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Preface

My approach in this book: theory and experiment

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you
are. If it doesn’t agree with experiment, it’s wrong.” – Richard Feynman

In Ruby Under a Microscope I’m going to teach you how Ruby works internally. I’ll use a
series of simple, easy to understand diagrams that will show you what is happening on
the inside when you run a Ruby program. Like a physicist or chemist, I’ve developed a
theory about how things actually work based on many hours of research and study. I’ve
done the hard work of reading and understanding Ruby’s internal C source code so you
don’t have to.
But, like any scientist, I know that theory is worthless without some hard evidence to
back it up. Therefore after explaining some aspect of Ruby internals, some feature or
behavior of the language, I’ll perform an experiment to prove that my theory was
correct. To do this I’ll use Ruby to test itself! I’ll run some small Ruby test scripts to see
whether they produce the expected output or whether they run as fast or as slowly as I
expect. We’ll find out if Ruby actually behaves the way my theory says it should. Since
these experiments are written in simple Ruby, you can try them yourself.

A travel journal
Before teaching you how Ruby works internally, I had to learn it myself. To do this, I
went on a six month journey through MRI Ruby’s internal implementation. I also took a
few side trips to visit JRuby and Rubinius. I started by simply reading and studying
Ruby’s C source code; later I continued by looking at how it actually functions by
setting breakpoints and stepping through the code using the GDB debugger. Finally, I
modified and recompiled the C source code to be sure I thoroughly understood how it
worked. Often I added “printf” statements to write out debug information; occasionally I
changed the code directly to see what would happen if it were written differently.
Ruby Under a Microscope is my travel journal; I’ve written everything I’ve learned during
this long journey. I hope the following pages give you the same sense of beauty and
excitement which I found and felt as I discovered one amazing thing after another.
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Ruby’s internal C source code is like a foreign country where people speak a language
you don’t understand. At first it’s difficult to find your way and understand the people
around you, but if you take the time to learn something of the local language you can
eventually come to know the fascinating people, places, food and culture from what
was previously uncharted territory.

What this book is not
Ruby Under a Microscope is not a beginner’s guide to learning Ruby. Instead, in Ruby
Under a Microscope I assume you already know Ruby and use it on a daily basis. There
are many great books on the market that teach Ruby far better than I ever could.
Ruby Under a Microscope is also not a newer, updated version of the Ruby Hacking
Guide. As the name implies, the Ruby Hacking Guide is a guide for C programmers who
want to understand Ruby’s internal C implementation at a detailed level. It’s an
invaluable resource for the Ruby community and required reading for those who want to
read and work on the MRI source code. Ruby Under a Microscope, on the other hand,
is intended to give Ruby developers a high level, conceptual understanding of how
Ruby works internally. No knowledge of C programming is required.

For those people familiar with C, however, I will show a few vastly simplified
snippets of C code to give you a more concrete sense of what’s going on
inside Ruby. I’ll also indicate which MRI C source code file I found the snippet
in; this will make it easier for you to get started studying the MRI C code
yourself if you ever decide to. Like this paragraph, I’ll display this information
on a yellow background.
If you’re not interested in the C code details, just skip over these yellow
sections.

Why bother to study Ruby internals?
Everyday you need to use your car to drive to work, drop your kids off at school, etc.,
but how often have you ever thought about how your car actually works internally?
When you stopped at that red light on your way to the grocery store last weekend were
you thinking about the theory and engineering behind the internal combustion engine?
No, of course not! All you need to know about your car is which pedal is which, how to
turn the steering wheel and a few other important details like shifting gears, turn
indicator lights, etc.
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At first glance, studying how Ruby is implemented internally is no different. Why bother
to learn how the language was implemented when all you need to do is use it? Well, in
my opinion, there are a few good reasons why you should take the time to study the
internal implementation of Ruby:

• You’ll become a better Ruby developer. By studying how Ruby works
internally, you can become more aware of how Yukihiro Matsumoto and the
rest of the Ruby core team intended the language to be used. You’ll be a better
Ruby developer by using the language as it was intended to be used, and not
just in the way you prefer to use it.

• You can learn a lot about computer science. Beyond just appreciating the
talent and vision of the Ruby core team, you’ll be able to learn from their work.
While implementing the Ruby language, the core team had to solve many of the
same computer science problems that you might have to solve in your job or
open source project.

• It’s fun! I find learning about the algorithms and data structures Ruby uses
internally absolutely fascinating, and I hope you will too.

Roadmap
The journey I took through Ruby’s internal implementation was a long one, and I
covered a lot of ground. Here’s a quick summary of what I will teach you about in Ruby
Under a Microscope:
I start in Chapter 1, Tokenization, Parsing and Compilation, by describing how Ruby
reads in and processes your Ruby program. When you type “ruby my_script.rb” at the
console and press ENTER, what happens? How does Ruby make sense of the text
characters you typed into your Ruby program? How and why does Ruby transform your
Ruby code from one format to another and another? I find this to be one of the most
fascinating areas of Ruby internals and of computer science.
Next in Chapter 2, How Ruby Executes Your Code, I pick up the story from where
Chapter 1 left off and describe how Ruby’s virtual machine, called “Yet Another Ruby
Virtual Machine” (YARV) executes your program. How does YARV actually execute your
Ruby code? How does it keep track of local variables? How does YARV execute “if”
statements and other control structures?
In Chapter 3, Objects, Classes and Modules, I switch gears and explain how Ruby’s
object model works internally. What is a Ruby object? What would I see if I could slice
one open? How do Ruby classes work? How are Ruby modules and classes related?
How does Ruby’s method lookup algorithm work?
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Chapter 4, Hash Tables, thoroughly explains how hash tables work in Ruby. Ruby uses
hash tables not only to implement the hash object you use in your programs, but also
for many of its own internal data structures. Methods, instance variables, constant
values - Ruby stores all of these and many other things internally in hash tables. Hash
tables are central to Ruby internals.
Finally in Chapter 5, How Ruby Borrowed a Decades Old Idea from Lisp, I take a trip
back to the 1960s to learn more about closures, first introduced by the Lisp
programming language. Are Ruby blocks really closures? What happens when you call
a block? How are lambdas, procs, bindings and blocks related? And what about
metaprogramming - what does this have to do with closures?
Along the way in each of these five chapters I compare and contrast the MRI
implementation with how JRuby and Rubinius work. While most Ruby developers still
use MRI, it isn’t the only game in town and there’s a lot to learn from the alternative
implementations as well. In fact, there are even more versions of Ruby that I didn’t have
time to cover here at all: mruby, MacRuby, RubyMotion, among others.

What is missing?
Ruby’s internal implementation is a vast, foreign territory that I have just started to
describe. Completely covering all of Ruby’s internal implementation would require many
trips - many books similar to Ruby Under a Microscope. To name just a few examples: I
didn’t cover how Ruby implements many of the core classes, such as strings, arrays or
files. I also didn’t cover garbage collection and memory management, and I never said a
word about threads or concurrency.
Instead, I decided to cover the real “guts” of the language: how does the Ruby
language work at its core? I felt it would be better to cover a few important topics well,
in great detail, rather than to touch on a larger set of topics at a surface level.
If I have time someday, and if Ruby Under a Microscope turns out to be a useful
resource for the Ruby community, I may try to write a second book. I might call it Ruby
Under a Microscope Part 2, which would pick up where this book left off. However, I’m
not making any promises!

A word about my diagrams
As you’ll see, Ruby Under a Microscope is an illustrated travel journal. While I’m not an
artist, I tried my best to describe Ruby’s internals visually. Obviously, a picture is worth
a thousands words. My goal is that some of these diagrams come back into your mind
the next time you use a particular feature of Ruby. I want you to be able to imagine what
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is happening inside Ruby when you call a block, include a module in a class or save a
value in a hash, for example.
However, my diagrams are not intended to be either definitive or exhaustive. Instead,
view them as visual aids that can help you understand something. On many occasions I
left out fields, pointers and other details that I felt would be confusing or just wouldn’t
fit. The only way to get completely accurate information about a particular structure,
object or algorithm is to read the C source code yourself.

Feedback please
Please send feedback to:

• http://patshaughnessy.net/ruby-under-a-microscope#disqus_thread
• Twitter: @pat_shaughnessy
• Email: pat@patshaughnessy.net
• https://github.com/patshaughnessy/ruby-under-a-microscope/issues
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Your code has a long road to take
before Ruby ever runs it.

Chapter 1
Tokenization, Parsing and
Compilation

How many times do you think Ruby
reads and transforms your code before
running it? Once? Twice? Whenever you
run a Ruby script – whether it’s a large
Rails application, a simple Sinatra web
site, or a background worker job – Ruby
rips your code apart into small pieces
and then puts them back together in a
different format… three times! Between
the time you type “ruby” and start to see
actual output on the console, your Ruby
code has a long road to take, a journey
involving a variety of different
technologies, techniques and open

source tools.
At a high level, here’s what this journey looks like:

Tokenize Parse Compile

tokens AST
nodes

YARV
instructions

Your Ruby 
Code

First, Ruby tokenizes your code. During this first step, Ruby reads the text characters in
your code file and converts them into tokens. Think of tokens as the words that are
used in the Ruby language. In the next step, Ruby parses these tokens; “parsing”
means to group the tokens into meaningful Ruby statements. This is analogous to
grouping words into sentences. Finally, Ruby compiles these statements or sentences
into low level instructions that Ruby can execute later using a virtual machine.
I’ll get to Ruby’s virtual machine, called “Yet Another Ruby Virtual Machine” (YARV),
next in Chapter 2, but first in this chapter I’ll describe the tokenizing, parsing and

Chapter 1: Tokenization, Parsing and Compilation

13



compiling processes which Ruby uses to understand the code you give it. Join me as I
follow a Ruby script on its journey!

Chapter 1 Roadmap

Tokens: the words that make up the Ruby language
Experiment 1-1: Using Ripper to tokenize different Ruby scripts
Parsing: how Ruby understands the code you write

Understanding the LALR parse algorithm
Some actual Ruby grammar rules

Experiment 1-2: Using Ripper to parse different Ruby scripts
Compilation: how Ruby translates your code into a new language

Stepping through how Ruby compiles a simple script
Compiling a call to a block

Experiment 1-3: Using the RubyVM class to display YARV instructions
Tokenization, parsing and compilation in JRuby
Tokenization, parsing and compilation in Rubinius
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Tokens are the words that make up
the Ruby language.

Tokens: the words that make up the Ruby language
Let’s suppose you write this very simple
Ruby program:
10.times do |n|

puts n
end

… and then execute it from the
command line like this:
$ ruby simple.rb
0
1
2
3

etc...

What happens first after you type “ruby simple.rb” and press “ENTER?” Aside from
general initialization, processing your command line parameters, etc., the first thing
Ruby has to do is open and read in all the text from the simple.rb code file. Then it
needs to make sense of this text: your Ruby code. How does it do this?
After reading in simple.rb, Ruby encounters a series of text characters that looks like
this:

0 . t i m e s d o | n |1

To keep things simple I’m only showing the first line of text here. When Ruby sees all of
these characters it first “tokenizes” them. As I said above, tokenization refers to the
process of converting this stream of text characters into a series of tokens or words that
Ruby understands. Ruby does this by simply stepping through the text characters one
at a time, starting with the first character, “1:”

0 . t i m e s d o | n |1

Chapter 1: Tokenization, Parsing and Compilation
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Inside the Ruby C source code, there’s a loop that reads in one character at a time and
processes it based on what character it is. As a simplification I’m describing
tokenization as an independent process; in fact, the parsing engine I describe in the
next section calls this C tokenize code whenever it needs a new token. Tokenization
and parsing are two separate processes that actually happen at the same time. For now
let’s just continue to see how Ruby tokenizes the characters in my Ruby file.
In this example, Ruby realizes that the character “1” is the start of a number, and
continues to iterate over all of the following characters until it finds a non-numeric
character – next it finds a “0:”

0 . t i m e s d o | n |1

And stepping forward again it finds a period character:

0 . t i m e s d o | n |1

Ruby actually considers the period character to be numeric also, since it might be part
of a floating point value. So now Ruby continues and steps to the next character:

0 . t i m e s d o | n |1

Here Ruby stops iterating since it found a non-numeric character. Since there were no
more numeric characters after the period, Ruby considers the period to be part of a
separate token and steps back one:

0 . t i m e s d o | n |1

And finally Ruby converts the numeric characters that it found into a new token called
tINTEGER:

Ruby Under a Microscope
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. t i m e s d o | n |tINTEGER
10

This is the first token Ruby creates from your program. Now Ruby continues to step
through the characters in your code file, converting each of them to tokens, grouping
the characters together as necessary:

t i m e s d o | n |.tINTEGER
10

The second token is a period, a single character. Next, Ruby encounters the word
“times” and creates an identifier token:

d o | n |. tIDENTIFIER
"times"

tINTEGER
10

Identifiers are words that you use in your Ruby code that are not reserved words;
usually they refer to variable, method or class names. Next Ruby sees “do” and creates
a reserved word token, indicated by keyword_do:

| n |keyword_do. tIDENTIFIER
"times"

tINTEGER
10

Reserved words are the special keywords that have some important meaning in the
Ruby language – the words that provide the structure or framework of the language.
They are called reserved words since you can’t use them as normal identifiers, although
you can use them as method names, global variable names (e.g. $do) or instance
variable names (e.g. @do or @@do). Internally, the Ruby C code maintains a constant
table of reserved words; here are the first few in alphabetical order:

Chapter 1: Tokenization, Parsing and Compilation
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alias
and
begin
break
case
class

Finally, Ruby converts the remaining characters on that line of code to tokens also:

| tIDENTIFIER
"n" |. tIDENTIFIER

"times"
tINTEGER

10 keyword_do

I won’t show the entire program here, but Ruby continues to step through your code in
a similar way, until it has tokenized your entire Ruby script. At this point, Ruby has
processed your code for the first time – it has ripped your code apart and put it back
together again in a completely different way. Your code started as a stream of text
characters, and Ruby converted it to a stream of tokens, words that Ruby will later put
together into sentences.

If you’re familiar with C and are interested in learning more about the detailed
way in which Ruby tokenizes your code file, take a look at the parse.y file in
your version of Ruby. The “.y” extension indicates parse.y is a grammar rule
file – a file that contains a series of rules for the Ruby parser engine which I’ll
cover in the next section. Parse.y is an extremely large and complex code file;
it contains over 10,000 lines of code! But don’t be intimidated; there’s a lot to
learn here and this file is worth becoming familiar with.
For now, ignore the grammar rules and search for a C function called
parser_yylex, which you’ll find about two thirds of the way down the file,
around line 6500. This complex C function contains the code that does the
actual work of tokenizing your code. If you look closely, you should see a very
large switch statement that starts like this:
retry:

last_state = lex_state;
switch (c = nextc()) {

Ruby Under a Microscope
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The nextc() function returns the next character in the code file text stream –
think of this as the arrow in my diagrams above. And the lex_state variable
keeps information about what state or type of code Ruby is processing at the
moment. The large switch statement inspects each character of your code file
and takes a different action based on what it is. For example this code:

/* white spaces */
case ' ': case '\t': case '\f': case '\r':
case '\13': /* '\v' */

space_seen = 1;

...

goto retry;

… looks for whitespace characters and ignores them by jumping back up to
the retry label just above the switch statement.

One other interesting detail here is that Ruby’s reserved words are defined in
a code file called defs/keywords – if you open up the keywords file you’ll see a
complete list of all of Ruby’s reserved words, the same list I showed above.
The keywords file is used by an open source package called gperf to produce
C code that can quickly and efficiently lookup strings in a table, a table of
reserved words in this case. You can find the generated reserved word lookup
C code in lex.c, which defines a function named rb_reserved_word, called
from parse.y.
One final detail I’ll mention about tokenization is that Ruby doesn’t use the Lex
tokenization tool, which C programmers commonly use in conjunction with a
parser generator like Yacc or Bison. Instead, the Ruby core wrote the Ruby
tokenization code by hand. They may have done this for performance reasons,
or because Ruby’s tokenization rules required special logic Lex couldn’t
provide.

Chapter 1: Tokenization, Parsing and Compilation
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Experiment 1-1: Using Ripper to tokenize different Ruby
scripts

Now that we’ve learned the basic idea behind tokenization,
let’s look at how Ruby actually tokenizes different Ruby
scripts. After all, how do I know the explanation above is
actually correct? It turns out it is very easy to see what
tokens Ruby creates for different code files, using a tool
called Ripper. Shipped with Ruby 1.9 and Ruby 2.0, the
Ripper class allows you to call the same tokenize and
parse code that Ruby itself uses to process the text from
code files. It’s not available in Ruby 1.8.

Using it is simple:
require 'ripper'
require 'pp'
code = <<STR
10.times do |n|

puts n
end
STR
puts code
pp Ripper.lex(code)

After requiring the Ripper code from the standard library, I call it by passing some code
as a string to the Ripper.lex method. In this example, I’m passing the same example
code from earlier. Running this I get:
$ ruby lex1.rb
10.times do |n|

puts n
end
[[[1, 0], :on_int, "10"],
[[1, 2], :on_period, "."],
[[1, 3], :on_ident, "times"],
[[1, 8], :on_sp, " "],
[[1, 9], :on_kw, "do"],
[[1, 11], :on_sp, " "],
[[1, 12], :on_op, "|"],
[[1, 13], :on_ident, "n"],

Ruby Under a Microscope
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[[1, 14], :on_op, "|"],
[[1, 15], :on_ignored_nl, "\n"],
[[2, 0], :on_sp, "  "],
[[2, 2], :on_ident, "puts"],
[[2, 6], :on_sp, " "],
[[2, 7], :on_ident, "n"],
[[2, 8], :on_nl, "\n"],
[[3, 0], :on_kw, "end"],
[[3, 3], :on_nl, "\n"]]

Each line corresponds to a single token Ruby found in my code string. On the left we
have the line number (1, 2, or 3 in this short example) and the text column number. Next
we see the token itself displayed as a symbol, such as :on_int or :on_ident. Finally
Ripper displays the text characters it found that correspond to each token.
The token symbols Ripper displays are somewhat different than the token identifiers I
showed in the diagrams above. Above I used the same names you would find in Ruby’s
internal parse code, such as tIDENTIFIER, while Ripper used :on_ident instead.
Regardless, it’s easy to get a sense of what tokens Ruby finds in your code and how
tokenization works by running Ripper for different code snippets.
Here’s another example:
$ ruby lex2.rb
10.times do |n|

puts n/4+6
end

...

[[2, 2], :on_ident, "puts"],
[[2, 6], :on_sp, " "],
[[2, 7], :on_ident, "n"],
[[2, 8], :on_op, "/"],
[[2, 9], :on_int, "4"],
[[2, 10], :on_op, "+"],
[[2, 11], :on_int, "6"],
[[2, 12], :on_nl, "\n"],

...

Chapter 1: Tokenization, Parsing and Compilation
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This time we see that Ruby converts the expression n/4+6 into a series of tokens in a
very straightforward way. The tokens appear in exactly the same order they did inside
the code file.
Here’s a third, slightly more complex example:
$ ruby lex3.rb
array = []
10.times do |n|

array << n if n < 5
end
p array

...

[[3, 2], :on_ident, "array"],
[[3, 7], :on_sp, " "],
[[3, 8], :on_op, "<<"],
[[3, 10], :on_sp, " "],
[[3, 11], :on_ident, "n"],
[[3, 12], :on_sp, " "],
[[3, 13], :on_kw, "if"],
[[3, 15], :on_sp, " "],
[[3, 16], :on_ident, "n"],
[[3, 17], :on_sp, " "],
[[3, 18], :on_op, "<"],
[[3, 19], :on_sp, " "],
[[3, 20], :on_int, "5"],

...

Here you can see that Ruby was smart enough to distinguish between << and < in the
line: “array << n if n < 5.” The characters << were converted to a single operator
token, while the single < character that appeared later was converted into a simple less-
than operator. Ruby’s tokenize code is smart enough to look ahead for a second <
character when it finds one <.

Finally, notice that Ripper has no idea whether the code you give it is valid Ruby or not.
If I pass in code that contains a syntax error, Ripper will just tokenize it as usual and not
complain. It’s the parser's job to check syntax, which I’ll get to in the next section.
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require 'ripper'
require 'pp'
code = <<STR
10.times do |n

puts n
end
STR
puts code
pp Ripper.lex(code)

Here I forgot the | symbol after the block parameter n. Running this, I get:
$ ruby lex4.rb
10.times do |n

puts n
end

...

[[[1, 0], :on_int, "10"],
[[1, 2], :on_period, "."],
[[1, 3], :on_ident, "times"],
[[1, 8], :on_sp, " "],
[[1, 9], :on_kw, "do"],
[[1, 11], :on_sp, " "],
[[1, 12], :on_op, "|"],
[[1, 13], :on_ident, "n"],
[[1, 14], :on_nl, "\n"],

...

Chapter 1: Tokenization, Parsing and Compilation
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Ruby uses an LALR parser
generator called Bison.

Parsing: how Ruby understands the code you write
Now that Ruby has converted your code into a series of
tokens, what does it do next? How does it actually
understand and run your program? Does Ruby simply
step through the tokens and execute each one in order?
No, it doesn’t… your code still has a long way to go
before Ruby can run it. As I said above, the next step on
your code’s journey through Ruby is called “parsing,”
which is the process for grouping the words or tokens
into sentences or phrases that make sense to Ruby. It is
during the parsing process that Ruby takes order of
operations, methods and arguments, blocks and other
larger code structures into account. But how does Ruby
do this? How can Ruby or any language actually
“understand” what you’re telling it with your code? For
me, this is one of the most fascinating areas of computer
science… endowing a computer program with
intelligence.

Ruby, like many programming languages, uses something called an “LALR parser
generator” to process the stream of tokens that we just saw above. Parser generators
were invented back in the 1960s; like the name implies, parser generators take a series
of grammar rules and generate code that can later parse and understand tokens that
follow those rules. The most widely used and well known parser generator is called
Yacc (“Yet Another Compiler Compiler”), but Ruby instead uses a newer version of
Yacc called Bison, part of the GNU project. The term “LALR” describes how the
generated parser actually works internally – more on that below.
Bison, Yacc and other parser generators require you to express your grammar rules
using “Backus–Naur Form” (BNF) notation. For Bison and Yacc, this grammar rule file
will have a “.y” extension, named after “Yacc.” The grammar rule file in the Ruby source
code is called parse.y – the same file I mentioned earlier that contains the tokenize
code. It is in this parse.y file that Ruby defines the actual syntax and grammar that you
have to use while writing your Ruby code. The parse.y file is really the heart and soul of
Ruby – it is where the language itself is actually defined!
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Ruby doesn’t use Bison to actually process the tokens, instead Ruby runs Bison ahead
of time during Ruby’s build process to create the actual parser code. There are really
two separate steps to the parsing process, then:

Ruby Build
Time

Run Time

Generate Parser
(Bison)

Grammar 
Rules

(parse.y)

Tokenize Parse Compile
tokens AST

nodes

Parser Code
(parse.c)

Ruby Code
(.rb files)

YARV
instructions

Ahead of time, before you ever run your Ruby program, the Ruby build process uses
Bison to generate the parser code (parse.c) from the grammar rules file (parse.y). Then
later at run time this generated parser code actually parses the tokens returned by
Ruby’s tokenizer code. You might have built Ruby yourself from source manually or
automatically on your computer by using a tool like Homebrew. Or someone else may
have built Ruby ahead of time for you, if you installed Ruby with a prepared install kit.
As I explained at the end of the last section, the parse.y file, and therefore the generated
parse.c file, also contains the tokenization code. This is why I show the diagonal arrow
from parse.c to the “Tokenize” process on the lower left. In fact, the parse engine I am
about to describe calls the tokenization code whenever it needs a new token. The
tokenization and parsing processes actually occur simultaneously.

Understanding the LALR parse algorithm
Now let’s take a look at how grammar rules work – the best way to become familiar with
grammar rules is to take a close look at one simple example. Suppose I want to
translate from the Spanish:

Me gusta el Ruby

…to the English:
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I like Ruby

… and that to do this suppose I use Bison to generate a C language parser from a
grammar file. Using the Bison/Yacc grammar rule syntax – the “Backus–Naur” notation
– I can write a simple grammar rule like this with the rule name on the left, and the
matching tokens on the right:1

SpanishPhrase : me gusta el ruby {
printf("I like Ruby\n");

}

This grammar rule means: if the token stream is equal to “me”, “gusta,” “el” and “ruby”
– in that order – then we have a match. If there’s a match the Bison generated parser
will run the given C code, the printf statement (similar to puts in Ruby), which will
print out the translated English phrase.
How does this work? Here’s a conceptual picture of the parsing process in action:

me gusta el rubyme gusta el

SpanishPhrase:

Tokens

Grammar Rule

ruby

me gusta el ruby

At the top I show the four input tokens, and the grammar rule right underneath it. It’s
obvious in this case there’s a match since each input token corresponds directly to one
of the terms on the right side of the grammar rule. In this example we have a match on
the SpanishPhrase rule.

Now let’s change the example to be a bit more complex: suppose I need to enhance my
parser to match both:

1. This is actually a slightly modified version of BNF that Bison
uses – the original BNF syntax would have used ‘::=’ instead of a
simple ‘:’ character.
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Me gusta el Ruby

and:

Le gusta el Ruby

…which means “She/He/It likes Ruby.” Here’s a more complex grammar file that can
parse both Spanish phrases:2

SpanishPhrase: VerbAndObject el ruby {
printf("%s Ruby\n", $1);

};
VerbAndObject: SheLikes | ILike {

$$ = $1;
};
SheLikes: le gusta {

$$ = "She likes";
}
 ILike: me gusta {

$$ = "I like";
}

There’s a lot more going on here; you can see four grammar rules instead of just one.
Also, I’m using the Bison directive $$ to return a value from a child grammar rule to a
parent, and $1 to refer to a child’s value from a parent.

Now things aren’t so obvious – the parser can’t immediately match any of the grammar
rules like in the previous, trivial example:

2. again this is a modified version of BNF used by Bison – the
original syntax from the 1960s would use < > around the child
rule names, like this for example: “VerbAndObject ::= <SheLikes>
| <ILike>”)
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le gusta rubyelle gusta ruby

SpanishPhrase:

Tokens

Grammar Rule

?

el

VerbAndObject el ruby

Here using the SpanishPhrase rule the el and ruby tokens match, but le and
gusta do not. Ultimately we’ll see how the child rule VerbAndObject does match “le
gusta” but for now there is no immediate match. And now that there are four grammar
rules, how does the parser know which one to try to match against? …and against
which tokens?
This is where the real intelligence of the LALR parser comes into play. This acronym
describes the algorithm the parser uses to find matching grammar rules, and means
“Look Ahead LR parser.” We’ll get to the “Look Ahead” part in a minute, but let’s start
with “LR:”

• “L” (left) means the parser moves from left to right while processing the token
stream; in my example this would be: le, gusta, el, ruby.

• “R” (reversed rightmost derivation) means the parser uses a bottom up strategy
for finding matching grammar rules, by using a shift/reduce technique.

Here’s how the algorithm works for this example. First, the parser takes the input token
stream:

le gusta el rubyle gusta el ruby

Tokens

… and shifts the tokens to the left, creating something I’ll call the “Grammar Rule
Stack:”
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gusta el rubygusta el ruby

TokensGrammar Rule Stack

le shift

Here since the parser has processed just one token, le, this is kept in the stack alone
for the moment. “Grammar Rule Stack” is a simplification; in reality the parser does use
a stack, but instead of grammar rules it pushes numbers on to its stack that indicate
which grammar rule it just parsed. These numbers – or states from a state machine –
help the parser keep track of where it is as it processes the tokens.
Next, the parser shifts another token to the left:

el rubyel ruby

TokensGrammar Rule Stack

gustale
shift

Now there are two tokens in the stack on the left. At this point the parser stops to
examine all of the different grammar rules and looks for one that matches. In this case,
it finds that the SheLikes rule matches:

el rubyel ruby

TokensGrammar Rule Stack

SheLikes reduce

This operation is called “reduce,” since the parser is replacing the pair of tokens with a
single, matching rule. This seems very straightforward… the parser just has to look
through the available rules and reduce or apply the single, matching rule.
Now the parser in our example can reduce again – now there is another matching rule:
VerbAndObject! This rule matches because of the OR (vertical bar) operator: it
matches either the SheLikes or ILike child rules. The parser can next replace
SheLikes with VerbAndObject:
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el rubyel ruby

TokensGrammar Rule Stack

VerbAndObject reduce

But let’s stop for a moment and think about this a bit more carefully. How did the parser
know to reduce and not continue to shift tokens? Also, in the real world there might
actually be many matching rules the parser could reduce with – how does it know which
rule to use? This is the crux of the algorithm that LALR parsers use… that Ruby uses…
how does it decide whether to shift or reduce? And if it reduces, how does it decide
which grammar rule to reduce with?
In other words, suppose at this point in the process…

el rubyel ruby

TokensGrammar Rule Stack

gustale

… there were multiple matching rules that included “le gusta.” How would the parser
know which rule to apply or whether to shift in the el token first before looking for a
match?
Here’s where the “LA” (Look Ahead) portion of LALR comes in: in order to find the
proper matching rule it looks ahead at the next token:

el rubyel ruby

TokensGrammar Rule Stack

gustale
?

Additionally, the parser maintains a state table of possible outcomes depending on
what the next token was and which grammar rule was just parsed. This table would
contain a series of states, describing which grammar rules have been parsed so far, and
which states to move to next depending on the next token. LALR parsers are complex
state machines that match patterns in the token stream. When you use Bison to
generate the LALR parser, Bison calculates what this state table should contain, based
on the grammar rules you provided.
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In this example, the state table would contain an entry indicating that if the next token
was el the parser should first reduce using the SheLikes rule, before shifting a new
token.
I won’t show the details of what a state table looks like; if you’re interested, the actual
LALR state table for Ruby can be found in the generated parse.c file. Instead let’s just
continue the shift/reduce operations for my simple example. After matching the
VerbAndObject rule, the parser would shift another token to the left:

rubyruby

TokensGrammar Rule Stack shift
elVerbAndObject

At this point no rules would match, and the state machine would shift another token to
the left:

Grammar Rule Stack
shift

el rubyVerbAndObject

And finally, the parent grammar rule SpanishPhrase would match after a final reduce
operation:

Grammar Rule Stack

SpanishPhrase reduce and match!

Why have I shown you this Spanish to English example? Because Ruby parses your
program in exactly the same way! Inside the Ruby parse.y source code file, you’ll see
hundreds of rules that define the structure and syntax of the Ruby language. There are
parent and child rules, and the child rules return values the parent rules can refer to in
exactly the same way, using the $$, $1, $2, etc. symbols. The only real difference is
scale – my Spanish phrase grammar is extremely simple, trivial really. On the other
hand, Ruby’s grammar is very complex, an intricate series of interrelated parent and
child grammar rules, which sometimes even refer to each other in circular, recursive
patterns. But this complexity just means that the generated state table in the parse.c file
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is larger. The basic LALR algorithm – how the parser processes tokens and uses the
state table – is the same.

Some actual Ruby grammar rules
Let’s take a quick look at some of the actual Ruby grammar rules from parse.y. Here’s
my example Ruby script from the last section on tokenization:
10.times do |n|

puts n
end

This is a very simple Ruby script, right? Since this is so short, it should’t be too difficult
to trace the Ruby parser’s path through its grammar rules. Let’s take a look at how it
works:

Grammar Rules

program: top_compstmt
top_compstmt: top_stmts opt_terms
top_stmts: … | top_stmt | ... 
top_stmt: stmt | …
stmt: … | expr
expr: … | arg
arg: … | primary
primary: … | method_call brace_block | …

Ruby Code

10.times do |n|
 puts n
end

On the left I show the code that Ruby is trying to parse. On the right are the actual
matching grammar rules from the Ruby parse.y file, shown in a simplified manner. The
first rule, “program: top_compstmt,” is the root grammar rule which matches every
Ruby program in its entirety. As you follow the list down, you can see a complex series
of child rules that also match my entire Ruby script: “top statements,” a single
statement, an expression, an argument and finally a “primary” value.
Once Ruby’s parse reaches the “primary” grammar rule, it encounters a rule that has
two matching child rules: “method_call” and “brace_block.” Let’s take the
“method_call” rule first:
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Grammar Rules

method_call: … | primary_value '.' operation2 | …
Ruby Code

10.times

The “method_call” rule matches the “10.times” portion of my Ruby code - i.e. where I
call the times method on the 10 Fixnum object. You can see the rule matches another
primary value, followed by a period character, followed, in turn, by an “operation2.” The
period is simple enough, and here’s how the “primary_value” and “operation2” child
rules work: first the “primary_value” rule matches the literal “10:”

Grammar Rules

primary_value: primary
primary: literal | …

Ruby Code

10

And then the “operation2” rule matches the method name times:

Grammar Rules

operation2: identifier | …
Ruby Code

times

What about the rest of my Ruby code? How does Ruby parse the contents of the “do …
puts… end” block I passed to the times method? Ruby handles that using the
“brace_block” rule from above:

Grammar Rules

brace_block: … | keyword_do opt_block_param compstmt keyword_end | …
Ruby Code

do |n|
 puts n
end

I won’t go through all the remaining child grammar rules here, but you can see how this
rule, in turn, contains a series of other matching child rules:

• “keyword_do” matches the do reserved keyword

• “opt_block_param” matches the block parameter |n|

• “compstmt” matches the contents of the block itself - “puts n,” and
• “keyword_end” matches the end reserved keyword
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To give you a taste of what the actual Ruby parse.y source code looks like,
here’s a small portion of the file containing part of the “method_call” grammar
rule I showed above:
method_call        :

...

primary_value '.' operation2
{
/*%%%*/

$<num>$ = ruby_sourceline;
/*% %*/
}

opt_paren_args
{
/*%%%*/

$$ = NEW_CALL($1, $3, $5);
nd_set_line($$, $<num>4);

/*%
$$ = dispatch3(call, $1, ripper_id2sym('.'), $3);
$$ = method_optarg($$, $5);

%*/
}

Like my Spanish to English example grammar file above, here you can see
there are snippets of complex C code that appear after each of the terms in
the grammar rule. The way this works is that the Bison generated parser will
execute these snippets if and when there’s a match for this rule on the tokens
found in the target Ruby script. However, these C code snippets also contain
Bison directives such as $$ and $1 that allow the code to create return values
and to refer to values returned by other grammar rules. What we end up with
is a confusing mix of C and Bison directives.
And to make things even worse, Ruby uses a trick during the Ruby build
process to divide these C/Bison code snippets into separate pieces – some
that are actually used by Ruby and others that are only used by the Ripper
tool which we tried out in Experiment 1-1. Here’s how that works:

• The C code that appears between the /*%%%*/ line and the /*% line
is actually compiled into Ruby during the Ruby build process, and:
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• The C code between /*% and %*/ is dropped when Ruby is built.
Instead, this code is only used by the Ripper tool which is built
separately during the Ruby build process.

Ruby uses this very confusing syntax to allow the Ripper tool and Ruby itself
to share the same grammar rules inside of parse.y.
And what are these snippets actually doing? As you might guess Ruby uses
the Ripper code snippets to allow the Ripper tool to display information about
what Ruby is parsing. We’ll try that next in Experiment 1-2. There’s also some
bookkeeping code: Ruby uses the ruby_sourceline variable to keep track
of what source code line corresponds to each portion of the grammar.
But more importantly, the snippets Ruby actually uses at run time when
parsing your code create a series of “nodes” or temporary data structures that
form an internal representation of your Ruby code. These nodes are saved in a
tree structure called an Abstract Syntax Tree (or AST)… more on that in a
minute. You can see one example of creating an AST node above, where
Ruby calls the NEW_CALL C macro/function. This creates a new NODE_CALL
node, which represents a method call. We’ll see later how Ruby eventually
compiles this into byte code that can be executed by a virtual machine.
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Experiment 1-2: Using Ripper to parse different Ruby
scripts

In Experiment 1-1 I showed you how to use Ripper to
display the tokens Ruby converts your code into, and we
just saw how all of the Ruby grammar rules in parse.y are
also included in the Ripper tool. Now let’s learn how to use
Ripper to display information about how Ruby parses your
code. Here’s how to do it:
require 'ripper'
require 'pp'
code = <<STR

10.times do |n|
puts n

end
STR
puts code
pp Ripper.sexp(code)

This is exactly the same code I showed in the first experiment, except that here I call
Ripper.sexp instead of Ripper.lex. Running this I get:
[:program,

[[:method_add_block,
[:call,

[:@int, "10", [1, 0]], :".",
[:@ident, "times", [1, 3]]],

[:do_block,
[:block_var,

[:params, [[:@ident, "n", [1, 13]]],
nil, nil, nil, nil, nil, nil],

false],
[[:command,

[:@ident, "puts", [2, 2]],
[:args_add_block, [[:var_ref, [:@ident, "n", [2, 7]]]],

false]]]]]]]

What the heck does this mean? I can see some bits and pieces from my Ruby script in
this cryptic text, but what do all of the other symbols and arrays mean here?

Ruby Under a Microscope

36



It turns out that the output from Ripper is a textual representation of your Ruby code. As
Ruby parses your code, matching one grammar rule after another, it converts the
tokens found in your code file into a complex internal data structure called an Abstract
Syntax Tree (AST). You can see some of the C code that produces this structure in the
previous yellow section. The purpose of the AST is to record the structure and
syntactical meaning of your Ruby code. To see what I mean, here’s a small piece of the
AST structure Ripper just displayed for my sample Ruby script:

command

identifier
"puts"

args add
block

var ref

identifier
"n"

puts n

command

identifier
"puts"

args add
block

var ref

identifier
"n"

This is how Ruby represents that single call puts n internally. This corresponds to the
last three lines of the Ripper output:
[[:command,

[:@ident, "puts", [2, 2]],
[:args_add_block, [[:var_ref, [:@ident, "n", [2, 7]]]],

false]]]

Like in Experiment 1-1 when we displayed token information from Ripper, you can see
the source code file line and column information are displayed as integers. For example
[2, 2] indicates that Ripper found the puts call on line 2 at column 2 of my code file.
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Aside from that, you can see that Ripper outputs an array for each of the nodes in the
AST, “[:@ident, “puts”, [2, 2]]” for example.

What’s interesting and important about this is that now my Ruby program is beginning
to “make sense” to Ruby. Instead of a simple stream of tokens, which could mean
anything, Ruby now has a detailed description of what I meant when I wrote puts n.
We have a function call, “a command,” followed by an identifier node which indicates
what function to call. Ruby uses the args_add_block node since you might optionally
pass a block to a command/function call like this. Even though we are not passing a
block in this case, the args_add_block node is still saved into the AST. Another
interesting detail is how the n identifier is recorded as a :var_ref or variable reference
node, and not as a simple identifier.
Let’s take a look at more of the Ripper output:

do block

block var

params

identifier
"n"

… do |n|
 puts n
end do block

block var

params

identifier
"n"

puts n

Here you can see Ruby now understands that “do |n| … end” is a block, with a
single block parameter called n. The puts n box on the right represents the other part
of the AST I showed above, the parsed version of the puts call.

And finally here’s the entire AST for my sample Ruby code:
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program

method 
add block

call

integer
10 period identifier

"times"

10.times do |n|
 puts n
end program

method 
add block

call

integer
10

…do |n|
 puts n
end

period identifier
"times"

Here you can see “method add block” means we’re calling a method, but also adding a
block parameter “10.times do.” The “call” tree node obviously represents the actual
method call “10.times”. This is the NODE_CALL node that we saw earlier in the C
code snippet.
Again, the key point here is that now your Ruby program is no longer a simple series of
tokens – Ruby now “understands” what you meant with your code. Ruby’s knowledge
of your code is saved in the way the nodes are arranged in the AST.
To make this point even more clear, suppose I pass the Ruby expression “2+2” to
Ripper like this:
require 'ripper'
require 'pp'
code = <<STR
2 + 2
STR
puts code
pp Ripper.sexp(code)

And running it I get:
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[:program,
[[:binary,

[:@int, "2", [1, 0]],
:+,
[:@int, "2", [1, 4]]]]]

Here you can see the + is represented with an AST node called “binary:”

program

binary

integer
2 plus integer

2

2 + 2

program

binary

integer
2 plus integer

2

Not very surprising, but look what happens when I pass the expression “2 + 2 * 3”
into Ripper:
require 'ripper'
require 'pp'
code = <<STR
2 + 2 * 3
STR
puts code
pp Ripper.sexp(code)

Now I get:
[:program,
[[:binary,

[:@int, "2", [1, 0]],
:+,
[:binary,

[:@int, "2", [1, 4]],
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:*,
[:@int, "3", [1, 8]]]]]]

And here’s what that looks like:

program

binary

integer
2 plus binary

integer
2 multiply integer

3

2 + 2 * 3

program

binary

integer
2 plus binary

integer
2 multiply integer

3

Note how Ruby was smart enough to realize that multiplication has a higher precedence
than addition does. We all knew this, of course… this isn’t very interesting. But what is
interesting to me here is how the AST tree structure itself inherently captures the
information about the order of operations. The simple token stream: 2 + 2 * 3 just
indicates what I wrote in my code file, while the parsed version saved to the AST
structure now contains the meaning of my code – all the information Ruby will need
later to execute it.
One final note: Ruby itself actually contains some debug code that can also display
information about the AST node structure. To use it, just run your Ruby script with the
“parsetree” option:
$ ruby --dump parsetree your_script.rb
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This will display the same information we’ve just seen, but in a different format. Instead
of showing symbols, the “parsetree” option will show the actual node names from the C
source code. In the next section, about how Ruby compiles your code, I’ll also use the
actual node names.
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The code Ruby actually runs looks
nothing like your original code.

Compilation: how Ruby translates your code into a new
language

Now that Ruby has tokenized and parsed
my code, is Ruby ready to actually run it?
For my simple “10.times do” example,
will Ruby now finally get to work and iterate
through the block 10 times? If not, what else
could Ruby possibly have to do first?
The answer depends on which version of
Ruby you have. If you’re still using Ruby 1.8,
then yes: Ruby will now simply walk through
the nodes in the AST and execute each one.
Here’s another way of looking at the Ruby
1.8: tokenizing and parsing processes:

Machine 
Language

C

Code You Write

Interpret

Ruby

Tokens

AST Nodes

Code The Ruby Core
Team Writes

At the top as you move down you can see how Ruby translates your Ruby code into
tokens and AST nodes, as I described above. At the bottom I show the Ruby 1.8
interpreter itself – written in C and, of course, compiled into native machine language
code.
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I show a dotted line between the two code sections to indicate that Ruby 1.8 simply
interprets your code – it doesn’t compile or translate your code into any other form past
AST nodes. After converting your code into AST nodes, Ruby 1.8 proceeds to iterate
over the nodes in the AST, taking whatever action each node represents – executing
each node. The break in the diagram between “AST nodes” and “C” means your code
is never completely compiled into machine language. If you were to disassemble and
inspect the machine language your computer’s CPU actually runs, you would never find
instructions that directly map to your original Ruby code. Instead, you would find
instructions that tokenize, parse and execute your code… instructions that implement
the Ruby interpreter.
However if you have upgraded to Ruby 1.9 or Ruby 2.0, then Ruby is still not quite
ready to run your code. There’s one final step on your code’s journey through Ruby:
compilation. With Ruby 1.9, the Ruby core team introduced something called “Yet
Another Ruby Virtual Machine” (or YARV), which actually executes your Ruby code. At a
high level, this is the same idea behind the much more famous Java Virtual Machine (or
JVM) used by Java and many other languages. To use the JVM, you first compile your
Java code into “byte code,” a series of low level instructions that the JVM understands.
Starting with version 1.9, Ruby works the same way! The only differences are that:

• Ruby doesn’t expose the compiler to you as a separate tool; instead, it
automatically compiles your Ruby code into byte code instructions internally
without you ever realizing it.

• MRI Ruby also never compiles your Ruby code all the way to machine
language. As you can see in the next diagram, Ruby interprets the byte code
instructions. The JVM, however, can compile some of the byte code
instructions all the way into machine language using its “hotspot” or JIT
compiler.

Here’s the same diagram again, this time showing how Ruby 1.9 and Ruby 2.0 handle
your code:
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Machine 
Language

C

Interpret

Ruby

Tokens

AST Nodes

YARV 
Instructions

Code You Write

Code The Ruby Core
Team Writes

This time your Ruby code is translated into no less than three different formats or
intermediate languages! After parsing the tokens and producing the AST, Ruby 1.9 and
2.0 continue to compile your code to a series of low level instructions called “YARV
instructions” for lack of a better name.
I’ll cover YARV in more detail in the next chapter: what the instructions are and how
they work, etc. I’ll also look at how much faster Ruby 1.9 and Ruby 2.0 are compared to
Ruby 1.8. The primary reason for all of the work that the Ruby core team put into YARV
is speed: Ruby 1.9 and 2.0 run much faster than Ruby 1.8 primarily because of the use
of the YARV instructions. Like Ruby 1.8, YARV is still an interpreter, although a faster
one: your Ruby code ultimately is still not converted directly into machine language by
Ruby 1.9 or 2.0. There is still a gap in the diagram between the YARV instructions and
Ruby’s C code.

Stepping through how Ruby compiles a simple script
But now let’s take a look at how Ruby compiles your code into the instructions that
YARV expects – the last step along your code’s journey through Ruby. Here’s an
example Ruby script that calculates 2+2 = 4:
puts 2+2
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And here’s the AST structure Ruby will create after tokenizing and parsing this simple
program – note this is a more technical, detailed view of the AST than you would get
from the Ripper tool… what we saw above in Experiment 2:

NODE_SCOPE

table: [ none ]
 args: [ none ]

NODE_FCALL

method id: 
"puts"

NODE_CALL

method id: "+"

NODE_LITERAL

"2"

NODE_LITERAL

"2"

puts 2+2
NODE_SCOPE

table: [ none ]
 args: [ none ]

NODE_FCALL

method id: 
"puts"

NODE_CALL

method id: "+"

NODE_LITERAL

"2"

NODE_LITERAL

"2"

receiver args

The technical names I show here, NODE_SCOPE, NODE_FCALL, etc., are taken from the
actual MRI Ruby C source code. To keep this simple, I’m also omitting some AST
nodes that aren’t important in this example: nodes that represent arrays of the
arguments to each method call, which in this simple example would be arrays of only
one element.
Before we get into the details of how Ruby compiles this program, let me mention one
very important attribute of YARV: it is a stack oriented virtual machine. As I’ll explain in
the next chapter, that means when YARV executes your code it maintains a stack of
values, mainly arguments and return values for the YARV instructions. Most of YARV’s
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instructions either push values onto the stack or operate on the values that they find on
the stack, leaving a result value on the stack as well.
Now to compile the “puts 2+2” AST structure into YARV instructions, Ruby will iterate
over the tree in a recursive manner from the top down, converting each AST node into
one or more instructions. Here’s how it works, starting with the top node, NODE_SCOPE:

NODE_SCOPE

table: [ none ]
 args: [ none ]

YARV instructions

NODE_SCOPE tells the Ruby compiler it is now starting to compile a new scope or
section of Ruby code – in this case a whole new program. Conceptually I’m indicating
this scope on the right with the empty green box. The “table” and “args” values are
both empty, so we’ll ignore those for now.
Next the Ruby compiler will step down the AST tree and encounter NODE_FCALL:

NODE_SCOPE

table: [ none ]
 args: [ none ]

YARV instructions

putself

NODE_FCALL

method id: 
"puts"

NODE_FCALL represents a function call, in this case the call to puts. Function and
method calls are very important and very common in Ruby programs; Ruby compiles
them for YARV using this pattern:
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• Push receiver
• Push arguments
• Call the method/function

So in this example, the Ruby compiler first creates a YARV instruction called putself –
this indicates that the function call uses the current value of the “self” pointer as the
receiver. Since I call puts from the top level scope of this simple, one line Ruby script,
“self” will be set to point to the “top self” object. The “top self” object is an instance of
the “Object” class automatically created when Ruby starts up. It’s sole purpose is to
serve as the receiver for function calls like this one in the top level scope.
Next Ruby needs to create instructions to push the arguments of the puts function call.
But how can it do this? The argument to puts is 2+2 – in other words the result of
some other method call. Although 2+2 is a very simple expression in this example,
puts could instead be operating on some extremely complex Ruby expression
involving many operators, method calls, etc. How can Ruby possibly know what
instructions to create here?
The answer lies in the structure of the AST: by simply following the tree nodes down in a
recursive manner, Ruby can take advantage of all the work the parser did earlier. In this
case, Ruby can now just step down to the NODE_CALL node:

YARV instructions

putself
putobject
putobject
send

NODE_FCALL

method id: 
"puts"

NODE_CALL

method id: "+"

2
2
:+, 1

Here Ruby will compile the + method call, which theoretically is really the process of
sending the + message to the 2 Integer object. Again, following the same receiver –
arguments – method call format I explained above:

Ruby Under a Microscope

48



• First Ruby creates a YARV instruction to push the receiver onto the stack, the
object 2 in this case.

• Then Ruby creates a YARV instruction to push the argument or arguments onto
the stack, again 2 in this example.

• Finally Ruby creates a method call YARV instruction – “send :+, 1”. This
means “send the ‘+’ message” to the receiver: whatever object was previously
pushed onto the YARV stack, in this case the first Fixnum 2 object. The 1
parameter tells YARV there is one argument to this method call, the second
Fixnum 2 object.

What you have to imagine here – and what we’ll go through more carefully in the next
chapter – is how YARV will execute these instructions. What will happen when Ruby
executes the “send :+” instruction is that it will add 2+2, fetching those arguments
from the stack, and leave the result 4 as a new value on the top of the stack.
What I find fascinating about this is that YARV’s stack oriented nature also helps Ruby
to compile the AST nodes more easily. You can see how this is the case when Ruby
continues to finish compiling the NODE_FCALL from above:

NODE_SCOPE

table: [ none ]
 args: [ none ]

YARV instructions

putself
putobject
putobject
send
sendNODE_FCALL

method id: 
"puts"

2
2
:+, 1
:puts, 1

Now Ruby can assume the return value of the “2+2” operation, 4, will be left at the top
of the stack, just where Ruby needs it to be as the argument to the puts function call.
Ruby’s stack oriented virtual machine goes hand in hand with the way that it recursively
compiles the AST nodes! On the right you can see Ruby has added the “send :puts,
1” instruction. This last instruction will call the puts function, and as before the value 1
indicates there is one argument to the puts function.

It turns out Ruby later modifies these YARV instructions one more time before executing
them: the Ruby compiler has an optimize step, and one of Ruby’s optimizations is to
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replace some YARV instructions with “specialized instructions.” These are special YARV
instructions that represent commonly used operations such as “size,” “not,” “less-
than,” “greater-than,” etc. One of these special instructions is for adding two numbers
together: the opt_plus YARV instruction. So during this optimization step Ruby
changes the YARV program to:

NODE_SCOPE

table: [ none ]
 args: [ none ]

YARV instructions

putself
putobject
putobject
opt_plus
sendNODE_FCALL

method id: 
"puts"

2
2

:puts, 1

You can see here that Ruby replaced “send :+, 1” with opt_plus – a specialized
instruction which will run a bit faster.

Compiling a call to a block
Now let’s take a somewhat more complex example and compile my “10.times do”
example from before:
10.times do |n|

puts n
end

What really makes this example interesting is the fact that I’ve introduced a block as a
parameter to the times method. Let’s see how the Ruby compiler handles blocks. Here
is the AST for the the “10.times do” example – again using the actual node names
and not the simplified output from Ripper:
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NODE_SCOPE

table: [ none ]
 args: [ none ]

NODE_ITER

NODE_CALL

method id: 
"times"

NODE_LITERAL

"10"

NODE_SCOPE

 table: "n"
args: 1

10.times do |n|
 puts n
end

NODE_SCOPE

table: [ none ]
 args: [ none ]

NODE_ITER

NODE_CALL

method id: 
"times"

NODE_LITERAL

"10"

receiver

…do |n|
 puts n
end

NODE_SCOPE

 table: "n"
args: 1

etc...

This looks very different than “puts 2+2,” mostly because of the inner block shown on
the right side. I did this to keep the diagram simpler, but also because Ruby handles the
inner block differently, as we’ll see in a moment. But first, let’s break down how Ruby
compiles the main portion on the script, on the left. Ruby starts with the top
NODE_SCOPE as before, and creates a new snippet of YARV instructions:

NODE_SCOPE

table: [ none ]
 args: [ none ]

YARV instructions

Now Ruby steps down the AST nodes on the left, to NODE_ITER:

Chapter 1: Tokenization, Parsing and Compilation

51



YARV instructionsNODE_SCOPE

table: [ none ]
 args: [ none ]

NODE_ITER

Here there is still no code generated, but notice that above in the AST there are two
arrows leading from NODE_ITER: one continues down to the NODE_CALL, which
represents the 10.times call, and a second to the inner block on the right. First Ruby
will continue down the AST and compile the nodes corresponding to the “10.times”
code. I’ll save some space and skip over the details; here’s the resulting YARV code
following the same receiver-arguments-message pattern we saw above:

YARV instructions

putobject
send

NODE_ITER

NODE_CALL

method id: 
"times"

10
:times, 0, block in <main>

You can see here that the new YARV instructions push the receiver, the Integer
object 10, onto the stack first. Then Ruby generates an instruction to execute the
times method call. But note how the send instruction also contains an argument
“block in <main>.” This indicates that the method call also contains a block argument…
my “do |n| puts n end” block. In this example, NODE_ITER has caused the Ruby
compiler to include this block argument, since in the AST above there’s an arrow from
NODE_ITER over to the second NODE_SCOPE node.
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Now Ruby will continue by compiling the inner block, starting with the second
NODE_SCOPE I showed on the right in the AST diagram above. Here’s what the AST for
the inner block looks like:

NODE_SCOPE

 table: "n"
args: 1

NODE_FCALL

method id: 
"puts"

NODE_DVAR

variable id: "n"

NODE_ITER

10.times do |n|
 puts n
end

... do |n|
 puts n
end

NODE_SCOPE

 table: "n"
args: 1

NODE_FCALL

method id: 
"puts"

NODE_DVAR

variable id: "n"

NODE_ITER

etc...

This looks simple enough – just a single function call and a single argument n. But
notice I show a value for “table” and “args” in NODE_SCOPE. These values were empty
in the parent NODE_SCOPE but are set here for the inner NODE_SCOPE. As you might
guess, these values indicate the presence of the block parameter n. Also notice that the
Ruby parser created NODE_DVAR instead of NODE_LITERAL which we saw before. This
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is because n is actually not just a literal string or local variable; instead it is a “dynamic
variable” – a reference to the block parameter passed in from the parent scope. There
are also a lot of other details that I’m not showing here.
Skipping a few steps again, here’s how Ruby compiles the inner block:

YARV instructions

putobject
send

NODE_SCOPE

table: [ none ]
 args: [ none ]

NODE_SCOPE

 table: "n"
args: 1

YARV instructions

putself 
getdynamic
send

n
:puts, 1

10
:times, 0, block in <main>

On the top I’ve shown the parent NODE_SCOPE, and the YARV code we saw above.
Below that I’ve displayed a second green box containing the YARV code compiled from
the inner block’s AST.
The key point here is that Ruby compiles each distinct scope in your Ruby program,
whether it’s a block, lambda, method, class or module definition, etc., into a separate
snippet of YARV instructions. Again, in the next chapter I’ll take a look at how YARV
actually executes these instructions, including how it jumps from one scope to another.

Now let’s take a look at some of the internal code details of how Ruby actually
iterates through the AST structure, converting each AST node into YARV
instructions. The MRI C source code file which implements the Ruby compiler
is called compile.c, not surprisingly. To learn how the code in compile.c
works, you should start by looking for a function called
iseq_compile_each. Here’s what the beginning of this function looks like:
/**

compile each node
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self:  InstructionSequence
node:  Ruby compiled node
poped: This node will be poped

*/
static int
iseq_compile_each(rb_iseq_t *iseq, LINK_ANCHOR *ret, NODE * node,

int poped)
{

This function is very long and again consists of a very, very long switch
statement… the switch statement alone is 1000s of lines long! The switch
statement branches based on the type of the current AST node and generates
the corresponding YARV code. Here’s the start of the switch statement:
type = nd_type(node);

...

switch (type) {

Here node was a parameter passed into iseq_compile_each, and
nd_type is a C macro that returns the type from the given node structure.

Now let’s take a quick look at how Ruby compiles function or method calls
nodes into YARV instructions using the receiver/arguments/function call
pattern from earlier. First search in compile.c for this case in the large switch
statement:
case NODE_CALL:
case NODE_FCALL:
case NODE_VCALL:{ /* VCALL: variable or call */

/*
call:  obj.method(...)
fcall: func(...)
vcall: func

*/

Here as the comment explains NODE_CALL represents a real method call (like
10.times), NODE_FCALL a function call (like puts) and NODE_VCALL a
“variable” or function call. Skipping over some of the C code details –
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including optional SUPPORT_JOKE code used for implementing the goto
statement – here’s what Ruby does next to compile these AST nodes:
/* receiver */
if (type == NODE_CALL) {

COMPILE(recv, "recv", node->nd_recv);
}
else if (type == NODE_FCALL || type == NODE_VCALL) {

ADD_CALL_RECEIVER(recv, nd_line(node));
}

Here Ruby calls either COMPILE or ADD_CALL_RECEIVER:

• In the first case, for real method calls (NODE_CALL), Ruby calls
COMPILE to recursively call into iseq_compile_each again, processing
the next AST node down the tree that corresponds to the receiver of
the method call or message. This will create YARV instructions to
evaluate whatever expression was used to specify the target object.

• If there is no receiver (NODE_FCALL or NODE_VCALL) then Ruby calls
ADD_CALL_RECEIVER which creates a pushself YARV instruction.

Next Ruby creates YARV instructions to push each argument of the method/
function call onto the stack:
/* args */
if (nd_type(node) != NODE_VCALL) {

argc = setup_args(iseq, args, node->nd_args, &flag);
}
else {

argc = INT2FIX(0);
}

For NODE_CALL and NODE_FCALL Ruby calls into the setup_args function,
which will recursively call into iseq_compile_each again as needed to
compile each argument to the method/function call. For NODE_VCALL there
are no arguments, so Ruby simply sets argc to 0.
Finally Ruby creates YARV instructions to execute the actual method or
function call:
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ADD_SEND_R(ret, nd_line(node), ID2SYM(mid),
argc, parent_block, LONG2FIX(flag));

This C macro will create the new send YARV instruction.
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Experiment 1-3: Using the RubyVM class to display YARV
instructions

It turns out there’s an easy way to see how Ruby compiles
your code: the RubyVM object gives you access to Ruby’s
YARV engine from your Ruby program! Just like the Ripper
tool, using it is very straightforward:
code = <<END
puts 2+2
END

puts RubyVM::InstructionSequence.compile(code).disasm

The challenge is understanding what the output actually means. Here’s the output you’ll
get for “puts 2+2:”
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
0000 trace            1                                               (   1)
0002 putself
0003 putobject        2
0005 putobject        2
0007 opt_plus         <ic:2>
0009 send             :puts, 1, nil, 8, <ic:1>
0015 leave

You can see the same instructions that I showed earlier in my diagrams, with some
additional technical details that I omitted above for sake of clarity. There are also two
new instructions that I dropped completely: trace and leave. trace is used to
implement the set_trace_func feature, which will call a given function for each Ruby
statement executed in your program, and leave is similar to a return statement. The
line numbers on the left show the position of each instruction in the byte code array the
compiler actually produces.
The “<ic:1>” and “<ic:2>” notation shown with both opt_plus and send indicates
these two method calls will use an inline method lookup cache to speed things up later
when Ruby executes the YARV instructions.
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The other values shown with the send instruction - “send :puts, 1, nil, 8”
indicate that:

• puts takes one argument,

• there is no block parameter (nil), and
• This is a function call, and not a normal method call (8).

Using RubyVM it’s easy to explore how Ruby compiles different Ruby scripts; for
example, here’s my “10.times do” example:
code = <<END
10.times do |n|

puts n
end
END
puts RubyVM::InstructionSequence.compile(code).disasm

Here’s the output I get now - notice that the “send :times” YARV instruction now
shows “block in <compiled>” which indicates that I am passing a block to the
“10.times” method call…
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
== catch table
| catch type: break  st: 0002 ed: 0010 sp: 0000 cont: 0010
|------------------------------------------------------------------------
0000 trace            1                                               (   1)
0002 putobject        10
0004 send             :times, 0, block in <compiled>, 0, <ic:0>
0010 leave
== disasm: <RubyVM::InstructionSequence:block in <compiled>@<compiled>>=
== catch table
| catch type: redo   st: 0000 ed: 0012 sp: 0000 cont: 0000
| catch type: next   st: 0000 ed: 0012 sp: 0000 cont: 0012
|------------------------------------------------------------------------
local table (size: 2, argc: 1 [opts: 0, rest: -1, post: 0, block: -1] s3)
[ 2] n<Arg>
0000 trace            1                                               (   2)
0002 putself
0003 getdynamic       n, 0
0006 send             :puts, 1, nil, 8, <ic:0>
0012 leave
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Now you can see that Ruby has displayed the two YARV instruction snippets
separately: the first one corresponds to the global scope, and the second to the inner
block scope.
Another important detail to learn about here is the “local table.” This shows a listing of
the variables that are available in each scope. In my “10.times do” example, the local
table for the inner scope contains a single variable: “n<Arg>” - the block parameter. The
“<Arg>” text indicates that n is a parameter to this block. The text “argc: 1 [opts: 0, rest:
-1, post: 0, block: -1]” describes what kind of arguments were passed to the method or
block that this YARV code snippet corresponds to. Here’s how it works:

• “argc” indicates the total number of arguments.
• “opts” shows the count of optional variables that were passed in, e.g. “var=1,

var2=2.”
• “rest” shows the number of arguments included by the splat operator, e.g.

“*args.”
• “post” shows the number of arguments that appear after the splat operator,

e.g. “*args, y, z”, and
• “block” is true or false indicating whether or not a block was passed in.

It’s easier to see how the local table works by creating a few local variables in a Ruby
script and then compiling it:
code = <<END
a = 2
b = 3
c = a+b
END
puts RubyVM::InstructionSequence.compile(code).disasm

Running, I get:
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
local table (size: 4, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)
[ 4] a          [ 3] b          [ 2] c
0000 trace            1                                               (   1)
0002 putobject        2
0004 setlocal         a
0006 trace            1                                               (   2)
0008 putobject        3
0010 setlocal         b
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0012 trace            1                                               (   3)
0014 getlocal         a
0016 getlocal         b
0018 opt_plus         <ic:1>
0020 dup
0021 setlocal         c
0023 leave

Notice that the local table now contains three variables: “a,” “b,” and “c:”
local table (size: 4, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)
[ 4] a          [ 3] b          [ 2] c

These are the three local variables created by my Ruby code. You should also note
YARV uses the instructions setlocal and getlocal to set and get local variables.
One confusing detail here is that the local table size is shown as 4, even though I have
only defined three variables. YARV uses the extra space in the locals table when it
executes your code – I’ll cover this in detail in Chapter 2.
Another important detail about the RubyVM output worth learning about are “catch
tables.” These have to do with how YARV implements program control features such as
redo, next, break, throw/catch, raise/rescue, etc. Let’s try adding a redo
statement to the inner block in my example program…
code = <<END
10.times do |n|

puts n
redo

end
END
puts RubyVM::InstructionSequence.compile(code).disasm

… and see how Ruby compiles that:
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
== catch table
| catch type: break  st: 0002 ed: 0010 sp: 0000 cont: 0010
|------------------------------------------------------------------------
0000 trace            1                                               (   1)
0002 putobject        10
0004 send             :times, 0, block in <compiled>, 0, <ic:0>
0010 leave
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== disasm: <RubyVM::InstructionSequence:block in <compiled>@<compiled>>=
== catch table
| catch type: redo   st: 0000 ed: 0020 sp: 0000 cont: 0000
| catch type: next   st: 0000 ed: 0020 sp: 0000 cont: 0020
|------------------------------------------------------------------------
local table (size: 2, argc: 1 [opts: 0, rest: -1, post: 0, block: -1] s3)
[ 2] n<Arg>
0000 trace            1                                               (   2)
0002 putself
0003 getdynamic       n, 0
0006 send             :puts, 1, nil, 8, <ic:0>
0012 pop
0013 trace            1                                               (   3)
0015 jump             17
0017 jump             0
0019 putnil
0020 leave

You can see the output “catch type: redo” and “catch type:next” at the start of the
block’s YARV code snippet. These indicate where the control should jump to if a redo
or next statement is compiled inside the block. Since the “catch type: redo” line ended
with “cont: 0000” the jump statement on line 17 is “jump 0”. Curiously, Ruby adds an
extra, unnecessary “jump 17” instruction on line 15; this must be due to a minor
inefficiency or bug in the compiler.
Finally, if we use break instead of redo:
code = <<END
10.times do |n|

puts n
break

end
END
puts RubyVM::InstructionSequence.compile(code).disasm

… then we get this output:
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
== catch table
| catch type: break  st: 0002 ed: 0010 sp: 0000 cont: 0010
|------------------------------------------------------------------------
0000 trace            1                                               (   1)
0002 putobject        10
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0004 send             :times, 0, block in <compiled>, 0, <ic:0>
0010 leave
== disasm: <RubyVM::InstructionSequence:block in <compiled>@<compiled>>=
== catch table
| catch type: redo   st: 0000 ed: 0018 sp: 0000 cont: 0000
| catch type: next   st: 0000 ed: 0018 sp: 0000 cont: 0018
|------------------------------------------------------------------------
local table (size: 2, argc: 1 [opts: 0, rest: -1, post: 0, block: -1] s3)
[ 2] n<Arg>
0000 trace            1                                               (   2)
0002 putself
0003 getdynamic       n, 0
0006 send             :puts, 1, nil, 8, <ic:0>
0012 pop
0013 trace            1                                               (   3)
0015 putnil
0016 throw            2
0018 leave

This looks similar, but now Ruby has created a throw instruction at the end of the inner
block, which will cause YARV to jump out of the block and back up to the top scope,
since that scope contains a “catch type: break” line. Since the line shows “cont: 0010”
Ruby will continue from line 0010 after executing the throw statement.
I’ll explain how this works in more detail next in Chapter 2.
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Tokenization, parsing and compilation in JRuby
Although JRuby uses a completely different technical platform than MRI Ruby does -
JRuby uses Java while MRI Ruby uses C - it tokenizes and parses your code in much
the same way. Once your code is parsed, JRuby and MRI both continue to compile
your code into byte code instructions. As I explained above, Ruby 1.9 and Ruby 2.0
compile your Ruby code into byte code instructions that Ruby’s custom YARV virtual
machine executes. JRuby, however, instead compiles your Ruby code into Java byte
code instructions that are interpreted end executed by the Java Virtual Machine (JVM):

JRuby Build
Time

Run Time

Generate Parser
(Jay)

Grammar Rules
(.y file)

Parser Code
(.java file)

Tokenize Parse Compile
tokens AST

nodes

Ruby Code
(.rb files)

JVM byte
code

Just like with Ruby 2.0, 1.9 and 1.8, JRuby uses a two step process for tokenizing and
parsing. First, ahead of time during the JRuby build process a tool called Jay generates
LALR parser code based on a grammar file, in just the same way that MRI Ruby uses
Bison. In fact, Jay is really just a rewrite of Bison that generates a parser that uses Java
or C# code instead of C. For JRuby the grammar file is called DefaultRubyParser.y
instead of parse.y and the generated parser code is saved in a file called
DefaultRubyParser.java instead of parse.c. Note: if you run JRuby in 1.9 compatibility
mode, the new default for the JRuby head/master build, JRuby will use a different file
called Ruby19Parser.y instead. The JRuby team more or less copied over the grammar
rules from MRI Ruby’s parse.y into DefaultRubyParser.y and Ruby19Parser.y - this is
not a surprise since JRuby aims to implement Ruby in a completely compatible way.
Then, once you have installed JRuby on your machine including the generated parser,
JRuby will run the parser to tokenize and parse your Ruby script. First JRuby will read
the text from your Ruby file and generate a stream of tokens, and next the generated
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LALR parser will convert this stream of tokens into an AST structure. This all works
essentially the same as it does in MRI Ruby.
Here’s a high level view of the different forms your Ruby code takes as you run a JRuby
process:

Ruby

Machine 
Language

Java
Byte Code

Tokens

AST Nodes
Your Code on

JRuby

At the top you can see JRuby converts your Ruby code into a token stream and then, in
turn, into an AST structure. Next, JRuby compiles these AST nodes into Java byte
code, which are later interpreted and executed by the JVM - the same VM that runs
Java programs along with many other programming languages such as Clojure and
Scala.
I didn’t include the “interpret” dotted line in this diagram that appears in the analogous
Ruby 1.8 and Ruby 1.9 diagrams, because the JVM’s JIT (“Just In Time”) compiler
actually converts some of that Java byte code - the compiled version of your Ruby
program - into machine language. The JVM will take the time to do this for “hotspots” or
frequently called Java byte code functions. For this reason, JRuby can often run faster
than MRI Ruby even though it’s implemented in Java and not C, especially for long
running processes. What this means is that it’s possible for JRuby and the JVM working
together to convert part of the Ruby code you write all the way into native machine
language code!
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Taking a look at the JRuby tokenizing and parsing code details, the similarity
to MRI is striking. The only real difference is that JRuby is written in Java
instead of C. For example, here’s some of the code that JRuby uses to
tokenize the stream of characters read in from the target Ruby code file - you
can find this in RubyYaccLexer.java in the src/jruby/org/jruby/lexer/yacc
folder.
loop: for(;;) {

c = src.read();
switch(c) {

...

case ',':
return comma(c);

Just like the parser_yylex function in MRI Ruby, the RubyYaccLexer Java
class uses a giant switch statement to branch based on what character is
read in. Above is the start of this switch statement, which calls src.read()
each time it needs a new character, and one case of the switch statement that
looks for comma characters. The JRuby code is somewhat simpler and
cleaner than the corresponding MRI Ruby code, since it uses object oriented
Java vs. standard C. For example, tokens are represented by Java objects -
here’s the comma function called from above which returns a new comma
token:
private int comma(int c) throws IOException {

setState(LexState.EXPR_BEG);
yaccValue = new Token(",", getPosition());
return c;

}

It’s a similar story for parsing: the same idea using a different programming
language. Here’s a snippet from the DefaultRubyParser.y file - this implements
the same method_call grammar rule that I discussed in detail earlier for MRI
Ruby:
method_call   :
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...

| primary_value tDOT operation2 opt_paren_args {
$$ = support.new_call($1, $3, $4, null);

}

Since JRuby uses Jay instead of Bison, the code that JRuby executes when
there’s a matching rule is Java and not C. But you can see Jay uses the same
“$$, $1, $2, etc.” syntax to specify the return value for the grammar rule,
and to allow the matching code to access the values of each of the child rules.
Again, since the matching code is written in Java and not C, it’s generally
cleaner and easier to understand compared to the same code you would find
in MRI Ruby. In the snippet above, you can see JRuby creates a new call
AST node to represent this method call. In this case the support object, an
instance of the ParserSupport class, actually creates the AST node. Instead
of C structures, JRuby uses actual Java objects to represent the nodes in the
AST tree.
JRuby's Ruby to JVM byte code compiler, however, doesn’t resemble the
YARV compiler code I explained earlier in Chapter 1 very much. Instead, the
JRuby team implemented a new, custom compiler - it walks the AST node
tree in a similar way, but outputs JVM byte code instructions instead of YARV
instructions. Generally these byte code instructions are more granular and
low-level compared to the YARV instructions - i.e. each instruction does less
and there are more of them. This is due to the nature of the JVM, which was
designed to run not only Java but also many other languages. The YARV
instructions, as we’ve seen, are designed specifically for Ruby. If you’re
interested in exploring JRuby’s compiler, look in the org.jruby.compile
package in your copy of the JRuby source tree.
The JRuby core team is also currently working on a new higher-level and less
granular instruction set called “IR,” which will be specifically designed to
represent Ruby programs. To learn more about the new IR instruction set see
the article OSS Grant Roundup: JRuby’s New Intermediate Representation.
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Tokenization, parsing and compilation in Rubinius
Now let’s take a look at Rubinius and how it parses your Ruby code. You may have
heard that Rubinius is a version of Ruby implemented with Ruby, but did you know this
also applies to the compiler that Rubinius uses? That’s right: as hard as it is to imagine,
when you run a Ruby script using Rubinius, it compiles your Ruby code using Ruby.
At a high level the process looks very similar to MRI and JRuby:

Rubinius Build
Time

Ruby Compile
Time

Generate Parser
(Bison)

Grammar Rules
(.y file)

Parser Code
(.c file)

Tokenize Parse Compile
tokens AST

nodes

Ruby Code
(.rb files)

Rubinius 
Instructions
(.rbc files)

Again at build time, before you ever run your Ruby program, Rubinius generates an
LALR parser using Bison – the same tool that MRI Ruby uses. Just like JRuby, the
Rubinius team has more or less copied the same grammar rules over from the original
MRI parse.y file. In Rubinius the grammar file is called either “grammar18.y” or
“grammar19.y” – just like JRuby, Rubinius maintains two copies of the grammar rules
for its 1.8 and 1.9 compatibility modes.
Later when you run your Rubinius process, it converts your code again into a token
stream, an AST structure, and later into high level instructions called “Rubinius
instructions.” One nice feature of Rubinius is that it allows you to save these compiled
instructions into special “.rbc” files. That is, Rubinius exposes a compile command, and
allows you to precompile your Ruby code before you actually run it, if you prefer, saving
some time later. Remember that MRI didn’t provide this feature: Ruby 1.9 and 2.0
always compile your code every time you run it.
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But what makes Rubinius fascinating is the way that it implements Ruby using Ruby, or
more precisely a combination of C, C++ and Ruby. I’ll have more examples of this later
in other chapters, but for now let’s take a look at how Rubinius parses and compiles
your code. Here’s the same diagram I had for MRI and JRuby showing all the different
forms your code takes internally inside of Rubinius when you run it:

Your Code on
Rubinius

Ruby

Machine 
Language

LLVM
Instructions

Tokens

AST Nodes

Rubinius
Instructions

When you run a Ruby script using Rubinius your code is converted into all of these
different formats, and ultimately into machine language! At the top, the picture is the
same: your Ruby script is once again tokenized and parsed, and converted into a
similar AST structure. Next, Rubinius iterates through the AST nodes, compiling them
into high level instructions which I’ll call “Rubinius instructions.” These are similar to the
YARV instructions that Ruby 1.9 and 2.0 use internally, except as I mentioned above
they can optionally be saved into .RBC files for later use.
Then in order to execute these instructions, Rubinius uses a well known and very
powerful open source framework called the “Low Level Virtual Machine” or LLVM. The
LLVM framework includes a number of different, powerful tools that make it easy – or at
least easier – to write a language compiler. LLVM provides a low-level instruction set, a
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virtual machine to execute these instructions along with optimizers, a C/C++ compiler
(Clang), a debugger and more.
Rubinius primarily leverages the LLVM virtual machine itself by converting the high level
Rubinius instructions into low level LLVM instructions using a JIT (“just in time”)
compiler written by the Rubinius team. That is, first your Ruby code is parsed and
compiled into Rubinius instructions; later Rubinius converts these high level instructions
into their equivalent low level LLVM instructions using a background thread as your
Rubinius process runs.
As we’ll continue to see in later chapters, Rubinius’s implementation is a tour de force –
it’s an innovative, creative implementation of Ruby that at the same time leverages
some of the best open source software available to provide fantastic performance. For
me one of the most elegant aspects of Rubinius internals is the way that it seamlessly
combines C++, C and Ruby code together – the parsing/compiling process is a good
example of this. Here’s a closer look at the way Rubinius processes your code:
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Bison generated C code
parses your code files

Machine Language

LLVM
instructions

Ruby

Tokens

AST nodes

Rubinius
instructions

Ruby code compiles the AST 
nodes into Rubinius instructions

The Rubinius instructions are 
compiled into LLVM instructions,
and ultimately into native code.

C++/C Ruby

Inside of Rubinius, parsing and compiling your code is a team effort:
• First, as I mentioned above, Rubinius uses the same Bison generated LALR

parser that MRI Ruby does. Rubinius also uses similar C code to first tokenize
your code file’s text.

• But next, the C code triggered by the matching grammar rules in the parser
create AST nodes… that are implemented by Ruby classes! Every type of AST

Chapter 1: Tokenization, Parsing and Compilation

71



node has a corresponding Ruby class, all of which have a common Ruby super
class: Rubinius::AST::Node.

• Next each of these AST node Ruby classes contains code that compiles that
type of AST node into Rubinius instructions.

• Finally, once your Rubinius process is running a JIT compiler written in C++
converts these high Rubinius instructions into low level LLVM instructions.

The Rubinius Ruby compiler, itself written in Ruby, is very readable and
straightforward to understand. In fact, the fact that much of Rubinius is
implemented in Ruby is one of its most important features. To see what I
mean, take a look at how the send AST node – or method call – is compiled
into high level Rubinius instructions:
module Rubinius
module AST
class Send < Node

...

def bytecode(g)
pos(g)
if @vcall_style and reference = check_local_reference(g)
return reference.get_bytecode(g)

end
@receiver.bytecode(g)
if @block

@block.bytecode(g)
g.send_with_block @name, 0, @privately

elsif @vcall_style
g.send_vcall @name

else
g.send @name, 0, @privately

end
end

...
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This is a snippet from the lib/compiler/ast/sends.rb Rubinius source code file.
This class, Rubinius::AST::Send, implements the Send Rubinius AST
node that the parser creates when it encounters a method or function call in
your Ruby script. You can see the reference to the Rubinius::AST::Node
super class.
I won’t explain every detail, but at a high level the way this works is:

• When Rubinius compiles the AST nodes into Rubinius instructions, it
visits every AST node object and calls their bytecode methods,
passing in a generator object or “g” here. The generator object
provides a DSL for creating Rubinius instructions, e.g.
send_with_block or send.

• After checking for the case where the function call might actually be a
reference to a local variable, Rubinius calls @receiver.bytecode –
this compiles the receiver object first.

• Then Rubinius creates either a send_with_block, send_vcall or
send method depending on various attributes of the node object.

To save space I’m glossing over some details here but it’s real pleasure
reading the Ruby compiler code inside Rubinius since it’s so easy to
understand and follow. Again, you can find all of the AST node Ruby classes
in the lib/compiler/ast folder in your Rubinius source tree.
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Ruby 1.9 and later use a virtual machine known as “YARV”

Chapter 2
How Ruby Executes Your Code

Now that Ruby has tokenized, parsed
and compiled your code, Ruby is finally
ready to execute it. But exactly how
does it do this? We’ve seen how the
Ruby compiler creates YARV (“Yet
Another Ruby Virtual Machine”)
instructions, but how does YARV
actually run them? How does it keep
track of variables, return values and
arguments? How does it implement if
statements and other control structures?
Just like your computer’s actual

microprocessor hardware, Koichi Sasada and the Ruby core team designed YARV to
use a stack pointer and a program counter. In this chapter, I’ll start by looking at the
basics of YARV instructions: how they pop arguments off the stack and push return
values onto the stack. I’ll continue by explaining how Ruby accesses variables in two
different ways: locally and dynamically. Then I’ll show you how YARV implements Ruby
control structures – including a look at how Ruby implements the break keyword
internally by raising an exception! Finally, I’ll compare the instruction sets used by the
JRuby and Rubinius virtual machines to YARV’s instruction set.
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Chapter 2 Roadmap

YARV's internal stack and your Ruby stack
Stepping through how Ruby executes a simple script
Executing a call to a block

Experiment 2-1: Benchmarking Ruby 1.9 vs. Ruby 1.8
Local and dynamic access of Ruby variables

Local variable access
Dynamic variable access

Experiment 2-2: Exploring special variables
How YARV controls your program's execution flow

How Ruby executes an if statement
Jumping from one scope to another

Experiment 2-3: Testing how Ruby implements for loops internally
How JRuby executes your code
How Rubinius executes your code
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Aside from it’s own stack, YARV keeps
track of your Ruby call stack.

YARV’s internal stack and your Ruby stack
As we’ll see in moment, YARV uses a
stack internally to keep track of
intermediate values, arguments and
return values. YARV is a stack-oriented
virtual machine.
But alongside YARV’s internal stack
Ruby also keeps track of your Ruby
program’s call stack: which methods
called which other methods, functions,
blocks, lambdas, etc. In fact, YARV is
not just a stack machine – it’s a “double
stack machine!” It not only has to track

the arguments and return values for it’s own internal instructions; it has to do it for your
Ruby arguments and return values as well.
First let’s take a look at YARV’s basic registers and internal stack:

rb_control_frame_t

sp

pc

self

SP
trace
putself
putobject
putobject
opt_plus
send
leave

PC

YARV internal stack YARV instructions

2

2

self

type

2
2

:puts, 1

On the left I show YARV’s internal stack – SP is the “stack pointer” or location of the top
of the stack. On the right are the instructions that YARV is currently executing. PC is the
program counter or location of the current instruction. You can see the YARV
instructions that Ruby compiled from my “puts 2+2” example from Chapter 1. YARV
stores both the SP and PC registers in a C structure called rb_control_frame_t,
along with a type field, the current value of Ruby’s self variable and some other values
I’m not showing here.
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At the same time YARV maintains another stack of these rb_control_frame
structures, like this:

etc...

CFP

rb_control_frame_t

[EVAL]

rb_control_frame_t

[METHOD]

rb_control_frame_t

[BLOCK]

rb_control_frame_t

[METHOD]

This second stack represents the path through your Ruby program YARV has taken and
it’s current location. In other words, this is your Ruby call stack – what you would see if
you ran “puts caller.” The CFP pointer indicates the “current frame pointer.” Each
stack frame in your Ruby program stack contains, in turn, a different value for the
self, PC and SP registers we saw above. The type field in each
rb_control_frame_t structure indicates what type of code is running at this level in
your Ruby call stack. As Ruby calls into the methods, blocks or other structures in your
program the type might be set to METHOD, BLOCK or one of a few other values.

Stepping through how Ruby executes a simple script
To understand all of this better, let’s run through a couple examples. I’ll start with my
simple 2+2 example:
puts 2+2

This one line Ruby script doesn’t have any Ruby call stack, so I’ll focus on the internal
YARV stack only for now. Here’s how YARV will execute this script, starting with the
first instruction, trace:
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trace
putself
putobject
putobject
opt_plus
send
leave

PC

SP

2
2

:puts, 1

You can see here YARV starts the PC or program counter at the first instruction, and
initially the stack is empty. Now YARV will execute the trace instruction, incrementing
the PC register:

trace
putself
putobject
putobject
opt_plus
send
leave

SP

PC 2
2

:puts, 1

Ruby uses the trace instruction to support the set_trace_func feature: if you call
set_trace_func and provide a function, Ruby will call it each time it executes a line
of Ruby code, or when a few other events occur.
Next YARV will execute putself and push the current value of self onto the stack:

trace
putself
putobject
putobject
opt_plus
send
leaveSP

self

PC
2
2

:puts, 1
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Since this simple script contains no Ruby objects or classes the self pointer will be set
to the default “top self” object. This is an instance of the Object class Ruby
automatically creates when YARV starts up. It serves as the receiver for method calls
and the container for instance variables in the top level scope. The “top self” object
contains a single, predefined to_s method which returns the string “main” – you can
call this method by running this command at your console:
$ ruby -e 'puts self'

Later YARV will use this self value on the stack when it executes the send instruction
– self is the receiver of the puts method, since I didn’t specify a receiver for this
method call.
Next YARV will execute “pushobject 2” and push the numeric value 2 onto the stack,
and increment the PC again:

trace
putself
putobject
putobject
opt_plus
send
leave

SP
2

self

PC

2
2

:puts, 1

This is the first step of the receiver – arguments – operation pattern I described in
Chapter 1. First Ruby pushes the receiver onto the internal YARV stack; in this example
the Integer object 2 is the receiver of the message/method plus which takes a single
argument, also a 2. Next Ruby will push the argument 2:

trace
putself
putobject
putobject
opt_plus
send
leave

SP
2

2

self
PC

2
2

:puts, 1
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And finally it will execute the operation – in this case opt_plus is an special, optimized
instruction that will add two values: the receiver and argument.

trace
putself
putobject
putobject
opt_plus
send
leave

SP
4

self PC

2
2

:puts, 1

You can see the opt_plus instruction leaves the result, 4, at the top of the stack. And
now, as I explained in Chapter 1, Ruby is perfectly positioned to execute the puts
function call… the receiver self is first on the stack and the single argument, 4, is at
the top of the stack. I’ll describe how method lookup works in Chapter 3, but for now
let’s just step ahead:

trace
putself
putobject
putobject
opt_plus
send
leaveSP

nil PC

2
2

:puts, 1

Here the send instruction has left the return value, nil, at the top of the stack. Finally
Ruby executes the last instruction leave, which finishes up executing our simple, one
line Ruby program.

Executing a call to a block
Now let’s take a slightly more complicated example and see how the other stack – your
Ruby program stack – works. Here’s a simple Ruby script that calls a block 10 times,
printing out a string:
10.times do

puts "The quick brown fox jumps over the lazy dog."
end
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Let’s skip over a few steps and start off where YARV is about to call the times method:

trace
putobject 
send
leave CFP

rb_control_frame_t

[EVAL]

rb_control_frame_t

[FINISH]

10
:times, 0, block in <compiled>

On the left are the YARV instructions Ruby is executing, and now on the right I’m
showing two control frame structures. At the bottom of the stack is a control frame with
the type set to FINISH – Ruby always creates this frame first when starting a new
program. At the top of the stack initially is a frame of type EVAL – this corresponds to
the top level or main scope of your Ruby script. Internally, Ruby uses the FINISH frame
to catch any exceptions that your Ruby code might throw, or to catch exceptions
generated by a break or return keyword. I’ll have more on this in section 2.3.

Next when Ruby calls the times message on the Integer object 10 the receiver of the
times message, it will add a new level to the control frame stack:

CFP

trace
putobject
send 
leave

[ C function - int_dotimes ]

rb_control_frame_t

[EVAL]

rb_control_frame_t

[CFUNC]

rb_control_frame_t

[FINISH]

10
:times, 0, block in <compiled>

This new entry on the right represents a new level in your program’s Ruby call stack,
and the CFP pointer has moved up to point at the new control frame structure. Also
since the times Integer method is built into Ruby there are no YARV instructions for
it. Instead, Ruby will call some internal C code that will pop the argument “10” off the
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stack and call the provided block 10 times. Ruby gives this control frame a type of
CFUNC.

Finally, if we interrupt the program inside the inner block here’s what the YARV and
control frame stacks will look like:

CFP

trace
putobject
send
leave

[ C function - "times" ]

trace
putself 
putstring
send
leave

rb_control_frame_t

[EVAL]

rb_control_frame_t

[CFUNC]

rb_control_frame_t

[FINISH]

rb_control_frame_t

[BLOCK]

rb_control_frame_t

[FINISH]

"The quick brown fox jumps..."
:puts, 1

10
:times, 0, block in <compiled>

You can see there will now be five entries in the control frame stack on the right:
• the FINISH and EVAL frames that Ruby always starts up with,

• the CFUNC frame for the call to 10.times,

• another FINISH frame; Ruby uses this one to catch and exceptions or calls to
return or break that might occur inside the block, and

• a BLOCK frame; This frame at the top of the stack corresponds to the code
running inside the block.
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Like most other things, Ruby implements all of the YARV instructions like
putobject or send using C code which is then compiled into machine
language and executed directly by your hardware. Strangely, however, you
won’t find the C source code for each YARV instruction in a C source file.
Instead the Ruby core team put the YARV instruction C code in a single large
file called insns.def. For example, here’s a small snippet from insns.def
showing how Ruby implements the putself YARV instruction internally:
/**

@c put
@e put self.
@j スタックに self をプッシュする。

*/
DEFINE_INSN
putself
()
()
(VALUE val)
{

val = GET_SELF();
}

This doesn’t look like C at all – in fact, most of it is not. Instead, what you see
here is a bit of C code (“val = GET_SELF()”) that appears below a call to
DEFINE_INSN. It’s not hard to figure out that DEFINE_INSN stands for
“define instruction.” In fact, Ruby processes and converts the insns.def file
into real C code during the Ruby build process, similar to how Bison converts
the parse.y file into parse.c:

Ruby Build
Time

Pre-Process
(Miniruby)

YARV instruction
definitions

(insns.def file)
YARV C code
(vm.inc file)
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Ruby processes the insns.def file using Ruby: the Ruby build process first
compiles a smaller version of Ruby called “Miniruby,” and then uses this to
run some Ruby code that processes insns.def and converts it into a C source
code file called vm.inc. Later the Ruby build process hands vm.inc to the C
compiler which includes the generated C code in the final, compiled version of
Ruby.
Here’s what the snippet above for putself looks like in vm.inc after Ruby
has processed it:
INSN_ENTRY(putself){
{

VALUE val;
DEBUG_ENTER_INSN("putself");
ADD_PC(1+0);
PREFETCH(GET_PC());
#define CURRENT_INSN_putself 1
#define INSN_IS_SC()     0
#define INSN_LABEL(lab)  LABEL_putself_##lab
#define LABEL_IS_SC(lab) LABEL_##lab##_##t
USAGE_ANALYSIS_INSN(BIN(putself));

{
#line 323 "insns.def"

val = GET_SELF();
#line 474 "vm.inc"

CHECK_STACK_OVERFLOW(REG_CFP, 1);
PUSH(val);

#undef CURRENT_INSN_putself
#undef INSN_IS_SC
#undef INSN_LABEL
#undef LABEL_IS_SC

END_INSN(putself);}}}

The single line “val = GET_SELF()” appears in the middle, while above and
below this Ruby calls a few different C macros to do various things, like
adding one to the program counter (PC) register, and pushing the val value
onto the YARV internal stack. The vm.inc C source code file, in turn, is
included by the vm_exec.c file, which contains the primary YARV instruction
loop: the loop that steps through the YARV instructions in your program one
after another and calls the C code corresponding to each one.
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Experiment 2-1: Benchmarking Ruby 1.9 vs. Ruby 1.8
The Ruby core team introduced the YARV virtual machine
with Ruby 1.9; before that Ruby 1.8 and earlier versions of
ruby executed your program by directly stepping through
the nodes of the Abstract Syntax Tree (AST). There was no
compile step at all; Ruby just tokenized, parsed and then
immediately executed your code. Ruby 1.8 worked just
fine; in fact, for years Ruby 1.8 was the most commonly
used version of Ruby. Why did the Ruby core team do all
of the extra work required to write a compiler and a new

virtual machine? The answer is simple: speed. Executing a compiled Ruby program
using YARV is much faster than walking around the AST directly.
How much faster is YARV? Let’s take a look… in this experiment I’ll measure how much
faster Ruby 1.9 is compared to Ruby 1.8 by executing this very simple Ruby script:
i = 0
while i < ARGV[0].to_i

i += 1
end

Here I’m passing in a count value on the command line via the ARGV array, and then just
iterating in a while loop counting up to that value. This Ruby script is very, very simple –
by measuring the time it takes to execute this script for different values of ARGV[0] I
should get a good sense of whether executing YARV instructions is actually faster than
iterating over AST nodes. There are no database calls or other external code involved.
By using the time Unix command I can measure how long it takes Ruby to iterate 1
time:
$ time ruby benchmark1.rb 1
ruby benchmark1.rb 1  0.02s user 0.00s system 92% cpu 0.023 total

…or 10 times:
$ time ruby benchmark1.rb 10
ruby benchmark1.rb 10  0.02s user 0.00s system 94% cpu 0.027 total

…etc…
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Plotting the times on a logarithmic scale for Ruby 1.8.7 and Ruby 1.9.3, I get:

0.001

0.01

0.1

1

10

100

Ruby 1.8.7
Ruby 1.9.3

1 100 10,000 1,000,000 100,000,000

Time (sec) vs. number of iterations

Looking at the chart, you can see that:
• For short lived processes, i.e. loops with a small number of iterations shown on

the left, Ruby 1.8.7 is actually faster than Ruby 1.9.3, since there is no need to
compile the Ruby code into YARV instructions at all. Instead, after tokenizing
and parsing the code Ruby 1.8.7 immediately executes it. The time difference
between Ruby 1.8.7 and Ruby 1.9.3 at the left side of the chart, about 0.01
seconds, is how long it takes Ruby 1.9.3 to compile the script into YARV
instructions.

• However, after a certain point – after about 11,000 iterations – Ruby 1.9.3 is
faster. This crossover occurs when the additional speed provided by executing
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YARV instructions begins to pay off, and make up for the additional time spent
compiling.

• For long lived processes, i.e. loops with a large number of iterations shown on
the right, Ruby 1.9 is about 3.75 times faster!

This speed up doesn’t look like much on the logarithmic chart above, but if I redraw the
right side of this chart using a linear scale:

10 million iterations

100 million iterations

10

20

30

40

50

Ruby 1.8.7

Ruby 1.9.3

Ruby 1.8.7

Ruby 1.9.3

Time (sec) for 10 or 100 million iterations

…you can see the difference is dramatic! Executing this simple Ruby script using Ruby
1.9.3 with YARV is about 3.75 times faster than it using Ruby 1.8.7 without YARV!
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Using dynamic access, Ruby can climb
up to access values in the parent scope

Local and dynamic access of Ruby variables
In the previous section, we saw how Ruby maintained
two stacks: an internal stack used by YARV as well as
your Ruby program’s call stack. But something obvious
was missing from both of these code examples:
variables. Neither of my scripts used any Ruby variables
– a more realistic example program would have used
variables many times. How does Ruby handle variables
internally? Where are they stored?
Storing variables is straightforward: Ruby stores all of
the values you save in variables on YARV’s stack, along
with the parameters to and return values from the YARV
instructions. However, accessing these variables is not
so simple. Internally Ruby uses two very different
methods for saving and retrieving a value you save in a
variable: local access and dynamic access.

Local variable access
Let’s start with local access first, since that’s simpler.

Whenever you make a method call, Ruby sets aside some space on the YARV stack for
any local variables that are declared inside the method you are calling. Ruby knows how
many variables you are using by consulting the “local table” that was created for each
method during the compilation step I covered in Chapter 1.
For example, suppose I write a very silly Ruby function to display a string:

SP

Variables
special

def display_string

end

str

svar/cref

str = 'Local access.'
puts str

On the left is my Ruby code, and on the right is a diagram showing the YARV stack and
stack pointer. You can see that Ruby stores the variables on the stack just under the
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stack pointer. Notice there’s a space reserved for the str value on the stack, three
slots under where the SP is, in other words at SP-3.

Ruby uses the svar/cref slot for two different purposes: it might contain a pointer to
a table of the “special variables” that exist in the current method. These are values such
as $! (last exception message) or $& (last regular expression match). Or it might contain
a pointer to the current lexical scope. Lexical scope indicates which class or module
you are currently adding methods to. In Experiment 2-2 I’ll explore what special
variables are and how they work.
Ruby uses the first slot – the “special” variable – to keep track of information related to
blocks. I’ll have more about this in a moment when I discuss dynamic variable access.
When my example code saves a value into str, Ruby just needs to write the value into
that space on the stack:

def display_string
 

end
SP
LFPspecial

str

svar/cref

str = 'Local access.'
puts str

Internally YARV uses another pointer similar to the stack pointer called the LFP or
“Local Frame Pointer.” This points to where the local variables for the current method
are located on the stack. Initially it is set to SP-1. Later the value of SP will change as
YARV executes instructions, while the LFP value will normally remain constant.

Here are the YARV instructions that Ruby compiled my display_string function into:

putstring
setlocal 
putself 
getlocal
send

"Local 
Access."

SP

LFPspecial

str

svar/cref

"Local access."
str

str
:puts, 1
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First the putstring instruction saves the “Local access” string on the top of the stack,
incrementing the SP pointer. Then you can see YARV uses the setlocal instruction to
get the value at the top of the stack and save it in the space allocated on the stack for
the str local variable. Internally, setlocal uses the LFP pointer and a numerical index
indicating which variable to set – in this example that would be: “address of str =
LFP-2.”

Next for the call to “puts str” Ruby uses the getlocal instruction:

putstring
setlocal
putself 
getlocal
send

self

"Local
Access."

LFPspecial

SP

svar/cref

str

"Local access."
str

str
:puts, 1

Here Ruby has pushed the string value back onto the top of the stack, where it can be
used as an argument for the call to the puts function.

The works the same way if I instead pass the string in as a method parameter – method
arguments are essentially the same as local variables:

def display_string(str)

end SP

Variables

Arguments

puts str

The only difference between method arguments and local variables is that the calling
code pushes the arguments onto the stack before the method calls even occurs. In this
example, there are no local variables, but the single argument appears on the stack just
like a local variable:
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def display_string( 

end SP
LFPspecial

str

svar/cref

str)
puts str

Dynamic variable access
Now let’s take a look at how dynamic variable access works, and what that “special”
value is. Ruby uses dynamic access when you use a variable that’s defined in a
different scope, for example when you write a block that references values in the parent
scope. Here’s an example:
def display_string

str = 'Dynamic access.'
10.times do

puts str
end

end

Here str is again a local variable in display_string, and Ruby will save it using the
setlocal instruction we saw above.

def display_string

end

SP
special

str

svar/cref

str = 'Dynamic access.'
10.times do

end
puts str

However, now I’m calling “puts str” from inside a block. To access the str local
variable from the block, Ruby will have to use dynamic access to reach the stack frame
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for the parent scope. Before explaining exactly how dynamic access works, let’s first
step through the process of calling the block to see how Ruby sets up the stack.
First Ruby will call the 10.times method, passing a block in as an argument:

10

SP

special

str

svar/cref

special
rb_block_t

svar/cref
def display_string

end

str = 'Dynamic access.'
10.times do

end
puts str

First, notice the value 10 on the stack – this is the actual receiver of the method times.
You can also see just above that Ruby has created a new stack frame on the right for
the C code that implements Integer#times to use. Since I passed a block into the
method call, Ruby saves a pointer to this block in the “special” variable on the stack.
Each frame on the YARV stack corresponding to a method call keeps track of whether
or not there was a block argument using this “special” variable. I’ll cover blocks and the
rb_block_t structure in much more detail in Chapter 5.

Now Ruby will call the block’s code over and over again, 10 times:

SP

10

special

str

svar/cref

svar/cref

special

special

DFP

Previous
DFP

svar/cref
def display_string

end

str = 'Dynamic access.'
10.times do

end
puts str
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You can see here that, as I explained in section 2.1, Ruby actually creates two new
stack frames when you call a block: a FINISH frame and a BLOCK frame. The first
FINISH frame is more or less a copy of the previous stack frame, holding the block as
a parameter in the “special” variable. But when Ruby starts to execute the block itself, it
changes the “special” variable to become something else: a pointer to the parent
scope’s stack frame. This is known as the DFP or Dynamic Frame Pointer.
Ruby uses the DFP to enable dynamic variable access. Here are the YARV code
instructions Ruby compiled my block into:

"Dynamic
access."

putstring "Dynamic access."
setlocal str 
putobject 10
send :times, 0, block

putself
getdynamic str, 1
send :puts, 1

SP

self

special

10

svar/cref

special

str

svar/cref

DFP

Previous
DFP

etc...

special

svar/cref

DFP

The dashed arrows indicate Ruby’s dynamic variable access: the getdynamic YARV
instruction copies the value of str from the lower stack frame, from the parent or outer
Ruby scope, up to the top of the stack, where the YARV instructions in the block can
access it. Note how the DFP pointers, in a sense, form a ladder that Ruby can climb to
access the local variables in the parent scope, or the grandparent scope, etc.
In the “getdynamic str, 1” call above, the second parameter 1 indicates which
stack frame or Ruby scope to look for the variable str in. Ruby implements this by
iterating through the DFP pointers that number of times. In this case Ruby moves up
one scope before looking for str. If I had two nested blocks like this:
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def display_string
str = 'Dynamic access.'
10.times do

10.times do
puts str

end
end

end

… then Ruby would have used “getdynamic str, 2” instead.

Let’s take a look at the actual C implementation of getdynamic. Like most of
the other YARV instructions, Ruby implements getdynamic in the insns.def
code file:
/**

@c variable
@e Get value of block local variable (pointed to by idx

'level' indicates the nesting depth from the current
@j level, idx で指定されたブロックローカル変数の値をスタックに

level はブロックのネストレベルで、何段上か
*/

DEFINE_INSN
getdynamic
(dindex_t idx, rb_num_t level)
()
(VALUE val)
{

rb_num_t i;
VALUE *dfp2 = GET_DFP();
for (i = 0; i < level; i++) {

dfp2 = GET_PREV_DFP(dfp2);
}
val = *(dfp2 - idx);

}

Here the GET_DFP macro returns the DFP from the current scope. This macro
is defined in the vm_insnhelper.h file along with a number of other YARV
instruction related macros. Then Ruby iterates over the DFP pointers, moving
from the current scope to the parent scope, and then from the parent scope to
the grandparent scope, by repeatedly dereferencing the DFP pointers. Ruby
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uses the GET_PREV_DFP macro, also defined in vm_insnhelper.h, to move
from one DFP to another. The level parameter indicates how many times to
iterate, or how many rungs of the ladder to climb.
Finally, Ruby obtains the target variable using the idx parameter; this is the
index of the target variable. Therefore, this line of code:
val = *(dfp2 - idx);

…gets the value from the target variable. It means:
• Start from the address of the DFP for the target scope, dfp2,

obtained previously from the GET_PREV_DFP iterations.

• Subtract idx from this address. idx tells getdynamic the index of
the local variable you want to load, or in other words how far down
the stack the target variable is located.

• Get the value from the YARV stack at this adjusted address.
So in my example above:
getdynamic str, 2

YARV will take the DFP from the scope two levels up on the YARV stack, and
subtract the index value str (this might be 2 or 3 for example) from it to
obtain a pointer to the str variable.
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Experiment 2-2: Exploring special variables
In the diagrams above I showed a value called svar/cref
in the LFP-1 position on the stack. What are these two
values? And how can Ruby save two values in one location
on the stack? Why does it do this? Let’s take a look….
Most often the LFP-1 slot in the stack will contain the
svar value - this is a pointer to a table of any special
variables that might exist in this stack frame. In Ruby the
term “special variables” refers to values that Ruby

automatically creates for you as a convenience based on the environment or on recent
operations. For example, Ruby sets $* to the ARGV array and $! to the last exception
raised.
Notice that all of the special variables begin with the dollar sign character, which usually
indicates a global variable. This begs the question: are special variables global
variables? If so, then why does Ruby save a pointer to them on the stack? To find out,
let’s create a simple Ruby script to match a string using a regular expression:
/fox/.match("The quick brown fox jumped over the lazy dog.\n")
puts "Value of $& in the top level scope: #{$&}"

Here I’m matching the word fox in the string using a regex. Then I print out the
matching string using the $& special variable. Running this I get:
$ ruby regex.rb
Value of $& in the top level scope: fox

Now I’ll search the same string twice: first in the top level scope and then again from
inside a method call:
str = "The quick brown fox jumped over the lazy dog.\n"
/fox/.match(str)

def search(str)
/dog/.match(str)
puts "Value of $& inside method: #{$&}"
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end
search(str)

puts "Value of $& in the top level scope: #{$&}"

This is simple Ruby code, but it’s still a bit confusing. Here’s how this works:
• First I search the string in the top scope for fox. This matches the word and

saves fox into the $& special variable.

• Then I call the search method and search for the word dog. I immediately
print out the match using the same $& variable inside the method.

• Finally I return to the top level scope and print out the value of $& again.

Running this test, I get:
$ ruby regex_method.rb
Value of $& inside method: dog
Value of $& in the top level scope: fox

This is what we expect, but think carefully about this for a moment. The $& variable is
obviously not global since it has different values at different places in my Ruby script.
Ruby preserves the value of $& from the top level scope during the execution of the
search method, allowing me to print out the matching word “fox” from the original
search.
Ruby provides for this behavior by saving a separate set of special variables at each
level of the stack using the svar value:

str

special

str

svar

svar

special

$& ="dog" etc...

$& ="fox" etc...

Method
Scope

Top Level
Scope

LFP

LFP
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Here you can see Ruby saved the “fox” string in a table referred to by the svar pointer
for the top level scope, and saved the “dog” string in a different table for the inner
method scope. Ruby finds the proper special variable table using the LFP pointer for
each stack frame. Depending on exactly which special variable you use, the table in this
diagram might be a hash table or just a simple C structure. I’ll discuss hash tables in
Chapter 4.
Ruby saves actual global variables - these are variables you define using a dollar sign
prefix - in a single, global hash table. Regardless of where you save or retrieve the value
of a normal global variable, Ruby accesses the same global hash table.
Now let’s try one more test - what happens if I perform the search inside a block and
not a method?
str = "The quick brown fox jumped over the lazy dog.\n"
/fox/.match(str)

2.times do
/dog/.match(str)
puts "Value of $& inside block: #{$&}"

end

puts "Value of $& in the top level scope: #{$&}"

Running this last test, I get:
$ ruby regex_block.rb
Value of $& inside block: dog
Value of $& inside block: dog
Value of $& in the top level scope: dog

Notice that now Ruby has overwritten the value of $& in the top scope with the
matching word “dog” from the search I performed inside the block! This is by design:
Ruby considers the top level scope and the inner block scope to be the same with
regard to special variables. This is similar to how dynamic variable access works: we
expect variables inside the block to have the same values as those in the parent scope.
Here is how Ruby implements this behavior:
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str

special

str

svar

cref

special

$& ="dog" etc...

Block
Scope

Top Level
Scope

svar

special

Lexical Scope

LFP

DFP

Now Ruby has just a single special variable table, for the top level scope. Ruby finds the
special variables using the LFP pointer, which points only to the top level scope. Inside
the block scope, since there is no need for a separate copy of the special variables,
Ruby takes advantage of the DFP-1 open slot and saves a value called the cref there
instead.
What does the cref value mean? Unfortunately, I don’t have space in this book to
explain this carefully, but in a nutshell cref indicates whether the given block should be
executed in a different lexical scope compared to the parent frame. Lexical scope refers
to the class or module the you are currently defining methods for. Ruby uses the cref
value to implement metaprogramming API calls such as eval and instance_eval -
the cref value is a pointer to the location on the lexical scope stack this block should
be evaluated in. I’ll touch on these advanced concepts in Chapter 5, but you’ll have to
wait for Ruby Under a Microscope - Part 2 to read a complete explanation of lexical
scope and how Ruby implements it.

The best way to get an accurate list of all the special variables Ruby supports
is to look right at the MRI C source; here’s a snippet of the C code that
tokenizes your Ruby program. I’ve taken this from the parser_yylex function
located in parse.y:
case '$':

lex_state = EXPR_END;
newtok();
c = nextc();
switch (c) {

Chapter 2: How Ruby Executes Your Code

99



case '_': /* $_: last read line string */
c = nextc();
if (parser_is_identchar()) {

tokadd('$');
tokadd('_');
break;

}
pushback(c);
c = '_';
/* fall through */

case '~': /* $~: match-data */
case '*': /* $*: argv */
case '$': /* $$: pid */
case '?': /* $?: last status */
case '!': /* $!: error string */
case '@': /* $@: error position */
case '/': /* $/: input record separator */
case '\\': /* $\: output record separator */
case ';': /* $;: field separator */
case ',': /* $,: output field separator */
case '.': /* $.: last read line number */
case '=': /* $=: ignorecase */
case ':': /* $:: load path */
case '<': /* $<: reading filename */
case '>': /* $>: default output handle */
case '\"': /* $": already loaded files */

tokadd('$');
tokadd(c);
tokfix();
set_yylval_name(rb_intern(tok()));
return tGVAR;

At the top of this code snippet you can see Ruby matches a dollar sign “$”
character - this is part of the large C switch statement that tokenizes your
Ruby code, the process I discussed back at the beginning of Chapter 1. This
is followed by an inner switch statement that matches on the following
character; each of these characters corresponds to a special variable.
Just a bit farther down in the function is more C code that parses other
special variable tokens you write in your Ruby code - these are the “regex last
match” and related special variables:
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case '&': /* $&: last match */
case '`': /* $`: string before last match */
case '\'': /* $': string after last match */
case '+': /* $+: string matches last paren. */
if (last_state == EXPR_FNAME) {

tokadd('$');
tokadd(c);
goto gvar;

}
set_yylval_node(NEW_BACK_REF(c));
return tBACK_REF;

Finally, this last snippet parses $1, $2, etc., producing the special variables
that return the “nth back reference” from the last regular expression operation:
case '1': case '2': case '3':
case '4': case '5': case '6':
case '7': case '8': case '9':

tokadd('$');
do {

tokadd(c);
c = nextc();

} while (c != -1 && ISDIGIT(c));
pushback(c);
if (last_state == EXPR_FNAME) goto gvar;
tokfix();
set_yylval_node(NEW_NTH_REF(atoi(tok()+1)));
return tNTH_REF;
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YARV uses its own internal set of control structures,
similar to the structures you use in Ruby.

How YARV controls your program’s execution flow
We’ve seen how YARV uses a stack
while executing its instruction set and
how it can access variables locally or
dynamically, but what about control
structures? Controlling the flow of
execution is a fundamental requirement
for any programming language, and
Ruby has a rich set of control structures.
How does YARV implement it?
Just like Ruby itself, YARV has it own
control structures, albeit at a much lower
level. Instead of if or unless
statements, YARV uses two low level

instructions called branchif and branchunless. And instead of using control
structures such as “while…end” or “until…end” loops, YARV has a single low level
function called jump that allows it to change the program counter and move from one
place to another in your compiled program. By combining the branchif or
branchunless instruction with the jump instruction YARV is able to execute most of
Ruby’s simple control structures.

How Ruby executes an if statement
A good way to understand how YARV controls execution flow is to take a look at how
the if/else statement works. Here’s a simple Ruby script that uses both if and
else:
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0000 trace 
0002 putobject 
0004 setlocal 
0006 trace 
0008 getlocal 
0010 putobject 
0012 opt_lt 
0014 branchunless
0016 trace 
0018 putself 
0019 putstring 
0021 send 
0027 pop 
0028 jump 
0030 trace 
0032 putself 
0033 putstring 
0035 send 
0041 pop 
0042 trace 
0044 putself 
0045 putstring 
0047 send 
0053 leave

i = 0
if i < 10
 
else
 
end
puts "done"

1 
0
i
1 
i
10
<ic:4>
30
1 

"small"
:puts, 1

42 
1 

"large"
:puts, 1

1 

"done"
:puts, 1

puts "small"

puts "large"

On the right you can see the corresponding snippet of compiled YARV instructions.
Reading the YARV instructions, you can see Ruby follows a pattern for implementing
the if/else statement:

• evaluate condition
• jump to false code if condition is false
• true code; jump to end
• false code

This is a bit easier to follow if I paste the instructions into a flowchart:
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0014 branchunless 30

0018 putself 
0019 putstring
0021 send 
0027 pop 
0028 jump

0030 trace 
0032 putself 
0033 putstring
0035 send 
0041 pop

0042 trace 
0044 putself 
0045 putstring
0047 send 
0053 leave

0008 getlocal 
0010 putobject
0012 opt_lt

jump if
condition is false

i
10
<ic:4>

"small"
:puts, 1

42

1 

"large"
:puts, 1

1 

"done"
:puts, 1

You can see how the branchunless instruction in the center is the key to how Ruby
implements if statements; here’s how it works:

• First at the top Ruby evaluates the condition of my if statement, “i < 10,”
using the opt_lt (optimized less-than) instruction. This will leave either a true
or false value on the stack.
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• Then branchunless will jump down to the false/else condition if the condition
is false. That is, it “branches unless” the condition is true. Ruby uses
branchunless and not branchif for if/else conditions since the positive
case, the code that immediately follows the if statement, is compiled to appear
right after the condition code. Therefore YARV needs to jump if the condition is
false.

• Or if the condition is true Ruby will not branch and will just continue to execute
the positive case code. After finishing the positive code Ruby will then jump
down to the instructions following the if/else statement using the jump
instruction.

• Finally either way Ruby will continue to execute the subsequent code.
YARV implements the unless statement in a similar way using the same
branchunless instruction, except the positive and negative code snippets are in
reverse order. For looping control structures like “while…end” and “until…end”
YARV uses the branchif instruction instead. But the idea is the same: calculate the
loop condition, then execute branchif to jump as necessary, and finally use jump
statements to implement the loop.

Jumping from one scope to another
One of the challenges YARV has implementing some control structures is that, similar to
dynamic variable access, Ruby sometimes can jump from one scope to another. The
simplest example of this is the break statement. break can be used both to exit a
simple loop like this:
i = 0
while i<10

puts i
i += 1
break

end

…or from a block iteration like this:
10.times do |n|

puts n
break

end
puts "continue from here"
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In the first case, YARV can exit the while loop using simple jump instructions like we
saw above in the if/else example. However, exiting a block is not so simple: in this
case YARV needs to jump to the parent scope and continue execution after the call to
10.times. How does it do this? How does it know where to jump to? And how does it
adjust both its internal stack and your Ruby call stack to be able to continue execution
properly in the parent scope?
To implement jumping from one place to another in the Ruby call stack – that is, outside
of the current scope – Ruby uses the throw YARV instruction. YARV’s throw
instruction resembles the Ruby throw keyword: it sends or throws the execution path
back up to a higher scope. It also resembles the throw keyword from C++ or Java – it’s
similar to raising an exception, except there is no exception object here.
Let’s take a look at how that works; here’s the compiled code for the block above
containing the break statement:

putself 
getdynamic
send
pop
putnil 
throw
leave

10.times do |n|

end
puts "continue from here"

putobject
send 
pop 
putself 
putstring 
send 
leave

n, 0
:puts, 1

2

puts n
break

10
:times, 0, block

"continue from here"
:puts, 1

You can see a “throw 2” instruction appears in the compiled code for the block.
throw implements throwing an exception at the YARV instruction level by using
something called a “catch table” A catch table is a table of pointers optionally attached
to any YARV code snippet. Conceptually, a catch table might look like this:
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putobject 
send 
pop 
putself 
putstring 
send 
leave

Catch Table

BREAK

10
:times, 0, block

"continue from here"
:puts, 1

Here, the catch table from my example contains just a single pointer to the pop
statement, which is where execution would continue after an exception. Whenever you
use a break statement in a block, Ruby not only compiles the throw instruction into the
block’s code, but it also adds the BREAK entry into the catch table of the parent scope.
For a break within a series of nested blocks, Ruby would add the BREAK entry to a
catch table even farther down the rb_control_frame stack.

Later, when YARV executes the throw instruction it checks to see whether there’s a
catch table containing a BREAK pointer for the current YARV instruction sequence:

rb_control_frame
CFP

rb_control_frame

rb_control_frame

YARV instructions Catch 
Table Break

pointer?

If there isn’t, Ruby will start to iterate down through the stack of rb_control_frame
structures looking for a catch table containing a break pointer…

rb_control_frame

CFP
rb_control_frame

rb_control_frame

YARV instructions Catch 
Table Break

pointer?
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…and continue to iterate until it finds one:

rb_control_frame

CFP

rb_control_frame

rb_control_frameYARV instructions Catch 
Table Break

pointer?

In my simple example, there is only one level of block nesting, so Ruby will find the
catch table and BREAK pointer after just one iteration:

putobject 
send 
pop 
putself 
putstring 
send 
leave

Catch Table

BREAK

10.times do |n|

end
puts "continue from here"

10
:times, 0, block

"continue from here"
:puts, 1

putself 
getdynamic
send
pop
putnil 
throw
leave

n, 0
:puts, 1

2

puts n
break

Once Ruby finds the catch table pointer, it resets both the Ruby call stack (the CFP
pointer) and the internal YARV stack to reflect the new program execution point. Then
YARV continues to execute your code from there. That is, YARV resets the internal PC
and SP pointers as needed.

What is interesting to me about this is how Ruby uses a process similar to raising and
rescuing an exception internally to implement a very commonly used control structure:
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the break keyword. In other words, what in more verbose languages is an exceptional
occurrence becomes in Ruby a common, everyday action. Ruby has wrapped up a
confusing, unusual syntax – raising/rescuing of exceptions – into a simple keyword,
break, and made it very easy to understand and use. Of course, Ruby needs to use
exceptions because of the way blocks work: they are on one hand like separate
functions or subroutines, but on the other hand just part of the surrounding code. For
this reason Ruby needs a keyword like break that seems simple at first glance but
internally is quite complex.
Another commonplace, ordinary Ruby control structure that also uses catch tables is
the return keyword. Whenever you call return from inside a block, Ruby internally
raises an exception and rescues it with a catch table pointer like this. In fact, break and
return are implemented with exactly the same YARV instructions; the only difference
is that for return Ruby passes a 1 to the throw instruction (e.g. throw 1), while for
break it passes a 2 (throw 2) as we saw above. The return and break keywords
are really two sides of the same coin.
Finally, besides BREAK there are other types of pointers that Ruby can use in the catch
table. The others are used to implement different control structures: RESCUE, ENSURE,
RETRY, REDO and NEXT. For example, when you explicitly raise an exception in your
Ruby code using the raise keyword, Ruby implements the rescue block in a similar
way by using the catch table, but this time with a RESCUE pointer. The catch type is
simply a list of event types that can be caught and handled by that sequence of YARV
instructions, similar to how you would use a rescue block in your Ruby code.
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Experiment 2-3: Testing how Ruby implements for loops
internally

I always knew that Ruby’s for loop control structure
worked essentially the same way as using a block with the
each Enumerable method. That is to say, I knew this
code:

for i in 0..5
puts i

end

… worked the same way as this code:
(0..5).each do |i|

puts i
end

But I never suspected that internally Ruby actually implements for loops using each!
That is, there really is no for loop control structure in Ruby at all; instead, the for
keyword is really just syntactical sugar for calling each with a range.

To prove this is the case, all you have to do is inspect the YARV instructions that are
produced by Ruby when you compile a for loop. Let’s use the same
RubyVM::InstructionSequence.compile method that I did in Chapter 1:
code = <<END
for i in 0..5

puts i
end
END
puts RubyVM::InstructionSequence.compile(code).disasm

Running this I get:
== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
== catch table
| catch type: break  st: 0002 ed: 0010 sp: 0000 cont: 0010
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|------------------------------------------------------------------------
local table (size: 2, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)
[ 2] i
0000 trace            1                                               (   1)
0002 putobject        0..5
0004 send             :each, 0, block in <compiled>, 0, <ic:0>
0010 leave
== disasm: <RubyVM::InstructionSequence:block in <compiled>@<compiled>>=
== catch table
| catch type: redo   st: 0005 ed: 0016 sp: 0000 cont: 0005
| catch type: next   st: 0005 ed: 0016 sp: 0000 cont: 0016
|------------------------------------------------------------------------
local table (size: 2, argc: 1 [opts: 0, rest: -1, post: 0, block: -1] s3)
[ 2] ?<Arg>
0000 getdynamic       *, 0                                            (   3)
0003 setlocal         i                                               (   1)
0005 trace            1                                               (   2)
0007 putself
0008 getlocal         i
0010 send             :puts, 1, nil, 8, <ic:0>
0016 leave

To make this a bit easier to follow, I’ll repeat these YARV instructions in a diagram, and
remove some of the technical details like the trace statements:

putobject 
send 
leave

for i in 0..5

end

getdynamic 
setlocal 
putself
getlocal 
send 
leave

0..5
:each, 0, block

*, 0
i

i
:puts, 1

puts i

You should notice right away there are two separate YARV code blocks: the outer
scope which calls each on the range 0..5 and then an inner block that makes the
puts i call. The “getdynamic *, 0” instruction in the inner block loads the implied
block parameter value - i in my Ruby code - and the following setlocal instruction
saves it into a local variable also called i.
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Taking a step back and thinking about this, what Ruby has done here is:
• Automatically converted the “for i in 0..5” code into “(0..5).each do”

• Automatically created a block parameter to hold each value in the range, and:
• Automatically created a local variable in the block with the same name as the

for loop variable, and saved the block parameter’s value into it.
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How JRuby executes your code
As I explained in Chapter 1, JRuby tokenizes and parses your Ruby code in almost the
same way that MRI Ruby does. And, like Ruby 1.9 and Ruby 2.0, JRuby continues to
compile your Ruby code into byte code instructions before actually running your
program using a virtual machine.
However, this is where the similarity ends: MRI and JRuby use two very different virtual
machines to execute your code. As I showed earlier in Chapter 2, MRI Ruby 1.9 and
higher use YARV, which was custom designed to run Ruby programs. JRuby, however,
uses the Java Virtual Machine to execute your Ruby program. Despite it’s name, many
different programming languages run on the JVM. In fact, this really is JRuby’s raison
d'être - the whole point of building a Ruby interpreter with Java is to be able to execute
Ruby programs using the JVM. There are two important reasons to do this:

• Environmental: Using the JVM opens new doors for Ruby and allows you to
use Ruby on servers, in applications and in IT organizations where previously
you could not run Ruby at all.

• Technical: The JVM is the product of almost 20 years of intense research and
development. It contains sophisticated solutions for many difficult computer
science problems such as garbage collection, multithreading, and much more.
By running on the JVM, Ruby runs faster and more reliably!

To get a better sense of how this works, let’s take a look at how JRuby would execute
the same one line Ruby script I used as an example earlier:
puts 2+2

The first thing JRuby does is tokenize and parse this Ruby code into an AST node
structure. Once this is finished, JRuby will iterate through the AST nodes and convert
your Ruby into Java byte code. Using the bytecode command line option you can
actually see this byte code for yourself:
$ cat simple.rb
puts 2+2
$ jruby --bytecode simple.rb

The output is complex and confusing and I don’t have the space to explain it here, but
here’s a diagram summarizing how JRuby compiles and executes this one line program:
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puts 2+2Ruby(simple.rb)

Java Byte Code

class simple extends
AbstractScript

<init>

__file__

class RubyFixnum 
extends RubyInteger

op_plus

Your Code JRuby Code

class RubyIO extends 
RubyObject

puts

Here’s how this works:
• On the top left I show the “puts 2+2” Ruby source code from simple.rb.

• The downward arrow indicates that JRuby translates this into a Java class,
named “simple” after my Ruby file name, and derived from the
AbstractScript base class.

• The JVM later calls the second method in this class, __file__, in order to
execute my compiled Ruby script. The __file__ method contains the
compiled version of the top level Ruby code in simple.rb - in this example the
entire program.

• The __file__ method, in turn, calls the op_plus method in the RubyFixnum
Java class.

• Once JRuby’s RubyFixnum Java class has added 2+2 for me and returned 4,
__file__ will call the puts method in the RubyIO Java class to display the
result.

There are a couple of important ideas to notice in all of this: First, as I said above, your
Ruby code is compiled into Java byte code. It’s both alarming and amazing at the same
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time to imagine one of my Ruby programs converted into Java! However, remember
we’re talking about Java byte code here, not an actual Java program. Java byte code
instructions are very low level in nature and can be used to represent code originally
written in any language, not just Java.
Second, JRuby implements all of the built in Ruby classes such as Fixnum and IO
using Java classes; these classes are named RubyFixnum, RubyIO, etc. Of course,
JRuby also implements all of the Ruby language’s intrinsic behavior as a series of other
Java classes, including: objects, modules, blocks, lambdas, etc. I’ll touch on a few of
these implementations in the following chapters.
Internally, the JVM uses a stack to save arguments, return values and local variables
just like YARV does. However, explaining how the JVM works is beyond the scope of
this book.

To get a feel for what the JRuby source code looks like, let’s take a quick look
at the op_plus method in the org.jruby.RubyFixnum Java class:
public IRubyObject op_plus(ThreadContext context,

IRubyObject other) {
if (other instanceof RubyFixnum) {
return addFixnum(context, (RubyFixnum)other);

}
return addOther(context, other);

}

First of all, remember this is a method of the RubyFixnum Java class, which
represents the Ruby Fixnum class, the receiver of the op_plus operation.
Thinking about this for a moment, this means that each instance of a Ruby
object, such as the Fixnum receiver “2” in my example, is represented by an
instance of a Java class. This is one of the key concepts behind how JRuby’s
implementation works: for every Ruby object instance there is an underlying
Java object instance. I’ll have more about this in Chapter 3.
Next, note the arguments to op_plus are something called a
ThreadContext and the operand of the addition operation, a Java object
called other which implements the IRubyObject interface. Reading the
code above, we can see that if the other operand is also an instance of
RubyFixnum then JRuby will call the addFixnum method; here is that code:
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private IRubyObject addFixnum(ThreadContext context,
RubyFixnum other) {

long otherValue = other.value;
long result = value + otherValue;
if (additionOverflowed(value, otherValue, result)) {
return addAsBignum(context, other);

}
return newFixnum(context.getRuntime(), result);

}

Here you can see the Java code calculates the actual result of the “2+2”
operation: “result = value + otherValue.” If the result were too large
to fit into a Fixnum object, JRuby would call the addAsBignum method
instead. Finally JRuby creates a new Fixnum instance, sets its value to
result or 4 and returns it.
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How Rubinius executes your code
In Chapter 1 I explained how Rubinius uses a combination of C++ and Ruby to
tokenize, parse and compile your Ruby code. The same is true when it comes time to
actually execute your code: Rubinius combines a virtual machine (the “Rubinius VM”)
implemented in C++ with a library of the basic core Ruby classes written in Ruby itself.
Called the “kernel,” this Ruby library allows you to see how all of the core Ruby classes
actually work… without having to understand C or Java! Where is it not possible to
implement Ruby with Ruby, Rubinius’s implementation uses C++ code in the virtual
machine instead.
Similar to MRI and JRuby, Rubinius first compiles your Ruby code into a series of VM
instructions. Along with implementing the portions of the Ruby basic object library that
couldn't be built with Ruby, the Rubinius VM also interprets and executes these
instructions. In addition, the C++ Rubinius VM also implements a garbage collector and
contains support for threads, for interacting with the operating system and many other
things.
I don’t have space here in this book to explain Rubinius internals in complete detail, but
let’s see how Rubinius executes my one line sample Ruby program:
puts 2+2

Just like JRuby, Rubinius has a command line option that allows you to see the VM
instructions your code is compiled into:
$ cat simple.rb
puts 2+2
$ rbx compile simple.rb -B

============= :__script__ ==============
Arguments:   0 required, 0 post, 0 total
Arity:       0
Locals:      0
Stack size:  3
Lines to IP: 1: 0..11
0000:  push_self
0001:  meta_push_2
0002:  meta_push_2
0003:  meta_send_op_plus          :+
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0005:  allow_private
0006:  send_stack                 :puts, 1
0009:  pop
0010:  push_true
0011:  ret
----------------------------------------

Unlike JVM byte code, the Rubinius VM instructions are very high level and easy to
understand; in fact, they very closely resemble the YARV instructions we saw earlier in
this chapter. For example, push_self will push the self pointer on the top of the
stack and send_stack will call the specified method with the given number of
arguments.

Your Code Rubinius Code

push_self 
meta_push_2 
meta_push_2 
meta_send_op_plus
allow_private 
send_stack 
pop 
push_true 
ret

:+

:puts, 1

puts 2+2 module Kernel

def puts
 etc…
end

push_rubinius 
find_const 
push_literal 
send_stack 
push_local 
cast_array 
push_nil 
send_stack_with_splat
pop 
push_nil 
ret

0
:$stdout
:[], 1
0 # a

:puts, 0

This diagram shows what happens when I run my simple Ruby program:
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• First, on the left Rubinius compiles my “puts 2+2” code into Rubinius VM
instructions.

• On the right, Rubinius compiles it’s own Ruby code, in this case the Kernel
module puts method, into VM instructions in the same way. This compilation
actually happens ahead of time during the Rubinius build process.

• Later the Rubinius VM starts to interpret and execute these instructions.
Depending on how long my process continues to run, a JIT compiler might
further compile these instructions into LLVM byte code and ultimately into
machine language.

• When my code makes the call to puts to print out the result of 4, the Rubinius
VM send_stack instruction finds and calls the Kernel.puts method.

Let’s see what happens next. Since Rubinius’s implementation of puts is written in
Ruby we can just take a look at it! Here is a snippet of that code, taken from kernel/
common/kernel.rb:
module Kernel

...

def puts(*a)
$stdout.puts(*a)
nil

end

As you can see, here Rubinius simply calls into the puts method of the underlying
global IO object that represents the stdout stream. This is also written in Ruby, this
time inside the kernel/common/io19.rb file:
class IO

...

def puts(*args)

...
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write str
write DEFAULT_RECORD_SEPARATOR unless str.suffix?(DEFAULT_RECORD_SEPARATOR)

I’ve removed some of the code in the IO.puts method to keep things simple, but you
can see IO.puts calls a write method to actually write out the string. It turns out
Rubinius implements this using C++ code inside the Rubinius VM itself.
Taking a step back, let’s review the overall process Rubinius uses to execute your Ruby
code:

• First, it compiles your code into VM instructions.
• Then it executes these instructions using the Rubinius VM.
• Since Rubinius implements all of the Ruby core classes using Ruby itself, any

calls you make to String, Array, Fixnum, etc., are all simple Ruby calls into
the Ruby portion of the Rubinius kernel.

• Finally, portions of the Rubinius core library that can’t be implemented in Ruby
– either for performance reasons or because the code needs to interact with
the operating system at a low level – are written in C++ directly inside the
Rubinius VM.

Let’s continue down the call stack and see how exactly Rubinius calls into the
write method in the C++ code. Here’s a snippet from the vm/builtin/io.hpp
C++ source file:
namespace rubinius {

class IO : public Object {

...

// Rubinius.primitive :io_write
Object* write(STATE, String* buf, CallFrame* calling_environment);
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...
}

}

You can see the write method is a member of the IO C++ class. The IO C++
class corresponds to the IO Ruby class – each core Ruby class in Rubinius’s
Ruby kernel has as corresponding C++ class that handles things the Ruby
class cannot. An important detail here is the comment:
“Rubinius.primitive :io_write” – this is actually the glue that holds
Ruby and C++ together inside of Rubinius. This is not just a comment, but is
also a directive that tells the Rubinius VM to call the IO::write C++ method
when the Ruby IO code calls the IO.write Ruby method.

I won’t show the actual implementation of IO::write, but if you’re interested
you can find it in vm/builtin/io.cpp. As you might guess, it takes the string data
and passes it into an operating system call.
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I always think about object oriented
programming in the supermarket.

Chapter 3
Objects, Classes and Modules

We all learn very early on that Ruby is an
object oriented language, descended
from languages like Smalltalk and
Simula. Everything is an object and all
Ruby programs consist of a set of
objects and the messages that are sent
back and forth among them. Typically,
we learn about object oriented
programming by looking at how to use
objects and what they can do: how they
can group together data values and
behavior related to those values, how
each class should have a single
responsibility or purpose or how
different classes can be related to each
other through encapsulation or
inheritance.

But what are Ruby objects, exactly? What information does an object contain? If I were
to look at a Ruby object through a microscope, what would I see? Are there any moving
parts inside? And what about Ruby classes? All of us know how to create and use Ruby
classes, but what exactly is a class? Finally, what are modules in Ruby? How are
modules and classes related? What happens when I include a module into a class?
How does Ruby determine which class or module implements a given method?
In this chapter I am going to answer these questions by exploring how Ruby works
internally. Looking at exactly how Ruby implements objects, classes and modules can
give you some insight into how they were intended to be used, and into how to write
object oriented programs using Ruby.
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Chapter 3 Roadmap

What's inside a Ruby object?
Generic objects
Do generic objects have instance variables?

Experiment 3-1: How long does it take to save a new instance variable?
Deducing what's inside the RClass structure

The actual RClass structure
Experiment 3-2: Where does Ruby save class methods?
How Ruby implements modules and method lookup

What happens when you include a module in a class?
Ruby's method lookup algorithm
Including two modules in one class

Experiment 3-3: Modifying a module after including it
Objects, classes and modules in JRuby
Objects, classes and modules in Rubinius
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If I could slice open a Ruby object, what would I see?

What’s inside a Ruby object?
Ruby saves all of your custom objects
inside a C structure called RObject,
which looks like this in Ruby 1.9 and 2.0:

RObject

numiv

ivptr

RBasic

flags

klass

VALUE

On the top is a pointer to the RObject structure. Internally Ruby always refers to any
value using these VALUE pointers. Below you can see the RObject value is divided into
two halves: RBasic and RObject. The RBasic section contains information that all
values use, not only objects: a set of boolean values called flags which store a variety
of internal, technical values and also a class pointer, called klass. The class pointer
indicates which class this object is an instance of. At the bottom in the RObject
specific portion, Ruby saves an array of instance variables that this object instance
contains, using two values: numiv, the instance variable count, and ivptr, a pointer to
an array of values.
Summarizing the contents of the RObject structure, we can write a very technical
definition of what a Ruby object is:

Every Ruby object is the combination of a class pointer and an array of instance
variables.
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At first glance, this definition doesn’t seem that useful at all. It doesn’t help me
understand the meaning or purpose behind objects, or how to use them in a Ruby
program. Why does Ruby implement objects in this way? The answer is simple: Ruby
saves this information in RObject to support the basic features of the language.

For example, suppose I have a simple Ruby class:
class Mathematician

attr_accessor :first_name
attr_accessor :last_name

end

Ruby needs to save the class pointer in RObject because every object has to keep
track of the class you used to create it:
> euler = Mathematician.new
=> #<Mathematician:0x007fbd738608c0>

In the above example by displaying the class name, “#<Mathematician…,” Ruby is
displaying the value of the class pointer for the “euler” object when I inspect it. The hex
string that follows is actually the VALUE pointer for the object. This will be different for
every instance of Mathematician.
Ruby also has to keep track of any values you save in it – Ruby uses the instance
variable array to do this:
> euler.first_name = 'Leonhard'
=> "Leonhard"

> euler.last_name  = 'Euler'
=> "Euler"

> euler
=> #<Mathematician:0x007fbd738608c0 @first_name="Leonhard", @last_name="Euler">

As you can see here, Ruby also displays the instance variable array for euler when I
inspect it again. Ruby needs to save this array of values in each object since every
object instance can have different values for the same instance variables. For example:
> euclid = Mathematician.new
> euclid.first_name = 'Euclid'
> euclid
=> #<Mathematician:0x007fabdb850690 @first_name="Euclid">
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Now let’s take a look at Ruby’s C structures in a bit more detail – when you run this
simple script, Ruby will create one RClass structure and two RObject structures:

class Mathematician

end

euler = Mathematician.new
euler.first_name = 'Leonhard'
euler.last_name = 'Euler'

euclid = Mathematician.new
euclid.first_name = 'Euclid'

RClass

Mathematician

RObject

euler

RObject

euclid

attr_accessor :first_name
attr_accessor :last_name

I will cover how Ruby implements classes with the RClass structure in the next section,
but here is an example of how Ruby saves the mathematician information in the two
RObject structures in more detail:
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RClass

Mathematician

RObject

numiv: 2

ivptr

klass

RObject

numiv: 1

ivptr

klass

Leonhard

Euler

Euclid

You can see each of the klass values points to the Mathematician RClass
structure, and each RObject structure has a separate array of instance variables. Both
arrays contain VALUE pointers, the same pointer that Ruby uses to refer to the
RObject structure. As you can see from the example above, one of the objects
contains two instance variables, while the other contains only one.

Generic objects
This is how Ruby saves custom classes, like my Mathematician class, in RObject
structures. But we all know that every Ruby value, including basic data types, such as
integers, strings or symbols, are also objects. The Ruby source code internally refers to
these built in types as “generic” types. How does Ruby store these generic objects? Do
they also use the RObject structure? The answer is no. Internally Ruby uses a different
C structure to save values for each of its generic data types, and not RObject. For
example, Ruby saves string values in RString structures, arrays in RArray structures
and regular expressions in RRegexp structures, etc. Ruby only uses RObject to save
instances of custom object classes that you create, and for a few custom object classes
Ruby creates internally as well.
However, all of these different structures share the same RBasic information that we
saw in RObject:
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RString

String info...

RBasic

flags

klass

RArray

Array info...

RBasic

flags

klass

RRegexp

Regex info...

RBasic

flags

klass

VALUE VALUE VALUE

Since the RBasic structure contains the class pointer, each of these generic data types
is also an object. They are all instances of some Ruby class, indicated by the class
pointer saved inside of RBasic.

As a performance optimization, Ruby saves small integers, symbols and a few other
simple values without any structure at all. Ruby saves these values right inside the
VALUE pointer:

Integer value Flags

VALUE

That is, these VALUEs are not pointers at all; instead they are the values themselves. For
these simple data types, there is no class pointer. Instead, Ruby remembers the class
using a series of bit flags saved in the first few bits of the VALUE. For example, all
integers have the FIXNUM_FLAG bit set, like this:

Integer value 1

VALUE

FIXNUM_FLAG

Whenever the FIXNUM_FLAG is set, Ruby knows this VALUE is really a small integer, an
instance of the Fixnum class, and not a pointer to a value structure. There is also a
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similar bit flag to indicate if the VALUE is a symbol, and values such as nil, true and
false also have special values.

It’s easy to see that integers, strings and other generic values are all objects using IRB:
$ irb
> "string".class
=> String

> 1.class
=> Fixnum

> :symbol.class
=> Symbol

Here we can see Ruby saves a class pointer or the equivalent bit flag for all of these
values by calling the class method on each of them. The class method returns the
class pointer, or at least the name of the class the klass pointer refers to.

Do generic objects have instance variables?
Now let’s reread our definition of a Ruby object from above:

Every Ruby object is the combination of a class pointer and an array of instance
variables.

What about instance variables for generic objects? According to our definition, all Ruby
objects are a class pointer combined with an array of instance variables. Do integers,
strings and other generic data values have instance variables? That would seem a bit
odd. But if integers and strings are objects, then this must be true! And if this is true,
where does Ruby save these values, if it doesn’t use the RObject structure?

Using the instance_variables method you can see that each of these basic values
can also contain an array of instance variables, as strange as that might seem at first:
$ irb
> str = "some string value"
=> "some string value"

> str.instance_variables
=> []

> str.instance_variable_set("@val1", "value one")
=> "value one"

> str.instance_variables
=> [:@val1]

> str.instance_variable_set("@val2", "value two")
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=> "value two"
> str.instance_variables
=> [:@val1, :@val2]

You can repeat the same exercise using symbols, arrays, or any Ruby value you select
whatsoever. Every Ruby value is an object, and every object contains a class pointer
and an array of instance variables.
Internally, Ruby uses a bit of a hack to save instance variables for generic objects; that
is, for objects that don’t use an RObject structure. When you save an instance variable
in a generic object, Ruby saves it in a special hash called the generic_iv_table.
This hash maintains a map between generic objects and pointers to other hashes that
contain each object’s instance variables. For my str string example above, this would
look like this:

RString

"some string value"

@val1 => "value one" @val2 => "value two"

generic_iv_table

str => hash etc... etc...

For more information about hashes and how Ruby implements them, please refer to
Chapter 4.
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Here are the actual definitions of the RBasic and RObject C structures; you
can find this code in the include/ruby/ruby.h header file:
struct RBasic {

VALUE flags;
VALUE klass;

};

#define ROBJECT_EMBED_LEN_MAX 3
struct RObject {

struct RBasic basic;
union {

struct {
long numiv;
VALUE *ivptr;
struct st_table *iv_index_tbl;

} heap;
VALUE ary[ROBJECT_EMBED_LEN_MAX];

} as;
};

First at the top you’ll see the definition of RBasic. This contains the two
values I described earlier: flags and klass. Below, you’ll see the RObject
definition. Notice that it contains a copy of the RBasic structure as I
described above. Following this is a union keyword, which contains a
structure called heap followed by an array called ary. I’ll have more on this in
a moment.
The heap structure contains the values I discussed earlier:

• First is the value numiv which tracks the number of instance
variables contained in this object.

• After that is ivptr – a pointer to an array containing the values of the
instance variables this object contains. Note the names or id’s of the
instance variables are not stored here, only the values. Instead, Ruby
uses the next value, iv_index_tbl, to keep track of which instance
variable is which.
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• iv_index_tbl points to a hash table that maps between the id or
name of each instance variable and its location in the ivptr array.
This value is actually stored once in the RClass structure for this
object’s class, and this pointer is simply a cache or shortcut Ruby
uses to obtain that hash table quickly. The st_table type refers to
Ruby’s implementation of hash tables, which are covered in Chapter
4.

Finally, the last member of the RObject structure, called ary, occupies the
same memory space as all of the previous values because of the union
keyword at the top. Using this ary value, Ruby can save all of the instance
variables right inside the RObject structure if there’s enough room for them
to fit. This avoids the need to call malloc to allocate extra memory to hold
the instance variable value array. Ruby also uses this sort of optimization for
the RString and RArray structures.
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Experiment 3-1: How long does it take to save a new
instance variable?

To learn more about how Ruby saves instance variables
internally let’s measure how long it takes Ruby to save one
in an object. To do this, I’ll create a large number of test
objects:
obj = []
ITERATIONS.times do |n|

obj[n] = Class.new.new
end

Here I’m using Class.new to create a unique class for each new object so they are all
independent. Then I’ll add instance variables to each of them:
20.times do |count|

bench.report("adding instance variable number #{count+1}") do
ITERATIONS.times do |n|

obj[n].instance_variable_set("@var#{count}", "value")
end

end
end

This code will iterate 20 times, repeatedly saving one more new instance variable to
each of the objects I created above. Here’s a graph showing the time it takes Ruby
1.9.3 to add each variable – on the left is the time it takes to save the first instance
variable in all the objects, and moving to the right the additional time taken to save one
more instance variable in each object:
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Time to add one more instance variable (seconds x100,000) vs.
instance variable count

Looking at this bar chart, you can see a strange pattern. Sometimes it takes Ruby
longer to add a new instance variable, and sometimes Ruby is able to save one faster.
What’s going on here?
The reason for this behavior has to do with that array I showed above where Ruby
stores the instance variables:

RObject
ivptr Leonhard Euler

In Ruby 1.8 this array is actually a hash table containing both the variable names (the
hash keys) and the actual values, which will automatically expand to accommodate any
number of elements. Stay tuned for Chapter 4 to learn more about hash tables.
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However, Ruby 1.9 and 2.0 speed things up a bit by saving the values in a simple array
– the instance variable names are saved in the object’s class instead, since the names
are the same for all instances of a class. What this means, however, is that Ruby 1.9
and 2.0 need to either preallocate a large array to handle any number of instance
variables, or repeatedly increase the size of this array as you save more variables. From
the graph, you can see Ruby 1.9 and 2.0 repeatedly increase the array size. For
example, suppose I have seven instance variables in a given object:

RObject
ivptr 1 2 3 4 5 6 7

When I add the eighth variable, bar number 8 in the graph, Ruby 1.9 and 2.0 increase
the array size by three, anticipating that you will soon add more variables:

RObject
ivptr 1 2 3 4 5 6 7 8

Allocating more memory takes some extra time, which is why bar number 8 is higher.
Now if I add a ninth and tenth instance variable Ruby 1.9 and 2.0 won’t need to
reallocate memory for this array, the space will already be available. This explains the
shorter times for bars numbered 9 and 10.
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Two objects, one class

Deducing what’s inside the Class structure
We saw above that every object
remembers its class by saving a pointer
to an RClass structure. What
information does each RClass structure
contain? What would I see if I could look
inside a Ruby class? Let’s build up a
model of what information must be
present in RClass, and therefore, a
technical definition of what a Ruby class
is, based on what we know classes can
do.
Every Ruby developer knows how to

write a class: you type the class keyword, specify a name for the new class, and then
type in the class’s methods. In fact, I already wrote a Ruby class this way in the
previous section:
class Mathematician

attr_accessor :first_name
attr_accessor :last_name

end

As you probably know, attr_accessor is just shorthand for defining get and set
methods for an attribute.3 Here’s the more verbose way of defining the same
Mathematician class:
class Mathematician
def first_name

@first_name
end
def first_name=(value)

@first_name = value
end
def last_name

3. The methods defined by attr_accessor also check for
nil values. I don’t show this here.
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@last_name
end
def last_name=(value)

@last_name = value
end

end

When taking a step back, and looking at this class, or any Ruby class, it looks like it is
just a group of method definitions. I can assign behavior to an object by adding
methods to its class, and when I call a method on an object, Ruby looks for the method
in the object’s class. This leads me to my first definition of what a Ruby class is:

A Ruby class is a group of method definitions.

Therefore, I know that the RClass structure for Mathematician must save a list of all
the methods I defined in the class:

RClass

first_name

first_name=

last_name

last_name=

method table:

While reviewing my Ruby code above, notice that I’ve also created two instance
variables called @first_name and @last_name. We saw earlier how Ruby stores
these values in each RObject structure, but you may have noticed that the names of
these variables were not stored in RObject, just the values were. (As I mentioned
above, Ruby 1.8 actually stores the names in RObject as well.) Instead, Ruby must
store the attribute names in RClass; this makes sense since the names will be the
same for every Mathematician instance. Let’s redraw RClass again, including a table
of attribute names as well this time:
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RClass

first_name

first_name=

last_name

last_name=

@first_name

@last_name

method table: attribute names:

Now my definition of a Ruby class is:

A Ruby class is a group of method definitions and a table of attribute names.

At the beginning of this chapter I mentioned that everything in Ruby is an object. This
might be true for classes too. It’s easy to prove this is, in fact, the case using IRB:
> p Mathematician.class
=> Class

You can see Ruby classes are all instances of the Class class; therefore, classes are
also objects. Let’s update our definition of a Ruby class again:

A Ruby class is a Ruby object that also contains method definitions and attribute
names.

Since Ruby classes are objects, we know that the RClass structure must also contain a
class pointer and an instance variable array, the values that we know every Ruby object
contains:
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RClass

first_name

first_name=

last_name

last_name=

@first_name

@last_name

method table:

klass

class pointer:
RClass

Class

@value1

@value2

instance level
attribute names:

class level
instance variables:

You can see I’ve added a pointer to the Class class, in theory the class of every Ruby
class object. However, in Experiment 3-2 below I’ll show that actually this diagram is
not accurate, that klass actually points to something else! I’ve also added a table of
instance variables. Note: these are the class level instance variables. Don’t confuse this
with the table of attribute names for the object level instance variables.
As you can see, this is rapidly getting out of control; the RClass structure seems to be
much more complex than the RObject structure was! But, don’t worry, we’re almost
done. In a moment I’ll show you what the actual RClass structure looks like. But first,
there are still two more important types of information we need to consider that each
Ruby class contains.
Another essential feature of object oriented programming that we all know Ruby also
implements is inheritance. Ruby implements single inheritance by allowing us to
optionally specify one superclass when we create a class, or if we don’t specify a
superclass then Ruby assigns the Object class to be the superclass. For example, I
could rewrite my Mathematician class using a superclass like this:
class Mathematician < Person
...

Now every instance of Mathematician will include the same methods that instances
of Person have. In this example, I might want to move the first_name and
last_name accessor methods into Person. I could also move the @first_name and
@last_name attributes into the Person class, all instances of Mathematician would
also share these attributes. Somehow the Mathematician class must contain a
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reference to the Person class (its superclass) so that Ruby can find any methods or
attributes that actually were defined in a superclass.
Let’s update my definition again, assuming that Ruby tracks the superclass using
another pointer similar to klass:

A Ruby class is a Ruby object that also contains method definitions, attribute
names and a superclass pointer.

And let’s redraw the RClass structure including the new superclass pointer:

RClass

first_name

first_name=

last_name

last_name=

@first_name

@last_name

method table:
instance level

attribute names:

class level
instance variables:

klass

class pointer:
RClass

Class

@value1

@value2

super

superclass:
RClass

Person

At this point it is critical to understand the difference between the klass pointer and
the super pointer. The klass pointer indicates which class the Ruby class object is an
instance of. This will always be the Class class:
> p Mathematician.class
=> Class

Ruby uses the klass pointer to find the methods of the Mathematician class, such
as the new method which every Ruby class implements.

However, the super pointer records which class is the superclass of this class:
> p Mathematician.superclass
=> Person
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Ruby uses the “super” pointer to help find methods that each Mathematician
instance has, such as first_name= or last_name. I’ll cover method lookup in the
next section.
Now we have just one more feature of Ruby classes to cover: constants. As you
probably know, Ruby allows you to define constant values inside of a class, like this:
class Mathematician < Person

AREA_OF_EXPERTISE = "Mathematics"
etc...

Constant values must start with a capital letter, and are valid within the scope of the
current class. Curiously, Ruby actually allows you to change a constant value but will
display a warning when you do so. Let’s add a constant table to our RClass structure,
since Ruby must save these values inside each class:

RClass

first_name

first_name=

last_name

last_name=

@first_name

@last_name

method table:

klass

class pointer:
RClass

Class

@value1

@value2

super

superclass:
RClass

AREA_OF_EXPERTISE

etc...

constant table:

Person

instance level
attribute names:

class level
instance variables:

That’s it – so now we can write a complete, technical definition of what a Ruby class is:

A Ruby class is a Ruby object that also contains method definitions, attribute
names, a superclass pointer and a constants table.

This isn’t as concise as the simple definition we had for what a Ruby object is, but each
Ruby class does actually contain much more information than each Ruby object does.
Ruby classes are obviously fundamental to the language.
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The actual RClass structure
Now that we have built up a conceptual model for what information must be stored in
RClass, let’s look at the actual C structure that Ruby uses to represent classes:

RClass

m_tbl

iv_index_tbl

RBasic

flags

klass
VALUE

ptr

rb_classext_struct

super

iv_tbl

const_tbl

Method Table

Instance Level
Attribute Names

Class Pointer

Superclass Pointer

Class Level
Instance Variables

Constants Table

As you can see, Ruby actually uses two separate structures to represent each class:
RClass and rb_classext_struct. But, these act as one large structure since each
RClass always contains a pointer (ptr) to a corresponding rb_classext_struct.
You might guess that the Ruby core team decided to use two different structures since
there are so many different values to save, but actually they likely created
rb_classext_struct to save internal values they didn’t want to expose in the public
Ruby C extension API.
Like I did for RObject, on the left I show a VALUE pointer. Ruby always accesses
classes using these VALUE pointers. On the right, you can see the technical names for
all of the fields we just discussed:
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• flags and klass are the same RBasic values that every Ruby value
contains.

• m_tbl is the method table, a hash whose keys are the names or id’s of each
method and whose values are pointers to the definition of each method,
including the compiled YARV instructions.

• iv_index_tbl is the attribute names table, a hash that maps each instance
variable name to the index of the attribute’s value in each RObject instance
variable array.

• super is a pointer to the RClass structure for this class’s superclass.

• iv_tbl contains the class level instance variables – both their names and
values.

• And finally const_tbl is a hash containing all of the constants – names and
values – defined in this class’s scope. You can see that Ruby implements
iv_tbl and const_tbl in the same way; that is, class level instance variables
and constants are almost the same thing.

Now let’s take a quick look at the actual RClass structure definition:
typedef struct rb_classext_struct rb_classext_t;
struct RClass {

struct RBasic basic;
rb_classext_t *ptr;
struct st_table *m_tbl;
struct st_table *iv_index_tbl;

};

Like the RObject definition we saw earlier, you can find this structure
definition in the include/ruby/ruby.h file. You can see all of the values I showed
in the previous diagram.
The rb_classext_struct structure definition, on the other hand, can be
found in the internal.h C header file:
struct rb_classext_struct {

VALUE super;
struct st_table *iv_tbl;
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struct st_table *const_tbl;
};

Once again, you can see the values I showed in the diagram. In Chapter 4 I’ll
cover hash tables in detail, the st_table type here, which Ruby uses to save
all of these values: the method table, the constant table, the instance variables
for the class and also the instance variable names/id’s for object instances of
this class.
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Experiment 3-2: Where does Ruby save class methods?
Above we saw how each RClass structure saves all the
methods defined in a certain class; in my example:
class Mathematician
def first_name

@first_name
end

Ruby stores information about the first_name method
inside the RClass structure for Mathematician using the

method table.
But what about class methods? It’s a common idiom in Ruby to save methods in a
class directly, using this syntax:
class Mathematician
def self.class_method

puts "This is a class method."
end

Or this syntax:
class Mathematician
class << self
def class_method

puts "This is a class method."
end

end

Are they saved in the RClass structure along with the normal methods for each class,
maybe with a flag to indicate they are class methods and not normal methods? Or are
they saved somewhere else? Let’s find out!
It’s easy to see where class methods are not saved. They are obviously not saved in the
RClass method table along with normal methods, since instances of Mathematician
cannot call them:
obj = Mathematician.new
obj.class_method
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=> undefined method `class_method' for
#< Mathematician:0x007fdd8384d1c8 (NoMethodError)

Thinking about this some more, since Mathematician is also a Ruby object –
remember my definition from above:

A Ruby class is a Ruby object that also contains method definitions, attribute
names, a superclass pointer and a constants table.

…then Ruby should save methods for Mathematician in the same way it saves them
for any object: in the method table for the object’s class. That is, Ruby should get
Mathematician’s class using the klass pointer and save the method in the method
table in that RClass structure:

RClass
klass

RClass
m_tbl

ClassMathematician
"class_method"

etc...

But actually Ruby doesn’t do this – you can prove this is the case by creating another
class and trying to call the new method:
> class AnotherClass; end
> AnotherClass.class_method
=> undefined method `class_method' for AnotherClass:Class (NoMethodError)

If Ruby had added the class method to the method table in the Class class, then all
classes in your application would have the method. Obviously this isn’t what we
intended by writing a class method, and thankfully Ruby doesn’t implement class
methods this way.
Then where do the class methods go? You can find a clue by using the
ObjectSpace.count_objects method, as follows:
$ irb
> ObjectSpace.count_objects[:T_CLASS]
=> 859

> class Mathematician; end

Ruby Under a Microscope

146



=> nil
> ObjectSpace.count_objects[:T_CLASS]
=> 861

ObjectSpace.count_objects returns the number of objects of a given type that
currently exist. In this test, I’m passing the T_CLASS symbol to get the count of class
objects that exist in my IRB session. Before I create Mathematician, there are 859
classes. After I declare Mathematician, there are 861 – two more. This seems a bit
odd… I declared one new class but Ruby actually created two! What is the second one
for? Where is it?
It turns out whenever you create a new class internally Ruby always creates two
classes! The first class is your new class: Ruby creates a new RClass structure to
represent your class as I have described above. But internally Ruby also creates a
second, hidden class called the “metaclass.” Why? Just for this reason: to save any
class methods you might later create for your new class. In fact, Ruby sets the
metaclass to be the class of your new class – it sets the klass pointer of your new
RClass structure to point to the metaclass.

Without writing C code, there’s no easy way to see the metaclass or the klass pointer
value, but you can obtain the metaclass as a Ruby object as follows:
class Mathematician
end
obj = Mathematician.new
p obj.class
p obj.singleton_class

Running this I get:
$ ruby metaclass.rb
Mathematician
#<Class:#< Mathematician:0x007fb6228856c8>>

The first line displays the object’s class, while the second line displays the object’s
metaclass; the odd “#<Class:#< Mathematician…” syntax indicates that the
second class is the metaclass for Mathematician. This is the second RClass
structure that Ruby automatically created for me when I declared the Mathematician
class. And this second RClass structure is where Ruby saves my class method:
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RClass RClass

class_method

RClass

m_tbl

RBasic
klass

first_name=

first_name

RClass

m_tbl

RBasic

klass

class_method

#<Class:#<Mathematician:...>>Mathematician

last_name=

last_name

RObject
klass

euler

If I now display the methods for the metaclass, I’ll see all the usual Ruby Class
methods, along with my new class method for Mathematician:
p obj.singleton_class.methods
=> [ ... :class_method, ...  ]
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You can mix multiple modules into one class.

How Ruby implements modules and method lookup
Most Ruby developers are used to the idea that
Ruby only supports single inheritance; unlike C++
for example, you can only specify one superclass
for each class. However, Ruby does allow for
multiple inheritance in an indirect way using
modules. You can include as many different
modules into a class as you wish, each of them
adding new methods and behavior.
How do modules work? Following the same
pattern we’ve seen with RObject and RClass, is
there also an RModule structure that defines a
Ruby module? And how does Ruby keep track of
which modules have been included in which
classes? Finally, how does Ruby lookup
methods? How does it know whether to search
for a certain method in a class or a module?
It turns out that Ruby doesn’t use an RModule

structure. Internally Ruby implements modules as classes. Whenever you create a
module, Ruby actually creates another RClass — rb_classext_struct structure
pair, just like it would for a new class. For example, when I define a new module like
this:
module Professor
end

…internally Ruby will create a class, not a module! Here are the class structures again:
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RClass

m_tbl

iv_index_tbl

RBasic

flags

klass
VALUE

ptr

rb_classext_struct

super

iv_tbl

const_tbl

Method Table

Instance Level
Attribute Names

Class Pointer

Superclass Pointer

Class Level
Instance Variables

Constants Table

However, while internally modules are really classes they are still different from classes
in two important ways:

• Ruby doesn’t allow you to create objects directly from modules – this means
you can’t call the new method on a module. new is a method of Class, and not
of Module.

• Ruby doesn’t allow you to specify a superclass for a module.
So in fact modules don’t use the iv_index_tbl value, since there are no object level
attributes to keep track of. Modules don’t have object instances. Therefore, we can
imagine modules using a slightly smaller version of the RClass structures:
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RClass: module

m_tbl

RBasic

flags

klassVALUE

ptr

Method Table

Class Pointer

rb_classext_struct

super

iv_tbl

const_tbl

Superclass Pointer

Module Level
Instance Variables

Constants Table

Following the same train of thought, we can write a technical definition of a Ruby
module as follows:

A Ruby module is a Ruby object that also contains method definitions, a
superclass pointer and a constants table.

What happens when you include a module in a class?
The real magic behind modules happens when you include one into a class. At the
moment you include a module into a class, for example:
module Professor
end

class Mathematician
include Professor

end
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Ruby creates a copy of the RClass structure for the Professor module and inserts it
as the new superclass for Mathematician. Ruby’s C source code refers to this copy
of the module as an “included class.” The superclass of the new copy of Professor is
set to the original superclass of Mathematician, preserving the superclass or
“ancestor chain:”

RClass
super

When you include a module
Ruby inserts a copy of the module

into your class's superclass linked list:

RClass
super

RClass
super

RClass
super

Mathematician

Person

Another
Superclass

Object

RClass
super

Included
Class

RClass
super

Professor

copy

Ruby saves your class's ancestors
using a linked list of super pointers:

Here I’ve kept things simple by only displaying the RClass structures and not the
rb_classext_struct structures, which actually hold the super pointers.

Ruby’s method lookup algorithm
Why go to all of this trouble? Why does Ruby bother to change all of the super pointers
to make included modules behave as if they were superclasses? Ruby does this to
allow its method lookup algorithm to work properly, taking both superclasses and
modules into account.
Understanding Ruby’s method lookup algorithm thoroughly is essential for every Ruby
developer, so let’s take a close look at it:
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method 
found?

look through 
method table in 
current class

set current 
class to 

superclass of 
current class

call method

set current 
class to 
receiver

found

not
found

What surprised me about this algorithm is how simple it is; Ruby simply follows the
super pointers until it finds the class or module containing the target method. I had
always imagined this would be a much more complex process: that Ruby would have to
distinguish between modules and classes using some special logic, that it would have
to handle the case when there were multiple included modules with some special code,
and more. But no, it’s very simple, just a simple loop on the super pointer linked list.

Let’s take an example and walk through the method lookup process. Suppose I decide
to move my first and last name attributes out of Mathematician and into the Person
superclass like this:
class Person

attr_accessor :first_name
attr_accessor :last_name

end

Remember my Mathematician class uses Person as the superclass and also now
includes the Professor module:
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module Professor
def lectures; ...etc... end

end

class Mathematician < Person
include Professor

end

Now, suppose I set the first name of a mathematician:
ramanujan = Mathematician.new
ramanujan.first_name = "Srinivasa"

To execute this code, Ruby needs to find the first_name= method. To do this, Ruby
will start by taking the ramanujan object and getting it’s class via the klass pointer:

ramanujan
RObject

klass
RClass

m_tbl

Mathematician

Then Ruby will look to see if Mathematician implements first_name= directly by
looking through its method table:

[ empty ]
RClass

m_tbl

Mathematician

Since I moved all of the methods down into the Person superclass, the first_name=
method is no longer there. Instead Ruby will get the superclass of Mathematician using
the super pointer:

RClass
super

RClass
m_tbl

Copy of
Professor ModuleMathematician

lectures
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Remember, this is not the Person class but instead is the “included class,” or copy of
the Professor module. Ruby will now look through the method table for Professor,
but will only find the lectures method, and not first_name=.

An important detail here is that, because of the way Ruby inserts modules above the
original superclass in the superclass chain, methods in an included module will override
methods present in a superclass. In this example, if Professor also had a
first_name= method, Ruby would call it and not the method in Person.

Since in this example Ruby doesn’t find first_name= in Professor, it will continue
to iterate over the super pointers – this time using the super pointer in Professor:

RClass
super

RClass
m_tbl

Copy of
Professor Module first_name=Person

first_name

last_name=

last_name

Note the superclass of the Professor module, or more precisely, the superclass of the
included class copy of the Professor module, is now actually the Person class. This
was the original superclass of Mathematician. Finally, Ruby can find the
first_name= method and call it.

What is interesting here is that internally Ruby implements module inclusion using class
inheritance. Saying that in a different way, there is no difference at all between including
a module and specifying a superclass. Both make new methods available to the target
class, and internally both use the class’s super pointer. Including multiple modules in a
Ruby class really is equivalent to specifying multiple superclasses.
However, Ruby keeps things simple by enforcing a single list of ancestors. While
including multiple modules does create multiple superclasses internally, Ruby maintains
them in a single list for you. As a Ruby developer, you get the benefits of multiple
inheritance – adding new behavior to class from as many different modules as you
would like – while keeping the simplicity of the single inheritance model. Ruby itself
benefits from this simplicity as well! By enforcing this single list of superclass ancestors,
Ruby’s method lookup algorithm can be very simple. Whenever you call a method on an
object, all Ruby has to do is iterate through the superclass linked list until it finds the
class or module that contains the target method.
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Including two modules in one class
Ruby’s method lookup algorithm is simple, but the code it uses to include modules is
not. As we saw above, when you include a module in a class, Ruby inserts a copy of the
module into the class’s ancestor chain. This also means if you include two modules,
one after the other, the second module will appear first in the ancestor chain… and will
be found first by Ruby’s method lookup logic.
For example, suppose I include two modules into Mathematician:
class Mathematician < Person

include Professor
include Employee

end

Now Mathematician objects have methods from the Professor module, the
Employee module and the Person class. But which methods will Ruby find first?
Which methods override which?
Using a diagram, it’s easy to see the order: since I include the Professor module first,
Ruby inserts its copy as a superclass first:

RClass
super

RClass
super

Mathematician

Person

RClass
super

Included
Class

RClass
super

Professor

copy

And now when I include the Employee module, its copy will be inserted above the
Professor module’s copy using the same process:
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RClass

RClass

RClass

RClass
super

RClass
super

Mathematician

Included Class
for Professor

RClass
super

Included Class
for Employee

RClass
super

Employee

copy

RClass
superPerson

This means that methods from Employee will override methods from Professor,
which in turn will override methods from Person, the actual superclass.

Finally, modules don’t allow you to specify superclasses; i.e., I can’t write:
module Professor < Employee
end

But I can include one module into another like this:
module Professor

include Employee
end

Now what happens when I include Professor, a module with other modules included
in it, into Mathematician? Which methods will Ruby find first? Here’s what happens:
first, when I include Employee into Professor, Ruby will create a copy of Employee
and set it as the superclass of Professor internally:
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RClass

super

Professor

RClass
super

Included Class
for Employee

RClass
super

Employee

copy

That’s right: modules can’t have a superclass in your code, but inside of Ruby they can!
This is because Ruby represents modules with classes internally. And now, finally, when
I include Professor into Mathematician, Ruby iterates over the two modules and
inserts them both as superclasses of Mathematician:

RClass
super

RClass
super

Mathematician

Person

RClass
super

RClass
super

Included Class
for Employee #2

Included Class
for Professor

copy

copy

RClass

super

Professor

RClass
super

Included Class
for Employee

RClass
super

Employee

copy

Now Ruby will find the methods in Professor first, and Employee second.
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Experiment 3-3: Modifying a module after including it
Following a suggestion by Xavier Noria, this experiment will
look at what happens when you modify a module after it’s
been included into a class. Let’s reuse the same
Mathematician class and the Professor module:
module Professor
def lectures; end

end

class Mathematician
attr_accessor :first_name
attr_accessor :last_name
include Professor

end

This time the Mathematician class contains the accessor methods for @first_name
and @last_name, and I’ve also included the Professor module. If I inspect the
methods of a mathematician object, I should see both the attribute methods,
first_name=, etc., and the lectures method which came from Professor:
fermat = Mathematician.new
fermat.first_name = 'Pierre'
fermat.last_name = 'de Fermat'

p fermat.methods.sort
=> [ … :first_name, :first_name=, … :last_name, :last_name=, :lectures … ]

No surprise; I see all the methods.
Now let’s try adding some new methods to the Professor module after including it in
the Mathematician class. Is Ruby smart enough to know the new methods should be
added to Mathematician as well? Let’s find out.
module Professor
def primary_classroom; end

end

Chapter 3: Objects, Classes and Modules

159



p fermat.methods.sort
=> [ ... :first_name, :first_name=, ... :last_name, :last_name=, :lectures,
... :primary_classroom, ... ]

As you can see, I get all the methods, including the new primary_classroom method
added to Professor after it was included in Mathematician. No surpise again –
Ruby is one step ahead of me.
Now let’s try one more test. What will happen if I re-open the Professor module and
include yet another module into to it:
module Employee
def hire_date; end

end

module Professor
include Employee

end

This is getting somewhat confusing now, so let me summarize what I’ve done so far:
• First I included the Professor module in the Mathematician class.

• Then I included the Employee module in the Professor module.

• Therefore, methods of the Employee module should now be available on a
mathematician object.

Let’s see if Ruby works as I expect:
p fermat.methods.sort
=> [ … :first_name, :first_name=, … :last_name, :last_name=, :lectures … ]

The hire_date method is not available in the fermat object. Including a module into
a module that was already included into a class does not effect that class. After learning
about how Ruby implements modules this shouldn't be too hard to understand.
Including Employee into Professor does change the Professor module, but not the
copy of Professor that Ruby created when I included it in Mathematician:
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RClass

super

Professor

RClass
super

Included Class
for Employee

RClass
super

Employee

copy

RClass
super

Mathematician

RClass
super

Included Class
for Professor

(copied earlier)

But what about the primary_classroom method? How was Ruby able to include
primary_classroom in Mathematician, even though I added it to Professor after
I included Professor in Mathematician? Looking at the diagram above, it’s clear
Ruby created a copy of the Professor module before I added the new method to it.
But the fermat object gets the new method… how?

To understand this, we need to take a closer look at how Ruby copies modules when
you include them into a class. It turns out that Ruby copies the RClass structure, but
not the underlying module table! Here’s what I mean:
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RClass
super

RClass

Mathematician

Superclass

Included
Class Professor

copy

lectures
super

RClass

super
m_tbl

RClass

super
m_tbl

Method Table
(not copied)

primary_classroom

Ruby doesn’t copy the method table for Professor. Instead, it simply sets m_tbl in
the new copy of Professor, the “included class,” to point to the same method table.
This means that modifying the method table, reopening the module and adding new
methods, will change both the module and any classes it was already included in.
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Objects, classes and modules in JRuby
In Chapter 2 I showed how JRuby executes your code at a very, very high level:

• JRuby compiles your Ruby code into a Java class containing byte code
instructions.

• Meanwhile, JRuby provides a series of Java classes that implement Ruby’s
intrinsic behavior and the built in Ruby classes, such as String, Array or
Fixnum.

To learn what I mean by “Ruby’s intrinsic behavior” better let’s take a look now at how
JRuby implements Ruby’s object model: objects, classes and modules. We saw earlier
that MRI Ruby uses the RObject and RClass C structures to represent these
concepts - does JRuby use similar structures?
As you might guess, instead of C structures JRuby uses a series of Java objects. In
fact, JRuby creates one Java object for each Ruby object you create in your
application. The common superclass for all of these Java objects is called
RubyBasicObject, named after the Ruby BasicObject class.

RubyBasicObject

metaClass

varTable

RubyClass

In the diagram I’ve shown two of the instance variables present in this Java class:
• metaClass is a reference to an instance of the RubyClass Java class; this

indicates which Ruby class this Ruby object is an instance of.
• varTable[] is an array containing the instance variables stored inside of this

Ruby object.
You can see that the Java RubyBasicObject class meets the requirements of our
definition of a Ruby object from earlier:

Every Ruby object is the combination of a class pointer and an array of instance
variables.
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Here metaClass is the class pointer and varTable[] is the instance variable array.

Since JRuby uses an object oriented implementation in Java to implement Ruby
objects, it able to take advantage of Java object inheritance to create a series of
subclasses representing different types of Ruby objects:

RubyBasicObject

RubyObject

RubyString RubyArray

This elegant design allows JRuby to organize the code that implements all of these
classes, while sharing a base class that provides the common behavior. This is
analogous to MRI including the RBasic C structure inside each RObject and other
Ruby object structures.
Next let’s look at how JRuby represents Ruby classes; I mentioned above that JRuby
has a Java class called RubyClass. It turns out that this Java class is actually a
subclass of the RubyModule Java class:
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RubyBasicObject

RubyObject

RubyModule

methods

constants

RubyClass

What’s interesting about this is that JRuby’s internal implementation of modules and
classes actually reflects their meaning and usage in the Ruby language:

• Both classes and modules are also Ruby objects - they are both derived from
RubyObject and RubyBasicObject.

• The superclass of the RubyClass Java class is the RubyModule Java class,
just as the superclass of the Ruby Class class is the Ruby Module class.
Instead of using a structure like RClass to implement both classes and
modules like MRI does, JRuby saves the method definitions and constant table
in the RubyModule Java class where they belong.

Reviewing our definition of a Ruby class:

A Ruby class is a Ruby object that also contains method definitions, attribute
names, a superclass pointer and a constants table.

• It’s derived from RubyBasicObject, which contains all of the Ruby object
information, and
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• It’s derived from RubyModule, which contains the superclass pointer, method
definitions and the constants table.

Above you can see in JRuby the RubyModule class contains the method
definition table, which in MRI was saved in the RClass structure. Let’s take a
look now at how JRuby’s RubyModule class implements the method lookup
algorithm we saw earlier. Here’s a method from org/jruby/RubyModule.java
that looks up a method given a name:
public DynamicMethod searchMethod(String name) {
return searchWithCache(name).method;

}

The first thing you’ll notice here is that JRuby implements some sort of a
cache. If we follow along and look at the searchWithCache method, we see:
public CacheEntry searchWithCache(String name) {

CacheEntry entry = cacheHit(name);
if (entry != null) return entry;

...

I won’t try to explain how the cache actually works, but here you can see if
JRuby finds the requested method in the cache it will return it immediately. If
not, JRuby continues to actually lookup the method without a cache using a
method called searchMethodInner:
DynamicMethod method = searchMethodInner(name);

… and here’s the implementation of seachMethodInner:
public DynamicMethod searchMethodInner(String name) {

DynamicMethod method = getMethods().get(name);

if (method != null) return method;

return superClass == null ? null :
superClass.searchMethodInner(name);

}
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Here’s how this works: first, JRuby calls getMethods(). This returns the
actual method table which JRuby implements using a Java map:
private volatile Map<String, DynamicMethod> methods =

Collections.EMPTY_MAP;

Next, the get(name) call will lookup the method name in the map. If it’s
found, JRuby returns it. If it’s not found, then JRuby recursively calls the
searchMethodInner method on the super class RubyModule, if there is
one.
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Objects, classes and modules in Rubinius
In Chapter 2 I explained how Rubinius executes your code using a combination of Ruby
and C++. We saw how Rubinius’s kernel contains pure Ruby implementations for all of
the core classes, such as Array, String and Hash. For the portions of these core
classes that cannot be implemented directly in Ruby, Rubinius uses native code written
in a corresponding C++ class, compiled into the Rubinius VM.
This applies to the core classes behind Ruby’s object model as well. Here is how
Rubinius represents Ruby objects internally:

C++ Ruby

ObjectHeader

Object

BasicObject Object

BasicObject

On the left are three C++ classes: ObjectHeader, Object, and BasicObject. These
are related using C++ class inheritance, indicated by the arrows. The Object and
BasicObject C++ classes correspond to the Ruby core classes with the same name
shown on the right. However, inside the Rubinius C++ VM, the Object class is the
common base class for all Rubinius objects, while BasicObject is actually a subclass
of Object. This is the opposite of what we have in Ruby, where BasicObject is the
superclass of Object. The ObjectHeader class, similar to the RBasic structure in
MRI, contains some basic technical information Rubinius keeps track of for every
object:
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Object

ObjectHeader

header

klass_

ivars_

• header is an instance of the HeaderWord C++ class. This contains some
technical flags Rubinius keeps track of for each object.

• klass_ is a pointer to a C++ class called Class. This is the class of this Ruby
object.

• ivars_ is a pointer to a C++ object that contains a table of the instance
variables stored in this object. Rubinius stores the variable names in this table
also, like Ruby 1.8.

Since the Rubinius Object C++ class is a subclass of ObjectHeader, you can see it
also meets our definition of a Ruby object:

Every Ruby object is the combination of a class pointer and an array of instance
variables.

Next let’s briefly look at how Rubinius implements classes and modules:
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C++ Ruby

Object

Class Class

Module

Module

method_table

constant_table

superclass

Object

Again you can see a one to one correspondence between Ruby and C++ classes. This
time the C++ class inheritance model reflects the Ruby object model; the Class class
is a subclass of the Module class. Finally you can see Rubinius classes meet our
previous definition since they contain all of the same information:

A Ruby class is a Ruby object that also contains method definitions, attribute
names, a superclass pointer and a constants table.

Rubinius stores the attribute names in the instance variable table, part of Object, and
not in the Module object.
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Ruby stores much of its own internal data in hash tables.

Chapter 4
Hash Tables

Back in Experiment 3-1 we saw how in
Ruby 1.9 and 2.0 the ivptr member of
the RObject structure pointed to a
simple array of instance variable values.
We saw adding a new value was usually
very fast, but that while saving every
third or fourth instance variable Ruby
was somewhat slower, since it had to
allocate a larger array. Looking more
broadly across the MRI C source code
base, it turns out this technique of
repeatedly allocating larger and larger
arrays to save data values is unusual.

This should’t be a surprise, since repeatedly increasing the size of an array over and
over by a small amount is probably inefficient.
In fact, Ruby instead saves much of its own internal data in a memory structure called a
“hash table.” Unlike the simple array we saw in Experiment 3-1, hash tables can
automatically expand to accommodate more values. There’s no need for the user or
client of a hash table to worry about how much space is available or about allocating
more memory for it.
As you might guess, Ruby uses a hash table to hold the data you save in the Hash
objects you create in your Ruby script. However, Ruby uses hash tables for many other
reasons as well: it saves much of its own internal data in hash tables. Every time you
create a method, Ruby inserts a new value in a hash table. Every time you create a
constant, Ruby inserts a new value in a hash table. Ruby saves many of the special
variables we saw in Experiment 2-2 in hash tables. As we saw in Chapter 3, Ruby saves
instance variables for generic objects, such as integers or symbols, in a hash table.
Hash tables are the work horse of Ruby internals.
In Chapter 4 I’ll start by explaining how hash tables work: what happens inside the table
when you save a new value with a key, and when you later retrieve the value again
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using the same key. Later I’ll explain how hash tables automatically expand to
accommodate more values. Finally, we’ll look at how hash functions work in Ruby.

Chapter 4 Roadmap

Hash tables in Ruby
Experiment 4-1: Retrieving a value from hashes of varying sizes
How hash tables expand to accommodate more values
Experiment 4-2: Inserting one new element into hashes of varying sizes
How Ruby implements hash functions
Experiment 4-3: Using objects as keys in a hash
Hash tables in JRuby
Hash tables in Rubinius
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Every time you write a method,
Ruby creates an entry in a hash table.

Hash tables in Ruby
Hash tables are a commonly used, well
known, old concept in computer
science. They organize values into
groups or “bins” based on an integer
value calculated from each value called
a “hash.” Later when you need to search
for and find a value, by recalculating the
hash value you can figure out which bin
the value is contained in, to speed up
the search.
Here’s a high level diagram showing a
single hash object and its hash table:

st_table

type

num_bins

num_entries

bins

0 1 2 3 4 5 6 7 8 9 10

RHash

tbl

On the left is the RHash structure; this is short for “Ruby Hash.” On the right, I show the
hash table used by this hash, represented by the st_table structure. This C structure
contains the basic information about the hash table, such as the number of entries
saved in the table, the number of bins and a pointer to the bins. Each RHash structure
contains a pointer to a corresponding st_table structure. Finally, I show some empty
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bins on the lower right. Ruby 1.8 and Ruby 1.9 initially create 11 bins for a new, empty
hash.
The best way to understand how a hash table works is by stepping through an example.
Let’s suppose I add a new key/value to a hash called my_hash:
my_hash[:key] = "value"

While executing this line of code, Ruby will create a new structure called an
st_table_entry and will save it into the hash table for my_hash:

st_table

type

num_bins

num_entries

bins

0 1 2 3 4 5 6 7 8 9 10

RHash

tbl

st_table_entry

:key => "value"

Here you can see Ruby saved the new key/value pair under the third bucket, #2. Ruby
did this by taking the given key, the symbol :key in this example, and passing it to an
internal hash function that returns a pseudorandom integer:
some_value = internal_hash_function(:key)

Next, Ruby takes the hash value, some_value in this example, and calculates the
modulus by the number of bins… i.e. the remainder after dividing by the number of
bins:
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some_value % 11 = 2

In this diagram I imagine that the actual hash value for :key divided by 11 leaves a
remainder of 2. Later in this chapter I’ll explore the hash functions that Ruby actually
uses in more detail.
Now let’s add a second element to the hash:
my_hash[:key2] = "value2"

And this time let’s imagine that the hash value of :key2 divided by 11 yields a
remainder of 5:
internal_hash_function(:key2) % 11 = 5

Now you can see Ruby places a second st_table_entry structure under bin #5, the
sixth bin:
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st_table

type

num_bins

num_entries

bins

0 1 2 3 4 5 6 7 8 9 10

RHash

tbl

st_table_entry

:key => "value"

st_table_entry

:key2 => "value2"

The benefit of using a hash table comes later, when you ask Ruby to retrieve the value
for a given key:
p my_hash[:key]
=> "value"

If Ruby had saved all of the keys and values in an array or linked list, then it would have
to iterate over all the elements in that array or list, looking for :key. This might take a
very long time, depending on how many elements there were. But using a hash table
Ruby can jump straight to the key it needs to find by recalculating the hash value for
that key. It simply calls the hash function again:
some_value = internal_hash_function(:key)
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…redivides the hash value by the number of bins and obtaining the remainder, the
modulus:
some_value % 11 = 2

…and now Ruby knows to look in bin #2 for the entry with a key of :key. In a similar
way, Ruby can later find the value for :key2 by repeating the same hash calculation:
internal_hash_function(:key2) % 11 = 5

Believe it or not, the C library used by Ruby to implement hash tables was
originally written back in the 1980’s by Peter Moore from the University of
California at Berkeley, and later modified by the Ruby core team. You can find
Peter Moore’s hash table code in the C code files st.c and include/ruby/st.h.
All of the function and structure names use the naming convention st_ in
Peter’s hash table code.
Meanwhile, the definition of the RHash structure that represents every Ruby
Hash object can be found in the include/ruby/ruby.h file. Along with RHash,
here you’ll find all of the other primary object structures used in the Ruby
source code: RString, RArray, RValue, etc.
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Experiment 4-1: Retrieving a value from hashes of varying
sizes

My first experiment will create hashes of wildly different
sizes, from 1 element to 1 million elements and then
measure how long it takes to find and return a value from
each of these hashes. First, I create hashes of different
sizes, based on powers of two, by running this code for
different values of exponent:

size = 2**exponent
hash = {}
(1..size).each do |n|

index = rand
hash[index] = rand

end

Here both the keys and values are random floating values. Then I measure how long it
takes to find one of the keys, the target_key 10,000 times using the benchmark
library:
Benchmark.bm do |bench|
bench.report("retrieving an element

from a hash with #{size} elements 10000 times") do
10000.times do

val = hash[target_key]
end

end
end

By using a hash table internally, Ruby is able to find and return value from a hash
containing over a million elements just as fast as it takes to return one from a small
hash:
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Clearly the hash function Ruby uses is very fast, and once Ruby identifies the bin
containing the target key, it is able to very quickly find the corresponding value and
return it. What’s remarkable about this is that the values in this chart are more or less
flat.
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How hash tables expand to accommodate more values
You might be thinking ahead at this point by
asking yourself: “If there are millions of
st_table_entry structures, why does
distributing them among 11 bins help Ruby
search quickly?” Even if the hash function is
fast, and even if Ruby distributes the values
evenly among the 11 bins in the hash table,
Ruby will still have to search among almost
100,000 elements in each bin to find the
target key if there are a million elements
overall.

Something else must be going on here. It seems to me that Ruby must add more bins
to the hash table as more and more elements are added. Let’s take another look at how
Ruby’s internal hash table code works. Continuing with the example from above,
suppose I keep adding more and more elements to my hash:
my_hash[:key3] = "value3"
my_hash[:key4] = "value4"
my_hash[:key5] = "value5"
my_hash[:key6] = "value6"
...

As I add more and more elements, Ruby will continue to create more st_table_entry
structures and add them to different bins. The additional bins depend on the modulus of
the hash value for each key.
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Ruby uses a linked list to keep track of the entries in each bin: each st_table_entry
structure contains a pointer to the next entry in the same bin. As you add more entries
to the hash, the linked list for each bin gets longer and longer.
To keep these linked lists from getting out of control, Ruby measures something called
the “density” or the average number of entries per bin. In my diagram above, you can
see that the average number of entries per bin has increased to about 4. What this
means is that the hash value modulus 11 has started to return repeated values for
different keys and hash values. Therefore, when searching for a target key, Ruby might
have to iterate through a small list, after calculating the hash value and finding which bin
contains the desired entry.
Once the density exceeds 5, a constant value in the MRI C source code, Ruby will
allocate more bins and then “rehash”, or redistribute, the existing entries among the
new bin set. For example, if I keep adding more key/value pairs, after a while Ruby will
discard the array of 11 bins, allocate an array of 19 bins, and then rehash all the existing
entries:
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Now in this diagram the bin density has dropped to about 3.
By monitoring the bin density in this way, Ruby is able to guarantee that the linked lists
remain short, and that retrieving a hash element is always fast. After calculating the
hash value Ruby just needs to step through 1 or 2 elements to find the target key.

You can find the rehash function - the code that loops through the
st_table_entry structures and recalculates which bin to put the entry into -
in the st.c source file. This snippet is from Ruby 1.8.7:
static void
rehash(table)

register st_table *table;
{
register st_table_entry *ptr, *next, **new_bins;
int i, old_num_bins = table->num_bins, new_num_bins;
unsigned int hash_val;
new_num_bins = new_size(old_num_bins+1);
new_bins = (st_table_entry**)Calloc(new_num_bins,

sizeof(st_table_entry*));
for(i = 0; i < old_num_bins; i++) {

ptr = table->bins[i];
while (ptr != 0) {

next = ptr->next;
hash_val = ptr->hash % new_num_bins;
ptr->next = new_bins[hash_val];
new_bins[hash_val] = ptr;
ptr = next;

}
}
free(table->bins);

Ruby Under a Microscope

182



table->num_bins = new_num_bins;
table->bins = new_bins;

}

The new_size method call here returns the new bin count, for example 19.
Once Ruby has the new bin count, it allocates the new bins and then iterates
over all the existing st_table_entry structures (all the key/value pairs in the
hash). For each st_table_entry Ruby recalculates the bin position using
the same modulus formula: hash_val = ptr->hash % new_num_bins.
Then it saves each entry in the linked list for that new bin. Finally Ruby
updates the st_table structure and frees the old bins.

In Ruby 1.9 and Ruby 2.0 the rehash function is implemented somewhat
differently, but works essentially the same way.
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Experiment 4-2: Inserting one new element into hashes of
varying sizes

One way to test whether this rehashing or redistribution of
entries really occurs is to measure the amount of time
Ruby takes to save one new element into an existing hash
of different sizes. As I add more and more elements to the
same hash, at some point I should see some evidence that
Ruby is taking extra time to rehash the elements.
I’ll do this by creating 10,000 hashes, all of the same size,
indicated by the variable size:

hashes = []
10000.times do

hash = {}
(1..size).each do

hash[rand] = rand
end
hashes << hash

end

Once these are all setup, I can measure how long it takes to add one more element to
each hash - element number size+1:
Benchmark.bm do |bench|

bench.report("adding element number #{size+1}") do
10000.times do |n|

hashes[n][size] = rand
end

end
end

What I found was surprising! Here’s the data for Ruby 1.8:
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Interpreting these data values from left to right:
• It takes about 9ms to insert the first element into an empty hash (10000 times).
• It takes about 7ms to insert the second element into a hash containing one

value (10000 times).
• As the hash size increases from 2, 3, up to about 60 or 65 the amount of time

required to insert a new element slowly increases.
• We see it takes around 11ms or 12ms to insert each new key/value pair into a

hash that contains 64, 65 or 66 elements (10000 times).
• Later, we see a huge spike! Inserting the 67th key/value pair takes over twice

as much time: about 26ms instead of 11ms for 10000 hashes!
• After inserting the 67th element, the time required to insert additional elements

drops to about 10ms or 11ms, and then slowly increases again from there.
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What’s going on here? Well, the extra time required to insert that 67th key/value pair is
spent by Ruby reallocating the bin array from 11 bins to 19 bins, and then reassigning
the st_table_entry structures to the new bin array.

Here’s the same graph for Ruby 1.9 - you can see this time the bin density threshold is
different. Instead of taking extra time to reallocate the elements into bins on the 67th
insert, Ruby 1.9 does it when the 57th element is inserted. Later you can see Ruby 1.9
performs another reallocation after the 97th element is inserted.
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0 1005025 75

Time to add a new key/value pair (ms) for 10,000 hashes vs. hash size

If you’re wondering where these magic numbers come from, 57, 97, etc., then
take a look at the top of the “st.c” code file for your version of Ruby. You
should find a list of prime numbers like this:
/*
Table of prime numbers 2^n+a, 2<=n<=30.
*/
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static const unsigned int primes[] = {
8 + 3,
16 + 3,
32 + 5,
64 + 3,
128 + 3,
256 + 27,
512 + 9,

...

This C array lists some prime numbers that occur near powers of two. Peter
Moore’s hash table code uses this table to decide how many bins to use in
the hash table. For example, the first prime number in the list above is 11,
which is why Ruby hash tables start with 11 bins. Later as the number of
elements increases, the number of bins is increased to 19, and later still to 37,
etc.
Ruby always sets the number of hash table bins to be a prime number to
make it more likely that the hash values will be evenly distributed among the
bins, after calculating the modulus - after dividing by the prime number and
using the remainder. Mathematically, prime numbers help here since they are
less likely to share a common factor with the hash value integers, in case a
poor hash function often returned values that were not entirely random. If the
hash values and bin counts shared a factor, or if the hash values were a
multiple of the bin count, then the modulus might always be the same. This
leads to the table entries being unevenly distributed among the bins.
Elsewhere in the st.c file, you should be able to find this C constant:
#define ST_DEFAULT_MAX_DENSITY 5

… which defines the maximum allowed density, or average number of
elements per bin. Finally, you should also be able to find the code that
decides when to perform a bin reallocation by searching for where that
ST_DEFAULT_MAX_DENSITY constant is used in st.c. For Ruby 1.8 you’ll find
this code:
if (table->num_entries/(table->num_bins) > ST_DEFAULT_MAX_DENSITY) {

rehash(table);
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So Ruby 1.8 rehashes from 11 to 19 bins when the value num_entries/11 is
greater than 5… i.e. when it equals 66. Since this check is performed before a
new element is added, the condition becomes true when you add the 67th
element, because num_entries would be 66 then.

For Ruby 1.9 and Ruby 2.0 you’ll find this code instead:
if ((table)->num_entries >

ST_DEFAULT_MAX_DENSITY * (table)->num_bins) {
rehash(table);

You can see Ruby 1.9 rehashes for the first time when num_entries is
greater than 5*11, or when you insert the 57th element.
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Hash functions allow Ruby to find which
bin contains a given key and value.

How Ruby implements hash functions
Now let’s take a closer look at the actual
hash function Ruby uses to assign keys and
values to bins in hash tables. If you think
about it, this function is central to the way
the Hash object is implemented – if this
function works well then Ruby hashes will be
fast, but a poor hash function would in
theory cause severe performance problems.
And not only that, as I mentioned above,
Ruby uses hash tables internally to store its
own information, in addition to the data
values you save in hash objects. Clearly
having a good hash function is very
important!
First let’s review again how Ruby uses hash

values. Remember that when you save a new element – a new key/value pair – in a
hash, Ruby assigns it to a bin inside the internal hash table used by that hash object:
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st_table

type

num_bins

num_entries

bins

0 1 2 3 4 5 6 7 8 9 10

RHash

tbl

st_table_entry

:key => "value"

Again, the way this works is that Ruby calculates the modulus of the key’s hash value
by the number of bins:
bin_index = internal_hash_function(key) % bin_count

Or in this example:
2 = hash(:key) % 11

The reason this works well for Ruby is that Ruby’s hash values are more or less random
integers for any given input data. You can get a feel for how Ruby’s hash function works
by calling the hash method for any object like this:
$ irb
> "abc".hash
=> 3277525029751053763

> "abd".hash
=> 234577060685640459

> 1.hash
=> -3466223919964109258
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> 2.hash
=> -2297524640777648528

Here even similar values have very different hash values. Note that if I call hash again I
always get the same integer value for the same input data:
> "abc".hash
=> 3277525029751053763

> "abd".hash
=> 234577060685640459

Here’s how Ruby’s hash function actually works for most Ruby objects:
• When you call hash Ruby finds the default implementation in the Object

class. You, of course, are free to override this if you really want to.
• The C code used by the Object class’s implementation of the hash method

gets the C pointer value for the target object – i.e. the actual memory address
of that object’s RValue structure. This is essentially a unique id for that object.

• Ruby then passes it through a complex C function – the hash function – that
mixes up and scrambles the bits in the value, producing a pseudo-random
integer in a repeatable way.

For string and arrays it works differently. In this case, Ruby actually iterates through all
of the characters in the string or elements in the array and calculates a cumulative hash
value. This guarantees that the hash value will always be the same for any instance of a
string or array, and will generally change if any of the values in that string or array
change.
Finally, integers and symbols are another special case. For them Ruby just passes their
values right to the hash function.

Ruby 1.9 and 2.0 actually use something called the “MurmurHash” hash
function, which was invented by Austin Appleby in 2008. The name “Murmur”
comes from the machine language operations used in the algorithm: “multiply”
and “rotate.” If you’re interested in the details of how the Murmur algorithm
actually works, you can find the C code for it in the st.c Ruby source code file.
Or you can read Austin’s web page on Murmur: http://sites.google.com/site/
murmurhash/.
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Also, Ruby 1.9 and Ruby 2.0 initialize MurmurHash using a random seed value
which is reinitialized each time you restart Ruby. This means that if you stop
and restart Ruby you’ll get different hash values for the same input data. It
also means if you try this yourself you’ll get different values than I did above.
However, the hash values will always be the same within the same Ruby
process.
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Experiment 4-3: Using objects as keys in a hash
Since hash values are pseudo-random numbers, once
Ruby divides them by the bin count, e.g. 11, the remainder
values left over (the modulus values) will be a random
number between 0 and 10. This means that the
st_table_entry structures will be evenly distributed
over the available bins as they are saved in the hash table.
Evenly distributing the entries ensures that Ruby will be
able to quickly search for and find any given key. The
number of entries per bin will always be small.

But imagine if Ruby’s hash function didn’t return random integers - imagine if instead it
returned the same integer for every input data value. What would happen?
In that case, every time you added any key/value to a hash it would always be assigned
to the same bin. Then Ruby would end up with all of the entries in a single, long list
under that one bin, and with no entries in any other bin:
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Now when you tried to retrieve some value from this hash, Ruby would have to look
through this long list, one element at a time, trying to find the requested key. In this
scenario loading a value from a Ruby hash would be very, very slow.
size = 2**exponent
hash = {}
(1..size).each do
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index = rand
hash[index] = rand

end

Now I’m going to prove this is the case – and illustrate just how important Ruby’s hash
function really is – by using objects with a poor hash function as keys in a hash. Let’s
repeat Experiment 1 and create many hashes that have different numbers of elements,
from 1 to a million:
size = 2**exponent
hash = {}
(1..size).each do

index = rand
hash[index] = rand

end

But instead of calling rand to calculate random key values, this time I’ll create a new,
custom object class called KeyObject and use instances of that class as my key
values:
class KeyObject
end

size = 2**exponent
hash = {}
(1..size).each do

index = KeyObject.new
hash[index] = rand

end

This works essentially the same way as Experiment 1 did, except that Ruby will have to
calculate the hash value for each of these KeyObject objects instead of the random
floating point values I used earlier.
After re-running the test with this KeyObject class, I’ll then proceed to change the
KeyObject class and override the hash method, like this:
class KeyObject
def hash

4
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end
end

I’ve purposefully written a very poor hash function – instead of returning a pseudo-
random integer, this hash function always returns the integer 4, regardless of which
KeyObject object instance you call it on. Now Ruby will always get 4 when it
calculates the hash value. It will have to assign all of the hash elements to bin #4 in the
internal hash table, like in the diagram above. Let’s see what happens….
Running the test with an empty KeyObject class:
class KeyObject
end

…I get results similar to Experiment 1:

3

2

1

0
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Time to retrieve 10000 values (ms) vs. hash size
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Using Ruby 1.9 I again see that Ruby takes about 1.5ms to 2ms to retrieve 10,000
elements from a hash, this time using instances of the KeyObject class as the keys.

Now let’s run the same code, but this time with the poor hash function in KeyObject:
class KeyObject
def hash

4
end

end

Here are the results:
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Wow – very different! Pay close attention to the scale of the graph. On the y-axis I show
milliseconds and on the x-axis again the number of elements in the hash, shown on a
logarithmic scale. But this time, notice that I have 1000s of milliseconds, or actual
seconds, on the y-axis! With 1 or a small number of elements, I can retrieve the 10,000
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values very quickly – so quickly that the time is too small to appear on this graph. In fact
it takes about the same 1.5ms time.
When the number of elements increases past 100 and especially 1000, the time
required to load the 10,000 values increases linearly with the hash size. For a hash
containing about 10,000 elements it takes over 1.6 full seconds to load the 10,000
values. If I continue the test with larger hashes it would take minutes or even hours to
load the values.
Again what’s happening here is that all of the hash elements are saved into the same
bin, forcing Ruby to search through the list one key at a time.
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Hash tables in JRuby
It turns out JRuby implements hashes more or less the same way MRI Ruby does. Of
course, the JRuby source code is written in Java and not C, but the JRuby team chose
to use the same underlying hash table algorithm that MRI uses. Since Java is an object
oriented language, unlike C, JRuby is able to use actual Java objects to represent the
hash table and hash table entries, instead of C structures. Here’s what a hash table
looks like internally inside of a JRuby process:

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHash

int size = 0
RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry[] table

Instead of the C RHash and st_table structures, we have a Java object which is an
instance of RubyHash. And instead of the bin array and st_table_entry structures
we have an array of Java objects of type RubyHashEntry. The RubyHash object
contains an instance variable called size which keeps track of the number of elements
in the hash, and another instance variable called table, which is the RubyHashEntry
array.
JRuby allocates 11 empty RubyHashEntry objects or hash table bins when you create
a new hash. As you insert elements into the hash, JRuby fills in these objects them with
keys and values. Inserting and retrieving elements works the same was as in MRI:
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JRuby uses the same formula to divide the hash value of the key by the bin count, and
uses the modulus to find the proper bin:
bin_index = internal_hash_function(key) % bin_count

As you add more and more elements to the hash, JRuby forms a linked list of
RubyHashEntry objects as necessary when two keys fall into the same bin - just like
MRI:

RubyHash

int size = 3

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry

RubyHashEntry[] table
RubyHashEntry
:key => 'value'

RubyHashEntry
:key2 => 'value2'

RubyHashEntry
:key3 => 'value3'

JRuby also tracks the density of entries, the average number of RubyHashEntry
objects per bin, and allocates a larger table of RubyHashEntry objects as necessary to
rehash the entries.
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If you’re interested, you can find the Java code JRuby uses to implement
hashes in the src/org/jruby/RubyHash.java source code file. I found it easier to
understand than the original C code from MRI, mostly because in general Java
is a bit more readable and easier to understand than C is, and because it’s
object oriented. The JRuby team was able to separate the hash code into
different Java classes, primarily RubyHash and RubyHashEntry.

The JRuby team even used the same identifier names as MRI in some cases;
for example you’ll find the same ST_DEFAULT_MAX_DENSITY value of 5, and
JRuby uses the same table of prime numbers that MRI does: 11, 19, 37, etc.,
that fall near powers of two. This means that JRuby will show the same
performance pattern MRI does for reallocating bins and redistributing the
entries.
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Hash tables in Rubinius
At a high level, Rubinius uses the same hash table algorithm as MRI and JRuby - but
using Ruby instead of C or Java. This means the Rubinius source code is about 10
times easier to understand than either the MRI or JRuby code, and is a great way to
learn more about hash tables if you’re interested in getting your hands dirty without
learning C or Java.
Here’s how hashes look inside of Rubinius:

Hash

@capacity

@max_entries

@size Rubinius::Tuple

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

Bucket

@entries

Since this is just plain Ruby, in Rubinius your Ruby objects are actually implemented
with a real Ruby class called Hash. You’ll see it has a few integer attributes, such as
@size, @capacity and @max_entries, and also an instance variable called
@entries which is the bin array that actually contains the hash data. Rubinius
implements the bin array using a Ruby class called Rubinius::Tuple, a simple
storage class similar to an array. Rubinius saves each hash element inside a Ruby
object called Bucket, saved inside of the @entries Rubinius::Tuple array.

One difference you’ll see in the Rubinius hash table implementation is that it uses
simple powers of two to decide how many hash bins to create, instead of prime
numbers. Initially Rubinius uses 16 Bucket objects. Whenever Rubinius needs to
allocate more bins, it just doubles the size of the bin array, @entries, in the code
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above. While theoretically this is less ideal than using prime numbers, it simplifies the
code substantially and also allows Rubinius to use bitwise arithmetic to calculate the
bin index, instead of having to divide and take the remainder/modulus.

You’ll find the Rubinius hash implementation in source code files called
kernel/common/ hash18.rb and kernel/common/hash19.rb - Rubinius has
entirely different implementations of hashes depending on whether you start in
Ruby 1.8 or Ruby 1.9 compatibility mode. Here’s a snippet from hash18.rb,
showing how Rubinius finds a value given a key:
def [](key)
if item = find_item(key)

item.value
else

default key
end

end
...etc...
# Searches for an item matching +key+. Returns the item
# if found. Otherwise returns +nil+.
def find_item(key)

key_hash = key.hash
item = @entries[key_index(key_hash)]
while item
if item.match? key, key_hash
return item

end
item = item.link

end
end
...etc...
# Calculates the +@entries+ slot given a key_hash value.
def key_index(key_hash)

key_hash & @mask
end

You can see the key_index method uses bitwise arithmetic to calculate the bin
index, since the bin count will always be a power of two for Rubinius, and not
a prime number.
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The IBM 704, above, was the first computer
to run Lisp in the early 1960s.

Chapter 5
How Ruby Borrowed a Decades Old
Idea From Lisp

Blocks are one of the most commonly
used and powerful features of Ruby – as
you probably know, they allow you to
pass a code snippet to iterators such as
each, detect or inject. In Ruby you
can also write your own custom iterators
or functions that call blocks for other
reasons using the yield keyword. Ruby
code containing blocks is often more
succinct, elegant and expressive than
the equivalent code would appear in
older languages such as C.
However, don’t jump to the conclusion
that blocks are a new idea! In fact,

blocks are not new to Ruby at all; the computer science concept behind blocks, called
“closures,” was first invented by Peter J. Landin in 1964, a few years after the original
version of Lisp was created by John McCarthy in 1958. Closures were later adopted by
Lisp – or more precisely a dialect of Lisp called Scheme, invented by Gerald Sussman
and Guy Steele in 1975. Sussman and Steele’s use of closures in Scheme brought the
idea to many programmers for the first time starting in the 1970s.
But what does “closure” actually mean? In other words, exactly what are Ruby blocks?
Are they as simple as they appear? Are they just the snippet of Ruby code that appears
between the do and end keywords? Or is there more to Ruby blocks than meets the
eye? In this chapter I’ll review how Ruby implements blocks internally, and show how
they meet the definition of “closure” used by Sussman and Steele back in 1975. I’ll also
show how blocks, lambdas, procs and bindings are all different ways of looking at
closures, and how these objects are related to Ruby’s metaprogramming API.
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Chapter 5 Roadmap

Blocks: Closures in Ruby
Stepping through how Ruby calls a block
Borrowing an idea from 1975

Experiment 5-1: Which is faster: a while loop or passing a block to each?
Lambdas and Procs: treating functions as a first class citizen

Stack memory vs. heap memory
Stepping through how Ruby creates a lambda
Stepping through how Ruby calls a lambda
The Proc object

Experiment 5-2: Changing local variables after calling lambda
Metaprogramming and closures: eval, instance_eval and binding

Calling eval with binding
Stepping through a call to instance_eval
Another important part of Ruby closures

Experiment 5-3: Using a closure to define a method
Closures in JRuby
Closures in Rubinius
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Sussman and Steele gave a useful definition of the term “closure”
in this 1975 academic paper, one of the so-called “Lambda Papers.”

Blocks: Closures in Ruby
Internally Ruby represents each
block using a C structure called
rb_block_t:

rb_block_t

??

Exactly what are blocks? One way
to answer this question would be to
take a look at the values Ruby

stores inside this structure. Just as we did in Chapter 3 with the RClass structure, let’s
deduce what the contents of the rb_block_t structure must be based on what we
know blocks can do in our Ruby code.
Starting with the most obvious attribute of blocks, we know each block must consist of
a piece of Ruby code, or internally a set of compiled YARV byte code instructions. For
example, if I call a method and pass a block as a parameter:
10.times do

str = "The quick brown fox jumps over the lazy dog."
puts str

end

…it’s clear that when executing the 10.times call, Ruby needs to know what code to
iterate over. Therefore, the rb_block_t structure must contain a pointer to that code:

rb_block_t

iseq

putstring "The quick brown fox… "
setdynamic str, 0
putself 
getdynamic str, 0
send :puts, 1
leave

In this diagram, you can see a value called iseq which is a pointer to the YARV
instructions for the Ruby code in my block.
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Another obvious but often overlooked behavior of blocks is that they can access
variables in the surrounding or parent Ruby scope. For example:
str = "The quick brown fox"
10.times do

str2 = "jumps over the lazy dog."
puts "#{str} #{str2}"

end

Here the puts function call refers equally well to the str variable located inside the
block and the str2 variable from the surrounding code. We often take this for granted –
obviously blocks can access values from the code surrounding them. This ability is one
of the things that makes blocks useful.
If you think about this for a moment, you’ll realize blocks have in some sense a dual
personality. On the one hand, they behave like separate functions: you can call them
and pass them arguments just as you would with any function. On the other hand, they
are part of the surrounding function or method. As I wrote the sample code above I
didn’t think of the block as a separate function – I thought of the block’s code as just
part of the simple, top level script that printed a string 10 times.

Stepping through how Ruby calls a block
How does this work internally? Does Ruby internally implement blocks as separate
functions? Or as part of the surrounding function? Let’s step through the example
above, slowly, and see what happens inside of Ruby when you call a block.
In this example when Ruby executes the first line of code, as I explained in Chapter 2,
YARV will store the local variable str on its internal stack, and save its location in the
DFP pointer located in the current rb_control_frame_t structure.4

4. If the outer code was located inside a function or method
then the DFP would point to the stack frame as shown, but if the
outer code was located in the top level scope of your Ruby
program, then Ruby would use dynamic access to save the
variable in the TOPLEVEL_BINDING environment instead –
more on this in section 5.3. Regardless the DFP will always
indicate the location of the str variable.
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YARV internal stack

locals: str

rb_control_frame_t
DFP

Stack frame for
top level scope

Next Ruby will come to the “10.times do” call. Before executing the actual iteration –
before calling the times method – Ruby will create and initialize a new rb_block_t
structure to represent the block. Ruby needs to create the block structure now, since
the block is really just another argument to the times method:

YARV internal stack

locals: str

rb_block_t

iseq

DFP

rb_control_frame_t
DFP

Stack frame for
top level scope

To do this, Ruby copies the current value of the DFP, the dynamic frame pointer, into
the new block. In other words, Ruby saves away the location of the current stack frame
in the new block.
Next Ruby will proceed to call the times method on the object 10, an instance of the
Fixnum class. While doing this, YARV will create a new frame on its internal stack. Now
we have two stack frames: on the top is the new stack frame for the Fixnum.times
method, and below is the original stack frame used by the top level function:
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YARV internal stack

locals: str

rb_control_frame_t

Stack frame for internal
Fixnum.times C code

Ruby implements the times method internally using its own C code. It’s a built in
method, but Ruby implements it the same way you probably would in Ruby. Ruby starts
to iterate over the numbers 0, 1, 2, etc., up to 9, and calls yield, calling the block once
for each of these integers. Finally, the code that implements yield internally actually
calls the block each time through the loop, pushing a third5 frame onto the top of the
stack for the code inside the block to use:

5. Ruby actually pushes an extra, internal stack frame whenever
you call yield before actually calling the block, so strictly
speaking there should be four stack frames in this diagram. I only
show three for the sake of clarity.
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rb_block_t

iseq

DFP

YARV internal stack

locals: str

locals: str2

DFP

rb_control_frame_t

Stack frame for
block code

Above, on the left, we now have three stack frames:
• On the top is the new stack frame for the block, containing the str2 variable.

• In the middle is the stack frame used by the internal C code that implements
the Fixnum.times method.

• And at the bottom is the original function’s stack frame, containing the str
variable from the outer scope.

While creating the new stack frame at the top, Ruby’s internal yield code copies the
DFP from the block into the new stack frame. Now the code inside the block can access
both its own local variables, via the rb_control_frame structure as usual, and
indirectly the variables from the parent scope, via the DFP pointer using dynamic
variable access, as I explained in Chapter 2. Specifically, this allows the puts
statement to access the str2 variable from the parent scope.

Borrowing an idea from 1975
To summarize, we have seen now that Ruby’s rb_block_t structure contains two
important values:

• a pointer to a snippet of YARV code instructions, and

Ruby Under a Microscope

210



• a pointer to a location on YARV’s internal stack, the location that was at the top
of the stack when the block was created:

trace
putself 
getdynamic str , 1
send :puts, 1, nil, 8, <ic:0>
leave

YARV internal stack

locals: str

rb_block_t

iseq

DFP

At first glance, this seems like a very technical, unimportant detail. This is obviously a
behavior we expect Ruby blocks to exhibit, and the DFP seems to be just another
minor, uninteresting part of Ruby’s internal implementation of blocks.
Or is it? I believe the DFP is actually a profound, important part of Ruby internals. The
DFP is the basis for Ruby’s implementation of “closures,” a computer science concept
invented long before Ruby was created in the 1990s. In fact, the Scheme programming
language, a dialect of Lisp invented by Gerald Sussman and Guy Steele in 1975, was
one of the first languages to formally implement closures – almost twenty years earlier!
Here’s how Sussman and Steele defined the term “closure” in their 1975 paper
Scheme: An Interpreter for Extended Lambda Calculus:

In order to solve this problem we introduce the notion of a closure [11, 14] which
is a data structure containing a lambda expression, and an environment to be
used when that lambda expression is applied to arguments.

Reading this again, a closure is defined to be the combination of:
• A “lambda expression,” i.e. a function that takes a set of arguments, and
• An environment to be used when calling that lambda or function.
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I’ll have more context and information about “lambda expressions” and how Ruby’s
borrowed the “lambda” keyword from Lisp in section 5-2, but for now take another look
at the internal rb_block_t structure:

trace
putself 
getdynamic str , 1
send :puts, 1, nil, 8, <ic:0>
leave

YARV internal stack

locals: str

rb_block_t

iseq

DFP

Notice that this structure meets the definition of a closure Sussman and Steele wrote
back in 1975:

• iseq is a pointer to a lambda expression – i.e. a function or code snippet, and

• DFP is a pointer to the environment to be used when calling that lambda or
function – i.e. a pointer to the surrounding stack frame.

Following this train of thought, we can see that blocks are Ruby’s implementation of
closures. Ironically blocks, one of the features that in my opinion makes Ruby so
elegant and natural to read – so modern and innovative – is based on research and
work done at least 20 years before Ruby was ever invented!

In Ruby 1.9 and later you can find the actual definition of the rb_block_t
structure in the vm_core.h file. Here it is:
typedef struct rb_block_struct {

VALUE self;
VALUE *lfp;
VALUE *dfp;
rb_iseq_t *iseq;
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VALUE proc;
} rb_block_t;

You can see the iseq and dfp values I described above, along with a few
other values:

• self: As we’ll see in the next section when I cover the lambdas,
procs and bindings, the value the self pointer had when the block
was first referred to is also an important part of the closure’s
environment. Ruby executes block code inside the same object
context the code outside the block had.

• lfp: It turns out blocks also contain a local frame pointer, along with
the dynamic frame pointer. However, Ruby doesn’t use local variable
access inside of blocks; it doesn’t use the set/getlocal YARV
instructions inside of blocks. Instead, Ruby uses this LFP for internal,
technical reasons and not to access local variables.

• proc: Finally, Ruby uses this value when it creates a proc object from
a block. As we’ll see in the next section, procs and blocks are closely
related.

Right above the definition of rb_block_t in vm_core.h you’ll see the
rb_control_frame_t structure defined:
typedef struct {

VALUE *pc; /* cfp[0] */
VALUE *sp; /* cfp[1] */
VALUE *bp; /* cfp[2] */
rb_iseq_t *iseq; /* cfp[3] */
VALUE flag; /* cfp[4] */
VALUE self; /* cfp[5] / block[0] */
VALUE *lfp; /* cfp[6] / block[1] */
VALUE *dfp; /* cfp[7] / block[2] */
rb_iseq_t *block_iseq;/* cfp[8] / block[3] */
VALUE proc; /* cfp[9] / block[4] */
const rb_method_entry_t *me;/* cfp[10] */

} rb_control_frame_t;

Notice that this C structure also contains all of the same values the
rb_block_t structure did: everything from self down to proc. The fact that
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these two structures share the same values is actually one of the interesting,
but confusing, optimizations Ruby uses internally to speed things up a bit.
Whenever you refer to a block for the first time by passing it into a method
call, as I explained above, Ruby creates a new rb_block_t structure and
copies values such as the LFP from the current rb_control_frame_t
structure into it. However, by making the members of these two structures
similar – rb_block_t is a subset of rb_control_frame_t; they contain the
same values in the same order – Ruby is able to avoid creating a new
rb_block_t structure and instead sets the pointer to the new block to refer
to the common portion of the rb_control_frame structure. In other words,
instead of allocating new memory to hold the new rb_block_t structure,
Ruby simply passes around a pointer to the middle of the
rb_control_frame_t structure. This is very confusing, but does avoid
unnecessary calls to malloc, and speeds up the process of creating blocks.
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Experiment 5-1: Which is faster: a while loop or passing a
block to each?

I said earlier that in my opinion Ruby code containing
blocks is often more elegant and succinct than the
equivalent code would be using an older language such as
C. For example, in C I would write a simple while loop to
add up the numbers 1 through 10 like this:

#include <stdio.h>
main()
{
int i, sum;
i = 1;
sum = 0;
while (i <= 10) {

sum = sum + i;
i++;

}
printf("Sum: %d\n", sum);

}

…and I could use a while loop in Ruby in the same manner:
sum = 0
i = 1
while i <= 10

sum += i
i += 1

end
puts "Sum: #{sum}"

However, most Rubyists would write this loop using an iterator with a block, like this:
sum = 0
(1..10).each do |i|

sum += i
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end
puts "Sum: #{sum}"

Aesthetics aside, is there any performance penalty for using a block here? Does Ruby
slow down significantly in order to create the new rb_block_t structure, copy the DFP
value, and create new stack frames – everything I discussed above?
I won’t benchmark the C code – clearly that will be faster than either option using Ruby.
Instead, let’s measure how long it takes Ruby to add up the integers 1 through 10 to
obtain 55, using a simple while loop:
require 'benchmark'
ITERATIONS = 1000000
Benchmark.bm do |bench|

bench.report("iterating from 1 to 10, one million times") do
ITERATIONS.times do

sum = 0
i = 1
while i <= 10

sum += i
i += 1

end
end

end
end

Here I am using the benchmark library to measure the time required to run the while
loop one million times. Admittedly I’m using a block to control the million iterations
(ITERATIONS.times do) but I’ll use the same block in the next test as well.

On my laptop with Ruby 1.9.2, I can run through this code in just over a half second:
$ ruby while.rb

user     system      total        real
iterating from 1 to 10, one million times  0.520000   0.000000

0.520000 (  0.514112)

Now let’s measure the time required using the each iterator with a block:
require 'benchmark'
ITERATIONS = 1000000
Benchmark.bm do |bench|

bench.report("iterating from 1 to 10, one million times") do
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ITERATIONS.times do
sum = 0
(1..10).each do |i|

sum += i
end

end
end

end

This time it takes somewhat longer to run through the loop a million times, about 0.8
seconds:
$ ruby each.rb

user     system      total        real
iterating from 1 to 10, one million times  0.800000   0.000000

0.800000 (  0.808752)

Ruby requires about 57% more time to call the block 10 times, compared to iterating
through the simple while loop 10 times.
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At first glance, 57% more time seems like a large performance penalty… just for making
your Ruby code somewhat more readable and pleasant to look at. Depending on your
work and the context of this while loop this may or may not be an important difference.
If this loop were part of a time-sensitive, critical operation that your end users were
waiting for – and if there weren’t other expensive operations inside the loop – then
writing the iteration using an old-fashioned C style while loop might be worthwhile.
However, the performance of most Ruby applications, and certainly Ruby on Rails web
sites, is usually limited by database queries, network connections and other factors –
and not by Ruby execution speed. It’s rare that Ruby’s execution speed has an
immediate, direct impact on your application’s overall performance. Of course, if you
are using a large framework such as Ruby on Rails then your own Ruby code is a very
small piece of a very large system. I imagine that Rails uses blocks and iterators many,
many times while processing a simple HTTP request, apart from the Ruby code you
write yourself.
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In the 1930s Alonzo Church introduced “λ-notation”
in his research on Lambda Calculus

Lambdas and Procs: treating functions as a first class
citizen

Next let’s look at a different, convoluted way of
printing the same string to the console:

def message_function
str = "The quick brown fox"
lambda do |animal|

puts "#{str} jumps over the lazy #{animal}."
end

end
function_value = message_function
function_value.call('dog')

Here you can see I’m using a lambda keyword to return a block, which I call later after
message_function returns. This is an example of “treating a function as a first class
citizen,” to paraphrase a commonly used computer science expression. Here I use the
block as just another type of data – I return it from message_function, I save it in
code_value and finally I call it explicitly using the call method. With the lambda
keyword – or with the equivalent proc keyword or Proc object – Ruby allows you to
convert a block into a data value like this.
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In a moment, I’ll take a look inside of Ruby to see what happens when I call lambda
and how Ruby converts code into data. But first: where does the word “lambda” come
from? Why in the world did Ruby choose to use a Greek letter as a language keyword?
Once again, Ruby has borrowed an idea from Lisp. Lambda is also a reserved keyword
in Lisp; it allows Lisp programmers to create an anonymous function like this:
(lambda (arg) (/ arg 2))

Like in my Ruby example, Lisp developers can treat anonymous functions like the one
above as data, passing them into other functions as arguments.
Taking a look even farther back in history, however, it turns out that the term “lambda”
was introduced well before John McCarthy invented Lisp in 1958. You may have
noticed that Sussman and Steele’s 1975 paper was titled Scheme: An Interpreter for
Extended Lambda Calculus. Here they are referring to an area of mathematical study
called “Lambda Calculus” invented by Alonzo Church in the 1930s. As part of his
research, Church formalized the mathematical study of functions, and introduced the
convention of using the Greek letter λ to refer to a function along with an ordered list of
arguments the function uses. Later in his 1960 paper introducing Lisp, Recursive
Functions of Symbolic Expressions and Their Computation by Machine, Part I , John
McCarthy references Church’s work directly while discussing functions and function
definitions.

Stack memory vs. heap memory
Now let’s return to my example:
def message_function

str = "The quick brown fox"
lambda do |animal|

puts "#{str} jumps over the lazy #{animal}."
end

end
function_value = message_function
function_value.call('dog')

What happens when I call lambda? How does Ruby convert the block into a data
value? What does it really mean to treat this function as a first class citizen?
Does the message_function function return an rb_block_t structure directly? Or
does it return an rb_lambda_t structure? If we could look inside this, what would we
see? How does it work?
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rb_lambda_t

??

Before trying to understand what Ruby does internally when you call lambda, let’s first
review how Ruby handles the string value str more carefully. First imagine that YARV
has a stack frame for the outer function scope but hasn't called message_function
yet:

YARV internal stack

rb_control_frame_t

Stack frame for top
level function

As usual you can see YARV’s internal stack on the left, and the rb_control_frame
structure on the right. Now suppose Ruby executes the message_function function
call:

YARV internal stack

locals: str
rb_control_frame_t

Stack frame for
message_function

Here again we have the str variable saved in the top level stack frame used by
message_function. Before going farther, let’s take a closer look at that str variable
and how Ruby stores the “quick brown fox” string in it. Recall from Chapter 3 that Ruby
stores each of your objects in a C structure called RObject, each of your arrays in an
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RArray structure, and similarly each of your strings in a structure called RString. For
example, Ruby saves the quick brown fox string like this:

RString

"The quick brown fox"str

We have the actual string structure on the right, and a reference or pointer to the string
on the left. When Ruby saves a string value on the YARV stack – or any object value for
that matter – it actually only places the reference to the string on the stack. The actual
string structure is saved in the “heap” instead:

RString

"The quick brown fox"

str

Stack

Heap

The heap is a large area of memory that Ruby or any other C program can allocate
memory from. Objects or other values that Ruby saves in the heap remain valid for as
long as there is a reference to them, the str pointer in this example. Here’s a more
accurate picture of what Ruby does when we create the str local variable inside of
message_function:
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YARV internal stack

locals: str
rb_control_frame_t

message_function
stack frame

RString

"The quick brown fox"

Heap

Stack

After there are no longer any pointers referencing a particular object or value in the
heap, Ruby later can free it during the next run of the garbage collection system. To
show this happening, let’s suppose for a moment that my example code didn’t call
lambda at all, that instead it immediately returned nil after saving the str variable:
def message_function

str = "The quick brown fox"
nil

end

After this call to message_function finishes, YARV will simply pop the str value and
any other temporary values saved there off the stack and return to the original stack
frame:
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YARV internal stack

rb_control_frame_t

outer code
stack frame

RString

"The quick brown fox"

Heap

Stack

??

Will later be freed by GC

You can see there no longer is any reference to the RString structure containing the
“quick brown fox” string and that Ruby will free it later.

Stepping through how Ruby creates a lambda
Now let’s return to my original example code that returns the lambda expression
instead of nil:
def message_function

str = "The quick brown fox"
lambda do |animal|

puts "#{str} jumps over the lazy #{animal}."
end

end
function_value = message_function
function_value.call('dog')

Notice that later when I actually call the lambda – the block – the puts statement inside
the block is somehow able to access the str string variable from inside
message_function. How can this be possible? We’ve just seen how the str
reference to the RString structure is popped off the stack when message_function
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returns! Obviously, Ruby must do something special when you call lambda; somehow
after calling lambda the value of str lives on so the block can later access it.

When you call lambda, internally Ruby copies the entire contents of the current YARV
stack frame into the heap – the same place the RString structure is located. For
example, here is the YARV stack again just after we call message_function:

YARV internal stack

locals: str
rb_control_frame_t

Stack frame for
message_function

To keep things simple, I don’t show the RString structure here, but remember the
RString structure will be saved in the heap.

Next, Ruby will call lambda; here’s what happens internally:
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YARV internal stack

rb_env_t

env

rb_proc_t

rb_block_t

iseq

DFP

envval

is_lambda

Stack

Heap
str

locals: str
rb_control_frame_t

message_function
stack frame

You can see Ruby has created a new copy of the stack frame for message_function
in the heap. I indicate that with the horizontal stack icon that appears below the dotted
line. Now there is a second reference to the str RString structure, which means
Ruby won’t free it when message_function returns.

Along with the copy of the stack frame, Ruby creates two other new objects in the
heap:

• An internal environment object, represented by the rb_env_t C structure at
the lower left. This object only exists internally inside of Ruby; you can’t access
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this environment directly from your Ruby code. It is essentially a wrapper for
the heap copy of the stack.

• A Ruby Proc object, represented by the rb_proc_t structure. As you may
know, this is the actual return value from the lambda keyword; this object is
what the message_function function returns.

Note the new Proc object structure, rb_proc_t, actually contains an rb_block_t
structure, including the iseq and DFP pointers. Just as with a normal block, these keep
track of the block’s code and the referencing environment for the block’s closure. Ruby
sets the DFP inside this block to point to the new heap copy of the stack frame. You
can think of a Proc as a Ruby object that wraps up a block; technically speaking, this is
exactly what it is.
Also, notice the Proc object – the rb_proc_t structure – contains an internal value
called is_lambda. This will be set to true for my example since I used the lambda
keyword to create the Proc. If I had created the Proc using the proc keyword instead,
or by just calling Proc.new, then is_lambda would be set to false. Ruby uses this
flag to produce the slight behavior differences between procs and lambdas; however,
it’s best to think of procs and lambdas as essentially the same thing.

Stepping through how Ruby calls a lambda
What happens when message_function returns? Since the lambda or proc object is
the return value of message_function, a reference or pointer to the lambda is saved
in the stack frame for the outer function in the function_value local variable. This
prevents Ruby from freeing the proc, the internal environment object and the str
variable; there are now pointers referring to all of these values in the heap:
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YARV internal stack

rb_control_frame_t

outer code
stack frame

Heap

Stack

function_value

rb_env_t

rb_proc_t

str

Finally, when Ruby executes the call method on the proc object returned by
message_function:
function_value = message_function
function_value.call('dog')

…it finally executes the block contained in the proc:

Ruby Under a Microscope

228



YARV internal stack

rb_control_frame_t

stack frame
for Proc.call

Heap

Stack

argument: 
animal
 
DFP

rb_env_t

env

rb_proc_t

rb_block_t

iseq

DFP

envval

is_lambda

str

When Ruby calls a normal block, it creates a new stack frame for the block to use, and
saves the animal value – the argument passed to the block – into this new stack
frame. And just as with calling a normal block, Ruby also copies the DFP pointer from
the rb_block_t structure into the new stack frame.

The only real difference here is that the DFP points to the copy of the stack frame Ruby
created in the heap earlier when it executed lambda. This DFP allows the code inside
the block, the call to puts, to access the str value.

The Proc object
Stepping back for a moment to review, we’ve just seen that inside of Ruby there really
is no structure called rb_lambda_t:
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rb_lambda_t

??

Instead, Ruby’s lambda keyword created a proc object, which internally is a wrapper
for a block – the block you pass to the lambda or proc keyword:

rb_proc_t

rb_block_t

iseq

DFP

envval

is_lambda

Heap copy of stack frame

locals: str

putself 
getdynamic str , 1
tostring 
putstring " jumps over the lazy "
getdynamic animal, 0
tostring 
putstring "."
concatstrings 4
send :puts, 1, nil, 8, <ic:0>
leave

Just like a normal block, this is a closure: it contains a function along with the
environment that function was referred to or created in. You can see that in this case
the environment is a persistent copy of the stack frame saved in the heap.
There’s an important difference between a normal block and a proc: procs are Ruby
objects. Internally, they contain the same information that other Ruby objects contain,
including the RBasic structure I discussed in Chapter 3. Above I mentioned that the
rb_proc_t structure represents the Ruby proc object; it turns out this isn’t exactly the
case. Internally, Ruby uses another data type called RTypedData to represent
instances of the proc object:
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RTypedData

RBasic

flags

klass

VALUE

rb_proc_t

rb_block_t

iseq

DFP

envval

is_lambda

data

RClass
[Proc class]

You can think of RTypedData as a trick that Ruby’s C code uses internally to create a
Ruby object wrapper around some C data structure. In this case, Ruby uses
RTypedData to create an instance of the Proc Ruby class that represents a single
copy of the rb_proc_t structure.

Here, just as we saw in Chapter 3, the RTypedData structure contains the same
RBasic information that all Ruby objects contain:

• flags: some internal technical information Ruby needs to keep track of
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• klass: a pointer to the Ruby class this object is an instance of, in this case the
Proc class.

Here’s a another look at how Ruby represents a proc object, this time shown on the
right next to a RString structure:

RString

String info...

RBasic

flags

klass

VALUE

RTypedData

RBasic

flags

klass

VALUE

data
rb_proc_t

Notice how Ruby handles the string value and the proc value in a very similar way. Just
like strings, for example, procs can be saved into variables or passed as arguments to a
function call. Ruby uses the VALUE pointer to the proc whenever you do this.

Ruby Under a Microscope

232



Experiment 5-2: Changing local variables after calling
lambda

My previous code example showed how calling lambda
makes a copy of the current stack frame in the heap.
def message_function

str = "The quick brown fox"
lambda do |animal|

puts "#{str} jumps over the lazy #{animal}."
end

end
function_value = message_function
function_value.call('dog')

Specifically, the str string value is valid here even after message_function returns.
But what happens if I modify this value in message_function after calling lambda?
def message_function

str = "The quick brown fox"
func = lambda do |animal|

puts "#{str} jumps over the lazy #{animal}."
end
str = "The sly brown fox"
func

end
function_value = message_function
function_value.call('dog')

Notice now I change the value of str after I create the lambda. Running this code I get:
$ ruby modify_after_lambda.rb
The sly brown fox jumps over the lazy dog.

How is this possible? In the previous section I discussed how Ruby makes a copy of
the current stack frame when I call lambda. In other words, Ruby copies the stack
frame after running this code:
str = "The quick brown fox"
func = lambda do | animal |
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puts "#{str} jumps over the lazy #{animal}."
end

YARV internal stack

Stack

Heap

str = "The quick brown fox"

str = "The quick brown fox"

message_function
stack frame

rb_control_frame_t

DFP

Then after this copy is made, I change str to the “sly fox” string:
str = "The sly brown fox"

Since Ruby copied the stack frame above when I called lambda, now I should be
modifying the original copy of str and not the new lambda copy:
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YARV internal stack

Stack

Heap

str = "The sly brown fox"

str = "The quick brown fox"

message_function
stack frame

rb_control_frame_t

DFP

This means that the new, lambda copy of the string should have remained unmodified.
Calling the lambda later I should have gotten the original “quick fox” string, not the
modified “sly fox” string.
What happened here? How does Ruby support this behavior? How does Ruby allow me
to modify the new, persistent copy of the stack after it’s been created by lambda?

An important detail that I left out of my diagrams in the previous section is that after
Ruby creates the new heap copy of the stack – the new rb_env_t structure or internal
“environment” object – Ruby also resets the DFP in the rb_control_frame_t
structure to point to the copy. Here’s another view of Ruby copying the local stack
frame into the heap:
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YARV internal stack

Stack

Heap

str = "The quick brown fox"

str = "The quick brown fox"

message_function
stack frame

rb_control_frame_t

DFP

The only difference here is that the DFP now points down to the heap. This means that
when my code accesses or changes any local variables after calling lambda, Ruby will
use the new DFP and access the value in the heap, not the original value on the stack.
In this code, for example:
str = “The sly brown fox”
Ruby actually modifies the new, heap copy that will later be used when I call the
lambda:
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YARV internal stack

Stack

Heap

str = "The quick brown fox"

str = "The sly brown fox"

message_function
stack frame

rb_control_frame_t

DFP

Another interesting behavior of the lambda keyword is that Ruby avoids making copies
of the stack frame more than once. For example, suppose that I call lambda twice in
the same scope:
i = 0
increment_function = lambda do

puts "Incrementing from #{i} to #{i+1}"
i += 1

end
decrement_function = lambda do

i -= 1
puts "Decrementing from #{i+1} to #{i}"

end

Here I expect both lambda functions to operate on the local variable i in the main
scope. Thinking about this for a moment, if Ruby made a separate copy of the stack
frame for each call to lambda, then each function would operate on a separate copy of
i – and would call my lambdas like this…
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increment_function.call
decrement_function.call
increment_function.call
increment_function.call
decrement_function.call

…would yield these results:
Incrementing from 0 to 1
Decrementing from 0 to -1
Incrementing from 1 to 2
Incrementing from 2 to 3
Decrementing from -1 to -2

But instead I actually get this:
Incrementing from 0 to 1
Decrementing from 1 to 0
Incrementing from 0 to 1
Incrementing from 1 to 2
Decrementing from 2 to 1

Most of the time this is what you expect: each of the blocks you pass to the lambdas
access the same variable in the parent scope. Ruby achieves this simply by checking
whether the DFP already points to the heap. If it does, as it would in this example the
second time I call lambda, then Ruby won't create a second copy again. It would
simply reuse the same rb_env_t structure in the second rb_proc_t structure. Both
lambdas would use the same heap copy of the stack.
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During the 1980s, computers designed specifically
for running Lisp were built and commercialized.

Metaprogramming and closures: eval, instance_eval and
binding

Metaprogramming literally means to write a
program that can, in turn, write another program.
In Ruby, the eval method is metaprogramming
in its purest form: you pass a string to Ruby and
it immediately compiles it and executes it.
Here’s an example:
str = "puts"
str += " 2"
str += " +"
str += " 2"
eval(str)

As you can see here, I dynamically construct a
string, “puts 2+2,” and then pass it to eval.
Ruby then evaluates the string – it tokenizes it,
parses it, and compiles it using the algorithms I
discussed in Chapter 1. Ruby uses exactly the
same Bison grammar rules and parse engine
that it did when it first processed your primary
Ruby script. Once this process is finished and

Ruby has another new set of YARV byte code instructions, it then executes your new
code.
However, one very important detail about the eval method, which isn’t obvious in the
example above, is that Ruby evaluates the new code string in the same context where
you called eval from. To see what I mean, consider this similar example:
a = 2
b = 3
str = "puts"
str += " a"
str += " +"
str += " b"
eval(str)
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Running this code I get the result you would expect: 5. But notice the difference
between this example and the previous one; in this second example I refer to the local
variables a and b from the surrounding scope and Ruby is able to access their values
without a problem. Internally, this works in the same way a block would; let’s take a
look:

YARV internal stack

rb_control_frame_tlocals:
a, b, str

Here, as usual, you can see Ruby has saved the values of a, b and str on the stack to
the left; on the right we have the rb_control_frame_t structure representing the
outer or main scope of my Ruby script. Next, when I call the eval method, here’s what
happens:

YARV internal stack
rb_control_frame_t

Stack frame for
eval code

rb_control_frame_t

Stack frame for
original function

Tokenize, Parse,
Compile

locals:
a, b, str

DFP
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Above the green icon indicates that calling eval invokes the parser and compiler on the
text I pass it. When the compiler finishes, Ruby creates a new stack frame for running
the new, compiled code; you can see this on the top. But notice that Ruby sets the DFP
in this new stack frame to point to the lower stack frame where the variables a and b
are. This allows the code passed to eval to access these values.

This should look familiar; aside from parsing and compiling the code dynamically, this
functions in precisely the same way as if I had instead passed a block to some function:
a = 2
b = 3
10.times do

puts a+b
end

In other words, the eval method creates a closure: the combination of a function and
the environment where that function was referenced. In this case, the function is the
newly compiled code, and the environment is the place where I called eval from.

Calling eval with binding
As an option, the eval method can take a second parameter: the binding. Passing a
binding value to Ruby indicates that you don’t want to use the current context as the
closure’s environment, but instead some other environment. Here’s an example:
def get_binding

a = 2
b = 3
binding

end
eval("puts a+b", get_binding)

Here I have written a function called get_binding which contains two local variables a
and b – but note the function also returns a binding. At the bottom, I once again want
Ruby to dynamically compile and execute the code string and print out the expected
result of 5. The difference is that, by passing the binding returned by get_binding to
eval, I want Ruby to evaluate “puts a+b” inside the context of the get_binding
function.
A binding is a closure without a function; that is, it’s just the environment. Just as it
does when you call the lambda keyword, Ruby makes a persistent copy of this
environment in the heap because you might call eval long after the current frame has
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been popped off the stack. In my example, even though get_binding has already
returned, when Ruby executes the code parsed and compiled by eval it still is able to
access the values of a and b.

Below is what happens internally when I call binding:

YARV internal stack

rb_env_t

env

rb_binding_t

line_no

env

Stack

Heap
a, b

a, b
rb_control_frame_t

get_binding
stack frame

filename

This looks very similar to what Ruby does when you call lambda – the only difference is
that Ruby creates an rb_binding_t C structure instead of an rb_proc_t structure.
The binding structure is simply a wrapper around the internal environment structure, i.e.
around the heap copy of the stack frame. The binding structure also contains the file
name and line number of the location where you called binding from.

Just like the Proc object, Ruby uses the RTypedData structure to wrap a Ruby object
around the rb_binding_t C structure:
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RTypedData

RBasic

flags

klass

VALUE

data

RClass
[Binding class]

rb_binding_t

line_no

env

filename

With the Binding object, Ruby allows you to create a closure, and then obtain and
treat the closure’s environment as a data value. The closure created by the binding,
however, doesn’t contain any code – it’s a closure without a function. You can also
think of the Binding object as an indirect way of accessing, saving and passing
around Ruby’s internal rb_env_t structure.

Stepping through a call to instance_eval
Finally, let’s look at a variation on the eval method: instance_eval. Here’s yet
another way of printing out the same “quick brown fox” string to the console:
class Quote
def initialize

@str = "The quick brown fox"
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end
end
str2 = "jumps over the lazy dog."
obj = Quote.new
obj.instance_eval do

puts "#{@str} #{str2}"
end

This example is even more complicated, so let me take a moment to explain how it
works:

• First, I create a Ruby class call Quote, which saves the first half of my string in
an instance variable, @str, when I initialize any new Quote instance.

• At the bottom I actually create an instance of the Quote class, and then call the
instance_eval method, passing a block to it. instance_eval is similar to
eval, except that it evaluates the given string in the context of the receiver, or
the object I call instance_eval on. Also, as in this example, I can pass a
block to instance_eval instead of a string if I don’t want to dynamically
parse and compile code.

• The block I pass to instance_eval here prints out the string, accessing the
first half of the string from the quote object’s instance variable, and the second
half from the surrounding scope or environment.

How can this possibly work? It appears the block passed to instance_eval has two
environments: the quote instance and also the surrounding code scope. In other words,
the @str variable comes from one place, and the str2 variable from another.

This example points out another important part of closure environments in Ruby: the
current value of self. Recall from Chapter 2 that the rb_control_frame_t structure
for each stack frame or level in your Ruby call stack contains a self pointer, along with
the PC, SP, DFP and LFP pointers and other values. The self pointer records indicates
the current value of self at that point in your Ruby project; it indicates which object is
the owner of the method Ruby is currently executing at that time. Here’s another, more
accurate view of the rb_control_frame_t structure:
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rb_control_frame_t

self

DFP, LFP, SP

YARV internal stack

PC, etc.

RObject

ivptr

klass

You can see self points to the RObject structure corresponding to the Ruby object to
which the method Ruby is currently executing belongs. self might instead point at an
RString, RArray or other type of built in Ruby object structure instead.

I mentioned above the self pointer is also part of closure environments; let’s take a
look at what Ruby does internally when you call instance_eval. First, suppose I have
already declared the Quote class, and Ruby has just executed these two lines of code:
str2 = "jumps over the lazy dog."
obj = Quote.new

Here is the YARV stack with two local variables str2 and obj saved on it:
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YARV internal stack

locals:
str2, obj

rb_control_frame_t

self

DFP

[ main ]

The self pointer here is initially set to main, the value of self Ruby uses in your top
level scope. This is actually the “top self” object, an instance of the Object class Ruby
creates when it starts up, just for this purpose.
Next Ruby executes the instance_eval method. Given I pass a block to
instance_eval instead of a string, there’s no need to startup the parser and compiler
again. Ruby, however, does need to initialize a new rb_block_t structure to represent
the new block:
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YARV internal stack

locals: str

rb_block_t

iseq

DFP

self

rb_control_frame_t

self

DFP

[ main ]

This works exactly the same way as if I had called a normal block without
instance_eval. In fact, Ruby always saves the self pointer in rb_block_t when
you pass a block into a function call.
Calling the block using instance_eval on obj tells Ruby you want to reset the self
pointer from the value it would normally have – whatever self was in the code calling
the block – to the receiver of instance_eval or obj in this example:
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rb_control_frame_t

self

DFP

rb_block_t

DFP

self

iseq

YARV internal stack

locals:
str2, obj

DFP

instance_eval
resets self

RObject

ivptr

klass

[ main ]

new value
of self

Another important part of Ruby closures
Stepping back for a moment, we’ve discovered another important member of the
rb_block_t structure:
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putstring "The quick brown fox… "
setdynamic str, 0
putself 
getdynamic str, 0
send :puts, 1
leave

YARV internal stack

locals: str

RObject

ivptr

klass

rb_block_t

DFP

self

iseq

We know now, therefore, that closures in Ruby consist of:
• A function, referenced by the iseq pointer,

• A stack environment, referenced by the dynamic frame pointer, and
• A object environment, referenced by the self pointer.
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Experiment 5-3: Using a closure to define a method
Another common metaprogramming pattern in Ruby is to
dynamically define methods in a class using the
define_method method. For example, here’s a simple
Ruby class that will print out a string when you call
display_message:

class Quote
def initialize

@str = "The quick brown fox jumps over the lazy dog"
end
def display_message

puts @str
end

end
Quote.new.display_message
=> The quick brown fox jumps over the lazy dog

But using metaprogramming I could have defined display_message in a more
verbose but dynamic way like this:
class Quote
def initialize

@str = "The quick brown fox jumps over the lazy dog"
end
define_method :display_message do

puts @str
end

end

You can see here I call define_method instead of the normal def keyword. Notice
that the name of the new method is passed as an argument: :display_message. This
allows you dynamically construct the method name from some data values or to iterate
over an array of method names, calling define_method for each one.
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However, notice there is another subtle difference between def and define_method.
For define_method I provide the body of the method as a block… that is, I have to
use a do keyword. This may seem like a minor syntax difference, but remember that
blocks are actually closures. Adding that simple do keyword has introduced a closure,
meaning that the code inside the new method has access to the environment outside.
This is not the case with the simple def keyword.

In this example above there aren’t any interesting values in the location where I call
define_method. But suppose there was another location in my application that did
have interesting values that I wanted my new method to be able to access and use – by
using a closure Ruby will internally make a copy of that environment on the heap my
new method will be able to use.
Let’s repeat the same example, but this time only store the first half of the string in the
instance variable:
class Quote
def initialize

@str = "The quick brown fox"
end

end

Now I can define a method using a closure like this:
def create_method_using_a_closure

str2 = "jumps over the lazy dog."
Quote.send(:define_method, :display_message) do

puts "#{@str} #{str2}"
end

end

Note that since define_method is a private method in the Module class, I needed to
use the confusing send syntax here. Earlier I was able to call define_method directly
since I used it inside a class/module definition, but that isn’t possible from other places
in my application. By using send the create_method_using_a_closure method is
able to call a private method it wouldn’t normally have access to.
More importantly, you can see the str2 variable, the second half of my example string,
is preserved in the heap for my new method to use – even after
create_method_using_a_closure returns:
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create_method_using_a_closure
Quote.new.display_message
=> The quick brown fox jumps over the lazy dog.

Internally, Ruby treats this as a call to lambda – that is, this code functions exactly the
same way as if I had written:
class Quote
def initialize

@str = "The quick brown fox"
end

end
def create_method_using_a_closure

str2 = "jumps over the lazy dog."
lambda do

puts "#{@str} #{str2}"
end

end
Quote.send(:define_method, :display_message, create_method_using_a_closure)
Quote.new.display_message

Here I’ve separated the code that creates the closure and defines the method. If you
pass 3 arguments to define_method Ruby expects the third to be a Proc object.
While this is even more verbose, it’s a bit less confusing since calling the lambda
makes it clear Ruby will create a closure.
Finally, when I call the new method Ruby will reset the self pointer from the closure to
receiver object, similar to how instance_eval works. That is, whatever object context
the call to create_method_using_a_closure occurred in – maybe
create_method_using_a_closure is a method defined in some other class, for
example – Ruby uses Quote.new as the self pointer while executing
display_message. This allows the new method to access @str as you would expect.
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Closures in JRuby
Back in Chapter 2 I showed how JRuby executes a simple “puts 2+2” script. Now
let’s take a look at how JRuby executes some Ruby code that is just a bit more
complex, for example: 
10.times do

str = "The quick brown fox jumps over the lazy dog."
puts str

end

Here’s a conceptual diagram showing how JRuby will execute this script:

10.times do
 str = "The quick brown..."
 puts str
end

Ruby(block.rb)

Java Byte Code

Your Code JRuby Code

class block extends
AbstractScript

<init>

__file__

block_0$RUBY
$__file__

class RubyFixnum 
extends RubyInteger

times

class RubyIO extends 
RubyObject

puts

Let’s walk through what’s going on in this diagram:
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• On the top left is my Ruby script, this time called block.rb. JRuby will
compile this into a Java class called block, named after the Ruby source file
block.rb.

• When it’s time to start executing my script the JVM will call the filefile method,
which corresponds to the top level code in my script. This works the same way
my “puts 2+2” JRuby example did back in Chapter 2. However, notice now
there is another Java method in the generated block class called
block_0$RUBY$__file__”. This oddly named method contains the
compiled JVM byte code for the contents of my Ruby block.

• Next while executing the call to 10.times, JRuby will call the
RubyFixnum.times method, passing in the block as a parameter.

• Now RubyFixnum.times will iterate 10 times, calling the
block_0$RUBY$__file__ method each time through the loop.

• Finally, the block’s code will in turn call the JRuby RubyIO Java class to print
out the string.

The important detail to learn here is that JRuby's byte code compiler generates a
separate Java method for each block or other scope in my Ruby script. Also note how
JRuby passes control back and forth between the compiled version of my Ruby script
and the Java classes that implement the Ruby’s built in classes such as Fixnum.

Now let’s take a second example that uses a closure:
str = "The quick brown fox"
10.times do

str2 = "jumps over the lazy dog."
puts "#{str} #{str2}"

end

Here the block’s code refers to the str variable in the parent scope. JRuby compiles
this script in same way as the previous example, generating a Java class that contains
three methods. But how does JRuby allow the block to access the str from the parent
scope? Does it use a DFP pointer and dynamic variable access like MRI does?

The answer is no. One of the important differences between JRuby and MRI is that
JRuby does not use the JVM stack to keep track of different scopes or closure
environments in your Ruby program, in the same way that MRI Ruby uses the YARV
stack. There is no equivalent to the Dynamic Frame Pointer in JRuby. Instead, JRuby
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implements the same behavior using a series of Java classes, most importantly one
called DynamicScope. When you reference variables from a different scope, i.e. when
you use closures, JRuby saves the referenced variables inside a DynamicScope object.
(Actually, there are a series of different Java classes that share DynamicScope as a
common superclass that hold your closure variables.) In this example, JRuby saves my
str variable inside a DynamicScope like this:

DynamicScope

str

Later when JRuby executes the block, it creates a second DynamicScope object that
refers to the parent scope like this:

parent

DynamicScope

str

DynamicScope

__file__

block_0$RUBY$__file__

RubyFixnum.times

Each DynamicScope object contains a parent pointer that indicates which other
dynamic scope is the enclosing or parent scope for this closure. This is JRuby’s
implementation of dynamic variable access. By iterating over these parent pointers,
the JRuby Java code can get or set a variable that is present in a parent scope, or in the
referencing environment of the closure.
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Closures in Rubinius
Now let’s take a look at how Rubinius handles blocks and closures. What happens
inside of Rubinius when I call a block? Let’s use the same two examples we just did
with JRuby - first a simple call to a block:
10.times do

str = "The quick brown fox jumps over the lazy dog."
puts str

end

Here’s how Rubinius handles this:

10.times do

str = "The quick…"
puts str

Your Code Rubinius Code

class Integer < Numeric

def times
 ...etc…
end

Since in Rubinius the Integer.times method is implemented in Ruby, the call to
10.times is a simple Ruby call. The Integer.times method, in turn, yields to my
block code directly. All of this is implemented with Ruby!
Internally, Ruby compiles the 10.times do” call into these byte code instructions:
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10.times do push_int 
create_block 
send_stack_with_block
pop 
push_true 
ret

10
#<Rubinius::CompiledCode __block__ ...>
:times, 0

Here the text Rubinius::CompiledCode refers to the block I’m passing to the
10.times method call. Behind the scenes the Rubinius VM creates a C++ object to
represent the block using the create_block instruction, and then passes that object
along to the method call with the send_stack_with_block instruction.

Now let’s take another example and see how Rubinius handles closures:
str = "The quick brown fox"
10.times do

str2 = "jumps over the lazy dog."
puts "#{str} #{str2}"

end

Again, this time my block code refers to a variable defined in the parent scope. How
does Rubinius implement this? To find out, let’s look at how Rubinius compiles the
code inside the block into VM instructions:

str2 = "jumps over…"
puts "#{str} #{str2}"

push_literal 
string_dup 
set_local 
pop 
push_self 
push_local_depth
allow_private 
meta_to_s 
push_literal 
push_local 
allow_private 
meta_to_s 
string_build 
allow_private 
send_stack 
ret

"jumps over…"

0

1, 0

:to_s
" "
0

:to_s
3

:puts, 1
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I’ve shown the key VM instruction here in bold: Rubinius uses the push_local_depth
instruction to walk up the stack and get the value of str from the parent scope.
Internally Rubinius implements this instruction using a C++ object called
VariableScope:

VariableScope

str

Just like the Java DynamicScope object did in JRuby, this C++ object saves an array
of values - in other words the closure environment. Rubinius doesn’t use tricks with the
VM stack to save pointers the same way that YARV does. There is no dynamic frame
pointer; instead, Rubinius represents closure environments, blocks, lambdas, procs and
bindings with a set of different C++ classes. I don’t have the space here to explain how
all of that works in detail, but let’s take a quick look at how Rubinius uses the
VariableScope object to obtain the str value from the parent scope:

parent

VariableScope

str

VariableScope

top level code

block code

Integer.times

This should look familiar - in fact, Rubinius functions in exactly the same way that
JRuby does when accessing a parent scope. At a high level, the only difference is that
VariableScope is written in C++ while JRuby’s DynamicScope object is written in
Java. Of course, at a more detailed level the two implementations are very different.
Like JRuby, Rubinius stores the outer str variable in an instance of the
VariableScope class and later creates a second VariableScope object when
executing the code inside the block. The two VariableScope objects are connected
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with a parent pointer. When the Rubinius VM executes the push_local_depth
instruction from inside the block, it follows the parent pointer up to obtain the value of
str from the outer scope.

The most important and impressive feature of Rubinius is that it does
implement many of the methods in Ruby’s core classes, such as
Integer.times, in pure Ruby code. This means you can take a look right
inside of Rubinius yourself to learn how something works. For example, here’s
Rubinius’s implementation of the Integer.times method, taken from the
kernel/common/integer.rb source code file:
def times
return to_enum(:times) unless block_given?
i = 0
while i < self
yield i
i += 1

end
self

end

On the first line, Rubinius calls to_enum to return an enumerator object if a
block is not given. But in the most common case when you do provide a block
you want to iterate over, as in my 10.times example, Rubinius uses a simple
Ruby while-loop that calls yield each time through the loop. This is exactly
how you or I would probably implement the Integer.times method if Ruby
didn’t provide it for us.
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Conclusion
This is the end of my journey through Ruby internals. I hope I’ve given you some sense
of how Ruby works, of what happens when you type “ruby my_awesome_script.rb” and
press ENTER. The next time you include a module in a class, call a block or use the
break keyword to jump back up the call stack, I hope some of the diagrams you’ve
seen here come to mind.

More to come?
As I said in the preface, there are many, many areas of Ruby’s internal implementation I
didn’t have time to cover in this book. For starters, except for hash tables I didn’t
describe how Ruby’s core classes such as arrays, strings, files or integers work. I also
didn’t explore garbage collection, the regular expression engine, threads, or the
extension API, just to name a few topics.
This year in Ruby Under a Microscope I’ve tried to cover the core of the language
implementation. I’ve also covered the topics I was most interested in. Someday I may
try to write a second book, Ruby Under a Microscope - Part 2, that would cover
portions of Ruby’s implementation I didn’t have time for here.

Feedback please
I hope you found this useful, that you’ve gained a deeper understanding of Ruby and
become a more knowledgable Ruby developer. Please let me know what you think - I
plan to post an updated version of the text with technical corrections and updates. I’d
also love to hear what you think should be covered in Ruby Under a Microscope - Part 2
if I ever write it.
Please send feedback to:

• http://patshaughnessy.net/ruby-under-a-microscope#disqus_thread
• Twitter: @pat_shaughnessy
• Email: pat@patshaughnessy.net
• https://github.com/patshaughnessy/ruby-under-a-microscope/issues
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