall-
following program (from Figure 5-23 on page 82) switches
rigidly between two steering directions if the proximity read by
the IR Sensor is greater or less than a threshold. The result is
a jerky motion, even after we try to reduce the jerkiness with
steering adjustments.

To improve our wall-following program, we’ll use the same
concept used by the program in Figure 6-3 on page 87: When
the robot moves forward, the IR Sensor’s Proximity output
will control the amount of steering of a Move Steering block.
In particular, we’ll make the Steering control U proportional
(by a constant gain K) to the difference E (error) between

Figure 7-2: Converting a numeric value

to a logic value using a Compare block

	 the math behind the magic!	 99

the desired distance R from the wall and the actual distance
measured by the sensor Y. (I’ll explain what gain is and why it
matters shortly.) This formula will do the trick:

U = − K * E = − K * (R − Y) = − gain * (reference − measure)

Note	 We need the minus sign in front of the gain to make
the robot react properly: Steer toward a wall when too far
away from it and away from the wall when too close. We
could rewrite the formula as U = K * (Y − R), but tradition-
ally the error is defined as E = R – Y and not vice versa.

The greater the difference between distance values, the
stronger the steering input will be! For example, when the robot
is at about the desired distance from a wall, the difference E
will be small, as will the Steering control U: The robot will move
almost straight ahead, making only small adjustments to its
trajectory. However, when the robot is very near a wall, the

difference E will be bigger, and the Steering control will have a
stronger effect, moving the robot away from the wall by mak-
ing the robot spin in place.

Notice, in the program shown in Figure 7-4, that the IR
Sensor’s Proximity value is fed into Input c of a Math block in
Advanced mode. The two Constant blocks are there to show the
value of the desired distance from the wall, R (50), and the gain,
K (2). The gain controls the strength of the robot’s reaction: The
larger the gain, the more “nervous” the behavior of the robot;
the smaller the gain, the weaker the steering intervention will be,
but the robot may not be able to handle corners. Adjusting the
gain involves a trade-off between smoothness and reaction time.
A gain of 2 works well in this program.

This wall-following method has some limitations; for
example, the robot can only follow walls on its right. However,
you can modify the sensor assembly and the program to allow
the robot to follow walls on its left. Also, this relatively minimal
program will fail if the robot is too far from the wall; in that case,
it will spin in place, with no chance of finding the wall again.

Switch blocks Wait (Loop) blocks

(a) (d) (e)

(f)

(g)

(b)

(c)

Figure 7-3: Equivalent programming examples using Compare blocks

100	C hapter 7

conclusion
In this chapter, you learned how to enter formulas into a Math
block set in Advanced mode. In particular, you learned how to
compute the arithmetic mean of a set of numbers using a single
block. You met the Compare block and realized that it was an
old acquaintance, as it is embedded in Switch blocks and Wait
blocks. Finally, you saw how to build a proportional controller as
part of a smooth and sensitive wall-following program.

experiment 7-1

Try changing the gain and the proximity reference
in the program shown in Figure 7-4 to see how the
robot’s behavior changes.

Figure 7-4: A smooth wall-following program using Steering that is proportional to the robot’s distance from the wall

digging deeper:
feedback controllers

The wall-following programs are examples of feedback
controllers. A controller is a device (a program) that
monitors and changes the behavior of a system (your
robot). In the case of wall following, we want to keep
the robot at a constant distance from a wall. The input
channel that provides the feedback to the controller is
the IR Sensor, and the output comes from the Servo
Motors that drive the robot. Our first Brick Programs
for line and wall following in Chapter 4, and the EV3
programs derived from them in Chapter 5, imple-
mented a so-called Bang-Bang controller (or On-Off
controller), because the control command (the steering
amount) switched abruptly between two states. The
controller discussed in this chapter is a proportional
feedback controller, where the control command U is
proportional (based on gain K) to the error E between
the desired distance R and the actual distance Y. The
formula is U = –K * (R – Y).

experiment 7-2

Modify the wall-following program shown in Figure 7-4
so that you can set the reference distance from the
wall before starting the loop that controls the robot.
When you press Enter on the EV3 Brick, you should be
able to set the distance and start the robot; when you
press Enter again, the robot should stop and return to
setup mode. (Hint: Put the wall-following loop inside an
external loop.)

experiment 7-3

As noted earlier, the program in Figure 7-4 fails if the
robot is too far from a wall. Once you’ve learned all
of the programming in this book (including the Timer
block, which I’ll discuss in Chapter 10), develop a strat-
egy to overcome this limitation. For example, the pro-
gram could detect that the robot is spinning in place by
checking whether the distance from a wall is too great
for a long period of time; then it could make the robot go
straight for a while, hopefully getting closer to a wall.

	T he EV3L Scientist’s Apprentice	 101

102	T he EV3L Scientist’s Apprentice

8
LEGO recipes

In this chapter, you’ll learn the basics of LEGO geometry, like
how to build sturdy structures, make functional gear trains,
and transmit and transform motion. You’ll also see some build-
ing ideas for working with EV3 motors.

the angular
beams unveiled

As you know, the basic unit in the LEGO Technic system is the
fundamental LEGO unit, and every piece is designed to respect
this basic unit. The angular beams are no exception. However,
their geometry isn’t always simple to understand. The 2×4 and
3×5 angular beams, the T beam, and the double angular beams
are easy enough because they have right angles (90°) and half-
right angles (45°). But what about the other angular beams?
Why are they bent at odd angles?

For example, Figure 8-1 shows a 3×7 angular beam. The
triangle overlaying the beam has a right angle (90°) at its base,
and its sides measure 3M, 4M, and 5M in whole LEGO units.
(I’m measuring the lengths from center to center of the holes:
six holes should correspond to 5M because you subtract half a
unit from each end.)

The angle at the base indicated with α (alpha) results from
the LEGO Group having designed this beam to fit in the geom-
etry of the LEGO Technic system. You’ll see the same triangle in
the 4×6 and 4×4 angular beams.

The Pythagorean Theorem (see Figure 8-2) says that in
any right triangle, the area of the square of the hypotenuse (the
side opposite the right angle) is equal to the sum of the areas of
the squares of the two sides that meet at the right angle.

For example, in Figure 8-1, the legs of the triangle mea-
sure 3 and 4. Their squares are 3 × 3 = 9 and 4 × 4 = 16. The
sum of their squares is 9 + 16 = 25, and therefore the hypot-
enuse is equal to 5, the square root of 25. (The story is that the
ancient Egyptians knew this trick long before Pythagoras and
that they used knotted ropes to make right triangles in order to
set land boundaries.)

α

5M
4M

3M

Figure 8-1: Geometry of the LEGO angular beam
hy

po
ten

us
e C

leg A

leg B

A × A

B × B

C × C = A × A + B × B

Figure 8-2: Graphical representation of the Pythagorean Theorem

104	C hapter 8

triangles vs.
rectangles

There’s a difference between building rectangular structures
and triangular structures. As you can see in Figure 8-3, it’s
easy to squash a parallelogram by applying force to it. On the
other hand, a triangular structure, like the one in Figure 8-4,
can resist applied forces without getting squished. That’s why
bridges and many support structures are built out of a lat-
tice of triangles, and it’s why you should try to use triangular
structures when building LEGO models that need to stand up
to applied force.

Is it possible to build strong rectangular structures? If you
need to build a rectangular frame that is as resistant to pres-
sure as a triangular one, just add a diagonal beam, as shown in
Figure 8-5. By doing this, you effectively create two triangles.
(Notice that the diagonal beam is like the hypotenuse in the
triangle in Figure 8-1.)

Now for some examples of assemblies that show how to
use angular beams and triangular structures to build solid
assemblies. Have a look!

Figure 8-3: You can easily squash a parallelogram by applying force to it.

Figure 8-4: A triangular structure can resist applied force without being

deformed.

Figure 8-5: Adding a diagonal beam to a rectangular structure makes it

resistant to applied force; with the beam, it’s essentially two triangles.

Digging Deeper:
Angular Beams
Mystery Solved!

How about measuring angle α? Since the 3-4-5 tri
angle (as it’s known) in Figure 8-1 is a right triangle,
the angle α = arctan(4/3) ≈ 53.13°. You may have
seen this number before, perhaps in the name of the
angular beams in LDraw computer-aided design (CAD)
elements. Now you know where it comes from!

	LE GO recipes	 105

Don’t be such
a square!

106	C hapter 8

I used this structure for the
legs of the first versions of my
bipedal robot Cyclops Mk1.

6M

8M

10M

This is the same struc-
ture used in the chassis
of the LEGO Technic Rock
Crawler model 9398,
released in 2012.

	LE GO recipes	 107

extending
beams

When you need to extend the length of a beam, use the black
pins with friction or the blue long pins with friction to connect
two or more beams. Figure 8-6 shows various ways to extend
beams and strengthen structures.

Figure 8-6: Extending and thickening beams with friction pins

Increasing the amount of overlap makes
the structure more rigid.

You can use long blue pins to strengthen
the assembly by making it thicker.

Adding more pins can help hold the beams
together better, but they’re usually not
needed.

Increasing the overlap of the beams to five
holes makes the resulting structure more
rigid.

These two beams are connected with
black pins and with an overlap of just two
holes. Notice that the assembly is straight
but still flexible.

108	C hapter 8

bracing
LEGO assemblies are good at resisting compression and
shearing forces, but they’re designed to come apart easily
when subjected to pulling forces. (Otherwise, you couldn’t
disassemble them!) Therefore, when subjected to stress
and strain, assemblies can come apart because the beams
pull away.

The solution to this problem is bracing, using one or more
beams to brace the parts that would otherwise come apart. (You
saw this technique in action when you built ROV3R in Chapter 2.)
You’ll gain a better understanding of this concept as you build the
two assemblies shown next, and I’ll point out bracing when it’s
used in the various robots throughout this book.

To increase resistance,
add another bracing beam
using long friction pins.

	LE GO recipes	 109

110	C hapter 8

cross blocks

Cross blocks allow you to expand
your LEGO structures in three
dimensions. Remember, the
LEGO Technic studless way of
building requires you to think in
3-D. You’re not stacking bricks—
think through your design from
the inside out!

Use cross blocks to create half-
module offsets.

	LE GO recipes	 111

gears revisited
We first met gears in Chapter 1 (Figure 1-13 on page 12).
Now we’ll discover their secrets! Here are some basic things
to remember about gears:

N	 You measure a gear by counting its teeth.
N	 You combine gears according to radius and thickness.
N	 Gears have a cross hole in the middle so that they can fit on

axles and transmit rotation from one axle to another.

Build the assembly shown at the top of Figure 8-7: a 12z
double-bevel gear meshing with a 36z double-bevel gear. If
you rotate the 12z gear three times, how many times will the
36z gear rotate? If you thought “ just once,” you’re right! When
the smaller gear is the input gear (the driving gear), both the
number of rotations and the speed of the larger output gear
(the driven gear) decrease.

How does this relate to the number of teeth? The relation-
ship between gears is expressed in terms of the ratio between
the numbers of their teeth. In this example, the ratio is 12:36 =
1:3. Thus, the 36z gear goes one-third as fast as the 12z gear.

The advantage of this gear combination is that if you turn
the 12z input gear, the 36z output gear has three times more
torque than the input gear. Torque is a twisting force applied to
an object that tends to make it rotate. Put another way, torque
relates to rotating objects as force relates to pushing objects.
Aside from changing how fast the driven axle turns, gears
change the amount of torque transmitted to it.

Now try turning the 36z gear with the crank for one com-
plete turn. The smaller gear will perform three turns, and its
torque will be one-third as much as the larger gear’s torque.

To sum things up, if the input gear is smaller than the
output gear, the speed of the output gear will be decreased and
its torque increased. On the other hand, if the input gear is the
bigger one, the speed of the output gear will be increased but
its torque decreased. The illustrations below the gears in Fig-
ure 8-7 show how gears change the speed and torque of axles.

getting gears to
mesh together well

How do you make two gears mesh together well so that you
won’t have to hear that awful noise when they disengage and
their teeth slip? This is a question that nags the novice LEGO
builder, but you’ll find its answer in this section. Table 8-1
lists the radii (plural of radius) of the gears, expressed in LEGO
units. (To verify these values, you can measure the radius of
gear wheels by using a beam as a reference. There’s no need to
memorize them, but they are helpful in understanding how to
make gears mesh correctly.)

table 8-1: the radius of each gear

Name Radius (in LEGO units)

8z gear 0.5

12z double-bevel gear 0.75

16z gear 1

4z knob wheel 1

20z double-bevel gear 1.25

24z gear 1.5

Small turntable (28z) 1.75

36z double-bevel gear 2.25

40z gear 2.5

Large turntable (56z) 3.5

Note	 Table 8-1 lists some gears and turntables (shown in
italic) that are not included in the 31313 set.

Figure 8-7: Gears change the speed and the torque of rotating axles.

112	C hapter 8

There are two kinds of gear combinations: perfect and
imperfect.

N	 You have a perfect gear combination when the sum of the
radii of the gears equals a whole number of LEGO units.
Examples of perfect combinations are 8z with 24z (0.5 + 1.5
= 3M) and 12z with 20z (0.75 + 1.25 = 3M).

N	 You have an imperfect gear combination when the sum of
the radii of the gears is not equal to a whole number of LEGO
units.

Don’t think that you need to avoid imperfect combinations!
On the contrary, they can be very useful. Just know that LEGO
didn’t plan for you to use imperfect combinations of gears, so
the teeth may mesh a bit loosely, or you may find it hard to
build a frame to hold the gears correctly. But bending (and
breaking) LEGO design rules is my passion, so give imperfect
gear combinations a chance!

Of course, before bending the rules, you need to know what
the rules are. Let’s consider all the gears in the EV3 set as well
as some extra gears not included in the EV3 set (like the 8z,
16z, and 40z gears), while leaving the worm gear and the knob
wheel gear aside for now. As you can see in Table 8-2, there are
28 possible combinations of these gears. (The bottom half of the
table is greyed out because it’s symmetrical: From the point of
view of the radii, combining 12 and 20 is the same as combining
20 and 12.) Here’s how to read this table:

N	 A checkmark (ü) means that the combination is perfect and
building a frame to hold the gears will be easy.

N	 An x (û) means that the combination is imperfect and build-
ing a frame to hold the gears may be tricky, or the combina-
tion may not be strong enough to be usable.

N	 A question mark (?) means that I could not find any usable
or reliable way to make that combination. See if you can find
the missing solution!

table 8-2: possible combinations of LEGO gears

8 12 16 20 24 36 40

8 ü ? û û ü û ü

12 û û ü û ü û

16 ü û û û û

20 û û û ?

24 ü ? ü

36 û ?

40 ü

Now that you know how to choose gears that fit together,
I’ll show you some examples of how to build with gears. Think
of this as your LEGO gear recipe book!

	LE GO recipes	 113

assembling gears

Gears can be put on axle pins without
friction (tan). The axle pins might pop out
if you apply too much torque. (There are
no tan axle pins without friction in the EV3
set, but that doesn’t mean that you can’t
use them!)

The 3M axle with stop is useful for holding
gears because its built-in stop saves you
from having to use a bush.

Use a red bush to hold a 3M axle.

Two yellow thin bushes offer more friction
than one red bush.

This is the most resistant assembly shown
here: The gear is locked by the 4M axle
with a stop on one side and two yellow
bushes on the other.

114	C hapter 8

gear combinations

12:24 = 1:2 12:20 = 3:5 12:36 = 1:3

20:24 = 5:6 4:4 = 1:1 4:4 = 1:1

24:24 = 1:1

36:36 = 1:1

20:36 = 5:9

These combinations are quite
weak, so don’t use them for
heavy-duty purposes.

	LE GO recipes	 115

90-degree-coupled gears

Build these two frames to test
the gear assemblies on the
following pages.

116	C hapter 8

12:12 = 1:1

12:20 = 3:5

20:20 = 1:1

	LE GO recipes	 117

12:36 = 1:3

36:36 = 1:1

4:4 = 1:1

118	C hapter 8

gear trains

You can combine multiple gears to build gear trains, essentially
a combination of cascading gear couples. You’ll find gear trains
useful when you need to get higher gear ratios or transmit
rotation over greater distances. An idler gear is one that is
inserted between two or more gears to change the direction
of rotation of the output axle without affecting the ratio of the
gear train. The ratio depends only on the number of teeth of
the input and output gears, as you can see in Figures 8-8 and
8-9. In Figure 8-10 you can see a gear train with a 1:5 ratio.

Note	 In general, if the gear train has an odd number
of idler gears, the first and last gears turn in the same
direction.

Figure 8-8: Gear train resulting in a 1:1 ratio

Idler gear

Idler gear

Figure 8-9: Gear train resulting in a 1:1 ratio

Figure 8-10: Gear train resulting in a 1:5 ratio

(12:20) × (20:12) = 12:12 = 1:1

 (20:12) × (10:20) = 20:20 = 1:1

(12:36) × (36:12) = 12:12 = 1:1

(36:12) × (12:36) = 36:36 = 1:1

(12:36) × (12:20) = 1:5

	LE GO recipes	 119

the worm gear

The worm gear looks like a kind of screw. When computing
the ratio of a gear train that uses the worm gear, think of the
worm gear as having just one tooth.

The worm gear is self-locking. This means that while turn-
ing, the worm gear makes the other gear turn, but you can’t
make the worm gear move by turning the other gear. (See
Figure 8-11.)

In the next pages, you’ll see two robust frames that you
can use to hold worm gear–based assemblies. Notice how
bracing prevents the worm gear from being pushed away when
resisting torque is applied to the output axle.

Figure 8-11: The worm gear is a self-locking gear. You cannot

make it turn by driving the other gear.

1:24





120	C hapter 8

1:24

	LE GO recipes	 121

motion transformation

How does the position of
the pivoting pin (the hinge
of the beam) affect the
amplitude of the recipro-
cating motion?

2M

6M

6M

3M

5M 4M

You can use a gear as a crank to make
an eccentric mechanism by putting a
pin in the off-center holes. An eccentric
mechanism transforms circular motion
into reciprocating motion—that is, a
repetitive up-and-down or back-and-
forth motion.

122	C hapter 8

6M

1M

This mechanism transforms rotation
into reciprocating motion at the axle’s
tip. If you position the assembly verti-
cally, it looks kind of like a leg.

This mechanism transforms rotation into
pure linear motion, the same way the
steam pistons of an old train do. Placed
vertically, it reminds me of a sewing-
machine needle.

	LE GO recipes	 123

building ideas
for the motors

The EV3 set contains two Large Motors and a Medium Motor.
Since these motors are the core of your robots, this section
lists some useful modules and assemblies to build motors
inside your robots.

medium motor with front output #1

124	C hapter 8

medium motor with front output #2

	LE GO recipes	 125

medium motor with
single lateral output

medium motor with
double lateral output

126	C hapter 8

medium motor with single
geared-down lateral output

medium motor with gearbox

horizontal

vertical

	LE GO recipes	 127

medium motor with multiple outputs

B

By switching the motor direction, you can
drive two different axles.

Notice that I use the axle pin with friction
to make the 3M beam change sides when
the motor’s direction is switched.

128	C hapter 8

large motor with horizontal output

large motor gearing options

conclusion
I hope you’ve found this chapter to be a useful “cookbook.” It’s
given you some basic knowledge about LEGO geometry and
shown you how to build sturdy structures and functional gear
trains. You’ve also seen some ideas for modules to transmit
motion and transform motion, as well as some sample Servo
Motor assemblies to include in your amazing creations!

12:36 = 1:3

24:24 = 1:1

	T he EV3L Scientist’s Apprentice	 129

9
building WATCHGOOZ3

Goose on the loose! In this chapter, you’ll build WATCHGOOZ3
(Figure 9-1), a robot goose that can patrol and guard a room
while moving on only two legs. This robot is inspired by a cre-
ation of Bruno Zarokian.

The mechanics of this robot are designed
so that you can program the robot to walk, turn,
and avoid obstacles with just the Brick Program
App (see Chapter 10). No computer required! In
this chapter I’ll describe the key design ideas that
allow us to simplify the software so that the lim-
ited Brick Program App is sufficient to program
the robot. In addition to the building instructions,
you’ll find building techniques for working with
structures, gears, and motor assemblies. You’ll
learn how to make sturdy, braced structures that
hold gears; how to gear down a motor to increase
its torque; and how to build parallelogram
linkages.

how does
WATCHGOOZ3
walk?

A creature that walks on two legs is called a biped.
Humans are bipeds, and so are kangaroos, some
primates, dinosaurs like Tyrannosaurus rex and
velociraptors, and birds like ostriches (all the time)
and geese (when not flying).

For the biped to maintain static equilibrium
while walking on two legs (that is, to avoid falling),
the projection of its center of mass (COM) must
always lie inside the support area (the feet). Imag-
ine the center of mass as the only spot where all
of an object’s mass is concentrated. An imaginary

vertical line, always forming a 90-degree angle with the walk-
ing surface (like a string with a weight hung at its end), con-
nects the center of mass to its projection on the ground. When
a biped lifts a foot [Figure 9-2(c)], the support area decreases.

Figure 9-1: WATCHGOOZ3

Quack!

132	C hapter 9

If the projection of the center of mass is not within the support
area of the foot that’s still on the ground, the biped falls over.

To move the center of mass inside the support area of its
standing foot, a biped will naturally lean to one side. Figure 9-2
shows how WATCHGOOZ3 maintains static equilibrium while
walking. As you can see, it shifts the weight of the EV3 Brick
to the foot that remains on the ground (a); then the swinging
frame touches a rolling wheel (b), unloading the other foot
and lifting it with a parallel linkage. The robot takes steps by
turning its feet, pivoting on the foot on the ground (c). WATCH-
GOOZ3 is thus a weight-shifting biped robot.

Because WATCHGOOZ3 walks with alternating weight-
shifting and stepping actions, it has a kind of swinging gait.
When the robot sees an object, it avoids it by turning the foot
on the ground more than usual. In fact, the foot on the ground
keeps turning until the object is no longer in its sight, at which
point the robot shifts its weight to the other side so it can con-
tinue walking straight.

(a)

(b)

(c)

Front Top

center
of mass
(COM)

projection
of COM on
the ground

support
area

support
area

The lifted foot is
moved forward as
the ankles rotate.

Figure 9-2: The workings of a weight-shifting biped robot

right leg assembly

1:1

	b uilding WATCHGOOZ3	 133

The axles that drive the robot’s
feet also keep the legs attached
to the beams of the body frame
and act as hinges, allowing the
hips to lean.

1:1

134	C hapter 9

Place the axle connector. Then
push the O-frame to lock the
connector to the axle.

1:19

R R

	b uilding WATCHGOOZ3	 135

The upper 3×5 angular beam is
locked by the 3M blue pin inserted
from below. This assembly helps
strengthen the ankle axle, which
we’ll add later.

136	C hapter 9

This thin wheel will support the robot’s
swinging weight when it leans to the side.
The weight of the EV3 Brick will lift the
opposite leg from the ground.

1:1

	b uilding WATCHGOOZ3	 137

1:1

138	C hapter 9

left leg assembly

The knob wheels are ideal
for transmitting the motion
to perpendicular axles (axles
that form a right angle).

1:1

	b uilding WATCHGOOZ3	 139

1:1

140	C hapter 9

1:19

Place the axle connector. Then
push the O-frame to lock the
connector to the axle.

	b uilding WATCHGOOZ3	 141

142	C hapter 9

1:1

	b uilding WATCHGOOZ3	 143

1:1

144	C hapter 9

1:1

	b uilding WATCHGOOZ3	 145

main assembly

1:1

The 3M blue pin and the
9M axle lock the Touch
Sensor to the Large Motor.

Right Leg
Assembly

Left Leg
Assembly

146	C hapter 9

1:1

R

The 2M beams attached to these
two cross blocks alternately close the
contact of the Touch Sensor, when the
body is fully tilted to the left or right,
telling the program that the swinging
frame has reached its limit. This limit
switch assembly is key to simplifying
the programming for this robot.

This 11M red beam braces
the leg assemblies.

	b uilding WATCHGOOZ3	 147

left foot assembly

The 13M beams also brace the leg assemblies,
and they form a parallelogram-like linkage that
keeps the legs vertical and parallel to each other.

1:1

148	C hapter 9

1:1

9

	b uilding WATCHGOOZ3	 149

The 36z gear is used as a
structural element here.

1:1

7

150	C hapter 9

right foot assembly

1:1

9

	b uilding WATCHGOOZ3	 151

1:1

7

152	C hapter 9

main assembly
The worm gear is like a screw,
inserted into the same axle that
acts as the hinge for the hip. The
worm gear drives the 24z gear,
which makes the foot turn.

6

Left Foot
Assembly

1:1

	b uilding WATCHGOOZ3	 153

Right Foot
Assembly

7

154	C hapter 9

Try turning the knob wheel to
see how movement is trans-
ferred from the Large Motor
shaft to the feet while allowing
the hips to swing freely.

1:1

8
G

T

	b uilding WATCHGOOZ3	 155

back bracket assembly

Cross blocks can be used to hold
gears as well as to build 3-D
structures.

1:1

156	C hapter 9

The 5M beams brace the cross
blocks and enforce the structure,
ensuring that the gears we’ll
add later won’t disengage while
working under stress.

	b uilding WATCHGOOZ3	 157

Three thin yellow bushes have
more friction and hold better
than one red bush.

1:1

158	C hapter 9

1:1

9

The 3×5 angular beams
lock the motor against
the gear train’s frame.

	b uilding WATCHGOOZ3	 159

Inserting the 3M blue pins into
the red cross blocks locks the
3×5 angular beams added in the
previous step. In this way, the
motor is double braced, making
this assembly super sturdy.

This 20z gear is used as a knob, which
lets you manually adjust the position of
the robot’s swinging frame. This gear
does not engage with another gear.

Try turning the 20z gear attached to the
Medium Motor shaft to see how much the
final 36z gear is slowed down. The ratio is
12:36 × 12:36 = 1:9, which means that it
takes nine motor shaft rotations to make
the final 36z gear perform one rotation.
The 36z gear is thus one-ninth as fast but
nine times stronger than the motor shaft.
It’s geared down to increase the torque of
the Medium Motor, allowing the robot to
shift the weight of the EV3 Brick from side
to side.

160	C hapter 9

front bracket assembly

1:1

	b uilding WATCHGOOZ3	 161

main assembly

Attach the 36z gear from
the Back Bracket Assembly
to the Main Assembly by
inserting the black pins
into the gear’s round holes.

9

162	C hapter 9

Attach the Front Bracket
Assembly to the tan 3M pin
without friction.

	b uilding WATCHGOOZ3	 163

1:1

164	C hapter 9

12

1:1

	b uilding WATCHGOOZ3	 165

1:1

One of the 11M beams slides on
the thin wheels when the weight
is shifted, lifting the opposite leg
from the ground. The central
pin with towball limits the lateral
movement.

R

166	C hapter 9

Attach the Touch Sensor
cable to input port 1.

	b uilding WATCHGOOZ3	 167

neck assembly

1:1

2

168	C hapter 9

1:1

	b uilding WATCHGOOZ3	 169

170	C hapter 9

1:1

Pinch the cable at the bottom
bend so it will not interfere
with the swinging mechanism.

	b uilding WATCHGOOZ3	 171

main assembly

Attach the Neck Assembly to the black
beam of the body. Arrange the cables
so they won’t interfere with the body’s
swinging movement. If things look a bit
insecure, don’t worry: We’ll lock the neck
into place in the next step.

Attach the IR Sensor
to input port 4.

172	C hapter 9

Push the 3M axles into the cross
holes of the 2×4 black angular
beams to lock the Neck Assembly
to the Main Assembly.

	b uilding WATCHGOOZ3	 173

The wings aren’t just decorative;
they hold the EV3 Brick to the
swinging bracket. (This is yet
another creative example of the
bracing technique.)

174	C hapter 9

WATCHGOOZ3 is
complete.

	T he EV3L Scientist’s Apprentice	 175

10
programming WATCHGOOZ3

In this chapter, you’ll learn to program the goose robot
(WATCHGOOZ3) that you built in Chapter 9. But before using
the EV3 Software, I’ll show you how to program the robot with
only the Brick Program App. That’s right—this biped robot
is designed so that it can be programmed to walk and avoid
obstacles with just 16 programming blocks! Once you’ve finished
creating the program in the Brick Program App, you’ll import
your finished program into the EV3 Software and learn how
to use new blocks such as the Logic Operations block, the
Timer block, and the Unregulated Motor block.

the brick
program for
WATCHGOOZ3

WATCHGOOZ3 uses two motors connected to ports A and D to
shift its weight from side to side and to take steps by turning
its ankles. The robot also has two sensors: a Touch Sensor and
an IR Sensor.

When pressed, the robot’s Touch Sensor tells the EV3
Brick that the robot’s weight is fully shifted to one side (though
the EV3 Brick can’t determine which side). When the Touch
Sensor is released, the robot knows its weight is almost vertical
and both feet are touching the ground. The IR Sensor, which is
used to create the shape of the goose’s head, detects obstacles
along the way.

When the robot is leaning (that is, balancing on one foot),
it briefly turns the ankle that supports its weight to take a step
forward. The key feature that allows the robot to avoid obstacles
is a Wait IR Sensor block, which pauses the program while the
ankle is turning until the obstacle is no longer in sight. At that
point, the way ahead is clear, and WATCHGOOZ3 proceeds.

This software solution works because the robot’s hardware
was designed with the constraints of the Brick Program App in

mind. As a rule, it’s hard (if not impossible) to make a robot with
badly designed hardware work well, even when it’s running the
best software. Good hardware design can make your program-
ming much simpler, save you time, and make your robots work
more reliably.

the program

As mentioned at the start of this chapter, you can program this
robot using only the Brick Program App. So let’s begin! Turn
on the EV3 Brick and open the Brick Program App (the third
tab and fourth app in the menu, as shown in Figure 3-6 on
page 49). Then build the program shown in Figure 10-1.

how it works

This Brick Program uses 16 blocks, the maximum number
of blocks allowed by the Brick Program App. The sequence,
which repeats forever, is basically divided into two symmetrical
parts (the two rows shown in Figure 10-1). Let’s analyze the
program block by block.

The first Medium Motor block turns on motor A at
–50 percent power (the negative sign means reverse) to
shift the EV3 Brick’s weight to the right. Motor A runs until
the Touch Sensor is released (first Wait Touch Sensor block)
and then pressed again (second Wait Touch Sensor block).
We need to wait for the sensor to be released first because if
the weight were fully shifted to the left, the sensor would be
pressed. If the program used only the Wait Touch Sensor block
to wait for the pressed state, the motor would stop shifting
the weight at once because the Touch Sensor would still be
pressed. The program would continue, turning the ankles
when the weight was still on the same side, resulting in the
robot walking backward—not what we want!

Note	 A Wait Touch Sensor block does not pause the pro-
gram if its ending condition is met immediately (in general,
any Wait block works like this). For example, a block that
should wait for a Touch Sensor to be released will not
pause the program if the Touch Sensor is already released.

178	C hapter 10

Once the Touch Sensor is released and pressed again,
motor A is stopped (by setting the power to 0 percent),
and motor D is started by a Large Motor block set at +100
percent power (forward). This large motor turns the ankles to
make the robot step forward. Now the Wait Time block pauses
the sequence for 1 second while motor D is still turning the
ankles. If the robot detects an obstacle, the Wait IR Sensor block
pauses the program until the Proximity reading goes above 25
percent. If there is no obstacle, the Wait IR Sensor block lets the
program continue and the ankle turns for just 1 second. In fact,
following the Wait IR Sensor block, another Large Motor block
stops the large motor D by setting the Power to 0 percent.

This sequence is mirrored and repeated again, as shown
in the second row of Figure 10-1. A Medium Motor block starts
motor A at +50 percent power (forward this time) to shift the
weight left. Then two Wait Touch Sensor blocks wait for the leg
mechanism to release and then press the sensor again. Now
the weight-shifting motor A is stopped, and the stepping motor
D is started at –100 percent power (backward). The Wait Time
and Wait IR Sensor blocks are used to make the robot take a
step and eventually turn, as before. The last Large Motor block
stops the stepping motor D, and the sequence repeats because
the Loop block is set to Infinity (∞).

Once you’ve finished building the Brick Program shown in
Figure 10-1, save it with the name GOOSE (if you don’t remem-
ber how, see Chapter 3).

running and troubleshooting
the robot

Before you run the program, rotate the black 20z gear
attached to the axle of the Medium Motor shaft to position
the swinging weight vertically, releasing the Touch Sensor and
placing both of the robot’s feet on the ground. Now run the
program. The robot should begin to walk with a funny, goose-
like, swinging gait.

If the weight-shifting mechanism isn’t smooth or it gets
stuck and you hear clicking from the back gear train (the sound
of the gears disengaging), stop the program. Check the cables
passing between the swinging frame and the neck and the
Touch Sensor in the bottom of the robot.

The stiff cables in the front of the robot must not
disturb its swinging movement (see step 15 on page 171).
If they catch on some part while the weight is being shifted,
bend them out of the way (pinch them so that they keep their
shape). If the Medium Motor does not stop when the weight is
completely shifted to one side, make sure that the Touch Sen-
sor is pressed correctly by the lower levers.

importing and
editing the
program in the
EV3 software

Now to import our program into the EV3 Software. First, create
a new project. Then, import the GOOSE Brick Program into the
EV3 Software (see “Importing a Brick Program” on page 76
for how to do this).

The resulting EV3 program should look like Figure 10-2.
Rename it by double-clicking the program name tab and enter-
ing the name BP_GOOSE. Save the project as myWATCHGOOZ3.

Note	 The screenshots of the EV3 programs in this book
have been edited for readability. For example, they will
sometimes be split into many rows, as in the program
shown in Figure 10-2.

A: -50% A: 0% D: 0%D: +100% 1 s IR ≥ 25released pressed

A: +50% A: 0% D: 0%D: -100% 1 s IR ≥ 25released pressed 8

Figure 10-1: The Brick Program for WATCHGOOZ3

	 programming WATCHGOOZ3	 179

making a backup

Before you modify the program in Figure 10-2, make a backup
copy. To do so, go to Project Properties (click the wrench
icon at top left), go to the Programs tab, select the BP_GOOSE
program, and click Copy and then Paste (the buttons are at
the bottom of the list). The copied program name should be
BP_GOOSE2. Double-click to open it in the Programming Area
and then double-click the program name tab to rename it
BP_EDIT. Now we’ll continue editing it.

modifying the program

In the Brick Program App, we set the Medium Motor block
parameter to 0 percent to stop the Medium Motor. In EV3
language, the equivalent is a Medium Motor block in Off mode
with Brake at End set to True.

To make the robot’s movements a bit smoother, change all
Motor blocks currently in On mode with Power set to 0 percent
to Off mode with Brake at End set to False. (Do this for the
highlighted Medium Motor blocks and the Large Motor blocks.)
Your program should now look like Figure 10-3. Download and
Run the program to see how the robot moves differently.

Figure 10-2: The EV3 Software equivalent of the Brick Program for WATCHGOOZ3

Figure 10-3: A slightly modified program for WATCHGOOZ3. Set the highlighted blocks to Off mode with the Brake at End input set to False.

180	C hapter 10

creating
My Blocks with
the My Block
Builder tool

The EV3 program we just made is simple but a bit bulky.
Also, it’s made up of two almost identical parts. To make this
program more compact and readable, we’ll group blocks into a
single block using the My Block Builder tool. But first, back up
the BP_EDIT program as discussed earlier and rename the new
program BP_EDIT_MB. This new program should still look like
Figure 10-3.

1.	 Drag a selection window to select the first eight blocks
inside the Loop, as shown in Figure 10-4(a). The selected
blocks should be highlighted with a cyan border.

2.	 With these blocks selected, click Tools4My Block
Builder. The My Block Builder dialog should appear,
as shown in Figure 10-4(b).

3.	 In the My Block Builder dialog, enter a name (and a descrip-
tion, if you like) for your custom block. Also, choose an icon
to remind you of the block’s function. I suggest choosing the
icon showing two Large Motors (fifth from left in the top
row), since there is no icon showing the Medium and Large
motors together and you can’t customize the icons. You
should see a preview of the block at the top of the dialog.
Enter RightStep as the name of the block, and for the
description, try something like Shift the weight to the right
and take a step.

4.	 Click Finish to create the My Block.

5.	 The previously selected blocks have been automatically
replaced by your new RightStep My Block, which should
appear with a cyan header. Once created, the My Block is
added to the last Programming Palette, and it is listed in
the Project Content (My Blocks tab) in Project Properties

Name field

Preview Add Parameter

Icon selector

Description field

(a)

(b)

Selected blocks

Figure 10-4: To create a My Block, select the blocks you want to include (a) and open the My Block Builder dialog (b).

	 programming WATCHGOOZ3	 181

(see Chapter 5 for information about Project Properties).
After creating your My Block, the program should look like
Figure 10-5.

6.	 Select the eight remaining blocks (but not your newly cre-
ated My Block), and click Tools4My Block Builder. Name
the new My Block LeftStep and assign it the same icon you
assigned to the RightStep My Block.

7.	 Click Finish to create the block. The program should look
like Figure 10-6. Much cleaner, isn’t it?

8.	 Run the program to make sure that the robot’s operation
is the same as before.

To see what’s inside a My Block, double-click it. The Right-
Step My Block is shown in Figure 10-7.

Warning	 Once you’ve created a My Block, you cannot
edit its icon; its description; or the icon, name, and type
of its inputs and outputs. You can edit only its content and
its name (by opening it, double-clicking its name tab, and
entering a new name).

creating My Blocks with inputs
and outputs

Besides helping to clean up your programs and make them
more readable, My Blocks are essential to grouping and reusing
parts of your programs in more than one place in your projects,
whether in the same or in other projects. (You can export and
import My Blocks in Project Properties.)

For example, the program in Figure 10-3 is made up
of two almost identical groups of eight blocks each; the only
difference between the two groups is that different values
are specified in the blocks’ inputs. Instead of creating two dif-
ferent My Blocks, as in the previous section, we could make a
single My Block with an input that specifies whether the robot
should take a step to the right or left. You would put those two
identical My Blocks into the main program and specify different
inputs. Let’s do it!

1.	 Go to Project Properties, select the Programs tab, and
copy and paste the BP_EDIT program you made earlier.
Name the copy BP_EDIT_MB2.

2.	 Using Figure 10-4(a) as reference, select the first eight
blocks inside the Loop block and choose Tools4My Block
Builder. The dialog shown in Figure 10-4(b) should appear.
Enter Step into the block’s Name field and choose the icon
showing two Large Motors. Now click the Add Parameter
button—it looks like a plus sign in a circle. The Block
Preview should look like the one in Figure 10-8.

3.	 Go to the Parameter Setup tab. Enter Side for the
Name parameter. Choose Input as the Parameter Type
and Logic from the Data Type drop-down menu. Set the
Default Value to True.

Figure 10-5: The program as it appears after creating your first My Block

Figure 10-6: The program after creating both My Blocks

Figure 10-7: The content of the RightStep My Block

182	C hapter 10

4.	 Go to the Parameter Icons tab and select the fourth icon
from the right in the top row (the true/false symbols icon),
as shown in Figure 10-9.

5.	 Click Finish to place the Step My Block into your program.

6.	 Delete the remaining eight blocks inside the Loop block,
leaving only the Step My Block in the Loop.

7.	 Select and drag the Step My Block while holding the ctrl
key to copy it; then drop it beside the other block. Now
set the first block input to True and the second to False
to use the same My Block to shift the weight from side to
side. Your program should look like Figure 10-10.

8.	 We’re not done with the Step My Block quite yet,
because the input is not connected to the blocks in the
inner sequence of the My Block. Double-click either of
its two instances to edit it. It should open, as shown in
Figure 10-11. As you can see, the Side input has no
Data Wire yet.

9.	 Add three Math blocks, as shown in Figure 10-12. Change
the first to Advanced mode and enter 1-2*a in its Formula
field. This block will convert the logic value True to –1
(1 – 2 × 1 = –1) and False to 1 (1 – 2 × 0 = 1). We need it to
switch the direction of the motors according to the value
of the Side input parameter.

10.	 Change the second and third Math blocks to Multiply mode
and set input b to 50 and –100, respectively.

11.	 Connect the Side logic input of the My Block to input a of
the first Math block.

12.	 Drag Data Wires from the output of the first Math block to
input a of the other Math blocks and connect their outputs
to the Medium Motor and Large Motor blocks, as shown in
Figure 10-12.

13.	 Now go to the main program BP_EDIT_MB2 and run it to
check the robot’s operation.

Figure 10-8: How to configure an input in the My Block Builder tool

Figure 10-9: How to change the icon of a parameter in the My Block

Builder tool

Figure 10-10: The finished program BP_EDIT_MB2, with two My Blocks

set with different parameters

	 programming WATCHGOOZ3	 183

automatically adding inputs and
outputs to My Blocks

Now you’ll learn how to use the My Block Builder tool to add
inputs and outputs automatically when you create a My Block.

1.	 Open the Step My Block and select the first Math block,
which is configured in Advanced mode (see Figure 10-13).

2.	 Now open the My Block Builder tool to create a My Block.
When your selection includes blocks with incoming or
outgoing Data Wires, the My Block Builder dialog will
automatically create specific data inputs and outputs of
the correct type.

3.	 Change the My Block icon to look like the one shown in
Figure 10-14 and enter the name LogicToSign. The My
Block Builder tool has already configured the block’s Logic
input and Numeric output. Change the input name to Input
and the output name to Result. Set the input Default Value
to True and change the Parameters icons as shown in the
My Block preview in Figure 10-14.

4.	 Click Finish to create the My Block. Your finished My Block
should look like Figure 10-15.

5.	 Now test the BP_EDIT_MB2 program again to make sure
that everything works as before.

Figure 10-11: The Step My Block before it is completed

1-2*a 50 -100

Figure 10-12: The finished Step My Block

Figure 10-13: The selected block has incoming and

outgoing Data Wires. When this block is selected to

make a My Block, the My Block tool will add inputs

and outputs automatically.
Figure 10-14: Configure the My Block with automatically assigned inputs

and outputs.

Figure 10-15: The resulting

LogicToSign My Block, part of

the Step My Block

184	C hapter 10

additional configuration of a
My Block

In addition to allowing you to add and remove parameters, the
My Block Builder tool allows you to change the order of the
parameters [Figure 10-16(a)]. Also, you can choose from
among three styles for the Numeric inputs, as shown in Fig-
ure 10-16(b): Text input, Horizontal slider, and Vertical slider.
You can also specify the maximum and minimum value of the
input for the Slider styles. Figure 10-16 shows a fictional My
Block with inputs and outputs of all possible data types.

Note	 A My Block replaces the blocks used to create it. To
preserve the state of the program you are working on with-
out replacing its blocks, you can use a temporary program
to create My Blocks. Alternatively, you can click Undo after
creating a My Block to bring the blocks you placed in the My
Block back into the program; the My Block will remain in
the project.

creating an
advanced
program

As explained in “Running and Troubleshooting the Robot”
on page 178, to make the robot work correctly, you had to
make sure that the weight was vertical, the Touch Sensor was
released, and both feet were touching the ground. In this sec-
tion, I’ll show you how to make an initialization routine that will
place the weight in the correct position automatically when the
program first runs.

To create this program, you’ll build the ResetBody My
Block and add it at the beginning of the main program, before
the Loop block. Then you’ll make a modified version of the Step
My Block that makes the robot turn in the same direction at all
times, allowing it to find its way out of dead ends.

the ResetBody My Block

The ResetBody My Block (Figure 10-17) will be placed at the
very beginning of the program.

Here’s how the ResetBody My Block works.

N	 The Switch block in Touch Sensor Compare State mode (1)
checks whether the Touch Sensor is pressed. If it is not
pressed, the program continues with the main Loop block.
If the Touch Sensor is pressed, we know that the weight
is fully shifted to one side and the walking sequence can’t
start because we don’t know which side the weight is shifted
to. If we don’t release the Touch Sensor before the main
loop starts, the Step My Block (Figure 10-12) will turn on
motor A, and the program might hang at the first Wait
block, waiting for the Touch Sensor to be released. In that
case, the motor would try to shift the weight, but since the
weight would already be at its limit, the mechanism would
be stressed; gears would disengage or even come apart. To
avoid this potential problem, we need to move the weight to
release the Touch Sensor.

N	 There is a new Advanced block inside the Switch block, the
Unregulated Motor block (2). This block runs the motor at a
certain power level, without regulating its speed. I use this
block instead of a Medium Motor block so that if the motor
sticks, the internal controller won’t try to increase the power
applied to the motor in vain. (When the motor is turned on but
blocked, it overheats and drains the batteries very quickly.)

N	 Following the Unregulated Motor block, you see a Timer
block in Reset mode (3). This block allows you to reset a
timer so that you can measure the time elapsed from this
reset.

Delete

Move Left

Text input Horizontal
slider

Vertical
slider

Move Right Outputs

(a)

(b)

Figure 10-16: The My Block Builder tool’s additional controls to delete and

change the order of the parameters (a) and to change the style of a Numeric

input (b)

	 programming WATCHGOOZ3	 185

N	 The Loop block (4) that follows the Timer block is a waiting
loop that runs until the Touch Sensor is released or until a
specified time elapses, whichever occurs first.
N	 The Loop continuously checks the Touch Sensor block out-

put (5) (in Compare mode) and the Timer block output (6)
(in Compare mode). As soon as the Touch Sensor block
output becomes True (meaning that the Touch Sensor has
been released) or the Timer block output becomes True
(meaning that 1 second has elapsed), the Loop block ends.
In this way, if the motor is running to bring the weight
against the limit instead of lifting it to its vertical position,
the Touch Sensor will remain pressed, but the motor will
soon stop running, thereby avoiding high mechanical stress.

N	 These two logic conditions are combined by a Logic Opera-
tions block in OR mode (7).

N	 At this point in the program, if the motor is turning in the
direction needed to release the Touch Sensor, the weight will
be almost vertical, and the Touch Sensor will be released.
However, if the motor is running in the opposite direction,
attempting to push the weight past its limit, the Touch Sen-
sor will still be pressed. (The fact that the Touch Sensor is
pressed only tells us whether the weight is fully shifted; it
doesn’t tell us which side it’s shifted to.) The Switch block (8)
contains blocks only in the True case; if the Touch Sensor is
released, we’re done.

N	 If the Touch Sensor is pressed, an Unregulated Motor
block (9) turns Medium Motor A in the opposite direction
to that of the other block (2).

N	 A Wait block in Touch Sensor Compare mode (10) waits
for the Touch Sensor to be released. At this point, with the
previous checks having been made, the motor is definitely
turning in the direction needed to release the Touch Sensor.

N	 Once the Touch Sensor is released, Medium Motor block (11)
turns the motor by a precise number of degrees to bring the
weight up vertically, toward the center.

Now to build the ResetBody My Block. Add a new tempo-
rary program to your project and build the sequence shown
in Figure 10-17. Add the blocks in the order specified by the
numbers. (The Timer block is in the Sensors palette and the
Logic Operations block is in the Data Operations palette.) Once
you’ve finished, select the external Switch block (which includes
all the other blocks) and use the My Block Builder tool to cre-
ate a My Block called ResetBody. Have it display the Medium
Motor icon, as shown in Figure 10-17. Once you’ve created the
ResetBody My Block, delete it from the current program and
use the empty canvas to create the next My Block, a modified
version of the Step My Block.

creating the advanced My Block
for walking

Now we’ll create a modified version of the Step My Block to
make the robot turn in the same direction at all times. This
change will allow it to find its way out of dead ends.

Open the Step My Block by going to the BP_EDIT_MB2
program and double-clicking the My Block. Select all blocks

1 2 3
4

5 6 7

8 9 10 11

Figure 10-17: The ResetBody My Block

False case is empty.

False case is empty.

186	C hapter 10

except the Start block and press ctrl-C (⌘-C) to copy them.
Next, go back to the empty program you used before to build
the ResetBody My Block (or create a new temporary program)
and paste all the blocks into it by pressing ctrl-V (⌘-V).

With all the blocks still selected, open the My Block Builder
tool and configure the My Block as follows:

N	 Enter StepAdv in the Name field.
N	 Set the icon to the two Large Motors icon.
N	 Click Add Parameter and then go to the Parameter

Setup tab.
N	 Enter Side as the Parameter Name, and set the Parameter

Type to Input and the Data Type to Logic. Set the Default
Value to True.

N	 Go to the Parameter Icon tab and select the horizontal
double-headed arrow icon (third row, second icon from
the left).

N	 Click Finish to create the My Block.

Now, double-click the new StepAdv My Block and edit it
as shown in Figure 10-18.

1.	 Drag a Data Wire from the Side input block to the
LogicToSign My Block input.

2.	 Add a Wait block in Time mode and set the input to
0.2 seconds.

3.	 Delete the Wait block in Time mode and Wait block in IR
Sensor mode and add a Switch block in Infrared Sensor
Compare Proximity mode.

4.	 Add a Wait block set in Time mode in the False case area
of the Switch block and set its input to 1 second.

5.	 Add a Timer block in Reset mode and choose Timer ID 1.

6.	 Add a Sound block in Play File mode. Select a default
sound or create a new sound (perhaps a squawk) using
the Sound Editor tool.

7.	 Add a Large Motor block in On mode with its power set
to –100.

8.	 Add a Loop block and change its ending input to Logic.

9.	 Add an IR Sensor block in Compare Proximity mode and set
Compare Type to Greater Than (2) and Threshold to 30.

10.	 Add a Timer block in Compare Time mode. Set its Timer
ID to 1, set Compare Type to Greater Than (2), and set
Threshold to 2 (seconds).

11.	 Add a Logic Operations block in AND mode.

12.	 Connect Data Wires from Sensor blocks 9 and 10 to Logic
Operations block 11. Then drag the last Data Wire from the
Logic Operations block output to the Loop control input.

1

2

3

8
5 6 7

4

9 10 11

12

Figure 10-18: The StepAdv My Block

	 programming WATCHGOOZ3	 187

What are the differences between the StepAdv My Block
and the Step My Block? Let’s analyze them using Figure 10-18
as reference. We added a Wait block in Time mode (2) between
the Wait blocks in Touch Sensor mode. We also replaced the
Wait block in IR Sensor mode with a Switch block (3) to check
for obstacles. If no obstacle is seen, the program waits 1 sec-
ond [Wait block (4) in the False case] and then stops the Large
Motor (the last block after the Switch block). If the IR Sensor
detects an obstacle, the blocks in the True case are executed.

In the True case, the first Timer block resets Timer 1 (5),
and the sound is played (6). Next, the Large Motor is turned On
at full power to turn the robot’s ankles (7), always in the same
direction (regardless of the Side input value). Now, because it
always turns left when it encounters obstacles, the robot can
get out of a dead end and deal with corners.

Before stopping the Large Motor that turns the ankles, a
Loop block (8) waits until the IR Sensor block (9) reads a prox
imity value greater than 30 percent and the Timer block (10)
measures time greater than 2 seconds [the time elapsed since
Timer 1 was reset by the Timer block (5)]. The two Sensor
blocks’ Logic outputs are combined by a Logic Operations
block (11) in AND mode so that the Loop block will end only
when the IR Sensor block’s Proximity Value is greater than
the specified threshold and 2 seconds have elapsed.

In the original Step My Block, the robot’s ankles stop turning
as soon as the IR Sensor no longer sees a nearby obstacle, which
can happen after even a fraction of a second. I’ve added the
timer here to make the robot turn for at least 2 seconds, even if
an obstacle moves farther away before that time has elapsed.

the final program for
WATCHGOOZ3

Once you’ve created the ResetBody and StepAdv My Blocks,
delete all of the blocks in the temporary program that you used
to create the My Blocks and build the program shown in Fig-
ure 10-19. You can find the My Blocks in the last cyan-colored
tab of the Programming Palette. Notice that the first StepAdv
My Block has its input set to True, while the second one has its
input set to False.

Double-click the Program Name tab and enter the name
Wander for the program. Then run the program to test it.
WATCHGOOZ3 should be ready to be unleashed!

the logic
operations
block

The programs we’ve created in this chapter use the Logic
Operations block (found in the Data Operations palette, red
header) to perform logic operations (see Table 10-1) on the
Logic Operation block’s inputs to get a logic result as its output.
The inputs and output can only have True or False values.

table 10-1: the logic operations

Mode Inputs Result

AND A, B True if both A and B are True; otherwise False

OR A, B True if either A or B or both are True;
False only if both A and B are False

XOR A, B True if only A is True or only B is True;
False if both are True or if both are False

NOT A True if A is False; False if A is True

the timer block
The Timer block in the Sensor palette gives you access to
the EV3 Brick’s internal clock. The EV3 Brick counts time in
milliseconds, and it represents the time as a 32-bit unsigned
integer variable. It can count up to 232 − 1 milliseconds, which
is equal to 49 days, 17 hours, 2 minutes, 47 seconds, and
295 milliseconds of continuous operation. The Timer block
uses this internal clock to provide you with eight independent
timers that allow you to read the time in seconds (using Mea-
sure Time mode) elapsed from either the program start or
the last reset. (You can reset a specific timer count using the
Timer block in Reset mode, as we did in the StepAdv My Block.)
In Compare Time mode, you can compare the current value of
a timer against a threshold.

Figure 10-19: The final Wander program for WATCHGOOZ3

experiment 10-1

Add the second Large Motor to the robot to make the
head move. Be careful, as adding weight could upset
your robot’s balance. Create a program that moves
the head when an object is detected.

188	C hapter 10

conclusion
In this chapter, you’ve seen how, by combining good hardware
with good software design, we can program WATCHGOOZ3
using only the Brick Program App. While creating more advanced
programs in the EV3 Software, you learned how to create and
configure My Blocks, the purpose of the Unregulated Motor
block, and how to use the Logic Operations and Timer blocks.

digging deeper: motor
speed regulation

The Unregulated Motor block simply turns on a motor
without applying power regulation. The problem is
that if friction or load applies a resisting torque to
the motor shaft, the motor might not be able to over-
come it. Because its power is constant, it won’t auto-
matically increase in response to resistance. The other
Motor blocks use power regulation to keep the motor’s
speed constant even when resistance is applied to the
shaft.

This regulation is done by a Proportional Integrative
Derivative (PID) controller, which constantly updates the
motor’s power in an attempt to keep the difference (or
error) between the desired speed and the actual speed
near zero. The current speed is estimated using the
built-in rotation sensor readings.

The PID controller’s output is the sum of three
things: a term that is proportional to the present error,
a term that is proportional to the derivative of the
error (this estimates how fast the error is changing to
predict the future), and a term that is proportional to
the integral of the error (this accumulates the errors,
giving a view into the past). When the shaft is slowed
by external resistance, the error between the desired
speed and the actual speed increases. Then the con-
troller’s output increases as well, giving the motor
sufficient power to overcome the resistance and thus
reducing the speed error.

experiment 10-2

Make WATCHGOOZ3 follow lines! Add a Color Sensor
by attaching it to the 5M beam you added in step 8
on page 154. That 5M beam always remains vertical,
no matter what direction the EV3 Brick leans toward,
so the Color Sensor will always look down. Let it hang
about 1 cm above the ground.

Making the program with the Brick Program App
is easy. Start with the program in Figure 10-1. Remove
the Wait Time blocks and replace the Wait IR Sensor
blocks with two Wait Reflected Light Sensor blocks. I’ll
let you fill in their parameters to make WATCHGOOZ3
follow the edge of a black line.

	T he EV3L Scientist’s Apprentice	 189

190	T he EV3L Scientist’s Apprentice

11
building the SUP3R CAR

In this chapter, you’ll build the SUP3R CAR, an evil-looking
armored vehicle! You’ll also build the R3MOTE, a handy two-
lever remote control. Both models are shown in Figure 11-1.
Like a real rear-wheel-drive car, the SUP3R CAR has front
wheels that steer and rear wheels that drive. In this sense,
it’s different from ROV3R, which uses two motors running

at different speeds to change direction or turn on the spot.
ROV3R’s turning radius can be zero, while the SUP3R CAR
has a larger turning radius.

The SUP3R CAR uses a Medium Motor for steering and two
Large Motors for driving. You’ll learn all about programming the
SUP3R CAR in Chapter 12, but now, let’s start building!

Figure 11-1: The SUP3R CAR and the R3MOTE

192	C hapter 11

main assembly

1:1

The 8M axle with stop will not
come out if you pull on it from
the other side.

1

	b uilding the SUP3R CAR	 193

The Medium Motor
is ideal for driving
the steering because
it’s compact and fast
enough for a low-
torque application.

The knob wheel engages
another knob wheel to
steer the front wheels.

1:1

194	C hapter 11

1:1

	b uilding the SUP3R CAR	 195

196	C hapter 11

hood assembly

1:1

	b uilding the SUP3R CAR	 197

The downward-looking Color
Sensor will be used to detect
colored spots and follow lines
on the ground.

198	C hapter 11

Remember: You’ll find
the identifying numbers
embossed on the inner
side of the panels.

1:1

	b uilding the SUP3R CAR	 199

main assembly

Add the Hood Assembly
to the Main Assembly.

200	C hapter 11

	b uilding the SUP3R CAR	 201

202	C hapter 11

	b uilding the SUP3R CAR	 203

The 3M blue pin is inserted into
the large slots of the double
angular beams.

1:1

R

204	C hapter 11

1:1

R

	b uilding the SUP3R CAR	 205

The double angular beams lock
the EV3 Brick to the bottom
chassis beam.

206	C hapter 11

1:1

R

	b uilding the SUP3R CAR	 207

C C

208	C hapter 11

This double angular beam
locks the EV3 Brick to the
rest of the chassis. The white
panel is used as a cross block;
it’s not just decorative.

	b uilding the SUP3R CAR	 209

210	C hapter 11

Attach the 25 cm cable
to input port 4 and route
it as shown.

	b uilding the SUP3R CAR	 211

1:1

212	C hapter 11

1:1

	b uilding the SUP3R CAR	 213

car roof assembly

214	C hapter 11

main assembly

The white blades are ideal for mak-
ing some evil-looking headlights! The
IR Sensor inside the cabin looks like it’s
the driver of the SUP3RCAR.

	b uilding the SUP3R CAR	 215

216	C hapter 11

steering assembly

1:1

G

These red pins will lock this
assembly to the car frame.

	b uilding the SUP3R CAR	 217

This red rubber band keeps the front wheels pointing slightly inward
(this is called positive toe or positive tracking). This helps keep the car
going straight. In a real rear-wheel-drive car, increasing positive toe
improves straight-line stability while sacrificing turning response a bit.
In the case of a LEGO car, positive toe is even more necessary because
the steering gearing and linkages are a bit wobbly and would otherwise
prevent the SUP3R CAR from driving straight.

1:1

G

R

218	C hapter 11

main assembly

Add the Steering Assembly to the Main Assembly. Notice
that the knob wheel attached to the Medium Motor is turned
by 45 degrees to correctly engage the other knob wheel of
the Steering Assembly. After you’ve inserted the Steering
Assembly, push the two red 3M pins with stop into the car
frame to lock the assemblies together.

	b uilding the SUP3R CAR	 219

220	C hapter 11

1:1R

	b uilding the SUP3R CAR	 221

The SUP3R CAR
is complete.

1:1

7

R

222	C hapter 11

building the R3MOTE

The Remote IR Beacon has tiny buttons and
would be uncomfortable and counterintuitive
to use with a steering car. This ergonomic
R3MOTE solves the problem!

	b uilding the SUP3R CAR	 223

1:1

224	C hapter 11

This cross block is designed to
hold a 12z gear and a 20z gear
coupled at a 90-degree angle.

Don’t push in the axle completely. You
first need to add the other joystick,
which you’ll do in the next step.

	b uilding the SUP3R CAR	 225

Place the joystick in the
O-frame. Then insert the 9M
axle until it reaches the other
end of the O-frame.

1:1

226	C hapter 11

9 1:1

	b uilding the SUP3R CAR	 227

The R3MOTE is
complete.

conclusion
In this chapter, you learned to build the SUP3R CAR and its
R3MOTE. The SUP3R CAR is not just a remote-controlled
car. It’s an autonomous vehicle that can drive itself by follow-
ing lines on the ground, or it can even follow you if you walk
around wearing the Remote IR Beacon! You’ll learn how to
program it in the next chapter.

Moving the joysticks, you
will press the Remote IR
Beacon buttons indicated
by the circled numbers.

228	T he EV3L Scientist’s Apprentice

	T he EV3L Scientist’s Apprentice	 229

12
programming the SUP3R CAR

In this chapter, you’ll program the SUP3R CAR that we built in
Chapter 11. First you’ll create a simple program to make the
car go around by itself, avoiding obstacles. Next, you’ll create
a program to remotely control the car with the R3MOTE that
we also built in Chapter 11. We can use the same remote as a
beacon for the car to follow, and you’ll also make a program to
do that. As you build your programs, you’ll learn new program-
ming concepts like how to configure the Switch block to handle
multiple cases and how to use variables and arrays. You’ll also
learn how to execute multiple sequences of blocks simultane-
ously, how to interrupt a loop, and how to stop a program
entirely.

But before discussing the programming aspects, I’d like
to briefly introduce you to the mechanics of a steering car.

electronic vs.
mechanical
differentials

Unlike ROV3R, which steers by changing the relative speed of
its motors, the SUP3R CAR can be steered by moving its front
wheels—like a real car. As shown in Figure 12-1, when a car
steers, its driven wheels turn at different speeds. For instance,
when a car is traveling on a circular path, its outer wheel has
to travel a greater distance than its inner wheel. Because the
wheels are attached to the car traveling at speed V, but one
is farther from the center of the circle than the other, they
must travel different distances in the same amount of time.
As a result, the outer wheel speed, VR, ends up being greater
than the inner wheel speed, VL. The differential is a mechanical
device with gears that allows the engine speed to be distributed
to the wheels independently when one wheel is turning more
slowly than the other. Without the use of a differential, one
wheel could lose traction with the ground and slip when the car
is turning.

Figure 12-2 shows a LEGO differential assembly extracted
from a car model (part ID: 4525184, design ID: 62821, part
name: Differential 3M z28).

However, the 31313 set comes without such a LEGO dif-
ferential, so I designed the SUP3R CAR to have an independent
motor for each driving wheel. When the SUP3R CAR steers, the
speeds of its driving wheels should be precisely controlled, as
if it had a mechanical differential. In fact, this is an electronic
differential, one that we’ll implement with software (in the
Drive My Block).

a

a
W

V

DS

H
VR

VL

Figure 12-1: The kinematic model of a steering car. a is the steering angle; S is

the turning radius; D is the distance between the driving wheel and the center

of the vehicle; H is the distance between the front and back wheels; W is the

vehicle’s angular speed; V is the speed of the car; and VL and VR are the speed

of the left and right driving wheels, respectively. (The dotted wheel in the middle

is the single turning wheel of the equivalent tricycle model.)

232	C hapter 12

using variables
Up to now, you’ve carried data around your programs using
Data Wires, but there is another way to do this: variables.
A variable is a location in the computer memory that can hold
data of a certain type. In the EV3 system, variables can contain
five data types, as described in Chapter 6: Numeric, Logic, Text,
Numeric Array, and Logic Array.

To manage variables, you’ll use the Variable block. (It has
a red header and is found in the Data Operations palette.)
Figure 12-3 shows the various controls of the Variable block.
Using the Mode Selector, you can choose to write (a) or to
read (b) to a variable of each of the five types.

To add a variable, first select the variable type using the
Mode Selector. Then click the Variable Name field and select
Add Variable, as shown in Figure 12-3(c). Now enter the name
of the variable in the New Variable dialog and click OK (d). The
name can be a single letter, a word, or any sequence of letters
and numbers (and spaces). I suggest you use short names
that help you remember the meaning of a particular variable,
because long names may not fit in the small Variable Name
field at the top of the Variable block. For example, to create a
numeric variable, first set the block to Read (or Write) Numeric
and then click the Variable Name field and select Add Vari-
able. The name spd would be a good name for the car speed
variable.

The Variable block’s appearance changes according to its
mode. For example, when it’s set in Write Numeric mode, the
block has a numeric input where you can enter or carry a value
with a Data Wire (e); in Read Numeric mode (f), it has an output
from which you can read the stored value. Keep in mind that
whenever you write to a variable, you overwrite any existing
value. For example, if you place three Variable blocks in Write
Numeric mode and have them write into the same variable the
values 1, 2, 3 in sequence, the content of the variable will be 3.

Figure 12-2: A LEGO Technic differential assembly. The differential is not

included in the EV3 set.

digging deeper: computing wheel speeds for
an electronic differential

Using the kinematic model of a steering car shown in
Figure 12-1 as reference, let’s compute the speeds of a
car’s driving wheels when the car is turning. (The model
of the car with two turning wheels is equivalent to a tri-
cycle model that has a single front turning wheel.)

Our goal is to find two equations that relate the
car’s speed and the steering angle of its front wheels
to the speed of its left and right rear driving wheels.
Since the speed of the EV3 motors under a constant
load is proportional to their power, those two speeds will
become the Power inputs for the motors that drive those
wheels. (See “Digging Deeper: How ‘Power’ Relates to
Speed” on page 297.)

Let H be the distance between the rear and the
front wheels and D be half the distance between the rear
wheels. Let V be the car’s speed and a be the steer-
ing angle. S is defined as the car’s turning radius. Using
the geometric relationships, and knowing that the angle

marked with a black square is a right angle (90°), we have
S = H / tan(a). The steering angle a must be converted into
radians: This is done by multiplying the angle in degrees
by (π / 180), which in this case comes to approximately
0.017. Also, for small values of angle a [rad], tan(a) can
be approximated with the value of a itself, so we can write
the approximate equation S ≈ H / (0.017 × a).

When the car is turning, W = V / S, where W is
the angular speed, V is the car’s speed, and S is the
turning radius. The speed of the outer wheel (the right
wheel in Figure 12-1) is VR = W × (S + D). Using some
substitutions and simple manipulations, we end up
with VR = V / S × (S + D) = V × (1 + D / S), which finally
yields VR = V × (1 + D × 0.017 × a / H). Similarly, for
the inner wheel (the left wheel in Figure 12-1), we get
VL = V × (1 − D × 0.017 × a / H). We’ll implement these
equations using Math blocks in Advanced mode in the
Drive My Block (page 236).

	 programming the SUP3R CAR	 233

Note	 All of a project’s variables are accessible from each
of its programs. These are called global variables.

You can manage variables (copy, paste, delete, and add
them) from the Variables tab in the Project Content area in
Project Properties. You’ll see various examples of how to use
variables in this chapter and the following chapters.

using arrays
In the previous chapters, you used three data types: numbers,
logic values, and text. In Chapter 6, I briefly mentioned another
data type: arrays. In this chapter, I’ll describe them in detail and
show you how to use them.

In computer science, an array is a data type that describes
a collection of elements that can be selected with an index, a
number that indicates a specific element in the array. An empty
array has zero elements. It exists but occupies no memory space.
The first element of any array has index 0. The last element of
an array of length N is at index N – 1 (for example, the seventh
element in an array is at index 6).

You might think of arrays as a kind of elevator: You can
access a floor (the element) by selecting the number of the floor
(its index). You can leave some stuff on each floor by writing

data, or you can pick it up by reading data. EV3 offers both
numeric and logic arrays that can contain numeric and logic
values, respectively. You can write and read data into arrays by
using the Variable block in combination with the Array Opera-
tions block.

using the variable block with
numeric and logic arrays

The operations available on a numeric array are shown in
Figure 12-4. (These apply similarly to logic arrays.) As you can
see, the Variable block in Write Numeric Array mode allows you
to clear all elements in an array (a) or add or remove elements
using the drop-down menu (b). (Remember to give the array a
name!)

using the array operations block

The Array Operations block, also shown in Figure 12-4, allows
you to write (c) and read (d) elements of an array at a specified
index, append elements to the end of the array (e), and retrieve
the array’s length (f).

Input Output

Variable Name

Mode Selector

Variable Name

(a) (b)

(c) (d)

(e) (f)

Figure 12-3: The Variable block. Select different data types in Write (a) and

Read (b) modes; to add a variable (c), enter the new variable name in the

New Variable dialog (d); to write into a numeric variable, select Write Numeric

mode (e); and to read a numeric variable, select Read Numeric mode (f).

Empty
array

Delete
element

Add
element

(a) (b)

(c)

(d)

(e)

(f)

Write Numeric Array

Write at Index

Read at Index

Append
Value

Value

Index

ValueIndex

Length

Length

0 1 2

21 69

0 1 2

21 6

0 1 2

21 69

21 69 5

0 1 2 3

21 69 5

0 1 2 3

4

1

4

5

Figure 12-4: Managing arrays using the Variable and Array Operations blocks

234	C hapter 12

In each of its modes, the Array Operations block needs
an array type variable to work on. In the Write at Index and
Append modes, the block outputs an array variable. Usually,
you will overwrite the array used as the input for the operation,
but you can also write the result to another array variable.

For example, in Figure 12-4(c), the Array Operations block
in Write at Index mode takes a numeric array A as input and
outputs an array that is written into A again. The value 69 is
written at index 2 (the third element because the first element
has index 0). This array should already have at least three ele-
ments, or the program will abort.

Warning	 If you try to read values at indices that are out-
side an array’s boundaries, your program will abort, and
the EV3 Brick will show an error message. If you write a
new value at an index that is beyond the array size, the
array positions before the new indexed value will be filled
with zeros or garbage values. For example, if your array
contains [1,2] and you write 3 at index 4, the resulting
array will be [1,2,x,y,3], where x and y are garbage values.

As with any block, the values for the Index and Value
inputs of the Array Operations block can be entered as fixed
values or passed as dynamic values that change at runtime
using Data Wires.

Note	 You can use the Array Operations block in Append
mode to create arrays whose number of elements is limited
only by the amount of RAM in the EV3 Brick. For example, I
made a test program on the EV3 Brick that appended data
to an array in a loop while showing a counter. After many
tens of thousands of elements were appended, I stopped
the program. I estimate that with the 64MB of RAM of the
EV3 Brick, you can create a numeric array with about 2 mil-
lion elements.

using the
switch block
with multiple
cases

In previous chapters, you saw how the Switch block in Com-
pare mode can be used to choose to execute one of two pos-
sible logic cases, depending on whether its Logic test is True
or False. When used in Numeric mode, Text mode, and its

various Measure modes, the Switch block will let you choose
which of the possible cases to execute, according to a test. For
example, a choice can be made based on the color measured
by the Color Sensor (Color Sensor Measure Color mode) or the
command received by the IR Sensor (Infrared Sensor Measure
Remote mode), as you’ll see when you make the program to
remotely control the SUP3R CAR .

In Numeric mode, you can execute a numbered case
according to the Numeric input. In Text mode, you can execute
a labeled case that corresponds to the text in the Text input.
In Numeric, Text, and Measure modes, the Switch block shows
multiple cases, as well as some additional controls (see Fig-
ure 12-5) that allow you to add or remove a case and select
the value for cases. The Default button lets you set which
case to execute by default if the sensor’s test value doesn’t
match any case in the Switch block. You can resize each case
independently using the Resize handles, and you can change
the way the Switch block is displayed using the Flat/Tabbed
Selector.

running
parallel
sequences
(multitasking)

The programs that we’ve created so far have had one
sequence of blocks running at a time. But what if you need
your robot to perform different actions in parallel? For
example, perhaps you want your robot to roam around while
playing a sound and updating text on the EV3 Brick display.
Programs that handle multiple tasks at once are multitasking,
and they need to have multiple tasks (sequences) running
at the same time.The EV3 programming language lets you
create multiple sequences of blocks running in parallel by
either placing multiple Start blocks in a program or connect-
ing parallel sequences of blocks with a Sequence Wire. You’ll
see this in action when we create the Drive My Block and the
BeaconSiren program.

In multitasking programs, be careful when using shared
resources for different tasks, as resource conflicts may arise!
For example, using two Motor blocks to drive the same motor
from two different parallel sequences will lead to unexpected
behaviors. Also, writing to the same variable from parallel
sequences will make the content of that variable unpredict-
able, as you won’t know which sequence was the last to
write to it.

	 programming the SUP3R CAR	 235

building the
My Blocks

Now to make the SUP3R CAR’s programs! Before making the
final programs, we need to create some My Blocks. For each
My Block, I’ll list the sequence of blocks and the final My Block
showing the default input values and the icons used. To begin,
create a new project and save it as mySUP3RCAR. Then create
each My Block using the following figures as references.

the ResetSteer My Block

The ResetSteer My Block is used at the beginning of each pro-
gram to center the steering wheels. Build the sequence shown
in Figure 12-6 and create a My Block that looks like the one
shown in the figure.

The Sound block plays a Motor start sound, and the
Medium Motor is powered at low speed for a short time to
steer the front wheels as far as possible. Once the wheels
reach their limit, they’re steered back to center by a precise
number of degrees. This central position will be the reference
point for successive motor movements.

The Motor Rotation block in Reset mode resets the rota-
tion count of Medium Motor A to zero. The Steer My Block,
which we’ll create next, needs this initial reset to turn the
motor at absolute angles (referencing the center position at
which the rotation count was reset).

Add Case

Flat/Tabbed
Selector

Case List

Default Case
Remove CaseCase Value

Add Case

Case List

Default Case
Remove Case

(a) (b)

Figure 12-5: The Switch block in

one of the Measure modes shows

multiple, numbered cases: Flat

View (a) or Tabbed View (b). Here

the Switch block is set in Infrared

Sensor Measure Remote mode.

Figure 12-6: The ResetSteer My Block

236	C hapter 12

the Steer My Block

The Steer My Block wraps around a Medium Motor block to
make the motor turn at an absolute angle. Normally, if you
set a Motor block to On for Degrees mode, the Degrees input
specifies the number of degrees the motor should rotate with
respect to the current shaft position. But in this case, the
Angle input of this My Block makes the motor shaft move to
an absolute position determined by the last time its rotation
count was reset (regardless of its actual position). For example,
a value of 0 brings the motor shaft to the position it had when
it was reset, and a value of 30 brings it 30 degrees forward
with respect to the 0 position. If the rotation count is currently
30, an input value of –30 brings the shaft to a –30 degree angle;
it doesn’t simply rotate the shaft by 30 degrees backward, as a
Motor block would.

I use the Motor Rotation block (in Measure Degrees mode)
to read the current motor rotation count and subtract this value
from the desired Angle input. The result is used for the Motor
Block Degrees input. The Medium Motor block is executed only
if the difference between the current and the desired angle is
greater than 1 degree. To consider either a positive or negative
difference, I’ve used a Math block in Absolute Value mode with a
Compare block.

Create this My Block using Figure 12-7 as reference. The
block has four inputs: Port, Power, Angle, and Brake at End.
(Notice that the Data Wires can pass through the Switch block.)

Note	 As explained in Chapter 6, Data Wires can pass
through a Switch block only if it is shown in Tabbed View.
You cannot pass Data Wires through a Switch block shown
in Flat View.

the Drive My Block

The Drive My Block simultaneously steers the front wheels and
runs the driving motors. As shown in Figure 12-8, it has two
numeric input parameters: Power and Steer.

When creating this My Block, set the Default value for
the Power input to 50, set Parameter Style to Vertical Slider,
and limit the Power input to between –75 and 75. Set the
Default value for the Steer input to 0, set Parameter Style
to Horizontal Slider, and limit the Steer input to between
–30 and 30.

Two Math blocks in Advanced mode compute the power
to be applied to the driving motors. The Math blocks use the
formulas for the electronic differential, as explained in “Digging
Deeper: Computing Wheel Speeds for an Electronic Differential”
on page 232. The equations in the Math blocks have a minus
sign because the driving motors are facing backward. The
motor ports in the Move Tank block are C+B, not B+C, to avoid
Data Wire entanglement.

Note	 To invert the direction of rotation of a motor,
you can use the Invert Motor block (Advanced palette, blue
header). Any programming block following the Invert Motor
block that would normally make the motor turn clockwise
will make the motor turn counterclockwise, and vice versa.
This block is useful when your robot’s driving motors are
mounted backward (as in the SUP3R CAR) or when the direc-
tion of the wheels’ rotation has been inverted by gears (as
discussed in Chapter 8). In this case, because we’re already
using the Math block, it is more efficient to use the nega-
tive sign to invert the motor’s rotation direction.

Figure 12-7: The Steer My Block

False case is
empty.

	 programming the SUP3R CAR	 237

The car’s dimensions (the distance H between the rear
and the front wheels and half the distance D between the rear
wheels) are set in two Constant blocks.

The Move Tank block is executed in the True case of the
Switch block if the absolute value of the calculated power for
the left motor is greater than 1. The False case of the Switch
block has a Move Tank block in Off mode, with the Brake at End
input set to False. The Switch block is set in Tabbed View to
pass the Data Wires that are carrying the left and right motor
power values through it.

This My Block executes the Steer My Block in parallel
with the main sequence. If the block were placed in the main
sequence, the driving motors would have to wait for the steer-
ing motor to finish before starting or changing speed. Using
Figure 12-9 as reference, connect the Steer My Block with a
Sequence Wire in parallel with the other sequence.

the ReadRemote2 My Block

The ReadRemote My Block, shown in Figure 12-10, uses a
Switch block in Infrared Sensor Measure Remote mode to set
the variables spd and str according to the buttons pressed on
the R3MOTE. The spd variable uses the values 0 (motors are
stopped) and 1 or –1 (go forward or backward). The str variable
uses the values 0 (steering wheels are centered) and 1 or –1
(steer left or right). Both of these variables are initially set to 0.

Inside the cases of the Switch block, these variables are
updated according to the various combinations of the remote
buttons. Buttons 1 and 2 control the steering, and 3 and 4
control the forward/backward direction. For example, when
you move the R3MOTE joysticks to go forward while turning
left, the combination sent by the Remote IR Beacon is 5 (but-
tons 1 and 3 pressed together, as per Figure 6-1 on page 85).
In the case corresponding to combination 5, the spd variable is
set to 1 (forward), and the str variable is set to 1 (left).Fi

gu
re

 1
2-

8:
 T

he
 D

ri
ve

 M
y

B
lo

ck

Figure 12-9: Click and drag a Sequence Wire from the Sequence Plug

Exit of the block before the blocks you want to execute in parallel.

H
al

f t
he

di

st
an

ce

be
tw

ee
n

re
ar

 w
he

el
s

(in
 m

m
)

D
is

ta
nc

e
be

tw
ee

n
fr

on
t a

nd

re
ar

 w
he

el
s

(in
 m

m
)

M
ov

e
Ta

nk
 b

lo
ck

O

ff
 m

od
e

B
ra

ke
 a

t E
nd

 F
al

se

Fa
ls

e
ca

se

238	C hapter 12

Figure 12-10: The ReadRemote My Block uses a Flat Switch

to handle all the possible IR Remote commands.

1

2

3

4

5

0

6

7

8

	 programming the SUP3R CAR	 239

After the Switch block, the spd and str values are mul-
tiplied by 75 (to get the maximum 75 percent power for the
driving motors) and 30 (to make the steering motor turn by
30 degrees forward or backward), respectively. The results
are carried to the My Block outputs Speed and Steer.

As you can see in Figure 12-10, the sequence of the
ReadRemote My Block is simple but quite bulky. The same
functionality can be implemented without variables, using
Constant blocks inside a Tabbed Switch block (Figure 12-11).
The Switch block is in Infrared Sensor Measure Remote mode.
In each case, instead of setting the variables for speed and
steer, Constant blocks like the ones visible in the first case
provide those values to the Math blocks outside the Switch
block via Data Wires. On top of each Case tab, a comment
indicates which values you should set for the hidden Constant
blocks.

The Tabbed Switch block shows the Data Wire tunnels for
each case. Connect the output of each Constant block in the
other cases to these tunnels.

You can create just the ReadRemote2 My Block, because
that’s the one you’ll use in the RC_switch program.

programming
the car to
drive around

Having created the needed My Blocks, let’s make a program to
let the SUP3R CAR drive around without bumping into obstacles.
Build the DriveAround program shown in Figure 12-12.

This program is pretty simple. First, the ResetSteer My
Block centers the steering wheels. Then, in a Loop (Unlimited
mode), the Drive My Block commands the car to go straight
(Steer input is set to 0) at 50 percent power, until the IR Sensor
reads a proximity value less than 35 percent (first Wait block).
Then, another Drive My Block commands the car to back up
while turning (Power –50, Steer –30), until the measured prox-
imity from the obstacle exceeds 45 percent. The last Wait block
makes the program wait a bit before switching direction from
backward to forward.

Figure 12-11: The ReadRemote2 My Block uses a

Tabbed Switch to handle all IR Remote commands.

0, 0 0, 1 0, -1 1, 0 -1, 0 1, 1 -1, 1 1, -1 -1, -1

0 1 2 3 4 5 6 7 8

Figure 12-12: The DriveAround program

240	C hapter 12

programming
the car for
remote control

Now we’ll make the RC_switch program that will receive com-
mands from the R3MOTE, using Figure 12-13 as reference.
Once the ResetSteer My Block centers the steering wheels, a
Display block in Image mode displays the Remote IR Beacon
image on the EV3 Brick screen. In the Loop (Unlimited mode),
the ReadRemote2 My Block directly provides the Steer and
Power values to the Drive My Block via Data Wires.

The Switch block in Numeric mode uses the input value
from the Power output of the ReadRemote2 My Block to change
the color of the Brick Status Light. Because case number 1
(which changes the color of the light to red) is set as the
Default case, this case will be executed when the input is
equal to 1 but also whenever the input is different from 0.
The Default case could have any value, because all we want
to do is distinguish between zero and nonzero values.

Setting the Wait block to 0.05 seconds prevents the steer-
ing motor from jiggling. This jiggling occurs if the Steer My Block
inside the Drive My Block is called too often; the Steer My Block
would try to update the motor position before it reached the
commanded angle.

using arrays
to clean up the
ReadRemote
My Block

While the ReadRemote and ReadRemote2 My Blocks as
described previously will do the job, we can do the same
thing more elegantly with arrays. Specifically, we can use
the commands that the Remote IR Beacon sends (according
to the buttons pressed) as an index to read from two arrays
containing the speed and steering values (–1, 0, or 1 as for
the previous My Blocks). The RC_arrays program is shown
in Figure 12-14. When it starts, two Variable blocks in Write
Numeric Arrays mode create and fill the arrays str_array
and spd_array. Using the drop-down menu shown in Fig-
ure 12-4(b), fill the arrays as indicated in Table 12-1.

The ReadRemoteA My Block is shown in Figure 12-15. As
you can see, the IR Sensor block’s Measure Remote mode pro-
vides the Button ID as Index input via Data Wires to two Array
Operations blocks so as to read the spd_array and str_array
values.

Figure 12-13: The RC_switch program that allows the car to be remotely controlled

	 programming the SUP3R CAR	 241

In Chapter 6, I listed all the possible commands sent by the
remote (numbers from 1 to 11). Since the remote’s command
is used as index for the array, we must be sure that the arrays
have at least the number of elements that the index can reach.
Although the Remote Button combinations 9 (Beacon Mode on),
10 (buttons 1 and 2 pressed together), and 11 (buttons 3 and
4 pressed together) can’t be produced by moving the R3MOTE
joystick, we should fill the arrays at those indices as well. If the
arrays had just nine elements (indexed from 0 to 8) and the IR
Sensor received commands 9, 10, or 11, the Array Operations
blocks would try to access elements that were out-of-bounds,
making the program abort. To avoid that, we fill the arrays with
zeroes at indices 9, 10, and 11.

Build the RC_arrays program shown in Figure 12-14
and the ReadRemoteA My Block shown in Figure 12-15, using
Table 12-1 to fill the arrays.

table 12-1: the content of the str_array and
spd_array arrays

Index (Remote Button ID) str_array spd_array

0 0 0

1 1 0

2 –1 0

3 0 1

4 0 –1

5 1 1

6 1 –1

7 –1 1

8 –1 –1

9 0 0

10 0 0

11 0 0

Figure 12-15: The ReadRemoteA My Block uses arrays instead

of Switch blocks to compute the car’s steering and speed.

Figure 12-14: The RC_arrays program is a different way to implement the RC_switch program, which remotely controls the car.

Uses arrays

242	C hapter 12

programming the
car to follow the
beacon

The SUP3R CAR can be programmed to follow the Remote
IR Beacon (set in Beacon Mode). The program is similar to
the beacon-following program that we created for ROV3R in
Chapter 6 (Figure 6-9 on page 91), but it is necessarily more
complex because it needs to deal with the more involved steer-
ing of the SUP3R CAR. Before building the main FollowBeacon
program, you’ll need to create the My Blocks as described in
the following sections.

the Sign My Block

The Sign My Block (Figure 12-16) implements the sign math
function. It accepts a number as input and returns 1 if the
number is positive (greater than zero); 0 if the number is
exactly equal to zero; and –1 if the number is negative (less
than zero). Give the input and output any name that you like
(for example, Input and Result).

As you can see, the Sign My Block uses two Switch blocks,
one nested inside the other. The outer one, together with a
Compare block, checks whether the input number is greater
than or equal to zero. If the value is False, then a Constant
block outputs –1 through the Data Wire tunnel. If the value is

True, a further check is done: If the number is exactly equal to
zero, a Constant block outputs 0; otherwise, another Constant
block (in the False case of the nested Switch) outputs 1.

the Saturation My Block

The Saturation My Block limits the input value so that it lies
between a maximum (Max) and minimum (Min). Build it using
Figure 12-17 as reference. The original input value is stored
in a temporary variable called _v. If the value stored in _v is
greater than Max, its value is overwritten with Max; values
less than Min are overwritten with Min.

the ReadBeacon My Block

Now we’ll build the ReadBeacon My Block, as shown in Fig-
ure 12-18. This My Block generates the drive and speed com-
mands (with the usual values of –1, 0, or 1) to make the SUP3R
CAR follow the beacon. The Heading and Proximity outputs
of the IR Sensor block (in Measure Beacon mode) are saved
into the heading and prox numeric variables, respectively.

The Detected Output of the IR Sensor block is True when
the beacon is detected; otherwise it is false. Sometimes, how-
ever, this Output returns True even when the beacon is hidden
from the IR Sensor’s sight, but the Proximity Output returns
100. For this reason, we want the car to drive toward the
beacon only if the Detected Output is True and the Proximity
value is less than 100; we make this happen with the Compare
and Logic Operations blocks. The result of the Logic Operations
block is carried to the input of a Switch block. When the beacon

Figure 12-16: The Sign My Block implements the sign math function.

In the False case, there is a Constant
block, numeric output −1.

In the False case, there
is a Constant block,
numeric output 1.

	 programming the SUP3R CAR	 243

Figure 12-17: The Saturation My Block limits the maximum

and minimum numeric values of the input.

False case is empty. False case is empty.

Figure 12-18: The ReadBeacon My Block generates drive and steer

commands to make the SUP3R CAR follow the Remote IR Beacon.

Variables can be used
to carry data inside a
switch without messing
up the data wires.

This additional check is needed because
the IR sensor sometimes returns proximity
100 when the beacon is hidden, but the
Detected value is still True.

False case is empty.

In False case, spd and str variables are set to 0
by two Variable blocks in Write mode.

Heading inside range [-5, 5] is
brought to 0.

1

2

2

1

244	C hapter 12

is not in sight (False case of the Switch block), the variables spd
and str are both set to 0. When the result is True, the value
of the heading variable is used to compute the steering value,
which is then saved to the str variable.

The Range block checks whether the heading to the bea-
con, stored in the heading variable, is between –5 and 5. If so,
the value is zeroed out. The goal here is to create a dead zone
around zero so that the car goes straight instead of zigzagging
if the heading to the beacon is small. We just need to know if
the beacon is seen at the right or the left, so we use the Sign
My Block to compute the sign of the heading value. The value
obtained overwrites the heading variable and is then multiplied
by –30 to compute the final str value. (We multiply by a negative
number to make sure that the car will steer toward the beacon.)

The proximity value stored in the prox variable is mul-
tiplied by 1.5, constrained between 0 and 75, and used to
update the spd variable. The speed is limited to 75 so that
the electronic differential formula V × (1 + D × 0.017 × a / H)
(see “Digging Deeper: Computing Wheel Speeds for an
Electronic Differential” on page 232) won’t produce a
value larger than the maximum allowed speed for an EV3
motor, even for the maximum steering angle. For a steer-
ing angle equal to 35, the faster wheel speed would be
75 × (1 + 65 × 0.017 × 35 / 160) ≈ 93, which will be safely
less than 100 (that is, less than the full motor speed).

the range block

The Range block (Figure 12-19) tests whether an input numeric
value is within a range specified by the Lower Bound and Upper
Bound. You can choose to test whether a number is inside a
range by choosing Inside mode or outside a range by choosing
Outside mode. In both modes, the Range block includes the
boundaries in its test. For example, testing whether 25 is
inside the range 25–50 would return True, testing whether
50 is inside the range 25–50 would return True, and testing
whether 50 is outside the range 25–50 would return False.

This block does the same job as two Compare blocks and
a Logic Operations block. For example, in Inside mode, it tests
whether the input value is greater than or equal to the lower
bound and less than or equal to the upper bound.

the FollowBeacon program

Finally, we can build the FollowBeacon program, using
Figure 12-20 as reference. This program first displays the
Target image file and centers the turning wheels. Next, the
ReadBeacon My Block provides the Power and Steer values
to the Drive My Block. These blocks and a Wait block are inside
a Loop block set in Color Sensor Compare Color mode (with
red [5] specified as the input). When the Color Sensor detects
red, the program stops the motors, plays a Motor stop sound,
and ends.

Lower
Bound

Upper
Bound Result

Inside
mode

Outside
mode

Test
Value

Figure 12-19: The Range block

Figure 12-20: The FollowBeacon program allows the SUP3R CAR to drive toward the Remote IR Beacon.

experiment 12-1

How about using this program to play a game? By
waving the beacon, try to drive the SUP3R CAR across
the EV3 Test Pad without crossing any red lines. If you
cross a red line, the car stops and you lose. (To change
the color the car must avoid, change the loop’s ending
condition.)

You can expand on this game by drawing more
complicated and winding line patterns on large sheets
of paper and trying to drive across these new terrains.

	 programming the SUP3R CAR	 245

Note	 Since the Remote IR Beacon is built inside the
R3MOTE, you can put it into Beacon Mode by pressing its
Beacon Mode button with a Technic beam, axle, or panel.

adding a siren
effect to the
SUP3R CAR

In “Running Parallel Sequences (Multitasking)” on page 234,
I mentioned that you can make multiple sequences of blocks
run in parallel when you use multiple Start blocks in the same
program. In this section, we’ll use a parallel sequence to add a
light-and-sound siren effect to the FollowBeacon program.

1.	 Go to Project Properties and copy and paste the
FollowBeacon program. This creates a program called
FollowBeacon2; rename it to BeaconSiren (double-click
to open it; then double-click the Program tab and enter
the new name).

2.	 Add the two parallel sequences with two new Start blocks,
as shown in Figure 12-21.

3.	 Change the name of the Loop block in the second sequence
to Siren and the Loop block in the third sequence to Lamp.

4.	 Using Figure 12-21 as a reference, add a Loop Interrupt
block and a Stop Program block to the main sequence.

5.	 Select the Siren name from the Loop Interrupt block Name
field. When the Follow loop ends, the Loop Interrupt block
will also end the Siren loop in order to play the Motor stop
sound file without causing a resource conflict (which would
occur if the Siren loop and the main loop tried to access
the EV3 loudspeaker resource at the same time).

Warning	 You may incur a resource conflict each time you
use the same resource (the same motor, the display, or the
loudspeaker) from multiple sequences running in parallel.
Try to avoid such situations because when resource con-
flicts occur, the EV3 Brick will behave unpredictably.

If we didn’t place a Stop Program block at the end of the
first sequence, the Lamp loop would continue to run forever
and the program would not stop as expected.

Siren

Interrupt the Siren loop.

Stop all parallel tasks.

Figure 12-21: The BeaconSiren program adds a light-and-sound siren effect to the FollowBeacon program by using multiple Start blocks to execute tasks in

parallel.

246	C hapter 12

the loop interrupt block

The Loop Interrupt block
(Figure 12-22) can end the
execution of a Loop block
at any time (overriding its
ending condition), regard-
less of the block being
executed. Every loop is
labeled. To specify which
one to interrupt, select its
name from the heading of
the Loop Interrupt block’s
Name field, which lists
the names of all the Loop
blocks of the project. If two
or more Loop blocks share
the same name, the Loop Interrupt block will end all of them.
(You can use the Loop Interrupt block from within the loop you
want to end or from a sequence running in parallel.)

Note	 The Loop Interrupt block will also allow you to end
a sequence that needs to be executed just once. Just put
the sequence that you want to interrupt inside a Loop block
in Count mode with Count set to 1. Also, give the loop a
name to uniquely identify it in the sequence. The sequence
executes only once and can be stopped at any time.

the stop program block

The Stop Program block (Figure 12-23)
is an optional block that can be placed
only at the end of a programming
sequence (it has no Sequence Exit
Plug). It terminates all sequences
at once, ending the program. You’ll
find it in the Advanced palette (blue
heading). Programs with just one run-
ning sequence don’t need this block
because the program will end as soon
as the sequence ends. But if you have
multiple sequences running in parallel,
this block is useful for ending a pro-
gram in any sequence.

conclusion
Wow, this chapter has introduced a lot of new programming
concepts! You learned how a car differential works, how to
work with variables and arrays, how to use Switch blocks with
multiple cases, how to make programs with multiple sequences
running in parallel, how to use the Range block, how to inter-
rupt a loop, and how to stop a whole program.

Figure 12-22: The Loop Interrupt block

makes the specified loop end at once.

Figure 12-23: The

Stop Program block

terminates a program

at once.

experiment 12-2

The SUP3R CAR has the Color Sensor mounted in front,
facing downward. This positioning is ideal for follow-
ing lines on the ground. Can you make a line-following
program for the SUP3R CAR? Since the car has a lim-
ited steering angle, its turning radius is quite large,
allowing the car to follow only lines with wide curves.
(In contrast, ROV3R can follow lines with tight curves
because it can steer in place.)

	T he EV3L Scientist’s Apprentice	 247

248	T he EV3L Scientist’s Apprentice

13
building the SENTIN3L

In this chapter, you’ll build the SENTIN3L,
a badass security robot. It walks on three
legs and has two wicked blaster cannons
(see Figure 13-1). As you build, you’ll learn
how to create mechanisms that transform
rotation into alternating motion. These
mechanisms are particularly useful when
designing walking robots. You’ll also learn
how to assemble structures diagonally
within the constraints of LEGO geometry
and how to assemble curved structures
like the SENTIN3L’s elegant back shield.

Figure 13-1: The SENTIN3L

250	C hapter 13

main assembly

1:1

R

	b uilding the SENTIN3L	 251

1:1

T

T

252	C hapter 13

1:1

	b uilding the SENTIN3L	 253

1:1

7

The locking notch on the 24z gear makes the
wheel rotate in one direction only, improving
the robot’s ability to walk forward and turn.
(Lock notches are used in real hoists to help
keep the lifted weight from falling down.)





254	C hapter 13

right leg assembly

9

1:1

T
T

B

G

B

G

	b uilding the SENTIN3L	 255

If you attach the leg to an off-center pin on the
Large Servo Motor shaft, you’ll create a cam,
which transforms the continuous rotation of the
shaft into a reciprocating motion of the leg. The
cam allows the robot to walk.

These white panels
make a mock leg
that covers the
actual walking legs.

G

G

256	C hapter 13

The right leg is actually composed of two
legs. This solution, together with the rear
wheel, greatly simplifies the robot’s pro-
gramming, but that means the SENTIN3L
is not a proper tripod robot!

1:1

	b uilding the SENTIN3L	 257

main assembly

left leg assembly

1:1

258	C hapter 13

9

1:1

T T

B

G

G

G

G

B

	b uilding the SENTIN3L	 259

6

260	C hapter 13

main assembly

1:1

	b uilding the SENTIN3L	 261

The Pythagorean Theorem states that the area of the square of
the hypotenuse (the side opposite the right angle, indicated with
a black square) is equal to the sum of the squares of the two
legs (the two sides that meet at a right angle). The bigger tri-
angle (whose sides are 6M, 8M, and 10M, as shown in the figure)
shows this relation. Even though the hypotenuse of the smaller
triangle is not a whole number (it’s slightly shorter than 8M), the
assembly still works, and the parts are flexible enough that we
don’t have to force them too much to make things fit. 6

8

10
5

6

∼8

6×6+8×8 = 10×10

5×5+6×6 ≈ 8×8

1:1

Add the 15M beam to brace the
leg assemblies. Then insert four
3M red pins with stop bushes to
lock the rear leg assembly.

R

262	C hapter 13

As designed, the walking base of the SENTIN3L can be con-
trolled with the Brick Program or the Remote IR Beacon, as
can ROV3R and any other differential drive mobile robot. Just
drive motors B and C to make it walk forward or turn.

	b uilding the SENTIN3L	 263

264	C hapter 13

chest assembly

You can easily reuse this assembly in
your creations. If you choose to use knob
wheels, the driving axle will come out from
the side rather than the front of the motor.

Don’t insert the 2M beams all
the way onto the 7M axle; leave
some space between them and
the T beams. Otherwise, the flat
heads of the 4M axles with stop
might catch on the holes of the
T beams when the pieces rotate.

	b uilding the SENTIN3L	 265

1:1

266	C hapter 13

The 6M link has ball sockets that fit into
the pins with towballs. Thanks to the ball
sockets, they can move freely on more
than one axis.

	b uilding the SENTIN3L	 267

1:1

2

268	C hapter 13

1:1

9

The 2M beams are cams that transform
the rotation of the motor shaft into a
reciprocating motion of the robot’s shoul-
ders (back and forth), which simulates the
recoil of cannons.

	b uilding the SENTIN3L	 269

main assembly

270	C hapter 13

	b uilding the SENTIN3L	 271

272	C hapter 13

Curl the cable
in here.

	b uilding the SENTIN3L	 273

left arm assembly

1:1

7

274	C hapter 13

right arm assembly

	b uilding the SENTIN3L	 275

1:1

7

276	C hapter 13

main assembly

Insert the red axle into the
double angular beam’s cross
hole and insert the blue pin
into the cross block hole.

	b uilding the SENTIN3L	 277

278	C hapter 13

1:1

	b uilding the SENTIN3L	 279

back shield assembly

1:1

280	C hapter 13

1:1

9

	b uilding the SENTIN3L	 281

back shield middle subassembly

282	C hapter 13

continuing the back shield assembly

1:1

7

	b uilding the SENTIN3L	 283

head subassembly

8

284	C hapter 13

1:1

	b uilding the SENTIN3L	 285

completing the back shield assembly

286	C hapter 13

The curve of the shield is created
by combining a series of these
modules. Notice how I’ve com-
bined different angular beams
to make small angles.

	b uilding the SENTIN3L	 287

1:1

288	C hapter 13

main assembly

1:1

	b uilding the SENTIN3L	 289

The SENTIN3L is
complete.

290	C hapter 13

building the COLOR CUB3

You will use the COLOR CUB3
to program sequences of actions
by showing the colored sides to
the SENTIN3L. This is the red
face of the CUB3.

	b uilding the SENTIN3L	 291

This is the black
face of the CUB3.

This is the white
face of the CUB3.

292	C hapter 13

conclusion
In this chapter, you built the SENTIN3L, a security robot that
walks on three legs and is equipped with twin blaster cannons.
(Well, actually it has four legs and a back wheel, but it looks
like it’s walking on three legs.) Since the motor’s continuous
rotation is transformed into walking motion, there’s no need
for special sequences in the program (as with WATCHGOOZ3),
so you can easily program and remotely control the SENTIN3L
as you would a wheeled robot.

In the next chapter, you’ll learn how to make programs
that allow you to record, save, and replay simple sequences
of actions.

The COLOR CUB3 is
complete.

	T he EV3L Scientist’s Apprentice	 293

294	T he EV3L Scientist’s Apprentice

14
programming the SENTIN3L

In this chapter, you’ll program the SENTIN3L, which you built in
Chapter 13. The first program will simply make the robot patrol
and shoot at objects that are in its way. Once you’ve mastered
that, we’ll make a program to record a sequence of actions at
runtime by showing the robot the colored sides of the COLOR
CUB3 from Chapter 13. The final program will also allow you
to program the robot at runtime, but it will permanently save
the recorded sequence to a file for later retrieval, even once the
program has terminated or the EV3 Brick reboots.

the file access
block

To create, write, read, and delete files in the EV3 Brick’s
memory, we’ll use the File Access block, found in the
Advanced palette (blue header). Figure 14-1 shows this block in
its various modes.

creating and deleting a file
and writing data

To create a file with a particular name, use the File Access
block in Write mode and enter the filename in the File Name
field (or select the Wired option to carry the File Name text
with a Data Wire).

If the file with the name you specify does not exist yet, it
will be created in the EV3 Brick’s memory the first time you
open the file for writing. If the file already exists, the data is
appended at the end of it.

To be sure that you’re writing to a new, empty file, first
use the File Access block in Delete mode, specifying in the File
Name field the filename you are going to write to.

For example, to write to a file named log (not appending
data to it but writing data from the beginning), use the File
Access block in Delete mode to delete log and then use another
File Access block in Write mode to create and write to log.

To write data to a file, you can enter some text in the
block Text input, or you can plug a Text or Numeric Data Wire

into the Text input. If you plug in a Data Wire that carries a
numeric value, that number will be converted into its textual
representation. Each time you write to the file, the text string
will be added on a new line. To verify this, use the Memory
Browser tool to upload the file created by the File Access
blocks from the EV3 Brick to your computer and then open
the file with your favorite text editor.

Note	 When you’ve finished writing to a file, you must use
the File Access block in Close mode to be able to read data
back from that file.

Warning	 Files (including programs) are temporarily kept
in the RAM during a session and are saved to the flash
memory only when the EV3 Brick is shut down. If the EV3
Brick is not shut down properly, you will lose the files
created in that session. Likewise, if you update the EV3
Brick’s firmware, you will lose any files from that session,
so remember to back up your files on your computer using
the Memory Browser tool before updating the firmware.

File Name field

Wired File Name

File Name input

Mode
Selector

Text input Text output Numeric
output

Write Read Text Read Numeric

Close Delete

Figure 14-1: The File Access block allows you to create, delete, read, and write

files to the EV3 Brick’s memory.

296	C hapter 14

reading data from a file

You can read data from a file using the Read Text and Read
Numeric modes of the File Access block. In Read Numeric
mode, the block tries to convert the text data into a numeric
value: If the file contains text strings that do not represent a
number, the value returned by the block is 0.

The block reads data from the file in sequence, one line at
a time. In practice, this means that, for example, if you store
three values to a file, you can read them back using three File
Access blocks in Read mode, one after another.

To read data from the beginning of a file, use a File Access
block in Close mode to close the file and then start reading
again.

detecting the end of a file

If you keep reading from a file once you’ve reached the end,
the block will return empty text strings or zero numeric values.
In other words, you’ll know that you’ve reached the End Of File
(EOF) when the File Access block in Read Text mode reads an
empty text string.

Alternatively, to mark the EOF when writing numbers to a
file, you can choose to use a termination number (for example,
–1 in a file that contains only positive numbers). When you read
the numbers from that file (using Read Numeric mode), you’ll
know that you’ve reached the EOF when you read that termina-
tion number.

the random
block

Later in this chapter, you’ll learn to program the SENTIN3L to
shoot a random number of times and then turn in a random
direction when it detects an obstacle. To generate random
numeric and logic values, you can use the Random block (Fig-
ure 14-2), found in the Data Operations palette (red header).

When generating random values in Numeric mode, the
random value will be an integer in the range specified by the
Lower and Upper Bound parameters. The Lower and Upper
Bounds should be integers, too; if set to decimals, they will be
truncated internally to the nearest integer. For example, if the
bounds are set to 1 and 3, the generated values can be the
integers 1, 2, and 3. If the bounds are set to 1.5 and 4.4, the
generated values can be the integers 1, 2, 3, and 4.

The generated random numbers follow a uniform distribu-
tion. Each value is as equally likely to be drawn as another.
For example, if you generate 6,000 random numbers within
the bounds 1 and 6 (like rolling a die), each of the six possible
values will be drawn about 1,000 times; that is, each value has
a 1/6 or about 16 percent probability of being drawn.

When in Logic mode, the generated random value can
be either True or False. You can use the input parameter (a
percentage value ranging from 0 to 100) to set the probability
that the True value will be generated. For example, when the
Probability of True is set to 50, there is a 50 percent chance of
getting the True value and a 50 percent chance of getting False
(as when tossing a coin).

building the
My Blocks

Before creating the programs that will bring the SENTIN3L
to life, you’ll need to prepare the My Blocks. As you build the
My Blocks, I’ll highlight noteworthy sequences and the ideas
behind them. For each My Block, I’ll show you the sequence of
programming blocks and the image of the complete My Block
so that you can check its icons, inputs, and outputs as well as
the default values of the inputs.

the ResetLegs My Block

The building instructions in Chapter 13 show all of the robot’s
front legs touching the ground. For the robot to walk efficiently
without wobbling, its front legs must all touch the ground at
the beginning of the program and be kept in sync as the robot
moves. The ResetLegs My Block shown in Figure 14-3 resets
the position of the legs so they all touch the ground.

To determine whether a pair of legs is touching the ground,
we run the motor that drives a pair of legs at low speed using
the Unregulated Motor block. The point at which the motor
encounters the most resistance (that is, when it is unable to lift
the robot) is when both legs in a pair are on the ground. The
motor will almost stop, and its Current Power will be nearly
zero, as measured by the Motor Rotation block in Measure
Current Power mode.

Probability
of True

Lower
Bound

Numeric Logic

Upper
Bound

Figure 14-2: The Random block generates random numeric or logic values.

	 programming the SENTIN3L	 297

Digging Deeper: how “power” relates to speed

The name of the Measure Current Power mode of the
Motor Rotation block is misleading. In fact, the block
does not measure the current flowing through the motor
coils (in amperes) or the absorbed power (in watts); it
measures the current speed of the motor in degrees
per 100 milliseconds. (To convert the motor speed into
degrees per second, multiply the Current Power value by
10. For example, a Current Power value of 10 means the
motor is turning at 100 degrees per second, and a value
of 40 means the speed of the motor is 400 degrees per
second.)

Similarly, the Power parameter that you set for
the Move and Motor blocks determines the speed of the
motor and is expressed in degrees per 100 milliseconds.
For example, setting a Power of 20 percent will make the
motor turn at 200 degrees per second.

The Move and Motor blocks are regulated, and they
drive the motors so as to keep their speed constant, even
when you apply a load (a resisting torque) to the motor
shaft. In contrast, the Unregulated Motor block sets the
internal power level but does not guarantee that the cor-
responding motor’s speed will remain constant under
load. (For more on the feedback regulation of motors, see
“Digging Deeper: Motor Speed Regulation” on page 188.)

In my tests, I found that the Large Motor cannot
run faster than 850 degrees per second (rather than
the 1,000 degrees per second that you would expect
to measure based on multiplying a 100 percent power
level by 10). The Medium Motor is faster and can reach
1,000 degrees per second, but its regulation is not very
precise at low speeds.

1

2

3

Figure 14-3: The ResetLegs My Block

298	C hapter 14

In the ResetLegs My Block (Figure 14-3), each Large
Motor is run at low speed until a Wait block in Motor Rotation
Compare Current Power mode (1) and (2) detects a Current
Power of less than 3 (meaning that the motor is almost still); at
that point, the motor is stopped. Next, to be sure that the legs
are touching the ground, the motors are moved back and forth
a few times and then left floating by the Move Tank block in Off
mode with Brake at End set to False (3). The motors can rotate
freely when stopped without the electric brake, and the weight
of the robot will level the legs on the ground.

During this entire reset process, a progress bar is dis-
played on screen using five Display blocks.

the WalkFWD My Block

This My Block (Figure 14-4) makes the robot walk forward until
an object is detected by the IR Sensor at the proximity specified
by the input. Notice that the Move Tank block inside the loop
(in On For Rotations mode) turns the motors in steps of half a
rotation each to keep the legs synchronized and to make sure

the legs will touch the ground at the end of each step. Build the
My Block with a numeric input called Proximity, Parameter
Style set to Vertical Slider, Min set to 10, Max set to 80, and
Default value set to 30.

the Laser My Block

The Laser My Block (Figure 14-5) activates the Medium Motor
that moves the robot’s arms in sync with a laser audio effect.
The alternating motion of the arms simulates the recoil of twin
cannons firing. A Random block randomly chooses how many
times the loop repeats.

The Color Sensor blocks are used to change the Color
Sensor’s RGB LED color from blue to red when the robot is
shooting. The RGB LED can emit different colors when set in
the various measurement modes: In Reflected Light Intensity
mode, the LED is red; in Ambient Light Intensity mode, it’s blue;
and in Color mode, it uses red, green, and blue to produce a
kind of pale purple light.

Figure 14-4: The WalkFWD My Block

Figure 14-5: The Laser My Block

The Color Sensor block lights
the LED in blue; it is not used
to measure anything.

	 programming the SENTIN3L	 299

the Turn My Block

The Turn My Block (Figure 14-6) makes the robot turn in place
in a random direction. The robot turns until it sees an obstacle
nearer than the Proximity specified by the input and until at
least the number of seconds specified by the Time input has
elapsed.

First, a Random block in Logic mode generates a logic
value with a 50 percent chance of being True. A Math block in
Advanced mode transforms the logic values into Steering values
for the Move Steering block using the formula a*(1-2*b), with
a set to 100 as constant input. When b is True, the result of the
Math block is –100; when b is False, the result is 100.

The Move Steering block turns the motors in opposite
directions by a half rotation for each iteration of the loop; this
makes the robot turn in place. (The Steering value is 100 or
–100.) The loop ends (and the robot stops turning) when the
Proximity value measured by the IR Sensor block is greater
than the Proximity input of the My Block and the time elapsed

since the reset of Timer 1 is more than the Time input of the
My Block. This method makes the robot steer for a minimum
number of seconds even if an obstacle is removed at once,
and it is similar to the one used in the StepAdv My Block for
WATCHGOOZ3 (Figure 10-18 on page 186).

Create the My Block with two numeric inputs: Proximity
(Vertical Slider, Min 20, Max 80, Default 30) and Time
(Numeric input, Default 2).

the PowerDownFX My Block

This My Block plays a Speed Down sound while displaying a
progress bar that falls to zero to simulate the robot losing
power and shutting down (Figure 14-7).

the WaitButton My Block

The WaitButton My Block waits until the Enter button of
the EV3 Brick or the Touch Sensor is pressed, as shown in
Figure 14-8.

Figure 14-6: The Turn My Block

2
1

3

3
2
1

300	C hapter 14

the SayColor My Block

The SayColor My Block (Figure 14-9) has a numeric input called
Color that selects which case of the Switch block (in Numeric
mode) to execute. The cases are numbered according to the
Color Sensor codes (0 for none, 1 for black, 5 for red, and 6
for white). When the case corresponds to the color present on
the COLOR CUB3, a Sound block plays the corresponding audio
files: Error, Black, Red, or White.

the ExeCode My Block

The ExeCode My Block (Figure 14-10) executes an action
according to the value of the numeric input Code. This value
is used to select which case of the Switch block (in Numeric
mode) to execute.

The cases are numbered according to the Color Sensor
codes (0 for none, 1 for black, 5 for red, and 6 for white). When
the case corresponds to the color present on the COLOR CUB3, a

My Block makes the robot perform certain actions. Specifically,
case 1 (black) contains a Turn My Block with Proximity set to
30 and Time set to 2, case 5 (red) contains a Laser My Block,
and case 6 (white) contains a WalkFWD My Block with Proxim-
ity parameter set to 30. Other cases are empty.

the MakeProgram My Block

The MakeProgram My Block (Figure 14-11) allows you to
record a program for the robot at runtime by showing the
three colored sides of the COLOR CUB3 to the Color Sensor
and entering the color codes by pressing the Touch Sensor.
You can add actions to the program corresponding to the
colors white (6), red (5), and black (1).

The program is saved as a sequence of numbers in the
numeric array A, which is cleared with a Variable block in Write
Numeric Array mode by specifying no elements in the drop-
down menu ([]). Color codes are appended to the array in a loop

Figure 14-7: The PowerDownFX My Block

Figure 14-8: The WaitButton My Block

	 programming the SENTIN3L	 301

that ends when the EV3 Brick’s Enter button is pressed. (To
review how to use arrays, check Chapter 12.)

The WaitButton My Block waits for either the Touch Sen-
sor or the Enter button to be pressed. If the Touch Sensor is
pressed, the color shown to the Color Sensor is read, spoken
by the SayColor My Block, and if it’s different from 0 (no color),
its value is stored in array A using an Array Operations block in
Append mode. The Wait block in Touch Sensor Compare State
mode waits for the Touch Sensor to be released in order to avoid
adding the color code to the array multiple times (which would
otherwise happen if you kept the Touch Sensor pressed).

the RunProgram My Block

The RunProgram My Block (Figure 14-12) reads the contents
of array A, which contains the sequence of actions programmed
with the COLOR CUB3. The Loop Index is used to read from the
array. But before reading the array, we must check whether
the current index value is less than the array length because if
you access an element of the array outside its boundaries, the
program will abort. The array is read in the RUN Loop block
until the index reaches the array length or the EV3 Brick’s
Enter button is pressed.

Figure 14-9: The SayColor My Block

Cases 0, 1, 5, 6 contain a Sound block.
Mode: Play File
Play Type: 0
File Name: specified on labels

“Error” “Black” “Red” “White”

Figure 14-10: The ExeCode My Block

WHITE contains
WalkFWD My Block
Proximity: 30ERROR

BLACK
contains
Turn My Block
Proximity: 30
Time: 2 BLUE GREEN YELLOW

RED
contains
Laser
My Block

302	C hapter 14

Figure 14-11: The MakeProgram My Block (the icon for this My Block is a grey head)

Figure 14-12: The RunProgram My Block (the icon for this My Block is a red head)

False case is empty.

False case is empty.

1

2

1

2

True case
is empty.

1

2
3

1

2
3

	 programming the SENTIN3L	 303

the MakePrgFile My Block

The MakePrgFile My Block (Figure 14-13) is like the Make
Program My Block, except that it stores the program you enter
with the COLOR CUB3 into a file instead of an array. Storing
the program in a file saves the color-programmed sequence
in the EV3 Brick’s memory; the sequence can be read back
from the file even after the program stops or the EV3 Brick is
rebooted.

To begin writing to a new file named PRG, set the first File
Access block to Delete mode. Next, append the color codes to
the file inside the Loop by using the File Access block in Write
mode. When the Loop ends, a File Access block in Close mode
closes the file PRG so that it can be read later.

the ParseFile My Block

The ParseFile My Block (Figure 14-14) converts the text strings
read from the file to numeric values, with each string repre-
senting one of the possible numeric color codes (0 to 7). Usually,
numbers should be read from a file using the File Access block
in Read Numeric mode, but in this case, I read the data as text
to detect the end of file, found when the read data is an empty
string. The text string read from the file is fed into the input of
a Switch block set in Text mode.

Initially, the EOF logic variable in this My Block is set to
False, and the _OUT numeric variable is set to 0. Each label of
the Switch block contains the text representation of the num-
bers, and in each case, the _OUT variable is set to the numeric
value corresponding to the text label. For example, in the case
with the “2” label, the value 2 is written into the _OUT variable.
In the default case of the Switch with an empty string (“”) in its
label, the EOF variable is set to True.

Create this My Block with a text input called Text, a
numeric output named Value, and a logic output named EOF.

Figure 14-13: The MakePrgFile My Block

False case is empty.

False case is empty.

1

2

1

2

304	C hapter 14

the RunPrgFile My Block

The RunPrgFile My Block (Figure 14-15) is similar to the Run-
Program My Block, except that it reads the program you entered
with the COLOR CUB3 from the PRG file instead of the array.
The RUN Loop ends when its logic condition is True. The logic
condition is True when the EOF flag coming from the ParseFile
My Block is True (when the EOF is reached) or when the EV3
Brick’s Enter button is pressed. Once the Loop ends, the file
PRG is closed.

programming the
SENTIN3L to patrol

The program that makes the SENTIN3L go on patrol is shown
in Figure 14-16. First the legs are reset to make them all touch
the ground (the ResetLegs My Block). Next, in an unlimited
Loop called MAIN, the robot walks forward until it detects an
obstacle, at which point it “shoots” the object with its twin laser
blaster cannons. It then turns in a random direction until the
obstacle is farther away than the specified threshold and at
least two seconds elapse.

Press the Touch Sensor at any time to shut down the
program. In the parallel sequence, a Wait block waits for the
Touch Sensor to be pressed, at which point a Loop Interrupt
block stops the MAIN Loop and all motors, and executes the
PowerDownFX My Block. Finally, the program ends.

color-programming
the SENTIN3L at
runtime

The program shown in Figure 14-17 allows you to record and
play back sequences of actions at runtime. To enter commands,
show one of the colored sides of the COLOR CUB3 to the Color
Sensor and press the Touch Sensor to confirm the action:

	White will make the robot walk forward until it detects an
obstacle.

	Black makes it turn in a random direction until an obstacle
moves past a set threshold.

	Red makes the robot “shoot” its cannons.

Press the EV3 Brick’s Enter button to execute the
sequence. Once the sequence has been played, you can enter
a new sequence.

em
pt

y
em

pt
y

Fi
gu

re
 1

4-
14

: T
he

 P
ar

se
Fi

le
 M

y
B

lo
ck

Th
e

_O
U

T
va

ri
ab

le
 is

 s
et

 to

th
e

co
rr

es
po

nd
in

g
nu

m
er

ic

va
lu

es
 w

ri
tt

en
 a

s
te

xt
 in

 t
he

ca

se
 la

be
ls

.

	 programming the SENTIN3L	 305

Figure 14-15: The RunPrgFile My Block

Figure 14-16: The Patrol program

Figure 14-17: The ColorProgram program

experiment 14-1

Make a program that allows you to
command the robot directly by show-
ing it the COLOR CUB3. Make the robot
react to the colors according to your
color-programming program: white for
walking forward, black for turning, and
red for “shooting” the lasers.

experiment 14-2

Extend the ExeCode My Block by filling the other cases
for yellow, blue, and green to color-program the robot
at runtime with more actions. You’ll need to build a
more colorful COLOR CUB3 with other Technic parts or
use some colored cards.

MakeProgram RunProgram

True case is empty.

306	C hapter 14

making perma-
nent runtime
color programs

The program shown in Figure 14-18 saves the recorded
sequence of actions to a file, which can be read back even
after the program has stopped and restarted or the EV3 Brick
has rebooted. A menu displayed on the EV3 Brick screen lets
you choose whether to read and replay the sequence stored in
the file or record and save a new one.

Warning	 If you choose to run a sequence before having
recorded one, the program won’t find the file and will abort,
displaying an error message on the EV3 Brick screen.

conclusion
In this chapter, you learned how to make programs for the
SENTIN3L that will send it on patrol and how to program it at
runtime by showing it colors. You also learned how to generate
random numbers and how to store and read back data using
the File Access block as well as how to convert text values into
numeric ones.Fi

gu
re

 1
4-

18
: T

he
 C

ol
or

P
ro

gr
am

Fi
le

 p
ro

gr
am

experiment 14-3
Can you make a program that lets you control the
SENTIN3L with the Remote IR Beacon? Take your
inspiration from the SUP3R CAR remote control pro-
gram RC_switch (see Figure 12-13 on page 240) and
adapt the content of the WalkFWD and Turn My Blocks.
Program the SENTIN3L to shut down when the Touch
Sensor is pressed, as in the Patrol program. Modify the
robot so that an identical robot can hit the Touch Sensor
with the other cannon to shut it down. Then challenge a
friend to a fight with two SENTIN3Ls! The first player
who hits the other robot’s Touch Sensor wins.

experiment 14-4
Want more action? Build a working ball shooter to
replace the SENTIN3L’s arms. You can use the build-
ing instructions that come with the official EV3 models
as inspiration.

Fa
ls

e
ca

se
 is

 e
m

pt
y.

	T he EV3L Scientist’s Apprentice	 307

308	T he EV3L Scientist’s Apprentice

15
building the T-R3X

The T-R3X is an ominous surveillance robot in the shape of a
Tyrannosaurus rex (see Figure 15-1)! It walks on two strong
legs, wags its sharp tail, and bites its prey with powerful jaws.

As you build this robot, you’ll learn another approach to
building a weight-shifting biped walker. But be warned: Keep
your fingers far away from its teeth!

Figure 15-1: T-R3X!

310	C hapter 15

main assembly

Don’t insert the
5M axles completely.

T

	b uilding the T-R3X	 311

R T

T

1:1

B

B

312	C hapter 15

R

1:1

6

7

8

R

B

R

R
R

B

B
B

B
B

	b uilding the T-R3X	 313

legs frame assembly
1:1

9

T

T
B B

314	C hapter 15

1:179

	b uilding the T-R3X	 315

main assembly

This frame allows the legs to step forward
alternately. Once locked with the 5M axle in
the next step, the frame can’t be pulled away.

1:1

10

316	C hapter 15

1:1

11

12

	b uilding the T-R3X	 317

1:1

318	C hapter 15

left leg

R

1:1

	b uilding the T-R3X	 319

320	C hapter 15

The two red cross blocks are
used as wedges to make the
robot tilt to the side when its
weight shifts slightly.

1:1

6

	b uilding the T-R3X	 321

4
1:1

9

7

8

The small tire is
used to add friction
to the foot.

322	C hapter 15

6 5
9

	b uilding the T-R3X	 323

right leg assembly

R

1:1

324	C hapter 15

1:1

	b uilding the T-R3X	 325

1:1

6

326	C hapter 15

3

1:1 9

7

8

	b uilding the T-R3X	 327

6 5

The combination of angular beams
brings the foot almost parallel to the
top beams. The white panels cover the
structure, giving the leg a thicker and
more realistic shape.

9

328	C hapter 15

main assembly

14

	b uilding the T-R3X	 329

9

5
5

9

1:1

The 5M beams help hold the legs in
place, and they swing when the legs
take steps. The 9M beams and the
legs form a parallelogram-like moving
linkage.

330	C hapter 15

Once the 7M beam is locked in place, the
legs cannot be pulled out. This strong,
multi-braced design prevents the robot
from coming apart.

1:17

	b uilding the T-R3X	 331

4

1:1

332	C hapter 15

3

1:1

9

	b uilding the T-R3X	 333

EV3 brick assembly 1:1

334	C hapter 15

main assembly

	b uilding the T-R3X	 335

This is another example of bracing. First,
place the double angular beam on the right,
then lock it by attaching the subassembly on
the left. These beams will hold the EV3 Brick
in place. (You’ll finish locking it later.)

1:1

336	C hapter 15

The red double cross
block locks the beam in
place. Test the assembly
by manually moving the
EV3 Brick—you should
hear the motor rotating.

	b uilding the T-R3X	 337

338	C hapter 15

	b uilding the T-R3X	 339

1:124

340	C hapter 15

1:1

	b uilding the T-R3X	 341

1:1

26

342	C hapter 15

5

6

27

	b uilding the T-R3X	 343

The angular beam links
the wagging of the tail
to the shifting of the
robot’s weight.

The crossing 15M
beams that form the
tail allow the tip of
the tail to curl.

344	C hapter 15

9

15

1:1

9

29

You will attach
the other end
of the cable to
the Medium
Motor later.

	b uilding the T-R3X	 345

head and torso assembly

1:1

346	C hapter 15

The black gearbox holds the 12z
and 20z bevel gears that power
the jaws. Since the smaller gear
is driving the larger one, the
torque of the Medium Motor is
increased.

1:1

3

	b uilding the T-R3X	 347

R

348	C hapter 15

1:1

7

G

G

G

	b uilding the T-R3X	 349

350	C hapter 15

1:1

	b uilding the T-R3X	 351

352	C hapter 15

The bottom jaw is moved by the
motor. The 3M beams that carry
the movement to the upper jaw
are connected to the opposite
side of the pivot (compare its
attachment points with those
of the bottom jaw), so the jaws
rotate in opposite directions.

1:1

3

	b uilding the T-R3X	 353

13 3

4

354	C hapter 15

	b uilding the T-R3X	 355

main assembly

Attach the Head and Torso Assembly,
inserting the two black pins into the last
holes of the 15M beam. Connect the cable
attached to port C to the Medium Motor.

356	C hapter 15

1:1

31

4

4

	b uilding the T-R3X	 357

The T-R3X is
complete!

conclusion
In this chapter, you built the fierce T-R3X and discovered some
new building techniques in the process. In the next chapter,
you’ll program the T-R3X to roam around and explore its
surroundings. You’ll also learn how to give such a creature
autonomous behavior, allowing it to perform different actions
based on its “mood,” sensor readings, and timers.

32

358	T he EV3L Scientist’s Apprentice

	T he EV3L Scientist’s Apprentice	 359

360	T he EV3L Scientist’s Apprentice

	T he EV3L Scientist’s Apprentice	 361

16
programming the T-R3X

In this chapter, you’ll program the fearsome T-R3X! The first
program will make the dinosaur explore its environment by
walking, detecting obstacles, looking around, and turning away
from obstacles. Then, we’ll model more complex autonomous
behavior to make the T-R3X look around, react to “prey” (the IR
Beacon), and hunt it down. You’ll also learn the basics of using
state machines to model behavior for a robot and how to com-
pute complex logic expressions using mathematical formulas.

building the
My Blocks for
the Wander
program

Before making the first program, Wander, for the T-R3X, we
need to prepare the My Blocks. As you build the My Blocks,
I’ll point out noteworthy techniques and ideas. The My Blocks
include the basic sequences to reset the legs at startup and to
make the robot step forward, turn, roar, and chew. For each
My Block, I’ll list the sequence of blocks and show the final

My Block showing the default input values and the icons used.
Create each My Block using the figures as references.

the Reset My Block

The Reset My Block (Figure 16-1) is needed at the beginning of
each program to reset all the mechanisms of the T-R3X to their
initial positions. The body-shifting motor rotates until it reaches
a mechanical stop, then moves the upper body to the center.
Then, in a similar way, the motor that moves the legs aligns the
legs. In a parallel sequence, the Medium Motor rotates to close
the mouth. All the motor rotation counts are reset to zero.

the MoveAbsolute and
MoveAbsolute2 My Blocks

The MoveAbsolute My Block (Figure 16-2) wraps around a
Large Motor block and makes the specified motor rotate by an
absolute number of degrees relative to the position in which
its rotation count was reset, regardless of its actual position.
(Compare this My Block with the Steer My Block for the SUP3R
CAR shown in Figure 12-7 on page 236.)

The inputs are named Port, Power, Angle, and Brake at
End. All but the last one are numeric inputs. Brake at End is a
logic input like the Motor block. The Port parameter can be 1
(for output port A), 2 (B), 3 (C), or 4 (D).

Figure 16-1: The Reset My Block

364	C hapter 16

To make the MoveAbsolute2 My Block, use the My Blocks
tab in Project Properties to copy and paste the MoveAbsolute
My Block. The name MoveAbsolute2 is assigned automatically to
the copy when you paste the original My Block.

I need to make an identical copy of the MoveAbsolute My
Block because My Blocks are not re-entrant, meaning that
two instances of the same My Block cannot be executed in
parallel. If you tried to do this, one of the My Blocks would
have to wait for the other to complete before starting.

the Step My Block

The Step My Block (Figure 16-3) includes a basic sequence
to make the T-R3X step forward by shifting the weight of
its body left and right and moving its legs forward and back.
The parameters for each MoveAbsolute My Block and Wait

block are chosen precisely to make the robot take steps at a
good pace.

the Roar My Block

The Roar My Block (Figure 16-4) plays the T-rex roar sound
while opening the robot’s mouth, and then closes the mouth.

the Chew My Block

The Chew My Block (Figure 16-5) makes the robot chew its
prey. The mouth opens and closes in sync with the Crunching
sound. Notice that the Play Type is set to Play Once (1) in
the Sound block to make the program flow continue while the
sound is played. (If we had selected the Wait for Completion
Play Type, the block would pause the program until the sound
finished.)

Figure 16-2: The MoveAbsolute My Block

Figure 16-3: The Step My Block

Figure 16-4: The Roar My Block

	 programming the T-R3X	 365

the Look My Block

The Look My Block (Figure 16-6) makes the robot turn its body
(and the IR Sensor mounted on its head) left and right as it
measures the proximity of the objects around it. This My Block
outputs a logic value called Clearest, which is set according to
the direction with the clearest line of sight, corresponding to the
highest proximity value. When the Clearest output is True, the
clearest direction is to the right; False means it’s to the left.
You can use this output to make the robot turn in either the
direction deemed to be most free of obstacles at eye level or
the direction where the nearest object is detected.

the Right My Block

The Right My Block (Figure 16-7) includes a basic sequence to
make the robot turn right. The key to making the robot turn in
place lies in exploiting the conservation of angular momentum.
The heaviest part of the robot (its upper body) is shifted suddenly
by the third MoveAbsolute My Block while the MoveAbsolute2 My
Block moves the robot’s legs. In this way, the lightest part of the
robot (the legs) is forced to turn in the direction counter to the
body’s rotation, while the upper body remains still with respect
to ground.

Figure 16-5: The Chew My Block

Figure 16-6: The Look My Block

Figure 16-7: The Right My Block

1

1

366	C hapter 16

the Left My Block

The Left My Block (Figure 16-8) includes the basic sequence
to make the robot turn left. As with the Right My Block, the
parallel sequence executes a MoveAbsolute2 My Block.

the TurnUntil My Block

The TurnUntil My Block (Figure 16-9) repeats the turning
sequence to the Right or Left, according to the direction
specified by the Dir logic input. The sequence continues
until the number of times specified by the Count input is
reached and the IR Sensor measures a proximity above
the threshold specified by the Prox numeric input. The first
Switch block shifts the weight to the correct side before the
turning sequence begins.

Fi
gu

re
 1

6-
8:

 T
he

 L
ef

t
M

y
B

lo
ck

Fi
gu

re
 1

6-
9:

 T
he

 T
ur

nU
nt

il
M

y
B

lo
ck

	 programming the T-R3X	 367

programming the
T-R3X to wander

Having prepared your My Blocks, you can now make the Wan-
der program for the T-R3X, which will make it walk and turn
away from obstacles. The program is shown in Figure 16-10.

The Step My Block is repeated in the loop labeled GO. The IR
Sensor is checked continuously in the loop named IR that is run-
ning in the parallel sequence. When an obstacle is detected, the
Loop Interrupt block ends the GO loop so that the blocks after it in
the MAIN loop can be executed: The T-R3X roars, looks around,
and turns in the direction deemed to be the least cluttered.

Note	 The T-R3X walks well on flat, smooth surfaces but
may fall over if asked to walk over rough surfaces like carpet.

designing the
behavior of
the T-R3X

When designing the behavior of the T-R3X, I first considered
the fierce nature of this prehistoric predator. To have the
robot display appropriate behavior, I decided to make it hunt

using the Remote IR Beacon as its prey. The state diagram
for the T-R3X is shown in Figure 16-11 (see “Digging Deeper:
Behavior Modeling Using State Machines” on page 368 for
more information on state diagrams). Notice that some transi-
tions occur spontaneously after the actions of a certain state
are performed, as indicated by dashed arcs. For example, after
eating, the robot goes into the IDLE state.

Figure 16-10: The Wander program

False case is empty.

IDLELOOK

START

ANGRY

CHASESEEK

EAT

HUNGRY

bored

object

hungry
time

prey
detectedprey

detected

prey frontal

prey lateral
prey
reached

prey
reached

prey reached

no
prey

prey
lost

prey
lost

Figure 16-11: The state diagram of the T-R3X’s behavior

368	C hapter 16

To keep things simple, the nodes report only the name of
each state. The actions performed in each state are as follows:

N	 START: In the START state, we initialize all of the robot’s
mechanisms, such as its mouth, its body, and its legs. We
also reset the timers that will trigger the spontaneous
stimuli of boredom and hunger, and we set their timeouts
using random numbers.

N	 IDLE: Following the START state, the robot goes into the
IDLE state. While in this state, the robot performs no vis-
ible actions, but the IR Sensor and timers are continuously
checked because different events may occur: The IR Sensor
can measure a nearby object or detect the Remote IR Beacon
(the prey!), or timers for states like hunger or boredom may
elapse at randomly chosen intervals.

digging deeper:
behavior modeling
using state machines

Many robots don’t exhibit very interesting behavior, usu-
ally because they execute actions in a loop. For example,
the robot will walk until it sees an obstacle, turn, and then
start walking forward again. How can you give your crea-
tures a spark of life, so that their behavior makes them
look like they have their own will?

The answer is to use finite-state machines, also
known as simply state machines or SMs. State machines
are a programming technique that you can use to model
behavior in robots.

A state machine (or state automaton) models behav-
ior based on a finite number of states, the transitions
between these states, the set of events that can occur,
and possible actions.

N	 The state describes the machine’s situation, based
on past or present events, thus reflecting the history
of what happened from system startup until now. In
most cases, all the things we should know about the
machine’s past are condensed into just the machine’s
current state.

N	 State transitions are not something you can see: When
an event occurs in a certain state, a transition that
brings the machine from one state to another is trig-
gered. When events cause state changes, our state
machine is called event driven.

N	Events can be represented by, for example, input from
a sensor, a timer running out, or an internal counter
reaching a certain value. Events cause transitions
between states.

N	Actions are the outputs of the machine and are its
visible behavior.

State machines can be represented using a state dia-
gram, as shown in Figure 16-12. The circles (nodes) with
letters inside them represent the states (S0, Si, Sj, and Sk).
The arrows going from one state to another represent the

transitions between these states. Every arrow is marked
with the event Eij that caused the state transition from
state i to j. Ai is the action performed in the state Si.

As you can see in Figure 16-12, any state machine
has a starting state (S0) that does not have any arrows
pointing to it. Once the robot has left this state, it cannot
return to it. The actions of this state are executed only
once, so usually this state initializes the variables and
moving parts.

Note	 When designing a state machine, be sure to
avoid so-called absorbing states, which lack exit-
ing arcs; once such a state is reached, it cannot be
escaped, and the machine stalls. To avoid getting
stuck in an absorbing state, be sure each state has a
transition to another state.

S0

SiA0
Ai

Aj

Ak

E0i

Sj

Sk

Eij

E...
Ejk

Eji

starting
state

absorbing
state

event

to other
states...

action

state
name

transition

Figure 16-12: A state diagram—a representation of a state machine

	 programming the T-R3X	 369

N	LOOK: When the timer associated with boredom elapses, the
robot looks right and left and turns in place in the direction
deemed to be most free of obstacles. The boredom timer is
then reset, a new interval is randomly chosen, and the robot
returns to the IDLE state.

N	ANGRY: The robot roars in fury if its prey escapes, if it’s
hungry and no prey is in sight, or if an object other than its
prey approaches. Then it returns to the IDLE state.

N	HUNGRY: When the hunger timer elapses, the robot
becomes hungry and checks for the presence of prey. If
no prey is detected, the T-R3X goes into the ANGRY state;
otherwise, it goes into the SEEK state to begin the hunt.

N	SEEK: When the prey is detected, this is the initial state
that begins the hunt. The robot checks whether the prey
is in front of it. If it is, the robot goes into the CHASE state
to reach it. If the prey is to the left or right, the robot turns
toward it. If the prey escapes (disappears from sight), the
robot goes into the ANGRY state. If the T-R3X reaches its
prey, it goes into the EAT state.

N	CHASE: When the robot is in the SEEK state and spots its
prey almost straight ahead, it reaches this state and walks
straight toward the prey. If the prey is detected to the left or
right, however, the robot returns to the SEEK state to turn
toward it. If the prey escapes, the robot goes into the ANGRY
state, but if the robot reaches the prey, it goes into the EAT
state.

N	EAT: When the prey is seen nearby, the robot tears the prey
into pieces and chews it up! Then it returns to the IDLE state,
the hunger timer is reset, and a new interval is randomly
chosen.

As you can see, you can describe the behavior of a robotic
creature using natural language.

implementing
a state
machine

In this section, you’ll learn how to implement a state machine
(SM) using the EV3 software. Each abstract component of the
state machine (states, transitions, events, and actions) will be
represented by a sequence of programming blocks. (The pro-
gram shown in Figure 16-13 is just a generic structure; you’ll
see how to implement the SM for the T-R3X in detail later on.)

general structure

A state machine can be implemented in EV3 language by following
the generic structure of Figure 16-13. Before the main loop, you
can reset the robot’s mechanics, reset event timers, and initialize
the state variable S by assigning the first state that the state
machine should execute (such as the default state named IDLE).

In the main loop, the state variable is read and used to
switch among the various cases of a Switch block. Each case
represents a state, and in each case you can perform actions,
check for events, and transition to other states by assigning
new values to the state variable. (Transitions can be either
spontaneous or based on events.)

To keep the program tidy, group the actions, event checks,
and transitions into a single My Block for each state.

starting state

The initial START state can be implemented by placing one or
more My Blocks before the main program loop. In the generic
program shown in Figure 16-13, the Reset My Block resets
the robot’s mechanisms, while the INIT My Block sets the initial
value for the state variable, resets the timers, and chooses
random timeouts for them.

reset
mechanisms

initialize
state variable
and reset timers

main loop

multiple
switch

read state
variable

state names

actions check events make transitions

Figure 16-13: The generic implementation of a state machine using EV3 language

370	C hapter 16

state variable

We represent the state of the machine with a single variable S.
The state variable is global, which means that it can be accessed
from anywhere in the program. If you choose a numeric vari-
able, you must associate an integer value with each of the
states. For example, IDLE would be 0, LOOK would be 1, and
so on. The problem with using numeric state variables is that
you might forget the codes for the various states and get
confused.

Alternatively, you can make the state variable a text vari-
able, so that you can just write the state name into it, such as
IDLE, LOOK, and so on. If you use text variables when making
a transition, be sure to write the exact name of the state into
the state variable, or the machine will not behave as expected.
It will be trying to reach a state that does not exist and will
execute the default state (in this case, the IDLE state). The
state variable in the generic program shown in Figure 16-13
is a text variable.

Warning	 The Switch block in Text mode is case sensitive,
which means that IDLE is different from Idle or idle. Be sure
to write state names with all capitals to avoid errors.

transitions

Transitions can be triggered by an event, or they
can be programmed to occur automatically once
all of a state’s actions have been performed. To
make a transition, you assign a new value to the
state variable S, either in the main program or in
any My Block. Once the blocks of the current state
finish running, the state variable is read again
in the main loop, and the value assigned to the
state variable will determine the next state to be
executed.

If you don’t change the state variable, the
machine will remain in the current state, and the
main loop will continue to execute the current state’s
actions.

sensor events

In each state, you can check for the occurrence of particular
events and transition to another state when one of those
events occurs. For example, you might compare the value
of a sensor against a threshold, and if the comparison is
true, assign a new value to the state variable, as shown in
Figure 16-14.

You can also group all blocks that read sensors into one
monitor-like My Block and then place that My Block in the
main Loop, outside the Tabbed Switch block. This My Block
will always execute, no matter the machine’s state.

timer events

To make it seem as if your robot behaves spontaneously, you
can generate events that trigger when timers exceed randomly
chosen thresholds, as shown in Figure 16-15. Setting timer
events is kind of like setting an alarm clock. You need one timer
for each behavior that you want to simulate: one for hunger
(Timer 1), one for boredom (Timer 2), one for sleep, and so on.

Once the timer-generated transition ends, reset the timer
and choose a new random value for its threshold, as shown in
Figure 16-16.

Figure 16-14: An event can be generated by checking the value of a sensor.

Figure 16-16: A timer is reset, and its threshold is set to a

random number to generate a spontaneous future event.

False case is empty.

Figure 16-15: A timer that exceeds its threshold generates a spontaneous transition to another state.

False case is empty.

	 programming the T-R3X	 371

Instead of using a timer, you can use a variable to count
how many times an event has occurred—for example, how
many times the Touch Sensor has been pressed. If the count
surpasses a certain threshold, the state machine will transition
to another state.

timer-filtered events

Say you want an event to occur (and trigger a transition) when
a certain logic condition holds for a specified amount of time,
while filtering out conditions that last only a fraction of a sec-
ond. You can do this as shown in Figure 16-17: The state vari-
able is set to ANGRY if the logic value carried by the Data Wire
is False for more than 1 second (the Switch block is in Timer
Compare Time mode, Threshold Value set to 1). The timer is

reset every time the logic condition is True (the opposite of the
desired value). If the timer is not reset for a certain amount
of time, its Elapsed Time will exceed the Threshold Value, and
the True case of the Switch block will execute, setting the state
variable to ANGRY.

actions

Your robots can perform certain actions—such as moving
motors, playing sounds, and flashing lights—depending on
the current state. The sequence of actions should last only a
few seconds (so that the robot can respond promptly to new
events) and must not contain infinite loops or the machine will
stall. The main loop handles repeated actions.

Figure 16-17: You can use a timer to trigger a state transition only if a condition remains constant for a

certain period.

False case is empty. False case is empty.

digging deeper:
computing complex
logic operations using
the math block

It’s easy enough to program complex logic expressions
with EV3 blocks, but sometimes the resulting sequence of
blocks can become cumbersome. For example, combining
the logic variables A, B, and C to compute this expression
would take four Logic Operations blocks and a lot of Data
Wires, as shown in Figure 16-18(a).

Result = (A AND B) OR (C AND NOT(B))

But there’s a more elegant way. In Chapter 6, you
learned that input logic values are converted automatically
to numeric values (True = 1, False = 0) when the Data Wires

carrying logic values are plugged into numeric inputs. Here’s
how to compute any logic expression using the Math block,
without creating a mess of blocks and wires in the process:

1.	 In a Math block set in Advanced mode, enter a formula
containing the corresponding algebraic representation
of each logic operation, as listed in Table 16-1.

2.	 Convert the numeric result of the Math block to a logic
value using the Compare block, as explained in “Con-
verting Numeric Values to Logic Values” on page 98:
Set mode to Not Equal To and input B to 0 and drag a
Data Wire from the Math block to input A. In this way,
any value other than 0 is seen as True.

For example, you can get the same result as in
Figure 16-18(a) by using a Math block in Advanced mode
with the formula (A*B)+(C*(1-B)) and a Compare block to
check whether the numeric result is different from 0, as
shown in Figure 16-18(b).

(continued)

372	C hapter 16

table 16-1: conversion of logic expressions into
algebraic formulas

Logic Expression Algebraic Formula

NOT(A) (1 – A)

A OR B (A + B)

A AND B (A * B)

A XOR B (A – B)^2

A NOR B (1 – A) * (1 – B)

A NAND B (1 – A * B)

Note	 The logic AND function and multiplication are
equivalent for any value for the inputs A and B (0 × 0 = 0,
0 × 1 = 0, 1 × 1 = 1). On the other hand, the OR function
and addition are equivalent only because we later con-
vert any nonzero value to True. For example, when both
A and B are equal to 1 (True), the result of A OR B would
be A + B = 2, a result that is not a valid binary digit (that
is, neither 0 nor 1). However, 2 is different from zero,
and so the Compare block converts it to True.

WARNING	 A and B should be input logic values and
should not be replaced by another algebraic formula, or
you might get incorrect results. For example, you can’t
compute NOT(A OR B) as (1 – (A + B)), where you’ve

taken the formula (1 – A) and substituted in (A + B)
for the operand A. If you did, you would get (1 – A – B),
which is wrong: If both A and B were True (equal to 1), the
result of the algebraic formula would be -1 (incorrect)
rather than 0 (correct).

Table 16-2 lists some examples of logic expressions
converted into algebraic formulas.

table 16-2: examples of converting logic
expressions to algebraic formulas

Logic Expression Algebraic Formula

NOT(A) OR
NOT(B) OR
C

(1 - A) + (1 – B) + C

(A AND B) OR
(A AND C) OR
NOT(A)

A * B + A * C + (1 – A) =
A * (B + C) + (1 – A)

A AND NOT(B) AND C OR
NOT(A)

A * (1 – B) * C +
(1 – A)

I’ll use this conversion method to clean up some of
the My Blocks needed by the T-R3X. I think you’ll find that
your programs will also benefit from this technique.

Figure 16-18: How to compute the same complex logic expression using four Logic Operations blocks and many Data Wires (a) and the Math block in

Advanced mode and a Compare block (b)

(a)

(b) (A*B)+(C*(1-B))

NOT(B) A AND B C AND NOT (B) (A AND B) OR (C AND NOT(B))

(a)

(b) (A*B)+(C*(1-B))

	 programming the T-R3X	 373

making the
My Blocks
for the final
program

To implement the final StateMachine program to make the
T-R3X behave autonomously and go hunting, we need to
prepare some more My Blocks.

the Turn My Block

The Turn My Block (Figure 16-19) is like the TurnUntil My
Block. It makes the robot turn based on the Dir logic input,
where True means turn right and False means turn left. The
turning sequence is repeated by the number of times specified
by the Count numeric input.

the ReadBeacon My Block

The ReadBeacon My Block (Figure 16-20) wraps an IR Sensor
Block in Measure Beacon mode. It has four logic outputs:

	 Detected is True when the beacon is detected and its proxim-
ity is less than 100. This double check is necessary because
the IR Sensor sometimes measures a proximity of 100 even
when its Detected Output is True and the beacon is effec-
tively out of sight.

	 Outside is True when the Heading to the beacon is below –10
or above 10. When inside these boundaries, the beacon can
be considered to be in front of the robot. This broad range
of values allows for the wide swing of the robot’s head as it
walks.

	 Dir is True when the Heading is greater than zero (beacon
seen at the right side). This value can be used as input to the
Turn My Block to make the robot turn toward the beacon.

	 Near is True when the Proximity to the beacon is less than 6.
This value tells the robot that the prey is within range of
its jaws.

Digging Deeper:
De Morgan’s laws

To convert the logic operator NOR of Table 16-1,
I applied De Morgan’s laws, which state:

	NOT (A OR B) = NOT (A) AND NOT(B)
	NOT (A AND B) = NOT(A) OR NOT(B)

These laws can sometimes help simplify the logic
expressions needed by your programs.

Figure 16-19: The Turn My Block

374	C hapter 16

the INIT My Block

The INIT My Block (Figure 16-21) initializes
the state machine by setting the text state
variable S to IDLE, resetting Timers 1 (hunger)
and 2 (boredom), and drawing random values
for the corresponding time thresholds. The
text state variable is set with the text data
from a Constant block to make the content of
the string more evident to whoever reads the
program. (Remember, you can write text to
a variable simply by entering the text in the
input field.)

the IDLE My Block

The IDLE My Block (Figure 16-22) imple-
ments the IDLE state of the diagram shown
in Figure 16-11. It performs no visible action;
instead, it silently checks the IR Sensor for
nearby objects, checks whether the timers
have surpassed their thresholds, and checks
whether the beacon is in sight.

Notice that the transition to the LOOK
state is made if Timer 2 exceeds the threshold
(condition A), which means that the robot is
bored, and if there is no object in sight (condi-
tion B). The logic expression (A AND NOT(B))
is translated into the formula A*(1-B) in the
Math block in Advanced mode. (If you don’t
remember how to produce such an expression,
read “Digging Deeper: Computing Complex
Logic Operations Using the Math Block” on
page 371.)

the HUNGRY
My Block

The HUNGRY My Block (Figure 16-23) imple-
ments the HUNGRY state of the diagram shown
in Figure 16-11. It checks to see whether the
prey is in sight, and if the beacon is detected, it
makes the transition to the SEEK state. If not,
it transitions the T-R3X to the ANGRY state. In
the latter case, Timer 1 (for hunger) is reset,
and a new random value is generated for its
threshold.

Fi
gu

re
 1

6-
20

: T
he

 R
ea

dB
ea

co
n

M
y

B
lo

ck

Fi
gu

re
 1

6-
21

: T
he

 IN
IT

 M
y

B
lo

ck
 (t

he
 ic

on
 fo

r
th

is
 M

y
B

lo
ck

 is
 a

 r
ed

 h
ea

d)

	 programming the T-R3X	 375

Figure 16-22: The IDLE My Block (the icon for this My Block is a red head)

False case is empty.

False case is empty.

False case is empty. False case is empty.

Figure 16-23: The HUNGRY My Block (the icon for this My Block is a red head)

False case is empty.

1

2

1

2

376	C hapter 16

the SEEK
My Block

The SEEK My Block (Figure 16-24)
implements the SEEK state of the
diagram shown in Figure 16-11.
The ReadBeacon My Block provides
the logic values that regulate the
operation of this state. If the
beacon is detected to the side of
the robot (the Outside output is
True), the Turn My Block makes
the robot turn in the direction
specified by the Dir output. If the
beacon is detected in front of the
robot (the Outside output is False),
the state variable is set to CHASE.
If the beacon is not detected, the
transition to another state is not
instantaneous: The beacon must
remain undetected for 1 second
before Timer 3 triggers the state
transition to ANGRY (see “Timer-
Filtered Events” on page 371). If
the beacon is seen nearby (Near
output is True), the state variable
is set to EAT.

the CHASE
My Block

The CHASE My Block (Figure 16-25)
implements the CHASE state of the
diagram shown in Figure 16-11. It
makes the transition to the SEEK
state if the beacon is seen to the
side of the robot (that is, if the
Outside output of the ReadBeacon
My Block is True). If the beacon is
not detected for more than 1 sec-
ond, the state is changed to ANGRY.
Finally, if the beacon is nearby (the
Near output is True), the state is
changed to EAT.

Fi
gu

re
 1

6-
24

: T
he

 S
EE

K
M

y
B

lo
ck

Fa
ls

e
ca

se
 is

 e
m

pt
y.

Fa
ls

e
ca

se
 is

 e
m

pt
y.

Fa
ls

e
ca

se
 is

 e
m

pt
y.

Fa
ls

e
ca

se
 is

 e
m

pt
y.

2 3

21 3

1

	 programming the T-R3X	 377

programming
the T-R3X’s
behavior

Now that all the My Blocks are ready, you can finally build the
program shown in Figure 16-26 that implements the state
machine for the T-R3X shown in Figure 16-11. Some cases
of the Tabbed Switch block contain My Blocks, while others
contain sequences of blocks.

Now run the program to test the behavior of the T-R3X.
Try tweaking the range of the random thresholds for the timers
to make the robot more or less temperamental.

ordering state
transitions by
priority

Each time the test of a Switch block succeeds, a new
value is written to the state variable, overwriting the
old value. Therefore, all possible transitions should be
placed in order of increasing priority: The transition
with the lowest priority should be first in the sequence
of tests, and the transition to the state with the highest
priority should be the last.

In the case of a hunting T-R3X, its highest priority
is to attack its prey. Therefore, in the IDLE My Block,
the transition to the LOOK state has a lower priority
than the transition to the EAT state.

Even if Timer 2, corresponding to boredom,
causes the Switch block to set the state variable to
LOOK when the beacon is nearby (the Near output of
the ReadBeacon My Block is True), the state variable
is set to EAT, overwriting the previous value.

Figure 16-25: The CHASE My Block

1

1

378	C hapter 16

Fi
gu

re
 1

6-
26

: T
he

 S
ta

te
M

ac
hi

ne
 p

ro
gr

am

	 programming the T-R3X	 379

conclusion
In this chapter, you learned to program the T-R3X to make it
walk, turn, and avoid obstacles. After an introduction to model-
ing advanced behaviors for robots using state machines, you
programmed the T-R3X to show autonomous behavior, giving
it some random attitude changes and a fierce hunting instinct
at the expense of the beacon-prey. You also learned how to
compute complex logic expressions using the Math block in
Advanced mode instead of many Logic Operations blocks.

experiment 16-1

Design a new behavior for the T-R3X, either begin-
ning with the state machine discussed in this chapter
or starting from scratch. For example, try “taming”
the T-R3X by making it act like an electronic pet that’s
happy if you feed it and pet it frequently enough. You
can use the Remote IR Beacon to feed and pet the
T-R3X, or you can use the IR Sensor for detecting
“food” and the EV3 Brick buttons for petting.

experiment 16-2

Create a program to remotely control the T-R3X. Use
Remote IR Beacon commands to perform different
actions using a Switch block.

experiment 16-3

Using the few LEGO elements remaining in the set,
decorate the Remote IR Beacon to see if the T-R3X
finds it tastier.

experiment 16-4

If you stop building at step 23 (page 338) and add
the 9M beam shown in step 29 (page 344), you have
a walking bipedal robot that you can customize. Start
from that base to make your own bipedal creature!

380	T he EV3L Scientist’s Apprentice

A
the EV3 31313 set bill of materials

This appendix lists the LEGO elements included in the EV3
Retail set. Each entry includes:

N	 An image of the piece, the quantity included in the set,
and the color

N	 The design ID (used to identify the parts in the LDraw
computer-aided design system), which you can
also use to look for spare LEGO parts on BrickLink
(http://www.bricklink.com/)

N	 The unique LEGO part ID (which takes color into account),
which you can use to look for spare parts using LEGO Cus-
tomer Service (http://service.lego.com/en-us/replacementparts/)

N	 The LEGO Group’s internal name for the element
N	 A short, easy-to-remember name

Note	 I’ve omitted the prefix Technic at the beginning of
each name for brevity. When referring to axles and beams,
XM is the abbreviation for X modules long. For example,
11M stands for 11 modules long. And a part like the
3×7 angular beam is read as “3 by 7 angular beam.”

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

10 Black 60483 6006140 Beam 1×2 with
Cross and Hole

2M Beam with
Cross Hole

12 Black 32523 4142822 3M Beam 3M Beam

10 Black 32316 4142135 Beam, 5M 5M Beam

6 Black 32524 4495935 Beam, 7M 7M Beam

8 Black 64289 4645732 Beam, 9M 9M Beam

looking up pieces
on Brickset

To check the official LEGO name and see what a part
looks like, add the LEGO ID at the end of this address:
http://www.brickset.com/parts/?part=. For example, to
see the first element in the following table, go to http://
www.brickset.com/parts/?part=6006140. This takes you
to a unique page for that part at Brickset, an online
resource for LEGO collectors and hobbyists.

http://service.lego.com/en-us/replacementparts/

382	A ppendix A

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

4 Red 64290 4562805 Beam, 11M 11M Beam

4 Black 41239 4522933 Beam, 13M 13M Beam

4 Black 64871 4542573 Beam, 15M 15M Beam

2 Grey 64179 4539880 Beam Frame 5×7
Ø4.85

O Frame

2 Grey 64178 4540797 Beam R. Frame
5×11 Ø4.85

H Frame

4 Black 60484 4552347 T-Beam 3×3 w/
Hole Ø4.8

T Beam

8 Black 32140 4120017 Angular Beam,
2×4, 90 deg

2×4 Angular Beam

6 Black 32526 4142823 Angular beam,
3×5, 90 deg

3×5 Angular Beam

4 Black 32348 4128593 Angular Beam,
4×4

4×4 Angular Beam

12 Black 32271 4140327 Angular Beam,
3×7

3×7 Angular Beam

12 Black 32009 4111998 Double Angular
Beam 3×7 45°

Double Angular
Beam

	 the EV3 31313 set bill of materials	 383

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

1 Grey 6632 4211566 Lever 3M 3M Thin Beam

2 Black 6575 4143187 Comb Wheel Cam

2 Black 32005 4629921 Track Rod 6M 6M Link

4 Black 32293 4141300 LT Steering Gear 9M Link

95 Black 2780 4121715 Connector Peg
with Friction

Pin with Friction

38 Blue 6558 4514553 Connector Peg
with Friction 3M

3M Pin with
Friction

28 Blue 43093 4206482 Connector Peg
with Friction/
Cross Axle

Axle Pin with
Friction

10 Red 32054 4140806 3M Fric. Snap w/
Cross Hole

3M Pin with Stop
Bush

4 Grey 3673 4211807 Connector Peg Pin without
Friction

4 Tan 32556 4514554 3M Connector Peg 3M Pin without
Friction

6 Black 6628 4184169 Ball with Friction
Snap

Pin with Towball

6 Grey 2736 4211375 Ball with Cross
Axle

Axle Pin with
Towball

9 Red 6590 4227155 Bush for Cross
Axle

Bush

11 Yellow 32123 4239601 Half Bush Half Bush

12 Red 32062 4142865 2M Cross Axle
with Groove

2M Axle

22 Grey 4519 4211815 Cross Axle 3M 3M Axle

4 Dark Tan 6587 4566927 Cross Axle 3M
with Knob

3M Axle with Stop

4 Dark Grey 87083 4560177 Cross Axle 4M
with End Stop

4M Axle with Stop

3 Tan 99008 4666999 Cross Axle with
Stop 4M

4M Axle with
Middle Stop

9 Grey 32073 4211639 Cross Axle 5M 5M Axle

2 Dark Grey 59426 4508553 Cross Axle 5.5
with Stop 1M

5.5M Axle with
Stop

384	A ppendix A

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

9 Black 3706 370626 Cross Axle 6M 6M Axle

2 Grey 44294 4211805 Cross Axle 7M 7M Axle

6 Dark Grey 55013 4499858 Cross Axle 8M
with End Stop

8M Axle with Stop

1 Grey 60485 4535768 Cross Axle 9M 9M Axle

4 Red 32013 4254606 Angle Element
0 degrees [1]

Angle Connector
#1

6 Red 32034 4234429 Angle Element
180 degrees [2]

Angle Connector
#2

4 Red 32192 4189936 Angle Element
135 degrees [4]

Angle Connector
#4

1 Red 32014 4189131 Angle Element
90 degrees [6]

Angle Connector
#6

3 Red 59443 4513174 Cross Axle
Extension 2M

Axle Connector

1 Grey 57585 4502595 3-Branch Cross
Axle with Cross
Hole

Connector with
3 Axles

2 Grey 32039 4211553 Catch with Cross
Hole

Connector with
Axle Hole

2 Grey 62462 4526985 Tube with Double
Hole Ø4.85

Pin Connector

8 Red 6536 4188298 Cross Block 90° 2M Cross Block

17 Red 32184 4128598 Double Cross
Block

Double Cross
Block

14 Red 42003 4175442 Cross Block 3M 3M Cross Block

2 Red 32291 4128594 Cross Block 2×1 2×1 Cross Block
(“Mickey”)

4 Red 41678 4173975 Cross Block/Fork
2×2

2×2 Fork Cross
Block (“Minnie”)

2 Grey 63869 4538007 Cross Block 3×2 3×2 Cross Block

12 Grey 48989 4225033 Beam 3M with
4 Snaps

3M Cross Block
with 4 Pins

	 the EV3 31313 set bill of materials	 385

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

6 Grey 87082 4560175 Double Bush 3M
Ø4.9

3M Pin with Hole

4 Grey 32138 4211888 Module Bush 2M Beam with
4 Pins

4 Grey 32068 6013936 Steering Gear 3M 3M Cross Block,
Steering

2 Grey 92907 4630114 Cross Block/Form
2×2×2

2×2×2 Fork Cross
Block

1 Black 87408 4558692 Beam 3M Ø4.85
with Fork

Gearbox Cross
Block

4 Black 32072 4248204 Angular Wheel 4z Knob Wheel

1 Tan 6589 4565452 Conical Wheel z12 12z Bevel Gear

1 Tan 32198 6031962 Bevel Gear z20 20z Bevel Gear

2 Black 32270 4177431 Double Conical
Wheel z12 1M

12z Double-Bevel
Gear

4 Black 32269 4177430 Double Conical
Wheel z20 1M

20z Double-Bevel
Gear

5 Black 32498 4255563 Double Conical
Wheel z36

36z Double-Bevel
Gear

2 Dark Grey 3648 4514558 Gear Wheel z24 24z Gear

2 Grey 4716 4211510 Worm Worm Gear

4 Grey 42610 4211758 Hub Ø11.2×7.84 Small Wheel

3 Grey 4185 4494222 Wedge-Belt
Wheel Ø24

Medium Wheel

4 Black 56145 4299389 Rim Wide with
Cross 30/20

Large Wheel

2 Black 50951 4246901 Tyre Low Narrow
Ø14.58×6.24

Small Tire

386	A ppendix A

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

3 Black 2815 6028041 Tyre for Wedge-
Belt Wheel

Medium Tire

4 Black 44309 4184286 Tyre Normal Wide
Ø43.2×22

Large Tire

2 Black 53992 4502834 Caterpillar Track Rubber Tread

4 White 41669 4173941 Bionicle Eye Tooth

6 Red 41669 4185661 Bionicle Eye Tooth

1 White 61070 6015596 Right Screen
Ø4.85 4×7×4

Right Mudguard

1 White 61071 6015597 Left Screen Ø4.85
4×7×4

Left Mudguard

3 White 64391 4547582 Right Panel 3×7 Medium Panel #4

3 White 64683 4547581 Left Panel 3×7 Medium Panel #3

3 White 64393 4558797 Right Panel 3×11 Long Panel #6

3 White 64681 4558802 Left Panel 3×11 Long Panel #5

4 White 98347 4656205 Blade with Technic
Hole 1

Curved Blade

	 the EV3 31313 set bill of materials	 387

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

6 Red/Grey 98568 4657296 Sword Sword

1 Red 85544 4544143 V-Belt Ø24 Rubber Band

1 Black 53550 6024109 Magazine for Balls
Ø16.5

Ball Magazine

1 Black 54271 6024106 Shooter Ball Shooter

3 Red 54821 4545430 Ball Ø16.5 Ball

1 Various 95646 6009996 MS-EV3, P-Brick EV3 Brick

2 Various 95658 6009430 MS-EV3, Large
Motor

EV3 Large Motor

1 Various 99455 6008577 MS-EV3, Medium
Motor

EV3 Medium
Motor

1 Various 95648 6008472 MS-EV3, Touch
Sensor

EV3 Touch Sensor

1 Various 95650 6008919 MS-EV3, Color
Sensor

EV3 Color Sensor

388	A ppendix A

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

1 Various 95654 6009811 MS-EV3, IR
Sensor

EV3 IR Sensor

1 Various 72156 6014051 MS-EV3, IR
Beacon

EV3 Remote IR
Beacon

4 Black 11145 6024581 Cable 250 mm Cable 25 cm /
10 in

2 Black 11146 6024583 Cable 350 mm Cable 35 cm /
14 in

1 Black 11147 6036899 Cable 500 mm Cable 50 cm /
20 in

B
differences between

the education set and retail set
The tables in this appendix list the differences between the
Retail set 31313 and the Education Core set 45544. The sets
have a different assortment of elements and sensors. The
Education Core set has fewer parts and is designed to be more
of a tool kit, with a more balanced quantity of different parts.
For example, the Education Core set lacks many of the decora-
tive blades and swords, but it has more gears. Also, the Educa-
tion Core set has a special steel ball that you can insert into a
socket to make a smooth caster wheel for wheeled robots. This
appendix also provides tables that list the parts you would need
to turn Retail set 31313 into Education Core set 45544 and
the parts you would need to create the 31313 set assortment
using the 45544 set or Education Expansion set 45560.

electronic
devices

The Education Core set lacks the IR Sensor and the Remote IR
Beacon of the Retail set, but it does have a Gyroscopic (Gyro)
Sensor (which can measure rotation speed along an axis) and
an Ultrasonic (US) Sensor (which can measure distances in
centimeters or inches). It also has two Touch Sensors. The
Education set’s assortment of cables is the same as that of the
Retail set. Its EV3 Brick hardware is exactly the same, but the
firmware is different: The Education version of the firmware
includes an on-brick Data Logging App.

the EV3 software
Compared to the Home Edition that comes with the Retail set,
the Education EV3 Software has a different Lobby and Activi-
ties, and it has a sophisticated Data Logging environment for

experiments and data analysis. Its Content Editor has additional
features designed for use by teachers in classrooms, and its
Programming Palettes have extra blocks to control the differ-
ent sensors (the US, Gyro, Temperature, and Power Meter) and
to manage data logging.

The Home Edition has only a subset of the features of the
Education Edition. The EV3 Software Home Edition lets you
open a project created in the EV3 Software Education Edition.
In fact, even if the project has blocks that are not found in the
Home Edition, you can still open and download and run pro-
grams to the EV3 Brick. However, you won’t be able to edit any
of the extra blocks. (Extra sensor blocks for the Home Edition
are available for download at http://lego.com/mindstorms/.)

turning the
retail set into
the education
core set

The Retail set 31313 and the Education Core set 45544 share
many elements, though some have different colors. The table
below lists only the parts you’ll need to build models designed
with the LEGO MINDSTORMS Education EV3 Core set 45544.
This table does not include parts that are simply a different
color (like the bushes), but I do note the differences.

Although there are enough 3M beams in the 31313 set,
they are all black, so I’ve added the 16 colored 3M beams
included in the 45544 set because these can be used to per-
form various activities with the Color Sensor. For example, you
could create a robot that sorts LEGO pieces by color or one that
can react to colors in other ways.

390	A ppendix B

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

4 Yellow 32523 4153707 3M Beam 3M Beam

4 Red 32523 4153718 3M Beam 3M Beam

4 Blue 32523 4509376 3M Beam 3M Beam

4 Green 32523 6007973 3M Beam 3M Beam

2 Black 41239 4522933 Beam, 13M 13M Beam

2 Black 64871 4542573 Beam, 15M 15M Beam

1 Grey 64179 4539880 Beam Frame 5×7
Ø4.85

O Frame

2 Black 32348 4128593 Angular Beam,
4×4

4×4 Angular Beam

4 Black 6629 4112282 Angular Beam,
4×6

4×6 Angular Beam

2 Black 32449 4142236 Half Beam 4M 4M Thin Beam

2 Black 33299 4563044 Connector Peg
with Handle

3M Beam with
Pin

4 Grey 99773 6009019 Half Triangle
Beam 5×3

Triangular Thin
Beam

8 Tan 3749 4666579 Connector Peg /
Cross Axle

Axle Pin without
Friction

12 Red 32054 4140806 3M Fric. Snap w/
Cross Hole

3M Pin with Stop
Bush

6 Grey 3673 4211807 Connector Peg Pin without
Friction

2 Tan 32556 4514554 3M Connector Peg 3M Pin without
Friction

1 Red 6590 4227155 Bush for Cross
Axle

Bush

	 differences between the education set and retail set 	 391

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

4 Black 3705 370526 Cross Axle 4M 4M Axle

3 Grey 44294 4211805 Cross Axle 7M 7M Axle

2 Black 3707 370726 Cross Axle 8M 8M Axle

1 Grey 60485 4535768 Cross Axle 9M 9M Axle

2 Black 3737 373726 Cross Axle 10M 10M Axle

2 Black 3708 370826 Cross Axle 12M 12M Axle

1 Red 32014 4189131 Angle Element
90 degrees [6]

Angle Connector
#6

3 Red 59443 4513174 Cross Axle
Extension 2M

Axle Connector

1 Grey 57585 4502595 3-Branch Cross
Axle with Cross
Hole

Connector with
3 Axles

2 Grey 62462 4526985 Tube with Double
Hole Ø4.85

Pin Connector

4 Black 45590 4198367 Rubber Beam with
Cross Holes, 2M

2M Rubber Beam

2 Red 32291 4128594 Cross Block 2×1 2×1 Cross Block
(“Mickey”)

4 Grey 63869 4538007 Cross Block 3×2 3×2 Cross Block

4 Grey 55615 4296059 Angular Connector
Peg, 3×3

3×3 Cross Block
with 4 Pins
(“Puppy”)

2 Red 44809 6008527 Hto V Beam
90 Degr.

V Cross Block

4 Dark Grey 10928 6012451 Gear Wheel z8 8z Gear

1 Tan 6589 4565452 Conical Wheel z12 12z Bevel Gear

4 Grey 94925 4640536 Gear Wheel z16 16z Gear

392	A ppendix B

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

2 Dark Grey 3648 4514558 Gear Wheel z24 24z Gear

2 Grey 3649 4285634 Gear Wheel z40 40z Gear

2 Grey 99009 4652235 Turntable Bottom,
28-Tooth

28z Small
Turntable Bottom

2 Black 99010 4652236 Turntable Top,
28-Tooth

28z Small
Turntable Top

1 Grey 4185 4494222 Wedge-Belt
Wheel Ø24

Medium Wheel

1 Black 2815 6028041 Tyre for Wedge-
Belt Wheel

Medium Tire

2 Grey 41896 4634091 Hub, 43.2×26 43.2×26 Wheel

2 Black 41897 6035364 Low Profile Tyre
Ø56×28

56×28 Large Tire

1 Dark Grey 92911 4610380 Power Joint Ball Socket

1 Steel 99948 6023956 Steel Ball Ø36 Steel Ball

54 Black 57518 6014648 Track Link 5×1.5 Large Track Link

4 Black 57519 4582792 Sprocket 40.7×15 Sprocket

	 differences between the education set and retail set 	 393

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

1 Black 87080 4566251 Left Panel 3×5 Short Panel #1

1 Black 87086 4566249 Right Panel 3×5 Short Panel #2

1 Black 64392 4541326 Left Panel 5×11 Long Wide Panel
#17

1 Black 64682 4543490 Right Panel 5×11 Long Wide Panel
#18

1 Various 95648 6008472 MS-EV3,
Touch Sensor

EV3 Touch Sensor

1 Various 99380 6008916 MS-EV3,
Gyroscopic Sensor

EV3 Gyro Sensor

1 Various 95652 6008924 MS-EV3,
Ultrasonic Sensor

EV3 US Sensor

1 Grey 56220 6012820 MS-EV3,
Rechargeable
Battery

EV3 Rechargeable
Battery

394	A ppendix B

turning the
education core
set into the
retail set

This table lists all the parts you would need to get if you have
the Education Core set 45544 and you want to build all of the
robots in this book using the parts found in Retail set 31313.

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

6 Black 60483 6006140 Beam 1×2 with
Cross and Hole

2M Beam with
Cross Hole

6 Black 32316 4142135 Beam, 5M 5M Beam

2 Black 32524 4495935 Beam, 7M 7M Beam

2 Black 40490 4645732 Beam, 9M 9M Beam

1 Grey 64178 4540797 Beam R. Frame
5×11 Ø4.85

H Frame

2 Black 32140 4120017 Angular Beam,
2×4, 90 deg

2×4 Angular Beam

8 Black 32271 4140327 Angular Beam,
3×7

3×7 Angular Beam

8 Black 32009 4111998 Double Angular
Beam 3×7 45°

Double Angular
Beam

1 Grey 6632 4211566 Lever 3M 3M Thin Beam

	 differences between the education set and retail set 	 395

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

2 Black 6575 4143187 Comb Wheel Cam

2 Black 32005 4629921 Track Rod 6M 6M Link

4 Black 32293 4141300 LT Steering Gear 9M Link

35 Black 2780 4121715 Connector Peg
with Friction

Pin with Friction

8 Blue 6558 4514553 Connector Peg
with Friction 3M

3M Pin with
Friction

8 Blue 43093 4206482 Connector Peg
with Friction/
Cross Axle

Axle Pin with
Friction

6 Black 6628 4184169 Ball with Friction
Snap

Pin with Towball

6 Grey 2736 4211375 Ball with Cross
Axle

Axle Pin with
Towball

1 Yellow 32123 4239601 Half Bush Half Bush

2 Red 32062 4142865 2M Cross Axle
with Groove

2M Axle

8 Grey 4519 4211815 Cross Axle 3M 3M Axle

2 Dark Tan 6587 4566927 Cross Axle 3M
with Knob

3M Axle with
Stop

2 Dark Grey 87083 4560177 Cross Axle 4M
with End Stop

4M Axle with Stop

3 Tan 99008 4666999 Cross Axle with
Stop 4M

4M Axle with
Middle Stop

3 Grey 32073 4211639 Cross Axle 5M 5M Axle

2 Dark Grey 59426 4508553 Cross Axle 5.5
with Stop 1M

5.5M Axle with
Stop

5 Black 3706 370626 Cross Axle 6M 6M Axle

4 Dark Gray 55013 4499858 Cross Axle 8M
with End Stop

8M Axle with Stop

2 Red 32034 4234429 Angle Element
180 degrees [2]

Angle Connector
#2

4 Red 32192 4189936 Angle Element
135 degrees [4]

Angle Connector
#4

2 Grey 32039 4211553 Catch with Cross
Hole

Connector with
Axle Hole

396	A ppendix B

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

9 Red 32184 4128598 Double Cross
Block

Double Cross
Block

14 Red 42003 4175442 Cross Block 3M 3M Cross Block

6 Grey 48989 4225033 Beam 3M with
4 Snaps

3M Cross Block
with 4 Pins

2 Grey 87082 4560175 Double Bush 3M
Ø4.9

3M Pin with Hole

4 Grey 32138 4211888 Module Bush 2M Beam with
4 Pins

4 Grey 32068 6013936 Steering Gear 3M 3M Cross Block,
Steering

2 Grey 92907 4630114 Cross Block/Form
2×2×2

2×2×2 Fork Cross
Block

1 Black 87408 4558692 Beam 3M Ø4.85
with Fork

Gearbox Cross
Block

1 Tan 32198 6031962 Bevel Gear z20 20z Bevel Gear

2 Black 32269 4177430 Double Conical
Wheel z20 1M

20z Double-Bevel
Gear

3 Black 32498 4255563 Double Conical
Wheel z36

36z Double-Bevel
Gear

4 Grey 42610 4211758 Hub Ø11.2×7.84 Small Wheel

4 Black 56145 4299389 Rim Wide with
Cross 30/20

Large Wheel

2 Black 50951 4246901 Tyre Low Narrow
Ø14.58×6.24

Small Tire

4 Black 44309 4184286 Tyre Normal Wide
Ø43.2×22

Large Tire

	 differences between the education set and retail set 	 397

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

2 Black 53992 4502834 Caterpillar Track Rubber Tread

6 Red 41669 4185661 Bionicle Eye Tooth

1 White 61070 6015596 Right Screen
Ø4.85 4×7×4

Right Mudguard

1 White 61071 6015597 Left Screen
Ø4.85 4×7×4

Left Mudguard

3 White 64391 4547582 Right Panel 3×7 Medium Panel #4

3 White 64683 4547581 Left Panel 3×7 Medium Panel #3

3 White 64393 4558797 Right Panel 3×11 Long Panel #6

3 White 64681 4558802 Left Panel 3×11 Long Panel #5

4 White 98347 4656205 Blade with Technic
Hole 1

Curved Blade

6 Red/Grey 98568 4657296 Sword Sword

1 Red 85544 4544143 V-Belt Ø24 Rubber Band

398	A ppendix B

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

1 Black 53550 6024109 Magazine for Balls
Ø16.5

Ball Magazine

1 Black 54271 6024106 Shooter Ball Shooter

3 Red 54821 4545430 Ball Ø16.5 Ball

1 Various 95654 6009811 MS-EV3, IR
Sensor

EV3 IR Sensor

1 Various 72156 6014051 MS-EV3, IR
Beacon

EV3 Remote IR
Beacon

turning the
education
expansion set into
the retail set

If you have the Education Core set 45544 and the Education
Expansion set 45560, there’s a good chance that you’re a
schoolteacher. The following table lists the parts you would
need in order to have the assortment of elements in the Retail
set 31313 to build all of the robots in this book.

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

1 Black 32316 4142135 Beam, 5M 5M Beam

8 Black 32271 4140327 Angular Beam,
3×7

3×7 Angular Beam

	 differences between the education set and retail set 	 399

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

2 Black 32009 4111998 Double Angular
Beam 3×7 45°

Double Angular
Beam

2 Black 6575 4143187 Comb Wheel Cam

4 Black 32293 4141300 LT Steering Gear 9M Link

4 Grey 2736 4211375 Ball with Cross
Axle

Axle Pin with
Towball

1 Tan 99008 4666999 Cross Axle with
Stop 4M

4M Axle with
Middle Stop

4 Black 3706 370626 Cross Axle 6M 6M Axle

2 Red 32192 4189936 Angle Element
135 degrees [4]

Angle Connector
#4

5 Red 32184 4128598 Double Cross
Block

Double Cross
Block

2 Red 42003 4175442 Cross Block 3M 3M Cross Block

2 Grey 87082 4560175 Double Bush 3M
Ø4.9

3M Pin with Hole

4 Grey 32068 6013936 Steering Gear 3M 3M Cross Block,
Steering

2 Grey 92907 4630114 Cross Block/Form
2×2×2

2×2×2 Fork Cross
Block

1 Black 32269 4177430 Double Conical
Wheel z20 1M

20z Double-Bevel
Gear

3 Black 32498 4255563 Double Conical
Wheel z36

36z Double-Bevel
Gear

4 Black 56145 4299389 Rim Wide with
Cross 30/20

Large Wheel

2 Black 50951 4246901 Tyre Low Narrow
Ø14.58×6.24

Small Tire

400	A ppendix B

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

2 Black 44309 4184286 Tyre Normal Wide
Ø43.2×22

Large Tire

2 Black 53992 4502834 Caterpillar Track Rubber Tread

3 Red 41669 4185661 Bionicle Eye Tooth

1 White 61070 6015596 Right Screen
Ø4.85 4×7×4

Right Mudguard

1 White 61071 6015597 Left Screen
Ø4.85 4×7×4

Left Mudguard

1 White 64391 4547582 Right Panel 3×7 Medium Panel #4

1 White 64683 4547581 Left Panel 3×7 Medium Panel #3

2 White 64393 4558797 Right Panel 3×11 Long Panel #6

2 White 64681 4558802 Left Panel 3×11 Long Panel #5

4 White 98347 4656205 Blade with Technic
Hole 1

Curved Blade

6 Red/Grey 98568 4657296 Sword Sword

	 differences between the education set and retail set 	 401

Image Qty Color BrickLink
LDraw ID

LEGO ID LEGO Name Easy Name

1 Black 53550 6024109 Magazine for Balls
Ø16.5

Ball Magazine

1 Black 54271 6024106 Shooter Ball Shooter

3 Red 54821 4545430 Ball Ø16.5 Ball

1 Various 95654 6009811 MS-EV3,
IR Sensor

EV3 IR Sensor

1 Various 72156 6014051 MS-EV3,
IR Beacon

EV3 Remote IR
Beacon

402	T he EV3L Scientist’s Apprentice

Symbols

+ (addition, using the Math block in
Add mode), 92

/ (division, using the Math block in
Divide mode), 92–93

* (multiplication, using the Math block in
Multiply mode), 92

– (subtraction, using the Math block in
Subtract mode), 92

= (Compare block in Equal To mode), 98
> (Compare block in Greater Than mode),

98
≥ (Compare block in Greater Than or

Equal To mode), 98
< (Compare block in Less Than mode), 98
≤ (Compare block in Less Than or

Equal To mode), 98
90-degree coupled gears, 115, 125–126

A

absolute angle, turning motor to, 236, 364
absolute value, 92, 97
Action blocks (green header), 73

Brick Status Light block, 81, 240
Display block, 79, 81, 88–89, 92, 97
experimenting with, 79
Large Motor block, 178, 179, 182, 363
Medium Motor block, 177–178, 179,

184, 236
Move Steering block, 76–79, 82, 92
Move Tank block, 81, 236–237, 298
Sound block, 81, 93, 186, 235,

300, 364
addition (Math block), 92
Advanced blocks (blue header), 74

File Access block, 295–296, 303
Invert Motor block, 236
Stop Program block, 245–246
Unregulated Motor block, 184,

188, 296, 297
advanced topics. See digging deeper
angle connectors, 10
angular beams, 7, 103

angular momentum, 365
Apps on EV3 Brick

Brick Program App. See Brick
Program App

creating, with Download as App tool, 73
IR Control App, 86
Port View App, 78

arccosine, 97
arcsine, 97
arctangent, 97
arithmetic mean, 95
Array Operations block, 233-234,

240–241, 301
Auto-ID, 14, 27, 72
averaging, 95
axle connectors, 10
axle pins, 8
axles, 9

for driving and connecting, 133

B

backing up files, importance of, 295
ball, red, 13
ball joints, 8
ball magazine, 13
ball shooter, 13
bang-bang controller, 100
batteries for the EV3 Brick, 14
beacon. See Remote IR Beacon
beams, 7

angular, 7, 103
building with, 9
difference from bricks, 5
extending, 107
naming, 6
straight, 7
thin, 8

behavior programming, using state
machines, 368

bent (angular) beams, 7, 103
bevel gears, 12, 115, 125–126
bill of materials, Retail set 31313, 381–388
biped robot, 131, 309

blades, 13
blocks (LEGO elements). See pieces
blocks, programming. See programming

blocks
Bluetooth connection for the EV3 Brick, 75
bonus models, xx

AUDR3Y (people-eating plant), 228–229
grabber module for ROV3R, 44
L3AVE-ME-ALONE box, 129
where to download, 44

BP App. See Brick Program App
bracing (building technique), 19, 21, 108,

172, 315, 330, 335
double, 159
with panels, 173
to prevent gears from disengaging, 156

Brake at End, input of Move block, 77, 92
Brick, the EV3 Intelligent. See EV3

Intelligent Brick
Brick buttons, 49
Brick Buttons block, 300
Brick information, getting from EV3

Software, 72
BrickLink, 6, 381
Brick Program App, 48–58

Action blocks, 54–56
Brick Status Light block, 56
Display block, 55
Large Motor block, 54
Medium Motor block, 55
Move block, 54
Sound block, 55

adding a block, 50
advanced programming, 62–64
Block Palette, 53–58
controlling motors with, 29
default port for Color Sensor, 29
default port for IR Sensor, 31
default port for Touch Sensor, 27
default ports for motors, 29
deleting a block, 50
editing a parameter of a block, 50
empty sequence, 49

index

Brick Program App, continued
importing programs into

EV3 Software, 76
keyboard, virtual, 53
limitations, 49
Loop block, 58
quick guide, 50
replacing a block, 50
using the virtual keyboard, 53
Wait blocks, 56

Wait Brick Buttons block, 57
Wait Color Sensor block, 57
Wait Infrared Remote block, 58
Wait Infrared Sensor block, 58
Wait Motor Rotation block, 57
Wait Reflected Light Sensor block, 56
Wait Time block, 57
Wait Touch Sensor block, 56

Brick Status Light block, 56, 81, 240
browsing the EV3 Brick’s memory, 72, 73
Bruno Zarokian, 131
bug, origin of the term, 88
bugs, removing, 88
building

with angular beams, 103
with beams, 9
with bracing technique. See bracing

(building technique)
with bricks, 5
with bushes, 157
COLOR CUB3, 290–292
with cross blocks, 110
curved structures, 286, 327
double output mechanism, 127
extending beams, 107
with gears, 111–120. See also gears
ideas, 104–128
jaws, 352
modular structures, 32
with motors, 123–128
with pins, 5, 8–9
R3MOTE for SUP3RCAR, 222–227
ROV3R, 17–43
SENTIN3L, 249–289
with studless parts, 5
sturdy structures, 19, 104–109
SUP3RCAR, 191–221
in three dimensions, 10, 110
T-R3X, 309–357
triangular structures, 104
WATCHGOOZ3, 131–174

building instructions, general guidelines,
17–18

bushes (bushings), 9
buying pieces online, 6, 381

C

cable. See USB
cam, mechanism for transforming

motion, 255
caster wheels, 23
ceiling (mathematical operation), 97
center of mass (COM), 131
changing speed of rotation, 111
changing heading (to steer ROV3R), 79
changing torque, 111
circular motion, transforming into

reciprocating motion, 121,
255, 268

code, of LEGO elements in the Retail
set 31313, 381

coding. See programming
COLOR CUB3, building, 290–292
color headers, of programming blocks,

73–74
color labels in the building instructions, 18
Color Sensor, 14, 28, 57, 62
Color Sensor block, 298
COM (center of mass), 131
combining sets. See EV3 sets
comics, 1–4, 15–16, 45, 66–67, 84, 94,

101–102, 129, 175, 189–190,
228–229, 247–248, 293–294,
307–308, 358–361, 380, 402

commands from the Remote IR Beacon, 85
Compare block, 98
complex logic operations, computing using

the Math block, 371–372
computer

connecting EV3 Brick to, 75
programming without a. See Brick

Program App
conflict, using resources in multitasking

programs, 234, 245
connecting the EV3 Brick to the

computer, 75
connectors, 8–11
Constant block, 98, 237, 239
Content Editor, 70
content overview of EV3 projects, 75
contents of the Retail set 31313, 381

controller for wall-following program,
98–100

Controller, in EV3 Software, 70
controllers

Bang-Bang, 82, 100
with feedback, 100, 188, 297

converting
Brick Program into EV3 program, 76
data types, 89, 98, 303

automatically, 90
Education Core set 45544 into Retail

set 31313, 394–398
with Education Expansion set 45560,

398–401
numeric to logic values, 98
Retail set 31313 into Education Core

set 45544, 389–393
text to numbers, 303

cosine, 97
crank, 121
creating

Apps, with the Download as App tool, 73
a Data Wire, 87
My Blocks, 180
new EV3 program, 70
new EV3 project, 70
a Sequence Wire, 80

cross axles, 9
cross block gearbox, 224
cross blocks, 10

using to hold gears, 155
cross bracing. See bracing (building technique)
cross holes, 9
Current Power, of a motor (speed), 297
cursor, wire spool, 87
curved structures, building, 286, 327

D

daisy-chaining, of EV3 Bricks, 72, 75
Data Operations blocks (red header), 74

Array Operations block, 233–234,
240–241, 301

Compare block, 98
Constant block, 98, 237, 239
Logic Operations block, 185–187, 299,

371–372
Math block, 92–93, 95–97, 371–372
Random block, 296, 298, 370
Range block, 244, 374

404	 index

Round block, 96
Text block, 88–89
Variable block, 232–233

data type conversion, 89, 98, 303
automatic, 90

Data Wires, 87
displaying real-time data on, 88
passing through Loop and Switch

blocks, 91
debugging EV3 programs, 88
decorative pieces, 13
deleting

a Data Wire, 87
a programming block, 77
a Sequence Wire, 80

De Morgan’s laws, 373
differences between the EV3 Retail and

Education sets, 14, 389
differential, 231

drive robot, 54
electronic. See electronic differential
LEGO element, 232

digging deeper
angular beams, 104
computing

complex logic operations, using
Math block, 371–372

Degrees parameter to drive
precisely, 78

Degrees parameter to steer
precisely, 79

decimal numbers, 90
De Morgan’s laws, 373
electronic differential, computing wheel

speeds for, 232
errors from Math blocks, handling, 97
feedback controllers, 100
how motor power relates to speed, 297
localization using beacons, 92
motor speed regulation with PID

controller, 188
state machines, behavior

modeling with, 368
Display block, 55, 79, 88–89, 92, 97

preview, 81
displaying real-time data in Data Wires, 88
distribution, uniform, of random

numbers, 296
division (Math block), 92–93

double-bevel gears, 114–118, 127,
149, 159

downloading
bonus models, xx, 44
EV3 program to the Brick, 70
EV3 Software, 69
more robots from EV3 Software, 69

driving
along geometric paths, 62
straight, 54, 217

E

eccentric mechanism, for transforming
circular into reciprocating
motion, 121, 255, 268

editing a Data Wire, 87
electronic differential, 231

formula, 232
implementation, 237

electronic pieces, 13–14
electrostatic cloth, 35
elements, names for. See pieces
end of file, detecting, 296, 303
equilibrium, static, 131
errors

in feedback controllers, 100
in math operations, 93, 97
in measurements, 95
in programs, checking for, 88

estimating robot position. See localization
eteroceptive (external) measurements, 92
EV3 electronic pieces, 13–14
EV3 Intelligent Brick, 13

backing up files, 295
buttons, 49
connecting to the computer , 75
daisy-chaining, 72, 75
updating firmware, 73, 295

EV3L Scientist’s Apprentice. See comics
EV3 pieces. See pieces
EV3 sets

Education Core set 45544
converting Retail set to, 389–393
converting to Retail set, 394–398

Education Expansion set 45560,
converting to Retail set with
Education Core set, 398–401

Retail set 31313
bill of materials, 381–388
overview of pieces, 1–14

EV3 Software
Content Editor, 70
Controller, 70
debugging features, 88
difference between Home and Education

Editions, 389
EV3 User Guide, 69
hardware page, 70–71
importing third-party blocks, 73
installing, 69
Lobby, 69
Memory Browser, 72
Programming Interface, 70
Programming Palettes, 73
Project Properties, 75
setup, 69
tools, 72
versions, 389
wireless setup, 73

events, in state machines, 370, 371
Execution Highlight (tool for debugging), 88
experiments

beacon-following program, adding data
display to, 93

driving along geometric paths, 62
line following, tweaking the Brick

Program for, 63
line following, EV3 program for, 83
localization system for robots, 92
musical instrument using IR Sensor, 93
obstacle avoidance with the Touch

Sensor Bumper, 59
solution, 62

traffic light, 58
ROV3R, controlling with your hand, 88
SENTIN3L, adding a ball shooter to, 306
SENTIN3L, adding more actions to color

programming, 305
SENTIN3L, controlling with colors, 305
SENTIN3L, remote control for fighting

with, 306
T-R3X, designing a new behavior

for, 379
T-R3X, dressing prey to make it “tastier”

for, 379
T-R3X, remote control for, 379
video explorer, 65
wall following, failure recovery strategy

for, 100

	 index	 405

experiments, continued
wall-following EV3 program, tweaking

for smoother motion, 82
wall-following parameters, tweaking

the, 100
wall-following program, adding setup

phase to, 100
WATCHGOOZ3, adding a motorized

function to, 187
WATCHGOOZ3, making it follow

lines, 188
exploring unknown environments, 64
exponent function, 97
extending beams, 107

F

feedback controllers, 100, 188, 297
File Access block, 295–296, 303
files, managing on the EV3 Brick, 295–296
filtering measurement noise, 95
finite state machines, 367–371
firmware, updating, 295
floor (mathematical operation), 97
flowcharts, 47
Flow Control blocks (orange header), 73

Loop block, 76, 81, 83, 98, 99, 185, 246
Loop Interrupt block, 73, 245–246
Start block, 73, 76, 234
Switch block, 82, 83, 91, 99, 184,

234, 370
Wait block, 77, 81, 98, 298

flow, controlling the program, 81
frames, 7, 8
friction, 8

pins with, 9
pins without, 9

Fundamental LEGO Unit, 7

G

gears, 11
assembling, 113
bevel, 12
coupling at 90 degrees, 115, 125, 126
cross block gearbox, 224
double-bevel, 114–118, 127, 149, 159
idler, 118
input, 111
knob wheels. See knob wheels
measuring and combining, 111–120

radius, 111
ratio, 111
self-locking, 119
spur, 12
as structural elements, 149
worm, 11, 119, 152

gear trains, 118, 159
geometric paths, driving along, 62
geometry of angular beams, 103

H

Hardware Page, of EV3 Software, 70–71
header colors, of programming blocks, 73–74
heading

of beacon, 30, 85, 92
changing (to steer ROV3R), 79

Heading, output of the IR Sensor block, 91
holes, in Technic pieces, 9

I

ID, of LEGO elements in Retail
set 31313, 381

identifying gears, 11
idler gear, 118
illegal math operations, 93
importing Brick Programs into EV3

Software, 76
improving readability of programs, 80
Infrared Beacon, Remote. See Remote IR

Beacon
Infrared Sensor, 14, 30
Infrared Sensor block. See IR Sensor block
input gear, 111
inputs and outputs, adding to My Blocks

automatically, 183
installing the EV3 Software, 69
Intelligent Brick, EV3. See EV3 Intelligent

Brick
Invert Motor block, 236
IR Beacon, Remote. See Remote IR Beacon
IR Control App, 86
IR Sensor, 14, 30
IR Sensor block, 87, 90

Detected output, 92
Heading output, 91
Measure Beacon mode, 90
Measure Proximity mode, 87
Proximity output, 91–92

J

jaws, mechanism, 352
joints, ball, 8

K

kinematic model of a steering car, 231–232
knob wheels, 12, 111, 114, 117, 125,

138, 218

L

Large Motor block, 54, 178, 179, 182, 363
LED (light-emitting diode), 28, 298
Lee Magpili, 11
LEGO elements. See pieces
LEGO MINDSTORMS official website, 5
LEGO module (unit of measurement), 7
light-emitting diode (LED), 28, 298
limit switch, 146
line following, 62–63
Line-Following ROV3R, 28–29
links (pieces), 8
Linux, operating system, 13
Lobby, of EV3 Software, 69
localization

using colored spots, 33
using multiple beacons, 92

location-aware robot. See localization
locking notch, 253
logarithm, 97
logic operations, complex, computing using

the Math block, 371–372
Logic Operations block, 185–187, 371–372
Loop block, 76, 81, 83, 98, 99, 185, 246
Loop Interrupt block, 73, 245–246

M

Magpili, Lee, 11
managing files, 295–296
Math block, 92–93

Advanced mode, 96
using to compute logic operations,

371–372
mathematical operations

in Advanced mode, 96
illegal, 93

mean (arithmetic), 95
Measure Beacon mode of the IR Sensor

block, 90
measurement noise, 95

406	 index

Measure Proximity mode of the IR Sensor
block, 87

measuring
axles, 9, 19
beams (angular and straight), 7
cables, 13
gears, 11
motor speed precisely, 297
pieces, 6–14
pins, 8
tires, 12

mechanism, eccentric, for transforming
circular into reciprocating
motion, 121, 255, 268

Medium Motor block, 55, 177–178, 179,
184, 236

miscellaneous pieces, 13
modulo function, 97
motion transformation, 121, 255, 352
Motor Rotation block, 235, 297, 363
Motor Rotation Sensor, 14, 19
motors. See Servo Motors
Move block, in Brick Program App, 54
Move Steering block, 76–79, 82, 92
Move Tank block, 81, 236–237, 298
moving

on legs, 121–122, 131, 249, 309
with precision, 78
a Sequence Wire, 80
on treads, 40

multiple outputs from single motor, 127
multiplication (Math block), 92
multitasking, 234, 245–246, 305, 364,

366, 367
musical instrument, experiment to make, 93
My Block Builder tool, 180–186
My Blocks, 74

adding inputs and outputs
automatically, 183

additional configuration, 184
creating, 180
with input and outputs, 181
not re-entrant, 364
running two in parallel, 364–365

N

names of pieces, 6–14. See also pieces
navigation

by following lines, 62
by following walls, 64

using beacons, 92
using colored spots, 33

new EV3 program, creating, 70
new EV3 project, creating, 70
noise, affecting measurements, 95
nomenclature of LEGO pieces, 6–14.

See also pieces
not re-entrant, My Blocks, 364
notch, locking, 253

O

obstacle avoidance, 50, 178, 365
online resources. See websites
operating system of the EV3 Brick, 13
output gear, 111
outputs, multiple, from single motor, 127
outputs and inputs, adding to My Blocks

automatically, 183

P

panels (decorative pieces), 13
paper test pad, in EV3 set box sleeve, 5
PID (proportional integrative derivative)

controller, 188, 297
pieces

angular beams, 7
axle pins, 8
axles, 9
beams, 6–8
bushes (bushings), 9
connectors, 8, 10
cross blocks, 10
decorative, 13
electronic, 13–14
frames, 7
gears, 11
links, 8
miscellaneous, 13
naming, 6–14
pins, 8. See also pins
in Retail set 31313, 1–14, 381–388
straight beams, 7
thin beams, 8
tires, 12
wheels, 12

pin connectors, 10
pins, 8

building a 4M pin, 20
building with, 9
with friction, 9

without friction, 9
with stop bush, 22

Port View, in EV3 Software, 72
Port View App on EV3 Brick, 78
position-aware robot. See localization
precision

measuring motor speed with, 297
traveling a certain distance with, 78
turning by a certain angle with, 79

preview of the Display block, 81
Probability of True (parameter), 296
program, definition, 47
programming

basics, 47
blocks. See programming blocks
with the Brick Program App, 48–58
choices, 48
without a computer. See Brick

Program App
with flowcharts, 47
language, 47
loops, 48
making a backup, 179
with My Blocks. See My Blocks
ROV3R, 49, 61–65, 86–93, 98
running multiple parallel

sequences, 234
SENTIN3L, 296–306
sequences, 48
sign (mathematical function), 242
SUP3R CAR, 235–246
T-R3X

to hunt, 363–366, 373–378
to wander, 363–367

using arrays, 233
using variables, 232
WATCHGOOZ3

with Brick Program App, 177–178
with EV3 Software, 178–187

programming blocks
Action blocks (green header), 73

Brick Status Light block, 81, 240
Display block, 79, 81, 88–89, 92, 97
experimenting with, 79
Large Motor block, 178–179,

182, 363
Medium Motor block, 177-178, 179,

184, 236
Move Steering block, 76–79, 82, 92
Move Tank block, 81, 236–237, 298

	I ndex	 407

programming blocks, continued
Action blocks, continued

Sound block, 81, 93, 186, 235,
300, 364

Advanced blocks (blue header), 74
File Access block, 295–296, 303
Invert Motor block, 236
Stop Program block, 245, 246
Unregulated Motor block, 184, 188,

296, 297
changing aspect, 77
Data Operations blocks (red header), 74

Array Operations block, 233–234,
240–241, 301

Compare block, 98
Constant block, 98, 237, 239
Logic Operations block, 185–187,

299, 371–372
Math block, 92–93, 95–97, 371–372
Random block, 296, 298, 370
Range block, 244, 374
Round block, 96
Text block, 88–89
Variable block, 232–233

deleting, 77
Flow Control blocks (orange header), 73

Loop block, 76, 81, 83, 98, 99,
185, 246

Loop Interrupt block, 73, 245–246
Start block, 73, 76, 234
Switch block, 82, 83, 91, 99, 184,

234, 370
Wait block, 77, 81, 98, 298

My Blocks. See My Blocks
Sensor blocks (yellow header), 74, 87

Brick Buttons block, 300
Color Sensor block, 298
IR Sensor block, 87, 91–92
Motor Rotation block, 235, 236,

297, 363
Timer block, 184–185, 187, 299,

370, 371
Touch Sensor block, 185, 299, 300

Programming Interface, of EV3 Software, 70
using Zoom feature, 80

Programming Palettes, 70
Action blocks (green header), 73
Advanced blocks (blue header), 74
custom blocks, 74
Data blocks (red header), 74
Flow Control blocks (orange header), 73

My Blocks (cyan header), 74
Sensor blocks (yellow header), 74

Project Properties (EV3 Software), 75
proportional controller, 100
proportional integrative derivative (PID)

controller, 188, 297
proprioceptive (internal) measurements, 92
Proximity output of the IR Sensor block,

91–92
Pythagorean Theorem, 103, 261

R

radius, of a gear, 111
Random block, 296, 298, 370
random numbers, 296
Range block, 244, 374
ratio, of coupled gears, 111
readability of programs, improving, 80
reading ports on the EV3 Brick, 72, 78
real-time data, displaying with

Data Wires, 88
reciprocating motion, 121, 255, 268
reducing measurement noise, 95
re-entrancy, and My Blocks, 364–365
regulation of motor speed, 188
remainder, of integer division, 97
R3MOTE for SUP3R CAR, building,

222–227
Remote IR Beacon, 14, 85

heading, 30, 85, 92
using as beacon, 90, 242, 373
using as remote, 86

removing programming blocks, 77
resizing Loop and Switch blocks, 83
resource conflicts, in multitasking

programs, 234, 245
robots, getting more projects from EV3

Software, 69
robots. See building; programming; names

of individual robots
rotation sensor, 14
Round block, 96
rounding numbers, 96
ROV3R

Brick Program
for driving along geometric paths, 62
for line following, 63
for obstacle avoidance using the

IR Sensor, 49
for obstacle avoidance using the

Touch Sensor Bumper, 61
for smooth line following, 63

building, 17–44
with cleaning tool, 36–37
cleaning tool assembly, 34
with front IR sensor, 31
front IR sensor assembly, 30
grabber module, 44
line-following, 28–29
mobile base, 19
modules overview, 18
program

to drive on a square path, 77
to drive precisely on a

square path, 78
for following the beacon, 91

remote control, 86
with Touch Sensor Bumper, 27
Touch Sensor Bumper assembly, 25
with treads, 40–43
wall-following, 32–33
with wheels, 23–24

rubber band, red, 13, 217
rubber tires, 12
rubber treads, 12
running torque, 14
running two identical My Blocks in parallel,

364–365

S

saving files, 295
Sensor blocks (yellow header), 74, 87

Brick Buttons block, 300
Color Sensor block, 298
IR Sensor block, 87, 90
Motor Rotation block, 235, 236,

297, 363
Timer block, 184–185, 187, 299,

370–371
Touch Sensor block, 185, 299, 300

sensors
Color Sensor, 28, 57, 62–63
connecting to ports, 27
IR Sensor, 14, 30
third-party, 74
Touch Sensor, 14, 25
using a combination of, 33

SENTIN3L
building, 249–289
programming, 296–306
remote control, 262

408	 index

	I ndex	 409

Sequence Wires, 80
Servo Motors, 14

connecting to ports, 24
multiple outputs from single motor, 127
speed

maximum, 297
measuring precisely, 297
regulation, 188

sets. See EV3 sets
setup of EV3 Software, 69
sign (mathematical function),

implementation, 242
sine, 97
size. See measuring
sleeve of the box, 5
SM (state machine), 367–371
snaking, way of laying out programs, 79
Sound block, 55, 81, 93, 186, 235,

300, 364
speed

of rotation, changing with gears, 111
of Servo Motors, 14. See also Servo

Motors: speed
spherical joints, 8
spool, wire (cursor), 87
square root, 92, 97
stalled motor, and how to prevent, 14
state machine (SM), 367–371
state variable, of a state machine, 370
static equilibrium, 131
Start block, 73, 76, 234
steering assembly, for SUP3R CAR,

216–217
steering car, kinematic model, 231–232
Steering input of Move Steering block, 77
Stop Program block, 245, 246
straight, driving, 54, 217
straight beams, 7
studless building, 5
sturdy structures, 104–109
subtraction (Math block), 92
sum (Math block), 92
SUP3R CAR

building, 191–221
building R3MOTE for, 222–227
programming, 235–246

Switch block, 82, 83, 91, 99, 184, 370
using with multiple cases, 234

swords (decorative pieces), 13

T

tangent (trigonometric function), 96
tea, algorithm to prepare, 47
technical specifications of the EV3 Brick, 13
Technic elements, 6–13
teeth (decorative pieces), 12, 347, 351
test pad, 5
Text block, 88–89
text-to-numeric conversion, 303
Theorem, Pythagorean, 103, 261
thin beams, 8
third-party sensors, 74
Timer block, 184–185, 187, 299, 370–371
toe, of steering wheels, 217
tools in EV3 Software, 72
torque

definition, 111
increasing, 111, 159
running, 14
of Servo Motors, 14
stall, 14

Touch Sensor, 14, 25
Touch Sensor block, 185, 299, 300
T-R3X

behavior design, 366
building, 309–357
programming to hunt, 363–366,

373–378
programming to wander, 363–367

tracking, of steering wheels, 217
transforming motion, 121, 255, 352
transitions, of a state machine, 370
travelling by a precise distance, 78
treads, 12

ROV3R with, 40–43
trigonometric functions, 96–97
troubleshooting Bluetooth connection, 76
troubleshooting WATCHGOOZ3, 178
truncating a decimal number, 96
turning

exploiting the conservation of angular
momentum, 365

kinematic model of a steering car,
231–232

by a precise number of degrees, 79
types of data, 89

U

uniform distribution of random
numbers, 296

Unregulated Motor block, 184
untangling Data Wires, 87
updating a Sequence Wire, 80
updating the firmware of the EV3 Brick, 73
USB

cable (USB-to-miniUSB), 5
connection on the EV3 Brick, 75
port, 14

user guide, accessing from
EV3 Software, 69

V

Variable block, 232–233
variable, state (of a state machine), 370
versions

of EV3 set. See EV3 sets
of EV3 Software, 389

W

Wait block, 77, 81, 98, 298
walking base, of the SENTIN3L, 262
walking technique, for WATCHGOOZ3, 131
wall-following programs, 64–65, 98–100
Wall-Following ROV3R, 32–33
WATCHGOOZ3

Brick Program, 177–178
building, 131–174
programming with EV3 Software,

178–187
troubleshooting, 178

websites
the book’s, with support and bonus

material, 44
BrickLink (online store), 6, 381
Brickset, 381
LEGO customer service, 381
LEGO MINDSTORMS official, 5, 69

weight shifting, biped robot, 132
wheels, 12

caster, 23
Wi-Fi dongle, xix
wire spool (cursor), 87
Wireless Setup tool, EV3 Software, 73
worm gear, 11, 119, 152
writing programs without a computer. See

Brick Program App

Z

Zarokian, Bruno, 131
zero, division by, 92
zooming, 70, 80

The LEGO MINDSTORMS EV3 Laboratory is set in Chevin. The book was
printed and bound by Edwards Brothers Malloy in Ann Arbor, Michigan.
The paper is Husky 60# Opaque, which is certified by the Sustainable
Forestry Initiative (SFI).

The book uses a RepKover binding, in which the pages are bound
together with a cold-set, flexible glue and the first and last pages of the
resulting book block are attached to the cover with tape. The cover is
not actually glued to the book’s spine, and when open, the book lies flat
and the spine doesn’t crack.

companion website
Visit http://EV3L.com/ for the EV3 projects for the robots, errata,
additional tips and tricks, and bonus models.

More no-nonsense books from no starch press

phone 800.420.7240 or 415.863.9900  |  fax 415.863.9950  |  sales@nostarch.com  |  www.nostarch.com

Beautiful LEGO®

by mike doyle

october 2013, 280 pp., $29.95
isbn: 978-1-59327-508-2
full color

LEGO® Space
Building the Future
by peter reid and tim goddard

november 2013, 216 pp., $24.95
isbn: 978-1-59327-521-1
full color, hardcover

Unofficial LEGO® Technic
Builder’s Guide
by paweł “sariel” kmieć

november 2012, 352 pp., $29.95
isbn: 978-1-59327-434-4
full color

Super Scratch Programming
Adventure! (Covers Version 2)
Learn to Program by
Making Cool Games
by the lead project

october 2013, 160 pp., $24.95
isbn: 978-1-59327-531-0
full color

Python for Kids
A Playful Introduction
to Programming
by jason r. briggs

december 2012, 344 pp., $34.95
isbn: 978-1-59327-407-8
full color

Arduino Workshop
A Hands-On Introduction
with 65 Projects
by john boxall

may 2013, 392 pp., $29.95
isbn: 978-1-59327-448-1

TH
E leg

o
® m

in
d

sto
rm

s
® EV3 Lab

or
atory

THE LEGO® MINDSTORMS®
EV3 LABORATORY
build, program, and experiment with
five wicked cool robots!

daniele benedettelli

benedettelli

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

 “I LIE FLAT.”

This book uses RepKover—a durable binding that won’t snap shut.
Price: $34.95 ($36.95 CDN) Shelve in: Robotics/Hobbies

THIS BOOK IS NOT AUTHORIZED OR ENDORSED BY THE LEGO GROUP.

The LEGO® MINDSTORMS® EV3 set offers so many new
and exciting features that it can be hard to know where to
begin. Without the help of an expert, it could take months
of experimentation to learn how to use the advanced
mechanisms and numerous programming features.

In The LEGO MINDSTORMS EV3 Laboratory, author
Daniele Benedettelli, robotics expert and member of the
elite LEGO MINDSTORMS Expert Panel, shows you how to
use gears, beams, motors, sensors, and programming blocks
to create sophisticated robots that can avoid obstacles, walk
on two legs, and even demonstrate autonomous behavior.
You’ll also dig into related math, engineering, and robotics
concepts that will help you create your own amazing robots.
Programming experiments throughout will challenge you,
while a series of comics and countless illustrations inform
the discussion and keep things fun.

As you make your way through the book, you’ll build and
program five wicked cool robots:

N	ROV3R, a vehicle you can modify to do things like follow a
line, avoid obstacles, and even clean a room

N	WATCHGOOZ3, a bipedal robot that can be programmed
to patrol a room using only the Brick Program App (no
computer required!)

N	SUP3R CAR, a rear-wheel-drive armored car with an
ergonomic two-lever remote control

N	SENTIN3L, a walking tripod that can record and execute
color-coded sequences of commands

N	T-R3X, a fearsome bipedal robot that will find and
chase down prey

With The LEGO MINDSTORMS EV3 Laboratory as your guide,
you’ll become an EV3 master in no time.

about the author

Daniele Benedettelli is known worldwide for his original
LEGO robots, including his Rubik’s Cube solvers and
his humanoid robots. As a LEGO MINDSTORMS Com-
munity Partner (MCP), he helps to test and develop new
MINDSTORMS products. He earned a master’s degree in
Robotics and Automation from the University of Siena in
Italy. He holds educational presentations and workshops
on Information and Communications Technology around
the world and teaches robotics at the high school level.

Requirements:	One LEGO MINDSTORMS EV3 set
	 (LEGO SET #31313)

FOR AGES 1O+

SERIOUS
MINDSTORMS.
SERIOUS FUN.

	about the author
	about the technical reviewer
	about the comic designers
	acknowledgments
	introduction
	playing without a computer
	whom is this book for?
	what do I need to use this book?
	the EV3 software
	the structure of this book
	companion website
	let’s start already!

	Comic: The EV3L Scientist's Apprentice
	Chapter 1: your LEGO MINDSTORMS EV3 set
	the studless way of building
	studless vs. studded: the structural differences

	naming the pieces
	beams
	connectors
	crosses and holes

	gears
	wheels, tires, and treads
	decorative pieces
	miscellaneous pieces
	electronic pieces

	the differences between the EV3 retail and education sets
	conclusion

	Comic continued
	Chapter 2: building ROV3R
	base module
	ROV3R with wheels
	touch sensor bumper
	ROV3R with touch sensor bumper
	line-following module
	line-following ROV3R
	front IR sensor
	ROV3R with front IR sensor
	wall-following module
	wall-following ROV3R
	alternative: ROV3R with
wall-following and line-following modules

	Dexter’s cleaning tool
	ROV3R with cleaning tool
	alternative #1: ROV3R with cleaning tool and touch sensor bumper
	alternative #2: wall-following ROV3R with cleaning tool

	ROV3R with treads
	secret project:
grabber module
	conclusion

	Comic continued
	Chapter 3: programming
	the building blocks of any program
	sequences
	choices
	loops

	programming with the brick program app
	your first brick program
	A quick guide to the Brick Program App

	the block palette
	the action blocks
	the wait blocks
	experiment 3-1
	experiment 3-2

	the loop block
	conclusion

	Chapter 4: advanced programming with the brick program app
	ROV3R with touch sensor bumper
	making ROV3R drive along geometric paths
	experiment 4-1

	making ROV3R follow lines
	using the brick program to follow lines
	improving the motion
	experiment 4-2

	making ROV3R follow walls
	improving the motion
	experiment 4-3

	conclusion

	Comic continued
	Chapter 5: EV3 programming
	EV3 software setup
	EV3 software overview
	the lobby
	the programming interface
	compiling programs

	the hardware page
	the tools menu
	the programming palettes
	project properties

	connecting the EV3 brick to your computer
	importing a brick program
	analyzing the imported brick program
	rid of that block!

	editing the imported brick program
	going for precision
	Digging Deeper :comp uting the degrees parameter todrive pre cisel y
	Digging Deeper : comp uting the degrees p arameterto steer pre cisel y

	experimenting with action blocks
	controlling the program flow
	the switch block
	experiment 5-1
	experiment 5-2

	conclusion

	Comic continued
	Chapter 6: experimenting with
the EV3 infrared components
	remote IR beacon
	using the remote IR beacon as a remote
	using sensor blocks and data wires
	untangling data wires
	experiment 6-1

	EV3 software features for debugging programs
	displaying data nicely with the text block
	understanding data types
	data type conversion
	Digging Deeper: Decimal numbers

	following the remote IR beacon
	Digging Deeper: Robot Localization

	using the basic operations of the math block
	experiment 6-2
	experiment 6-3

	conclusion

	Comic continued
	Chapter 7: the math behind the magic!
	dealing with measurement noise
	the math block in advanced mode
	the round block
	digging deeper: handling errors from math blocks

	the compare block
	converting numeric values to logic values
	embedded compare blocks

	the constant block
	improving our wall-following program
	digging deeper: feedback controllers
	experiment 7-1
	experiment 7-2
	experiment 7-3

	conclusion

	Comic continued
	Chapter 8: LEGO recipes
	the angular beams unveiled
	Digging Deeper: Angular Beams Mystery Solved!

	triangles vs. rectangles
	extending beams
	bracing
	cross blocks
	gears revisited
	getting gears to mesh together well
	assembling gears
	gear combinations
	90-degree-coupled gears
	gear trains
	the worm gear
	motion transformation

	building ideas for the motors
	medium motor with front output #1
	medium motor with front output #2
	medium motor with single lateral output
	medium motor with double lateral output
	medium motor with single geared-down lateral output
	medium motor with gearbox
	medium motor with multiple outputs
	large motor with horizontal output
	large motor gearing options

	conclusion

	Comic contiuned
	Chapter 9: building WATCHGOOZ3
	how does WATCHGOOZ3 walk?
	right leg assembly
	left leg assembly
	main assembly
	left foot assembly
	right foot assembly
	main assembly
	back bracket assembly
	front bracket assembly
	main assembly
	neck assembly
	main assembly

	Comic continued
	Chapter 10: programming WATCHGOOZ3
	the brick program for WATCHGOOZ3
	the program
	how it works
	running and troubleshooting the robot

	importing and editing the program in the EV3 software
	making a backup
	modifying the program

	creating My Blocks with the My Block Builder tool
	creating My Blocks with inputs and outputs
	automatically adding inputs and outputs to My Blocks
	additional configuration of a My Block

	creating an advanced program
	the ResetBody My Block
	creating the advanced My Block for walking
	the final program for WATCHGOOZ3

	the logic operations block
	the timer block
	experiment 10-1
	digging deeper: motor speed regulation
	experiment 10-2

	conclusion

	Comic continued
	Chapter 11: building the SUP3R CAR
	main assembly
	hood assembly
	main assembly
	car roof assembly
	main assembly
	steering assembly
	main assembly
	building the R3MOTE
	conclusion

	Comic continued
	Chapter 12: programming the SUP3R CAR
	electronic vs. mechanical differentials
	digging deeper: computing wheel speeds for an electronic differential

	using variables
	using arrays
	using the variable block with numeric and logic arrays
	using the array operations block

	using the switch block with multiple cases
	running parallel sequences (multitasking)
	building the My Blocks
	the ResetSteer My Block
	the Steer My Block
	the Drive My Block
	the ReadRemote2 My Block

	programming the car to drive around
	programming the car for remote control
	using arrays to clean up the Read­Remote My Block
	programming the car to follow the beacon
	the Sign My Block
	the Saturation My Block
	the ReadBeacon My Block
	the range block
	the FollowBeacon program
	experiment 12-1

	adding a siren effect to the SUP3R CAR
	the loop interrupt block
	the stop program block
	experiment 12-2

	conclusion

	Comic continued
	Chapter 13: building the SENTIN3L
	main assembly
	right leg assembly
	main assembly
	left leg assembly
	main assembly
	chest assembly
	main assembly
	left arm assembly
	right arm assembly
	main assembly
	back shield assembly
	back shield middle subassembly
	continuing the back shield assembly
	head subassembly
	completing the back shield assembly
	main assembly
	building the COLOR CUB3
	conclusion

	Comic continued
	Chapter 14: programming the SENTIN3L
	the file access block
	creating and deleting a file and writing data
	reading data from a file
	detecting the end of a file

	the random block
	building the My Blocks
	the ResetLegs My Block
	Digging Deeper: how “power” relates to speed

	the WalkFWD My Block
	the Laser My Block
	the Turn My Block
	the PowerDownFX My Block
	the WaitButton My Block
	the SayColor My Block
	the ExeCode My Block
	the MakeProgram My Block
	the RunProgram My Block
	the MakePrgFile My Block
	the ParseFile My Block
	the RunPrgFile My Block

	programming the SENTIN3L to patrol
	color-programming the SENTIN3L at runtime
	experiment 14-1
	experiment 14-2

	making permanentruntimecolor programs
	experiment 14-3
	experiment 14-4

	conclusion

	Comic continued
	Chapter 15: building the T-R3X
	main assembly
	legs frame assembly
	main assembly
	left leg
	right leg assembly
	main assembly
	EV3 brick assembly
	main assembly
	head and torso assembly
	main assembly
	conclusion

	Comic continued
	Chapter 16: programming the T-R3X
	building the My Blocks for the Wander program
	the Reset My Block
	the MoveAbsolute and MoveAbsolute2 My Blocks
	the Step My Block
	the Roar My Block
	the Chew My Block
	the Look My Block
	the Right My Block
	the Left My Block
	the TurnUntil My Block

	programming the T-R3X to wander
	designing the behavior of the T-R3X
	digging deeper: behavior modeling using state machines

	implementing a state machine
	general structure
	starting state
	state variable
	transitions
	sensor events
	timer events
	timer-filtered events
	actions
	digging deeper: computing complex logic operations using the math block
	Digging Deeper :De Morgan ’s laws

	making the My Blocks for the final program
	the Turn My Block
	the ReadBeacon My Block
	the INIT My Block
	the IDLE My Block
	the HUNGRY My Block
	the SEEK
My Block
	the CHASE My Block
	ordering state transitions by priority

	programming the T-R3X’s behavior
	experiment 16-1
	experiment 16-2
	experiment 16-3
	experiment 16-4

	conclusion

	Comic continued
	Appendix A: the EV3 31313 set bill of materials
	looking up pieces on Brickset

	Appendix B: differences between
the education set and retail set
	electronic devices
	the EV3 software
	turning the retail set into the education core set
	turning the education core set into the retail set
	turning the education expansion set into the retail set

	Comic end
	index

