

    

	

	
	

	

	

	
	

The Art of LEGO®
MINDSTORMS® NXT-G
Programming
terry griffin

covers
nxt-g

1.0 and 2.0

The Art of lego® mindstorms®
NXT-G Programming

The Art of lego®
mindstorms® NXT-G
Programming
terry griffin

The Art of LEGO® MINDSTORMS® NXT-G Programming. Copyright © 2010 by Terry Griffin.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written

permission of the copyright owner and the publisher.

14 13 12 11 10   1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-218-9

ISBN-13: 978-1-59327-218-0

Publisher: William Pollock

Production Editor: Megan Dunchak

Cover and Interior Design: Octopod Studios

Technical Reviewer: Damien Kee

Copyeditor: Kim Wimpsett

Compositor: Lynn L’Heureux

Proofreader: Nancy Sixsmith

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

38 Ringold Street, San Francisco, CA 94103

phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Griffin, Terry, 1962-

 The art of LEGO Mindstorms NXT-G programming / Terry Griffin.

 p. cm.

 Includes index.

 ISBN-13: 978-1-59327-218-0

 ISBN-10: 1-59327-218-9

 1. Robots--Design and construction. 2. Robots--Programming. 3. Lego Mindstorms toys. I. Title.

 TJ211.G75 2010

 629.8'9252--dc22

 2010017757

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and com-

pany names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol

with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the

trademark owner, with no intention of infringement of the trademark.

LEGO®, MINDSTORMS®, the brick configuration, and the minifigure are trademarks of the LEGO Group, which does not

sponsor, authorize, or endorse this book.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken

in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity

with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

This book is dedicated to the love of my life, Liz, and our three wonderful daughters,
Cheyenne, Sarah, and Samantha.

brief contents

acknowledgments..xix
introduction	 ..xxi

chapter 1	 LEGO and robots: a great combination.. 1
chapter 2	 the NXT-G programming environment.. 7
chapter 3	 the test robot.. 17
chapter 4	 motion...45
chapter 5	 sensors..57
chapter 6	 program flow...73
chapter 7	 the WallFollower program: navigating a maze...83
chapter 8	 data wires...97
chapter 9	 data wires and the switch block.. 111
chapter 10	 data wires and the loop block.. 123
chapter 11	 variables.. 131
chapter 12	 the NXT buttons and the display block..147
chapter 13	 my blocks..161
chapter 14	 math and logic...179
chapter 15	 files...195
chapter 16	 data logging.. 209
chapter 17	 using multiple sequence beams.. 221
chapter 18	 the LineFollower program.. 233

appendix A	 NXT websites... 253
appendix B	 moving from NXT-G 1.0/1.1 to NXT-G 2.0... 255

index... 257

contents in detail

acknowledgments...xix

introduction ...xxi
who this book is for...xxi
prerequisites...xxi
what to expect from this book...xxi
how best to use this book...xxiii

1
LEGO and robots: a great combination... 1
LEGO MINDSTORMS NXT... 1
the NXT online community... 2
the LEGO MINDSTORMS NXT kit... 2

NXT versions... 3
MINDSTORMS software versions.. 3

art and engineering.. 4
qualities of a good program... 4
software, firmware, and hardware... 5
NXT-G... 5
what you’ll learn from this book.. 6
what’s next?.. 6

2
the NXT-G programming environment ... 7
a tour through the MINDSTORMS environment... 7

a: work area... 8
b: programming palettes.. 8
c: robo center... 8
d: my portal window.. 8
e: configuration panel.. 9
f: help panel.. 9
g: navigation panel... 9
h: controller.. 9

writing an NXT-G program... 9
your first program...10

saving your work..10
running your program..11
your second program...11
debugging..12

reproduce the bug..12
simplify the program...12

x	 contents in detail

look at the parts of the program..12
fix the bug...12

the edit-compile-test cycle...13
comments..13

adding comments... 14
rules for working with comments..15

the configuration panel..15
general layout..15
changing panels..15
disabled items...16
a block’s configuration icons..16

conclusion..16

3
the test robot... 17
right-side motor... 19
left-side motor...21
chassis..23
caster wheel..25

caster wheel for the NXT 2.0 retail kit...25
caster wheel for the original NXT retail kit and education set..27

attach the caster wheel...29
add the NXT..31
touch sensor bumper...33
attach the bumper to the chassis...36
ultrasonic sensor...37
sound sensor..38
color sensor or light sensor..39
attach the wires... 41
the final beam..42
alternate placement for the color sensor..42
alternate placement for the ultrasonic sensor..43
conclusion..44

4
motion.. 45
the NXT motor...45
the move block...46

the move block’s configuration panel..46
the feedback boxes...48
the NXT intelligent brick view menu...48

there and back.. 49
moving forward... 49
turning around.. 49
testing a single block...50
moving back to the start..50

around the block..50
the first side and corner...50

	 contents in detail	 xi

the other three sides and corners...51
testing the program...52

the motor block..52
brake, coast, and the reset motor block..53

the CoastTest program...53
a problem with coasting...54

the reset motor block...55
the record/play block..55

configuration panel..55
the remote control tool..56
conclusion..56

5
sensors... 57
using the sensors..57
the touch sensor..58

configuration panel..58
feedback box..58
the NXT’s view menu.. 59

the BumperBot program... 59
detecting an obstacle...60
backing up and turning around..60
testing..61

the sound sensor...61
configuration panel..61
setting the trigger value...61

BumperBot with sound..62
the light and color sensors..63

light sensor configuration panel...63
using the color sensor as a light sensor...64

the RedOrBlue program..64
determining red and blue values..64
the switch block..64
improving the program...66
using color sensor mode... 67

the ultrasonic sensor..68
configuration panel..68

door chime...68
detecting a person... 69
playing a chime... 69
stopping the chime... 69

the rotation sensor...70
configuration panel..70
the rotation sensor block..70

the BumperBot2 program..71
conclusion..72

xii	 contents in detail

6
program flow ... 73
the sequence beam...73
the switch block...73

configuration panel.. 74
the LineFollower program..75
more than two choices.. 76
using tabbed view..78
comments and tabbed view...78

the loop block...79
the keep alive block...79
the stop block...80

BumperBot3..80
conclusion..82

7
the WallFollower program: navigating a maze ... 83
pseudocode...83
solving a maze..86
program requirements..86
assumptions..88
initial design..88
following a straight wall...89

writing the code..89
testing..90

turning a corner...91
writing the code..91
testing..92

going through an opening...93
writing the code..94
using sound blocks for debugging..95
testing..95

final test...96
conclusion..96

8
data wires .. 97
what is a data wire?..97
the GentleStop program..97
tips for drawing data wires.. 101
the SoundMachine program.. 101

controlling the volume... 102
using the math block.. 103
adding tone control to the SoundMachine program.. 103

understanding data types.. 104
using the number to text block... 105
displaying the tone frequency... 105
using the text block...107

	 contents in detail	 xiii

adding labels to the displayed values.. 108
dealing with broken wires.. 109
conclusion... 110

9
data wires and the switch block... 111
the switch block’s value option... 111
rewriting the GentleStop program.. 112
advantages of using a sensor block... 113
passing data into a switch block... 113
passing data out of a switch block... 113
matching more than two values... 116

adding and removing conditions...117
the default condition..117

using numbers with the NXT-G 2.0 switch block...117
fixing the SoundMachine program’s volume display..117

calculating the input value using NXT-G 1.1... 118
calculating the input value using NXT-G 2.0... 118
modifying the program.. 118

conclusion... 121

10
data wires and the loop block .. 123
the loop count.. 123

creating the LoopCountTest program.. 123
restarting a loop...124
setting the final loop count value...124
setting the loop condition.. 125

timers.. 125
the timer block.. 125
a programmable timer, version 1.. 126
the compare block.. 127
a programmable timer, version 2.. 127
a programmable timer, version 3.. 129
conclusion... 129

11
variables .. 131
a place for your data.. 131
managing variables.. 131
the variable block... 132
the RedOrBlueCount program.. 133

creating the variables... 133
initializing the variables... 134
initializing the display... 135
displaying the initial values... 135
counting the red objects.. 135
counting the blue objects.. 137

xiv	 contents in detail

grouping common settings.. 138
replacing long data wires with variables.. 138
the LightPointer program.. 138

defining the variables... 139
finding the light source.. 140
initializing the values.. 140
the LightPointer program, part 1..141
the LightPointer program, part 2..143

constants.. 144
managing constants...145
the constant block..145

conclusion..146

12
the NXT buttons and the display block... 147
the NXT buttons..147
the NXT button block.. 148
the PowerSetting program.. 148

defining the variable... 148
the initial value and the loop...149
displaying the current value..149
adjusting the power value... 150
testing the program...151
making the program faster..151

the display block... 152
displaying an image.. 152
power setting with images.. 153
drawing on the screen..155

the NXTSketch program..155
defining the variables... 156
initialization... 156
drawing the line... 156
saving the new location... 158
testing the program.. 158

conclusion..159

13
my blocks ... 161
building bigger blocks...161
creating a my block...161
the custom palette... 163
editing a my block.. 163
configuring a my block.. 164
changing the name of a configuration item...165
the DisplayNumber block... 166

configuration items... 166
controlling the line setting using a data wire.. 166

	 contents in detail	 xv

building the DisplayNumber block...167
testing..170
creating the DisplayNumber block...170
changing the names of the configuration items...171

using the DisplayNumber block...173
managing the custom palette..174
sharing programs with my blocks...175

copying files...175
create pack and go...175

advanced my block topics..175
variables and my blocks..176
nesting my blocks...176
broken my blocks..176
adding a data plug..177

conclusion..177

14
math and logic.. 179
computer math..179
integer math...179

range of values..179
division.. 180
odometer... 181

floating-point math.. 183
range... 183
precision... 183
the number to text block... 183

the random block.. 184
adding a random turn to BumperBot... 184
the logic block.. 185
adding some logic to BumperBot... 186
the range block... 189
improving RedOrBlue.. 189
improving RedOrBlueColorMode...192
conclusion..194

15
files...195
using files..195
the file access block..195

the filename...196
the action setting..196
the type setting...196

saving the RedOrBlueCount data..197
checking for errors..199
the FileReader program.. 200
restoring the RedOrBlueCount data.. 201

xvi	 contents in detail

managing memory... 207
deleting files.. 207
transferring files.. 208

common problems.. 208
conclusion... 208

16
data logging ... 209
data collection and the NXT.. 209
the VerifyLightPointer program... 209

collecting the brightness data.. 210
running the program.. 211
analyzing the data... 212
adding rotation sensor data and a timestamp.. 212
gaps in the data... 214
setting the initial file size... 215

controlling the amount of data... 216
data logging using the LEGO MINDSTORMS education NXT software 2.0.. 217

the data-logging blocks... 217
the VerifyLightPointer2 program.. 218
the NXT data logging application...219

conclusion... 220

17
using multiple sequence beams.. 221
multitasking... 221
adding a second sequence beam.. 221
avoiding a busy loop.. 223
adding a sequence beam to a loop block.. 223

the crowbar and pin technique...224
adding the sequence beam... 225
expanding the loop block... 226
making the light flash... 227

understanding program flow rules.. 229
starting blocks and data wires... 229
starting a loop or switch block... 229
using values from a loop or switch block.. 229
using my blocks.. 230

synchronizing two sequence beams.. 230
the AroundTheBlock program... 230
the DoorChime program.. 230

keeping out of trouble... 232
conclusion... 232

	 contents in detail	 xvii

18
the LineFollower program.. 233
following a line.. 233

requirements.. 233
assumptions.. 233

the starting point.. 234
selecting the sensor trigger values.. 234

building the LineFollowerConfig program.. 235
testing the LineFollowerConfig program.. 237
changing the LineFollower program.. 238

improving the control algorithm..243
how far from the edge?... 244
controlling the motors.. 248
setting the power values... 248
testing the program...251

conclusion..251

A
NXT websites ... 253

B
moving from NXT-G 1.0/1.1 to NXT-G 2.0 .. 255
numbers.. 255
block changes.. 255
using old programs.. 256
side-by-side installation... 256

index .. 257

acknowledgments
Thanks to Bill Pollock at No Starch Press for taking a chance on a first-time author and giving me the opportunity to create
this book. The patience, expertise, and professionalism of Bill, Megan Dunchak, Riley Hoffman, Ansel Staton, and the rest of
the No Starch staff have made working on this project a pleasure.

Thanks to Damien Kee, who provided the technical review of this book. His knowledge of the material and insightful
comments on the presentation greatly improved the end product.

Finally, thanks to my family for graciously allowing me the time to write a book and for all the help proofreading the text
and testing the building instructions.

introduction
This book is about learning how to write programs for LEGO MINDSTORMS NXT robots. The LEGO MINDSTORMS software
and its NXT-G programming language are powerful tools that make it easy to write custom programs. This book will teach
you how to get the most out of the NXT-G language as you acquire the programming skills necessary to successfully create
your own programs.

who this book is for
This book is for anyone using NXT-G to program their NXT robots, whether you’re a young robotics enthusiast, an adult
working with children to learn robotics, a parent, a FIRST LEGO League coach, or a teacher using NXT in the classroom. One
of my goals in writing this book was to make the material accessible to young learners while going into enough depth to help
students and teachers understand the hows-and-whys of NXT-G programming.

prerequisites
This book can be used with any NXT set and any version of the MINDSTORMS software. To test your programs, you’ll use
a single, general-purpose robot that you can build with any NXT set. There are only a few relevant differences between the
NXT software versions, and I’ll point them out as appropriate. Almost all the material presented in this book applies to any
version of the MINDSTORMS software.

No previous programming experience is required. NXT-G is a great first programming language, and I’ll explain how to
use the MINDSTORMS software and each of the elements of the NXT-G language.

what to expect from this book
This book focuses on programming NXT robots, rather than on the mechanical aspects of building them. You’ll learn how to
work with the core parts of the NXT-G language, such as the blocks, data wires, files, and variables, and you’ll see how these
pieces can work together. You’ll also learn some good programming practices, bad habits to avoid, and debugging strategies
that will help keep your frustration level low so you can have fun while programming. You’ll find numerous NXT-G programs
with step-by-step instructions and explanations, as well as many small examples designed to help you understand exactly
how NXT-G works.

All of the programs in this book will work with the general-purpose robot or the NXT Intelligent Brick alone. This is a
book about programming NXT, not about constructing robots. As such, I’ve devoted as many pages as possible to in-depth
coverage of the most important programming topics.

xxii	 introduction

The book begins with an introduction to the NXT set and
the MINDSTORMS software. This is followed by the building
instructions for the test robot. The next few chapters cover
the basics of the NXT-G language, culminating in a maze-
solving program in Chapter 7. Chapters covering the more
advanced language features follow, and the book finishes
up with a sophisticated line-following program. Here’s an
overview of the contents of each chapter.

Chapter 1: LEGO and Robots: A Great Combination
This chapter provides a brief introduction to the LEGO
MINDSTORMS NXT set and the NXT-G language. I’ll also
discuss the general process used for creating programs.

Chapter 2: The NXT-G Programming Environment
In this chapter you’ll find an in-depth tour through the
features of the MINDSTORMS software. You’ll create some
simple programs and learn the basic steps for debugging
problems.

Chapter 3: The Test Robot
The building instructions for the test robot are given in
this chapter. You’ll use this general-purpose robot to test
the programs in the remainder of the book.

Chapter 4: Motion
In this chapter you’ll learn about the NXT motors and
the NXT-G blocks that control them. You’ll write several
programs to learn how to make your robot move using
the Move and Motor blocks.

Chapter 5: Sensors
This chapter covers the NXT sensors: the Touch, Sound,
Light, Color, Ultrasonic, and Rotation Sensors. You’ll learn
common uses for each sensor type, as well as how to use
NXT-G to control the sensors. I’ve also included example
programs that teach you how to use each sensor.

Chapter 6: Program Flow
The Switch and Loop blocks are the main focus of this
chapter. You’ll learn the Switch block’s various options
for making decisions and how to use the Loop block to
perform repeated actions. I’ll also discuss the Keep Alive
block and the Stop block, as they also are related to
program flow. You’ll use the Switch and Loop blocks, as
well as some sensor and motor blocks, to write a simple
line-following program.

Chapter 7: The WallFollower Program: Navigating a Maze
By the time you get to this point in the book, you’ll have
learned the basic features of NXT-G. This chapter walks
you through the process of creating a complete program
to solve a maze using a wall-following method. This chap-
ter focuses on learning how to design, create, and debug
a large program.

Chapter 8: Data Wires
Data wires are one of the most powerful features of
the NXT-G language. This chapter shows you what data
wires are and how to use them effectively. The discus-
sion includes coverage of data types and introduces some
blocks that are used exclusively with data wires, including
the Math, Number to Text, and Text blocks. To get some
practice using data wires, you’ll write the SoundMachine
program, which turns your robot into a sound generator.

Chapter 9: Data Wires and the Switch Block
In this chapter you’ll learn how to use a data wire to
control a Switch block. You’ll also learn about the special
rules in NXT-G for moving data between the blocks inside
a Switch block and the blocks that come before or after
the Switch block.

Chapter 10: Data Wires and the Loop Block
In this chapter you’ll learn how to use data wires to
control a Loop block. You’ll learn about the NXT timers
and then use the features of the Loop block to create
three different programmable timers, each with its own
advantages.

Chapter 11: Variables
Variables are used for storing values that your program
uses. In this chapter you’ll learn how to create and use
variables, and you’ll see how they relate to data wires. I’ll
also discuss constants, which are new to NXT-G 2.0.

Chapter 12: The NXT Buttons and the Display Block
In this chapter you’ll learn how to use the buttons on the
NXT to control your program. You’ll also learn more about
how to use the NXT’s display screen. You’ll write programs
that let you enter a value into your program, using either
numbers or pictures, as well as a program that turns the
NXT into a sketch pad.

	 introduction	 xxiii

Chapter 13: My Blocks
A My Block is a block you create by grouping other blocks
together. In this chapter you’ll learn how to create a
My Block, how to use My Blocks in your programs, and
how to share My Blocks with other NXT users. I’ll dis-
cuss how to use variables and data wires with My Blocks
and how to deal with broken My Blocks.

Chapter 14: Math and Logic
This chapter covers the Math, Logic, Range, and Random
blocks. A section on how to use integer math is included
for NXT-G 1.0 users, as well as a section covering
floating-point math for NXT-G 2.0 users.

Chapter 15: Files
In this chapter you’ll learn how to use files to store infor-
mation on the NXT, how to manage the NXT’s memory,
and how to transfer files between the NXT and your
computer.

Chapter 16: Data Logging
The programs in this chapter show you how to use the
NXT as a data logger. I’ll cover the basics of collecting and
analyzing data, as well as some common problems. The
new data-logging features of the LEGO MINDSTORMS
Education Software 2.0 release are also discussed.

Chapter 17: Multiple Sequence Beams
NXT-G uses multiple sequence beams to provide multi-
tasking functionality. In this chapter you’ll learn why you
might want to use more than one sequence beam and
how to do so effectively. You’ll also learn about the ways
that using multiple sequence beams can complicate a
program and some tips for avoiding the most common
problems.

Chapter 18: The LineFollower Program
In this chapter you’ll see how to use some advanced
NXT-G features to create a complex line-following
program. You’ll use files to configure the program set-
tings and implement a proportional controller to create a
fast and accurate line-following machine.

Appendix A: NXT Websites
This appendix contains a list of websites that provide
information about NXT-G programming.

Appendix B: Moving from NXT-G 1.0/1.1 to NXT-G 2.0
This appendix discusses the changes in the NXT-G lan-
guage that you’ll want to be aware of when upgrading to
the new MINDSTORMS software.

how best to
use this book

To get the most out of this book, you should work through
the step-by-step instructions for building the example pro-
grams on your computer as you are reading. Programming
is a learn-by-doing activity, and you’ll learn a lot more by
writing and experimenting with the programs than you will
by just reading about them.

The programs and accompanying discussions will
make the most sense if you read the chapters in order.
Several of the example programs are introduced in the early
chapters and then expanded in the later chapters as you
learn more about the NXT-G language. By the time you get
to the end of the book, you’ll have the knowledge and skills
you need to be an expert NXT-G programmer.

1
LEGO and robots:

a great combination
Welcome to the world of robotics. For more than 100 years, people
have thought, dreamed, and written about robots. Not long ago, the
only place you could find a robot was in a good science-fiction story.
Today robots are very real and perform a wide variety of important
jobs. Robots explore other planets, investigate deep-sea volcanoes,
assemble automobiles, and perform surgery. Figure 1-1 shows one of
the Mars Exploration Rovers that help scientists explore our neigh-
boring planet. You can even buy a robot at your local department
store to sweep your floors at night while you sleep.

LEGO
MINDSTORMS NXT

With the LEGO MINDSTORMS NXT kit, you can build your own robot.
For example, Figure 1-2 shows a simple robot you could build to
explore your own space here on planet Earth. In fact, because you
are using LEGO pieces, you can build lots of different robots. And
although you won’t find any NXT-based robots performing surgery,
people have found many uses for these little robots.

Of course, the NXT kit makes a great toy, and many children
enjoy creating their own robotic creations just for fun. Many adults do
this too; we just call it “having a hobby” instead of “playing with toys.”
However, the NXT kit is more than just a toy; teachers in middle and
high schools use the kits to teach science and technology. LEGO even
has an education division to provide resources for teachers who are
using LEGO products in the classroom.

You can also use the NXT kits to perform real science. One group
recently sent nine NXT-based robots to the edge of space to perform
some high-altitude experiments. Along with being small and easy to
use, NXT is extremely versatile and powerful enough for scientists of
all ages to use. The only limit is your imagination!

Figure 1-2: Family Room Rover

Figure 1-1: Mars Exploration Rover (courtesy NASA/JPL)

2	 chapter 1

the NXT
online
community

A thriving online community is devoted to LEGO robotics,
including websites that show hundreds of innovative robot
designs. Two sites in particular, NXTasy (http://www.NXTasy
.org/) and TheNXTStep (http://TheNXTStep.blogspot.com/),
are well known for their message forums where users can
exchange ideas and find answers to questions. These are
great resources when you can’t figure out why your robot
isn’t working the way you think it should. A quick search of
the forums often provides the answer you are looking for. If
you don’t find a solution already posted, you can ask a ques-
tion describing your particular problem. See Appendix A for a
list of useful NXT-related websites.

the LEGO
MINDSTORMS
NXT kit

The NXT kits include LEGO pieces for building your robot, the
NXT Intelligent Brick, three motors, several sensors, and the
MINDSTORMS software. The exact mix of parts and sensors
included depends on your version of the kit (see the following
sections for more about the different versions).

The building pieces are the beam-and-pin type shown
in Figure 1-3. These pieces are used in the LEGO TECHNIC
product line, which includes kits to build construction equip-
ment, aircraft, space vehicles, and race cars. These parts
are both strong and lightweight, and you can connect them
in a variety of ways, making them ideal for creating robots.
And because the building parts are just normal LEGO pieces,
you can easily use parts from other TECHNIC, BIONICLE, or
even traditional block sets to create a wide variety of robotic
creatures.

The NXT motors and sensors let you turn an ordinary
LEGO model into a moving robot, which can react to its
environment and follow your commands. The three motors
provided are specifically designed to make it easy to build
mobile robots using either wheels or treads. You can also

use the motors to create robotic hands, cranes, catapults,
and many other moving contraptions. Many robots use two
of the motors to move around and the third for some other
function, while some robots use the motors for other tasks
and don’t move around at all.

LEGO makes several sensors, and your kit will come
with either four or five, depending on which version you
have. The sensors included in the NXT kits are the Ultra-
sonic, Touch, Light, Color, and Sound Sensors.

N	 The Ultrasonic Sensor measures the distance to an object
or obstacle.

N	 The Touch Sensor detects when the button on the front
of the sensor is pressed. It can tell when the robot runs
into something or whether an object is placed against the
robot.

N	 The Light Sensor measures the brightness of light shining
into the front of the sensor. It can distinguish between
white, black, and shades of gray, and it is useful both for
following lines as well as for measuring the brightness of
a light source. The sensor has a small light on the front to
measure reflected as well as ambient light.

N	 The Color Sensor can determine the color of objects. In
addition, it can act as a Light Sensor.

N	 The Sound Sensor measures the level of sound near the
robot.

Each NXT motor also contains a built-in Rotation
Sensor to measure the distance the motor moves.

Figure 1-3: Beams and pins

	 LEGO and robots: a great combination 	 3

LEGO also makes a Temperature Sensor (sold sepa-
rately), and other companies make sensors for the NXT kits.
For example, products from HiTechnic and mindsensors.
com include a Compass Sensor, Acceleration Sensor, and
Gyroscope Sensor. Vernier makes a wide range of sensors
for classroom use and an adapter for using these sensors
with the NXT.

The NXT Intelligent Brick (often abbreviated as just “the
NXT”) is the brains of your robot. The NXT is really a small
computer that you program to make your creations move.
Instead of a full-size monitor and keyboard, it contains a
small display screen and a set of buttons, along with connec-
tions for the motors and sensors. When you create a pro-
gram on your computer using the MINDSTORMS software,
you can then download it to the NXT using a USB cable or a
Bluetooth connection. When you run the program, the NXT
collects data from the sensors and moves the motors, all
according to the instructions you provided as the program.

NXT versions

The NXT comes in three main versions: the education
set, the original NXT retail kit (released in 2006), and the
NXT 2.0 retail kit (released in 2009). Each version has a dif-
ferent mix of building pieces and sensors, as well as different
versions of the MINDSTORMS software. All three kits contain
the same NXT and motors.

For the purposes of this book, the difference in build-
ing pieces is not an issue. The robot we’ll be using for the
example programs can be built with any of the kits or educa-
tion sets. Some slight differences will exist (for example, the
tires are different in the NXT 2.0 retail kit), but nothing of
any real importance.

Table 1-1 lists the sensors included with each NXT kit.
The main differences are that the NXT 2.0 retail kit replaces
the Light Sensor with a Color Sensor and adds a second
Touch Sensor instead of a Sound Sensor.

table 1-1: sensors included with each NXT kit

version sensors

Education set 2 Touch, 1 Ultrasonic, 1 Sound, 1 Light

NXT retail kit 1 Touch, 1 Ultrasonic, 1 Sound, 1 Light

NXT 2.0 retail kit 2 Touch, 1 Ultrasonic, 1 Color

MINDSTORMS software
versions

There are three major versions of the MINDSTORMS soft-
ware: Version 1.0/1.1, Education 2.0, and Retail 2.0.

NOTE	 Most of the material presented in this book
applies to all three versions. Even though some new
features have been added to the newer versions, the
basic process of writing a program has not changed from
the original. There are just a few significant differences,
such as the change from whole to floating-point num-
bers, and I’ll address those along the way. I tested the
example programs with all three versions and will point
out any adjustments that you need to make for a par-
ticular version.

version 1.0/1.1

Version 1.0 is the original software released for the NXT.
Version 1.1 is an update that includes some speed improve-
ments and bug fixes. There are separate versions for the
retail kits and education sets, although only a few differences
exist between the two. Each version contains some example
robots, and the education set version supports some older
RCX sensors (RCX is the pre-NXT LEGO robotics product).
Programs are interchangeable between the education sets
and retail kits, so I’ll refer to both as version 1.1 when
pointing out features that are specific to a particular MIND-
STORMS software release.

education 2.0

This software version was released in January 2009 by
the LEGO Education division. It includes several changes to
enhance datalogging (the automated collection of data by the
NXT), making the NXT more useful for science experiments.
The other major change has to do with the way numbers are
handled. Whereas version 1.1 uses only whole numbers, the
new software uses floating-point numbers that allow digits
after the decimal point (for example, 25.123).

retail 2.0

This version of the software is included with the new
NXT 2.0 retail kit. Like the Education Software 2.0, this
version uses floating-point numbers instead of only whole
numbers. It includes some new tools for creating sound and
image files for use in your programs, but it doesn’t include

4	 chapter 1

the datalogging features from the Education version. This
version also includes support for the new Color Sensor.

art and
engineering

For me, the most fascinating part of creating a robot is
writing the program to make it come alive. This book is all
about programming robots using the LEGO MINDSTORMS
NXT-G programming environment. You will learn about
all the different things NXT can do and how to put all the
programming pieces together to create complex robots.

Computer programming is a combination of art and
engineering. We tend to call something engineering when we
have a good understanding of the process involved and can
follow a set of logical steps to solve a problem. You can use
many engineering principles to make it easier to create your
programs: things such as understanding the requirements
of your program before you start and performing thorough
testing before you consider the program finished. (As you
move through this book—and especially with the longer pro-
grams toward the end—I’ll show you some good program-
ming practices to help you write better programs and some
common bad habits to avoid before they cause problems.)

Computer programming has come a long way since the
first computer programs. Today we have a good understand-
ing of how to build programs that work well with few errors.
However, the basic process of writing a program to solve a
particular problem is still more art than engineering. There
is no step-by-step process that you can follow. Creating a
program usually involves a lot of creativity and ingenuity—
things the human mind is good at even though we do not
really understand how they work. In my opinion, this use of
creative thinking makes programming so much fun. (You may
consider your program a work of art. In fact, particularly
inventive programs are often described as being beautiful or
elegant.)

As fun as programming can be, it can also be frustrating
when things do not work quite the way you want. Mechanical
problems can be easier to deal with because you can see
how the parts move and what is going wrong, but when a
program has a problem, figuring out why can be a bit of a
mystery. Throughout this book, I will show you how to find
where your program is going wrong and how to fix it. Just
remember, solving a mystery should be fun!

qualities of a
good program

Many of the decisions you make when creating your
programs will depend on your individual taste, and you will
develop your own programming style. There is usually more
than one correct way to solve a problem. However, a set of
three rules is often used to judge the quality of a program.
A program should do the following:

1.	 Perform the desired function

2.	 Be easy to modify

3.	 Be understandable by someone who knows the pro-
gramming language used

The first rule seems pretty obvious, but it is not quite
as simple as it may seem. Before you can be sure a program
works, you first need to be able to say precisely what it
should do. The complete description of what a program
should do is called the program’s requirements. If you are
creating a program for a school project or a FIRST LEGO
League (FLL) challenge, you might receive the complete
requirements before starting. If you’re just building a robot
for fun, you can make up the requirements as you go along.
In either case, you need to know what your robot should do
before you decide whether it’s a success.

The second rule exists because sometimes require-
ments change after you start a program. You may find that
you can’t solve a problem the way you first thought, or you
might expand the requirements to solve a harder problem.
It is also more likely that a program that is easy to modify
will be reused to solve similar problems. Reusing existing
programs instead of starting new programs from scratch
can save a lot of time.

The third rule is all about keeping things as simple and
easy to understand as possible. Programs that are more
complex than necessary tend to have more errors and are
harder to reuse. In addition to keeping things simple, you
can use comments to explain how the program works.
Well-placed comments are a simple way to make a program
useful to other programmers.

	 LEGO and robots: a great combination 	 5

software,
firmware, and
hardware

Your program is one of three components that work together
to control your robot. The program you create is called soft-
ware, which is a set of instructions that a computer can per-
form. In this case, the computer is the NXT Intelligent Brick.
The soft part of the word software comes from our ability to
make changes easily. This is what gives us the power to use
the NXT, three motors, and four sensors to create an endless
variety of programs.

The program that runs directly on the NXT Intelligent
Brick is firmware, which is a program that runs on a device
(like the NXT) that is not changed often and that is effectively
part of the device. Firmware is the program that makes the
sound when you turn on the NXT, controls the display, and
responds to the buttons on the NXT. When you connect the
NXT to your computer with a USB cable or a Bluetooth con-
nection, the MINDSTORMS environment communicates with
the NXT’s firmware.

NOTE	 LEGO may occasionally release updates of the
NXT firmware to add new features or fix problems. You
can use the MINDSTORMS software to download a firm-
ware update to your NXT Intelligent Brick. You can find
firmware updates at http://mindstorms.lego.com/Support/
Updates/.

The hardware your program runs on is the NXT. The
hardware is the physical part of a computer. In addition to
the NXT, you can also consider the motors, sensors, and
building pieces to be hardware. The hardware does not
change; you can put the pieces together in different ways,
but what each piece (including the NXT, motors, and sensors)
can do doesn’t change.

NXT-G
The LEGO MINDSTORMS application is a graphical program-
ming environment for writing programs for an NXT robot.
It is called a programming environment because it contains
all the tools you need to create a program for a robot. This
type of application is often called an integrated development

environment (or IDE for short). The MINDSTORMS IDE is
considered a graphical programming environment because it
allows you to create a program by drawing a picture instead
of just typing text.

NXT-G is the programming language used by the MIND-
STORMS environment. In NXT-G, the individual parts of a
program are called blocks. There are blocks for controlling
the motors, using the sensors, and many other things. You
create a program by using the screen to drag blocks around
and connect them together. The way your program behaves
depends on which blocks you use and how you arrange them.

NXT-G was created as a team effort by LEGO and a
company called National Instruments, which makes a wide
variety of scientific instruments and the software to control
them. One National Instruments product is LabVIEW, which
is a graphical programming environment for controlling
scientific instruments. NXT-G was created by customizing
LabVIEW for use with NXT.

One of my first programming jobs was developing a
product for creating control systems used by petro-
leum refineries. Petroleum engineers used our soft-
ware to draw all the pipes, pumps, and valves on the
screen and connect them. Since then, I have worked
on many scientific products that the user can pro-
gram graphically. Graphical programming is a useful
tool for helping people who are new to programming
control scientific equipment. Thousands of scientists
and engineers all over the world use software tools
similar to NXT-G to control all kinds of high-tech
equipment (including robots).

When designing NXT-G, the engineers at LEGO and
National Instruments faced a difficult challenge. They needed
to keep things simple enough for children to use; after all,
LEGO is a toy company, and regardless of how much fun
MINDSTORMS is for adults, it is still a toy. At the same time,
LEGO also wanted to make the system powerful enough to
satisfy more experienced LEGO fans.

The result is a remarkable balance between ease of
use and programming power, but like all things in life, this
balance is not perfect. When you first start out, you may
find things that seem odd and difficult to understand (if you
have played with data wires, you know what I mean). And
after you use NXT-G for a while, you will eventually come
across some problems that might have been easier to solve
if NXT-G had a few more features.

6	 chapter 1

I’ve tried to address both of these problems. The first
part of this book explains how NXT-G works, because
knowing why things behave the way they do helps to avoid
some of the confusion that new MINDSTORMS users tend to
experience. Later in the book, I show how to get around the
limitations you will inevitably run into.

what you’ll
learn from
this book

Knowing some characteristics of a good program is nice, but
it’s not really enough for you to become successful at writing
your own programs. The secret to becoming a successful
programmer is knowledge and practice. Throughout this
book, I concentrate on the following three areas of knowl-
edge that are important to becoming a successful NXT-G
programmer:

N	The behavior of each block. Learning how each block
works is the first step to using it in a program. Although
there are many blocks, each of which has many options,
learning about each block is not difficult. The NXT-G help
file gives a comprehensive description of each block, and
it is pretty easy (and fun) to write little test programs that
let you discover exactly what each block can do.

N	 Joining several blocks together into a working
program. To do this, you need to learn about data wires,
variables, and parallel sequences. This is where things get
a little more complicated. Learning some details about
how NXT-G works can go a long way to evading the confu-
sion that many users experience when they move beyond
simple programs. You can avoid a lot of frustration by not
only learning how the more advanced features of NXT-G
are designed to be used but by also learning the most
common problems people encounter and how to debug
and fix them.

N	General programming practices. The three rules
listed earlier are the first examples. As we go along, I will
introduce more concepts that are useful regardless of
the programming language you are using or the type of
program you are writing.

Programming is one of those learn-by-doing activities,
and this is where practice comes in. Many of the concepts
you need to understand will make sense only when you see
them in action. The more programs you write, the more
comfortable you will become. It’s all part of the artistic side
of computer programming.

what’s next?
In the next chapter, I’ll go over the parts of the NXT-G
programming environment and then present some easy
example programs that show how to use the IDE and some
simple programming concepts. The following chapters cover
the complete NXT-G language using programs that become
more and more complex.

You can download the source code for all the programs
in this book from http://www.nostarch.com/nxt-g.htm.

2
the NXT-G programming

environment
This chapter takes a close look at the NXT-G programming environment and presents a few simple programs. The NXT-G
programming environment is fairly complex, with lots of features. This chapter starts with the basics, and later chapters
cover some of the more advanced features. All the programs in this chapter use only the NXT Intelligent Brick.

a tour through the MINDSTORMS
environment

When you start the
MINDSTORMS applica-
tion, you will see the
Getting Started window,
shown in Figure 2-1.
From this window you
can either start a new
program or open an
existing one.

NOTE	 The screenshots
in this book are from
the NXT 2.0 retail kit
version of the software
running on Windows
XP. They may appear
slightly different on
your screen if you use
a different version or
operating system.

Click the Go button
in the Create New
Program section to
create a new empty

Figure 2-1: The Getting Started window

8	 chapter 2

and untitled program, as shown in Figure 2-2. Before writing
your first program, let’s look at the sections of the MIND-
STORMS IDE.

a: work area

In the center of the screen is the Work Area, which is also
known as the Program Sheet because it resembles a sheet
of graph paper. Tabs across the top of the Work Area let you
select between your open programs. The tab on the left with
the little square selects the Getting Started window that is
displayed when you first start the IDE.

b: programming palettes

To the left of the Work Area are the
Programming Palettes, which contain all
the blocks used to create programs. To
help keep things simple, there are three
palettes, selected using the tabs at the
bottom, as shown in Figure 2-3.

The first tab selects the Common
Palette. This group has the most commonly

used blocks, giving you quick access to the blocks that you’ll
use most frequently. The center tab selects the Complete
Palette. All the available blocks, including the ones on the
Common Palette, appear on the Complete Palette. The final
tab selects the Custom Palette. Blocks that you create, called
My Blocks, will appear on the Custom Palette.

c: robo center

The area to the right of the Work Area can hold either the
Robo Center window or the My Portal window (the educa-
tion set versions use the name Robot Educator instead of
Robo Center). This area provides building and programming
instructions for some example projects, with each version of
the software providing different projects. I encourage you to
work through these projects; they are a great way to become
familiar with the MINDSTORMS environment. Closing this
area gives you a larger Work Area.

d: my portal window

As mentioned, the area to the right of the Work Area can hold
either the Robo Center window or the My Portal window. The

b

e

h

d

c

f
g

a

Figure 2-2: The MINDSTORMS NXT environment

Figure 2-3: The

Programming

Palette tabs

	 the NXT-G programming environment	 9

My Portal window shows links to interesting areas on the
LEGO MINDSTORMS website. The education set versions of
the software connect to the LEGO Education site. When you
select the My Portal tab, this window replaces the Robo Center
window and should appear something like the following:

e: configuration panel

At the bottom left of the screen is the Configuration Panel. Use
this area to configure the blocks that make up your program.

f: help panel

At the bottom right of the screen are the Help and Naviga-
tion Panels. The Help Panel shows a short description of the
currently selected block. Click the More Help link to open the
full help file, which contains a complete description of every
block. Select the Help Panel by clicking the Question Mark
tab on the right.

g: navigation panel

When working with large programs, the Navigation Panel lets
you select which part of your program to display in the Work
Area. Select the Navigation Panel by clicking the Magnifying
Glass tab. This replaces the Help Panel and displays the
entire program, so you cannot see the details of each block,
but you can tell which part of the program is displayed in the
Work Area. The Navigation Panel for a large program may
look like the following:

h: controller

In the bottom-right corner of the Work Area is a group of
five buttons called the Controller. The Controller is the con-
nection between the programming environment and the NXT
Intelligent Brick.

writing
an NXT-G
program

Writing an NXT-G program is a fairly straightforward pro-
cess. In the Work Area is what looks like a small white LEGO
beam, which is called the Sequence Beam. You create an
NXT-G program by dragging blocks from the Programming
Palettes onto the Sequence Beam. Specify the exact behav-
ior of each block using the Configuration Panel. When you
run the program, the NXT executes each block in the order
they appear on the Sequence Beam. The blocks are run one
at a time, meaning that each block must finish its operation
before the next block is started. The program ends when
the end of the Sequence Beam is reached. The order of the
blocks and the way they are configured determines how the
program behaves.

The previous description is actually a little simplistic.
A few blocks do not necessarily complete before the next
block starts, for example. You can also use more than one
Sequence Beam, which complicates how the blocks are run
and when the program ends.

NXT-G is a very convenient language for humans, but
the NXT needs something a little different. Your NXT-G
program is called the source or source code, and it needs to
be translated into a set of instructions that the firmware
knows how to execute. The process of translating a program
from a human-friendly language to one used directly by the
computer is called compiling the program.

Once you write a program, use the Controller to compile
and download the program to the NXT. Downloading is the
process of copying the program and any other files the
program needs from your computer to the NXT.

10	 chapter 2

your first
program

For your first program, use the Sound block to have the NXT
say “Hello.” When you start the MINDSTORMS IDE, you’ll
see an area that lets you create a new program or open an
existing one. In the Create New Program box, enter Hello
as the program name, and click the Go button, as shown in
Figure 2-4. (This box is labeled Start new program in the
original NXT retail kit and the education set.)

Figure 2-4: Creating a new program

A new Work Area will open. Follow these steps to add a
Sound block to the new program:

1.	 Select the Sound block from the Common
Palette, as shown here:

2.	 Drag the block onto the end of the
Sequence Beam, which looks like a
little white bar. Place the Sound block
right on top of the area conveniently
labeled Start, as shown here:

Your program should now look like the following:

If you accidentally grab the wrong block or drop it in the
wrong place, select EditUndo on the menu and start again.

The Configuration Panel for the
block should be displayed below the
Work Area. If you do not see it, click
the block, and the Configuration Panel
should appear.

You’ll leave most of the items on
the Configuration Panel at their default
values and change only the Sound
File setting. Select Hello in the list
of available sound files, as shown in
Figure 2-5.

saving your work

Before continuing, save your program by selecting
FileSave. When you first save a program, a dialog will let
you name the program file and select the location to save it,
as shown in Figure 2-6.

Figure 2-6: Saving your program

The filename defaults to Hello.rbt because you entered
Hello as the program name when creating the new program.
If you neglected that step, the name will be something
like Untitled-1, but you can change it to something more
meaningful.

When you click the Save button, the file Hello.rbt is
created. This file contains all the information about your
program, including the blocks you used and how they are
configured and arranged. The file format is unique to the
MINDSTORMS environment; you won’t be able to edit it
using other programs.

NOTE	 Save your work often. Save before downloading
your program and certainly before getting up to answer
the phone or walk the dog. Redoing a few hours of work
because you neglected to save your program is really
annoying.

Figure 2-5: The Sound block’s Configuration Panel

	 the NXT-G programming environment	 11

making backup
copies

Most of the time when you are working on a pro-
gram, you’ll make progress. However, every now
and then when you change your program, instead of
making it better, you end up with a horrible mess,
and you can’t seem to get back to what you started
with. Professional software developers use fancy
tools called source code control systems to save ver-
sions of their work to avoid this problem, but you can
get the same benefits by copying working versions of
your program to a different folder. Use one of these
backup copies if you run into trouble. It’s a good idea
to save a copy after getting each new feature work-
ing and before making large changes. For example,
if you are working on a program with four tasks, you
might save it as Task1 after you get the first part
working. When you start adding the second task, you
might save it as Task1_Task2. This way you could
always go back a step if necessary.

running your
program

Once you save your program, it’s time to try it. The first
step is to make sure the NXT is turned on and connected
to your computer using either a USB cable or a Bluetooth
connection. The USB connection is easier to set up (just
plug in the cable between the NXT and your computer) but
more limiting; a Bluetooth connection can be more difficult
to set up but gives you more freedom. If you have problems
getting a Bluetooth connection to work, try looking at the
NXT hardware forum at http://www.NXTasy.com/ for several
useful tips.

Click the center Play button in the
Controller (shown in Figure 2-7) to down-
load and run your program.

When you click the Play button, a
dialog should appear with the messages
Compiling, Downloading, and Complete.
Once the messages finish, your NXT should
respond by saying “Hello.”

your second
program

The next program, HelloDisplay, is very similar to the Hello
program, except that instead of using the Sound block, you’ll
use the Display block to write Hello to the NXT display. One
big difference between this program and the first one is that
this program won’t work the first time. This will give you
a chance to look at what to do when your program doesn’t
work. Use the following steps to create the initial version of
the program:

1.	 Create a new program called HelloDisplay. Open the
Getting Started window by clicking the small tab on the
top of the Work Area that looks like this:

2.	 It will be the first tab on the left, before any tabs for
programs you have open.

3.	 Fill in the program name in the Create New Program box,
and click the Go button as shown earlier in Figure 2-4.

4.	 Drag the Display block from the Common Palette onto
the Sequence Beam. Your program should look like this:

5.	 The block’s Configuration Panel should be displayed, as
shown in Figure 2-8. Click the block to select it if the
Configuration Panel is not showing.

Figure 2-7: 	

The Controller

Figure 2-8: The Display block Configuration Panel

12	 chapter 2

6.	 To display the word Hello, you need to change the Action
value from Image to Text. Click the arrow beside the
word Image, and select Text from the pop-up box:

7.	 Changing the Action value causes the Configuration
Panel to display a different set of options. It should now
look like Figure 2-9.

Figure 2-9: The Configuration Panel after setting the Action value to Text

8.	 The last step is to replace Mindstorms NXT with Hello in
the Text box. Figure 2-10 shows the completed settings
with the changes highlighted.

Figure 2-10: Final Display block configuration

Now download and run your program. The NXT will
beep twice to let you know it has downloaded a program,
but Hello will not show up on the display. If you closely watch
the display while you run the program, you will see that the
NXT starts the program and then immediately says that
it’s done.

debugging
What happened? To put it simply, this program has a bug.
A bug is a program error. Debugging is the process of find-
ing and fixing errors. Like every programmer, you’ll spend
a lot of your programming time debugging. Fixing a bug
can sometimes be a frustrating process, but it can also
be incredibly rewarding to track down and solve a difficult
problem. Think of it as solving a puzzle, and remember that
you should always have fun!

Of course, some puzzles are easier to solve than oth-
ers. For example, most people would agree that a Rubik’s
Cube is a fairly complex puzzle, but even it can be solved by
following a simple set of rules (a quick Internet search for
Rubik’s Cube Solver will lead you to a list of solutions).

Like a Rubik’s Cube, debugging a program isn’t always
easy, but it helps to follow a set of rules. Although there is
no definitive set of steps for finding a bug, if you follow some
simple techniques, you’ll find it much easier to debug your
programs.

reproduce the bug

First see whether you can reproduce the bug, which just
means seeing whether you can get the program to repeat
the same behavior. For example, if you try running this
program again, it will fail again and will fail the same way
every time you run it. This is actually a good thing. A bug
that’s difficult to reproduce is also more difficult to fix. (Later
chapters deal with some trickier ones, but for now we have a
reasonably well-behaved bug.)

simplify the program

Normally, the second step is to simplify the program as
much as possible, but since this program is already as simple
as it can be, there is no way to do so. If it were larger, you
could remove pieces to concentrate just on the area with the
problem. Another approach is to try to reproduce the same
problem using a small test program.

look at the parts of the
program

Next, examine the parts of the program to try to figure out
what is happening. This program has only two parts—the
Display block and the Sequence Beam—so it’s likely that one
of these is not working quite the way you want.

Think about the difference between how you expect the
program to behave and the observed behavior. The program
consists of the single Display block, which should write Hello
to the NXT’s display screen, but instead the NXT shows
that the program is finished. You know the program ends
when all the blocks on the Sequence Beam have been run. A
reasonable explanation is that the program ends before you
have a chance to read the display because there are no other
blocks on the Sequence Beam.

fix the bug

Now that you have a possible explanation for the bug, you
can quickly test a possible solution (in most cases, finding
the cause of a bug is much more difficult than solving the
problem).

	 the NXT-G programming environment	 13

You can attempt to fix the program by adding a Wait
Time block after the Display block. Use the Wait Time block
to tell the program to pause for five seconds before ending,
which will give you enough time to read the display.

The Wait Time block does not appear directly on the
Common Palette; it is in a group of blocks that wait for
different conditions. Hover the mouse cursor over the hour
glass icon to make all these blocks appear. Figure 2-11
shows these blocks, with the Wait Time block circled.

Figure 2-11: The Wait Time block on the Common Palette

Use the following steps to fix the program:

1.	 Drag a Wait Time block onto the Beam to the right
of the Display block. Your program should look like
Figure 2-12.

Figure 2-12: The program with the Wait Time block added

2.	 By default this block pauses for one second. To have
a little more time to read the display, change the Until
value from 1 to 5. This will make the program wait five
seconds before ending. Figure 2-13 shows the Configu-
ration Panel with the change.

Figure 2-13: Waiting for five seconds

Now when you download and run the program, the
display should show Hello for five seconds before clearing,
which is the behavior you want. Adding the Wait Time block
is a successful solution to this bug.

the edit-
compile-test
cycle

The process you just went through is an example of the
typical programming process. In fact, it even has a name: the
edit-compile-test cycle.

It is very unusual for any program to work the first
time. After writing your program, download it to the NXT
and test it. Testing will often reveal some problem, so you
return to editing. Just keep going through the cycle, adding
features and fixing problems. Eventually, all the features
are added and all the problems are worked out to give you
a complete working program. It can take some patience and
perseverance, but it is a great feeling when it finally works.

NOTE	 Why didn’t the first program have the same
problem? It’s because the Sound block has a Wait for
Completion option that is selected by default (see Fig-
ure 2-5). This makes the program wait until the sound
plays before continuing. If you uncheck the Wait for
Completion option in the first program, it will fail in the
same way.

comments
Programmers use comments to add descriptive text to their
programs. Every programming language that I am aware of
allows programmers to do this, and NXT-G is no exception.
Use comments to tell other programmers how your program
works or why you made certain decisions. For example, you
could add a comment to the previous program to explain why
you added the Wait Time block.

In the previous chapter, I mentioned that a good
program should be easy to modify and understandable
to other programmers. Good comments are important in
achieving both of these goals. It can be very difficult to figure
out how a program works just by looking at the settings for
each block. A short description in plain English (or whatever
language you speak) will make your program much easier to
understand. Think of how you might describe your program
to a friend. You wouldn’t just list the blocks you use; instead,

14	 chapter 2

you’d describe what the program does as a whole, and you
might also explain how the more complicated parts of your
program work. Use comments to add this type of information
to your program so it will be much more useful to other
programmers. Comments also help you remember why you
wrote a program in a particular way, making it easier to
reuse your own programs.

The arrangement and configuration of blocks on the
Sequence Beam is all the information that the NXT needs
to run your program. Using the previous program as an
example, however, a person will want to know why you added
the Wait Time block. On the other hand, you just need to
tell the NXT to wait five seconds. The reason is unimportant.
Comments do not affect how a program runs; the NXT will
completely ignore them.

adding comments

In this section you will add two comments to the HelloDisplay
program. The first comment will describe what the program
does, and the second will explain the reason you added the
Wait Time block.

the program description

A Configuration Panel exists specifically to hold a description
of the program. A reasonable description of this program is
Say “Hello” using the display. Entering the program descrip-
tion is a simple two-step process:

1.	 Click the MINDSTORMS icon on the left side of the
Sequence Beam (shown here) to open the Configuration
Panel for the program description.

2.	 Enter the description Say “Hello” using the display in
the box provided in the Configuration Panel, as shown
here:

the comment tool

The second comment will be placed before the Wait Time
block to explain why that block is there. A reasonable expla-
nation is Wait 5 seconds before ending the program to
give the user time to read the display.

It may be a little easier to understand the process of
adding a comment if you can see the final result. Figure 2-14
shows the program with the comment added. Anyone looking
at this program will know why the Wait Time block is there.

Figure 2-14: Explaining the Wait Time block

Add comments to your program using the
Comment tool on the toolbar, as shown here:

Use the following steps for adding this comment:

1.	 Click the Comment tool on the toolbar. When you
move your mouse over the program, you should
see the I-beam cursor usually used when work-
ing with text.

NOTE	 The mouse cursor may look a little different if
your system settings are not the same as mine.

2.	 Click above the Wait Time block. A small black box will
appear on the screen to let you know where the com-
ment will be placed, as shown here:

3.	 Start typing the comment Wait 5 seconds before
ending the program to give the user time to read
the display. Press the enter key to move to the next line
when the text gets wider than the block (it’s easier to
read if the comment does not extend way past the block).

	 the NXT-G programming environment	 15

4.	 When you finish adding a comment, you can start
another one by clicking in the Work Area. When
you finish adding comments, select the Pointer
tool from the toolbar.

5.	 This tells the IDE that you want to go back to
selecting blocks. When you move your mouse
cursor over the program, you should now see the
normal pointer, as shown here:

rules for working with comments

The following are a few things you should know about
comments:

N	 Pressing enter while typing a comment makes it go to the
next line.

N	 Clicking the text of a comment lets you change the
comment.

N	 Double-clicking in the Work Area starts a comment.

N	 Clicking the edge of a comment selects the comment.

N	 You can delete the selected comment by pressing the
delete key.

N	 You can move a selected comment by dragging it with the
mouse; just make sure to click the edge of the comment
and not the text.

the
configuration
panel

Before moving on to the next program, let’s take a closer
look at the Configuration Panel. When you select a block in
your program, the Configuration Panel for that block displays
in the lower-left corner of the IDE. This is where you set the
options that control exactly how the block behaves. You will
spend a lot of time working with the Configuration Panel
when writing an NXT-G program.

Each block has its own Configuration Panel, and subse-
quent chapters discuss the details of each block. In this sec-
tion, I concentrate on how the Configuration Panel works in
general. The National Instruments engineers did a good job
of using a consistent look and feel across the Configuration
Panels for all the blocks, which is one of the features that
make NXT-G easy to use.

I’ll use the Configuration Panel for the Sound block as
an example for this discussion. This is a fairly typical block,
and all the ideas discussed here are repeated in many other
blocks.

general layout

Each block has a different set of items you can configure,
but those items tend to be arranged in the same way.
Figure 2-15 shows the Configuration Panel for the Sound
block. This is how the Configuration Panel looks when you
first add the Sound block to a program, before you make
any changes.

Figure 2-15: The Configuration Panel for the Sound block

The items are arranged in two columns. The items you
set first will be in the left column, with the most important
ones near the top. For example, you can use the Sound block
to play either a sound file or a single musical tone. This is
controlled by the Action item, located at the top of the first
column. The Action is listed first because the type of sound
affects how some other items behave.

changing panels

The Sound block has many options, and some of the choices
can only be used together. In the Hello program, you left the
Action item set to Sound File and selected Hello from the
Files list on the right. However, it only makes sense to select
a sound file from the list when you select Sound File for the
Action. When you select Tone, you need to make different
choices. Figure 2-16 shows the Configuration Panel with the
Tone action selected. Compare this with Figure 2-15. Notice
that the right side of the panel has changed. The list of files
has been replaced with items used to select a note to play.

Figure 2-16: Configuration Panel for playing a single tone

 E T

	

	

	

	

16	 chapter 2

Many blocks have Configuration Panels that change like
this, where an item on the left side controls the choices that
appear on the right. This allows a single block to have several
different uses without displaying a confusing list of conflict-
ing options.

disabled items

Occasionally, you may find that the option you want to select
is disabled. A disabled item appears on the Configuration
Panel but is light gray and you cannot select it. This hap-
pens when some other incompatible choice is selected. For
example, the Sound block can play a sound or stop a sound
that is currently playing. When you select Stop for the Con-
trol item, the rest of the choices become disabled, as shown
in Figure 2-17. This makes sense because there is no point in
setting the volume or selecting a note to play when you want
the sound to stop.

Figure 2-17: With Stop selected, the rest of the choices are disabled.

a block’s configuration icons

You can select a block and examine its Configuration Panel
to see exactly what it does. However, you can look at the
Configuration Panel for only one block at a time. Fortunately,
the way a block is displayed in the program changes based
on some of the most important configuration items. Here is
the way the Sound block looks in the Hello program:

Notice the three icons along the bottom. These icons
change based on your configuration choices. The icon on the
left tells you that the action is set to Sound File. The same

icon appears next to the Sound File choice on the Configura-
tion Panel. The middle icon shows that you are playing a
sound, and the third icon shows the Volume setting.

This is how the Sound block appears when you select
Tone for the Action setting:

The icon on the left has changed to a small musical note
to match the Action setting.

When the Control item is set to Stop, the icons for the
Action and Volume settings are not shown; only the Stop icon
appears:

Each block uses a different set of icons because the
blocks all have different settings. If you are not sure what
an icon means, look at the Configuration Panel for the block.
The icons shown on the block will also appear next to one of
the settings.

conclusion
This concludes our tour of the MINDSTORMS environment.
I covered the basics that you will need to create simple
NXT-G programs, and you’ll get plenty of practice as we
progress. I will introduce more advance features as we need
them.

The next step is to build a simple TriBot to use with the
example programs in the following chapters. Then I’ll intro-
duce the many blocks available in NXT-G and show you how
to put them together to make the TriBot perform a variety
of tasks.

3
the test robot

You’ll need a robot to use as a test bed to run the example programs in the rest of this book, and you’ll build that robot in
this chapter. You’ll construct a simple, three-wheeled TriBot that’s easy to build with NXT parts. The robot will incorporate all
the NXT sensors, and you’ll be able to use it as a single general-purpose robot in testing a wide variety of programs.

Figure 3-1 shows the finished TriBot. The robot on the left was built using the NXT 2.0 retail kit, and the one on the
right was built using the education set.

Figure 3-1: TriBots built from the NXT 2.0 retail kit and the education set

18	 chapter 3

You can build this model with any NXT kit, though the
building instructions here use the parts from the NXT 2.0 retail
kit. If you build the robot using the original NXT retail kit or the
education set, note that just a few differences matter for this
model.

The NXT 2.0 retail kit includes flat tires, and the other
kits include the larger balloon tires (see Figure 3-2).

Figure 3-2: Flat and balloon tires

The parts used for the caster wheel (the third wheel at
the back of the TriBot) also differ between the NXT 2.0 retail
kit and the earlier kits. Figure 3-3 shows the parts used for
the caster wheel. If you use the NXT 2.0 retail kit, use the
20-tooth gear shown on the left. If you use the original NXT
retail kit or the education set, use the two belt wheels shown
on the right.

Figure 3-3: Caster wheel parts

If you use the education set, you’ll need to make a
couple of substitutions. Referencing Figure 3-4, use the
beam on the left (with two holes on the short side) for any
version of the retail kit and the one on the right (with three
holes on the short side) for the education set.

Figure 3-4: Part substitution for the education set

NOTE	 Another difference between the three kits is the
color of some parts. For example, some beams are white
in the retail kits and gray in the education set, and some
parts that are gray in the older kits are colored in the
new kit. Just make sure the parts are the correct size
and shape; it doesn’t matter if the color doesn’t match
the description here.

	 the test robot	 19

The following shows the parts you need if you use the
NXT 2.0 retail kit. If you use one of the other kits, make the
substitutions noted previously.

right-side
motor

Begin by building the motor and wheel assembly for the right
side of the TriBot, as pictured.

20	 chapter 3

1

2

3

	 the test robot	 21

left-side
motor

Follow the pictured steps to build the motor for the left
side.

4 6

5

The long pin is blue in the NXT 2.0

retail kit and black in the earlier kits.

22	 chapter 3

2

31

	 the test robot	 23

chassis
Now build the chassis that connects the two motors.

64

5

24	 chapter 3

2

1 3

4

The 11-hole beam added in this step should be

connected to the 7-hole beam added in the previ-

ous step so that only the last hole of the 7-hole

beam is left showing.

	 the test robot	 25

caster wheel
In this section, you will attach the caster wheel to the back
of the TriBot. I’ve included two sets of building instructions
because of the differences in the height of the tires and
the parts in each kit. The first set of instructions is for the
NXT 2.0 retail kit. If you’re using the original NXT retail kit
or the education set, use the instructions in the following
section.

If you’re not sure which kit you have, compare your
tires with the ones shown in Figure 3-5. If you have the tire
on the left, then you have the NXT 2.0 retail kit and should
follow the directions in “Caster Wheel for the NXT 2.0 Retail
Kit” below. If you have the balloon tire on the right, then you
have either the original NXT retail kit or the education set
and should skip to “Caster Wheel for the Original NXT Retail
Kit and Education Set” on page 27.

Figure 3-5: Flat and balloon tires

caster wheel for the NXT 2.0
retail kit

Now attach the right motor assembly.

See the picture for the view from the back.

5

26	 chapter 3

1

2

3

4

	 the test robot	 27

caster wheel for the
original NXT retail kit
and education set

Follow these instructions if you use the original NXT retail
kit or the education set.

1

5

6

If you have built the caster wheel with the NXT 2.0
kit, proceed to "Attach the Caster Wheel" on page 29.

28	 chapter 3

2

3

4

5

	 the test robot	 29

6

attach the
caster wheel

Next attach the caster wheel to the back of the robot.

The next step adds two pins to the back of each motor.
On each side, the pins should be in the two outside holes,
leaving the inside hole (toward the center of the TriBot)
empty.

1

2

Now attach the caster wheel to the center of the beam.

30	 chapter 3

3

4

5

6

	 the test robot	 31

add the NXT
In this step, you’ll add the pins you need to the NXT and then
attach the NXT to the motors.

1

2

Now turn the NXT around to add pins to the other side.

32	 chapter 3

Now flip the robot around to attach the NXT on the
other side.

Now attach the NXT to the motor assembly.

3

4 5

	 the test robot	 33

Now build the rest of the bumper.

touch sensor
bumper

In the following set of steps, you’ll build a bumper using
the Touch Sensor.

Start by building the bumper arm.

1
3

2

34	 chapter 3

If you are using the education set, you need to make a
substitution for the angled beam used to hold the bumper
arm. The following instructions use the beam shown here
on the left. The education set doesn’t contain this piece, so
use the beam pictured on the right instead.

4

6
5

	 the test robot	 35

Turn the sensor around for the next set of steps.

Use the tan pins (not the blue ones) to attach the
bumper arm to the sensor. The tan pins have less friction,
so the arm swings more easily.

Now add the bumper arm and a pin to connect the
arm to the beam you will add in the next step.

8

97

36	 chapter 3

attach the
bumper to
the chassis

To attach the bumper, first you need to add some connec-
tors to the post at the front of the chassis.

Now add the bumper assembly. The pins at the back
of the bumper fit into the two inner pin holders (the ones
closest to the post).

1

2

	 the test robot	 37

ultrasonic
sensor

The next step is to mount the Ultrasonic Sensor so it
points forward. First build an arm to hold the sensor, and
then attach it to the NXT.

2

3

1

38	 chapter 3

Now attach the arm to the side of the robot.

sound sensor
The Sound Sensor attaches to the bottom of the arm. The
NXT 2.0 retail kit doesn’t come with a Sound Sensor, so
you can skip these steps if you have that kit.

4

1

	 the test robot	 39

2

color sensor
or light
sensor

Follow the next steps to connect the Color Sensor or Light
Sensor to the robot. The pictures show the Color Sensor
from the NXT 2.0 retail kit; however, substitute the Light
Sensor if you have another kit.

First create a mounting bracket for the sensor.

1

2

40	 chapter 3

Turn the sensor on its side for the following steps.

Next attach the sensor to a beam.

3

4
5

Turn the sensor around for the next step.

	 the test robot	 41

Attach the beam to the side of the TriBot.

6 attach the
wires

It’s easier to add the wires now before you add the final
beam. Table 3-1 shows how to connect the motors and
sensors to the NXT.

table 3-1: cable connections

motor or sensor port cable length

Motor on the Ultrasonic
Sensor side

B 14 inches (35 cm)

Motor on the Color/Light
Sensor side

C 14 inches (35 cm)

Touch Sensor 1 8 inches (20 cm)

Sound Sensor 2 14 inches (35 cm)

Color or Light Sensor 3 14 inches (35 cm)

Ultrasonic Sensor 4 20 inches (50 cm)

The motors use ports B and C to match the default
settings for the Move Block. Likewise, the NXT-G blocks
that use sensors default to the port listed in the table. Any
motor or sensor will work using any port (for example, the
Touch Sensor works just as well using port 4 as it does
using port 2), but using the default ports makes writing
your programs a bit easier and less prone to error because
you won’t have to change the port setting. The programs
in this book assume you have the motors and sensors con-
nected according to Table 3-1.

42	 chapter 3

alternate
placement
for the color
sensor

Some programs require the Color or Light Sensor to be
placed at the front of the TriBot, replacing the Touch Sensor.
The sensor can be mounted pointing forward as shown here:

You can also mount the sensor pointing down, as
shown here:

the final beam
With the wires in place, it’s time to add the last piece. Add
this beam across the front of the robot, just behind the
Touch Sensor.

1

	 the test robot	 43

alternate
placement
for the
ultrasonic
sensor

Some programs require placing the Ultrasonic Sensor so it
points to the side of the TriBot. Follow these steps to make
the necessary changes.

Start by removing the Ultrasonic Sensor and the
Touch Sensor bumper.

The next steps add a beam to the front of the TriBot
and attach the Ultrasonic Sensor and the Touch Sensor
bumper.

1

2

44	 chapter 3

conclusion
Now that you have built the TriBot, you can use it for the
programs in the remainder of this book. The first pro-
grams will use the original configuration, with the Touch
Sensor on the front. I’ll let you know when to use one of
the alternate sensor placements.

Add the Ultrasonic Sensor to the end of the beam.

Finally, put the Touch Sensor bumper back in its
place.

3

4
motion

The one thing above all else that excites people about working with robots is that they move. There is just something fasci-
nating about watching your creation become mobile.

We can thank the NXT motors for making this movement possible. In this chapter, you’ll learn about the NXT-G blocks
used to control the motors, beginning with a very simple program and working up to some more complex examples.

the NXT motor
The NXT motor (shown in Figure 4-1) is
designed to make it easy for you to create
moving robots. The case has an unusual shape
because it contains a set of gears in addition to
the electric motor. The gears adjust the speed
and power of the motor’s rotation, making it
possible to connect a wheel directly to the NXT
motor without the need for additional gears.

Although the balance of speed and power
provided by the NXT motor is great for a robot
like the TriBot, it’s not ideal for every situation.
Your NXT kit comes with a collection of gears
that you can use if your design requires more
speed or power. The Unofficial LEGO MIND-
STORMS NXT Inventor’s Guide by David J. Perdue
(No Starch Press, 2007) has an excellent section
on using gears in NXT robots.

The NXT motor contains a built-in Rotation Sensor to measure how much the motor rotates. Because the sensor is part
of the motor, you don’t have to use one of the four sensor ports with a separate sensor. The NXT-G Move and Motor blocks
(discussed in a moment) automatically use this sensor to make very precise moves. In addition, you can use this sensor
in your programs to control the robot’s movement. The next chapter discusses the Rotation Sensor along with the other
sensors.

Figure 4-1: The NXT motor

46	 chapter 4

the move
block

The Move block (shown in Figure 4-2) can
control any of the three motors working
alone, two of the motors working together,
or even all three motors at the same time.
This is the block you’ll use most often to
make your robot move. It has many options
and is suited to a wide variety of tasks.

For example, the following is a simple
program to move the TriBot forward a short
distance:

1.	 Create a new program named SimpleMove.

2.	 Drag a Move block onto the Sequence Beam from the
top of the Common Palette. Leave all the settings with
the default values. Your finished program should look
like this:

3.	 Download and run the program. Your robot should move
forward a few inches.

the move block’s configuration
panel

Although the Move block’s default values work for the simple
program you just created, you’ll usually need to make some
changes. The Configuration Panel (shown in Figure 4-3)
contains all the options you need to customize the block’s
behavior. The settings you choose will depend on how you
construct the robot and what you want it to do. The various
sections of the Configuration Panel are explained here, fol-
lowed by some example programs.

port

The Port setting (shown in Figure 4-4) is where you tell the
NXT which motors you want to move. As you can see, you
can select one, two, or all three ports.

Figure 4-4: Selecting the port

It’s common for a robot to use two motors to move. The
TriBot works this way, and so do many other robot designs.
When two ports are selected, the Move block automatically
keeps the motors synchronized—in other words, it constantly
adjusts how fast each motor moves so the two wheels work
together. The Move block uses the Rotation Sensors in the
motors to make the robot move in a straight line, turn a
corner, or even spin in place, based on the setting of the
Steering control (discussed later in this chapter). Having the
Move block synchronize the motors immensely simplifies the
task of controlling a robot’s motion.

NOTE	 Although it’s possible to select all three ports,
it’s unlikely you will ever do so. Using all three motors
together generally requires more coordination than a
single block provides. If you do choose to select all three
ports, only the B and C motors will be synchronized, and
the Steering control becomes disabled.

direction

For the Direction setting of the Configuration Panel, the
choices are Forward, Backward, and Stop, as shown in
Figure 4-5. The only thing you need to be careful of here is
that Forward and Backward are relative to how your robot is
constructed and oriented. Luckily, it’s easy to tell when this
setting is wrong (your robot will move backward when you
want it to move forward), and the fix is just to select the other
option. If only all bugs were this easy to detect and solve!

Figure 4-5: Setting the direction

Figure 4-3: The Move

block’s Configuration

Panel

Figure 4-2:

The Move

block

	 motion	 47

The Stop setting is used to stop a motor that a previous
Move block started.

power

The Power setting (shown in Figure 4-6) controls how fast
the motors will move. Set the Power either by moving the
slider or by typing a value from 0 to 100. A setting of 100
will make the motors move as fast as they can, and a motor
won’t move at all with the Power set at 0. It takes a minimum
amount of power for a robot to being moving, depending on
the robot’s weight, the surface it’s on, how the wheels are
connected, and the strength of the batteries. The lowest set-
ting I use to make the TriBot run across my desk is 7. Using
a setting too close to the minimum can cause stalling—when
the motor is unable to move either because it doesn’t have
enough power or because something is blocking it.

Figure 4-6: How fast the motor should move

When setting the Power item, you need to balance
accuracy with speed. A slow-moving robot can move more
accurately, but a faster-moving robot gets its job done more
quickly, which is important in timed tasks. A fast-moving
robot is also more fun to watch. Deciding on the best Power
setting for your robot usually takes some trial and error.

duration

The Duration setting controls how long a move will last.
There are four choices, as shown in Figure 4-7: Unlimited,
Degrees, Rotations, and Seconds.

Figure 4-7: Setting the duration

The Degrees and Rotations settings let you set how
much the motor will turn. The only difference between
these two settings is the number that you enter—typing
360 degrees will turn the motor exactly one rotation. It’s
more convenient to measure a long move in rotations and a
short move in degrees, because the numbers are easier to
work with, just like choosing between using feet and inches
(or meters and centimeters).

When entering numbers in degrees, you can use whole
numbers only, but when using rotations, you can use up to
three decimal places. However, the Move block is only accurate
to within one degree, so using rotations won’t result in better
accuracy even though you can enter more precise numbers.

Here are a few details you should know about when
using the Degrees and Rotations settings:

N	 Using negative numbers will not move your robot backward.
You need to set the Direction item to Backward to do this.

N	 A Power setting that is too low to move the motor can
cause your program to stop. The program will not start
the next block until the motor moves the complete
distance. This means that if the motor stalls, the block
will never finish. For example, if you tell the motor to move
300 degrees with the Power set to 2, then because the
robot doesn’t move, it will never reach 300 degrees and
so the program never moves to the next block (actually,
you can force the block to finish, but it requires using
another Move block running on a second Sequence Beam;
Chapter 17 discusses using multiple Sequence Beams in
detail).

N	When you switch between Degrees and Rotations (or the
other way around), the number you enter will change to
match the new setting, keeping the distance the same.
For example, if you set the Duration to 2 rotations and
then select Degrees, the number will change to 720. If you
want to change both the number and the unit, make sure
to change the unit first; otherwise, you’ll end up with the
wrong distance. To go from 2 rotations to 500 degrees,
select Degrees first and then enter 500. If you enter the
500 first and then select Degrees, the 500 will change to
180000 degrees (which is 500 rotations).

Set the Duration item to Seconds to run the motors for
the length of time you specify. You can use up to three decimal
places when setting the value, just like the Wait Time block.

An Unlimited move will keep the motors going until you
run another Move block or the program ends. In most cases,
a block will finish what it’s doing before the next block on
the Sequence Beam runs. A Move block with the Duration
set to Unlimited is one of the exceptions (because the move
will never complete by itself). With any of the other Duration
choices, your program will wait until the move is complete
before starting the next block.

steering

Use the Steering slider (see Figure 4-8) to control how
quickly your robot turns or to make it move in a straight line.
You can set the Steering option only if you select two ports—
this control is disabled if you select one or three ports.

Figure 4-8: Steering control

48	 chapter 4

Setting the slider in the middle makes the robot move
straight—at least, the NXT will try to make it go straight by
constantly making small adjustments to the motors to keep
them moving at the same speed. Many things can affect how
a robot moves, and your program can only control how fast it
moves each motor. If your robot is unbalanced, meaning that
there is more weight on one side than the other, it will tend
to drift to one side. The type of floor on which your robot is
moving will affect its motion, as well as the wheels and the
type of caster (third wheel) you use. It’s almost impossible
to make your robot move perfectly straight, but you can get
close enough for most situations.

Setting the slider all the way to one side or the other
makes a robot spin around, because the two motors will
move at the same speed but in opposite directions. The
distance between the two wheels determines the duration
you need to set to make your robot spin in a full circle.

Setting the Steering slider somewhere between the
middle and one end causes a robot to make a gentle turn.
The closer you are to the end of the slider, the tighter the
turn will be. Turning happens when one motor moves faster
then the other; on the inside of the curve, the slower motor
will move a shorter distance. If you select Degrees or Rota-
tions for the Duration, then this setting will apply to the
faster-moving motor, which is the one on the outside of the
curve.

next action

The Next Action item tells the block how to end the move
and what to do with the motor once the move is complete.
The choices are Brake and Coast (see Figure 4-9). The Brake
option quickly stops the motor and locks it in place. The
Coast option lets the motor come to a stop on its own and
then lets the motor spin freely.

Figure 4-9: How to end the move

The following are some things you should know about
the Next Action item:

N	 You can only specify a Next Action if the Duration is set to
Seconds, Degrees, or Rotations. If you set the Duration to
Unlimited, this setting will be disabled because the block
will finish while the motor is still moving.

N	 If you want your robot to make an accurate stop, use
the Brake setting when the Duration is in Degrees or
Rotations. The motor will slow down and stop very close to
the Duration you set. With the Coast option, the motor will

start to slow down after reaching the Duration, so it will
move a little past the Duration you set.

N	 Use Brake to keep the motor from moving after the block
finishes; for example, use Brake to hold the motor still after
grabbing an object to keep it from falling out of a gripper.

N	Holding a motor in place uses a small amount of battery
power, so it’s a good idea to set a motor to Coast unless
you need to hold it in place.

the feedback boxes

Deciding on the value for the Duration can be
a time-consuming task. The Feedback Boxes,
located on the right side of the Configuration
Panel and shown in Figure 4-10, can be a big
help. They show how far each motor has moved.
The value is always displayed in degrees (even
if you set the Duration item to one of the other
choices). For the Feedback Boxes to work, you
need to have the MINDSTORMS environment
connected to the NXT using either a USB cable
or a Bluetooth connection.

The value will be red if the motor moved backward.
Only the total distance is displayed, so if you move the motor
forward 360 degrees and then backward 360 degrees, the
display will show 0. The values change only for the motors
selected in the Ports area of the Configuration Panel. Click
the R button to reset the values to 0.

When the NXT is not running a program, you can move
a motor manually and see how many degrees it moves. Then
use the value displayed in the Feedback Boxes to set the
Duration for your Move block. This is particularly useful when
you need to determine how far to move an arm or gripper.

When you run a program, the values will reset to 0 at
the start, will update while the program is running, and will
reset to 0 again when the program completes. You can add a
Wait Time block at the end of the program to make it pause
if you want to read the values before they reset.

the NXT intelligent brick view
menu

The Feedback Boxes are very convenient, but there are two
drawbacks to using them: You need to keep the NXT con-
nected to the computer, and you need to be sitting in front
of your computer to see them. As an alternative, you can
measure how far a motor moves just using the NXT.

Using the menu on the NXT, select View, Motor rota-
tions, or Motor degrees, and then set the Port item (to
either A, B, or C). When you move the motor attached to the
selected port, the NXT’s display will show how far it moves.

Figure 4-10:

The Feedback

Boxes

	 motion	 49

there and
back

The ThereAndBack program will make the TriBot move
forward 3 feet, turn around, and then return to where it
started. Some measuring is required to solve this problem,
so if your rulers are metric, feel free to change the problem
to use 1 meter instead of 3 feet.

This program uses three Move blocks: one to move
forward, one to spin the robot around, and one to move the
robot back to where it started.

moving forward

The first block needs to move the robot forward 3 feet.
“Feet” is not one of the duration options, so you need to
figure out how far 3 feet is in either degrees or rotations—it
doesn’t matter which you choose. I’ll use rotations for this
example.

How do you figure out how many rotations you need to
turn the motor to travel 3 feet? One way is to write a pro-
gram that moves the robot a long distance, say 10 rotations.
Before running the program, mark your robot’s starting posi-
tion. Run the program, and then measure how far the robot
moved in inches. Divide the distance by the number of rota-
tions to determine how far the robot moves in one rotation.
My robot moves 52 inches in 10 rotations, or 5.2 inches in a
single rotation. The robot needs to go 36 inches, so I need to
divide 36 by 5.2 to find the proper Duration setting. I’ll start
with 6.9 rotations and adjust the value after some testing.

Be aware that the number you need will be slightly dif-
ferent if you change the type of floor you run on, the wheels
you use, or the Power setting for the Move block. After some
testing, I found that a Duration of 7.1 rotations and a Power
setting of 75 works well for me.

NOTE	 The balloon tires from the educa-
tion set and the original NXT retail kit
are larger and therefore go farther in one
rotation. A duration of 5.25 works when
using these tires.

Once you know the duration, you can start writing the
program. The following is the first set of steps:

1.	 Create a new program called ThereAndBack.

2.	 Drop a Move block onto the Sequence Beam, and set
the Duration to the number you decided on. For now,
keep the Power at the default value of 75.

Figure 4-11 and Figure 4-12 show the program and the
Configuration Panel for the Move block.

  Figure 4-11: Step 1 of ThereAndBack

Figure 4-12: Setting the Duration item to 3 feet

Test these settings by running the program several
times across a measured distance. Your robot should stop
very close to the same spot each time. If it doesn’t, you
should try lowering the Power setting. Adjust the Duration
if the robot stops at the same spot but doesn’t travel the
correct distance.

turning around

A second Move block will turn the robot around for the
return trip. Moving the Steering slider all the way to one side
makes the TriBot spin in place. It doesn’t matter which side
you pick; the direction the robot spins isn’t important.

The only real challenge configuring this block is that you
once again need to figure out what to use for the Duration
item. After some testing I found that a Duration setting
of 475 degrees works well for me (400 degrees using the
balloon tires). I turned the Power down to 50 to get a good,
consistent turn, because with the Power setting at 75, it
turned a little too far about half the time. This is a typical
trade-off between speed and accuracy.

The following are the next steps in building this part of
the program:

3.	 Drag a Move block onto the Sequence Beam to the right
of the existing block.

4.	 Drag the Steering slider all the way to one side.

5.	 Set the Duration to 475 degrees and the Power to
50. Use these for initial values; you can adjust them as
needed during testing.

Figure 4-13 and Figure 4-14 show the program and the
configuration of the second Move block.

50	 chapter 4

 
Figure 4-13: Moving forward

and turning around

Figure 4-14: Configuration Panel to turn around

testing a single block

To fine-tune the Duration and Power
settings, you can test this block on its
own. It’s easier to test the block over and
over by itself instead of waiting for the
robot to travel 3 feet and then seeing
whether it turns around correctly. Test a
single block using the Download and Run
Selected button on the Controller (shown in
Figure 4-15). If you select the second Move
block and then click the Download and Run
Selected button, your robot will only turn
around (instead of moving the first 3 feet).
Adjust the Duration and Power settings as needed
until your robot consistently turns all the way around.

moving back to the start

To move the TriBot back to where it started, add a third
Move block that travels the same distance as the first Move
block. The final steps in the program are as follows:

6.	 Drag a Move block onto the end of the Sequence Beam.

7.	 Set the Duration to the same value you used for the
first Move block.

Figure 4-16 shows the final program.

Figure 4-16: Final ThereAndBack program

Test your program with all three blocks. A slight error
in the Duration when turning around may show up after
traveling back the 3 feet, so you may need to make an
adjustment to the Power or Duration setting of the second
Move block.

around the
block

The next program will make the TriBot travel around a
square and stop where it started. For this example, I’ll use
a square that is three rotations long on each side. At the
corner, the robot will move in a gentle curve rather than just
spinning in place. The robot doesn’t need to hug the edges of
the square, just travel around it, and you can get a smoother
motion by using a curve instead of spinning.

To travel around a square, the robot needs to move along
a side and go around the corner, move along the next side and
go around that corner, continuing this for all four sides.

the first side and corner

The first part of the program uses two Move blocks to move
the TriBot along the side and make the first turn. Moving
along the edge is easy; just set the Duration to three rota-
tions. Moving around the corner requires setting both the
Steering and Duration items. Set the Steering item to about
three quarters of the way between the middle and end of
the slider. The next step is to find the Duration setting that
gives you an accurate turn around the corner. After some
experimentation, I found that 5.3 rotations works well for me
(4.1 using the balloon tires). Once again, your setting may be
a little different because it depends on many factors, includ-
ing the exact Steering setting and the surface you use. The
following are the steps to build this part of the program:

1.	 Create a new program called AroundTheBlock.

2.	 Drag a Move block onto the Sequence Beam.

3.	 Set the Duration item to 3 rotations.

4.	 Add a second Move block to the program.

5.	 Set the Duration item to 5.3 rotations.

6.	 Drag the Steering slider toward the end of the slider.

Figure 4-15:

Download and

Run Selected

button

	 motion	 51

Figure 4-17, Figure 4-18, and Figure 4-19 show the
program and the Configuration Panels for the two Move
blocks.

 
Figure 4-17: Moving along the

side and around the corner

Figure 4-18: Moving along the side

Figure 4-19: Moving around the corner

the other three sides and
corners

The next step is to extend the program to go all the way
around the square. You could add six more Move blocks and
use the same settings for the other three edges and corners.
That would be a little tedious, and imagine if you wanted to
go around the square 10 times—you would need to add 78
more blocks! Of course, there is an easier way, and it involves
the Loop block.

The Loop block (shown in Figure 4-20)
lets you run a group of blocks more than
once. You can run the two Move blocks four
times (once for each side of the square)
by placing them on the Sequence Beam
inside a Loop block. There are several ways
to control the Loop block, and you’ll use it
often. For now, I’ll only cover the settings
you need to use for this program and
go into more detail in Chapter 6.

7.	 Drag a Loop block onto the end of the Sequence Beam
from the Common Palette. Your program should look
like this:

8.	 Drag the two Move blocks to the middle of the Loop
block. The Loop block will expand as you drop in the
Move blocks. Now the program should look like this:

NOTE	 If you added comments above the two Move blocks
as I did, then you should also move the comments so they
stay above the blocks they describe. Comments don’t
automatically move with the blocks, so you may want to
add them after you finish editing the program.

The blocks in the Loop need to run four times, once for
each side. Figure 4-21 shows the Loop block’s Configuration
Panel with the changes you need. The following are the steps
to make the loop execute four times:

9.	 Select Count from the list of options for the Control item.

10.	 Enter 4 for the Count item.

Figure 4-21: Going around the loop four times

Figure 4-20:

The Loop

block

52	 chapter 4

Figure 4-22 shows the complete program. Notice that
the small infinity sign that was at the bottom of the right side
of the Loop block changed to a tiny abacus (at least I think
it’s an abacus—it looks like one, and an abacus would make
sense with the Control item set to Count). The icon lets you
know how the Loop block is configured without looking at its
Configuration Panel.

Figure 4-22: The complete AroundTheBlock program

testing the program

When you run the program, your TriBot should move all the
way around the square. If your robot doesn’t end up where it
started, adjust the Duration for the second Move block. The
“turning” block runs four times, and any error will accumu-
late as the robot moves around the square. There will always
be some error; no mechanical system is exact. The goal is to
get the error to be small enough not to impact your program
too much, which means getting reasonably close to the
starting position.

the motor
block

One nice thing about the Move block is that it handles all the
details involved in controlling a motor. You can set the dura-
tion to six rotations, and the block will take care of bringing the
motor up to speed, moving at the power level you selected,
and then slowing down and stopping at just the right distance.
This works great almost all of the time, but in some situations,
you may want more control over a motor. For example, the
Move block may speed up too quickly, or
the synchronization between two wheels
may not be good enough for certain
surfaces or robot designs.

The Motor block controls a single
motor and lets you choose how quickly
the motor accelerates (speeds up) at the
beginning of a move and how quickly it

decelerates (slows down) at the end. The Motor block does
not appear on the Common Palette; you have to select it
from the Complete Palette. As shown in Figure 4-23, it’s in
the Action group, which is the second group from the top of
the palette. When you add a Motor block to your program, it
is displayed in the Work Area, as shown in Figure 4-24.

Figure 4-23: The Motor block on the Complete Palette

  Figure 4-24: The Motor block

When you move a motor, the motion consists of the
following three parts or phases:

1.	 During the ramping up phase, the motor accelerates to
the Power level you set.

2.	 During the constant phase, the motor keeps moving at
the same speed.

3.	 During the ramping down phase, the motor decelerates
to a stop (or a lower Power level).

You can configure a single Motor block to perform any
one of the three phases. By using three Motor blocks (one for
each phase), you can get very fine control over a motor.

The Motor block’s Configuration Panel (shown in
Figure 4-25) is very similar to the Move block’s, and the
Direction, Power, Duration, and Next Action items behave
the same for both blocks.

The real power of the Motor block is in the Action item.
There are three choices: Ramp Up, Constant, and Ramp
Down, corresponding to the three phases mentioned earlier.
The Ramp Up choice lets you control how quickly the motor
accelerates to the Power setting you set. The Duration set-
ting is used to control how long to take to bring the motor
up to the selected Power level and can be set in seconds,
degrees, or rotations.

Figure 4-25: The Motor block’s Configuration Panel

	 motion	 53

Similarly, the Ramp Down option
lets you control how quickly the motor
decelerates. Set the Power item to
the setting you want at the end of the
move. So to stop the motor, set Power
to 0. The Duration setting determines
how long it will take to decrease the
speed of the motor from its current
level to the target Power setting.

The Constant option keeps the
motor moving at the levels you set for the Power level and
Duration. If the motor is not at the specified Power level when
the block starts, it will very quickly change the motor’s speed,
with very little ramping.

To have complete control over the motion, use three
Motor blocks together, one for each of the Action choices. Set
the Next Action item to Coast for the first two blocks; other-
wise, the motor will come to an abrupt stop at the end of each
block instead of smoothly transitioning to the next block.

The following are a few other differences between this
block and the Move block:

N	 You can select only one port. Unlike the Move block, the
Motor block can control only one motor, which is why there
is no Steering control and only one Feedback Box.

N	 The Motor Power option will try to keep the motor spin-
ning at the same rate by increasing the power level if the
motor starts to encounter some resistance.

N	 The Wait for Completion option lets you run the next block
in the program immediately or wait until the move is com-
plete. The Move block doesn’t have this option; it always
waits until the move is complete before continuing except
when the Duration item is set to Unlimited.

Some programmers prefer to use the Motor block
rather than the Move block when controlling a single motor,
while others use it only when the Move block doesn’t work
well enough for a particular situation.

brake, coast,
and the reset
motor block

The Move and Motor blocks both have a Next Action item,
allowing you to specify what to do at the end of the move. As
you saw earlier, the choices are Brake and Coast. When the

Coast setting is combined with a Duration of either Rotations
or Degrees, these blocks behave in a way that many users
find unexpected: After coasting to a stop, the next move
seems to be a little short or a little long.

When you run a Move or Motor block using these
settings, the firmware will keep track of how far the motor
actually moved (the firmware is the program that runs on
the NXT and executes the program you write). Because the
motor coasts to a stop, it will move a little more than the
Duration setting. The next Move or Motor block to run will
adjust its Duration to account for the extra distance.

the CoastTest program

The CoastTest program, shown in Figures 4-26 through
4-29, demonstrates this behavior. This program has three
Move blocks with the Duration set to 1 rotation, for a total of
three rotations. The Next Action item is set to Coast for the

Figure 4-26: The CoastTest program

Figure 4-27: Configuration Panel for the first two Move blocks

Figure 4-29: Configuration Panel for the final Move block

Figure 4-28: Configuration

Panel for the Wait Time blocks

54	 chapter 4

Notice that the first Move block went a full rotation and
then an extra 45 degrees, for a total of 405 degrees. The
second move went only 353 degrees, a little less than a full
rotation. Two full rotations is 720 degrees, so after the sec-
ond move, the robot is still 38 degrees beyond the combined
Duration setting for the two Move blocks. The final move
stops at the correct position, which is at three rotations, or
1,080 degrees.

The important thing to notice is that the total duration
of the three Move blocks is three rotations, which is how far
the robot moved. The firmware compensated for the extra
distance that the motors coasted so that the total distance
traveled by all three block would be accurate.

a problem with coasting

Having the firmware account for the distance the robot
coasts is not always the desired behavior. The CoastBack
program, shown in Figures 4-34 through 4-37, is a typical
example of the problem. The two Move blocks have the
Duration item set to 2 rotations and the Next Action item set
to Coast; the only difference between the two blocks is the
Direction setting. The program moves the robot forward two
rotations and waits for the robot to coast to a stop. Then it
moves the robot backward to the starting point, coasting to
a stop again. The expectation is that the TriBot will finish in
the same place it started because the two Move blocks have
identical settings (except for the Direction setting).

Figure 4-30: Starting

position

Figure 4-31: After the

first Move block

Figure 4-32: After the

second Move block

Figure 4-33: The final

position

Figure 4-34: The CoastBack program

first two blocks and Brake for the final one. The Power is set
to 100 to maximize the effects of coasting.

It’s a little difficult to see the effect of the Coast setting
by just running this program. Putting a small sticker on one
of the wheels makes it clear how far the wheel has moved
with each block. Table 4-1 shows the motor position, and
Figures 4-30 through Figure 4-33 show the position of the
wheel at the start of the program and after each block.

table 4-1: motor positions for the CoastTest
program

program point motor position in degrees

Starting position 0

After first Move block 405

After second Move block 758

Final position 1080

Figure 4-35: The first Move block

Figure 4-37: The second Move block

Figure 4-36: The Wait 	

Time block

	 motion	 55

observing the problem

When this program is run, the TriBot won’t stop in the same
place it started. It moves past the starting point and stops a
small distance away. If you watch closely, you may notice that
the robot starts slowing down just as it gets to the starting
point, instead of slowing down earlier and coasting to the
starting point. Figure 4-38 and Figure 4-39 show the start-
ing and ending positions of a test run.

   

Figure 4-38: The starting position	 Figure 4-39: The final position

The robot didn’t stop at the same place it started
because the firmware adjusted the duration of the second
Move block to account for the extra distance the first Move
block coasted. To make the robot stop the motors after
exactly two rotations and coast back to the starting point, tell
the firmware that you don’t want it to make the adjustment.

the reset
motor block

To be technically correct, NXT-G doesn’t have a
way to prevent the firmware from making the
adjustment. However, you can reset the adjust-
ment value to zero using the Reset Motor block
(shown in Figure 4-40), which has the same
effect. The Configuration Panel (shown in
Figure 4-41) is very simple; you just select the
motors you want reset.

Figure 4-41: Configuration Panel for the Reset Motor block

Adding a Reset Motor block before the second Move
block fixes the CoastBack program (see Figure 4-42).
The default value for the Port setting is B and C, so you
don’t need to make any changes to the block’s configura-
tion. Now when the program is run, the TriBot will move
forward two rotations and coast to a stop and then move
backward two rotations and coast to a stop, which will put
it very close to the starting point.

Figure 4-42: Final CoastBack program

the record/
play block

The Record/Play block (shown in Figure 4-43) lets you
record the movements of one or more motors and later play
them back, reproducing the movements you recorded.

  Figure 4-43: The Record/Play block

Using this block is a two-step process. First, you write
a program with the block’s Action item set to Record. While
running the program, manually move the robot through the
actions you want it to perform. The block will save a file on
the NXT containing the information needed to replay the
movements.

The second step is to use a block with the Action item
set to Play in another program to replay the motions you
recorded.

configuration panel

The Configuration Panel contains different items depending
on whether the block is used to record or play. Figure 4-44
shows the Configuration Panel with Record Action selected.
The value entered in the Name section is used to create the
file on the NXT that will hold the movement information.
The other items allow you to select which motors you are
interested in and the number of seconds to record.

Figure 4-40:

The Reset

Motor block

56	 chapter 4

Figure 4-44: Configuration Panel for recording a motion

When you select Play for the Action item, the Configura-
tion Panel will appear as shown in Figure 4-45. To play back
a recorded motion, give the name that was used when the
motion was recorded. The Files area lists any previously
recorded motions that are on the NXT.

Figure 4-45: Configuration Panel for playing a motion

The Record/Play block is useful when you have a com-
plex series of motions that you need to repeat, for example,
a complicated path that a wheeled robot needs to follow
or the movements of a robotic arm using multiple motors.
It can be a little difficult to record the motion the way you
want because moving the motors by hand is generally not
as smooth as using a program, and it may take a few tries
before you are satisfied with the result. Another thing to
keep in mind is that the motion file stored on the NXT takes
up some of the limited memory you have available. Managing
the NXT’s memory is covered in Chapter 12.

the remote
control tool

The LEGO MINDSTORMS NXT 2.0 retail kit includes
a remote control tool that lets you directly drive your
robot from the MINDSTORMS software. Selecting the
ToolsRemote Control menu item opens the Remote

Control window (shown in Figure 4-46). The four arrow but-
tons let you move your robot forward or backward and turn
to the left or right, and the Action button controls the third
motor (if your robot uses three motors). See the help file for
a complete description of this handy little tool.

Figure 4-46: The Remote Control tool

conclusion
The NXT kit comes with three motors specifically designed
to make it easy to build a wide variety of robots. The NXT-G
language provides three blocks for controlling the motors,
giving you lots of flexibility when deciding how your robot
should move. The Move block is the most common choice
because it’s simple to use and its ability to synchronize two
motors makes it easy to program a two-wheeled robot.
The Motor block gives you more control when using a single
motor, and the Record/Play block lets you record and then
play back your robot’s movements.

The example programs show a few different ways to
use the Move block, including one that moves the TriBot
around a square. At this point, you should be able to use
several Move blocks together to program your robot to follow
any course you design. Many of the example programs in the
following chapters involve moving the TriBot, so you’ll get
plenty of practice using the motors.

5
sensors

In this chapter, you’ll learn how to use the NXT sensors to get your robot to react to what is happening around it. In the
example programs in the previous chapter, the robot didn’t react to anything around it; it simply followed the path you
programmed. By using the NXT sensors in your program, you can make your robot avoid obstacles, follow a line on the floor,
react to light or sound, and identify objects based on their color.

We learn about the world around us using our five senses (touch, sight, sound, smell, and taste). A robot uses sensors
in the same way to gather information about its environment. The LEGO MINDSTORMS NXT kits come with several sen-
sors, each of which is useful for solving certain problems, depending on the kind of information it collects about the robot’s
environment.

In most cases, your program will use the data from the sensors to make decisions about what to do next, but it can also
use sensors to collect data, usually as part of an experiment. This chapter covers the basic operation of each sensor and how
to use the sensors to make decisions. Chapter 16 covers data collection.

using the sensors
Three NXT-G blocks have built-in support for sensors: the Wait, Loop, and Switch blocks. With these three blocks, you can
make the program wait until something happens, run a group of blocks over and over until something happens, or choose
which blocks to run based on the data from a sensor.

You’ve already seen how to use the Wait and Loop blocks to make the program pause or repeat a group of blocks. You
can use the Switch block to choose between two or more groups of blocks, meaning your program can make decisions about
which actions to perform. You’ll use all three blocks for the programs in this chapter, and I’ll cover the Loop and Switch
blocks in detail in Chapter 6.

Figure 5-1 shows the Configuration Panel for the Wait block with the
Control option selected. In Chapter 4, you set the Control item to Time to
make the block wait for several seconds. The Wait, Loop, and Switch blocks
all have a Control item that lets you choose what the block reacts to.

To work with a sensor, set the Control item to Sensor and then select
the sensor to use. The Configuration Panel should then change to include the
settings for the selected sensor. The first program in this chapter uses the
Wait block with the Touch Sensor so you can see how this works.

In addition to the three blocks mentioned previously, you’ll see a sepa-
rate block for each sensor. For example, you can use the Touch Sensor block to get data from the Touch Sensor. The sensor
blocks don’t take any action based on the data from the sensors; they just make the data available to other blocks by using
data wires. Because data wires are the subject of Chapter 8, I’ll put off the discussion of these blocks until then.

Figure 5-1: The Wait block Configuration Panel

58	 chapter 5

the touch
sensor

The Touch Sensor (shown in Figure 5-2) has a small button
on the front. NXT-G blocks can use input from this sensor
to tell whether the button is pressed, released, or bumped
(bumped means the button was pressed and then quickly
released).

Programmers often use the Touch Sensor to detect
when the robot has run into something, but you can also use
it to control your program. For example, you can have the
robot wait until you press the Touch Sensor before it starts
moving.

Figure 5-2: The Touch Sensor

configuration panel

You can configure the Touch Sensor as part of the Wait,
Loop, or Switch block. The part of the Configuration Panel
that works with the Touch Sensor is identical for all three
blocks. Figure 5-3 shows the Configuration Panel for a Wait
block using the Touch Sensor.

The Configuration Panel has three sections. On the left
is a single Feedback Box, similar to the one for the Move
block. In the center are the options for the Wait block. The
section on the right will change depending on the Control
and Sensor choices you select. In this example, you can see
the two options for the Touch Sensor.

The only two options to set for the Touch Sensor are
the port the sensor is plugged into and the action you want
to wait for. The four sensor ports on the bottom of the NXT
are 1, 2, 3, and 4. Be sure to plug the sensors into one of
these ports and not the motor ports at the top of the NXT
(labeled A, B, and C). By default, port 1 is used for the Touch
Sensor.

The Action setting defines the trigger—what you want
to wait for—for the Wait block. You can trigger the block
when the button on the Touch Sensor is pressed, released,
or bumped.

feedback box

All the blocks that work with sensors have a Feedback Box
so you can see the sensor’s value. This is extremely helpful
when deciding on a trigger value to use. The meaning of
the value displayed depends on the sensor and how it’s
configured.

NOTE	 Remember that the NXT must be turned on and
connected to the MINDSTORMS IDE using the USB cable
or via a Bluetooth connection for the Feedback Box to
work.

As far as the Touch Sensor is concerned, the meaning
of the value displayed in the Feedback Box depends on the
Action setting as follows:

N	Pressed. The Feedback Box will show a 1 when the but-
ton is pressed and a 0 when the button is not pressed.
(1 and 0 are often used in computer programming to
represent yes/no or true/false values.)

N	Released. The values displayed are the opposite of those
used for the Pressed option. A 1 is displayed when the
button is not pressed, and a 0 is displayed when the but-
ton is pressed.

N	Bumped. The Feedback Box will show a count of how
many times the button has been bumped. You can reset
the count to 0 by selecting one of the other actions and
then reselecting Bumped.

Figure 5-3: Waiting for the Touch Sensor to be

pressed

	 sensors	 59

the NXT’s view menu

When working with the motors in Chapter 4, you saw that
you can use the View menu on the NXT as an alternative
to the Feedback Boxes. You can also use the View menu to
display the value from a sensor; the menu contains options
for each sensor. The meaning of the value displayed depends
on the sensor you select.

For the Touch Sensor, the NXT will display a 1 when
the button is pressed and a 0 when the button is released.
This is a little simpler than the way the Feedback Box works,
where the value displayed depends on the Action setting of
the block. The Feedback Box can also show you if the sensor
has been bumped, whereas the View menu can show only
that it’s pressed or released.

the
BumperBot
program

Now that you know how the Touch Sensor works, let’s put it
to use. In this section, you’ll build the BumperBot program,
which uses the bumper on the front of the TriBot to help
the robot wander around a room. When the robot runs into
something, the Touch Sensor will be pressed. The program
will react by making the TriBot back up, turn around, and
then start again. The robot keeps going until you stop it by
pressing the Exit button on the NXT.

When the BumperBot program runs, the robot should
keep moving in a straight line until it runs into something. A
Move block with the Duration item set to Unlimited will move
the robot forward until its movement is stopped by another
Move block. A Wait block using the Touch Sensor tells the
robot when it has run into something.

Once the Touch Sensor is pressed, the program should
stop the motors and then make the TriBot back up a bit
and turn in a different direction. Once the robot has turned
away from whatever it bumped, it should start moving
again until it runs into another obstacle. You’ll place the
whole program in a Loop block so the TriBot will keep going
until you stop it.

You’ll build this program in three sections; follow these
steps to complete the first part of the program:

Figure 5-7: Configuration for the first Move block

1.	 Create a new program named BumperBot.

2.	 Drag a Loop block onto the Sequence Beam. This makes
the program repeat until you stop it. (The Loop block
is the second block from the bottom on the Common
Palette.) By default the Loop block is configured with the
Control item set to Forever, so you don’t need to make
any changes.

Figure 5-4 shows the program at this point, and
Figure 5-5 shows the Configuration Panel for the Loop
block.

Now you need to add a Move block to the loop to make
the robot move forward. Set the Duration item on the Move
block to Unlimited to make the TriBot keep moving until it
bumps into something. (You can keep the default values for
the rest of the Move block settings.)

3.	 Drag a Move block from the Common Palette onto the
Sequence Beam inside the Loop block. The Loop block
will expand to make room for the Move block.

4.	 Set the Duration item to Unlimited.

Figure 5-6 shows the program so far with the Move
block added to the Loop. Figure 5-7 shows the Configuration
Panel for the Move block.

Figure 5-4: 	

Just the Loop block

Figure 5-6: With the Move block

added to the Loop

Figure 5-5: 	

Looping forever

60	 chapter 5

detecting an obstacle

The next part of the program uses the Touch
Sensor to tell when the TriBot runs into some-
thing, at which point the program stops the
motors. A Wait Touch block waits until the Touch
Sensor is pressed, at which point you can use a
Move block to stop the motors.

5.	 Drag a Wait Touch block into the Loop block
to the right of the Move block. By default the
Action item is set to Pressed, so keep that
setting.

6.	 Drag another Move block into the Loop
block. Set the Direction item to Stop.

Figure 5-8, Figure 5-9, and Figure 5-10
show the program at this point and the
Configuration Panels for the Wait and
Move blocks.

backing up and
turning around

The next section of the program makes the
TriBot back up a little and turn in a different
direction. The robot needs to back up first so it
has enough room to turn around. This section
uses two Move blocks: one to back up and one
to make the robot turn around. The Duration
settings for the blocks don’t need to be set to any
exact value; the robot simply needs to back up
enough so that it doesn’t hit the object it bumped
into while it’s turning around.

7.	 Add another Move block into the Loop block.
Click the downward-pointing arrow for the
Direction item to make the TriBot back up.
Set the Duration item to 300 degrees.

8.	 Add another Move block to the Loop. Drag
the Steering slider all the way to one side to
make the TriBot spin.

9.	 Set the Duration item to 350 degrees. You
can experiment with different values to
see how turning more or less affects the
program. (I find it useful to turn at least a
quarter turn so that the TriBot doesn’t take
several tries to move away from a wall.)

Figure 5-11, Figure 5-12, and Figure 5-13
show the final program and the Configuration
Panels for the two new Move blocks.

Figure 5-8: Waiting until the Touch Sensor is pressed and then stopping

Figure 5-9: Waiting for the Touch Sensor to be pressed

Figure 5-10: Stopping the motors

Figure 5-11: BumperBot version 1 complete

Figure 5-12: Backing away from the obstacle

Figure 5-13: Turning around

	 sensors	 61

testing

Now that you’ve completed the program, it’s time to download
it to your NXT and test it. When your program runs, the
TriBot should move forward in a straight line until it runs into
something, at which point it should back away, turn around,
and start again. The TriBot should keep running the program
until you stop it by pressing the Exit button on the NXT.
Experiment with the durations for the last two Move blocks
to change how far the robot backs up and turns to find a
combination that works well for your test area.

the sound
sensor

The Sound Sensor (shown in Figure 5-14) lets your robot
respond to sounds, at least in a very simple way. This sensor
is included in the original NXT retail kit and the education
set. The NXT 2.0 retail kit includes a second Touch Sensor
instead of a Sound Sensor.

When working with any sensor, it’s important to under-
stand exactly what the sensor is measuring. When we hear a
sound, we can discern many characteristics including differ-
ences in loudness and pitch. We can even identify different
musical instruments by the different sounds they make. The
Sound Sensor, however, is much less sophisticated than our
ears; it measures only the loudness of a sound.

When you use the Sound Sensor, it will report the
loudness of a sound as a number between 0 and 100, with 0
being the softest sound and 100 being the loudest. You can
use this loudness measurement as a trigger for a Wait, Loop,
or Switch block, allowing your robot to listen for a loud sound
or for a room to be very quiet.

When using the Sound Sensor, you set the trigger by
comparing the value from the sensor with a target value you
supply. To demonstrate how this works, you’ll change the Bum-
perBot program so that it waits for you to clap before it starts.

configuration panel

Figure 5-15 shows the Configuration Panel for a Wait block
using the Sound Sensor. This panel has the same three
sections you saw when using the Touch Sensor, including a
Feedback Box on the left, the Wait settings in the middle, and
the Sound Sensor settings on the right. All the NXT-G blocks
that use sensors have a consistent layout, which is one of the
things that makes the NXT-G language so easy to use.

By now you should be familiar with the Port item. The
default setting is port 2 for the Sound Sensor. The TriBot
instructions had you plug each sensor into its default port, so
you won’t have to change this setting for any of the sensor
blocks.

NOTE	 Whenever possible, you should use the default
port when attaching the sensors to the NXT. Obviously,
you can’t do this if your design uses two of the same sen-
sor. For a robot using two Touch Sensors, only one can be
plugged into port 1, and the other will need to use one of
the remaining ports.

It’s easy to choose an incorrect Port setting, and even
though your program will not work, the cause of the problem
may not be obvious. The Port setting is the first thing I check
whenever it seems that a sensor is not working properly.

setting the trigger value

The Until section of the Configuration Panel is where you set
the trigger for the Wait block; you can do this by using the
slider or by entering the value directly in the box. You can set
the block to trigger when the sensor hears a sound louder
than the target by setting the comparison to > (greater than)
or clicking the round button on the right end of the slider. To
set the block to trigger when the sound level is lower than
the target, select the < (less than) comparison, or click the
button on the left end of the slider.

Figure 5-15: Wait block using the Sound SensorFigure 5-14: The Sound Sensor

62	 chapter 5

In the previous chapter, you needed to determine what
value to use for the Duration setting of some of the Move blocks.
For this program, you need to determine the target value to use
to identify a clap. You can use the Feedback Box to find a rea-
sonable value to use; just make sure the NXT is turned on, select
the Wait block, and watch the Feedback Box while you clap.

You can also use the NXT’s View menu to observe the
value from the Sound Sensor. Choose ViewSound dB, and
then select 2 for the Port setting. The value displayed on the
NXT using this method updates faster than the Feedback
Box in the IDE, making it more convenient for short sounds
like a clap.

NOTE	 You should keep your hands about the same dis-
tance away from the robot as they will be when you run
your program. If you use the value that shows up in the
Feedback Box when you clap an inch away from the sen-
sor, it may not work when you are standing and the TriBot
is on the floor. You should try to duplicate the conditions
that your robot will need to perform under whenever you
run tests like this.

When I clap, I get a reading of about 70 percent. When
I set the trigger on the Wait block, I’ll use 60 just to be sure
that I don’t miss the sound.

dB and dBA

The NXT’s View menu has two options that work
with the Sound Sensor: dB and dBA. The loudness
of a sound is measured in decibels, abbreviated as
dB. To the human ear, the perceived loudness of a
sound depends on the pitch. The A-weighted decibel
value (dBA) is adjusted so that it matches the way a
human ear perceives sound, which makes the dBA
value slightly different from the dB value. The sound
level used by the Wait, Loop, and Switch blocks is
the dB value. You can safely ignore the dBA value;
it’s useful for some experiments, but anyone need-
ing to use dBA instead of dB will already know the
difference.

BumperBot
with sound

In this section, you’ll create the BumperBotWithSound
program by modifying the BumperBot program so that the
TriBot waits for you to clap before it starts moving.

To make the program wait for you to clap, you need to
add a Wait Sound block before the Loop block. When you
drag the new block to the left of the Loop block, the Loop
block will shift to the right to make room, as shown in
Figure 5-16. It takes
some practice to get
used to the way the
IDE shifts the program
around as you are
dragging a block. Be
sure not to move the
block too fast and to
pause for a second
before dropping the
block to make sure
you have it in the right
spot.

Even after you have been doing this for a while, you’ll
still occasionally drop a block in the wrong place. When this
happens, just select EditUndo or press ctrl-Z and try
again.

Here are the steps for modifying the program:

1.	 Open the BumperBot program.

2.	 Select FileSave As and save the program as
BumperBotWithSound.

3.	 Drag a Wait Sound block onto the Sequence Beam,
between the start of the Sequence Beam and the Loop
block.

4.	 The only setting you need to change is the target value.
A target of 60 works well for me, but you may need a
lower value if you clap more softly. A value too low can
cause the robot to start moving before you clap if you
are not in a very quiet place.

Figure 5-17 and Figure 5-18 show the completed
program and the Configuration Panel for the Wait block.
Download and run the program, and the TriBot should
patiently wait for you to clap before it starts moving.

Figure 5-16: Inserting the Wait Sound block

	 sensors	 63

the light and
color sensors

The Light Sensor (shown in Figure 5-19) measures the
brightness of light shining into the front of the sensor. This
sensor is useful when you want your robot to react to dif-
ferent light levels in a room or to seek out a light source in
a maze or obstacle course. The Light Sensor can distinguish
between shades of gray when it’s pointed at an object or the
floor, which makes it useful for identifying objects or follow-
ing a line.

The Light Sensor is included in the original NXT retail
kit and the education set. The NXT 2.0 retail kit includes a
Color Sensor (shown in Figure 5-20) instead of a Light Sen-
sor. The Color Sensor has all the functionality of the Light
Sensor, with the added ability to more accurately (and easily)
distinguish colors.

light sensor configuration
panel

Figure 5-21 shows the Configuration Panel for a Wait block
using the Light Sensor. The settings for the Light Sensor are
similar to those for the Sound Sensor. The Ports and Until
settings work the same way for both sensors, except that the
default Port setting for the Light Sensor is 3. The brightness
value from the sensor will be between 0 and 100, where the
darkest value is 0 and the brightest is 100.

The Light Sensor’s Configuration Panel has one addi-
tional setting: Generate Light. This setting controls the small
light on the front of the sensor. You can use the Light Sensor
to measure either ambient or reflected light. Ambient light is
the light available around the robot, in other words, light that
is not created by the robot. When the Generate Light box is
not selected, the sensor measures ambient light. This is use-
ful for a robot that responds when a light in a room is turned
on or one that searches for a light source.

Select the Generate Light option to measure reflected
light. This will turn on the small light on the front of the sen-
sor, and the sensor will measure reflected light, which is the
amount of light bounced back from an object close to it. This
is useful for following a line or identifying objects. Once the
light is turned on, it will stay on until you run a block with the
Generate Light box deselected.

When measuring reflected light, it’s important to place
the sensor close to the object you’re measuring because the
sensor can’t tell the difference between the light reflected off
the object and any ambient light that is allowed to reach the
sensor. Placing the object close to the sensor, or blocking the
ambient light some other way, will give you more accurate
results.

Figure 5-19: The Light Sensor Figure 5-20: The Color Sensor

Figure 5-21: Wait block using the Light Sensor

Figure 5-17: The

BumperBotWithSound 	

program

Figure 5-18: Waiting for a clap

64	 chapter 5

using the color sensor as a
light sensor

The Color Sensor can either measure the intensity of light
(like the Light Sensor) or detect the color of an object. To use
the Color Sensor in place of a Light Sensor, select Light Sen-
sor for the Action setting on the Configuration Panel (shown
in Figure 5-22).

Figure 5-23 shows the Configuration Panel for a Wait
block using the Color Sensor with the Action item set to
Light Sensor. The Until setting works like the Light Sensor
counterpart. The Light option is similar to the Generate Light
option, except that the Color Sensor contains three colored
lamps (red, green, and blue) so you can select the color to
use when measuring reflected light.

All the programs that use the Light Sensor will also
work with the Color Sensor. Just set the Action item to Light
Sensor, and use the red lamp when measuring reflected light
(to match the Light Sensor’s lamp). You’ll also need to use
different trigger values because the two sensors don’t give
exactly the same values.

the RedOrBlue
program

In this section, you’ll build the RedOrBlue program, which
uses the Light Sensor (or Color Sensor) to identify the blue
and red balls that come with NXT (either the large ones that
come with the original NXT retail kit and education set or the
small ones that come with the NXT 2.0 retail kit). The Light
Sensor measures the intensity of light; it does not measure
the color directly. However, the amount of light an object

reflects to the sensor depends on the color, and the differ-
ence between the Light Sensor readings for the blue and red
balls is large enough for you to use it to distinguish between
the two. When you run the program, the robot will say either
“Red” or “Blue,” depending on which ball is placed in front of
the sensor.

determining red and blue
values

Before you start writing the program, you need to determine
the Light Sensor reading for each color. Once again, you can
use the Feedback Box on the Wait block or the View menu on
the NXT.

The NXT’s View menu has two selections for working
with the Light Sensor: Reflected light and Ambient light. The
small light on the sensor will turn on if you select Reflected
light and turn off if you select Ambient light. For this pro-
gram, select ViewReflected light; the sensor’s light should
come on while it’s displaying the value from the sensor and
then turn off when you are done.

The Ambient light and Reflected light options on the
NXT’s View menu work only with the Light Sensor, not the
Color Sensor. Although the Color Sensor can measure both
reflected and ambient light, there isn’t an option for this
on the NXT’s View menu. If you’re using the Color Sensor,
use the Feedback Box on the Wait block to read the values
for the blue and red balls.

Now hold each ball, one at a time, very close to the sen-
sor, and read the value from the sensor. I get 55 for the red
ball and 27 for the blue ball using the Light Sensor. Using the
Color Sensor, I get 43 and 16. If you used the Feedback Box
to do this test, you may have noticed that the sensor’s light
turned on. That little light will stay on until you deselect the
Generate Light box (or turn off the NXT), even if you exit the
MINDSTORMS environment.

For this program, you’ll make what is known as a
simplifying assumption. This means that instead of solving
a hard problem, such as detecting many different colors,
you’ll solve a simpler problem. For now, assume that all the
objects you test are either red or blue. You’ll enhance the
program later; for now, distinguishing red from blue is good
enough.

the switch block

You already know how to use the Sound block to play a
sound, so making the robot say “Red” or “Blue” shouldn’t
be a problem. Of course, to make that pronouncement, the
program first needs to make a decision based on the Light
Sensor so that the correct sound is played.

Figure 5-22: Using the Color Sensor as a Light Sensor

Figure 5-23: Control Panel with the Action item set to Light Sensor

	 sensors	 65

In NXT-G, the Switch block (shown in
Figure 5-24) is used for making decisions.
For now, you’ll just use this block in your
program. I’ll cover its use in detail in the
next chapter.

The Configuration Panel for the
Switch block, shown in Figure 5-25, has
the same layout as the Wait and Loop
blocks. You use the items in the center
section of this panel to let the block know
you want to make a decision based on the
Light Sensor. When you select the Light

Sensor from the Sensor list, the right side of the Configura-
tion Panel should show the settings for the sensor.

The Compare section is where you tell the block what
decision to make, by setting the target value. This section is
labeled Compare for the Switch block and Until for the Wait
block, because each block uses the target in a unique way.
Even though the labels are different, the target value is set
in the same way for each block.

The Switch block looks a little like the Loop block, except
that there are two Sequence Beams on the inside instead of
one. For example, Figure 5-26 shows the first version of the
RedOrBlue program. The Switch block will run the blocks you
place on the upper Sequence Beam if the condition you set
in the Compare section is met. If the condition is not met, the
blocks on the lower Sequence Beam will be used.

The values I got from the Light Sensor were 55 for red
and 27 for blue, so I’ll set the target of the Switch block to
42, which is in the middle, and leave the comparison set to
> (greater than). (Set the target to 30 for the Color Sensor.)
By using the value midway between 55 and 27, I’m making
sure that any object that reads closer to 55 will be identified
as red and that, conversely, any object that reads closer to
27 will be identified as blue. When the Switch block is run,
the upper Sequence Beam will be used for a red object,
and the lower Sequence Beam will be used for a blue object.
(Remember, all objects are either red or blue.) Follow these
steps to get started:

1.	 Create a new program called RedOrBlue.

2.	 Drag a Switch block onto the Sequence Beam. The
Switch block is at the bottom of the Common Palette.

3.	 If you’re using the Light Sensor, select Light Sensor
from the Sensor list, and set the Compare value to 42.
The Configuration Panel should look like this:

4.	 If you’re using the Color Sensor, select Color Sensor
from the Sensor list, set the Action value to Light
Sensor, and set the Compare value to 30. The Configu-
ration Panel should look like this:

The next step is to drag a Sound block onto the upper
Sequence Beam of the Switch block. This is the block that
will be run when the Light Sensor detects a red object, so
set the block to say Red. The Switch block should expand
to the right as you drag the block over it; just go slowly and
pause before dropping the Sound block. The only configura-
tion change to make is to select Red from the Sound File
list.

Figure 5-25: Switch block using the Light Sensor

Figure 5-24: 	

The Switch block

Figure 5-26: 	

First version of

RedOrBlue

66	 chapter 5

5.	 Drag a Sound block onto the upper Sequence Beam
inside the Switch block.

6.	 Select Red from the Sound File list. The Configuration
Panel should look like this:

To finish this version of the program, drag a Sound
block onto the lower Sequence Beam, and set its Sound
File setting to Blue. Adding this second block will be a little
easier than the first one because the Switch block is already
expanded.

7.	 Drag another Sound block onto the lower Sequence
Beam inside the Switch block.

8.	 Select Blue from the Sound File list for this block. The
Configuration Panel should look like this:

At this point, your program should look like Figure 5-26
(except that the icon on the Switch block will differ if you’re
using the Color Sensor). Before running the program, be
sure that the ball is in front of the Light Sensor. When you
run the program, it should correctly identify the red or blue
ball. The program should end after saying either “Red” or
“Blue,” so run it again to test the other color.

improving the program

The RedOrBlue program works in its current form, but it’s a
little inconvenient to use. You can improve it by adding a way
to tell the robot when the ball is in place. You can also have
the program keep running and identifying objects until you
stop it.

using the touch sensor

The first change uses the Touch Sensor to let the program
know when you are ready to use the Light Sensor. Many
programs use the Touch Sensor like this to let the user
control the program.

1.	 Drag a Wait Touch block onto the Sequence Beam to
the left of the Switch block. The program should wait
until the Touch Sensor is bumped, so this block has to
be placed before the Switch block. The program should
now look like this:

2.	 Set the Action item on the Wait Touch block to Bumped.
The Configuration Panel should look like this:

adding a loop

To make the program keep running, you’ll now add a Loop
block, and then move the existing blocks inside the Loop.

3.	 Add a Loop block to the end of the program.

You can move the Switch block and the Wait block into
the Loop block separately or select them both and move
them as a group. One way to select both blocks is by drag-
ging a selection rectangle around the two blocks, as shown
in Figure 5-27. To do so, hold down the left mouse button at
one corner of the rectangle and drag the mouse to the other
corner. When you release the mouse button, any block within
or touching the rectangle will be selected. (Just make sure
that you don’t include the Loop block.)

	 sensors	 67

Figure 5-27: Selecting both blocks

Another way to select the two blocks is by clicking the
Wait block to select it and then holding down the shift key
while clicking the Switch block. Holding the shift key down
when clicking a block will add it to the group of previously
selected blocks. You can tell which blocks are selected by the
light blue outline that appears around any selected block.

4.	 Select the Wait Touch and Switch blocks, and drag them
into the Loop block.

Figure 5-28 shows the new version of the program.
Now when you run the program, it will wait for you to hit the
bumper and then say either “Red” or “Blue.” The program
then goes back to waiting again. Use the dark gray button on
the NXT to end the program.

Figure 5-28: The improved version of RedOrBlue

using color sensor mode

The RedOrBlue program described earlier works equally well
with either the Light Sensor or the Color Sensor. The Color
Sensor can operate in two ways: It can measure the bright-
ness of light (Light Sensor mode), or it can determine the
color of an object (Color Sensor mode). When using the Color
Sensor, you can improve the program by using the sensor’s
ability to detect colors directly. Using Color Sensor mode will
make the program simpler and more accurate than using
Light Sensor mode.

To set the mode for the Color Sensor, use the Action
item. Figure 5-29 shows the Configuration Panel for the
Switch block with the sensor’s Action item set to Color
Sensor (instead of Light Sensor). In this mode, the Compare
section contains a two-sided slider for selecting the target
color. By adjusting the two ends of the slider, you can select
a single color or a range of adjacent colors. You can also
set the trigger to be inside or outside the range of colors
selected.

In Color Sensor mode, the Feedback Box will display a
number from 1 to 6 indicating the color detected, according
to the mapping shown in Table 5-1.

table 5-1: feedback box values

version sensors

1 Black

2 Blue

3 Green

4 Yellow

5 Red

6 White

Follow these steps to change the RedOrBlue program to
use Color Sensor mode:

1.	 Open the RedOrBlue program, and save it as
RedOrBlueColorMode.

2.	 Select the Switch block.

3.	 Change the Action setting to Color Sensor.

Figure 5-29: Color Sensor mode

68	 chapter 5

4.	 Move the sliders in the Compare section to select just
the red part of the bar. The Configuration Panel should
look like this:

When you run this version of the program, it should
recognize the red ball as well as the original version, and it
will do a much better job of correctly identifying other red
objects. (Unfortunately, it will still call all nonred objects blue,
which is a problem that you’ll fix in Chapter 14.)

the ultrasonic
sensor

The Ultrasonic Sensor (shown in Figure 5-30) measures
the distance between the sensor and an object. The sensor
sends out high-frequency sound waves and measures the
time it takes for them to be reflected, which allows it to
determine the object’s distance from the sensor. (Bats use
sonar in the same way.)

 

Figure 5-30: The

Ultrasonic Sensor

An object’s shape and texture greatly affect how well
it will be detected by the Ultrasonic Sensor; some surfaces
reflect sound waves better than others and therefore are
easier to detect. Flat, hard surfaces are the easiest to detect

because they reflect most of the sound waves back toward
the sensor. Curved surfaces reflect some sound waves back
to the sensor, but some waves go off in different directions.
Soft objects tend to absorb sound waves instead of reflecting
them. Consequently, the sensor will be able to detect hard,
flat objects more accurately and at a greater distance than
soft, round ones.

configuration panel

Figure 5-31 shows the Configuration Panel for a Wait block
that uses the Ultrasonic Sensor. The layout is similar to the
Configuration Panels for the Sound and Light Sensors. For
this sensor, the Until section (where you set the trigger) uses
distance instead of the Light or Sound level. The bottom
section, labeled Show, lets you select the unit to use (either
inches or centimeters).

The Ultrasonic Sensor can measure the distance to an
object that is closer than 100 inches or 250 cm away from
the sensor. The largest value you can set for the trigger
is 250 because that’s the sensor’s maximum range when
using centimeters. When using inches, the largest value
the sensor will read is 100, so you shouldn’t set the trigger
to a higher value. When setting the trigger, be sure to set
the units first and then the distance, or the distance will
change to match the new units of the new selection.

The value displayed in the Feedback Box will use the
units that you select. The Feedback Box will show 100 inches
or 255 cm when no object is detected.

The Ultrasonic inch and Ultrasonic cm options on the
NXT’s View menu display the distance to an object using
the appropriate units. The NXT will display ?????? when no
object is detected.

door chime
The next program you’ll create is a simple door chime: You
load it onto your TriBot, and place the TriBot at a doorway
with the Ultrasonic Sensor facing the opening. The TriBot will
chime when someone walks through the door and then start
over in preparation for the next person.

Figure 5-31: Wait block

using the Ultrasonic Sensor

	 sensors	 69

When writing a program that loops around like this, it
doesn’t matter whether you start with the Loop block and
build the program inside the loop or wait until the program
works once and then add the Loop block. For this example,
you’ll start with the Loop block and build the program inside it:

1.	 Create a program with the name DoorChime.

2.	 Add a Loop block to the Sequence Beam. For this
program, the loop should continue until the program is
stopped, so you don’t need to change any of the settings.

detecting a person

You can use a Wait block with the Ultrasonic Sensor to detect
a person walking past the robot. On the Common Palette,
the tool tip for this type of Wait block says “Distance.”

Once again you need to determine the value to use for
the trigger. To do so, use the Feedback Box or the NXT’s
View menu to see what the sensor reads when you place it
next to the doorway, or you can measure the doorway to
find a value that should be accurate enough. The doorway
I’m using is 32 inches wide. If I place the TriBot next to the
opening, when a person walks through the door, they’ll be
closer than 32 inches from the robot. Therefore, I’ll use 32
inches in the following instructions. The Wait block should
trigger when the sensor detects something closer than your
target value, so leave the comparison set to less than (< ).

3.	 Add a Wait Distance block inside the Loop block.

4.	 Set the Until setting to your trigger value.

Figure 5-32 and Figure 5-33 show the program so far
and the Configuration Panel of the Wait block.

Figure 5-32: Waiting for a person

playing a chime

Once the program detects someone walking by, it should play
a chime. You can use two Sound blocks with the Action item
set to Tone to play any two notes you like. You can experi-
ment with different combinations or even add more notes if
you want.

5.	 Add a Sound block inside the Loop.

6.	 Set the Action item to Tone. Select a note by clicking
the piano keyboard on the right side of the Configuration
Panel.

7.	 Add another Sound block inside the Loop.

8.	 Set the Action item to Tone and select a different note.

Figure 5-34, Figure 5-35, and Figure 5-36 show the
program and Configuration Panels for the two Sound blocks.
Download and run the program to see whether it works.
Experiment with different distances to find the trigger value
that works best for you.

Figure 5-34: With the chime added

Figure 5-35: Configuration of the first Sound block

Figure 5-33: Configuration Panel for the Wait block

Figure 5-36: Configuration of the second Sound block

stopping the chime

When a person walks by the doorway, the TriBot should
chime. But what if they stop and stand in the doorway? The
Ultrasonic Sensor will keep reading a value that is less than
the trigger value, and the TriBot will just keep chiming until
they move along.

70	 chapter 5

To solve this problem, add another Wait block after the
two Sound blocks. This block will pause the program until
the person moves beyond the doorway by waiting for the
Ultrasonic Sensor to give a reading that is greater than the
original trigger value (32 inches for my doorway).

9.	 Drag a Wait Distance block inside the Loop to the right
of the Sound blocks.

10.	 Change the Until setting to be greater than the trigger
value you used for the first Wait block. Be sure to
change both the value and the comparison.

Figure 5-37 and Figure 5-38 show the Configuration
Panel for the new block and the completed program. Test
this version of the program to see whether it behaves
rationally as you move through the doorway. Experiment
with different distances, and test to see how the program
behaves if more than one person moves through the
doorway.

the rotation
sensor

Each NXT motor has a Rotation Sensor built into it that
measures how far the motor has turned. You can use this
sensor to control how far the robot moves as an alternative
to the Move block’s Duration setting. This gives you an easy
way to make the program perform certain actions while the
robot is moving. For example, you’ll change the BumperBot
program to make the TriBot beep while backing up.

While your program is running, the Rotation Sensor
tracks how far the motor has moved. You can read this
value at any time, the same way you read values from the
other sensors. You can also reset the Rotation Sensor value
to 0, allowing you to measure how far the motor has moved
between any two points in the program. (In most cases,
you’ll use two blocks when using the Rotation Sensor, one
to reset the value and one to read it.)

configuration panel

Figure 5-39 shows the Configuration Panel for a Loop block
using the Rotation Sensor. The Port setting is used to select
the motor to use.

The items in the Until section are used to set the trigger
value, in either degrees or rotations. The arrows are used to
select the direction to which the trigger applies. The Rotation
Sensor always reads a positive number (or 0), so you need to
specify the direction as well as the distance.

The Action setting determines whether the block should
read the rotation value or reset it to 0. When used with a
Loop or Switch block, the value is always read first and tested
against the trigger value; then the value is set to 0 if the
Reset option is selected. The Action item is disabled when a
Rotation Sensor is used with the Wait block.

the rotation sensor block

Use the Rotation Sensor block (grouped with the other
sensor blocks on the Complete Palette) to reset the Rotation
Sensor to 0 outside a Loop or Switch block (as shown in
Figure 5-40). When you add this block to your program, it
will look like Figure 5-41. You’ll use this block to reset the
Rotation Sensor here, and you’ll revisit it in Chapter 8.

The Configuration Panel (shown in Figure 5-42) has
the same settings for controlling the Rotation Sensor as
described earlier, without the section for controlling the
loop.

Figure 5-39: Configuration Panel for the Loop block using the Rotation Sensor

Figure 5-40: The Rotation Sensor block on the Complete Palette

Figure 5-38: The completed DoorChime program

Figure 5-37: Waiting for the person to move away

	 sensors	 71

3.	 Add a Rotation Sensor block to the left of the Move block
highlighted earlier. This part of the program should now
look like this:

4.	 Set the Port item to B and the Action item to Reset.
The Configuration Panel should look like this:

5.	 Change the Duration setting of the Move block high-
lighted in Figure 5-43 to Unlimited and the Power to
25. This will keep the TriBot moving back slowly until you
stop it. The Configuration Panel should now look like this:

6.	 Add a Loop block to the right of the Move block. This
part of the program should now look like this:

the
BumperBot2
program

In the original version of the BumperBot program, a Move
block with the Duration item set to 300 degrees was used
to make the TriBot back up after it hit something (see
Figure 5-43). But what if you want the robot to beep while
backing up, like a school bus or large truck?

You already know how to use the Sound block to make
the robot beep; the real challenge comes in making it beep
while moving. One way to do this is to start the robot moving
using a Move block with the Duration item set to Unlimited
and then use a Loop block to stop the robot after it has
moved 300 degrees. Inside the Loop block, you can use a
Sound block to make the robot beep.

The following instructions replace the Move block circled
in Figure 5-43 with blocks to reset the Rotation Sensor, start
the TriBot moving, and then beep until the Rotation Sensor
reads 300 degrees.

1.	 Open the BumperBot program.

2.	 Save the program as BumperBot2.

Figure 5-42: Configuration Panel for the 	

Rotation Sensor block

Figure 5-41:

The Rotation

Sensor block

Figure 5-43: The Move

block used to back up

72	 chapter 5

7.	 Set the Loop block to use the Rotation Sensor. Set
the Port item to B, and set the trigger value to
300 degrees. Finally, select the downward-pointing
arrow in the Until section (because the motor is moving
backward). The Configuration Panel should look like this:

8.	 Drag a Sound block into the Loop block, and set the
Action item to Tone. The Configuration Panel should
look like this:

9.	 Place a Wait Time block to the right of the Sound block.
Set the time to wait to 0.25 seconds. This gives a little
pause between the beeps. The Configuration Panel
should look like this:

Figure 5-44 shows the changed part of the program.
When you run the program, the TriBot should back up slowly
while beeping after it bumps into something.

conclusion
The NXT sensors allow you to build a robot that interacts
with the world around it. The different sensors (Light,
Color, Touch, Sound, Ultrasonic, and Rotation) let your robot
perceive its environment in a several different ways, allowing
you to create robots that exhibit a wide variety of interesting
behaviors. The programs presented in this chapter show
how to use of each of the sensors in combination with Wait,
Loop, and Switch blocks to create some interesting NXT-G
programs, from a simple door chime to the more complex
BumperBot program.

Figure 5-44: The new code used to back up

6
program flow

Program flow is all about controlling the order in which the blocks in your program are run. As you can imagine, controlling
the order of your blocks is as important as setting their configuration. The parts of a programming language that control the
program flow are often called programming structures, and NXT-G has three: the Sequence Beam, the Switch block, and the
Loop block.

In this chapter, I’ll cover the Switch and Loop blocks in depth and show you how to use them effectively, filling in the
details I glossed over in the previous chapters. A few other blocks are also used to control how your program runs. You have
already seen the Wait block, and I’ll cover the Keep Alive and End blocks in this chapter.

NOTE	 The information in this chapter assumes you are not using data wires. The Switch and Loop blocks have some
features that are used exclusively with data wires, and I’ll cover those features in Chapters 9 and 10.

the sequence beam
You’ve been using the Sequence Beam in the previous chapters because you can’t write a NXT-G program without it. At this
point, you should be pretty comfortable placing blocks on the Sequence Beam and knowing how the blocks will run. With
just a few exceptions, each block runs until it finishes, and then the next block on the Sequence Beam starts. The program
ends when it gets to the end of the Sequence Beam.

The exceptions mentioned earlier are those blocks that can be configured to start an action and then allow the program
to continue, such as the Move block with the Duration set to Unlimited and the Sound and Motor blocks with the Wait For
Completion box deselected. These blocks let you continue moving the motors or playing a sound while the rest of the program
runs. The program will still end when it reaches the end of the Sequence Beam, even if one of these blocks is playing a sound
or moving a motor.

I’ll discuss the Sequence Beam again in Chapter 17. Until then, all the example
programs will use a single Sequence Beam and operate as described earlier.

the switch block
The Switch block (shown in Figure 6-1) lets your program make a decision about
which blocks to run. This type of structure is called a conditional because the pro-
gram flow changes based on some condition. The Switch block uses the condition
to choose from two or more groups of blocks, giving a program the ability to make Figure 6-1: The Switch block

74	 chapter 6

a decision and react to the data read by the robot’s sensors.
For example, the RedOrBlue program uses the reading from
the Light Sensor for the test condition to decide which Sound
block to run.

configuration panel

Figure 6-2 shows the Configuration Panel for the Switch
block used in the RedOrBlue program. The three items on
the left, Control, Sensor, and Display, affect the Switch block
directly. The configuration items on the right control the
selected sensor.

Figure 6-2: The Switch block’s Configuration Panel

the control setting

The Control setting determines where the block gets the
data it uses to make its decision. The data can be supplied
by either a sensor or a value passed into the block using a
data wire, so this item has two choices: Sensor and Value. In
this chapter, I’ll limit the discussion to the Sensor option and
cover the Value option in Chapter 9.

the sensor setting

The list of Sensors, shown in Figure 6-3, includes the
standard NXT sensors, the Rotation sensor (part of the NXT
motor), the buttons on the NXT, a timer, and messages sent
between NXTs using Bluetooth.

The list of sensors is slightly different for each version of
the MINDSTORMS software. The MINDSTORMS 1.1 Education
software includes additional choices for the older RCX sensors,
listed as Light* Sensor, Touch* Sensor, Rotation* Sensor,
and Temperature* Sensor. The MINDSTORMS 2.0 Education
software includes the Temperature Sensor. The list shown in
Figure 6-3 is from the MINDSTORMS 2.0 Retail software.

Figure 6-3: The Sensor options

The top two items in the list shown in Figure 6-3,
!Receive Message and !Rotation Sensor, appear in both the
MINDSTORMS Education and Retail 2.0 releases. These 2.0
versions of the software include small changes to the way
the Receive Message and Rotation Sensor choices work.
Therefore, the new !Receive Message and !Rotation Sensor
choices retain the behavior from the original MINDSTORMS
software release to make it easier to reuse programs written
using the older software. When writing new programs with
the MINDSTORMS Software 2.0, you should use the regular
Receive Message and Rotation Sensor choices.

setting the condition

When you select a sensor from the list, the right side of the
Configuration Panel will show the settings for that sensor.
Each of the sensors has some way to set the condition, also
known as the trigger. For example, the trigger for the Light
Sensor is set in the Compare section, shown in Figure 6-2.
Figure 6-4 shows the Switch block’s Configuration Panel
using the Touch Sensor. In this case, the trigger is set
by selecting the desired Action setting, either Pressed,
Released, or Bumped.

Figure 6-4: Setting the trigger for the Touch Sensor

Inside the Switch block are two Sequence Beams. Your
program will run the blocks on one of the Sequence Beams
based on the condition. The blocks on the upper Sequence
Beam will be used if the condition is true, and the blocks
on the lower Sequence Beam will be used if the condition is
false. The process for setting the condition will depend on
the sensor you’re using and the behavior you want.

the display setting

The Display setting controls how the Switch block is
displayed in the Work Area. By default the Flat view
option is selected, which displays both the upper and lower
Sequence Beams. Deselecting the Flat view box will display
the block using Tabbed View, which shows only one of the
two Sequence Beams. Figure 6-5 shows the Switch block
from the RedOrBlue program using Tabbed View. The two
tabs at the top of the switch structure are used to select
which Sequence Beam to display. The icons used on the
tabs depend on the sensor and the condition set. In this
case, because the condition is looking for a light level over

	 program flow	 75

a certain value, the icon for a bright light is used for the first
tab, and one for a darkened light is used for the second tab.

Figure 6-5: Switch block using Tabbed View

the LineFollower program

The next program is a simple line follower. The TriBot uses
the Light Sensor to follow a black line on a white background.
The idea is to have the TriBot follow the edge of the line by
adjusting the steering based on the Light Sensor reading.
The discussion and the screenshots refer to the Light Sensor;
however, the Color Sensor works just as well.

For this program, you need to remove the Touch Sensor
bumper from the front of the TriBot and replace it with the
Light Sensor. The Light Sensor should be mounted so that it
points downward, as shown in Figure 6-6.

Figure 6-6: Light Sensor position for following a line

To test this program, you’ll need a line to follow. Both
versions of the NXT retail kit include a test pad that works

well with this program, but you can also create your own
test pad using black electrical tape on a white poster board.

NOTE	 The early versions of this program will work best
with a smooth oval. The test pad included in the original
NXT retail kit has a few sharp corners at one end that
may cause some problems.

the basic program

Figure 6-7 shows the basic structure of the program, with
the blocks all in place but not yet configured. (The blocks will
appear a little different after following the instructions given
in this section.) The Loop block keeps the program running
until you stop it. The Switch block reads the Light Sensor
and decides which Move block to run. The Move block on the
upper Sequence Beam steers the TriBot to the left, and the
one on the lower Sequence Beam steers it to the right.

Figure 6-7: LineFollower program structure 	

(before configuring the blocks)

These are the first steps in creating this program:

1.	 Create a new program named LineFollower.

2.	 Add the Loop, Switch, and Move blocks as shown in
Figure 6-7.

3.	 Select the Switch block, and configure it to use the Light
Sensor. The Configuration Panel should look like this:

76	 chapter 6

4.	 If you’re using the Color Sensor, select it from the
Switch block’s sensor list, and set the Action item to
Light Sensor. The Configuration Panel should now look
like this:

selecting the light sensor trigger

Now it’s time to determine the trigger value to use for the
Switch block. To make the TriBot follow the edge of the
line, you’ll need to find out what value the Light Sensor
reads when it’s over the edge of the line. To do so, place the
TriBot on the test pad so that the Light Sensor is centered
over the line’s edge, and use the Feedback Box on the
Switch block or the NXT’s View menu to read the light level.
My Light Sensor reads 38, so I’ll use that for the Switch
block’s trigger value. Your value may be a little different
depending on the sensor, the test pad, and the lighting in
the room.

5.	 Set the Switch block’s trigger value. The Configuration
Panel should look like this:

configuring the move blocks

The two Move blocks will have similar settings, except that
steering will be in opposite directions. The speed of the
motors and the steering setting will significantly affect how
well the TriBot follows the line. Begin by setting the steering
to about halfway between the middle and the end of the
slider with a Power setting of 25:

6.	 Select the Move block on the upper Sequence Beam.

7.	 Set the Duration item to Unlimited and the Power item
to 25.

8.	 Move the Steering setting to halfway between the
middle and the left end of the slider. The Configuration
Panel should look like this:

9.	 Select the Move block on the lower Sequence Beam.

10.	 Set the Duration item to Unlimited and the Power item
to 25.

11.	 Move the Steering setting to halfway between the
middle and the right end of the slider. The Configuration
Panel should look like this:

testing the program

Now download and run the program to see how well it works
and how fast you can make the robot move while still staying
near the line. You may need to adjust how fast the TriBot
moves and how sharply it turns. If you do, just make sure
that you make the same changes to both Move blocks.

more than two choices

A Switch block can choose only between two sets of blocks
based on the reading from the Light Sensor. To choose
between three options, you’ll need to use two Switch blocks.

The first version of the LineFollower program makes
the TriBot wiggle left and right while following a straight line,
because the TriBot is constantly adjusting the steering. You
can make the motion smoother with three Move blocks: one
to steer to the left, one to go straight, and one to steer to the
right.

To choose among three Move blocks, you’ll need to add
another Switch block. The first Switch block will decide if
the robot should turn to the left, and the second will decide
whether to go straight or turn to the right. This is a pattern
that’s used often in NXT-G programming and will quickly
become familiar.

Start by making the following changes to the Line
Follower program:

	 program flow	 77

1.	 Place a Switch block on the lower Sequence Beam of the
existing Switch block, to the right of the Move block. The
program should look like this:

2.	 Select the Light Sensor from the Switch block’s sensor list.

3.	 Drag the existing Move block (the one that turns to the
right) onto the lower Sequence Beam of the new Switch
block.

4.	 Place a new Move block on the upper Sequence Beam
of the new Switch block. The program should now look
like this:

setting the trigger values

You need to set the trigger values for the two Switch blocks
so that the TriBot will go straight when it’s on the edge of the
line and turn when it moves away from the edge. Start by
finding the values that the Light Sensor reads when it’s over
the center of the line and when it’s completely off the line.
My readings are 26 and 50.

Based on my readings, I can expect the Light Sensor to
read between 26 and 50 and be near 38 when the TriBot is
over the line’s edge. Therefore, I’ll set the trigger values so
that the robot drives straight when the reading is between
33 and 43; these are values that are about halfway between
the value at the line’s edge (38) and the limits I expect to see
when it’s over the middle of the line or completely off the
line (26 and 50). Table 6-1 shows how the program should
behave based on the Light Sensor reading.

table 6-1: light sensor ranges and program
behavior

light sensor reading program behavior

0–32 Turn right.

33–42 Go straight.

43–100 Turn left.

Follow these steps to complete this version of the
program:

5.	 Select the outer Switch block (the one from the original
program), and then set the trigger value to the upper
limit of the range where you want the robot to drive
straight (43 using my values).

6.	 Select the new Switch block, and set the trigger value to
the lower limit. To make the Switch block use the upper
Sequence Beam when the reading is 33 or greater, you
need to set the trigger value to 32.

7.	 Select the new Move block. Set the Duration item to
Unlimited and the Power item to 25.

Figure 6-8, Figure 6-9, and Figure 6-10 show the
Configuration Panels for the two Switch blocks and the new
Move block. Figure 6-11 shows the completed program.

Figure 6-8: Configuration Panel for the outer Switch block

78	 chapter 6

Figure 6-9: Configuration Panel for the inner Switch block

Figure 6-10: Configuration Panel for the new Move block

Figure 6-11: The complete LineFollower program

testing the program

Now when you run the program, you should notice that the
motion is much smoother when following a straight line. The
Power setting for the two Move blocks that steer the robot to
the left and right should be the same. However, the setting
for the new Move block doesn’t need to match the other two,
so you can try going faster when moving straight. Experi-
ment with different trigger values and Power and Steering
settings to see how fast you can make the TriBot move
without veering off the line and getting lost.

using tabbed view

The LineFollower program is an example of nested Switch
blocks, where one block is nested inside the other. You’ll use
nested blocks often in programs that need to make compli-
cated decisions.

Nested Switch blocks tend to take up a lot of room
on the screen, which can make it difficult to work with the
rest of the program. To shrink the size of the Switch blocks,
switch to Tabbed View (deselect the Flat view option); the
program should take up much less vertical space, as you
can see in Figure 6-12. The advantage of Flat view is that
you can see the entire structure all at once; the advantage
of Tabbed View is that it’s easier to work with the rest of the
program.

Figure 6-12: The Switch blocks using Tabbed View

comments and tabbed view

Adding comments to a program is an important way to
describe how a program works both for your sake and for
anyone who might be looking at your program later. You can
describe most blocks by simply adding a comment above the
block or putting a large comment before a group of related
blocks. But in the case of a Switch block using Tabbed View,
only some of the blocks are visible at any one time. This
means you can see only part of the program logic, especially
when using nested Switch blocks. In this case, I prefer to
put a large comment above the outermost Switch block to
describe the entire section of code. Figure 6-12 shows a
reasonable comment for the code to make the robot follow
a line.

NOTE	 It would be nice if you could add comments close
to the blocks within the Switch structure so that you
could describe the function of only the visible blocks, but
this doesn’t work well. In most cases, all the comments

	 program flow	 79

within the Switch block will be visible, no matter which
tab you select. However, if you place a comment in just
the right place, it will appear only on a single tab. This
seems to confuse the IDE and can make editing the
program difficult. The bottom of the block will be cut
off by the edge of the Switch block. In addition, you’ll be
unable to add more blocks within the Switch block. The
best approach is to just leave the comments outside the
Switch block.

the loop block
The Loop block lets you repeat a group of blocks over and
over. The condition you set controls the number of times the
loop is repeated.

A loop has two parts: the loop body and the loop condi-
tion. The loop body is the group of blocks within the loop. The
condition tells the Loop block whether to run the loop body
again or exit the loop and let the next block start. The condi-
tion is always checked after the loop body runs; therefore,
the loop body is always run at least once.

As shown in Figure 6-13, the Loop block’s Control item
gives you five ways to control how many times the body of
the loop is run. Each option is discussed next.

Figure 6-13: Control options for the Loop block

N	Forever. The Loop will continue to run until the program
is stopped. The program can be stopped by pressing the
small gray button on the NXT or using the Stop block
(described in a moment).

N	Sensor. A sensor is used to decide when to exit the loop.
You set the condition just as with the Switch block, and the
loop is exited when the condition is met. For example, the
Configuration Panel for a Loop block that repeats until the
Touch Sensor is pressed looks like this:

N	Time. The Loop is run for the specified number of sec-
onds. With this option selected, the Configuration Panel
will look like this:

N	Count. The Loop is run the specified number of times. The
Configuration Panel will look like this:

N	Logic. A value passed into the Loop using a data wire
determines whether the Loop should continue. (Chapter 10
discusses using a Loop block with a data wire.)

the keep alive
block

The NXT has a built-in sleep setting that turns it off when
it’s not in use. By default the sleep time is set to either
10 minutes or an hour, depending on the version of the
firmware on your NXT. You can use the NXT’s Settings
menu to set the sleep time or turn off this feature.

Having the NXT go to sleep is useful for saving your
batteries; however, you may want to prevent the NXT from
turning off while your program is running. That’s where the
Keep Alive block comes in.

The Keep Alive block is in the Advanced group at the
bottom of the Complete Palette (shown in Figure 6-14). The
icon for this block may not be immediately obvious. It’s a pair
of Zs (to indicate sleeping) crossed out using a red circle with
a line through it. In your program, this block will appear as
shown in Figure 6-15.

80	 chapter 6

Figure 6-14: The Keep Alive block on the Complete Palette

Figure 6-15: The Keep Alive block

The Keep Alive block doesn’t have any configuration
items. When the block is run, it resets the NXT’s sleep timer.
To keep a program running indefinitely, place this block in a
loop so that it is executed more often than the sleep time.

For example, if you were to add this block to the
BumperBot2 program (as shown in Figure 6-16), the sleep
timer would reset each time around the loop. As long as the
TriBot keeps moving around the room, the program will keep
running. The NXT will go to sleep if the robot gets stuck and
the Touch Sensor isn’t pressed for too long, which is better
than having it spinning its wheels until the batteries wear out.

Figure 6-16: Keeping the robot from going to sleep

the stop block
All the programs presented so far have ended either because
they reached the end of the Sequence Beam or because you
pressed the Exit button on the NXT. The Stop block gives you
a way to make a program end itself.

This block is very simple; it has no configuration items,
and when it’s run, the program ends. You’ll find the Stop block
on the Complete Palette in the Flow group, as shown in Fig-
ure 6-17. Figure 6-18 shows how it will look in your program.

Figure 6-17: The Stop block on the Complete Palette

Figure 6-18: The Stop block

BumperBot3

Now you’ll make some changes to the BumperBot2 program
to see how to use the Stop block. To use this program, you’ll
need to have the TriBot assembled in its original configura-
tion, with the Touch Sensor bumper mounted on the front
and the Light (or Color) Sensor on the side, as shown here:

The changes you’ll make will stop the program when
you turn off the lights. Figure 6-19 shows the relevant part
of the original program. The code shown here uses a Move
block to start the TriBot going forward and then waits for
the Touch Sensor to be pressed. The program doesn’t do
anything else at this point except wait for the Touch Sensor
to be pressed. You’ll change this to make the program check

	 program flow	 81

the Light Sensor while it’s waiting. If the Light Sensor read-
ing is very low, indicating that the lights have been turned
off, then the program will stop itself. Monitoring the Light
Sensor while waiting for the Touch Sensor to be pressed
requires code that is a little more complex than a single Wait
Touch block.

Figure 6-19: BumperBot2 before the changes

The following instructions replace the Wait Touch
block with a Loop block that exits when the Touch Sensor is
pressed. The Light Sensor is used in the body of the loop. If
the Light Sensor doesn’t detect enough light, the program will
stop the motors, say “Goodbye,” and then end. Figure 6-20
shows the code changes because it’s easier to understand this
example if you can see the final result.

Figure 6-20: The code to replace the Wait Touch block.

Follow these steps to replace the Wait Touch block with
the new code:

1.	 Open the BumperBot2 program.

2.	 Select FileSave As to save the program as
BumperBot3.

3.	 Drag a Loop block to the right of the first Move block.
Select Sensor for the Control item, and select Touch
Sensor from the list of sensors. You can keep the
default values for the Port and Action items. The Con-
figuration Panel should look like this:

4.	 Delete the Wait Touch block. This part of the program
should look like this:

At this point, the program should behave exactly as it
did before you made the changes because the Loop block will
do the same thing that the Wait block did. The Loop block
takes up more space than the Wait block it replaced and isn’t
as simple to configure. However, it has one big advantage: It
gives you a place to put some blocks that will run while the
program is waiting.

The next step adds a Switch block inside the Loop to
check the Light Sensor:

5.	 Drag a Switch block into the Loop block.

6.	 In the Switch block’s Configuration Panel, select the
Light Sensor. Deselect the Generate Light box, set the
comparison to less than (<), and set the trigger value to
10. You can adjust this value after some testing if it’s
too high or too low. The Configuration Panel should look
like this:

82	 chapter 6

7.	 If you’re using the Color Sensor, the Switch block’s
Configuration Panel should look like this:

8.	 Drag a Move block to the upper Sequence Beam of the
Switch block, and then set the Direction item to Stop.

9.	 Add a Sound block after the Move block. Select Good-
bye from the list of files.

10.	 Add a Stop block after the Sound block. (The Stop block
is in the Flow group on the Complete Palette.)

Figure 6-21, Figure 6-22, and Figure 6-23 show the
additions to the Loop block and the Configuration Panels
for the Move and Sound blocks. (There are no configuration
items for the Stop block, so I won’t show its Configuration
Panel.)

Figure 6-21: Looping until the Touch Sensor is pressed or the lights are

turned out

Figure 6-22: Stopping the motors

Figure 6-23: Saying “Goodbye”

conclusion
The flow of your program is as important as the configura-
tion of the blocks. You use the Switch block to make deci-
sions, allowing you to choose between two groups of blocks.
By nesting Switch blocks, you can extend the number of
choices, as in the LineFollower2 program.

The other major flow control block is the Loop block,
which allows you to repeat a group of blocks until a certain
condition is reached. Much of the power of the NXT-G lan-
guage comes from the flexibility you have in specifying the
conditions for both of these blocks. The condition is usually
based on a sensor reaching a set trigger value, although
you can also configure the Loop block to repeat for a certain
number of repetitions or a set amount of time.

You can also use the Stop and Keep Alive blocks to
control the program flow. The Stop block allows the program
to decide when it should end, and the Keep Alive block lets
you prevent the NXT from turning itself off.

7
the WallFollower program:

navigating a maze
In this chapter, I’ll take you through the process of developing a fairly complex program using the parts of the NXT-G
language that I’ve already covered. The WallFollower program that you’ll create will allow the TriBot to navigate a simple
maze. As you create the WallFollower program, I’ll take you through the typical steps required to write a program, from
the initial design to the final testing.

pseudocode
By the end of Chapter 6, the BumperBot program was a little long and complicated, and the WallFollower program will be
just as complex. As you work with more complex programs, it becomes difficult to discuss them using English. English and
other human languages are great for many types of communication, but they’re not ideal for describing a program. It’s dif-
ficult to give a short, precise description of a program in English.

When you write a program, you are creating the
program’s source code, or just code. Using NXT-G, this
source code includes the arrangement of the blocks and
their configuration.

You can describe how the program works using
pseudocode. Pseudocode looks like a program but doesn’t
need to follow any strict rules. Pseudocode describes
the most important details of how a program works and
allows you to describe the logic behind the program and
then translate it into whatever programming language you
choose, including NXT-G.

For example, Figure 7-1 shows the RedOrBlue
program from Chapter 5. The program waits for the
Touch Sensor to be pressed and then uses the Light
Sensor to tell whether the object being tested is blue or
red. Listing 7-1 shows the pseudocode for this program.

Figure 7-1: The RedOrBlue program

84	 chapter 7

begin loop
 wait for the Touch Sensor to be pressed
 if Light Sensor > 42 then
 use a Sound block to say Red
 else
 use a Sound block to say Blue
 end if
loop forever

Listing 7-1: Pseudocode for the RedOrBlue program

As you can see, the pseudocode gives a concise, easy-
to-understand description of the program. With a little
practice, you’ll quickly get used to reading pseudocode and
turning it into a working NXT-G program.

There are a few things about Listing 7-1 to note:

N	 In most cases, a separate line is used for each block.

N	 The lines are indented to show how the blocks are nested
(placed inside another block). Indenting makes it easier
to see what’s happening inside a Loop or Switch block,
especially if they are nested.

N	 The Switch block is represented in the listing with a
group of lines that include if then else end if, instead
of something with the word Switch in it. This is a more
common choice of wording because many programming
languages use some type of if-then statement for a
conditional. This is also closer to how you would describe
the logic in English.

N	 The lines between if Light Sensor > 42 then and else
describe the blocks on the Switch block’s upper Sequence
Beam, and the lines between else and end if describe the
blocks on the lower Sequence Beam.

N	 The end if line marks where the Switch block ends, which
can be helpful if you’re writing by hand or on a white board
and the lines are not indented perfectly.

N	 The trigger values and other settings are included in the
listing. (You won’t always have these values when you are
first planning a program; just include whatever details you
have.)

N	 In this example, the pseudocode shown reflects the final
program and therefore is complete with many details
filled in. Pseudocode is often used when first planning a
program and during its initial development, and in these
cases the code is usually less defined.

Listing 7-2 shows the pseudocode for the BumperBot3
program shown in Figure 7-2 and Figure 7-3. This program
is much more complicated than RedOrBlue, but the pseudo-
code is still fairly easy to understand and offers a much
more precise description of the program than one written in
English. You should be able to read through this to follow the
workings of this program.

begin loop
 Keep Alive block to prevent the NXT from going
 to sleep
 move forward, with duration unlimited
 begin loop
 if Light Sensor reads < 10 then
 stop the motors
 say Goodbye
 use Stop block to end the program
 end if
 loop until Touch Sensor is pressed
 stop the motors
 reset the Rotation Sensor for Motor B
 backup a slowly
 begin loop
 use a Sound block to beep for 0.5 seconds
 use a Wait Time block to pause for
 0.25 seconds
 loop until the Rotation Sensor for Motor B >
 300 degrees
 spin for 250 degrees
loop forever

Listing 7-2: Pseudocode for the BumperBot3 program

	 the WallFollower program: navigating a maze	 85

Figure 7-2: The BumperBot3 program, part 1

Figure 7-3: The BumperBot3 program, part 2

86	 chapter 7

solving a
maze

There are many well-known approaches to solving a maze.
For this program, you will use a method known as the right-
hand rule algorithm. (An algorithm is a set of instructions for
solving a problem.) As the TriBot moves through the maze,
it will always follow the wall to its right, going through any
opening on that side.

The right-hand rule algorithm works for mazes without
tunnels or bridges and where the start and end points are at
the edges of the maze (this method won’t work for a maze
where the goal is to get to the center). As long as the maze
fits these criteria, the robot is guaranteed to find the exit.

Figure 7-4 shows an example maze with the path fol-
lowed using the right-hand rule. To help you understand how
this rule works, imagine that you’re walking through this maze,
keeping your right hand on the wall. You would follow the path
marked in the figure and eventually make your way to the exit.
Although this method won’t necessarily find the shortest route
through the maze, it will eventually find the exit.

Start

Exit

Figure 7-4: A simple maze and the right-hand rule path to the exit

program
requirements

The first step in writing this program is to define what the
program will do. To implement the right-hand rule algorithm,
the program needs to follow a wall to the right of the TriBot,
moving into any openings on that side. The TriBot also needs
to be able to detect when it has reached a corner, at which
point it needs to make the appropriate turn.

It’s useful to create a simple list, called the program
requirements, to describe exactly what the program needs to
do. As long as the final program meets all the requirements
on the list, then it should solve the original problem. Once
you have the program written, you can use this list to test
your design.

To develop the list of requirements, it’s useful to think
about the different situations the robot will encounter and
decide how the program should react. For example, when
there is a wall to the robot’s right, as shown in Figure 7-5,
it should keep moving straight.

Figure 7-5: Following the wall to the right

When the wall to the right meets the wall in front at a
corner, as shown in Figure 7-6, the robot should turn to the
left and then continue forward.

	 the WallFollower program: navigating a maze	 87

Figure 7-6: Turning left at a corner

When there is an opening in the wall to the right, as
shown in Figure 7-7, the robot should turn into the opening.
To follow the wall on its right, the robot should always turn
into an opening, even if it could go straight as in Figure 7-8
or turn to the left as in Figure 7-9.

Figure 7-7: Turning into an opening on the right

Figure 7-8: Turning right instead of going straight

Figure 7-9: Turning right instead of turning left

Based on the previous analysis, you can summarize
the requirements for the program with the following three
statements:

N	 The TriBot will move forward along the wall on its right,
staying close to the wall.

88	 chapter 7

N	 If the TriBot finds a wall in front and to the right, it should
turn left 90 degrees and then follow the new wall.

N	 If the TriBot comes to an opening in the wall on the
right, it should turn right 90 degrees and go through the
opening.

assumptions
While coming up with the requirements, it’s also a good idea
to list any assumptions or restrictions about the program.
This helps you know which conditions you need to test and
which you can ignore. You can make four assumptions for
this program:

N	 The walls are straight.
N	 Any opening is big enough for the TriBot to fit through.
N	Walls meet at right angles. This will make the turning at a

corner easier.
N	When the program begins, the TriBot will be placed

against the wall.

The last item in this list, dealing with how the robot is
arranged when the program starts, is called an initial condi-
tion. Starting the program with the robot in place will be
much easier than making the robot wander around looking
for the maze entrance.

Thinking about the assumptions before you start
programming helps you to know which problems you need
to solve and which you can ignore. When designing a pro-
gram, it’s helpful come up with the list of requirements and
assumptions at the same time. The two lists together define
what the program will do and what you don’t expect it to do.

If your final program extends beyond your initial ideas,
that’s fine. For example, one of the assumptions is that the
walls are straight. You may end up with a program that
happens to work great with curved walls. The assumptions
aren’t things the program can’t do; they are things it’s not
required to do.

initial design
The next step in designing a program is to think about the
major tasks the robot has to perform and decide how you
can solve them. For one thing, the TriBot should travel next
to the wall while staying a short distance away from it. You
can use the Ultrasonic Sensor to tell how far the TriBot is

from the wall and use Move blocks with different steering
settings to move toward or away from the wall.

Because the wall will be next to the TriBot as it’s mov-
ing, you need to mount the Ultrasonic Sensor pointing to
the side (instead of to the front). Follow the building instruc-
tions in “Alternate Placement for the Ultrasonic Sensor” on
page 43 to mount the sensor so that it points to the side, as
shown in Figure 7-10.

Figure 7-10: The TriBot with the Ultrasonic Sensor pointing to the side

The program needs to be able to tell when the TriBot
has run into a corner. The Touch Sensor will handle this job
nicely. When the TriBot enters a corner, it will run into the
wall, and the Touch Sensor will be pressed, at which point
the TriBot can back up, make a quarter turn to the left, and
follow the wall it just ran into. (The BumperBot program has
code similar to this, so you should have a good idea of how
this will work.)

The program also needs to deal with openings in the
wall. For this you’ll use the Ultrasonic Sensor to tell when the
robot passes an opening. If the sensor suddenly reads a large
distance while the TriBot is following a wall, then you know
that it has reached an opening.

Finally, the TriBot should keep moving until you stop it,
so this will be another program that is in a loop.

Now that the high-level tasks are defined, you can write
some pseudocode to describe the program (see Listing 7-3).
Because you are at the early stage of developing the

	 the WallFollower program: navigating a maze	 89

program, the pseudocode will just cover the main points. In
the following sections, you’ll take each of the main parts, one
at a time, and develop the NXT-G code.

begin loop
 if too close to the wall (use Ultrasonic
 Sensor) then
 steer away from the wall
 else
 steer toward the wall
 end if
 if Touch Sensor is pressed then
 back up a little to get room to turn around
 spin one quarter turn
 end if
 if an opening is detected (use Ultrasonic
 Sensor) then
 spin one quarter turn toward the opening
 end if
loop forever

Listing 7-3: Initial design for the WallFollower program

following a
straight wall

The first section of NXT-G code will make the TriBot travel
along the wall. You’ll use a Switch block to choose between
two Move blocks, one that turns toward the wall and one
that turns away from the wall. As the TriBot moves forward,
this should keep it about the same distance from the wall, as
in the first version of the LineFollower program.

writing the code

Of course, you need to decide what the TriBot’s distance
from the wall should be. The TriBot should stay close enough
to the wall while still having enough room to turn when it
gets to a corner. You can get a reasonable starting value by
using the NXT’s View menu and following these steps:

1.	 Put the TriBot on the floor next to the wall, and make
sure there is enough room to spin the TriBot all the way
around.

2.	 Adjust the robot so that the Ultrasonic Sensor is facing
the wall.

3.	 Using the NXT’s View menu, select either Ultrasonic
Inch or Ultrasonic cm.

4.	 Set the Port item to 4.

5.	 Note the value on the NXT’s display. I got a reading of
5 inches (13 cm), so that’s what I’ll use in the following
instructions.

Now you can start writing the program. Begin by put-
ting the blocks together with some reasonable values and
then fine-tune the settings after some testing:

1.	 Create a new program named WallFollower.

2.	 Drag a Loop block onto the Sequence Beam. The default
Control value is Forever, which is what you want, so
don’t make any changes to this block.

3.	 Drag a Switch block into the Loop block.

4.	 Select the Ultrasonic Sensor from the Sensor list.

5.	 Set the Distance setting to the target value. The
Configuration Panel for the Switch block should look
like this:

6.	 Drag a Move block onto the Switch block’s upper
Sequence Beam.

7.	 Set the Duration item to Unlimited to keep the motors
moving while the steering is adjusted each time through
the loop.

8.	 This block will be run when the Ultrasonic Sensor reads
less than the trigger value, meaning the TriBot is too
close to the wall. In this case, the robot should steer
away from the wall. The Motor on the side of the TriBot
farthest from the wall is plugged into port C, so set the
Steering slider toward that motor. The Configuration
Panel should look like this:

9.	 Drag a Move block onto the lower Sequence Beam of
the Switch block.

10.	 Set the Duration item to Unlimited.

90	 chapter 7

11.	 This block will be run when the TriBot needs to move
toward the wall, so set the Steering slider toward the
B motor. The two Move blocks behave the same, just
steering in opposite directions. As you adjust these
blocks during testing, remember to change both of
them. The Configuration Panel for this block should
look like this:

At this point, the program (shown in Figure 7-11) should
let the TriBot travel along a wall. The next step is to do a
little testing and modify the program as needed to get it to
work correctly.

Figure 7-11: Following a wall

testing

The code presented previously will likely have a few
problems. In this section, you’ll do some testing and make
some adjustments to fix the problems. You’ll go through
this process with every program that you write; it’s almost
impossible to get all the settings right without some testing.

To test the WallFollower program, you’ll need a wall with
a corner and an opening, or you can use a full maze, which
is a little more fun. To build a maze, you just need walls that
are tall enough so that the Ultrasonic Sensor detects them
but doesn’t see any objects beyond them. (It’s not fair if the
robot can “see” over the walls.) Spare lumber, boxes, or piles
of books work well for the walls of the maze. You could even
build a maze out of LEGO blocks, but it would take a lot of
blocks (and a lot of time).

When you run the WallFollower program, the robot
will probably quickly run into the wall or wander off into the
middle of the room. One problem may be that the steering
control is incorrect or that the steering is not being adjusted
quickly enough. With the Power setting of the Move blocks
set at the default value of 75, the TriBot moves pretty
quickly. Slow the robot down to make adjusting the steering
a little easier.

12.	 Set the Power setting to 35. Remember to change both
Move blocks.

Slowing the TriBot down in this way should help a lot;
the TriBot should now make it farther down the wall, though
it may eventually turn toward the wall and crash into it
before turning away.

To avoid hitting the wall, set the Steering control to
turn more quickly by moving the slider close to the end. The
Steering slider has 10 steps between the middle and the end
of the slider. Begin at the end of the slider and move toward
the middle, testing each position to see which works best.
Table 7-1 shows my results.

table 7-1: steering test results

steps from
the end of
the slider

steering control results

1 The TriBot stays close
to the wall without
hitting it. The motion is
very choppy, with a lot
of side-to-side motion.

2 The TriBot stays close
to the wall without
hitting it. The motion
is noticeably smoother
than the previous
setting. It’s still not
perfectly smooth, but
it’s not bad.

3 The TriBot does fine for
a while but eventually
runs into the wall.

Based on my results, I suggest setting the Steering
slider to two steps from the end, though your results may
vary. Figure 7-12 and Figure 7-13 show the Configuration
Panels for the Move blocks with the changes. At this point,
the TriBot should do a good job following a straight wall with
no corners or openings.

	 the WallFollower program: navigating a maze	 91

Figure 7-12: Moving away from the wall

Figure 7-13: Moving toward the wall

turning a
corner

The next part of the program uses the Touch Sensor to
detect when the robot reaches a corner, at which point it
turns the TriBot so that it can follow the new wall. This is
similar to the BumperBot program, which has the TriBot
back up and turn when it runs into something.

Listing 7-4 shows the pseudocode for this section of the
program.

if the Touch Sensor is pressed then
 stop the motors
 backup far enough to turn the robot
 spin a quarter turn
end if

Listing 7-4: Turning a corner

After the TriBot backs up and turns, it needs to
be positioned the correct distance from the wall, or
it might run into the wall or wander away from it. To
make this section of code work, you have to determine
the correct Duration settings for the two Move blocks.
Recall that in Chapter 4 you did some testing to deter-
mine the settings for the AroundTheBlock program;
you can use those results as starting values and then
adjust the values as needed after some testing.

writing the code

Follow these steps to add this section to the
program:

13.	 Drag a Switch block into the Loop block, placing it to the
right of the existing Switch block. The program should
look like Figure 7-14. Keep the default settings for this
block since they use the Touch Sensor. The blocks on
the upper Sequence Beam of the Switch block will be
used if the robot runs into a wall and the Touch Sensor
is pressed.

14.	 Drag a Move block to the upper Sequence Beam of the
new Switch block. Set the Direction item to Stop.

15.	 Add another Move block to the upper Sequence Beam;
this block will make the TriBot back away from the corner.

16.	 Select the downward-pointing arrow for the Direction
item.

17.	 Set the Duration item to 150 degrees (remember to
select Degrees first and then enter 150).

18.	 Set the Power item to 35 to match the other Move
blocks. The robot looks smoother when all the Move
blocks use the same Power setting. (If you prefer
jumpier motion, increase the speed of this block, and it
should still be precise enough.)

19.	 Add another Move block to the upper Sequence Beam.
This block will spin the TriBot so that the Ultrasonic
Sensor is facing the new wall.

20.	 Set the Duration item to 235 degrees and the Power
item to 35.

NOTE	 The balloon tires are bigger than
the flat tires, so you’ll need to change
some of the settings if you’re using them.
Use 180 degrees instead of 235 degrees
for the Duration item.

21.	 The robot needs to spin toward the C motor, so move
the Steering slider all the way to the left end.

Figure 7-14: Adding another Switch block

92	 chapter 7

22.	 This Switch block is using only the upper Sequence
Beam, since the program doesn’t need to do anything
here if the Touch Sensor is not pressed. Deselect the
Flat view option on the Switch block to make the pro-
gram look a little cleaner.

Figures 7-15 through 7-19 show the new section of the
program and the Configuration Panels for the Switch block
and the three Move blocks.

Figure 7-15: Turning a corner

Figure 7-16: Did the robot hit a corner?

Figure 7-17: Stopping the motors

Figure 7-18: Backing away from the corner

Figure 7-19: Turning toward the new wall

testing

To test the new code, start the TriBot close to a corner and
see how it reacts when it bumps into the wall. Figure 7-20
shows roughly how the robot should move as it backs up and
turns around.

My initial testing revealed a couple of flaws: The
TriBot doesn’t move back far enough, and it spins a little
too far. After trying a few values, I settled on backing up for
190 degrees and then spinning for 230 degrees. Figure 7-21
and Figure 7-22 show the Configuration Panels for the two
Move blocks with the new settings.

NOTE	 For the balloon tires, use 200 degrees
instead of 230.

Figure 7-20: Backing away from the wall and turning to the left

	 the WallFollower program: navigating a maze	 93

Figure 7-21: New Duration setting for backing away from the corner

Figure 7-22: New Duration setting for turning

Before moving on to the next section of the program,
it’s important to retest the wall following coding to make
sure you didn’t accidentally break something while adding the
new code.

NOTE	 Whenever you add new code, it’s a good idea to
test the parts of the program that worked before you
made changes. Most of the time everything will work fine,
but if you did introduce a bug, then finding it sooner will
make it easier to fix.

going through
an opening

When the TriBot comes to an opening in the wall, it should
turn and go through the opening. You’ll need to modify the
code to recognize an opening in the wall and then turn the

robot to move into the opening. Once through the opening,
the TriBot should continue to follow the wall on its right.

The code you wrote earlier works well for following a
straight wall, and it’s helpful to see how it behaves when
the TriBot reaches an opening. The existing program may
fail, crashing the robot into the wall opposite the opening or
sending the robot wandering in circles. But it’s also possible
that the program will work, following the wall around the
corner of the opening and continuing to explore the maze.
Seeing how the program responds to an opening will give
you a better idea of exactly what changes need to be made
for the TriBot to successfully go through the opening.

When I ran the TriBot at this point, I found that it actu-
ally did a pretty good job of turning and making it through an
opening, but I wanted to improve things by making the turn
into the opening a little tighter in order to keep the TriBot
from straying too far from the wall.

When the TriBot gets to an opening, the Ultrasonic
Sensor will suddenly read a much greater distance than it
does when following the wall because the wall has fallen
away. When the Ultrasonic Sensor first reaches the opening,
the rest of the robot is still next to the wall, so it needs to
move forward a little more before turning. Once the TriBot
has spun a quarter turn toward the opening, the robot then
needs to move forward a little more before the Ultrasonic
Sensor will be next to the wall. Figure 7-23 shows how the
TriBot should move, and Listing 7-5 shows the pseudocode
for this section of code.

if the Ultrasonic Sensor detects an opening then
 stop the Motors
 move forward a little
 spin a quarter turn toward the opening
 move forward into the opening
end if

Listing 7-5: Moving through an opening

Figure 7-23: Turning and moving through the opening

94	 chapter 7

Before adding any blocks to the
program, you need to determine the values
to use for the Switch block and the Move
blocks. For the Switch block, begin with a
trigger value of 10 inches (24 cm), which
should be big enough to make sure the
TriBot has found a real opening and not
just a small bump in the wall. For the Move
blocks, begin with the same value you used
to back the TriBot away from the corner, and
then adjust the value after some testing.

writing the code

Follow these steps to make the TriBot move through an
opening.

23.	 Add a Switch block to the end of the code inside the
Loop block.

24.	 Select the Ultrasonic Sensor. Set the Distance item to
10 and the comparison to > (greater than).

25.	 Deselect the Flat view option because you need to add
blocks only to the upper Sequence Beam.

26.	 Add a Move block to the upper Sequence Beam of the
Switch block. Set the Direction item to Stop.

27.	 Add another Move block; this one will move the robot
forward so that it’s all the way in front of the opening.

28.	 Set the Power item to 35 and the Duration item to
190 degrees.

29.	 Add a third Move block. This one will spin the robot so
that it’s facing the opening.

30.	 Set the Power item to 35 and the Duration item to
230 degrees.

NOTE	 For the balloon tires, use 180 degrees
instead of 230 degrees.

31.	 Move the Steering slider all the way to the right end
(toward the B motor).

32.	 Add a fourth Move block. This one will move the TriBot
into the opening.

33.	 Set the Power item to 35 and the Duration item to
230 degrees.

Figure 7-24 shows this part of the program. Fig-
ures 7-25 through 7-29 show the Configuration Panels
for the Switch block and the four Move blocks.

Figure 7-25: Detecting an opening using the Ultrasonic Sensor

Figure 7-26: Stopping the motors

Figure 7-27: Moving forward a little before turning

Figure 7-28: Turning to face the opening

Figure 7-29: Moving into the opening

Figure 7-24: Turning into an opening

	 the WallFollower program: navigating a maze	 95

using sound blocks for
debugging

The section of code that notices an opening and then turns
into it contains three Move blocks. When you’re testing and
changing this code, it can be useful to know when one move
ends and the next begins so that if the robot’s behavior isn’t
optimal, you’ll have a better idea of which block to adjust.

One way to tell which block is running is to add Sound
blocks before each block you are interested in. You can
easily tell where each Move begins and ends by configuring
each Sound block to play a different tone just before each
Move block starts. (Be sure that the Sound block’s Wait For
Completion setting is selected so that the TriBot doesn’t stop
while it plays the sound.)

NOTE	 Whenever you add code for debugging purposes,
be sure that the added code has as little influence as
possible on the program’s timing; otherwise, when you
remove the debugging code, the program may act
differently.

For this section of code, you may want to add a Sound
block to the following places:

N	 Immediately after detecting the opening. If the opening
is being detected too soon or too late, you can adjust the
trigger for the Ultrasonic Sensor.

N	 After each of the three Move blocks. This will let you know
where each move begins and ends so you know which
block’s Duration setting to adjust if the TriBot does not end
up in the correct position.

Figure 7-30 and Figure 7-31 show how this section
looks with the Sound blocks added, as well as the Configura-
tion Panel for one of the blocks. The only difference between
the four Sound blocks is the tone played.

When you are done testing, you can remove the Sound
blocks, but be sure to test the program again after removing
them to make sure that the program still works.

Figure 7-31: Sound block’s Configuration Panel

testing

Test the new code by placing the TriBot along the wall near
an opening and running the program. This is a complex
program with several Move blocks, so many things can
go wrong. Observe how the robot moves into the opening
and starts following the new wall. Here are some things to
look for:

N	 If the target value for the Ultrasonic Sensor is too large,
the robot may not notice an opening.

N	 If the target value for the Ultrasonic Sensor is too small,
the robot will turn toward the wall when there isn’t an
opening.

N	 If the robot does not move forward far enough, it will turn
too soon and hit the corner of the wall.

N	 If the robot moves too far forward before turning, it will
end up too far from the wall.

N	 If the turn is too short, the final move will make the TriBot
move too far from the wall.

N	 If the turn is too long, the TriBot will run into the wall.

N	 If the final move is too short, the TriBot will end up outside
the opening, and the Ultrasonic Sensor won’t detect the
wall.

N	 If the final move is too long, the TriBot can move past a
tight corner or run into another wall.

My testing showed that the durations for all three
moves were a little too short. After some experimentation, I
found that setting the Duration item to 300 degrees for the
move forward, 250 degrees for the turn, and 375 degrees

Figure 7-30: Adding Sound blocks for debugging

96	 chapter 7

for the move into the opening works well. I also noticed that
sometimes the TriBot acts as if there is an opening when
there isn’t one. Setting the target value for the Ultrasonic
Sensor in the Switch block to 13 inches (33 cm) is a big
improvement.

NOTE	 If you’re using the balloon tires,
try setting the durations to 275, 210, and
325 degrees.

Figures 7-32 through 7-35 show the updated Configu-
ration Panels for the Switch block and the Move blocks.

Figure 7-32: Updated target for the Ultrasonic Sensor

Figure 7-33: Updated duration for the move forward

Figure 7-34: Updated duration for the turn

Figure 7-35: Updated duration for the move into the opening

final test
Once you have the TriBot moving through an opening cor-
rectly, it’s time to test the entire program. The requirements
for this program (as listed in “Program Requirements” on
page 86) state that the TriBot should be able to follow a
straight wall and negotiate a corner or opening. If the TriBot
can do these things, then it should be able to navigate a
simple maze. Try a variety of test mazes to see whether
the program correctly handles several turns and corners in
a row.

In addition to making sure the program works as
designed, it’s interesting to see what else it can do and what
will make it will fail. For example, try increasing the speed of
the Move blocks to see how fast the robot can move before it
starts to have problems, or adjust the spacing of the walls to
see how that influences the robot’s behavior.

It’s also a good idea to check the assumptions made
during the initial design. In fact, sometimes you’ll find that
your final result works better than you initially planned. For
example, I found that I could relax the assumption about
needing a straight wall; the program seems to handle slight
curves and angles without a problem.

conclusion
In this chapter, I’ve taken you through all the steps involved
in developing a typical NXT-G maze-navigating program.
You’ve developed this program piece by piece, just as you
would develop a program on your own. At each step you
added a logical piece of the program, did some testing, and
then made necessary modifications to adjust the move dura-
tions and to fix bugs.

The next chapter starts your exploration of data wires,
one the most powerful features of the NXT-G language.

8
data wires

In this chapter, you’ll learn how to use data wires to pass information from one block to another. Using data wires, you’ll be
able to change a block’s settings while a program is running, and you’ll be able to modify a sensor’s value before it’s used by
another block. Data wires are one of the most powerful features of the NXT-G language, and learning how to use them will
greatly enhance your skill as a programmer.

I’ll begin with a simple example to show you what a data wire is and how it works. Most of the remainder of the chapter
is devoted to developing a fairly complex program that turns the TriBot into a sound generator. Along the way, I’ll cover all
the basic concepts you need in order to successfully use data wires in your own programs. I’ll also introduce several new
blocks that are particularly useful when working with data wires.

what is a data wire?
Most blocks require information, or data, to perform some sort of action. For example, the Move block needs to know which
motors to use, how fast to move them, and for how long, before it will actually turn the motors. This data is called the block’s
input data. You’ve used the Configuration Panel to set each block’s input data in all the programs you’ve written so far in this
book.

Some blocks create data for use by other blocks. For example, the Ultrasonic Sensor block reads data from the Ultra-
sonic Sensor and provides that information to other blocks. This data is called the block’s output data.

A data wire takes output data from one block and uses it as the input data for another block. This gives you a lot more
flexibility than just using the Configuration Panel, because you can change a block’s settings while the program is running.
For example, you can use the output from a sensor to control another block.

the GentleStop program
The GentleStop program is designed to show you how to use a data wire. The program moves the TriBot forward and then
makes it gradually slow down and then stop when it reaches a wall.

Key to this program is that the speed of the TriBot depends on how far it is from the wall, as shown in Figure 8-1. As
the robot moves closer to the wall, its speed smoothly decreases until it stops. To accomplish this feat, you’ll combine the
features of an Ultrasonic Sensor block and a Move block. The Ultrasonic Sensor block will measure how far the robot is from
the wall, and the Move block will use this value for its Power setting to control the robot’s speed. Figure 8-2 shows how
these two blocks will be connected in the program.

As the program runs, the Move block’s Power setting will be adjusted according to the robot’s distance from the wall
as measured by the Ultrasonic Sensor. For example, when the robot is 80 cm from a wall, the Power setting will be 80, and
when it’s 20 cm from the wall, the Power setting will be 20. When the TriBot gets very close to the wall, usually around
7 cm (3 inches), the Power setting will be too low to move the robot, and it will come to a stop.

98	 chapter 8

It’s possible for the Ultrasonic Sensor block to generate
a value that’s larger than the maximum Power setting of
100, because the Ultrasonic Sensor can measure distances
up to 255 cm. NXT-G will handle this situation gracefully,
and the Move block will use 100 for the Power setting if the
value from the Ultrasonic Sensor block is greater than 100.

NOTE	 To measure the distance to a wall, the Ultrasonic
Sensor must be pointing forward. If yours isn’t pointing
forward, move it now, as shown in Figure 8-3.

You’ll begin writing the program by putting an Ultra-
sonic Sensor block and a Move block inside a Loop block, and
then you’ll use a data wire to connect the output from an
Ultrasonic Sensor block to the Power setting of a Move block.

80 cm

TriBot moves at 80 percent power

20 cm

TriBot moves at 20 percent power

Ultrasonic
Sensor
block

Move
block

Sensor
reading

Power
setting

(Output data) (Input data)
Figure 8-2: Combining the Ultrasonic Sensor 	

and the Move block

Figure 8-3: The Ultrasonic Sensor pointing to the front of the TriBot

Figure 8-1: The

TriBot moves slower

as it approaches the

wall.

	 data wires	 99

Follow these steps to create the program:

1.	 Create a new program named GentleStop.

2.	 Drag a Loop block onto the Sequence Beam, and keep
all the default settings.

3.	 Drag an Ultrasonic Sensor block from the Complete
Palette (as shown in Figure 8-4) into the Loop block.
(Display the Complete Palette by clicking the center tab
at the bottom of the Programming Palettes.)

Figure 8-5 shows the Configuration Panel for the Ultra-
sonic Sensor block. The controls are the same as those used
with the Wait, Loop, and Switch blocks. All the Sensor blocks
(Touch Sensor block, Sound Sensor block, and so on) use the
same controls you’re familiar with from the program flow
blocks. Use a Sensor block instead of a program flow block
when you want to use a sensor to control something other
than a Wait, Switch, or Loop block.

Figure 8-5: The Ultrasonic Sensor block’s Configuration Panel

The Ultrasonic Sensor can report the distance using
either inches or centimeters, depending on the Show setting.
Using inches, the TriBot will begin slowing down when it is
less than 100 inches from the wall, which is a fairly large
distance. A centimeter is a smaller distance than an inch, so
the TriBot will get closer to the wall before slowing down if
you use centimeters (100 cm is about 39 inches). Letting the
robot move at top speed until it’s closer to the wall makes
the program more interesting to watch.

4.	 Select Centimeters for the Show item.

5.	 Drag a Move block into the Loop block, and set the
Duration item to Unlimited.

With the three blocks in place, the program should look
like Figure 8-6. You are now ready to connect the data wire
between the Ultrasonic Sensor block and the Move block.
Data wires connect to an area of the block known as the data
hub. The Move block’s data hub isn’t displayed when you add
the block to the program, so before attaching a data wire,
you need to open the data hub.

Figure 8-6: Before connecting the data wire

6.	 Open the Move block’s data hub by clicking
the tab at the bottom, as shown here:

7.	 The program should now look like this:

Figure 8-4: The Ultrasonic Sensor block on the Complete Palette

100	 chapter 8

The data hub contains a number of data plugs. The data
plugs on the left side of the data hub are used to pass data
into the block, and those on the right side are used to pass
data out of the block, as shown in Figure 8-7.

Now connect the Distance plug from the Ultrasonic
Sensor block to the Move block’s Power plug by following
these steps:

8.	 Move the mouse cursor over the Ultrasonic Sensor
block’s output data plug. The mouse cursor should turn
into a spool of wire, like this:

9.	 Click the mouse button. When you move
the mouse, you should see a yellow wire
between the mouse cursor and the data
plug, like this:

10.	 Drag the mouse (and wire) to the Move
block’s Power data plug, and click the
mouse button to attach the wire. The
Power data plug looks like this:

11.	 The data wire should now be connected to the two
plugs, as shown here:

NOTE	 If you accidentally connect the data wire to the
wrong plug (which is easy to do), select EditUndo (or
press ctrl-Z) to erase the data wire and start again.

Data hub

Output data plug

Input data plug

Output data plug

Figure 8-7: Data hubs and data plugs

	 data wires	 101

12.	 To close the data hub and display only the connected
plugs, click the tab at the bottom of the Move block, as
shown here:

13.	 The program should now look like this:

Now it’s time to download and test the program. To
do so, start the TriBot in the middle of the room, and point
it straight at a wall. The TriBot should start off quickly and
then slow down as it gets closer to the wall. It should gently
come to a stop just before hitting the wall, when the Power
setting becomes too low to move the robot.

tips for
drawing
data wires

Usually connecting two blocks with a data wire is as simple
as following the steps you used earlier for the GentleStop
program. Occasionally you may want to delete a data wire or
have more control over how the wire is drawn. Here are some
tips to make life a little easier when working with data wires:

N	Move slowly and wait for the mouse cursor to change to
the wire spool before drawing the date wire.

N	 To erase a wire while drawing it, press the esc key.

N	 Press the spacebar while drawing a data wire to change
the wire’s bend.

N	 You can erase a wire immediately after drawing it by
selecting EditUndo.

N	 To delete a data wire, click the data plug at the right end
of the data wire. (In the GentleStop program, this would be
the data plug of the Move block.)

N	 Deleting a block will also delete all data wires connected
to it.

A data wire will automatically bend around any inter-
vening blocks or data hubs as you draw it; this is a process
known as automatic routing. Automatic routing usually
results in a very clean-looking program with short data
wires. However, sometimes a program with many data wires
may be drawn with data wires overlapping or crisscrossing in
ways that make it difficult to tell where individual wires begin
and end. In this case, you may want to use manual routing to
specify exactly how the wire should be drawn.

To use manual routing, click the mouse as you draw
the data wire to fix its position and create a bend, effectively
putting a virtual staple in that wire at a particular point.
You can create as many bends in a data wire as necessary.
Although it’s not always possible to completely avoid criss-
crossing wires, minimizing the number of crossing wires will
make your programs much easier to understand.

NXT-G will redraw data wires as needed, as data hubs
are opened or closed, or when blocks are added or deleted.
As part of this redrawing process, any data wires you routed
manually will be redrawn using automatic routing. Therefore,
you may want to write and test your program first and then
delete and manually route any potentially confusing data
wires. It’s a bit annoying to meticulously draw several data
wires only to have them redrawn when you add a new block.

the
SoundMachine
program

The next program, SoundMachine, turns the TriBot into a
simple sound generator. The wheel attached to motor B con-
trols the volume; turn it to make the sound louder or softer.
The wheel attached to motor C controls the tone (or pitch);
turn it to make the sound higher or lower.

The program uses a Sound block to create the sound
and uses two Rotation Sensor blocks to measure how far

102	 chapter 8

each wheel has been turned. You’ll use data wires to connect
the output from the Rotation Sensor blocks to the Sound
block so that the B motor controls the volume and the C
motor controls the tone. I’ll present the program in three
parts; first you’ll control only the volume, then you’ll add
some code to control the tone, and finally you’ll display the
volume and tone values on the NXT’s screen.

controlling the volume

The first part of the program will look similar to the Gen-
tleStop program, only using Rotation Sensor and Sound
blocks instead of Ultrasonic Sensor and Move blocks. You’ll
configure the Sound block to play a tone and use the value
from the Rotation Sensor to control the volume.

Listing 8-1 shows the pseudocode for this part of the
SoundMachine program. The entire program is contained
in a loop, which, in turn, contains the Rotation Sensor and
Sound block connected to each other using a data wire.

begin loop
 read the Rotation Sensor for motor B.
 use a Sound block to play a tone. Use the
 Rotation Sensor value for Volume.
loop forever

Listing 8-1: Controlling the volume

Figure 8-8 shows the program before connecting the
data wire. The Rotation Sensor block is configured to use the
B motor, and the Sound block has the Action set to Tone. The
Sound block’s Wait for Completion option is unselected so
that the program won’t pause while it plays the sound. The
loop repeats so that the volume can be adjusted while the
sound is playing. Figure 8-9 and Figure 8-10 show the Con-
figuration Panels for the Rotation Sensor and Sound blocks.

Figure 8-8: The SoundMachine program before connecting the data wire

Figure 8-9: Configuration Panel for the Rotation Sensor

Figure 8-10: The Sound block’s Configuration Panel

Connecting the Rotation Sensor’s Degrees plug to
the Sound block’s Volume plug completes this part of the
program, as shown in Figure 8-11. Once the data wire is
connected, the Sound block will ignore the Volume setting
in the Configuration Panel. Even though the Configuration
Panel shows 75 for the Volume setting, when the program
runs, the block will use the value from the data wire. When
looking at a program to figure out why a block is behaving
a certain way, it’s important to consider both the data wires
and the Configuration Panel settings, because the data wires
will override the Configuration Panel settings.

Figure 8-11: The wheel rotation controls the volume.

When the program starts, you won’t hear anything
because the Rotation Sensor will read 0, but turn the
B motor, and the sound should get louder.

The Sound block’s Volume setting uses values from
0 (no sound) to 100 (the loudest setting). The value from
the Rotation Sensor block is measured in degrees, and
100 degrees is a little more than a quarter turn of the wheel.
This means you can adjust the volume from the quietest to

	 data wires	 103

the loudest setting by turning the wheel just past a quarter
of a rotation. (The volume won’t increase smoothly, but that’s
just how the Sound block works.)

In NXT-G 2.0, the Rotation Sensor block
reports a negative value when a motor is rotated
backward, whereas in NXT-G 1.1 the value is
always positive or zero, and the Direction plug is

used instead to tell the direction of a motor’s rotation. When
using NXT-G 2.0 with the SoundMachine program, you must
rotate the wheel forward for the program to work. Rotating
the wheel backward will cause the Rotation Sensor block
to generate a negative number, and as a result, the Sound
block won’t make any noise because the Volume setting will
be a negative number.

using the math block

For the next part of the SoundMachine program, you’ll need
to do a little math, which in NXT-G is accomplished using
the Math block. You’ll find the Math block on the Data group
of the Complete Palette (Figure 8-12), and it should be
displayed in your program as shown in Figure 8-13.

Figure 8-12: The Math block on the Complete Palette

  Figure 8-13: The Math block

The Math block takes one or two numbers as input and
an operation to perform on the numbers. You can enter the
numbers into the Configuration Panel (Figure 8-14) or supply
them via data wires. The result of the operation is available
on an output data plug. All versions of the NXT-G Math block
can perform addition, subtraction, multiplication, and divi-
sion; the NXT-G 2.0 version can also calculate the absolute
value and square root.

Figure 8-14: Configuration Panel for the Math block

adding tone control to the
SoundMachine program

In this section, you’ll add tone control to the SoundMachine
program using the C motor as a dial. The Sound block’s
Configuration Panel (shown in Figure 8-15) makes selecting
the Sound block’s Note setting (or tone) very simple; you just
click one of the keys on the small keyboard. Setting the tone
using a data wire is a little different; for this, you need to use
the Tone Frequency data plug (shown in Figure 8-16). This
data plug takes a value measured in hertz (Hz), with a range
from 264 (the lowest pitch) to 4000 (the highest pitch).

Figure 8-15: Setting the tone using the Configuration Panel

 
Figure 8-16: The Sound block’s

Tone Frequency data plug

NOTE	 Use the help file to learn about the values a data
plug uses. The help file has a section for each block that
includes a table describing all the data plugs the block
supports. To open the help topic for a block, select the
block, and press F1.

Controlling the Sound block’s Tone setting is more
complicated than controlling the Volume setting because the
range of values used for the Tone Frequency setting is quite
large. If you connect the Rotation Sensor block directly to the
Tone Frequency data plug, like you did for the volume, then
you’ll need to turn the wheel about 11 full rotations to get to
the highest pitch sound, which isn’t very convenient.

You can solve this problem by using a Math block to
multiply the value from the Rotation Sensor block by 40
before passing the value to the Tone Frequency data plug.
This will make Rotation Sensor values between 0 and 100
(the same range you used for the volume) turn into Tone

104	 chapter 8

Frequency values between 0 and 4000. (Rotation values less
than 9 will produce Tone Frequency values that are too small
for the NXT’s sound system, but you can ignore this to keep
things simple.)

The new code is similar to the code used for the volume
control except that a Math block is needed between the
Rotation Sensor block and the Sound block to multiply the
value by 40. Here is the pseudocode for the program, with
the new parts in bold:

begin loop

 read the Rotation Sensor for motor B

 read the Rotation Sensor for motor C

 use a Math block to multiply the motor C

 rotation by 40

 use a Sound block to play a tone. Use the Rotation

 Sensor value for Volume. Use the Math block

 result for the Tone Frequency

loop forever

Figure 8-17 shows the program with the changes. The
new Rotation Sensor block and the Math block are placed
between the existing Rotation Sensor block and the Sound
block to avoid crossing the data wires. Figure 8-18 and
Figure 8-19 shows the Configuration Panels for the Rotation
Sensor and Math blocks.

Figure 8-17: The SoundMachine program with tone control added

Figure 8-18: Configuration Panel for the second

Rotation Sensor block

Figure 8-19: Multiply the input by 40.

When you now run the program, you should be able
to control both the tone and the volume using the TriBot’s
wheels.

understanding
data types

Before you finish the SoundMachine program, you need to
learn about one more aspect of data wires. So far, all the
data you have worked with (the Ultrasonic and Rotation
Sensor readings and the Power, Volume, and Tone Frequency
settings) has been numbers. But numbers aren’t the only
type of information. Think about the answers to the following
three questions:

1.	 What is your name?

2.	 How old are you?

3.	 Are you the oldest child in your family?

Each question asks for a different kind of information.
Your name is a word, your age is a number, and the answer
to the third question is either “yes” or “no.” In computer
programming, the term data types describes different kinds
of information. Your answers to the previous three questions
correspond to the three data types that NXT-G supports:

N	Text values are groups of characters that may include let-
ters, numbers, and punctuation. For example, in the first
program you created in this book, you used the Display
block to print the text value Hello. In NXT-G programs,
text values are used mainly for displaying information on
the NXT’s LCD display.

N	Numbers are used to represent value readings from sen-
sors and for setting trigger points. Numbers are also used
for many other block settings, such as the Move block’s
Power and Steering settings.

N	Logic values can be either true or false. For example,
in addition to reading the distance value, the Ultrasonic
Sensor block can compare the reading to a trigger value.
The result of this comparison is a logic value; it’s true if the

	 data wires	 105

trigger value has been reached, and it’s false if it hasn’t.
Depending on how a logic value is used, you may see it
labeled as either True/False or Yes/No. This type of value
is often called a binary value because it can have only one
of two possible values.

Each data plug will work with only one data type. For
example, you can only pass a number to the Move block’s
Power data plug (in other words, using the text value
“really fast” won’t work). The help file information about
each block’s data plugs includes the data type each plug
expects.

using the
number to
text block

For the next part of the SoundMachine program, you’ll
display the Tone Frequency and Volume values on the NXT’s
screen. Displaying the values your program uses can be a big
help when debugging. There is one small complication: The
Tone Frequency and Volume values are numbers, and the
Display block can print only text values.

To print a number, you first need to convert the number to
text using the Number to Text block (in the Advanced group at
the bottom of the Complete Palette, as shown in Figure 8-20
and Figure 8-21). The Number to Text block takes a number as
input and outputs the equivalent text data. The input value is
usually supplied using a data wire, although it can be set in the
Configuration Panel (Figure 8-22).

Figure 8-20: The Number to Text block on the Complete Palette

	

Figure 8-21: 	 Figure 8-22: The Number to Text block’s	

The Number 	 Configuration Panel	

to Text block

displaying the
tone frequency

To display the Tone Frequency value, you’ll use a Number
to Text block to convert the value to text and then use a
Display block to print the value. Figure 8-23 shows the
SoundMachine program with the two new blocks added and
the data wires connected.

Notice that the data wire supplying the input to the
Number to Text block is connected to the Sound block
instead of the Math block. The output side of the Tone Fre-
quency data plug is called a pass-through data plug because
it passes on the data supplied to the input side. Using the
pass-through data plug from the Sound block is the same

Figure 8-23: Displaying the Tone Frequency value

106	 chapter 8

as adding a data wire from the Math block to the Number to
Text block. The Sound block doesn’t change the data while
passing it on; the value passed into the left side of a plug is
passed out on the right side unchanged. The pass-through
plug can make a program cleaner looking and easier to
understand.

NOTE	 You can use a pass-through plug only when the
input side of the plug is connected to a data wire. For
example, you can’t use the pass-through side of the Sound
block’s Duration plug because you haven’t set the Duration
value using a data wire. In other words, you can’t use a
pass-through if there is no input to “pass through!”

Figure 8-24 shows the Display block’s Configuration
Panel block. Notice that you still need to set the Action
setting to Text, even though you are supplying the text
using a data wire. Once the data wire is connected, the Text
value set in the Configuration Panel (Mindstorms NXT) will
be ignored, and the value passed from the Number to Text
block will be used instead.

Figure 8-24: The Display block’s Configuration Panel

When you run this version of the program, the value
used for the tone frequency should be displayed on the
NXT’s screen.

restoring
pass-through
data plugs

When the IDE redraws data wires, it will usually
replace a data wire attached to a pass-through plug
with one that starts at the original output plug. It
actually does this in a couple of steps, and you can
press ctrl-Z (undo) to “back up” one or more steps.
For example, Figure 8-25 shows a section of the
SoundMachine program where the output from the
Math block passes through the Sound block to the
Number to Text block.

Figure 8-25: The original data wire routing

Figure 8-26 shows the blocks after closing the
Sound block’s data hub. The data wires have moved
so that the one connected to the Number to Text
block’s input plug now connects directly to the Math
block’s output plug. The data wire connected to the
Sound block’s Volume plug has also been moved so
that it now passes behind the Math block, making it
appear as if the B input to the Math block is being
used.

	 data wires	 107

using the text
block

For the final set of changes to the SoundMachine program, I
need to introduce the Text block. The Text block lets you join
together up to three pieces of text, which can be useful for
adding labels to values you display on the NXT’s screen. You’ll
find the Text block in the Advanced group at the bottom of the
Complete Palette, as shown in Figure 8-29. In your program,
the Text block will be displayed as shown in Figure 8-30.

Figure 8-29: The Text block on the Complete Palette

  Figure 8-30: The Text block

The Text block’s Configuration Panel (shown in
Figure 8-31) contains boxes for three pieces of text. In
most cases, you’ll fill in one or two of the boxes and supply
the other input using a data wire. The output from the
Text block is created by concatenating (or joining together)
the three pieces of text. The Text block won’t add a space
between each item, so if you want a space between a label
and a value, you’ll need to add it yourself (you’ll see an
example of this in the next section).

Figure 8-31: Configuration Panel for the Text block

Figure 8-26: The data wires redrawn after closing the Sound

block’s hub

Figure 8-27 shows the blocks after pressing
ctrl-Z, which puts the data wire connected to the
Number to Text block’s input plug back to the Sound
block’s output plug.

Figure 8-27: After pressing ctrl-Z

The arrangement of the data wires is still not
ideal because the data wire for the Volume passes
behind the Math block. You can remove this data
wire redraw it with manual routing to avoid this
potential source of confusion. Figure 8-28 shows the
final configuration of the data wires.

Figure 8-28: After fixing the data wire for the volume

108	 chapter 8

adding
labels to
the displayed
values

The previous version of the SoundMachine converted the
Tone Frequency value to text and displayed the value. You
can improve on this by using a Text block to add more infor-
mation: Instead of just displaying a number, you’ll display a
label and the unit for the value. The unit used to measure
frequency is hertz (meaning cycles per second), abbreviated
as Hz. Instead of displaying 2500, the program will display
Tone: 2500 Hz.

Figure 8-32 and Figure 8-33 show the changes to the
program and the Configuration Panel for the Text block. The

Tone Frequency value is passed into the Text block as the B
value, and the Configuration Panel is used to set the label
and unit text. Although you can’t see it in the Configuration
Panel, there is a space after the label: The value entered is
Tone: , not just Tone:. Likewise, there is a space before Hz in
the bottom box.

The final change to this program adds the volume level
to the display. The new code is similar to the code used to
display the Tone Frequency value, taking the output from the
Sound block’s Volume plug and displaying it as Volume: 50%.

Figure 8-34 shows the changes to the program, and
Figure 8-35 and Figure 8-36 show the Configuration Panels
for the new Text and Display blocks. The Text block settings
are similar to the ones used for displaying the tone frequency
(for the volume there should be a space after the label but
not one between the value and the percent sign). For the
new Display block, in addition to setting the Action to Text,
change the Line setting so that the volume is shown below
the tone (instead of writing over it), and uncheck the Clear
option so that the tone display is not erased.

Figure 8-34: Displaying the volume

Figure 8-32: Text block added Figure 8-33: Configuration Panel for the Text block

	 data wires	 109

Figure 8-35: Configuration Panel for the Text block

Figure 8-36: Configuration Panel for the Display block

When you run this version of the SoundMachine pro-
gram, both the Tone and Volume values should be displayed.
Notice that if you keep turning the volume dial, the display
will show a value larger than 100 percent, even though the
Sound block clamps the value to 100. This is because the
value passed out of the Sound block is the same value that
was passed in, not the value the block uses if the value is out
of the normal range.

dealing with
broken wires

As you are writing your program, it’s possible to connect a
data wire in such a way that it won’t work correctly. A data
wire that is not connected properly is known as a broken
wire. A broken wire is shown as a dashed, gray line (as
shown in Figure 8-37) to let you know that the program has
a problem.

A data wire can appear broken for the following
reasons:

N	The data types of the two plugs do not match. For
example, you can’t connect the Tone Frequency output
plug from the Sound block (a number) to the Display
block’s Text plug. Instead of connecting these two data
plugs directly, you need to use the Number to Text block to
change the value’s data type.

N	There is no input data. This happens when you connect
a data wire to the output side of a pass-through plug
without connecting the input side. This is the problem
shown in Figure 8-37.

N	There are too many inputs. Each input plug can be con-
nected to only one output plug (otherwise it wouldn’t know
which value to use). An output plug can be connected to
more than one input plug because there’s no problem with
passing the same value to multiple blocks.

N	The data wires form a cycle. You can’t connect one block
to another that appears earlier in the program. In a simple
program, the IDE won’t allow you to draw a data wire that
could cause a cycle. In programs using multiple Sequence
Beams, it’s possible to create a cycle by connecting blocks
on different Sequence Beams, as you’ll see in Chapter 17.

To determine the problem with a broken wire, select the
wire, and look at the Help Panel (located in the lower-right
corner of the IDE). A brief description of the problem should
be displayed, as shown in Figure 8-38. Click More help to
open the help file with a more complete explanation of the
problem.

Figure 8-38: Help for a broken wire

Figure 8-37: A broken wire

110	 chapter 8

If you encounter broken wires while editing a program,
you don’t necessarily have a problem; the wires may break as
a result of the order in which you connect them to the blocks.
For example, when building the SoundMachine program,
if you first connect the Sound block to the Number to Text
block, the wire will be broken. When you then connect the
Math block to the Sound block, the broken wire will be
repaired. Regardless, you must fix any broken wires before
you run your program.

conclusion
Data wires move information between blocks, allowing you
to change a block’s settings while your program is running.
The programs presented in this chapter have shown you
some simple ways to use data wires and introduced some
of the blocks that are designed to work with data wires. The
Sensor blocks use data wires to make sensor readings avail-
able to other blocks in your program. The Math, Number to
Text, and Text blocks are used almost exclusively with data
wires to transform data or convert between data types.

The next two chapters will show you how to use data
wires with the Switch and Loop blocks. You’ll get lots of
practice using data wires because you’ll use them extensively
for the programs in the remainder of this book.

9
data wires and the switch block

The Switch block is used to make decisions about which blocks to run by choosing between two or more alternatives. For
example, the WallFollower program in Chapter 7 uses a Switch block that reads the Ultrasonic Sensor and decides whether
to move the TriBot toward or away from the wall. In this chapter, you’ll learn how to use the Switch block to make deci-
sions using a value supplied by a data wire, instead of using data directly from a sensor. You’ll also learn how to pass data
between the blocks inside the Switch block and the ones that come before or after the Switch block.

the switch block’s value option
The Control setting on the Switch block’s Configuration Panel offers two choices: Sensor and Value. In the previous

chapters, you used the Sensor option to make decisions based on input data supplied directly from a sensor. The Value
option lets you make a decision using a value from a data wire.

When you select the Value option, the Configuration Panel should look like Figure 9-1, and an input data plug should
appear at the bottom of the Switch block (as shown in Figure 9-2). This data plug is where you connect the data wire sup-
plying the input value.

The Configuration Panel will look slightly different depending on the data type of the value you are using (Number, Text,
or Logic). When you connect a data wire to the block’s input plug, the correct type should be selected automatically, but you
can select the data type for the Switch block’s input plug manually from the Type list, once you have a data wire connected.
Changing the Type setting will delete the data wire (otherwise there would be a data type mismatch error).

To connect a data wire to the Switch block, you draw the wire from an output plug to the Switch block. The IDE won’t let
you draw the wire starting from the Switch block’s input plug.

Figure 9-1: Switch block Configuration Panel using a Value control Figure 9-2: The Switch

block’s input data plug

112	 chapter 9

rewriting the
GentleStop
program

Recall that the GentleStop program makes the TriBot slow
down and gently stop as it approaches a wall. The robot
stops when the Power setting for the Move blocks is too low
to make the robot move, but a better approach would be to
stop the motors when the robot is close to the wall, instead
of letting the motors stall. In this section, you’ll rewrite the
GentleStop program to do just that, using the output from
the Ultrasonic Sensor block as the trigger for a Switch block.
The program will work like the original, but you’ll use a dif-
ferent approach to programming it.

You’ll write the program in two parts. In the first part,
you’ll make the TriBot move forward and then stop when the
reading from the Ultrasonic Sensor is less than 10. Unlike
the original program, this version doesn’t use the distance
reading to control the motor’s Power setting. The second
part of the program will restore the connection between the
Ultrasonic Sensor block and the Move block.

Here is the pseudocode for the first part of the program,
which keeps the TriBot moving forward until it’s 10 cm or
less from the wall, at which point the motors are stopped:

begin loop
 read the value from the Ultrasonic Sensor
 if the distance > 10 then
 move forward
 else
 stop moving
 end if
loop forever

Figure 9-3 shows the program. The Ultrasonic Sensor
block reads the sensor and compares the distance reading
to the target value, which is set to 10. The result of this
comparison is passed to the Switch block using a data
wire connected to the Ultrasonic Sensor block’s Yes/No
output data plug. If the value is true, meaning the distance
is greater than 10, the Switch block will execute the Move
block on the upper Sequence Beam, moving the robot
forward. If the distance is 10 or less, the block on the lower
Sequence Beam will be used, and the robot will stop moving.
Figures 9-4 through 9-6 show the Configuration Panels for
the Ultrasonic Sensor and Move blocks.

Figure 9-3: Moving forward while the distance is greater than 10 cm

Figure 9-4: Configuration Panel for the Ultrasonic Sensor block

Figure 9-5: Moving forward

Figure 9-6: Stopping the motors

When you run this program, the TriBot should move
forward quickly and then abruptly come to a stop when it
gets close to a wall. Unlike the original GentleStop program,
in this version of the program, the robot’s speed doesn’t
depend on the distance from the wall.

	 data wires and the switch block	 113

advantages
of using a
sensor block

You could write the GentleStop program without using the
Sensor block by using a Switch block configured to use the
Ultrasonic Sensor and making the comparison with the trig-
ger value (in this case 10). However, that approach wouldn’t
allow enough flexibility for the next step. Although having the
Switch block work directly with a sensor is simple, you gain
some advantages from using a Sensor block and passing the
result of the comparison to the Switch block using a data
wire:

N	 You can configure a Sensor block using data wires. For
example, you can change the trigger value while the pro-
gram is running. When using a Switch block, the settings
for the sensor can be set using the Configuration Panel
only.

N	 You may want to use a condition that’s more complex than
a simple greater than or less than comparison. Using data
wires and the Math, Logic, and Comparison blocks, you can
test for just about any condition you can think of.

N	 A Sensor block gives you access to the sensor reading as
well as the result of the comparison. For example, in the
next section, you’ll use the Distance value to control the
Move block’s Power setting, in addition to using the Yes/No
value to stop the robot.

passing data
into a switch
block

To make the TriBot’s speed depend on its distance from the
wall, the Distance value from the Ultrasonic Sensor needs to
be connected to the Move block’s Power plug, just as in the
original program. To make a data wire cross the boundary of
the Switch block, you must first unselect the Switch block’s
Flat view option (shown in Figure 9-7). Once the Switch block
is using tabbed view, a data wire can be drawn between the

Ultrasonic Sensor block’s Distance plug and the Motor block’s
Power plug, as shown in Figure 9-8.

Figure 9-7: Unselecting the Flat view option

Figure 9-8: Connecting the Distance to the Power setting

When you run this version of the program, it should
act like the original, except that the TriBot should stop the
motors when it gets close to the wall, instead of letting them
stall because the Power level is too low.

passing data
out of a
switch block

Passing data out of a Switch block can be a little more
complex than passing data in because of the way the wires
need to be connected. The LogicToText program shown in
Figure 9-9 is a very simple example of passing data out of
a Switch block. This program reads the Touch Sensor and
writes True on the display if the button is pressed and False

114	 chapter 9

if it’s not. Both Sequence Beams inside the Switch block
contain a Text block whose output plug is connected to the
Display block. The tricky thing here is that the Text blocks on
both Sequence Beams need to be connected to the Display
block.

I’ll give step-by-step instructions to illustrate how to
connect the data wires. Start with the program as shown in
Figure 9-10. The Touch Sensor block uses the default values,
which look for the button being pressed, and the result is
used as the trigger value for the Switch block. The Text block
on the Switch block’s upper Sequence Beam generates the
text True, and the one on the lower Sequence Beam gener-
ates False. To show the text, set the Display block’s Action
option to Text, since the default is Image. Figures 9-11
through 9-14 show the Configuration Panels for the Switch,
Text, and Display blocks.

Figure 9-10: The LogicToText program starting point

Figure 9-11: Switch block Configuration Panel

Figure 9-12: Text block on the upper Sequence Beam

Figure 9-13: Text block on the lower Sequence Beam

Figure 9-14: Configuration Panel for the Display block

Figure 9-9: The LogicToText program

	 data wires and the switch block	 115

Now comes the interesting part. Follow these steps to
connect the output from the Text blocks to the Display block:

1.	 Uncheck the Flat view option of the Switch block. The
program should look like this:

2.	 Draw a data wire from the Text block’s Combined Text
plug to the Display block’s Text plug:

The program should now look like this:

3.	 Click the X tab at the top of the Switch block to display
the other Sequence Beam. The program should look like
this:

4.	 You can’t connect the second Text block directly to the
Text plug of the Display block, because an input plug can
be connected to only one source. Instead, you need to
connect the Text block’s Combined Text plug to the edge
of the Switch block at the point where the existing data
wire crosses it, like this:

Draw a
data wire
from this
plug to here

116	 chapter 9

When the Switch block runs, only one of the tabs will be
used (either the true one or the false one), and the output of
the Text block will be sent to the Display block. The program
should look like this:

5.	 Add a Wait Time block to pause the program so you can
read the display before it’s cleared. You can also shrink
the data hubs to tidy up things. The completed program
should look like this:

When you run the program, it should display either
True or False depending on whether the Touch Sensor is
pressed or released when the program starts. To test the
true case, press and hold the Touch Sensor button before
running the program, because the sensor is tested immedi-
ately upon starting the program.

matching
more than
two values

The Switch block in the LogicToText program uses the logic
value from the Touch Sensor block to choose between two
options. This works great with a logic value because it can
have only two possible values (either true or false). But
what if you want to choose from more than two options? If
so, you’ll need to use either a number value or a text value,
since these data types can have more than two values.

When using a number or text value with a Switch block,
you create a list of values to match against, one for each
choice you want the program to make. Figure 9-15 shows the
Configuration Panel for a Switch block that has been config-
ured to choose between three numbers: 10, 25, and 75.

Figure 9-15: Configuration Panel with three conditions

In the center of the Condi-
tions section is a numbered list
of the values to match against.
In the Work Area, the Switch
block will show a tab for each
option. In this example, the

Switch block has three
choices and therefore
will show three tabs
along the top (shown in
Figure 9-16). The tabs
are in the same order
as the items in the list, so the first tab will be used if
the input is 10, the middle tab for 25, and the third
tab for 75.

Figure 9-16: A Switch block with

three choices

Draw a data
wire from
this plug to
here

	 data wires and the switch block	 117

The box at the bottom of the list is used to edit the
value for the selected item. The IDE usually keeps the list
of conditions in order (either numerical or alphabetical), so
changing the value will also change an item’s position in the
list. For example, if you change the second item’s value from
25 to 125, it will move to the bottom of the list, as shown in
Figure 9-17. This choice now corresponds to the third tab of
the Switch block, instead of the second. The blocks within the
Switch block will be moved to the correct tabs automatically;
the only things that change are the order of items in the list
and the order of the tabs on the Switch block.

 

Figure 9-17:

After changing

25 to 125, the

item has moved.

adding and removing
conditions

The button adds a new condition to the end of the list.
To use more than two choices, first uncheck the Flat view
option. When the Flat view option is selected, you can set the
values for the two default conditions, but you can’t add more
conditions.

The button removes the select item from the list. A
Switch block must have at least two choices, so this button
will be disabled if there are fewer than three items in the list.

the default condition

What happens if you pass 35 to this Switch block? This isn’t
one of the choices (10, 25, and 75), but the Switch block has
to choose one of the three tabs. The check mark next to the
top condition in Figure 9-17 indicates that this is the default
choice, meaning that any value other than 10, 25, or 75 will
also match this condition. So, the first tab will be used if you
pass 35 to the Switch block.

You can choose which value should be used as the
default by selecting an item in the list with the mouse and
then clicking the button.

If you remove the item selected as the default, then the
first item in the list becomes the default.

NOTE	 Sometimes when you delete the default item, the
IDE will incorrectly show the check mark next to the last
item or not show it at all. Selecting a different block and
then reselecting the Switch block will put the check mark
next to the correct item.

using
numbers with
the NXT-G 2.0
switch block

One of the major differences between NXT-G 1.1
and NXT-G 2.0 is the change from using only
whole numbers to using floating-point numbers,
and this affects how the Switch block works. Even

though NXT-G 2.0 supports floating-point numbers, you can
use only whole numbers for the items in the Conditions list.
The Switch block will round the value on the input data wire
to the nearest whole number before comparing it with the
list of values. For example, using the values shown earlier
in Figure 9-16 (10, 75, and 125), any value greater than or
equal to 74.5 and less than 75.5 will be rounded to 75 and
so will match the middle choice.

fixing the
SoundMachine
program’s
volume display

The SoundMachine program from Chapter 8 allows you to
control the Volume and Tone of a Sound block using the
TriBot’s two wheels, but the way the program displays the
Volume level is not quite correct. Although the Sound block
accepts values in the range of 0 to 100 for the Volume, the
block really supports only five volume settings. In effect, the
input value is rounded down to 0, 25, 50, 75, or 100.

In this section, you’ll improve the program by displaying
a description for the Volume instead of a number. To do
so, you’ll use a Switch block with six choices to convert the
numeric Volume setting to a text description.

The first step is to change the Volume to one of six
possible values to match the way the Sound block works. By
doing a little math, you can convert the Volume setting to
a number between 0 and 5 and use this value as the input
into a Switch block. Table 9-1 shows Switch block input
values and the descriptive text to use for each Volume level.
A Volume setting greater than 124 will generate a result of

118	 chapter 9

5 or greater, and the program will display --- to indicate an
out-of-range condition.

table 9-1: volume levels and descriptions

volume range switch block input
value

description

0–24 0 Off

25–49 1 Low

50–74 2 Medium

75–99 3 Loud

100–124 4 Loudest

Greater than 124 5 or greater ---

The process of converting the Volume setting to the
Switch block input value depends on which version of NXT-G
you’re using. The following two sections describe the process
for each software version.

calculating the input value
using NXT-G 1.1

With NXT-G 1.1, all the numeric values are whole
numbers, and the result of any division opera-
tion is truncated, meaning the fractional part
is dropped. For example, if the volume setting

is 70 and you divide this by 25, you’ll get 2 instead of 2.8.
This actually makes the conversion easy; all you need to do
is divide the Volume setting by 25 to get the correct Switch
block input value shown in Table 9-1.

calculating the input value
using NXT-G 2.0

When using NXT-G 2.0, the division operation will
keep the fractional part. For example, dividing a
Volume setting of 70 by 25 will give a result of
2.8. If you pass this value to the Switch block, it

will be rounded to 3. However, according to Table 9-1 (which
matches the way the Sound block works), a Volume setting
of 70 should correspond to an input value of 2. The real
issue here is that the Sound block truncates the value, but
the Switch block rounds the value. This is a common problem
when working with floating-point numbers and is easy to
fix once you’re aware of it. All you need to do is subtract 0.5
from the value before passing it to the Switch block. This
will cause the rounding operation to have the same effect as
truncating the original value.

modifying the program

To use a text description for the Volume, the Number to
Text block circled in Figure 9-18 must be replaced with a
Math block (two Math blocks for NXT-G 2.0) and a Switch
block. The Switch block will have six conditions, each of
which uses a Text block to put the appropriate description
on a data wire. The data wires from the Text blocks within
the Switch block will connect to the Display block, just like
in the LogicToText program.

Follow these steps to make the necessary changes to
the program:

1.	 Open the SoundMachine program.

2.	 Select the Number to Text block indicated in
Figure 9-18, and use the delete key to remove it from
the program.

Figure 9-18: Replace the Number to Text block with Math and Switch blocks

	 data wires and the switch block	 119

3.	 Add a Math block just after the first Display block. Con-
nect the Sound block’s Volume output plug to the Math
block’s A input plug. The program should look like this:

4.	 In the Math block’s Configuration Panel, set the Opera-
tion value to Division, and set the B value to 25.

5.	 If you’re using NXT-G 2.0, add another Math
block and connect the output plug of the first
Math block to this block’s A input plug. This
part of the program should look like this:

6.	 Set the Math block’s Operation option to Subtrac-
tion, and set the B value to 0.5. (This step is only for
NXT-G 2.0 users.)

7.	 Add a Switch block after the Math block, then uncheck
the Flat view option, and set the Control option to
Value. Now connect the output of the Math block to the
Switch block’s input plug. The images that follow show
how the program looks using NXT-G 2.0; if you’re using
NXT-G 1.1, you should have only one Math block. The
modified section of the program should look like this:

8.	 The Switch block’s Configuration Panel will have two
choices by default (0 and 1). Add four more choices
for the numbers 2 through 5. When you add a new
choice, the IDE will supply a value larger than any of the
existing choices, so for this program you don’t need to
change any of the values; the defaults just happen to be
correct.

9.	 Select the last choice (5), and click the * button to set
it as the default choice, because it’s the out-of-range
value, and any value larger than 5 is out of range.

At this point, the Switch block has all the numbers you
want to use, but it may not have them in the correct order.
Usually the list of numbers is kept in order, but the first two
(0 and 1) may be switched, as shown here:

120	 chapter 9

I like to keep the items in order so I don’t accidentally
use the wrong tab. To get the items back in order, select the
second item (0), and change it to 10, which puts it at the bot-
tom of the list. Then change the 10 to 0; it will move to the
top, and the list will be back in order.

10.	 The Switch block should now show five tabs across the
top. Select the first tab, and drag a Text block onto the
Sequence Beam.

11.	 The block on the first tab will be used when the volume
is off. Enter Off in the box at the top of the Text block’s
Configuration Panel:

12.	 Connect the Text block’s Combined Text data plug to the
B data plug to the Text block to the right of the Switch
block, as shown here:

This section of the program should now look like this:

13.	 Select the Switch block’s second tab, and add a Text
block. Set the Text option to Low. This section of the
program should now look like this:

14.	 Draw a data wire from the Text block’s Combined Text
output plug to the edge of the Switch block to meet
up with the data wire connected to the Text block, as
shown here:

Draw a data wire
from this plug to
here

Draw a data wire
from this plug to
this plug

	 data wires and the switch block	 121

This section of the program should now look like this:

15.	 Repeat the same steps to add a Text block to the
remaining three tabs of the Switch block. Set the Text
option for each block using the appropriate values from
Table 9-1, and connect the output from each Text block
to the data wire on the side of the Switch block.

16.	 The Switch block has six choices, but only five tabs
are displayed along the top. When you select an item
in the Conditions list, the tab for that item is shown in
the Switch block. Select the sixth choice in the Switch
block’s Configuration Panel, and add the final Text block.
Set the Text option to ---, and connect the data wire as
with the previous Text blocks.

NOTE	 The Switch block will show as many tabs as can fit
along the top. If more than one block is dropped into the
Switch block, the block will grow wider, and more tabs will
be displayed.

17.	 Select the Text block to the right of the Switch block,
and then remove the percent sign from the bottom box.
The Configuration Panel should look like this:

Now when you run the program, it should display a
description of the volume level. If the Volume description is
sometimes blank, then the most likely source of the problem
is that the data wire on the inside of the Switch block doesn’t
meet the data wire on the outside of the Switch block. If this
happens, use these steps to resolve the problem:

1.	 Select the Switch block tab corresponding to the missing
text.

2.	 Click the data wire between the Text block and the edge
of the Switch block. Make sure that only the data wire
is selected; if the Configuration Panel is still displayed,
then one of the blocks is selected and not the data wire,
and you should click an empty spot in the Work Area
to unselect all the blocks and then click the data wire
again.

3.	 Press the delete key to remove the data wire.

4.	 Draw a new data wire between the Text block and the
edge of the Switch block.

Once the new data wire is in place, you should test the
program again. It’s not easy to see whether the data wires
meet at the edge of the Switch block at just the right spot, so
it may take a few tries to get it right.

conclusion
Using a data wire to supply the input to a Switch block gives
you a lot of flexibility in the types of decisions your programs
can make. Using a Sensor block, you can perform the com-
parison outside the Switch block, allowing you to make more
complex decisions than the Switch block alone supports.

Using a number or text value as input, you can have the
Switch block choose from more than two possible alterna-
tives. Passing data between the blocks within the Switch
block and those before or after allows you to easily custom-
ize each alternative action or make decisions that affect the
rest of the program.

10
data wires and the loop block

In this chapter, you’ll learn how to use two special features of the Loop block that are designed to be used with data wires.
The Loop block has two data plugs: The Loop Count data plug tells you how many times the loop has completed, and the
Loop Condition data plug allows you to control when the Loop block finishes. I’ll begin with a few simple programs to demon-
strate how these features work, and then I’ll show you how to use them to build three different programmable timers.

Figure 10-1: Check the box to display the Loop Count data plug.

Figure 10-3: The LoopCountTest program

Figure 10-2: The Loop

Count data plug

Figure 10-4: The

Configuration Panel

for the Loop block

the loop count
The loop count tracks the number of times the loop body has
been repeated. The data plug for the count isn’t displayed
when you first add the Loop block to your program, but if
you check the Show Counter box in the Loop block’s Configu-
ration Panel (Figure 10-1), it will appear on the Loop block,
as shown in Figure 10-2.

The value written to the Loop Count data plug equals
the number of times the loop has completed, and a new
value is written each time the loop repeats. The value is
put on the data wire before the loop body executes, so the
first time through, the loop the value is 0, the second time
through the value is 1, and so on. When the loop finishes, the
value on the data wire will be one fewer than the number of
times the loop completed because it isn’t updated after the
last time the body is run.

creating the LoopCountTest
program

The LoopCountTest program (shown in Figure 10-3) dem-
onstrates how the loop count behaves. In this program, the
Loop block repeats five times, and each time through the
loop count is displayed. The Wait Time block adds a short
pause to give you time to read the value. Figure 10-4 shows
the Loop block’s Configuration Panel.

When you run this program, the display should show 0,
1, 2, 3, and 4.

124	 chapter 10

NOTE	 This program and the two that follow aren’t very
interesting to watch (you won’t impress your friends
by building a robot that counts to four), but they’re not
designed to be impressive. They’re here to demonstrate
how the NXT-G language works. When you begin working
with a block or feature you haven’t used before, it can be
helpful to write small programs like these to gain a more
complete understanding of the language. That will allow
you to write programs that really are interesting.

restarting a loop

Some programs use nested Loop blocks, with one loop inside
another. The LoopCountTest2 program shown in Figure 10-5 is
a simple example of this. The program nests the code from the
LoopCountTest program in another Loop block. The outer Loop
block is configured to run twice, as shown in Figure 10-6.

The first time the inner loop is run, the display should
show 0, 1, 2, 3, and 4 just like LoopCountTest. But what will
happen the second time the inner loop runs? There are two
reasonable answers: It could display 0, 1, 2, 3, and 4 again or
continue counting and show 5, 6, 7, 8, and 9.

In fact, when you run the program, the display
will show 0, 1, 2, 3, 4 and then repeat 0, 1, 2, 3, 4. This

tells you that the loop count is reset to 0 each time the
Loop block is started.

setting the final loop count
value

The LoopCountTest and LoopCountTest2 programs use the
loop count within the loop body. This same value can also be
used by blocks that follow the Loop block, as demonstrated
by the LoopCountTest3 program (shown in Figure 10-7).
LoopCountTest3 prints the final loop count value on the
display. The Loop block is configured to run five times, as
shown in Figure 10-8.

Because the loop count value that the program displays
is put on the data wire at the start of the last run through
the loop, it will be one fewer than the total number of
times the loop repeats. This means that when you run the
program, it should print 4 on the display, because the Loop
block is set to run five times.

NO T E	 It’s common in computer programming to begin
counting from zero instead of one. This doesn’t usu-
ally pose a big problem, but it’s easy to get off-by-one
errors, where a loop repeats one too few or one too
many times.

Figure 10-5: The LoopCountTest2 program

Figure 10-7: The LoopCountTest3 program

Figure 10-6: Configuration 	

Panel for the outer 	

Loop block

Figure 10-8: Looping 	

five times

	 data wires and the loop block	 125

setting the loop condition

The Loop block uses the loop condition to decide when to exit
the loop. You can set the loop condition using a data wire in
the same way that you use a logic value with a Switch block.

Like the Loop Count data plug, the Loop Condition data
plug is not shown by default; to make it visible, set the Loop
block’s Control value to Logic (as shown in Figure 10-9), and
the Loop Condition data plug should appear on the right side
of the Loop block, as shown in Figure 10-10.

	

Figure 10-9: Set the Control value to Logic.	 Figure 10-10: The Loop

	 Condition data plug

The choice you make in the Until section of the Configu-
ration Panel determines which value (true or false) exits the
loop. The value is supplied by connecting a data wire with a
logic value to the Loop Condition plug.

The programs that follow use the Loop Condition plug to
build three versions of a simple programmable timer. After
experimenting with the code we develop here, you can reuse
it in your own programs to control how long a program
waits. However, before we develop the programs, let’s take
a look at the NXT timers and the Timer block.

timers
The NXT has three built-in timers that act like stopwatches.
You can use a timer to tell you how long your program has
been running or to measure how long it takes the robot
to perform a particular task. Typically using a timer is a
two-step process: You reset the timer to 0 before beginning
a task, and then read the timer when the task is complete.
Think of a timer as a kind of sensor for time.

Like a stopwatch, a timer can be used for a variety of
purposes. For example, you can do any of the following:

N	 Time how long it takes your entire program to run and use
that information to fine-tune parts of your program. For
example, you might measure how long it takes your robot
to solve a maze and then use that information to find the
fastest solution.

N	 Time parts of your program to see whether you can speed
up certain sections.

N	 Use timers to make your program perform a periodic
action. For example, as part of an experiment, you could
use a timer to read a sensor every 10 seconds over a
period of 5 minutes.

N	 Use a timer to limit how long you wait for a sensor to
reach an expected target value. This technique can help
you avoid situations where your program stops working
completely if something unexpected happens.

Because the NXT has three timers, you can perform
several timing tasks, such as those listed previously, within
the same program.

the timer
block

Timers are used like the other sensors and can be selected
from the sensor list of the Wait, Switch, and Loop blocks.
You can also control a timer using the Timer block, which
appears in the sensor group on the Complete Palette (as
shown in Figure 10-11). In your program, the Timer block
will appear as shown in Figure 10-12.

Figure 10-11: The Timer block on the Complete Palette

  Figure 10-12: The Timer block

The Timer block’s Configuration Panel (shown in
Figure 10-13) allows you to either reset a timer to 0 or read
the current timer value, by selecting the appropriate choice
for the Action item. When you select Read, you can use the
items in the Compare section to test the current timer value
against a target value, or you can use a data wire to pass the
value to other blocks in your program. The Timer item at the
top of the Configuration Panel selects the timer (1, 2, or 3)
to use.

 

Figure 10-13:

The Timer block’s

Configuration

Panel

126	 chapter 10

The trigger value that you enter in the Compare sec-
tion is in seconds. For example, using the settings shown in
Figure 10-13, the comparison will be true when the timer
has been running for more than five seconds. We usually
think of a second as a very small amount of time, but in the
world of computers and moving robots, a second can be a
very long time. For this reason, NXT-G actually tracks time
in milliseconds, or thousandths of a second. However, in the
interest of usability, the Configuration Panels use seconds
for time values, with up to three decimal places. (NXT-G
simply converts the value you enter into milliseconds.)

This is important because when you use time values
with data wires, you always must use milliseconds. For
example, you can set the trigger value to 5 seconds by
entering 5 in the box on the Configuration Panel, but to set
the same value using a data wire, you have to use 5,000
milliseconds (equal to 5 seconds).

NOTE	 The help file for the Timer block shows the
possible range for the Trigger Point data plug as
0 to 100, which could make you think the value is in
seconds. As stated earlier, the value is actually in
milliseconds, and the range should be given as 0 to
2,147,483,647.

a programmable
timer,
version 1

Many of the programs presented so far have used the Wait
Time block to add pauses. Although you can set the length
of a pause using the Wait Time block’s Configuration Panel,
you can’t set it using a data wire, which means that you can’t
change the length of time the block waits while a program
is running. The next program shows how to get around this
limitation by combining a Loop block with a data wire to
control when the loop exits, thereby allowing you to adjust
the delay programmatically.

The Timer1 program (shown in Figure 10-14) uses
the Timer block and a Loop block to create a program-
mable timer. A Math block is used to put the length of the
delay on a data wire, although in your own programs you
would usually calculate the value based on certain input.
In this example, the program expects the delay to be in
milliseconds.

Figure 10-14: The Timer1 program

As you can see, the first Timer block resets the timer.
Although this seems unnecessary in this small example
(since the timers are all reset to 0 when the program starts),
you’ll need to reset the timer if you use this code within a
larger program.

The Loop block keeps running until the timer reaches
the trigger value passed to the second Timer block on the
data wire. This is the real key to this program: The ability
to use a data wire to set the Timer block’s trigger value
allows you to decide how long to pause while the program is
running.

Figures 10-15 through 10-17 show the Configuration
Panels for the Math block, the first Timer block, and the Loop
block. (The second Timer block uses the default settings in
the Configuration Panel because the only setting that needs
to change is the target. It will be set using the data wire.)

Figure 10-15: Writing 10000 (10 seconds) to

the data wire used for the timer’s target

Figure 10-16: Resetting the timer

	 data wires and the loop block	 127

Figure 10-17: Looping until the input value is true

When you run this program, the display screen should
show that the program runs for 10 seconds and then stops.
Although the program is not very compelling on its own, a
programmable timer can be an important part of a larger
program.

the compare
block

The next programmable timer uses the Compare block to
compare two numbers. The Compare block is in the Data
group of the Complete Palette (shown in Figure 10-18) and
will appear in your program as shown in Figure 10-19. You
can supply the two input values using data wires or the
Configuration Panel (shown in Figure 10-20). The compari-
son is made based on the operation selected, which can be
either Less than, Greater than, or Equals. The result of the
comparison is written to an output data plug.

Figure 10-18: The Compare block on the Complete Palette

  Figure 10-19: The Compare block

Figure 10-20: The Compare block’s Configuration Panel

In some ways, the Compare block is like the Math block.
Both blocks take two numbers as input and generate an
output value. You select the operation on each using the
Configuration Panel and supply the two numbers using
either the Configuration Panel or data wires. However, the
result from the Math block is a number, while the result from
the Compare block is a logic value (either true or false). When
using the Compare block, you’re really asking a question like
“Is 11 greater than 3?” The answer will be logic value, which
in this case is true.

The Compare block is useful for making decisions
because its result, a logic value, can be used to control both
the Switch and Loop blocks. The Switch and Loop blocks work
great when you just want to read a sensor and compare the
reading with a target value. But sometimes you may want
to do something a little more complicated. The Compare
block allows you to compare any two numbers, giving you
more flexibility than using a Switch or Loop block alone. For
example, you can compare the readings from two Rotation
Sensors, or you can use a Math block to modify a sensor value
before comparing it with a target value. You can then use the
result of the comparison to control a Switch or Loop block.

Typically, the Compare block is used
as shown in Figure 10-21. Here data wires
give the block two numbers to compare. In
this example, the Operation option for the
block is set to Less than (indicated by the
less-than symbol in the lower-right corner
of the block).

When the block runs, it takes the two
input numbers, compares them, and puts
the resulting logic value on the output data
wire. For example, if the A value is 7 and
the B value is 12, the result will be true,
because 7 is less than 12. On the other hand, if A is 25 and B
is 8, the result will be false, because 25 is not less than 8.

a programmable
timer,
version 2

There is often more than one way to solve a problem, with
each solution having its own advantages and disadvantages.
One disadvantage of the Timer1 program is that it uses one
of the three timers, so you’ll need to use a different approach
if your program uses all three timers for other tasks. The

Figure 10-21:

Comparing block

with connections

128	 chapter 10

Timer2 program presented in this section demonstrates an
alternative way to build a programmable timer.

Using data wires and a Compare block, you can control
the number of times a Loop block repeats. By putting a Wait
Time block inside a Loop block, you can control the length of
time the program waits, as shown in the Timer2 program in
Figure 10-22.

Like Timer1, Timer2 uses a Math block to supply the
delay value. Inside the loop, the Wait Time block pauses for
1 second, so to pause for 10 seconds, you need to make the
loop repeat 10 times. You can control how many times the
loop repeats by comparing the loop count with the target
value. (Recall that the loop count starts at zero, so you need
to subtract one from the target value before doing the com-
parison, or the pause will be one second too long.) As long as
the loop count is less than the target value, the loop repeats;
when the loop count reaches the target value, the loop exits.

Listing 1 shows the pseudocode for this program. Notice
that the loop continues as long as the result of the Compare
block is true. The first time through the loop, the loop count is
0, and the target value is 9. Because 0 is less than 9, the result
from the Compare block will be true. The loop will keep repeat-
ing until the loop count reaches 9, which will make the result
of the Compare block be false (because 9 is not less than 9).
To make the Loop block exit when the value from the Compare
block is false, we need to change the block’s Until setting to
False, as shown in Figure 10-25. Figures 10-23 through
10-27 show the Configuration Panels for all the blocks.

use a Math block to write the delay in seconds to a
 data wire
subtract 1 from the delay
begin loop
 wait for 1 second
 is the Loop Count < the delay?
loop until the comparison is false

Listing 10-1: The Timer2 program

 
Figure 10-23: The target

delay in seconds

 
Figure 10-24: Subtracting

one from the target value

 
Figure 10-25: Looping until

the comparison is false

 
Figure 10-26: Waiting for

one second

 

Figure 10-27: Is the Loop

Count less than the target

value?

This program should behave just like Timer1: The dis-
play should show that the program is running for 10 seconds
and then show that it’s done. Now a couple of items of note.

Figure 10-22: The Timer2 program

	 data wires and the loop block	 129

First, notice that the Timer2 delay is set in seconds,
whereas Timer1 uses milliseconds. To change the delay to
milliseconds, simply change the setting for the Wait Time
block to 0.001 instead of 1. The unit you use for the delay
(seconds, milliseconds, minutes, and so on) only needs to
match the setting of the Wait Time block; the rest of the
program can stay the same.

Second, the key to this program is combining the Com-
pare block and the loop count to control the number of times
the Loop block repeats. The usefulness of this technique
isn’t limited to building a programmable timer. You can use
a similar arrangement of blocks in any situation where you
want to control the number of times the loop repeats while
the program is running.

a programmable
timer,
version 3

The Timer2 program has one potential problem: Because the
Loop block checks the condition at the end of the loop, the
timer will always wait at least one second. But what if the
program determines that the delay should be zero or a nega-
tive number? The Timer2 program will still wait one second,
which may not be the behavior you want.

To avoid pausing for one second when the delay is zero
(or less), we need to check the loop condition at the start of
the loop instead of at the end, as shown in the Timer3 pro-
gram in Figure 10-28. In this program, the Compare block
has been moved to the beginning of the loop, and the result
is used to both exit the loop and control a Switch block. The
Switch block makes sure that the Wait Time block is used

only if the comparison is true, thus avoiding the delay if the
starting value is 0 or less.

Figure 10-29 shows the Switch block’s Configuration
Panel. Notice that because the comparison is now done at
the beginning of the loop, you don’t need to subtract one
from the delay before starting the loop.

Figure 10-29: The Switch block’s Configuration Panel

Like Timer2, Timer3 will run for 10 seconds and then
finish. If you change the delay to 0 (by changing the value in
the first Math block), Timer 3 will finish immediately, instead
of pausing for one second. You can use a similar approach
any time you want to check the loop condition at the begin-
ning of the loop instead of at the end.

conclusion
The Loop block can use data wires for both the loop count
and the loop condition. Once you get used to the loop count
starting at zero, it’s easy to use it to control the loop. The
Timer1 program demonstrates how to use the loop condi-
tion to control when the loop finishes. The Timer2 program
shows how to use the loop count and a Compare block to
control how many times the loop repeats. Finally, the Timer3
program shows how to rearrange the blocks within the loop
when you want the loop condition checked at the beginning
of the loop. This is useful in situations where you may not
want the loop body to be executed at all.

Figure 10-28: The Timer3 program

11
variables

The previous three chapters explored using data wires to move data between blocks in your program. Although this ability
can be very useful, for some problems you need to do more than just move data around. Often you’ll need to tuck the infor-
mation away and use it later in your program.

When you need to store information for later use, use a variable. In this chapter, I’ll show you how to use variables and
the types of problems they can help you solve.

a place for your data
Think of a variable as a place in the NXT’s memory where
you can store a value. The programs in this chapter will
show you several ways that you can use variables in your
programs.

The first example program in this chapter is a modified
version of the RedOrBlue program from Chapter 5 (shown in
Figure 11-1). Recall that this program uses the Color or Light
Sensor to tell whether an object is red or blue. The version
that you’ll develop in this chapter will use variables to count
the number of red and blue objects and show the running
totals on the screen.

managing
variables

Using variables in NXT-G is a two-step process. First you
create the variable, and then you use the Variable block
in your program to work with the data contained in the
variable.

To create a variable, open the Edit Variables dialog
(shown in Figure 11-2) using the EditDefine Variables
menu item. The top half of the dialog lists all the variables
defined for your program.

To create a new variable, click the Create button, and
a new variable will be created with a name like Variable 1.

Figure 11-1: The RedOrBlue program

Figure 11-2: The Edit

Variables dialog

132	 chapter 11

Change the default name to something more meaningful;
more descriptive variable names will make your program
much easier to understand. For example, the RedOrBlue-
Count program uses the variable names Total Red and Total
Blue, which are good descriptions of how the variables are
used.

You’ll also need to select the data type for your new
variable. The choices are Number, Text, and Logic, which are
the same data types supported by data wires.

The Variable block will only let you store values of the
selected data type in your variable. For example, if you try to
connect a data wire with a text value to a Variable block set
to use a number variable, the wire will appear broken. See
“Understanding Data Types” on page 104 for more information
on data types.

NOTE	 To change a variable’s data type after it has been
created, select it in the list and then select the new data
type. However, any data wires using that variable will
break and will need to be fixed before your program
will run.

To change the name of an existing variable, select its
name in the list, and enter a new name. Any Variable blocks
that use the variable will be automatically changed to use the
new name.

To delete a variable, select it in the list, and press the
Delete button. If your variable is being used by one of the
Variable blocks in your program, you won’t be able to delete
it, and you should see the dialog shown in Figure 11-3. To
delete a variable, first remove any Variable blocks that use it.

Figure 11-3: Error deleting a variable

the variable
block

The Variable block, in the Data group on the Complete
Palette (Figure 11-4), stores and retrieves variable values.
The Variable block should appear in your program as shown
in Figure 11-5.

Figure 11-4: The Variable block on the Complete Palette

 

Figure 11-5: The Variable block

When working with a Variable block, you need to tell
NXT-G which variable to use and whether to read to or write
from the variable. To do so, use the Configuration Panel
(Figure 11-6) to select the variable from the list, and then
set the Action item to either Read or Write. When Read is
selected, the variable’s current value is put on the data wire
attached the output data plug.

When Write is selected, a value is stored in the variable.
That value can be supplied either using the Configura-
tion Panel or via an input data wire. You’ll usually use the
Configuration Panel to set a variable’s initial value at the
beginning of a program and then use a data wire if you want
to change the value later in the program.

You can tell which variable a Variable block is using,
and whether it is being read or written, by the way the block
is displayed in the Work Area. This feature makes it easy
to tell what the block is doing without having to look at the

Figure 11-6: The Variable block’s Configuration Panel Figure 11-7: Variable name and the 	

Action setting displayed on the block

	 variables	 133

Configuration Panel. For example, Figure 11-7 shows two
Variable blocks that use the Total Red variable; the one on
the left has Action set to Write, and the one on the right has
Action set to Read.

the
RedOrBlueCount
program

In this section, I’ll take you through the steps for creating
the RedOrBlueCount program from the original RedOrBlue
program. You’ll create the two variables and then use them
in the program to count the number of red and blue objects.

creating the variables

To create the two variables, follow these steps:

1.	 Open the RedOrBlue program.

2.	 Select FileSave As from the menu to save the pro-
gram as RedOrBlueCount.

3.	 Select EditDefine Variables from the menu to open
the Edit Variables dialog. It should look like this:

4.	 Click the Create button.

variable names

Choosing meaningful variable names is a simple way to make your program easier to understand. A name like Total
Red makes it clear how the variable is being used. By the same token, avoid names that are too short, such as TtlR
or just R. These names may make perfect sense to you while you’re writing the program, but the meaning won’t be
obvious to someone else. Also, use a consistent naming scheme. For example, if you use Total Red for the number of
red objects, then you should use Total Blue for the number of blue objects, not something a little different such as Blue
Count.

The space available for the variable name on the Variable block and in the Configuration Panel is limited, so avoid
using really long variable names. For example, if you used Total Number of Red Objects and Total Number of Blue Objects
for variable names, then the Configuration Panel would look like Figure 11-8, making it difficult to pick the correct vari-
able. In addition, Variable blocks using these two variables would be displayed as in Figure 11-9, and you can’t tell which
variable is being used by each block.

Figure 11-8: Configuration Panel with long variable names Figure 11-9: Can’t tell which variable is being used

134	 chapter 11

5.	 Enter the name Total Red, and select Number for the
data type. The dialog should look like this:

6.	 Click the Create button again.

7.	 Enter the name Total Blue, and select Number for the
data type. The dialog should look like this:

8.	 Click the Close button to close the dialog.

At this point, the two variables should have been cre-
ated, and they are ready to be used in the program.

initializing the variables

To count the number of red objects, the value of the Total
Red variable needs to start at zero and increase by one
each time a red object is detected. When you create a Num-
ber variable, it will seem to have zero for a starting value;
however, I always set a variable’s initial value just to be sure.
To initialize the variables to zero for the RedOrBlueCount
program, you’ll place two Variable blocks at the start of the

program to write 0 to the Total Red and Total Blue variables,
as follows:

1.	 Place a Variable block at the beginning of the program,
to the left of the Loop block. The program should look
like this:

2.	 In the Variable block’s Configuration Panel, select Total
Red from the list, and set Action to Write. (The value
should default to 0, so you don’t need to change that.)
The Configuration Panel should now look like this:

3.	 Add another Variable block before the Loop block.

4.	 Select Total Blue from the list of variables, and set
Action to Write. The Configuration Panel for the new
block should look like this:

	 variables	 135

initializing the display

As your program runs, it will display its count of the num-
ber of red and blue objects on the NXT’s screen. When the
program first starts, it should display Red: 0 and Blue: 0 and
then update the display as the count increases. Listing 11-1
shows the pseudocode for the program, with the parts you’ve
added to the RedOrBlue program in bold.

set Total Red to 0
set Total Blue to 0
display "Red: 0"
display "Blue: 0"
begin loop
 wait for the Touch Sensor to be bumped
 if the object is red then
 use a Sound block to say "Red"
 read the Total Red value
 add one to the Total Red value
 write the new value to Total Red
 display "Red: " followed by the Total Red
 value
 else
 use a Sound block to say "Blue"
 read the Total Blue value
 add one to the Total Blue value
 write the new value to Total Blue
 display "Blue: " followed by the Total Blue
 value
 end if
loop forever

Listing 11-1: The RedOrBlueCount Program

displaying the initial values

To display the initial values, use two Display blocks placed
before the Loop block, like so:

1.	 Add a Display block after the second Variable block. Set
Action to Text, and set the text to Red: 0.

2.	 Add another Display block after the first one. Set Action
to Text, and set the text to Blue: 0.

3.	 Uncheck the Clear option, and set Line to 5 to avoid
erasing the text from the first Display block.

The beginning of the program should now look like this:

counting the red objects

Now comes the interesting part. When a red object is
detected, you want the program to add one to the Total Red
variable and display the new value. To make that happen,
you’ll use three blocks: a Variable block to put the current
value on a data wire, a Math block to add one to the current
value, and a second Variable block to store the new value.
Here’s how to do that:

1.	 Add a Variable block to the Switch block’s upper
Sequence Beam, after the Sound block. The Switch
block should look like this:

136	 chapter 11

2.	 Select Total Red from the list of variables. (You don’t
need to change the Action setting, because it should
already be set to Read.)

3.	 Add a Math block after the Variable block, and set the
B value to 1.

4.	 Add another Variable block after the Math block. Select
Total Red from the list of variables, and set Action to
Write. You don’t need to set the value in the Configura-
tion Panel because it’ll be set using a data wire from the
Math block.

5.	 Connect the blocks by drawing a data wire from the
output plug of the first Variable block to the Math block’s
A input plug.

6.	 Draw a data wire from the output plug of the Math block
to the input plug of the second Variable block. This sec-
tion of the program should now look like this:

Once the total has been updated, you want the program
to display the new value. To do so, you’ll use a Number to
Text block to convert the total to a text value, a Text block to
add the label, and a Display block to write the labeled value

to the display. (This is the same technique that you used in
the SoundMachine program.)

7.	 Add a Number to Text block after the second Variable
block.

8.	 Connect the output plug of the second Variable block to
the Number to Text block’s input plug.

9.	 Add a Text block after the Number to Text block, and
set the A value to Red: . (Be sure to include a space
after the colon so that the number won’t be squished up
against the label.)

10.	 Connect the Number to Text block’s output data plug to
the Text block’s B input plug.

11.	 Add a Display block after the Text block, and set Action
to Text. Be sure to uncheck the Clear option so that you
won’t erase the blue total.

The upper Sequence Beam of the Switch block should
now look like this:

The section of code that you’ve just created contains
two patterns that you’ll see often. To change a variable’s
value, a Variable block is used to read a value, one or more
blocks are used to modify that value, and a second Variable
block is used to write the new value to the variable. The
second pattern is used to display a number using a Number
to Text block followed by a Text block to add a label followed
by a Display block.

	 variables	 137

NOTE	 Before continuing, test your program to make
sure it can correctly count and display the total number
of red objects. If you made a mistake writing this code,
there’s a good chance that you will make the same mis-
take in the code for counting blue objects, in which case
you’d need to fix two bugs. Testing your program as you
add each piece makes finding bugs easier and reduces the
chance of repeating the same bug.

counting the blue objects

The code for counting the blue objects is almost identical to
that used for the red objects, with these differences:

N	 The Variable block needs to use Total Blue instead of
Total Red.

N	 The label in the Text block should be Blue: (with a space
after it).

N	 The Display block needs to use line 5.

Instead of writing the code by hand, you can copy the
code for counting the red objects and then make a few
changes. Here’s an easy way to duplicate the code from the
upper Sequence Beam to the lower Sequence Beam:

1.	 Select the six blocks on the upper Sequence Beam (from
the first Variable block to the Display block) by drawing
a selection rectangle around them or by selecting the
Variable block and then holding down the shift key while
clicking the other blocks.

2.	 While holding down the ctrl key, click one of the blocks,
and drag it to the lower Sequence Beam. (When you
drag with the ctrl key down, the blocks are copied
instead of moved.)

Once the blocks have been copied and are in place,
you can make the necessary changes to the Configuration
Panel settings as listed earlier. Figure 11-10 shows the
section of the program on the lower Sequence Beam, and
Figures 11-11 through 11-14 show the Configuration Panels
for the Variable, Text, and Display blocks. (You don’t need to
change the settings for the Math and Number to Text blocks.)

With these blocks copied and the settings changed, your
program should now correctly count and display the totals
for both red and blue objects.

Figure 11-11: Configuration Panel for the first Variable block

Figure 11-12: Configuration Panel for the second Variable block

Figure 11-13: Configuration Panel for the Text block

Figure 11-14: Configuration Panel for the Display block

Figure 11-10: Code for counting blue objects

138	 chapter 11

grouping
common
settings

It’s not unusual for a program to use several blocks with the
same settings. For example, the WallFollower program con-
tains seven Move blocks that all use the same Power setting.
If you decide to change the setting from 35 to 45, you need
to make sure you change that setting on all seven blocks.
That can become problematic when you’re trying several
different Power settings, in search of the perfect balance
between speed and accuracy; it’s almost inevitable that you’ll
forget to change the setting on one of the blocks.

To avoid this problem, use variables to group common
settings. For example, Figure 11-15 shows a modified ver-
sion of the AroundTheBlock program from Chapter 4. Here
you use a variable (named Power) to control both Move
blocks, rather than set the Power value for each Move block
separately using the Configuration Panels. This way, when
testing different Power settings, you would need to change
only the first Variable block, instead of changing each Move
block. In addition, it prevents you from changing a setting
on one block and not the other. These benefits become even
more apparent when you’re working with larger programs,
such as WallFollower where you can change one block
instead of seven.

Figure 11-15: Using a variable to set the power level

NOTE	 This idea of changing the settings in only one
place is called the Don’t Repeat Yourself (DRY) principle.
It’s a common theme in computer programming that helps
reduce errors by reducing the number of places you can
make a mistake.

replacing long
data wires
with variables

Variables can replace really long data wires in your pro-
grams. Instead of using a long data wire, you can use a pair
of Variable blocks and a variable with a meaningful name.
You use the first Variable block to write the value to a vari-
able just after the block that creates the value. Later in the
program, you can read the variable using a second Variable
block placed next to the blocks that use the value.

When you can see both ends of a data wire, it’s usually
easy to understand how it’s being used. When a program
becomes too long to fit on the screen or you can’t see where
a data wire starts, it’s much more difficult to follow the logic
of the program. A short data wire attached to a Variable
block (which displays the name of the value) can make a
program’s logic more apparent.

the
LightPointer
program

The LightPointer program presented next demonstrates how
to use variables to remember values that you want to use
later in your program. This program uses the Color or Light
Sensor to point the TriBot at a light source by spinning the
robot in a circle and remembering where the sensor detected
the brightest light. The code you develop here could be used
as part of a larger program, such as a fire-fighting simula-
tion or a robot that tracks the position of the sun to adjust a
solar panel.

In the following text and images, I’ll use the Color
Sensor (in Light Sensor mode) to read the level of ambient
light. The program also works just as well with the Light
Sensor. The sensor can be placed either at the front of the
TriBot (Figure 11-16) or on its side (Figure 11-17). You can,
of course, adjust the placement of the sensor depending on
the light source.

	 variables	 139

	
Figure 11-16: Color Sensor on the 	 Figure 11-17: Color Sensor	

front of the TriBot	 on the side of the TriBot

The program does two things: It searches for a light
source, and then it points the TriBot at that light source.
For the first part, the TriBot slowly spins in a circle as its
sensor constantly measures the amount of ambient light.
Each reading is compared with the largest reading seen so
far, and when a larger reading is measured, the position is
recorded as that of the light source.

Figure 11-18 shows how the sensor reading changes
as the TriBot spins. The robot starts facing away from the
light, so the reading is low (10). As the robot spins toward
the flashlight, the sensor reading increases to 40, as shown
in the second image. When the TriBot is pointing directly at
the flashlight, the reading will be at its highest level (70 in
this example). The sensor reading will then decrease as the
TriBot spins past the flashlight, as shown in the final image.

The second part of the program turns the TriBot back to
the position with the largest reading, which should result in
the robot pointing at the light source.

defining the variables

This program needs two variables, both of which will hold
numerical values. The first one, MaxReading, tracks the
brightest sensor reading seen so far. The other, Position,
holds the robot’s position when the reading was taken.
Figure 11-19 shows the Edit Variables dialog with these
variables defined.

Figure 11-19: Defining the MaxReading and

Position variables

Sensor Reading: 10 Sensor Reading: 40 Sensor Reading: 70 Sensor Reading: 30

Figure 11-18: Sensor readings at four positions

140	 chapter 11

finding the light source

The first step in finding the light source is to spin the robot
around. A Move block with the Steering slider set all the
way to one side will accomplish this nicely: Put the slider all
the way to the left (toward the C motor); the rotation values
for the B motor increase as the TriBot moves, and those for
the C motor decrease. I find it easier to work with positive
numbers, so I’ll use the rotation values from the B motor to
track the robot’s position.

The TriBot should spin in a complete circle so that it can
find the light source in any direction. A little experimentation
shows that a Duration setting of 1100 degrees moves the
robot just past a full circle, although this value doesn’t have
to be exact.

Because the program needs to read the sensor while
the robot is spinning, you can’t just use a Move block with
Duration set to 1100 degrees. Instead, you need to use a
Move block with Duration set to Unlimited followed by a Loop
block that stops when the reading from the B motor’s Rota-
tion Sensor reaches 1100.

NOTE	 For the balloon tires you can use
800 degrees for a full circle.

As the TriBot spins, the program will compare the read-
ing from the Color Sensor with the highest reading seen so
far. If a higher reading is found, MaxReading is set to the new
(higher) value, and Position is set to the B motor’s position.
Listing 11-2 shows the pseudocode for this section of the
program. Figure 11-20 shows the variable values at the
positions shown in Figure 11-18.

start the robot spinning slowly
begin loop
 if Color Sensor reading > MaxReading then
 MaxReading = Color Sensor reading
 Position = B motor Rotation Sensor reading
 end if
loop until B motor Rotation Sensor > 1100
stop the motors

Listing 11-2: Finding the Light Source

initializing the values

Before writing the code for the first part of this program,
think about the values the variables should have at the start
of the program. Even though the code used to initialize the
values comes first in the program, you’ll usually need to first
design the program (or at least its major parts) in order to
determine what needs to be initialized.

The MaxReading variable holds the highest reading from
the Color Sensor, in the range of 0 to 100. Setting MaxRead-
ing to 0 at the beginning of the program ensures that the
sensor reading and the robot’s position are set the first time
the sensor reads a value greater than 0.

Even though the Position variable will be set when the
sensor first detects light, it’s still a good idea to give it an
initial value. (Initializing all your variables is a good program-
ming practice that can help avoid some bugs that can be
difficult to find.) In the code shown in the following section,
the Position variable is set to 0 at the start of the program.

In addition to the two variables, the code in Listing 11-2
uses the Rotation Sensor for motor B. To make sure that

Sensor Reading: 10
MaxReading: 10
Position: 105

Sensor Reading: 40
MaxReading: 40
Position: 220

Sensor Reading: 70
MaxReading: 70
Position: 290

Sensor Reading: 30
MaxReading: 70
Position: 290

Figure 11-20: MaxReading and Position variable values as the robot spins

	 variables	 141

the loop works correctly, reset the Rotation Sensor at the
beginning of the program. Although the Rotation Sensor
will automatically be set to zero when the program starts,
to reuse the code for this program in another program, you
will need to reset the Rotation Sensor before the Move block
starts spinning the robot. Your programs will be much easier
to reuse if you explicitly initialize things instead of relying on
automatic initialization when the program starts.

the LightPointer program,
part 1

As discussed in “Initializing the Values” on page 140, when the
LightPointer program starts, it initializes the two variables
and resets the B motor’s Rotation Sensor, as shown in
Figure 11-21. Figures 11-22 through 11-24 show the Con-
figuration Panels for these blocks.

Figure 11-21: Setting the initial values

Figure 11-22: MaxReading set to 0

Figure 11-23: Position set to 0

Figure 11-24: Resetting the B motor’s Rotation Sensor

finding the light source

With initialization complete, you can begin writing the code
for locating the light source as shown in the pseudocode
developed in “Finding the Light Source” on page 140. First,
start the TriBot spinning by using a Move block, as shown in
Figure 11-25. Set Power to 20 to make the robot spin slowly
enough so that it doesn’t miss the light source. Figure 11-26
shows the Configuration Panel for the Move block.

Figure 11-25: Starting the robot spinning

Figure 11-26: Configuration Panel for the Move block

The next part of the program, shown in Figure 11-27,
is much more interesting. In this section, the Loop block
keeps the robot spinning until the Rotation Sensor reads
greater than 1100 degrees, using the settings shown in
Figure 11-28. Each time through the loop, the Color Sensor’s
reading is compared with the MaxReading value. If the sen-
sor reading is greater than the current MaxReading value,
the code in the Switch block is executed. This code updates

142	 chapter 11

the MaxReading variable and sets the Position variable to the
current motor position using the Rotation Sensor. There are
no blocks on the other tab of the Switch block.

Figure 11-28: Looping until the Rotation Sensor reads greater than 1100

To use the Color Sensor to measure the light, set it to
use Light Sensor mode, and turn the light off, as shown in
the Configuration Panel in Figure 11-29.

NOTE	 Unfortunately, the Color Sensor block’s output
plug is labeled Detected Color, which doesn’t really make
sense when using Light Sensor mode. The help file adds
to the confusion a bit by neglecting to mention that this
plug is used for the intensity when using Light Sensor
mode.

Figure 11-29: Reading the ambient light level using the Color Sensor

If you’re using the Light Sensor instead of the Color
Sensor, configure the Light Sensor block, as shown in
Figure 11-30.

Figure 11-30: Reading the ambient light level using the Light Sensor

Figure 11-31 shows the Configuration Panel for the
Variable block that reads the current MaxReading value so
that it can be compared with the sensor reading.

Figure 11-31: Reading the MaxReading variable

The Comparison block (shown in Figure 11-32) compares
the MaxReading value, connected to the A input plug, with the
reading from the Color (or Light) Sensor, connected to the B
input plug. The Switch Block (shown in Figure 11-33) uses the
result of this comparison to decide whether a new maximum
value has been seen. (The Switch block uses Tabbed View so
that the data wire from the Color Sensor block can be used by
the Variable block inside the Switch block.)

Figure 11-32: Is MaxReading less than the reading from the sensor?

Figure 11-27: Finding the brightest source of light

	 variables	 143

Figure 11-33: The Switch block Configuration Panel

If the MaxReading value is less than the sensor read-
ing, then the three blocks within the Switch block will be
executed. First the Variable block (shown in Figure 11-34)
writes the sensor reading to the MaxReading variable.
Then the Rotation Sensor block (shown in Figure 11-35)
reads the current motor position, and the Variable block
(shown in Figure 11-36) saves this value in the Position
variable.

Figure 11-34: Saving the new maximum light level

Figure 11-35: Reading the position of motor B

Figure 11-36: Saving the new position

stopping the motors

Once the TriBot has spun all the way around, stop the
motors by using a Move block with the direction set to Stop.
Figures 11-37 and 11-38 show the placement of the Move
block and its Configuration Panel.

Figure 11-37: The Move block following the Loop block

Figure 11-38: Stopping the motors

the LightPointer program,
part 2

Once the first part of the program has completed, the Posi-
tion variable should contain the position of motor B where
the brightest light was detected. The second part of the pro-
gram should make the TriBot spin in the opposite direction to
return to that position.

A Move block spinning the TriBot backward will cause
the Rotation Sensor value for the B motor to decrease. To
make the TriBot stop at the correct place, it needs to keep
spinning as long as the Rotation Sensor reading is greater
than the Position value. Here is the pseudocode for this sec-
tion of the program:

start the robot spinning slowly in the opposite
 direction from the first move
read the Position variable
begin loop
 read the Rotation Sensor for motor B
loop until the Rotation Sensor reading reaches the
 Position value
stop the motors

Figure 11-39 shows this section of the program, and
Figures 11-40 through 11-44 show the Configuration Panels
for the blocks. Notice that you can use the Rotation Sensor
block to both read the value and perform the comparison
by using a data wire to set the value stored in the Position
variable as the Rotation Sensor block’s target value. The
comparison is set to >, so the output of the Yes/No data plug
will be true until the robot reaches the target position. When

144	 chapter 11

the output becomes false, the Loop block will complete,
and the Move block will stop the motors.

Figure 11-40: Starting spinning backward

Figure 11-41: Reading the target value from the Position variable

Figure 11-42: Comparing the Rotation Sensor with the target

Figure 11-43: Stopping the loop when the target is reached

Figure 11-44: Stopping the motors

When this program runs, the TriBot should slowly spin
all the way around and then reverse direction and stop with
the robot pointing at the brightest light source. Try testing
this behavior in a dark room with a flashlight shining at the
robot.

constants
As you write more programs, you may find that
you use some values repeatedly. A value that
doesn’t change is called a constant. For example,
the number of degrees needed to spin the TriBot

in a full circle is a constant. The value doesn’t change, as
long as you don’t change the way the robot is built. You can
use this value in any program that spins the robot all the
way around, and by adding a Math block, you can easily spin
the TriBot halfway around, as in the ThereAndBack program
from Chapter 4; or you can have the TriBot make a quarter
turn, as in the WallFollower program from Chapter 7. Some
other constants you might find useful are the distance the
robot moves in one rotation of the motor or the mathemati-
cal constant pi.

To make working with these repeated values easier,
NXT-G 2.0 adds support for constants. NXT-G constants are
similar to variables, except that a constant’s value doesn’t
change. Using constants, you can define a value once and
then use it in many programs.

Figure 11-39: Spinning

back to the saved position

	 variables	 145

managing constants

Use the Edit Constants dialog (shown in Figure 11-45) to
create, edit, or delete constants. To open the dialog, select
EditDefine Constants from the menu.

Figure 11-45: The Edit Constants dialog

The Edit Constants dialog is similar to the Edit Variables
dialog except in these ways:

N	When you create a constant, you give it a value as well as
a name and data type.

N	 To change an existing constant, you select it in the list and
click the Edit button. When you’re finished making changes
to the name, value, or data type, you either click OK to
save the changes or click Cancel to discard them. (The
Edit Variables dialog doesn’t have an Edit button, and any
changes you make are immediately applied.)

N	 Changing the name of a constant won’t change the name
in any Constant blocks that use the constant.

N	 You can delete a constant even if it is being used in a
program.

NOTE	 If you change a constant’s value, be sure to save
any open programs that use that constant. Until you save
a program, it will continue to use the
old value.

Unlike variables, which are
available only to the program that
defines them, once you define an

NXT-G constant, you can use it in any program. Each NXT-G
program has its own list of variables, but all share the same
list of constants.

the constant block

To access constants in your program, use the Constant block
(Figure 11-46) at the end of the Data group on the Com-
plete Palette. The Constant block will be displayed in your
program, as shown in Figure 11-47. This block looks like the
Variable block, with a lock added to show that the value can’t
be changed.

Figure 11-46: The Constant block on the Complete Palette

  Figure 11-47: The Constant block

When you first add a Constant block to your program,
the Configuration Panel looks like Figure 11-48. The Action
item determines how you will define the value to use, either
selecting a constant from the list created using the Edit
Constants dialog or creating a custom constant.

choose from list

Although the Custom option is the default, I’ll cover the
Choose from list option first because it’s simpler to use, and I
recommend it as the one to use in your programs.

When you select Choose from list, the Configuration
Panel lists the constants that have been created using the
Edit Constants dialog (as shown in Figure 11-49). Simply
select the constant you want to use from the list; unlike with
variables, there is no Read or Write option.

The Constant block always reads the constant value and
puts it on the data wire attached to the output data plug.
The name of the constant you select will be shown on the

Figure 11-48: The Constant block’s Configuration Panel

146	 chapter 11

block, and the data type of the output plug will change to
match the type of the constant, as shown in Figure 11-50.

Figure 11-49: Choosing a constant from the list

Figure 11-50: The Constant block after selecting Degrees To Spin

To use the constant value, simply connect a data wire
to the Constant block’s output data plug, just as you would
when using a Variable block to read a variable.

custom

When the Action is set to Custom, the settings in the Configu-
ration Panel define a new constant, specifying the data type,
value, and name (see Figure 11-48). For reasons I’ll explain,
when writing your own programs, you should use the Choose
from list option. However, it’s important to know how the
Custom option works because there are two circumstances
where NXT-G will automatically change the Action setting for
a Constant block from Choose from list to Custom:

1.	 When you delete a constant using the Edit Constants
dialog, any Constant block that uses that constant will
change: The Action will be set to Custom, and the name,
data type, and value will be set to match the way the
constant was defined the last time the program was
saved.

2.	 A similar situation can occur if you open a program
created on a different computer. For example, say your
friend Peter writes a great program that use constants
and gives you a copy to use with your robot. When you
open the program on your computer, you may encounter
problems if Peter used constants that you haven’t cre-
ated on your computer. Any Constant blocks that refer
to constants that aren’t defined on your computer will
have be changed as described earlier.

Although in either case the changes to the Constant
block settings won’t affect its behavior, as I explain next, you
will need to be careful if you want to modify Peter’s program.

working with custom constants

Constants are meant to be defined with the Edit Constants
dialog, but custom constants are necessary when you’re
faced with either of the two cases described earlier, where
the constants used by a program are not in the list of
defined constants. When working with a program that uses
custom constants, be aware of the following behaviors.

N	 Changing the value of a custom constant won’t change the
value in other Constant blocks that use the same name.
For example, if Peter’s program uses a constant named
RoomSize in three places and you want to change the
value, make sure to change the value in all the Constant
blocks that use RoomSize. Changing the value in one
Constant block won’t affect the others, and you’ll end up
using different values, which is exactly what you don’t
want from a constant.

N	 Creating a constant using the Edit Constant dialog will
automatically change any Constant block that uses the
same name and data type to use Choose from list. The
value used by the program will be the one set in the Edit
Constant dialog, not the one set in the Configuration Panel
when Custom was selected.

Although you can use the Constant block to create
custom constants, I don’t recommend doing so because you
will run into the issues mentioned earlier if you are not very
careful about the name you use. Similar problems may occur
if you write a program using a custom constant and give it to
Peter, if he happens to have a constant defined that uses the
same name. The best approach is to use the Edit Constants
dialog to define the constants when writing your programs
and when using a program written on another computer.

conclusion
NXT-G variables let you store the data that your program
uses. Use the Edit Variables dialog to create variables, and use
the Variable block to access the variables within your program.
The programs presented in this chapter have shown you a
few ways to use variables in your programs. Like data wires,
variables add a lot of flexibility to the NXT-G language and are
essential for solving many types of problems. You’ll see vari-
ables used in many of the programs in the coming chapters.

NXT-G 2.0 allows you to use constants in addition to
variables. Constants make it more convenient to use values
that don’t change, especially if you use them in many differ-
ent programs.

12
the NXT buttons and the

display block
The NXT has three buttons and a small display screen that you can use
to interact with your programs, similar to the way you use a keyboard
and monitor with most computers. In this chapter, you’ll learn how your
programs can use the buttons on the NXT. You’ll also learn about some
new features of the Display block that will give you more control over
the NXT’s screen.

The chapter begins with two small programs that show you how
to use the buttons to adjust the value of a variable. The first program
displays the value using text, as you’ve done in previous programs. The
second program shows you how to display the same information using
images. The chapter then shows a final program, which uses a Display
block and the TriBot’s two wheels to build a sketch pad.

the NXT buttons
You can use the three large buttons on the front of the NXT (shown
in Figure 12-1) to control your program. For example, you can make
the program wait for you to press a button or continue working
until you press a button. You can also write a program that lets you
use the buttons to choose different program options. The buttons
work like the Touch Sensor, and your program can detect whether
a button is pressed, is released, or has been bumped (pressed and
quickly released). The other button (the Exit button) can’t be used
by a program; pressing it while your program is running will end the
program.

To use a button with the Wait, Switch,
or Loop blocks, choose NXT Buttons from
the list of sensors (shown in Figure 12-2).
You can also work with the buttons using
the NXT Button block, which is similar
to the other sensor blocks.

Left	 Enter	 Right
Button	 Button	 Button

Figure 12-1: The NXT buttons

Figure 12-2: NXT Buttons in the list of sensors for the Wait block

148	 chapter 12

the NXT
button block

You’ll find the NXT Button block on the Complete Palette with
the other sensors, as shown in Figure 12-3. Figure 12-4
shows how the block should appear in your program.

Figure 12-3: The NXT Button block on the Complete Palette

  Figure 12-4: The NXT Button block

Use the Configuration Panel (shown in Figure 12-5)
to select the button you’re interested in and the action you
want to detect (Pressed, Released, or Bumped).

Figure 12-5: The NXT Button block’s Configuration Panel

The Configuration Panels list the buttons as Enter but-
ton, Left button, and Right button. The Enter button is the
orange square one in the middle, the Left button is the one
on your left as you look at the NXT, and the Right button is
the one on your right, as shown earlier in Figure 12-1.

the
PowerSetting
program

In Chapter 11, I mentioned that you could improve the
WallFollower program by using a variable to store the Power
setting used by the Move blocks. This would make changing
the value easier because you would need to change it in only
one place, instead of changing all seven Move blocks. What

if you want to try several different values? This can still be a
time-consuming process since you would need to change the
Variable block and download the program for each value you
want to test.

You can make testing different Power settings more
convenient by using the buttons to select the Power setting
before starting the main part of the program. In this section,
I’ll describe the PowerSetting program to show you how to
do this. With just a few simple changes, you can use this
code any time you want to change a value while the program
is running.

The PowerSetting program uses a variable, called
Power, to store the current value. This value is displayed
on the screen, and the buttons are used to change the
value. Pressing the Right button will increase the value, and
pressing the Left button will decrease the value. Pressing
the Enter button will accept the current value. Listing 12-1
shows the pseudocode for the program.

set Power to 25
begin loop
 display the current value
 if the Right button is bumped then
 Power = Power + 1
 end if
 if the Left button is bumped then
 Power = Power - 1
 end if
loop until the Enter button is bumped

Listing 12-1: The PowerSetting Program

Listing 12-1 describes the PowerSetting program
at a higher level than the earlier listings. For example,
display the current value will require four blocks: a
Variable block to read the value, a Number to Text block
to convert the value to text, a Text block to add a label,
and finally a Display block to display the labeled value. (I’ve
used this pattern for displaying values several times, so I
haven’t included the details in the listing.) Likewise, the line
Power = Power + 1 is a short way of saying, “Take the cur-
rent value of the Power variable, add one to it, and store the
result in the Power variable.” In the PowerSetting program,
you’ll use the familiar three block groups to accomplish this,
but the pseudocode is easier to understand using this more
concise description.

defining the variable

The first step in building this program is to define one vari-
able, Power, as shown in Figure 12-6.

	 the NXT buttons and the display block 	 149

Figure 12-6: Defining the Power variable

the initial value and the loop

Before using the Power variable, use a Variable block to
set its initial value. For this example, I’ll use 25, since that’s
the value used by the WallFollower program. Figure 12-7
shows the Variable block followed by the Loop block that will
hold the rest of the program. The Loop block keeps repeating
until the Enter button is bumped. Figures 12-8 and 12-9
show the Configuration Panels for these two blocks.

Figure 12-7: Initializing the Power variable and starting the loop

Figure 12-8: Setting Power to 25

Figure 12-9: Looping until the Enter button is bumped

displaying the current value

Each time the loop repeats, the program displays the current
value. Use a Number to Text block followed by a Text block to
add a label to the value so that it looks like this: Power: 25.
Figure 12-10 shows the code used to display the value.

When entering the label in the Text block, remember to
put a space after the colon so that the number doesn’t squish
up against the label; the display should show Power: 25 and
not Power:25. Figures 12-11 through 12-13 show the Con-
figuration Panels for the Variable, Text, and Display blocks. As
usual, the Number to Text block uses all the default settings.

Figure 12-11: Reading the current Power value

Figure 12-12: Adding a label to the value

Figure 12-13: Displaying the labeled value

Figure 12-10: Blocks to display the current value

150	 chapter 12

adjusting the power value

Once the current Power value has been displayed, you can
use the NXT’s Left and Right buttons to adjust it. Deal with
the Right button first, using the code shown in Figure 12-14.
The Switch block can tell whether the button has been
bumped; if so, one is added to the Power variable.

The Switch block is configured to trigger when the
Right button is bumped (as shown in Figure 12-15). The Flat
view option is unchecked to make the program take up less
space.

Figure 12-15: Has the Right button been bumped?

Figures 12-16 through 12-18 show the Configuration
Panels for the Variable and Math blocks, which use the famil-
iar pattern to add one to the Power variable. These blocks
are on the Switch block’s true tab because you want to run
them only if the button has been bumped. There are no
blocks on the false tab because you don’t need the program
to do anything when the button hasn’t been bumped.

Figure 12-16: Reading the current Power value

Figure 12-17: Adding one to the Power value

Figure 12-18: Storing the new Power value

The code for dealing with the Left button is almost
identical, except that when this button is pushed, you need to
subtract one from the Power value. The new code (shown in
Figure 12-19) uses the same four blocks you used with the
Right button with only two differences on the Configuration
Panels: The Switch block uses the Left button, and the Math
block operation is Subtraction. Figures 12-20 and 12-21
show the Configuration Panels for the Switch and Math
blocks. The settings for the two Variable blocks are the same
as those shown earlier in Figures 12-16 and 12-18.

Figure 12-14: Adding one to Power if the Right button has been bumped

	 the NXT buttons and the display block 	 151

Figure 12-20: Has the Left button been bumped?

Figure 12-21: Subtracting one

testing the program

When you run this program, it should first display Power: 25.
Press the Right and Left buttons to change this value. Press
the Enter button, and the program should end.

When the program ends, the Power variable will be set
to the value you’ve selected. In practice, you would use the
blocks that make up this program at the beginning of a larger
program to set a variable. Pressing the Enter button would
start the main part of the program (instead of exiting).

making the program faster

The PowerSetting program works great when changing a
value from 25 to 30, but what if you were to change it to
a value like 80? Pressing the Right button 55 times can
get a little annoying. Making a large change to the value is
rather inconvenient because each time you press and release

the button, the value changes only by one. How can you
speed this up?

You need to press and release the button to change the
value because the Action setting of the two Switch blocks is
set to Bumped. The program might respond quicker if you
just check for the button being pressed, instead of waiting for
it to be pressed and released. What happens if you change
the Action setting of both Switch blocks to Pressed, as
shown in Figures 12-22 and 12-23?

Figure 12-22: Is the Right button pressed?

Figure 12-23: Is the Left button pressed?

The value certainly changes faster, but now it changes
too fast. To make the program usable, you need to slow
the loop down a little by adding a Wait Time block (Fig-
ures 12-24 and 12-25) at the end of the loop body. I’ve
found that a setting of 0.2 seconds gives me a good balance
between changing the value quickly and being able to stop
at the value I want. Experiment with different values to see
what works best for you.

Figure 12-19: Subtracting one from Power if the Left button has been bumped

152	 chapter 12

Figure 12-24: Adding the Wait Time block to the end of the loop body

Figure 12-25: Pausing for 0.2 seconds

the display
block

The Display block has four options for the Action setting:
Text, Reset, Image, and Drawing. You’re already familiar with
the Text option. The Reset option simply clears the display
and then shows the MINDSTORMS icon with the name of
your program and the word Running. The Image and Display
options require a little more explanation.

displaying an image

The Image option lets you display a picture on the screen.
The MINDSTORMS software includes a wide variety of
images to choose from, including several faces, arrows, and
small animals. Figure 12-26 shows how the Configuration
Panel looks when Image is selected as the Action setting.
Select the image you want to use from the File list, and the
image will be displayed in the preview area on the right side
of the panel.

Figure 12-26: Displaying an image

The X and Y values on the far right of the Configuration
Panel set the location of the lower-left corner of the image.
Think of the display screen as a grid of dots called pixels.
(Pixel is short for picture element.) The display is 100 pixels
wide and 64 pixels high, and the location of each pixel is
given by an X and Y value. The X value tells you the left-
to-right location, with the values going from 0 to 99. The
Y value tells you the bottom-to-top location, with 0 at the
bottom of the display and 63 at the top (see Figure 12-27).

63

99
0

0

Y

X

Figure 12-27: X and Y values for the NXT’s display screen

Set the X and Y values by entering them in the boxes
provided or by using your mouse to drag the image around the
preview area. Depending on the values you choose for X and Y,
part of the image may be cut off. For example, Figure 12-28
shows the Smile 01 image (also used in Figure 12-26) moved
up and to the right so that only part of the image is displayed.

Figure 12-28: The image moved up and to the right

You can also use negative values for X and Y to move
the image’s starting point off the bottom or left side of the
display, as shown in Figure 12-29. Unfortunately, if you
enter negative values, the IDE will change them to zero. To
use negative values, use your mouse to drag the image off
the screen, or set the location using data wires.

	 the NXT buttons and the display block 	 153

Figure 12-29: The image moved down and to the left

power setting with images

In this section, you’ll modify the PowerSetting program to
use images instead of text to display the current Power set-
ting by displaying an image of a snail on the left side of the
screen, a rabbit on the right side, and an arrow to show the
current setting, as shown in Figure 12-30. As you use the
buttons to change the setting, the arrow should move left
as you decrease the setting and right as you increase the
setting. (Be sure to save your modified program with a new
name so that you won’t lose the original version.)

Figure 12-30: Using images to show the Power setting

The only part of the program you need to change is
the section that displays the current value, as highlighted in
Figure 12-31. To begin, delete the four existing blocks.

displaying the snail and rabbit

The snail and the rabbit will always be drawn in the same
place on the screen, so add two Display blocks to draw
them before displaying the arrow. Figure 12-32 shows the
two new blocks, and Figures 12-33 and 12-34 show their
Configuration Panels.

Figure 12-32: Displaying blocks to show the snail and rabbit

For both Display blocks, you need to select the file
to use and set the location. The first Display block should
use the Snail image, and the second should use the Rabbit
image. Use 0 for the X setting to put the snail on the left side
of the screen, and use 83 for the X setting to put the rabbit
on the right side. I arrived at these settings by dragging
the image to the side of the preview area with my mouse
while watching how the X and Y values change. Use 25 for

Figure 12-31: Replace these four blocks.

154	 chapter 12

the Y setting for both blocks so that the two images line up
horizontally.

Figure 12-33: Showing the snail on the left side of the screen

Deselect the Clear option for the second Display block so
that it doesn’t erase the image from the first one. It’s quite
common to use several Display blocks together to display all
the information you want (either images or text). The first
Display block will usually have the Clear option checked so
that you start with a clear screen, and the others will have
the option unchecked so that they add to the information
already displayed.

Figure 12-34: Showing the rabbit on the right side of the screen

display the arrow

Position the arrow between the snail and rabbit to indicate
the current Power setting. Figure 12-35 shows the Configu-
ration Panel for the Display block to show the arrow using
the Forward image file. I found that setting the Y value to 9
puts the arrow just under the snail and the rabbit.

Figure 12-35: Showing the arrow

Control the left-to-right position of the arrow by setting
the X value using a data wire, with the value based on the
Power variable. The screen is 100 pixels wide, and the range
for the Power setting is 0 to 100, so you can use the current
value of the Power variable to position the arrow. However,
you need to do just a little math to position the arrow cor-
rectly. The Display block’s X setting controls the position of
the left side of the image, not the center, but the value of the
Power variable should match the position of the center of the
arrow (not the left side).

When you first select the Forward image from the File
list, the default X value is 45, and the arrow is centered left
to right on the screen, as shown in Figure 12-35. When the
Power variable is at 50, the arrow should be centered, so
when the Power variable is 50, the Display block’s X value
should be set to 45. This means that you can calculate the
correct X position by subtracting 5 from the Power variable.

Figure 12-36 shows the code to display the arrow, and
Figures 12-37 and 12-38 show the Configuration Panels for
the Variable and Math blocks. The Variable block reads the
Power variable, and the Math block subtracts 5 from this
value. The Math block’s result is connected to the Display
block’s X data plug, which makes the X position of the arrow
dependent on the Power variable. The position may change
each time through the loop as you use the buttons to change
the value. When the Power variable increases, the X value
will also increase, and the arrow will move to the right;
conversely, when the Power variable decreases, the X value
will decrease, and the arrow will move left.

Figure 12-36: Using the Power variable to position the arrow

	 the NXT buttons and the display block 	 155

Figure 12-37: Reading the current Power value

Figure 12-38: Subtracting 5 to set the position of the point of the arrow

When you run this program, the buttons affect the
Power variable in just the same way they did for the origi-
nal PowerSetting program. The only difference you should
see relates to how the value is displayed: The Left button
should move the arrow toward the snail, and the Right
arrow should move the arrow toward the rabbit. The Enter
button ends the program, just as in the original program.

drawing on the screen

The Display block’s Drawing option lets you draw points (a
single dot), circles, and lines. Figure 12-39 shows the Con-
figuration Panel with the Point option selected. You can set
the location of the point by entering the X and Y values or by
clicking the desired location in the preview area.

Figure 12-39: Drawing a point

Figure 12-40 shows the Configuration Panel for draw-
ing a circle. In this case, the X and Y location marks the
center of the circle. With Type set to Circle, an additional box
to enter the radius of the circle is displayed, which lets you
control the size of the circle.

Figure 12-40: Drawing a circle

Figure 12-41 shows the Configuration Panel to draw a
line. To draw a line, you need one point for each end of the line.
The X and Y boxes set the location of one end of the line, and
the End point X and Y boxes set the location of the other end.

Figure 12-41: Drawing a line

the
NXTSketch
program

The NXTSketch program that you’ll create in this section
will use the line-drawing feature of the Display block to turn
the TriBot into a sketch pad; the TriBot’s two wheels control
where the line is drawn. The program is fairly simple: It
repeatedly draws a line from the last point used to the loca-
tion defined by the current value of the two Rotation Sensors.

The NXTSketch program uses two variables, X and Y, to
store the last location used. Both variables are initialized to
zero at the beginning of the program. The Rotation Sensors
are read in a loop to get the new location, with the B motor
used for the new X value and the C motor used for the Y
value. Finally, a line is drawn from the old location to the new
location, and the values for the new location are stored in the
X and Y variables to be used the next time through the loop.

In addition to drawing the line, there should be a way to
clear the screen to start a new drawing. You can do this by
setting the Clear option of the Display block if the Enter but-
ton on the NXT has been bumped. Listing 12-2 shows the
pseudocode for this program.

156	 chapter 12

set X to 0
set Y to 0
begin loop
 read the Rotation Sensor for motor B
 read the Rotation Sensor for motor C
 draw a line from X,Y to the point defined by the
 motor B and C positions. If the Enter button
 is pressed then set the Clear option.
 set X to the motor B position
 set Y to the motor C position
loop forever

Listing 12-2: The NXTSketch Program

defining the variables

First define the variables. Figure 12-42 shows how the X and
Y variables are defined.

Figure 12-42: Defining the variables

initialization

This program is a little too long to show in one image, so
I’ve broken it into three sections. Figure 12-43 shows the
initialization of the two variables and the Rotation Sensors.
Figures 12-44 through 12-47 show the Configuration Panels.

Figure 12-43: Initializing the variables and sensors

Both variables are initialized to 0.

Figure 12-44: Initializing X to 0

Figure 12-45: Initializing Y to 0

The Rotation Sensor blocks reset the sensors for the B
and C motors.

Figure 12-46: Resetting the Rotation Sensor for the B motor

Figure 12-47: Resetting the Rotation Sensor for the C motor

drawing the line

Figure 12-48 shows the interesting part of the program,
where the Display block draws a line. To draw a line, you
need to give the Display block two points: one defined by
the values of the X and Y variables and the other by values
read from the Rotation Sensors for the B and C motors. All
of these values are passed to the Display block using data
wires.

The NXT Button block checks to see whether the Enter
button has been bumped. The output value from this block
will be true if the button has been bumped and false if it
hasn’t. This value is passed to the Display block and used to

	 the NXT buttons and the display block 	 157

control the Clear option so that when you press the button,
the Display block will clear the screen before drawing the
line.

Notice how nicely the data wires are arranged in
Figure 12-48. Five blocks supply the settings for the Display
block. Because the order of these block doesn’t matter, I
was able to place them so that the data wires don’t cross
(of course, when I first put this program together, the wires
were a bit of a mess). You can’t always arrange the blocks to
avoid crossing data wires, but when you can, it really helps to
make a program easier to understand.

Figures 12-49 through 12-55 show the Configuration
Panels for these blocks. The Loop block is set to loop forever.

Figure 12-49: Looping forever

The two Rotation Sensor blocks read the current motor
position and pass the value to the Display block.

Figure 12-50: Reading the Rotation Sensor for the C motor

Figure 12-51: Reading the Rotation Sensor for the B motor

The Variable blocks read the current X and Y values and
pass the values to the Display block.

Figure 12-52: Reading the current Y value

Figure 12-53: Reading the current X value

The NXT Button block will output true if the Enter
button has been bumped and false if it hasn’t. This value is
passed to the Display block’s Clear data plug.

Figure 12-48: Reading the sensors and 	

drawing the line

158	 chapter 12

Figure 12-54: Has the Enter button been bumped?

The Display block draws the line. The two points that
define the line and the Clear option are all set using data
wires, so you can ignore their Configuration Panel settings.

Figure 12-55: Draw the line. (The location and Clear value are set from 	

data wires.)

saving the new location

The final section of code, shown in Figure 12-56, stores the
values from the Rotation Sensors in the X and Y variables
so that they can be used the next time the loop repeats.
Figures 12-57 and 12-58 show the Configuration Panels
for these blocks.

Figure 12-56: Storing the new values

Figure 12-57: Storing the new X value

Figure 12-58: Storing the new Y value

testing the program

When you run the program, it should start with just a single
dot in the lower-left corner of the screen. Create a drawing
by turning the B wheel to move left to right and the C wheel
to move top to bottom. Press the Enter button to erase the
screen.

fixing the dials for NXT-G 2.0

If you’re using NXT-G 2.0, you’ll need to turn the
wheels forward to start the drawing, and it may
seem as if the control is backward. In NXT-G 2.0
the value from the Rotation Sensor will be

negative if the wheel is turned backward, and the program
won’t draw anything if you move the wheel in the wrong
direction. To make the Rotation Sensor block act like the
1.1 version, pass the value from the Rotation Sensor block
through a Math block with the operation set to Absolute
Value to make any negative values become positive values.
Figure 12-59 shows the program with Math blocks added
after each of the Rotation Sensor blocks. Figure 12-60
shows the Configuration Panel for the Math blocks (the two
Match blocks are identical).

	 the NXT buttons and the display block 	 159

Figure 12-60: The result is the absolute value of the input.

With these two blocks added and the date wires con-
nected, the program should now draw lines regardless of
which way you turn the wheels.

conclusion
The NXT buttons give you a very convenient way to interact
with your program. The buttons work with the program flow
blocks just like the other sensors, and they operate much like
a Touch Sensor. The PowerSetting program demonstrates
how to use the Left and Right buttons to set the value for a
variable.

The other programs in this chapter showed you how to
use the Display block to do more than just print text. Using
this block, you can display images and create drawings on
the screen. Your programs can use these features to make
your robot much more fun to interact with.

Figure 12-59: Avoiding 	

negative Rotation Sensor

values

13
my blocks

A My Block is a block that you create from other blocks. In this chapter, you’ll learn how to create My Blocks and how to use
them in your programs. I’ll walk you through the process of building three My Blocks, progressing from a very simple one that
plays a chime to a more complex one that displays a number with a label. Along the way, you’ll learn all you need to know to
create your own blocks. You’ll also learn how to keep your blocks organized and how to share them with other NXT users.

building bigger blocks
Creating a My Block is an easy way to group together and reuse a collection of blocks. By now you may have noticed that
an NXT-G program can quickly become very large. Seemingly simple tasks, such as displaying a number or adding one to a
variable, can require several blocks. Also, many of the same groups of blocks are used repeatedly in different programs and
often within the same program. My Blocks help you cope with both of these issues.

creating a my block
I’ll begin with a very simple
example to show you how to
create a My Block. Figure 13-1
shows an expanded version of
the DoorChime program from
Chapter 5 (the original program
uses only two Sound blocks).
You’ll create a My Block from
the four Sound blocks, which
will make the program shorter
and give you a Chime block that
you can use in other programs.

The first step is to select
the blocks that you want to
group together into a My Block.
You can select the four Sound
blocks by drawing a selecting
rectangle around them (as
shown in Figure 13-2) or by
clicking the first block and then

Figure 13-1: The DoorChime program

Figure 13-2: Selecting the four Sound blocks

162	 chapter 13

holding down the shift key while clicking the other three
blocks.

1.	 Select the four Sound blocks.

2.	 To create a My Block from the selected blocks, click the
Create My Block button on the toolbar, shown in
Figure 13-3.

Figure 13-3: The Create My Block toolbar button

3.	 The My Block Builder window will appear, as shown in
Figure 13-4.

Figure 13-4: The My Block Builder window

The My Block Builder window contains boxes for enter-
ing a name and description for the new block. The Selected
Blocks area lets you see which blocks were selected to make
sure you’re creating the block you expect. If the correct blocks
aren’t displayed, click the Cancel button and start again.

Follow these steps to enter a name and description for
the block:

4.	 Enter Chime in the Block Name box.

5.	 Enter Play a chime using several Sound blocks in the
Block Description box.

6.	 Click the Next button.

The My Block Builder window should now contain
controls for building an icon for the new block, as shown in
Figure 13-5. Create an new icon by dragging one or more
icons from the lower section of the window into the box in
the Icon Builder section. You can resize and move the indi-
vidual images to create a new unique icon for your block. For
the Chime block, I used three musical note icons, as shown in
Figure 13-6.

Figure 13-5: Building an icon with the My Block Builder window

Figure 13-6: Icon for the Chime block

7.	 Create an icon for the Chime block.

8.	 Click the Finish button.

Clicking Finish will create the Chime block and replace
the four Sound blocks with the new block in the DoorChime
program (as shown in Figure 13-7). After moving the blocks
closer together, the program will look like Figure 13-8.

	 my blocks	 163

Figure 13-8: After moving the blocks closer together

The program is now smaller and simpler. It’s easier
to understand the purpose of a single block named Chime
than four Sound blocks, which could be used for a variety
of purposes. Although you’ve changed the arrangement of
the blocks, you haven’t changed the way the program works;
when you run this program, it should behave exactly as it did
before you created the Chime block.

the custom
palette

Once you’ve created a My Block, you can use it in any
program, just like any other block. All of your My Blocks will
appear on the Custom Palette, which you open using the
tab at the bottom of the Programming Palettes, as shown
in Figure 13-9.

Figure 13-9: Tab for selecting the Custom Palette

Newly created My Blocks will appear in the top group
on the Custom Palette, as shown in Figure 13-10. You can
create new groups on the Custom Palette to organize your
My Blocks, as explained in “Managing the Custom Palette” on
page 174.

Figure 13-10: The Chime block on the Custom Palette

editing a my
block

To edit a My Block, you can either double-click it or select
it and choose EditEdit Selected My Block from the menu.
This will open the block in the MINDSTORMS software,
where it will look like a small program. Now, to edit the
Chime block, follow these steps:

1.	 Open the DoorChime program, and select the Chime
block.

2.	 Choose EditEdit Selected My Block from the menu.

3.	 The blocks that make up the Chime block should look
like Figure 13-11.

Figure 13-11: Editing the Chime block

Figure 13-7: The DoorChime

program after creating the Chime

block

164	 chapter 13

Once the block is open, you can make changes, including
adding and removing blocks, changing the settings of the
blocks, or adding comments.

4.	 Change the Note settings for the four Sound blocks.

5.	 Save and close the Chime block (choose FileSave and
FileClose).

Now when you download and run the DoorChime pro-
gram, it should use the new settings for the Sound blocks.
The new settings will also be used by any other program
that uses the Chime block. In other words, when you edit a
My Block, you affect every program that uses it. This can
be a very good thing if you’re fixing a bug, because you’ll
automatically fix the bug in all your programs. On the other
hand, you need to make sure that the changes you make to
improve one program won’t adversely affect other programs.

configuring a
my block

The Chime block is a little unusual in that it doesn’t have
any configuration settings; it always does the same thing.
Most NXT-G blocks need some information to perform their
function, and this will be true of most of the My Blocks you
create.

For example, let’s say you wanted to create a My
Block from the Timer1 program from Chapter 11, shown
in Figure 13-12. Recall that this is a programmable timer,
meaning you can use a data wire to set the amount of time
to wait. A My Block created from this program will be useful
only if you can configure the length of the delay (otherwise it
wouldn’t be programmable).

Figure 13-12: The Timer1 program

When you create a My Block, all the data wires that
connect to the selected blocks will remain connected. The
new My Block will have a data plug for any data wire that
connects a selected block to an unselected block (one that
doesn’t become part of the My Block). To create a program-
mable timer block from the Timer1 program, select the
Timer block and the Loop block but not the Math block. This
will create a data plug on the new My Block, allowing you to
set the delay.

Follow these steps to create the programmable timer
block:

1.	 Open the Timer1 program if it isn’t already open.

2.	 Select the Timer and Loop blocks, as shown here:

3.	 Click the Create My Block toolbar button. The My Block
Builder window should look like this:

	 my blocks	 165

4.	 Enter ProgTimer1 for the Block Name option and A
programmable timer using NXT timer 1 for the
Description option.

5.	 Click the Next button.

6.	 Create an icon for the new block. I used the hourglass
shape, as shown here:

7.	 Click the Finish button. The Timer1 program should
now look like this:

The new ProgTimer1 block has a data plug to supply
the delay, which is just what you need to make this block
useful. However, to set the delay without using a data
wire (perhaps while testing or debugging your program),
you could also use the new block’s Configuration Panel, as
shown in Figure 13-13.

Figure 13-13: The ProgTimer1 block’s Configuration Panel

A My Block’s Configuration Panel will contain an item for
each of the block’s data plugs or for each data wire that was
connected between the blocks used to create the My Block
and the blocks in the original program. Depending on how
the new block will be used, you may configure some of the
settings using data wires and others using the Configuration
Panel. You’ll almost always set the delay for the ProgTimer1
block using a data wire, but you’ll see examples of other My
Blocks that are controlled mainly using the Configuration
Panel.

changing the
name of a
configuration
item

The item in the ProgTimer1’s Configuration Panel, as well as
the data plug, is named Value. This isn’t bad, but it could be
more descriptive. The name used for a configuration item
comes from a comment that appears just above the data
plug for the item in the code for the My Block. To change
the name, change the comment. For example, to change the
name of the ProgTimer1’s configuration item from Value to
Delay in milliseconds, you would do this:

1.	 Open the Timer1 program if it isn’t already open.

2.	 Double-click the ProgTimer1 block to open the code for
the block:

The comment for the data plug is obscured by the
Sequence Beam, and once you start changing the comment,
it will extend over the Timer block. To make editing the
comment easier, drag the data plug down a little with your
mouse.

166	 chapter 13

3.	 Double-click the comment that says Value.

4.	 Type Delay in milliseconds.

5.	 Save and close the ProgTimer1 block.

Now when you add the ProgTimer1 block to a program,
the data plug and the item in the Configuration Panel will
be named Delay in milliseconds instead of Value (as shown
in Figure 13-14). For this example, changing the name is a
small improvement. For My Blocks with several configuration
items, changing the names from the default to something
more meaningful will be a crucial step in creating useful
blocks.

Figure 13-14: The updated Configuration Panel for the ProgTimer1 block

the
DisplayNumber
block

In this section, you’ll build a My Block for displaying numbers
on the NXT’s screen. Several of the programs presented so
far have used the Number to Text, Text, and Display blocks
to display a labeled value. For example, Figure 13-15 shows
the section of the PowerSetting program from Chapter 12
that displays the current value of the Power variable. In
this section, you’ll create the DisplayNumber block from the
Number to Text, Text, and Display blocks, which will make
displaying numbers much more convenient.

Figure 13-15: The Number to Text, Text, and Display blocks used to display

a number

configuration items

Before creating a My Block, think about the configuration
items that your new block will need. For example, here are
the settings I typically use in the Number to Text, Text, and
Display blocks:

N	 The number passed to the Number to Text block. This is
the value to display.

N	 The A value for the Text block. This is the label for the
value.

N	 The C value for the Text block. This value is used to print a
unit after the value; for example, the SoundMachine pro-
gram displays Frequency 1256 Hz. Not all values require a
unit, so in other programs, this value has been blank.

N	 The Clear setting for the Display block.

N	 The Line number for the Display block to use.

To create a configuration item and data plug for each
of these values in the DisplayNumber block, you need a
data wire connected to the appropriate data plugs of the
Number to Text, Text, and Display blocks. However, there
is one small problem: The Display block doesn’t have a data
plug for setting the Line value. So before you can build the
DisplayNumber block, you need to know how to control the
Line setting using a data wire.

controlling the line setting
using a data wire

The Display block’s Configuration Panel (Figure 13-16)
offers two ways to set the vertical location of the text: the
Line and Y settings. Typically when displaying text, you use
the Configuration Panel’s Line setting (the Y setting is more
often used when drawing or displaying an image). Since the

	 my blocks	 167

Display block doesn’t have a data plug for the Line setting,
you’ll need to use the Y data plug instead. To do this success-
fully, you need to understand the relationship between these
two settings.

Figure 13-16: The Display block’s Configuration Panel

As you change the Line setting in the Configuration
Panel, the Y setting will also change. In Figure 13-16, you
can see that for a Line setting of 1, the Y setting is 56.
Change the Line setting to 2, and the Y setting will change
to 48. Change the Line setting to 3, and the Y setting will
change to 40. Notice that each time you increase the Line
setting by 1, the Y setting is reduced by 8.

The relationship between these two settings can be
expressed as follows:

Y = 64 – (Line × 8)

To find the Y setting, multiply the desired Line value by
8, and then subtract that value from 64. In NXT-G, you can
easily perform this computation using two Math blocks.

building the DisplayNumber
block

Now you’re ready to start building the DisplayNumber block.
Begin with the familiar arrangement of the Number to Text,
Text, and Display blocks, and then add the other blocks you
need.

1.	 Create a new program named DisplayBlockBuilder.

2.	 Add a Number to Text block, a Text block, and a Display
block.

3.	 Set the Display block’s Action setting to Text.

4.	 Open the data hubs of the Text and Display blocks.

5.	 Connect the Number to Text block’s Text data plug to
the Text block’s B data plug.

6.	 Connect the Text block’s Combined Text data plug to the
Display block’s Text data plug.

This is the familiar three-block pattern that you’ve
used several times. Next add the blocks that supply the five
configuration items: the value to display, the label, the unit,
the Clear setting, and the Line setting. Begin with the value
to display, which should be connected to the Number to Text
block’s Number data plug.

7.	 Add a Math block at the beginning of the program, to
the left of the Number to Text block.

8.	 Connect the Math block’s Result data plug to the Num-
ber to Text block’s Number data plug.

The only reason the Math block is there is to connect a
data wire to the Number to Text block’s Number data plug.
The configuration of the Math block doesn’t matter, and
it won’t become part of the DisplayNumber block. I used
a Math block because we need to connect a data wire to

168	 chapter 13

the Number to Text block’s input data plug, and the Math
block has a output data plug that uses a number. Any block
that has an output data plug that uses a number would work
just as well as a Math block.

To supply the label and unit to the Text block’s A and C
data plugs, use two Text blocks.

9.	 Add two Text blocks at the beginning of the program.

10.	 Connect the Combined Text data plug of one of the new
Text blocks to the original Text block’s A data plug.

11.	 Connect the Combined Text data plug of the other new
Text block to the original Text block’s C data plug.

12.	 Close the data hubs for the two
new Text blocks and the Math
block. The program should look
like this:

Just as with the Math block, the
configuration of these two Text blocks
is not important. These two blocks are
only there to connect data wires to the
original Text block’s A and C data plugs.

Next you’ll add a Compare block
in order to connect a data wire to the
Display block’s Clear data plug. I chose a
Compare block because it has an output
data plug that uses a logic value, which
is the data type that the Clear data plug
expects.

13.	 Add a Compare block at the
beginning of the program.

14.	 Connect the
Compare block’s
Result data plug
to the Display
block’s Clear
data plug.

15.	 Close the
Compare block’s
data hub. The
program should
look like this
(I’ve added
some comments
to make the
purpose of each
block clear):

The last item you need to control is the Line setting,
which is a little more complicated. You need three Math
blocks, one to supply the Line value and two to convert from
the Line value to the Display block’s Y setting. To make it
easier to select the blocks that will become the Display
Number block, place the three Math blocks just to the left
of the Number to Text block.

	 my blocks	 169

Insert three Math
blocks to the left of the
Number to Text block.
The three new blocks are
highlighted here:

16.	 Select the second
Math block (the
middle one of the
three you just added).

17.	 Set Operation to
Multiplication and
the B value to 8. The
Configuration Panel
should look like this:

18.	 Select the third Math block.

19.	 Set Operation to Subtraction and the A value to 64.
The Configuration Panel should look like this:

20.	 Connect the first Math block’s Result data plug to the
second Math block’s A data plug.

21.	 Connect the second
Math block’s Result
data plug to the third
Math block’s B data
plug.

22.	 Connect the third
Math block’s Result
data plug to the
Display block’s Y data
plug. This part of the
program should now
look like this:

170	 chapter 13

testing

All the blocks are now in place and connected. But how do
you know it’s really going to work? The only way to find out
is to test the code, and the earlier you test it, the easier it
will be to fix any problems. To test the code, you can set the
five input values and then see whether the correct text is
displayed. To see the text before the program ends, first add
a Wait block to the end of the program and set it to wait until
the Enter button is pressed.

1.	 Add a Wait block to the end of the program.

2.	 Select NXT Buttons from the list of sensors. The Con-
figuration Panel should look like this:

The end of the program should look like this:

Now you’ll configure the blocks that supply the input
values. I’m going to skip the Compare block because you
can’t really test whether the Clear option is set properly
when you’re displaying only one value. Follow these steps to
configure the program to display Label: 17 Unit on line 5:

1.	 Select the first Text block. Set the A value to Unit, with
a space before the U.

2.	 Select the second Text block. Set the A value to Label:,
with a space after the colon.

3.	 Select the first Math block, the one that connects to the
Number to Text block. Set the A value to 17.

4.	 Select the second Math block, and set the A value to 5.

Download and run the program. Label: 17 Unit should
be displayed near the middle of the screen. If the program
doesn’t work, check all the data wire connections; there are a
lot of them, and it’s easy to get one wrong.

creating the DisplayNumber
block

Once you have all the blocks in place, have all the data wires
connected, and have some confidence that the block will
work, it’s time to create the My Block. Follow these steps to
create the DisplayNumber block:

	 my blocks	 171

1.	 Select the two Math
blocks that convert the
Line value to the Dis-
play block’s Y value, as
well as the Number to
Text, Text, and Display
blocks, as shown here:

2.	 Click the Create My Block toolbar button. The My Block
Builder window should be displayed:

3.	 Enter DisplayNumber for the Block Name option.

4.	 Enter Display a number with a label and unit for the
Block Description option.

5.	 Click the Next button. The My Block Builder window
should now show the controls for building an icon for
the new block.

6.	 Create an icon for the new block. I mixed the icons for
the Number to Text block and the Display blocks, as
shown here:

7.	 Click the Finish button. The blocks that were selected
should be replaced by a DisplayNumber block.

changing the names of the
configuration items

Figure 13-17 shows the Configuration Panel for the new
DisplayNumber block. As you can see, the names for most of
the configuration items are not very meaningful. For exam-
ple, the block uses two numbers: the value to display and the
line number for the Display block to use. The Configuration
Panel has boxes to enter two numbers, but the names A and
Number don’t tell you which value each box is used for.

172	 chapter 13

To fix this problem, open the block, and change the
names to something more meaningful by following these
steps:

1.	 Double-click the DisplayNumber block to open it. It
should look like this:

2.	 Move the data plug labeled A_1 up so that you can see
the comment easier.

By following the data wires, you can tell what each data
plug is used for. The data plug labeled Clear is used to clear
the display, and the one labeled Number is used for the value
to display. These are reasonable names, so you don’t need to
change them. Follow these steps to change the comments for
the other three data plugs:

3.	 Double-click the comment with the text A_1, and
change it to Label.

4.	 Double-click the comment with the text C, and change
it to Unit.

5.	 Double-click the comment with the text A, and change
it to Line.

6.	 Save and close the DisplayNumber block.

The Configuration Panel won’t look any different in the
DisplayNumberBuilder program, and it will continue to use
the original names. To see the updated Configuration Panel
(shown in Figure 13-18), add the DisplayNumber block to a
new program. The DisplayNumber block should appear on
the Custom Palette, as shown in Figure 13-19.

Figure 13-17: The Configuration Panel for the

DisplayNumber block

Figure 13-18: The updated Configuration Panel for the DisplayNumber block

Figure 13-19: The DisplayNumber block on the

Custom Palette

	 my blocks	 173

Now that you’ve created the DisplayNum-
ber block, let’s put it to use. Follow these
steps to use the DisplayNumber block in
the PowerSetting program, replacing the
Number to Text, Text, and Display blocks:

1.	 Open the PowerSetting program.

2.	 Delete the Number to Text, Text, and
Display blocks highlighted here:

3.	 Add a DisplayNumber block (from the
Complete Palette) after the Variable
block.

4.	 In the DisplayNumber block’s Configuration Panel, set
the Line item to 5 and the Label item to Power: (with a
space after the colon).

5.	 Check the Clear option.

6.	 Draw a data wire from the Variable block’s Value data
plug to the DisplayNumber block’s Number data plug.
The Number data plug is the second one from the
bottom, which you can tell by holding the mouse cursor
over each data plug and reading the tool tip.

Download and run the program, and it should behave
just like the original. The benefit of using the DisplayNumber
block is that it makes the program smaller and easier to
understand. We’ll use the DisplayNumber block in several
programs in the coming chapters.

using the
DisplayNumber
block

174	 chapter 13

managing
the custom
palette

After creating several My Blocks, you’ll eventually want
to delete some of them or change how the blocks are
arranged on the Custom Palette. Each My Block is
stored in a file on your computer, just like your NXT
programs. The arrangement of My Blocks on the Cus-
tom Palette is controlled by the arrangement of folders
and the My Block files on you computer.

Selecting the EditManage Custom Palette
menu item will open the Blocks folder, which contains
the items on the Custom Palette, as shown in Fig-
ure 13-20. Each subfolder listed here will be shown
as a group on the Custom Palette. The My Block files
within each folder will be shown as the blocks within
each group. For example, the My Blocks subfolder
(shown in Figure 13-21) contains the files for the
three blocks you’ve created.

You work with these folders and files the same
way you work with other files on your computer. To
delete a My Block, simply delete the file. You can also
rename a My Block by renaming the file.

NOTE	 Deleting or renaming a My Block will break
any program that uses the block. After renaming
a My Block, you’ll need to edit any program that
uses it, replacing the block that uses the old name
with the newly renamed block.

You can also create new
folders to help keep your My
Blocks organized. For example,
you could create a Timers folder
to hold My Blocks created from
the three programmable timers
from Chapter 9, as shown in Fig-
ure 13-22. When you create the
new blocks, they’re placed in the
My Blocks folder. After creating
the Timers folder in the Blocks
folder (the one that contains the
My Blocks folder), you can move
the three files from the My Blocks
folder to the new Timers folder.
The Custom Palette will then Figure 13-22: The Timer folder containing the three programmable timers

Figure 13-20: The folders corresponding to the groups on the Custom Palette

Figure 13-21: The files containing the My Blocks

	 my blocks	 175

contain a Timers group containing the three programmable
timer blocks, as shown in Figure 13-23.

NOTE	 Moving a file to a different folder will break any
program that’s using the block, just as renaming a file
does. After reorganizing your blocks in this way, you’ll
need to edit any programs that use the blocks.

 

Figure 13-23: The new

Timers group on the

Custom Palette

sharing
programs with
my blocks

To share a program that uses My Blocks, you have to include
the My Block files as well as the main program. You can do
this in two ways, depending on which version of the MIND-
STORMS software you are using.

copying files

With any version of the MINDSTORMS software, you can
share a program by copying all the files it needs. Although
you can place the file for the main program anywhere you
want, the files for any My Blocks need to be in the same
folders as they were on the original computer.

Start by copying the main program file, and then select
EditManage Custom Palette to open the Blocks folder. Find
and copy all the block files that the program needs to the
email message, flash drive, floppy disk, or other medium you
are using to share the files. On the destination computer,
first copy the main program file. Then select EditManage
Custom Palette to open the Blocks folder, and copy all the
block files to the same place they were on the original com-
puter, either in the My Blocks folder or in another folder you
created (for example, the Timers folder).

create pack and go

NXT-G 2.0 includes the new Create Pack and Go
feature, which creates a single file containing all
the files used by a program. After creating your
program, select ToolsCreate Pack and Go to

display the Create Pack and Go window. Figure 13-24 shows
how this window looks for the DoorChime program. The
new file DoorChime.rbtx will contain both the DoorChime
program file (DoorChime.rbt) and the Chime My Block file
(Chime.rbt). Opening the DoorChime.rbtx file on another com-
puter will copy the Chime My Block file to the correct location
and open the DoorChime program in the MINDSTORMS
software.

Figure 13-24: Creating a package for the DoorChime program

advanced my
block topics

After creating the Chime, ProgTimer1, and DisplayNumber
blocks, you should understand how My Blocks work and be
able to create blocks for your own programs. The examples
presented here are typical of the kinds of blocks you’ll want
to create for yourself. However, before ending this chapter,
I’ll cover a few more aspects of My Blocks that you should be
familiar with. The following sections deal with using variables
with My Blocks, nesting My Blocks, dealing with broken My
Blocks, and adding data plugs to a My Block.

176	 chapter 13

variables and my blocks

You can use variables in your My Blocks just as you do in
the main program. The important thing to know is that a
program and all the My Blocks it includes share the same
list of variables. If you define a variable with the same name
and data type in both the main program and in a My Block,
the variable will be shared between the them. You can set a
value in the main program and then use the value in a My
Block, and any changes you make to the variable within a My
Block will also be seen by the main program.

You can use variables to share information between the
main program and the My Blocks it uses or between two (or
more) My Blocks. For example, if you split the WallFollower
program into three My Blocks, you could use one variable to
control the Power setting of all the Move blocks, even though
the Move blocks will be divided among the three My Blocks.

Variables are also useful if you need a My Block to
remember a value. For example, you could write a My Block
named DisplayNextLine to display scrolling text on the
NXT’s screen. The first time the block is used, it will clear
the screen and display the text on line 1. The next time the
block is used, it will display the text on line 2, the next time
on line 3, and so on, until it displays the text on line 8. The
next time it’s used, it will clear the screen and display the
text on line 1. To accomplish this, the block needs to use a
variable to remember which line it used so that it can use
the next line when the block is used again.

There is a potential for bugs caused by this sharing of
variables. Accidentally using the same variable between the
main program and a My Block, or between two My Blocks,
can wreak havoc on an otherwise well-constructed program.
Choose your variable names carefully to avoid this issue. For
example, when creating the variable for the DisplayNextLine
block described earlier, you could use the name DNL_Line.
Starting the variable name with an abbreviation for the block
name results in a name that is unlikely to be accidentally
used in another program or My Block.

nesting my blocks

A My Block can contain other My Blocks, allowing you to
build larger and more complicated blocks out of smaller and
simpler ones. Instead of having one really large program,
you can divide the functionality into a few logical pieces. For
example, the WallFollower program from Chapter 7 can be
divided into three My Blocks; one that follows the wall, one
that turns at a corner, and one that turns into an opening, as
shown in Figure 13-25.

Figure 13-25: The WallFollower program split into My Blocks

It’s easy to tell what this program does from a high level,
and you can open the My Blocks to see how each individual
part works. Each of these three My Blocks may use some
smaller My Blocks.

The ability to nest My Blocks also makes it possible to
use some very small, special-purpose blocks. For example,
the DisplayNumber block uses two Math blocks to con-
vert the Line value into the Y value used by the Display block.
You could create a DisplayLineToY block from these two Math
blocks and then reuse it for other blocks that display values,
like the DisplayNextLine block described in the previous sec-
tion. Although this block is very small, using it can help avoid
some math errors that are very easy to make.

broken my blocks

A block will appear broken (as shown in Figure 13-26) if the
MINDSTORMS software can’t find the block file. This can
happen if you delete, rename, or move a My Block file or if
you copy a program from a friend and neglect to copy the My
Blocks the program uses.

Figure 13-26: A broken block

A block will also appear broken if it has two data plugs
with the same name or if there is some other problem with
the data wire connections. If your program has a broken
block, try opening the block. You’ll see an error message if
the MINDSTORMS software can’t find the block file. If you
can successfully open the block, then check the names of
each data plug and the connections of the data wires.

	 my blocks	 177

adding a data plug

You can edit a My Block to add new blocks, remove blocks,
or change the settings of the blocks. However, you can’t add
a new data plug after a My Block has been created. If you
want to add a new data plug, you must re-create the My
Block. For this reason, it’s a good idea to save a copy of the
program you’re using to create the My Block, just before
creating the new block.

For example, you could save a copy of the Display
NumberBuilder program after testing it but before actually
creating the block. Then if you later decide to add another
data plug, maybe to control the horizontal position of the
text, you could start with the saved program. This is much
easier than re-creating the block all over again from the
beginning.

conclusion
Creating your own blocks is a simple yet powerful way to
reuse code, making your programs easier to understand
and less prone to error. The three My Blocks presented in
this chapter show how to create My Blocks with varying
degrees of complexity. Simple blocks such as the Chime block
allow you to easily reuse code and help keep programs to a
manageable size. Complex blocks with many configuration
options such as the DisplayNumber block can help reduce the
problems associated with rewriting the same complicated
code several times.

14
math and logic

Working with numbers is an important part of many programs. In this chapter I’ll explain how NXT-G works with numbers in
order to help you use the Math block successfully. I’ll also discuss how to use the Logic and Range blocks to expand the types
of decisions your programs can make.

computer math
Computers have a well-deserved reputation for being very good at math. In NXT-G, the Math block is used to perform any
calculation your program needs. This block is very easy to use; you simply select the operation to perform and provide the
numbers to work with using either the Configuration Panel or data wires. Performing complex calculations is a simple matter
of combining several Math blocks.

Although the Math block is easy to use, you need to be aware of some issues when using it. Computers don’t perform
math exactly the way people do. Because of the way computers work, there are limitations to the types of calculations that
they can perform correctly. Most of the time the Math block will give you the same answer you would get if you performed
the operation using pencil and paper, but not always. Knowing the Math block’s limitations will help you avoid subtle errors
when it doesn’t behave the way you might expect.

The way numbers work in NXT-G changed between version 1.1 and version 2.0. The original NXT-G software uses
integer math, which uses only positive and negative whole numbers. On the other hand, NXT-G 2.0 uses floating-point math,
which allows fractional values. In the following sections, I’ll discuss the limitations of each approach.

integer math
In NXT-G 1.1, all numbers are integers, such as 27, 134, or -28. You can use positive or negative numbers, but
no decimals. Working with integer math is fairly simple and comes naturally to most people. The two things
you need to know when using integer math with NXT-G are the range of values supported and the way division
works.

range of values

Most computers work with only a limited range of values. In NXT-G, the range of values you can use is from -2147483648
to 2147483647, which is slightly more than 2 billion for either positive or negative values. This is quite a large range and is
more than sufficient for most purposes. As long as you keep your values within this range, the results from the Math block
will be correct. If you go outside this range, for example if you multiply 1 billion by 4, the result will be a large negative
number, which is incorrect.

180	 chapter 14

division

The other limitation of integer math involves division. Work-
ing with integers isn’t a problem for addition, subtraction,
and multiplication. If you take any two integers and add,
subtract, or multiply them, you’ll always get an integer for
the result. However, the same is not true for division.

When you divide two numbers using integer math, the
result will be rounded down to an integer, meaning the frac-
tional part is cut off. For example, if you divide 5 by 2, the
answer will be 2.5, but when the Math block divides these
two numbers, its result will be 2, because it can’t handle
the .5. It’s important to note that the fractional part is sim-
ply dropped instead of being rounded to the closest integer.
When the Math block divides 399 by 100, it will give 3 as the
result, even though the real value is much closer to 4.

Any time you use division as part of a calculation, the
final result can be inaccurate. What’s important is the size
of the error: the difference between the real result and the
result you get using integer math. As long as the error is
small, most programs won’t have a problem. For example, if
you’re calculating the Power setting to use for a Move block
and you use 74 instead of 75, you probably won’t notice. The
following sections give you some ways to avoid large errors
when using division.

order of operations

You now know that when you divide two numbers, the result
will be rounded down to an integer. The error will always be
less than one, which is really not too bad. However, if you
then use the result as part of other calculations, the final
result can have a larger error. For example, say you want to
compute 9 ÷ 4 × 10. When you divide 9 by 4 by hand, the
result will be 2.25, and when using integer math, the result
will be 2. In this case, the error is 0.25, which is not too bad.
But now when you multiply the result (2) by 10, you’ll get 20.
If you do the same operations by hand (or with a calculator),
the result is 22.5, which means the error has grown from
0.25 to 2.5.

To avoid this problem, perform the division last when-
ever possible. For example, you can rearrange the previous
expression to be 9 × 10 ÷ 4. Now, because the multiplication
is done before the division, the result will be 22, and the
error is only 0.5. Table 14-1 summarizes these results.

table 14-1: the effect of the order of operations
on the error

expression real
result

result using
integer math

error

9 ÷ 4 x 10 22.5 20 2.5

9 x 10 ÷ 4 22.5 22 0.5

scaling values

In the previous example, the numbers we started with (9, 4,
and 10) are all integers, but sometimes you’ll need to work
with numbers that are not integers. For example, to convert
from inches to centimeters, you need to multiply by 2.54.
However, 2.54 isn’t an integer, so you can’t use that value
with the Math block, and using either 2 or 3 (the closest
integers) could result in a substantial error.

One way to deal with this is to scale the value up; that
is, multiply it by another number so that the fractional part
is not lost. For example, if you scale 2.54 up by 100, you get
254. Of course, after using 254 in the calculation, you’ll need
to scale the final value down by 100 to get the correct result.
So to convert 25 inches to centimeters, you could multiply
25 by 254 and then divide the result by 100. This will give
you a more accurate result than multiplying 25 by either 2 or
3. Table 14-2 compares the results of converting 25 inches
to centimeters, with and without scaling.

table 14-2: the effect of scaling on the error

expression real
result

result
using
integer
math

error

Without
scaling

25 × 3 63.5 75 11.5

With
scaling

25 × 254 ÷ 100 63.5 63 0.5

The scaling technique is used in the Odometer program
presented in the next section to display how far the TriBot
has moved based on the reading from the Rotation Sensor.

	 math and logic	 181

odometer

The Odometer program presented in this section reads the
Rotation Sensor for motor B and converts the value to a
distance measurement. Aside from the math, this program
is very simple; it continually reads the Rotation Sensor,
converts the value to a distance, and displays the result.

To convert the Rotation Sensor reading from degrees
to a distance measurement, the program uses a variable,
Wheel Circumference, which is the distance the robot travels
in one rotation of the wheel. You can use either inches or
centimeters when setting the wheel circumference value.
The circumference of the wheel is 5.25 inches, or 13.33 cm.
Figure 14-1 shows the Edit Variable dialog with this variable
defined.

NOTE	 If you’re using the balloon tires,
use 6.9 inches or 17.78 cm for the wheel
circumference.

Figure 14-1: Defining the Wheel Circumference variable

The reading from a Rotation Sensor block will be in
degrees. The simple approach to the conversion from degrees
to inches or centimeters is as follows: Divide the number of
degrees by 360 to get the number of rotations, and then mul-
tiply the result by the wheel circumference to get the distance
traveled. Written as an expression, this would look like this:

degrees ÷ 360 × wheel circumference

Of course, this approach suffers from both problems
mentioned earlier (otherwise it wouldn’t be a very good
example). You can get a more accurate result by making a
few changes:

1.	 Scale the wheel circumference value up by 100 (use
either 525 for inches or 1,333 for centimeters).

2.	 Multiply the degrees by the wheel circumference first,
and then divide by 360.

3.	 To match the change to the wheel circumference value,
the final result needs to be divided by 100.

With these changes, the expression becomes the
following:

degrees × wheel circumference ÷ 360 ÷ 100

This expression makes up the main part of the Odom-
eter program, shown in Figure 14-2.

NOTE	 You could combine the two Math blocks that
divide the input by 360 and 100 with one block that
divides by 36,000. I prefer to use two blocks because I
think of this as two separate operations, but that’s just
my preference.

The program starts by setting the scaled Wheel Cir-
cumference variable and putting the value on a data wire.
Figures 14-3 through 14-4 show the Configuration Panels
for the two Variable blocks.

Figure 14-2: The Odometer program

182	 chapter 14

Figure 14-3: Setting the scaled Wheel Circumference value

Figure 14-4: Reading the Wheel Circumference value

The program then enters a loop that reads the Rotation
Sensor, converts the value from degrees to inches or centi-
meters, and displays the result. The Loop block is set to loop
forever, as shown in Figure 14-5.

Figure 14-5: Looping forever

The Rotation Sensor block reads the distance the B
motor has moved in degrees, as shown in Figure 14-6.
The three Math blocks then multiply the value by the
Wheel Circumference value, divide by 360, and then divide
by 100. This is the NXT-G implementation of the following
expression:

degrees × wheel circumference ÷ 360 ÷ 100

Figures 14-7 through 14-9 show the Configuration
Panels for the Math blocks.

Figure 14-6: Reading the Rotation

Sensor for the B motor

Figure 14-7: Multiplying the Rotation Sensor reading by the wheel

circumference

Figure 14-8: Dividing by 360 to convert degrees to rotations

Figure 14-9: Dividing by 100 to scale down the result

Finally, the DisplayNumber block you created in Chap-
ter 13 displays the value with a label and unit.

Figure 14-10: Displaying the value

When you run the program, it should display how far
the B motor has moved. You could use this code as part of
a larger program, for example to track how far the robot
travels using the BumperBot or WallFollower program.

	 math and logic	 183

floating-point
math

Because NXT-G 2.0 uses floating-point math,
it avoids the problems associated with integer
math described in the previous section. For many
programs, this makes using numbers much easier;

you just work with them the same way you would if you were
using a calculator. However, floating-point numbers do have
some limitations, and their effects are not always easy to
understand.

range

The range of values that you can use with floating point
numbers is quite large. You can have positive or negative
values larger than 1 × 1030, the number 1 followed by 30
zeros. You can also have values smaller than 1 × 10-31, which
has 30 zeros to the right of the decimal point followed by
a 1. So, the range of values you can use is unlikely to cause
you any problems.

precision

Floating-point math will almost always work just the way
you expect. In the few cases when it doesn’t, the problem
will usually be because of the precision of floating-point
numbers; that is, the number of digits you can expect to be
correct. Although the range of floating-point numbers allows
you to use as many as 30 digits, only the first 7 digits are
guaranteed to be correct.

Table 14-3 shows some example values, the part of
the value you can rely on, and the maximum error the
value could have. For example, if the Math block gives you
123456789 as a result, you can be sure that the exact result
is somewhere between 123,456,700 and 123,456,799.

table 14-3: floating-point numbers

number part guaranteed
to be correct

maximum error

123456789 123456700 89

123.456789 123.4567 0.000089

0.0123456789 0.01234567 0.0000000089

Notice that you can always rely on seven digits,
regardless of where the decimal point is. This is where the
“floating” part of floating-point math comes from. For most
purposes, seven digits of precision is more than enough.

NOTE	 Why isn’t the number rounded to seven digits
if that’s all that are correct? People have 10 fingers, so
we count by ten and find it convenient to think in terms
of tens, hundreds, or thousands. Computers don’t have
fingers; they use electronic circuits that count by 2.
Floating-point numbers actually are rounded, but they’re
rounded to powers of 2, which isn’t very intuitive for
humans.

the number to text block

You’ve used the Number to Text block often to convert a
number to text in order to display the value. When used with
floating-point numbers, this block always rounds the value to
two decimal places.

Figure 14-11 shows a very simple program for testing the
Number to Text block. This program simply converts the num-
ber supplied by the Math block to text and displays the value.

Figure 14-11: A simple program to test the Number to Text block

Table 14-4 shows the results from this program using
some example values. As you can see, the displayed value
will show at most two places to the right of the decimal
point. Although this won’t usually cause a problem, two
different values could be displayed the same way, which can
be a bit confusing. For example, rounding numbers to two
decimal places gives the same result for the last two entries
in Table 14-4: 0 and 0.0002 will both be displayed as 0.

table 14-4: number to text block results

math block value displayed value

123 123

123.4 123.4

123.45 123.45

123.456 123.46

123.4567 123.46

0 0

0.0002 0

184	 chapter 14

the random
block

Now that you know how numbers work in NXT-G, you can
move on to some of the other math-related blocks, start-
ing with the Random block. This block is found in the Data
group on the Complete Palette, as shown in Figure 14-12.
Figure 14-13 shows how the block looks in a program.

Figure 14-12: The Random block on the Complete Palette

  Figure 14-13: The Random block

A die is used for the picture on the Random block
because in many games a die (or two or more dice) is used to
generate a random number. Rolling a standard die will give
you a random number between one and six. Each time you
roll the die, you know you’ll get a number in that range, but
you don’t know which one (which is why it’s called a random
number).

Like a die, the Random block is used to generate a ran-
dom number. You can use this block to create robotic games
or to add some randomness to your robot’s behavior. Often a
robot that is a little unpredictable can be more interesting or
seem to have more personality.

You can set the range of values the Random block
can generate using the Configuration Panel (shown in
Figure 14-14). The default range is from 0 to 100, giving an
output value that can be as small as 0 or as large as 100.
You can change the range to suit your program; for example,
to create a virtual die, you would set the Minimum value to
1 and the Maximum value to 6.

Figure 14-14: The Random block’s Configuration Panel

You can set the Minimum and Maximum values using
the two-sided slider or by typing the values in the boxes
above the slider. Using the slider, you can set the values
between 0 and 100. The Random block can work with
values up to 32,767; you just need to enter the value in
the box if it’s greater than 100. The Minimum setting must
be at least 0, which means that the block can’t generate a
negative number. If you need a negative random number,
you can combine the Random block with a Math block. For
example, the steering value for the Move block takes a value
between -100 and 100. To generate a random steering
value, you could have a Random block generate a value
between 0 and 200 and then use a Math block to subtract
100 from the random number. This will give you a result
between -100 and 100.

adding a
random turn
to BumperBot

In this section, you’ll make a small change to the BumperBot
program to make it a little more interesting. Recall that when
the TriBot bumps into something, it backs up and turns in a
different direction. The distance the robot turns doesn’t need
to be any particular value; you simply want to have the robot
point in a different direction. You can use a Random block
to control the distance the robot turns, which will make the
program less predictable.

Figure 14-15 shows the part of the BumperBot pro-
gram that you need to change. This is the code that runs
after the Touch Sensor determines that the TriBot has run
into something. The first five blocks make the robot back up,
and the final Move block turns the robot.

The Duration setting for the Move block is set in the
Configuration Panel to 350 degrees, as shown in Fig-
ure 14-16. To make the turn less predicable, add a Random
block before the Move block, and connect the output data
plug from the Random block to the Move block’s Duration
data plug, as shown in Figure 14-17.

	 math and logic	 185

Figure 14-16: The Configuration Panel for the Move block that turns the

TriBot

Figure 14-17: Connecting the Random block to the Move block

Now you need to set the range of values to use. The
original program used 350 degrees, which turns the robot a
little more than a quarter turn. I’ll use 300 degrees for the
Minimum and 2000 for the Maximum. With these values,
the robot sometimes turns quickly and starts off again and
sometimes spins in place for a while before resuming its
journey around the room. Figure 14-18 shows the Configu-
ration Panel for the Random block.

Figure 14-18: The Configuration Panel for the Random block

Run the program with these changes, and the TriBot
should vary the amount it turns after bumping into
something.

NOTE	 Notice that you didn’t need to make any changes
to the Move block’s Configuration Panel. Attaching the
data wire to the Duration input data plug causes the value
set in the Configuration Panel to be ignored. When you’re
looking at a Configuration Panel to find out what a block
does, make sure to also check the data wires attached to
the block so you’ll know which settings to ignore.

the logic block
Many of the programs presented so far make decisions
using the program flow blocks, the sensor blocks, and the
Compare block. These decisions involve a single condition,
usually comparing the value from a sensor to a target value,
with the result (either true or false) used in a Switch or Loop
block. To put it another way, the programs are asking simple
questions like “Is the Touch Sensor pressed?” or “Is the read-
ing from the Light Sensor less than 50?”

The Logic block lets you combine multiple conditions,
allowing your program to make more complex decisions. This

Figure 14-15: Backing up and turning

around

186	 chapter 14

lets your program ask questions like “Is the Touch Sensor
pressed and the Light Sensor reading greater than 50?”

You can find the Logic block with the other math-related
blocks in the Data group on the Complete Palette, as shown
in Figure 14-19. Figure 14-20 shows how the block looks
when you add it to your program.

Figure 14-19: The Logic block on the Complete Palette

Figure 14-20: The Logic block

In many ways the Logic block is similar to the Math
block, except that the Logic block works with logical values
instead of numbers. The Logic block works the same way as
the Math block; you select the operation you want to perform
and supply the input values, using either data wires or the
Configuration Panel (shown in Figure 14-21). Buttons are
used to set the values in the Configuration Panel, with the
check mark meaning true and the X meaning false.

Figure 14-21: The Configuration Panel for the Logic block

The Logic block supports four operations: And, Or, Xor,
and Not. The key to using this block successfully is under-
standing what each operations does.

N	And: The result of the And operation will be true only if
both input values are true. If either input value is false,
then the result will be false.

N	Or: The result of the Or operation will be true if either
input value is true or if both input values are true. The
result will be false only if both input values are false.

N	Xor: Xor is an abbreviation for Exclusive Or. This is similar
to the Or operation except that the result is false if both
input values are true. This is the way the word or is often
used in English; if your mother tells you that you can have
ice cream or candy, she probably doesn’t mean you can
have both; rather, she expects you to pick one or the other.

N	Not: This operation uses only the A input value and
generates the opposite value. If the input value is true,
then the output value will be false, and if the input value is
false, then the output value will be true.

Logical operations are often described using a table
that lists all the possible input values and the result for each
operation. This is called a truth table because the values in
the table are either true or false. Table 14-5 shows a truth
table for the four operations supported by the Logic block.
(Note that the result of the Not operation depends only on
the Input A value.)

table 14-5: truth table for the logic block

input A input B or and xor not

False False False False False True

False True True False True True

True False True False True False

True True True True False False

adding some
logic to
BumperBot

In this section, you’ll make a change to the BumperBot
program using the Logic block. Recall that the program
keeps the TriBot moving forward until it runs into something.
What if you want to limit how long the robot moves forward,
perhaps to keep it from wandering too far or just to keep
from getting bored? You’ll change the program so that the
TriBot stops and turns around if it bumps into something or
if it travels for more than 20 seconds.

Figure 14-22 shows the code that moves the TriBot
forward. The Move block starts the TriBot moving, and it
keeps going until the Loop block ends when the Touch Sen-
sor is pressed.

	 math and logic	 187

You already know how to use the Touch Sensor to tell
whether the TriBot has bumped into something. How can
you tell whether it has traveled for more than 20 seconds?
One way is to use a timer. You can use a Timer block to reset
the timer before starting to move and then use another
Timer block within the loop to tell when 20 seconds have
passed.

The Loop block can be configured to check the Touch
Sensor or the Timer, but it can’t use both. To check both
conditions, you need to change the way the loop is controlled.
Instead of having the Loop block check the Touch Sensor,
the two conditions can be checked using a Touch Sensor
block and a Timer block. The output from these two blocks
can then be combined using a Logic block, with the result
used to exit the loop. I’ll take you through these changes
step-by-step.

1.	 Add a Timer block to the left of the Move block, and
select Reset for the Action setting. Figure 14-23 shows
the placement of the Timer block, and Figure 14-24
shows its Configuration Panel.

Figure 14-23: The placement of the Timer block

Figure 14-24: Resetting the timer

Add the two sensor blocks and the Logic block inside the
Loop block, to the right of the Switch block.

2.	 Add a Timer block after the Switch block, and set the
target value to 20. The result of comparing the timer
value to the target value is put on the Yes/No data plug.
This plug is not shown when you first add the block to
the program, so you’ll need to open the complete data
hub by clicking the tab at the bottom of the block, as
shown here:

3.	 Add a Touch Sensor block after the Timer block. The
default settings check for the sensor being pressed, so
don’t make any changes to this block.

Figure 14-22: Moving forward until the Touch

Sensor is pressed

188	 chapter 14

4.	 Add a Logic block to the right of the Touch Sensor block.
The default Operation is Or, and you’ll be supplying the
input values using data wires, so don’t change any set-
tings for this block.

5.	 Draw a data wire from the Touch Sensor block’s Yes/No
data plug to the Logic block’s A data plug.

6.	 Draw a data wire from the Timer block’s Yes/No data
plug to the Logic block’s B data plug.

Figure 14-25 shows this section of the program, and
Figures 14-26 through 14-28 show the Configuration Panels
for the three new blocks.

Figure 14-25: The program with the three new blocks added

Figure 14-26: Have more than 20 seconds passed?

Figure 14-27: Is the Touch Sensor pressed?

Figure 14-28: Is either condition true?

Finally, change the Loop block to use the output value
from the Logic block to control the loop instead of using the
Touch Sensor.

7.	 Select the Loop block, and change the Control setting
from Sensor to Logic.

8.	 Draw a data wire from Logic block’s Result data plug to
the Loop block’s Loop Condition data plug.

Figure 14-29 shows the program with these changes,
and Figure 14-30 shows the Configuration Panel for the
Loop block.

Figure 14-29: The Logic block connected to the Loop block

Figure 14-30: Exiting the loop when the Logic block output is true

Now when you run the program, the TriBot should go
forward for a maximum of 20 seconds. If it doesn’t bump
into something within that time, it should turn and go off in
a different direction.

	 math and logic	 189

the range
block

The final math-related block is the Range block, which
determines whether a number is inside or outside a range of
numbers. For example, say you want to know whether the
reading from the Light Sensor is between 40 and 60. You
could pass the output value from a Light Sensor block to two
Compare blocks and a Logic block, as shown in Figure 14-31.

Figure 14-31: Is the Light Sensor reading between 40 and 60?

This approach will certainly work. However, checking to
see whether a number is in a certain range is so useful that
NXT-G provides a quicker way to do this. Using the Range
block, you can perform the same comparison using one block
instead of three. The Range block is on the Complete Palette
in the Data group (shown in Figure 14-32). Figure 14-33
shows how the block will appear in your program.

Figure 14-32: The Range block on the Complete Palette

  Figure 14-33: The Range block

Figure 14-34 shows the Configuration Panel for the
Range block. You can set the range by using the two-sided
slider or by entering the values in the A and B boxes. Using
the slider, you can select lower and upper limits between 0
and 100. To use a values greater than 100 or less than 0,
enter the numbers in the boxes.

Figure 14-34: The Range block’s Configuration Panel

The test value can be entered into the box on the Con-
figuration Panel, although usually you’ll supply the test value
using a data wire.

There are two questions you can ask using the Range
block: “Is the test value inside the range (between the lower
and upper limit)?” and “Is the test value outside the range
(less than the lower limit or greater than the upper limit)?”
The Operation setting determines how the test value is com-
pared with the range defined by the lower and upper limits
(see Figure 14-35).

Figure 14-35: The Operation setting

improving
RedOrBlue

You can use the Range block to improve the RedOrBlue
program from Chapter 5. The original program uses the
Light Sensor or the Color Sensor in Light Sensor mode and
assumes that all objects are either red or blue. In this sec-
tion, you’ll change the program to eliminate this assumption,
using the Range block to more accurately assign the color
(red or blue) based on the Light Sensor reading.

The improvements made in this section can also be
made to the RedOrBlueCount program. I’m using the simpler
RedOrBlue program here to make it easier to concentrate on
the use of the Range block. The original RedOrBlue program
(shown in Figure 14-36) uses a Switch block to decide which
color an object is based on the Light Sensor reading. One
of the first steps in developing this program was determining
the Light Sensor readings for red and blue objects. For red
objects, I got a reading of 55, and for blue objects, I got a
reading of 27. The Switch block compares the Light Sensor

190	 chapter 14

reading with 42 (midway between 55 and 27) to classify
objects as either red or blue.

Figure 14-36: The original RedOrBlue program

Instead of identifying all objects that give a reading
greater than 42 as red, you’ll use the Range block to limit
this to readings close to 55. Similarly, you’ll use readings
close to 27 for blue objects. For objects that give Light Sen-
sor readings that aren’t close to either 55 or 27, you’ll have
the robot say “Sorry” (the Sound Block doesn’t have choices
for “Unknown” or “I don’t know”).

To determine which ranges to use for each color, test
several red and blue objects using the Feedback box on a
Light Sensor block and record the values. Because the Light
Sensor (and the Color Sensor using Light Sensor mode)
measures only the amount of reflected light (not the color),
you should use objects that are roughly the same shade of
red or blue, or the range of values will be too large to be
useful. The readings I got are between 51 and 61 for red
objects and are between 24 and 32 for blue objects. I’ll use
these values for the Range blocks in the following program-
ming instructions.

The first set of changes will use a Light Sensor block
and a Range block to determine whether an object is red.
You’ll change the Switch block to use the output from the
Range block instead of reading the Light Sensor, leaving
the blocks inside the Switch block unchanged. The follow-
ing instructions and figures use the Light Sensor block. If
you’re using the Color Sensor, then use the Color Sensor
block, and set the Action setting to Light Sensor, as shown
in Figure 14-37.

Figure 14-37: Using the Color Sensor in Light Sensor mode

Follow these steps to make the changes to the program:

1.	 Open the RedOrBlue program.

2.	 Add a Light Sensor block to the left of the Switch block.
Don’t make any changes to the Configuration Panel.

3.	 Add a Range block to the right of the Light Sensor block.
Set the A and B values to 51 and 61. The Configuration
Panel should look like this:

4.	 Draw a data wire from the Light Sensor block’s Intensity
data plug to the Range block’s Test Value data plug. This
section of the program should look like this:

5.	 Select the Switch block, and change the Control from
Sensor to Value. The Configuration Panel should look
like this:

	 math and logic	 191

6.	 Draw a data wire from the Range
block’s Yes/No data plug to the
Switch block’s Value data plug. The
program should now look like this:

When you test your program, it
should correctly identify all the red
objects. You may need to adjust the val-
ues set in the Range block slightly if your
lighting conditions and selection of test
objects is different from mine. At this
point, all nonred objects are identified as
blue. You’ll address this next.

To identify blue objects, you’ll again use a Light Sensor
block followed by Range block. You’ll put these on the lower
Sequence Beam of the Switch block, which is used only for
nonred objects and then add another Switch block to say
either “Blue” or “Sorry” as appropriate. Follow these steps to
make the changes:

7.	 Add a Light Sensor block to the lower Sequence Beam
of the Switch Block, to the left of the Sound block. Don’t
make any changes to the Configuration Panel.

8.	 Add a Range block to the right of the Light Sensor block,
and set the A and B values to 24 and 32. The Configu-
ration Panel should look like this:

9.	 Draw a data wire from the Light Sensor block’s Intensity
data plug to the Range block’s Test Value data plug. This
section of the program should look like this:

10.	 Add a Switch block between the Range block and the
Sound block. Set the Control to Value, and draw a data
wire from the Range block’s Yes/No data plug to the
Switch block’s Value data plug. The Configuration Panel
should look like this:

11.	 Drag the existing Sound block (the one that says Blue)
onto the upper Sequence Beam of the new Switch block.
This part of the program should look like this:

12.	 Add a Sound block to the lower Sequence Beam of the
new Switch block. Select Sorry from the File list. The
Configuration Panel should look like this:

192	 chapter 14

Now the program should correctly identify red or blue
objects and say “Sorry” for all others. Again, you may need
to adjust the values for the second Range block to make the
program work for all blue objects.

improving
RedOrBlueColorMode

The RedOrBlueColorMode program from Chapter 5 (shown
in Figure 14-38) is similar to the RedOrBlue program, except
that it uses the Color Sensor to determine the color directly.
The program does a good job of identifying red objects, but
it calls all other objects blue. You could fix this problem using
nested Switch blocks like you did for the RedOrBlue program,
but there is an easier way.

Figure 14-38: The RedOrBlueColorMode program

The Color Sensor block can determine the color of an
object and generate an output value using the values in
Table 14-6. In the previous section, the Switch blocks made
decisions based on a logical value passed from a Range
block. But since a Switch block can also use a number to
make a decision, we can improve the program by changing
the Switch block to use the output from a Color Sensor block.
The Switch block will need three choices: one for red, one for
blue, and one for all other colors.

The completed program should look like this:

	 math and logic	 193

table 14-6: color sensor output values

number color

1 Black

2 Blue

3 Green

4 Yellow

5 Red

6 White

Follow these steps to make the changes:

1.	 Open the RedOrBlueColorMode program.

2.	 Add a Color Sensor block between the Touch Sensor
block and the Switch block. Don’t make any changes to
the Configuration Panel.

3.	 Select the Switch block. Change Control to Value and
Type to Number.

4.	 Uncheck the Flat view option so that you can use three
conditions. The Configuration Panel should look like this:

Now check the Configuration Panels of the two Sound
blocks to see which tab they are on. The Sound block that
says “Blue” should be on the first tab and will be used when
the input is 0. The Sound block that says “Red” should be
on the second tab and will be used when the input is 1 and,
because it’s selected as the default, will also be used for any
value other than 0. Follow these steps to change the values
to match the output from the Color Sensor block and to add
the third choice to be used for objects that are neither red
nor blue:

5.	 Select the top item in the Conditions list. In the box at
the bottom of the panel, change the 0 to 2 to match the
Color Sensor output for a blue object. (Once you change
the value, the Conditions list will be reordered.) The
Configuration Panel should look like this:

6.	 Select the top item in the Conditions list, which should
now match 1. In the box at the bottom of the panel,
change the 1 to 5 to match the Color Sensor output for
a red object. The Configuration Panel should now look
like this:

7.	 Click the + button to add a new condition to the list.
The value for the new item will be 6 because the largest
value in the list is 5. Click the * button to make this item
the default. We don’t really care what the value is; we
just need this condition to match any value other than 2
or 5. The Configuration Panel should now look like this:

8.	 Select the third tab of the Switch block if it isn’t already
selected. Place a Sound block on the Sequence Beam,
and select Sorry from the File list. The Configuration
Panel should look like this:

9.	 Draw a data wire from the Color Sensor block’s
Detected Color data plug to the Switch block’s Value
data plug. The program should now look like this:

194	 chapter 14

When you run this version of the program, you should
notice that it does a much better job of identifying a wider
range of shades of blue and red, in addition to being much
simpler than the program that uses Light Sensor mode.
You can also easily extend the program to identify the other
colors by adding a few more tabs to the Switch block.

conclusion
This chapter has covered using numbers and logic in
your programs. The Math block is used for operating on
numbers, and in most cases will behave exactly as you’d

expect. Knowing how integer or floating-point math works
(depending on which version of NXT-G you’re using) will help
you avoid the most common problems encountered with
computer math.

The Logic block lets you write programs that make
complex decisions, such as combining the input from multiple
sensors. The Range block gives you a convenient way to
perform the common operation of testing a value to see
whether it’s in a certain range. The other block introduced
in this chapter was the Random block, which you can use to
add a little unpredictability to your programs and personality
to your robots.

15
files

A file is a collection of information stored on a computer (which in our case is the NXT). In this chapter, you’ll learn how to use
the File Access block to create and use files in your programs. You’ll make some changes to the RedOrBlueCount program to
save the number of objects in a data file and then restore the values the next time the program starts. You’ll also learn about
managing your NXT’s memory, including how to delete files or transfer them between the NXT and your computer.

using files
Your computer uses files to store music, pictures, programs, word processing documents, and numerous other kinds of
information. The NXT also uses files to store many different types of information, such as your programs, the images used
by the Display block, and the sounds used by the Sound block.

The File Access block allows you to create your own files on the NXT, which you can use to store any data that your
programs use. The information you store in a file is persistent, meaning that it’s still available after your program ends, even
if you turn off the NXT. Persistence lets you store information from a program and use it later in the same or a different
program. Some common uses for files in NXT-G programs are as follows:

N	 Storing data collected by the program as it runs. For example, in “Saving the RedOrBlueCount Data” on page 197, you’ll use
a file to store the number of objects counted by the RedOrBlueCount program. Other examples include high scores for a
game or a map generated by a maze-solving robot.

N	 Storing program settings such as the speed the robot should use or trigger values for sensors. Many programs need to
be adjusted for a particular environment, and storing the program settings in a file makes it possible for you to easily
customize the program.

N	Data logging or collecting sensor data as part of an experiment or a test program. The versatility and ease of use of the
NXT kit make it an ideal data logging tool for classroom science experiments. Collecting and analyzing the data from small
test programs can teach you a lot about how the sensors work. I’ll discuss data logging in depth in Chapter 16.

the file access block
Working with files is the job of the File Access
block, found in the Advanced group on the
Complete Palette (shown in Figure 15-1).
Figure 15-2 shows how this block should look
when you add it to your program. Figure 15-1: The File Access block on the Complete Palette

Figure 15-2:

The File

Access block

196	 chapter 15

the filename

All NXT files have a name. The first item you usually set in
the Configuration Panel (Figure 15-3) is the name of the file
to use. Filenames can be up to 15 characters long and can
include numbers, letters, spaces, and most of the special
characters such as * and #. Try to use meaningful filenames
that will tell you something about the actual content of your
files.

When the NXT is connected to the MINDSTORMS
software with the USB cable or via a Bluetooth connection,
the files already on the NXT will appear in the File list, as
shown in Figure 15-4. To reuse a file that’s already on the
NXT, select it from the list, and the Name box will be filled
in automatically. This is both more convenient and less error
prone than entering the name yourself. To create a new file,
or if the NXT isn’t connected to the MINDSTORMS software,
enter the name in the Name box.

Figure 15-4: Selecting the name from the File list

the action setting

The Action setting tells the block what you want to do with the
file. There are four choices: Write, Read, Delete, and Close.

N	Write: Stores information in a file. The file will be created
if it doesn’t already exist. The File Access block always
writes new data at the end of the file, so if the file already
exists, the new data is added on at the end.

N	Read: Retrieves information from a file. The value read
from the file is passed to other blocks in the program
using a data wire.

N	Delete: Deletes a file. To replace the information in a
file, first delete the file and then write the new value. For
example, to set the high score of a game, first delete the
file containing the old high score, and then write the new
value.

N	Close: Closes the file, which tells the NXT that you are
through using it. After using the Write Action to add data
to a file, you need to close the file before you can read
from it or delete it. Similarly, after using the Read action,
you must close the file before you can write to or delete
the file.

the type setting

The File Access block can read and write both numbers and
text values. Select the appropriate choice for the Type setting
to tell the block which data type you are using.

When writing to the file, the value can be supplied via
a data wire or the Configuration Panel. With Text selected
for Type, the Configuration Panel will appear as shown in
Figure 15-4, and you can enter the text to write to the file
in the Text box. When writing a number, the Configuration
Panel will appear as shown in Figure 15-5, and you can
enter the number to write to the file in the Number box.

Figure 15-5: Configuration Panel settings for writing a number

When the Action is set to Read, the data will be available
on either the Text out or Number out data plug (shown in
Figure 15-6), depending on the Type setting.

Figure 15-6: The File Ac-

cess block’s Text out and

Number out data plugs

Figure 15-3: The File Access block’s

Configuration Panel

	 files	 197

saving the
RedOrBlueCount
data

Recall that the RedOrBlueCount program presented in
Chapter 11 identifies and counts red and blue objects. In this
section, you’ll change the program to save the number of
red and blue objects to a file. Figure 15-7 shows the main
part of the original program. The Switch block uses the
Light (or Color) Sensor to determine the object’s color; then
the appropriate variable is updated, and the new total is
displayed. You’ll add code after the Switch block to save the
values of the two variables, Total Red and Total Blue, to a file
named RedBlueCounts.

Saving these two values is a four-step process:

1.	 Delete the existing file. If the file already exists (it will
after the first time through the loop), you need to delete
it before writing the new values, or those values will be
added onto the end of the file instead of replacing the
current values.

2.	 Write the Total Red value.

3.	 Write the Total Blue value.

4.	 Close the file, which tells NXT that you are finished
writing to it. Close the file each time through the loop so
that it can be deleted the next time around.

The following instructions will walk you through the entire
process, starting with deleting the file if it already exists:

1.	 Open the RedOrBlueCount program.

2.	 Add a File Access block just after the Switch block. Be
sure that it’s inside the Loop block, as shown here:

Figure 15-7: Counting red and blue objects

198	 chapter 15

3.	 In the Configuration Panel, select Delete for the Action
setting, and enter RedBlueCounts for the filename.

To write the number of red objects to the file, use a
Variable block to get the current value.

4.	 Add a Variable block after the File Access block, and
select Total Red from the list of variables.

Next, you’ll use three more File Access blocks to write
the values to the file, all with the same name.

NOTE	 The most common problem that I’ve encountered
when using using files is misspelling the filename. If one
of the four blocks has the filename misspelled, the pro-
gram won’t work correctly. To avoid this problem, copy
the existing File Access block (the one used to delete the
file) instead of adding a new one by holding down the
ctrl key while clicking and dragging the block to the right
of the Variable block. Move the mouse slowly and let the
Loop block expand to make room for the new block before
releasing the mouse button.

5.	 Copy the first File Access block, and place the copy after
the Variable block.

6.	 Make sure the new block is selected, and then use the
Configuration Panel to set the Action item to Write. Set
the Type item to Number to match the data type of the
Total Red variable.

7.	 Draw a data wire from the Variable block’s Value plug to
the File Access block’s Number plug. This section of the
program now should look like this:

The new File Access block will first create the RedBlue-
Counts file and then write the value from the Total Red vari-
able. Now you need to add Variable and File Access blocks to
write the Total Blue value to the file.

8.	 Add a Variable block to the right of the File Access block,
and select Total Blue from the list of variables.

9.	 Copy the last File Access block we added (the one that
writes to the file), and place the copy after the new Vari-
able block. This block will write the Total Blue value to
the file. None of the block’s configuration settings needs
to change since this block also writes a number to the
RedBlueCounts file.

	 files	 199

10.	 Draw a data wire from the Vari-
able block’s Value plug to the File
Access block’s Number plug. This
section of the program now should
look like this:

Finally, close the file. Once again
you’ll copy the previous File Access
block and then change the Action set-
ting to ensure that the same filename
is used.

11.	 Copy the previous File Access
block, and place the copy just to
the right of the existing block.
Change the Action setting to Close.

12.	 Close the data hubs on the blocks
you’ve added. The completed sec-
tion of code should look like this:

Now run the program and test
it with several red and blue objects.
The program should write the count of
red and blue objects to a file, although
there won’t be any visible difference in
the program’s behavior.

You can tell that the file has been created by connecting
the NXT to the MINDSTORMS software and selecting one
of the File Access blocks. If the program worked as expected,
then RedBlueCounts should appear in the Configuration
Panel’s File list, as shown in Figure 15-8.

Figure 15-8: RedBlueCounts is in the File list.

NOTE	 Actually, all this tells you is that the file was created,
not that the correct information was written to the file.
Later in this chapter you’ll write the FileReader program to
read and display the values in a file. Then you can then use
this program to make sure the values are saved correctly.

checking for
errors

One interesting aspect of the File
Access block is that it may not be able
to perform the task you’ve given it. For
example, the block can’t read from a
file that doesn’t exist, and it can’t write
to a file if the NXT’s memory is full.
The block’s Error data plug (shown in
Figure 15-9) allows you to check for
these kinds of situations. The data
plug reports a logic value, namely, true
if there was an error and false if the
operation was successful.

Figure 15-9: The

File Access block’s

Error data plug

200	 chapter 15

Any File Access block can have an error. When designing
your program, you need to decide whether you should add
code to check for an error and what the program should do if
a block fails.

I didn’t include any error checking to the RedOrBlue-
Count program, even though there could be a problem. Let’s
look at what could go wrong with the File Access blocks and
decide whether you should be checking for errors:

N	Deleting the file can fail if the file doesn’t exist. This isn’t
a problem because the reason for including this block is to
make sure the file doesn’t exist before you start writing to
it. In fact, the first time you run the program, the file won’t
exist.

N	Writing the Total Red value can fail if the file can’t be
created or the value can’t be written because the NXT is
out of memory.

N	Writing the Total Blue value can fail if the value can’t be
written because the NXT is out of memory.

N	Closing the file can fail if the file wasn’t created by the
block that writes the Total Red value. This block will fail
only if the earlier block fails, so you can safely ignore this
error.

You can ignore errors from the File Access blocks that
delete and close the file, but what about the errors from the
blocks that write the data? These blocks can fail if the NXT’s
memory is full when you run the program, and you can
detect this situation by checking the Error data plug on the
two File Access blocks that write to the file.

What should the program do if it can’t write to the file?
One possibility is to write a message on the screen, wait
for the user to press a button to acknowledge the message,
and then stop the program. Figure 15-10 shows how the
code to check for an error when writing the Total Red value
might look. Note that this code doesn’t do anything to fix the
problem; it just alerts the user so that the error isn’t silently
ignored.

NOTE	 Adding error checking code both takes up space
and can disrupt the visual flow of the program, making it
more difficult to read and understand. For a simple test
program, I wouldn’t bother adding this code. On the other
hand, if this program was for a class project, a demon-
stration, or some other important event where failure is
a serious issue, then I would definitely add some error
checking code to avoid any unpleasant surprises.

the FileReader
program

FileReader is a very simple program that displays the con-
tents of a file on the NXT’s screen, one value at a time. This
program uses two properties of the File Access block:

N	 All values written to the file are text values. When you
write a number, the File Access block converts it to a text
value before writing it to the file. The block also converts
a value from text to a number when reading the file,
which means that you can read all the data from a file as
text values, even if some or all of the data was originally
numbers.

N	When reading from a file, the Error value will be true
when all the data has been read. To read all the values in
a file, you can read the values in a loop that continues until
the Error value is true.

Figure 15-11 shows the program. The File Access block
reads a value from the file as text. If there is no error, the
value is displayed, and the program waits for you to press
the Enter button. The blocks within the Switch block are
on the false tab, because the Error value will be false if the
read is successful. The Loop block repeats until the File
Access block’s Error value is true.

Figure 15-10: Error checking code

	 files	 201

Figure 15-11: The FileReader program

Figures 15-12 through 15-16 show the Configuration
Panel for each block. The File Access block is configured to
use the RedBlueCounts file. Change this setting to view a
different file.

Figure 15-12: Configuration Panel for the File Access block

The Switch block uses the File Access block’s Error
value. The Flat view option must be unchecked in order
to connect the data wire from the File Access block to the
Display block.

Figure 15-13: Configuration Panel for the Switch block

Figure 15-14: Configuration Panel for the Display block

The Wait block pauses the program until you press and
release the NXT’s Enter button to give you time to read the
value.

Figure 15-15: Configuration Panel for the File Access block

The Loop block continues until the File Access block’s
Error value is true, which will happen after all the data has
been read from the file.

Figure 15-16: Configuration Panel for the File Access block

When you run the program, you should see the totals
from your last test run of the RedOrBlueCount program.
The Total Red value should be displayed first, followed by the
Total Blue value. The program should stop after displaying
these two values.

restoring the
RedOrBlueCount
data

In this section, you’ll change the RedOrBlueCount program
so that the Total Red and Total Blue variables are initialized
from the values saved in the RedBlueCounts file, instead of
starting at zero. For each variable, you’ll use a File Access
block to read the saved value from the file. If the file doesn’t
already exist, the File Access block will fail, and the value
from the Error data plug will be true. If this happens, you’ll
just set the variable to zero.

202	 chapter 15

The code that writes the values to the file writes Total
Red first and then Total Blue. The code that reads the values
from the file needs to use the same order, so you’ll initialize
Total Red and then Total Blue. After reading the two values
from the file, you need to close the file, or you won’t be able
to delete it later in the program. Here’s the pseudocode for
initializing the two variables:

read a number from the RedBlueCounts file
store the number in the Total Red variable
if there was an error reading the file then
 set Total Red to 0
end if
read a number from the RedBlueCounts file
store the number in the Total Blue variable
if there was an error reading the file then
 set Total Blue to 0
end if
close the RedBlueCounts file

For the following programming instructions, I’ve turned
on the NXT and connected it to the MINDSTORMS software
to make the RedBlueCounts file appear in the File Access
block’s list of files. This makes writing the program a little
easier. Figure 15-17 shows the two Variable blocks that
perform the initialization in the original program. Instead of
deleting these blocks, you’ll add the code to read the values
from the file and use these blocks if there is an error.

 

Figure 15-17: Original initialization code

Follow these steps to make the necessary changes to
the program:

1.	 Open the RedOrBlueCount program (if it’s not already
open).

2.	 Drag a File Access block to the beginning of the
program.

3.	 Select RedBlueCounts from the File list. If you don’t
have the NXT connected to the MINDSTORMS software,
you’ll need to enter the filename in the Name box.

4.	 Set the Action setting to Read and the Type setting to
Number.

5.	 Add a Variable block to the right of the File Access block,
and select Total Red from the list of variables. Set the
Action setting to Write.

To store the value read from the file in the Total
Red variable, you need to draw a data wire from the File
Access block to the Variable block. When you first add a
File Access block to the program, only three data plugs are
displayed, and the one you need to use, Number out, is hid-
den. Before connecting the data wire, you must open the full
data hub.

6.	 Click the tab at the bottom of the File Access block to
open the full data hub.

	 files	 203

7.	 Draw a data wire from the File Access block’s Number
out data plug to the Variable block’s Value data plug.

Now you’ll add the code to check for an error. You’ll
add a Switch block that uses the value from the File Access
block’s Error data plug and then move the Variable block that
sets Total Red to 0 into the Switch block. If there is an error,
the variable will be correctly initialized to 0, and if there isn’t
an error, the Switch block will do nothing.

8.	 Add a Switch block after the Variable block that uses the
value from the File Access block.

9.	 Set the Switch block’s Control item to Value.

10.	 Draw a data wire from the File Access block’s Error data
plug to the Switch block’s data plug.

11.	 Drag the Variable block that is to the right of the Switch
block onto the Switch block’s upper Sequence Beam.
This section of the program should now look like this:

NOTE	 You could have put both Variable blocks within
the Switch block so that the value from the File Access
block is written to the variable only when the read
operation is successful. I prefer to include only the error
handling code within the Switch block because that pro-
vides a better separation from the normal program flow,
making the program easier to understand.

12.	 Close the File Access block’s data hub, and unselect the
Switch block’s Flat view. This section of the program
should now look like this:

Now you need to make similar changes to initialize the
Total Blue variable. You should be able to accomplish this
task without detailed step-by-step instructions. The settings
of the File Access and Switch blocks should be identical to
the ones we used for initializing the Total Red value. The
Variable blocks should use the Total Blue variable instead of

204	 chapter 15

Total Red. When you
have completed the
changes, the beginning
of the program should
look like this:

Once both values
have been read from
the file, the program
should close the file.

13.	 Add a File Access
block at the end of
the new code.

14.	 Select RedBlueCounts from the File list, and set the
Action item to Close.

The completed code for initializing the two variables
should look like this:

You still need to make one more set of changes before
testing the program. After the code that initializes the vari-
ables and before the start of the main loop are two Display
blocks that print the starting values of the two variables,
as shown in Figure 15-18. These two blocks print the text
values Red: 0 and Blue: 0, which worked fine when the
counters always started at zero. Now that the values might
not be zero, you need to add some code to print the correct
values. To display each value, you’ll use a Variable block to
read the value and a DisplayNumber block to add the label
and display the value.

Figure 15-18: Original code to display the initial values

	 files	 205

Figure 15-19 shows the changes needed to print the
correct count of red objects. The Variable block (shown
in Figure 15-20) reads the current Total Red value. The
DisplayNumber block (shown in Figure 15-21) adds the label
“Red: ” before the value and displays the result after clearing
the display. Remember to put a space after the colon so
that the number doesn’t get squished up against the label.

Figure 15-19: Displaying the Total Red value

Figure 15-20: Reading the current Total Red value

Figure 15-21: Adding a label and displaying the value

The code to display the number of blue objects (shown
in Figure 15-22) is similar. The Variable block reads the Total
Blue variable (shown in Figure 15-23), and the Display
Number block (shown in Figure 15-24) displays the value
with the label “Blue: ” on line 5 without first clearing the
screen.

Figure 15-23: Reading the current Total Blue value

Figure 15-24: Adding a label and displaying the value

When you run the program, it should start counting
using the previous values, instead of starting at zero. Each
time the program runs, it will add on to the previous totals.
To restart the counters (set them back to 0), you’ll need to
delete the RedBlueCounts file, as explained in “Managing
Memory” on page 207.

Figure 15-22: Displaying the Total Blue value

206	 chapter 15

refactoring

When you refactor
a program, you
make changes to
it that increase
its quality without
affecting how the
program behaves.
Increasing the
quality could
mean making
the program
simpler, easier to
understand, or
easier to modify.
The RedOrBlue-
Count program as
presented to this
point provides a
good example of a
program that can be improved by simplifying
it. Figure 15-25 shows the program’s main
loop. Notice that within the loop the program
displays the values of the variables. This code
does exactly the same thing as the code we
just added to display the initial values.

You can eliminate the duplicated code
by moving the blocks that display the initial
values inside the Loop block. Each time the
loop repeats, both values will be displayed
on the NXT’s screen, eliminating the need
to display the value inside the Switch block.
Figure 15-26 shows the blocks needed to
display the variable values after moving them
inside the Loop block, and Figure 15-27
shows the changes to the Switch block.

When you run the program, it should
behave exactly as before. The changes
improve the program’s quality by making it
smaller and removing potential errors that
could be caused by displaying the values in
two places. This is another example of the
DRY (Don’t Repeat Yourself) principle.

Refactoring a program as you add new
features can help prevent it from growing
into an unmanageable mess.

Figure 15-25: The program’s main loop

Figure 15-26: Displaying the values inside the loop

Figure 15-27: Switch block after removing the blocks to display the updated value

	 files	 207

managing
memory

All the files on your NXT (the programs, sound, images, and
data files) take up some of the NXT’s limited memory. In
this section, I’ll show you how to delete files to free up more
memory and how to transfer files between the NXT and your
computer.

To manage the NXT’s memory, click the NXT Window
button on the Controller (shown in Figure 15-28), and then
select the Memory tab in the NXT window (shown in
Figure 15-29).

Figure 15-28: The NXT Window button on the Controller

Figure 15-29: The Memory tab in the NXT window

The left side of the window contains a graphic repre-
sentation of the NXT’s memory, showing the amount used by
each type of file and the amount of unused, or free, space.
From Figure 15-29 you can see that I’ve filled about half
the space with programs and a smaller amount with sounds
and graphics (images). The section labeled Other includes
the data files created by my programs, which use about a
quarter of the NXT’s memory. There is still a small portion of
unused memory, the exact amount of which is listed on the
right side of the window as Free Storage. To display individual
files, select one of the labels (Program, Sound, Graphic, or
Other). In Figure 15-29, the Sound group is selected (the
label is slightly bolder than the others), and the center sec-
tion of the window shows the three sound files used by the
programs currently on the NXT.

deleting files

As you write more programs, you’ll eventually use all the
memory on your NXT. At that point, you’ll see the dialog box
shown in Figure 15-30 when you try to download a pro-
gram. To make room for your new program, open the NXT
window and delete some files.

Figure 15-30: Out-of-memory error dialog

The Delete All button is the simplest way to free up
your NXT’s memory. This will delete all the files on the
NXT, including any files created by your programs. If you
have a data file that you don’t want deleted, upload it to
your computer before clicking the Delete All button, and
then download the file back to the NXT after deleting all the
files. Uploading and downloading files is covered in the next
section.

Use the Delete button when you want to delete a single
file. For example, to delete the RedBlueCounts file, follow
these steps:

1.	 Click Other to display the data files.

2.	 Select RedBlueCounts.txt from the list of files.

3.	 Click the Delete button.

By default the list of files includes only the ones you’ve
downloaded or created. Check the Show System Files box to
include the files used by the demonstration programs and
the system sounds (the sounds the NXT makes when you
turn it one, download a program, or click a button). Clicking
Delete All with this box checked will delete all the system
files as well your program and data files, which will free up
more room for your programs or for large data files. To keep

208	 chapter 15

the system sounds but delete the demonstration programs,
delete individual files. See the “Files and Memory on the
NXT” topic in the help file for a list of the system files and a
description of each. To restore any system files that you’ve
deleted, you’ll need to reload the NXT’s firmware, following
the instructions in the “Updating the NXTs Firmware” topic
in the help file.

transferring files

The Upload button will copy the selected file to your com-
puter. This is useful for saving a backup copy of a data file,
perhaps before deleting all the files on the NXT. You may also
want to copy a data file to your computer so that you can
view or analyze the data using a text editor or spreadsheet
program.

Use the Download button to copy a file from your
computer to the NXT. The file can be one that you previ-
ously uploaded to the NXT or one that you created on your
computer. For example, if you write a program that reads
commands from a file and performs the specified actions,
you could create the list of commands using a text editor on
your computer and then download the file to the NXT.

common
problems

If you follow the programming instructions for changing the
RedOrBlueCount program exactly as given in this chapter,
you shouldn’t run into any problems. Of course, when writing
your own programs, everything won’t always work perfectly
the first time through, so you’ll need to do some debugging.
To make finding and fixing bugs go a little faster, here’s a
list of some of the most common problems that you may
encounter when using files:

N	Using the wrong filename. It’s easy to make a mistake
when entering a filename. To minimize this problem,
copy an existing File Access block instead of adding a
new one, or select the filename from the File list in the
Configuration Panel.

N	Running out of memory. File Access blocks that write
data will stop working if you use all the NXT’s memory.
This is often a problem with programs that collect a lot
of data. Check for errors when writing data to recognize
this situation, so you can then free up some of the NXT’s
memory.

N	Using too many files at the same time. Your program
can write to or read from up to four files at once. To use
a fifth file, you’ll first need to close one of the others.
For this reason, it’s usually best to close a file as soon as
you’re finished using it.

N	Forgetting to close a file. After writing data to a file, you
must close the file before you can read the data back. You
also must close a file you’ve used before you can delete it.

N	Forgetting to delete a file before writing new data.
The Write Action always adds the new data to the end of
the file, so to replace the existing data, you need to first
delete the file.

N	Missing data files. Check for errors when you’re
reading a program’s settings from a data file, and take
appropriate action if the file doesn’t exist. For example, the
RedOrBlueCount program sets the two variables to zero
if the RedBlueCount file doesn’t exist. For some programs,
there may not be a reasonable default action to take, and
the best you can do is print an error message and stop the
program.

N	Mixing up the order of the data. When you read data
from a file, the values will be in the same order used to
write them to the file. For example, the RedOrBlueCount
program writes the count of the red objects first and then
the count of the blue objects. When reading in the initial
values, the program uses the same order, setting the Total
Red variable first and then the Total Blue variable. If your
program uses a data file containing many settings, it’s
very easy to accidentally switch the order of two items.
Be very careful when writing the code to read and write
the values to avoid this issue.

conclusion
Files allow you to save data from you program onto the NXT.
You can then use that data later in the program, the next
time the program runs, or from a different program. The File
Access block contains all the features you need to create a
file, write and read data, or delete a file.

The Memory tab on the NXT window lets you manage
the files on your NXT (either programs or data files). From
this window, you can delete files to make room for other
programs and transfer files between the NXT and your
computer.

16
data logging

The process of acquiring and recording data is called data logging. In this chapter I’ll show you how to use the NXT-G fea-
tures you’ve already learned about to collect sensor data and how to use files to turn the NXT into a data logger (a tool for
data logging). I’ll also introduce you to the special data logging enhancements found in the LEGO MINDSTORMS Education
NXT Software 2.0.

data collection and the NXT
The NXT’s ability to collect and store data from sensors in a file makes it a useful tool for conducting science experiments.
Collecting data is a critical part of performing an experiment, and collecting data by hand can be very tedious and error
prone. Most people are just not that good at quickly recording measurements at precise intervals or over long periods of
time. Fortunately, these are exactly the kinds of tasks that a computer is good at. The combination of the NXT (a computer)
and MINDSTORMS sensors makes the NXT kit a powerful way to create a data logger.

The sensors included with your NXT kit can be used at home or in a science class for a wide variety of interesting
experiments. For example, you could use the Light Sensor or Color Sensor to compare the brightness of different brands
of compact florescent lights (CFLs) or use the Rotation Sensor to measure area and volume. You can expand the range of
possible experiments using the Temperature Sensor from LEGO Education (http://www.legoeducation.com/) or one of the
many NXT-compatible sensors from HiTech (http://www.hitechnic.com/), mindsensors.com (http://www.mindsensors.com/), or
Vernier (http://www.vernier.com/).

Data logging is also a very useful way to learn about the NXT sensors. Sensors play an important part in many robotic
programs, so the more you know about how the sensors work, the easier it is to write working programs. When designing
a program, it can be useful to first run some experiments to learn how a sensor will react under the conditions you expect
your program to experience.

the VerifyLightPointer program
The LightPointer program presented in Chapter 11 uses the Color Sensor or Light Sensor to point the TriBot toward a light
source. The TriBot spins in a circle and remembers the position where it detected the brightest light level. After completing a
full circle, the TriBot returns to the stored position, which should point it toward the light source.

The design of the LightPointer program depends on two assumptions:

N	 The sensor can detect the brightest light level while the TriBot is spinning.
N	 Pointing the TriBot at the brightest detected light level will point it at the light source.

If either assumption is wrong, the program won’t work. For example, the program could fail if the robot spins too fast
to accurately read the light level or if there is too much ambient light in the room to locate the direction of the light source.

210	 chapter 16

You can verify these two assumptions by conducting an
experiment that collects and then analyzes the data from the
sensor. The VerifyLightPointer program presented here will
collect the data. I’ll begin with a very simple program and
then expand it.

collecting the brightness data

The LightPointer program continuously reads the Color Sen-
sor or Light Sensor, searching for the highest reading, as the
TriBot spins in a circle. The VerifyLightPointer program will
do the same thing, except that it will write the sensor read-
ings to a file instead of looking for the highest reading.

Figure 16-1 shows the main part of the VerifyLight-
Pointer program. The Move block starts spinning the TriBot,
and then the Loop block continues until the Rotation Sensor
for the B motor reads greater than 1100 degrees (which
should move the TriBot in a full circle). These two blocks must
have the same settings as those in the LightPointer program
so that the data is collected using the same conditions as the
original program. Figures 16-2 and 16-3 show the Configu-
ration Panels for the Move and Loop blocks.

NOTE	 For the balloon tires, you can use
800 degrees for a full circle.

Figure 16-1: Saving the Color Sensor data

Figure 16-2: Spinning the TriBot slowly

Figure 16-3: Looping until motor B reaches 1100 degrees

Inside the Loop block, the Color Sensor block uses Light
Sensor mode, with the light turned off to read the amount
of ambient light, as shown in Figure 16-4. When using the
Light Sensor, the Generate light option should be turned off
(see Figure 16-5).

Figure 16-4: Reading the amount of ambient light using the Color Sensor

Figure 16-5: Reading the amount of ambient light using the Light Sensor

The sensor reading is passed to the File Access block,
which writes the number to the file VLPData. Figure 16-6
shows the Configuration Panel for this block.

Figure 16-6: Writing the sensor reading to the VLPData file

To finish the program, you need to add some house-
keeping blocks to get everything ready at the beginning of
the program and to clean things up at the end, as shown in
Figure 16-7.

	 data logging	 211

The program begins with a File Access block (see
Figure 16-8), which deletes the VLPData file if it exists. If you
omit this block, the program will work as expected the first
time you run it, but after that, it will keep adding the new
data to the end of the file (after the data from the previous
run), instead of replacing it.

Figure 16-8: Deleting the VLPData file

The Rotation Sensor block (see Figure 16-9) resets the
B motor sensor to zero to ensure that the TriBot spins for
the entire 1,100 degrees.

Figure 16-9: Resetting the Rotation Sensor for the B motor

The two blocks at the end of the program stop the
motors and close the file. These blocks aren’t strictly neces-
sary because when the program ends, the motors will stop,
and the file will be closed. I added them here because it’s

good programming practice to always clean up; it makes the
code more reusable and helps you avoid bugs if you decide to
add more code to the program in the future. Figures 16-10
and 16-11 show the Configuration Panels for the Move and
File Access blocks.

Figure 16-10: Stopping the motors

Figure 16-11: Closing the VLPData file

running the program

When you run this program, it will create a fairly large
data file. To be sure that you don’t run out of memory
while collecting the data, delete all the files on the NXT (see
“Deleting Files” on page 207) before downloading and running
the program. Then, position the TriBot and a light as shown
in Figure 16-12, and run the program. The robot should spin
slowly in a circle and then stop.

Figure 16-7: The completed program to collect the light level data

212	 chapter 16

Figure 16-12: The starting position

analyzing the data

After running the program, you should find a data file named
VLPData.txt on the NXT. The next step is to move the file to
your computer and examine the data. Follow these steps to
upload the file:

1.	 Click the NXT Window button on the
Controller.

2.	 Select the Memory tab in the NXT
window, and then select Other from
the NXT Memory Usage section. VLP-
Data.txt should be the only file listed.

3.	 Click the Upload button, and you’ll be prompted to select
the folder on your computer where the file should be
placed.

You can open the file in a text editor, word processor, or
spreadsheet program. I prefer to use a spreadsheet (such as
OpenOffice.org Calc or Microsoft Excel) to analyze data so I
can both look at the raw numbers and easily create graphs.
Figure 16-13 shows a graph of the measurements taken
during my test run. The light level increases significantly as
the robot turns toward the flashlight and forms a nice peak.
Based on this data, it seems that the LightPointer program
should be able to correctly identify the direction of the light
source.

Figure 16-13: Graph of the light level data

adding rotation sensor data
and a timestamp

Although this data looks promising, you may want to collect
two additional pieces of information: the Rotation Sensor
reading and a timestamp. Since the LightPointer program
uses the Rotation Sensor to remember the robot’s position,
it’s a good idea to record its reading in addition to the light
level. A timestamp is a value that indicates when a measure-
ment was taken. One of the NXT’s timers can be used to
create a timestamp. You can use timestamps to tell when
each measurement was taken and how often the measure-
ments are recorded.

Instead of using a File Access block for each item (the
timestamp, the light level, and the Rotation Sensor reading),
you’ll create one text value that contains the three numbers
separated by commas. The data file created by the program
will contain one line for each measurement. Each line will
contain all three pieces of information separated by commas,
a file format known as comma-separated values. Spread-
sheet programs know how to work with data files in this
format, so arranging the data this way will make it easier
to analyze.

	 data logging	 213

The concept behind formatting the data is straight-
forward. You’ll use a Timer block, a Rotation Sensor block,
and a Color Sensor block to acquire the values; Number to
Text blocks to convert the three numbers to text values;
and Text blocks to join the values together separated by
commas.

Although the concept is simple, this process requires
several blocks connected by data wires. Listing 16-1
describes this process using pseudocode, and Figure 16-14
shows the new blocks added to the program.

read the Timer
convert the value to text
read the Rotation Sensor
convert the value to text
read the light level from the Color Sensor
convert the value to text
use a Text block to combine the Timer value, a
 comma, and the Rotation Sensor value
use a Text block to add another comma and the value
 from the Color Sensor

Listing 16-1: Combining the timestamp, motor rotation, and light level values

The Timer block (Figure 16-15) uses all the default set-
tings to read Timer 1. The Rotation Sensor block reads the
position of motor B (Figure 16-16). The settings for the Color
Sensor (or Light Sensor) block don’t need to change.

Figure 16-15: Reading the Timer 1 value

Figure 16-16: Reading the position of motor B

Both Text blocks have the same configuration (shown
in Figure 16-17). Data wires supply the A and C values, and
the B value is set to a comma in the Configuration Panel.
The first Text block will join the timer value with the Rotation
Sensor value, and the second Text block will add the light
level value.

For example, assume the Timer block value is 5, the
Rotation Sensor block value is 10, and the Color Sensor value
is 15. First, the three values are converted to text by the
Number to Text blocks. Then the input to the first Text block
will be 5 and 10, and the output value will be 5,10. This value
is then passed to the second Text block, so its input values
will be 5,10 and 15, and its output value will be 5,10,15.

Figure 16-14: Recording the timestamp, rotation, and light level

214	 chapter 16

Figure 16-17: Joining the two input values with a comma

You also need to change the Type setting on the File
Access block because you are now writing out text instead of
a number (shown in Figure 16-18).

Figure 16-18: Writing a text value to the file

There are two more blocks to add to the beginning of
the program, as shown in Figure 16-19. The File Access
block adds Time, Rotation, Light as a header line to the
file (see Figure 16-20) to make it easier to tell what each
value means when analyzing the file. The Timer block simply
resets Timer 1, as shown in Figure 16-21.

Figure 16-19: Text and Timer blocks added before the Move block

Figure 16-20: Writing a header line to the file

Figure 16-21: Resetting Timer 1

Run the program again, and the VLPData file will be
replaced, only this time it will contain a timestamp and the
position of motor B in addition to the light level. Upload the file
to your computer, open it in a spreadsheet program, and you
should see three columns of data, as shown in Figure 16-22.

Figure 16-22: Three columns of data

gaps in the data

Using the new data, you can graph the relationship between
the position of motor B and the light level. Figure 16-23
shows an X/Y (or scatter) plot using the Rotation and Light
columns.

Figure 16-23: Graph of the light level and motor B position

Although this graph has the same general shape as
the one shown in Figure 16-13, there are gaps in the data.
Figure 16-24 shows the data at one of these gaps. The time
values are in milliseconds (thousandths of a second), and
you can see that there is usually a four- or five-millisecond
interval between each reading (each timestamp increases by
four or five). However, the timestamps for lines 256 and 257
show a 180-millisecond gap, which shows up in the graph as
a break in the data.

	 data logging	 215

Figure 16-24: Time, Rotation, and Light

values at a gap in the graph

The gaps are caused by the way the NXT allocates, or
sets aside, memory for a file. When a program first creates
a file, the NXT allocates a small amount of memory for the
file. As the program writes to the file, it will eventually fill all
the memory allocated for that file, at which point the NXT
will allocate a larger section of memory and copy all the data
in the file to the new location. The time taken to copy the file
to a larger section of memory causes the gaps in the data
collection.

For large files, like the one we’re working with, the NXT
may go through this reallocation process several times. You
can avoid this problem by making the file large enough when
it’s first created. The File Access block has a Initial File Size
data plug that allows you to specify how big to make the file.
Follow these steps to get a starting value for the file size:

1.	 Use the NXT window to delete all the files on the NXT.

2.	 Download (but don’t run) the VerifyLightPointer pro-
gram using the Controller’s Download button, shown
here:

3.	 Open the NXT window to see how much free space is
available.

From Figure 16-25 you can see that there are 82.3KB
of free space (a kilobyte is a little more than 1,000 bytes).

You may see a slightly different number if you’re using a dif-
ferent version for the software. Setting the file size to 70KB
will use most of the free space and leave a little extra space
in case you decide to expand the program.

Figure 16-25: Free memory after downloading the VerifyLightPointer

program

setting the initial file size

To set the size of the file, you need to use a data wire to
pass a value to the File Access block’s Initial File Size data
plug. This is one of the few settings that doesn’t appear
on the Configuration Panel, and you can set it only using
a data wire. The value passed to the Initial File Size data
plug is used only when the File Access block creates the file,
which happens if the Action option is set to Write and the
file doesn’t already exist. In the VerifyLightPointer program,
the block that writes the heading to the file also creates the
file, so this is the block you need to use to set the file size.
The Initial File Size data plug expects the value to be in
bytes, so you’ll set the value to 70000 using a Math block
as follows:

1.	 Add a Math block before the File Access block that
writes the heading to the file.

2.	 In the Math block’s Configuration Panel, set the A value
to 70000.

3.	 Connect the Math block’s Result data plug to the File
Access block’s Initial File Size data plug.

Figure 16-26 shows the changes to the program, and
Figure 16-27 shows the Configuration Panel for the Math
block.

216	 chapter 16

Now run the program again, and transfer the file to
your computer. Figure 16-28 shows the graph of the data for
my test. There are no big gaps in the data, and the light level
forms one well-defined peak. Based on this data, I have a
high degree of confidence that the LightPointer program will
be able to find the direction of the light source.

Figure 16-28: The data without gaps

controlling
the amount of
data

The VerifyLightPointer program is a little unusual in that it
collects and records data as fast as possible, creating a large
data file in a short amount of time. The program is written
this way to match the design of the LightPointer program,
but for most data-logging programs, you’ll want more con-
trol over how often the program records data. Because the
amount of memory you have to work with is limited, you’ll
usually need to record the data less often in order to avoid
running out of memory.

Most data-logging programs will be structured like the
VerifyLightPointer program. After some blocks perform the
initial setup, a Loop block will contain the code to collect the
data and write it to a file. You can control how often the data
is recorded by adding a Wait block at the end of the body of

Figure 16-26: Setting the initial file size

Figure 16-27: The Math block’s

Configuration Panel

	 data logging	 217

the Loop block. How long should the Wait block pause? That
depends on how long you expect the experiment to take and
how often the data you’re collecting changes. You need to
record the data often enough that you don’t miss any impor-
tant changes but not so often that you run out of memory.
Finding the right balance often involves some trial and error,
so don’t be surprised if you need to change the settings a
few times to get them just right.

For example, say you decide to change the VerifyLight-
Point program so that it takes 20 measurements per second.
To do this, you’ll add a pause at the end of the Loop block
to wait for one twentieth of a second, or 0.05 seconds. Fig-
ure 16-29 shows the Wait block added to the program, and
Figure 16-30 shows the block’s Configuration Panel.

Figure 16-29: A Wait block added at the end of the Loop body

Figure 16-30: Waiting for 0.05 seconds

Now when you run the program, it will pause for one-
twentieth of a second (0.05 seconds) each time through the
loop, which means that the data will be recorded at a rate
of about 20 readings per second. (There won’t be exactly
20 readings per second because it takes a bit of time to con-
trol the motors, collect the readings from the sensors, and
write the data. The time between readings will be slightly
more than the 0.05-second pause from the Wait block, but
it will be close enough for our purposes.)

data logging
using the LEGO
MINDSTORMS
education NXT
software 2.0

The MINDSTORMS Education NXT Software 2.0 contains
some features to support data logging that are not available
in the other software releases. In this section I’ll briefly cover
the data-logging blocks and the NXT data-logging applica-
tion. (In-depth coverage of these topics is beyond the scope
of this book; to learn more, see Damien Kee’s “Datalogging
Activities for the Busy Teacher” at http://www.domabotics
.com/books/.)

the data-logging blocks

The Start Data Logging and Stop Data Logging blocks, in
the Advanced group on the Complete Palette (shown in
Figure 16-31), contain all the functionality you need for
most data-logging activities. As you’ll see, these two blocks
will allow you to rewrite the VerifyLightPointer program
using only three blocks.

Figure 16-31: The Start Data Logging and Stop Data Logging blocks

The Configuration Panel for the Start Data Logging
block (shown in Figure 16-32) contains all the controls you
need to collect data from up to four sensors:

N	 The Name setting controls the name of the data file to
create.

N	 The Duration item controls how long to collect data in either
seconds or minutes. The Duration can also be set to Single
Measurement to take one reading or Unlimited to continue
recording data until a Stop Data Logging block is used.

N	 The Rate setting controls how often to save a measure-
ment by setting either the number of samples to take per
second or the number of seconds between each sample.

N	 The Wait for Completion option lets you decide whether
the program should continue while collecting data.

218	 chapter 16

The controls on the right side
of the Configuration Panel let you
select the type of sensor to use and the
port the sensor is attached to. Once you
select a sensor type, additional controls
appear to let you select the measure-
ment unit to use or control the light
on the front of the Light Sensor (see
Figure 16-33). A timestamp is auto-
matically added to the data collected, so
you don’t need to use a timer as you did
in the VerifyLightPointer program.

The Configuration Panel for the
Stop Data Logging block has only one
setting: the name of the data file to
stop using (as shown in Figure 16-34).
This should be the same name you
used in the Start Data Logging block.
You need to use a Stop Data Logging
block only if you choose Unlimited for
the Duration setting of the Start Data
Logging block.

the
VerifyLightPointer2
program

Most of the blocks in the VerifyLight-
Pointer program are used to collect,
format, and record the data from the
sensors. These blocks can be replaced
by a single Start Data Logging block.
The VerifyLightPointer2 program,
shown in Figure 16-35, uses the
data-logging blocks to collect the Light
and Rotation Sensor data using just
three blocks. (This program uses the
Light Sensor because the Color Sensor
was not available when the Education
Software 2.0 was released.)

Figure 16-36 shows the Con-
figuration Panel for the Start Data
Logging block, which does most of the
work in this program. (Because most
of the settings have been changed
from the defaults, the changes aren’t

Figure 16-32: The Configuration Panel for the Start Data Logging block

Figure 16-33: Controls for setting sensor options

Figure 16-36: The Start Data Logging block’s Configuration Panel

Figure 16-34: The Configuration Panel for the Stop Data

Logging block

Figure 16-35: Using the data-logging blocks

	 data logging	 219

highlighted.) When this block runs, it first creates a file
named VLPData.log. It will then start collecting data from the
Light Sensor and Rotation Sensor at a rate of 20 samples
per second. The Duration is set to Unlimited, so the data col-
lection will continue until a Stop Data Logging block is used
or the program ends.

The Move block spins the robot around in a complete
circle using the settings shown in Figure 16-37. The Start
Data Logging block will continue collecting data while the
Move block runs, so you don’t need to use a Loop block like
in the original program.

Figure 16-37: Spinning the robot for 1100 degrees

Finally, the Stop Data Logging block (shown in Fig-
ure 16-38) ends the data collection once the Move block
has finished.

Figure 16-38: Stopping the data collection

When you run this program, it will spin the TriBot in
a circle and record the readings from the Light Sensor and
Rotation Sensor, automatically adding a timestamp to each
reading. The data is stored in a file named VLPData.log,
which you can transfer to your computer and open in a
spreadsheet program. You can also view the data using the
NXT Data Logging application discussed in the next section.

NOTE	 The Start Data Logging block uses a tab charac-
ter instead of a comma to separate the data, so if your
spreadsheet program doesn’t automatically convert the
file, you may need to select Tab as the delimiter.

the NXT data logging
application

The NXT Data Logging application is an easy-to-use tool
for analyzing the data collected by the Start Data Logging
block. You can view and graph data from logfiles stored
on your computer or loaded from the NXT. For example,
Figure 16-39 shows a graph of the Light Sensor readings
collected by the VLPData2 program.

You can also create a very simple program using the
NXT Data Logging application. The Experiment Configuration
window (shown in Figure 16-40) essentially creates a pro-
gram consisting of a single Start Data Logging block. You can
download, start, and stop the program and upload the data
using the NXT Data Logging application, making it easy to
conduct many science experiments without having to write a
new program or switch between the regular MINDSTORMS
application and the Data Logging application.

Perhaps the best feature of the Data Logging application
is that it can collect and graph the data while the program is
running, which allows you to see how the data looks while
an experiment is in progress. When coupled with a projector
and a class full of inquisitive students, this can be a great
tool for creating an interactive learning experience.

220	 chapter 16

conclusion
Turning the NXT into a data logger is easy because of its
ability to collect, format, and record data from a variety of
sensors. Data logging can be useful as part of a classroom

science experiment that may have little
or nothing to do with robotics or as a
way to learn more about how the NXT
sensors work. The VerifyLightPointer
program contains all the steps you’ll
need in a typical data-logging program.
These include creating the data file,

collecting the sensor data, writing the data to the file with a
timestamp, and controlling the rate of the data collection.

The MINDSTORMS Education NXT Software 2.0 con-
tains two features that make data logging with the NXT even
easier. The Start Data Logging and Stop Data Logging blocks
can perform the same tasks that require several Sensor, File
Access, and Text blocks. The NXT Data Logging application
lets you analyze the data collected and even view the data
while the experiment is in progress.

Figure 16-39: The NXT Data Logging application

Figure 16-40: The Experiment Configuration window

17
using multiple sequence beams

In this chapter you’ll learn how to use more than one Sequence Beam in your programs, allowing your robot to do more than
one thing at a time. I’ll start by showing you how to add a simple odometer to the AroundTheBlock program and then move
on to a more complicated project, adding flashing lights to the DoorChime program. I’ll also discuss a few complications to
the rules concerning program flow that arise when you use multiple Sequence Beams. Then I’ll show you how to use these
rules to synchronize the actions between Sequence Beams.

multitasking
Multitasking means doing more than one thing at a time. You use
multitasking in a program to make your robot perform two (or more)
independent tasks simultaneously. For example, your program could have
one section to control the robot’s navigation and a separate section to
collect sensor data.

In NXT-G, multitasking is accomplished using multiple Sequence
Beams. Figure 17-1 shows an example based on the AroundTheBlock
program introduced in Chapter 4. The blocks on the Sequence Beam at
the top of the program move the TriBot around a square, and the blocks
on the Sequence Beam at the bottom continually display the motor
position.

When you run this program, the NXT will start both Loop blocks and
then rapidly switch between running the code on each Sequence Beam.
The computer inside the NXT can’t really do more than one thing at a
time, but it can switch between the two tasks quickly enough to perform
both tasks successfully. The result is that the TriBot moves around the
square while the display shows how far the robot has moved.

adding a second
sequence beam

In this section I’ll walk you through the steps to add the second Sequence Beam to the AroundTheBlock program. As you’re
adding blocks and connecting the Sequence Beam, be sure to go slow and give the IDE time to keep up with you. Moving too
fast is the most common source of problems people have when editing complex programs. As always, select the EditUndo

Figure 17-1: Displaying the motor position while moving

around a square

222	 chapter 17

menu item if you move too fast or make a mistake. Follow
these steps to add a Loop block on a new Sequence Beam:

1.	 Open the AroundTheBlock program.

2.	 Place a Loop block in the Work Area below the existing
program. The block will appear faded because it’s not
connected to a Sequence Beam.

3.	 Move your mouse over the down-
ward-pointing beam at the starting
point of the program. The mouse
cursor should change to the wire
spool (the same image that’s used
when drawing data wires).

4.	 Click the mouse button, and then
drag the beam down toward the
Loop block. The Sequence Beam
should grow as you move the mouse.

5.	 Drag the Sequence Beam down and to the right to
connect it with the Loop block, and click the mouse but-
ton. Once the Loop block is connected to the Sequence
Beam, it should no longer appear faded.

With the Loop block in place, you can add the Rotation
Sensor and DisplayNumber blocks. (The DisplayNumber
block is a My Block that I presented in Chapter 13.)

6.	 Add a Rotation Sensor block to the Loop block. Config-
ure the block to read the position of motor B.

7.	 Add a DisplayNumber block, and set it to clear the
screen and display the value on line 5. Enter degrees
for the Unit setting.

8.	 Draw a data wire between the Rotation Sensor block’s
Degrees data plug and the DisplayNumber block’s Num-
ber data plug. Close the data hubs on these two blocks.
The program should now look like Figure 17-1.

	 using multiple sequence beams	 223

Now run the program, and observe how it behaves.
You should see the position displayed as the TriBot moves
around the square. Once the TriBot has completed mov-
ing around all four sides of the square, the program contin-
ues to display the position of motor B. Pick up the robot and
turn the motor, and you’ll see the position updated on the
screen.

The original AroundTheBlock program ends after
the robot moves around the square because the Loop
block finishes after repeating four times and there are no
more blocks on the Sequence Beam. When more than one
Sequence Beam is used, the program continues to run until
it reaches the end of all the Sequence Beams. Since the Loop
block that displays the motor position is set to run forever,
the program will continue running until you stop it.

avoiding a
busy loop

If you watch closely, you may notice that after you add the
code to display the motor position, the AroundTheBlock
program doesn’t get the TriBot back to the starting point as
accurately as the original program did. The problem is that
the Move blocks on the top Sequence Beam are a little less
accurate in the new program because the NXT is spending
about half its time displaying the motor position.

The code to display the motor position is an example of
a busy loop, one that repeats as fast as possible and conse-
quently uses a large portion of the NXT’s processing power.
You can improve the accuracy of the Move blocks by slowing
down the display loop, which will allow the NXT to spend
more of its time making sure the movements are accurate.
Simply adding a one-second pause to the Loop block, as
shown in Figure 17-2, will improve the program’s accuracy
noticeably. Updating the display once a second (instead of as
fast as possible) doesn’t detract at all from the usefulness of
the displayed value.

Figure 17-2: Slowing down the busy loop

adding a
sequence
beam to a
loop block

Adding a Sequence Beam to a Loop or Switch block requires
some additional steps because you’ll need to make room for
the new blocks. In this section, you’ll modify the DoorChime
program from Chapter 13 (shown in Figure 17-3) to flash
the light on the Color Sensor or Light Sensor while play-
ing the chime.

Figure 17-3: The DoorChime program

224	 chapter 17

Figure 17-4 shows how the program will look when the
changes are completed. The blocks on the second Sequence
Beam flash the light on the Color Sensor by turning the light
on and off with a half-second pause between each change.
The Chime block takes two seconds to play all the notes,
so to make the light flash for the same amount of time, the
Loop block is set to repeat twice.

the crowbar and pin technique

You’ll begin by making changes similar to those you made for
the AroundTheBlock program; you’ll add a Loop block and
then connect the Sequence Beam to the new block. However,
there isn’t room within the Loop block to add a new block
below the Sequence Beam, so you first need to expand the
Loop block so that there’s room for the new code. To do so,
follow these steps, known as the crowbar and pin technique.

1.	 Add a Display block to the end of the Loop block, and
open its data hub. This is called the crowbar, because it
pries open the Loop block.

Figure 17-4: Flashing the light while playing the chime

	 using multiple sequence beams	 225

2.	 Add a comment to the bottom-left side of the Loop
block. This is called the pin, because it will keep the
Loop block from closing up when the Display block is
removed. The text of the comment isn’t important;
I used pin here to make the purpose clear.

3.	 Delete the Display block.

The comment should keep the Loop block from closing,
leaving you with room to add the new code. I used a Display
block as the crowbar because it has a long data hub and
therefore makes the Loop block grow enough to add another
Sequence Beam. The crowbar and pin technique is also use-
ful if you want extra room for drawing data wires between
the blocks within a Loop or Switch block.

adding the sequence beam

Now that there’s room in the Loop block, you can add the
new code. Follow these steps to add a new Loop block and
connect it to a new Sequence Beam:

1.	 Add a new Loop block in the empty space below and a
little to the right of the Chime block.

2.	 Move your mouse over the Sequence Beam to the left of
the Chime block. Hold down the shift key, and click the
mouse button. The mouse cursor should change to the
wire spool (the image used when drawing data wires).

226	 chapter 17

3.	 Move the mouse down, and a new Sequence Beam
should follow the mouse.

4.	 Connect the Sequence Beam to the Loop block.

expanding the loop block

As you add blocks to the new Loop block, it will grow wider.
Eventually it will reach the edge of the outer Loop block, and
unfortunately the outer Loop block won’t automatically grow
wider. If you try to add more than one block to the inner
Loop block, the Sequence Beam behaves oddly, and the right
side of the Loop block gets cut off, as shown in Figure 17-5.

Figure 17-5: After adding two blocks to the inner Loop block

To make room for more than one block, you need to
make the outer Loop block wider, following these steps:

1.	 Select the outer Loop block.

2.	 Move the mouse over the
Sequence Beam between the
Ultrasonic Sensor block and the
right edge of the outer Loop
block.

3.	 Hold the mouse button down, and slowly move the
mouse to the right. The mouse cursor should change
to a hand as it moves over the
edge of the Loop block. If the
mouse cursor doesn’t change
to a hand as you move over the
Loop block, press the escape key,
select the Loop block again, and
start over.

4.	 As you drag the mouse to the right, the Loop block
should get wider.

	 using multiple sequence beams	 227

5.	 Drag the edge of the Loop block to the right so that the
program looks like this:

As you add blocks to the inner Loop block, you might
find that the outer Loop is either too wide or too narrow. You
can use the technique shown in this section to adjust the
width of the Loop block later as needed.

making the light flash

To control the light on the Color Sensor, use the Color Lamp
block in the Action group on the Complete Palette (shown in
Figure 17-6). The Configuration Panel, shown in Figure 17-7,
allows you to turn the lamp on and off and select the color
(red, green, or blue).

Figure 17-6: The Color Lamp block

Figure 17-7: The Color Lamp block’s Configuration Panel

To control the light on the Light Sensor, use the Light
Sensor block.

Follow these steps to make the light turn on and off:

1.	 Add a Lamp block or a Light Sensor block to the inner
Loop block, depending on which sensor you’re using.
Keep all the default settings, because these will turn the
red light on.

2.	 Add a Wait block. Set the Control item to Time, and set
the delay to 0.5 seconds.

3.	 If you’re using the Color Sensor, add another Lamp block
to turn the light off.

4.	 If you’re using the Light Sensor, add another Light Sen-
sor block to turn the light off.

228	 chapter 17

5.	 Add another Wait block. Set the Control item to Time,
and set the delay to 0.5 seconds. The Configuration
Panel should look exactly like the one for the first Wait
block.

6.	 Select the inner Loop block, and set it to repeat twice.

At this point, the pro-
gram should look like this:

The Chime block and
the new code to flash the
light will each take two
seconds, so they should
finish at about the same
time; once they finish, the
second Ultrasonic Sensor
block will run. You can make
this clearer by dragging
the Ultrasonic Sensor block
to the right so that it’s at
the end of the loop, as
shown in Figure 17-8. It’s
important to understand
that moving the block along
the Sequence Beam like
this doesn’t change how
the program behaves; it
simply makes the program
visually match the way
you expect it to behave.
I’ll show you how to make
sure the program works
correctly in “Synchronizing
Two Sequence Beams” on
page 230.

Now run the program,
and when someone walks
by the TriBot, you should
see the light flash on and
off twice while the chime is
played. Figure 17-8: The completed DoorChime program

	 using multiple sequence beams	 229

understanding
program flow
rules

Using multiple Sequence Beams complicates the rules con-
cerning program flow in several ways. For example, a pro-
gram ends only once it reaches the end of all the Sequence
Beams. In this section, I’ll discuss the other program flow
rules that are affected by using multiple Sequence Beams.

starting blocks and data wires

A block can start running only after there are values on all
the data wires attached to the block, as demonstrated by the
BlockStartTest program in Figure 17-9. The Display block on
the top Sequence Beam displays 1 and the Text block writes
2 to the data wire (to be used by the other Display block).
The Display block on the bottom Sequence Beam can’t start
running until after the Text block puts a value on the data
wire. When you run this program, the display will show 1,
and then after a one-second pause, the display will show 2.

Figure 17-9: The BlockStartTest program

starting a loop or switch block

A Loop or Switch block can’t start until there are values on
all the data wires that enter the block. The LoopStartTest
program shown in Figure 17-10 demonstrates this rule. The

Loop block can’t start until after the Text block puts a value
on the data wire, even though this value isn’t used until the
program gets to the second Display block within the Loop
block. When you run this program, it will display 1 (from
the Display block on the top beam) and then pause for one
second. After the Text block puts a value on the data wire,
the Loop block will start, and the program will display 2 and
then wait for an additional second before displaying 3. This
example uses a Loop block, but the same rule applies to a
Switch block.

Figure 17-10: The LoopStartTest program

using values from a loop or
switch block

A data wire that starts inside a Loop block and connects to a
block outside the Loop block will have a value only when the
Loop block finishes. The LoopCountTest program shown in
Figure 17-11 shows an example of this rule. The Loop block
repeats five times, pausing for a total of five seconds. The
DisplayNumber block on the bottom Sequence Beam displays
the value written to the data wire from the Loop block’s Loop
Count data plug. Because the DisplayNumber block is outside
the Loop block, only the last value (4) is passed to it on the
data wire, and only after the Loop block has finished. When
you run this program, it will pause for five seconds and then
display 4. This rule also applies to the Switch block; data
wires that leave a Switch block will have a value only after
the Switch block completes.

230	 chapter 17

Figure 17-11: The LoopCountTest program

using my blocks

Only one copy of a particular My Block can run at the same
time, as demonstrated by The MyBlockTest program in
Figure 17-12. The ProgTimer3 My Block is a programmable
timer based on the Timer3 program developed in Chap-
ter 10. When you run this program, it will display 1, pause
for one second, display 2, pause for another second, and
then display 3. The second pause happens because the Prog-
Timer3 block on the top Sequence Beam won’t start until the
ProgTimer3 block on the bottom Sequence Beam completes.

Figure 17-12: The MyBlockTest program

This rule applies only to My Blocks, so if you replace
the two ProgTimer3 blocks with Wait Time blocks, the two
pauses will happen simultaneously. The program will display
1, pause for one second, display 2, and then almost imme-
diately display 3 (so quickly that you won’t see the 2). This
rule also only applies to two copies of the same My Block.
Two ProgrTimer3 blocks won’t run at the same time, but a
ProgTimer3 block and a DisplayNumber block will.

NOTE	 If you really need two copies of the same My
Block to run in parallel, open the My Block, and select the
FileSave As menu item to save a copy of the My Block
using a different name. Then you’ll have two different My
Blocks that do the same thing and will be able to run at
the same time.

This behavior is really only apparent with My Blocks
that wait for something to happen. For example, you won’t
notice if two DisplayNumber blocks don’t run simultaneously.
Most My Blocks start and finish quickly enough that this rule
doesn’t have an appreciable effect on most programs.

synchronizing
two sequence
beams

You can control when a second Sequence Beam starts by
choosing where to start drawing the Sequence Beam. In
some programs, you may want to also make the task on one
Sequence Beam pause until the task on the other Sequence
Beam completes. The following are two ways to accomplish
this.

the AroundTheBlock program

In the AroundTheBlock program (see Figure 17-2), you
may want to stop updating the display after the TriBot has
completed moving around the square. Instead of having the
Loop block run forever, you can use a variable to control
when the loop stops. Figure 17-13 shows a modified version
of the AroundTheBlock program that uses a logic variable
named Done to control the Loop block. The variable is set to
false before the TriBot starts moving and is set to true after
all the movement is complete. The Loop block on the bottom
Sequence Beam will continue displaying the motor position
until the variable is set to true by the Variable block on the
top Sequence Beam.

the DoorChime program

In the DoorChime program (see Figure 17-8), I moved the
Ultrasonic Sensor block to the right side of the Loop block to
show that it shouldn’t start until after the light stops flashing.
Arranging the blocks this way makes the intent of the pro-
gram easier to understand, but it doesn’t force the program
to work correctly. The program could stop working if you
change the timing of either the Chime block or the blocks

	 using multiple sequence beams	 231

that flash the light, perhaps by adding a few more notes to
the Chime block or making the light flash faster.

The changes to the DoorChime program shown in Fig-
ure 17-14 make the blocks on the top Sequence Beam wait
until the blocks on the bottom Sequence Beam are finished.
The synchronization is provided by the two Math blocks and
the data wire connecting them. The settings of these two
blocks are unimportant; all that matters is that the Math
block on the top Sequence Beam can’t start until after the
one on the bottom Sequence Beam completes. Adding these
two blocks and the data wire between them ensures that
the Ultrasonic Sensor block won’t run until after the chime
is complete and the light has finished flashing.

Using data wires in this way allows you to synchronize
the Sequence Beams by adding only two blocks and a data
wire. However, the resulting program can be difficult to
understand, especially if you neglect to add a comment that
makes it very clear that the two Math blocks are there only
for synchronization and are not really doing any math. This
approach also depends on the special behavior of data wires
and Sequence Beams, and as a general principle, it’s usually
better to avoid programming special cases like this.

The solution used in the AroundTheBlock program
(using a variable to indicate when a task is done and checking
the variable in a loop) requires more blocks but results in
a much clearer program. Both methods are widely used in

Figure 17-13: Synchronizing the Sequence Beams

in the AroundTheBlock program

Figure 17-14: Synchronizing the Sequence Beams in the DoorChime program

232	 chapter 17

programs and examples you’ll find on popular NXT websites;
the approach you choose to use in your programs is mostly a
matter of personal preference.

keeping out of
trouble

Adding a second Sequence Beam lets your program do more
but also increases the number of ways that things can go
wrong. Using multiple Sequence Beams affects almost every
aspect of NXT-G programming, including variables, data
wires, My Blocks, and program flow. This is an advanced
programming technique that can allow you to write some
incredible programs but can also cause a lot of confusion.
Here are some tips to help you avoid the most common
problems:

N	Use a second Sequence Beam only when it’s really
necessary. If you can find a solution to your problem that
requires only one Sequence Beam, then you’re usually
better off avoiding the added complexity.

N	Go slow when editing the program. The IDE tends to
get confused much easier when editing programs with two
or more Sequence Beams.

N	Avoid trying to control the same motor or sensor
from more than one Sequence Beam.

N	Use variables instead of data wires to pass informa-
tion between Sequence Beams. This often makes your
program easier to understand.

N	Be especially careful with data wires that pass into
or out of Loop blocks and Switch blocks. (Reread
“Understanding Program Flow Rules” on page 229 if
you’re not sure what to watch out for.)

conclusion
Using multiple Sequence Beams allows your program to
perform more than one task simultaneously, a form of
multitasking. The changes made in this chapter to the
AroundTheBlock and DoorChime programs demonstrate
two simple ways to enhance a program by adding a second
Sequence Beam.

Although multitasking is a very useful programming
technique, it comes at the cost of added complexity. The
simple program flow rules that you’re familiar with become
more complicated when using more than one Sequence
Beam. For this reason, multitasking works best with small,
independent tasks.

18
the LineFollower program

Now that you’ve seen the advanced programming features that NXT-G has to offer, it’s time to put them to use. In this chap-
ter, I’ll walk you through the process of transforming the simple line-following program from Chapter 6 into a much more
flexible and accurate program.

The chapter begins with a brief discussion on line following. Then I’ll show you how to use files and a configuration pro-
gram to collect and save the settings used by the LineFollower program. In the second half of the chapter, I’ll show you how
to use a more complicated control strategy for following a line. By the end of the chapter, your TriBot will be able to follow a
line quickly and accurately.

following a line
Programming your robot to follow a line is an interesting challenge because you can make your program as simple or as
complicated as you want. It’s fairly easy to write a simple program like the ones presented in Chapter 6 that allows the Tri-
Bot to slowly follow a line with wide turns. By writing a more complex program, you can make the robot move faster, handle
tighter turns, and even detect and avoid obstacles.

requirements

Let’s begin by thinking about the general requirements of a line-following robot. The simplest requirement is that the robot
must follow the line; it shouldn’t wander off the line and get lost to one side or the other. You’ll usually want the robot to
move as quickly as possible, if for no other reason than that it’s just more fun to watch a fast-moving robot. For the pro-
grams presented in this chapter, speed is more of a goal than a hard and fast requirement, though in another setting, such
as a competition, you might have a fixed-speed requirement. In addition, the program should be flexible enough to work
with different lines, lighting conditions, and sensors. It can be quite annoying when your robot (and its program) works great
when you’re building it but fails miserably when you bring it to your friend’s house. These requirements can be summarized
as follows:

N	 Stay on the line.
N	Move as quickly as possible.
N	 Be flexible.

assumptions

To keep the program simple, I’ll make the following assumptions:

N	 The robot will start next to the line so it doesn’t have to hunt for the line.
N	 The line will be at least as wide as the lines on the LEGO test pads (about ¾ inch or 2 cm). If the line is too thin, it’s easy

for the robot to accidentally cross it.
N	 The line won’t have corners or very sharp curves.

234	 chapter 18

N	 The line won’t cross over itself. A figure-eight course will
tend to confuse most line followers.

N	 The line will be dark and the background will be light to
simplify the discussion of the programs.

Even with these assumptions, the program will be fairly
complicated by the end of the chapter. Of course, you can
expand the final program to address any of these issues on
your own.

the starting
point

As a starting point for this discussion, I’ll use the Line
Follower program from Chapter 6, as shown in Figure 18-1.
This program allows the TriBot to follow a line, but it works
only if the robot moves slowly.

Figure 18-1: The original LineFollower program

Although the Light Sensor is used in Figure 18-1 and in
the images in this chapter, the program will work just as well
with the Color Sensor. As we proceed, I’ll give instructions for
using either sensor.

To follow a line, the Light Sensor (or Color Sensor)
should be mounted on the front of the TriBot pointing down-
ward, as shown in Figure 18-2.

Figure 18-2: Mounting the sensor on the front of the TriBot

selecting the
sensor trigger
values

The first enhancement will address the flexibility require-
ment. The LineFollower program shown in Figure 18-1 uses
hard-coded values, meaning the trigger values for the Light
Sensor are set in the program and can’t easily be changed.
The settings work fine with my NXT using the LEGO test
pad, with the lighting in my office, but they may not work as
well with a different Light Sensor, line, or different lighting.
To avoid hard-coding the trigger values, you can write a
program that collects the information needed to determine
the trigger values. This makes the line-following program
more flexible because it can adapt to different sensors, lines,
and lighting conditions.

Since you’re using a dark line on a light background,
the value from the Light Sensor should be smallest when

	 the LineFollower program	 235

the sensor is directly over the line and largest when it’s
completely off the line and over the background. Using these
two values (the smallest and largest Light Sensor readings)
and a little math, you can calculate the trigger values needed
for the LineFollower program.

In this section, you’ll first write the LineFollowerConfig
program to collect two readings from the Light Sensor and
write them to a file. Then you’ll modify the LineFollower
program to read the values from the file and use them to
calculate the trigger values.

building the
LineFollowerConfig program

The LineFollowerConfig program’s job is to read two values
from the Light Sensor and save them to a file. The first value
is read when the TriBot is over the center of the line, and
the second is read when the TriBot is completely off the line.
One key is to place the TriBot correctly (either on or off the
line) before reading the Light Sensor. A simple approach is
to use the NXT’s screen to give instructions on where to put
the robot. For example, you can tell the person using the
program to place the TriBot over the line and then wait for
the user to press a button before reading the sensor. You
can then repeat the process to get the second sensor reading
with the robot off the line.

To save the Light Sensor readings to a file, simply
connect a Light Sensor block to a File Access block. I’ll use
LF_Config for the filename (LineFollower_Config is more
descriptive but is longer than the 15-character limit on the
filename). Recall that writing to a file always adds new infor-
mation to the end of the file. Since you want to store new
values each time you run the program, the first thing the
program should do is delete the file if it already exists. Also,
remember to close the file after writing the two values.

Now that you know what the program should do, you
can use pseudocode to describe the program, as shown in
Listing 18-1.

delete the LF_Config file
use Display blocks to tell the user to place the
 robot over the line
wait for the Enter button to be bumped
read the Light Sensor
write the value to the LF_Config file
use Display blocks to tell the user to place the
 robot off the line
wait for the Enter button to be bumped
read the Light Sensor
write the value to the LF_Config file
close the LF_Config file

Listing 18-1: The FileFollowerConfig program

Figure 18-3 shows the first part of the program, which
deletes the file and then collects the Light Sensor reading
when the TriBot is placed over the line.

The first File Access block deletes the file if it already
exists. If you forget this step, then each time you run the
program, it will add the two readings onto the end of the file,
instead of replacing the previous values.

You’ll need to enter the name of the file in the Configu-
ration Panel for this block (shown in Figure 18-4). You can
then copy this block (hold down the ctrl key while dragging
the block) to create the other File Access blocks in the
program. This is an easy way make sure that none of the
File Access blocks accidentally uses the wrong filename.

Figure 18-4: Deleting the old file

Figure 18-3: Collecting the first Light Sensor reading

236	 chapter 18

Figures 18-5 through 18-7 show the Configuration
Panels for the three Display blocks that give the instructions.
Each Display block prints one line of instructions, and only
the first block clears the display.

Figure 18-5: Displaying the first line of the instructions

Figure 18-6: Displaying the second line of the instructions

Figure 18-7: Displaying the third line of the instructions

After displaying the instructions, the program waits for
you to bump the Enter button, which you’ll do after placing
the TriBot in the correct spot. Figure 18-8 shows the Con-
figuration Panel for the Wait block.

Figure 18-8: Waiting for the Enter button to be bumped

The Light Sensor block (shown in Figure 18-9) uses all
the default settings. For the Color Sensor, use the settings
shown in Figure 18-10.

Figure 18-9: Reading the Light Sensor

Figure 18-10: Reading the Color Sensor

The File Access block (shown in Figure 18-11) writes
the value from the Light Sensor or Color Sensor block to the
LF_Config file. Be sure to draw a data wire from the Light
Sensor block’s Intensity data plug to the File Access block’s
Number data plug, as shown in Figure 18-3. For the Color
Sensor block, use the data plug labeled Detected Color, which
is used for the intensity when the sensor is in Light Sensor
mode.

Figure 18-11: Writing the sensor reading to the file

The second half of the program uses a similar group
of blocks to collect the Light Sensor reading with the TriBot
off the line and then closes the file. Figure 18-12 shows the
entire program, in two pieces.

	 the LineFollower program	 237

The settings for the blocks used to display the instructions
and save the sensor reading are almost identical to the settings
used in the first half of the program. The only block that needs
to change is the second Display block, which instructs you to
place the TriBot off the line, as shown in Figure 18-13.

Figure 18-13: Placing the robot off the line

The final File Access block, shown in Figure 18-14,
closes the file.

Figure 18-14: Closing the file

testing the LineFollowerConfig
program

Now download and run the program. It should display the first
set of instructions and then wait for you to press the Enter
button before turning on the small light on the Light Sensor.
After you press Enter, the program should display the second
set of instructions and again wait for you to press Enter. The
program ends after you press Enter the second time.

NOTE	 If the program ends after you press Enter the
first time, the Action setting on the Wait block is probably
wrong. If the Action setting is Pressed instead of Bumped,
the program will quickly run all the remaining blocks
in the program while you’re pressing Enter.

It’s easy to tell whether the program goes through
all the steps by watching the display, but how do you tell
whether reasonable values are being written to the file? You
can easily modify the FileReader program from Chapter 15
(shown in Figure 18-15) to display the contents of the
LF_Config file by setting the name in the File Access block’s
Configuration Panel to LF_Config, as shown in Figure 18-16.

Figure 18-15: The FileReader program

Figure 18-16: Selecting the LF_Config file

Figure 18-12: Collecting the two

Light Sensor readings

238	 chapter 18

When you run the FileReader program, it should display
the two values collected by the LineFollowerConfig program.
Both values should be greater than zero, and the first value
should be less than the second one. For example, the values
from my test run are 22 and 47. If you get zero for one (or
both) of the values, it usually means that the sensor is not
connected to the correct port or that there is a problem with
the data wire connection between the Light Sensor block
and the File Access block. If the first value is larger than the
second one, then you may have the instructions reversed, or
you may not be following the given instructions.

changing the LineFollower
program

In this section, you’ll modify the LineFollower program to use
the values collected by the LineFollowerConfig program. The
changes will be made in three parts: reading the values from
the LF_Config file, calculating the trigger values for the two
Switch blocks, and then using the trigger values to control
the Switch blocks.

reading the high and low values

The first set of changes involves reading the two values
from the LF_Config file so they can be used by the rest of the
program. The LineFollowerConfig program first writes the
lower of the two values (the one taken while the robot is over
the line), followed by the higher value (the one taken while
the robot is off the line). The LineFollower program must
read the two values in the same order; the lower one first
and then the higher one. The changes to the program, shown
in Figure 18-17, use two number variables, High and Low, to
hold the values read by the File Access blocks. The third File
Access block closes the file after the two values have been
read.

Figure 18-17: Reading the High and Low values from the LF_Config file

Figure 18-18 shows the Edit Variables window with the
Low and High variables defined.

Figure 18-18: Defining the Low and High variables

The first two File Access blocks use the same settings
(shown in Figure 18-19) to read a number from the LF_Config
file. Setting the filename is easier if you first connect your
NXT to the MINDSTORMS software so that you can select the
name from the list. Because NXT-G is a graphical language,
there aren’t many places where you can make a typographical
error, but entering the name of a file is one of them.

Figure 18-19: Reading a number from the LF_Config file

Figures 18-20 and 18-21 show the Configuration Pan-
els for the two Variable blocks that store the values read by
the File Access blocks. The first Variable block writes to the
Low variable, and the second one writes to the High variable.

Figure 18-20: Storing the Low value

Figure 18-21: Storing the High value

	 the LineFollower program	 239

Figure 18-22 shows the Configuration Panel for the
final File Access block, which closes the file after the program
is through using it.

Figure 18-22: Closing the LF_Config

Once this section of the program has completed, the
Low and High variables should contain the two values col-
lected by the LineFollowerConfig program. The next section
of code will use these values to calculate the trigger values
the program will use.

calculating the trigger values

The original program uses two trigger values, one for each
of the Switch blocks shown in Figure 18-1. When the Light
Sensor reading is greater than the higher of the two trigger
values, the TriBot steers to the left; when the reading is less
than the lower trigger value, the TriBot steers to the right;
and when the reading is between the two trigger values, the
TriBot moves straight. In Chapter 6, I determined the trigger
values by finding the Light Sensor reading when the robot
was placed over the edge of the line. Then I added 5 to get
the higher trigger value and subtracted 5 to get the lower
trigger value. I’ll take a similar approach here.

When the Light Sensor is over the edge of the line, the
value it reports should be about halfway between the low
and high values read from the LF_Config file. You can calcu-
late this value using the following formula:

Target = (High + Low) ÷ 2

This is called the target value because this is the value the
Light Sensor should read when the robot is in just the right
position over the edge of the line. To determine the trigger

values for the two Switch blocks, which I’ll call HighTrigger and
LowTrigger, add and subtract 5 from the target value:

HighTrigger = Target + 5
LowTrigger = Target – 5

Performing these calculation in NXT-G is a simple
matter of stringing together some Math and Variable blocks.
Figure 18-23 shows the blocks used to compute the target
value and store it in the Target variable. (This new code
should be placed just after the File Access block that closes
the LF_Config file.)

Figure 18-24 shows the Edit Variables window with the
three new variables defined.

Figure 18-24: Defining the Target, LowTrigger, and HighTrigger variables

The two variable blocks, shown in Figures 18-25 and
18-26, read the values from the Low and High variables.

Figure 18-25: Reading the Low variable

Figure 18-23: Calculating

the target value

240	 chapter 18

Figure 18-26: Reading the High variable

Figures 18-27 and 18-28 show the Configuration
Panels for the two Math blocks, which first add the High and
Low values together and then divide the sum by 2 to get the
average, or middle, value.

 
Figure 18-27: Adding the

Low and High values

 
Figure 18-28: Dividing the

sum by 2

Figure 18-29 shows the Configuration Panel for the
final Variable block, which stores the result from the Math
block in the Target variable.

Figure 18-29: Storing the target value

Once you have the target value, you can calculate the
HighTrigger and LowTrigger values by adding and subtracting
5 using the code shown in Figure 18-30.

Figure 18-31 shows the Configuration Panel for the first
Math block, which adds 5 to the target value. Figure 18-32
shows the Configuration Panel for the Variable block, which
stores the resulting value in the HighTrigger variable.

Figure 18-31: Adding 5 to the target value

Figure 18-32: Storing the HighTrigger value

The second pair of blocks, shown in Figures 18-33 and
18-34, subtracts 5 from the target value and stores the
result in the LowTrigger variable.

Figure 18-33: Subtracting 5 from the target value

Figure 18-34: Storing the result in the LowTrigger variable

Figure 18-30: Calculating the LowTrigger and 	

HighTrigger values

	 the LineFollower program	 241

When the program reaches the end of the code shown
in Figure 18-30, the trigger values for the two Switch blocks
should be stored in the HighTrigger and LowTrigger variables.
The next step is to change the program to use these two
values.

using the trigger values

In the original program (shown in Figure 18-1), the two
Switch blocks read the value from the Light Sensor, compare
it to the hard-coded trigger values, and then decide which
group of blocks to run. Unfortunately, the Switch block
doesn’t have a data plug for supplying a trigger value. Since
you don’t know what the trigger value will be until the
program runs, you can’t just enter the value into the Switch
block. To use a calculated trigger value, you need to use a
Light Sensor block to read the sensor and compare the value
to the trigger value. The Light Sensor block can then supply
the result of the comparison to the Switch block, which can
then decide which group of blocks to run.

Figure 18-35 shows the changes to the main part of
the LineFollow program. Each time through the loop, the
Light Sensor reading is first compared with the HighTrig-
ger value. If the sensor reading is greater than the trigger,
then the Switch block will run the Move block on the upper
Sequence Beam, which will steer the TriBot to the left. If
the sensor reading isn’t greater than the HighTrigger value,
the reading from the Light Sensor is compared with the
LowTrigger value. If the sensor reading is greater than the
trigger value, the Switch block will run the Move block on the
upper Sequence Beam, which moves the TriBot in a straight
line. If the sensor reading is at or below the trigger value, the
Switch block will run the Move block on the lower Sequence
Beam, which will steer the TriBot to the right.

Figures 18-36 and 18-37 show the Configuration
Panels for the two Variable blocks that read the HighTrigger
and LowTrigger values. The values are supplied to the Light
Sensor blocks by connecting the Variable block’s Value data
plug to the Light Sensor block’s Trigger data plug.

Figure 18-35: Comparing the Light Sensor with the trigger values to steer the robot

242	 chapter 18

Figure 18-36: Reading the HighTrigger variable

Figure 18-37: Reading the LowTrigger variable

The two Light Sensor blocks use all the default configu-
ration settings, as shown in Figure 18-38. Both use identical
settings because the only difference between them is the
trigger values they use, and those values are supplied using
a data wire. If you’re using the Color Sensor instead of the
Light Sensor, use the Color Sensor block with the settings
shown in Figure 18-39.

Figure 18-38: The Configuration Panel for the Light Sensor block

Figure 18-39: The Configuration Panel for the Color Sensor block

The two Switch blocks need to be changed to use the
value from the Light Sensor block’s Yes/No data plug, which
reports the result of comparing the sensor reading with the
trigger value. Figure 18-40 shows the Configuration Panel
for the Switch blocks. (Both Switch blocks use the same
settings.)

Figure 18-40: The Configuration Panel for the Switch blocks

testing the LineFollower program

With all the changes made to the program, you’re now ready
for testing. Be sure to first run the LineFollowerConfig
program to collect the two Light Sensor values, and then
place the TriBot on the right edge of the line and start the
LineFollow program. The TriBot should be able to follow a
line at least as well as the original program and should adapt
better to different lines, sensors, or lighting conditions.

If the program doesn’t work, the first thing to do is use
the FileReader program to check the contents of LF_Config. I
usually see a low value of around 25 and a high value around
50. If the values are 0 or if the first value is larger than the
second, check the LineFollowerConfig program. If the values
in LF_Config are correct but the program still doesn’t work,
check the settings on the Math blocks and the data wire
connections. You can also add some DisplayNumber blocks
just before the Loop block to show the values of the vari-
ables. The exact values of the variables will depend on your
particular conditions, but the following statements about the
values should be true:

N	 The Low value should be smaller than the High value.

N	 The Target value should be the average of the High and
Low values.

N	 The HighTrigger value should be 5 more than the Target
value.

N	 The LowTrigger value should be 5 less than the Target
value.

By examining the variables, you should be able to tell
which Math block or data wire connections to check. If all the
variable values are reasonable, then the problem most likely
involves either one of the Light Sensor or Switch blocks.

adding a pause at the beginning of
the program

While testing the program, you may find that the robot starts
off a little too quickly and runs into your hand. Fortunately,
you can easily solve this problem by using a Wait Time block
to add a small pause to the start of the program, as shown
in Figure 18-41. Figure 18-42 shows the Configuration
Panel for the Wait Time block.

	 the LineFollower program	 243

Figure 18-41: Waiting for you to move your hand

Figure 18-42: The Configuration Panel for

the Wait Time block

improving
the control
algorithm

The part of a line-follower program that adjusts the steering
based on the Light Sensor reading is called a control algo-
rithm. Improving the control algorithm will allow the TriBot to
move faster and follow lines with tighter turns.

The control algorithm you’ve been using so far is called
a three-state controller, because the program will do one of
three things based on the light sensor reading: go straight,
turn left, or turn right. This approach works as long as the
TriBot moves slowly and the line doesn’t curve too quickly.
The main problem with this method is that when the robot
needs to turn, it always turns the same amount, because the
Steering values for the Move blocks are hard-coded. If the
robot encounters a sharp or gentle turn, it will still turn at

why use variables?

The LineFollower program can be written without variables if you replace the Variable blocks with data wires to move
the values through the program. For example, Figure 18-43 shows the program with the Variable blocks removed.

Removing the variables gives you a smaller program, which means you can see more of it on your computer
screen, and it will take up slightly less memory when you download it to the NXT. The drawback of removing the
variables is that the program can become a little more difficult to understand and harder to debug.

I find it helpful to use variables when first developing a program. That way, I can look at the values a program
is using by just adding a Variable block followed by a DisplayNumber block. Once the program is working, it’s easy to
remove the Variable blocks if you want to make the program a little shorter.

Figure 18-43: Removing the Variable blocks

244	 chapter 18

the same steering value. It would be nice if the steering value
was dependent on the sharpness of the line, with little steer-
ing for straight lines and sharp steering for sharp corners.
This would allow the program to respond quickly to changes
in the direction of the line while still moving smoothly when
the line is straight.

You can implement this feature by making the robot
turn just a little when it’s close to the edge of the line
and turn a lot when it’s far from the edge of the line. This
approach is called a proportional controller, because the
change made to the steering is proportional to, or directly
related to, the robot’s distance from the edge of the line.
There are three steps to using a proportional controller to
follow a line:

1.	 Determine how far the TriBot is from the edge of the
line.

2.	 Decide how to control the motors.

3.	 Decide how much the TriBot should steer left or right
based on its distance from the edge of the line.

In the following sections, you’ll build the LineFollower2
program. There are enough changes from the LineFollower
program that it will be easier to start almost from scratch
rather than modify the existing program. You can reuse
the code at the very beginning of the LineFollower program
to read LF_Config and compute the target value (shown in
Figures 18-44 and 18-45) as a starting point for the Line-
Follower2 program.

how far from the edge?

Once the blocks in Figures 18-44 and 18-45 have run, the
Target variable will hold the value that the Light Sensor
should read when the TriBot is over the edge of the line. You
can determine how far the TriBot is from the edge of the
line by comparing the reading from the Light Sensor with
the target value. As the TriBot moves farther from the edge
of the line, the difference between the Light Sensor reading
and the target value will increase, and when the TriBot is
directly over the edge of the line, the Light Sensor reading
should exactly match the target value.

understanding the error value

The difference between the sensor reading and the tar-
get value is called the error value. You can think of the error
value as the difference between where you want the robot
to be and where the robot actually is. The error value is
computed using this simple formula:

Error = Target – Sensor Reading

For example, say the LF_Config file contains 22 for the
low value and 48 for the high value. The target value will
be (48 + 22) ÷ 2, which is 35. Table 18-1 shows the error
values for a range of Light Sensor readings, using 35 as the
target value. You can see from this table that the error value
increases as the Light Sensor reading gets farther from
the target value. Also notice that the error value is positive
when the sensor reading is less than the target value, and
it’s negative when it’s greater than the target value. The
sign of the error value (positive or negative) will determine
whether the TriBot should turn left or right.

Figure 18-44: Reading the Low and

High values from the LF_Config file

Figure 18-45: Calculating the

target value

	 the LineFollower program	 245

table 18-1: error values for various light sensor
readings

light sensor reading error value
target – light sensor reading

22   13

27    8

33    2

35    0

37   -2

43   -8

48 -13

using percent error

You can make one improvement to how the error value is
computed. The error values shown in Table 18-1 depend only
on the target value, not the low and high values, which means
that you would get the same error values if the low and high
values are 0 and 70, are 30 and 40, or are any pair of num-
bers whose average is 35. However, the error value should
reflect the position of the TriBot, which will be somewhere
between the center of the line and completely off the line. The
error values in Table 18-1 give you some useful information
but don’t really tell you the whole story about how far the
robot is from the edge. For example, if the Light Sensor read-
ing is 30, the error value is 5, and if the low value is 30, this
error value means that the TriBot is completely off the line.
But if the low value is 0, then an error value of 5 means the
TriBot is only slightly to the right of the line.

The error makes more sense if you look at it as a per-
centage of the possible range of values (from the low to high
value). To calculate the range, subtract the low value from
the high value:

Range = High – Low

Now you can get the error value as a percent of the
range using this formula:

Percent Error = (Target – Sensor Reading) × 100 ÷ Range

Multiplying by 100 before performing the division
allows the formula to work using either the integer math
in NXT-G 1.1 or the floating-point math in NXT-G 2.0.
Table 18-2 adds the percent error to the values in Table 18-1,
using 35 for the target value and 26 for the range.

table 18-2: percent error values for various light
sensor readings

light sensor
reading

error value
target – light sensor
reading

percent error value
(target – sensor
reading) × 100 ÷
range

22   13   50

27    8   30

33    2    7

35    0    0

37   -2   -7

43   -8 -30

48 -13 -50

Returning to the earlier example, an error value of 5
corresponds to a percent error of 50 if the low value is 30
and a percent error of only 7 if the low value is 0. The per-
cent error is a much better indication of how far the TriBot
is from the edge of the line.

setting the range value

The first section of code you need to add computes the
value for the Range variable. Figure 18-46 shows the Edit
Variables window with the Range and Error variables added.
Figure 18-47 shows the blocks for computing the value for
the Range variable by subtracting the value of the Low vari-
able from the value of the High variable. These blocks should
be placed just after the blocks that compute the target value.

Figure 18-46: Defining the Range variable

246	 chapter 18

Figure 18-47: Computing the Range variable

Figures 18-48 and 18-49 show the Configuration
Panels for the Variable blocks that read the Low and High
variables.

Figure 18-48: Reading the Low variable

Figure 18-49: Reading the High variable

The Math block subtracts the Low value from the High
value. Be sure to correctly connect the data wires between
the Variable blocks and the Math block. The Variable block
that reads the High value should be connected to the Math
block’s A data plug, and the Variable block that reads the Low

value should be connected to the Math block’s B data plug.
Figure 18-50 shows the Configuration Panel for the Math
block.

Figure 18-50: Subtracting the Low value from the High value

Figure 18-51 shows the Configuration Panel for the
Variable block that stores the result from the Math block in
the Range variable.

Figure 18-51: Storing the Range value

calculating the error value

The code you’ve written so far, to read the values from
LF_Config and calculate the target and range values, is
placed before the program’s main loop. Once the Target and
Range variables have been set, you can start the loop. The
first section of code in the loop (shown in Figure 18-52)
reads the Light Sensor and calculates the error value using
the formula described in “Using Percent Error” on page 245.

Figure 18-53 shows the Configuration Panel for
the Light Sensor, which uses all the default settings. If
you’re using the Color Sensor, use the settings shown in
Figure 18-54.

Figure 18-52: Calculating the error value

	 the LineFollower program	 247

Figure 18-53: Reading the Light Sensor

Figure 18-54: Reading the light level using the Color Sensor

Figure 18-55 shows the Configuration Panel for the
Variable block that supplies the target value to the following
Math block.

Figure 18-55: Reading the Target variable

The first Math block, shown in Figure 18-56, subtracts
the Light Sensor reading from the target value. Be sure to
connect the Variable block’s Value data plug to the Math
block’s A data plug and the Light Sensor block’s Intensity
data plug to the Math block’s B data plug. If you reverse
these connections, the robot will turn the wrong way.

Figure 18-56: Subtracting the Light Sensor reading from the target value

The second Math block, shown in Figure 18-57,
multiplies the result from the first Math block by 100. This
step allows this program to work with either NXT-G 1.1 or
NXT-G 2.0 by ensuring that you’ll get a useful number when
the next Math block divides the result by the range.

Figure 18-57: Multiplying the result by 100

Figure 18-58 shows the Configuration Panel for the
Variable block that reads the Range variable and passes the
value to the following Math block.

Figure 18-58: Reading the Range value

The next Math block, shown in Figure 18-59, divides the
result of the previous Math block by the range to give you
the error value as a percent of the total range between the
Low and High values.

Figure 18-59: Calculating the error as a percent of the range

Figure 18-60 shows the Configuration Panel for the
Variable block that stores the error value.

Figure 18-60: Storing the error value

At this point, the program will read the Light Sensor and
calculate the error value, which tells you how far the TriBot
is from the edge of the line. The sign of the error value (posi-
tive or negative) tells you whether the robot is moving away
from or toward the center of the line. You’ll use the error
value to decide how quickly and in which direction the TriBot
should turn.

248	 chapter 18

controlling the motors

You have a choice of two blocks for controlling the motors:
the Move block and the Motor block. The big advantage of the
Move block is that it will synchronize the movements of two
motors, allowing you to make the robot move in a straight
line, spin in place, or smoothly turn a corner. For example,
the WallFollower program uses a Move block to make a
90-degree turn when it reaches an opening in the wall.
Once you determine how far the motors need to go to make
a quarter turn, you can use a single Move block to control
both motors and make the TriBot turn around a corner. The
synchronization provided by the Move block works best when
the block has enough time to adjust the motors and works
less well if the settings are being quickly adjusted in a loop.

You can also control the TriBot using one Motor block
for each motor. This has the advantage of giving you more
control over exactly how the two motors move, which is
especially useful in a program that constantly adjusts the
motor settings.

using the motor block

Figure 18-61 shows the Configuration Panel for the Motor
block. To control the TriBot, you’ll use one Motor block for
the B motor and one for the C motor. Controlling how the
robot turns is a matter of adjusting the Power settings of the
two Motor blocks. If the Power settings of the two blocks are
the same, the robot will move in a straight line. If the Power
settings are different, the robot will turn left if the B motor is
moving faster and right if the C motor is moving faster.

You control how quickly the TriBot turns, and in which
direction, by adjusting the Power settings of the two blocks
each time through the program’s main loop. The arrange-
ment of the two blocks will look like Figure 18-62.

setting the power values

At this point in the discussion we’ve designed two parts of
the program: one part to calculate the error value (shown in
Figure 18-52) and the second part, shown in Figure 18-62,

to control the motors. The missing piece that ties these two
together is the code that uses the error value to calculate the
Power values for the two Motor blocks.

understanding the process

The basic idea here is to start with a base power value and
then calculate the Power settings for the two Motor blocks
by adding and subtracting a steering adjustment based
on the error value. The steering adjustment is calculated
by multiplying the error value by a value called the gain,
which determines how much the steering will be adjusted
for a given error value. A small gain makes the robot turn
slowly and results in very little side-to-side motion, though
the robot may not react quickly enough for tight turns. A
large gain will allow the TriBot to turn more quickly, but the
motion won’t be as smooth when the line is fairly straight.
Selecting the gain value is called tuning the controller and
usually involves some trial and error.

Recall that in calculating the error value, you multiplied
by 100. After multiplying the error value by the gain, you
need to divide the result by 100 to compensate; otherwise,
the steering adjustment will be much too large. Listing 18-2
outlines the steps involved in this process.

multiply the Error value by the Gain value
divide the result by 100 to get the steering
 adjustment value
set the Power item for the B motor to the base Power
 setting minus the steering adjustment value
set the Power item for the C motor to the base Power
 setting plus the steering adjustment value

Listing 18-2: Setting the Power values for the Motor block

Figure 18-63 shows the code for calculating and using
the Power settings. The Power variable holds the base
power for the program, and you’ll initialize this value as well
as the Gain variable at the beginning of the program. The

Figure 18-61: The Configuration Panel for the Motor block.

Figure 18-62: Using two Motor

blocks to steer the TriBot

	 the LineFollower program	 249

Power setting for the C motor is calculated by taking the
value of the Power variable and adding the steering adjust-
ment value. Similarly, the Power setting for the B motor
is calculated by taking the value of the Power variable and
subtracting the adjustment value.

a few examples

Let’s work through a few examples to make sure this is clear.
Say you set Gain to 85 and Power to 75, and the Low and
High values collected by the LineFollowerConfig program are
22 and 48. The target value is (High + Low) ÷ 2, which is 35.
The Range value is High − Low, which is 26.

Let’s see what happens when the TriBot is exactly where
you want it to be, directly over the edge of the line, where
the Light Sensor reads 35. The percent error value is as
follows:

(Target – Sensor Reading) × 100 ÷ Range
(35 − 35) × 100 ÷ 26
0

The steering adjustment is as follows:

(Error × Gain) ÷ 100
(0 × 85) ÷ 100
0

The Power setting for the B motor is as follows:

Power − Steering Adjustment
75 − 0
75

The Power setting for the C motor is as follows:

Power + Steering Adjustment
75 + 0
75

Since the Light Sensor reading matches at the target
value, the percent error is 0, which makes the steering
adjustment 0. So, both motors will move at the same

Power setting (75), and the TriBot will move forward in a
straight line.

Now assume the robot is a little to the left of the edge
of the line (closer to the center of the line) and the Light
Sensor reading is 30. In this case, the percent error value is
as follows:

(Target − Sensor Reading) × 100 ÷ Range
(35 − 30) × 100 ÷ 26
19

The steering adjustment is as follows:

(Error × Gain) ÷ 100
(19 × 85) ÷ 100
16

The Power setting for the B motor is as follows:

Power − Steering Adjustment
75 − 16
59

The Power setting for the C motor is as follows:

Power + Steering Adjustment
75 + 16
91

So, for a Light Sensor reading of 30, the B motor power
will be set to 59, and the C motor power will be set to 91,
which will make the robot turn to the right.

Now, say the TriBot moves to the right, away from the
line, and the Light Sensor reads 42. In this case, the percent
error is as follows:

(Target − Sensor Reading) × 100 ÷ Range
(35 − 42) × 100 ÷ 26
−26

The steering adjustment is as follows:

(Error × Gain) ÷ 100
(−26 × 85) ÷ 100
−22

Figure 18-63: Adjusting the steering based on the error value

250	 chapter 18

When the sensor reading is larger than the target, the
error value and the steering adjustment will be negative. All
the math still works out properly; you just need to be a little
more careful adding and subtracting negative numbers.

The Power setting for the B motor is as follows:

Power − Steering Adjustment
75 − (−22)
97

The Power setting for the C motor is as follows:

Power + Steering Adjustment
75 + (−22)
53

So, for a Light Sensor reading of 42, the B motor power
will be set to 97, and the C motor power will be set to 53,
which will make the robot turn to the left.

writing the code

Figure 18-63 shows the code for implementing the process
described in the previous sections. Now that you understand
the process, let’s examine the configuration of each of the
blocks. Figure 18-64 shows Configuration Panel for the
Variable block, which reads the Gain variable.

Figure 18-64: Reading the Gain value

Figures 18-65 and 18-66 compute the steering adjust-
ment by multiplying the error value by the Gain value and
then dividing by 100.

Figure 18-65: Multiplying the error value and the Gain value

Figure 18-66: Dividing the result by 100

Figure 18-67 shows the Configuration Panel for the
next block, which reads the Power variable.

Figure 18-67: Reading the Power variable

The two Math blocks that follow the Variable block both
take the value of the Power variable as the A input value
and the steering adjustment as the B input value. The first
Math block adds the two values, and the second Math block
subtracts the steering adjustment from the Power value.
Figures 18-58 and 18-69 show the Configuration Panels for
these blocks.

Figure 18-68: Adding steering adjustment to the Power value

Figure 18-69: Subtracting the steering adjustment from the Power value

Figures 18-70 and 18-71 show the Configuration
Panels for the two Motor blocks that use the computed
power values to move the robot. The Duration item is set to
Unlimited so that the motors will keep moving until the next
time through the loop.

Figure 18-70: Moving the B motor

	 the LineFollower program	 251

Figure 18-71: Moving the C motor

initializing the gain and power
variables

To complete the program, you need to initialize the Power
and Gain variables at the beginning of the program, as
shown in Figure 18-72.

Figure 18-72: Initializing the Power and Gain variables

Set the Power variable to 75 and the Gain variable to
85, as shown in Figures 18-73 and 18-74. These should give
you reasonable starting values, which you can adjust during
testing to make the TriBot move faster and more smoothly.

Figure 18-73: Setting the Power variable

Figure 18-74: Setting the Gain variable

testing the program

Once you have all the blocks configured, try running the
program. This program uses a lot of blocks with a lot of
connections between them, so it may not work the first time.
If there are problems, try using the DisplayNumber block to
check the values of the variables. You can also put your data
logging skills to the test and try logging the Light Sensor
readings and the steering adjustment values to see whether
you can spot a problem.

Once you have the program working, try adjusting the
Gain and Power values (a little bit at a time) and see how
quickly you can make the TriBot move while still staying on
the line.

conclusion
Writing a line-following program is a classic NXT exercise
that can challenge you to use all your NXT-G skills. The
LineFollowerConfig program and the accompanying changes
to the LineFollower program from Chapter 6 demonstrate
how to use a file to store a setting for a program. This lets
you avoid hard-coding values, making the program more
flexible. You can use this technique for any program where
the sensor target values or other settings may need to be
changed.

The LineFollower2 program uses a proportional control
algorithm to improve the TriBot’s responsiveness to changes
in the direction of the line. Using the Light Senor reading and
a little math to determine how much the robot should turn
allows the robot to both move quicker and stay closer to the
line. Using the readings from sensors to control a robot’s
motors is a basic part of many programs, and experimenting
with different control algorithms is a great way to expand
your knowledge of robotics while honing your programming
abilities.

A
NXT websites

This is a list of websites that have useful information regarding NXT-G programming. Many of these sites also contain links
to other online resources that deal with related areas you may be interested in, such as alternate programming languages
for the NXT and more general robotic topics.

http://mindstorms.lego.com/  The official LEGO MINSTORMS site contains the latest official NXT news and support
information. This site also hosts NXTLOG, a large collection of user-supplied projects.

http://www.legoeducation.com/  The official LEGO Education site provides support to teachers using LEGO products in the
classroom.

http://nxtasy.org/  This site provides NXT news, a repository of building instructions and custom-built NXT-G blocks, and
links to a wide variety of NXT-related material. The site’s message forum provides lots of useful information, including the
answers to many common problems that new NXT users encounter. This site is frequented by many knowledgeable NXT
users who are very generous with their time, and it is a great place to get your questions answered.

http://www.thenxtstep.blogspot.com/  The NXTStep blog covers news, events, and all things related to NXT. This site also
hosts a message forum and is another great place to get questions answered.

http://www.teamhassenplug.org/  This site is maintained by Steve Hassenplug, one of the most experienced NXT users,
and contains a wealth of NXT material, including many great building and programming tips.

http://www.nxtprograms.com/  This site has building and programming instructions for a large number of robots based on
both the original NXT and NXT 2.0 kits. Working through the programs on this site is a great way to expand your knowledge
of NXT-G.

http://www.thenxtclassroom.com/  This site hosts an online community and resources for teachers using the NXT in the
classroom. The available material includes building instructions, sample lesson plans, an electronic journal, and links to other
online resources.

http://www.legoengineering.com/  This site is supported through a partnership between the Tufts University Center for
Engineering Education and Outreach (CEEO) and LEGO Education. The focus of this site is the use of LEGO MINDSTORMS
to engage students in Science, Technology, Engineering, and Math (STEM).

B
moving from NXT-G 1.0/1.1

to NXT-G 2.0
This appendix contains information to help you make the transition from NXT-G 1.0/1.1 to NXT-G 2.0. The latest versions
of the MINDSTORMS software include some bug fixes and speed improvements, as well as a few changes to the way some
blocks behave. The core parts of the NXT-G language have not changed, and the vast majority of the material in this book
applies to all versions of the software. There are just a few things you should be aware of to help you use your old programs
with your new software.

numbers
The biggest change in NXT-G 2.0 is the switch from integers to floating-point numbers. Although this change won’t have any
effect on most of the calculations your programs perform, there are two implications that could affect your programs: when
dividing two numbers, the result won’t be rounded down to an integer, and really big numbers (more than 10 million) may
not be exact.

When dividing floating-point numbers, the fractional part of the result is maintained. In general, this makes performing
math a bit easier, because you don’t need to scale the numbers up to avoid losing important information. Also, the results
will more closely match the results you get using a calculator.

Floating-point numbers are only accurate to seven digits. This is only likely to cause problems if you are using very large
numbers. For example, you can store the positions of all three motors in a single value by adding the position of the A motor
times 1 million, the position of the B motor times 1,000, and the position of the C motor. However, this technique will fail
when using floating-point numbers, because the value will be rounded to seven places instead of being the exact value.

For more on the differences between integer and floating-point math, see Chapter 14.

block changes
All the blocks that deal primarily with numbers, such as the Math, Compare, and Range blocks, have been updated to work
with floating-point numbers. Beyond those changes, a few blocks have been modified in ways that may be less obvious. Here
is a summary of those changes:

N	 The Math block supports square root and absolute value operations.

N	 The Number to Text block will show the number rounded the number to two places.

N	 The File Access block will round a number to two places before writing it to a file.

256	 APPENDIX B

N	 The Switch block will round an input value to the nearest
integer before matching it against the list of condi-
tions. Even though floating-point numbers are used in
NXT-G 2.0, the list of conditions still only supports integer
values.

N	 The Rotation Sensor’s Degrees data plug value will be
negative when the motor is turned backward.

using old
programs

You can use the newer MINDSTORMS software to load,
edit, and run any programs you’ve written using the older
software. When you open a program written with the
older software, any blocks whose behavior has changed in
NXT-G 2.0 will be marked with an exclamation point (!), as
shown in Figure B-1. When you run your program, these
blocks will work the same way they did with NXT-G 1.0/1.1.
The MINDSTORMS software won’t automatically change the
way your program works; for example, the Math blocks in
your old programs won’t suddenly start using floating-point
division. Changing your blocks automatically could break
programs that used to work, which is generally considered a
bad thing for a software upgrade to do. Instead of changing
your program, the software lets you know which blocks are
different in the new version.

 

Figure B-1: The NXT-G 1.1 Rotation Sensor 	

block as shown in the NXT 2.0 software

After loading an old program with the new software,
you can make changes to it. But be very careful if you mix
blocks from the two NXT-G versions in the same program—
this can cause some very subtle errors, especially when
mixing together old and new Math blocks.

side-by-side
installation

The education and retail versions of the MINDSTORMS
software are installed in different locations on your com-
puter. This allows you to have both the education and retail
versions installed at the same time, which is useful if you’re
using the education set for school and have the retail kit at
home. However, when you install the new MINDSTORMS
software, the installation process will remove the older
version of the software of the same type (that is, the
Education 2.0 software will uninstall the Education 1.0/1.1
software, and the Retail 2.0 software will uninstall the
Retail 1.0/1.1 software). Uninstalling the older version of
the software will remove all the building and programming
instructions in the Robo Center, but it will not remove any
programs or My Blocks that you’ve created.

To keep both the old and new versions of the software,
follow these instructions when installing the new software:

1.	 Make a copy of the entire LEGO Software folder (found
either in the Applications folder on a Mac or the Program
Files folder on a Windows PC), and name the copy
something you’ll recognize, such as LEGO Software 1.1.

2.	 Install the new MINDSTORMS software.

3.	 Create a new desktop shortcut to the older version of
the software so you can access it easily.

Now you are able to run either version of the software.

A

absolute value, 103, 159
adding labels to a displayed value, 108–109
adding a Sequence Beam to a Loop of

Switch block, 223–228
algorithm, defined, 86
ambient light, measuring, 63
analyzing data, 210, 214
and, logic operation, 186
AroundTheBlock program, 50,

221–223, 230
art and engineering, 4
assumptions, 88, 233
automatic routing of data wires, 101
A-weighted decibel (dbA), 62

B

backup copies of programs, 11
beep while moving, 71–72
blocks, 5, 9. See also individual block names

connecting with data wires, 97–98
copying, 137, 198
in NXT-G 1.1 vs. NXT-G 2.0, 255–256
running, 73
selecting 66–67

BlockStartTest program, 229
Bluetooth, 11
Brick. See NXT Intelligent Brick
bugs, 12
bumped, Touch Sensor, 58
BumperBot program, 59–61
BumperBot2 program, 71–72, 80
BumperBot3 program, 80–83, 184–185,

186–188
BumperBotWithSound program, 62–63
busy loop, 223
buttons. See NXT buttons

C

changing a variable’s value, 135–136
Chime My Block, 161–164
clearing the screen. See Display block
CoastBack program, 54–44

CoastTest program, 53–55
collecting brightness data, 210–211
Color Lamp block, 227

Configuration Panel, 227
Color Sensor, 2, 63–64

Color Sensor mode, 67
color values, 67
feedback box, 64, 67
Light Sensor mode, 64
View menu, 64

Color Sensor block, 142
Configuration Panel, 142
light intensity value, 142

colors, identifying, 64, 67
comma-separated values, 212–214
comments, 13–15

adding, 14, 51
comment tool, 14–15
defined, 13
program description, 14
rules for working with, 15
and the Switch block, 78

common palette, 8
Compare block, 127, 142

Configuration Panel, 127
compiling, 9
complete palette, 8
computer math, 179
concatenate, 107
conditional, 73
configuration icons, 16
Configuration Panel, 9, 15–16

changing panels, 15
disabled items, 16
general layout, 15

Constant block, 145–146
choose from list, 145–146
Configuration Panel, 145
custom, 146

constants, 144–146
changing a constant’s value, 145–146
managing, 145

control algorithm, 243
Controller, 9, 11

converting numbers to text, 105
counting objects, 135–136
Create My Block button, 162
Create New Program, 7, 10
Create Pack and Go, 175
crowbar and pin technique, 224–228
custom palette, 8, 163, 174–175

D

data, 97
data collection. See data logging
data hub, 99

opening and closing, 99–101
data logging, 209–220

collecting sensor data, 210–211
controlling the amount of data, 216–217
gaps in the data, 214–216
timestamp, 212–214
using LEGO MINDSTORMS Education

NXT Software 2.0, 217–220
data plug, 100

pass-through, 105–106, 109
restoring pass-through data plugs,

106–107
data types, 104–105
data wires, 97–110

broken, 109
cycles, 109
and data types, 104–105
deleting, 101
drawing, 100–101
and the Loop block, 123–129, 229
organizing, 157
routing, 101
and Sequence Beams, 229
and starting blocks, 229
and the Switch block, 111–121, 229
and time values, 126

dB (decibel), 62
dBA (A-weighted decibel), 62
debugging, 12–13, 95, 208, 237

steps, 12
using Sound blocks, 95

index

decibel (dB), 62
design process, 86–88
detecting

a clap, 62
an obstacle, 60, 91, 112
a person, 69–70

Display block, 11, 152–155
clearing the screen, 156–158
controlling image location, 154
controlling the line setting, 166–167
drawing, 155

a circle, 155
a line, 155, 156–158

images, 152
point, 155
text, 12
X and Y values, 152, 154

displaying instructions, 235–238
displaying a number, 105, 136

floating-point numbers, 183
displaying the tone frequency, 105
displaying the volume using text, 117–121
DisplayNumber My Block, 166–174, 205

building, 167–172
configuration items, 166, 171–172
testing, 170
using, 173, 204, 222, 243, 251

Don’t Repeat Yourself (DRY) principle,
138, 206

DoorChime program, 68–70, 161–164,
223–228, 230–232

Download and Run Selected button, 50
downloading a program, 9, 11
drawing. See Display block
DRY (Don’t Repeat Yourself) principle,

138, 206

E

Edit Constants dialog, 145
Edit Variables dialog, 131–132
edit-compile-test cycle, 13
ending a program. See Stop block
engineering, 4
error value, 244

calculating, 246–247
percent error, 245

exclusive or (xor), logic operation, 186
Exit button, 59, 147

F

feedback box, 48, 58
File Access block, 195–196, 200, 255

Configuration Panel, 195–196
and data types, 196, 200
operations, 196

FileReader program, 200–201, 237–238
files, 195–208

closing, 196, 197, 202, 208
common problems, 208
common uses for, 195
creating, 196, 215
deleting, 196, 197, 207, 208
downloading, 208
errors in, 199–200
gaps in, 214–216
initial size, 215–216
managing, 207–208
naming, 196, 198
reading, 196, 200, 208, 238
uploading, 208, 212
uses, 195
writing, 196, 197, 200, 208

finding a light source, 140, 141
firmware, 5, 9

updates, 5
flashing the light, 227–228
floating-point math, 183

and the Number to Text block, 183
precision, 183
range, 183

following a wall, 89–91

G

gain, 248
gears, 45
generating a random number, 184
GentleStop program, 97–101, 112–113
Getting Started window, 7, 11
grouping common settings, 138

H

hard-coded values, 234
hardware, 5
Hello program, 10–11
HelloDisplay program, 11–12
help file, 6, 103
help panel, 9

hertz (Hz), 103
HiTechnic, 3

I

IDE (integrated development environment),
5, 7

initializing the display, 135
initializing variables, 140, 201–204
integer math, 179–180

division, 180
order of operations, 180, 181
range of values, 179
scaling values, 180, 181

integrated development environment (IDE),
5, 7

K

Keep Alive block, 79–80

L

LabVIEW, 5
Light Sensor, 2, 63–64

Configuration Panel, 63
feedback box, 64
trigger value, 64, 76
View menu, 64

Light Sensor block, 142, 241
light source, finding, 140, 141
LightPointer program, 138–144
line following, 75–78, 233–251

control algorithm, 243
controlling the motors, 248
error value, 244–247
how far from the edge, 244–247
trigger values, 234–235, 239–242

LineFollower program, 75–78, 233–243
LineFollower2 program, 244–251
LineFollowerConfig program, 235–238
Logic block, 185–186

Configuration Panel, 186
logic operations, 186. See also individual

operations
logic value, 104
LogicToText progam, 113–116
Loop block, 51–52, 79

checking the condition at the beginning
of the loop, 129

checking two conditions, 187

258	 index

Condition data plug, 125
Configuration Panel, 79
control options, 79
Count data plug, 123
and data wires, 123–129
expanding, 226–227
the final loop count value, 124
and multiple Sequence Beams, 229
nested, 124
restarting a loop, 124
setting the loop condition, 125

loop body, 79
loop condition, 79
LoopCountTest program, 123, 229
LoopCountTest2 program, 124
LoopCountTest3 program, 124
LoopStartTest program, 229

M

managing constants, 144–146
managing the custom palette, 174–175
managing memory, 207–208
managing variables, 131–132
magnifying glass tab, 9
manual routing of data wires, 101
math

computer, 179
floating-point, 183

and the Number to Text block, 183
precision, 183
range, 183

integer, 179–180
division, 180
order of operations, 180, 181
range of values, 179
scaling values, 180, 181

Math block, 103, 255
maze, solving, 86–88

following a wall, 89–91
going through an opening, 93–95
testing, 95
turning a corner, 91–93

memory tab, 207
millisecond, 126
mindsensors, 3
MINDSTORMS NXT Kit, 1

building pieces, 2
versions, 3

MINDSTORMS software
sections, 7–9
versions, 3, 255–256

more help link, 9
Motor block, 52–53, 248

comparison with Move block, 53, 248
steering, 248–251
three phases of a motion, 52

motors, 2, 45
power, 45
speed, 45

Move block, 46–48, 248
comparison with Motor block, 53, 248
controlling the Power setting, 97–98
degrees and rotations, 47
determining duration, 49
feedback boxes, 48
following a curve, 50
next action, 48
problem with coasting, 53–55
random duration, 184–185
spinning the robot, 49
synchronized motion, 46

multiple Sequence Beams. See Sequence
Beams

multitasking, 221
My Block, 161–177. See also individual My

Block names
broken, 176
Builder window, 162
configuration settings, 164–166, 177

names, 165–166
copying, 175, 230
creating, 161–163
and data plugs, 164–166

adding, 177
and data wires, 164
deleting, 174
editing, 163–164
icons for, 162
moving, 174–175
nested, 176
organizing, 174–175
renaming, 174
and Sequence Beams, 230
sharing, 175
testing, 170
and variables, 176

My Portal, 8
MyBlockTest program, 230

N

National Instruments, 5
Navigation Panel, 9
nested blocks, 78
not, logic operation, 186
Number to Text block, 105, 255

Configuration Panel, 105
and floating-point numbers, 183

NXT Button block, 148
Configuration Panel, 148

NXT buttons, 147
adjusting a value, 150
clearing the screen, 156–158
controlling a loop, 149
pressed vs. bumped, 151–152, 237

NXT Data Logging application, 219–220
NXT Intelligent Brick, 3
NXT-G, 5

moving from 1.1 to 2.0, 255
side-by-side installation,256

NXTSketch program, 155–159

O

Odometer program, 181–182
off-by-one error, 124
old programs, using, 256
online community. See websites, NXT-G
or, logic operation, 186
out of memory error, 207

P

percent error, 245
persistence, 195
pixel, 152
Play button, 11
pointer tool, 15
port, 58
PowerSetting program, 148–152, 173
PowerSettingWithImages program,

153–155
precision, 183
program flow, 73

and multiple Sequence Beams, 229–230
programmable timers, 126–129

	 index	 259

programming palettes, 8, 9
programming structures, 73
programs. See also individual program

names
assumptions, 88, 233
copying, 175
downloading, 9
initial condition, 88
instructions, 235-238
practices, 6, 61, 93, 95, 137, 138,

166, 232
qualities of good, 4
requirements, 86, 233
running, 11
sharing, 174
testing, 90
writing, 9

ProgTimer1 My Block, 164–165
prompting the user, 235-238
proportional controller, 244
pseudocode, 83–85

Q

question mark tab, 9

R

Random block, 184
Configuration Panel, 184, 185
limits, 184

Range block, 189
reading a program configuration file,

238–241
Record/Play block, 55–56
RedOrBlue program, 64–67, 189–192
RedOrBlueColorMode program, 64–67,

192–194
RedOrBlueCount program, 133–137,

197–199, 201–206
refactoring, 206
reflected light, measuring, 63
remembering, a position, 140
remote control tool, 56
requirements, 4

for programs, 86, 233
Reset Motor block, 55
returning to a position, 143–144
right-hand rule algorithm, 86
Robo Center, 8

Rotation Sensor, 2, 45, 70–71
Configuration Panel, 70

Rotation Sensor block, 70–71
NXT-G 1.1 vs. NXT-G 2.0, 103,

158–159, 256

S

saving your work, 10
scaling values, 180
Sensor blocks, 57, 99, 113

advantages of, 113
sensors, 2, 57. See also individual sensor

names
selecting a port, 61

Sequence Beams, 9, 73
adding, 221–223, 225–226
keeping out of trouble, 232
multiple, 221–232
and My Blocks, 230
and program flow, 229–230
synchronizing, 230–232

side-by-side installation, 256
SimpleMove program, 46
simplifying assumption, 64
sleep timer, 79
software, 5
Sound block, 10, 69, 103

controlling tone with, 103–104
controlling volume with, 102, 117
and debugging, 95
playing sound file with, 10
playing tone with, 69

Sound Sensor, 2, 61–62
Configuration Panel, 61
trigger value, 61
View menu, 62

SoundMachine program, 101–109, 117–121
source code, 9, 83

for example programs, 6
square root, 103
stall, motor, 47
Start Data Logging block, 217–218
Start New Program. See Create New

Program
steering, 47–48
Stop block, 80
Stop Data Logging block, 217–218

storing
program data, 195, 197–199, 201–205
program settings, 195, 235–238

Switch block, 64–65, 73–75, 255
and comments, 78
conditions list, 116–117

adding a condition, 116,
the default condition, 117, 119
fixing the order, 119–120
removing a condition, 116

Configuration Panel, 74–75
and data types, 111
and data wires 111–121

connecting data wires, 111,
114–116, 120

input data plug, 111
multiple Sequence Beams, 229
passing data in, 113
passing data out, 113–114

Flat and Tabbed View, 74, 78, 113
more than two choices, 76, 116–117
nested, 77
numbers as input, 117
NXT-G 1.1 vs. NXT-G 2.0, 117
tabs, 74, 121
trigger, 74
value control, 111

T

target value, 239
Temperature Sensor, 3
testing, 13, 52, 93, 137, 242

single block, 50
Text block, 107

combining values, 212–214
Configuration Panel, 107

text value, 104
ThereAndBack program, 49–50
three-state controller, 243
time values, 126
Timer block, 125–126

Configuration Panel, 125
range of values, 126
trigger, 126

Timer1 program, 126
Timer2 program, 127
Timer3 program, 129
timers, 125

260	 index

timestamp, 212
Touch Sensor, 2, 58

Configuration Panel, 58
feedback box, 58
View menu, 59
waiting for the user, 66

Touch Sensor block, 114
TriBot, building instructions, 17

alternate placement for Color Sensor, 42
alternate placement for Ultrasonic

Sensor, 43
wires, 41

trigger, 58, 74, 234–235
truth table, 186
tuning a controller, 248

U

Ultrasonic Sensor, 2, 68
Configuration Panel, 68
feedback box, 68
inches and centimeters, 99
range, 68
trigger, 68, 69
View menu, 68

Ultrasonic Sensor block, 99
undo, 10
USB, 11

V

Variable block, 132
Configuration Panel, 132

variables, 131–144, 243
creating, 131–132, 133–134
and data types, 132
deleting, 132
in place of long data wires, 138, 243
initializing, 140, 201–204
and My Blocks, 176
naming, 132, 133

VerifyLightPointer program, 209–217
VerifyLightPointer2 program, 218–219
Vernier, 3
View menu, 48, 59

W

Wait block
Sensor, 57
Time, 13

Wait for Completion, 13
WallFollower program, 83–96
websites, NXT-G, 2, 253
wheel circumference, 181
wheels as dials, 101–102, 155–158

NXT-G 2.0, 158
whole numbers. See integer math
work area, 8

X

xor. See exclusive or (xor), logic operation

	 Index	 261

More no-nonsense books from no starch press

The LEGO® MINDSTORMS® NXT 2.0 Discovery Book
A Beginner’s Guide to Building and Programming Robots
by laurens valk

The crystal-clear instructions in The LEGO MINDSTORMS NXT 2.0 Discovery Book show you how
to harness the capabilities of the NXT 2.0 set to build and program your own robots. Author and
robotics instructor Laurens Valk walks you through the set, showing you how to use its various
pieces and how to use the NXT software to program robots. Interactive tutorials make it easy
for you to reach an advanced level of programming as you learn to use data wires and variables,
monitor sensors, and build robots that move. You’ll build eight increasingly sophisticated robots
like the Strider (a six-legged walking creature), the CCC (a climbing vehicle), and the Hybrid Brick
Sorter (a robot that sorts by color and size). Numerous building and programming challenges
throughout the book encourage you to think creatively and apply what you’ve learned as you
develop the skills essential to creating your own robots.

may 2010, 336 pp., $29.95
isbn 978-1-59327-211-1

LEGO® MINDSTORMS® NXT Thinking Robots
Build a Rubik’s Cube Solver and a Tic-Tac-Toe Playing Robot!
by daniele benedettelli

Daniele Benedettelli is world famous for his innovative LEGO MINDSTORMS robots. His YouTube
videos have been viewed more than two million times, and his robots have been featured on
international television programs and all over the Web. LEGO MINDSTORMS NXT Thinking
Robots includes full building and programming instructions for two of Benedettelli’s most unique
creations—a brand-new version of his famous Rubik’s Cube solver and an interactive Tic-Tac-Toe
playing robot. You will find complete building instructions for each robot—whether you are using
the NXT 2.0 set or the original NXT 1.0. Benedettelli includes information about how to use the
robots as well as explanations of the artificial intelligence that makes these robots think.

december 2009, 224 pp., $29.95
isbn 978-1-59327-216-6

LEGO® MINDSTORMS® NXT One-Kit Wonders
Ten Inventions to Spark Your Imagination
by james floyd kelly, matthias paul scholz, christopher r. smith, martijn boogaarts, jonathan
daudelin, eric d. burdo, laurens valk, bluetoothkiwi, and fay rhodes

LEGO MINDSTORMS NXT One-Kit Wonders is packed with building and programming instructions
for ten innovative robots. The book dives headfirst into the creative thrill of robot-building with
models like Grabbot, Dragster, and The Hand. Step-by-step building instructions make it simple
to construct even the most complex models, while the detailed programming instructions teach
you how a NXT program really works. And best of all, you only need one NXT Retail kit to build
all ten of the robots!

november 2008, 408 pp., $29.95
isbn 978-1-59327-188-6

Forbidden LEGO®

Build the Models Your Parents Warned You Against!
by ulrik pilegaard and mike dooley

Written by a former master LEGO designer and a former LEGO project manager, this full-
color book showcases projects that break the LEGO Group’s rules for building with LEGO
bricks—rules against building projects that fire projectiles, require cutting or gluing bricks, or
use nonstandard parts. Many of these are back-room projects that LEGO’s master designers
build under the LEGO radar, just to have fun. Learn how to build a catapult that shoots M&Ms,
a gun that fires LEGO beams, a continuous-fire ping-pong ball launcher, and more! Tips and
tricks will give you ideas for inventing your own creative model designs.

august 2007, 192 pp., full color, $24.95
isbn 978-1-59327-137-4

The Unofficial LEGO® Builder’s Guide
by allan bedford

The Unofficial LEGO Builder’s Guide combines techniques, principles, and reference informa-
tion for building with LEGO bricks that go far beyond LEGO’s official product instructions.
You’ll discover how to build everything from sturdy walls to a basic sphere, as well as more
advanced structures, including a mini space shuttle and a train station. The book also delves
into advanced concepts such as scale and design. The book covers essential terminology and
includes the Brickopedia, a comprehensive guide to the different types of LEGO pieces.

september 2005, 344 pp., $24.95
isbn 978-1-59327-054-4

phone:
800.420.7240 or

415.863.9900
monday through friday,
9 am to 5 pm (pst)

fax:
415.863.9950
24 hours a day,
7 days a week

email:
sales@nostarch.com

web:
www.nostarch.com

updates
Visit http://www.nostarch.com/nxt-g.htm for updates, errata, and other information.

The Art of LEGO MINDSTORMS NXT-G Programming is set in Chevin. The book was printed and bound at Malloy Incorporated
in Ann Arbor, Michigan. The paper is 60# Spring Forge, which is certified by the Sustainable Forestry Initiative (SFI). The
book has a RepKover binding, which allows it to lie flat when open.

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

 “I LIE FLAT.”

This book uses RepKover—a durable binding that won’t snap shut.
Price: $29.95 ($37.95 CDN) Shelve in: Robotics/Hobbies

The LEGO® MINDSTORMS® software and its NXT-G
programming language are powerful tools that make it easy
to write custom programs for your robots. NXT-G is a great
first programming language, but that doesn’t mean it’s easy
to understand — at least not right away.

In The Art of LEGO MINDSTORMS NXT-G Programming,
author and experienced software engineer Terry Griffin
explains how to program MINDSTORMS robots with NXT-G.
You’ll learn how to work with the core parts of the NXT-G
language, such as blocks, data wires, files, and variables, and
see how these pieces can work together. You’ll also learn
good programming practices, bad habits to avoid, and useful
debugging strategies.

As you follow along with the book’s extensive instruc-
tions and explanations, you’ll learn exactly how NXT-G works
and how to:

N	Write custom programs that make your robots appear to
think and respond to your commands

N	Design, create, and debug large programs
N	Write programs that use data wires and the NXT buttons

to turn a robot into a contraption, like a sound generator
or a sketch pad

N	Use My Blocks in your programs, and share them with
others

N	Store data on the NXT, manage its memory, and transfer
files between the NXT and your computer

The book’s programs work with one general-purpose test
robot that you’ll build in Chapter 3.

Whether you’re a young robotics enthusiast, an adult
working with children to learn robotics, a parent, a FIRST
LEGO League coach, or a teacher using NXT in the class-
room, this is the complete guide to NXT-G that you’ve been
looking for.

about the author

Terry Griffin has been a software engineer for over 20 years,
spending most of his time creating software for controlling
various types of machines. He works for Carl Zeiss SMT
on the Orion Helium Ion Microscope, programming the
user interface and high-level control software. He lives in
Massachusetts with his wife, Liz, a middle school math and
science teacher, and their three daughters, Cheyenne, Sarah,
and Samantha.

Requirements:	 One LEGO MINDSTORMS NXT or
	 NXT 2.0 set

the complete guide
to programming
with nxt-g

griffin
the

 art of leg
o

® m
in

d
st

o
r

m
s

® n
xt-G

 programming

The Art of LEGO®
MINDSTORMS® NXT-G
Programming
terry griffin

covers
nxt-g

1.0 and 2.0

	Copyright
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Who This Book is For
	Prerequisites
	What to Expect from This Book
	How Best to Use This Book

	1: LEGO and Robots: A Great Combination
	LEGO MINDSTORMS NXT
	The NXT Online Community
	The LEGO MINDSTORMS NXT Kit
	Art and Engineering
	Qualities of a Good Program
	Software, Firmware, and Hardware
	NXT-G
	What You'll Learn from This Book
	What's Next?

	2: The NXT-G Programming Environment
	A Tour Through the MINDSTORMS Environment
	Writing an NXT-G Program
	Your First Program
	Running Your Program
	Your Second Program
	Debugging
	The Edit-Compile-Test Cycle
	Comments
	The Configuration Panel
	Conclusion

	3: The Test Robot
	Right-Side Motor
	Left-Side Motor
	Chassis
	Caster Wheel
	Attach the Caster Wheel
	Add the NXT
	Touch Sensor Bumper
	Attach the Bumper to the Chassis
	Ultrasonic Sensor
	Sound Sensor
	Color Sensor or Light Sensor
	Attach the Wires
	The Final Beam
	Alternate Placement for the Color Sensor
	Alternate Placement for the Ultrasonic Sensor
	Conclusion

	4: Motion
	The NXT Motor
	The Move Block
	There and Back
	Around the Block
	The Motor Block
	Brake, Coast, and the Reset Motor Block
	The Reset Motor Block
	The Record/Play Block
	The Remote Control Tool
	Conclusion

	5: Sensors
	Using the Sensors
	The Touch Sensor
	The BumperBot Program
	The Sound Sensor
	BumperBot with Sound
	The Light and Color Sensors
	The RedOrBlue Program
	The Ultrasonic Sensor
	Door Chime
	The Rotation Sensor
	The BumperBot2 Program
	Conclusion

	6: Program Flow
	The Sequence Beam
	The Switch Block
	The Loop Block
	The Keep Alive Block
	The Stop Block
	Conclusion

	7: The WallFollower Program: Navigating a Maze
	Pseudocode
	Solving a Maze
	Program Requirements
	Assumptions
	Initial Design
	Following a Straight Wall
	Turning a Corner
	Going Through an Opening
	Final Test
	Conclusion

	8: Data Wires
	What Is a Data Wire?
	The GentleStop Program
	Tips for Drawing Data Wires
	The SoundMachine Program
	Understanding Data Types
	Using the Number to Text Block
	Displaying the Tone Frequency
	Using the Text Block
	Adding Labels to the Displayed Values
	Dealing with Broken Wires
	Conclusion

	9: Data Wires and the Switch Block
	The Switch Block's Value Option
	Rewriting the GentleStop Program
	Advantages of Using a Sensor Block
	Passing Data into a Switch Block
	Passing Data out of a Switch Block
	Matching More than Two Values
	Using Numbers with the NXT-G 2.0 Switch Block
	Fixing the SoundMachine Program's Volume Display
	Conclusion

	10: Data Wires and the Loop Block
	The Loop Count
	Timers
	The Timer Block
	A Programmable Timer, Version 1
	The Compare Block
	A Programmable Timer, Version 2
	A Programmable Timer, Version 3
	Conclusion

	11: Variables
	A Place for Your Data
	Managing Variables
	The Variable Block
	The RedOrBlueCount Program
	Grouping Common Settings
	Replacing Long Data Wires with Variables
	The LightPointer Program
	Constants
	Conclusion

	12: The NXT Buttons and the Display Block
	The NXT Buttons
	The NXT Button Block
	The PowerSetting Program
	The Display Block
	The NXTSketch Program
	Conclusion

	13: My Blocks
	Building Bigger Blocks
	Creating a My Block
	The Custom Palette
	Editing a My Block
	Configuring a My Block
	Changing the Name of a Configuration Item
	The DisplayNumber Block
	Using the DisplayNumber Block
	Managing the Custom Palette
	Sharing Programs with My Blocks
	Advanced My Block Topics
	Conclusion

	14: Math and Logic
	Computer Math
	Integer Math
	Floating-Point Math
	The Random Block
	Adding a Random Turn to BumperBot
	The Logic Block
	Adding Some Logic to BumperBot
	The Range Block
	Improving RedOrBlue
	Improving RedOrBlueColorMode
	Conclusion

	15: Files
	Using Files
	The File Access Block
	Saving the RedOrBlueCount Data
	Checking for Errors
	The FileReader Program
	Restoring the RedOrBlueCount Data
	Managing Memory
	Common Problems
	Conclusion

	16: Data Logging
	Data Collection and the NXT
	The VerifyLightPointer Program
	Controlling the Amount of Data
	Data Logging Using the LEGO MINDSTORMS Education NXT Software 2.0
	Conclusion

	17: Using Multiple Sequence Beams
	Multitasking
	Adding a Second Sequence Beam
	Avoiding a Busy Loop
	Adding a Sequence Beam to a Loop Block
	Understanding Program Flow Rules
	Synchronizing Two Sequence Beams
	Keeping out of Trouble
	Conclusion

	18: The LineFollower Program
	Following a Line
	The Starting Point
	Selecting the Sensor Trigger Values
	Improving the Control Algorithm
	Conclusion

	A: NXT Websites
	B: Moving from NXT-G 1.0/1.1 to NXT-G 2.0
	Numbers
	Block Changes
	Using Old Programs
	Side-By-Side Installation

	Index

