
SHELVE IN
:

PROGRAM
M

ING LANGUAGES/RUBY
www.nostarch.com

TH E F I N EST I N
G E E K E NTE RTA I N M E NT™

For kids aged 10+ (and their parents)

A Madcap
Programming

Adventure

A Madcap
Programming

Adventure

$29.95 ($31.95 CDN)

The Ruby programming language is perfect
for beginners: easy to learn, powerful, and
fun to use! But wouldn’t it be more fun if you
were learning with the help of some wizards

Along the way, you’ll meet colorful
characters from around the kingdom, like
the hacker Queen, the Off-White Knight,
and Wherefore the minstrel. Ruby Wizardry
will have you (or your little wizard) hooked
on programming in no time.

ABOUT THE AUTHOR

Eric Weinstein has helped millions of people
learn to program through Codecademy, where
he designed and authored the Ruby curricu-
lum. He has also taught creative writing
to undergraduates and veterans at NYU,
where he was a Veterans Writing Workshop
Fellow. He writes Ruby for a living in New
York City.

 Organize and reuse your code with methods
and lists

 Write your own amazing interactive
stories using Ruby

Ruby by taking you on a fantastical journey.
As you follow the adventures of young heroes

tale that will teach you how to program in

Ruben and Scarlet, you’ll learn real program-
ming skills, like how to:

Ruby Wizardry is a playful, illustrated

 Use fundamental concepts like variables,
symbols, arrays, and strings

 Work with Ruby hashes to create a
programmable breakfast menu

 Control program flow with loops and
conditionals to help the Royal Plumber

 Test your wild and crazy ideas in IRB
and save your programs as scripts

 Create a class of mini-wizards, each with
their own superpower!

and dragons?

Ruby is a free programming
language that runs on Windows,

Mac OS X, and Even Linux!
Covers Ruby 2.

R
u

b
y

 W
iz

a
r

d
r

y
R

u
b

y
 W

iz
a

r
d

r
y

W
e

in
s

t
e

in

Ruby
Wizardry
Ruby

Wizardry
An Introduction to Programming for Kids

E r i c W e i n s t e i n

Ruby Wizardry

Ruby
Wizardry

An Introduction to
Programming for Kids

By Eric Weinstein

San Francisco

Ruby WizaRdRy. Copyright © 2015 by Eric Weinstein.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

Printed in USA

First printing

18 17 16 15 14 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-566-8
ISBN-13: 978-1-59327-566-2

Publisher: William Pollock
Production Editor: Riley Hoffman
Cover Illustration: Karen Teixeira
Developmental Editor: Tyler Ortman
Technical Reviewers: Peter Cooper and Pat Shaughnessy
Copyeditor: Rachel Monaghan
Compositor: Riley Hoffman
Proofreader: Paula L. Fleming
Indexer: Nancy Guenther

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2014953112

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective own-
ers. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using
the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precau-
tion has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in it.

All characters in this publication are fictitious or are used fictitiously.

To my teachers

About the Author
Eric Weinstein has helped millions of people learn to program
through Codecademy, where he designed and authored the Ruby
curriculum and contributed courses on Python, JavaScript,
HTML/CSS, and PHP. He has also taught creative writing to
undergraduates and veterans of the wars in Iraq and Afghanistan
at New York University, where he was a Veterans Writing
Workshop Fellow. He writes Ruby for a living in New York City.

About the Technical Reviewers
Peter Cooper is the editor of Ruby Weekly, a chair of O’Reilly’s
Fluent web development conference, and the author of Beginning
Ruby (Apress). He tweets at @peterc.

Pat Shaughnessy is the author of Ruby Under a Microscope
(No Starch Press) and also blogs at http://patshaughnessy.net/.
A fluent Spanish speaker, Pat frequently visits his wife’s family
in northern Spain. Pat lives outside of Boston with his wife and
two children.

https://twitter.com/peterc
http://patshaughnessy.net/

Brief Contents
Foreword by Steve Klabnik . xvii

Acknowledgments . xxi

Chapter 1: What This Book’s About. 1

Chapter 2: The King and His String . 19

Chapter 3: Pipe Dreams . 31

Chapter 4: Staying in the Loop . 47

Chapter 5: Array of Sunshine and Hash on the Range 63

Chapter 6: The (Chunky) Bacon to Ruby’s Hash . 91

Chapter 7: The Magic of Methods and Blocks. 109

Chapter 8: Everything Is an Object (Almost) . 133

Chapter 9: Inheriting the Magic of Ruby. 177

Chapter 10: A Horse of a Different Color . 207

Chapter 11: Second Time’s the Charm . 233

Chapter 12: Reading, Writing, and Ruby Magic . 265

Chapter 13: Follow the WEBrick Road . 285

Chapter 14: Where to Go Next . 301

Appendix A: Installing Ruby on Mac and Linux. 313

Appendix B: Troubleshooting . 315

Index . 321

Contents in Detail
Foreword by Steve Klabnik xvii

Acknowledgments xxi

1
What This Book’s About 1
Why Learn Programming (and Why Ruby)? . 3
All Adults on Deck: Installing Ruby . 4

Installing on Mac or Linux . 5
Installing on Windows . 6

Achievement Unlocked: Ruby Installed! . 8
Putting on the Ruby Slippers . 8
Getting to Know IRB . 10
Using a Text Editor and the ruby Command . 11

Mac. 12
Linux . 12
Windows. 12
Creating Your First Script . 12

When to Use IRB and When to Use a Text Editor . 14
The Prompts Used in This Book . 15
Into the Shiny Red Yonder . 16

2
The King and His String 19
A Short Yarn . 19
A Bit More About Variables . 22
Ruby Operators . 24
A Smallish Project for You . 27
You Know This! . 29

3
Pipe Dreams 31
The Apprentice Plumber’s Dilemma . 31
Writing and Running Ruby Scripts . 33
His Majesty’s Flow Control . 35

xii CONTENTS IN DETAIL

Improving flow_rate.rb with Fancier Logical Operators 40
A Biggerish Project for You . 43
You Know This! . 45

4
Staying in the Loop 47
Ruby on Monorails . 47
while Loops . 50
Arrays . 54
Putting Arrays and Loops into Action . 56
Your Project, Should You Choose to Accept It. 58
You Know This! . 61

5
Array of Sunshine and Hash on the Range 63
Big Hank’s Hashery . 63
Arrays Within Arrays . 66
Even More Array Methods! . 68
Shift! Pop! Insert! . 69
Iterating with Arrays . 72
Hash in the Hashery. 74
Rollicking Ranges . 78
Order Up!. 81
You Know This! . 84

6
The (Chunky) Bacon to Ruby’s Hash 91
Symbols! . 91
The Skinny on Symbols . 94
Symbols and Hashes, Together at Last . 97
The Mid-morning Rush. 101
What Else Can You Do with Symbols? . 104
You Know This! . 105

7
The Magic of Methods and Blocks 109
A Method to the Madness. 109
Defining Your Own Methods . 114

return Versus puts . 115
Understanding Method Arguments . 117

CONTENTS IN DETAIL xiii

What Is nil? . 120
Splat Parameters . 122
Block Methods. 124
Into the Dagron’s Lair . 127
You Know This! . 130

8
Everything Is an Object (Almost) 133
The Subject of Our Story Is an Object . 133
Classes and Objects . 137
Creating Our First Class, Minstrel . 140
Variable Scope. 144

These Variable Errors Will Shock and Surprise You!. 145
Global Variables . 147
Class Variables . 148
Instance Variables . 150
Local Variables . 152

Objects and self . 154
Methods and Instance Variables . 157
Dial-a-Ballad, or the Minstrel’s Delivery Service . 164
You Know This! . 167

Objects and Classes. 167
Variables and Scope . 170
Object-Oriented Programming . 174

9
Inheriting the Magic of Ruby 177
Her Majesty’s Menagerie . 177
A Brush-up on Classes . 182

A Couple of Classes . 183
Inheritance and DRY Code. 185

Subclass and Superclass. 188
Overriding Methods: Pirates are People, Too 190
Using super . 192

Protecting the Kingdom with GuardDogs and FlyingMonkeys 193
Every GuardDog Has His Day . 195
Once More, with Feeling! . 196

The Queen’s Machine . 199
You Know This! . 203

xiv CONTENTS IN DETAIL

10
A Horse of a Different Color 207
Utter Panda-monium . 207
Creating Modules . 211
Constants. 213
Extending Your Knowledge . 214
Mixins and Inheritance . 215
Requiring Another File . 217
Looking Up Constants . 221
A Horse of a Different Color . 224
You Know This! . 227

11
Second Time’s the Charm 233
Refactoring at the Refactory. 233
Variable Assignment Tricks. 237
Crystal-Clear Conditionals. 240
When You Need a case Statement . 242
Simplifying Methods. 244
De-duplicating Code . 249
Re-refactoring . 255
You Know This! . 258

12
Reading, Writing, and Ruby Magic 265
File Input and Output . 265
Opening a File with Ruby. 268
Writing and Adding to Files . 270
Avoiding Errors While Working with Files . 275
All Loading Docks, Report for Duty! . 277
You Know This! . 280

13
Follow the WEBrick Road 285
Ruby and the Internet . 285
Using the open-uri Ruby Gem . 287
Investigating the Kingdom’s Web Server . 290
Beyond the Kingdom Walls . 296
You Know This! . 298

CONTENTS IN DETAIL xv

14
Where to Go Next 301
The Big Picture: What You Know . 301
Additional Resources and Further Reading . 304

Beginner Books . 304
Intermediate Books. 305
Advanced Books . 306

Online and Multimedia. 306
Interactive Resources . 307

Additional Topics . 308

A
Installing Ruby on Mac and Linux 313
Installing on Mac . 313
Installing on Linux . 314

B
Troubleshooting 315
Errors Running Ruby Scripts. 315

Command Not Found . 316
No Such File or Directory . 316

Errors Using IRB . 316
Undefined Local Variable or Method . 317
Syntax Error . 317
Can’t Convert nil into String . 317
You Were Saying . . . ? . 318
Clear the Screen . 318
Go Back to a Previous Command . 319
Look It Up!. 319

Index 321

Foreword
A long time ago, I was a little kid growing up on a farm in
rural Pennsylvania. My hometown is small enough that my
parents’ farm was just half a mile down the road from my
maternal grandparents’ house, my mother’s childhood home.

One day, when I was seven years old, I was visiting my
grandparents. It just so happened that one of my uncles also
dropped by on that particular day. He wanted to give my
grandparents a present: their first computer, a Mac Plus.

You see, my uncle was heavily involved in all kinds of
computing shenanigans. And computers were still a new
thing in those days, so not many people had them. My grand-
parents, caring about their son and his interests, decided
it would be a good idea to check out this whole “computer”
thing.

Excited by all the hubbub, my uncle called me over to
the computer and explained what it was. He told me that
you could do all kinds of things with computers, but that

xviii FOREWORD

he thought I might like this one. On the screen appeared these
immortal words:

 Welcome to ADVENTURE!

 Original development by Willie Crowther
 Major features added by Don Woods
 Conversion to BDS C by J. R. Jaeger
 Unix standardization by Jerry D. Pohl
 Conversion to PHP by Matt G. S. Cox
 Adapted for AMC.com by Rick Adams

To play the game, type short phrases into the command line below.
If you type the word "look," the game gives you a description of
your surroundings. Typing "inventory" tells you what you're
carrying. "Get" "drop" and "throw" helps you interact with
objects. Part of the game is trying out different commands and
seeing what happens. Type "help" at any time for game
instructions.

Would you like more instructions? no

You are standing at the end of a road before a small brick
building. Around you is a forest. A small stream flows out
of the building and down a gully.

What's next?

Then, just a blinking cursor. By typing in simple instruc-
tions, I was able to explore a wonderful world, with an endless
cave, a sneaky pirate, and a maze of twisty little passages, all
alike. I was absolutely enthralled. My uncle told me, offhand-
edly, that some people called programmers had to actually
teach the computer know how to play the game. I was hooked.
I started asking to “go see Grandma” so much that my parents
started saying, “You don’t want to see Grandma, you want to
play with Grandma’s computer.”

“No, I want to see Grandma and play with her computer,” I
replied.

FOREWORD xix

Today, computers are very different. That Mac Plus had an
8 MHz processor, which could handle 1.4 million instructions
per second. It also had 1MB of RAM. An iPhone 5s, today, has a
1.3 GHz processor, which can handle 18200 million instructions
per second, and has 1GB of RAM. Games today don’t present you
with some text; they present you with full 3D graphics.

But I still firmly believe that a computer can change a
child’s life.

Ruby Wizardry is a book that captures that wonder I had as
a child, sitting at this thing they called a “keyboard” for the first
time. Ruby is a much nicer programming language than the
GW-BASIC I cut my teeth on, but the core idea is the same.
Give a child a way to bring their imagination to life, and amaz-
ing things will happen.

I hope Ruby Wizardry brings you the same joy that computers
have always brought me.

Steve Klabnik

Acknowledgments
This book would not have been possible without the tireless
efforts of dozens—possibly even dozens of dozens!—of people.

First, my wife, Laura, who not only tolerated my all-night
writing sessions and endless requests for feedback on story
ideas, but also at various times pinch hit as literary agent,
proofreader, sanity checker, and stop-reading-the-Internet-
and-get-back-to-work!-er. This book would never have come
to be without her love and support.

My family, especially my father, who read to me almost
every night for years, and my mother, who (for better or
worse) taught me that I could do anything to which I stub-
bornly committed myself.

My teachers, to whom this book is dedicated, particularly
my teachers in the Ruby community: Cole Brown, Linda
Liukas, and Dean Strelau, as well as all the brilliant, dedi-
cated facilitators and students at Hacker School.

xxii ACKNOWLEDGMENTS

Of course, Ruby Wizardry would not have been possible with-
out Tyler Ortman, Riley Hoffman, Bill Pollock, and the amazing
people at No Starch Press. I literally can’t thank them enough
for their insight, energy, and dedication.

Steve Klabnik, who read an early version of this book and
wrote a wonderful foreword for it, as well as Peter Cooper and
Pat Shaughnessy, who did the technical review and gave me
much greater insight into the nitty-gritty of the Ruby language.
All three are phenomenal teachers and Rubyists.

why the lucky stiff, whose book why’s (Poignant) Guide to
Ruby was one of the first Ruby books I read and who was the
first to really show me the significance of and enthusiasm for
art in the language and the community. I hope this book evokes
some of the same feelings of excitement and wonder I felt when
reading why’s work.

Finally, Dave, who introduced me to Bill at No Starch Press
and made this whole thing possible.

You found this book! Okay, awesome. I was really hoping it
would get to you.

Imagine someone tells you he’s discovered a new way
of writing. Not a new language, like French or Japanese or
Elvish, but a whole new kind of writing that makes your
stories actually happen. If you described a maze, people could
enter—and get lost in—that maze. If you wrote about a far-
away planet where robot pirates fought ninja wizards, that
planet would totally exist. Not only that, but you could write
dialogue like "Beep boop shiver me circuits" or cast spells like
ninja_wizard.throw_flaming_ninja_stars. Crazy, right? And that’s
probably exactly what you’d say: that this is completely crazy
and whoever thought of it has too much time on his hands.
Too much imagination.

2 CHAPTER 1

Well, it turns out there’s no such thing as too much imagi-
nation. So! Imagine me this: not only is this crazy new way of
writing real, but you can learn how to do it. You could, with a
little practice, figure out how to make your own worlds with
your own rules. You’d be in charge, and you could do pretty
much anything you could think of. Not only that, but if you got
really good at it, people would come from all over to experi-
ence the worlds you built and use all the amazing things you
created.

You can stop imagining (for now, at least). I’m telling you
that this is true! And this book can help you do it. The pages you
now hold in your hands are a guide to a programming language
called Ruby that will let you do all these things, and all you need
is your brain, a computer, and Ruby.

How can this be? you might be thinking. If something this cool
and powerful existed, I definitely would have heard about it by now.

Which brings us to our next topic.

WHAT THIS BOOK’S ABOUT 3

Why Learn Programming
(and Why Ruby)?
Learning to program sounded boring to me when I was younger.
I thought programming and computers were all about math
and logic—that there was no room to be creative or do anything
interesting. All day long, people told me what to do: go to school,
walk the dog, go to the dentist, do my homework. I figured pro-
gramming would be more of the same, so I avoided it completely.
Instead, I wrote stories about space travel, magic, and distant
worlds where not only did amazing things happen, but I was in
charge! I still write stories all the time, but even the best stories
end when the reader turns the last page. As much as you want
starships or ninja wizards to be real, writing stories about them
doesn’t make that happen. So I did write a lot of stories, but I
also had to go to the dentist.

Then something very strange happened: I decided to give
programming a try. I discovered that this thing I thought would
be terribly dry and boring was exactly the opposite—it was chal-
lenging and fun. Suddenly, I was calling the shots! If I told the
computer to make a puzzle game, it made a puzzle game. If I
told it to make a website, it made a website. It made real things
in the world that I could see, play with, and use. It was as if all
the stories I had been writing for years could now come to life,
and all it took was this little box and a language I could use to
talk to it.

It’s true that some programming languages are hard, and
some are downright confusing. Ruby is different: it was designed
to make you happy—to be easy for you to read and understand,
not just the computer. Ruby was built to help you tell stories
that computers and human beings can both enjoy, and so instead
of weird symbols or words like static and void, you get programs
that look almost like English, with words like unless, rescue, self,
and even begin and end.

Just as with any programming language, learning Ruby
will help you learn important skills, make cool things, and feel

4 CHAPTER 1

accomplished. But mostly, you’ll just have fun. And among pro-
gramming languages, I think Ruby is the most fun.

Let’s say you wanted to program the computer to say “Howdy!”
If you wanted to do this in another language—for instance,
Java—you might have to write something really complicated,
like this:

class Howdy {
 public static void main (String[] args) {
 System.out.println("Howdy!");
 }
}

That’s a lot of code to print one word. To do the same thing in
Ruby, you just type:

puts "Howdy!"

That’s it! Ruby puts the word right there on the screen.
Simple, right? Ruby is all about making you a happy and pro-
ductive programmer (oh yeah—you’re a programmer now), so it
gets rid of a lot of complicated syntax (like { and ;) and lets you
avoid writing boring things like public static void main all over
the place. And since Ruby can do pretty much all the stuff that
trickier languages like Java can do, you’ll be able to build amaz-
ing things faster and with less effort.

Let’s get started!

All Adults on Deck: Installing Ruby
All right—this is the part where you might want to grab your
mom, dad, grandpa, grandma, aunt, uncle, teacher, or another
local adult to help you install Ruby on your computer. Ruby is
free, but you’ll need an Internet connection to download it if you
don’t already have it.

The directions are a little different depending on which kind
of computer you have, so ask your adult if you’re not sure!

If you’re running Windows, skip ahead to page 6.

WHAT THIS BOOK’S ABOUT 5

Installing on Mac or Linux

First, let’s check to see if you already have Ruby installed. If
you’re on a Mac or a computer running Linux, you can check to
see which version of Ruby you have on the command line—this
is where you’ll be typing your Ruby programs.

The command line is probably very different from the way
you usually use your computer (clicking icons and moving things
with your mouse), but once you get used to it, the command line
can be much faster and easier.

On a Mac or Linux computer, your command line is in an
application called Terminal. Find your Terminal application and
open it. You should see something like this:

Once you’ve got the Terminal open, go ahead and type the
following line (you don’t need to type the dollar sign—just the
ruby -v bit) and press enter:

$ ruby -v

If Ruby is installed, you’ll get back something like this:

ruby 2.0.0p247

If you get this response and it includes 2.0.0, you’re all set!
Skip ahead to “Achievement Unlocked: Ruby Installed!” on
page 8. If you get a number other than 2.0.0 (for instance,

6 CHAPTER 1

1.9.3 or 1.8.7), we’ll need to get you on version 2.0.0 (the ver-
sion this book uses). If your computer is super fancy, you might
already be on Ruby 2.1—the code in this book should work in
Ruby 2.1, too. For maximum awesomeness and minimal errors,
you should run all the examples using Ruby 2.0.0.

If your computer says something like this:

-bash: ruby: command not found

then you don’t have Ruby. No worries. Grab an adult and skip to
Appendix A for detailed step-by-step instructions. We’ll install it
there! Come back to this chapter when you’re done.

Installing on Windows

If you’re on a PC running Windows, you can check if Ruby
is installed by opening the command prompt. We’ll be using
Windows 7 in this example. You can open the command prompt
from the Start menu or by searching for cmd.exe; once you find
it, double-click it to open the application. You should see some-
thing like this:

Your command prompt—the little bit before the >—will prob-
ably be different from mine, but that’s okay! Type ruby -v and
then press enter:

> ruby -v

If you get a response that includes 2.0.0, you’re all set! If you
see a Ruby version other than 2.0.0, or if you get this error:

'ruby' is not recognized as an internal or external command,
operable program or batch file.

then we’ll need to go ahead and install Ruby. Let’s get to it!

WHAT THIS BOOK’S ABOUT 7

Using RubyInstaller

The easiest way to install Ruby on Windows is to go to http://
rubyinstaller.org/downloads/ and download Ruby 2.0.0-p481.
(Don’t worry if the number after the p on the installation web-
site is a little higher than what’s shown here; that just means
that version is very slightly newer, but it’s still Ruby 2.0 and
should work great.) Once the download is finished, go to the
folder where you saved the .exe file and double-click it to run
the installer. Here’s what it will ask you to do:

1. When it prompts you for the language to use during installa-
tion, choose “English” (or whichever language you know best).

2. The installer will ask you to accept its license agreement.
Check “I accept the License” and then click Next.

3. The installer will ask you where you’d like to install Ruby,
defaulting to C:\Ruby200. This is great! You’ll also see a check-
box that says “Add Ruby executables to your PATH.” Make
sure that box is checked, then click install.

4. If all goes well, you should get a “Completing the Ruby Setup
Wizard” screen. Click Finish, and you’re done!

Once the installer runs, close your command prompt,
reopen it, and enter ruby -v; you should see your computer
print a response with ruby 2.0.0 in it. Mine looks like this
(yours might be slightly different):

ruby 2.0.0p481 (2014-05-08) [i386-mingw32]

http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/

8 CHAPTER 1

Achievement Unlocked:
Ruby Installed!
Perfect! Now that you’ve got Ruby installed, we can start learn-
ing our way around. In the next chapter, we’ll cover some Ruby
basics and learn how to use Ruby interactively, meaning you’ll
get to see Ruby run your code just by pressing the enter key.
In the chapters that follow, you’ll learn the ins and outs of the
Ruby language through a series of stories. Since Ruby programs
are, after all, just stories you write for the computer to under-
stand, and Ruby is all about writing code that’s nice for people
and computers to read, I figure it only makes sense to use stories
to show you how it all works. They’re pretty good stories, I think.

You might be tempted to just read the code in this book and
say to yourself, “Yup, this makes sense! I don’t need to run the
code.” I thought that was true when I started programming, but
boy, was I wrong. The only way to learn how to write code is,
well, to write code, and you’re cheating yourself out of a lot of
really cool knowledge if you only read these examples and never
run a line of Ruby.

One more word of advice before we set out on our adventure:
you might have to read something more than once or run a piece
of code a few times to really get it. That’s okay! Learning to pro-
gram isn’t just a new way of writing—it’s a new way of thinking,
too. It might be a little hard sometimes, but I promise that if you
stick with it, you’ll get it. Believe me, there are people way less
smart and enthusiastic than you who have learned how to pro-
gram, and if they can do it, so can you.

Putting on the Ruby Slippers
Okay, so you’ve got your very own copy of Ruby, and you know
that Ruby is a language you can use to tell computers to do any-
thing you want. But you’re probably overflowing with questions:
Where did Ruby come from? Who created it and why? What
amazing things have been created with it? What good is Ruby?

WHAT THIS BOOK’S ABOUT 9

Well, question no more: I’ll give you all those answers (plus a
few bonus ones).

While computers were invented about a bajillion years ago
(the first devices you’d recognize as computers were created in
the 1940s), Ruby was cooked up relatively recently, in 1993. You
might think that 1993 was a bajillion years ago, too, and in some
ways, you’re right. The Internet only had about a hundred web-
sites. Nobody had smartphones. In fact, most people’s phones
were connected to their walls by wires. These were dark times.

But in the ancient world of the mid-1990s, a man named
Yukihiro Matsumoto (or just “Matz” to his friends) was busy try-
ing to invent the future. He was frustrated by programming lan-
guages that were designed to make life easy for computers but
were hard for people to understand, read, remember, and use.
Why wasn’t there a language that was built to be easy for people
to use, a language that was clear, simple—and even fun?

Matz realized that his ideal programming language didn’t
exist, so he created it. “I hope to see Ruby help every program-
mer in the world to be productive, and to enjoy programming,
and to be happy,” Matz has said. “That is the primary purpose
of the Ruby language.”* And that’s Ruby in a nutshell: a fun
way for you to create games, websites, or anything you can
imagine with just your brain and a computer. Matz has had
such a positive influence on the language he created that Ruby
programmers have a saying: “Matz is nice, so we are nice,” or
MINSWAN. Remember MINSWAN when you’re learning Ruby
and especially when you’re teaching it to others!

Which reminds me: there are a lot of amazing things you
can create with Ruby. Over the last few years, Ruby has been
used to build major websites like Twitter and Hulu, iPhone apps,
and even NASA simulations. That’s right: you can use Ruby to
explore space! People are using Ruby for more and more projects
every day, and with all the cool new tools and ideas constantly
coming from the Ruby community, your imagination’s really the
only limit when it comes to building your own programs.

* Google Tech Talks, Feb. 2008 (https://www.youtube.com/watch?v=oEkJvvGEtB4).

https://www.youtube.com/watch?v=oEkJvvGEtB4

10 CHAPTER 1

These programs are written in scripts. This means that
instead of having to do a long and boring process called compiling,
you can just write a quick Ruby program, run it, and presto!

Your website is up, your game is working, your starship is
shooting lasers at a witch queen. But how do you run these
Ruby scripts? For that, we’ll need to learn about the ruby com-
mand and a little program called IRB.

Getting to Know IRB
In Ruby, you can print something to the screen just by typing
the puts command. Let’s say we want to print out “Ruby is awe-
some!” Let’s give it a try—first we have to open IRB, a program
for exploring Ruby.

If you’re using Mac or Linux, open the terminal and type:

$ irb

You only need to type irb, not the dollar sign; the dollar sign
is my way of showing you that you should type something in the
terminal.

If you’re using Windows, you can run IRB from the Start menu.

WHAT THIS BOOK’S ABOUT 11

Once you have IRB open, you should see something like this:

2.0.0p247 :001 >

That’s IRB’s prompt, which is IRB’s way of telling you it’s
ready for you to type something. It might look a bit different to
you depending on your Ruby version, but it should end with a >.

In this book, we’ll simplify that to look like this:

>>

Whenever you see >>, we’ll be using IRB. If you type this
after the >> (don’t forget the quotation marks—they’re very
important!):

>> puts "Ruby is awesome!"

when you press enter, you should see Ruby print out:

Ruby is awesome!
=> nil

Excellent! We’ve written a simple program to print some
text to the screen. You’ll also see Ruby say something about
“nil.” Don’t worry about this just yet; I’ll explain that part in
a little while. (If you can’t wait: basically, this is Ruby telling
you that it’s all done printing and has nothing else to give you.
You’ll learn all about nil in Chapter 7.) The cool thing is, you’ve
just written your very first Ruby program!

IRB will continue to prompt you and wait for you to type
things until you tell it to stop, which you can do at any time
by typing exit (or just quitting your terminal program).

Using a Text Editor and
the ruby Command
The other way of writing Ruby commands is as a script, which
is just writing many lines and then running them all at once,
instead of one at a time. To write a script, you’ll need a program

12 CHAPTER 1

called a text editor. (This is not something like Microsoft Word,
which is a word processor; a word processor is great for writ-
ing stories or reports for school, but it’s terrible for writing
programs.)

NOTE You can download all the scripts that appear in this book
at http://nostarch.com/rubywizardry/. But if you’re learning
to program and following along with the story, try typing
things out instead of just copying and pasting! You’ll learn
a lot more.

Mac

All Macs come with a text editor called TextEdit (you can find
it in your Applications folder). It’s very simple to use and works
great for writing Ruby programs. If you’re looking for something
with a little more pizzazz, you can download a very nice free text
editor called Sublime Text 2 from http://www.sublimetext.com/2
(you’ll need OS X 10.6 or later).

Linux

There are a number of good editors for Linux, but Gedit is one of
my favorites. You can download it from https://wiki.gnome.org/
Apps/Gedit. Sublime Text 2 is also a very good editor for Linux
and is available at http://www.sublimetext.com/2.

Windows

As I just mentioned, Microsoft Word is not good for writing pro-
grams. Notepad++, on the other hand, is a great free text editor
for Windows that you can get from http://notepad-plus-plus.org/
download/v6.6.7.html. You can also use the Sublime Text 2 edi-
tor, available at http://www.sublimetext.com/2.

Creating Your First Script

Once you’ve installed a text editor, open it and type the same
thing you typed in IRB:

puts "Ruby is awesome!"

http://nostarch.com/rubywizardry/
http://www.sublimetext.com/2
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
http://www.sublimetext.com/2
http://notepad-plus-plus.org/download/v6.6.7.html
http://notepad-plus-plus.org/download/v6.6.7.html
http://www.sublimetext.com/2

WHAT THIS BOOK’S ABOUT 13

Go ahead and save this file as awesome.rb in any folder
you’d like (it’s a good idea to create a ruby folder now to put all
your Ruby programs in). Then, open your terminal and change
into the folder where you saved awesome.rb. Here’s how to do
that with the cd command:

 • On Mac or Linux, your prompt (the bit to the left of the $ on
the command line) looks something like /Users/username $. If
you saved awesome.rb in a folder called ruby in your home
folder, you can get to that folder on the command line by
entering:

$ cd /Users/username/ruby

Don’t type the $ part, just everything after it. Also, don’t
literally type username; you should replace that with whatever
you see in your prompt! (Mine is /Users/eweinstein/, but yours
will be different.)

 • On Windows, your prompt (the bit to the left of the > on the
command line) looks something like C:\Users\username. If you
saved awesome.rb in a folder called ruby in your home folder,
you can get to that folder on the command line by entering:

> cd C:\Users\username\ruby

Don’t type the > part, just everything after it. Also, don’t
literally type username; you should replace that with whatever
you see in your prompt.

Once you’re in the ruby folder, enter:

$ ruby awesome.rb

You should see Ruby print out:

Ruby is awesome!

And that’s you running your first Ruby script. Nice work!

14 CHAPTER 1

When to Use IRB and When to Use
a Text Editor
So if we type the same thing into IRB and into our script file,
and we get the same output, what’s the difference between the
two? Basically, IRB will let you try out only one line of code at
a time; every time you press the enter key, IRB will read, or
evaluate, the code you wrote and spit out an answer. It’s a great
way to try things out and see if they work.

This means that every time you press enter, Ruby will inter-
rupt you with the result of calculating each line, like this:

>> 2 + 5
=> 7
>> 24 * 10
=> 240
>> 'Hi ' + 'there!'
=> "Hi there!"

The code in bold is what you’ve typed; below it is the response
you get from IRB when you press enter. We don’t always need
all that noise! Sometimes we just want to know the final result
of all our work. To do that, we can write this same code as a
script. Just open your editor from earlier (for example, TextEdit
if you’re on a Mac, Gedit if you’re using Linux, or Notepad++ for
a PC running Windows) and type the following:

puts 2 + 5
puts 24 * 10
puts 'Hi ' + 'there!'

Then save the script as script_example.rb, or any name
you like with a .rb at the end (but no spaces allowed!), use cd
to switch into the directory where you saved the script, and
finally run the script with the ruby command:

$ ruby script_example.rb

WHAT THIS BOOK’S ABOUT 15

This way, we’ll just get the printed-out information we want,
without having to type line by line:

7
240
Hi there!

Not only is this easier to read, but we can now run the script
over and over with ruby script_example.rb and do our calculations
without retyping all the commands each time. We can save our
program forever, change it, and build on it later.

The Prompts Used in This Book
Throughout the book, we’ll alternate between using IRB for
small bits of code and running scripts for longer ones. Whenever
you see the IRB prompt, which looks like this:

>>

that means you should be running the code using IRB; when
you don’t see it, it means you should type the script in your text
editor and run it using the ruby command. Here’s what an IRB
example looks like:

>> 2 + 2
=> 4

Let’s take a moment to talk about what each piece of this
code does. The >> bit says, “We’re in IRB, which is a program
that understands Ruby commands.” Remember, you don’t want
to type >>; this just lets you know we’re using IRB. The >> in the
book represents the IRB prompt on your own computer.

The bold code that reads 2 + 2 is a command for you to
enter—type these lines exactly, then press enter. When you
see several bold lines at an IRB prompt, just type them one at
a time, pressing enter after each line.

But the second line in this code begins with =>. This is what
IRB spits back out in response after you press enter. (That

16 CHAPTER 1

means you don’t have to type these bits either.) If you get an
error after typing a command instead of seeing the result
shown in the book, make sure you’ve typed your Ruby com-
mands exactly. Computers are very dumb: they do exactly what
you say and not always what you want!

Other programs in the book are longer, so you’ll want to be
able to change or improve them and fix mistakes. That means
you’ll want to write them with a text editor. I’ll remind you of
what to use for each example as we go. But remember, when you
don’t see IRB’s >>, you’ll want to use a text editor.

Once we jump into the story, you’ll hear about Computing
Contraptions. These are imaginary versions of computers just
like yours, and whenever you see characters in the story running
Ruby on a Computing Contraption, they’re really just giving IRB
and Ruby a spin, so you can follow along yourself at home.

Finally, some of the scripts later in the book get pretty long.
I’ll break those up into multiple sections and narrate each one.
You’ll see numbered balls that look like this:

u v w x y

I’ll refer to those numbers in the text so you can walk through
each of the examples step-by-step. You don’t type these into the
computer; they’re just for reference!

Again, don’t worry if you forget the differences between the
IRB and Ruby script prompts—I’ll remind you as we go along!

Into the Shiny Red Yonder
Don’t worry about understanding all the code you just saw in
these examples. We’ve only just started learning Ruby, and I
promise we’ll go through all of its secrets over the course of the
next few chapters. We’ll cover how to handle text and numbers,
how to help our programs make decisions based on informa-
tion they get from the people using them, how to create our own
Ruby commands, how to write scripts that will connect to web-
sites on the Internet, and much more.

WHAT THIS BOOK’S ABOUT 17

I said earlier that writing Ruby is more like writing stories
than writing instructions for a machine, so I’ll be using stories
to teach you how Ruby works. In the pages that follow, I’ll intro-
duce you to a few characters who will help explain everything
you’d ever want to know about Ruby. Some will be expert Ruby
programmers, and some, like you, will be brand new to the lan-
guage. Many will have all sorts of problems that they think
can’t be solved, but with a bit of hard work and some Ruby magic,
they’ll find out that their troubles aren’t nearly as bad as they
seem. Speaking of magic, there’ll be a bit of that, too—a king, a
queen, a castle, an enchanted (possibly slightly haunted) forest, a
wandering minstrel, some witches and wizards, a dragon or two,
and a couple of kids a lot like you who have wandered into this
crazy kingdom and have no choice but to explore . . .

Scarlet!

Ruben!

A Short Yarn
The King was in a foul mood. I mean a truly terrible, scream-
at-the-cat, throw-a-snowglobe-out-a-third-story-window kind
of mood. If you saw him rumbling toward you down the side-
walk, you would quickly change sides of the street. If he were
your dad, you would write letters to Santa year-round ask-
ing for a replacement dad. Really, it was capital-B Bad News
Bears for everyone.

The thing is, the King had lost his favorite possession that
morning, somewhere between eating his usual breakfast of
parched oats and his pre-late-afternoon vigorous stroll. He
had turned his palace upside-down (literally: the King had
a lot of money and a lot of servants), but to no avail. When
Scarlet and Ruben found him, he was weeping bitterly in his
study, sitting in an overstuffed armchair of solid gold.

20 CHAPTER 2

“What did it look like?” Scarlet asked.
“What did what look like?” asked the King, gargling slightly

on his own salty tears as they flowed down his finely coiffed
moustache and into his mouth.

“The thing you lost,” said Ruben.
“Like a string!” said the King. “Because that’s what it was: a

string, with a knot on each end to secure my bits and trinkets.
This particular string had several beads on it that spelled out
‘Property of His Royal Highness, the King,’ like so:

'Property of His Royal Highness, the King'

“A string of letters,” said Ruben.
“More like a string of characters,” said the King. “Each letter

is really very unique. The K, for instance, is a crooked fellow.
And don’t even get me started on the p— ”

THE KING AND HIS STRING 21

But Ruben and Scarlet weren’t listening. They were already
searching high and low for the King’s missing string.

“Could your string have fallen into this Mysterious Pipe?”
Scarlet asked, gesturing toward a sputtering black metal pipe
with the words Mysterious Pipe written on it in white chalk.

“No,” said the King. “The Mysterious Pipe is deceptively
narrow at the top, and a string as long as mine could never
fit into it.”

“How long is your string?” Ruben
asked.

“I’m not sure,” said the King. “I sup-
pose we could count all the characters,
and then we’d know.” (Take it from me:
this would be super boring.)

“That would be boring,” said Scarlet.
“I think there’s a better way.” She walked
to a corner of the room, blew the dust off
a very old Computing Contraption, and
carefully typed the following at its little
green IRB prompt:

>> 'Property of His Royal Highness, the King'.length
=> 40

“Great coats!” said the King. “That’s right! I remember
now—my string is precisely 40 characters long. But how did
you do that?”

“Ruby has lots of great tricks like this,” said Scarlet. “Here’s
another.”

>> 'Property of His Royal Highness, the King'.reverse
=> "gniK eht ,ssenhgiH layoR siH fo ytreporP"

The King nodded. “Yes, that’s pretty much what my string
looks like in the mirror when I hang it up to dry after a refresh-
ing shower.”

In the meantime, Ruben had been counting the number of
characters in the King’s string using a bit of chalk he found

22 CHAPTER 2

resting near the Mysterious Pipe. “Hang on a second,” he said.
“I’m counting 42 characters, including the quotation marks on
each end.”

The King snorted like an overweight wiener dog. “You don’t
count those!” he said. “Those are the little knots on each end
that keep the characters contained! You only count the charac-
ters, not the quotes.”

“And that’s exactly what Ruby does,” explained Scarlet. “But
you have to put quotes around your strings, or Ruby will think
you’re trying to use a variable.”

A Bit More About Variables
Believe you me, this confused the bejeepers out of the King.
Since he’s not nearly as bright a bulb as you are, I’ll let Ruben
and Scarlet spend ages explaining variables to him while I take
a moment to explain them to you.

A Ruby variable is just a name (without quotes!) that you can
give to a value (which is a piece of information, like the words
that make up the King’s string). One kind of value is a string;
another kind is a number, which you already saw when Ruby
told you that the length of the King’s string was 40.

You make a variable like this:

>> kings_string = 'A string fit for a king'
>> wiener_dog_weight = 22

The equal sign says to Ruby, “Hey! Take this value on the
right and save it with the name on the left.” This means that
later on, you can type the variable name and get the value
right back:

>> wiener_dog_weight
=> 22

THE KING AND HIS STRING 23

This could come in handy when you’re trying to keep track
of your wayward pet (let’s call him Smalls) and his fluctuating
weight:

>> smalls_weight = 22
=> 22
>> pounds_lost = 4
=> 4
>> smalls_new_weight = smalls_weight - pounds_lost
=> 18

Don’t worry about the 22 and the 4 being repeated back to
you; Ruby’s just trying to be helpful. Ruby always expects the
variable name to be on the left and the value to be on the right,
so make sure not to mix up the order!

You’ll also notice I used _ (called an underscore) instead of
a space in the variable names. Ruby doesn’t allow spaces in
names, so it’s a good practice to use _ instead.

It sounds like the King is still getting the hang of strings
(imagine my ear pressed to the heavy oak door of his study), so
I’ll clue you in on one more bit of Ruby magic. When you see code
like this:

>> 'Property of His Royal Highness, the King'.reverse

it means you’re calling the reverse method on the string. When
we say we’re “calling a method,” what we mean is we’re asking
Ruby to carry out a command: “Hey, Ruby! Reverse this string
for me, please!” I’ll go on and on about methods later, but for

24 CHAPTER 2

now, you can think of them as commands that work on particu-
lar Ruby objects. For example, strings can be reversed, but num-
bers can’t:

>> "18".reverse
=> "81"
>> 18.reverse
=> NoMethodError: undefined method `reverse' for 18:Fixnum

NoMethodError!? That’s Ruby saying, “Whoa, whoa, whoa. I know
how to reverse a string, but I don’t know how to reverse a number!”
As you practice, you’ll get to know which methods go with which
kinds of Ruby objects. Author’s honor. (I was never a scout.)

Ruby Operators
“Let me see if I’ve got this right,” said the King. “Variables are
names for Ruby values, like strings and numbers. They don’t
have quotes around them and can’t have spaces in them. I can
use the equal sign to set a variable equal to a value, and then I
can use my variable’s name to get that value back.”

“That’s exactly right,” said Ruben.
“And when I see an object followed by a dot followed by a

command, that means I’m using that command on that object,”
said the King.

“Precisely,” said Scarlet.
“You mentioned that I can’t reverse a number,” said the King.

“That makes sense. But what can I do to a number?”

THE KING AND HIS STRING 25

“All sorts of things,” said Ruben. He nudged Scarlet aside
and typed at the Computing Contraption:

>> 100 + 17
=> 117
>> 50 - 20
=> 30
>> 10 * 10
=> 100
>> 40 / 20
=> 2

“Yes, yes,” said the King. “I can add them with +, subtract
them with -, multiply them with *, and divide them with /.”

“You’ve probably seen ÷ for division,” Ruben continued, “but
in code we can just use /. For example, 4 ÷ 2 will be 4 / 2.”

“But what can I do that’s interesting?” the King complained.
“What about this?” asked Ruben, as he typed some more.

>> 22.next
=> 23
>> 22.pred
=> 21

“Aha!” said the King. “Now you’re talking. next must tell
Ruby to calculate the next number, and pred asks Ruby for its
predecessor, which is the number that comes right before it.”

“Right as rain,” said Ruben.
“rain!” exclaimed the King, jumping up so forcefully that he

knocked his solid gold armchair right over. He ran out of the
room at what seemed an impossible speed for a man of his age,
and Ruben and Scarlet followed.

After running for several minutes through the horribly
jumbled contents of the palace (the King had turned it upside-
down, after all), Ruben and Scarlet caught up with the King in
his main bathroom. He was weeping again, but this time with
joy, and clutched in his hands was—his string!

“Rain reminded me that I took a refreshing shower after my
breakfast of parched oats!” blubbered the King. “And here it
was, hanging to dry, just as I’d left it. I can’t thank you enough!”

26 CHAPTER 2

“Careful!” said Scarlet. “Your string’s still a bit wet; look at
the beads sliding around on it.”

The King sniffed loudly and inspected his string, and the
characters on it were, in fact, sliding every which way. The King
thought for a moment, then double-knotted each end of the string
to keep his characters from sliding off:

"Property of His Royal Highness, the King"

“Double quotes!” said Scarlet. “Can you use those with Ruby
strings?”

“Definitely,” said Ruben, “and single- and double-quoted
strings work almost exactly the same way.” He pried open the
King’s medicine cabinet to expose a slightly-less-old Computing
Contraption, then typed the following:

>> double_quotes = "A string's the thing"
=> "A string's the thing"
>> single_quotes = 'for a springly King'
=> "for a springly King"

“See?” said Ruben. “Even when we type single quotes, Ruby
repeats double quotes back to us. Both work!”

“Though I think I’ve heard tell,” said the King, “that you can
put more complicated bits and trinkets in a double-quoted string
than a single-quoted one.”

“That’s true,” said Ruben, “but we’ll get to that in good time.”
And he closed the King’s medicine cabinet with a gold-plated click.

THE KING AND HIS STRING 27

A Smallish Project for You
Now that you know a bit about strings, numbers, and variables,
let’s put together a small project: writing a program to reflect
and echo the King’s string. A reflection of something is just that
thing backward, so you’ve probably already guessed that we’ll
be reverse-ing some strings. On the other hand, an echo of some-
thing is just that thing repeated a few times, and we’ll soon see a
way to repeat a string very quickly and easily. You’ll weep with
joy at how simple and easy it is. You’ll tear out the pages of this
book and use them to dry your tears.

NOTE For some of the longer code examples, we’ll write Ruby
scripts instead of using IRB! Whenever you see a filename
in italics above the code, like kings_string.rb for the next
example, that means you can write the code as a file with
the given name and run it using the ruby command. Peek
back at Chapter 1 if you don’t remember how to do this, or
ask the nearest adult to help you. You can download all
the scripts that appear in this book at http://nostarch.com/
rubywizardry/. (But remember, if you’re learning to pro-
gram, try typing things out yourself instead of just reading
and running the code!)

Go ahead and make a new file called kings_string.rb. Then,
open your file and type the following. We’re going to make a
short program that shows off the cool things you can do by
assigning variables and how Ruby can play with strings.

kings_string.rb

kings_string = "Property of His Royal Highness, the King"
string_reflection = kings_string.reverse
times_to_echo = 3
string_echo = kings_string * times_to_echo
puts kings_string
puts string_reflection
puts string_echo

The first four lines are assigning variables. You can tell by
the equal sign.

28 CHAPTER 2

The second line in particular is pretty cool: it defines a vari-
able to hold the kings_string, but because the reverse method
makes the string backward, string_reflection will actually be
"gniK eht ,ssenhgiH layoR siH fo ytreporP"!

You might be wondering about the fourth line of code, too:

string_echo = kings_string * times_to_echo

And you’re right to wonder! The * is the Ruby way of saying
“multiply by.” This means 2 * 2 would equal 4, 13 * 379 would
equal 4,927, and so on. But wait! you might further wonder,
How can you multiply a string (which is just a bunch of letters)
by a number? The answer is that Ruby is quite the clever robot.
When it sees something like this:

>> "Hello!" * 3

it does this:

=> "Hello!Hello!Hello!"

So this is how we produce our echo: kings_string * times_
to_echo will become "Property of His Royal Highness, the King"
repeated three times!

puts is short for “put string,” as in “Put that string on the
table where I can see it.” As we’ve seen, it just prints text
on the screen. What do you think you’ll see when you run
your program? Save and close your file, and then run it with
ruby kings_string.rb. You should see the following output:

Property of His Royal Highness, the King
gniK eht ,ssenhgiH layoR siH fo ytreporP
Property of His Royal Highness, the KingProperty of His Royal
Highness, the KingProperty of His Royal Highness, the King

Well done!

THE KING AND HIS STRING 29

You Know This!
Let’s take a minute to review all the stuff you’ve packed into
your brain over the last few pages.

We talked about strings and how they’re just words or phrases
between quotes (single or double quotes are both fine). In fact,
since the bits that make up a string don’t have to be just letters—
they can include punctuation and even numbers, so long as the
whole string is between quotes—we say that strings are made
up of characters rather than letters. You can think of a string as
a literal string of characters, with each end knotted with either
single or double quotes. (You can pick single or double, but the
ends have to match: "string' or 'string" won’t work!)

You also saw that strings have some handy methods, like
length and reverse, which are just commands that Ruby knows
how to use with strings. You always write the object you want
to affect, followed by a dot, followed by the command, like this:

"gadzooks".length

We talked a bit about numbers, which are values in Ruby that
work exactly like you think real-life numbers would. Numbers
have their very own methods, which include next (for going to the
next number) and pred (for going to the previous number):

>> 4.next
=> 5

Last, we talked about variables and how you can use them
to give Ruby values special names, like 42 or "chunky bacon". You
always write the variable name (which can’t contain spaces) on
the left, followed by an equal sign, followed by the value:

>> bacon_consistency = "chunky"
=> "chunky"
>> number_of_bacon_strips = 3
=> 3

30 CHAPTER 2

And you can get that value back just by typing its name:

>> bacon_consistency
=> "chunky"

Given what you know, how could you go further with that
smallish project we tackled earlier? For instance, what if we
changed the number of times_to_echo with next or pred? What
would happen if we added a space on the end of the sentence
we stored in kings_string? (Hint: It might make our output look
nicer. But don’t put the space directly on the variable name
kings_string—remember, Ruby variable names can’t have
spaces!) What happens if we try to add a few different strings
together with + instead of multiplying them by a number? And
what in breakfast’s good name is chunky bacon, anyway?

The Apprentice Plumber’s
Dilemma
The King, Scarlet, and Ruben made their way back from the
Royal Bathroom, the King gleefully batting his string about
like a big, beardy cat.

“All those waterworks for a string in a shower!” Scarlet
said to the King. “I hope you’re feeling better now.”

“Much,” said the King, spinning the beads and trinkets on
his string every which way.

“Speaking of waterworks,” said Ruben, “do you hear
that?” And as they rounded the corner and reentered the
King’s study, they found themselves ankle-deep in a minia-
ture lake. There was water, water everywhere!

32 CHAPTER 3

“The Mysterious Pipe!” cried the
King. “Look!” And he pointed to the
Mysterious Pipe, which was shak-
ing violently and gushing a sur-
prising amount of water from its
narrow top.

“Check out the Flowmatic
Something-or-Other!” said the King.

“That’s not terribly descriptive,”
Ruben said.

“No, that’s what it’s called,”
said the King. “The Flowmatic
Something-or-Other™.”

“Found it!” said Scarlet, grabbing a square metal box labeled
his majesty’s flowmatic something-or-other™ on the back of
the Pipe. She pried open the cover of the Flowmatic Something-
or-Other to find a miniature Computing Contraption with its
glowing >> IRB prompt.

“What do I do?” Scarlet asked the King.
“I seem to recall this program uses a flowmatic_on variable,”

the King said. “Try turning it off.” He paused a moment. “Hey! I
remembered the stuff we learned about variables!”

Scarlet flashed the King a thumbs-up, typed at the prompt,
and pressed enter:

>> flowmatic_on = false
=> false

The Mysterious Pipe shuddered once and sputtered, and the
water stopped flowing.

“Whew!” said Ruben. “Nice work!” He peered over Scarlet’s
shoulder at the screen. “How’d you do that? What’s false? It can’t
be a string; there are no quotes around it. Is it also a variable?”

“Nope!” said Scarlet. “But it’s built into Ruby just like
numbers, strings, and variables are. It’s called a Boolean, and
there are actually two of them: true and false. It looks like the
Mysterious Pipe works when flowmatic_on is true and shuts off
when it’s false.”

PIPE DREAMS 33

“Then how was flowmatic_on true before?” Ruben asked.
“I don’t know!” said Scarlet. “Someone or something must

have created that variable.”
“Well, it’s stopped leaking,” said the King, “but it’s not really

fixed. It should work correctly even when flowmatic_on is true!
After all, the Flowmatic supplies all the water to the castle;
without it, there can be no Royal Baths, Royal Toothbrushings,
or Royal Water Balloon Fights! We need the Mysterious Pipe
and its Flowmatic to be on without leaking all over the place.”

“What about this?” Ruben said, pointing to a line on the
Computing Contraption just below the Flowmatic’s on/off
control:

Warning! flow_rate is above 50!

“The water must be coming into the Mysterious Pipe too
fast,” said Scarlet.

“Gadzooks!” said the King. “The flow rate must be above 50!”
“What should we do?” asked Ruben.
The King thought for a minute. “I think it’s best that we do

what should always be done in these situations,” he said. “We
should call a professional. In this case, the Royal Plumber!”

Writing and Running Ruby Scripts
While the King calls the Royal Plumber, I’ll take a second to
explain some more Ruby magic to you. Don’t worry, it won’t take
but a minute.

You see, you don’t always have to
type commands into IRB one at a time.
As mentioned in Chapter 1, you can
write a big block of Ruby code and save
it as a Ruby script. Then, you can run
your Ruby script in IRB! (This is a lot
like running your code in the termi-
nal with the ruby command, as we did
in Chapter 1, but IRB will stay open
the whole time.) Just start IRB while

34 CHAPTER 3

you’re in the folder that contains your Ruby script, then type
load 'filename.rb'. That’s exactly the same as typing everything
in the file into IRB—but this way it’s easy to make changes and
try again!

Let’s try this little guy on for size. Type the following code
in your favorite text editor and save it as a file called flow.rb.
(Look back at Chapter 1 if you need a reminder of how to do this,
and don’t worry—we’ll cover the new #{} syntax in two shakes of
a fox’s tail.)

flow.rb

flow_rate = 100
puts "The flow rate is currently #{flow_rate}."
flow_rate = 100 / 2
puts "Now the flow rate is #{flow_rate}!"

If you open IRB, type load 'flow.rb', and press enter, you
should see:

>> load 'flow.rb'
The flow rate is currently 100.
Now the flow rate is 50!
=> true

Let’s walk through this line by line.
First, load 'flow.rb' (it doesn’t matter if you use single or

double quotes here) tells Ruby to look for a file called flow.rb in
the current directory (a directory is just a fancy name for a folder
on your computer). If Ruby finds flow.rb and there are no prob-
lems with the code in the file, Ruby will run that code just as if
you’d typed it bit by bit into IRB. Next, you know what flow_rate
= 100 and puts do: the first one sets the flow_rate variable to the
value 100, and puts prints out the string you give it. (You also get
a bonus => true from Ruby, which lets you know that loading the
file worked.) But you probably want to know: what’s this crazy-
looking #{flow_rate} business?

Well, strings and variables are different things, but some-
times you might want to combine them—say, to print out a

PIPE DREAMS 35

message displaying different values for the flow_rate variable.
Rather than making us look up the value of that variable and
type it into the string by hand every time we want to use it,
Ruby lets us use #{} to say, “Hey! Just insert the value of this
variable right into the string.” So when you have:

flow_rate = 100
puts "The flow rate is currently #{flow_rate}."

you get:

The flow rate is currently 100.

One last thing: remember in Chapter 2 when Ruben said
that strings with double quotes (") were very slightly different
from strings with single quotes (')? Well, the #{} magic (called
string interpolation if you want to be super fancy) is possible only
with double-quoted strings; it can’t be done with single-quoted
ones. (This is precisely what the King meant in Chapter 2 when
he said you could put more complicated bits and trinkets on a
double-quoted string than on a single-quoted string.)

That’s really all I wanted to show you. And speaking of
the King . . .

His Majesty’s
Flow Control
“Hello?” said the King. (He had been
on hold for a while.) “Is this the Royal
Plumber?”

“Chuff! Chuff! Chuff!” said the
Royal Plumber.

“Oh dear,” said the King. “It
sounds like the Royal Plumber has
come down with a bad case of the
Chuffs.”

36 CHAPTER 3

“Chuffs?” said Scarlet.
“Chuff!” said the Royal Plumber.
“It’s a bit like a cold, but coughier and huffier,” said the King.

“Royal Plumber, could you send down your Apprentice to help us
with the Mysterious Pipe? It’s been overflowing terribly.”

“Chuff!” she said, and hung up.
“I think that was a yes,” said the King.
“I think so, too,” said Ruben. “It looks like the Apprentice is

already here!”
The Apprentice to the Royal Plumber strolled into the King’s

study carrying a large red toolbox. Ruben and Scarlet found his
expression hard to read behind his dark rectangular sunglasses
and heavy black beard. The name Haldo was stitched in red on
the front of his coveralls.

“Haldo!” said the King.
“That’s me,” said Haldo. “I hear the Mysterious Pipe is on the

fritz.”
“Definitely,” said Scarlet. “Can you help us fix it?”

PIPE DREAMS 37

“I think so,” said Haldo, “but I’m just the Apprentice,
so it may take me a little while. Let’s see what’s what.” He
walked over to the Flowmatic Something-or-Other and looked
at the screen for a moment. “I seem to remember there’s
an instructions.rb file in here somewhere.” He typed load
'instructions.rb', and this is what came up:

 |~~ |~~
 | |
 :$: HIS MAJESTY'S FLOWMATIC SOMETHING-OR-OTHER :$:
 `'''`
 ~= Instructions =~

 1. Water should flow if flowmatic_on is true and
 water_available is true.
 2. If flowmatic_on is false, the message
 "Flowmatic is off!" should appear.
 3. If water_available is false, the message
 "No water!" should appear.
 4. If the flow_rate is above 50, the warning
 "Warning! flow_rate is above 50!" should
 appear, along with the current flow rate.
 5. If the flow_rate is below 50, the warning
 "Warning! flow_rate is below 50!" should
 appear, along with the current flow rate.
=> true

“Huh!” said Ruben. “So the problem is that if the flow rate is
too high or too low, we only get a message. Ruby doesn’t auto-
matically correct the flow rate, so we can end up with a flood.”

“We can fix that!” said Scarlet. “We’ll write a Ruby program
to check the flow rate. If the flow rate is too high, we’ll lower it,
and if it’s too low, we’ll increase it!”

Haldo scratched his head. “Well, here’s the thing,” he said. “I
think I know what we need to do, but I haven’t learned enough
Ruby to enter the right commands. If you kids can give me a
hand, though, I think we’ll be in business.”

“No problem,” said Ruben. “Making a Ruby program do dif-
ferent actions based on different conditions is something Scarlet
and I know backward and forward.”

38 CHAPTER 3

“It’s called control flow,” said Scarlet, “and it’s not hard at
all. Take a look!” She opened a new file in her text editor on
the Computing Contraption, saved it as flowmatic_rules.rb,
and typed:

flowmatic_on = true
water_available = true
if flowmatic_on && water_available
 flow_rate = 50
end

“You’ve lost me,” said the King.
“We’ll take it slow,” said Scarlet. “First, we assign the vari-

ables flowmatic_on and water_available to true. Then, we have the
if, which is a conditional, on the second line. It means that if
the code that follows on the same line is true, then everything
before end gets run.”

“And && is just Ruby’s way of saying and,” said Ruben.
“We already know that the fourth line sets the flow rate to 50,
so together, the whole thing says, ‘If flowmatic_on is true and
water_available is also true, this program will set the flow_rate
variable to 50. end just tells Ruby that if we’re not setting the
flow rate to 50, we shouldn’t do anything—at least, not yet.”

“I see,” said Haldo. “And that’s just the very first of the
instructions! Great work. But what happens if the Flowmatic
isn’t on or there isn’t water available?”

“Well, at the moment, nothing,” said Ruben. “But we can fix
that.” He reached over and added to the flowmatic_rules.rb code
in his text editor:

flowmatic_on = true
water_available = true

u if flowmatic_on && water_available
 flow_rate = 50

v elsif !flowmatic_on
 puts "Flowmatic is off!"

w else
 puts "No water!"
end

PIPE DREAMS 39

“I think I’m starting to get this,” said the King. “u is just
what we had before. Then at v, we’re trying something new:
elsif! Does elsif mean ‘if the first bit didn’t get run, try this
next step’?”

“That’s exactly it,” said Scarlet. “Don’t worry about the weird
spelling, either! It’s just a shorter way of writing ‘else, if.’ And
the ! is just Ruby’s way of saying not. So if flowmatic_on happens
to be false, !flowmatic_on will be true, and vice versa.”

“And since there’s only one condition left—if the Flowmatic
is on but there’s just no water—the program puts the ‘No water!’
message at w using an else, which means: ‘If none of the other
code was run, then run the code that follows,’” Ruben said.

“And all of that’s followed by an end, like before,” said Scarlet.
“Do you need to add the two spaces before the lines following

if, elsif, and else?” asked the King.
“The indentation?” said Scarlet. “No, but it sure does look nice.”
“That takes care of the first three instructions!” said Haldo.

“And I think I’m getting the hang of this. Let’s see if I can rewrite

40 CHAPTER 3

the last two instructions in Ruby.” He added these lines to his
flowmatic_rules.rb script:

x if flow_rate > 50
 puts "Warning! flow_rate is above 50! It's #{flow_rate}."
 flow_rate = 50
 puts "The flow_rate's been reset to #{flow_rate}."

y elsif flow_rate < 50
 puts "Warning! flow_rate is below 50! It's #{flow_rate}."
 flow_rate = 50
 puts "The flow_rate's been reset to #{flow_rate}."

z else
 puts "The flow_rate is #{flow_rate} (thank goodness)."
end

“Okay, this I understand,” said the King. “The > means
greater than and the < means less than, so that first bit at x
says: if the flow rate is above 50, we show a ‘too high’ warning
and then assign the variable flow_rate to 50. The program then
puts a new flow_rate value using string interpolation, like we saw
before.”

“But at y, the program checks if flow_rate is below 50. If it is,
we show a ‘too low’ warning and reset it to 50.

“At z, we have the else. If flow_rate isn’t greater than 50 or
less than 50, that means it’s exactly 50. So, we just show the flow
rate without changing the variable and puts it (thank goodness).”
The King smiled, clearly pleased with himself.

“Perfect!” said Ruben. “You can also use <= for less than or
equal to and >= for greater than or equal to, but we don’t need
those quite yet, I don’t think.”

Improving flow_rate.rb with
Fancier Logical Operators
Ruben studied the screen for a moment. “You know,” he said, “I
think you could replace the section from x to z with even less
code. Check this out!”

PIPE DREAMS 41

if flow_rate < 50 || flow_rate > 50
 puts "Warning! flow_rate is not 50! It's #{flow_rate}."
 flow_rate = 50
 puts "The flow_rate's been reset to #{flow_rate}."
else
 puts "The flow_rate is #{flow_rate} (thank goodness)."
end

“What do those two vertical lines mean?” asked Haldo. “I
haven’t seen those before.”

“Just like && means and and ! means not, || means or,” said
Scarlet. “So we’re saying, ‘If the flow rate is less than 50 or it’s
greater than 50, show a warning and reset it to 50; otherwise,
just let us know it’s 50 (thank goodness).’

“That works pretty well,” she continued, “but we can make it
even simpler.”

if flow_rate != 50
 puts "Warning! flow_rate is not 50! It's #{flow_rate}."
 flow_rate = 50
 puts "The flow_rate's been reset to #{flow_rate}."
else
 puts "The flow_rate is #{flow_rate} (thank goodness)."
end

“I know that ! means not,” said the King, “so is it fair to
guess that != means is not equal to?”

“It’s not only fair, it’s right!” said Ruben. “You can use != to
mean is not equal to and == to mean is equal to. But be really
careful not to mix up = and ==. The first one is used to assign
values to variables, and the second is used to check if two things
are equal.”

“This is amazing,” said Haldo. “I think I’m really getting the
hang of Ruby control flow. Is there anything else I should know?”

“One more quick thing,” Scarlet said. “Because if followed
by a negative condition appears all the time in programs, Ruby

42 CHAPTER 3

came up with another way to write it. Instead of always typing
something like:

if flow_rate != 50
 puts "Warning! flow_rate is not 50! It's #{flow_rate}."
end

you can instead type unless:

unless flow_rate == 50
 puts "Warning! flow_rate is not 50! It's #{flow_rate}."
end

“And those two examples are exactly the same,” finished
Scarlet. “But if you have elsifs and elses, it’s sometimes nicer-
looking to just use ifs.”

While Scarlet was talking, Haldo saved their finished
flowmatic_rules.rb file and typed load 'flowmatic_rules.rb' at
the IRB prompt. When he pressed enter, the Mysterious Pipe
shuddered once, then began to gently vibrate. Ruben and Scarlet
could hear water flowing through the castle walls, and not a
drop was spilled anywhere.

“Huzzah!” said the King. “I can’t thank you all enough! But
I do wonder,” he continued, “how did the flow rate get set to 100
in the first place?”

“That, I’m not sure about,” said Haldo. “There must be
another Ruby program in the castle that has access to the
flow_rate variable and changed it.” He rummaged through his
red toolbox and pulled out a flashlight. “I’ll look into it right
away,” he said.

“Aren’t you going to take off your sunglasses?” asked
Scarlet.

“No need,” said Haldo, and with that, he opened a small
door on the same side of the room as the Mysterious Pipe
and disappeared into the bowels of the castle, whistling as
he went.

PIPE DREAMS 43

A Biggerish Project for You
You’ve learned a lot in the last handful of pages, and now it’s
time to put your newfound knowledge to the test! (Don’t worry:
I have complete and utter faith in you.) Haldo—now the Senior
Apprentice to the Royal Plumber, thanks to Ruben and Scarlet—
needs your help. While he hasn’t tracked down the precise cause
of the Mysterious Pipe’s overflow, he did briefly find himself in a
small but tricky maze. He’s asked you to record his adventures
in the maze, so let’s start by making a new file called maze.rb.
(Peek back at Chapter 1 if you don’t remember how to do this, or
ask your local adult for help.) Type the following into your file.

maze.rb

puts "Holy giraffes! You fell into a maze!"
print "Where to? (N, E, S, W): "
direction = gets.chomp

puts "#{direction}, you say? A fine choice!"

if direction == "N"
 puts "You are in a maze of twisty little passages, all alike."
elsif direction == "E"
 puts "An elf! And his pet ham!"
elsif direction == "S"
 puts "A minotaur! Wait, no, that's just your reflection."
elsif direction == "W"
 puts "You're here, wherever here is."
else
 puts "Wait, is that even a direction?"
end

Run the program by typing ruby maze.rb in the terminal and
pressing enter. You should see something like this (though your
output will change depending on which direction you pick):

Holy giraffes! You fell into a maze!
Where to? (N, E, S, W): E
E, you say? A fine choice!
An elf! And his pet ham!

44 CHAPTER 3

The print command is new, but never fear: it’s almost exactly
like puts, except it doesn’t add a new blank line after it prints out
its text.

This bit is also new:

direction = gets.chomp

What we’re doing here is setting a variable, direction, equal
to calling the gets method and then the chomp method right after
it. This is a fancy way of saying we’re chomping gets. gets is a
built-in method (you can think of it as a Ruby command) that
gets the most recent input the user typed; chomp removes any-
thing extra from the end, like spaces or a blank line. This means
that we’ve now taken whatever the user typed (from gets.chomp)
and stored it in our direction variable.

After that, it’s all smooth sailing! You’ve seen string interpo-
lation with #{} already, and everything after that is just check-
ing to see what letter the user entered with == (is equal to) and
using if, elsif, and else to control what message the user sees.

You can test out your maze program by typing ruby maze.rb
from the command line or, after starting up IRB, load 'maze.rb'.
You can keep rerunning it with different input to see what hap-
pens each time!

You can go a bit further, though. (Don’t worry, it’s seriously a
really small maze.) Here are a few ideas:

 • How might you add more directions, like NW, SW, NE, SE,
up, or down?

 • How could you handle accepting lowercase letters for
directions?

 • A circle has 360 degrees, and turning right is the same as
turning 90 degrees. What if you wanted to let your users
enter a number so they could turn that many degrees? How
could you use <, <=, >, >=, ==, or != to make this work? (This is
a bit beyond where we already went, but you can do it! You
wouldn’t be wandering around in a maze under a castle if you
weren’t the adventurous type.)

PIPE DREAMS 45

You Know This!
Control flow is tricky stuff, but doing that biggerish project
proves you’ve gotten the hang of it. Let’s review some of the
things we learned along the way.

We talked about Booleans, which can be true or false. They’re
part of Ruby just like strings, numbers, and variables are, but
they’re definitely not strings! Don’t put quotes around them, or
they won’t work right.

We covered scripts and how you can run them in IRB using
load 'script_name.rb'. (You can also run your Ruby programs out-
side of IRB entirely by typing ruby script_name.rb on the command
line.) Remember: you need quotes if you’re loading a file in IRB,
but you don’t need quotes if you’re typing on the command line!
(Computers are very dumb and very picky.)

We explained string interpolation using #{} and how you can
use it to put the values of variables directly into your strings.
This comes in handy a lot, and remember: you can only do string
interpolation with double-quoted (") strings. It doesn’t work with
single quotes (')!

Finally, we learned about control flow using if, elsif, else, and
unless, and how to combine these with logical operators && (and),
! (not), and || (or), and comparison operators < (less than),
> (greater than), <= (less than or equal to), >= (greater than or
equal to), == (is equal to), and != (is not equal to). Using all these
together, we can see (for example) if one thing and another thing
are true, determine if one thing is less than another thing, or say
we should do something unless something is not equal to some-
thing else. (Whew!)

It’s hard to believe, but this is pretty much everything com-
puter programs do: compare values and test to see what is or
isn’t true. Let’s take a minute to kick back, relax, and bask in
the glow of all this Ruby know-how. (The next chapter’s gonna
throw you for a bit of a loop.)

Ruby on Monorails
“Well,” said the King, “all this adventuring’s gotten me as
hungry as a lumberjack. And I haven’t eaten anything since
my breakfast of parched oats!”

“It’s about lunchtime,” said Ruben. “What’s there to eat?”
“Nothing here,” said the King gloomily. “I’m afraid I

pretty much wrecked the Royal Kitchen and Royal Pantry
when I turned the palace upside-down looking for my string,
and I don’t think the cooks have quite gotten everything back
in order yet.”

“We can go out!” said Scarlet. “I’m sure there are good
places to eat in the kingdom outside the palace walls.”

The King nodded vigorously. “Of course!” he said. “We’ll
take the Loop to the Hashery. It’s my favorite restaurant!”

“What’s the Loop?” asked Scarlet.

48 CHAPTER 4

“I’m glad you asked,” said the King, who was busy pulling
on his finest traveling cloak and overbritches. “The Loop is the
monorail—a sort of train—that runs throughout the kingdom,
taking my subjects anywhere they’d like to go. It’s only a few
stops to the Hashery from here!”

“Couldn’t we take a royal carriage or something?” asked
Ruben.

“Where’s the fun in that?” replied the King. “Now hurry up—
the next Loop train should be arriving outside the palace in just
a few minutes.”

The King, Scarlet, and Ruben left the King’s study and
traveled through corridor after corridor of the palace, stepping
over and around cooks, maids, butlers, handymen, and a host of
other palace employees who were busy righting all the things
the King had flipped upside-down in his mad search for his
string. Finally, they arrived at the great wooden gate of the
palace, and a pair of very strong-looking attendants saluted
smartly and pulled the doors open for the trio.

“Where’s the Loop stop?” Ruben asked, blinking in the sud-
den sunshine.

“Just over there,” said the King, and pointed to a large metal
platform at the top of a small hill near the palace entrance. “See
that rail? The Loop train runs on that. It’ll come up to the plat-
form in a few minutes, then head out toward the east side of the
kingdom.”

“It’s so high up!” said Scarlet. “Is it safe?”
“Absolutely!” said the King. “You’ll see.”
After a few minutes of walking, the King, Scarlet, and Ruben

arrived at the platform. Just as Ruben was about to ask how
long the train would take to get there, a bright red metal train
car whizzed up to the platform, and the door opened with a
gentle whoosh. “Aha! Here we are,” said the King. “All aboard!”

The doors closed quickly behind them, and with barely a
sound, the Loop train sped away from the palace station. Ruben
looked around. “There’s no one here!” he said. “A car to our-
selves!” He spread out on a plastic bench along one side of the
train car.

STAYING IN THE LOOP 49

“No one at all,” said Scarlet. “Not even a conductor. How’s
that possible?”

“No need for a conductor!” said the King. “The Loop is fully
automatic. It runs entirely on Ruby!”

“Rails running on Ruby?” said Ruben. “Awesome!”
“I’m not so sure,” said Scarlet. “We saw how well the

Flowmatic Something-or-Other worked without someone
keeping an eye on it.”

“Oh, I don’t think there’s anything to worry about,” said the
King. “The Loop has run for years without any sort of problem.”

Ruben pressed his nose to the glass. “We’ll be there in no
time!” he said. “It looks like the Loop is heading nonstop to the
Hashery.”

“What do you mean?” said the King.
“We’ve passed two other platforms without stopping—this

is great! Well, maybe not so great for the people on those other
platforms, but, you know, more Hashery for us.”

The King’s eyes went wide. “The Loop should stop at every
station if there are people waiting!” he said. “Something must
be wrong if we’re skipping any.”

“Nothing to worry about, huh?” said Scarlet. “We’re stuck on
an out-of-control train!”

“Awesome!” said Ruben.

50 CHAPTER 4

“Now, now,” said the King. “If this morning’s been any indi-
cation, I’m sure there’s a Computing Contraption around here
somewhere that we can pry into to get an idea of what’s going
on.” All three quickly scanned the train, looking for hidden com-
partments or mysterious devices. It wasn’t long before Ruben
spotted a square of metallic mesh with a small red button beside
it. When he pressed the button, the mesh grid slid up with a
slight squeak, revealing the cheerful glow of an IRB >> prompt.

“Found it!” said Ruben, waving Scarlet and the King over.
“Great!” said Scarlet. “Let’s see if we can figure out a way to

stop this thing.”
“Make it quick!” said the King. “We don’t want to miss our

stop. The Hashery serves breakfast all day, but if you get there
late, sometimes they run out of the best dishes. Like hash!”

Scarlet was busy inspecting the Ruby code on the Computing
Contraption’s screen. “Oh no!” she said. “It looks like we’re
caught in an infinite loop!”

“Sweet breakfast gravy!” cried the King. “What’s that?”

while Loops
“An infinite loop is a Ruby instruction that never ends,” said
Ruben. “In Ruby, a loop is a bit of code that runs repeatedly,
doing whatever its instructions tell it to until it’s supposed to
stop. But if you give it a stopping condition that never happens,
the code runs forever!”

“Take a look,” said Scarlet. “It looks like the code that drives
the train will never stop running!” When the King squinted
at the screen, this is what he saw.

NOTE Just read these next few examples—don’t try them out in
IRB. These little bits of code (shown in gray) would only
work as part of a longer program.

while true
 drive_train_forward
end

STAYING IN THE LOOP 51

 “I think I’ve heard of this,” said the King. “This loop is a
while loop, a bit of code that repeats while some condition is true.
But since this loop starts with while true, and true is always true,
the loop will call the drive_train_forward method forever!”

“Exactly,” said Scarlet. “We need a way to tell the loop to stop.”
“What about this?” Ruben said, point-

ing to a yellowed piece of paper tucked
next to the Computing Contraption’s
screen. The King bent forward to read
it. “‘A Very Brief Guide to the Loop and
Its Machinations,’” he quoted. “This
looks promising!”

“It says here that there’s not only
a drive_train_forward method but also a
stop_train method, which should stop the
train for us,” Ruben said. “Try using that!”

“Sure thing!” said Scarlet. She quickly
changed the code in the Computing
Contraption to:

while true
 stop_train
end

As soon as she pressed enter, the train made a deep, sad
boooooop that faded away in just under a second, and as the
sound trailed off, the train began to slow. Before they knew it,
their train car was standing perfectly still on the monorail track.

“Nice work!” said Ruben.
“Well, you did stop the train,” said the King. “But take a look

out that window.” Ruben and Scarlet ran to where the King
pointed and looked out the window at the front of the car. Their
hearts sank. “We’re stuck between platforms!” said Scarlet. “I
can’t even see the next one on the track ahead.”

“Let’s take a look at the Very Brief Guide again,” Ruben said.
“If whoever designed the Loop program built in a drive_train_
forward and a stop_train method, maybe she also built in a way of
figuring out whether the train is at a platform.”

52 CHAPTER 4

Scarlet and Ruben returned to the Computing Contraption
and looked over the Very Brief Guide to the Loop and Its
Machinations. Meanwhile, the King wondered aloud: “If the
loop was an infinite loop, why did the train stop for us at all?
Shouldn’t it have whizzed by like it did at the other stations?”

“I don’t know,” said Ruben. “But remember how Haldo said
there might have been another program in the kingdom that
caused the Mysterious Pipe to overflow? Maybe there was some
code running somewhere that told the Loop train to stop for us.”

“Maybe,” said the King, “but what code, and why? And who
wrote it? This is getting stranger and stranger by the minute.”

“I think I’ve found something we can use,” said Scarlet. “It
says here that the Loop program also has an at_stop? method. If
we call that the right way, we should be able to move forward
when we’re between stops, then stop when we get to a platform!”

“Great!” said Ruben. “And I think I know just how to do it.”
He stepped up to the Computing Contraption and began to type.

“Don’t forget an end for your while loop,” Scarlet said. “Just
like for if/elsif/else, loops need an end.”

“I know, I know,” said Ruben. “There, I think this’ll do it.”

while true
 if at_stop?
 stop_train
 break
 else
 drive_train_forward
 break
 end
end

“Hold on just a moment,” said the King. “What’s that break
bit do?”

“That tells the while loop to immediately stop,” said Ruben.
“Otherwise, we’ll just stop_train or drive_train_forward forever!”

“It seems we need a way to fix that,” grumbled the King.
“I think this new code will do the trick,” Ruben said. He

pressed enter, and the train whirred to life. In less than a min-
ute, the train pulled into the next platform and eased to a halt.

STAYING IN THE LOOP 53

“We did it!” said the King. “And we’re
at East Bumpspark station! The Hashery
is just two more stops from here, at the
New Mixico platform.”

“Great! We’ll be there in no time,”
said Ruben. But the train just sat there
at the East Bumpspark station, doors
open, without a soul on the platform. The
King, Scarlet, and Ruben stood around
awkwardly for a minute or two before the
King cleared his throat to break the silence.

“Well,” he said. “It looks like we figured out how to stop the
train at a platform, but it’s not restarting for some reason. Shall
we take a second look at the code?”

“Way ahead of you,” Scarlet said. “And I think I know what
the trouble is—in our while loop, we give the Loop program an
instruction to stop if it’s at a station and to proceed if it isn’t.
Well, we’re at a station, and the Loop is doing exactly what we’re
telling it to do—it’s stopped! We never wrote anything in our
loop to tell the train to start again after stopping.”

“You’re right!” said Ruben. “We need to rewrite the program.
Maybe something like this?” And he typed:

while !at_stop?
 drive_train_forward
end

“That !at_stop? looks a bit ugly to me,” Scarlet said. “And
Ruby is all about writing beautiful code. Maybe something like
this?” She took her turn at the Computing Contraption:

until at_stop?
 drive_train_forward
end

“Just like if has an unless, while has an until,” Scarlet said.
“This says that until we reach a stop, we should keep driving the
train forward.”

“That does look much nicer,” said the King, “but we still have
a problem: we’re currently at a stop, so the program won’t move

54 CHAPTER 4

us forward! And even if it does, we’ll just move forward to the
next station and stop, with nothing in the program telling the
train to start again.”

“You’re exactly right,” said Scarlet. “We need some way of
telling Ruby to move from stop to stop until there are no more
stops on the line. Ruben, do you see anything on the list that
would tell the train to keep going from one station to the next?”

“Well,” said Ruben, “It says here that Ruby’s next method
can be used in the Loop program to move from one station
to another, but I’m not totally sure how we could do that.
There’s an example in the Very Brief Guide to the Loop and
Its Machinations, but it has all these weird-looking square
brackets in it. Have you ever seen those before?”

Arrays
While Scarlet explains those funky-looking brackets to Ruben,
I’ll take a minute to explain them to you. (Scarlet could have
explained just as well, but I was getting a little antsy.)

What Ruben’s describing looks like this:

["East Bumpspark", "Endertromb Avenue", "New Mixico", "Mal Abochny"]

A bunch of Ruby objects between square brackets ([]) and
separated by commas (,) is called an array. Arrays are basically
just lists! For example, you could make a Ruby grocery list with
an array, like so:

grocery_list = ["cheese", "bread", "grapes", "a festive hat for all
occasions"]

You can put anything in a Ruby array: strings, numbers,
Booleans, or even other lists! This is a handy way to set a single
variable equal to a whole bunch of values. We’ll talk more about
arrays in the next chapter, but the important thing to know
for now is that arrays can be used with really handy methods
(called iterators, but don’t worry about memorizing that word
right away) that let you iterate through—that is, go over—each

STAYING IN THE LOOP 55

element in the array. Examples are the best way to learn, so try
this code in IRB now to see the results:

>> grocery_list = ["cheese", "bread", "grapes", "a festive hat for
all occasions"]
>> for item in grocery_list
>> next if item.length.odd?
>> puts item
>> end

This will print out:

cheese
grapes
=> ["cheese", "bread", "grapes", "a festive hat for all occasions"]

You see the whole array at
the end because even though
for will print only what you
asked, it gives you back the
whole array in case you did
something to change it. (We
didn’t.)

The next method is built into
Ruby and does exactly what it
sounds like: it moves on to the
next item in the array immedi-
ately, without calling any other
code. In this example, since the string "bread" has a length of 5
and "a festive hat for all occasions" has a length of 31 (both odd
numbers), next gets called, and these items in the list don’t get
printed out (remember, next goes immediately to the next item
in the list, skipping any other code before its end). Since "cheese"
and "grapes" each have lengths of 6—an even number—and since
next is only called if the number of letters is odd, the puts state-
ment gets called, and the item names are printed out.

As for that brand-new for/in bit you just saw, I’ll leave it to
Scarlet and Ruben to explain that. It sounds like Ruben’s got
the hang of arrays and iterators, so let’s check out the example
he’s working on in the Loop program.

56 CHAPTER 4

Putting Arrays and Loops
into Action
“I think I understand,” Ruben said. “So arrays are just lists of
things—strings, numbers, anything we like—and we can set
them to a single variable name if we want. Not only that, but we
can use loops and iterators to go over the entire array so we can
do something for each item, or element, in the array if we want.”

“Exactly,” said Scarlet. “Can I have a look at what you’re
typing in IRB?” Ruben nodded and turned the Computing
Contraption’s display toward Scarlet. This is what she saw:

stops = ["East Bumpspark", "Endertromb Avenue", "New Mixico", "Mal
Abochny"]
for stop in stops
 next if stop.empty?
end

“Good!” said Scarlet. “But what’s going on with that for/in
part? Is that a kind of loop, like while?”

“Sort of,” said Ruben. “Basically it’s telling Ruby, ‘Hey! For
each thing in this array, carry out the instructions before the
end. So, in this case, for each stop in the stops list, go to the next
one if the stop has no people waiting there.”

“Okay,” said Scarlet. “One more question—I saw you define
the stops variable and set it to an array, but I didn’t see you
assign the stop variable anywhere. Why’s that?”

“That’s just a cool shortcut Ruby lets you take. See, as you
go through the array, Ruby moves from each item to the next,
and it makes it a lot easier if you can give each item a temporary
name while you’re working on it. Since this ‘temporary’ variable
only matters inside the for loop, you don’t have to declare it—
you just say something like for stop in stops, and Ruby knows
that stop will take on the value of each item in the stops array
in turn. In fact, you can give that variable any name you want,
like item or thingy or elf_with_a_pet_ham, but stop makes the most
sense, I think.”

STAYING IN THE LOOP 57

“I think so, too,” said Scarlet. “But something about that
for loop looks weird to me. I’ve read a lot of Ruby code by now,
and I don’t see many for loops floating around. I do see a lot
of these, though!” And she started typing into the Computing
Contraption:

stops = ["East Bumpspark", "Endertromb Avenue", "New Mixico",
"Mal Abochny"]
stops.each do |stop|
 next if stop.empty?
end

 “Whoa!” said Ruben. “What’s that? Does it do the same thing
as my for loop?”

“Yup!” said Scarlet. “And it’s only a tiny bit different, but
much nicer looking. Instead of the for/in part, we can just call
the each method directly on the stops variable. Then we have
exactly the same code as before, only it’s between do and end
instead of for/in and end. The do/end bit actually comes up a lot
in Ruby, and it’s called a block.”

“Okay,” said Ruben, “that makes sense. But what about
the stop between the two vertical lines? Is that like the ‘tempo-
rary’ stop variable from my for loop?”

“Exactly,” Scarlet said. “You can think of those vertical lines
as being like the sides of a little window that we move along the
array: as we put the box over each element in the array, stop is
temporarily set to the value of that element.”

“In fact,” she continued, “You can even write it a bit shorter.
Ruby lets you use curly brackets instead of do/end, and since we
have only one line of code in our block, it looks even more ele-
gant with the brackets.” She typed into IRB:

stops = ["East Bumpspark", "Endertromb Avenue", "New Mixico",
"Mal Abochny"]
stops.each { |stop| next if stop.empty? }

 “This is all very fascinating,” said the King, “but will the
code work? Will we be able to get to New Mixico station before
we all starve to death, or—heaven forbid!—the Hashery runs
out of hash?”

58 CHAPTER 4

“I think we’re all set!” said Ruben. “And I have a feeling
we’ll talk a lot more about arrays and blocks after we’ve had a
good meal. Ready, Scarlet?” Scarlet nodded, and on the count of
three, they pushed enter together. The Loop train car vibrated
to life, the doors whooshed shut, and the car moved on to the
Endertromb Avenue station. The three held their breath as the
car doors opened, the car idled . . . and the doors slid shut again!
The King began to clap as the car moved on to New Mixico sta-
tion, and he didn’t stop clapping until they left the train, walked
down the stairs leading from the platform to the street, and made
their way toward the cherry-red doors of the Hashery.

Your Project, Should You Choose
to Accept It
After a careful review of the Loop by the Loop Authority Council
for the King, the members of the Council have determined that
the Loop does, in fact, need a conductor (if only to look after the
program and ensure it doesn’t end up in any more infinite loops).
Surprisingly, no one volunteered for the position, so I went ahead
and volunteered you! That’s just the sort of guy I am.

Conducting trains is big business, but I think it’s safe to
start small. We’ll just work on a program to report whether the
Loop stops at a requested station, and if it does, list all the stops
before the requested stop so passengers will know how many
stations to expect before theirs. Let’s begin by making a new file
called loop_the_loop.rb. (As always, peek back at Chapter 1
if you don’t remember how to do this, or ask your local adult for
help.) Then open your file and type the following code.

loop_the_loop.rb

u we_wanna_ride = true
stops = ["East Bumpspark", "Endertromb Avenue", "New Mixico",
"Mal Abochny"]

v while we_wanna_ride
 print "Where ya headin', friend?: "

w destination = gets.chomp

STAYING IN THE LOOP 59

x if stops.include? destination
 puts "I know how to get to #{destination}! Here's the station list:"

y stops.each do |stop|
 puts stop
 break if stop == destination
 end
 else
 puts "Sorry, we don't stop at that station. Maybe another time!"
 we_wanna_ride = false
 end
end

There are a few new bits here, but nothing you can’t handle!
First, we set a couple of variables: we_wanna_ride is true, and

stops is set to an array of strings u. Next, we create a while
loop with we_wanna_ride (which starts as true) as the condition v.
Inside the loop, we use print to print some text on the screen
and gets.chomp to get the user’s answer w.

The include? method x is new! It simply returns true if the
array has an element that matches destination and false other-
wise. (This is really handy for quickly checking whether an
object you want is in a given array.)

The next part at y is a little trickier:

stops.each do |stop|
 puts stop
 break if stop == destination
end

You’ve already seen the stops.each do |stop| ... end part,
and the break if stop == destination part does exactly what you’d
guess: it breaks out of the loop as soon as the Loop reaches a
stop that equals the destination the passenger wants. It prints
out each element before it makes this check, though, so it will
always print out at least one stop if that stop is in the array.

You can test out your conductor program by typing ruby loop_
the_loop.rb at the command line and pressing enter. You should

60 CHAPTER 4

see something like this (of course, you’ll probably pick different
stops than I did):

Where ya headin', friend?: Mal Abochny
I know how to get to Mal Abochny! Here's the station list:
East Bumpspark
Endertromb Avenue
New Mixico
Mal Abochny
Where ya headin', friend?: New Mixico
I know how to get to New Mixico! Here's the station list:
East Bumpspark
Endertromb Avenue
New Mixico
Where ya headin', friend?: Detroit
Sorry, we don't stop at that station. Maybe another time!

You can keep rerunning it with different input to see how the
output changes each time!

If you want to make your program even more elaborate, here
are some other things to think about:

 • Right now, the program will keep prompting the user for
input as long as the user keeps asking for train stops that
are in the stops array. How might you update the program to
run only once, even if it recognizes a stop?

 • How could you handle accepting lowercase letters for destina-
tions? (Hint: This will be a lot like one of the extra steps you
might have taken for your last project.)

 • What if a passenger is going the other way on the train (for
instance, from Mal Abochny to East Bumpspark)? How could
you update your program to work in both directions? Even
trickier, what if the train route is a big circle (meaning if a
passenger goes from East Bumpspark to Mal Abochny, the
next stop after Mal Abochny should be East Bumpspark
again)? How could you update your program to print out the
right list of train stops if a passenger wants to go all the way
around the circle?

STAYING IN THE LOOP 61

You Know This!
I threw a lot at you in this chapter, but if you’re conducting
trains after reading it, I’m pretty sure you know your stuff.
Let’s review what we looked at.

We covered while loops, which are loops that contain some
code between while and end and will continue to run that code
as long as the while condition is true. (Beware—if there’s no way
for the condition to become false, the loop will go on forever and
create an infinite loop!)

We saw that, just like if has an unless, while has an until. If
you can write:

while something_is_the_case
 # Do something!
end

then you can also write:

until !something_is_the_case
 # Do something!
end

We also saw that when using a loop or an iterator (which is
just Ruby code that loops over items in a list), we could call the
next method to skip certain elements based on an if/elsif/else or
unless statement.

We talked a little bit about arrays, which are basically just
Ruby lists, and how we can put anything we want inside them.
An array looks like this:

my_hobbies = ["Ruby", "eating things", "cat videos"]

We learned that we could use a for loop or the each method
to iterate, or go over, an array, and while they work exactly the
same, the each method is more common in Ruby.

62 CHAPTER 4

A for loop looks like this:

Assuming we have an array called todo_list
for task in todo_list
 puts task
end

And iterating with each looks like this:

Using do/end
todo_list.each do |task|
 puts task
end

Or, using curly brackets
todo_list.each { |task| puts task }

Finally, we learned a bit about blocks. Ruby blocks are just
regular Ruby code sandwiched between either do/end or curly
brackets ({}). Some methods, like each, take blocks, and we’ll
learn way more about those after a hearty helping of Ruby
know-how at the Hashery.

Big Hank’s Hashery
“Morning, Your Majesty!”
boomed a voice from deep
inside the Hashery.

“Good morning, Big Hank!”
said the King.

“Big Hank?” asked Ruben.
“Who’s Big Hank?”

An enormous man with a
bald head and a curly black
mustache emerged from the
back of the restaurant. “I am!”
he said.

The King shook Hank’s
hand vigorously. “Great to see

64 CHAPTER 5

you, Hank! We had a doodle of a time getting here—the Loop
was acting up—but I can’t wait to sit down to a fine meal of your
best hash.”

Big Hank frowned, and his mustache drooped noticeably.
“The Loop’s gone loopy?” he asked. “I wish I could say I were
surprised. Things have been going a little haywire here, too.”

The King gasped. “You don’t mean— ”
Big Hank nodded. “Our range is on the fritz,” he said. “Until

we fix it, I won’t be able to cook up anything: no eggs, no break-
fast gravy, and certainly none of my famous hash.”

The King slumped onto one of the many long oak benches fill-
ing the Hashery. “No hash! What could be worse?”

“This hash must be really good,” Scarlet said.
“It’s the best!” shouted the King, who was on the verge of

tears. “But without a working range, there won’t be any. And
we’ve come all this way!”

“Now, hang on,” said Big Hank. “This isn’t the first time
Squeaky Jim and I have gotten into a pickle here at the
Hashery, and it won’t be the last. We’ll get this figured out.”

“Who’s Squeaky Jim?” asked Ruben.
“He’s my fry cook,” Hank said. “He’s not what you’d call a

whiz with the kitchen technology—it all runs on Ruby—but he’s
a heck of a cook. Makes a great omelette, and he’s almost mas-
tered my hash recipe.”

“Ruby!” Ruben and Scarlet shouted together.
Big Hank raised a heavy black eyebrow. “Do you kids know

anything about Ruby?” he asked. “That would be a huge help.”
“Absolutely!” said Scarlet. “Show us the kitchen, and we’ll

take it from here.”
“Hooray!” said the King. “These kids are as smart as a whip,

Hank,” he added. “They’ll have your kitchen up and running in
no time.”

Big Hank nodded. “Sounds good! I’ve actually got Squeaky
Jim using the old griddle in the back, but I think he could use
some Ruby help. I’ll take another crack at the range, but if you
kids and Jim get the orders flowing before I get it fixed, give me
a shout and we’ll put our heads together.”

“Sure thing,” Scarlet said. “Lead the way!”

ARRAY OF SUNSHINE AND HASH ON THE RANGE 65

Big Hank motioned for them to follow him and lumbered
through row after row of wooden benches toward the back of the
Hashery. He stopped at a red metal door with a small window
toward the top, tapped on it twice, and shouldered it open. “Jim!”
he called. “The King and his friends are here!”

They heard a brief scuffling sound in the corner of the kitchen,
followed by the crashing of a dozen or so pots and pans.

“It’s okay, it’s okay—I’ve got it!” Squeaky Jim called, his
voice cracking twice. He stumbled out from behind a large pile
of potato sacks, with a saucepan in each hand and one perched
crookedly on his head.

“I know why they call him Squeaky Jim,” Ruben whispered
to Scarlet.

“Easy, Jim,” Big Hank said, taking the
pans from Jim. “The King and his friends
know a thing or two about Ruby, so I’m ask-
ing them to help you out while I tinker with
the main range.”

Squeaky Jim hastily bowed to the King.
“Your Majesty,” he said.

“Squeaky Jim,” said the King.
Big Hank gestured to the corner of the

kitchen Squeaky Jim had just come from.
“You’ll find the Computing Contraption over
there,” he said. “I’ll be at the range, on the
other side of the kitchen.” He turned and
hefted a sack of potatoes under each arm.
“Shout loud if you need me—kitchen’s big,”
he called over his shoulder. And with that, he
was gone.

Squeaky Jim cleared his throat. “Big Hank probably told
you I’m not a Ruby expert,” he squeaked, “but if you can get
my griddle working again, I can whip up customer orders like
nobody’s business.” He pulled a stack of orders from his apron
pocket. “Most of them are orders for hash and today’s special,
the Array of Sunshine,” he said. “Three sunny-side eggs in row!
Best brunch in the kingdom.”

66 CHAPTER 5

“Okay,” said Ruben. “We actually just helped the King with
the Loop, and we had to use arrays for that. This should be a
piece of cake!”

“Eggs,” corrected Squeaky Jim.
“Oh, yeah. A piece of . . . eggs,” Ruben said.
“Let’s get to work,” Scarlet said. “I’ve already got the

Computing Contraption open!”

Arrays Within Arrays
“Great!” said Jim. “Since you guys know about arrays, could
you create one for me now? The first order is for an Array of
Sunshine; that’s just three 'sunny_side_up_egg's in a row.”

“Sure!” Scarlet said. “It should look something like this.” She
started typing into the Computing Contraption:

>> order_one = ['sunny_side_up_egg', 'sunny_side_up_egg', 'sunny_
side_up_egg']
=> ["sunny_side_up_egg", "sunny_side_up_egg", "sunny_side_up_egg"]

When Scarlet pressed enter, a small metal track over the
griddle began to vibrate. One after another, three eggs rolled
down the track, cracked against a small hammer, and dropped
sunny-side-up onto the stove.

“That’s perfect!” Jim said. “But it looks like a lot of typing,
and we’re gonna have a lot of orders.” His voice cracked again.
“Is there any way we could do the same thing with less typing?”

ARRAY OF SUNSHINE AND HASH ON THE RANGE 67

“Yep!” said Scarlet. “You can also create a new array
like this:

>> order_two = Array.new(3, 'sunny_side_up_egg')
=> ["sunny_side_up_egg", "sunny_side_up_egg", "sunny_side_up_egg"]

“Here, we’re calling the new method on Array, which creates a
list of items. The next part in the parentheses means that the
array should have three items,” Scarlet explained, “and the last
part means that each item should be a 'sunny_side_up_egg'. It’s
the same as typing all the stuff we did for order_one.”

“I remember creating arrays on the Loop with square brack-
ets,” Ruben said, “but I’ve never seen Array.new. What’s that do?”

“Remember how Ruby has datatypes like String?” Scarlet
asked. Well, Array is another datatype. You can create an array
with array literal syntax, which is just assigning a variable
name to a list in square brackets. You can also create an array
by calling the new method on the Array class.”

“What’s a Ruby class?” Squeaky Jim asked.
“We’ll get to that in a little bit,” Scarlet said. “But the impor-

tant thing is that classes are like groups of objects in Ruby, and
calling the new method on the class name creates a new instance,
or example, of that class.”

“Okay, that makes sense,” Ruben said. “And we can put vari-
ables in arrays, and we saw earlier that you can put strings in
there. What else can go in arrays?”

“Anything!” Scarlet said. “And the items in the array don’t
even have to be the same thing. Check it out!”

>> random_array = [1, 'two', 'sunny_side_up_egg', true]
=> [1, "two", "sunny_side_up_egg", true]

“A number, a string, a variable, and a Boolean, all in the
same array,” Ruben said. “Neat!”

“That’s great,” Squeaky Jim said, “and the first Array of
Sunshine is just about ready. But I have a feeling we’re gonna
need to cook up a bunch of these—is there any way we can make
an array with all of our orders in it? Sort of like a list of lists?”

68 CHAPTER 5

“Definitely,” Ruben said, and Scarlet stepped aside so he
could type:

>> order_three = ['hash']
=> ["hash"]
>> order_four = ['egg', 'hash']
=> ["egg", "hash"]
>> todays_orders = [order_one, order_two, order_three, order_four]
=> [["sunny_side_up_egg", "sunny_side_up_egg", "sunny_side_up_egg"],
["sunny_side_up_egg", "sunny_side_up_egg", "sunny_side_up_egg"],
["hash"], ["egg", "hash"]]

“That’s awesome! todays_orders is an array that contains four
other arrays: order_one, order_two, order_three, and order_four,”
Squeaky Jim said. “We’ll be done in no time. If we’ve got our
orders packed up in an array, though, how do we get them
back out?”

Even More Array Methods!
“There are a few things we can do,” Ruben said. “Arrays have
lots of cool built-in methods we can use. For example, we can
get the first item or element in an array with the first method,
like this:

>> todays_orders.first
=> ["sunny_side_up_egg", "sunny_side_up_egg", "sunny_side_up_egg"]

“I see,” said Scarlet. “The first method gives us the first item
in the array! And while we’re talking about first, we can get the
last element in an array with last!”

>> todays_orders.last
=> ['egg', 'hash']

“That’s order_four,” Jim said. “Coming right up!”

ARRAY OF SUNSHINE AND HASH ON THE RANGE 69

“Hang on, though,” said Ruben, and he typed quickly into the
Computing Contraption:

>> todays_orders.empty?
=> false
>> todays_orders.length
=> 4

“Whoa, what’s that?” Jim asked, pushing his paper fry-cook
hat back and scratching his head. “I haven’t seen empty? or length
before.”

“We saw length on strings,” Scarlet said. “When we use that
method on strings, it tells us how many characters the string
contains. For arrays, does it tell us how many items are in the
array?”

“Precisely,” said Ruben. “And we saw empty? on the Loop train
stops, where it just returned a Boolean—true if the stop had no
one waiting and false if there was at least one person. This empty?
is for arrays, but it works the exact same way.”

Then Ruben frowned. “But there are still four orders in the
list! We can get some of them with first and last, but how do we
get the rest? And how do we remove them from the list as we
cook them up?”

Shift! Pop! Insert!
“I think I can help with that,” Scarlet said. “We’ll need to use
a couple of new array methods, though.” She reached across
Ruben to the Computing Contraption and started typing:

>> todays_orders
=> [["sunny_side_up_egg", "sunny_side_up_egg", "sunny_side_up_egg"],
["sunny_side_up_egg", "sunny_side_up_egg", "sunny_side_up_egg"],
["hash"], ["egg", "hash"]]
>> current_order = todays_orders.shift
=> ["sunny_side_up_egg", "sunny_side_up_egg", "sunny_side_up_egg"]
>> todays_orders
=> [["sunny_side_up_egg", "sunny_side_up_egg", "sunny_side_up_egg"],
["hash"], ["egg", "hash"]]

70 CHAPTER 5

“That’s perfect!” said Ruben. “How did you pull the very first
order out of todays_orders and put it in the current_order variable?”

“With the shift method,” Scarlet said. “It does two things at
once: it knocks the very first item off the array you call it on, and
it returns, or spits out, that item!”

“So if you set a new variable equal to calling shift on an
array,” the King piped up, “you basically move the item from
the array to your new variable!”

Ruben and Scarlet turned to the King, who had only just
finished studying the many potato sacks littering the kitchen.

“That’s . . . actually exactly right,” said Scarlet.
“Wonderful!” said the King. “But what if I want to add things

onto the front of the array? Or add things onto the back? Or
even—dare I say it—take things off the back?”

“Then have we got the methods for you!” Scarlet said. “I don’t
want to mess up the orders, so I’ll show you on my own array
called breakfast_items that I’ll make up. Take a look!” And she
typed the following into the Computing Contraption:

>> breakfast_items = ['egg', 'hash', 'gravy', 'biscuit', 'sausage',
'jam']
>> current_food = breakfast_items.shift
=> egg
>> breakfast_items
=> ['hash', 'gravy', 'biscuit', 'sausage', 'jam']
>> current_food = breakfast_items.pop
=> jam
>> breakfast_items
=> ['hash', 'gravy', 'biscuit', 'sausage']

“Gadzooks!” said the King. “That’s exactly what I wanted—
pop removes and returns the last item in the array, and shift
does the same thing to the first item!” He watched as Scarlet
typed some more.

>> breakfast_items.push('egg')
=> ['hash', 'gravy', 'biscuit', 'sausage', 'egg']
>> breakfast_items.unshift('jam')
=> ['jam', 'hash', 'gravy', 'biscuit', 'sausage', 'egg']

ARRAY OF SUNSHINE AND HASH ON THE RANGE 71

“Aha! I see: push adds an item to the end of the array, and
unshift adds an item to the beginning of the array,” the King
continued.

“Yup! Just make sure you read the array from left to right,”
said Scarlet. “The first element is the one all the way on the left,
and the last element is the one all the way on the right.”

“What if I want to add something to the middle?” asked
the King.

Scarlet didn’t say anything, but simply typed:

>> breakfast_items
=> ['jam', 'hash', 'gravy', 'biscuit', 'sausage', 'egg']
>> breakfast_items.insert(2, 'tea')
=> ['jam', 'hash', 'tea', 'gravy', 'biscuit', 'sausage', 'egg']

“Amazing!” said Ruben. “But wait, why is tea the third item
in the array?” he asked. “You called the insert method with the
number 2, not the number 3!”

“This is one of the weird things about computers,” said
Scarlet. “They don’t start counting at 1, like you or I do. They
start at zero. If you start counting at 1, tea is in position 3, but if
you start at zero, it’s one less than that. That’s why you have to
tell Ruby to insert the tea element at position 2, not position 3, if
you want it to be the third item.”

“I’m more confused than a bumblebee in a plastic flower fac-
tory,” the King said gloomily. “And just when I thought I was
beginning to understand Ruby.”

“Hang on, I think I’ve got it,” said Squeaky Jim, his voice
cracking only a little bit. “Is this right?” And he drew a diagram
on the back of a hash-stained napkin:

unshift pop
pushshift

0 1 2 3 4 5 6 7 8 9

“An array is like a row of boxes,” Jim said. “The first one is
numbered zero, and the numbers get higher from there. You
shift to take something off the front, unshift to add something

72 CHAPTER 5

to the front, push to add something to the back, and pop to take
something off the back.” He looked uncertainly from Ruben to
Scarlet. “Is that right?”

“That’s right!” said Ruben and Scarlet together.
“Nice work, my boy!” said the King. “You’re picking this up

mighty quickly.”
“In fact,” Scarlet said, “arrays are so much like rows of boxes

that you can even get an array element out by asking the array
for the element by its box number! See?” She typed into the
Computing Contraption:

>> breakfast_items
=> ['jam', 'hash', 'tea', 'gravy', 'biscuit', 'sausage', 'egg']
>> breakfast_items[2]
=> "tea"

“It’s like you’re telling the array exactly what box number to
grab,” Ruben explained. “By saying you want breakfast_items[2],
you’re telling Ruby you want the array element in slot 2, which
is the third element.”

Squeaky Jim smiled. “Great!” he said. “But I wonder . . . ”
“Wonder what?” asked Ruben.
“Well,” said Jim, flipping the last egg and putting it in a

paper basket, “it’s fine to add and remove things from arrays,
and I figure the kitchen’s software does that well enough. But
what if I wanted to know something about all of the orders up
front? Is there a way I could go over all of the orders and print
them out one by one?”

Iterating with Arrays
“Absolutely,” said the King. “We saw that on the Loop—what
was it called again?”

“Iterating,” said Ruben. “It works like this!” He reached over
to the Computing Contraption and began typing furiously:

>> todays_orders.each do |order|
>> puts "#{order}"
>> end

ARRAY OF SUNSHINE AND HASH ON THE RANGE 73

["sunny_side_up_egg", "sunny_side_up_egg", "sunny_side_up_egg"]
["hash"]
["egg", "hash"]

“Yes, that does look familiar!” said the King. “And that will
print out each order in the todays_orders array?”

“You got it,” said Scarlet. “But remember, there’s a way
of writing it with less code than the do/end block.” She quickly
typed:

>> todays_orders.each { |order| puts "#{order}" }
["sunny_side_up_egg", "sunny_side_up_egg", "sunny_side_up_egg"]
["hash"]
["egg", "hash"]

“That’s right!” said the King. “You can use the curly brackets
instead of do/end when there’s just one line of code in the block.”
He scratched his bushy white beard. “Though I’m still a little
mystified by these blocks.”

“We’ll talk more about them soon!” said Scarlet. “For now, we
should make sure we’re all set with arrays and customer orders
here in the Hashery.”

Squeaky Jim nodded. “I think I get the hang of arrays okay,
and we’re caught up on orders for the time being,” he said, toss-
ing the last order ticket into the trash. “But all this talk about
iterating has me wondering if there isn’t another problem we
can solve.”

“What’s that?” said Scarlet.
“Well,” squeaked Jim, “Big Hank and I have been trying to

figure out how best to print out the Hashery menu for our cus-
tomers. Do you think iterating over an array might be a good
way to do it?”

“What’s the menu made up of?” asked Ruben.
“In Ruby terms, just strings and numbers,” Jim said. “Each

string would be an item on the menu, and every item would
have a number representing the price. I figure since we can mix
strings and numbers in arrays, that might make sense.”

“Hmm,” said Scarlet. “I don’t think so. How would you pair
up the menu items and their prices? Even if you just alternated

74 CHAPTER 5

them, you might mess it up with all the pushing, popping, shift-
ing, and unshifting you’d be doing whenever the menu changed.”

“You have a point,” Jim admitted. “Well, maybe an array of
arrays? Each array element could be its own little array, and
every little array could just contain a menu item name and its
price.”

“That’s a little better,” Ruben said. “At least then your menu
names and prices would be together. What do you think, Scarlet?”

Scarlet thought for a moment. “No,” she finally said. “I think
instead of an array, we want to use a hash.”

Hash in the Hashery
I’m sure you’re thinking to your-
self right now: “Okay, we’re in the
Hashery. Hash is served. Surely this
idea that Ruby has a built-in thing
called a hash is a big joke, right?”

Well, it’s not. It’s zero percent
joke. Hashes are one of the coolest
parts of Ruby, so while Scarlet, the
King, Ruben, and Squeaky Jim sort
out the differences between break-
fast hash and Ruby hashes, I’ll take
a second to explain them to you.

Arrays are like rows of boxes, right? Each element has its
own numbered slot to live in, like items on a grocery list. This
is great so long as all the stuff on each line of the list—that is,
every element in the array—keeps to itself and does its own
thing. But what if you want to show that two elements are
somehow related?

Think of a dictionary: in a dictionary, you have a word and
its definition. Unlike with a grocery list, you wouldn’t say that
the words are all on their own lines and the definitions are all
on their own lines, since that leaves out the biggest part of the
dictionary: the connections between words and their meanings.
Squeaky Jim’s orders are like a list, and no order really affects

ARRAY OF SUNSHINE AND HASH ON THE RANGE 75

any other order, so an array makes sense. But for his menu,
where he’s got to associate menu items with their prices, he
needs something more like a dictionary. And for that, Ruby
uses hashes.

Hashes are easier to show than tell (isn’t everything?),
so check out the following code. It pairs up our heroes (along
with Squeaky Jim and Big Hank) with their descriptions. Go
ahead and type it into IRB, and notice how we’re using curly
brackets ({}) instead of square brackets ([]) as we did with arrays:

>> our_heroes = {
>> :the_king => 'the ruler of the kingdom',
>> :ruben => 'a Ruby wizard in training',
>> :scarlet => 'a Ruby wizard in training',
>> :big_hank => 'the owner of the Hashery',
>> :squeaky_jim => 'a fry cook at the Hashery'
>> }

This code takes a variable, our_heroes, and stores a hash in
it. Don’t be confused by the curly brackets—this isn’t a block!
Hashes aren’t commands; they’re just a bunch of what we call
key-value pairs. A word and its definition are a good example of
a key-value pair: the word is the key, and the word’s definition is
the value. Just as with a dictionary, you use a hash key to look
up a hash value.

Each key-value pair is separated from the next one by a
comma, which makes them a bit like arrays. The similarities
don’t end there! For example, if you had the preceding hash,
you could type:

>> our_heroes[:the_king]

and you’d get:

=> "the ruler of the kingdom"

This is a lot like looking up array values, only instead of pro-
viding the element number inside the square brackets, you write
the hash key.

76 CHAPTER 5

Don’t worry that the hash keys look weird right now; those
things that look like variables with colons in front of them are
called symbols, and we’ll get to them in the next chapter.

Just as with arrays, you can create a hash with literal syntax
or with the new method. These two lines of code are “saying” the
same thing:

>> hashery_menu = {}
=> {}
>> hashery_menu = Hash.new
=> {}

Sometimes you’ll see an alternate way of writing hashes.
Instead of using the little hash rockets (=>), some people put the
colons after the symbol names, which would make the our_heroes
hash look like this:

>> our_heroes = {
>> the_king: 'the ruler of the kingdom',
>> ruben: 'a Ruby wizard in training',
>> scarlet: 'a Ruby wizard in training',
>> big_hank: 'the owner of the Hashery',
>> squeaky_jim: 'a fry cook at the Hashery'
>> }
=> {:the_king=>"the ruler of the kingdom", :ruben=>"a Ruby wizard in
training", :scarlet=>"a Ruby wizard in training", :big_hank=>"the
owner of the Hashery", :squeaky_jim=>"a fry cook at the Hashery"}

Both examples are totally correct Ruby, and you should pick
whichever one is easier for you to remember. (I like the colons,
since they’re faster to type.)

Finally, there are a few neat methods you can call on hashes
to get the keys, values, or key-value combinations out of them.
For instance, calling the keys method on your hash will give you
an array of its keys:

>> our_heroes.keys
=> [:the_king, :ruben, :scarlet, :big_hank, :squeaky_jim]

ARRAY OF SUNSHINE AND HASH ON THE RANGE 77

You can also call the values method on a hash to get an array
of its values:

>> our_heroes.values
=> ['the ruler of the kingdom', 'a Ruby wizard in training', 'a Ruby
wizard in training', 'the owner of the Hashery', 'a fry cook at the
Hashery']

There are a few more hash methods worth knowing about.
Just as empty? tells you if an array is empty, it also tells you if
a hash has no key-value pairs:

>> our_heroes.empty?
=> false
>> empty_hash = {}
>> empty_hash.empty?
=> true

You can also use length to find out how many sets of pairs are
in your hash:

>> our_heroes.length
=> 5

And last but not least, you can use some brand-new hash
methods, has_key? and has_value?, to check whether a hash con-
tains a certain key or value:

>> our_heroes.has_key?(:ruben)
=> true
>> our_heroes.has_key?(:trady_blix)
=> false
>> our_heroes.has_value?('a fry cook at the Hashery')
=> true

However, you’re probably demanding to know: “How can I get
all the keys and values of my hash together?” Well, the best way
to do that is to iterate over the hash. This looks a whole lot like
iterating over an array—in fact, there’s only one tiny difference!

78 CHAPTER 5

>> our_heroes.each do |hero, role|
>> puts "#{hero} is #{role}."
>> end

Go ahead and try it out. (Make sure you use double quotes
for your puts—remember, you need that if you’re going to put
variables in your string.) Did you spot that tiny difference I men-
tioned? You need both hero and role between the pipe characters
(||) in your block. We had just one variable between the pipes for
arrays, but hashes have keys and values, so we need to tell the
Ruby block about both. If all goes well, you’ll get a list of all of
your intrepid heroes and their stations in life:

the_king is the ruler of the kingdom.
ruben is a Ruby wizard in training.
scarlet is a Ruby wizard in training.
big_hank is the owner of the Hashery.
squeaky_jim is a fry cook at the Hashery.
=> {:the_king=>"the ruler of the kingdom", :ruben=>"a Ruby wizard in
training", :scarlet=>"a Ruby wizard in training", :big_hank=>"the
owner of the Hashery", :squeaky_jim=>"a fry cook at the Hashery"}

Speaking of our heroes, it sounds like Scarlet and Ruben
have finished explaining hashes to the King and Squeaky Jim.
(I have very acute hearing.) Let’s see if they’ve figured out how
to use hashes to iterate over the Hashery menu.

Rollicking Ranges
“I’ve got just the idea for iterating over the Hashery menu,” said
Squeaky Jim, and this time his voice didn’t crack at all. “All we
need to do is— ”

At that very moment, Big Hank came lumbering over from
the far side of the kitchen.

“I hate to interrupt,” he boomed, “but I’m having a heck of a
time with the range. In fact, there’s only one little Ruby detail I
need to get it working, but I’ll be a monkey’s tax attorney if I can
figure it out. Mind giving me a hand?”

ARRAY OF SUNSHINE AND HASH ON THE RANGE 79

“Sure thing!” said Scarlet. “What’s the trouble?”
“Follow me,” said Big Hank, and they crossed the enormous

kitchen, past counters piled high with eggs, flour, potatoes, and
other ingredients, past ovens and spatulas and those little forks
with only three prongs, until they reached the gleaming new
range on the far side of the kitchen.

“Ain’t she a beauty?” Big Hank asked. “Only wish I could fig-
ure her out. Here’s where I’m stuck.” He pointed to the glowing
IRB >> prompt on the range’s console. It said:

>> current_temperature = (300..400)[0]
NoMethodError: undefined method `[]' for 300..400:Range

“I overheard what you were saying about arrays,” Hank said,
“and the instruction manual for the range says it’ll go from 300
to 400 degrees. So I figured I could use the square brackets to
get the temperature in position zero, which should be 300.”

“Oh, I see the problem,” said Ruben. “This range doesn’t use
an array for the temperature! It uses a range.”

“A range?” Big Hank said.
“That’s Ruby’s way of giving you a bunch of different values

right next to each other,” Ruben said. “Ranges don’t do all of the
things arrays can do, but we can make them into arrays pretty
easily. Check it out!” He started typing:

>> ('a'..'f').to_a
=> ["a", "b", "c", "d", "e", "f"]
>> ('a'...'f').to_a
=> ["a", "b", "c", "d", "e"]
>> (1..9).to_a
=> [1, 2, 3, 4, 5, 6, 7, 8, 9]
>> (1...9).to_a
=> [1, 2, 3, 4, 5, 6, 7, 8]
>> (1..9).first
=> 1
>> (1..9).last
=> 9

“I’ll be a Christmas goose!” Hank bellowed. “That’s amazing!
But I’ve got a couple of questions. First, what’s that to_a bit do?”

80 CHAPTER 5

“The to_a method turns ranges into arrays,” Scarlet said.
“Since range values are all right next to each other, Ruby can
figure out what the array should look like. See? It works on let-
ters of the alphabet and numbers!”

“Not only that,” Ruben added, “but once the range is an
array, you can iterate over it just like any array.”

“I see,” Hank said, twirling his mustache. “But answer me
this: why d’you get some ranges with two dots and some with
three?”

“That’s just how you tell Ruby whether or not to include the
last thing in the range,” Ruben said. “Two dots means ‘include
the first thing, everything up to the last thing, and the last thing
between the parentheses in the range,’ and three dots means
‘include the first thing and everything up to, but not including,
the last thing between the parentheses in the range.’”

“That sounds a bit confusing,” Jim squeaked.
“It can be,” Scarlet admitted. “That’s why I usually stick to

the two-dot ranges. It makes more sense to have both numbers
in the range.”

“Got it,” Big Hank said. “Last question. If I want the first
thing in the range, I can convert it to an array with to_a and
just grab the first element with [0]. But can I also use this first
method you just showed me?”

“Of course!” Ruben said, and typed:

>> current_temperature = (300..400).first
=> 300

With a pleasant beep, the range quickly heated up to
300 degrees. The smell of fresh hash began to waft through
the air.

“You’ve done it! I can’t thank you kids enough.” Big Hank
laughed, slinging hash across the range like a gleeful diner
cowboy. “I can’t help but feel a little silly, though. It was such
a small thing!”

“It always feels like that with programming,” Scarlet said.
“But the more you do it, the more you realize it’s always some
small thing, and you get much better at fixing things quickly.”

ARRAY OF SUNSHINE AND HASH ON THE RANGE 81

“Speaking of quick,” Big Hank said, “the lunch rush’ll be
here any minute.” He surveyed the kitchen, which was full of
ungrated potatoes and unfried eggs. “What do you say—want to
grab a quick bite, then maybe give me a hand?” He smiled, and
his great black mustache bounced on his face. “Of course, food’s
on the house. Anything for the King and his friends!”

Ruben and Scarlet looked at each other, then at the King.
The King nodded. “We’ve come all this way,” he said. “We might
as well stick around a bit longer!”

Order Up!
Now that the Hashery is back at 100 percent, Big Hank and
Squeaky Jim (who, now that he’s more confident with Ruby,
squeaks much less) need your help to get that menu ready for
the customers. Jim didn’t get a chance to tell us his plan, but I’m
pretty sure you’ve got this one. Easy as pie . . . uh, eggs, right?

Let’s begin by making a new file called hashery_menu.rb.
(Peek back to Chapter 1 if you don’t remember how to do this,
or ask your local adult for help.) Then open your file and type
the following code.

hashery_menu.rb

hashery_menu = {
 eggs: 2,
 hash: 3,
 jam: 1,
 sausage: 2,
 biscuit: (1..3)
}

hashery_menu.keys.each do |item|
 puts "Today we're serving: #{item}!"
end

hashery_menu.each do |item, price|
 puts "We've got #{item} for $#{price}. What a deal!"
end

82 CHAPTER 5

puts "Here's what a biscuit'll run ya, depending on how much butter
you want:"
hashery_menu[:biscuit].to_a.each do |price|
 puts "$#{price}"
end

This is what you and Jim would have put together a little bit
ago, so there’s nothing new or scary here!

This is the output you’ll see when you run the code using the
command ruby hashery_menu.rb:

Today we're serving: eggs!
Today we're serving: hash!
Today we're serving: jam!
Today we're serving: sausage!
Today we're serving: biscuit!
We've got eggs for $2. What a deal!
We've got hash for $3. What a deal!
We've got jam for $1. What a deal!
We've got sausage for $2. What a deal!
We've got biscuit for $1..3. What a deal!
Here's what a biscuit'll run ya, depending on how much butter you
want:
$1
$2
$3

There are a couple of new combinations of ideas, though, so
let’s step through them one by one and see how they work. Take
a look:

hashery_menu = {
 eggs: 2,
 hash: 3,
 jam: 1,
 sausage: 2,
 biscuit: (1..3)
}

ARRAY OF SUNSHINE AND HASH ON THE RANGE 83

Here, we’re just creating a hash called hashery_menu. It’s got
keys like :eggs and :hash, and each key is paired with a value,
like 2 for :eggs and 3 for :hash. This is how much we’ll charge for
the item on our menu.

Next, we have this bit:

hashery_menu.keys.each do |item|
 puts "Today we're serving: #{item}!"
end

We’re using the keys method to get a list of all the keys in our
hash, then giving that list (or array) to the each method. For each
key, we’re printing out the string: Today we're serving: #{item}!
So, for example, when we get to the key :eggs, we’ll print out:
Today we're serving: eggs! The code loops over each item in our
hash and then puts each menu item to the screen.

hashery_menu.each do |item, price|
 puts "We've got #{item} for $#{price}. What a deal!"
end

Things are getting a bit trickier here. When we call the each
method on the hash itself, we give the do block both the hash key
(item) and the value of that key (price). For example, when we get
to :eggs (which is paired with the value 2), we’ll print out: We've
got eggs for $2. What a deal!

puts "Here's what a biscuit'll run ya, depending on how much butter
you want:"
hashery_menu[:biscuit].to_a.each do |price|
 puts "$#{price}"
end

Finally, we’ll work a little Ruby magic with the :biscuit in our
hashery_menu. First, we access its value with hashery_menu[:biscuit].
Then, since that value is a range, we can call the to_a method on
it to make it an array, then use each just as we did before to go
through all its items. We’ll print out our message saying what a
biscuit will cost, and then the do block will print out the possible
prices: $1, $2, and $3, each on its own line.

84 CHAPTER 5

You can test out your entire menu program by entering ruby
hashery_menu.rb at the command line, and it should look like the
output I showed you just a moment ago.

You’ve got a solid menu going here, but if you want to make
Squeaky Jim and Big Hank absolutely weep with joy, try the fol-
lowing ideas on for size.

Your menu has a pretty sweet range in it, and you even con-
vert it to an array! I don’t see any regular arrays in your menu,
though, and you’re completely allowed to have arrays as hash
values. Why not add a :random_special key (for the Special of the
Day) with an array of prices as the value? If I told you that you
could call the sample method on an array to get Ruby to spit out
a random element from an array, how might you use it here?

You could get really fancy and shift, unshift, push, or pop val-
ues onto or off of your :random_special array. Looking at the code
you’ve already got, how would you call these methods on the
array value of your :random_special key?

Speaking of the push method, there’s a cool shortcut for it in
Ruby. It’s called the shovel operator, and it works like this. The
line with the << is exactly the same as bagel_types.push('cinnamon
raisin'):

>> bagel_types = ['plain', 'sesame', 'everything']
=> ["plain", "sesame", "everything"]
>> bagel_types << 'cinnamon raisin'
=> ["plain", "sesame", "everything", "cinnamon raisin"]

Try replacing your pushes with <<s, and then read more about
the shovel operator at http://www.ruby-doc.org/. Hint: How could
it help you build strings in Ruby?

You Know This!
You might feel like your brain is overflowing with all the new
array, hash, and range magic we learned, but don’t worry—we’ll
go over everything once more to make sure you’ve got it all.

http://www.ruby-doc.org/

ARRAY OF SUNSHINE AND HASH ON THE RANGE 85

Let’s start with arrays, which are just lists of information.
You have two ways of creating arrays. You can use array literal
syntax, using square brackets like this:

>> breakfast = ['chunky bacon, 'chunky bacon', 'chunky bacon']
=> ["chunky bacon", "chunky bacon", "chunky bacon"]

Or you can use Array.new to do the same thing:

>> breakfast = Array.new(3, 'chunky bacon']
=> ["chunky bacon", "chunky bacon", "chunky bacon"]

You found out that arrays can contain anything, including
strings, numbers, variables, Booleans, and even other arrays.

You learned a whole bunch of array methods, including:

 • empty?, which returns true if an array has no items and false if
it has at least one item

 • length or size, which do the same thing—return the number
of items in an array

 • first, which returns the first element in an array without
removing it

 • last, which returns the last element in an array without
removing it

 • shift, which returns the first element in an array and
removes it from the array

 • unshift, which adds elements to the front of the array

 • push, which adds elements to the back of the array

 • pop, which removes and returns the last element of the array

 • insert, which can add an element anywhere in the array

Whew!
Let’s practice a bit in IRB with some more examples to

refresh your memory:

>> empty_array = []
=> []
>> empty_array.empty?
=> true

86 CHAPTER 5

>> not_empty_array = [1, 2, 3, 4, 'I declare a thumb war']
=> [1, 2, 3, 4, "I declare a thumb war"]
>> not_empty_array.empty?
=> false
>> not_empty_array.length
=> 5
>> not_empty_array.first
=> 1
>> not_empty_array.last
=> 'I declare a thumb war'
>> not_empty_array
=> [1, 2, 3, 4, 'I declare a thumb war']
>> first_item = not_empty_array.shift
=> 1
>> not_empty_array
=> [2, 3, 4, 'I declare a thumb war']
>> not_empty_array.unshift(first_item)
=> [1, 2, 3, 4, 'I declare a thumb war']
>> last_item = not_empty_array.pop
=> 'I declare a thumb war'
>> not_empty_array
=> [1, 2, 3, 4]
We could also do not_empty_array << last_item
>> not_empty_array.push(last_item)
=> [1, 2, 3, 4, 'I declare a thumb war']
Insert the number 5 at position 4; remember, arrays start counting
at 0!
>> not_empty_array.insert(4, 5)
=> [1, 2, 3, 4, 5, 'I declare a thumb war']

We talked about how to access arrays using square
brackets:

>> junk_drawer = ['lightbulb', 'dead battery', 'some pens', 'old
penny']
=> ["lightbulb", "dead battery", "some pens", "old penny"]
>> junk_drawer[2]
=> "some pens"

ARRAY OF SUNSHINE AND HASH ON THE RANGE 87

Finally, we reviewed how to iterate over an array:

>> junk_drawer.each do |thing|
>> puts thing
>> end
lightbulb
dead battery
some pens
old penny
=> ["lightbulb", "dead battery", "some pens", "old penny"]

which is exactly the same as:

>> junk_drawer.each { |thing| puts thing }
lightbulb
dead battery
some pens
old penny
=> ["lightbulb", "dead battery", "some pens", "old penny"]

Next up: hashes. Hashes are different from arrays because
they aren’t just lists. Instead, they associate keys with values
(think: dictionary word with definition). Just like arrays, how-
ever, hashes can be created with literal syntax or the new method:

>> hashery_menu = {}
=> {}
>> hashery_menu = Hash.new
=> {}

And, just as with arrays, you can access hash values with
square brackets:

>> hashery_menu = {
>> eggs: 2,
>> hash: 3,
>> jam: 1,
>> sausage: 2,
>> biscuit: (1..3)
>> }
=> {:eggs=>2, :hash=>3, :jam=>1, :sausage=>2, :biscuit=>1..3}

88 CHAPTER 5

>> hashery_menu[:jam]
=> 1

We saw a few hash methods, including empty? (which returns
true if a hash has no key-value pairs and false if it has at least
one pair), length (which returns the number of pairs in a
hash), keys (which returns an array of the keys in the hash),
values (which returns an array of the values in the hash),
has_key? (which returns true if the hash includes a particular
key and false other wise), and has_value? (which returns true if
the hash includes a particular value and false otherwise).

Here they are again in all their glory:

>> hashery_menu.empty?
=> false
>> empty_hash = {}
=> {}
>> empty_hash.empty?
=> true
>> hashery_menu.length
=> 5
>> hashery_menu.keys
=> [:eggs, :hash, :jam, :sausage, :biscuit]
>> hashery_menu.values
=> [2, 3, 1, 2, 1..3]
>> hashery_menu.has_key?(:jam)
=> true
>> hashery_menu.has_key?(:zebra)
=> false
>> hashery_menu.has_value?(3)
=> true
>> hashery_menu.has_value?(42)
=> false

We also learned that we could iterate over a hash just like we
can iterate over an array, only we need to put variables for the
key and the value between the pipes in our code block:

>> hashery_menu.each do |item, price|
>> puts "#{item} costs #{price}"
>> end

ARRAY OF SUNSHINE AND HASH ON THE RANGE 89

eggs costs 2
hash costs 3
jam costs 1
sausage costs 2
biscuit costs 1..3
=> {:eggs=>2, :hash=>3, :jam=>1, :sausage=>2, :biscuit=>1..3}

Last (but not least), we covered ranges. Ranges are just a
bunch of Ruby values that happen to be next to each other. We
saw that two dots inside the parentheses included both ends of
the range, while three dots included the first end but only up to
(not including) the second one:

>> (1..5).to_a
=> [1, 2, 3, 4, 5]
>> (1...5).to_a
=> [1, 2, 3, 4]

We also learned a few range methods, including to_a (which
turns a range into an array), first (which returns the first item in
the range), and last (which returns the last item in the range):

>> ('a'..'c').to_a
=> ["a", "b", "c"]
>> ('a'..'c').first
=> "a"
>> ('a'..'c').last
=> "c"

All right! We made it. Great work so far—but don’t get too
cocky. That lunch rush is coming, and the next chapter’s gonna
get a little crazy.

Symbols!
“That hash was amazing!” Scarlet said. Ruben nodded vigor-
ously as he shoveled another helping of eggs and hash into
his mouth.

“I’m glad you liked it!” said
Big Hank. “But that mid-morning
rush’ll be here any minute, and we
need to get cracking if we’re going
to be ready for it.”

Scarlet jumped down from
her stool. “We have eggs to fry up,
potatoes to grate, sausages to cook,
breakfast gravy to make, and bis-
cuits to bake. Anything else?”

92 CHAPTER 6

Hank twirled his mustache. “I’m not sure,” he said. “Let’s
have a look at that menu you kids and Squeaky Jim cooked up.”

“Sure!” Scarlet said, and she called up the Hashery menu on
the kitchen’s Computing Contraption:

>> hashery_menu
=> { :eggs => 2,
 :hash => 3,
 :jam => 1,
 :sausage => 2,
 :biscuit => 1..3 }

“This looks good—each order of food is associated with its
price in a hash,” said Big Hank, “but we should put our break-
fast beverages on there, too. Can you add a key with an array as
a value to my menu hash?”

“Of course,” Scarlet said. “What drinks should we put in it?”
“We’ve got coffee, orange juice, and tea,” said Hank.
“Okay!” Scarlet said. She typed:

>> hashery_menu['drinks'] = ['coffee', 'orange juice', 'tea']
=> ["coffee", "orange juice", "tea"]

“Aha! So that’s how you add a key to a hash,” Hank said.
“Yup!” Scarlet replied. “You just type the hash name, then

the key name between square brackets—here, we’re using
'drinks'—and set the whole thing equal to whatever value you
like. See how we updated the hashery_menu?”

>> hashery_menu
=> {:eggs=>2, :hash=>3, :jam=>1, :sausage=>2, :biscuit=>1..3,
"drinks"=>["coffee", "orange juice", "tea"]}

 “Cool!” said Ruben, who had finally finished eating his eggs
and hash. “Now we have a list of drinks on the menu.” He leaned
in close to the glowing screen of the Computing Contraption.
“But it looks like the drinks hash key is a string, and the rest are
symbols. Does that make a difference?”

“Oh boy, does it!” said Squeaky Jim, who had been open-
ing bags of potatoes and cleaning the Hashery’s enormous

THE (CHUNKY) BACON TO RUBY’S HASH 93

Grate-O-Matic. He pushed his paper hat farther back on his
head and leaned against the machine. “You see— ” he began,
but as he started to speak, his elbow pushed down the machine’s
huge switch, turning it on. It roared to life, scaring the sweet
peas out of Squeaky Jim and nearly causing him to fall over
multiple times as he scrambled to turn it back off.

“You see,” Jim squeaked after he finally shut down the
Grate-O-Matic, “even though I’m not very good at Ruby, I have
tried to program the kitchen’s Computing Contraption every
now and again. One morning, the Hashery was unbelievably
busy—one of the biggest mid-morning rushes I’d ever seen!”

“I remember that one,” Big Hank said, pulling an armful of
sausage links out of a shiny red refrigerator. “Not only did we
have a ton of customers, but we were doing a Build Your Own
Menu day.”

“Build Your Own Menu day?” Ruben asked, scratching
his head.

Big Hank nodded and began yanking sausages off the long
chain of links and tossing them into an enormous skillet. “Yup.
We let customers create their own personal menus, so they could

94 CHAPTER 6

order anything they wanted. We were okay at first—people were
building their menus, ordering food, and getting served. But as
the morning wore on, the program got slower and slower. By the
peak of the rush, we could barely get any orders through! We
had to shut down the kitchen’s Computing Contraption and do
all the orders by hand. It was chaos.”

Squeaky Jim nodded. “And I think I know why!”
Hank stopped pulling apart sausage links. “You do?”
“Yup!” Jim said. “I was reading up on Ruby the other day to

try to get a bit better at running the kitchen, and I found out
that Ruby symbols use up less memory than strings. We were
using strings for all the keys in our hashes during Build Your
Own Menu day, and as the program went on and on, it used
more and more memory until it didn’t have enough to do its job.”

“Back up a bit,” said the King, who was chewing thought-
fully on a raw potato. “What exactly are these Ruby symbols?
And what do you mean when you say they use less memory than
strings?”

The Skinny on Symbols
While Squeaky Jim tries to explain Ruby symbols to the group,
I’ll give you the rundown. Basically, a Ruby symbol is just a name.
For instance, if I’m talking about the King and Scarlet is talking
about the King, we’re both talking about the very same thing—
the King! When we talk about symbols (that is, names) in Ruby,
we write them with a colon in front, like :the_king. You’ll often
see the underscore (_) in symbol names because, just like variable
names, they aren’t allowed to have spaces in them.

So how is a symbol different from a string, like 'The_King'?
Well, think back to the King’s string from Chapter 2. Now imag-
ine that the King has two strings with exactly the same beads
and trinkets on them. While they might have the same contents,
they aren’t the exact same thing. But when we both talk about
the King, we’re not talking about two kings who look exactly like
each other: we’re talking about one and the same king!

THE (CHUNKY) BACON TO RUBY’S HASH 95

If you’re still a bit confused, never fear: I’ve got a couple of
code examples that should help clear things right up. Fire up
IRB and try this on for size:

>> string_one = 'The King'
=> "The King"
>> string_two = 'The King'
=> "The King"
>> string_one.object_id
=> 2184370320
>> string_two.object_id
=> 2184365180

Here we’re setting two different variables to the same string
value of 'The King'. Then, when you use the object_id method on
these two variables, you’re asking Ruby to provide the unique
number it uses to keep track of every object in a running Ruby
program. It’s a kind of ID number that Ruby uses to tell objects
apart, and no two objects have exactly the same one. On the flip
side, if two variables have the same object ID number, they must
be talking about the very same object.

The object ID numbers you see in IRB won’t be quite the
same as mine, but that’s okay! Object IDs get reassigned every
time you start a new Ruby program. The important thing is that
string_one and string_two, even though they’re both equal to 'The
King', are different objects. Their contents are exactly the same,
but just as with our example of the King’s string, we’re talking
about two completely different strings that just happen to have
the same thing inside.

Now check this out:

>> symbol_one = :the_king
=> :the_king
>> symbol_two = :the_king
=> :the_king
>> symbol_one.object_id
=> 466088
>> symbol_two.object_id
=> 466088

96 CHAPTER 6

Here we’re setting two different variables, symbol_one and
symbol_two, to the symbol :the_king. Again, your object IDs won’t
be exactly the numbers just shown, but when you compare your
object IDs for symbol_one and symbol_two, you’ll see that they’re the
exact same number! Just like how when we’re talking about the
King, we’re talking about the very same person, both symbol_one
and symbol_two are talking about the exact same object, :the_king.

Because symbols are simply names you can toss around, you
don’t assign values to them. While you can definitely say:

>> variable_name = :my_fancy_symbol
=> :my_fancy_symbol

you can’t say:

:my_fancy_symbol = some_value

If you try this, you’ll get a SyntaxError. Just as you can’t assign
a different value to a string or a number by putting it on the left-
hand side of the equal sign, you can’t assign a different value to a
symbol, either.

The only time you’ll have symbols on the left-hand side is
when you use them in hashes, like this:

>> fancy_words = { bloviate: 'To talk at length' }
=> {:bloviate=>"To talk at length"}

Remember, we don’t need to start our bloviate key with a
colon if we use the newer hash syntax. If we want to use the
older hash rockets (=>), we start the symbol with a colon:

>> fancy_words = { :bloviate => 'To talk at length' }
=> {:bloviate=>"To talk at length"}

But yes! I do go on. What you’re probably wondering is: what
are symbols good for? How is it that they use less memory than
strings?

Because a symbol always has only one object ID, it gets cre-
ated only one time in any given Ruby program. That means you
could have a thousand million billion variables that are all set to

THE (CHUNKY) BACON TO RUBY’S HASH 97

a certain symbol, and only one symbol object gets created. If you
were to do that with strings, they’d all have different object IDs,
so you’d get a thousand million billion different strings. Just like
you, Ruby has only a certain amount of memory and can keep
track of only so many things at once. If you create a huge num-
ber of strings, Ruby will start to run out of memory as it tries to
juggle them all, and it will slow way down. Your program might
even crash! If you use symbols, Ruby will create fewer objects
and use less memory, so programs that use symbols for things
like hash keys can run faster than equivalent programs that
use strings. This brings us to the thousand-million-billion-dollar
question: when should you take advantage of the savings sym-
bols offer?

Basically, any time you need
to use a name over and over but
don’t want to create a brand-new
string each time, symbols are the
way to go. They’re very good for
hash keys, and they’re also use-
ful for referring to method names.
We’ll talk about using symbols for
method names very soon!

Speaking of soon, I’m pretty
sure Squeaky Jim is about to wrap
up his explanation of Ruby sym-
bols. Let’s see if Ruben, Scarlet,
the King, and Big Hank have as
good an understanding of them as
you do!

Symbols and Hashes,
Together at Last
“I think I get it,” Ruben said. “Symbols are just names that
Ruby uses to refer to one particular object, so if we use symbols
as keys in hashes, we’re really just referring to the same object
over and over.”

98 CHAPTER 6

“That’s exactly right!” said Squeaky Jim. “Now you see why
we had such a terrible time using strings instead of symbols in
our Build Your Own Menu hashes.”

“Of course!” Scarlet said. “Each time a customer made a new
menu, it made a whole bunch of new strings.”

“We had hundreds of customers,” Big Hank sighed. “No won-
der our Ruby program ran out of memory!”

“Well, I certainly don’t want to start adding strings into the
menu now,” Scarlet said. “How can we change the string key to a
symbol?” She typed hashery_menu into the Computing Contraption
to call up the Hashery menu’s contents:

>> hashery_menu
=> { :eggs => 2,
 :hash => 3,
 :jam => 1,
 :sausage => 2,
 :biscuit => 1..3,
 "drinks" => ["coffee", "orange juice", "tea"] }

“Hmm,” said the King. “Can we just change the string key
to a symbol key?”

“I don’t think so,” said Squeaky Jim. “From what I’ve read,
I think the best thing we can do is to delete the string key, then
replace it with a symbol key.”

“You may be right,” Ruben said, “but programming is
all about experimenting. I’ve heard that Ruby has a to_sym
method that will turn a string into a symbol. Should we give
it a try?”

“Sure thing,” Scarlet said, and she typed:

>> hashery_menu.keys.last.to_sym
=> :drinks

“It looks like it worked!” Ruben said. “Can you bring up the
hash again to be sure?”

Scarlet nodded and brought up the Hashery menu again.

THE (CHUNKY) BACON TO RUBY’S HASH 99

>> hashery_menu
=> { :eggs => 2,
 :hash => 3,
 :jam => 1,
 :sausage => 2,
 :biscuit => 1..3,
 "drinks" => ["coffee", "orange juice", "tea"] }

“Darn!” Ruben said. “Ruby returned a symbolized version
of the string 'drinks', but it didn’t actually change the key in
the hash.”

“That’s probably just as well,” said Big Hank. “I’ve been
thinking about our breakfast beverages, and I realized we don’t
have their prices in the array at all!”

Scarlet slapped her forehead. “That’s right!” she said. “We
need to have the drinks and the prices in there.” She thought
for a minute. “Wait—if we’re associating drinks and their prices,
that’s just like associating each food item with its price. Can we
put a hash inside another hash?”

“Nothing to do but experiment!” said the King. “Why don’t
you go ahead and delete the "drinks" key like Jim suggested, and
then try adding a symbol key with a hash as the value?”

“Okay!” said Scarlet. “Jim, do you know how to delete a key
from a hash?”

“I think so,” Jim said, and he reached over and began typing
into the Computing Contraption:

>> hashery_menu.delete('drinks')
=> ["coffee", "orange juice", "tea"]

“Whoa, what was that?” said Ruben. “When you deleted the
key, it gave you the value back!”

Jim nodded. “That’s what the delete method does!” he said.
“That way, if we had wanted to use the value of the deleted key
for something, we could have saved it into a variable, like this:

menu_drinks = hashery_menu.delete('drinks')

100 CHAPTER 6

“But,” Jim said, “we can’t do that now, because the 'drinks'
key is gone. See?” He typed again:

>> hashery_menu
=> { :eggs => 2,
 :hash => 3,
 :jam => 1,
 :sausage => 2,
 :biscuit => 1..3 }

“Nice work!” Scarlet said. “Now all we have to do is test
whether we can put a hash inside a hash. Big Hank, what are
the prices I should use for the drinks?”

“It’s a dollar for coffee, two for orange juice, and one for tea,”
Hank said. Scarlet typed into the Computing Contraption:

>> hashery_menu[:drinks] = { :coffee => 1, :orange_juice => 2,
:tea => 1 }
=> { :coffee => 1, :orange_juice => 2, :tea => 1 }

“It worked!” shouted the King. “Great work, everyone!”
“And just in the nick of time!” boomed Big Hank. The group

had been so busy crowding around the Computing Contraption
and working on getting the Hashery menu just right, they
hadn’t noticed a steadily growing din. Voices filled the air as
customers crowded into the Hashery, and even Big Hank had
to shout to be heard above them all: “Spin up the Grate-O-Matic!
Attend to the skillets! Bake biscuits like your lives depend on it!
The mid-morning rush is upon us, and they’re hungry!”

“Aye aye, Hank!” said Squeaky Jim, who not only didn’t
squeak but spun up the Grate-O-Matic and began churn-
ing out hash like he’d done it all his life. “Let’s get that new
menu out to all the customers!”

“The menu! I almost forgot,” Hank said. “We do have one
more addition to today’s specials.” And he typed:

>> hashery_menu[:chunky_bacon] = 1
=> 1

“Chunky bacon?” Scarlet and Ruben asked together.

THE (CHUNKY) BACON TO RUBY’S HASH 101

Hank smiled and shrugged. “Friend of mine used to come in
all the time and order it,” he said. “Haven’t seen him in a while,
so I haven’t had it on the menu. But who knows?” He looked
out at the growing crowd of hungry Hashery customers. “Maybe
today’s the day he’ll come back.”

The Mid-Morning Rush
Now that you know all about symbols, you can handle a mid-
morning rush of any size and not worry about slowing down your
Ruby program or running low on memory. In fact, you’re such a
wizard with Ruby symbols that Big Hank and Squeaky Jim have
given you a mission that they’ve so far found impossible: trans-
forming their old Build Your Own Menus so that they use sym-
bols for keys instead of strings!

This may sound like an odd idea at first, but it’s just to help
make sure you’re comfortable using Ruby hashes; you don’t have
to change all your keys to symbols every time you use them.
Hashes are great for storing information like our Hashery menu,
and you’ll use them time and again whenever you write Ruby—
not just for the code in this book.

Earlier, we saw that we couldn’t just call to_sym on a hash key
and expect it to magically change; instead, we had to delete the
key and replace it.

Fig. 1: "Bacon"

Fig. 2: "Chunky Bacon"

102 CHAPTER 6

That works okay for a single string key, but Hank and Jim
are talking about a thousand million billion strings in hundreds
of customer menus—you could never convert them one at a
time, even if you wanted to! But what if we could automatically
run through a hash and do exactly that: grab each string key,
delete it, save the key’s value, and assign that value to a new
symbol key?

Let’s make a new file called strings_to_symbols.rb. (As
always, peek back at Chapter 1 if you don’t remember how to
do this, or ask the nearest adult to help you.) Then open your
file with your text editor, and type the following:

my_own_menu = { 'tater_tots' => 2,
 'fancy_toast' => 3,
 'omelette' => 3,
 'tiny_burger' => 4,
 'chunky_bacon' => 1,
 'root_beer_float' => 2,
 'egg_nog' => 2
}

Here, we’re creating a brand-new hash called my_own_menu and
assigning some values (the prices, which are numbers) to some
keys (the menu items, which are strings). Keep on adding to the
program; we’re not done yet!

puts "Object ID before: #{my_own_menu.object_id}"

Next, we’ll print out the object ID of our menu hash. This is
so we can later confirm that although we’ve made some changes
to our hash, it’s still the same object; after we make changes to
our keys and values, if the ID is the same as it was before, we’re
talking about the very same hash, just with some different infor-
mation in it.

Let’s keep adding to strings_to_symbols.rb. We’ve got
strings for hash keys now, but what we really want are sym-
bols! We’ll need to add a bit more code to change our string
keys to symbol keys.

THE (CHUNKY) BACON TO RUBY’S HASH 103

my_own_menu.keys.each do |key|
 my_own_menu[key.to_sym] = my_own_menu.delete(key)
end

puts "Object ID after: #{my_own_menu.object_id}"

puts my_own_menu

Okay, that does it. We call the keys method on the my_own_menu
hash to get our keys, then immediately call each on those keys to
iterate over them. (Remember that from Chapter 5? Feel free to
look back if you need a reminder.)

Here’s the really cool part: for each key in the hash, we
call delete on the key (which removes it from the hash), but
since delete returns the value associated with the key that was
deleted, we immediately set this equal to calling to_sym on the
key. This is an amazing double whammy: it deletes the origi-
nal key from the hash while immediately adding the value to a
new key, and that new key is just the original one turned into a
symbol. The result? You change all the keys in your hash from
strings to symbols!

We can even prove it’s the very same hash, not a copy: we puts
the hash’s object ID before and after iterating over it, and you’ll
see in the output that the object ID is the very same both times.
That’s right—every object in Ruby has an object ID, including the
hash itself !

Your complete code should look like this:

strings_to_symbols.rb

my_own_menu = { 'tater_tots' => 2,
 'fancy_toast' => 3,
 'omelette' => 3,
 'tiny_burger' => 4,
 'chunky_bacon' => 1,
 'root_beer_float' => 2,
 'egg_nog' => 2
}

104 CHAPTER 6

puts "Object ID before: #{my_own_menu.object_id}"

my_own_menu.keys.each do |key|
 my_own_menu[key.to_sym] = my_own_menu.delete(key)
end

puts "Object ID after: #{my_own_menu.object_id}"

puts my_own_menu

Go ahead and run your code—type ruby strings_to_symbols.rb
and press enter. The output should look like this:

Object ID before: 2174149520
Object ID after: 2174149520
{:tater_tots=>2, :fancy_toast=>3, :omelette=>3, :tiny_burger=>4,
:chunky_bacon=>1, :root_beer_float=>2, :egg_nog=>2}

You should see the very same object ID printed twice, then a
beautiful printout of your hash, complete with symbols for keys
instead of strings.

What Else Can You Do
with Symbols?
Now that you can solve all of Big Hank and Squeaky Jim’s menu
woes with ease, you might be wondering what else you can do.
As Ruben said, experimenting is a huge part of programming,
and there’s a lot of experimentation you can do with hashes and
symbols. For example, what happens if you call to_sym on a string
that contains a space? (You’ll still get a symbol, but it will look
weird—try it!)

We can also explore hashes within hashes. Remember, we
can access a value in a hash like this:

>> hash_name[:key]
=> value

THE (CHUNKY) BACON TO RUBY’S HASH 105

So how might you go about accessing the value of a hash
inside a hash? Here’s a hint—for our original menu:

>> hashery_menu
=> { :eggs => 2,
 :hash => 3,
 :jam => 1,
 :sausage => 2,
 :biscuit => (1..3),
 :drinks => { :coffee => 1, :orange_juice => 2, :tea => 1 } }

what do you think hashery_menu[:drinks][:orange_juice] will give
us back?

Finally, strings have a to_sym method that turns them into
symbols, but symbols also have a to_s method (short for “to
string”) that turns them into strings. How might you update
this program to change symbol keys to strings?

You Know This!
We only really talked about hashes and symbols in this chap-
ter, but since they’re not as easy to understand as numbers or
strings (or even arrays), they’re worth going over one more time.
(Heck, I’ve been writing Ruby for years, and I still think symbols
are weird!)

First, we looked at how to add a key and a value to a hash,
which is as easy as setting a key in square brackets ([]) equal to
a value:

my_hash[:key] = value

Next, we introduced symbols, which are basically just names;
you don’t assign values to them, but you can store them in vari-
ables if you want to.

For example, this is okay:

my_variable = :my_symbol

106 CHAPTER 6

But this will cause an error:

:my_symbol = some_value

The only time symbols can appear on the left-hand side is
when we’re using them as hash keys, like so:

>> my_hash = { ninjas: 'awesome',
>> wizards: 'pretty rad',
>> warrior_princesses: 'super tough'
>> }
=> {:ninjas=>"awesome", :wizards=>"pretty rad", :warrior_
princesses=>"super tough"}

When you’re talking about the King or your teacher or
Abraham Lincoln, you’re always talking about exactly the same
person; likewise, symbols always refer to exactly the same object.
This means they use less memory than strings, because when-
ever you create a new string—even if it’s all the same letters as
another string—it’s a separate object with its own object ID:

>> symbol_one = :the_king
=> :the_king
>> symbol_two = :the_king
=> :the_king
>> symbol_one.object_id
=> 466088
>> symbol_two.object_id
=> 466088 # The same!
>> string_one = 'The King'
=> "The King"
>> string_two = 'The King'
=> "The King"
>> string_one.object_id
=> 2184370320
>> string_two.object_id
=> 2184365180 # Different!

In general, symbols are good for when you need to use a
name over and over, mostly for hash keys and a couple of other
neat tricks (which we’ll talk more about in later chapters).

THE (CHUNKY) BACON TO RUBY’S HASH 107

When you care about the content of something, you want a
string; when you care about the name of a thing, you want a
symbol.

If you’re ever unsure whether two objects are the same or dif-
ferent, you can always use the object_id method (which works on
any Ruby object) to get an object’s ID number. Every object has
its very own ID number, which is how Ruby keeps track of which
object is which during a program:

>> 'The King'.object_id
=> 2187090900
>> { :eggs => 2, :hash => 3 }.object_id
=> 2187097060
>> ['eeny', 'meeny', 'miny', 'moe'].object_id
=> 2187104080

Remember, your object IDs won’t be exactly the same as
the ones shown here, but they should all be different from one
another on your computer.

Converting between symbols and strings is a snap! You can
use the to_sym method to turn a string into a symbol:

>> 'drinks'.to_sym
=> :drinks

And you can use the to_s method to turn a symbol into a
string:

>> :drinks.to_s
=> "drinks"

When it comes to deleting keys from hashes, you not only saw
that you can do it with the delete method, but you also learned
that delete both removes the key-value pair from the hash and
returns the value, so you can save it in a variable if you want:

>> simple_hash = { :one => 1, :two => 2 }
=> { :one => 1, :two => 2 }
>> saved_value_from_hash = simple_hash.delete(:two)
=> 2

108 CHAPTER 6

>> simple_hash
=> { :one => 1 }
>> saved_value_from_hash
=> 2

Finally, you learned that it’s 100 percent allowed to store a
hash inside another hash, like so:

>> fancy_hash = { :number_key => 42,
>> :hash_key => { :first_value => 1,
>> :second_value => 2
>> }
>> }
=> {:number_key=>42, :hash_key=>{:first_value=>1, :second_value=>2}}

You’re well into the thick of Ruby now! The good news is that
it’s pretty much all smooth sailing from here. While there are a
few tricky concepts ahead, once you’ve mastered the basic Ruby
objects (like numbers, strings, arrays, and hashes), learned how
to use a bunch of their methods, and become a whiz at topics like
control flow (using if/elsif/else, loops, and iterators), you’ve cov-
ered most of the language. Don’t worry if you don’t feel perfectly
comfortable with Ruby yet; while it doesn’t take long to learn
the basics, you can take as much time as you want to explore the
depths. And that’s where we’re going next: deeper into the heart
of Ruby, where strange-sounding (but powerful!) creatures await.

A Method to the Madness
“I think that’s the last of it!” Squeaky Jim said, sweeping
a pile of stray hash into his dustpan. “That was some mid-
morning rush!”

“I’ll say,” said Big Hank. He hefted a huge green compost
bag onto his shoulder and grinned at the King, Scarlet, and
Ruben. “Thanks for all your help today! We’d have been in a
terrible pickle if you all hadn’t been here to lend a hand.”

“Our pleasure!” said Ruben, who was packing three to-go
boxes of hash and eggs. “The food here is terrific!”

“Definitely!” said Scarlet. “Will you be okay for the lunch
crowd? We had a lot of fun, and we can help some more if you
need it.”

Hank laughed as he tossed bag after bag into the kitchen’s
enormous compost bin. “The Hashery is more of a breakfast

110 CHAPTER 7

and brunch operation,” he said. “The lunch crowd is usually pretty
thin. I think we’ll be okay.” He dusted his hands off and looked
around. “What are you up to for the rest of the day?”

“Well,” the King said, “since we’ve come down this way, I was
thinking we could— ”

“Hang on a second. What’s this?” Scarlet interrupted, pulling
a handful of what had appeared to be stray hash out of Squeaky
Jim’s dustpan.

Squeaky Jim bent down to look at it. “Mostly mud,” he said.
“But what are these little red needles?” she asked. “And this

shiny green thing?”
The King pulled a small magnifying glass from his kingly

robe and leaned in to get a better look.
“Aha! I’ve seen those red needles before,” said the King.

“Those come from the Carmine Pines.” He examined the shiny
green thing for a minute. “But this,” he said, stroking his fluffy
white beard, “this is something I’ve never come across in all my
years of kinging about.”

“It looks like a scale,” Ruben said. “Like from a fish or a
lizard!”

“Sweet corn muffins!” said the King. “You’re right! But it’s
too big to be from any normal fish or lizard. Where could it have
come from?”

“One thing at a time,” Scarlet said. “What are the Carmine
Pines?”

“The Carmine Pines are a vast red forest on the eastern edge
of the kingdom,” the King replied. “Only a few minutes’ walk
from here, in fact.”

Scarlet turned the scale over in her palm. “Have you ever
seen anything like this, Hank? Jim?”

“Never,” said Jim, and Hank shook his head.
Scarlet thought for a moment. “If this might be a clue to why

the Hashery computer malfunctioned, we should investigate,”
she said. “The sooner, the better!”

The King nodded vigorously. “This way,” he said. He turned
to Big Hank and Squeaky Jim. “Thanks again for a lovely meal,
guys!” he said. “I’ll be in again tomorrow!”

THE MAGIC OF METHODS AND BLOCKS 111

“Our pleasure, Your Majesty!” Hank smiled, and he and
Squeaky Jim bowed.

Waving goodbye to Hank and Jim, the King, Ruben, and
Scarlet stepped out of the Hashery and into the bright, late-
mid-morning light.

“Right over there!” said the King, standing on tiptoe and
pointing. The red treetops of the Carmine Pines were visible
less than a mile away.

“Well, let’s get going,” Ruben said. “There’s still plenty of day
left, and it’ll only take a few minutes.” With that, the three of
them set out toward the forest.

“You know,” Scarlet said after a while, “I don’t think these
Ruby malfunctions have been accidents at all.”

“Really?” asked the King.
“Think about it!” said Scarlet. “Your string goes missing,

the Mysterious Pipe overflows, the Loop goes crazy, and the
Hashery’s Computing Contraption goes haywire—all in the
same day?”

“Well, the string bit might have been my fault,” the King
said, sheepishly.

“Either way, I think Scarlet’s on to something,” Ruben said.
“I think this is . . . sabotage!”

“Great coats! Sabotage?” said the King. “Who would do such a
thing?”

“I don’t know,” replied Scarlet, “but one way or another, we’ll
find out!”

After a few more minutes of walking, the trio arrived at the
edge of the Carmine Pines. Enormous pine trees towered over
them, their red needles glinting in the sun.

112 CHAPTER 7

Scarlet reached up with one hand and pulled down a handful
of needles. She dug through her pocket with her other hand and
pulled out the needles she’d found in Jim’s dustpan. The King
examined both with his magnifying glass for nearly a minute.

“Absolutely the same,” he said at last. “These needles are
from the Pines, all right!”

“You were right!” said Ruben. “But what do we do now that
we’re here?”

“I imagine we’ll ask for a bit of help from someone who knows
the area,” the King said.

“How?” asked Scarlet and Ruben together.
“With a Computing Contraption, of course!” said the King.
Scarlet looked around. “But we’re in the middle of the forest!”

she said. “There are no Computing Contraptions between here
and the Hashery.”

“Computing Contraptions are everywhere in the kingdom,”
the King said. “You just have to know where to look.” He reached
up and pulled on the lowest branch of a nearby tree, and a clev-
erly hidden Computing Contraption swung out from inside the
tree’s trunk.

“Wow!” said Ruben. “Now what?”
“Well, I imagine we’ll need to use Ruby to figure out who

lives here in the Pines,” the King said. “Even if we don’t find the
owner of our shiny green scale, we might at least find someone
to help us out.”

“Perfect!” said Scarlet. “So there’s a directory of people who
live in the Kingdom stored in each Computing Contraption?”

“Well, yes,” said the King, rubbing his head. “But here’s the
rub. I don’t know much about Ruby, but I do recall hearing once
that there’s actually no built-in method to get a list of all those
people.”

Ruben sat down on a flat rock. “No method!” he said. “How
are we supposed to find someone to help us if Ruby doesn’t have
a built-in method for it?”

Scarlet thought for a minute. “Well,” she said, “I think it’s
possible to write our very own Ruby methods, but I’ve never
actually seen it done before.”

THE MAGIC OF METHODS AND BLOCKS 113

“Write our own Ruby methods?” asked the King. “That would
be marvelous! Are you sure it’s possible?”

“Of course it’s possible!” cried a nearby voice. The King and
Scarlet both jumped, and Ruben nearly fell off his rock. They all
turned in the direction of the voice to see, standing only a few
yards away from them . . . a knight, with sword drawn!

“Agh!” Ruben shouted, and tried to hide behind his rock.
“What in the name of midnight snack marzipan is the mean-

ing of this?” demanded the King.
The knight froze, then hastily pushed her visor up on her

helmet.
“Your Majesty!” she cried, and bowed deeply. “A bajillion

apologies! I didn’t recognize you with my visor down.” She
quickly slid her sword back into its scabbard.

“A lady knight!” said Scarlet.
“No, just a knight,” said the King. “After all, if she were a

man, you wouldn’t say, ‘A man
knight,’ would you?”

“I suppose not,” admitted
Scarlet.

“Who are you?” Ruben
asked.

The knight stood tall and
proudly put her hands on
her hips. “I’m the Off-White
Knight!” she replied.

“Off-white?” asked the
King. “Your armor is more of
an eggshell color, I think.”

“Maybe an ecru,” Scarlet
said, squinting.

“I think that’s a large bird,”
said the King.

“Enough tomfoolery!” said
the knight. “I am the Off-White
Knight, and now it’s time for
you to defend yourselves!”

114 CHAPTER 7

“Agh!” shouted Ruben again, covering his head with his hands.
The knight tried to scratch her head, but ended up scratching

the outside of her helmet. “Why are you cowering like that?” she
asked.

“Aren’t you going to slay us?” Ruben asked.
The Off-White Knight laughed. “Heavens, no!” she said. “In

fact, it’s my knightly duty to help anyone in the Carmine Pines
who needs assistance, so I’ll show you how to write your own
Ruby methods.”

“But it’s daytime,” said the King.
Ruben and Scarlet gave each other a knowing look.

Defining Your Own Methods
The Off-White Knight cleared her throat. “Yes. Well,” she said,
“what I was trying to say was that you certainly can define your
own Ruby methods. You simply need to use the special words
def and end.” She walked up to the cleverly disguised Computing
Contraption and began typing.

>> def simon_says(phrase)
>> return phrase
>> end

“You start by typing def, which is short for define, because
you’re defining a brand-new method. Next, you type the name
of your method, which is simon_says in this case. Then you put the
parameters next, in between parentheses. For this method, we
have just one parameter: phrase.”

“The what now?” asked the King, rubbing his head with both
hands.

“The parameters,” said the Off-White Knight. “They’re sort
of like placeholders or nicknames for the information you’ll give
your method when you call it.”

“Let me get this straight,” said the King. “When you write
out what a method does using def and end, that’s called defining
the method.”

“That’s right,” said the knight.

THE MAGIC OF METHODS AND BLOCKS 115

“And when you actually use the method somewhere, that’s
calling the method.”

“Indeed!” said the knight. “Sometimes we say invoke instead of
call, but they mean exactly the same thing. You define a method
so Ruby knows what it does, and you call the method when you
want to use it. Calling a method looks like this,” she continued,
and typed some more:

>> simon_says('Prepare for battle!')
=> "Prepare for battle!"

“I’m a bit fuzzy right now,” said the King.
“You’re a bit fuzzy all the time,” said the Off-White Knight,

eyeing the King’s fluffy beard.
“Yes, yes,” said the King, “but I’m also still confused. Could

you go over calling the method a bit?”
“Of course!” said the knight. “When we defined the simon_says

method earlier, we just told Ruby what code to run whenever we
use the name simon_says. We can then use that code by writing
the method name and putting in our own bit of information—the
string 'Prepare for battle!'—where we had the phrase parameter
before. Like I said, phrase is just like a placeholder that sits
between the parentheses until we’re ready to use the method
with 'Prepare for battle!'.

“What about the parentheses around 'Prepare for battle!'?”
Ruben asked. “I’ve seen Ruby methods get called without paren-
theses before.”

“You’re right!” said the knight. “The parentheses are optional;
you usually use them when you define the method, but you can
use them or skip them when you call the method. It’s all the same
to Ruby!”

return Versus puts

“All right, I understand defining and calling now,” said the King.
“But what’s this return business, and how is it different from
puts? Don’t they both print things on the screen?”

116 CHAPTER 7

“Aha!” said the Off-White Knight. “A lot of people find this
very confusing, but I think I can show you the difference between
return and puts with just a couple of examples.”

“Here we define a method called print_sum that prints the sum
of two numbers with puts,” she said:

>> def print_sum(a, b)
>> puts a + b
>> end

“Next, we’ll define a second method that returns the sum.”

>> def return_sum(a, b)
>> return a + b
>> end

“Do you see the difference between the print_sum and return_sum
methods we defined?” the knight asked. “One puts, the other
returns.” Scarlet, Ruben, and the King all nodded.

“Perfect!” said the Off-White Knight. “Let’s see what that
really means for what our Ruby code does. First, we’ll call our
print_sum method.”

>> sum = print_sum(2, 3)
5
=> nil
>> sum
=> nil

“See that?” said the knight. “puts will print something on the
screen for you—in this case, it added 2 and 3 and printed the
result 5 to the screen—but it won’t do anything with the value
of 5: it produces nil after doing the printing! When we check out
the value of sum, we see that it’s nil.”

“Now let’s call our return_sum method.” She typed some more:

>> sum = return_sum(2, 3)
=> 5
>> sum
=> 5

THE MAGIC OF METHODS AND BLOCKS 117

“Now I understand,” said the King. “Printing something just
makes that value appear on the screen, but returning it lets you
store that value in a variable, as we did with sum.”

“You’ve got it!” said the knight. “A method is just like a little
machine. Things go into it and things come out. The things that
go into a method when you call it are its arguments, and the
thing that comes out is its return value.

“If a method doesn’t have a specific return value, it returns
nil. You know how you always see => nil when you puts or print
something? That’s because although the puts and print methods
write text on the screen, they don’t have a return value, so they
return nil.”

“Hang on a moment,” said the King. “If a method can auto-
matically return nil when it has no other value to return, why
can’t we automatically return other values?”

Understanding Method Arguments

“We can!” said the Off-White Knight. “Whenever you’re in a
method definition, Ruby automatically returns the last bit of
Ruby code that gets run. If you want to save some typing, you
can leave off the return keyword if the last thing in your method
is the return value, and Ruby will automatically return it for you.”

118 CHAPTER 7

“Awesome!” said Ruben “Anything that saves us some typing
is good. Now, just to back up a second to the difference between
parameters and arguments: parameters are the handy names
you put between parentheses in your method definition to let
your method know what kinds of information it will get, and the
arguments are the information you actually give to your method
when you call it,” Ruben said.

“Quite right!” said the Off-White Knight. “Hang on, let
me give you another example.” She typed furiously into the
Computing Contraption, narrating all the while. “Let’s define
a method called add_things with the parameters thing_one and
thing_two and return their sum. That’d look like this:

>> def add_things(thing_one, thing_two)
>> thing_one + thing_two
>> end

“Next, we’ll call the method with the arguments 3 and 7. The
return value is 10.”

>> add_things(3, 7)
=> 10

“That’s great,” said Scarlet, “but what happens if you want to
sometimes pass an argument to a method, and sometimes not? If
you don’t pass the right number of arguments, Ruby throws an
error!” She typed into the Computing Contraption:

>> def plus_one(number)
>> number + 1
>> end

>> plus_one 2
=> 3

>> plus_one()
ArgumentError: wrong number of arguments (0 for 1)

“Yeah!” said Ruben. “Here, Ruby’s saying that it got zero
arguments, but it expected one.”

THE MAGIC OF METHODS AND BLOCKS 119

“Great point!” said the Off-White Knight. “In that case,
you can use optional or default parameters. Those are special
parameters that come with a placeholder value, and if you
don’t give Ruby arguments for those parameters when you
call the method, Ruby inserts the placeholders instead. Let me
define a method like that for you,” she said, and began typing
at the Computing Contraption once more:

>> def declare_name(name='The Off-White Knight!')
>> puts name
>> end

“See the equal sign?” she said. “That tells the method to use
that string if it’s not told otherwise. Now, without any argu-
ments, the method will use the default name,” she said. “Let’s
try calling it!” She typed some more:

>> declare_name()
The Off-White Knight!
=> nil

“Wow!” said Ruben. “You didn’t pass any arguments at all, so
the default one was used automatically.”

“That’s right,” said the knight. “And again, because Ruby is
super flexible, you don’t even need the parentheses to show that
you’re calling a method!” She typed even more:

>> declare_name
The Off-White Knight!
=> nil

“That looks a little too magical to me,” said the King. “If there
were lots of code floating around, how would I immediately know
the difference between a method with no parentheses and a plain
old variable?”

“That’s a good point,” said the Off-White Knight. She tried
to wipe the sweat from her brow, but accidentally knocked her
visor down instead. “I often use the parentheses, because they
make it clear I’m using a method and not something else, like a
variable.”

120 CHAPTER 7

“Now, let’s say you do want to use your own name,” she con-
tinued, struggling to push her visor back up. “You just pass it
in—with or without parentheses—like this.” She typed a few
more lines:

>> declare_name('Lady Scarlet the Bold!')
Lady Scarlet the Bold!
=> nil

>> declare_name 'Sir Ruben the Fearless!'
Sir Ruben the Fearless!
=> nil

“Whew!” said the Off-White Knight. “Let me take a break for
just a second. My gauntlets are tired.”

What Is nil?
“Of course,” said the King. “I’m still a bit
hung up on nil, though,” he said. “What
is it?”

“I think I know the answer to that
one,” Ruben said. “nil is Ruby’s way of
saying ‘nothing at all.’ When Ruby wants
to express the idea of ‘nothing’ or ‘no value,’
it uses nil.”

“Is nil true or false?” asked the King.
“Neither!” said Ruben. “It’s its very own thing. But it is one of

two falsey values in Ruby—the other is false.”
“What do you mean by ‘falsey’?” asked the King.
“I mean that if you use nil in an if statement, it will be the

opposite of true,” Ruben said. “This should look familiar.” He
typed into the Computing Contraption:

>> if nil
>> puts "This text won't be printed!"
>> end

THE MAGIC OF METHODS AND BLOCKS 121

“Your code didn’t print anything on the screen!” said the King.
Ruben nodded. “That’s because Ruby will never treat if nil

as a true condition. To Ruby, saying ‘if nothing’ and ‘if false’ are
the same, so it will never run the code between if nil and end.”
He thought for a moment. “Remember the if statement?” he
asked.

The King nodded vigorously. “As if it were only yesterday!”
he said.

“It was today,” said Ruben.
“Tomato, tomato,” said the King, pronouncing the word the

same way both times. Ruben and Scarlet looked at each other
and shrugged.

“Anyway,” said Ruben, “The if statement takes a bit of Ruby
code and does one thing if that code is true and something else if
it’s false. nil is always treated like false in if statements, so to
make something happen if a value is nil, you might think you
have to do this:

>> if !nil
>> puts "But I will get printed!"
>> end

But I will get printed!
=> nil

“But there’s a piece of built-in Ruby code we’ve already seen
that means the same thing as ‘if not’: unless!” Ruben typed
some more:

>> unless nil
>> puts "But I will get printed!"
>> end

But I will get printed!
=> nil

“unless has the exact same meaning as ‘if not.’ When we say
‘Stay up late if you’re not sleepy,’ that means the same thing
as ‘Stay up late unless you’re sleepy,’” Ruben explained.

122 CHAPTER 7

“I’ve seen this before!” said the King. “We use unless in Ruby
anytime we’d otherwise use if and !.”

“Right!” said Ruben. “Both false and nil will behave the same
way when used in an if or unless statement, but it’s important to
remember that nil’s not the exact same thing as false.” He con-
tinued typing:

>> nil == false
=> false

“Did you see that => nil at the end of the unless example?” the
Off-White Knight asked. “That’s what I was talking about. nil is
the return value of puts. Check it out!” She reached over Ruben’s
head and typed some more:

>> puts 'Prepare for nil!'
Prepare for nil!
=> nil

“One last thing about nil,” said the knight. “Not only is it not
the same thing as false, it’s not the same thing as zero! Zero is a
number; nil is simply nothing at all.”

“I think I’ve got it now,” said the King.

Splat Parameters
“Right,” said the knight. “Then we’re on to more method magic!
I showed you how to make a method take an optional argument,
but Ruby also lets you tell a method to take any number of argu-
ments. Splat parameters are the way to tell a Ruby method,
‘Hey, I’m going to pass you a whole list of things to use. I don’t
know how many, so just deal with whatever number I send!’”
The knight flexed her fingers a few times. “They work like this,”
she said, and began typing:

>> def declare_knights(*knights)
>> puts knights
>> end

THE MAGIC OF METHODS AND BLOCKS 123

>> declare_knights('Lady Scarlet', 'Sir Ruben', 'The Off-White
Knight')
Lady Scarlet
Sir Ruben
The Off-White Knight
=> nil

“You can think of the asterisk (*) in our first line as a little
splat mark that tells the method to take the whole messy bucket
of arguments, no matter how many, and do something with
them,” the Off-White Knight said.

“I see the little splat next to the parameter name,” said the
King, “but not in the method body and not when you call the
method. Is the * only used when you define the method and
only between the parentheses?”

“Exactly,” said the knight. “Ruby is very smart—you only have
to tell it something once! As I mentioned,” the Off-White Knight
continued, “Ruby realizes that the last thing that appears in
your method body is probably the thing you want to return. So,
as I mentioned earlier, if you want to save some typing, you can
leave off the return keyword if the last thing in your method is the
return value. Ruby does it automatically! That means that this:

>> def add(a, b)
>> return a + b
>> end

>> add(1, 3)
=> 4

is exactly the same as this!

>> def add(a, b)
>> a + b
>> end

>> add(1, 3)
=> 4

“Wonderful!” said Scarlet. “I’ll definitely remember that trick
when writing my own methods.”

124 CHAPTER 7

“And now,” said the Off-White Knight, pulling her sword out
of its scabbard, “it’s time for you to yield!”

“Agh!” shouted Ruben, covering his head with his hands
again.

Block Methods
The Off-White Knight struggled to get her sword back into its
scabbard. “You really should do something about that cower-
ing habit,” she said. “What I was saying is, you need to use the
yield keyword when you write your own Ruby methods that take
blocks.”

“Oh,” Ruben said, slowly putting his hands down again.
“Wait, you can write your own Ruby methods that take

blocks?” Scarlet asked.
“Of course!” said the knight. “You’d write it like so,” she said,

and typed in the Computing Contraption:

>> def my_block_method
>> yield
>> end
=> nil

“First,” said the knight, “we define a method, my_block_method,
using def. Next, we use the yield keyword to tell the method to
let the code inside the block run; when you call the method with a
block, whatever happens in the block is what the method does!
Let’s look at some examples.”

>> my_block_method { 1 + 1 }
=> 2

“Here, we’re calling my_block_method and passing in a block
that just adds 1 + 1, so my_block_method returns 2. We can also
do other things, like print text:

>> my_block_method { puts 'Hello from the block!' }
Hello from the block!
=> nil

THE MAGIC OF METHODS AND BLOCKS 125

“my_block_method lets the code in the block run, so it prints
out Hello from the block! We see the nil because puts prints out
text on the screen, but the value it returns is nil,” the knight
explained.

“What’s a block, again?” the King asked.
“A block is just a bit of Ruby code between curly brackets or

between do and end,” said the knight. “You’ve probably seen built-
in methods like each that use blocks, but now you can create your
own methods that use blocks!”

“That’s amazing!” said Scarlet. “But can you use splat param-
eters and blocks together?”

“You can!” said the knight. “You can pass regular, default,
and splat arguments to any method you write, and they can be
in any order.”

The knight cracked her knuckles and typed into the
Computing Contraption, explaining as she went along. “Let’s
build a little something we can use to quickly and easily intro-
duce ourselves,” she said. “After all, we knights are always hav-
ing to go around introducing ourselves as we sally forth into a
new town.”

>> def all_about_me(name, age=100, *pets)
>> puts "My name is #{name}"
>> puts "I'm #{age} years old"
>> if block_given?
>> yield pets
>> else
>> puts pets
>> end
>> end
=> nil

“We’re not done yet,” said the knight, “but let’s go over this.
First, I defined the all_about_me method to take three param-
eters. We see a regular old name parameter and an age parameter,
which defaults to 100 if no age is passed in when the method is
called.”

“But you could have written the age parameter with its
default first, then the name one,” Ruben said.

126 CHAPTER 7

“You got it,” said the knight. “Finally, the *pets splat param-
eter! That can come in any order with respect to the regular or
default parameters, but we happened to put it at the end.”

“I get that part,” said the King, “but what’s this block_given?
business?”

“That’s a built-in Ruby method,” said the knight. “It returns
true if the method was passed a block as an argument and
false otherwise. I wrote the all_about_me method so it yields to
the block if there is one, sending the list of pets to the block;
otherwise, it just uses puts to print out the pets. Don’t worry
if block_given? doesn’t make perfect sense now—we’ll be seeing
more of it later on.”

“Why is it yield pets and not just yield?” Scarlet asked.
“An excellent question,” said the knight. “Earlier, we just

wanted to let the block handle everything that was passed to our
method, so we simply typed yield. Now, though, we want our
block to care only about pets, so we specifically give only our list
of pets to the block.”

The knight’s fingers moved again across the Computing
Contraption, giving their newly defined method a try.

>> all_about_me('Ruben', 12, 'Smalls', 'Chucky Jim')
My name is Ruben.
I'm 12 years old.
Smalls
Chucky Jim
=> nil

“That’s me!” said Ruben. “That’s amazing. What else can
we do?”

“Well,” said the Off-White Knight, “We can use that block I
mentioned earlier! Look what happens if we pass a block to our
method, then refer to the pets we pass in with pets:

>> all_about_me('Ruben', 12, 'Smalls', 'Chucky Jim') { |pets| puts
pets.join(' and ') }
My name is Ruben.
I'm 12 years old.
Smalls and Chucky Jim
=> nil

THE MAGIC OF METHODS AND BLOCKS 127

“This looks a lot like the last example,” said Scarlet. “But the
block is pretty tricky. What’s it doing?”

“I’ll walk you through it! First, { |pets| puts pets} would
simply tell Ruby: ‘Hey, block! I’m going to pass you a variable,
pets, and you should print it out.’”

“But then all_about_me would just print out the array elements,
and it wouldn’t look very nice,” Scarlet said.

“Exactly!” said the knight. “So I’m also using a built-in
Ruby method, join. Ruby array elements can be joined to make
strings, so I’m using join to turn the array of pets into a string
with ' and ' in the middle.”

“Could you show us another example?” Ruben asked.
“Sure,” said the knight. “Here’s one where we can use join to

turn an array of numbers into a string with 'plus' between each
number:

>> [1, 2, 3].join(' plus ')
=> "1 plus 2 plus 3"

“There’s always something new to discover in Ruby,” mar-
veled the King.

Into the Dagron’s Lair
“Speaking of discoveries,” said Scarlet, “that reminds me!” She
rummaged around in her pockets. “Have you ever seen anything
like this before?” She held out the glittering green scale for the
Off-White Knight to examine.

“Great googly moogly!” said the Off-White Knight. “That
scale looks like it belongs to the Dagron!”

“You mean the dragon,” Ruben offered.
“No, the Dagron,” said the Off-White Knight. “That’s her

name. Though she is a dragon.”
“A lady dragon!” said Ruben.
“No, just a dragon,” said the Off-White Knight. “If she were a

man, would you call her a man dragon?”
“I guess not,” admitted Ruben. He looked around nervously.

“But there’s really a dragon in the Carmine Pines?”

128 CHAPTER 7

“Not to worry,” said the knight. “The Dagron is a very power-
ful dragon, but she’s also wise and well mannered. In fact, I’m
surprised you found one of her scales anywhere trouble’s been
brewing. That doesn’t sound like the Dagron I know.”

“Well, it sounds like we’d best find her and ask what’s going
on,” said the King. “Lead the way, madam knight!”

“To the Dagron!” said the Off-White Knight, flipping her
visor down over her eyes. “This way!” The knight set off deeper
into the forest, and the King, Scarlet, and Ruben followed.

After walking for a few minutes, they began to hear a low,
rhythmic whooshing sound, like someone squeezing bellows on
a fire.

“What’s that?” Ruben whispered.
“The Dagron!” whispered the knight. “Here she is!” And

before they knew it, they found themselves in front of an enor-
mous dragon curled up in a shining green circle, asleep.

“Dagron!” the knight called, pushing her visor up on her
helmet.

The Dagron didn’t open her eyes. “Yes?” she boomed, a thin
plume of smoke rising from her right nostril.

“I’ve brought some guests to see you, including the King!”
The Dagron’s eyes flashed open, focusing immediately on

the four of them. The Dagron unfurled herself and reared up to
her full height; her head nearly reached the tops of the pines
around her.

THE MAGIC OF METHODS AND BLOCKS 129

“Your Majesty!” said the Dagron, and she bowed so low that
her head nearly brushed the earth.

“Madame Dagron,” said the King. “We’ve come with a some-
what . . . unusual question.” The King nodded toward Scarlet.
“Does this belong to you?”

Scarlet pulled the scale from her pocket and held it out to the
Dagron. The Dagron stared at it for a few seconds, then shook
her head slowly.

“I don’t think that’s one of mine,” said the Dagron, “but I do
have a great many scales. If you’d like, you can check to see if
I’m missing one.”

The group spent almost an hour examining the Dagron, look-
ing for a loose or missing scale. Scarlet and Ruben searched high
and low. The Off-White Knight quested mightily. The King took
a short nap beneath a tall red pine.

“Well, there’s no doubt about it,” Scarlet finally said, holding
the mystery scale near the tip of the Dagron’s tail. “This is defi-
nitely not one of the Dagron’s.” She put the scale in her pocket
and sat glumly next to Ruben on a rock.

“Though I’m pleased not to be a suspect in these strange
goings-on,” said the Dagron, “I am sorry to disappoint you.” She
thought for a moment. “While I’m not certain I can help, I may
know someone who can.”

Scarlet perked up. “Who?” she asked.
“Wherefore the Wand’ring Minstrel,” said the Dagron. “He

frolics and sings all throughout the Carmine Pines and has been
almost everywhere in the kingdom. If anything strange is going
on, I’m sure he’d know about it.”

Ruben jumped off his rock. “Can you take us to him?” he
asked.

“Certainly,” said the Dagron. “It may take us a while to find
him, though.”

Scarlet stood and dusted herself off. “Actually, I’ll bet we can
find him pretty quickly,” she said. “Now that we know how to
define our own Ruby methods, I might know just the thing!”

130 CHAPTER 7

You Know This!
Between defining your own methods, creating your own meth-
ods that use blocks, and learning about things like splat and
default arguments, your head’s probably feeling pretty full!
Let’s take some time to review what we talked about in this
chapter.

First, you learned how to write your own methods. We start
our method definition with def, followed by the name of the
method and then a list of parameters between parentheses.
Finally, we type whatever code we want our method to perform
and then finish it all up with end, like so:

>> def multiply_by_three(number)
>> number * 3
>> end

>> multiply_by_three(2)
=> 6

You also learned that methods can have default or optional
parameters. If we provide an argument to a method that takes
an optional parameter, the method will use that argument;
other wise, it’ll use whatever its default is:

>> def multiply_by_three(number=2)
>> number * 3
>> end

>> multiply_by_three
=> 6

>> multiply_by_three 3
=> 9

THE MAGIC OF METHODS AND BLOCKS 131

If we want a method that takes any number of arguments,
we can use splat parameters by putting an asterisk (*) before our
parameter name:

>> def print_all_the_names(*names)
>> puts names
>> end

>> print_all_the_names('Larry', 'Curly', 'Moe')
Larry
Curly
Moe
=> nil

Speaking of nil, you learned that methods that don’t have an
explicit return value will return nil, which is Ruby’s way of say-
ing “nothing at all.” Remember, returning a value is different
from just printing it on the screen!

>> puts 'Beware the Dagron!'
Beware the Dagron!
=> nil

In fact, when it comes to return values, it’s more common to
leave off the return and let Ruby automatically return the result
of the last bit of code it runs. So while you can write this:

>> def just_return_two
>> return 2
>> end

>> just_return_two
=> 2

It’s much better Ruby style to write this:

>> def also_returns_two
>> 2
>> end

132 CHAPTER 7

>> also_returns_two
=> 2

Finally, we saw that if we want to define a method that takes
a block, we just need to use the handy yield keyword. We can
yield without parameters to give control over to the block, or
we can pass parameters in order to give the block arguments to
work with.

>> def block_party
>> yield
>> end

>> block_party { puts 'Hello from the block!' }
Hello from the block!
=> nil

>> def block_party_part_two(name)
>> yield name
>> end

>> block_party_part_two('Haldo') { |name| puts "This is #{name}'s
party!" }
This is Haldo's party!
=> nil

You learned a lot in this chapter, but keep in mind: if you’re
ever curious about what a method does or what arguments it
expects, you can always look up the Ruby documentation at
http://ruby-doc.org/. Just make sure to ask your local adult
before going online!

Speaking of looking up new things, we’ll be covering a bit of
new Ruby code in the next chapter—specifically, how to orga-
nize, create, and control our very own Ruby objects.

http://ruby-doc.org/

The Subject of Our Story
Is an Object
Scarlet ran to the Computing Contraption. “Do you know
the name of that directory of everyone in the kingdom?” she
called to the King. “It’s a hash that associates everyone’s
name with his or her address.”

“Let’s see,” said the King. “Ah, yes! I’m pretty sure it’s
called citizens.”

Scarlet nodded and began typing into IRB. When she
pressed enter, this is what she saw:

>> citizens
=> {
 :aaron_a_aardvark => 'A van down by the river',
 :alice_b_abracadabra => 'The green house with two chimneys',

134 CHAPTER 8

 :trady_blix => 'Mal Abochny',
 # ...and so on and so forth

The King peered over her shoulder. “That’s it!” he said. “But
whoa! There must be a bajillion people in the kingdom! How will
we find Wherefore?”

Scarlet typed some more:

>> citizens.size
=> 24042

“Yeah, the hash is definitely too big to go through by hand,”
Scarlet said, “but I bet we can write our own method to find him!”

Ruben studied the citizens hash for a minute. “Remember
how we could get the value of a hash key by typing the hash
name, then the key in square brackets?” he asked.

“Yep,” Scarlet said.
“Well,” Ruben said, “what if we just write a method that

takes a person’s name and the citizens hash, then tries to find
that name in the hash?”

“Ruben, you’re a genius!” Scarlet said. She quickly typed:

>> def find_person(name, people)
>> if people[name]
>> puts people[name]
>> else
>> puts 'Not found!'
>> end
>> end

“Hang on, hang on. What’s all this?” the King asked.
“Just a quick method I whipped up,” Scarlet said. “See? It’s

called find_person, and it takes a person’s name as a symbol and a
hash of people as parameters. If it finds the name in the hash, it
prints it out; otherwise, it says the name’s not found!” She typed:

>> find_person(:wherefore, citizens)
=> One half mile due east!

EVERYTHING IS AN OBJECT (ALMOST) 135

“There it is!” Scarlet said. “It found the :wherefore key in the
citizens hash.”

“One half mile due east!” said the Off-White Knight. “That
should only take a few minutes, and east is that way. Let’s go!”

The Dagron rose to her full height, blotting out the sun for
an instant. “I’ll come as well,” she said. “Wherefore and I are old
friends, and we haven’t spoken in some time. It will be good to
see him again.”

“Well, then,” said the King, “lead the way!”
The Off-White Knight and the Dagron turned and headed

toward the late morning sun, and the King, Scarlet, and Ruben
followed. The trees became taller and closer together as they
walked, and after a few minutes, the sun could only be seen as
a warm red light through the tops of the Carmine Pines.

“Hold on a second,” Ruben said, stopping and turning his
head to one side. “Do you hear that?”

They all paused. The King cupped his hand to his ear,
shook his head, wiggled his little finger around in his ear, then
cupped his hand to it again. “I don’t hear anything,” he said.

“I think I hear it too,” said the Dagron. “It’s— ”
“Music!” cried Ruben. “It’s coming from over there!” He

pointed a little to the right of where they’d been headed.
“Let’s go!” said Scarlet, and the group pressed on into the

Pines.
The music grew louder, and after walking through a particu-

larly dense thicket of trees, the group found themselves on the
edge of a small meadow. In the very center, perched on a wide
tree stump, was a man in a scarlet tunic and archer’s cap with
a long white feather in it. He was playing a pink mandolin and
occasionally stopping to furiously scribble on a long roll of parch-
ment with a quill pen, which sported the same type of long white
feather as his cap.

“Wherefore!” boomed the Dagron.
The man on the stump stopped scribbling and looked up.

A wide grin broke out across his face. “The Dagron!” he called.
“Wonderful to see you! Come in, come in, come in.”

136 CHAPTER 8

Led by the Dagron, the group crossed the meadow and
circled around Wherefore. Wherefore leapt nimbly from his
stump, removed his cap, and bowed deeply.

“Friends,” he said, “welcome to my forest stronghold!” He
gestured to the stump. “It’s not much to look at now, but I’ve
always had a weak spot for a fixer-upper. And I,” he said, “am
your humble host, Wherefore the Wand’ring Minstrel.” Wherefore
replaced his cap on his head. “I know, of course, the Dagron, and
I’ve met the Off-White Knight before.” He looked at the King and
pressed his palms together. “Your Majesty,” he said. “I’ve not had
the pleasure of meeting you before, but it is a pleasure.”

“Likewise,” said the King. “We’ve heard much about you!”
Wherefore turned to Ruben and Scarlet. “Which leaves you

fine rapscallions. What do you call yourselves?”
“I’m Scarlet,” said Scarlet, “and this is Ruben.”
“Hi!” said Ruben.
“Hello and hello!” said Wherefore. “Wonderful to meet you.

I’m afraid you’ve caught me at a bit of a bad time, though.” He
sighed. “I’ve spent all morning writing a ballad, and it’s hardly
half done. I’ve got to get back to it immediately if I’m going to
finish it before nightfall.”

“A ballad?” said Scarlet.

EVERYTHING IS AN OBJECT (ALMOST) 137

“Oh, yes,” Wherefore said, “you see, I’m something of a
business man. I operate a small-time ballad delivery service
with dozens of customers. The only catch is,” he said, “that this
means I do in fact have dozens of customers, and each ballad
takes me hours to write. I can hardly keep up!” He pulled a
handkerchief from his tunic pocket and mopped his brow.

The Dagron hummed thoughtfully, exhaling little puffs of
smoke. “You know,” she said, “I think I can be of service.” She
looked around the nearly empty meadow. “But I’ll need a little
Ruby magic. Do you happen to have a Computing Contraption
nearby?”

Wherefore laughed. “Do I have a Computing Contraption!”
he said, and he stepped on the largest root of the tree stump.
The stump shuddered, then rose a few feet out of the ground.
It rotated slowly as it emerged, revealing the familiar glow of a
Computing Contraption screen!

Classes and Objects
“Wonderful,” said the Dagron, coiling herself around the stump
and leaning in close to the screen. “Now then! Every object in
your Ruby program has a unique ID number,” she said. “You’ll
find that objects you create usually have much higher numbers
than objects Ruby creates. See?” She touched the screen of the
Computing Contraption with her claw and said, “Ruby has a few
objects that are very familiar, like 0 or true. Each object in Ruby
has its very own ID number, and that’s how Ruby keeps track of
them all. Have a look!”

>> 0.object_id
=> 1
>> true.object_id
=> 20

“Built-in Ruby objects like these get ID numbers from Ruby
automatically when IRB starts or the script loads,” the Dagron
continued. “Ruby also gives IDs to Ruby objects we create in our
programs, but they’re very high numbers. This is because Ruby

138 CHAPTER 8

comes with so many built-in objects for us!” She touched the
Computing Contraption again, and more text appeared:

>> :baloney.object_id
=> 1238088
>> "The Ballad of Wherefore the Wand'ring Minstrel".object_id
=> 2174481360

“How did she do that?” Ruben whispered to the Off-White
Knight. “She didn’t even type anything!”

“She doesn’t need to,” the knight whispered back. “Dragons
are magical creatures, and the Dagron is one of the most magi-
cal of all.”

“But where do all these objects come from?” the Dagron
asked. Wherefore sat cross-legged on the ground and looked
up expectantly at her.

“From classes,” the Dagron said, answering her own question.
“You can think of Ruby classes as little machines that make
objects of a certain type, and each object in Ruby knows what
class it belongs to. We can use the class method to ask objects
what their classes are. To start, Ruby numbers are from the
Fixnum class. Behold!” she said, and more code appeared on the
screen:

>> 7.class
=> Fixnum

“A string’s class is naturally . . . String!” she continued:

>> 'Odelay!'.class
=> String

“That’s nice to know,” interrupted the King, “but what good
does it do us?”

“I was just getting to that,” said the Dagron. “When you know
what class a Ruby object is, you can use the new method to make
a new object of that class. You’ve seen this before, yes?” She ges-
tured at new code on the screen:

>> greeting = 'Hello!'

EVERYTHING IS AN OBJECT (ALMOST) 139

“Yup!” said Ruben.
“Well, now you can do this!” said the Dagron, touching the

Computing Contraption once more.

>> greeting = String.new('Hello!')
=> "Hello!"

>> greeting
=> "Hello!"

>> greeting.class
=> String

“You see?” said the Dagron, folding her claws. “Every object
in Ruby has a class, which we can find with the class method.
Not only that, but every object is created by a class with the
new method, and it’s the class’s job to produce objects of a
particular type!”

“So the class is like a cookie cutter, stamping out particu-
lar kinds of cookies,” said Wherefore, hitting his palm with his
closed fist in a stamping motion. “Gingerbread men, chocolate
chip cookies, sugar cookies shaped like snowflakes. And the
objects are the cookies!”

“That’s a very good way of thinking about it,” said the
Dagron.

“When’s lunch?” asked Wherefore.

140 CHAPTER 8

“I’m afraid I still don’t quite understand,” the King inter-
rupted. “And I’m still a bit mystified as to what makes classes
so important.”

“I think I can help with that one,” said Scarlet. “When we’re
dealing with numbers or strings, the helpful things classes do
might not be obvious. But if we’re creating our own objects with
their own new classes, classes become a way of creating a bunch
of objects from a template. For example, if we have a Minstrel
class, we can make a bunch of minstrels!”

“How?” asked the King.

Creating Our First Class,
Minstrel
“I’m glad you asked! Let’s give it a try,” said the Dagron. She
touched the Computing Contraption, and more code filled the
screen.

NOTE For some of these longer code examples, we’ll write Ruby
scripts! Whenever you see a filename in italics above the
code, like minstrel.rb for the next example, that means you
can type the code into your text editor and save it as a file
with the given name.

minstrel.rb

class Minstrel
 def initialize(name)
 @name = name
 end

 def introduce
 puts "My name is #{@name}!"
 end

 def sing
 puts 'Tralala!'
 end
end

EVERYTHING IS AN OBJECT (ALMOST) 141

“Now then,” the Dagron said, clearing her throat, “let’s have
a look. The class keyword tells Ruby you’d like to make a new
class,” she said. “Just like you use def and end to tell Ruby
you’re defining a new method, you use class and end to tell
Ruby you’d like to create a new class.

“After class, you type the name of the class, which can be
whatever you like,” the Dagron explained. “Class names, how-
ever, always begin with a capital letter, like Minstrel.” Wherefore
had turned his parchment over and was taking notes as quickly
as he could on the back of his ballad. “We’re creating the Minstrel
class, so we can make lots of new minstrels.”

“Between class and that final end, you can add any meth-
ods you wish, just as you would define them outside a class,”
the Dagron continued. “In the Minstrel class, I defined three:
initialize, introduce, and sing.”

Ruben leaned in close to the Computing Contraption’s screen.
“Why does that @name variable have an @ in front of it?” he asked.

“All in good time,” said the Dagron.

NOTE To follow along with the Dagron, we’ll need to load her
script into IRB. When we want to use code in IRB from a
file we’ve written, we just start IRB while we’re in the folder
that contains our Ruby script, then use the load command to
load the file. Load minstrel.rb like this:

>> load 'minstrel.rb'
=> true

Now let’s give the Dagron’s code a try!

“First, let’s look at the Minstrel class’s initialize method.
This gets called whenever we make a new instance of the class
with the new method. Have a look!” The Dagron added more code
to the screen.

>> wherefore = Minstrel.new('Wherefore')
=> #<Minstrel:0x000001052c77b0 @name="Wherefore">

“When we call Minstrel.new, we make a new minstrel. Because
initialize takes a single parameter, name, we pass in a name

142 CHAPTER 8

when we call the new method. See the @name="Wherefore" bit there?
It means wherefore’s name is 'Wherefore'!” The Dagron puffed
thoughtfully for a second. “So if there’s any code you want to run
as soon as a new instance of your class is created, you put it in
the definition of your class’s initialize method.”

“Got it,” said the King.
“Now all that Proc.new stuff makes way more sense!” said

Ruben. “We were just making new procs whenever we called new!”
“That’s right!” said the Off-White Knight. “Proc is a built-in

Ruby class, and whenever we call new, we create a new one. We
basically have a little factory that generates new procs whenever
we want. And that’s all classes are: little factories that make
objects!”

“Precisely,” puffed the Dagron, and she almost seemed to
smile.

“What about the other two methods you added?” Scarlet asked.
“Ah, yes,” said the Dagron. “Our wherefore is a Minstrel, so he

has access to those methods automatically.”

>> wherefore.introduce
My name is Wherefore!
=> nil

“You see?” she said. “The introduce method prints a string
with the minstrel’s name in it, which in this case is Wherefore.
And not only can he introduce himself, he can also sing!”

>> wherefore.sing
Tralala!
=> nil

“We’ve talked about how classes make objects of a certain
type,” said the Dagron, “but we haven’t really mentioned what
an object is. It’s quite simple: objects are just little collections
of values! You can think of them as buckets of information—a
thing that might have a name, or a size, or a color. Each object
gets methods from its class that let us talk about its name or
size or color, and that’s what makes up our Ruby code.”

EVERYTHING IS AN OBJECT (ALMOST) 143

“All right,” said the King, “I think I understand why classes
are so important now: they let you reuse your code for many
objects without having to rewrite all the information and meth-
ods each time, and Ruby code is made up of objects. But let’s go
back to Ruben’s question—what was that kooky spiral we saw
on wherefore’s @name?”

“The at sign (@) just shows Ruby that it’s a special kind of
variable—the kind that talks about an object’s value, like its
name or size or color! I’ll explain that a little more. Let’s try out
an example using weezards,” said Wherefore.

“You mean wizards,” said
Scarlet.

“No, weezards,” said Where-
fore. “Short wizards. Wee things.
Weezards.”

“Very well,” said the Dagron.
“But to get there, I’ll need to
explain the four different kinds
of Ruby variables.”

“Four kinds!” exclaimed
the King. “I thought there was
only one!”

“The variables you’re used to seeing are called local variables,”
said the Dagron. “They’re very good for creating a variable that
you’re going to use quickly. But once we start writing our own
methods and classes, we’ll need to create variables that can be
defined inside those method and class definitions but are used
much later—for example, when we finally call a method or create
an instance of a class.”

“The other three kinds of variables,” the Dagron continued,
“are global variables, class variables, and instance variables. It
may seem confusing that we use different kinds of variables in
different places, but once you get the hang of it, it’s very easy.”

“What do you mean by different places?” Scarlet asked.
“Scopes,” said the Dagron.

144 CHAPTER 8

Variable Scope
Oh man, this is getting good. We’re getting into the real meat
of the language! Scope is a very important idea in Ruby, and
I got so excited, well, I just couldn’t contain myself. I hope it’s
okay if I take a second to explain scope to you while the Dagron
explains it to our intrepid heroes. It’ll take but a minute.

This might come as a surprise to you, but not all variables
are available for you to use willy-nilly at any point in a Ruby
program. There are times in your program where even though
you’ve defined a variable, if you try to use it, Ruby will complain
and say it doesn’t exist! What could this mean?

What it means is this: at any given point in your program,
only some of the variables and methods you’ve defined can be
seen. The collection of variables and methods that can be seen
at any given time in your program defines the current scope;
you can use anything that’s in scope, and you can’t use anything
that’s out of scope.

What determines your variable’s scope in Ruby? For now,
here’s a good rule of thumb: new scopes are created inside a
method definition, inside a class definition, and inside a block.
So if you’re using the run-of-the-mill local variables we’ve been
using, this will work perfectly:

>> regular_old_variable = 'Hello!'
=> "Hello!"

We’re just setting a regular_old_variable to the string 'Hello!'.
Pretty standard stuff.

Next, we’ll define a variable within a method:

>> def fancy_greeting
>> greeting = 'Salutations!'
>> end
=> nil

Here, we’re defining the variable named greeting inside a
method named fancy_greeting. You’ve seen method definitions
before, so there’s nothing new here, either!

EVERYTHING IS AN OBJECT (ALMOST) 145

Next, we’ll revisit blocks:

>> 3.times { |number| puts number }
0
1
2
=> 3

You’re a block expert by this point, so you’ve got this too:
we’re calling the times method on the number 3 and passing it a
block. Inside the block, we use the variable number to keep track
of which number we’re on, and we print out each number from 0
to 2 in turn. (Don’t forget that computers start counting things
at 0, not 1.)

These Variable Errors Will Shock and
Surprise You!

What might surprise you, though, is that some of this stuff
will cause Ruby to throw an error! Let’s look at these one by
one. In the following code, we start by defining a variable. But
that regular_old_variable exists outside the class definition of
FancyThings (in the outer scope), so it doesn’t exist inside the
class definition!

>> regular_old_variable = 'Hello!'
=> "Hello!"

>> class FancyThings
>> puts regular_old_variable
>> end
NameError: undefined local variable or method `regular_old_variable'
for FancyThings:Class

Inside class definitions, you get a brand-new set of local vari-
ables (the kinds of variables you’ve seen all along so far), so Ruby
rightfully tells you that inside the class, you don’t have anything
called regular_old_variable yet.

146 CHAPTER 8

The same goes for method definitions: they get their own sets
of local variables, too, so when you define regular_old_variable
within a method, it doesn’t exist outside the method definition:

>> def fancy_greeting
>> puts regular_old_variable
>> end

>> fancy_greeting
NameError: undefined local variable or method `regular_old_variable'
for main:Object

Another error!
And, as you might have already guessed, the number variable

in our block example is local to the block. It stops existing as
soon as the block is over, so if we try to use it again after the
block is finished, we get an error!

>> 3.times { |number| puts number }
0
1
2
=> 3

>> puts number
NameError: undefined local variable or method `number' for
main:Object

Here, for each number from 0 to 3, Ruby puts the number
passed into the block. Now, here’s where blocks get interesting:
just as with methods or classes, a variable defined in a block
stops existing when the block is finished. Unlike methods and
classes, though, blocks can access variables and information that
are outside them! In this case, our block knows about the num-
ber 3 and so knows that the variable number should take on each
number between 0 and 3. Once the block is finished, though,
Ruby no longer cares about number, so it causes an error if we try
to use it again.

When I first learned that Ruby could see variables in some
parts of a program and not others, I scratched my head for a

EVERYTHING IS AN OBJECT (ALMOST) 147

good while, and I’m sure you’re asking yourself the exact same
thing I asked myself then: “If that’s true, how on Earth can I use
variables that I make inside classes or methods elsewhere in
my program?” Well, as luck would have it, the Dagron’s about to
tell us!

Global Variables

“Let’s start with global variables, which can be seen from
anywhere in the program. An example might help,” said the
Dagron, and she touched the Computing Contraption’s screen
with her claw:

>> $location = 'The Carmine Pines!'

>> def where_are_we?
>> puts $location
>> end

>> where_are_we?
The Carmine Pines!
=> nil

“Here,” said the Dagron, “we create a variable called $location
that’s equal to the string 'The Carmine Pines!'. Then we create a
method, where_are_we?, that tries to access $location. Normally,
this wouldn’t work, but because $location is a global variable, we
get 'The Carmine Pines!' when we call the where_are_we? method!”

“Aha! I’ve seen this kind of variable before,” said the Off-
White Knight. “I recognize it by the dollar sign it starts with!
Global variables can be useful, since they can be seen anywhere
in a Ruby program. You can define a global variable outside a
method, inside a method, in a class, anywhere you want, and
if you try to use it anywhere else in your program, it will just
work. But,” she said, holding up one finger, “if the variable can
be seen anywhere in the program, it can also be changed any-
where in the program, and it’s not always clear when or how
that change happened.”

148 CHAPTER 8

Scarlet nodded. “That’s right!” she said. “Remember when
we found out that something was altering the variables in the
Flowmatic Something-or-Other? Imagine how bad it would be if
all our variables could be changed anywhere in our programs at
any time!”

“Perish the thought!” said the King, shuddering. “We certainly
don’t want that. All right, so we won’t use global variables if we
can help it! What are the other sorts of variables we can use?”

Class Variables

“A wise choice, Your Majesty,” said the Dagron. “Another type of
variable we can use is a class variable, which is useful if we want
a class to save some information about itself. Just as all global
variables start with $, all class variables start with @@, and a class
can have as many class variables as it wants. A class variable can
be seen from inside the class and by any instances of the class;
all instances share the same class variable. Now, Wherefore,
we’ll use your weezard example.” She blew a smoke ring at the
Computing Contraption, and this code filled the screen:

weezard.rb

class Weezard
 @@spells = 5

 def initialize(name, power='Flight')
 @name = name
 @power = power
 end

 def cast_spell(name)
 if @@spells > 0
 @@spells -= 1
 puts "Cast #{name}! Spells left: #{@@spells}."
 else
 puts 'No more spells!'
 end
 end
end

EVERYTHING IS AN OBJECT (ALMOST) 149

“We’ve defined a Weezard class with a class variable called
@@spells,” said the Dagron, “as well as two methods: initialize,
which sets up the name and power for a particular weezard, and
cast_spell, which any weezard can use. Let’s go ahead and use
new to create two new weezards with some special powers. Don’t
forget to load the code you just wrote first!”

>> load 'weezard.rb'
=> true
>> merlin = Weezard.new('Merlin', 'Sees the future')
=> #<Weezard:0x00000104949260 @name="Merlin", @power="Sees the
future">
>> fumblesnore = Weezard.new('Fumblesnore', 'Naps')
=> #<Weezard:0x0000010494c500 @name="Fumblesnore", @power="Naps">

“Here’s the interesting thing about our weezards,” the
Dagron continued. “Even though Merlin and Fumblesnore have
different powers, they’re interacting with the same variable,
@@spells! Each time they use cast_spell, the spell variable
decreases by one. Take a look.”

>> merlin.cast_spell('Prophecy')
Cast Prophecy! Spells left: 4.
=> nil

>> fumblesnore.cast_spell('Nap')
Cast Nap! Spells left: 3.
=> nil

“So when you create a class variable, there’s just one copy for
the whole class, and any instances you create all share that one
class variable?” Ruben asked.

“That’s right,” said the Dagron.
“It’s kind of weird that all weezards share a fixed group of

spells, isn’t it?” asked Wherefore. “Wouldn’t it make sense for
each weezard to have his own set of spells?”

150 CHAPTER 8

Instance Variables

The Dagron nodded. “Sometimes it makes sense for the class
that creates objects to keep track of certain information, but
not all that often,” she said. “For that reason, we don’t end up
using a lot of class variables in Ruby; it’s mostly instance and
local variables. In fact, with instance variables, we can give each
weezard her own set of spells,” the Dagron continued, and more
code appeared on the screen. “An instance variable can be seen
from inside the class and by any instance of the class, just like
class variables. The big difference is that each instance gets its
very own copy of the variable!”

weezard_2.rb

class Weezard
 def initialize(name, power='Flight')
 @name = name
 @power = power
 @spells = 5
 end

 def cast_spell(name)
 if @spells > 0
 @spells -= 1
 puts "Cast #{name}! Spells left: #{@spells}."
 else
 puts 'No more spells!'
 end
 end
end

“See how we’ve moved the @@spells variable from a variable
that belongs to the class to a @spells instance variable inside
the initialize method?” asked the Dagron. “Variables that start
with @ are instance variables. They’re called instance variables
because each instance, which is what Ruby calls an object created
by a class, has its own copy.”

EVERYTHING IS AN OBJECT (ALMOST) 151

“So when we create instances of the Weezard class with the
new method, each instance will get assigned its own @spells vari-
able?” Scarlet asked.

“Precisely,” said the Dagron. “In fact, let’s do that now. We’ll
create our weezards, just as we did before.”

>> load 'weezard_2.rb'
=> true
>> merlin = Weezard.new('Merlin', 'Sees the future')
=> #<Weezard:0x0000010459e160 @name="Merlin", @power="Sees the
future", @spells=5>
>> fumblesnore = Weezard.new('Fumblesnore', 'Naps')
=> #<Weezard:0x000001045a13d8 @name="Fumblesnore", @power="Naps",
@spells=5>

“This looks just like it did the last time we created weezards!”
grumped the King.

“It’s very similar,” admitted the Dagron, “but there is one
important difference. Look what happens when each weezard
casts a spell!”

>> merlin.cast_spell('Prophecy')
Cast Prophecy! Spells left: 4.
=> nil

>> fumblesnore.cast_spell('Nap')
Cast Nap! Spells left: 4.
=> nil

“They each have their own @spells variable!” said Scarlet.
“That’s why fumblesnore’s spell count wasn’t affected when merlin
cast a spell.”

“Exactly right,” said the Dagron. “Even though their @spells
variables have the same names, each instance gets its own copy,
so they don’t conflict with each other. Not only that, but because
instances of classes can always access their instance variables,
any instance variables we define in our classes’ initialize method
can be used by the newly created objects.”

152 CHAPTER 8

“That’s why we do things like @name = name in our initialize
method definitions,” said the Off-White Knight. “It makes sure
that when we pass in the name argument, each instance saves a
copy in @name.”

Local Variables

“Speaking of local variables,” said the Dagron, “let’s have a look
at those, shall we? They should be quite familiar, but they’re
worth a second look. A local variable can be seen only in its cur-
rent scope, which means it can be seen only in the method or
class where it’s defined.”

New code appeared on the Computing Contraption’s screen:

>> class YeOldeClass
>> local_variable = 'I only exist inside the class!'
>> end

>> puts local_variable
NameError: undefined local variable or method `local_variable' for
main:Object

>> def yet_another_method
>> another_local = 'I only exist inside this method!'
>> end

>> puts another_local
NameError: undefined local variable or method `another_local' for
main:Object

“So really, local variables can be seen only inside the meth-
ods or classes where they’re defined, or we can use them outside
all class and method definitions,” Scarlet said.

“That’s right,” said the Dagron. “There is a special scope in
Ruby called the top-level scope, so if you define local variables
outside any method or class definition, Ruby can see them. Have
a look!”

EVERYTHING IS AN OBJECT (ALMOST) 153

>> local_variable = "I'm the top-level local variable!"

>> def local_in_method
>> local_variable = "I'm the local variable in the method!"
>> puts local_variable
>> end

>> puts local_variable
I'm the top-level local variable!
=> nil

>> local_in_method
I'm the local variable in the method!
=> nil

“You see?” said the Dagron. “Local variables can even have
the exact same variable names, as long as they’re in different
scopes! Ruby knows that the method definition gets its own set
of local variables, so it doesn’t complain that there are two with
the same name.”

“So local variables can be seen only in the classes or methods
where we define them, or in this special top-level scope that’s
outside any class or method,” said the King. “But global vari-
ables can be seen anywhere, and if we create an instance of a
class, the instance can see any instance variables we created
when we defined the class.”

“Precisely,” said the Dagron.
“And the class can see its own class variables,” the King

continued.
“Correct!” said the Dagron. “In fact, it’s not just instances

that can have methods like initialize, introduce, and sing; even
classes can have their own methods!”

“Just when I was starting to get this!” moaned the King.
“How is that possible?”

“Because,” replied the Dagron, “Ruby classes are also objects!”
“I need to sit down,” said the King.
“You are sitting down,” said Wherefore.

154 CHAPTER 8

“So I am,” said the King, who was sitting cross-legged
between the Off-White Knight and the Wand’ring Minstrel.
“Go on, Madame Dagron,” he said. “How can we add a method
directly to a class itself, and not just an instance of a class?”

Objects and self
“Well,” said the Dagron, “Ruby keeps a special built-in variable
named self around at all times, and self refers to whatever Ruby
object we’re currently talking about.” She was talking quickly
now, and small sparks leapt from her mouth as she continued.
“So all we need to do is use self to define a method inside our
class, and instead of adding that method to the instance, we add
it to the class itself.”

“Perhaps an example would make things clearer,” said
the Off-White Knight. She reached over and typed into the
Computing Contraption:

monkey.rb

class Monkey
 @@number_of_monkeys = 0

 def initialize
 @@number_of_monkeys += 1
 end

 def self.number_of_monkeys
 @@number_of_monkeys
 end
end

“Here I’ve created a Monkey class,” said the knight. “It has
a @@number_of_monkeys class variable that will keep track of how
many monkey instances we create, as well as the initialize
method we’ve seen in classes before. When we call new on Monkey
to create a new monkey, it will add 1 to the @@number_of_monkeys.”

EVERYTHING IS AN OBJECT (ALMOST) 155

“What about that self.number_of_monkeys method?” asked
Ruben.

“That’s a class method!” said the knight. “It’s a method of
the Monkey class itself, and when we call it, it will return the
@@number_of_monkeys. Let’s have a look! First, we’ll load that script,
and then we’ll create a few monkeys.”

>> load 'monkey.rb'
=> true
>> monkey_1 = Monkey.new
=> #<Monkey:0x000001048fccf8>
>> monkey_2 = Monkey.new
=> #<Monkey:0x00000104902310>
>> monkey_3 = Monkey.new
=> #<Monkey:0x00000104907900>

“Good!” said the Off-White Knight. “Now that we have some
monkeys, let’s ask the Monkey class how many monkeys there are.”
She typed into the Computing Contraption:

>> Monkey.number_of_monkeys
=> 3

“Amazing!” said Wherefore. “But why not ask an individual
monkey how many monkeys there are?”

“Well,” said the knight, “first, it doesn’t quite make sense to
ask a monkey instance how many other instances there are—
that’s the class’s business, not the instance’s! But more impor-
tantly, because we used self when we defined the number_of_monkeys
method, it’s only a method of the class, not its instances! See?”
She typed some more:

>> monkey_1.number_of_monkeys
NoMethodError: undefined method `number_of_monkeys' for
#<Monkey:0x000001048fccf8>

“There we are,” said the Dagron. “The Monkey class has its
very own number_of_monkeys method now, but it’s only on the class
itself; the monkey instances themselves don’t have that method.”

156 CHAPTER 8

“In fact,” said the knight, “adding methods onto classes is
common enough that Ruby has its own shorter syntax for it. It
looks like this!” And she typed some more:

monkey_2.rb

class Monkey
 @@number_of_monkeys = 0

 def initialize
 @@number_of_monkeys += 1
 end

 class << self
 def number_of_monkeys
 @@number_of_monkeys
 end
 end
end

“See that?” she asked. “Instead of defining the number_of_monkeys
method on the class with self.number_of_monkeys, I used class <<
self to tell Ruby: ‘Hey! Every method I define until I say end is a
method for the class, not its instances.’ Look what happens when
I call the method on Monkey without creating any instances.”

EVERYTHING IS AN OBJECT (ALMOST) 157

>> load 'monkey_2.rb'
=> true
>> Monkey.number_of_monkeys
=> 0

“Now look what happens if I create an instance and call the
method again,” said the knight.

>> monkey = Monkey.new
=> #<Monkey:0x0000010490af60>
>> Monkey.number_of_monkeys
=> 1

“See? It’s just like using self.number_of_monkeys,” the Off-White
Knight said, beaming.

“Very interesting,” said the Dagron. “I’d never seen class <<
self before.”

“Really?” asked Wherefore.
“No one knows everything,” said the Dagron. “Not even me!”
“Many people find the def self.method_name syntax easier to

understand,” said the knight, “so it’s perfectly fine to use that
whenever you need to add a method to a class.”

“Of course,” said Scarlet, “and now self makes so much more
sense to me! It just refers to whatever the Ruby program is ‘talk-
ing about.’ And in this case, self is the class we’re inside!”

Methods and Instance Variables
“Precisely,” said the Dagron. “And with that, I have but one
more trick to show you. You see, while it’s very easy to create
instance variables for our instances, it’s not always so easy to
get at them. See what I mean?” she said, and as she spoke, new
code began to fill the screen:

>> class Minstrel
>> def initialize(name)
>> @name = name
>> end
>> end

158 CHAPTER 8

“I’ve re-created our Minstrel class from before, but with only
an initialize method,” said the Dagron. “No introduce or sing
methods! Let’s create an instance, like we did earlier.”

>> wherefore = Minstrel.new('Wherefore')
=> #<Minstrel:0x000001049637c8 @name="Wherefore">

“Now,” said the Dagron, “see how our minstrel instance has
the name ‘Wherefore’? (You can tell by the @name="Wherefore" bit.)
Let’s try to get to it.”

>> wherefore.name
NoMethodError: undefined method `name' for
#<Minstrel:0x000001049637c8 @name="Wherefore">

“You see,” said the Dagron, “while wherefore has a @name
instance variable, it doesn’t have a name method. And when it
comes to Ruby, all that matters are methods. In order to make
wherefore.name actually work, we need to write a method to reach
the @name instance variable.”

“Does that mean we’ll need to define a method in the Minstrel
class called name?” Scarlet asked.

“That’s exactly right,” said the Dagron, and the code on the
screen changed under her claw:

another_minstrel.rb

class Minstrel
 def initialize(name)
 @name = name
 end

 def name
 @name
 end
end

“Now we have a name method that returns the @name instance
variable,” said the Dagron. “Let’s see what happens when we
create a new minstrel with this name method and try to use it!”

EVERYTHING IS AN OBJECT (ALMOST) 159

>> load 'another_minstrel.rb'
=> true
>> wherefore = Minstrel.new('Wherefore')
=> #<Minstrel:0x000001049637c8 @name="Wherefore">
>> wherefore.name
=> "Wherefore"

“Huzzah!” cried the King. “We’ve done it! We’ve changed the
minstrel’s name with the name method.”

“Truly wonderful,” said Wherefore, “but what if we want to
change the minstrel’s name to something else?”

“Well,” said the Dagron, “let’s see if we can do that with the
code we have now.” She added more code to the Computing
Contraption’s glowing screen:

>> wherefore.name = 'Stinky Pete'
NoMethodError: undefined method `name=' for
#<Minstrel:0x000001049637c8 @name="Wherefore">

“We can get the name,” said the Dagron, “but we can’t change
it; Ruby’s complaining that our instance has no method that
changes names. It’s looking for a method we haven’t written yet!”

Ruben studied the screen. “It’s that NoMethodError again,”
he said. “It looks like Ruby wants the Minstrel class to have a
method called name=!”

The Dagron nodded. “If we want to change the @name, we have
to write a special method called name= to do it,” she said. “If you
write the name of a method with an equal sign at the end, Ruby
understands it to mean: ‘I want this method to change the value
of something.’ So to change the @name,” she finished, “we’d add a
bit more code.”

She added the name= method to the rest of the code for all of
them to see:

another_minstrel_2.rb

class Minstrel
 def initialize(name)
 @name = name
 end

160 CHAPTER 8

 def name
 @name
 end

 def name=(new_name)
 @name = new_name
 end
end

“Now we have a new method, name=, that takes a single param-
eter, the new_name,” said the Dagron. “This should tell Ruby to let
us change the name simply by calling wherefore.name = 'some new
name'! Let’s give it a try. First, we’ll create a new minstrel.”

>> load 'another_minstrel_2.rb'
=> true
>> wherefore = Minstrel.new('Wherefore')
=> #<Minstrel:0x000001049637c8 @name="Wherefore">
>> wherefore.name
=> "Wherefore"

“Next, we’ll try to change its name.”

>> wherefore.name = 'Stinky Pete'
=> "Stinky Pete"

>> wherefore.name
=> "Stinky Pete"

“That’s amazing!” said Ruben. “But writing all these methods
to get and set instance variables sure is hard work. Is there any
faster way to do it?”

The Dagron nodded. “As it turns out, there is,” she said.
“There are three built-in shortcut methods for reading and writ-
ing instance variables: attr_reader, attr_writer, and attr_accessor.
Here’s how they work.” She touched the Computing Contraption
with her claw, and these words appeared:

EVERYTHING IS AN OBJECT (ALMOST) 161

another_minstrel_3.rb

class Minstrel
 attr_accessor :name
 attr_reader :ballad

 def initialize(name)
 @name = name
 @ballad = 'The Ballad of Chucky Jim'
 end
end

“For example, if you pass the symbol :name to attr_reader, it
will automatically create a method called name that will read
the instance variable @name. attr_writer will automatically create
a method called name= that will change the value of @name, and
attr_accessor will create both the name and name= methods.” The
Dagron clicked her claws. “In this case, I’ve called attr_accessor
with :name and attr_reader with :ballad, which should mean I
can both get and change the minstrel’s name, but can only read
his ballad without changing it. Let’s create a new minstrel to
test out.”

>> load 'another_minstrel_3.rb'
=> true
>> wherefore = Minstrel.new('Wherefore')
=> #<Minstrel:0x0000010413c0e0 @name="Wherefore", @ballad="The
Ballad of Chucky Jim">

“Perfect,” said the Dagron. “Let’s see if attr_accessor lets us
get and change the minstrel’s name, like we could before.”

>> wherefore.name
=> "Wherefore"

>> wherefore.name = 'Wherefive'
=> "Wherefive"

>> wherefore
=> #<Minstrel:0x0000010413c0e0 @name="Wherefive", @ballad="The
Ballad of Chucky Jim">

162 CHAPTER 8

“Now let’s see if we can read the minstrel’s ballad, but not
change it; that’s what attr_reader is supposed to do,” said the
Dagron. She filled in more code on the Computing Contraption:

>> wherefore.ballad
=> "The Ballad of Chucky Jim"

>> wherefore.ballad = 'A Song of Mice and Friars'
NoMethodError: undefined method `ballad=' for
#<Minstrel:0x0000010413c0e0>

Wherefore shook his head in amazement. “Extraordinary!”
he said. “With these Ruby tools, I’ll be able to write ballads in no
time at all.”

“This is one of the most amazing parts of Ruby,” said the Off-
White Knight. “When we design programs around objects, we’re
doing something called object-oriented programming, and it lets
us write programs that describe real-life things like minstrels
and ballads. Everything becomes a thousand times easier!”

“This is marvelous, truly marvelous,” said Wherefore. “I can’t
thank you enough. How can I possibly repay you?”

“Well,” Scarlet said, “actually, we were looking for you to ask
whether you’d seen anything unusual happening in the kingdom.
Ruby systems all over the kingdom have been breaking all day,
and we’re starting to think none of the problems is an accident.”

“Show him the scale!” Ruben said.
“Oh, yeah!” Scarlet said, and she pulled the glittering green

scale from her pocket. “Have you ever seen anything like this?
We thought at first it might have belonged to the Dagron, but
we checked and she isn’t missing a one.”

“Hmm,” said Wherefore. “Quite the quandary. No, I don’t
think I’ve seen any creature with scales like this, but I did see
something strange out here in the Pines not an hour ago.”

The King, Ruben, and Scarlet exchanged startled looks.
“What was it?” Scarlet asked.
“Well,” said Wherefore, “I only caught a snippet of conversa-

tion, but it was a few voices, talking in low tones behind that
thicket yonder. I went to see what was going on, but they ran
when I got near—three, maybe four of them,” he said.

EVERYTHING IS AN OBJECT (ALMOST) 163

“Who were they?” asked the King.
“I didn’t see,” said Wherefore, “but the part I overheard was

dastardly indeed. They said something about not having made
a big enough impact, and how they were going to see the Queen
about whatever it is they were doing. I’ll bet my hat that when
they fled, they were heading straight for the castle!”

“The castle! The Queen!” cried the King. “Oh my biscuits,
oh my gravy! If these are our saboteurs, the Queen could be in
terrible danger!”

“We’ve got to get back there, and fast!” said Scarlet. “Off-
White Knight, Dagron, can you help us?”

The knight frowned thoughtfully. “I’m honor bound to stay in
the Pines and to help anyone who wanders through,” she said.
“But my duties are also to the King and Queen. I can spread
the word as quickly as possible that trouble’s afoot and send as
many friends to the castle as I can!”

“Please do!” said Scarlet. “What about you, Dagron?”
The Dagron shook her head. “Magic and wisdom come at

a price,” she said. “I’m not able to leave the Carmine Pines.
However, there is a shortcut back to the castle.”

164 CHAPTER 8

“Where?” asked Ruben.
“The underground passage!” said Wherefore. “Yes, I know it.

Follow me, I’ll take you there!”
The King, Scarlet, and Ruben thanked the Off-White Knight

and the Dagron and, waving goodbye, hurried to catch up with
Wherefore, who was already halfway across the meadow. They
all plunged headlong along a twisty path of roots and knotted
tree trunks, and after a few minutes of breathless running, they
arrived at an enormous red pine tree, bigger than all the ones
around it as far as they could see.

“Going down!” cried Wherefore, and knocked on the trunk
three times. With a pleasant ding, a door slid open in the side
of the trunk, revealing a cramped elevator car.

“Take the elevator to the sub-sub-basement,” he said, stuffing
the three of them inside. “You’ll find a long, narrow passage that
heads off to the west. Take that as far as you can, then look for a
large black pipe. There’ll be words written on it that say— ”

“ —the Mysterious Pipe!” cried Ruben and Scarlet together.
“We saw Haldo disappear down into the lower levels of the castle
earlier today; this passage must connect to the same place!”

“Then you know your way!” said Wherefore. “Goodbye and
good luck—in the meantime, I’ll help the Off-White Knight
and the Dagron send help your way.” And with that, the eleva-
tor doors slid shut, and the King, Scarlet, and Ruben began to
descend deep into the earth.

Dial-a-Ballad, or the Minstrel’s
Delivery Service
Now that we’ve taught Wherefore the Wand’ring Minstrel all
about Ruby objects and classes, it’s time to help him create his
very own Ballad! Otherwise, he won’t be much of a minstrel.
Don’t worry, though—now that you know all about classes and
how they work, creating a simple class to help Wherefore write
faster, better ballads will be a breeze.

EVERYTHING IS AN OBJECT (ALMOST) 165

Let’s begin by making a new file called ballad.rb and typing
the following code.

ballad.rb

class Ballad
u attr_accessor :title

 attr_accessor :lyrics

v @@number_of_ballads = 0

w def initialize(title, lyrics='Tralala!')
 @title = title
 @lyrics = lyrics
 @@number_of_ballads += 1
 end

x def self.number_of_ballads
 @@number_of_ballads
 end
end

y ballad = Ballad.new('The Ballad of Chucky Jim')

z puts "Number of ballads: #{Ballad.number_of_ballads}"
puts "Ballad object ID: #{ballad.object_id}"
puts "Ballad title: #{ballad.title}"
puts "Ballad object ID again!: #{ballad.object_id}"
puts "Ballad lyrics: #{ballad.lyrics}"

It’s hard to believe, but you now know so much Ruby
that there’s actually nothing new here! You’ve seen all this
stuff before: creating classes and instances of classes, using
attr_accessor, using class and instance variables, adding methods
to classes and instances, the whole shebang. Let’s step through it
line by line and have a look at the output.

First, we create a Ballad class at u with a title and lyrics we
can both read and change (thanks to attr_accessor).

Next, at v, we set up a class variable, @@number_of_ballads, to
track the number of ballads our class creates, and our initialize

166 CHAPTER 8

method at w both sets the name and lyrics of the ballad and
adds 1 to the @@number_of_ballads.

For the last part of our class definition, we add a number_of_
ballads method at x on the Ballad class itself; that will let us get
the @@number_of_ballads later.

Finally, we create a new ballad with Ballad.new at y, then
print out some interesting facts about our ballad at z.

You can run the code in your file by using the terminal to go to
the folder where you saved ballad.rb, then typing ruby ballad.rb
on the command line.

Your object IDs will be slightly different from mine, but you
should see something like this:

Number of ballads: 1
Ballad object ID: #<Ballad:0x0000010413e0e0>
Ballad title: The Ballad of Chucky Jim
Ballad object ID again!: #<Ballad:0x0000010413e0e0>
Ballad lyrics: Tralala!
=> nil

We’ve just proved that our self.number_of_ballads method
works, that our object ID doesn’t change once we create an
object, and that we can get to all of the information we’ve stored
in our ballad with the magic of attr_accessor.

All that’s well and good, but the really interesting part
is how you take it further! For example, you can start small
by writing code to change the title of a ballad you create or
to update its lyrics after it’s created. (Do you think this will
change the object ID?)

You could also add more attr_readers, attr_writers, or
attr_accessors. You could add more methods (what about a
playing_time method to return how many minutes long the
ballad is?). You could add class methods or create additional
ballads.

You could even take on the greatest challenge of all: actu-
ally writing the lyrics to “The Ballad of Chucky Jim”! The world
is your oyster. (If you don’t like oysters, then the world is your
cupcake.)

EVERYTHING IS AN OBJECT (ALMOST) 167

You Know This!
You learned a fair amount in this chapter, but nowhere near as
much as you crammed into your noggin with methods! Learning
about objects and classes was practically a vacation! Even so,
let’s take the time to go over it all one more time, just to make
sure you’ve got it all.

Objects and Classes

You already knew that just about everything in Ruby is an
object, but in this chapter, you learned more about objects and
took a closer look at object IDs. An object’s ID number is like
a fingerprint: every object has its very own, and no two objects
have exactly the same one. As a general rule, objects created by
Ruby have lower object ID numbers than objects you create:

>> 0.object_id
=> 1
>> :minstrel.object_id
=> 465608

We also saw that classes are how we can create a whole bunch
of objects with similar characteristics. We create classes with the
class keyword, like so:

>> class Monkey
>> # Class magicks go here!
>> end

Creating classes is all well and good, but classes don’t really
do much for us until we instantiate (create) an object from that
class. You can think of classes as cookie cutters and the objects
they create as cookies: the cookie cutter (class) makes a bunch of
things that are all very similar, but the thing we’re most inter-
ested in is the cookie itself (the object).

168 CHAPTER 8

For instance, we can define a Monkey class with our class key-
word, and we instantiate it—that is, we make a particular mon-
key from our Monkey class cookie cutter—by calling Monkey.new:

monkey_review.rb

class Monkey
 @@bananas = 5

 def initialize(name)
 @name = name
 end

 def eat_banana
 @@bananas -= 1
 puts "Ate a banana! #{@@bananas} left."
 end
end

Great! So far we’ve got a Monkey class with two methods and
a class variable. The class variable @@bananas keeps track of how
many bananas there are for all monkey instances, the initialize
method sets the monkey’s name when Monkey.new is called, and
eat_banana decreases @@bananas by 1.

Next, let’s create a couple of monkeys:

>> load 'monkey_review.rb'
=> true

>> socks = Monkey.new('Socks')
=> #<Monkey:0x000001052c77b0 @name="Socks">

>> stevie = Monkey.new('Stevie')
=> #<Monkey:0x00000104ca38e8 @name="Stevie">

Now we can have each monkey eat a banana and see what
happens:

>> socks.eat_banana
Ate a banana! 4 left.
=> nil

EVERYTHING IS AN OBJECT (ALMOST) 169

>> stevie.eat_banana
Ate a banana! 3 left.
=> nil

Did you notice how our Monkey class’s @@bananas class variable
was reduced every time any monkey instance ate a banana?
Remember, that’s because class variables are shared by all
instances of that class.

We can assign any combination of local, instance, class, and
global variables in combination with our classes, as shown here:

monkey_review_2.rb

class Monkey
 $home = 'the jungle'
 @@number_of_monkeys = 0

 def initialize(type)
 @type = type
 @@number_of_monkeys += 1
 puts "Made a new monkey! Now there’s #{@@number_of_monkeys}."
 end
end

Here, we’ve changed our Monkey class to have a global $home
variable ('the jungle'), a @@number_of_monkeys class variable that
keeps track of how many instances the Monkey class has created,
and a @type instance variable that lets each individual monkey
be of a different type.

>> load 'monkey_review_2.rb'
=> true

>> blue = Monkey.new('blue monkey')
Made a new monkey! Now there's 1.
=> #<Monkey:0x00000104aafb40 @type="blue monkey">

>> silver = Monkey.new('silver monkey')
Made a new monkey! Now there's 2.
=> #<Monkey:0x00000104ab3b28 @type="silver monkey">

170 CHAPTER 8

>> gold = Monkey.new('golden monkey')
Made a new monkey! Now there's 3.
=> #<Monkey:0x00000104ab7c00 @type="golden monkey">

See how each @type is unique to each monkey, but they all
change the same @@number_of_monkeys variable?

Finally, every part of the program also has access to the $home
variable, since it’s global:

>> puts "Our monkeys live in #{$home}."
Our monkeys live in the jungle.
=> nil

Variables and Scope

This can all be a bit tricky to keep straight, so I’ve created the
following handy-dandy table to help you remember the differ-
ences between local, global, instance, and class variables.

Variable type Looks like Where can it be seen?

Local odelay Inside the top-level scope, method, or class
where it’s defined.

Global $odelay Anywhere!

Instance @odelay Inside the class where it’s defined or in any
instance of the class. Each instance gets its
own copy.

Class @@odelay Inside the class where it’s defined or in
any instance of the class. Each instance
shares the same class variable with all
other instances.

Remember, it’s usually not a good idea to use global variables,
because not only are they visible everywhere in our program but
they can also be changed from anywhere in our program. When
things can be changed from a bunch of places, it can be hard to
figure out what part of our program made the change if some-
thing unexpected happens. I’m showing you global variables so
you know what they are and how they work, but in almost every
situation, they’re much more trouble than they’re worth.

EVERYTHING IS AN OBJECT (ALMOST) 171

As you saw in the last example, we could reach the $home vari-
able from outside the class definition because it was defined as
global (global variables start with a $). We can only ever get at
a variable if it’s in the proper scope. Let’s review some examples
from earlier in the chapter:

>> local_variable = 'Local here!'
=> "Local here!"

Our local_variable exists in this outer scope, but it doesn’t
exist inside the class definition:

>> class OutOfTowner
>> puts local_variable
>> end
NameError: undefined local variable or method `local_variable' for
OutOfTowner:Class

The local_variable doesn’t exist inside the method definition,
either!

>> def tourist
>> puts "Can you take our picture, #{local_variable}?"
>> end

>> tourist
NameError: undefined local variable or method `local_variable' for
main:Object

Our variable number exists inside the block, but it’s gone as
soon as the block’s code is finished:

>> 3.times { |number| puts number }
0
1
2
=> 3
>> puts number
NameError: undefined local variable or method `number' for
main:Object

172 CHAPTER 8

We discovered that Ruby has a built-in variable, self, that
refers to whatever object the method will be called on, and we
can use self to add methods directly to classes (instead of just
the objects they create), as shown here:

monkey_review_3.rb

class Monkey
 @@number_of_monkeys = 0

 def initialize
 @@number_of_monkeys += 1
 end

 def self.number_of_monkeys
 @@number_of_monkeys
 end
end

You’ve seen this before! It’s our Monkey class with a
@@number_of_monkeys class variable, an initialize method that
increases that variable every time we make a new monkey,
and a self.number_of_monkeys method that means that we can call
Monkey.number_of_monkeys to find out how many we’ve created so far:

>> load 'monkey_review_3.rb'
=> true
>> Monkey.number_of_monkeys
=> 0

It’s 0 right now, but if we create a monkey, we’ll see that
number go up!

>> monkey = Monkey.new
=> #<Monkey:0x0000010490af60>
>> Monkey.number_of_monkeys
=> 1

If you’re ever unsure of the value of self in a particular part
of your program, you can always puts self to see what it is.

EVERYTHING IS AN OBJECT (ALMOST) 173

We also learned that if an object has an instance variable that
we want to see or change, we have to write methods to do it. We
can write these methods ourselves as follows:

minstrel_review.rb

class Minstrel
 def initialize(name)
 @name = name
 end

 def name
 @name
 end

 def name=(new_name)
 @name = new_name
 end
end

Here, we’ve set a @name in our initialize method, which means
that any time we call Minstrel.new, we pass in a name for that
minstrel. The name method gets that @name variable for us, and the
name= method allows us to assign a new_name to the minstrel . . .

. . . but we can also use the shortcuts attr_reader (to read an
instance variable), attr_writer (to change an instance variable),
and attr_accessor (to do both). All we do is pass the instance vari-
able name as a symbol, like so:

minstrel_review_2.rb

class Minstrel
 attr_accessor :name
 attr_reader :ballad

 def initialize(name)
 @name = name
 @ballad = 'The Ballad of Chucky Jim'
 end
end

174 CHAPTER 8

Here, we’ve used attr_accessor and passed it a :name symbol
to have it automatically create name and name= methods for us; we
called attr_reader with :ballad, so we only get a ballad method to
read the @ballad instance variable. Check out what happens if we
try to change our ballad!

>> load 'minstrel_review_2.rb'
=> true

>> wherefore = Minstrel.new('Wherefore')
=> #<Minstrel:0x0000010413c0e0 @name="Wherefore", @ballad="The
Ballad of Chucky Jim">

>> wherefore.ballad
=> "The Ballad of Chucky Jim"

>> wherefore.name
=> "Wherefore"

>> wherefore.name = 'Wherefive'
=> "Wherefive"

>> wherefore.ballad = 'A Song of Mice and Friars'
NoMethodError: undefined method `ballad=' for
#<Minstrel:0x0000010413c0e0>

Object-Oriented Programming

Finally, we learned that writing programs that revolve around
classes and objects is called object-oriented programming (OOP).
Our minstrel is a good example of an object: a piece of code that
acts just like something in the real world! It has attributes
(facts about itself) as well as behavior, which is just a way of
talking about the methods the object knows how to use. We
can define the behavior of any minstrel with a Minstrel class,
as follows.

EVERYTHING IS AN OBJECT (ALMOST) 175

minstrel_review_3.rb

class Minstrel
 attr_reader :name

 @@number_of_minstrels = 0

 def initialize(name)
 @name = name
 @@number_of_minstrels += 1
 end

 def sing(song_name)
 puts "Time to sing a song called: #{song_name}!"
 puts 'Tralala!'
 end

 def self.number_of_minstrels
 @@number_of_minstrels
 end
end

Our class has an attr_reader for :name (meaning we can read
the name, but not change it), as well as a @@number_of_minstrels
class variable that keeps track of how many instances we’ve
created and an initialize method that gives our minstrel a name
and increases the @@number_of_minstrels.

It also has two methods: one, sing, is a method of minstrel
instances and sings a little song, and the other, self.number_of_
minstrels, is a method of the Minstrel class and tells us how many
minstrels we’ve created so far.

Let’s see them in action!

>> load 'minstrel_review_3.rb'
=> true

>> wherefore = Minstrel.new('Wherefore')
=> #<Minstrel:0x000001031eac68 @name="Wherefore">

176 CHAPTER 8

>> Minstrel.number_of_minstrels
=> 1

wherefore.sing('A Tail of Two Foxes')
Time to sing a song called: A Tail of Two Foxes!
Tralala!
=> nil

Voilà! We can create a new minstrel, call Minstrel.number_of_
minstrels to see that we’ve created one, and then call our minstrel
instance (wherefore)’s sing method to hear his ballad “A Tail of
Two Foxes.”

Things are starting to get a bit suspenseful around here, so
I’m gonna go grab a bag of popcorn—be right with you. In the
meantime, go on ahead to see what the King, Scarlet, and Ruben
find when they get back to the castle, and get ready for even
more object-oriented Ruby magic!

Her Majesty’s Menagerie
The King, Ruben, and Scarlet raced westward along the
underground passage toward the castle.

“How much farther?” panted Ruben.
“I’m not sure,” said the King, “but Wherefore told us to go

as far as we could, and then we’d be at the Mysterious Pipe.”
He thought for a moment. “It can’t be too far, though,” he
said at last. “These are the Ambrose Caverns, and while they
stretch beneath the entire kingdom, I know Haldo has man-
aged to get between the castle and places farther than the
Pines in a matter of minutes.”

“That’s right! Haldo knows these tunnels,” said Scarlet.
She ran in silence for a minute or two. “What if . . . ” she
began.

“What if what?” asked Ruben.

178 CHAPTER 9

“Well, what if whoever’s causing all this trouble is someone
Haldo let in? Or what if Haldo’s one of them?”

“Bite your tongue!” said the King. “Haldo’s been in my service
since he was a boy. He’d never do anything to hurt us or this
kingdom!”

“We should consider every possibility,” Scarlet said.
“Even so,” said the King, “all suspects are innocent until we

prove them guilty. If we’re lucky, we’ll catch these scoundrels
red-handed when we arrive at the castle!”

“Which will be any minute,” Ruben said. “Look!”
Up ahead, the narrow tunnel opened up into a wide cavern.

The King, Scarlet, and Ruben jogged into the open space, then
stood for a moment, catching their breath.

“This is it,” said the King, “the basement below the basement
below the castle! Now we just need to find the Mysterious Pipe
and climb back up into my Royal Study.”

“And there it is!” said Scarlet. In the darkness, they could just
make out the outline of the Mysterious Pipe in the far corner.

The trio walked up to the base of the pipe, which was gur-
gling softly.

“Now what?” asked Ruben. “The Mysterious Pipe is full of
water! How are we supposed to climb up it?”

“Well, we turned the Flowmatic Something-or-Other on
before,” Scarlet said. “We can turn it back off!” She felt around
the bottom of the pipe until she found the familiar boxy shape of
a Computing Contraption, then flipped open its lid. The glow of
the IRB prompt illuminated their faces.

“Right!” said the King. “What variable did we change before?”
“flowmatic_on!” replied Ruben.
Scarlet quickly typed into the Computing Contraption:

>> flowmatic_on = false
=> false

With a slow booooop and a glug-glug sound, the Mysterious
Pipe shut down and emptied.

“Well done, Scarlet!” said the King as he walked to the far
side of the Pipe. He grabbed a large metal wheel jutting out of

INHERITING THE MAGIC OF RUBY 179

the side and gave it a spin. The wheel turned several times, and
with a hollow clank, the door to which it was attached eased open.

“Into the Mysterious Pipe!” cried the King, and the three
climbed inside.

Ruben looked straight up and squinted. “I can’t even see the
light at the top!” he said. “This Pipe is huge! Hellooo!” he called,
and the Mysterious Pipe echoed: Hello! Ello! Lo!

“It’ll take forever to climb, if we can even do it at all!” said
Scarlet. She thought for a moment. “I might have an idea.” She
turned to Ruben and the King. “Do you trust me?” she asked.

“With my life!” said the King.
“To the end!” said Ruben.
“All right, then,” said Scarlet. “Hold your breath!” She

reached around to the Computing Contraption on the side of
the Mysterious Pipe and typed:

>> flowmatic_on = true

She slammed the metal door shut, and in an instant, the
pipe filled with water.

For a moment, the three floated at the bottom of the
Mysterious Pipe, holding their breath. Then the entire pipe
began to tremble slightly, and with a deep whoosh, the force of
the water propelled the King, Scarlet, and Ruben straight up!

In just a few seconds, the three of
them began to slow down, and they found
themselves floating just inches from the
narrow top of the Mysterious Pipe. The
King reached down and pushed on the
latch of the pipe’s door, and in a flood of
water, the trio tumbled out onto the floor
of the King’s Royal Study.

“Genius! Absolutely genius!” the King
sputtered.

“Thank you,” said Scarlet, taking a
small bow. “But we’ve got to get to the
Queen! Do you know where she is?”

180 CHAPTER 9

“She should be back from Her Royal Majesty’s Hacktastic
Ruby Conference,” said the King, “so I imagine she’s up in her
Royal Office. Let’s go!” And with that, he dashed out of the room.

Ruby and Scarlet followed. “The Queen was at a Ruby confer-
ence?” Scarlet asked as they raced up the stairs.

“Indeed!” said the King. “It might surprise you to learn that
although I’m rather new to all of this Ruby business, my wife is
quite the hacker.”

“That’s amazing!” said Ruben. “Maybe she’ll be able to help
us fix all these Ruby malfunctions and catch the bad guys caus-
ing them.”

“I hope so. Ah! Here we are,” said the King, and he skidded to
a halt in front of an enormous wooden door with golden handles.

He pulled down on both handles at once, swung the doors
open, and rushed inside.

The Queen was seated at her desk in a high-backed chair,
furiously typing at a Computing Contraption.

“They tried to break into my Computing Contraption!” she
said. “The very idea!”

“They who?” asked Scarlet and Ruben together as they fol-
lowed the King into the Queen’s Royal Office.

“I don’t know!” said the Queen, still typing. “There were
four of them, and I caught them at my Computing Contraption,
trying to figure out my password. Luckily, I’m a stickler for
security.”

“That she is,” said the King, wringing out his fluffy white
beard. “She won’t even let me buy gummy bears on the Internet!”

“For good reason,” said the Queen, and she stopped typing.
“The last time I let you do that, you sent a small fortune to
someone claiming to be the Gummy Bear King!” She paused,
looking at Scarlet and Ruben. “I don’t believe we’ve met,” she
said. “Who might you be?” She looked the three of them up and
down. “And why are you all so wet?”

“I’m Ruben,” said Ruben, “and this is Scarlet. We’re helping
the King find whoever’s responsible for all the Ruby malfunc-
tions going on, and we ran all the way from the Carmine Pines
and swam up through the Mysterious Pipe to do it!”

INHERITING THE MAGIC OF RUBY 181

“Well, you’ve come to the right
place!” said the Queen. “I’m going
to track down those ne’er-do-wells
if it’s the last thing I do.” She began
typing again.

“Did you get a good look at any
of them?” asked Scarlet. “Were
there any clues? Did you see or
hear anything that might help us
catch them?”

“I didn’t see their faces,” the
Queen said, “but I overheard them
trying to figure out my Computing
Contraption’s password. There
were four of them—it sounded
like two boys and two girls. I got
home early from the Hacktastic
Ruby Conference and thought I’d
try out some of the Ruby tricks I learned, and when I came up
to my office, I caught them in the act! They ran when I shouted
at them to surrender, and I sent the palace guards after them.
In the meantime, I’ve been working to increase the security on
my Computing Contraption to ensure it’s completely immune to
attack.”

“Did they get anything from your Computing Contraption?”
Scarlet asked.

“Thank heavens, no,” said the Queen. “They didn’t get my
password, but we’d be in terrible trouble if they had. With that,
they could access any system in the kingdom with no restrictions!”

“These villains are escalating!” said the King, pacing around
the Queen’s office. “We’ve got to catch them as quickly as possible,
before they strike again. We might not be so lucky next time.”

The Queen nodded. “I’ve instructed the guards to bring any
suspects they catch directly to us for questioning,” she said. “In
the meantime, I’ve upgraded all the security on my Computing
Contraption. The only thing left to do is update some of my Ruby
programs to make them more secure, too!”

182 CHAPTER 9

“Ruby!” said Ruben. “That happens to be our specialty. Can
we help?” he asked.

The Queen smiled. “That would be lovely,” she said. “While
I’m something of an expert in more than a few programming
languages, I’m pretty new to Ruby.” She slid over in her chair,
and Ruben and Scarlet clambered up beside her.

“First things first,” said the Queen. “Do you know how to
create a Ruby class?”

A Brush-Up on Classes
“I think so,” said Ruben. “May I create any class I want?”
The Queen nodded, and Ruben typed into her Computing
Contraption:

>> class Animal
>> attr_accessor :name
>>
>> def initialize(name, legs=4)
>> @name = name
>> @legs = legs
>> end
>> end
=> nil

“I see!” said the Queen. “You’ve defined an Animal class.
You’re using attr_accessor to automatically make a method to
access the names of your animals, and the initialize method sets
the animal’s @name and number of @legs whenever a new animal is
created.”

“Yup!” said Ruben. “And if we create an animal with Animal.new
but don’t give it a number of legs, it’ll be 4 by default.”

The Queen nodded. “That makes sense to me. Why don’t you
go ahead and create a couple of animals?”

Ruben typed some more:

u >> monkey = Animal.new('George', 2)
=> #<Animal:0x00000104953940 @name="George", @legs=2>

INHERITING THE MAGIC OF RUBY 183

v >> monkey.name = 'Kong'
=> "Kong"

w >> dog = Animal.new('Bigelow')
=> #<Animal:0x00000104950178 @name="Bigelow", x@legs=4>

“Wonderful! At u, we’ve created monkey, an instance of the
Animal class, and created it with the name 'George' and 2 legs.
Next, at v, we’ve changed our monkey’s name to 'Kong' to show
that our attr_accessor lets us both read and change the name.

“Finally, at w, we’ve created a second instance of the Animal
class, dog, with the name 'Bigelow'. Since we didn’t create our dog
with a number of legs, it gets four by default, as you can see by
the return value at x.”

A Couple of Classes

The Queen thought for a moment. “Yes, this will do nicely. Now
then,” she continued, “imagine if instead of just having monkey
and dog as instances of Animal, we decided we wanted to have
Monkey and Dog as separate classes instead. How could we do it?”

“Well, we could do something like this,” Ruben said, and he
typed:

>> class Monkey
>> attr_accessor :name
>>
>> def initialize(name)
>> @name = name
>> @legs = 2
>> end
>> end
=> nil

“Precisely,” said the Queen. “That defines a Monkey class,
and the monkeys it creates will have @names and two @legs. The
attr_accessor also automatically creates a name method for each
monkey so we can get its name. To create a new monkey from

184 CHAPTER 9

the class, we use Monkey.new and pass its name as a string value.
Like this!” She typed into the Computing Contraption:

>> monkey = Monkey.new('George')
=> #<Monkey:0x00000104bdf3a8 @name="George", @legs=2>

>> monkey.name
=> "George"

“We can do the same thing for our Dog class,” Ruben con-
tinued. “We know that pretty much every dog has four legs,
so it’ll look just like the Monkey class, only the class name will be
different and the number of @legs will be 4.” He typed into the
Computing Contraption:

>> class Dog
>> attr_accessor :name
>>
>> def initialize(name)
>> @name = name
>> @legs = 4
>> end
>> end
=> nil

“Just like we can create new monkeys with Monkey.new and
pass in a string for the monkey’s name, we can create new dogs
with Dog.new and pass in a string for the dog’s name!” Ruben said.

>> dog = Dog.new('Bigelow')
=> #<Dog:0x00000104be3d18 @name="Bigelow", @legs=4>

>> dog.name
=> "Bigelow"

“That’s certainly one way to create a couple of classes,” said
the Queen, “but it looks like you had to write a lot of the same
code for both your Monkey and your Dog class.”

“That’s true,” said Ruben. “Is that okay?”

INHERITING THE MAGIC OF RUBY 185

Inheritance and DRY Code

“Well,” said the Queen, “any time you find yourself writing some-
thing more than once, you should ask yourself whether you have
to. Good code—unlike my husband here,” she said, stifling a laugh
as the King poured water out of the sleeves of his kingly robe,
“ —should be dry.”

“I know that one!” said the King, shaking drops of water
off his string and replacing it in his pocket. “It stands for Don’t
Repeat Yourself.”

“He knows that one because he repeats himself all the time,”
the Queen whispered to Scarlet and Ruben. “But yes,” she said,
“if you avoid repeating yourself in your code, you save lots of
time! Also, if you ever have to change something, you only need
to change it one place, not several.”

“I like the sound of that!” said Ruben, “but how can we make
our class code more dry?”

“With inheritance,” said the Queen.
“Inheritance!” said Scarlet. “I think I’ve heard it mentioned

before, but I’m not sure what it is.”
“I’ll show you,” said the Queen, explaining as she typed into

the Computing Contraption. “We’ve already created a class
called Animal. What if we could use that class as a way to create
both our Monkey and Dog classes?”

>> class Dog < Animal
>> def bark
>> puts 'Arf!'
>> end
>> end
=> nil

“The class Dog < Animal part means that the Dog class inherits
from the Animal class. It says to Ruby: ‘Make a new class called
Dog that knows how to do everything Animal does,’” the Queen
said. “Then we just add a method, like we’d normally do. Here,
I’m adding a bark method for Dogs, since dogs know how to bark.”
She rolled up her sleeves.

186 CHAPTER 9

“Here’s the amazing part: because Dog inherits from Animal,
new dogs can do anything animals can do and anything dogs
can do. They’ll have a name method and a default of four legs, and
know how to bark!”

>> dog = Dog.new('Bigelow')
=> #<Dog:0x00000104c89218 @name="Bigelow", @legs=4>

>> dog.name
=> "Bigelow"

>> dog.bark
Arf!
=> nil

“Astounding!” said the King.
“Isn’t it?” said the Queen. “It also means that instead of

typing all that class definition business again for our Monkey
class, we can just inherit from Animal again. Because we inherit
from Animal, we get our name method and a default @legs value of 4,
plus we’ll get this neat new make_sounds method I added just for
monkeys.”

>> class Monkey < Animal
>> def make_sounds
>> puts 'Eeh ooh ooh!'
>> end
>> end
=> nil

“Now we can create a new monkey with a name and two legs.
Not only can we change its name with the name= method we inher-
ited from Animal, but we can also make_sounds!”

“We can get the name and change it?” Ruben asked.
The Queen nodded. “Remember, we inherited from Animal,

and Animal has attr_accessor :name. That automatically creates a
name method for getting the name and a name= method for setting
the name. See?”

INHERITING THE MAGIC OF RUBY 187

>> monkey = Monkey.new('George', 2)
=> #<Monkey:0x00000102deaed8 @name="George", @legs=2>

>> monkey.name = 'Oxnard'
=> "Oxnard"

>> monkey.make_sounds
Eeh ooh ooh!
=> nil

“Wow!” said Scarlet, “That’s amazing—the monkey and the dog
have their own methods, but they also can do anything an Animal
can do!”

“That’s what makes inheritance so wonderful!” said the Queen.
“Given our Animal class from before, which had an attr_accessor
for :name and an initialize method that set the @name and @legs
instance variables, we can make two new classes that inherit
that information and add some new things—like a bark method
for Dog instances and a make_sounds method for Monkey instances.

“Inheritance in Ruby works exactly as it does in real life,”
the Queen continued. “Just like you might have inherited your
father’s eye color or your mother’s math smarts, objects in Ruby
can inherit information and methods from other objects.”

188 CHAPTER 9

“Oh!” said Ruben. “So not only can we use classes to create
lots of similar objects and avoid writing extra code, but we can
even write classes that borrow code from other classes?”

“On the nose,” said the Queen. “We might want to use inheri-
tance in our code if two classes have what I like to call an ‘is-a’
relationship, as in ‘a monkey is a kind of animal’ or ‘a dog is a
kind of animal.’”

“But a Dog would never inherit from a Monkey,” said Scarlet,
“because a dog isn’t a kind of monkey.”

“Exactly,” said the Queen.
“Could you show us the syntax again?” said Scarlet. “This is a

good trick and I want to remember it.”

Subclass and Superclass
“Of course,” said the Queen. “When you have one class that inher-
its from another, you use the class keyword, just like always.
Then you write the name of the class that will inherit, which we
call the subclass or the child class, and then a <. You can think of
that little < as the tip of an arrow that says, ‘Put all the powers
and abilities of the class on the right into the class on the left!’ To
finish up, you then write the name of the class you’re inheriting
from to the right of the <, which we call the superclass or parent
class. Finally, you just define any new methods as you normally
would. It looks like this,” she said, and typed:

super_and_subclass.rb

u class MySuperclass
 def say_hello
 puts 'Hello!'
 end
end

v class MySubclass < MySuperclass
 def say_goodbye
 puts 'Goodbye!'
 end
end

INHERITING THE MAGIC OF RUBY 189

“Here we have two classes, MySuperclass and MySubclass,” the
Queen explained. “MySubclass inherits from MySuperclass on line v,
so instances of MySubclass not only have the say_goodbye method
defined in the MySubclass class, but they can also use the say_hello
method they inherit from MySuperclass! Let’s see what happens
when we create a new instance of MySubclass.”

>> load 'super_and_subclass.rb'
=> true

>> subby = MySubclass.new
=> #<MySubclass:0x00000104a4c478>

>> subby.say_hello
Hello!
=> nil

>> subby.say_goodbye
Goodbye!
=> nil

 “I created an instance of MySubclass called subby using
MySubclass.new,” said the Queen. “Just like I promised, subby
can use both the say_goodbye method defined in MySubclass as
well as the say_hello method defined in MySuperclass, because
MySubclass inherits from MySuperclass and can therefore do any-
thing MySuperclass knows how to do.”

 “Thanks!” said Scarlet, “I think I’ve got it now.” She studied
the screen for a few seconds. “Is it possible for a class to inherit
from more than one other class?” she asked.

“Alas, no,” said the Queen. “You can have only one class
name on the left side of the < and one class name on the right
side. However!” she continued, “there is a Ruby trick that lets
you mix the behavior of several classes into one, which we’ll get
to in a little while.”

“Okay,” said Ruben, “but what if you want your subclass to
have a different version of a method than the superclass has?”

190 CHAPTER 9

Overriding Methods: Pirates are People, Too

“Now that, we can do,” said the Queen. “Any subclass can
override a method it inherits from its superclass at any time.
Let’s have a look. We’ll create a superclass called Person and
subclass called Pirate, with a speak method for both. Of course,
pirates and regular people speak pretty differently, don’t they?”
Scarlet and Ruben nodded. “So,” the Queen continued, “the two
speak methods will be different.” She typed into the Computing
Contraption:

pirates_and_ people.rb

u class Person
 attr_reader :name

 def initialize(name)
 @name = name
 end

 def speak
 puts 'Hello!'
 end
end

v class Pirate < Person
 def speak
 puts 'Arr!'
 end
end

“Starting at u, I’ve defined the Person class with an attr_reader
:name, so we’ll be able to get and change the name of any Person
instances,” the Queen said. “The initialize method sets the name
to the string we’ll pass in when we call Person.new, and the speak
method just prints out 'Hello!'”

“With you so far!” said the King.
“Next, at v, I’ve defined the Pirate class to inherit from Person,

so Pirate instances will be able to do anything a Person instance
can do,” said the Queen. “But! I’ve given Pirate its very own speak

INHERITING THE MAGIC OF RUBY 191

method that prints 'Arr!'. We’ll see how that works in a moment.
First, let’s go ahead and create an instance of each class to make
sure we can create it and get its name without any trouble.”

>> load 'pirates_and_people.rb'
=> true

>> esmeralda = Person.new('Esmeralda')
=> #<Person:0x00000104bfaa90 @name="Esmeralda">

>> rubybeard = Pirate.new('RubyBeard')
=> #<Pirate:0x00000104bfedc0 @name="RubyBeard">

>> esmeralda.name
=> "Esmeralda"

>> rubybeard.name
=> "RubyBeard"

“Now, let’s test our speak method,” the Queen said. “Because
Pirate created its own speak method, instances of Pirate will use
that one instead of the one inherited from Person,” she explained.
“But since we didn’t change the name and name= methods given
to Pirate by attr_reader :name, which it inherited, we can get and
change names the same way for both people and pirates!”

>> esmeralda.speak
Hello!
=> nil

>> rubybeard.speak
Arr!
=> nil

“That’s really cool,” Ruben said, “but when would we decide
to override a method?”

“Any time one class inherits from another and you want most
of the same behavior, but not all,” said the Queen. “In this case,
we want a Pirate to be a Person and to be created like one, but we
want to make sure our Pirates sound like pirates. So we simply

192 CHAPTER 9

override the methods we want to be different between regular
old people and pirates!”

“That makes sense,” said Scarlet, “but what if we want a
little of both? That is, what if we want to modify a method we
inherit, but not completely replace it?”

Using super

“I’m so glad you asked,” said the Queen. “That’s absolutely some-
thing Ruby lets us do—all we need is the super keyword. Using
the Animal class we created earlier, we’ll create a new version
of a method that already exists, just like we did with the speak
method, and add our new code. Then, we’ll use super to tell Ruby:
‘Okay, I’m done adding new things to this method! Now have it
do all the things the superclass’s version of the method does.’ It
works like this,” she said, and typed:

super_dog.rb

class Dog < Animal
 def initialize(name)
 puts 'Just made a new dog!'
 super
 end
end

“Now we can create a Dog class that inherits from Animal, just
like before,” said the Queen.

>> load 'super_dog.rb’
=> true

>> dog = Dog.new('Bigelow')
Just made a new dog!
=> #<Dog:0x00000104c6f020 @name="Bigelow", @legs=4>

“Here, though, we’ve given Dog its own initialize method,
which Dog instances will use instead of the one inherited from
Animal,” the Queen continued.

INHERITING THE MAGIC OF RUBY 193

“Just like pirates used their own speak method instead of the
one from Person,” Ruben said.

“Exactly!” said the Queen. “We added our own puts statement
to the Dog initialize method to print out a message, but then
we used super to tell Ruby: ‘Okay! Now, use Animal’s initialize
method.’ All super does is call the version of the method from the
superclass! Since Animal’s initialize method sets the @name and the
@legs instance variables for us, you see not only @name="Bigelow"
but @legs=4!”

“Gracious me, that’s astounding,” said the King, who had
finally dried himself off. “Is there anything Ruby can’t do?”

“That’s nothing,” said the Queen. “Now the real fun begins.
We’ll use inheritance, method overriding, and super to create
some trusty friends to defend us against the intruders in our
kingdom!”

Protecting the Kingdom with
GuardDogs and FlyingMonkeys
“But before we do that,” said the Queen, “let’s get back to our
Dogs and Monkeys. First, I’ll redefine a Dog class, since it’s been
a bit since we looked at it.” She typed into her Computing
Contraption:

guard_dog.rb

class Dog < Animal
 attr_accessor :name

 def initialize(name)
 @name = name
 end

 def bark
 puts 'Arf!'
 end
end

194 CHAPTER 9

“Our Dog class inherits from Animal and will be initialized with
a name, and it will have a bark method to let it bark whenever it
likes,” said the Queen. “Next, I’ll create a brand-new class that
inherits from Dog. Let’s keep adding to guard_dog.rb!” She typed
into the Computing Contraption:

guard_dog.rb

class GuardDog < Dog

u attr_accessor :strength

v def initialize(name, strength)
 @strength = strength
 super(name)
 end

w def bark
 puts 'Stop, in the name of the law!'
 end

x def attack
 puts "Did #{rand(strength)} damage!"
 end
end

“Here, I’ve created a GuardDog class that inherits from Dog.
At u, we have an attr_accessor for :strength, so we’ll be able to
set and get the strength of our new guard dog. Next, I added an
initialize method at v that partly overrides the one from Dog:
it sets the GuardDog’s @strength, then calls super with just the name
to use Dog’s initialize method, which sets the @name. At w, I com-
pletely overrode the bark method from Dog and gave GuardDog its
own phrase to say.

Finally at x, I added a brand-new attack method that prints
out a string saying how much damage the dog did. That method
uses Ruby’s built-in rand method to choose a random number
between zero and whatever the GuardDog’s strength is.”

“Wow!” said Ruben. “That’s amazing! And I didn’t know you
could call super with arguments.”

INHERITING THE MAGIC OF RUBY 195

“Oh, yes,” said the Queen. “If you call super by itself, it calls
the superclass’s initialize method with all of the arguments the
subclass’s initialize method got. GuardDog takes one more argu-
ment than Dog—it takes strength as well as name—and that would
cause an error if we tried to give both of those to Dog, which is
created only with a name. So we call super with just name to make
sure that Dog’s initialize method gets the number of arguments
it expects.”

Every GuardDog Has His Day

“Now then,” the Queen continued, “let’s create a new GuardDog
and test it out!”

>> load('guard_dog.rb')
=> true
>> rex = GuardDog.new('Rex', 7)
=> #<GuardDog:0x0000010334e168 @strength=7, @name="Rex">
>> rex.strength
=> 7
>> rex.bark
Stop, in the name of the law!
=> nil
>> rex.attack
Did 1 damage!
=> nil
>> rex.attack
Did 4 damage!
=> nil

 “Now we’ve got a special kind of dog—a GuardDog—with its
own set of methods!” The Queen said. “We partly overrode
its initialize method because we wanted it to have strength,
but then we used super to finish creating it like a regular dog.
We overrode bark because we wanted our GuardDog to have the
bark method, then finished up by adding a completely new attack
method that GuardDogs have but Dogs don’t.”

“I’m starting to get it now,” said Ruben. “We use inheritance to
minimize the amount of code we have to retype, and we override

196 CHAPTER 9

methods when we want to make exceptions and give our sub-
classes special behavior!” The Queen nodded.

“Don’t forget super,” Scarlet said. “We use that when we want
to partly change the behavior of a method in a subclass, but not
completely replace it.”

The King furrowed his brow. “This makes sense, but could we
see a bit more?” he asked. “It’s an awful lot to keep in my head
all at once.”

Once More, with Feeling!

Ruben nodded. “Could we have one more example, just to be
sure we understand?” he asked.

“Of course,” said the Queen. “Here’s another example of
inheritance, method overriding, and super, this time using our
trusty Monkey class. Let’s make Monkey look like this,” she said,
and typed:

flying_monkey.rb

class Monkey < Animal
 attr_reader :name, :arms

 def initialize(name, arms = 2)
 @name = name
 @arms = arms
 end

 def make_sounds
 puts 'Eeh ooh ooh!'
 end
end

 “Here, we have a Monkey class. Using attr_reader, we can get
(but not change) our monkey’s name and number of arms, which
defaults to 2. We also have a make_sounds method that prints out
a string.”

“Looks pretty standard,” said the King.

INHERITING THE MAGIC OF RUBY 197

“Next,” the Queen continued, “we’ll create a FlyingMonkey class
that inherits from Monkey. We’ll keep adding to flying_monkey.rb!”
She typed into her Computing Contraption:

flying_monkey.rb

u class FlyingMonkey < Monkey
v attr_reader :wings

w def initialize(name, wings, arms = 2)
 @wings = wings
 super(name, arms)
 end

x def throw_coconuts
 coconuts = rand(arms)
 damage = coconuts * wings
 puts "Threw #{coconuts} coconuts! It did #{damage} damage."
 end
end

“For our FlyingMonkey class,” said the Queen, “we first inherit
from Monkey u. Next, we add an attr_reader for :wings so we know
how many wings our FlyingMonkey has v. We initialize the flying
monkey with a certain number of @wings, but then call super to
have the Monkey class take care of setting the @name and number
of @arms w. We then define a brand-new throw_coconuts method x
that uses Ruby’s built-in rand method to calculate how much
damage the flying monkey can do by throwing coconuts. The
number of coconuts is a random number between zero and the
flying monkey’s number of arms, and the damage is that num-
ber multiplied by the number of wings the monkey has, because
monkeys with more wings can fly higher.”

“Okay!” said the Queen. “Let’s create a flying monkey and
test out his methods.”

>> load 'flying_monkey.rb'
=> true

>> oswald = FlyingMonkey.new('Oswald', 6, 4)
=> #<FlyingMonkey:0x000001013d1718 @wings=6, @name="Oswald", @arms=4>

198 CHAPTER 9

>> oswald.make_sounds
Eeh ooh ooh!
=> nil

>> oswald.throw_coconuts
Threw 3 coconuts! It did 18 damage.
=> nil

“Amazing!” said Scarlet. “We create the FlyingMonkey by using
its own initialize method for wings, then letting Monkey finish
up by setting the name and number of arms. And because
FlyingMonkey inherits from Monkey, a flying monkey can not only
throw_coconuts but can also use Monkey’s make_sounds method!”

“Huzzah!” said the King. “I’ll bet that monkey is excellent at
throwing coconuts, too. Which I suppose is only natural for a fly-
ing monkey.”

“And I’ll bet he makes very good monkey sounds,” added
Ruben.

“I guess that makes sense,” said Scarlet, “but something’s
been bothering me: why does our GuardDog know how to talk?”

“He’s a very smart dog,” said the
Queen.

“Very,” said the King.
“Speaking of,” said the Queen, “I

think it’s high time we put our guard
dogs and flying monkeys to work!” She
pressed a button on the arm of her chair,
and her Computing Contraption began
to hum. In a matter of seconds, doors
slid open on all sides of her office, and
dozens of guard dogs and flying monkeys
emerged!

“Taco Tuesdays!” said the King. “And
I thought all these gadgets and hacking
conferences were a waste of time and
money.”

INHERITING THE MAGIC OF RUBY 199

“On the contrary,” said the
Queen. “I think they just might
save the kingdom!”

The King opened his mouth to
speak, but at that very moment,
a bright red telephone began
ringing madly on the Queen’s
desk. She picked it up. “Hello?”
she said. She waited a moment,
and then her eyes went wide.
“Stay right where you are! We’re
on our way!” She hung up and
jumped from her chair. “The
guards have news!” she said.
“They’re down in the Royal
Stables. Quickly now, let’s go!”

And with that, the four of them dashed from the Queen’s
office and headed for the stables out back, the guard dogs charg-
ing ahead and the flying monkeys following close behind.

The Queen’s Machine
This is getting exciting! While the King, the Queen, Ruben, and
Scarlet go catch the bad guys, let’s jump in and help the Queen
create a Ruby class to help keep all her royal business secret;
after all, there’s only so much GuardDogs and FlyingMonkeys can
do! I’m thinking some kind of login account for her Computing
Contraption that’s a bit more secure than what she’s been using
so far might be just what we need; we don’t want anyone break-
ing in again anytime soon. So, we’ll set up an Account class with a
password for the Queen to use to log in to her computer.

Let’s begin by making a new file called secrecy.rb and typing
the following code.

200 CHAPTER 9

secrecy.rb

u class Account
 attr_accessor :username, :password

v def initialize(username, password)
 @username = username
 @password = password
 end
end

w class SuperSecretAccount < Account
x def initialize(username, password)

 @reset_attempts = 0
 super(username, password)
 end

y def password=(new_password)
 while @reset_attempts < 3
 print 'Current password?: '
 current_password = gets.chomp
 if @password == current_password
 @password = new_password
 puts "Password changed to: #{new_password}"
 break
 else
 @reset_attempts += 1
 puts "That's not the right password."
 puts "Attempt #{@reset_attempts} of 3 used up!"
 end
 end
 end

z def password
 'The password is secret!'
 end
end

{ regular = Account.new('Your name', 'your password')
super_safe = SuperSecretAccount.new('Your name', 'your password')

| regular = Account.new('Your name', 'your password')
super_safe = SuperSecretAccount.new('Your name', 'your password')

INHERITING THE MAGIC OF RUBY 201

puts "Your regular account password is: #{regular.password}"
regular.password = 'Something else!'
puts "Your regular account password is now: #{regular.password}"

puts "If we try to see the secret account password, we get: #{super_
safe.password}"

changed_password = 'Something else!'

puts "Trying to change your secret account password to: #{changed_
password}..."
super_safe.password = changed_password

This is a long one, so let’s go through it step-by-step.
First, we create a basic Account class at u that sets up some

instance variables (check them out in the initialize method at v).
Instances of the Account class can have their @username and @password
read and changed by any Ruby code that happens to want to,
thanks to the attr_accessor for both :username and :password.

We’re off to a pretty good start! This code lets us create an
account for someone and lets that person set her password,
just as you might do for a website or your email. The problem,
though, is that this code lets any Ruby code change the user’s
password, which we definitely don’t want.

To fix that, we create our SuperSecretAccount class at w that
inherits from Account, and here’s where things get interesting.
First, SuperSecretAccount’s initialize method also takes a username
and password, and it passes these to super to let Account take care
of setting those instance variables x. The SuperSecretAccount also
creates a new instance variable, @reset_attempts, to keep track of
how many times a user tries to log in.

Next, the SuperSecretAccount class overrides the password=
method y (one of the two created by Account’s attr_accessor
:password), so it requires a user to enter her old password in
order to change it. If she enters the correct password, the pro-
gram updates the password and immediately breaks out of the
while loop; if she tries unsuccessfully three times, the program
exits without changing the password.

202 CHAPTER 9

After that, the SuperSecretAccount class overrides the password
method at z (the other one created by Account’s attr_accessor
:password) and makes it print the string The password is secret!
instead of giving up the password as it normally would. Finally,
we create a couple of accounts { and try getting and setting the
passwords |.

You can run the code in your file by typing ruby secrecy.rb
from the command line. Make sure you’re in the same folder as
your secrecy.rb file and type:

$ ruby secrecy.rb

Here’s the output I get (yours might be a little different,
depending on what you enter when you run the script):

u Your regular account password is: your password
Your regular account password is now: Something else!

v If we try to see the secret account password, we get: The password
is secret!

w Trying to change your secret account password to Something else!...
Current password?: lasers
That's not the right password.
Attempt 1 of 3 used up!
Current password?: ninjas
That's not the right password.
Attempt 2 of 3 used up!
Current password?: your password
Password changed to: Something else!

First, we see our program print out our regular account’s
password, followed by the new password after we change it u.
That was too easy!

Next, at v, we see that our secret account correctly hides
the password from prying eyes, printing out only The password
is secret! if we try to look at it.

Finally, we try to change our secret account password at w.
We put in two wrong passwords (lasers and ninja) before finally
entering the correct password, your password, and our Ruby pro-
gram prints out that we successfully updated our password to
Something else!.

INHERITING THE MAGIC OF RUBY 203

Feel free to play around with the code. What happens when
you try to get and set the password on the regular account in
secrecy.rb? What about when you try to change the super_safe one?

What happens if we try to set the password on our super_safe
account and pass in the correct current password? The wrong
one? Try passing in the wrong password a bunch of times. What
happens?

Once you’re done exploring the code, you can try think-
ing about all the cool stuff we could do to make it even bet-
ter. For example, what methods could we add to the Account
or SuperSecretAccount to make them even more useful? (Maybe a
reset_password method, in case you’ve completely forgotten your
password?) What methods might SuperSecretAccount override from
Account? Are there any that might use some of the functionality
of Account but not all of it? How could we go about doing that?
(Hint: super would be involved.)

Lastly, Ruby does have some built-in methods that can help
make your code more secure (or at least control which methods
can be called). If you like, you can read all about it in the Ruby
docs: http://ruby-doc.org/core-2.0.0/Module.html#method-i-private.

You Know This!
You learned some tricky stuff in this chapter, but I’m confident
you’ve got a good handle on it. Just to be sure, let’s go through it
all once more.

First, we reviewed how to create a Ruby class using the class
keyword.

class Greeting
 def say_hello
 puts 'Hello!'
 end
end

Next, you found out that Ruby classes can share informa-
tion and methods with each other through inheritance: just as a
person can inherit traits from her parents, one Ruby class can
inherit information and behavior from another. The class that

http://ruby-doc.org/core-2.0.0/Module.html#method-i-private

204 CHAPTER 9

does the inheriting is called a subclass or child class, and the
class it inherits from is called the superclass or parent class.

Inheritance syntax looks like this:

class Dog < Animal
 def bark
 puts 'Arf!'
 end
end

In this example, because Dog inherits from Animal, instances
of the Dog class (made with Dog.new) can use any of the methods
defined in the Animal class.

We also learned about method overriding and the super key-
word. Method overriding is just writing a method in a subclass
that has the same name as a method in the superclass; when
we create an instance of the subclass, it will use the subclass’s
version of the method instead of the superclass’s. You’d want to
override the superclass’s method any time you want different or
more specific behavior in the subclass. For example, say you’re
writing a game where your wizard is a hero (class Wizard < Hero),
and wizards use magic in their attack method instead of the
game’s default sword.

You can override a method like so:

class Hero
 def initialize(name)
 @name = name
 end

 def attack
 puts "Swung sword for #{rand(5)} damage!"
 end
end

class Wizard < Hero
 def attack
 puts "Cast spell for #{rand(20)} damage!"
 end
end

INHERITING THE MAGIC OF RUBY 205

We can see this in the following example: the hero’s pretty
good with a sword, but the wizard knows how to cast spells!

>> aragorn = Hero.new('Aragorn')
=> #<Hero:0x0000010334e398 @name="Aragorn">

>> aragorn.attack
Swung sword for 4 damage!
=> nil

>> gandalf = Wizard.new('Gandalf')
=> #<Wizard:0x000001033627f8 @name="Gandalf">

>> gandalf.attack
Cast spell for 17 damage!
=> nil

If we want to change only part of a method, we use super; we
add whatever extra functionality we want, then call super to call
the superclass’s version of the method, like so:

class Wizard < Hero
 def attack
 super # This calls Hero's attack method
 puts 'But I also know magic! You shall not pass!'
 end
end

The attack method is doing two things. First, it calls the
superclass’s version of attack using super (that is, the attack
defined in Hero that just prints the Swung sword message). Then it
prints an additional message (But I also know magic! You shall not
pass!). You’d do this when you want to modify the behavior of the
superclass’s method, but not replace it completely.

>> gandalf = Wizard.new('Gandalf')
=> #<Wizard:0x000001032d4278 @name="Gandalf">

>> gandalf.attack
Swung sword for 2 damage!
But I also know magic! You shall not pass!
=> nil

206 CHAPTER 9

Last but not least, you saw that you can call super with argu-
ments in order to send the right arguments to the superclass’s
method:

class Dog
 attr_accessor :name

 def initialize(name)
 @name = name
 end
end

 class GuardDog < Dog
 attr_reader :strength

 def initialize(name, strength)
 @strength = strength
 super(name)
 end
end

Now when we create a GuardDog, it adds its own @strength and
lets Dog take care of adding the @name:

>> mook = GuardDog.new('Mook', 2)
=> #<GuardDog:0x00000102fcfca8 @strength=2, @name="Mook">
>> mook.name
=> "Mook"
>> mook.strength
=> 2

All right! At this point, you’re a class master. Well, almost—
just as there are ways to update and change your methods, there
are ways to update and change your classes; you can even mix
behaviors from a bunch of different classes into the Ruby classes
you create! The last piece of the Ruby class puzzle is modules,
and if we hurry, we can get down to the Royal Stables just in
time to learn all about them.

Utter Panda-monium
The King, the Queen, Ruben, and Scarlet spiraled down
staircase after staircase toward the Royal Stables. Just
when Ruben and Scarlet thought there would be no end to
the twisty maze of stairs, the Queen reached a huge set of
heavy oak doors and threw them open. They all ran blink-
ing into the sudden light of the fields behind the palace, and
only a stone’s throw away stood the entrance to the Royal
Stables.

“Over here!” said the Queen. “Quickly now!”
They ran to the front gate of the stables, where two of

the Queen’s guards were waiting. Each held a very familiar-
looking Senior Apprentice to the Royal Plumber by the arm.

208 CHAPTER 10

“Haldo!” gasped Ruben.
“Now, now,” said the King. “I’m sure there’s a reasonable

explanation for all this.” Despite his words, the King looked
worried. He turned to Haldo. “Haldo, what in the name of the
Hashery’s glorious breakfast hash is the explanation for all this?”

Before Haldo could respond, the Queen approached the
guards. “Haldo isn’t who I saw in my Royal Office,” she said.
“There were four of them, and they were much shorter. Please
release him.”

The guards nodded and dropped Haldo’s arms.
“Thank you, Your Highness,” Haldo said, brushing himself off.
“Why are you down here at the stables?” asked the King.
“That’s what we were just asking him,” said the guard with

the crooked nose.
“I was trying to explain,” said Haldo. “You see, after search-

ing through the Ambrose Caverns and finding nothing, I returned
to my work as the Senior Apprentice to the Royal Plumber. I’d
learned so much from Scarlet and Ruben about Ruby, though,
that I could do a day’s work in just a few hours. I had a bit
of spare time on my hands, so I took on the job of Part-Time
Apprentice to the Royal Stableman as well.”

“Marvelous,” said the King, visibly relieved that Haldo
was not the villain they’d been chasing. “A veritable jack-of-
all-trades!”

A HORSE OF A DIFFERENT COLOR 209

“I’m not sure I’d go that far,” Haldo said, blushing slightly.
“Your Majesties,” said the guard without the crooked nose,

“we chased a group of hooded figures from the Queen’s office, but
lost track of them once they got out here to the stables. When
we saw what had happened, Haldo was the only one around.
We thought he might be involved, so we called the Queen.”
He shrugged. “Turns out Haldo had come out to see what the
trouble was and try to help.”

“One moment,” said the Queen. “When you saw what had
happened in the stables?”

The guards exchanged an uneasy look. “You’d better come
see,” said the guard with the crooked nose.

The group hurried into the stables.
The two guards pointed to the first stall,
and the King, the Queen, Ruben, and
Scarlet peered inside.

“Strangest horse I’ve ever seen,” said
the King.

“That . . . is a panda,” said Ruben.
“And it’s red!” moaned the Queen.

“Good heavens, what’s happened here?”
“It’s not supposed to be red?” Scarlet

asked.
“Not at all!” said the Queen. “All royal pandas are supposed

to be purple!” She ran to the next stall, then the next, then the
next. “This one’s blue!” she cried. “And this one’s yellow! Not
a single panda is purple!” She threw up her hands. “Whoever
heard of a Purple Panda-monium Parade with pandas of every
color except purple?”

“Wait, the pandas were purple, but now they’re not?” said
Ruben. “Aren’t they born purple?”

“And what, exactly, is the Purple Panda-monium Parade?”
Scarlet asked.

“One at a time,” said the Queen. She turned to Ruben “No,
the pandas aren’t born purple. They’re born white, but we feed
them special extra-nutritious food that turns them purple. As
for the parade,” she said to Scarlet, “We hold it once a month to
celebrate the peace and prosperity of the kingdom. We figure if

210 CHAPTER 10

there’s going to be a little craziness in our lives, we should at
least be in control of it.” She sighed. “Of course, given all the
chaos today, we won’t be able to hold the parade.”

“Not so fast,” said Scarlet. “I’ll bet we can fix this! It sounds
like someone must have tampered with the pandas’ food. Where
is it?”

“Over here,” said Haldo. “The food is prepared by the Panda
Provisionator 3000.”

They all walked past the rows of stalls to the far side of
the stable, where a huge round machine covered in dials and
switches hummed away. A familiar-looking screen glowed in its
center.

“A Computing Contraption!” said Ruben. “Does the Panda
Provisionator 3000 run on Ruby?”

“Absolutely,” said Haldo. “Ever since you kids helped me fix
the Mysterious Pipe, I’ve been learning as much Ruby as I can.
I daresay I’ve gotten pretty good,” he said, hooking his thumbs
behind the straps of his overalls. “I’ve even gotten the hang of
the Panda Provisionator here.”

“Could you tell us if someone’s messed with the pandas’
food?” Ruben asked.

“And can you fix it?” asked the Queen, looking anxious.

A HORSE OF A DIFFERENT COLOR 211

Creating Modules
“I think so,” said Haldo. “Let’s have a look.” He opened a file
called colorize.rb on the Computing Contraption, and this is
what the group saw:

module Colorize
 def color
 [:red, :blue, :green, :yellow].sample
 end
end

“Aha!” said Haldo. “I see the trouble here. Someone’s changed
the color method to return a random color as a symbol—either
red, blue, green, or yellow. That’s what the sample method does,”
he explained. “It picks a random item from an array.”

“That’s why the pandas are all different colors except purple!”
Ruben said. “But wait a minute—there’s nothing about panda
food in this file. And what does the first line mean?”

“That? That means this code is a module,” said Haldo, scratch-
ing his heavy black beard. “You can think of a Ruby module as a
bucket of handy information and methods that we can use when-
ever we need it.”

“It looks kind of like a class,” said Scarlet.
“It’s very much like a class!” said Haldo. “Like classes, mod-

ules have their own methods. In fact, that’s all modules really
are: just collections of methods!”

“Then what’s the difference between classes and modules?”
Ruben asked.

“Modules are actually exactly like classes, only we can’t make
new modules with the new method,” Haldo explained. “First, let’s
do a lightning-quick review of classes.” He started up IRB and
typed:

>> class FancyClass; end
=> nil

“That just creates a new, empty class called FancyClass,”
Haldo explained.

212 CHAPTER 10

“What’s that semicolon for?” Scarlet asked.
“It’s just a way of telling Ruby you’re done with a line of

code,” Haldo said. “Normally in IRB you do that by pressing
return or enter and starting a new line, but since our class and
module definitions are empty, we can just use the semicolon to
tell Ruby we’re done with one line and we’re starting a new one.”
He shrugged. “Some people don’t like to use semicolons. To each
her own! Now, let’s create an instance of our FancyClass.”

>> FancyClass.new
=> #<FancyClass:0x000001044d80c8>

“You’ve created instances of classes before, right?” Haldo
asked. Scarlet and Ruben nodded. “Good!” he said. “Now, let’s
create a module and try to create an instance of it.”

>> module ImportantThings; end
=> nil

>> ImportantThings.new
NoMethodError: undefined method `new' for ImportantThings:Module

“Trying to create an instance of a module causes an error
because modules don’t have the new method that classes do,”
Haldo said.

“So if you can’t create instances of a module,” Ruben said,
“what can you do with it?”

“I’ll show you!” said Haldo. “Let’s create a module of our
own.” He typed:

>> module Bucket
>> MAX_BITS_AND_TRINKETS = 100

>> def announcing_bits_and_trinkets
>> puts 'Step right up! Bits and trinkets available now!'
>> end
>> end
=> nil

“What’s MAX_BITS_AND_TRINKETS,” Scarlet asked, “and why is it in
all caps?”

A HORSE OF A DIFFERENT COLOR 213

Constants
“That’s a constant,” said Haldo. “Constants are like variables,
only their values don’t change once you set them. They start
with a capital letter—for example, class and module names are
constants—and while you technically can reassign them during
your Ruby program, Ruby will warn you if you do. See?” He
typed:

>> RUBY = 'Wonderful!'
=> "Wonderful!"

>> RUBY = 'Stupendous!'
(irb):2: warning: already initialized constant RUBY
=> "Stupendous!"

“When you create your own constant that isn’t a class or
module—that is, just a name for a value that won’t change—
you usually write it in ALL CAPS,” Haldo said.

“Can you use constants only inside modules?” Ruben asked.
“Nope!” Haldo said. “You can use them anywhere in your

Ruby program. I just bring them up now because class names
and module names are technically constants, since they start
with a capital letter.”

“That’s pretty cool,” said Scarlet, “but how do we get to our
ALL CAPS constants and methods if they’re stuck inside a
module?”

“I’m glad you asked,” Haldo said, smiling. “Let’s have a look!”
He typed some more:

>> class Announcer
>> include Bucket
>> end
=> Announcer

“Here, I’ve made an Announcer class that includes the Bucket
module. Our Bucket module contains a constant, MAX_BITS_AND_
TRINKETS, which is set to 100, and a method, announcing_bits_and_
trinkets, that prints some text on the screen.

214 CHAPTER 10

When we include a module in a class, the constants and
methods in that module can be used by any instance of the
class. Because we’ve included Bucket in Announcer, an Announcer
can now use any of the constants and methods defined in Bucket!
Let’s create an instance of Announcer and see what happens when
we use a method we defined in Bucket.”

>> loud_lucy = Announcer.new
=> #<Announcer:0x00000103f0c5b8>

>> loud_lucy.announcing_bits_and_trinkets
Step right up! Bits and trinkets available now!
=> nil

“Wow!” said Ruben. “loud_lucy knows how to use the
announcing_bits_and_trinkets method, even though it’s defined
in the Bucket module!”

Extending Your Knowledge
“Exactly!” said Haldo. “But include isn’t the only way to get con-
stants and methods defined in modules into other classes. Have
a look at this.” He typed some more:

>> class Announcer
>> extend Bucket
>> end
=> Announcer

>> Announcer.announcing_bits_and_trinkets
Step right up! Bits and trinkets available now!
=> nil

“If we extend the module Bucket into the class, then those
constants and methods can be used by the class itself,” Haldo
explained. “In this case, the class Announcer—instead of its
instance, loud_lucy— can use the method. You usually end up
wanting your instances to have the method rather than your
classes, so in my experience, you tend to include more often
than you extend.”

A HORSE OF A DIFFERENT COLOR 215

“Remember when I said there was a Ruby trick that lets you
mix the behavior of several classes into one?” asked the Queen.
“This is how you do it!”

Mixins and Inheritance
“Wait,” said Ruben. “So you can have a class that inherits from
another class and includes modules to add extra methods?”

“See for yourself!” replied Haldo, and he typed:

>> module Enchanted
>> def speak
>> puts 'Hello there!'
>> end
>> end
=> nil

“First, I’ve just created an Enchanted module with a single
speak method.”

>> class Animal
>> def initialize(name)
>> @name = name
>> end
>> end
=> nil

“Next, I’ve created an Animal class that takes care of setting
the names of the Animal instances we create.”

>> class Dog < Animal
>> include Enchanted

>> def bark
>> puts 'Arf!'
>> end
>> end
=> nil

“In the next step, I’ve created a Dog class that inherits from
Animal and includes Enchanted. If we’ve done everything right, our

216 CHAPTER 10

Dog instances should be able to use the Dog bark method and the
Enchanted speak method. Let’s try it now!”

>> bigelow = Dog.new('Bigelow')
=> #<Dog:0x000001049df148 @name="Bigelow">

>> bigelow.bark
Arf!
=> nil

>> bigelow.speak
Hello there!
=> nil

“When we use a module this way, we call it a mixin,” Haldo
said, “because you’re mixing new constants and methods into an
existing class. Basically, Dog now gets the powers of Animal and
Enchanted, even though it only directly inherits from Animal. We
can include as many classes as we like! Assuming we defined all
these modules somewhere, we could use them all in a row:

class Dog
 include Enchanted
 include Magical
 include AnythingWeLike
 # ...and so on and so forth
end

“So if you had a Dog class and the modules Enchanted, Magical,
and AnythingWeLike,” said the King, “if you were to make a dog
with the Dog class, that dog could use any of the methods defined
in Enchanted, Magical, or AnythingWeLike.”

“Exactly,” Haldo said. “We could also extend our class with as
many modules as we wanted.” He continued typing:

class Dog
 extend Enchanted
 extend Magical
 extend AnythingWeLike
 # ...and so on and so forth
end

A HORSE OF A DIFFERENT COLOR 217

“That’s amazing!” said Scarlet.
“But hang on just a second,” Ruben said. “That means that

somewhere on the Computing Contraption, there’s a file for the
panda food that includes the Colorize module?”

Requiring Another File
“Absolutely correct,” said Haldo. “It happens to be called
panda_food.rb. Take a look!” And he opened the file for them
all to see. “This is the code that controls the pandas’ food.”

NOTE The next few examples are just for you to follow along and
read for now—running this code as is will cause an error!
We’ll run this example ourselves later in the chapter.

require './colorize'

class PandaFood < Food
 include Colorize

 attr_reader :calories

 CALORIES_PER_SERVING = 1000

 def initialize
 @calories = CALORIES_PER_SERVING
 end
end

“Here’s how it works,” Haldo said. “Let’s pick one of the
pandas—Hogarth’s my favorite—and see if we can figure out
what’s going on with his food.” He opened up IRB and typed:

>> hogarths_food = PandaFood.new
=> #<PandaFood:0x00000104480850 @calories=1000>

>> hogarths_food.calories
=> 1000

218 CHAPTER 10

“attr_accessor gives us access to the @calories instance vari-
able, which is 1000,” Haldo explained. “Now let’s take a look at
the color!”

>> hogarths_food.color
=> :yellow

“Hmm,” said Haldo. “Can that be right? Let’s try it again.”

>> hogarths_food.color
=> :blue

“There you have it!” Haldo said. “You see? That’s our trouble.
Other Ruby programs running in the Panda Provisionator 3000
check the color of the panda food when they give instructions
to the machine to make it, and they’re getting colors like yellow
and blue, but not purple!”

“Then the pandas ate the food and changed color!” said
Ruben. “Wow, that must happen pretty quickly.”

Haldo nodded. “The pandas were just fed. It actually takes a
while for them to change from white to any other color, but once
they’ve taken on a color, eating different-colored food will make
their color change instantly.”

“So switching them back should be a piece of cake!” said
Scarlet. “We just need to change the color back to purple.” She
studied the screen for a minute. “Hey Haldo,” she said, “what’s
this require bit do?”

“I’m glad you caught that,” said Haldo. “The require method
pulls in Ruby code from a file outside the file you’re currently
working in! So you don’t need it for IRB when you’re just mess-
ing around, but if you’ve written out a Ruby file, you can use
require to pull in code from a separate file. You don’t even
need to type the .rb file extension; you just type require, then
the name of your file as a string, and you can use that code
immediately.”

A HORSE OF A DIFFERENT COLOR 219

He created a file called test_colors.rb and began typing:

u require './colorize'
v class TestColors
w include Colorize

end

test = TestColors.new
x puts test.color

Haldo closed the file. When he ran it with ruby test_colors.rb,
this is what they saw:

$ ruby test_color.rb
blue
$ ruby test_color.rb
yellow

“See?” Haldo said. “We can create our own file called
test_colors.rb, then require the colorize.rb file inside it u. Once
we do that, we can create our own TestColors class v, include the
Colorize module from the colorize.rb file we saw earlier w, and
then use the color method x!”

“Nice!” said Ruben. “But why do we need the ./ in front of
colorize?”

“That’s a little complicated,” said Haldo, “but the short answer
is that when you want to require a Ruby file, you need to tell Ruby
where to look for it. ./ says, ‘Look in this folder right here!’ If we
needed to require something from a folder outside the one we’re
in, we’d use two dots to tell Ruby to go up one folder. This can
be confusing,” Haldo finished, “so I drew a couple of pictures to
help myself remember. I think I still have them!” He rummaged
around in his pocket for a moment, then pulled out a piece of
paper, unfolded it, and showed it to the King, the Queen, Scarlet,
and Ruben.

220 CHAPTER 10

“I get it!” said Scarlet. “One dot and a slash means ‘look in
the current folder,’ two dots and a slash means ‘go up one folder
and look there,’ and anytime we need to go into folders within
folders, we just use folder names separated by slashes.”

“Exactly right,” said Haldo.
“But is there ever a time when you don’t need to use dots or

slashes?” she asked.
“That’s also a bit complicated,” said Haldo, “but the short

answer is yes. I can show you sometime, but there’s a way to use
the Internet to download collections of Ruby files other people
have written, called gems, to use in your own code!”

“That sounds amazing!” said Scarlet.
“It is!” said Haldo. “When we get to the bottom of this mystery,

I’ll be glad to show you.”
“I think I’ve got a handle on all this,” interrupted the King,

“but I’ve been wondering about constants since you brought
them up. Is including a module in a class the only way to get to
its constants?”

A HORSE OF A DIFFERENT COLOR 221

Looking Up Constants
“Not at all!” said Haldo. “Take a look.” He quickly typed into the
Computing Contraption:

>> module APocketFullofMethods
>> NUMBER_OF_METHODS = 42
>> end
=> nil

>> NUMBER_OF_METHODS
NameError: uninitialized constant NUMBER_OF_METHODS

>> APocketFullofMethods::NUMBER_OF_METHODS
=> 42

NOTE These examples will work if you try them out, so go ahead!

“Here, I’ve defined a module called APocketFullofMethods,” Haldo
said. “Inside it, I’ve put a constant, NUMBER_OF_METHODS, which equals
42. You see that if I try to get to NUMBER_OF_METHODS from outside the
module, I get a NameError, but if I type APocketFullofMethods::NUMBER_
OF_METHODS, I get 42!”

“Wonderful!” said the King.
“But what are those two colons in a row for?” asked Scarlet.
“Ah, I’ve seen this before,” said the Queen. “That’s the scope

resolution operator, right, Haldo?”
“Oh, yes,” said Haldo, “but I find that name a bit confusing.

Really, you can think of it as a way of looking things up: the four
dots look like two little sets of eyes. It’s how we specify which
module to look in to find something we’ve created.”

“That’s cool!” said Ruben.
“Isn’t it?” said Haldo, “Ruby modules are mostly good for two

things. The first, as I showed you, is mixing new behavior into a
Ruby class. The second is called namespacing. You can think of
it as making individual spaces for the things you name—mostly
methods and constants—to live in.” He pushed his sunglasses
up on his nose. “You see, if you define a method with a certain
name, and then define it again, Ruby replaces the old version of

222 CHAPTER 10

the method with the new one. But if you put a method inside a
module with the same name as a method or constant outside the
module, you can use them both!”

“Modules must create a new scope!” said Ruben. “So having
two methods with the same name and putting one in a module is
like having two identical sodas, only one’s in the fridge and the
other’s not. With methods, one’s in the module (the fridge) and
one isn’t, so you know which one’s which based on where it is.”

“Exactly,” said Haldo.
“And everything we just said about methods works for con-

stants, too, right?” asked Scarlet.
“It does!” answered Haldo.
“What happens if you put one module inside another?” asked

Ruben.
“You just need to keep using those :: dots,” said Haldo. “For

instance, if you had a module Pastel inside the Colorize module and
you wanted to get to the NUMBER_OF_PASTEL_COLORS constant inside the
Pastel module, you’d type Colorize::Pastel::NUMBER_OF_PASTEL_COLORS.”

“If things inside a module are namespaced, like you said,”
Scarlet asked, “does that mean you can have two things with
the same name, only one’s inside the module and one’s outside?”

“Absolutely!” Haldo said. He typed:

>> module Namespace
>> GREETING = 'Hello from INSIDE the module!'
>> end
=> nil

>> GREETING = 'Hello from OUTSIDE the module!'
=> "Hello from OUTSIDE the module!"

“Here, I’ve defined two constants with the same name:
GREETING. The first one is inside the Namespace module, and the
other is in the main scope, outside any module. Here’s how we
tell Ruby which one to get.” He typed some more:

>> GREETING
=> "Hello from OUTSIDE the module!"
>> Namespace::GREETING
=> "Hello from INSIDE the module!"

A HORSE OF A DIFFERENT COLOR 223

“I get it!” said Ruben. “The two colons tell Ruby which scope
to use!” He thought for a moment. “Can we do all of this for class
methods, too? I mean, if a module can contain methods created
with def, can’t it have methods that get added to the including
class with self.def?”

Haldo nodded. “You can use the scope resolution operator
to get class methods as well as constants, but in Ruby, we usu-
ally get class methods using the dot, and constants using the two
colons. Since the method is a class method,” he continued, “it’s
just like calling a method on a regular old object. Remember,
classes are objects! Here’s an example—we haven’t defined any
of these methods, so the code won’t run, but it would look some-
thing like this:

MyClass.fancy_class_method
MyClass::CLASS_CONSTANT

“Whew!” said the King, sitting down on a bale of hay. “I think
I’ve got all this—surprisingly.” Scarlet and Ruben grinned at
each other.

“What I don’t understand,” the King continued, “is how these
scoundrels broke the Colorize module so quickly. They were only
in the stables for a few seconds! How fast do they type?”

“I think I might have just found the answer,” said the Queen,
who had been inspecting the Panda Provisionator 3000. She
reached around to the side of the machine and pulled out a small
bit of scuffed metal.

“What’s that?” asked Haldo.
“This,” said the Queen, “is a Key-a-ma-Jigger. It’s a little

device you can preload code onto. Our mischief-makers must
have known something about how the Provisionator works and
preloaded some code onto this little machine to break it. They
just had to plug it in and run!”

“Sweet corn muffins!” said the King. “We’re up against
professionals.”

“I’ll say,” said Ruben, frowning. “How are we going to catch
them? They’ve got to be a mile away by now.”

The Queen had been studying the Key-a-ma-Jigger, and her
mouth curled into a small smile. “I think I know that, too,” she

224 CHAPTER 10

said. “Have a look! Key-a-ma-Jiggers are sold on little rings of
five, and this one still has the ring on it. That means this was
probably their last one!” She closed her fist around the tiny
machine. “My guess is that they need more, and there’s only
one place in the whole kingdom that makes Key-a-ma-Jiggers.”

“Where?” asked Scarlet, Ruben, and Haldo at the same time.
“Yes, dear, where?” asked the King.
“The Refactory!” replied the Queen.
“The Refactory!” said Haldo. “That’s in the center of the king-

dom. The Loop can take you there in just a few minutes!”
“Let’s go!” said the King. “We’ll take the express straight to

the center of the kingdom. Let’s catch these poisonous perpetra-
tors purple-handed!”

“To the Loop!” said the Queen. She turned to Haldo. “Haldo,
do you mind staying behind and fixing the Provisionator?”

“Not at all, Your Highness,” he said. “It shouldn’t take long.”
“Thank you,” said the Queen. She turned to the others and

said, “Quickly, now!” And with that, they ran out of the stables
toward the Loop platform on the hill next to the palace.

A Horse of a Different Color
Now that you know how modules work, you can help Haldo fix
up the Panda Provisionator and get all the pandas back to the
right color! With any luck, you’ll have them all fixed up in time
for the Purple Panda-monium Parade.

Let’s begin by making a new file called colorize.rb and typing
the following code. We’ll actually be making two files this time
around: one for the module and one for the class that includes it.

colorize.rb

module Colorize
 def color
 :purple
 end
end

A HORSE OF A DIFFERENT COLOR 225

First, we set up the Colorize module and created a very simple
color method that just returns the color we want (:purple).

In another file in the same folder on your computer, create
the panda_food.rb file and type the following code into it. It
might be a little weird writing two files instead of just one, but
there’s nothing here you don’t already know how to do!

panda_food.rb

u require './colorize'

v class Food
 def serve
 puts 'Food is ready!'
 end
end

w class PandaFood < Food
x include Colorize

 attr_accessor :calories

y CALORIES_PER_SERVING = 1000

 def initialize
 @calories = CALORIES_PER_SERVING
 end

 def serve
 puts 'One piping hot serving of panda food, coming up!'
 end

z def analyze
 puts "This food contains #{@calories} calories and is #{color}."
 end
end

{ hogarths_food = PandaFood.new
puts hogarths_food.analyze

226 CHAPTER 10

First, we require colorize.rb in our panda_food.rb file at u.
Next, we define a very simple Food v class that our PandaFood
class inherits from w, and we include the Colorize module in our
PandaFood class at x. We round it all out with a constant to tell us
how many calories are in each serving y and an analyze method
to tell us about the food’s calorie content and color z. (You can’t
be too careful when it comes to your food!) Finally, we create an
instance of PandaFood and call the analyze method on it {.

As always, try running the code in your file by typing ruby
panda_food.rb from the command line. Make sure you’re in the
same folder as your panda_food.rb file and type:

$ ruby panda_food.rb

You should see this:

This food contains 1000 calories and is purple.

Purple panda food! Our pandas are saved!
This should work for Haldo’s purposes nicely, but you can

make this code even better with a little elbow grease (which you
can purchase directly from the Refactory for the low, low price
of nine ninety-nine ninety-nine ninety-nine ninety-five). For
example, our Colorize module has only one method, and all it
does is return the color purple. How might we change the color
method to set whatever color we wanted? What other methods
might we want to add to Colorize?

We also don’t do a whole lot with our Food class—PandaFood
overrides the only method Food has! What else could we add to
Food to make it even better? (Hint: The possibilities are endless!)

Finally, remember the code Haldo saw on page 211 that had
been tampered with? It looked like this:

module Colorize
 def color
 [:red, :blue, :green, :yellow].sample
 end
end

A HORSE OF A DIFFERENT COLOR 227

If you’re feeling adventurous, try changing the code in your
colorize.rb file to this code and then rerun ruby panda_food.rb. See
how the color changes each time, just like our heroes saw?

You Know This!
I can tell you’ve got a great grasp on all this module business.
(I’m an excellent judge of many a character.) Let’s go over it one
more time, though, just to make sure I know it. Haldo did a lot
of explaining and I didn’t do any, so I want to be sure this is all
sealed up tight in my noggin.

First, we learned about modules and how they’re basically just
like classes, except you can’t create instances of them with the new
method. We saw that we could use modules as namespaces, which
is just a fancy way of saying they let us organize our code nicely,
like so:

module Bucket
 MAX_BITS_AND_TRINKETS = 100

 def announcing_bits_and_trinkets
 puts 'Step right up! Bits and trinkets available now!'
 end
end

We also learned about constants (like MAX_BITS_AND_TRINKETS),
which are just like Ruby variables, only their values aren’t sup-
posed to change. (You can change them, but Ruby will issue a
stern warning.) Constants are always CAPITALIZED.

We saw that we could also use modules as mixins by using
include or extend. When we use include, it adds all the methods in
the module to instances of whatever class is doing the including;
when we use extend, those module methods are added to the class
itself:

module Greetings
 def sailor
 puts 'Ahoy there!'
 end

228 CHAPTER 10

 def pirate
 puts 'Avast, ye salty dog!'
 end

 def robot
 puts 'BEEP BOOP WHAT IS UP'
 end
end

There, we’ve just created a Greetings module with a few meth-
ods. Next, we’ll create a Message class and include the Greetings
module:

class Message
 include Greetings
end

Then we’ll see that any instance of Message can use the meth-
ods defined in Greetings!

>> message = Message.new
=> #<Message:0x007fd6022c7948>

>> message.pirate
Avast, ye salty dog!
=> nil

If we extend Message with Greetings instead, then the Greetings
methods can be used by the Message class itself:

>> class Message
>> extend Greetings
>> end
=> nil

>> Message.robot
BEEP BOOP WHAT IS UP
=> nil

A HORSE OF A DIFFERENT COLOR 229

Remember, it’s the Message class itself that now has the robot
method, not an instance of Message! If we try to create an instance
of Message and call the robot method on it, we’ll get an error:

>> my_message = Message.new
=> #<Message:0x000001030cdf88>
>> my_message.robot
NoMethodError: undefined method `robot' for
#<Message:0x000001030cdf88>

But if a class includes Greetings, then instances of that class
have the method instead:

>> class Message
>> include Greetings
>> end

>> my_message = Message.new
=> #<Message:0x00000103108d18>
>> my_message.robot
BEEP BOOP WHAT IS UP
=> nil

By including modules into classes that already inherit from
other classes, we can get all the benefits of inheriting from mul-
tiple classes with the simplicity of having just one superclass:

module Enchanted
 def speak
 puts 'Hello there!'
 end
end

There, we’ve got our Enchanted module again with its tried-
and-true speak method.

class Animal
 def initialize(name)
 @name = name
 end
end

230 CHAPTER 10

class Dog < Animal
 include Enchanted

 def bark
 puts 'Arf!'
 end
end

We’ve seen this before: we just define an Animal class and a
Dog class that inherits from it. Dog has one method: bark.

>> bigelow = Dog.new('Bigelow')
=> #<Dog:0x000001049df148 @name="Bigelow">

>> bigelow.bark
Arf!
=> nil

>> bigelow.speak
Hello there!
=> nil

Finally, we see that Dog instances like bigelow can use bark
(which it got from Dog) and speak (which it got from Enchanted)!

This is all fine and dandy when our modules and classes are
in the same file, but what happens when they’re not? That’s
right: we can use require! To pull a file we wrote into another
file, we just use the require method and give it a string with
the name of the file we want (no .rb file extension necessary).
Remember, we need to use dots and slashes to tell Ruby where
to look: ./ means “look in the current folder” and ../ means “go
outside the current folder and look around.” If we want to go two
folders up, we’d use ../../; if we wanted to get at a file called
genius_idea_3.rb in the current folder but nested inside the
folders fancy_things and genius_ideas, we’d type ./fancy_things/
genius_ideas/genius_idea_3.

A HORSE OF A DIFFERENT COLOR 231

So for example, if we had colorize.rb in the same folder as the
following Ruby script, we’d write it like this:

require './colorize'
class Food < PandaFood
 include Colorize
 # ...and so on and so forth
end

Finally, you saw that we could use the scope resolution operator
to get at particular constants located in modules (even deeply
nested ones!), and we can simply use the dot syntax we’re used
to for getting ahold of class methods:

MyClass::AModuleInsideThat::YetAnotherModule::MY_CONSTANT
MyClass.some_method

With that, you now officially know everything there is to
know about Ruby classes and modules! (Okay, okay, there’s
always more to learn, but you know all the stuff you’d use to
write everyday Ruby programs.) You know so much Ruby, in
fact, that we’re going to take a short break from learning new
stuff to focus on rewriting some of the code we already know.
Rewriting your code so it still does the same thing but looks
nicer or runs faster is called refactoring, and—as luck would
have it!—that’s exactly what the Refactory is all about.

Refactoring at the Refactory
The King, the Queen, Ruben, and Scarlet leapt from the Loop
platform the moment it eased to a halt at the Center o’ the
Kingdom station and the doors whooshed open. They made
a beeline for the gleaming red metal gates of the Refactory,
which they could already see from the station exit.

“Right through here!” said the King. “Quickly now!” As
they approached, the two guards manning the gates hastily
pulled them open, trying to salute at the same time.

The four of them sped through the gates and down a long
paved road. The Refactory loomed ahead: a huge red metal
block of a building with a dozen chimneys puffing a pleasant-
looking pink smoke.

234 CHAPTER 11

They arrived at a large set of gleaming double doors that
were propped open. A warm red light shone from within.
Without hesitating, the King and Queen strode inside, and
Ruben and Scarlet followed.

“My good man!” called the King, waving at a man in a hard
hat holding a clipboard. “We’ve got an emergency! We need to
speak to the Foreman, posthaste!”

The man looked up and nearly dropped his clipboard. “Your
Majesty!” he said. “Of course, of course! Right away!” He dashed
off into the recesses of the Refactory, clutching his helmet to his
head with one hand and his clipboard with the other.

The King, the Queen, Ruben, and Scarlet stood in the entry-
way, catching their breath. Scarlet looked around. “Where are
we?” she asked.

“This is the main entrance to the Refactory,” said the Queen.
She nodded toward the glow coming from farther inside the
building. “Over that way is the Refactory floor, where all the
actual work takes place.”

“That’s where they make Key-a-ma-Jiggers?” asked Ruben.
The Queen nodded. “Among other things,” she said.

SECOND TIME’S THE CHARM 235

Ruben opened his mouth to ask
what else the Refactory made, but
at that instant, the young man in
the hard hat returned, followed by
a much older man with twinkling
eyes and a great big bushy beard.

“Your Majesty! Your Highness!”
the older man said to the King and
Queen, bowing to each in turn.
“What can I do for you?”

“Seal the factory!” said the Queen. “We have reason to believe
there are intruders in the Refactory, and they must be stopped!”

The bearded man nodded curtly and walked across the
Refactory’s narrow entryway to a bright red telephone. He
picked up the receiver and dialed a single digit. When he spoke
into the phone, his voice echoed throughout the entire Refactory:

seal all exits! this is not a drill!
seal all exits! this is not a drill!

The old man placed a hand over the phone’s receiver. “What
do these intruders look like?” he asked.

“We’re not sure,” said the Queen. “but there are four of them.”
The man nodded again and got back on the phone:

begin sector-by-sector search for four
intruders! detain any suspicious persons
and report immediately!

With that, he hung up the phone and strode back to the rest
of them, smiling.

“That should do the trick,” he said. “If there are any intruders
in the Refactory, my team will find them and call us at once.”

“Thank you so much!” said Scarlet. “But, um, who exactly
are you?”

“Why, I’m the Foreman, Rusty Fourman!” the man said, tip-
ping his hard hat. “I’m in charge of all operations here at the
Refactory.” He gestured to the young man who had fetched him.
“This is Marshall Fiveman, my right-hand man.”

“Pleased to meet you,” Marshall said.

236 CHAPTER 11

“Pleased to meet you, too!” said Ruben.
“Rusty has been running the Refactory for as long as I can

remember,” said the King.
“How long is that?” asked Scarlet.
“Oh, I don’t know,” said the King. “At least several days.”
“Years and years!” said Rusty, laughing. He tugged on his

beard and suddenly became serious. “I imagine these intruders
are what brought you out my way. I have no doubt we’ll catch
them soon, but do you know what they might be doing here?”

“Yes!” Scarlet said, fishing around
in her pocket. “Do you make these?” she
asked, holding out the Key-a-ma-Jigger.

Rusty peered at the small piece of metal
in her hand. “Well, yes, we do make Key-
a-ma-Jiggers here,” he said. “And a few
other things. Mostly, though, we’re in the
business of refactoring Ruby code.”

“Refactoring?” said Ruben.
“What’s that?”

“It’s basically when you rewrite your programs,” Rusty said.
“Rewrite them?!” Ruben said. “But I spent so much time writ-

ing them the first time! Why would I do it again?”
“Because you can make your code faster, easier to read, or

easier to update, and it still does the same work.” Rusty said.
He thought for a moment. “It might be easier if I show you. We
can do a few of the more common Ruby refactorings, and I think
you’ll get the idea pretty quickly.” He looked at his watch. “With
the factory sealed tight, it’s only a matter of time before my crew
finds your culprits. In the meantime, let’s refactor a little Ruby!”

The Foreman beckoned them closer and led them deeper into
the Refactory, toward the warm glow that turned everything
inside the building a deep red. He walked over to a long, arched
railing overlooking a gently bubbling pool of what looked like
molten red metal and opened up a familiar-looking machine—
a Computing Contraption! The King, the Queen, Scarlet, and
Ruben walked up to him as he began to type at the keyboard.

SECOND TIME’S THE CHARM 237

“Now then,” said Rusty, scratching his nose with one hand
and continuing to type with the other, “in all my years at the
Refactory, I’ve seen a lot of Ruby. Over time, I’ve found patterns
in the code that work very well, and patterns that don’t work so
well. Would you like to see a few of the good ones?” he asked.

“Absolutely!” answered the King.

Variable Assignment Tricks
“For example,” Rusty said, “I often see code where the person
who wrote it would like to set a variable to a particular value,
but only if the value hasn’t already been set. So I might write
something like this that checks whether a particular variable is
nil and, if so, sets it to a default value.” And he typed:

>> rubens_number = nil
=> nil

>> if rubens_number.nil?
>> rubens_number = 42
>> end
=> 42

“That looks perfectly all right to me,” said the King.
“Oh, it’s quite correct Ruby,” said Rusty, “and it will do

exactly what we think it will—because rubens_number is nil,
Ruby sets it to 42. But there’s a much clearer way to write it!”
He typed some more:

>> rubens_number ||= 42
=> 42

>> rubens_number
=> 42

“You can think of ||= as being a combination of || for ‘or’
and = for variable assignment,” said Rusty. “That combination

238 CHAPTER 11

says: ‘Set rubens_number to 42 if it doesn’t already have a value.’
It’s the same thing as typing this!” He typed some more:

>> rubens_number = nil
=> nil
>> rubens_number = rubens_number || 43
=> 43

“What if the variable does already have a value?” Scarlet
asked.

“Let’s find out!” said Rusty. He typed some more:

>> scarlets_number = 700
=> 700
>> scarlets_number ||= 42
=> 700
>> scarlets_number
=> 700

“In this case,” Rusty said, “scarlets_number already has a value
of 700, so ||= doesn’t do anything. As I mentioned, || means ‘or,’
and you’ve likely seen that = means ‘assign this value to a vari-
able.’” Scarlet and Ruben nodded.

“So,” Rusty continued, “when we write ||=, we’re telling
Ruby: ‘Hey! You should conditionally assign this value to this
variable.’ That’s just a fancy way of saying we want Ruby to use
the value it already knows or use the new value if the variable
isn’t set. For rubens_number, there was no value, so 42 was set; for
scarlets_number, we’d already set 700 as the value, so ||= 42 did
nothing.”

“But couldn’t we write this?” Scarlet asked, and typed:

>> rubens_number = 42 if rubens_number.nil?
=> 42

“Why, yes!” Rusty said, and his great bushy beard turned
upward as he smiled. “I wouldn’t necessarily use that code in
this example, since I can just as easily use ||=, but it’s a very
common refactoring to use inline ifs and unlesses in Ruby.”

SECOND TIME’S THE CHARM 239

“What do you mean by inline?” asked Scarlet.
“I’ll show you!” said the Foreman, and he typed more code

into the Computing Contraption:

>> if !rubens_number.nil?
>> puts 'Not nil!'
>> end
Not nil!
=> nil

“That’ll get the job done,” said Rusty, “but why use if and ! if
we can just use unless?”

>> unless rubens_number.nil?
>> puts 'Not nil!'
>> end
Not nil!
=> nil

“Now, that’s a bit better,” Rusty continued, “but it’s still more
lines of code than we need. If we’ve got an if or unless but no
else, we can write the whole thing in one line, like this.”

>> puts 'Not nil!' unless rubens_number.nil?
Not nil!
=> nil

“Now this is the best!” said Rusty. “Not only can we convert
if !s to unlesses, but we can also write unless on a single line
with the variable we’re testing!”

“And we can do that with if, too?” asked Scarlet.
“You bet!” said Rusty, and he typed:

>> puts '42! My favorite number!' if rubens_number == 42
42! My favorite number!
=> nil

“Now, just as with if, we can use else with unless,” said Rusty,
“but while if/else makes a lot of sense to me, I find unless/else
confusing.”

240 CHAPTER 11

Crystal-Clear Conditionals
“I agree,” said the King, rubbing his head. “So we should convert
if !s to unlesses, and we can make if or unless one line if there’s
no else?”

“Precisely,” said Rusty. “This is confusing:

>> unless rubens_number.nil?
>> puts 'Not nil!'
>> else
>> puts 'Totally nil.'
>> end
Not nil!
=> nil

“But this is clear as day!”

>> if rubens_number.nil?
>> puts 'Totally nil.'
>> else
>> puts 'Not nil!'
>> end
Not nil!
=> nil

“In fact,” Rusty continued, “we could write these as two one-
line statements—one if and one unless. I don’t think that’s as
easy to understand, but I’ll show it to you in case you’re curious.”

>> puts 'Not nil!' unless rubens_number.nil?
Not nil!
=> nil
>> puts 'Totally nil.' if rubens_number.nil?
=> nil

“Remember,” said Rusty, “puts returns nil, so that’s why we
see it after the =>. But since rubens_number is 42 and not nil, Ruby
doesn’t print 'Totally nil.'.”

SECOND TIME’S THE CHARM 241

“I think the if/else one is the easiest to understand,” said
Ruben, “but it’s still a lot of extra lines. If there is an else, is
there any simpler way to write it?”

“As it happens, there is,” said Rusty. “We can use a ternary
operator. It looks like this!”

>> puts 1 < 2 ? 'One is less than two!' : 'One is greater than two!'
One is less than two!
=> nil

“Sweet limbo of lost twist-ties!” cried the King. “What in our
peaceful kingdom is that?”

“It’s not nearly as scary as it looks. We’ll just use a question
mark followed by a colon in our code,” said Rusty. “In this case,
we want our code to print something out using puts. Next, we
give Ruby an expression: something that will either turn out to
be true or false. In this case, that’s 1 < 2.” Rusty scratched his
beard. “Then we write a question mark, followed by what Ruby
should do if the expression is true. Finally, we write a colon, fol-
lowed by what Ruby should do if the expression is false. Since 1
is less than 2, Ruby prints out One is less than two!” He thought
for a moment. “Really, you can think of it as writing an if/else,
just all on one line. The ? is like a shorthand if, and the : is like
a shorthand else.”

“That’s quite marvelous,” said the Queen, “but don’t you find
it a bit hard to read?”

“Sometimes,” admitted Rusty, “so I’ll often stick to a regular
if/else. But if it’s a very short bit of code, I’ll sometimes refactor
an if/else into a ? :.”

“What if the expression you want to check is a method with
a question mark?” Ruben asked. “Will the ternary operator
still work?”

“Oh, yes,” said Rusty, and he quickly typed:

>> bill = nil
=> nil
>> puts bill.nil? ? "Bill's nil!" : "Bill's not nil at all."
Bill's nil!
=> nil

242 CHAPTER 11

“That third line can look tricky with the two question marks
so close together,” said Rusty, “so you want to be a bit careful with
them. Remember, nil? is a built-in Ruby method that returns
true if the object it’s called on is nil and false otherwise.”

“It’s also important to remember that nil gets returned
because puts has no return value, not because it’s returning
bill!” said the Queen.

“Quite right, quite right,” said Rusty.
“This looks pretty good,” said Scarlet, squinting at the

Computing Contraption screen, “but I feel like a whole bunch
of ? : symbols in a row—or even if/elses!—would get hard to
read. Is there a good way to write code when Ruby should do a
lot of different things without our having to write ifs and elses
all over the place?”

when You Need a case Statement
“You’ve got a keen eye for refactoring,” said Rusty. “There is
something we can use to replace ifs and elses in Ruby. And
while I don’t find myself using it a lot,” he continued, “it can be
much more readable than a long chain of ifs, elsifs, and elses.
It’s called a case statement. Have a look!” He typed:

>> number = 1

>> case number
>> when 0
>> puts "Zero!"
>> when 1
>> puts "One is fun!"
>> when 2
>> puts "Two. It's true!"
>> when 3
>> puts "Three for me."
>> else
>> puts "#{number}? I don't know that one."
>> end

One is fun!
=> nil

SECOND TIME’S THE CHARM 243

“We use the case keyword to tell Ruby which variable to pay
attention to,” Rusty explained. “Then we can use when to say: when
this value is the case—that is, when this value is the variable
we’re looking at—do this thing!”

“And just like with if and unless, we use else to have Ruby do
something when nothing matches,” Ruben said.

“Exactly right,” said Rusty.
“But is this all case statements can do?” Marshall piped up.

“It seems to me it’s not that interesting to just have them check
whether a variable is a certain number.”

“Oh my, no,” said Rusty. “They can get mighty fancy!” He
typed:

>> number = 7

>> case number
u >> when 0

>> puts "That's definitely zero."
v >> when 1..10

>> puts "It's a number between 1 and 10, all right."
w >> when 42

>> puts "Ah yes, 42. My favorite number!"
x >> when String

>> puts "What? That's a string!"
>> else
>> puts "A #{number}? What in the world is a #{number}?"
>> end

It's a number between 1 and 10, all right.
=> nil

“We can check whether a number is a certain value like 0 (u)
or 42 (w), whether it falls in a range (v), or even whether it’s an
instance of a particular class, like String (x),” said Rusty. “case
statements can quickly do a lot of work that if and else would
take a long time to handle.”

“That is quite fancy,” said the King, “but if there’s anything
I’ve learned from Ruby, it’s that the most delightful moments
are when I can get something done without having to write out
every last detail. Are there any refactorings like that?”

244 CHAPTER 11

Simplifying Methods
“I thought you’d never ask,” said the Foreman. “This is an old
one, but a good one. Do you know about methods and return?”

They all nodded.
“Perfect,” he said. “As you may or may not know, Ruby

methods will automatically return the result of the last bit of
code they evaluate. That means that if you want your method
to return the last expression it evaluates, you can leave off the
return keyword completely. Let’s define a method that simply
checks if the argument it gets is true.”

>> def true?(idea_we_have)
>> return idea_we_have == true
>> end
=> nil

“Now, that’ll return true if idea_we_have is true and false if it
isn’t,” Rusty said, “but it turns out that Ruby automatically
returns the result of the last bit of code it runs. We don’t need
return at all!”

>> def true?(idea_we_have)
>> idea_we_have == true
>> end
=> nil

“Ah, yes!” said the King. “I think we’ve seen this bit of Ruby
wizardry before.”

“All right,” said Rusty, “but try this one on for size. If you
have an expression that will give you back a Boolean—that is,
it will end up being true or false—you don’t have to compare it
to true or false with ==. That’s just an extra step! You can just
return the variable that will be true or false itself.” He typed into
the Computing Contraption:

>> def true?(idea_we_have)
>> idea_we_have
>> end
=> nil

SECOND TIME’S THE CHARM 245

>> most_true_variable = true
=> true

>> true?(most_true_variable)
=> true

“most_true_variable is true, and since our method automatically
returns whatever argument gets passed in, it returns true,” the
Foreman explained.

“Wonderful!” said the Queen. “I
love how simple that method was.
But will this work only for vari-
ables that are true or false?”

Rusty nodded. “Though there’s
another good refactoring that will
let us determine whether a Ruby
value is truthy or not.”

“Truthy?” asked Ruben and
Scarlet together.

“Truthy!” said Rusty. “When I
say a Ruby value is truthy, what I
mean is: this value is not false or
nil. Remember how those two val-
ues work with if and unless?” he
asked, and he typed:

>> my_variable = true
=> true

>> puts 'Truthy!' if my_variable
Truthy!
=> nil

“Because my_variable is true and true is a truthy value, the if
statement code runs and Ruby prints out 'Truthy!',” Rusty said.
“Now let’s see what happens if we do the same thing with false.”

>> my_variable = false
=> false

246 CHAPTER 11

>> puts 'Truthy!' if my_variable
=> nil

“Nothing!” said the King.
“That’s right,” said the Foreman. “my_variable is false, so

'Truthy!' doesn’t get printed out on the screen. The same thing
happens with nil.”

>> my_variable = nil
=> nil
>> puts 'Truthy!' if my_variable
=> nil

“Nothing was printed for false or nil because they’re falsey
values; every other value in Ruby is truthy,” Rusty explained.
“Have a look!” He typed some more:

>> my_variable = 99
=> 99

>> puts 'Truthy!' if my_variable
Truthy!
=> nil

“You’ll see, though, that nil and false aren’t exactly the same,
and 99 and true also aren’t exactly the same.” He typed again:

>> nil == false
=> false

>> 99 == true
=> false

“But!” he exclaimed, raising a single finger, “we can turn
a truthy value into true and a falsey value into false with a
simple !!. You see, the first ! makes Ruby return a Boolean,
but since ! means ‘not,’ it’s the opposite of what you want.
The second ! fixes this by undoing the opposite you got from

SECOND TIME’S THE CHARM 247

the first one!” The King, Scarlet, Ruben, and even the Queen
looked puzzled. “Here, I’ll show you,” the Foreman offered, and
he typed into the Computing Contraption:

>> truthy_value = 'A fancy string'
=> "A fancy string"

>> falsey_value = nil
=> nil

>> truthy_value
=> "A fancy string"

>> !truthy_value
=> false

>> !!truthy_value
=> true

“So truthy_value is a string,” said Scarlet, “and since it’s not
false or nil, if you put it in an if statement, the code will run.”

“Right,” said Rusty.
“So,” Scarlet said, “!truthy_value is false, and not !truthy_value—

that is, !!truthy_value—is true!”
“You’ve got it!” said Rusty. “Now, here’s how it works for

falsey values.”

>> falsey_value
=> nil

>> !falsey_value
=> true

>> !!falsey_value
=> false

“It’s just the opposite!” said Ruben. “nil is falsey, so !nil is
true and !!nil is false.”

248 CHAPTER 11

“Exactly,” said the Foreman. “We could even write a method
to see if something is truthy, like this.”

>> def truthy?(thing)
>> !!thing
>> end
=> nil

>> truthy?('A fancy string')
=> true

>> truthy?(nil)
=> false

“In this case, we’ve defined a truthy? method that takes a
single argument, thing,” said Rusty. “Then we call !!thing: the
first ! returns false if thing is truthy and true if thing is falsey.
Since this is the opposite of what we want, we use !! to make our
method return true if thing is truthy and false if thing is falsey.”

“That’s amazing!” said Scarlet.
“Isn’t it?” said Rusty. “Once we’ve defined truthy?, we can call

it on 'A fancy string' to see that it’s a truthy value, then on nil to
see that nil is falsey.”

“What else can we do to make our Ruby programs shorter
and clearer?” Ruben asked.

“Well, this one might seem obvious,” said Rusty, “but it’s
actually one of the hardest parts of programming—giving vari-
ables, methods, and constants good names!”

“What do you mean?” said Marshall, who was scribbling furi-
ously on his clipboard.

“Well, let’s use our truthy? method as an example,” Rusty
said. “Check out what would’ve happened if we’d picked a clum-
sier name.” He quickly typed:

>> def is_this_a_truthy_thing_or_not?(thing)
>> return !!thing
>> end
=> nil

“That looks terrible,” said the King.

SECOND TIME’S THE CHARM 249

“Yes, it does,” said Rusty. “Not only that, but it also has an
extra return that we don’t need. The simpler method is much
nicer.”

>> def truthy?(thing)
>> !!thing
>> end
=> nil

“Aha! I see,” said the King. “We want to give the Ruby objects
we create simple, easy-to-remember names so we type less code
and make fewer mistakes when we want to reference our code
later.”

“Bingo!” said Rusty. “Imagine if we had to type is_this_a_
truthy_thing_or_not? every time we wanted to check if a value
was truthy. It’d be pure madness!”

“How else can we cut down on rewriting code?” asked
Marshall.

De-Duplicating Code
“Well, one nice way is to remove duplicated code whenever we
can!” said Rusty. “It’s much too easy to cut and paste code all
through our programs, which then makes it very hard to change
those programs if variable names or values change. Take a look
at this,” he said, typing:

>> def king?(dude)
>> if dude == 'The King'
>> puts 'Royal!'
>> else
>> puts 'Not royal.'
>> end
>> end
=> nil

>> def queen?(lady)
>> if lady == 'The Queen'
>> puts 'Royal!'

250 CHAPTER 11

>> else
>> puts 'Not royal.'
>> end
>> end
=> nil

“I’ve defined two methods here,” said Rusty. “The first one,
king?, checks whether the argument passed in is 'The King'; if
so, it puts 'Royal!', and otherwise it puts 'Not royal.'. I’ve also
defined a second method, queen?, that checks whether the argu-
ment passed in is 'The Queen'. See how much of that code is
repeated?” Rusty continued. “It was very boring to type, and
what’s more, if we want to change any of the messages that get
printed out, we have to do it in two places! I’d much rather type
this,” he said, and so he did:

>> royal?(person)
>> if person == 'The King' || person == 'The Queen'
>> puts 'Royal!'
>> else
>> puts 'Not royal.'
>> end
>> end
=> nil

“Now we’ve got one method that does the work of two,”
Rusty said.

>> royal?('The King')
Royal!
=> nil
>> royal?('The Queen')
Royal!
=> nil
>> royal?('The jester')
Not royal.
=> nil

“I like that a lot better,” said Ruben. “And we could have
written that with the ternary operator if we wanted, right?”

SECOND TIME’S THE CHARM 251

“Of course!” said Rusty. “We can get to that in a little while,
if you like.”

“Before we do,” interrupted the King, “I worry that if we go
too far down this road of combining methods, we might get meth-
ods that do too much work and are very hard to think about.”

“Happens all the time!” said the Foreman. “While it’s true
that you often want to write the least amount of code you can,
sometimes you end up writing very large, hard-to-think-about
methods that really should be broken up into smaller pieces.
Take a look at this method that came through the Refactory
just the other day,” he said, and he typed into the Computing
Contraption:

>> list_of_numbers = [1, 2, 3, 4, 5]
=> [1, 2, 3, 4, 5]

>> def tally_odds_and_evens(numbers)
>> evens = []
>> odds = []
>> numbers.each do |number|
>> if number.even?
>> puts 'Even!'
>> evens.push(number)
>> else
>> puts 'Odd!'
>> odds.push(number)
>> end
>> end

>> puts "#{evens}"
>> puts "#{odds}"
>> end
=> nil

“First, it sets up a few variables,” Rusty said. “The evens
array stores even numbers, the odds array stores odd numbers,
and the list_of_numbers stores the numbers to check for evenness
or oddness.”

“Next, the tally_odds_and_evens method iterates over a list
of numbers and checks to see whether each one is even or odd

252 CHAPTER 11

with Ruby’s built-in even? and odd? methods. For each number,
tally_odds_and_evens prints out whether it’s even or odd, then
adds it to the appropriate array.”

>> tally_odds_and_evens(list_of_numbers)

Odd!
Even!
Odd!
Even!
Odd!
[2, 4]
[1, 3, 5]
=> nil

“As you can see,” Rusty said, “it’s pretty complicated.”
“I’ll say!” said the King. “I can hardly follow a word of it.”
“It might be easier if we broke down this big method,

tally_odds_and_evens, into a few smaller, well-named ones,”
said Rusty, and he typed:

>> list_of_numbers = [1, 2, 3, 4, 5]
=> [1, 2, 3, 4, 5]

>> def tally_odds_and_evens(numbers)
>> evens = []
>> odds = []
>> numbers.each do |number|
>> alert_odd_or_even(number)
>> update_tally(number, evens, oddsna)
>> end

>> puts "#{evens}"
>> puts "#{odds}"
>> end
=> nil

“First, we’ll rewrite the tally_odds_and_evens method. We’ll
move the code that prints Odd! or Even! to its own method, alert_
odd_or_even, and we’ll move the code that updates the tally to

SECOND TIME’S THE CHARM 253

its own method, update_tally. We’ll write each method in just a
minute,” Rusty said.

“That makes sense,” said the King.
“Next, we’ll take out the part that writes Odd! or Even! on the

screen and wrap it up in a method called alert_odd_or_even. In
fact, we can use the ternary operator we learned about to make
it a one-line method!”

>> def alert_odd_or_even(number)
>> puts number.even? ? 'Even!' : 'Odd!'
>> end
=> nil

“After that,” Rusty continued, “we’ll put the code that updates
the evens and odds arrays into its own method, update_tally.”

>> def update_tally(number, evens, odd)
>> if number.even?
>> evens.push(number)
>> else
>> odds.push(number)
>> end
>> end
=> nil

“That’s the same code we had before, just wrapped up in its
own method. It makes the overall tally_odds_and_evens method
look much better, though, and it still works the same way,”
Rusty explained.

>> tally_odds_and_evens(list_of_numbers)

Odd!
Even!
Odd!
Even!
Odd!
[2, 4]
[1, 3, 5]
=> nil

254 CHAPTER 11

“Overall, it’s a bit more code,” Rusty admitted, “but now it’s
clearer what’s doing what, and we can change what gets printed
out or how we update our lists of even and odd numbers inde-
pendently from one another if we want to.”

“Excellent!” said the King, beaming. “I like my Ruby methods
to be just like me: short and simple!” The Queen, Ruben, and
Scarlet stifled a laugh.

Rusty pushed his hard hat up on his head. “That’s all the
refactoring I can think of off the top of my head,” he said. He
looked at his watch again. “I’m surprised we haven’t heard back
from any of the search teams yet. What were you telling me
these ne’er-do-wells were after?” He thought for a moment, then
snapped his fingers. “Ah, yes! Your Key-a-ma-Jigger. That’s why
you’re here in the first place, I take it?”

“Yes!” said Scarlet. “We found this plugged into the Panda
Provisionator 3000 over at the Royal Stables, and we thought
that it might be the last one our mysterious bad guys had, so
they might have come back here for more.” She held the small
piece of metal out to the Foreman once more.

Rusty nodded. “Yes, that’s one of ours,” he said. “And if your
troublemakers are looking for more, they’d almost certainly be
trying to get into the Vault of Tricky Things and Trinkets!”

“My word!” said the Queen. “What’s that?”
“It’s where we keep a large number of items,” said Rusty,

“like Ruby code we’ve found particularly hard to refactor and
various things and trinkets. It’s also where we keep a lot of our
inventory, including our Key-a-ma-Jiggers.”

The King struck his palm
with his fist. “If that’s where the
Key-a-ma-Jiggers are, I’m sure
that’s where we’ll find our cul-
prits!” he said. “Could you call
down and have your teams head
there right away?”

No sooner had the King asked
than the Foreman’s red telephone
began ringing off the hook.

SECOND TIME’S THE CHARM 255

Rusty ran to the phone and picked it up. “Hello?” he said.
He listened intently for a moment, then gasped. He covered the
receiver with his hand. “One of my teams caught four intruders
down by the Vault!” he said. He put the phone to his ear again,
then sighed deeply. “All right,” he said. “Send every available
worker. And hurry!” He hung up.

“What was it?” asked the Queen. “Did your team catch them?”
“No,” groaned the Foreman, “they’ve escaped!” The Queen’s

face fell; the King covered his face with his hands; Scarlet and
Ruben turned to each other, mouths open.

“But!” Rusty said, holding up a single finger, “every one of my
workers is in hot pursuit. Our four villains were seen heading
straight for the Refactory’s loading docks, and that’s a one-way
street! We’ll have them surrounded faster than you can rename
a Ruby method.”

“Then what are we waiting for?” said the Queen. “Let’s go
see who we’ve been chasing all this time!” And with that, all
five of them charged off to the loading docks in the depths of
the Refactory.

Re-Refactoring
Practice makes perfect! Now that you’ve learned a whole bunch
of ways to make your Ruby code even shorter and simpler to
read, it’s time to apply them to a couple of particularly gnarly
methods. Not to worry, though: if you didn’t have any trouble
with the refactorings we saw earlier, these’ll be a breeze! (Even
if you stumbled here and there, you’ll be a refactoring master by
the time you’re through with these examples.)

Let’s begin by making a new file called first_try.rb and
typing the following code. We’ll actually be making two files
this time: one for the initial code and one for the refactoring
we’ll do. first_try.rb defines a method, all_about_my_number, and
sets the number to 42 if no number is passed in. After that, it
prints some information about the number, including what the
number is and whether it’s positive, negative, or zero.

256 CHAPTER 11

first_try.rb

def all_about_my_number(number)
 if number.nil?
 number = 42
 end

 puts "My number is: #{number}"

 if number > 0 == true
 return 'Positive'
 elsif number < 0 == true
 return 'Negative'
 else
 return 'Zero'
 end
end

If this doesn’t look like great code to you, don’t worry! We’re
about to refactor it. In the same folder on your computer, create
another file called refactored.rb and type the following code
into it. This code will do exactly the same thing as the code in
first_try.rb, but it will look much nicer.

refactored.rb

def describe_number(number)
 number ||= 42

 puts "My number is: #{number}"

 sign(number)
end

def sign(number)
 case
 when number > 0
 'Positive'
 when number < 0
 'Negative'

SECOND TIME’S THE CHARM 257

 else
 'Zero'
 end
end

As always, you can run the code in your file by typing ruby
first_try.rb and ruby refactored.rb from the command line. Since
we made two files in the previous chapter and there’s no new
code here, there shouldn’t be any big surprises! (Though there
may be some small ones.)

The first difference you’ll probably notice is in the case state-
ment; earlier, we did something like this:

case number
when 0
 puts 'Zero!'
... and so on

And now we’re doing this:

case
 when number > 0
... and so on

These are both 100 percent correct Ruby. If you have a
variable and you just want to check whether it equals a certain
value, is a certain class, or is in a certain range, you’d use the
first syntax; if you want to do specific checks on a value (like
number > 0), you’d use the second one.

You probably also saw that we skipped right over some refac-
torings. For instance, we removed the == check from lines like
if number > 0 == true. Sometimes you’ll start to refactor one way,
then realize there’s an even better way to do it! Other times
there are a whole bunch of ways to refactor your code that are
all equally good, and you just happen to pick one over another.

Finally, we managed to pull out a bunch of repetition (includ-
ing some return statements that we can let Ruby handle implic-
itly!) and broke out the code that checks the sign of a number
(positive, negative, or zero) into its own method.

258 CHAPTER 11

How could we make this refactoring even more awesome?
There are probably an unlimited number of ways, but here are
a few to get your gears turning. For example, we refactored the
nil? check into an ||=. This works okay, but is there something
else we could do? (Hint: We learned about setting default argu-
ments in Chapter 7.) Also, we have an if/else statement that
we converted to a case, but would it have made sense to use a
ternary operator somewhere instead? Why or why not? Explain
your answer in 6,000 words or more. (Hint: Don’t do that—it
would be unbelievably boring.)

One more example to bake your noodle: we don’t do any
checking to make sure that the argument that gets passed to
our method really is a number. What happens if we put in a
Boolean? A string? What could we do to refactor our method
so it would be okay with non-number inputs?

You Know This!
Okay! It might have seemed at first that this chapter wouldn’t
have a whole lot to offer—after all, we’re just rewriting the sort
of code that we’ve been writing all along—but it turns out that
rewriting our Ruby code can be even more challenging than
writing it the first time. Just to make sure you’re up to those
challenges (hint: you absolutely are), let’s go over the refactor-
ings we covered one more time.

First, you saw that we can set a value conditionally with ||=.
In other words, we can tell Ruby to set a value for a variable if
that variable doesn’t already have one, but to use the existing
value if it does:

>> my_variable ||= 'pink smoke'
=> "pink smoke"

>> my_variable
=> "pink smoke"

SECOND TIME’S THE CHARM 259

Here, my_variable isn’t already set, so ||= sets it to 'pink smoke'.
If the variable already has a value, though, ||= won’t change it.
Check it out!

>> your_variable = 'blue smoke'
=> "blue smoke"

>> your_variable ||= 'pink smoke'
=> "blue smoke"

>> your_variable
=> "blue smoke"

You also saw that we can replace if ! with unless:

>> if !my_variable.nil?
>> puts 'Not nil!'
>> end
Not nil!
=> nil

>> unless my_variable.nil?
>> puts 'Not nil!'
>> end
Not nil!
=> nil

And you saw that we can even put an if or unless inline if we
don’t need an else:

>> puts 'Not nil!' unless my_variable.nil?
Not nil!
=> nil

If an else is involved, it’s usually better to stick to a regular
if/else.

>> if true
>> puts 'True!'
>> else
>> puts 'False!'
>> end

260 CHAPTER 11

True!
=> nil

However, for very short if/elses, sometimes it makes sense to
use the ternary operator, like so:

>> puts true ? 'True!' : 'False!'
True!
=> nil

You learned that we can even use the ternary operator with
methods that have question marks in them! Just be sure to use
two question marks: one that’s part of the method name and one
that’s part of the ternary statement:

>> jill = nil
>> puts jill.nil? ? "Jill's nil!" : "Jill's not nil at all."
>> Jill's nil!
=> nil

We also talked about replacing long chains of if/elsif/else
with case statements. A case statement takes a variable and does
different things depending on its value:

>> random_trinket = 'plastic cup'
=> "Plastic cup"

>> case random_trinket
>> when 'plastic cup'
>> puts "Plastic cup's on the up and up!"
>> when 'pet ham'
>> puts "A pet ham! What are you, an elf?"
>> when 'star monkey'
>> puts "I've always wanted one of those!"
>> else
>> puts "A #{random_trinket}, huh? Never heard of it!"
>> end
Plastic cup's on the up and up!
=> nil

SECOND TIME’S THE CHARM 261

Next up, we reminisced about Ruby’s implicit return. Ruby
methods automatically return the result of the last bit of code
they evaluate, so these two methods do exactly the same thing:

>> def number_42?(number)
>> return number == 42
>> end
=> nil

>> number_42?(42)
=> true

>> number_42?(43)
=> false

>> def number_42?(number)
>> number == 42
>> end
=> nil

>> number_42?(42)
=> true

>> number_42?(43)
=> false

Next, you found out that when we’re using variables that are
Booleans (true or false), we can just return those variables directly
instead of comparing them to true or false with ==. This works:

>> def thing_true?(thing)
>> thing == true
>> end
=> nil

But this does the exact same thing and uses a little less code:

>> def thing_true?(thing)
>> thing
>> end
=> nil

262 CHAPTER 11

>> the_truest_thing_ever = true
=> true

>> thing_true?(the_truest_thing_ever)
=> true

In fact, we can get the truthiness of any Ruby value by using
two “not” symbols (!) in front of the object. A truthy Ruby value
will act like true in an if statement, and a falsey one will act like
false. All Ruby values are truthy except for false and nil. Truthy
values run the code in the if statement:

>> if true
>> puts 'Woohoo!'
>> end

Woohoo!
=> nil

And falsey ones don’t:

>> if false
>> puts 'A waltz.'
>> end
=> nil

Nothing happens! Nothing happens with nil, either:

>> if nil
>> puts 'A dill (pickle).'
>> end
=> nil

Since all values except false and nil are truthy, a regular
string will be truthy in an if statement:

>> if 'fancy string'
>> puts 'For a fancy king!'
>> end

For a fancy king!
=> nil

SECOND TIME’S THE CHARM 263

You can always check the truthiness of a value in Ruby
with !!:

>> !!nil
=> false

>> !!'fancy string'
=> true

I also mentioned something you probably already knew in
the back of your mind: giving good names to our constants, vari-
ables, and methods is important! See how much better the sec-
ond method name is than the first?

>> def is_this_value_truthy?(value)
>> !!value
>> end
=> nil

>> def truthy?(value)
>> !!value
>> end
=> nil

Last but not least, you saw that removing duplicated code
and breaking our programs apart into small methods that do
very specific jobs can make our Ruby code easier to write, under-
stand, and change. The more code you read, the more you’ll see
this is true, so don’t hesitate to ask your local adult to help you
find snippets of Ruby code on the Internet to read through!

Speaking of bits of code, we’re about to see a fresh delivery
of Ruby syntax when we follow the King, the Queen, Scarlet,
Ruben, and Rusty down to the loading docks. The constant
picking up and dropping off that occurs down there will be a
perfect opportunity to explore Ruby input and output—also
called I/O—and we just might catch our first glimpse of the
evil doers who have been turning this peaceful kingdom com-
pletely upside down.

File Input and Output
Ruben looked around him and sighed. “Why did we run all
the way here if the freight elevator goes so slow?” he asked.

“You know,” said the King, rubbing his beardy chin,
“I really don’t know. But I imagine it’ll be here any minute!”

No sooner had the King spoken than the freight elevator
arrived with a great clang. The doors slid open, revealing a
huge metal elevator car.

“All aboard!” said Rusty, and they all climbed in. Rusty
punched a round red button labeled loading docks, and with
another clang, the car began to slowly descend into the heart
of the Refactory.

“We’ll be there in a jiffy,” Rusty said.
“A slow jiffy,” Scarlet said. Ruben stifled a laugh.

266 CHAPTER 12

“Not to worry,” Rusty said. “Every worker in the Refactory is
down there, so there’s no chance those villains’ll escape!”

The King paced around the elevator car. “I can’t wait to ques-
tion those scoundrels,” he said. “All this trouble they’ve caused!
I’ll be keen to know what drove them to it.”

“I’ll bet they’re evil ninja wizards!” said Ruben.
“More like evil robot pirates,” said Scarlet.
“Whoever they are, they’ll have a lot to answer for,” said the

Queen. “But we’ll know soon enough. We’re close—I can feel it!”
“That we are,” said Rusty. “Next stop: loading docks!”
A moment later, the freight elevator doors groaned open, and

the King, the Queen, Scarlet, Ruben, and Rusty stepped onto the
immense, bustling floor of the Refactory loading docks.

“Foreman here!” Rusty yelled to the crowd of men and women
in hard hats as he led the group up a metal walkway and onto
a large platform in the center of the enormous room. “What’ve
we got?”

“Sir!” said Marshall, climbing up the walkway, “I rushed down
here ahead of you to try to assess the situation. It looks like we’ve
got four intruders holed up in one of the loading docks.”

“Which one?” Rusty asked.
Marshall shook his head. “We don’t know! They hid before we

could see where they went. All we know is that we had the docks
surrounded when they disappeared, so they must still be in here
somewhere.”

READING, WRITING, AND RUBY MAGIC 267

Rusty nodded and stroked his beard for a moment. “Well,” he
said at last, “best get to finding them.” He walked to the edge of
the platform and stepped on a large round indentation with his
boot. In a hiss of steam, a column rose out of the platform. On
the side facing the Foreman shone the unmistakable glow of a
Computing Contraption screen.

“Each dock is controlled by a Ruby program,” Rusty said as
the King, the Queen, Ruben, and Scarlet gathered around him.
“Ruby treats each of them as a file. If we can open each file, we’ll
find our missing criminals!”

“A file? You mean, like a regular computer file?” Scarlet
asked.

“The very same!” said Rusty. “Ruby can open just about any
file you can think of: Ruby programs, text files, pictures, you
name it!”

The Queen smiled. “I know all about files!” she said. “I’d be
happy to lend a hand opening all these docks to find our cul-
prits.” She cracked her knuckles. “How many files are there?”
she asked.

Rusty gestured to the far wall, which was covered in hun-
dreds of heavy metal doors.

268 CHAPTER 12

“Oh my,” said the Queen. “Well, then! We’d better get
started.” She turned to Scarlet and Ruben. “To do this, we’ll
need to use Ruby’s file I/O methods,” she explained. “The I/O
part stands for ‘input/output.’ Input is what you put into a file,
and output is what comes out.”

“Like when you write a text file or save a picture?” Scarlet
asked.

“Very much like that,” the Queen said. “Ruby can write input
to a file, which is just like typing it with the keyboard and click-
ing Save. It can also read output from a file, which is just like
double-clicking on the file and opening it!”

The Queen turned to Rusty. “Is there a test file I could use to
show how it works?” she asked.

Rusty nodded. “Try lunch.txt,” he said. “I think it just has the
text one kat-man-bleu burger, please in it.”

“What’s a Kat-Man-Bleu burger?” asked Ruben.
“It’s the Wednesday lunch special in the Refactory cafeteria!”

Rusty said. “The food’s not as good here as the food at the Hashery,
but it does all right. That file just has the most recent lunch order
in it.”

Opening a File with Ruby
“Very good!” said the Queen. “Now, if you have a file called
lunch.txt that contains only the text one kat-man-bleu burger,
please, you can get to it like this!” She began typing:

>> file = File.open('lunch.txt', 'r')
=> #<File:lunch.txt>

>> file.read
=> "ONE KAT-MAN-BLEU BURGER, PLEASE\n"

“That’s exactly the same as if you had double-clicked on
lunch.txt, only we can read the file’s text right inside Ruby! The
\n at the end of PLEASE is Ruby’s way of representing ‘newline.’ If
you open the file, it’ll just be the text one kat-man-bleu burger,
please with a blank line under it.”

READING, WRITING, AND RUBY MAGIC 269

The Queen thought for a moment. “Let me explain a bit
more. File.open tells Ruby to create a file object based on a file
called lunch.txt.”

“What about the 'r'?” Ruben asked.
“That’s called a mode,” said the Queen, “and it tells Ruby

what mode it should open the file in. 'r' means we’re just read-
ing the file for now, not changing it.”

“Okay,” said Scarlet, “so we’ve got a file object stored in file.
What does calling the read method do?”

“Exactly what you’d think!” said the Queen. “It reads the con-
tents of the file and shows them to us.” She paused.

“Though usually, we open files with a block, like this.” She
typed some more:

>> File.open('lunch.txt', 'r') { |file| file.read }
=> "ONE KAT-MAN-BLEU BURGER, PLEASE"

“Once again, we’ve got File.open, and we pass in the name of
the file we want to open as a string, followed by a second string
that tells us what mode to open the file in. In this case, we’ve
used 'r' for ‘read.’”

“With you so far,” said the King.
“Instead of saving the file object to a file variable and call-

ing read on it, like we did before,” the Queen continued, “we pass
File.open a block. We pass file to the block instead and call
file.read inside the block!”

“Is there a difference between opening a file with a block and
opening a file without one?” Scarlet asked.

“A very important difference!” said the Queen. “When you
open a file with a block, the file is closed as soon as the block is
finished. But if you open a file without a block, it won’t automati-
cally close. See?” She typed:

>> file = File.open('lunch.txt', 'r')
=> #<File:lunch.txt>
>> file.closed?
=> false

“How do you close a file if you didn’t open it with a block?”
Ruben asked.

270 CHAPTER 12

“By using the close method, like this!” the Queen said, typing:

>> file = File.open('lunch.txt', 'r')
=> #<File:lunch.txt>

>> file.read
=> "ONE KAT-MAN-BLEU BURGER, PLEASE"

>> file.close
=> nil

“That seems easy enough,” said the King, “but why do we
need to close files in the first place?”

“Ruby keeps track of all the files we open, and the computer
we’re running Ruby on will only let us open a certain number of
files at a time,” the Queen explained. “If we try to open too many
without closing them, we could make the computer crash!”

“Sweet kite-flying porcupines!” said the King. “We certainly
wouldn’t want that.”

“Also, if you don’t close a file,” the Queen continued, “Ruby
won’t know you’re done with it, and unexpected things can hap-
pen later if you try to use a file you haven’t properly closed. You
might even delete everything in it by accident!”

“Okay, we’ll make sure to close any files we open,” Ruben
said. “It sounds like opening a file with a block is the easiest
way to do that.”

“What else can we pass into the open method besides 'r'?”
asked the King, scratching under his tiny crown. “Can we do
things besides just read files?”

Writing and Adding to Files
“Of course, dear,” the Queen said. “You see, Ruby does exactly
what you tell it, which means you must be very exact when you
tell it to do anything. When you open a file, the first argument
you give the open method is the filename, and the second one
tells Ruby what it should expect to do with the file. You can do
a lot with open—for instance, open 'r' tells Ruby to open a file but
only to read from it, starting from the beginning of the file.”

READING, WRITING, AND RUBY MAGIC 271

“What are some of the other modes?” Scarlet asked.
“Well, you can use open 'w' to write to a file,” the Queen said.

“Using the 'w' mode will tell Ruby to create a new file with the
name you give it, or it will completely overwrite any file that
already has that name.”

“Overwrite!” said Scarlet. “You mean it will replace every-
thing in the existing file with whatever text you give it?”

“That’s right,” said the Queen.
“What if you want to add to an existing file?” asked Ruben.
“For that, you can use the 'a' mode,” the Queen said. “That

still tells Ruby to create a brand-new file with the name you
give it if that file doesn’t already exist, but if that file does exist,
Ruby will start writing at the end of the file, so you won’t lose
anything that’s already there.”

“Reading, writing, and adding,” said Scarlet. “I think that’s
everything we want to do. But what happens if you use a mode
that tells Ruby you’re going to do one thing, but then you try to
do something else?” she asked.

“I’ll show you!” said the Queen. She typed into the Computing
Contraption:

>> file = File.open('lunch.txt', 'w')
=> #<File:lunch.txt>
>> file.read
IOError: not opened for reading

“An error!” said Ruben. “We’ll have to be careful to use the
right modes when we open files, then.”

“Precisely,” said the Queen. “Remember: Ruby does exactly
what you tell it. If you use the 'w' mode to tell Ruby you’re open-
ing a file only for writing, then try to read from the file instead,
Ruby will get confused and produce an error.”

“What if you want to read and write to a file?” asked the King,
who was busy inspecting a puff of pink lint he’d found stuck to his
beard.

“Then we need to pass a slightly different mode to File.open,”
the Queen said. She turned to Rusty. “What’s today’s cafeteria
special?” she asked.

272 CHAPTER 12

“Grilled cheese!” said Rusty. The Queen nodded and typed
into the Computing Contraption:

>> file = File.open('lunch.txt', 'w+')
=> #<File:lunch.txt>

>> file.puts('THE MELTIEST OF GRILLED CHEESES')
=> nil

“Wow, what was that?” said Ruben. “I didn’t know you could
use puts to write to a file!”

“Yes, you can,” said the Queen. “The only difference between
puts and write is that puts adds an extra blank line after what-
ever you type, which Ruby represents with an \n (remember,
that stands for ‘newline’). If you open the file, it’ll just be the text
the meltiest of grilled cheeses with a blank line under it!”

“Now, we’ll try to read the lunch text back,” said the Queen,
“but take a look at what happens the first time we try!”

>> file.read
=> ""

>> file.rewind
=> 0

>> file.read
=> "THE MELTIEST OF GRILLED CHEESES\n"

“Whoa!” said Scarlet. “We got nothing but an empty string
the first time we called file.read, but after you called file.rewind,
we could read the text in lunch.txt. What does rewind do?”

“Just like you can press rewind on a remote control and send
a movie back to the beginning, Ruby uses the rewind method to
send you back to the beginning of a file. If you don’t rewind and
then you try to read right after you’ve written to the file, you’ll
just get an empty string!” replied the Queen.

“Like trying to press play when you’re already at the end of a
movie!” said Ruben.

“Precisely,” said the Queen.

READING, WRITING, AND RUBY MAGIC 273

“That all makes sense,” said Scarlet, “but we used the 'w+'
mode, which means we overwrote the original lunch.txt file!”

“That we did,” said the Queen. “Let’s put it back! I’ll show
you a couple of new tricks while we do.” She began typing:

>> file = File.open('lunch.txt', 'a+')
=> #<File:lunch.txt>

>> file.write('ONE KAT-MAN-BLEU BURGER, PLEASE')
=> 31

>> file.rewind
=> 0

>> file.readlines
=> ["THE MELTIEST OF GRILLED CHEESES\n", "ONE KAT-MAN-BLEU BURGER,
PLEASE"]

“First, we reopen lunch.txt for writing with File.open, using
the 'a+' mode,” the Queen explained. “This tells Ruby we want
to add our new text to the end of the file instead of replacing all
the text that’s already there. Next, we call file.write and pass
in the new text we want to add to the end of lunch.txt.”

“Why does Ruby return 31 when we call file.write?” Ruben
asked.

“An excellent question!” said the Queen. “Ruby is telling us
that it successfully added 31 characters to the end of lunch.txt.”

“I see,” said Ruben. “So the 'a+' mode must mean that we add
to the file—so we don’t get rid of what’s already there—and the +
part means we can add to and read the file!”

274 CHAPTER 12

“Correct!” said the Queen. “You’ll also see that since add-
ing the text puts us all the way at the end of the file, we call
file.rewind to ‘rewind’ our position to the very beginning. That’s
why file.rewind returns 0: we’re at the very start of the file!”

“But what does that readlines method do?” Ruben asked.
“Does it just give us back an array of lines of text from the file?”

“Right again,” said the Queen. “Because I used puts to add
the first line, one kat-man-bleu burger, please was added on its
own line. The readlines method just goes through and creates an
array from the file, where each item in the array is a single line
of text. So we have an array with two elements here.”

“Astounding!” said the King, peering over his wife’s shoulder.
“Isn’t it?” she asked. “There’s also a readline method, which

just gives us back one line at a time. See?” She typed some more:

>> file.rewind
=> 0

>> file.readline
=> "THE MELTIEST OF GRILLED CHEESES\n"

>> file.readline
=> "ONE KAT-MAN-BLEU BURGER, PLEASE"

“We can even use readlines with each to print out all the lines
at once!” the Queen said, typing even more quickly:

>> file.rewind
=> 0

>> file.readlines.each { |line| puts line }

THE MELTIEST OF GRILLED CHEESES
ONE KAT-MAN-BLEU BURGER, PLEASE
=> ["THE MELTIEST OF GRILLED CHEESES\n", "ONE KAT-MAN-BLEU BURGER,
PLEASE"]

“That’s amazing!” said Ruben.

READING, WRITING, AND RUBY MAGIC 275

Avoiding Errors While Working
with Files
“I think I’m starting to understand file input and output now.
But what happens if I try to use a file that doesn’t exist?” Ruben
asked as he reached over to the Computing Contraption’s key-
board and typed:

>> File.open('imaginary.txt', 'r')
Errno::ENOENT: No such file or directory - imaginary.txt

“An error!” Scarlet said. “That makes sense. Is there any way
to find out if a file exists before we try to use it?”

“Good question!” said the Queen. “If we’re not sure whether
a file exists, we can use Ruby’s built-in File.exist? method to
check.” She typed:

>> File.exist? 'lunch.txt'
=> true

>> File.exist? 'imaginary.txt'
=> false

“Wonderful, wonderful!” said the King, clapping his hands
together. “With all these magnificent Ruby tools, I have no doubt
we can capture these crooks quite quickly.”

“You’re right!” said the Queen. She turned to Rusty. “Is there
anything in the Ruby program that represents all the loading
docks?” she asked.

Rusty nodded. “There’s an array, loading_docks, which is an
array of files. Each file represents a loading dock door, so if you
open and read all the files, all the doors should open!”

The Queen thought for a moment, her fingers hovering above
the keyboard. Then she typed into the Computing Contraption:

loading_docks.each do |dock|
 current_dock = File.open(dock, 'r')
 puts current_dock.read
 current_dock.close
end

276 CHAPTER 12

One by one, the doors to each loading dock rolled open, hung
ajar for a moment, then slid shut. Descriptions of each dock’s
contents began to fill the Computing Contraption’s screen.

“Ruby code . . . Ruby code . . . shipment of Key-a-ma-Jiggers
. . . there!” shouted Rusty, pointing to a door in the center of the
far wall.

Four shadowy figures leapt from the loading dock near the
lower-left corner of the wall just as the doors began to slide shut
again.

“Freeze!” shouted the King. “We’ve got you surrounded!”
The four figures moved with surprising speed, knocking over

several Refactory workers as they tried to make their way to the
nearest exit.

“Stop them!” Rusty yelled as the five of them ran down the
metal walkway to the loading dock floor.

Several Refactory workers struggled with the intruders, but
they were too fast and too slippery. In just a few seconds, they’d
made it all the way to the exit!

“Make way, make way!” cried the Queen, and the five of them
reached the Refactory exit just as the shadowy villains escaped

READING, WRITING, AND RUBY MAGIC 277

through the door. Without breaking stride, the King, the Queen,
Ruby, Scarlet, and Rusty barreled through the doorway and into
the narrow corridor leading back the way they’d come in.

“Are they headed for the freight elevator?” Ruben panted as
they ran.

“Much worse!” Rusty said. “They’re headed straight for the
WEBrick road!”

The King and Queen gasped together. “The WEBrick road!”
said the Queen. “That leads straight out of the kingdom! If they
get out through the kingdom gates, we’ll never catch them!”

“Then we’ll just have to be sure that doesn’t happen,” Rusty
said. He turned and called over his shoulder: “Everyone, after
them!” And with that, every single person in the Refactory ran
toward the small bright exit sign, with the King, the Queen,
Scarlet, Ruben, and Rusty leading the pack.

All Loading Docks, Report for Duty!
We’ve nearly caught our crooks red-handed! Oh man, the sus-
pense is killing me. Who are they? Will the King, the Queen,
Ruben, Scarlet, and Rusty catch them in time? What’s on the
Refactory cafeteria lunch menu for tomorrow? Questions worth
pondering until the end of time, for sure—or at least, until the
end of this chapter. In the meantime, let’s get in just a bit more
practice reading from and writing to a file.

Let’s start out by making a new file called loading_docks.rb
and typing the following code. This is a simple little program
that will create a text file for each of our loading docks, write
some text into it, and then read it back to us.

loading_docks.rb

def create_loading_docks(wdocks=3)
u loading_docks = []

v (1..docks).each do |number|
x file_name = "dock_#{number}.txt"

 loading_docks << file_name

278 CHAPTER 12

y file = File.open(file_name, 'w+')
 file.write("Loading dock no. #{number}, reporting for duty!")
 file.close
 end

 loading_docks
end

z def open_loading_docks(docks)
{ docks.each do |dock|

 file = File.open(dock, 'r')
 puts file.read
 file.close
 end
end

| all_docks = create_loading_docks(5)
} open_loading_docks(all_docks)

While there are a few bits of code that are making appear-
ances from earlier chapters, there’s nothing brand-new here for
you to worry about. Let’s walk through the code line by line.

First, we set up an empty array called loading_docks u, which
we’ll use to store the names of all the loading dock files we’ll
create (so we can read them later). Next, we use the (1..docks)
range to create as many loading docks as the create_loading_docks
method requires v (it defaults to 3 if no number is passed in w).

For each number in the range, we call a block that creates
a file with that number (such as dock_1.txt) and adds that file-
name to the loading_docks array x. We then open the file, write
a string of text into it, and close it y.

Finally, in the open_loading_docks method z, we simply
take our array of loading dock names (it looks something like
["dock_1.txt", "dock_2.txt"...], and so on), and for each filename,
we open the file for reading, read its contents, and close it {. So
when we run this script with all_docks = create_loading_docks(5) |
and open_loading_docks(all_docks) } at the bottom, we end up
creating dock_1.txt through dock_5.txt, each of which has its
individual number and the "reporting for duty!" string in it.

Pretty great, right?

READING, WRITING, AND RUBY MAGIC 279

As always, you can run the finished script by typing ruby
loading_docks.rb at the command line. When you run it, you’ll
see this:

Loading dock no. 1, reporting for duty!
Loading dock no. 2, reporting for duty!
Loading dock no. 3, reporting for duty!
Loading dock no. 4, reporting for duty!
Loading dock no. 5, reporting for duty!

If you look in the directory where you ran loading_docks.rb,
you’ll also see a .txt file for each dock, containing the very text
our script printed out!

But I’m sure your head is already spinning with ways
to improve this humble little script. For instance, we could
change the number of files we create from 5 to 1, 3, 10, or any
other number we choose! Just be careful—creating too many
files will not only fill up your folder, but it could even crash
your computer. (That’s why we defaulted to 3 and only did 5
in the example.)

You probably noticed that we wrote to the files with the 'w+'
mode, meaning that if we run the script again, it will overwrite
the files with the new content. What if we want to add to the file
instead, though? (Hint: The 'a+' mode might be involved.)

For that matter, what if we want to write something fancier
than just a plain old text file? What if we want to write a file
that writes another Ruby file? This is not only possible, but it’s a
big part of what professional programmers do every day. Try to
write a file with a small bit of Ruby in it—something as simple
as puts 'Written by Ruby!'. (Make sure you write the file with .rb
at the end instead of .txt so Ruby can run it.)

Finally, how might you work in some of the file methods we
saw, like exist?, rewind, or puts? Are there other file methods in
the Ruby documentation at http://ruby-doc.org/core-1.9.3/File.html
that might be cool to use? Remember to ask your local adult
before going online!

http://ruby-doc.org/core-1.9.3/File.html

280 CHAPTER 12

You Know This!
You can read! You can write! Well, okay, you already knew how
to do those things, but now you know how to do them with Ruby.
I don’t doubt that you’re a full-fledged Ruby sorcerer by now, but
just to make sure there’s nothing unclear about this new Ruby
wizardry we’ve covered, let’s take a second to review it.

You saw that Ruby can create, read, write, and understand
files, which are exactly like the computer files you already know
about: text documents, pictures, Ruby scripts, and more. Ruby
can open a file that already exists with the open method:

>> file = File.open('alien_greeting.txt', 'r')
=> #<File:alien_greeting.txt>

It can read a file with the read method:

>> file.read
=> "GREETINGS HUMAN!"

And when we’re finished using a file, we should close it using
the close method:

>> file.close
=> nil

It turns out we can accidentally crash our computer by keep-
ing too many files open at once, so it’s always a good idea to close
any file we’ve opened. Luckily, if we open a file with a block, Ruby
automatically closes the file for us:

>> File.open('alien_greeting.txt', 'r') { |file| file.read }
=> "GREETINGS HUMAN!"

Ruby is pretty picky about being told what to do, so we have to
use different modes to tell Ruby which input and output mode it
should use. When we use 'r', we tell Ruby that we expect it only

READING, WRITING, AND RUBY MAGIC 281

to read files, and when we use 'w', we tell it we expect it only to
write files. To tell Ruby it should both read and write a file, we
can give it the 'w+' mode:

>> new_file = File.new('brand_new.txt', 'w+')
=> #<File:brand_new.txt>

>> new_file.write("I'm a brand-new file!")
=> 21

>> new_file.close
=> nil

>> File.open('brand_new.txt', 'r') { |file| file.read }
=> "I'm a brand-new file!"

You found out that 'w+' will overwrite a file—that is, it will
replace everything in the existing file with whatever string we
tell Ruby to put in there. If we just want to add to a file instead
of replacing it completely, we can use the 'a' mode ('a+' if we
want to add to the file and read from it):

>> file = File.open('breakfast.txt', 'a+')
=> #<File:breakfast.txt>

>> file.write('Chunky ')
=> 7

>> file.write('bacon!')
=> 6

>> file.rewind
=> 0

>> file.read
=> "Chunky bacon!"

282 CHAPTER 12

Speaking of our friend rewind, you saw we could use it to back
up to the start of the file and read the whole file:

>> file = File.open('dinner.txt', 'a+')
=> #<File:dinner.txt>

>> file.write('A festive ham!')
=> 14

>> file.read
=> ""

>> file.rewind
=> 0

>> file.read
=> "A festive ham!"

In that first file.read, the string is empty because we’re at
the end of the file. After we rewind, though, we go back to the
start, and when we file.read again, our text is there.

You discovered that if we want to add a blank line after a line
of text, we can use a file’s puts method instead of write. When we
read the file back, Ruby shows us the blank line as a backslash
and the letter n (\n):

>> file.puts('A sprig of fresh parsley!')
=> nil

>> file.rewind
=> 0

>> file.read
=> "A festive ham!A sprig of fresh parsley!\n"

In fact, you saw that we could use the readline and readlines
methods to read out lines of a file one by one. readline reads one

READING, WRITING, AND RUBY MAGIC 283

line from the file at a time, and calling it a bunch of times reads
each line, one after another:

>> file = File.new('dessert.txt', 'a+')
=> #<File:dessert.txt>

>> file.puts('A gooseberry pie')
=> nil

>> file.puts('A small sack of muffins')
=> nil

>> file.rewind
=> 0

>> file.readline
=> "A gooseberry pie\n"

>> file.readline
=> "A small sack of muffins\n"

If we want to read the lines of our file all at once, we can use
file.readlines with a call to the each method and a block:

>> file.rewind
=> 0

>> file.readlines.each { |line| puts line }
A gooseberry pie
A small sack of muffins
=> ["A gooseberry pie\n", "A small sack of muffins\n"]

Finally, you saw that we could check whether a file exists by
using the exist? method:

>> File.exist? 'breakfast.txt'
=> true

>> File.exist? 'fancy_snack.txt'
=> false

284 CHAPTER 12

Files and file input/output probably don’t seem like a big
deal to you now (especially since you know a lot about how they
work), but they’re a major part of how computers get work done.
Don’t hesitate to mess around with creating and changing your
files on your computer, and—with permission—hunt around the
Internet for more information on files, how they work, and any
interesting bits of Ruby code you can run to improve your under-
standing. But enough out of me: our heroes are hot on the tails
of the tricksters who have been mucking things up in the king-
dom all day, and we’re about to find out who they are, what they
want, and whether the King, the Queen, Ruben, Scarlet, and the
crew of the Refactory can stop them once and for all!

Ruby and the Internet
The King and Queen burst through the Refactory exit and
into the bright late-afternoon sunshine, Ruben and Scarlet
following hot on their heels. Ahead of them, the WEBrick
road stretched far away, its dark red bricks glowing softly.
In the distance, they could make out the hunched shapes of
the four mysterious villains retreating, and farther still, the
wall that marked the outer edge of the kingdom.

“They’re so fast!” Ruben gasped, his hands on his knees.
“We’ll never be able to catch them!”

“Never say never,” Rusty said, jogging up behind them.
“There must be something we can do.”

The Queen turned to him. “Is there any way to shut down
the WEBrick road?” she asked.

286 CHAPTER 13

Rusty thought for a moment. “I’m not sure,” he said, “but I
have an idea.” He flipped up all the pages of his clipboard and
pulled out a thin piece of metal with a familiar-looking screen.
“This is my portable Computing Contraption,” he said. “My
workers and I will go on ahead and try to catch these snakes.
In the meantime, if there’s anything you can do to shut down
the road and keep them from escaping, you can do it on this
little computer.”

“Right!” said Scarlet, taking the hand-held computer from
the Foreman. Rusty gave her a wink, then motioned to the men
and women of the Refactory who were rapidly pouring out of
the exit. “This way, everyone! Let’s try to head these villains off!
Move, move, move!”

As the Refactory workers ran down the deep red road,
the King, the Queen, Scarlet, and Ruben huddled around the
Foreman’s portable Computing Contraption.

“Okay, first things first,” said Scarlet. “How can we shut
down the road?”

The King tugged on his fluffy white beard. “It seems to
me,” he said, “that we should first check to be sure the road

FOLLOW THE WEBRICK ROAD 287

is working properly! If it’s already off for some reason, we can
join Rusty’s team up ahead and apprehend these goons.”

Scarlet and Ruben looked at each other. “That’s . . . actually
a great idea,” Ruben said. “How do we test to see if the road
is open?”

“Well,” said the King, “the WEBrick road, like all things
in the kingdom, runs on Ruby, and it’s the main connection
between the kingdom and the rest of the world. If we can use
Ruby to check whether we can get information from outside the
kingdom, we’ll know if the road is working.”

“That’s it!” said Ruben. “If we can connect to the Internet
with Ruby, then we’ll know the road is open!”

“But how do we do that?” said Scarlet. “I feel like I know Ruby
pretty well now, but I don’t even know where to begin with con-
necting to the Internet.”

“I think I know a way,” said the Queen. “You see, connecting
to the Internet is just like connecting to a file—you just have to
tell Ruby the right way to do it! May I?” she asked. Scarlet nod-
ded and handed the Queen the portable Computing Contraption.
The Queen began to type.

“Remember how we could write our code in separate Ruby
files, then use require to pull one script’s code into another?” the
Queen asked. Scarlet and Ruben nodded. “Well,” the Queen con-
tinued, “it turns out there are little bundles of files that come
with Ruby that we can require, too!”

“There are?” asked the King, incredulous.
“Absolutely!” said the Queen. “You can think of these bundles

of files as tiny libraries of code that we can use in our own proj-
ects. They’re called gems.”

“That’s right! I think I’ve heard of Ruby gems before,” Ruben
said. “Is there a gem for connecting to the Internet?”

Using the open-uri Ruby Gem
The Queen nodded. “The open-uri gem,” she said. “It lets your
Ruby code open Internet sites the same way it can open files!

288 CHAPTER 13

Once we require it in our IRB session, we’ll be able to do all sorts
of wonderful things.” She typed into the Computing Contraption:

>> require 'open-uri'
=> true

She handed the little machine back to Scarlet. “Loaded up
and ready to go!” she said.

Scarlet looked at the screen. “Don’t I need './open-uri', not
just 'open-uri'?” she asked.

“Not for gems!” said the Queen. “That’s true for files you
create, but if you’re requiring a gem, you can just type the name
as a string. One of the many things Ruby does for you is keep
track of where gems are installed on your computer. Since it
already knows where to find them, you don’t need to look in the
current directory with ./. Just type the name of the gem, and
Ruby does the rest.”

“Perfect!” said Scarlet. “Now we just need a website to test
whether the WEBrick road is working.”

“Aha!” said the King, raising a finger in the air. “We can test
it with my favorite website!”

“Which one is that?” asked Scarlet, poised to type into the
keyboard.

“Example.com!” the King said, beaming. The Queen rolled
her eyes.

“It’s as good as any,” Scarlet admitted, and she typed into the
tiny Computing Contraption.

NOTE You’ll need to be connected to the Internet for this code to
work! Go ahead and grab your local adult if you need help
connecting to the Internet.

>> site = open('http://www.example.com')
=> #<StringIO:0x000001032de2f0>

“First,” Scarlet said, “we’ve used the open method to tell
Ruby to create an object based on the website of the URL we
entered. Then we can just use the .read method as we did on a
regular text file, and that will give us the contents of the site
at www.example.com!”

FOLLOW THE WEBRICK ROAD 289

>> site.read
=> "<!doctype html>...

The screen quickly filled with code from the example.com
website.

“It’s working!” Scarlet said. “The WEBrick road must be
turned on. Now we just need to find a way to shut it down!”

Ruben thought for a moment. “Hey, wait,” he said, “does
the kingdom request and send information through the WEBrick
road?”

“It does,” said the King.
“Does that mean there’s some kind of web server running?”

Ruben asked.
The Queen snapped her fingers. “Ruben, you’re a genius!”

she said. Ruben blushed slightly. The Queen turned to Scarlet.
“Not only is there a web server running, but it’s a WEBrick web
server.” She began talking quickly and gesturing excitedly. “The
WEBrick server is a special piece of Ruby code that sends infor-
mation out of the kingdom. You see, when you visit a website,
you’re asking a web server—that is, a computer somewhere on
the Internet—for information. Well, when people on the Internet
want information about our kingdom, our very own WEBrick
web server sends it!”

NOTE The WEBrick server isn’t something that exists only in the
kingdom—that’s the real name of the Ruby web server you’re
using right on your own computer!

“And if that web server is turned off . . . ” Ruben began.
“ . . . then nothing and no one can get out of the kingdom!”

Scarlet finished.
“Now we just need to figure out how to find the server to shut

it down,” Ruben said.
“Well,” said the King, kicking at a bit of dust, “I actually

might be able to help with that. You see, I lose things so fre-
quently that I’ve gotten to know the Computing Contraption’s
search function very well.”

 “Perfect!” said Scarlet. “What do we think the file is called?”

290 CHAPTER 13

Investigating the Kingdom’s
Web Server
“Well, you might want to search for WEBrick or server,” the King
said. “That’s what I’d do, at any rate.”

Scarlet nodded and pressed a few keys, searching for the file.
She squinted, shook her head, typed, sighed, thought, and typed
some more.

“I think I’ve got it!” she finally said. “I found a file called
server.rb.”

“Open it, open it!” said Ruben, standing on tiptoe to see the
screen better.

Scarlet opened the server.rb file, and this is what they saw:

require 'webrick'
include WEBrick

server = HTTPServer.new(
 :Port => 3000,
 :DocumentRoot => Dir.pwd
)
trap('INT') { server.shutdown }

server.start

“Let’s see,” said Scarlet. “It looks like the first two lines
require the webrick gem and include the WEBrick module.”

“That looks right to me,” said Ruben. “Then it looks like the
next few lines create a new WEBrick server. I’m not sure what
the port is for, but it’s set to the number 3000. What does the
Dir.pwd part mean?”

“I think I know,” said the Queen. “Just like Ruby uses the
File class for methods that work on files, it uses the Dir class
for methods that work on directories, which is just a fancy way
of saying folders.” The Queen pointed to the screen. “The pwd
method returns the present working directory, so Dir.pwd is just
Ruby’s way of saying ‘this folder right here.’ The web server is
running, and it’s sending information out of this folder!”

FOLLOW THE WEBRICK ROAD 291

“Okay!” said Scarlet. “We’ve just got to shut it down, and I
think I see a clue. The trap('INT') { server.shutdown } line—what
does that do?”

The Queen studied the screen for a minute. “If I remem-
ber correctly, that’s Ruby’s way of saying that when it gets
an interrupt signal, it will shut down the server!”

“An interrupt signal?” Ruben asked. “Does that mean we
have to tell the server to quit running?”

“Exactly,” said the Queen. “But how?”
“Hold down the ctrl key and the c key at the same time!”

the King suddenly. Everyone turned to look at him. “Just do it!”
he urged, waving his hands in the air. “We haven’t a moment to
lose!” Scarlet nodded and immediately pressed the keys, and this
is what she saw:

INFO going to shutdown ...
INFO WEBrick::HTTPServer#start done.

“We did it! We did it!” Scarlet and Ruben jumped up and
down and hugged each other.

The Queen turned to the King, smiling. “How on Earth did
you know how to do that?” she asked him.

The King smiled sheepishly. “Well, I manage to break my
Computing Contraption so often, I’ve learned to use ctrl-c to
stop programs!” They all burst into laughter.

“Now that the server is shut down,” Scarlet said, “nothing
and no one can get out of the kingdom! Quick, let’s get down the
WEBrick road and see if we stopped the bad guys in time!”

The four of them hurried down the bright red path, hoping
against hope that they’d closed the WEBrick road in time. In
the distance, they could see the huge group of Refactory work-
ers milling around. As they got closer, they could start to pick
out individual workers, then faces. Soon they were close enough
to see that Rusty was frantically waving them over, and just
beyond him in the center of the group were the four hooded
hooligans!

“Great coats! Sweet breakfast gravy! Glorious corn muffins!
We’ve got them!” cried the King, nearly weeping with joy.

292 CHAPTER 13

As they ran up to the group, the Foreman turned to them,
beaming. “Your Majesty! Your Highness!” he said, addressing
the King and Queen in turn. “I don’t know how you did it, but
you shut down the WEBrick road long enough for us to catch
these villains! They were pulling on the gates to the kingdom
wall, trying to escape, when we cornered them here.” He crossed
his arms and smiled, his entire big bushy beard rising on his
face. “I’m pleased to formally hand them over to you.”

“Thank you, Rusty,” said the Queen. The King and Queen
moved into the center of the group, where two Refactory workers
each held one of the four mysterious figures. Ruben and Scarlet
followed close behind.

“You scoundrels have been creating utter pandemonium in
our kingdom!” the King said.

“And depriving all the citizens in the kingdom of their Purple
Panda-monium Parade,” the Queen said, frowning.

“Yes, precisely,” said the King. “And we’ve had enough of it!
It’s time for you to reveal who you really are.” The King nodded
to the Refactory workers. Each placed a hand on either side of
each prankster’s hood.

“On my count. One . . . two . . . two and a half . . . three!” cried
the King, and the workers yanked back the hoods. The crowd
gasped. Standing before them, flicking their tongues and hissing,
were four enormous snakes!

FOLLOW THE WEBRICK ROAD 293

“Literal snakes!” said Rusty. “How about that?”
“Pythonssss, actually,” hissed the snake nearest to Rusty.
“Sweet hibbeldy-jibbeldy! A talking snake!” said the King,

hiding behind a particularly brawny Refactory worker.
“The name issss Terry,” the snake said. “Terry One, actu-

ally.” She gestured with her head to the snake next to her.
“That’s John,” she said. “Then Terry Two, then Graham.”

“Pleassssed to meet you,” said John.
“Well, we’re certainly not pleased to meet you,” said the King,

recovering his courage. “What in the name of the Carmine Pines
did you think you all were doing, causing such trouble?” He
started counting on his fingers. “Stealing my string! Clogging the
Mysterious Pipe! Looping up the Loop! Crashing the Hashery’s
Computing Contraption! Hacking into the Queen’s machine!
De-purpling the pandas! The list goes on and on!”

Graham looked around uneasily. “Your ssssstring? We didn’t
steal your ssstring!” he said.

The King threw up his hands. “Okay, fine, maybe that was
me,” he said, “but the rest was all your doing. I demand an
explanation!”

Terry Two lowered her head; Ruben and Scarlet couldn’t tell
if she was angry or sad. “It’s becaussse everyone was all about
Ruby, Ruby, Ruby!” she said. “No one wanted to use Python
anymore.”

“Python?” asked Ruben.
“You ssssee?” said Terry Two, nodding her head at Ruben.

“The boy’s never even heard of Python!”
“What is it?” Ruben asked, inching forward.
Terry Two sighed. “A programming language, very much like

Ruby,” she said.
“But better,” John piped up.
“Oh, much better,” Terry One chimed in.
“But no one in the kingdom uses it,” Terry Two continued.

“We thought if we got people thinking that sssssomething was
wrong with Ruby, they might make the sssswitch.”

Scarlet stepped closer to the pythons, angry. “You should have
tried to show how good a language Python is, not try to make
people think there’s something wrong with Ruby!” she scolded.

294 CHAPTER 13

John shook his head sadly. “No one would lissssssten,” he said,
“so we thought our besssst chance would be to attract attention,
even if it had to be negative.” No one could be quite sure, but it
looked like the enormous snake had tears in his eyes.

The King’s expression softened a bit. “You all know Python?”
he asked.

The pythons looked at each other, clearly confused. They
slowly nodded.

“Tell me about it,” said the King.
“It’s quite a wonderful language,” said Graham. “It has

sssstrings and numbers and Booleans.”
“Arrays, too!” added Terry One.
“Objects and methods and classsses,” said John, “and you can

write programs that do anything you like.”
The King nodded, walking in a small circle. “It seems to me,”

he said, “that Ruby and Python aren’t all that different, then.”
The pythons were silent for a moment. “Perhapssss not,”

John said, finally. “But if that’ssss so, why not use Python
instead of Ruby?”

“I suppose my question,” the King said, “is why do you need
to choose? Why not write whichever you prefer?” Terry One
opened her mouth to speak, but the King continued. “In fact,”
he said, “what if I told you that it’s possible to write Ruby that
turns into Python?”

There was total silence. Ruben, Scarlet, and the Queen shot
one another amazed looks.

“You see,” said the King, “I’ve never been a very good program-
mer. Programming has never come easily to me. So I spend much
of my time practicing and reading articles and sample code, trying
to become better.” He reached into his robe and pulled out a small
scroll. “During my research, I discovered a truly amazing bit of
code that can transform Ruby code into instructions that Python
can understand. You can write Ruby, and Python programs will
come out! Isn’t that amazing?” he asked, becoming excited. “You
can write any language you want any way you want, and you can
still tell stories to a computer that will make it do anything you
like. That’s the beauty of programming!”

FOLLOW THE WEBRICK ROAD 295

The pythons didn’t say anything for a moment. Finally,
Terry One spoke up. “I . . . hadn’t thought of it that way before,”
she said.

“I suppose what I’m trying to say,” said the King, “is that all
curiosity, all honest desire to learn, all sharing and teaching, is
always welcome in this kingdom. Yes, we happen to use Ruby
to run our day-to-day lives. Yes, it’s the language that many of
our citizens know and prefer and even think in. But that doesn’t
make it the only way, and it certainly doesn’t mean we think
there’s nothing to learn from Python!”

Rusty cupped his hands around his mouth. “Hear, hear!” he
said, and the entire crowd burst into applause.

“What do you say?” the King asked gently, approaching
the four pythons. “Would you like to help us learn a bit about
Python, and we can teach you some Ruby?”

The pythons exchanged glances, then began to nod.
“We’re ssssso terribly ssssorry,” Graham said. “We were just

ssssad and frusssstrated, and we didn’t know how to tell every-
one how we felt.”

“We hope we didn’t wreck anything too badly,” Terry Two said.
“We’ll help repair anything we broke,” Terry One added.
“I tried the hash at Hank’ssss Hashery,” John said. “It was

the mosssst amazing food I’ve ever tasted. I’d help fix a hundred
Ruby programs if I could eat there again!”

“Then it’s settled!” the King said. He looked at the Queen,
who smiled and nodded. He returned his gaze to the four pythons.
“By the power vested in me by the many citizens of my kingdom,
you are hereby officially pardoned of all wrongdoing!” He leaned
forward slightly. “And if you’d like to come back to the palace for
some cake and tea, that would be fine, too.”

The pythons nodded eagerly, overjoyed.
“That would be sssssplendid,” said Terry One. “Thank you

sssso much!”
The King held his arms over his head. “Everyone back to the

Royal Palace!” he cried. “Cake and tea for everyone!”

296 CHAPTER 13

A massive cheer went up in the crowd. The Refactory work-
ers who had been holding the pythons released them, and the
group swept the King, the Queen, Scarlet, and Ruben up onto
their shoulders.

“You really saved the day, Your Kingliness!” Scarlet said to
the King. He dismissed the compliment with a wave of his hand.

“You kids did all the
saving!” he said. “Without you,
we’d never have solved this
mystery and brought peace
and prosperity back to the
kingdom.”

“Let’s say we all had a piece
of the pie,” said the Queen.
“And speaking of! Let’s add a
little pie to this cake-and-tea
party.”

“Let’s!” said the King, who
had been patting the pockets
of his robe for the last several
seconds. “Oh, turnips,” he
said. “Now where did I put
my string?”

Beyond the Kingdom Walls
Holy cannoli! Pythons! I wouldn’t have seen that coming 42 miles
away. I’ve still got so many questions! How did they sneak into
the kingdom? What cool Python tricks do they know that a Ruby
programmer like me could learn? And how did they manage to
work a Key-a-ma-Jigger with no hands?

While I ponder these and other great mysteries, feel free to
get in a little more practice with the WEBrick web server. Go
ahead and create a new file called web_server.rb and type in
the following code.

FOLLOW THE WEBRICK ROAD 297

web_server.rb

require 'webrick'
include WEBrick

server = HTTPServer.new(Port: 3000)

server.mount_proc '/' do |request, response|
 response.body = 'Your Ruby adventure is just beginning!'
end

trap('INT') { server.shutdown }

server.start

This code’s a bit different from the last version you saw, but
there’s nothing here you haven’t seen! The only tricky bit is the
mount_proc method, which is built into WEBrick. This tells the
server how to respond to certain requests; in this case, if you
go to the / URL on your computer, you should see the message
assigned to response.body. Your computer’s built-in website is
http://localhost/.

As usual, you can run your finished script by typing ruby
web_server.rb in the terminal. Once you’ve started your script,
you should see some numbers and text, like this:

INFO WEBrick 1.3.1
INFO WEBrick::HTTPServer#start: pid=78115 port=3000

(Your numbers will be slightly different, but the words
should be pretty similar.) When you see the text appear, your
web server is up and running! Open your favorite web browser
(such as Chrome, Firefox, Internet Explorer, or Safari) and go to
http://localhost:3000/. If everything’s working right, you should
see Your Ruby adventure is just beginning! in the browser window.
Crazy, right? Your first website has just been born! (I’m gonna
name her Marigold.) When you’re done using your server, hold
down ctrl-C in the terminal where WEBrick is running to shut
it down.

http://localhost/

298 CHAPTER 13

This web server is a pretty simple affair, and if I know you,
you’re already thinking of ways to make it better. Well, don’t
hold back! Feel free to play with the code in the web_server.rb
file. (You’ll need to use ctrl-C to shut down the server and
restart it each time you make changes in order to see them.)
For example, you could start just by changing the response.body
string, then move on to playing with the port number or adding
more mount_procs.

Here’s a hint: What if you add the following code to your web_
server.rb file, then go to http://localhost:3000/favorite_vegetable?

server.mount_proc '/favorite_vegetable' do |request, response|
 response.body = 'Certainly not yams!'
end

If you want to see the gems that people all over the world
have made available, you can visit the RubyGems website at
http://rubygems.org/. For just about any task, someone has
probably created a gem to do it, so you should always stop by
RubyGems. Take your time to read through the information on
the site, and you’ll be able to download other people’s gems and
use them in no time!

Speaking of sharing code, that magical little program that
can convert Ruby to Python really does exist! It was written by
a programmer named why the lucky stiff and can be found on
GitHub, a website where people share the code they write with
people all across the planet. You can find the GitHub website
at https://github.com/ and the Ruby-to-Python project—called
unholy—at https://github.com/whymirror/unholy/. (The code is
very advanced, but if you keep at it, I think you’ll start to get it.
I’ve yet to meet a brighter bulb!)

You Know This!
We took some of the code and concepts you already knew a few
steps further in this chapter, so let’s take a second to make sure
it all made sense.

http://rubygems.org/
https://github.com/
https://github.com/whymirror/unholy/

FOLLOW THE WEBRICK ROAD 299

You learned that we can use Ruby to get information about
websites on the Internet by using the open-uri gem:

>> require 'open-uri'
=> true

>> site = open('http://www.example.com')
=> #<StringIO:0x000001032de2f0>

>> site.read
=> "<!doctype html>...

A gem is just a set of files that someone else created to make
writing your Ruby programs easier. We can require gems into
our programs just as we can require files we wrote ourselves,
only we need to put a ./ before our filenames, and for gems, we
can just write the name as a string after the require method call.

Feel free to try this code with other websites! Just be sure to
get permission first, and be careful—some websites send back a
lot of code, and it may fill up your terminal window.

You also saw that we don’t have to settle for just requesting
information; we can serve it to visitors using web servers like
WEBrick:

require 'webrick'
include WEBrick

server = HTTPServer.new(:Port => 3000)

server.mount_proc '/' do |request, response|
 response.body = 'WEBrick is online and running fine!'
end

trap('INT') { server.shutdown }

server.start

You learned that we can modify web server code to write
simple messages, that we can see the changes in our code by
stopping and restarting the server, and that ctrl-C will let us

300 CHAPTER 13

stop our server (once we get it running) by typing ruby server_
file_name.rb or calling load 'server_file_name.rb' from inside IRB.

Finally, we talked a little bit about using gems written by
other people by visiting the RubyGems website (http://rubygems
.org/) and reading and sharing code all over the world through
the GitHub site (https://github.com/). If you want to set up
accounts on these sites, grab your nearest adult and ask!

Our story may be over, gentle reader, but that doesn’t mean
I’m quite done blabbering yet. We covered a lot of Ruby magic
in the last several hundred pages, and I’d be a terrible teacher,
writer, and programmer if I just said, “Welp, see ya!” and left it
at that. Take a deep breath, turn the page, and let’s spend just a
few more sentences going over all the crazy, amazing, wonderful
stuff we’ve learned.

http://rubygems.org/
http://rubygems.org/
https://github.com/

The Big Picture: What You Know
Man, what a story. What intrigue! What suspense! It was so
astounding, I barely talked at all toward the end there. You
probably noticed that. I pop in and out a lot.

It may seem like we haven’t come all that far, but if you
remember back to when you first picked up this book, you
didn’t know anything about Ruby at all. You’d probably never
heard of Senior Apprentices to Royal Plumbers, Hasheries, or
Dagrons, let alone strings, object IDs, or methods. Now you
know about all those things and more!

We’ve covered so much, I feel it’s only right to do one
last quick review. For my own sake. Just to keep everything
straight in my scattered mind. Don’t worry—it’ll be real
quick; if you need a more in-depth refresher, thumb back
to the earlier chapters and reread the “You Know This!”

302 CHAPTER 14

sections (because you totally
do, even if you don’t always
remember every last detail).

We started out by learning
how to install and set up Ruby.
No small feat! We got Ruby up
and running on our computer,
learned how to run snippets
of Ruby code with IRB, and
discovered how to write files,
called scripts, that let us collect
a bunch of lines of code and run
them all at once.

Once we figured out how to run code, the next step involved
writing something that was interesting to run. Remember back
when you only knew how to print strings and add numbers?
When the thrill of programming was all about putsing phrases
and multiplying things together? Those were the days! But once
you start learning to write stories that you can make happen in
real life—that is, programs—you want to write bigger and bet-
ter ones as quickly as you can. So we moved on to control flow
(using if, elsif, else, and unless) and Booleans (true and false),
and in no time flat, we were controlling the way information
moved through our programs, repairing the Mysterious Pipe,
and guiding Haldo through an underground maze.

Then we were really off to the races! We started talking
about Ruby loops and iterators, using methods like each to
print out all the values in an array (which is like a list of items:
[1, 2, 3]), update a hash (which is like a short dictionary of
items and values: { name: Lou, fancy: true }), and help Hank
and Squeaky Jim fix the Hashery computer. We learned about
ranges, which are just a series of numbers or letters (like (0..5)
or ('a'..'z')), and symbols, which are simply names or labels we
use in Ruby. For instance, we saw them used as hash keys, as in
{ hamburgers: 'delicious' }.

That’s when things started getting interesting! Scarlet
found a python scale on the Hashery floor, leading the group on
a voyage to the Carmine Pines. We met the Off-White Knight,

WHERE TO GO NEXT 303

who showed us how to create our very own methods using the
def keyword. We also saw how to do all kinds of fancy method
tricks, like setting default arguments, using splat parameters,
and writing methods that can take blocks by using the yield
keyword.

We went on to meet the Dagron, who explained Ruby objects
and classes (which are just objects that create other objects). We
learned about where in a program our variables could be seen
and used, covering global, class, instance, and local variables.
We even learned about a special Ruby value, self, that refers to
the current object! As we dove deeper into Ruby class syntax,
we covered attr_reader, attr_writer, and attr_accessor, which are
shortcuts we can use so we don’t have to write methods to get
and set instance variables every time we want to update them
from outside our class.

We also discovered (courtesy of the Queen) that some classes
can inherit from others—that is, they take on some of the prop-
erties and abilities of other classes—and that classes can let us
reuse code through inheritance. We saw that classes that inherit
from other classes can override methods from their superclass—
for example, a GuardDog that inherits from Dog can have its own
version of a bark method that does something different from
what Dog’s bark method does—and that we can always “reach up”
to the superclass and call one of its methods using super.

The Queen also taught us about modules, which are just like
Ruby classes except we don’t create instances of them! They’re
for mixing in behavior by using include or extend, which allow
us to reuse code from lots of sources while still using only one
superclass. Modules are also for namespacing, or organizing our
code so that we don’t have to cram all of it into one file.

By using modules, we can easily control where all our vari-
ables, constants, and methods are available in our Ruby pro-
grams, and we can create classes with one superclass that
inherit behavior from a whole range of sources.

Then we voyaged on to the Refactory, where we learned
how to rewrite our code to make it clearer without changing
the way it behaves. We saw a bunch of cool tricks for improv-
ing our Ruby, including breaking up big methods into smaller

304 CHAPTER 14

ones and removing duplicate code so that each method did one
thing and did it well. We also learned about file input/output
at the Refactory, including how to open, read, and write files
with Ruby.

Finally, we covered Ruby and the Internet, learning about
Ruby gems, and web servers like WEBrick, and useful websites
like the RubyGems site and GitHub. We saw the King, the
Queen, Scarlet, and Ruben use their Ruby knowledge to catch
the pythons and ultimately show them that Ruby and Python
are both excellent programming languages, and you used your
Ruby knowledge to arrive here, at the end of this book, chock-
full of wisdom. I couldn’t be prouder! That’s the honest-to-
gravy truth.

Additional Resources and
Further Reading
While there’s a lot of Ruby magic in these pages, we didn’t cover
everything there is to know about Ruby. There is a huge number
of amazing books and websites that will help you learn even
more about Ruby and programming, and I’ve listed a bunch
here! Don’t feel pressured to read all (or any) of these books or
sites—they’re just new places to keep learning Ruby now that
you’ve finished this book.

Beginner Books

These books are great for beginners.

Beginning Ruby, 2nd Edition, by Peter Cooper (Apress, 2009).
This is just what it sounds like! A fantastic introduction to Ruby.

Programming Ruby, 4th Edition, by Dave Thomas, Andy
Hunt, and Chad Fowler (The Pragmatic Bookshelf, 2013). This
is sometimes called the “pickaxe book,” because it has a huge
picture of a pickaxe on the cover. Lots of Ruby programmers

WHERE TO GO NEXT 305

say this is their go-to Ruby book, and I can promise there’s not
a single question about Ruby you might have that isn’t covered
in here.

The Ruby Programming Language by David Flanagan and
Yukihiro Matsumoto (O’Reilly Media, 2008). Yukihiro “Matz”
Matsumoto is the creator of the Ruby language, so he’s got lots
of great insights into what Ruby can do and what makes it
great. This is another awesome introductory Ruby book.

Why’s (Poignant) Guide to Ruby by why the lucky stiff (http://
en.wikipedia.org/wiki/Why's_(poignant)_Guide_to_Ruby). This is
the Ruby book I first learned from, and if you read it carefully,
you’ll see I snuck a few of why’s tricks and jokes into this very
book. why’s guide is a magical, manic, illustrated guide to Ruby.
When you’re done with this book, pick up that one! I promise
you’ll be glad you did.

Intermediate Books

These books are a bit more advanced.

Design Patterns in Ruby by Russ Olsen (Addison-Wesley
Professional, 2007). This book is about good patterns for writing
your Ruby code. You’ll learn from the pros!

Eloquent Ruby by Russ Olsen (Addison-Wesley Professional,
2011). Want to learn to write code like a native Rubyist? Read
this book!

The Well-Grounded Rubyist by David Black (Manning Publi-
cations, 2009). Imagine a book just like this one, only with fewer
magical creatures and more stuff about fancy Ruby topics like
threads and error handling. All imagined? Congratulations!
You’ve imagined The Well-Grounded Rubyist. (Imagine that!)

Wicked Cool Ruby Scripts by Steve Pugh (No Starch Press,
2008). If you’re looking for a fanciful cookbook, a veritable cor-
nucopia of Ruby script recipes for everything from games to web
servers, pluck this book off your nearest store shelf (or ask your
folks to order it off the Internet).

http://en.wikipedia.org/wiki/Why's_(poignant)_Guide_to_Ruby
http://en.wikipedia.org/wiki/Why's_(poignant)_Guide_to_Ruby

306 CHAPTER 14

Advanced Books

These books are the most complex of all!

Metaprogramming Ruby 2 by Paolo Perrotta (The Pragmatic
Bookshelf, 2014). This book explores the deep, dark secrets of
how Ruby can read its own code and change it while it runs!
Not for the faint of heart.

Practical Object-Oriented Design in Ruby by Sandi Metz
(Addison-Wesley Professional, 2012). If you want to write Ruby
like a pro, you can’t do better than this book. Your objects will
sparkle and your classes will gleam when you’re done!

Ruby Under a Microscope by Pat Shaughnessy (No Starch
Press, 2013). This book goes straight to the core of what makes
Ruby . . . well, Ruby! It covers all the details of how all those
little bits and bytes, zeros and ones, turn into Ruby code. If you
read this book and understand every bit of it, please call me up
and explain it.

Online and Multimedia
Railscasts (http://railscasts.com/) Ruby on Rails is a popu-
lar framework, or set of tools, that Ruby programmers use
to make web applications. These screencasts by Ryan Bates
show you how Ruby code powers Rails applications, and Ryan’s
instructions make it easy to follow along at home. As with Ruby
Tapas, not all these screencasts are free, so you’ll need your local
adult’s help to sign up if you want to be able to watch them all.

Ruby5 podcast (http://ruby5.envylabs.com/) This is more
Ruby news, but in podcast form! If you like listening more than
reading, this one’s for you.

Ruby Rogues (http://rubyrogues.com/) This is another pod-
cast, though I think this one is more like listening to blog posts
than it is like listening to the news. If you’re interested in hear-
ing more about the ins and outs of Ruby, its gems, and its tools,
give the Ruby Rogues a listen.

http://railscasts.com/
http://ruby5.envylabs.com/
http://rubyrogues.com/

WHERE TO GO NEXT 307

Ruby Tapas (http://www.rubytapas.com/) For those of you
who like to watch videos instead of read or listen, these screen-
casts by Avdi Grimm give you short introductions to different
parts of Ruby that you might not know about. Only a few of the
screencasts are free, though, so if you want to watch them all,
you’ll need your local adult’s help.

Ruby Weekly (http://rubyweekly.com/) Curated by the very
same Peter Cooper who wrote Beginning Ruby, this once-a-week
email is packed with helpful Ruby articles, tutorials, and videos.
It’s pretty advanced stuff, but after you’ve been writing Ruby for
a while, it’ll be the first place you look for Ruby news.

Interactive Resources

Codecademy (http://www.codecademy.com/tracks/ruby/)
If you ever want to practice running Ruby in the comfort of
your own web browser, you can do the Ruby lessons over at
Codecademy. Fun fact: I wrote all these courses, so they should
seem pretty familiar! The only downside is that they cover a lot
of the same information you’ve learned here, so they might be a
little too familiar. If you want to practice writing code and review-
ing what you’ve learned, though, head on over and start typing—
it’s free! (You must be 13 or older to create an account.)

Code School (https://www.codeschool.com/paths/ruby/)
Code School is another great website for learning Ruby. Like
Codecademy, it requires that you be 13 or older to create an
account, and unlike Codecademy, it isn’t free. It’s got lots of
good videos, though, so if you learn best by watching someone
else work, this might be the site for you.

Ruby Koans (http://rubykoans.com/) Imagine if you took
all the knowledge of this book and divided it up into a bajillion
wise little sayings in the form of Ruby programs. Those are the
Ruby koans! If you’re looking for more practice and love to learn
by doing, go ahead and download the koans and start program-
ming. They also do a great job of teaching you about testing,
since each koan is like a failing test that you have to fix to

http://www.rubytapas.com/
http://rubyweekly.com/
http://www.codecademy.com/tracks/ruby/
https://www.codeschool.com/paths/ruby/
http://rubykoans.com/

308 CHAPTER 14

get it to pass; the more lines of code you repair, the greater
your Ruby enlightenment.

Ruby Monk (https://rubymonk.com/) This is sort of like a
mix between Codecademy’s courses and the Ruby Koans. The
more exercises you complete, the further along the path to Ruby
mastery you’ll progress!

Additional Topics
We talked about tons and tons of Ruby goodness, but there are
a few bits and trinkets of the language we didn’t get to—mostly
because they’re not quite as much fun as what we covered, plus
these topics are a bit on the trickier side. If you’re curious and
want to learn more about them, though, I’ve dashed off a quick
list here.

The Enumerable module You might have wondered during our
adventures how both arrays and hashes know how to use the
each method. It’s because they both mix in the Enumerable mod-
ule, which you can use directly in your own classes to simplify
your code! It includes all kinds of handy methods like all?, any?,
include?, and find. You can read all about it in the official docs:
http://ruby-doc.org/core-2.0.0/Enumerable.html.

Regular expressions Regular expressions are like a mini-
language inside Ruby that lets you match patterns in words
or phrases. For example, you could use them to find strings
that contain only uppercase letters or check whether a string
is a valid email address. Regular expressions exist in many
languages, but you can find some Ruby-specific information at
http://www.regular-expressions.info/ruby.html. You can also use
a free tool called Rubular at http://rubular.com/. Rubular lets
you test out your regular expressions in real time, so you can
see what your patterns match and what they don’t.

Procs and lambdas These are not quite blocks and they’re
not quite methods—they’re somewhere in between! You can
think of them either as methods without names or as “saved”

https://rubymonk.com/
http://ruby-doc.org/core-2.0.0/Enumerable.html
http://www.regular-expressions.info/ruby.html
http://rubular.com/

WHERE TO GO NEXT 309

blocks you can run over and over. You can learn more about
them in the Ruby Monk exercises (see “Interactive Resources”
on page 307).

information hiding You can keep information in your Ruby
classes more secure by using the private and protected methods.
These come in handy when you’re writing Ruby as part of a
group or team, and while they don’t completely prevent other
programmers from using methods they shouldn’t, they can help
your teammates understand which methods they can rely on
and which ones are still “under construction.” You can read more
about the public and protected methods in the Ruby docs: http://
www.ruby-doc.org/core-2.0.0/Module.html#method-i-private.

Handling exceptions Every now and then, we saw our
Ruby code throw an error. Usually I explained why it hap-
pened and we went on our merry way, but if you think about
it, that’s not always the best way to do things. Sometimes
when an error (also called an exception) happens, we want to
do something about it, like set a default value or print a mes-
sage to the screen. Handling exceptions in Ruby is called—you
guessed it—exception handling, and if you want to learn more
about it, you can read Avdi Grimm’s Exceptional Ruby (http://
exceptionalruby.com/).

Reflection/metaprogramming Remember when we talked
about file I/O, we saw it was possible to write Ruby code that
writes Ruby code? This means that Ruby has the ability to look
at its own code and change it! The inward-looking part is called
reflection, and the ability for Ruby to change its own program-
ming is called metaprogramming. This is some of the hardest
Ruby code to write, but if you’re feeling up to it, you can learn
all about it from Paolo Perrotta’s book Metaprogramming Ruby.

debugging We talked a little bit about fixing errors in our
code, but we didn’t talk about writing tests for it or debugging
(that is, fixing) it in a systematic way. Writing tests to prove
your code is correct and becoming good at debugging it are very
important skills for any programmer to have. If you’re inter-
ested in learning more about both, you can read about the built-
in Ruby testing library, MiniTest, in the Ruby documentation

http://www.ruby-doc.org/core-2.0.0/Module.html#method-i-private
http://www.ruby-doc.org/core-2.0.0/Module.html#method-i-private
http://exceptionalruby.com/
http://exceptionalruby.com/

310 CHAPTER 14

at http://ruby-doc.org/stdlib-1.9.3/libdoc/minitest/spec/rdoc/
MiniTest/Spec.html. If you’re feeling particularly adventurous,
you can read about my favorite testing library, RSpec, at http://
rspec.info/.

Threads and processes In all our Ruby programs, we really
only did one thing at time: we’d set a variable and then use
it, or maybe we’d iterate over an array and print each item to
the screen. We never really did two things at exactly the same
time. With Ruby threads and processes, it’s possible to do two
things at once! As you might imagine, juggling multiple things
at once is many times harder than handling just one process at
a time, so learning to use Ruby threads and processes takes
some practice. If you want to learn more, you can read Jesse
Storimer’s Working with Ruby Threads (http://www.jstorimer
.com/products/working-with-ruby-threads/). Careful—this one’s
really advanced!

Creating websites Finally, while we did talk about Ruby
web servers like WEBrick, we didn’t talk much about creating
entire websites with Ruby. You may have heard of Ruby on Rails
(I mentioned it when describing Railscasts on page 306), which
is a big library of code made up of many gems that helps make
writing websites with Ruby easier. It’s a good way to build web-
sites and very popular, but sometimes newer Ruby programmers
have trouble understanding all the things it does and decisions
that went into making it. If you want to make websites with
Ruby, you might want to start with a smaller, simpler program
(and one of my favorites) called Sinatra. You can find it online at
http://www.sinatrarb.com/.

I admit it: I’ve been dragging my feet. I don’t want the book
to end! But alas, I’ve dispensed all my Ruby wisdom. Now you
know everything I know, plus you’ve got all the smarts and
experience of the King, the Queen, Ruben, Scarlet, and all of
their friends combined. I knew you could do it! I believed in you
from the start. So even if the book has to end, at least it ends
with me being right!

http://ruby-doc.org/stdlib-1.9.3/libdoc/minitest/spec/rdoc/MiniTest/Spec.html
http://ruby-doc.org/stdlib-1.9.3/libdoc/minitest/spec/rdoc/MiniTest/Spec.html
http://rspec.info/
http://rspec.info/
http://www.jstorimer.com/products/working-with-ruby-threads/
http://www.jstorimer.com/products/working-with-ruby-threads/
http://www.sinatrarb.com/

WHERE TO GO NEXT 311

When you close this book, I want you to do one thing: fire up
your own personal Computing Contraption and write yourself a
Ruby program. It can do anything you want, big or small, silly
or serious. Don’t worry if it breaks! The only way we learn is by
writing programs and breaking them and fixing them and mak-
ing them better, so it’s perfectly okay if your program breaks
or doesn’t do what you want at first. You’re writing stories and
poems for a machine, and the biggest part of the adventure isn’t
having a finished, perfectly working program—it’s all the crazy
things that happen along the way.

So go! Go write the best program you can, and have fun. I’ll
be seeing you.

Installing on Mac
New Macs ship with Ruby 2.0 already installed, so if you’re
here, you’re likely using an older Mac that has Ruby 1.8.7.
Not to worry! We’ll get you upgraded in a jiffy.

Open up your terminal and type the following code. (The $
just shows you where to start typing—don’t type the $!) This
will install a tool called RVM (Ruby Version Manager) as well
as Ruby 2.0.

$ \curl -L https://get.rvm.io | bash -s stable --ruby=2.0.0
--auto-dotfiles

Once you do this, you’ll see a whole bunch of text pop up to
tell you that your computer is downloading Ruby. When it’s
all done, close your terminal, reopen it, and enter ruby -v. You
should see your computer print a response with ruby 2.0.0 in it!

314 APPENDIX A

If your Ruby version still isn’t Ruby 2.0, you can try install-
ing it using the Homebrew package manager. First, install
Homebrew:

$ ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/
install)"

Once that command completes successfully, you can simply
type this:

$ brew install ruby

At the time of this writing, Homebrew automatically installs
Ruby 2.1.3. This is just a slightly newer version than Ruby 2.0,
and it will work with the code examples in this book.

Installing on Linux
Open up your terminal and type the following code. (The $ just
shows you where to start typing—don’t type the $!) This will
install a tool called RVM (Ruby Version Manager) as well as
Ruby 2.0.

$ \curl -L https://get.rvm.io | bash -s stable --ruby=2.0.0 --auto-
dotfiles

Once you do this, you’ll see a whole bunch of text pop up to
tell you that your computer is downloading Ruby. When it’s
all done, close your terminal, reopen it, and enter ruby -v. You
should see your computer print a response with ruby 2.0.0 in it!

If you get an error or your computer tells you that Ruby isn’t
installed, grab your trusty adult and check out the Ruby instal-
lation page at https://www.ruby-lang.org/en/installation/. There
may be a recent package designed especially for your version of
Linux, and it may be easier to use that package to install Ruby,
rather than using RVM. You can also ask your adult to go on
IRC and get help from the folks in the #ruby channel.

https://www.ruby-lang.org/en/installation/

When running your Ruby scripts or using IRB, you may
run into some common errors. I’ve listed a few of them here,
along with tips for fixing them!

Errors Running Ruby Scripts
There are two common errors that you might see when run-
ning Ruby scripts from the command line: “command not
found” and “no such file or directory.” Here are some sugges-
tions for how to resolve them.

316 APPENDIX B

Command Not Found

If you’re running a Ruby script and you get some output that
looks like this:

$: command not found

it probably means you accidentally typed a $ before your ruby
command. I use the $ symbol to show you that you’re running
a Ruby script from the command line with a filename (like ruby
my_fancy_script.rb); you shouldn’t type the $ itself!

No Such File or Directory

If you get an error that looks like this:

No such file or directory -- some_filename.rb (LoadError)

it means you tried to run ruby some_filename.rb, but that file didn’t
exist in the folder you’re currently in.

To fix this, first make sure you’re in the folder where you
saved your Ruby script. You can change from one folder to
another using the cd command (for “change directory”). See
“Creating Your First Script” on page 12 for help using the cd
command.

If you’re in the correct folder and your command still gives
you an error, double-check the spelling of your file! (I mistype
the names of Ruby files all the time.)

Errors Using IRB
There are a few common errors that you might see when using
IRB. Here’s how to fix them, along with some other handy tips
for fixing typos and mistakes.

TROUBLESHOOTING 317

Undefined Local Variable or Method

If you try to call a method in IRB and get something like this:

NameError: undefined local variable or method `some_method_name' for
main:Object

it means you tried to use a method that Ruby doesn’t know about.
When you exit and restart IRB, Ruby forgets everything you
were previously doing—so if you defined a method, exited IRB,
and started it again, you’ll need to redefine that method to keep
using it. (See “Defining Your Own Methods” on page 114 if you
need a refresher on how to define methods.) If your method is
from a file, make sure you load that file using the command load
'your_file.rb', and if all else fails, double-check that you’ve spelled
your method name correctly.

Syntax Error

If you get an error that looks like this:

SyntaxError: (irb):1: syntax error, unexpected 'something_here'

it means you wrote Ruby code that’s not quite right, and IRB
doesn’t know what to do with it. Double-check your code for tiny
errors, like typos, missing commas between elements in arrays,
or missing hash rockets (=>) or colons in hashes.

Can’t Convert nil into String

If you get an error like this:

TypeError: can't convert nil into String

it means you tried to do something with one Ruby type (like a
string, integer, or nil), but Ruby expected a different type. This
often happens when something is nil and you don’t know it; if
you see this error, try putsing out the values of all your variables

318 APPENDIX B

to make sure each one is the type of thing (string, integer,
array, and so on) that you expect! (See “Getting to Know IRB”
on page 10 for help with the puts command and “A Bit More
About Variables” on page 22 for a refresher on the types of
variables.)

You Were Saying . . . ?

From time to time, you might see Ruby print something like this:

...?

This means that Ruby expects you to “finish your thought.”
Usually it means you pressed enter without closing a string, or
maybe the last thing you typed was a + or - sign. All you need to
do is finish that thought—complete the expression you started to
type, close the string or array you opened, or whatever it is Ruby
is waiting for—and you’ll be all set. For example:

>> 1 +
...? 2
=> 3

If you have no idea what Ruby is waiting for, or you simply
mistyped and want to start over, you can press ctrl-C to tell
IRB not to wait for you. You’ll get your regular IRB prompt back
and can continue from there. (For more about ctrl-C, see
“Investigating the Kingdom’s Web Server” on page 290.)

Clear the Screen

Sometimes you’ll type a whole bunch in IRB and will want to
clear the screen. You can do this in several ways, depending on
which operating system you’re using. On a Mac, you can press
⌘-K or ctrl-L, or you can type system 'clear' into IRB and then
press enter. If you’re using Linux, typing ctrl-L or entering
system 'clear' should work. If you’re using Windows, typing
ctrl-L or entering system 'cls' (not 'clear'!) should do the trick.

TROUBLESHOOTING 319

Go Back to a Previous Command

If at any point you want to go back to a previous command you
typed into IRB, just hit the up arrow on your keyboard! This is
great if you just cleared the screen and then realize you need to
retype a command, or if you mistyped a command and want to
try again without retyping everything you just did.

Look It Up!

Finally, if you ever see an error that you don’t know how to
handle, go ahead and search for it on the Internet (after you
get your local adult’s permission!). Everyone gets errors, so it’s
likely that someone else has already figured out how to handle
any error you might run into. Even the best programmers look
up things they don’t know on a daily basis. The more comfort-
able you get hunting for answers when you’re stuck, the happier
and more productive you’ll be when writing Ruby.

SyMboLS
&& (and), 38, 41, 45
* (asterisk)

for multiplication, 25, 28
as splat mark, 123, 131

@ (at sign), 143
for instance variables, 150

@@, for class variables, 148
@name=, 142
\n (newline), 268, 272
: (colon)

for hash, 76
for symbol, 94

::, scope resolution operator,
221, 231

, (comma), for separating
key-value pairs, 75

{} (curly brackets), for
do/end, 57, 62

$ (dollar sign), 10, 316
for global variables, 147

$home variable, 169
.. (dots), in ranges, 80, 89
./, for file location,

219–220, 230
...?, for finishing your

thought in IRB, 318
= (equal sign), 22–23

for default parameters,
119

in method name, 159
== (equal to), 41
=> (hash rockets), 76

for IRB response, 15
for symbol, 96

! (not), 39, 41, 45
!= (not equal to), 41
> (greater than), 40
>= (greater than or

equal to), 40
>>, and IRB prompt, 15

#{}, for inserting variable
value into string,
35, 45

< (less than), 40
for calling subclass, 188
for inheritance, 185

<< (shovel operator), 84
<= (less than or equal to), 40
() (parentheses), 115, 119
? (question mark)

and colon, as if/else
alternative, 241

methods with, 260
"" (quotation marks), 11, 26

for strings, 22
; (semicolon), to end line of

code, 212
[] (square brackets)

for arrays, 54, 86
for hash values, 87

| (vertical pipe), in do/end, 57
|| (or), 41, 45
||=, 237–238
_ (underscore), 23

in symbol names, 94

a
'a' (add) mode, 271, 281
'a+' (add and read)

mode, 272
Account class, 199–203

instance variables, 201
addition, 25
analyze method, 225–226
and (&&), 38, 41, 45
another_minstrel.rb file, 158
another_minstrel_2.rb file,

159–160
another_minstrel_3.rb

file, 161
ArgumentError error, 118

arguments
for methods, 117–120
vs. parameters, 118

array literal syntax, 67
arrays, 54–58, 61

within arrays, 66–68
contents, 67
creating, 67, 85
first method, 68
iterating through, 72–74
methods for, 85
moving to next item, 55
sample method, 84
for storing names, 278

asterisk (*)
for multiplication, 25, 28
as splat mark, 123, 131

at sign (@), 143
for instance variables, 150

attr_accessor, 160, 161, 166,
174, 182, 183–184,
194, 303

attr_reader, 160, 161, 162,
173, 174, 197, 303

attr_writer, 160, 173, 303

b
backward strings, 27–28
ballad.rb file, 165
beginning of file, going

to, 272
blank line, removing from

input, 44
block methods, 124–127
block_given method, 126
blocks of code, 57, 62, 73

defining variable
within, 145

for methods, 132
opening file with, 269, 280
pipe character (|) in, 78

Index

322 INDEX

blocks of code, continued
and splat parameters, 125
variable inside, 171
variable scope and, 146

Booleans, 32, 45, 261
and simplifying code, 244

break if statement, 59
built-in Ruby objects, ID

numbers, 137

C
calling a method, 23–24
case statement, 242–243,

257, 260
cd command, 13, 316
characters, 29
child class, 188, 204
chomp method, 44
class keyword, 141, 188, 203
class methods, 155
class << self syntax,

156–157
class variables, 143,

148–149, 165, 170
classes, 67, 182–188

adding methods, 156–157
creating, 140–143, 165
defining, 182
defining local variable

outside, 152–153
in different files, 230
extending module

into, 214
local variables inside

definition, 145
methods for, 153
and objects, 137–140,

167–170
subclass and superclass,

188–193
clear the screen, in IRB, 318
close method, 270, 280
cmd.exe, 6
code

de-duplicating, 249–255
downloading gems, 220

DRY (Don’t Repeat
Yourself) code,
185–188

indentation, 39
preloaded, 223
refactoring, 231
reusing, 303
running one line at a

time, 14
semicolon (;) to end

line, 212
writing and running, 8
writing to file, 27

Code School, 307
Codecademy, 307
colon (:)

for hash, 76
for symbol, 94

colons (::), scope resolution
operator, 221, 231

colorize.rb file, 211, 224
combining, methods, vs.

size management,
251–254

comma (,), for separating
key-value pairs, 75

command line, 5
command not found

error, 316
command prompt, in

Windows, 6
commands

following object and
dot, 24

typing, 16
compiling, 10
Computing Contraption, 16
conditional assignment

of value to
variable, 238

conditional values, ||= for
setting, 258–259

conditionals, 38, 240–242
constants, 213–214, 227

looking up, 221–224
control flow, 38, 45, 302

ctrl-C, for stopping IRB,
290, 318

curly brackets ({}), for
do/end, 57, 62

d
datatypes, 67
debugging, 309–310
de-duplicating code, 249–255
def keyword, 114, 124,

130, 303
default parameters, 119, 130
default value, for

variables, 237
delete method, 99, 103

for keys from hashes, 107
directories, 34. See also

folders
division, 25
do block, 83
do/end syntax, 57, 62
Dog class, 184
dollar sign ($), 10, 316

for global variables, 147
Don’t Repeat Yourself (DRY)

code, 185–188
dots (..), in ranges, 80, 89
downloading

gems, 220
Ruby, 4

DRY (Don’t Repeat
Yourself) code,
185–188

E
each do, 59, 78, 83
each method, 57, 61–62,

83, 308
echo, 27
element in array, 55
else statement, 38, 39, 45

with unless, 239
elsif statement, 38–39, 45
empty? method, 69, 85, 88

for hash, 77

INDEX 323

end keyword
for class definition, 141
for if statement, 38
for methods, 114, 130
for while loop, 52

Enumerable module, 308
equal sign (=), 22–23

for default parameters,
119

in method name, 159
Errno:: ENOENT: No such

file or directory
error, 275

errors, 315–319
ArgumentError, 118
avoiding while working

with files, 275–277
Errno:: ENOENT: No

such file or
directory, 275

IOError, 211
NameError, 146, 171,

221, 317
NoMethodError, 155, 159,

162, 212, 228
NoMethodError: undefined

method, 24
'ruby' is not recognized

... error message, 6
SyntaxError, 96
TypeError, 317–318
when running Ruby

scripts, 315–316
using IRB, 316–319
in variables, 145–147

even? method, 252
exceptions, handling, 309
.exe file, running, 7
exist? method, 275, 283
exit, from IRB, 11
extend statement, 214,

227, 303

F
false, 32, 45, 262
falsey values, 246, 247, 262
file.close method, 280

File.exist? method, 275
File.open method,

268–269, 280
file.read method, 280
file.rewind method, 272,

274, 282
files

./ for location, 219–220
adding and writing to,

270–274
avoiding errors while

working with,
275–277

close method, 270
opening, 267, 268–270
pulling Ruby code

from, 218
working with, 280
writing code as, 27

find_person method, 134
finishing your thought

(...?), in IRB, 318
first method, 85

for arrays, 68, 71, 80
for range, 89

first_try.rb file, 255–256
flow.rb file, 34
flying_monkey.rb file, 196
folders, 34

for files, 219
for Ruby program, 12–13

for loop, 55, 61
for/in loop, 55

G
Gedit (Linux), 12
gems, 287, 299

downloading, 220
open-uri, 287–289

gets method, 44
GitHub, 298, 300
global variables, 143,

147–148, 170
$home, 169

greater than (>), 40
greater than or equal to

(>=), 40

Greetings module, 228
Grimm, Avdi, 307
guard_dog.rb file, 193–194

H
hash, 74–78, 87, 302

adding key and
value to, 105

adding key to, 92
automatically running

through, 102
creating, 76
empty? method for, 77
within hash, 104–105, 108
length method for, 77
methods, 88
storing in variable, 75

hash rockets (=>), 76
for IRB response, 15
for symbol, 96

hashery_menu.rb file, 80
hashes, and symbols,

97–101
has_key? method, 77, 88
has_value? method, 77, 88
http://localhost, 297

i
ID number, 95
if statement, 38, 45, 238

alternatives, 241, 259–260
nil in, 120–121

imagination, 1–2
implicit return, 261
include? method, 59
include statement, 213,

227, 303
indentation of code, 39
infinite loop, 50, 61
information hiding, 309
inheritance, 185–188,

203–204, 303
and mixins, 215–217
by SuperSecretAccount

class, 201

324 INDEX

initialize method, 154,
182, 194

new method and, 141
inline code, 238–239
input, removing spaces and

blank line from, 44
input and output (I/O), 263,

265–268
insert method, 71, 85
inserting variable value into

string, 35
installing Ruby, 4–7

on Mac or Linux, 5–6,
313–314

on Windows, 6
instance of class

creating, 67, 183–184
instance variables for, 151

instance variables, 143,
150–152, 170

and methods, 157–164
methods for reading and

writing, 160–162
methods to see or

change, 173
instantiating object, 167–168
Internet, 9

connecting to, 287
downloading gems, 220
and Ruby, 285–287

interrupt signal, 291
introduce method, 142
invoking methods, 115
I/O (input and output), 263,

265–268
IOError, 271
IRB program, 10–11

clearing the screen in, 318
finishing your thought

in, 318
loading script into, 141
running scripts in, 45
vs. text editor, 14–15

is equal to (==), 41
is not equal to (!=), 41
is-a relationship, 188

iterators, 54–55, 302
for arrays, 72–74, 87
for hash, 88–89
in loop, 61

J
join method, 126

K
keys method, 83, 88

for hash, 76
key-value pairs, 75, 87

L
lambdas, 308–309
last method, 85

for arrays, 68, 71
for range, 89

length method, 21, 69,
85, 88

for hash, 77
less than (<), 40
less than or equal to

(<=), 40
license agreement,

accepting, 7
Linux

changing folders, 13
installing Ruby on,

5–6, 314
terminal to open

IRB, 10
text editors for, 12

lists. See arrays
literal string of

characters, 29
literal syntax, for hash,

76, 87
load command, 34, 141
loading_docks.rb file,

277–278
local variables, 143,

152–154, 170
logical operators, 40–42
login account, 199

loops, 302
for, 55, 61
infinite, 50, 61
iterators in, 61
while, 50–54, 59

loop_the_loop.rb file, 58–59

M
Mac

changing folders, 13
installing Ruby on, 5–6,

313–314
terminal to open IRB, 10
text editors for, 12

make_sounds method, 186
Matsumoto, Yukihiro, 9
maze.rb file, 43
memory, for symbols vs.

strings, 94
menus, 81–84
Message class, 228

vs. instance of Message, 228
metaprogramming, 309
methods, 29

with ? (question
mark), 260

adding to class, 141,
156–157

arguments for, 117–120
blocks for, 132
calling, 23–24
combining, vs. size

management,
251–254

defining, 114–120
defining local variable

outside, 152–153
defining variable

within, 144
for file I/O, 268
and instance variables,

157–164
invoking, 115
modifying, 192
modules as

collections, 211

INDEX 325

overriding, 190–192, 195,
204–205

scope for local
variables, 146

simplifying, 244–249
writing, 130

Microsoft Word, 12
MiniTest, 309–310
minstrel.rb file, 140–142
minstrel_review.rb file, 173
minstrel_review_2.rb file,

173–174
minstrel_review_3.rb file, 175
mixins

and inheritance, 215–217
modules as, 227

modules, 227, 303
creating, 211–212
in different files, 230
scope, 222

Monkey class, 183
monkey.rb file, 154
monkey_2.rb file, 156
monkey_review_3.rb file, 172
mount_proc method, 297
moving to next array

item, 55
multiplication (*), 25, 28

N
name method, 158–159
:name symbol, 174
NameError error, 146, 171,

221, 317
names, 248–249, 263

arrays for storing, 278
for classes, 141
of instances, getting and

changing, 190
method to change,

159–160
for methods, 159
for scripts, 14
and spaces, 23, 30
symbols as, 94
for variables, 22

namespaces, modules as, 227
namespacing, 221, 303
new method, 138

for arrays, 67, 85
for class method, 149
for hash, 76, 87
modules and, 212

newline (\n), 268, 272
next method, 25, 29, 55, 61
nil, 11, 117, 120–122, 125,

237, 262
nil? method, 242
no such file or directory

error, 316
NoMethodError error, 155, 159,

162, 212, 228
NoMethodError: undefined

method error, 24
not (!), 39, 41, 45
Notepad++, 12
numbers, 22

o
object ID, 103, 137–138, 167
object_id method, 95, 107
object-oriented program-

ming, 162, 174–176
objects, 133–137

and classes, 137–140,
153, 167–170

definition, 142
followed by dot and

command, 24
instantiating, 167–168
and self, 154–157

odd? method, 252
open method, 280
opening

files, 268–270
websites, 288

open-uri Ruby gem,
287–289, 299

operators, 24–26
optional parameters,

119, 130
or (||), 41, 45
output, 263, 265–268

overriding methods,
190–192,
204–205, 303

overwriting existing
files, 271

P
panda_food.rb file, 217,

225–226
parameters, 114

vs. arguments, 118
optional or default,

119, 130
splat, 122–124, 131

parent class, 188, 204. See
also superclass

parentheses [()], 119
for methods, 115

pipe character (|), in
block, 78

pirates_and_people.rb
file, 190

placeholder value, for
parameters, 119

podcasts, on Ruby, 306
pop method, 72, 85
pred method, 25, 29
print command, 43, 44, 59
printing to screen, puts

for, 116
private methods, 309
Proc class, 142
processes, 310
procs, 308–309
prompts, 15–16

by IRB, 11
protected methods, 309
push method, 71, 72, 85

shortcut for, 84
puts self command, 172
puts statement, 4, 10, 11, 28,

193, 272, 282
vs. return, 115–117

pwd method, 290
Python, 293–294

converting Ruby to,
294, 298

326 INDEX

Q
question mark (?)

and colon, as if/else
alternative, 241

methods with, 260
quotation marks (""), 11, 26

for strings, 22

R
'r' mode, 280–281
Railscasts, 306
rand method, 194, 197
random number, 194
:random_special key, 84
ranges, 79, 89
read method, 280
readline method, 282
readlines method, 274, 282
refactored.rb file, 256–257
refactoring, 233–237,

255–258
reflection, 27, 309
regular expressions, 308
relationship, is-a, 188
require method, 218, 287
require! method, 230
return keyword, 117,

123, 244
vs. puts, 115–117

return value, 117, 131
reverse method, 21, 23–24
rewind method, 272, 274, 282
RSpec, 310
Rubular, 308
ruby command, 14–15
Ruby documentation,

132, 279
'ruby' is not recognized ...

error message, 6
Ruby Koans, 307
Ruby Monk, 308
Ruby on Rails, 306, 310
Ruby programming

language, 2
converting to Python,

294, 298

displaying version
in Mac or Linux, 5–6
in Windows, 6, 7

history, 9
installing, 4–7

on Linux, 314
on Mac, 313–314

interactive use, 8
and Internet, 285–287
reasons for learning, 3–4
resources, 304–306

Ruby Rogues, 306
Ruby Tapas, 307
Ruby Weekly, 307
Ruby5 podcast, 306
RubyGems website, 298, 300
RubyInstaller (Windows), 7
Ruby-to-Python project, 298
running scripts, 13, 33–35
RVM (Ruby Version

Manager), 313, 314

S
sample method, 84, 211
saving scripts, 12–13
scope, 143, 144–154, 170–174

modules, 222
top-level, 152–153

scope resolution operator
(::), 221, 231

screen, puts for printing
to, 116

scripts, 10, 11, 140, 302
creating, 12–13
name for, 14
running, 13, 45
writing and running,

33–35
secrecy.rb file, 200–201
security, built-in methods

for, 203
self, 172, 303

displaying value, 172
and objects, 154–157

self.def method, 223
self.number_of_monkeys

method, 172

semicolon (;), to end line of
code, 212

server.rb file, 290
shift method, 70, 85
shovel operator (<<), 84
shutdown, of web server, 291
Sinatra (program), 310
size method, 85, 134
spaces

and names, 23, 30
removing from input, 44

splat parameters,
122–124, 131

and blocks, 125
square brackets ([])

for arrays, 54, 85, 86
for hash values, 87

stories
Apprentice Plumber’s

Dilemma, 31–33
Big Hank’s Hashery,

63–66
Conclusion, 290
Into the Dagron’s Lair,

127–129
Dial-a-Ballad, or the

Minstrel’s Delivery
Service, 164–166,
177–182

File Input and Output,
265–268

His Majesty’s Flow
Control, 35–40

King and His String,
19–22, 25–26

Method to the Madness,
109–114

Queen’s Machine,
199–203

Refactoring at the
Refractory, 233–237

Rollicking Ranges, 78–81
Ruby on Monorails, 47–50
Subject as Object,

133–137
Utter Panda-monium,

207–210

INDEX 327

storing hash, in
variables, 75

string interpolation, 35, 45
strings, 22, 29

#{} for inserting variable
value into, 35, 45

backward, 27
changing to symbol, 98
memory for, 94
multiplying, 28
quotation marks ("")

for, 22
vs. symbols, 107

strings_to_symbols.rb file,
102–104

subclass, 188–193, 204
Sublime Text 2, 12
subtraction, 25
super keyword, 192, 196,

204, 205
superclass, 188–193, 204,

229–230
sending right arguments

to method, 206
SuperSecretAccount class,

inheritance by, 201
symbols, 76, 91–97

additional features,
104–105

basics, 94–97
changing strings to, 98
and hashes, 97–101
memory for, 94
vs. strings, 107

syntax, 4
SyntaxError error, 96, 317

T
temporary variable, for array

item, 56
Terminal application, 5
ternary operator, 241,

253, 260
text editor, 11–13

vs. IRB program, 14–15
TextEdit (Mac), 12
threads, 310

times method, 145
to_a method, 79–80, 83, 89
top-level scope, 152–153
to_s method, 105, 107
to_sym method, 98, 103, 107

for strings, 105
troubleshooting, 315–319
true, 32, 45
truthy values, 245–246, 247,

262–263
TypeError error, 317–318

u
undefined local variable or

method error, 317
underscore (_), 23

in symbol names, 94
unless statement, 42, 45,

121–122, 238
alternatives, 259–260
else with, 239

unshift method, 71, 85
until, for while loop, 53
up arrow key, to go

back to previous
command, 319

update_tally method, 253

V
values method, 77, 88
variables, 22–24, 29, 169

assignment tricks,
237–239

class, 143, 148–149, 165
conditional assignment of

value to, 238
default value for, 237
errors, 145–147
global, 147–148
inserting values into

string, 45
instance, 143,

150–152, 172
and methods, 157–164
methods for reading

and writing, 160–162
methods to see or

change, 173

local, 143, 152–154
names for, 22
scope, 144–154, 170–174
storing hashes in, 75
storing symbols in, 105
storing values in, 117
temporary, 55
two different for same

string value, 95
versions of Ruby

displaying in Mac or
Linux, 5–6

displaying in Windows,
6, 7

vertical pipe (|), in do/end, 57
videos, on Ruby, 307

W
'w' (write) mode, 271
'w+' (write and read) mode,

279, 281
web server, 290–296, 299

shutdown, 291
WEBrick, 299, 310

shutdown, 297
web_server.rb file, 296–297
websites

built-in, 297
creating, 310
opening, 288

weezard.rb file, 148
weezard_2.rb file, 150
when statement, 243
while loop, 50–54, 59, 61

end for, 52
Windows

changing folder, 13
installing Ruby on, 6
text editors for, 12

Word (Microsoft), 12
word processor, 12

y
yield keyword, 124, 132

z
zero, and arrays, 71

UPdAtEs
Visit http://nostarch.com/rubywizardry/ for updates, errata, and other
 information.

javascript for kids
a playful introduction to programming
by nick morgan

december 2014, 336 pp., $34.95
isbn 978-1-59327-408-5
full color

the Manga guide™
to databases
by mana takahashi, shoko
azuma, and trend-pro co., ltd.
january 2009, 224 pp., $19.95
isbn 978-1-59327-190-9

Lauren ipsuM
a story about computer science
and other improbable things
by carlos bueno
december 2014, 192 pp., $16.95
isbn 978-1-59327-574-7
full color

raiLs crash course
a no-nonsense guide to rails development
by anthony lewis

october 2014, 296 pp., $34.95
isbn 978-1-59327-572-3

Learn to prograM
with scratch
a visual introduction to programming
with games, art, science, and Math
by majed marji

february 2014, 288 pp., $34.95
isbn 978-1-59327-543-3
full color

python for kids
a playful introduction to programming
by jason briggs

december 2012, 344 pp., $34.95
isbn 978-1-59327-407-8
full color

800.420.7240 or 415.863.9900 | sales@nostarch.com | www.nostarch.com

MoRE sMARt BooKs foR CURIoUs KIds!

http://nostarch.com/rubywizardry/
www.nostarch.com

SHELVE IN
:

PROGRAM
M

ING LANGUAGES/RUBY

www.nostarch.com

TH E F I N EST I N
G E E K E NTE RTA I N M E NT™

For kids aged 10+ (and their parents)

A Madcap
Programming

Adventure

A Madcap
Programming

Adventure

$29.95 ($31.95 CDN)

The Ruby programming language is perfect
for beginners: easy to learn, powerful, and
fun to use! But wouldn’t it be more fun if you
were learning with the help of some wizards

Along the way, you’ll meet colorful
characters from around the kingdom, like
the hacker Queen, the Off-White Knight,
and Wherefore the minstrel. Ruby Wizardry
will have you (or your little wizard) hooked
on programming in no time.

ABOUT THE AUTHOR

Eric Weinstein has helped millions of people
learn to program through Codecademy, where
he designed and authored the Ruby curricu-
lum. He has also taught creative writing
to undergraduates and veterans at NYU,
where he was a Veterans Writing Workshop
Fellow. He writes Ruby for a living in New
York City.

 Organize and reuse your code with methods
and lists

 Write your own amazing interactive
stories using Ruby

Ruby by taking you on a fantastical journey.
As you follow the adventures of young heroes

tale that will teach you how to program in

Ruben and Scarlet, you’ll learn real program-
ming skills, like how to:

Ruby Wizardry is a playful, illustrated

 Use fundamental concepts like variables,
symbols, arrays, and strings

 Work with Ruby hashes to create a
programmable breakfast menu

 Control program flow with loops and
conditionals to help the Royal Plumber

 Test your wild and crazy ideas in IRB
and save your programs as scripts

 Create a class of mini-wizards, each with
their own superpower!

and dragons?

Ruby is a free programming
language that runs on Windows,

Mac OS X, and Even Linux!
Covers Ruby 2.

R
u

b
y

 W
iz

a
r

d
r

y
R

u
b

y
 W

iz
a

r
d

r
y

W

e
in

s
t

e
in

Ruby
Wizardry
Ruby

Wizardry
An Introduction to Programming for Kids

E r i c W e i n s t e i n

	About the Author
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Chapter 1: What This Book’s About
	Why Learn Programming
(and Why Ruby)?
	All Adults on Deck: Installing Ruby
	Installing on Mac or Linux
	Installing on Windows

	Achievement Unlocked: Ruby Installed!
	Putting on the Ruby Slippers
	Getting to Know IRB
	Using a Text Editor and
the ruby Command
	Mac
	Linux
	Windows
	Creating Your First Script

	When to Use IRB and When to Use a Text Editor
	The Prompts Used in This Book
	Into the Shiny Red Yonder

	Chapter 2: The King and His String
	A Short Yarn
	A Bit More About Variables
	Ruby Operators
	A Smallish Project for You
	You Know This!

	Chapter 3: Pipe Dreams
	The Apprentice Plumber's Dilemma
	Writing and Running Ruby Scripts
	His Majesty’s Flow Control
	Improving flow_rate.rb with Fancier Logical Operators
	A Biggerish Project for You
	You Know This!

	Chapter 4: Staying in the Loop
	Ruby on Monorails
	while Loops
	Arrays
	Putting Arrays and Loops into Action
	Your Project, Should You Choose to Accept It
	You Know This!

	Chapter 5: Array of Sunshine and Hash on the Range
	Big Hank's Hashery
	Arrays Within Arrays
	Even More Array Methods!
	Shift! Pop! Insert!
	Iterating with Arrays
	Hash in the Hashery
	Rollicking Ranges
	Order Up!
	You Know This!

	Chapter 6: The (Chunky) Bacon to Ruby’s Hash
	Symbols!
	The Skinny on Symbols
	Symbols and Hashes, Together at Last
	The Mid-Morning Rush
	What Else Can You Do with Symbols?
	You Know This!

	Chapter 7: The Magic of Methods and Blocks
	A Method to the Madness
	Defining Your Own Methods
	return Versus puts
	Understanding Method Arguments

	What Is nil?
	Splat Parameters
	Block Methods
	Into the Dagron’s Lair
	You Know This!

	Chapter 8: Everything Is an Object (Almost)
	The Subject of Our Story Is an Object
	Classes and Objects
	Creating Our First Class, Minstrel
	Variable Scope
	These Variable Errors Will Shock and Surprise You!
	Global Variables
	Class Variables
	Instance Variables
	Local Variables

	Objects and self
	Methods and Instance Variables
	Dial-a-Ballad, or the Minstrel’s Delivery Service
	You Know This!
	Objects and Classes
	Variables and Scope
	Object-Oriented Programming

	Chapter 9: Inheriting the Magic of Ruby
	Her Majesty's Menagerie
	A Brush-Up on Classes
	A Couple of Classes
	Inheritance and DRY Code

	Subclass and Superclass
	Overriding Methods: Pirates are People, Too
	Using super

	Protecting the Kingdom with GuardDogs and FlyingMonkeys
	Every GuardDog Has His Day
	Once More, with Feeling!

	The Queen’s Machine
	You Know This!

	Chapter 10: A Horse of a Different Color
	Utter Panda-monium
	Creating Modules
	Constants
	Extending Your Knowledge
	Mixins and Inheritance
	Requiring Another File
	Looking Up Constants
	A Horse of a Different Color
	You Know This!

	Chapter 11: Second Time’s the Charm
	Refactoring at the Refactory
	Variable Assignment Tricks
	Crystal-Clear Conditionals
	when You Need a case Statement
	Simplifying Methods
	De-Duplicating Code
	Re-Refactoring
	You Know This!

	Chapter 12: Reading, Writing, and Ruby Magic
	File Input and Output
	Opening a File with Ruby
	Writing and Adding to Files
	Avoiding Errors While Working with Files
	All Loading Docks, Report for Duty!
	You Know This!

	Chapter 13: Follow the WEBrick Road
	Ruby and the Internet
	Using the open-uri Ruby Gem
	Investigating the Kingdom’s Web Server
	Beyond the Kingdom Walls
	You Know This!

	Chapter 14: Where to Go Next
	The Big Picture: What You Know
	Additional Resources and Further Reading
	Beginner Books
	Intermediate Books
	Advanced Books

	Online and Multimedia
	Interactive Resources

	Additional Topics

	Appendix A: Installing Ruby on Mac and Linux
	Installing on Mac
	Installing on Linux

	Appendix B: Troubleshooting
	Errors Running Ruby Scripts
	Command Not Found
	No Such File or Directory

	Errors Using IRB
	Undefined Local Variable or Method
	Syntax Error
	Can’t Convert Nil into String
	You Were Saying...?
	Clear the Screen
	Go Back to a Previous Command
	Look It Up!

	Index
	Updates

