

Ubuntu_03.book Page ii Monday, March 5, 2007 5:54 PM

No Starch Press, Copyright © 2005 by Karl Kopper

THE LINUX ENTERPRISE CLUSTER
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

THE LINUX
ENTERPRISE

CLUSTER
Bu i l d a H i g h l y A v a i l a b l e C lu s t e r

wi t h C o m mo d i t y H a r d w a r e
a n d F r e e S o f t wa r e

by Karl Kopper

San Francisco

®

No Starch Press, Copyright © 2005 by Karl Kopper

THE LINUX ENTERPRISE CLUSTER. Copyright © 2005 by Karl Kopper.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

 Printed on recycled paper in the United States of America

1 2 3 4 5 6 7 8 9 10 – 07 06 05 04

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock
Managing Editor: Karol Jurado
Production Manager: Susan Berge
Cover and Interior Design: Octopod Studios
Developmental Editor: William Pollock
Technical Reviewers: Brian Elliott Finley, Peter Holzleitner, Simon “Horms” Horman, Chuck Lever, Joseph Mack,

Matt Massie, Martin Pool, Alan Robertson, John Mark Walker, and Brian Ward
Copyeditors: Andy Carroll and Bonnie Granat
Illustrator for part openers: Nate Grundmann
Compositor: Riley Hoffman
Proofreader: Stephanie Provines
Indexer: Ted Laux

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloging-in-Publication Data

Kopper, Karl.
The Linux Enterprise Cluster : build a highly available cluster with commodity hardware and free

software / Karl Kopper.
p. cm.

Includes index.
ISBN 1-59327-036-4

1. Linux. 2. Parallel processing (Electronic computers) 3. Electronic data processing--Distributed
processing. 4. Cluster analysis. I. Title.

QA76.58K67 2005
005.26'8--dc22

2003023352
No Starch Press, Copyright © 2005 by Karl Kopper

This book is dedicated to all of the free software developers
who wrote the software that made it possible for me to build a
free, highly available cluster so I no longer had to work nights

and weekends to keep the business system up and running.
No Starch Press, Copyright © 2005 by Karl Kopper

T E C H N I C A L R E V I E W E R S

Alan Robertson (Heartbeat)

Simon “Horms” Horman (Heartbeat + LVS)

Joseph Mack (LVS)

Matt Massie (Ganglia)

Charles Lever (NFS)

Martin Pool (SSH + rsync)

Brian Elliot Finley (SystemImager)

Peter Holzleitner (Mon + SNMP)

John Mark Walker (RPM, FTP, Booting, Linux Administration)

Brian Ward (Linux Kernel)
No Starch Press, Copyright © 2005 by Karl Kopper

B R I E F C O N T E N T S

Introduction
1

Primer
9

 Part I: Cluster Resources

Chapter 1
Starting Services

15

Chapter 2
Handling Packets

33

Chapter 3
Compiling the Kernel

53

Part II: High Availability

Chapter 4
Synchronizing Servers with

rysnc and SSH
69

Chapter 5
Cloning Systems with

SystemImager
95

Chapter 6
Heartbeat Introduction

and Theory
111

Chapter 7
A Sample Heartbeat

Configuration
131
No Starch Press, Copyright © 2005 by Karl Kopper

Chapter 8
Heartbeat Resources

and Maintenance
147

Chapter 9
Stonith and ipfail

163

Part III: Cluster Theory
and Practice

Chapter 10
How to Build a Linux

Enterprise Cluster
185

Chapter 11
The Linux Virtual Server:
Introduction and Theory

193

Chapter 12
The LVS-NAT Cluster

209

Chapter 13
The LVS-DR Cluster

231

Chapter 14
The Load Balancer

239

Chapter 15
The High-Availability Cluster

255

Chapter 16
The Network File System

279

Part IV: Maintenance
and Monitoring

Chapter 17
The Simple Network

Management Protocol and Mon
301

Chapter 18
Ganglia

327

Chapter 19
Case Studies in Cluster

Administration
341

Chapter 20
The Linux Cluster Environment

359
viii Bri ef Con ten t s

No Starch Press, Copyright © 2005 by Karl Kopper

Appendix A
Downloading Software

from the Internet
(from a Text Terminal)

369

Appendix B
Troubleshooting with the

tcpdump Utility
375

Appendix C
Adding Network Interface

Cards to Your System
379

Appendix D
Strategies for Dependency

Failures
387

Appendix E
Other Potential Cluster

Filesystems and Lock
Arbitration Methods

395

Appendix F
LVS Clusters and the Apache

Configuration File
397

Index
407
Brie f Con ten t s ix
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

C O N T E N T S I N D E T A I L

INTRODUCTION 1

Properties of a Linux Enterprise Cluster .. 2
Architecture of the Linux Enterprise Cluster ... 4

The Load Balancer ... 4
The Shared Storage Device .. 5
The Print Server ... 5

The Cluster Node Manager ... 5
No Single Point of Failure ... 6
In Conclusion ... 7

PRIMER 9

High Availability Terminology .. 10
Linux Enterprise Cluster Terminology ... 10

PART I: CLUSTER RESOURCES

1
STARTING SERVICES 15

How Do Cluster Services Get Started? .. 15
Starting Services with init .. 16

The /etc/inittab File .. 16
Respawning Services with init ... 18
Managing the init Script Symbolic Links with chkconfig 18
Managing the init Script Symbolic Links with ntsysv 20
Removing Services You Do Not Need .. 21

Using the Red Hat init Scripts on Cluster Nodes ... 21
In Conclusion ... 31

2
HANDLING PACKETS 33

Netfilter .. 34
A Brief History of Netfilter ... 35
Setting the Default Chain Policy ... 38
Using iptables and ipchains ... 39

Clear Existing Rules ... 39
Set the Default INPUT Chain Policy .. 39
FTP .. 40
Passive FTP ... 41
DNS .. 41
No Starch Press, Copyright © 2005 by Karl Kopper

Telnet .. 42
SSH ... 42
Email ... 42
HTTP .. 43
ICMP ... 43
Review and Save Your Rules ... 43

Routing Packets with the Linux Kernel .. 44
Matching Packets for a Particular Destination Network 45
Matching Packets for a Particular Destination Host .. 45
Matching Packets for Any Destination or Host ... 46
To View Your Routing Rules .. 47
Making Your Routing Rules Permanent ... 47
iptables and Routing Resource Script ... 47
The ip Command .. 50

In Conclusion ... 51

3
COMPILING THE KERNEL 53

What You Will Need ... 54
Step 1: Get the Source Code ... 54

Using the Stock Kernel ... 54
Using the Kernel Supplied with Your Distribution ... 55
Decide Which Kernel Version to Use ... 55

Step 2: Set the Options You Want ... 56
Installing a New Kernel .. 56
Upgrading or Patching the Kernel ... 56
Upgrading a Kernel from a Distribution Vendor .. 57
Set Your Kernel Options ... 57

Step 3: Compile the Code ... 59
Step 4: Install the Object Code and Configuration File .. 60

Install the System.map .. 61
Save the Kernel Configuration File ... 62

Step 5: Configure Your Boot Loader ... 62
In Conclusion ... 65

PART II: HIGH AVAILABILITY

4
SYNCHRONIZING SERVERS WITH RYSNC AND SSH 69

rsync .. 70
Open SSH 2 and rsync ... 71

SSH: A Secure Data Transport .. 71
SSH Encryption Keys ... 72
Establishing the Two-Way Trust Relationship: Part 1 73
Establishing the Two-Way Trust Relationship: Part 2 76

Two-Node SSH Client-Server Recipe ... 77
xii Content s i n De ta i l

No Starch Press, Copyright © 2005 by Karl Kopper

Create a User Account That Will Own the Data Files 78
Configure the Open SSH2 Host Key on the SSH Server 79
Create a User Encryption Key for This New Account on the SSH Client 79
Copy the Public Half of the User Encryption Key

from the SSH Client to the SSH Server .. 81
Test the Connection from the SSH Client to the SSH Server 82
Using the Secure Data Transport ... 86
Improved Security ... 86
rsync over SSH ... 87
Copying a Single File with rsync ... 89
rsync over Slow WAN Connections ... 89
Scheduled rsync Snapshots ... 90
ipchains/iptables Firewall Rules for rsync and SSH 92

In Conclusion ... 93

5
CLONING SYSTEMS WITH SYSTEMIMAGER 95

SystemImager ... 95
Cloning the Golden Client with SystemImager ... 96

SystemImager Recipe .. 96
Install the SystemImager Server Software on the SystemImager Server 97
Using the Installer Program from SystemImager ... 98
Install the SystemImager Client Software on the Golden Client 98
Create a System Image of the Golden Client on the SystemImager Server 99
Make the Primary Data Server into a DHCP Server 101
Create a Boot Floppy for the Golden Client .. 103
Start rsync as a Daemon on the Primary Data Server 106
Install the Golden Client System Image on the New Clone 106
Post-installation Notes .. 107

Performing Maintenance: Updating Clients .. 108
SystemInstaller .. 108
System Configurator .. 109

In Conclusion ... 109

6
HEARTBEAT INTRODUCTION AND THEORY 111

The Physical Paths of the Heartbeats ... 112
Serial Cable Connection .. 113
Ethernet Cable Connection ... 113
Partitioned Clusters and STONITH ... 113

Heartbeat Control Messages ... 114
Heartbeats ... 114
Cluster Transition Messages .. 114
Retransmission Requests ... 115
Ethernet Heartbeat Control Messages .. 115
Security and Heartbeat Control Messages .. 115

How Client Computers Access Resources .. 115
Failover Using IP Address Takeover (IPAT) .. 116
Conten t s in Detai l xiii
No Starch Press, Copyright © 2005 by Karl Kopper

Secondary IP Addresses and IP Aliases ... 116
Ethernet NIC Device Names ... 119
Secondary IP Address Names ... 119
IP Aliases ... 120
Offering Services .. 121
Gratuitous ARP (GARP) Broadcasts .. 122

Resource Scripts ... 125
Status of the Resource .. 125
Resource Ownership .. 126
Using init Scripts as Heartbeat Resource Scripts .. 128

Heartbeat Configuration Files .. 130
In Conclusion ... 130

7
A SAMPLE HEARTBEAT CONFIGURATION 131

Recipe .. 132
Preparations .. 132
Step 1: Install Heartbeat .. 132
Step 2: Configure /etc/ha.d/ha.cf ... 134
Step 3: Configure /etc/ha.d/haresources ... 136

Configure the haresources File .. 137
Step 4: Configure /etc/ha.d/authkeys ... 139
Step 5: Install Heartbeat on the Backup Server ... 139
Step 6: Set the System Time ... 140
Step 7: Launch Heartbeat .. 140

Launch Heartbeat on the Primary Server ... 140
Launch Heartbeat on the Backup Server ... 142
Examining the Log Files on the Primary Server .. 143

Stopping and Starting Heartbeat .. 144
Monitoring Resources ... 145
In Conclusion ... 145

8
HEARTBEAT RESOURCES AND MAINTENANCE 147

The Haresources File Syntax .. 147
Haresources File Syntax: Primary-Server Name ... 148
Haresources File Syntax: IP Alias ... 148
Heartbeat’s Automated Network Interface Card Selection Process 149
Specifying a Network Interface Card ... 151
Customizing IP Address Takeover with the iptakeover Script 151
The Haresources File Syntax: Resources ... 152

Load Sharing with Heartbeat ... 154
Load Sharing with Heartbeat: Round-Robin DNS ... 155
Problems with Round Robin DNS Load Balancing .. 156
Wide-Area Load Balancing .. 157

Operator Alerts: Audible Alarm ... 157
Operator Alerts: Email Alerts ... 158
Heartbeat Maintenance .. 158
xiv Content s i n De ta i l

No Starch Press, Copyright © 2005 by Karl Kopper

Changing Heartbeat Configuration Files .. 158
Server Maintenance and the Heartbeat auto_failback Option 159
Forcing the Primary Server into Standby Mode ... 160
Tuning Heartbeat’s Deadtime Value ... 161
Informational Messages in Heartbeat’s Log ... 161
Failover and Respawn (Automatically Restarting Failed Resources) 161
License Manager Failover .. 162

In Conclusion ... 162

9
STONITH AND IPFAIL 163

Stonith .. 164
An Unconventional Approach: Using a Single Stonith Device 165

Sample Heartbeat with Stonith Configuration .. 166
Stonith Sequence of Events ... 167
Stonith Devices ... 168
Viewing the Current List of Supported Stonith Devices 169
The Stonith Meatware “Device” .. 169
Using the Stonith Meatware Device with Heartbeat 170
Using a “Real” Stonith Device ... 173
Avoiding Multiple Stonith Events .. 174

Network Failures .. 175
ipfail .. 175

Watchdog and Softdog .. 176
Enable Watchdog in the Kernel .. 177
Kernel Panic—Hang or Reboot? .. 178
Configure Heartbeat to Support Watchdog .. 178

Testing Your Heartbeat Configuration ... 179
In Conclusion ... 181

PART III: CLUSTER THEORY AND PRACTICE

10
HOW TO BUILD A LINUX ENTERPRISE CLUSTER 185

Steps for Building a Linux Enterprise Cluster ... 186
NAS Server .. 186
Kernel Netfilter and Kernel Packet Routing .. 187
Cloning a Linux Machine ... 187
Cluster Naming Scheme ... 187
Applying System Configuration Changes to All Nodes 187
Building an LVS-NAT Cluster ... 187
Building an LVS-DR Cluster ... 188
Installing Software to Remove Failed Cluster Nodes 188
Installing Software to Monitor the Cluster Nodes ... 189
Monitoring the Performance of Cluster Nodes ... 189
Updating Software on Cluster Nodes and Servers 189
Conten ts i n Detai l xv
No Starch Press, Copyright © 2005 by Karl Kopper

Centralizing User Account Administration ... 189
Installing a Printing System ... 190
Installing a Highly Available Batch Job-Scheduling System 190
Purchasing the Cluster Nodes ... 190

In Conclusion ... 192

11
THE LINUX VIRTUAL SERVER:
INTRODUCTION AND THEORY 193

LVS IP Address Name Conventions ... 194
The Virtual IP (VIP) ... 194
The Real IP (RIP) .. 195
The Director’s IP (DIP) ... 195
The Client Computer’s IP (CIP) ... 195
IP Addresses in an LVS Cluster .. 195

Types of LVS Clusters .. 196
Network Address Translation (LVS-NAT) ... 196
Direct Routing (LVS-DR) .. 198
IP Tunneling (LVS-TUN) ... 200

LVS Scheduling Methods ... 202
Fixed (or Non-dynamic) Scheduling Methods .. 202
Dynamic Scheduling Methods ... 203

In Conclusion ... 208

12
THE LVS-NAT CLUSTER 209

How Client Computers Access LVS-NAT Cluster Resources ... 209
Virtual IP Addresses on LVS-NAT Real Servers ... 214

Building an LVS-NAT Web Cluster .. 216
Recipe for LVS-NAT ... 217
Step 1: Install the Operating System .. 217
Step 2: Configure and Start Apache on the Real Server 218
Step 3: Set the Default Route on the Real Server .. 219
Step 4: Install the LVS Software on the Director ... 220
Step 5: Configure LVS on the Director .. 221
Step 6: Test the Cluster Configuration .. 224

LocalNode: Using the Director as a Real Server ... 227
In Conclusion ... 229

13
THE LVS-DR CLUSTER 231

How Client Computers Access LVS-DR Cluster Services .. 232
ARP Broadcasts and the LVS-DR Cluster ... 236
Client Computers and ARP Broadcasts .. 236
In Conclusion ... 238
xvi Content s i n De ta i l

No Starch Press, Copyright © 2005 by Karl Kopper

14
THE LOAD BALANCER 239

LVS and Netfilter .. 239
The Director’s Connection Tracking Table .. 242

Hash Table Structure .. 242
Controlling the Hash Buckets .. 242
Viewing the Connection Tracking Table ... 243

Timeout Values for Connection Tracking Records .. 243
Return Packets and the Netfilter Hooks .. 244
LVS Without Persistence .. 246
LVS Persistence .. 247

Persistent Connection Template ... 247
Types of Persistent Connections ... 248
Persistent Client Connection (PCC) ... 249
Persistent Port Connection (PPC) .. 249
Port Affinity .. 250
Netfilter Marked Packets .. 250

In Conclusion ... 253

15
THE HIGH-AVAILABILITY CLUSTER 255

Redundant LVS Directors ... 255
High-Availability Cluster Design Goals .. 256
The High-Availability LVS-DR Cluster ... 257
Introduction to ldirectord ... 258

How ldirectord Monitors Cluster Nodes (LVS Real Servers) 258
LVS, Heartbeat, and ldirectord Recipe .. 261

Hide the Loopback Interface .. 261
Install the Heartbeat on a Primary and a Backup Director 263
Install ldirectord and Its Required Software Components 263
Install ldirectord .. 266
Test Your ldirectord Installation .. 266
Create the ldirectord Configuration File .. 267
Create the Health Check Web Page .. 272
Start ldirectord Manually and Test Your Configuration 273
Add ldirectord to the Heartbeat Configuration .. 274
Stateful Failover of the IPVS Table ... 275
Modifications to Allow Failover to a Real Server Inside the Cluster 277

In Conclusion ... 278

16
THE NETWORK FILE SYSTEM 279

Lock Arbitration .. 280
The Lock Arbitrator ... 280

The Existing Kernel Lock Arbitration Methods .. 281
The Network Lock Manager (NLM) ... 283
NLM and Kernel Lock Arbitration ... 284

NLM and Kernel BSD flock ... 284
Conten t s in Detai l xvii
No Starch Press, Copyright © 2005 by Karl Kopper

NLM and Kernel System V lockf ... 285
NLM and Kernel Posix fcntl .. 285

NFS and File Lock (dotlock) Arbitration ... 286
Finding the Locks Held by the Linux Kernel .. 286
Performance Issues with NFS—Bottlenecks and Perceptions 288

Single Transactions and User Perception of NFS Performance 289
Multiple Transactions and User Perception of NFS Performance 290

Managing Lock and GETATTR Operations in a Cluster Environment 291
Managing Attribute Caching ... 291
Managing Interactive User Applications and Batch Jobs in a Cluster Environment 292

Run Batch Jobs Outside the Cluster .. 292
Use Multiple NAS Servers .. 292

Measuring NFS Latency .. 293
Measuring Total I/O Operations .. 294
Achieving the Best NAS Performance Possible ... 295
NFS Client Configuration Options .. 296

Putting It All Together ... 296
Developing NFS ... 297
Additional Starting Points for Information on Linux and NFS 297
In Conclusion ... 298

PART IV: MAINTENANCE AND MONITORING

17
THE SIMPLE NETWORK MANAGEMENT PROTOCOL
AND MON 301

Mon ... 301
Mon Alerts ... 302
Mon Monitoring Scripts ... 302

Where to Run Mon ... 302
Basic Mon Recipe .. 303

Step 1: Compile and Install the fping Package .. 304
Step 2: Install the SNMP Package ... 304
Step 3: Install the Required CPAN Modules for Mon 305
Step 4: Install the Mon Software .. 306
Step 5: Create the /etc/mon/mon.cf Configuration File 307
Step 6: Test by Running the fping.monitor and mail.alert Scripts Manually 308
Step 7: Create the Mon Log Directory and Mon Log File 309
Step 8: Start the Mon Program in Debugging Mode and Test 309

Mon and SNMP “Proof of Concept” Recipe ... 310
Step 1: Install Net-SNMP Client Software on Each Cluster Node 310
Step 2: Create the snmp.conf Configuration File ... 311
Step 3: Start the SNMP Agent ... 311
Step 4: View the SNMP MIB Locally ... 312
Step 5: Install the SNMP Monitoring Agents .. 313
Examine the Output of netsnmp-freespace.monitor 314
Install Mon on All Cluster Nodes ... 314
xviii Conten t s in Deta i l

No Starch Press, Copyright © 2005 by Karl Kopper

Mon and SNMP “Real-World” Recipe .. 315
Step 1: Create the snmpd.conf on All Cluster Nodes 315
Step 2: Install netsnmp-proc.monitor and the New mon.cf File

on the Cluster Node Manager ... 317
Step 3: Install the Mon init Script ... 318
Step 4: Run SNMP and Mon .. 319

Email Alerts from Mon .. 319
Creating Your Own SNMP Script ... 320

A Sample Custom SNMP Script .. 320
Monitoring Your SNMP Script with Mon ... 321
Things to Monitor with SNMP Monitoring Scripts ... 322
Forcing a Stonith Event with Mon ... 323
Forcing a Heartbeat Failover with Mon ... 324
In Conclusion ... 325

18
GANGLIA 327

Introduction to Ganglia ... 328
gmond ... 328
gmetad .. 328

Installing Ganglia’s Prerequisite Packages ... 329
Install PHP .. 329
Install RRDtool ... 329
Install Apache on the Cluster Node Manager ... 330

Installing Ganglia on the Cluster Node Manager .. 330
Installing Ganglia on the Cluster Nodes .. 330
Configuring gmetad and gmond on the Cluster Node Manager 331

Modify /etc/gmetad.conf .. 331
Modify /etc/gmond.conf ... 331
Start gmond and gmetad ... 332
Add the Ganglia Page to Your Apache Configuration 332

The Ganglia Web Package ... 333
The Title Section .. 333
The Node Snapshot Section .. 334
Examining the Cluster Node from the Ganglia Web Package 336
Examining the Cluster Node from the Shell Prompt 337
gstat .. 338
Running a Command on the Least-Loaded Cluster Node Using gstat 338

Creating Custom Metrics with gmetric ... 338
In Conclusion ... 340

19
CASE STUDIES IN CLUSTER ADMINISTRATION 341

Administering Accounts Without Active Directory ... 342
Legacy Unix Account Administration Methods: The Problem 342
The Best of Both Worlds ... 343

Building a Reliable Cluster Account Authentication Mechanism 343
Using the Local passwd and Group File on Each Cluster Node 343
Content s i n De ta i l xix
No Starch Press, Copyright © 2005 by Karl Kopper

A Simple Script ... 344
Building a Fault-Tolerant Print Spooler ... 345

Cluster Nodes and Job Ordering ... 345
LPRng: A Linux Enterprise Cluster Printing System ... 346
Cluster Nodes and Print Jobs ... 346
Building the Cluster Printing System Based on LPRng 347
Install LPRng on the Central Print Server .. 347
Install LPRng on the Cluster Nodes ... 348
Modify the /etc/printcap.local File on the Cluster Nodes 348
Modify the /etc/printcap File on the Central Print Server 349
Managing Print Jobs on the Central Print Server .. 350
Managing Print Jobs from the Cluster Nodes .. 351

Rebooting Nodes for Preventative Maintenance ... 352
Using ipvsadm Commands to Remove a Cluster Node 352
Changing the Weight of a Cluster Node to 0 ... 352
Disabling Telnet Access to One of the Cluster Nodes 353

Sending and Receiving Email in a Cluster Environment ... 353
Creating a Batch Job-Scheduling System with No Single Point of Failure 354

Run ssh-keygen .. 355
Modify the sshd_config File on Each Cluster Node 355
Create the (RSA) known_hosts Entries on the Cluster Node Manager 355
The Batch Job Scheduler .. 356

In Conclusion ... 357

20
THE LINUX CLUSTER ENVIRONMENT 359

The Linux Enterprise Cluster ... 360
Applications Running on the Cluster ... 361

The Cluster Node Manager ... 361
The Clients .. 362
The NAS Server ... 363

High-Availability NAS Server .. 364
Highly Available Serial Devices ... 364

Serial-to-IP Communication Device ... 365
High-Availability Modems .. 365

Highly Available Database Server .. 365
High-Availability SQL Server ... 366

Putting It All Together .. 367
The Cluster Environment ... 367

In Conclusion ... 368

A
DOWNLOADING SOFTWARE FROM THE INTERNET
(FROM A TEXT TERMINAL) 369

Using Lynx .. 371
Using Wget ... 372

What to Do with the File You Downloaded ... 372
tar Files .. 373
xx Conten t s in Detai l

No Starch Press, Copyright © 2005 by Karl Kopper

rpm Files .. 373
Creating Your Own Tape Archive (tar) File .. 374

B
TROUBLESHOOTING WITH THE TCPDUMP UTILITY 375

C
ADDING NETWORK INTERFACE CARDS
TO YOUR SYSTEM 379

Monolithic Versus Modular Kernels .. 380
View Your Existing Configuration .. 380
Install the Card and Reboot .. 381
Run linuxconf .. 382
Testing the New NIC ... 383
Changes Made by linuxconf ... 384
Using the New NIC ... 384
Testing and Troubleshooting ... 384

D
STRATEGIES FOR DEPENDENCY FAILURES 387

What Are Dependencies? ... 387
Dynamic Executables and Shared Objects .. 388

rpm Packages and Shared Library Dependencies ... 390
Fixing a Dependency Failure Manually ... 391

Fixing a Dependency Failure Automatically .. 392
Using Yum to Install rpm Packages ... 392

Installing a New rpm Package with Yum .. 393
In Conclusion ... 393

E
OTHER POTENTIAL CLUSTER FILESYSTEMS
AND LOCK ARBITRATION METHODS 395

F
LVS CLUSTERS
AND THE APACHE CONFIGURATION FILE 397

ServerName .. 398
DocumentRoot .. 398
BindAddress .. 399
Port .. 399
Listen .. 399
Apache Virtual Host Configuration on Cluster Nodes .. 400

Apache IP-Based Virtual Hosts .. 400
Content s i n De ta i l xxi
No Starch Press, Copyright © 2005 by Karl Kopper

Name-Based Virtual Hosts .. 401
Self-Referential (Redirection) URLs ... 403

IP-Based Virtual Hosts and Self-Referential URLs ... 404
Name-Based Virtual Hosts and Self-Referential URLs 404

Verify Your Virtual Host Configuration .. 404

INDEX 407
xxii Conten ts in Detai l

No Starch Press, Copyright © 2005 by Karl Kopper

A C K N O W L E D G M E N T S

A courageous management team made it possible for me to deploy the
cluster described in this book into production—to my knowledge the first of
its kind to be used to support an American brick-and-mortar business. I
would especially like to thank Kevin Michel and Bill Dettmann for the faith
they placed in the people who worked for them, Jim Gallops for standing up
and defending GNU software when it counted the most, Ken Paradox for
patiently correcting the many mistakes I made when I was trying to do what I
said I was going to do, and Francis Hamilton for testing the LPRng printing
system at the peril of his own efficiency.

Technical guardian angels from each of the projects helped to correct
me when I strayed into inaccuracies. I would especially like to thank Alan
Robertson (Heartbeat) for helping me when I misunderstood the syntax and
structure of the Heartbeat package; Simon Horman (The Linux Virtual
Server, Heartbeat, ldirectord, and rpm dependencies) for going the extra
mile (then two, then three; how many extra miles was it?); Matt Massie
(Ganglia) for his gentle corrections and helpful ideas; Joseph Mack (The
Linux Virtual Server) for his inspiration, advice, and support; Martin Pool
(Open SSH and rsync) for putting up with my wayward ways; Charles Lever
(NFS) for helping me to get over the really big hurdles; Brian Elliot Finley
(SystemImager) for his terrific technical review; Peter Holzleitner (Mon and
SNMP) for a truly selfless act; John Mark Walker (Linux utilities and the
Linux boot process) for the grunt work; Brian Ward (The Linux Kernel) for
saving me from my own folly; Dr. Patrick Powell (LPRng) for squashing every
bug before they could do any harm; Mark Sherman (Linux novice) for
lending a hand early on and being my kernel compile guinea pig; and
Richard Stallman (Free Software Foundation) for clarifying the definition of
the terms Linux, GNU, and free.
No Starch Press, Copyright © 2005 by Karl Kopper

Also, a special thanks to all of the editors at No Starch press for catching
the inaccurate, the obfuscated, and the unintelligible: William Pollock
(editor and publisher, No Starch Press) for his uncompromising approach to
every poorly formed idea; Susan Berge (production manager) for catching
the pieces, keeping things on track, putting up with my eleventh hour
scrambles, and then catching the pieces again; Karol Jurado (managing
editor) for her graceful coordination of the cadre of technical reviewers;
Riley Hoffman (compositor) for making the whole greater than the sum of
the parts, redrawing every figure in the book, putting up with my criticisms of
a job well done, and then doing it again; Patricia Witkin (communications
manager), Leigh Poehler (rights manager/sales analyst), and Christina
Samuell (administrative assistant) for smoothing out the bumps created by
one delay after another, and then working hard to get the word out; Andy
Carroll (editor) for a phenomenal job of cleaning things up and catching
what so many others had already missed; and Bonnie Granat (editor) for
seeing things all the way through to the end, and for her patience and
understanding when she had to ask me and then ask me again.

On a personal note, I would like to thank my wife for letting me take
time away from our relationship over the past four and a half years to sit
alone at a computer, and my friends and family for helping me to stay on
the path.

This book has been given so much support and attention that if any
inaccuracies—technical or otherwise—remain they can certainly be
attributed to me.

Karl Kopper
Sacramento, CA
xxiv Acknow ledgments

No Starch Press, Copyright © 2005 by Karl Kopper

I N T R O D U C T I O N

The term cluster is generally used to
describe a broad range of distributed

processing systems, but those who use the
term in the computer industry have yet to agree upon
a definition that has any weight to it. Gregory Pfister in
his 1997 book, In Search of Clusters,1 spends more than
500 pages grappling with this problem. He proposes
the following elegant definition:

A cluster is a type of parallel or distributed system that:

� Consists of a collection of interconnected whole computers.

� Is used as a single unified computing resource.

Let me further clarify what I mean when I use the term Linux Enterprise
Cluster by describing its properties and architecture.

1 This book (and the artwork on its cover) inspired the Microsoft Wolfpack product name.
No Starch Press, Copyright © 2005 by Karl Kopper

Properties of a Linux Enterprise Cluster

If we succeed in building a system that can be used as a “single unified
computing resource” using “a local computing system comprising a set of
independent computers and a network interconnecting them,” then the
user, the programmer, the program, and even the networking equipment
and the other servers on the network will not know that they are using or
communicating with a cluster.

I E E E T A S K F O R C E O N CL U S T E R C O M P U T I N G

In 1999, the prestigious 380,000-member Institute of Electrical and Electronics
Engineers, Inc. (IEEE) created the Task Force on Cluster Computing (TFCC). For
details, see http://www.ieeetfcc.org. In the “Cluster Computing White Paper”
(2000), Thomas Sterling, writing on behalf of the TFCC (http://arxiv.org/ftp/cs/
papers/0004/0004014.pdf), described a specific type of cluster called a
commodity cluster. Sterling defined a commodity cluster as “a local computing
system comprising a set of independent computers and a network interconnecting
them.” He then described the implementation of a commodity cluster as follows:

A cluster is local in that all of its component subsystems
are supervised within a single administrative domain,
usually residing in a single room and managed as a
single computer system. The constituent computer nodes
are commercial-off-the-shelf (COTS), are capable of full
independent operation as is, and are of a type ordinarily
employed individually for standalone mainstream
workloads and applications. The nodes may incorporate
a single microprocessor or multiple microprocessors in a
symmetric multiprocessor (SMP) configuration. The
interconnection network employs COTS local area
network (LAN) or systems area network (SAN) technology
that may be a hierarchy of or multiple separate network
structures. A cluster network is dedicated to the integration
of the cluster compute nodes and is separate from the
cluster’s external (worldly) environment. A cluster may be
employed in many modes including but no limited to: high
capability or sustained performance on a single problem,
high capacity or throughput on a job or process
workload, high availability through redundancy of nodes,
or high bandwidth through multiplicity of disks and disk
access or I/O channels.

A Linux Enterprise Cluster is a type of commodity cluster that typically runs
mission-critical applications to support a community of users. Users of a Linux
Enterprise Cluster do not need to sit in front of a Linux workstation; they may connect
to the cluster using a web browser, telnet client, or any client application that knows
how to communicate with the services running on the cluster nodes.
2 I n t roduct ion

No Starch Press, Copyright © 2005 by Karl Kopper

Thus, the four basic properties of a Linux Enterprise Cluster are:

Users do not know that they are using a cluster

If users do know they are using a cluster, they are using distinct, distrib-
uted servers and not a single unified computing resource.

Nodes within a cluster do not know they are part of a cluster

In other words, the operating system does not need to be modified to
run on a cluster node, and the failure of one node in the cluster has no
effect on the other nodes inside the cluster. (Each cluster node is whole
or complete—it can be rebooted or removed from the cluster without
affecting the other nodes.)

A Linux Enterprise Cluster is a commodity cluster because it uses
little or no specialty hardware and can use the normal Linux operating
system. Besides lowering the cost of the cluster, this has the added
benefit that the system administrator will not have to learn an entirely
new set of skills to provide basic services required for normal operation,
such as account authentication, host-name resolution, and email
messaging.

Applications running in the cluster do not know that they are running inside
a cluster

If an application—especially a mission-critical legacy application—must
be modified to run inside the cluster, then the application is no longer
using the cluster as a single unified computing resource.

Some applications can be written using a cluster-aware application
programming interface (API),2 a Message Passing Interface (MPI),3 or
distributed objects. They will retain some, but not all, of the benefits of
using the cluster as a single unified computing resource. But multiuser
programs should not have to be rewritten4 to run inside a cluster if the
cluster is a single unified computing resource.

Other servers on the network do not know that they are servicing a
cluster node

The nodes within the Linux Enterprise Cluster must be able to make
requests of servers on the network just like any other ordinary client
computer. The servers on the network (DNS, email, user authentication,
and so on) should not have to be rewritten to support the requests com-
ing from the cluster nodes.

2 Such as the Distributed Lock Manager discussed in Chapter 16.
3 MPI is a library specification that allows programmers to develop applications that can share
messages even when the applications sharing the messages are running on different nodes. A
carefully written application can thus exploit multiple computer nodes to improve performance.
4 This is assuming that they were already written for a multiuser operating system environment
where multiple instances of the same application can run at the same time.
I n troduct ion 3
No Starch Press, Copyright © 2005 by Karl Kopper

Architecture of the Linux Enterprise Cluster

Let’s use Pfister’s statement that all clusters should act like “a single unified
computing resource” to describe the architecture of an enterprise cluster.
One example of a unified computing resource is a single computer, as shown
in Figure 1.

Figure 1: Simplified architecture of a single computer

If we replace the CPU in Figure 1 with “a collection of interconnected
whole computers,” the diagram could be redrawn as shown in Figure 2.

Figure 2: Simplified architecture of an enterprise cluster

The load balancer replaces the input devices. The shared storage
device replaces a disk drive, and the print server is just one example of an
output device. Let’s briefly examine each of these before we describe how
to build them.

The Load Balancer

The load balancer sits between the users of the cluster and the “whole
computers,” which are the nodes that make up the cluster. The load balancer
decides how best to distribute the incoming workload across all of the nodes.

In an enterprise cluster, user-based transactions make up the incoming
workload. As users make connections to the cluster, such as HTTP web
requests or telnet connections, they are assigned to cluster nodes based upon
a load-balancing scheme (see Chapter 11).

Storage

Input
devices

Output
devicesCPU

Shared
storage

Load
balancer

Print
server
4 I n t roduct ion

No Starch Press, Copyright © 2005 by Karl Kopper

The Shared Storage Device

The shared storage device acts as the single repository for the enterprise
cluster’s data, just as a disk drive does inside a single computer. Like a single
disk drive in a computer, one of the most important features of this storage
device is its ability to arbitrate access to the data so that two programs cannot
modify the same piece of data at the same time. This feature is especially
important in an enterprise cluster because two or more programs may be
running on different cluster nodes at the same time. An enterprise cluster
must therefore use a filesystem on all cluster nodes that can perform lock
arbitration. That is, the filesystem must be able to protect the data stored
on the shared storage device in order to prevent two applications from
thinking they each have exclusive access to the same data at the same time
(see Chapter 16).

The Print Server

The output device in this example is just one of many possible cluster output
devices—a shared print server. A shared print server and other servers that
offer services to all cluster nodes are located outside the cluster to arbitrate
contention for things like printers, fax lines, and so on. Servers that arbitrate
contention for output devices do not know they are servicing cluster nodes
and can continue to use the classic client-server model for network commu-
nication. As we’ll see in the next section, all of the server functions required
to service the cluster nodes can be consolidated on to a single highly avail-
able server pair.

The Cluster Node Manager

Servers outside the cluster may do a variety of other things as well, such as:

� Act as license servers for applications running inside the cluster.

� Act as the central user account database.

� Provide other services such as DNS and email to all cluster nodes.

� Monitor the health of the cluster.

Again, the applications running on these servers outside the cluster
should not need to be modified to support the nodes inside the cluster. In
other words, the applications offering services to clients that are cluster
nodes need not be cluster aware.

These functions can be combined on a high-availability server pair that
we will call the cluster node manager. The cluster node manager holds the
master user account database (and uses NIS or LDAP to distribute user
accounts to all nodes5). The cluster node manager monitors the health of

5 The Webmin and OSCAR packages both have methods of distributing user accounts to all
cluster nodes that do not rely on NIS or LDAP, but these methods can still use the cluster node
manager as the central user account database.
I n troduct ion 5
No Starch Press, Copyright © 2005 by Karl Kopper

the cluster (using the Mon and Ganglia packages that will be discussed in
Part 4); it is also a central print spooler (using LPRng). The cluster node
manager can also offer a variety of other services to the cluster using the
classic client-server model, such as the ability to send faxes.6

No Single Point of Failure

We can further describe the architecture of the enterprise cluster by discussing
a basic requirement of any mission-critical system: it must have no single
point of failure.

An enterprise cluster should always have the following characteristic:
Any computer within the cluster, or any computer the cluster depends upon for normal
operation, can be rebooted without rebooting the entire cluster.

One way to be able to reboot servers the cluster depends upon without
affecting the cluster is to build high-availability server pairs for all of the
servers the cluster depends upon for normal operation. Our simplified
cluster drawing could be redrawn as shown in Figure 3.

This figure shows two load balancers, two print servers, and two shared
storage devices servicing four cluster nodes.

Figure 3: Enterprise cluster with no single point of failure

In Part II of this book, we will learn how to build high-availability server pairs
using the Heartbeat package. Part III describes how to build a highly avail-
able load balancer and a highly available cluster node manager. (Recall from
the previous discussion that the cluster node manager can be a print server
for the cluster.)

6 A brief discussion of Hylfax is included near the end of Chapter 17.

Shared
storage

Load
balancer

Print
server

Backup
shared
storage

Backup
load

balancer

Backup
print

server
6 I n t roduct ion

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE Of course, one of the cluster nodes may also go down unexpectedly or may no longer be
able to perform its job. If this happens, the load balancer should be smart enough to
remove the failed cluster node from the cluster and alert the system administrator. The
cluster nodes should be independent of each other, so that aside from needing to do more
work, they will not be affected by the failure of a node.

In Conclusion

I’ve introduced a definition of the term cluster that I will use throughout this
book as a logical model for understanding how to build one. The definition
I’ve provided in this introduction (the four basic properties of a Linux
Enterprise Cluster) is the foundation upon which the ideas in this book are
built. After I’ve introduced the methods for implementing these ideas, I’ll
conclude the book with a final chapter that provides an introduction to the
physical model that implements these ideas. You can skip ahead now and read
this final chapter if you want to learn about this physical model, or, if you just
one to get a cluster up and running you can start with the instructions in
Part II. If you don’t have any experience with Linux you will probably want to
start with Part I, and read about the basic components of the GNU/Linux
operating system that make building a Linux Enterprise Cluster possible.
I n troduct ion 7
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

P R I M E R

This book could have been called
The GNU/Linux Enterprise Cluster. Here is

what Richard Stallman, founder of the GNU
Project, has to say on this topic:

Mostly, when people speak of “Linux clusters” they mean
one in which the GNU/Linux system is running. They think
the whole system is Linux, so they call it a “Linux cluster.”
However, the right term for this would be “GNU/Linux
cluster.”

The accurate meaning for “Linux cluster” would be one in
which the kernel is Linux. The identity of the kernel is
relevant for some technical development and system
administration issues. However, what users and user
programs see is not the kernel, but rather the rest of the
system. The only reason that Linux clusters are similar from
the user’s point of view is that they are really all GNU/Linux
clusters.
No Starch Press, Copyright © 2005 by Karl Kopper

A “free software cluster” (I think that term is clearer than
“free cluster”) would be one on which only free software is
running. A GNU/Linux cluster can be a free software
cluster, but isn’t necessarily one.

The basic GNU/Linux system is free software; we launched
the development of the GNU system in 1984 specifically to
have a free software operating system. However, most of the
distributions of GNU/Linux add some non-free software to
the system. (This software usually is not open-source either.)
The distributors describe these programs as a sort of bonus,
and since most of the users have never encountered any
other way to look at the matter, they usually go along with
that view. As a result, many of the machines that run GNU/
Linux (whether clusters or not) have non-free software
installed as well. Thus, we fail to achieve our goal of giving
computer users freedom.

Before I describe how to build a GNU/Linux Enterprise Cluster, let me
define a few basic terms that I’ll use throughout the book to describe one.

High Availability Terminology

I’ll start with the terminology used to describe high availability. I’m not
going to split hairs at this point—I’ll do that later, when I explore each
concept in depth. The important thing here is that I introduce a vocabulary
that allows us to talk about multiple computers working together to
accomplish a task.

When a program runs, it is called a process. A process running on a Linux
system is called a daemon. A daemon and the effects it produces is called a
service. A service is called a resource when it is combined with its operating
environment (configuration files, data, network mechanism used to access it,
and so forth). A failover occurs when a resource moves from one computer to
another. A proper failover or high-availability configuration has no single
point of failure.1

Linux Enterprise Cluster Terminology

Now that I’ve introduced the terminology used to describe high availability,
I’d like to introduce a few terms that allow us to describe a GNU/Linux
Enterprise Cluster.

1 I’m departing from the Red Hat cluster terminology here, but I am using these terms as they
are defined by Linux-ha advocates (see http://www.linux-ha.org).
10 Prime r

No Starch Press, Copyright © 2005 by Karl Kopper

In a cluster, all computers (called nodes) offer the same services. The
cluster load balancer intercepts all incoming requests for services.2 It then
distributes the requests across all of the cluster nodes as evenly as possible.
A high-availability cluster is able to failover the cluster load balancing resource
from one computer to another.

This book describes how to build a high-availability, load-balancing cluster
using the GNU/Linux operating system and several free software packages.
All of the recipes in this book describe how to build configurations that have
been used by the author in production. (Some projects and recipes
considered for use in this book did not make it into the final version because
they proved too unreliable or too immature for use in production.)

2 To be technically correct here, I need to point out that you can build a cluster without one
machine acting as a load balancer for the cluster—see http://www.vitaesoft.com for one
method of accomplishing this.
Primer 11
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

PART I
C L U S T E R R E S O U R C E S
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

1
S T A R T I N G S E R V I C E S

In this chapter we will examine the basic
boot procedure used on a Linux server and

how to disable or enable a service. This
chapter includes a list of services normally

found on a Linux server and describes how these
services are used on the nodes inside a cluster.

How Do Cluster Services Get Started?

In a cluster environment, a daemon or service is started:

� By the init daemon when the system boots or enters a runlevel.

� By Heartbeat when it first starts or needs to take ownership of a resource.

� By xinetd when a network request comes in.

� Using some other non-standard method (such as the Daemontools1
package).

1 The Daemontools package is described in Chapter 8.
No Starch Press, Copyright © 2005 by Karl Kopper

NOTE For the moment, we are leaving batch jobs out of this discussion (because batch jobs are
normally not considered “cluster services” that are offered to client computers). To learn
more about batch jobs in a cluster environment, see Chapter 18.

Which of these methods should be used depends on the answers to the
following questions:

1. Should the service run at all times or only when network requests come in?

2. Should the service failover to a backup server when the primary server
crashes?

3. Should the service be restarted automatically if it stops running or ends
abnormally?

If the service needs to run only as a result of an incoming network
request (telnet and pop are good examples of this type of service), then it
should be started by xinetd. However, the majority of services running on a
Linux server, and on the nodes inside a cluster, will run all the time and
should therefore be started by init when the system first boots (hence the
name “init”).

If a service should continue to run even when the system it is running on
crashes (the LPRng lpd printing daemon running on a print server, for
example), then the Heartbeat program should start the service (described in
Part II of this book).

In this chapter I’ll focus on how init works and later, in Part II, I’ll
describe how to start services using Heartbeat. Experienced Linux and Unix
system administrators will find the first part of this chapter to be a repeat of
concepts they are already familiar with and may want to skip to the section
titled “Using the Red Hat init Scripts on Cluster Nodes.”

Starting Services with init

Once your boot loader has finished the initial steps to get your kernel up and
running, the init daemon—the parent of all processes—is started. Then init
launches the daemons necessary for normal system operation based on
entries in its /etc/inittab configuration file.

The /etc/inittab File

The heart of the /etc/inittab configuration file is the following seven lines
that define seven system runlevels:

l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
16 Chapter 1

No Starch Press, Copyright © 2005 by Karl Kopper

l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

NOTE The system can be at only one runlevel at a time.

These lines indicate that the rc program (the /etc/rc.d/rc script) should
run each time the runlevel of the system changes and that init should pass a
single character argument consisting of the runlevel number (0 through 6)
to the rc program. The rc program then launches all of the scripts that start
with the letter S in the corresponding runlevel subdirectory underneath the
/etc/rc.d directory.

The default runlevel, the runlevel for normal server operation, is
defined in the /etc/inittab file on the initdefault line:

id:3:initdefault:

NOTE Use the runlevel command to see the current runlevel.

The default runlevel for a Red Hat Linux server that is not running a
graphical user interface is runlevel 3. This means the init daemon runs the
rc program and passes it an argument of 3 when the system boots. The rc
program then runs each script that starts with the letter S in the /etc/rc.d/
rc3.d, passing them the argument start.

Later, when the system administrator issues the shutdown command, the
init daemon runs the rc program again, but this time the rc program runs all
of the scripts in the /etc/rc.d/rc3.d directory that start with the letter K (for
“kill”) and passes them the argument stop.

On Red Hat, you can use the following command to list the contents of
all of the runlevel subdirectories:

#ls -l /etc/rc.d/rc?.d | less

NOTE The question mark in this command says to allow any character to match. So this com-
mand will match on each of the subdirectories for each of the runlevels: rc0.d, rc1.d,
rc2.d, and so forth.

The start and kill scripts stored in these subdirectories are, however,
not real files. They are just symbolic links that point to the real script files
stored in the /etc/rc.d/init.d directory. All of the start and stop init scripts
are, therefore, stored in one directory (/etc/rc.d/init.d), and you control
which services run at each runlevel by creating or removing a symbolic link
within one of the runlevel subdirectories.

Fortunately, software tools are available to help manage these symbolic
links. We will explain how to use these tools in a moment, but first, let’s
examine one way to automatically restart a daemon when it dies by using the
respawn option in the /etc/inittab file.
Star ti ng Serv ice s 17
No Starch Press, Copyright © 2005 by Karl Kopper

Respawning Services with init

You can cause the operating system to automatically restart a daemon when
it dies by placing the name of the executable program file in the /etc/inittab
file and adding the respawn option. init will start the daemon as the system
enters the runlevel and then watch to make sure the daemon stays running
(restarting the daemon, if it dies), as long as the system remains at the same
runlevel.

A sample /etc/inittab entry using the respawn option looks like this:

sn:2345:respawn:/usr/local/scripts/start_snmpd > /dev/null

This entry tells the init daemon to run the script /usr/local/scripts/
start_snmpd at runlevels 2, 3, 4, and 5, and to send any output produced to the
/dev/null “device” (the output is discarded).

Notice, however, that we have entered a script file here (/usr/local/
scripts/start_snmpd) and not the actual snmpd executable. How will init know
which running process to monitor if this script simply runs the snmpd daemon
and then ends? init will assume the program has died each time the script
/usr/local/scripts/start_snmpd finishes running, and it will dutifully run the
script again.

NOTE When this happens, you are likely to see an error message from init saying the sn identi-
fier (referring to the first field in the /etc/inittab file) is respawning too fast and init
has decided to give up trying for a few minutes.

So to make sure the respawn option works correctly, we need to make sure
the script used to start the snmpd daemon replaces itself with the snmpd daemon.
This is easy to do with the bash programming statement exec. So the simple
bash script /usr/local/scripts/start_snmpd looks like this:

#!/bin/bash
exec /usr/sbin/snmpd -s -P /var/run/snmpd -l /dev/null

The first line of this script starts the bash shell, and the second line
causes whatever process identification number, or PID, is associated with this
bash shell to be replaced with the snmpd daemon (the bash shell disappears
when this happens). This makes it possible for init to run the script, find out
what PID it is assigned, and then monitor this PID. If init sees the PID go
away (meaning the snmpd daemon died), it will run the script again and
monitor the new PID thanks to the respawn entry in the /etc/inittab file.2

Managing the init Script Symbolic Links with chkconfig
The chkconfig program creates and removes the symbolic links used by init’s
servant, the /etc/rc.d/rc script. These symbolic links are the real way to enable

2 Note that the snmpd daemon also supports a -f argument that accomplishes the same thing as
the exec statement in this bash script. See the snmpd man page for more information.
18 Chapter 1

No Starch Press, Copyright © 2005 by Karl Kopper

or prevent a service from automatically running at a particular runlevel. As
previously noted, all of the symbolic links for all system runlevels point back to
the real scripts stored in the /etc/rc.d/init.d directory (actually, according to
the Linux Standards Base,3 this directory is the /etc/init.d directory, but on
Red Hat, these two directories point to the same files4).

If you want a service (called myservice) to run at runlevels 2, 3, and 4,
this means you want chkconfig to create three symbolic links in each of the
following runlevel subdirectories:

/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d

These symbolic links should start with the letter S to indicate you want
to start your script at each of these runlevels. chkconfig should then create
symbolic links that start with the letter K (for “kill”) in each of the remaining
/etc/rc.d/rc<runlevel>.d directories (for runlevels 0, 1, 5, and 6).

To tell chkconfig you want it to do this for your script, you would add the
following lines to the script file in the /etc/rc.d/init.d directory:

chkconfig: 234 99 90
description: myscript runs my daemon at runlevel 2, 3, or 4

You can then simply run the chkconfig program, which interprets this
line to mean “create the symbolic links necessary to run this script at runlevel
2, 3, and 4 with the start option, and create the symbolic links needed to run
this script with the kill option at all other runlevels.”

The numbers 99 and 90 in this example are the start and stop priority of
this script. When a symbolic link is created in one of the runlevel subdirec-
tories, it is also given a priority number used by the rc script to determine the
order it will use to launch (or kill) the scripts it finds in each of the runlevel
subdirectories. A lower priority number after the S in the symbolic link name
means the script should run before other scripts in the directory. For example,
the script to bring up networking, /etc/rc.d/rc3.d/S10network, runs before the
script to start the Heartbeat program /etc/rc.d/rc3.d/S34heartbeat.

The second commented line in this example contains a (required)
description for this script. The chkconfig commands to first remove any old
symbolic links that represent an old chkconfig entry and then add this script
(it was saved in the file /etc/rc.d/init.d/myscript) are:

chkconfig --del myscript
chkconfig --add myscript

3 See http://www.linuxbase.org/spec for the latest revision to the LSB.
4 Because /etc/init.d is a symbolic link to /etc/rc.d/init.d on current Red Hat distributions.
Star ti ng Serv ice s 19
No Starch Press, Copyright © 2005 by Karl Kopper

NOTE Always use the --del option before using the --add option when using chkconfig to
ensure you have removed any old links.

The chkconfig program will then create the following symbolic links to
your file:

/etc/rc.d/rc0.d/K90myscript
/etc/rc.d/rc1.d/K90myscript
/etc/rc.d/rc2.d/S99myscript
/etc/rc.d/rc3.d/S99myscript
/etc/rc.d/rc4.d/S99myscript
/etc/rc.d/rc5.d/K90myscript
/etc/rc.d/rc6.d/K90myscript

Again, these symbolic links just point back to the real file located in the
/etc/init.d directory (from this point forward, I will use the LSB directory
name /etc/init.d instead of the /etc/rc.d/init.d directory originally used on
Red Hat systems) throughout this book. If you need to modify the script to
start or stop your service, you need only modify it in one place: the /etc/
init.d directory.

You can see all of these symbolic links (after you run the chkconfig
command to add them) with the following single command:

#find /etc -name '*myscript' -print

You can also see a report of all scripts with the command:

#chkconfig --list

Managing the init Script Symbolic Links with ntsysv

The ntsysv command relies on these same commented chkconfig lines in each
of the scripts in the /etc/rc.d/init.d directory to manage the symbolic links
to start and stop scripts at each runlevel.

Normally, ntsysv only manages the currently running level of the system
(not very useful), so you will probably want to tell it to manage all of the
runlevels by entering the command:

#ntsysv --level 0123456

This will bring up a list of all of the scripts in the /etc/rc.d/init.d
directory. By adding an asterisk next to the script name in this listing (and
selecting OK), you tell the ntsysv program to create all of the symbolic links
just as if you had run the chkconfig --add <scriptname> command. If you
remove the asterisk next to the script name, the symbolic links are removed
just as if you had entered the chkconfig --del <scriptname> command.
20 Chapter 1

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE chkconfig and ntsysv commands do not start or stop daemons (neither command actu-
ally runs the scripts). They only create or remove the symbolic links that affect the system
the next time it enters or leaves a runlevel (or is rebooted). To start or stop scripts, you
can enter the command service <script-name> start or service <script-name> stop,
where <script-name> is the name of the file in the /etc/init.d directory.

Removing Services You Do Not Need

For each script you do not need (see the next section for a description), you
can disable or remove the services by doing the following:

Kill the currently running daemon (you can skip this step and simply
reboot the system when you are finished):

#/etc/init.d/<script-name> stop

Or on Red Hat systems, the following command works just as well:

#service <script-name> stop

Remove symbolic links to the script that cause it to start or stop at the
predefined chkconfig runlevels with the command:

#chkconfig --del <script-name>

or

#ntsysv --level 0123456

Then, inside of the ntsysv utility, remove the * next to each script name
to cause it not to run at boot time.

Using the Red Hat init Scripts on Cluster Nodes

This section contains a description of the init scripts used on a normal Red Hat
system along with a discussion of how the services started by the init script are
used, or can be used, in a Linux Enterprise Cluster. Note that you may not
have all of these scripts on your system due to a difference in the Red Hat
release you are using or because you do not have the service installed.

aep1000

Supports the Accelerated Encryption Processing card to speed Secure
Socket Layer (SSL) encryption. Not used to build the cluster in this book.

anacron

Used like cron and at to start commands at a particular time, even on sys-
tems that are not running continuously. On Red Hat, the /etc/anacrontab
file lists the normal log rotation cron job that is executed daily. If you
Star ti ng Serv ice s 21
No Starch Press, Copyright © 2005 by Karl Kopper

disable this, you will no longer perform log rotation, and your system
disk will eventually fill up. In Chapters 18 and 19, we will describe two
methods of running cron jobs on all cluster nodes without running the
crond daemon on all nodes (the cron daemon runs on a single node and
remotely initiates or starts the anacron program once a day on each
cluster node).

apmd

Used for advanced power management. You only need this if you have
an uninterruptible power supply (UPS) system connected to your sys-
tem and want it to automatically shut down in the event of a power fail-
ure before the battery in your UPS system runs out. In Chapter 9, we’ll
see how the Heartbeat program can also control the power supply to a
device through the use of a technology called STONITH (for “shoot
the other node in the head”).

arpwatch

Used to keep track of IP address-to-MAC address pairings. Normally,
you do not need this daemon. As a side note, the Linux Virtual Server
Direct Routing clusters (as described in Chapter 13) must contend with
potential Address Resolution Protocol (ARP) problems introduced
through the use of the cluster load-balancing technology, but arpwatch
does not help with this problem and is normally not used on cluster
nodes.

atd

Used like anacron and cron to schedule jobs for a particular time with the
at command. This method of scheduling jobs is used infrequently, if at
all. In Chapter 18, we’ll describe how to build a no-single-point-of-failure
batch scheduling mechanism for the cluster using Heartbeat, the cron
daemon, and the clustersh script.

autofs

Used to automatically mount NFS directories from an NFS server. This
script only needs to be enabled on an NFS client, and only if you want
to automate mounting and unmounting NFS drives. In the cluster con-
figuration described in this book, you will not need to mount NFS file
systems on the fly and will therefore not need to use this service (though
using it gives you a powerful and flexible means of mounting several NFS
mount points from each cluster node on an as-needed basis.) If possible,
avoid the complexity of the autofs mounting scheme and use only one
NFS-mounted directory on your cluster nodes.

bcm5820

Support for the Broadcom Cryponet BCM5820 chip for speeding SSL
communication. Not used in this book.
22 Chapter 1

No Starch Press, Copyright © 2005 by Karl Kopper

crond

Used like anacron and atd to schedule jobs. On a Red Hat system, the
crond daemon starts anacron once a day. In Chapter 18, we’ll see how you
can build a no-single-point-of-failure batch job scheduling system using
cron and the open source Ganglia package (or the clustersh script pro-
vided on the CD-ROM included with this book). To control cron job
execution in the cluster, you may not want to start the cron daemon
on all nodes. Instead, you may want to only run the cron daemon on
one node and make it a high-availability service using the techniques
described in Part II of this book. (On cluster nodes described in this
book, the crond daemon is not run at system start up by init. The Heart-
beat program launches the crond daemon based on an entry in the /etc/
ha.d/haresources file. Cron jobs can still run on all cluster nodes through
remote shell capabilities provided by SSH.)

cups

The common Unix printing system. In this book, we will use LPRng
instead of cups as the printing system for the cluster. See the description
of the lpd script later in this chapter.

firstboot

Used as part of the system configuration process the first time the
system boots.

functions

Contains library routines used by the other scripts in the /etc/init.d
directory. Do not modify this script, or you will risk corrupting all of the
init scripts on the system.

gpm

Makes it possible to use a mouse to cut and paste at the text-based con-
sole. You should not disable this service. Incidentally, cluster nodes will
normally be connected to a KVM (keyboard video mouse) device that
allows several servers to share one keyboard and one mouse. Due to the
cost of these KVM devices, you may want to build your cluster nodes
without connecting them to a KVM device (so that they boot without a
keyboard and mouse connected).5

halt

Used to shut the system down cleanly.

httpd

Used to start the apache daemon(s) for a web server. You will probably
want to use httpd even if you are not building a web cluster to help the
cluster load balancer (the ldirectord program) decide when a node
should be removed from the cluster. This is the concept of monitoring
a parallel service discussed in Chapter 15.

5 Most server hardware now supports this.
Star ti ng Serv ice s 23
No Starch Press, Copyright © 2005 by Karl Kopper

identd

Used to help identify who is remotely connecting to your system. The
theory sounds good, but you probably will never be saved from an attack
by identd. In fact, hackers will attack the identd daemon on your system.
Servers inside an LVS-NAT cluster also have problems sending identd
requests back to client computers. Disable identd on your cluster nodes
if possible.

ipchains or iptables

The ability to manipulate packets with the Linux kernel is provided by
the ipchains (for kernels 2.2 and earlier) or iptables (for kernels 2.4 and
later). This script on a Red Hat system runs the iptables or ipchains com-
mands you have entered previously (and saved into a file in the /etc/
sysconfig directory). For more information, see Chapter 2.

irda

Used for wireless infrared communication. Not used to build the cluster
described in this book.

isdn

Used for Integrated Services Digital Networks communication. Not used
in this book.

kdcrotate

Used to administer Kerberos security on the system. See Chapter 19 for a
discussion of methods for distributing user account information.

keytable

Used to load the keyboard table.

killall

Used to help shut down the system.

kudzu

Probes your system for new hardware at boot time—very useful when you
change the hardware configuration on your system, but increases the
amount of time required to boot a cluster node, especially when it is dis-
connected from the KVM device.

lisa

The LAN Information Server service. Normally, users on a Linux machine
must know the name or address of a remote host before they can connect
to it and exchange information with it. Using lisa, a user can perform a
network discovery of other hosts on the network similar to the way Win-
dows clients use the Network Neighborhood. This technology is not used
in this book, and in fact, may confuse users if you are building the cluster
described in this book (because the LVS-DR cluster nodes will be discov-
ered by this software).
24 Chapter 1

No Starch Press, Copyright © 2005 by Karl Kopper

lpd

This is the script that starts the LPRng printing system. If you do not
see the lpd script, you need to install the LPRng printing package. The
latest copy of LPRng can be found at http://www.lprng.com. On a stan-
dard Red Hat installation, the LPRng printing system will use the /etc/
printcap.local file to create an /etc/printcap file containing the list of
printers. Cluster nodes (as described in this book) should run the lpd
daemon. Cluster nodes will first spool print jobs locally to their local
hard drives and then try (essentially, forever) to send the print jobs to a
central print spooler that is also running the lpd daemon. See Chapter 19
for a discussion of the LPRng printing system.

netfs

Cluster nodes, as described in this book, will need to connect to a central
file server (or NAS device) for lock arbitration. See Chapter 16 for a
more detailed discussion of NFS. Cluster nodes will normally need this
script to run at boot time to gain access to data files that are shared with
the other cluster nodes.

network

Required to bring up the Ethernet interfaces and connect your system to
the cluster network and NAS device. The Red Hat network configuration
files are stored in the /etc/sysconfig directory. In Chapter 5, we will
describe the files you need to look at to ensure a proper network configu-
ration for each cluster node after you have finished cloning. This script
uses these configuration files at boot time to configure your network inter-
face cards and the network routing table on each cluster node.6

nfs

Cluster nodes will normally not act as NFS servers and will therefore not
need to run this script.7

nfslock

The Linux kernel will start the proper in-kernel NFS locking mechanism
(rpc.lockd is a kernel thread called klockd) and rpc.statd to ensure proper
NFS file locking. However, cluster nodes that are NFS clients can run this
script at boot time without harming anything (the kernel will always run
the lock daemon when it needs it, whether or not this script was run at boot
time). See Chapter 16 for more information about NFS lock arbitration.

nscd

Helps to speed name service lookups (for host names, for example) by
caching this information. To build the cluster described in this book,
using nscd is not required.

6 In the LVS-DR cluster described in Chapter 13, we will modify the routing table on each node
to provide a special mechanism for load balancing incoming requests for cluster resources.
7 An exception to this might be very large clusters that use a few cluster nodes to mount
filesystems and then re-export these filesystems to other cluster nodes. Building this type of large
cluster (probably for scientific applications) is beyond the scope of this book.
Star ti ng Serv ice s 25
No Starch Press, Copyright © 2005 by Karl Kopper

ntpd

This script starts the Network Time Protocol daemon. When you config-
ure the name or IP address of a Network Time Protocol server in the
/etc/ntp.conf file, you can run this service on all cluster nodes to keep
their clocks synchronized. As the clock on the system drifts out of align-
ment, cluster nodes begin to disagree on the time, but running the ntpd
service will help to prevent this problem. The clock on the system must
be reasonably accurate before the ntpd daemon can begin to slew, or
adjust, it and keep it synchronized with the time found on the NTP
server. When using a distributed filesystem such as NFS, the time stored
on the NFS server and the time kept on each cluster node should be kept
synchronized. (See Chapter 16 for more information.) Also note that the
value of the hardware clock and the system time may disagree. To set the
hardware clock on your system, use the hwclock command. (Problems can
also occur if the hardware clock and the system time diverge too much.)

pcmcia

Used to recognize and configure pcmcia devices that are normally only
used on laptops (not used in this book).

portmap

Used by NFS and NIS to manage RPC connections. Required for
normal operation of the nfslocking mechanism and covered in detail
in Chapter 16.

pppoe

For Asymmetric Digital Subscriber Line (ADSL) connections. If you are
not using ADSL, disable this script.

pxe

Some diskless clusters (or diskless workstations) will boot using the PXE
protocol to locate and run an operating system (PXE stands for Preboot
eXection Environment) based on the information provided by a PXE
server. Running this service will enable your Linux machine to act as a
PXE server; however, building a cluster of diskless nodes is outside the
scope of this book.8

random

Helps your system generate better random numbers that are required
for many encryption routines. The secure shell (SSH) method of
encrypting data in a cluster environment is described in Chapter 4.

rawdevices

Used by the kernel for device management.

8 See Chapter 10 for the reasons why. A more common application of the PXE service is to use
this protocol when building Linux Terminal Server Project or LTSP Thin Clients.
26 Chapter 1

No Starch Press, Copyright © 2005 by Karl Kopper

rhnsd

Connects to the Red Hat server to see if new software is available. How
you want to upgrade software on your cluster nodes will dictate whether
or not you use this script. Some system administrators shudder at the
thought of automated software upgrades on production servers. Using a
cluster, you have the advantage of upgrading the software on a single
cluster node, testing it, and then deciding if all cluster nodes should be
upgraded. If the upgrade on this single node (called a Golden Client in
SystemImager terminology) is successful, it can be copied to all of the
cluster nodes using the cloning process described in Chapter 5. (See the
updateclient command in this chapter for how to update a node after it
has been put into production.)

rstatd

Starts rpc.rstatd, which allows remote users to use the rup command to
monitor system activity. System monitoring as described in this book will
use the Ganglia package and Mon software monitoring packages that do
not require this service.

rusersd

Lets other people see who is logged on to this machine. May be useful in
a cluster environment, but will not be described in this book.

rwall

Lets remote users display messages on this machine with the rwall com-
mand. This may or may not be a useful feature in your cluster. Both this
daemon and the next should only be started on systems running behind
a firewall on a trusted network.

rwhod

Lets remote users see who is logged on.

saslauthd

Used to provide Simple Authentication and Security Layer (SASL)
authentication (normally used with protocols like SMTP and POP).
Building services that use SASL authentication is outside the scope of
this book. To build the cluster described in this book, this service is not
required.

sendmail

Will you allow remote users to send email messages directly to cluster
nodes? For example, an email order-processing system requires each
cluster node to receive the email order in order to balance the load of
incoming email orders. If so, you will need to enable (and configure)
this service on all cluster nodes. sendmail configuration for cluster nodes
is discussed in Chapter 19.

single

Used to administer runlevels (by the init process).
Star ti ng Serv ice s 27
No Starch Press, Copyright © 2005 by Karl Kopper

smb

Provides a means of offering services such as file sharing and printer
sharing to Windows clients using the package called Samba. Configur-
ing a cluster to support PC clients in this manner is outside the scope
of this book.

snmpd

Used for Simple Network Management Protocol (SNMP) administration.
This daemon will be used in conjunction with the Mon monitoring pack-
age in Chapter 17 to monitor the health of the cluster nodes. You will
almost certainly want to use SNMP on your cluster. If you are building a
public web server, you may want to disable this daemon for security rea-
sons (when you run snmpd on a server, you add an additional way for a
hacker to try to break into your system). In practice, you may find that
placing this script as a respawn service in the /etc/inittab file provides
greater reliability than simply starting the daemon once at system boot
time. (See the example earlier in this chapter—if you use this method,
you will need to disable this init script so that the system won’t try to
launch snmpd twice.)

snmptrapd

SNMP can be configured on almost all network-connected devices to
send traps or alerts to an SNMP Trap host. The SNMP Trap host runs
monitoring software that logs these traps and then provides some mech-
anism to alert a human being to the fact that something has gone wrong.
Running this daemon will turn your Linux server into an SNMP Trap
server, which may be desirable for a system sitting outside the cluster,
such as the cluster node manager.9 A limitation of SNMP Traps, how-
ever, is the fact that they may be trying to indicate a serious problem with
a single trap, or alert, message and this message may get lost. (The SNMP
Trap server may miss its one and only opportunity to hear the alert.) The
approach taken in this book is to use a server sitting outside the cluster
(running the Mon software package) to poll the SNMP information
stored on each cluster node and raise an alert when a threshold is vio-
lated or when the node does not respond. (See Chapter 17.)

squid

Provides a proxy server for caching web requests (among other things).
squid is not used in the cluster described in this book.

sshd

Open SSH daemon. We will use this service to synchronize the files on
the servers inside the cluster and for some of the system cloning recipes
in this book (though using SSH for system cloning is not required).

9 See Part IV of this book for more information.
28 Chapter 1

No Starch Press, Copyright © 2005 by Karl Kopper

syslog

The syslog daemon logs error messages from running daemons and
programs based on configuration entries in the /etc/syslog.conf file.
The log files are kept from growing indefinitely by the anacron daemon,
which is started by an entry in the crontab file (by cron). See the
logrotate man page. Note that you can cause all cluster nodes to send
their syslog entries to a single host by creating configuration entries
in the /etc/syslog.conf file using the @hostname syntax. (See the syslog
man page for examples.) This method of error logging may, however,
cause the entire cluster to slow down if the network becomes over-
loaded with error messages. In this book, we will use the default syslog
method of sending error log entries to a locally attached disk drive to
avoid this potential problem. (We’ll proactively monitor for serious
problems on the cluster using the Mon monitoring package in Part IV
of this book.)10

tux

Instead of using the Apache httpd daemon, you may choose to run the
Tux web server. This web server attempts to introduce performance
improvements over the Apache web server daemon. This book will only
describe how to install and configure Apache.

winbindd

Provides a means of authenticating users using the accounts found on a
Windows server. This method of authentication is not used to build the
cluster in this book. See Chapter 19 for a description of alternative meth-
ods available, and also see the discussion of the ypbind init script later in
this chapter.

xfs

The X font server. If you are using only the text-based terminal (which
is the assumption throughout this book) to administer your server
(or telnet/ssh sessions from a remote machine), you will not need this
service on your cluster nodes, and you can reduce system boot time and
disk space by not installing any X applications on your cluster nodes.
See Chapter 20 for an example of how to use X applications running
on Thin Clients to access services inside the cluster.

xinetd11

Starts services such as FTP and telnet upon receipt of a remote connection
request. Many daemons are started by xinetd as a result of an incoming
TCP or UDP network request. Note that in a cluster configuration you
may need to allow an unlimited number of connections for services
started by xinetd (so that xinetd won’t refuse a client computer’s request

10 See also the mod_log_spread project at http://www.backhand.org/mod_log_spread.
11 On older versions of Linux, and some versions of Unix, this is still called inetd.
Star ti ng Serv ice s 29
No Starch Press, Copyright © 2005 by Karl Kopper

for a service) by placing the instances = UNLIMITED line in the /etc/
xinetd.conf configuration file. (You have to restart xinetd or send it a
SIGHUP signal with the kill command for it to see the changes you make
to its configuration files.)

ypbind

Only used on NIS client machines. If you do not have an NIS server,12
you do not need this service. One way to distribute cluster password and
account information to all cluster nodes is to run an LDAP server and
then send account information to all cluster nodes using the NIS system.
This is made possible by a licensed commercial program from PADL
software (http://www.padl.com) called the NIS/LDAP gateway (the
daemon is called yplapd). Using the NIS/LDAP gateway on your LDAP
server allows you to create simple cron scripts that copy all of the user
accounts out of the LDAP database and install them into the local /etc/
passwd file on each cluster node. You can then use the /etc/nsswitch.conf
file to point user authentication programs at the local /etc/passwd file,
thus avoiding the need to send passwords over the network and reducing
the impact of a failure of the LDAP (or NIS) server on the cluster. See
the /etc/nsswitch.conf file for examples and more information. Changes
to the /etc/xinetd.conf file are recognized by the system immediately
(they do not require a reboot).

NOTE These entries will not rely on the /etc/shadow file but will instead contain the encrypted
password in the /etc/passwd file.

The cron job that creates the local passwd entries only needs to
contain a line such as the following:

ypcat passwd > /etc/passwd

This command will overwrite all of the /etc/passwd entries on the
system with the NIS (or LDAP) account entries, so you will need to be
sure to create all of the normal system accounts (especially the root user
account) on the LDAP server.

An even better method of applying the changes to each server is
available through the use of the patch and diff commands. For example,
a shell script could do the following:

ypcat passwd > /tmp/passwd
diff –e /etc/passwd /tmp/passwd > /tmp/passwd.diff
patch –be /etc/passwd /tmp/passwd.diff

12 Usually used to distribute user accounts, user groups, host names, and similar information
within a trusted network.
30 Chapter 1

No Starch Press, Copyright © 2005 by Karl Kopper

These commands use the ed editor (the -e option) to modify only
the lines in the passwd file that have changed. Additionally, this script
should check to make sure the NIS server is operating normally (if no
entries are returned by the ypcat command, the local /etc/passwd file will
be erased unless your script checks for this condition and aborts). This
makes the program safe to run in the middle of the day without affecting
normal system operation. (Again, note that this method does not use the
/etc/shadow file to store password information.) In addition to the passwd
database, similar commands should be used on the group and hosts files.

If you use this method to distribute user accounts, the LDAP server
running yplapd (or the NIS server) can crash, and users will still be able
to log on to the cluster. If accounts are added or changed, however, all
cluster nodes will not see the change until the script to update the local
/etc/passwd, group, and hosts files runs.

When using this configuration, you will need to leave the ypbind
daemon running on all cluster nodes. You will also need to set the domain
name for the client (on Red Hat systems, this is done in the /etc/sysconfig/
network file).

yppasswd

This is required only on an NIS master machine (it is not required on
the LDAP server running the NIS/LDAP gateway software as described
in the discussion of ypbind in the previous list item). Cluster nodes will
normally always be configured with yppasswd disabled.

ypserv

Same as yppasswd.

In Conclusion

This chapter has introduced you to the Linux Enterprise Cluster from the
perspective of the services that will run inside it, on the cluster nodes. The
normal method of starting daemons when a system boots on a Linux system
using init scripts13 is also used to start the daemons that will run inside the
cluster. The init scripts that come with your distribution can be used on the
cluster nodes to start the services you would like to offer to your users. A key
feature of a Linux Enterprise Cluster is that all of the cluster nodes run the
same services; all nodes inside it are the same (except for their network IP
address).

In Chapter 2 I lay the foundation for understanding the Linux
Enterprise Cluster from the perspective of the network packets that will be
used in the cluster, and in the Linux kernel that will sit in front of the cluster.

13 Or rc scripts.
Star ti ng Serv ice s 31
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

2
H A N D L I N G P A C K E T S

When a packet from a client computer
arrives on a Linux server, it must pass

through the kernel before it is delivered to
a daemon or service. If a service needs to

failover from one server to another, the kernel’s
packet-handling methods must1 be the same on both
servers. Resources can therefore be said to include
kernel packet-handling methods and rules.

This chapter explains the techniques for changing the fate of network
packets inside the Linux kernel. These techniques will provide you with the
foundation for building a cluster load balancer in Part II of this book. The
cluster load balancer receives all packets for the cluster and forwards them to
the cluster nodes thanks to the (optional) code inside the kernel, called
Netfilter.

1 Technically, they do not have to be exactly the same if the backup server is more permissive.
They do, however, have to use the same packet marking rules if they rely on Netfilter’s ability to
mark packets. This is an advanced topic not discussed until Part III of this book.
No Starch Press, Copyright © 2005 by Karl Kopper

This chapter also provides sample commands that demonstrate how you
tell Netfilter to block packets before they reach the services on a Linux
server; these commands can be used on the cluster load balancer and on all
of the cluster nodes. These commands are normally not used when the
cluster and its client computers sit behind a firewall, but they should be used
on publicly accessible clusters (such as a web cluster) even when the cluster is
protected by a firewall.

The Linux kernel can also affect the fate of a network packet by its ability
to route packets. This ability is normally used on a server that has two
network interface cards. Inbound packets from an untrusted network arrive
on one interface card and are examined before they are allowed out the
second interface card that is connected to the internal, or trusted, network.

To simplify this complex topic, we will use one network hardware
configuration in all of the examples in this chapter. This hypothetical
hardware configuration has two Ethernet network interface cards. The first is
called eth0 and is on an untrusted, public network. The second is called eth1
and is connected to a private, trusted network. Later, in Part II of this book,
we’ll see how the private, trusted network can become a cluster.

Netfilter

Every packet coming into the system off the network cable is passed up
through the protocol stack, which converts the electronic signals hitting the
network interface card into messages the services or daemons can under-
stand. When a daemon sends a reply, the kernel creates a packet and sends
it out through a network interface card. As the packets are being processed
up (inbound packets) and down (outbound packets) the protocol stack,
Netfilter hooks into the Linux kernel and allows you to take control of the
packet’s fate.

A packet can be said to traverse the Netfilter system, because these hooks
provide the ability to modify packet information at several points within the
inbound and outbound packet processing. Figure 2-1 shows the five Linux
kernel Netfilter hooks on a server with two Ethernet network interfaces
called eth0 and eth1.

The routing box at the center of this diagram is used to indicate the
routing decision the kernel must make every time it receives or sends a
packet. For the moment, however, we’ll skip the discussion of how routing
decisions are made. (See “Routing Packets with the Linux Kernel” later in
this chapter for more information.)

For now, we are more concerned with the Netfilter hooks. Fortunately,
we can greatly simplify things, because we only need to know about the three
basic, or default, sets of rules that are applied by the Netfilter hooks (we will
not directly interact with the Netfilter hooks). These three sets of rules, or
chains, are called INPUT, FORWARD, and OUTPUT (written in lowercase on Linux 2.2
series kernels).
34 Chapter 2

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 2-1: The five Netfilter hooks in the Linux kernel

NOTE This diagram does not show packets going out eth0.

Netfilter uses the INPUT, FORWARD, and OUTPUT lists of rules and attempts to
match each packet passing through the kernel. If a match is found, the
packet is immediately handled in the manner described by the rule without
any attempt to match further rules in the chain. If none of the rules in the
chain match, the fate of the packet is determined by the default policy you
specify for the chain. On publicly accessible servers, it is common to set the
default policy for the input chain to DROP2 and then to create rules in the
input chain for the packets you want to allow into the system.

A Brief History of Netfilter

The Netfilter code changed dramatically from the 2.2 to the 2.4 series kernel
(but, at least in terms of the iptables syntax, it did not change very much
from the 2.4 to the 2.6 series). This means there is a big difference between
ipchains and iptables. For historical purposes, we will briefly examine both in
this section.

Routing

NF_IP_PRE_ROUTING

eth1

NF_IP_FORWARD

NF_IP_LOCAL_IN

Running daemons

NF_IP_POST_ROUTING

eth0

Netfilter

2 This used to be DENY in ipchains.
Hand li ng Packet s 35
No Starch Press, Copyright © 2005 by Karl Kopper

NOTE You can use ipchains on 2.4 kernels, but not in conjunction with the Linux Virtual
Server, so this book will describe ipchains only in connection with 2.2 series kernels.

Figure 2-2 shows the ipchains packet matching for the input, forward, and
output chains in Linux 2.2 series kernels.

Figure 2-2: ipchains in the Linux kernel

Notice how a packet arriving on eth0 and going out eth1 will have to
traverse the input, forward, and output chains. In Linux 2.4 and later series
kernels,3 however, the same type of packet would only traverse the FORWARD
chain. When using iptables, each chain only applies to one type of packet:
INPUT rules are only applied to packets destined for locally running daemons,
FORWARD rules are only applied to packets that arrived from a remote host and
need to be sent back out on the network, and OUTPUT rules are only applied
to packets that were created locally.4 Figure 2-3 shows the iptables INPUT,
FORWARD, and OUTPUT rules in Linux 2.4 series kernels.

Routing

eth1

forward

Running daemons

output

eth0

ipchains

input

3 Up to the kernel 2.6 series at the time of this writing.
4 This is true for the default “filter” table. However, iptables can also use the “mangle” table that
uses the PREROUTING and OUTPUT chains, or the “nat” table, which uses the PREROUTING, OUTPUT, and
POSTROUTING chains. The “mangle” table is discussed in Chapter 14.
36 Chapter 2

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 2-3: iptables in the Linux kernel

This change (a packet passing through only one chain depending upon
its source and destination) from the 2.2 series kernel to the 2.4 series kernel
reflects a trend toward simplifying the sets of rules, or chains, to make the
kernel more stable and the Netfilter code more sensible. With ipchains or
iptables commands (these are command-line utilities), we can use the three
chains to control which packets get into the system, which packets are
forwarded, and which packets are sent out without worrying about the
specific Netfilter hooks involved—we only need to remember when these
rules are applied. We can summarize the chains as follows:

Summary of ipchains for Linux 2.2 series kernels

Packets destined for locally running daemons:

input

Packets from a remote host destined for a remote host:

input

forward

output

Packets originating from locally running daemons:

output

Routing

eth1

forward

Running daemons

output

eth0

iptables

input
Hand li ng Packet s 37
No Starch Press, Copyright © 2005 by Karl Kopper

Summary of iptables for Linux 2.4 and later series kernels

Packets destined for locally running daemons:

INPUT

Packets from a remote host destined for a remote host:

FORWARD

Packets originating from locally running daemons:

OUTPUT

In this book, we will use the term iptables to refer to the program that is
normally located in the /sbin directory. On a Red Hat system, iptables is:

� A program in the /sbin directory

� A boot script in the /etc/init.d5 directory

� A configuration file in the /etc/sysconfig directory

The same could be said for ipchains, but again, you will only use one
method: iptables or ipchains.

NOTE For more information about ipchains and iptables, see http://www.netfilter.org. Also,
look for Rusty Russell’s Remarkably Unreliable Guides to the Netfilter Code or
Linux Firewalls by Robert L. Ziegler, from New Riders Press. Also see the section “Net-
filter Marked Packets” in Chapter 14.

Setting the Default Chain Policy

You can use the ipchains or the iptables utility to set the default policy for
each chain. These chains normally have a default policy that allows anything
to pass through (ACCEPT) for packets that are not explicitly matched by a rule
in the chain. You can change the default policy to either DROP or REJECT. DROP
means to ignore the packet, and REJECT means the sender should be told the
packet was not accepted.

This control over network packets allows you to turn any Linux
computer into a firewall for your network. In the next section, we’ll describe
how to apply firewall rules to any Linux machine and how to make these
rules permanent.

In Chapter 14, we will see how the Linux Virtual Server uses the Netfilter
hooks to gain access to network packets and manipulate them based on a
different set of criteria—namely, the criteria you establish for balancing
incoming packets across the cluster nodes.

5 Recall from Chapter 1 that /etc/init.d is a symbolic link to the /etc/rc.d/init.d directory on
Red Hat systems.
38 Chapter 2

No Starch Press, Copyright © 2005 by Karl Kopper

Using iptables and ipchains

In this section, I will provide you with the iptables (and ipchains) commands
you can use to control the fate of packets as they arrive on each cluster node.
These commands can also be used to build a firewall outside the cluster. This
is done by adding a corresponding FORWARD rule for each of the INPUT rules
provided here and installing them on the cluster load balancer. Whether you
install these rules on each cluster node, the cluster load balancer, or both is
up to you.

These commands can be entered from a shell prompt; however, they will
be lost the next time the system boots. To make the rules permanent, you
must place them in a script (or a configuration file used by your distribution)
that runs each time the system boots. Later in this chapter, you will see a
sample script.

NOTE If you are working with a new kernel (series 2.4 or later), use the iptables rules provided
(the ipchains rules are for historical purposes only).

Clear Existing Rules
Before adding any rules to the kernel, we want to start with a clean, rule-free
configuration. ipchains and iptables are useful commands to use when
troubleshooting and building a new configuration if you need to start over
and don’t want to reboot the system.

Use one of these commands (ipchains on 2.2 series kernels and iptables
on 2.4 and later series kernels) to erase all rules in all three chains (INPUT,
FORWARD, and OUTPUT):

#ipchains -F
#iptables –F

Set the Default INPUT Chain Policy
Use one of these commands to set the default INPUT policy to not allow
incoming packets:

#ipchains -P input DENY
#iptables -P INPUT DROP

Remember, if you create routing rules to route packets back out of the sys-
tem (described later in this chapter), you may also want to set the default FOR-
WARD policy to DROP and explicitly specify the criteria for packets that are allowed
to pass through. This is how you build a secure load balancer (in conjunction
with the Linux Virtual Server software described in Part III of this book).

Recall that the 2.2 series kernel ipchains input policy affects both locally
destined packets and packets that need to be sent back out on the network,
whereas the 2.4 and later series kernel iptables INPUT policy affects only locally
destined packets.
Hand li ng Packet s 39
No Starch Press, Copyright © 2005 by Karl Kopper

NOTE If you need to add iptables (or ipchains) rules to a system through a remote telnet or
SSH connection, you should first enter the ACCEPT rules (shown later in this section) to
allow your telnet or SSH to continue to work even after you have set the default policy to
DROP (or DENY).

FTP
Use these rules to allow inbound FTP connections from anywhere:

#ipchains –A input –i eth0 -p tcp -s any/0 1024:65535 -d MY.NET.IP.ADDR 21 -j ACCEPT
#ipchains –A input –i eth0 -p tcp -s any/0 1024:65535 -d MY.NET.IP.ADDR 20 -j ACCEPT
#iptables -A INPUT -i eth0 -p tcp -s any/0 --sport 1024:65535 -d MY.NET.IP.ADDR

--dport 21 -j ACCEPT
#iptables -A INPUT -i eth0 -p tcp -s any/0 --sport 1024:65535 -d MY.NET.IP.ADDR

--dport 20 -j ACCEPT

Depending on your version of the kernel, you will use either ipchains or
iptables. Use only the two rules that match your utility.

Let’s examine the syntax of the two iptables commands more closely:

-A INPUT

Says that we want to add a new rule to the input filter.

-i eth0

Applies only to the eth0 interface. You can leave this off if you want an
input rule to apply to all interfaces connected to the system. (Using
ipchains, you can specify the input interface when you create a rule
for the output chain, but this is no longer possible under iptables
because the output chain is for locally created packets only.)

-p tcp

This rule applies to the TCP protocol (required if you plan to block or
accept packets based on a port number).

-s any/0 and --sport 1024:65535

These arguments say the source address can be anything, and the source
port (the TCP/IP port we will send our reply to) can be anything between
1024 and 65535. The /0 after any means we are not applying a subnet
mask to the IP address. Usually, when you specify a particular IP address,
you will need to enter something like:

ALLOWED.NET.IP.ADDR/255.255.255.0

or

ALLOWED.NET.IP.ADDR/24

where ALLOWED.NET.IP.ADDR is an IP address such as 209.100.100.3.
In both of these examples, the iptables command masks off the first

24 bits of the IP address as the network portion of the address.
40 Chapter 2

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE For the moment, we will skip over the details of a TCP/IP conversation. What is impor-
tant here is that a normal inbound TCP/IP request will come in on a privileged port (a
port number defined in /etc/services and in the range of 1-1023) and ask you to
send a reply back on an unprivileged port (a port in the range of 1024 to 65535).

-d MY.NET.IP.ADDR and --dport 21
These two arguments specify the destination IP address and destination
port required in the packet header. Replace MY.NET.IP.ADDR with the IP
address of your eth0 interface, or enter 0.0.0.0 if you are leaving off the
-i option and do not care which interface the packet comes in on. (FTP
requires both ports 20 and 21; hence the two iptables commands above.)

-j ACCEPT

When a packet matches a rule, it drops out of the chain (the INPUT chain
in this case). At that point, whatever you have entered here for the -j
option specifies what happens next to the packet. If a packet does not
match any of the rules, the default filter policy, DENY or DROP in this case,
is applied.

Passive FTP
The rules just provided for FTP do not allow for passive FTP connections to
the FTP service running on the server. FTP is an old protocol that dates from
a time when university computers connected to each other without interven-
ing firewalls to get in the way. In those days, the FTP server would connect
back to the FTP client to transmit the requested data. Today, most clients sit
behind a firewall, and this is no longer possible. Therefore, the FTP protocol
has evolved a new feature called passive FTP that allows the client to request
a data connection on port 21, which causes the server to listen for an incom-
ing data connection from the client (rather than connect back to the client
as in the old days). To use passive FTP, your FTP server must have an iptables
rule that allows it to listen on the unprivileged ports for one of these passive
FTP data connections. The rule to do this using iptables looks like this:

#iptables -A INPUT -i eth0 -p tcp -s any/0 --sport 1024:65535 -d MY.NET.IP.ADDR
--dport 1024:65535 -j ACCEPT

DNS
Use this rule to allow inbound DNS requests to a DNS server (the “named” or
BIND service):

#ipchains –A input –i eth0 -p udp -s any/0 1024:65535 -d MY.NET.IP.ADDR 53 -j ACCEPT
#ipchains –A input –i eth0 -p tcp -s any/0 1024:65535 -d MY.NET.IP.ADDR 53 -j ACCEPT
#iptables -A INPUT -i eth0 -p udp -s any/0 --sport 1024:65535 -d MY.NET.IP.ADDR

--dport 53 -j ACCEPT
#iptables -A INPUT -i eth0 -p tcp -s any/0 --sport 1024:65535 -d MY.NET.IP.ADDR

--dport 53 -j ACCEPT
Hand li ng Packet s 41
No Starch Press, Copyright © 2005 by Karl Kopper

Telnet

Use this rule to allow inbound telnet connections from a specific IP address:

#ipchains -A input -i eth0 -p tcp -s 209.100.100.10 1024:65535
-d MY.NETWORK.IP.ADDR 23 -j ACCEPT

#iptables -A INPUT -i eth0 -p tcp -s 209.100.100.10 --sport 1024:65535
-d MY.NETWORK.IP.ADDR --dport 23 -j ACCEPT

In this example, we have only allowed the client computer using IP
address 209.100.100.10 telnet access into the system. You can change the IP
address of the client computer and enter this command repeatedly to grant
telnet access to additional client computers.

SSH

Use this rule to allow SSH connections:

ipchains -A input -i eth0 -p tcp -s 209.200.200.10 1024:65535
-d MY.NETWORK.IP.ADDR 22 -j ACCEPT

iptables -A INPUT -i eth0 -p tcp -s 209.200.200.10 --sport 1024:65535
-d MY.NETWORK.IP.ADDR --dport 22 -j ACCEPT

Again, replace the example 209.200.200.10 address with the IP address
you want to allow in, and repeat the command for each IP address that
needs SSH access. The SSH daemon (sshd) listens for incoming requests on
port 22.

Email

Use this rule to allow email messages to be sent out:

ipchains -A input -i eth0 -p tcp ! -y -s EMAIL.NET.IP.ADDR 25
-d MY.NETWORK.IP.ADDR 1024:65535 -j ACCEPT

iptables -A INPUT -i eth0 -p tcp ! --syn -s EMAIL.NET.IP.ADDR --sport 25
-d MY.NETWORK.IP.ADDR --dport 1024:65535 -j ACCEPT

This rule says to allow Simple Mail Transport Protocol (SMTP) replies
to our request to connect to a remote SMTP server for outbound mail
delivery. This command introduces the ! --syn syntax, an added level of
security that confirms that the packet coming in is really a reply packet to
one we’ve sent out.

The ! -y syntax says that the acknowledgement flag must be set in the
packet header—indicating the packet is in acknowledgement to a packet
we’ve sent out. (We are sending the email out, so we started the SMTP
conversation.)
42 Chapter 2

No Starch Press, Copyright © 2005 by Karl Kopper

This rule will not allow inbound email messages to come in to the
sendmail service on the server. If you are building an email server or a server
capable of processing inbound email messages (cluster nodes that do email
order entry processing, for example), you must allow inbound packets to
port 25 (without using the acknowledgement flag).

HTTP

Use this rule to allow inbound HTTP connections from anywhere:

#ipchains -A input -i eth0 -p tcp -d MY.NETWORK.IP.ADDR 80 -j ACCEPT
#iptables -A INPUT -i eth0 -p tcp -d MY.NETWORK.IP.ADDR --dport 80 -j ACCEPT

To allow HTTPS (secure) connections, you will also need the following
rule:

#ipchains -A input -i eth0 -p tcp -d MY.NETWORK.IP.ADDR 443 -j ACCEPT
#iptables -A INPUT -i eth0 -p tcp -d MY.NETWORK.IP.ADDR --dport 443 -j ACCEPT

ICMP

Use this rule to allow Internet Control Message Protocol (ICMP) responses:

ipchains -A input -i eth0 -p icmp -d MY.NETWORK.IP.ADDR -j ACCEPT
iptables -A INPUT -i eth0 -p icmp -d MY.NETWORK.IP.ADDR -j ACCEPT

This command will allow all ICMP messages, which is not something you
should do unless you have a firewall between the Linux machine and the
Internet with properly defined ICMP filtering rules. Look at the output from
the command iptables -p icmp -h (or ipchains icmp -help) to determine which
ICMP messages to enable. Start with only the ones you know you need. (You
probably should allow MTU discovery, for example.)

Review and Save Your Rules

To view the rules you have created, enter:

ipchains –L -n
iptables -L -n

To save your iptables rules to the /etc/sysconfig/iptables file on Red Hat
so they will take effect each time the system boots, enter:

#/etc/init.d/iptables save

NOTE The command service iptables save would work just as well here.
Hand li ng Packet s 43
No Starch Press, Copyright © 2005 by Karl Kopper

However, if you save your rules using this method as provided by Red
Hat, you will not be able to use them as a high-availability resource.6 If the
cluster load balancer uses sophisticated iptables rules to filter network
packets, or, what is more likely, to mark certain packet headers for special
handling,7 then these rules may need to be on only one machine (the load
balancer) at a time.8 If this is the case, the iptables rules should be placed in
a script such as the one shown at the end of this chapter and configured as a
high-availability resource, as described in Part II of this book.

Routing Packets with the Linux Kernel

As shown in Figures 2-2 and 2-3, all inbound and outbound network packets
must pass through the kernel’s routing rules. And, like the list of rules in an
iptables chain, the list of routing rules is contained in an ordered list that is
examined only until a packet matches one of the rules.

Like the rules in an iptables chain, each routing rule includes:

� The criteria used to match packets

� Instructions telling the kernel what to do with packets that match this
criteria

The order of the routing rules is important because the kernel stops
searching the routing table when a packet matches one of the routing rules.
Because the last rule in the routing table will normally match any packet, it is
called the default route (or default gateway).

When you assign an IP address to one of the network interface cards, the
kernel automatically adds a routing rule for the interface. The kernel
constructs the routing table entry so it will match all packets containing a
destination address that falls within the range of IP addresses allowed on the
network or subnet that the interface is connected to.

In a typical configuration, routing table entries are constructed that will
match packets based on the packet’s destination IP address. This type of
packet is typically matched for:

� A particular destination network

� A particular destination host

� Any destination or host

NOTE In the following sections, the add argument to the route command adds a routing rule.
To delete or remove a routing rule after it has been added, use the same command but
change the add argument to del.

6 This is because the standard Red Hat iptables init script does not return something the
Heartbeat program will understand when it is run with the status argument. For further
discussion of this topic, see the example script at the end of this chapter.
7 Marking packets with Netfilter is covered in Chapter 14.
8 This would be true in an LVS-DR cluster that is capable of failing over the load-balancing
service to one of the real servers inside the cluster. See Chapter 15.
44 Chapter 2

No Starch Press, Copyright © 2005 by Karl Kopper

Matching Packets for a Particular Destination Network
If we had to type in the command to add a routing table entry for a NIC
connected to the 209.100.100.0 network, the command would look like this
(we do not, because the kernel will do this for us automatically):

#/sbin/route add --net 209.100.100.0 netmask 255.255.0.0 dev eth0

This command adds a routing table entry to match all packets destined
for the 209.100.100.0 network and sends them out the eth0 interface.

If we also had a NIC called eth1 connected to the 172.24.150.0 network,
we would use the following command as well:

#/sbin/route add --net 172.24.150.0. netmask 255.255.255.0 dev eth1

With these two routing rules in place, the kernel can send and receive
packets to any host connected to either of these two networks. If this machine
needs to also forward packets that originate on one of these networks to the
other network (the machine is acting like a router), you must also enable the
kernel’s packet forwarding feature with the following command:

#/bin/echo 1 > /proc/sys/net/ipv4/ip_forward

As we will see in Part III of this book, this kernel capability is also a key
technology that enables a Linux machine to become a cluster load balancer.

Matching Packets for a Particular Destination Host
Now let’s assume we have a Linux host called Linux-Host-1 with two NICs
connected to two different networks. We want to be able to send packets to
Linux-Host-2, which is not physically connected to either of these two net-
works (see Figure 2-4). If we can only have one default gateway, how will the
kernel know which NIC and which router to use?

If we only need to be able to send packets to one host on the
192.168.150.0 network, we could enter a routing command on Linux-Host-1
that will match all packets destined for this one host:

#/sbin/route add -host 192.168.150.33 gw 172.24.150.1

This command will force all packets destined for 192.168.150.33 to the
internal gateway at IP address 172.24.150.1. Assuming that the gateway is
configured properly, it will know how to forward the packets it receives from
Linux-Host-1 to Linux-Host-2 (and vice versa).

If, instead, we wanted to match all packets destined for the 192.168.150.0
network, and not just the packets destined for Linux-Host-2, we would enter a
routing command like this:

#/sbin/route add --net 192.168.150.0 netmask 255.255.255.0 gw 172.24.150.1
Hand li ng Packet s 45
No Starch Press, Copyright © 2005 by Karl Kopper

NOTE In both of these examples, the kernel knows which physical NIC to use thanks to the
rules described in the previous section that match packets for a particular destination
network. (The 172.24.150.1 address will match the routing rule added for the
172.24.150.0 network that sends packets out the eth1 interface.)

Figure 2-4: Linux firewall and router example network

Matching Packets for Any Destination or Host

As described previously, the last rule in the routing table, the default route, is
normally used to match all packets regardless of their destination address
and force them to a router or internal gateway device. The command to
create this type of routing rule looks like this:

#/sbin/route add --default gw 172.24.150.1

This routing rule causes the kernel to send packets that do not match any
of the previous routing rules to the internal gateway at IP address 172.24.150.1.

If Linux-Host-1 needs to send packets to the Internet through the router
(209.100.100.1), and it also needs to send packets to any host connected to
the 192.168.150.0 network, use the following commands:

#/sbin/ifconfig eth0 209.100.100.3 netmask 255.255.255.0
#/sbin/ifconfig eth1 172.24.150.3 netmask 255.255.255.0
#/sbin/route add -net 192.168.150.0 netmask 255.255.255.0 gw 172.24.150.1
#/sbin/route add default gw 209.100.100.1

The first two commands assign the IP addresses and network masks
to the eth0 and eth1 interfaces and cause the kernel to automatically add
routing table entries for the 209.100.100.0 and 172.24.150.0 networks.

Linux-Host-1

Internet
router

eth1eth0

eth0

Internal
gateway

209.100.100.1

209.100.100.0

209.100.100.3 172.24.150.3

172.24.150.0

172.24.150.1

192.168.150.0

192.168.150.33
46 Chapter 2

No Starch Press, Copyright © 2005 by Karl Kopper

The third command causes the kernel to send packets for the 192.168.150.0
network out the eth1 network interface to the 172.24.150.1 gateway device.
Finally, the last command matches all other packets, and in this example,
sends them to the Internet router.

To View Your Routing Rules

To view your list of routing rules, use any of the following three commands:

#netstat –rn
#route –n
#ip route list

The output of the first two commands (which may be slightly more
readable than the list produced by the ip command) looks like this:

Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
209.100.100.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
192.168.150.0 172.24.150.1 255.255.255.0 UG 0 0 0 eth1
172.24.150.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 209.100.100.1 0.0.0.0 UG 0 0 0 eth0

Notice that the destination address for the final routing rule is 0.0.0.0,
which means that any destination address will match this rule. (You’ll find
more information for this report on the netstat and route man pages.)

Making Your Routing Rules Permanent

Like the Netfilter iptables rules, the routing rules do not survive a system
reboot. To make your routing rules permanent, place them into a script (and
add them to the boot process with chkconfig or ntsysv, as described in
Chapter 1) or use the method provided by your distribution.

iptables and Routing Resource Script

As with iptables, the standard Red Hat method of saving the routing rules is
not the best one to use when you need your rules to failover from one server
to another.9 In a cluster configuration, we want to enable and disable packet
handling methods just like any other service. Let’s therefore expand our
definition of a service to include capabilities offered inside the kernel.
(Chapter 3 describes how to configure capabilities within the Linux kernel
and recompile it.)

9 Red Hat uses the network init script to enable routing rules. The routing rules cannot be
disabled or stopped without bringing down all network communication when using the
standard Red Hat init script.
Hand li ng Packet s 47
No Starch Press, Copyright © 2005 by Karl Kopper

To failover kernel capabilities such as the iptables and routing rules, we
need to use a script that can start and stop them on demand. This can be done
for the kernel’s packet-handling service, as we’ll call it, with a script like this:

#!/bin/bash
#
Packet Handling Service
#
chkconfig 2345 55 45
description: Starts or stops iptables rules and routing

case "$1" in
start)

Flush (or erase) the current iptables rules
/sbin/iptables –F
/sbin/iptables --table nat –flush
/sbin/iptables --table nat --delete-chain

Enable the loopback device for all types of packets
(Normally for packets created by local daemons for delivery
to local daemons)
/sbin/iptables -A INPUT -i lo -p all -j ACCEPT
/sbin/iptables -A OUTPUT -o lo -p all -j ACCEPT
/sbin/iptables -A FORWARD -o lo -p all -j ACCEPT

Set the default policies
/sbin/iptables -P INPUT DROP
/sbin/iptables -P FORWARD DROP
/sbin/iptables -P OUTPUT ACCEPT

NAT
/sbin/iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Allow inbound packets from our private network
/sbin/iptables -A INPUT -i eth1 -j ACCEPT
/sbin/iptables -A FORWARD -i eth1 -j ACCEPT

Allow packets back in from conversations we initiated
 # from the private network.

/sbin/iptables -A FORWARD -i eth0 --match state --state ESTABLISHED,RELATED -j ACCEPT
/sbin/iptables -A INPUT --match state --state ESTABLISHED,RELATED -j ACCEPT

Allow Sendmail and POP (from anywhere, but really what we
are allowing here is inbound connections on the eth0 interface).
(Sendmail and POP are running locally on this machine).
/sbin/iptables -A INPUT --protocol tcp --destination-port 25 -j ACCEPT
/sbin/iptables -A INPUT --protocol tcp --destination-port 110 -j ACCEPT

Routing Rules --
48 Chapter 2

No Starch Press, Copyright © 2005 by Karl Kopper

Route packets destined for the 192.168.150.0 network using the internal
gateway machine 172.24.150.1
/sbin/route add -net 192.168.150.0 netmask 255.255.255.0 gw 172.24.150.1

By default, if we don’t know where a packet should be sent we
assume it should be sent to the Internet router.
/sbin/route add default gw 209.100.100.1

Now that everything is in place we allow packet forwarding.
echo 1 > /proc/sys/net/ipv4/ip_forward

 ;;
stop)
 # Flush (or erase) the current iptables rules
 /sbin/iptables –F

Set the default policies back to ACCEPT
(This is not a secure configuration.)
/sbin/iptables -P INPUT ACCEPT
/sbin/iptables -P FORWARD ACCEPT
/sbin/iptables -P OUTPUT ACCEPT

Remove our routing rules.
 /sbin/route del -net 192.168.150.0 netmask 255.255.255.0 gw 172.24.150.1
 /sbin/route del default gw 209.100.100.1

Disable packet forwarding
 echo 0 > /proc/sys/net/ipv4/ip_forward
;;
status)
 enabled=`/bin/cat /proc/sys/net/ipv4/ip_forward`
 if ["$enabled" -eq 1]; then
 echo "Running"
 else
 echo "Down"
 fi
;;
*)
 echo "Requires start, stop or status"
;;
esac

This script demonstrates another powerful iptables capability: the ability
to do network address translation or NAT to masquerade internal hosts. In
this example, all hosts sending requests out to the Internet through Linux-
Host-1 will have their IP addresses (the return or source address in the packet
header) converted to the source IP address of the Linux-Host-1 machine. This
is a common and effective way to prevent crackers from attacking internal
hosts—the internal hosts use an IP address that cannot be routed on the
Hand li ng Packet s 49
No Starch Press, Copyright © 2005 by Karl Kopper

Internet10 and the NAT machine, using one public IP address, appears to send
all requests to the Internet. (This rule is placed in the POSTROUTING Netfilter
chain, or hook, so it can apply the masquerade for outbound packets going
out eth1 and then de-masquerade the packets from Internet hosts as their
replies are returned back through eth1. See the NF_IP_POSTROUTING hook in
Figure 2-1 and imagine what the drawing would look like if it were depicting
packets going in the other direction—from eth1 to eth0.)

The iptables’ ability to perform network address translation is another
key technology that enables a cluster load balancer to forward packets to
cluster nodes and reply to client computers as if all of the cluster nodes were
one server (see Chapter 12).

This script also introduces a simple way to determine whether the packet
handling service is active, or running, by checking to see whether the
kernel’s flag to enable packet forwarding is turned on (this flag is stored in
the kernel special file /proc/sys/net/ipv4/ip_forward).

To use this script, you can place it in the /etc/init.d directory11 and
enter the command:

#/etc/init.d/routing start

NOTE The command service routing start would work on a Red Hat system.

And to check to see whether the system has routing or packet handling
enabled, you would enter the command:

#/etc/init.d/routing status

NOTE In Part II of this book, we will see why the word Running was used to indicate packet
handling is enabled.12

The ip Command
Advanced routing rules can be built using the ip command. Advanced
routing rules allow you to do things like match packets based on their source
IP address, match packets based on a number (or mark) inserted into the
packet header by the iptables utility, or even specify what source IP address
to use when sending packets out a particular interface. (We’ll cover packet
marking with iptables in Chapter 14. If you find that you are reaching
limitations with the route utility, read about the ip utility in the “Advanced
Routing HOWTO.”13)

NOTE To build the cluster described in this book, you do not need to use the ip command.

10 RFC 1918 IP address ranges will be discussed in more detail in Chapter 12.
11 This script will also need to have execute permissions (which can be enabled with the
command: #chmod 755 /etc/init.d/routing).
12 So the Heartbeat program can manage this resource. Heartbeat expects one of the following:
Running, running, or OK to indicate the service for the resource is running.
13 See http://lartc.org.
50 Chapter 2

No Starch Press, Copyright © 2005 by Karl Kopper

In Conclusion

One of the distinguishing characteristics of a Linux Enterprise Cluster is that
it is built using packet routing and manipulation techniques. As I’ll describe
in Part III, Linux machines become cluster load balancers or cluster nodes
because they have special techniques for handling packets. In this chapter
I’ve provided you with a brief overview of the foundation you need for
understanding the sophisticated cluster packet-handling techniques that will
be introduced in Part III.
Hand li ng Packet s 51
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

3
C O M P I L I N G T H E K E R N E L

In this chapter I’ll describe how to compile
a Linux kernel. For many system admin-

istrators not familiar with Linux, this may
sound like a risky thing to do on a server that

will be used in production, but once you have
done it a few times you’ll understand one of the
reasons why Linux is so powerful: you have complete
control over the operating system.

I could say a lot more about the benefits of having the source code of
your operating system, but we’ll save that for later. For now, we’ll focus on
what you need to be able to put your own Linux kernel into production.

To install a Linux kernel you need to do five things:

1. Get the source code.

2. Set the options you want.

3. Compile the code.

4. Install the object code.

5. Configure the boot loader.
No Starch Press, Copyright © 2005 by Karl Kopper

What You Will Need

Before you compile the kernel, you’ll need to install the gcc compiler and its
dependencies. (This software is not included with this book because your
distribution should already contain it.) Here is a list of packages that are
required to compile the kernel (this list is taken from the Red Hat
distribution):

� binutils

� cpp

� gcc (check the README file included with the kernel source code to
find out which version of the gcc compiler is required1).

� glibc-debug

� glibc-devel

� glibc-kernelheaders

� modutils (for kernel versions in the 2.4 series) or module-init-utils (for
kernel versions in the 2.6 series)

If you use a text-based terminal, you will also need to have the ncurses
package installed so that the make menuconfig command will work. Two RPM
packages are required for this on Red Hat systems:

� ncurses

� ncurses-devel

Once you’ve installed these packages, you’re ready to begin. (If you have
dependency problems when installing these package, see Appendix D for
some tips.)

Step 1: Get the Source Code

You’ll have to decide whether to use the “stock” version of the Linux source
code or the kernel source code included with your distribution. Here are a
few of the pros and cons of each method.

Using the Stock Kernel

Pros of using the stock kernel:

� You can apply your own patches to customize the kernel.2

� It is supported by the entire kernel-development community.

� It allows more control over which patches are applied to your system.

� You can decide which kernel version you want to use.

1 Each kernel release should only be compiled with the version of gcc specified in the README
file.
2 For example, you can apply the hidden loopback interface kernel patch that we’ll use to build
the real servers inside the cluster in Part III of this book.
54 Chapter 3

No Starch Press, Copyright © 2005 by Karl Kopper

Con of using the stock kernel: It may invalidate support from your
distribution vendor.

Using the Kernel Supplied with Your Distribution

Pros of using the distribution kernel:

� It is usually supported by your distribution vendor (though the vendor
may not support it if you recompile it with changes).

� It is known to compile.

� It is already running on your system.

� It is easy to install.

� It has been tested by your distribution vendor and is likely to contain bug
fixes that are not yet a part of the stock version of the kernel.

Cons of using the distribution kernel:

� You may not be able to apply kernel patches.

� It may have bugs introduced by your distribution vendor that are not
found in the stock version of the kernel, and you may depend on your
distribution vendor to fix them.

Decide Which Kernel Version to Use

If you use the kernel source code supplied by your vendor, you won’t have
many decisions to make when it comes to picking a kernel version to use;
your distribution vendor will do that for you. However, if you decide to use
the stock version of the kernel, you’ll have to do a little more research to
determine which kernel version to use.

You can use the following command to see which kernel version you are
currently running:

#uname -a

NOTE If you decide to download your own kernel, select an even-numbered one (2.2, 2.4, 2.6,
and so on). Even-numbered kernels are considered the stable ones.

Here are sample commands to copy the kernel source code from the
CD-ROM included with this book onto your system’s hard drive:

#mount /mnt/cdrom
#cd /mnt/cdrom/chapter3
#cp linux-*.tar.gz /usr/src
#cd /usr/src
#tar xzvf kernel-*

NOTE Leave the CD-ROM mounted until you complete the next step.
Compil ing the Kernel 55
No Starch Press, Copyright © 2005 by Karl Kopper

Now you need to create a symbolic link so that your kernel source code
will appear to be in the /usr/src/linux directory. But first you must remove
the existing symbolic link. The commands to complete this step look like this:

#rm /usr/src/linux
#ln -s /usr/src/linux-<version> /usr/src/linux
#cd /usr/src/linux

NOTE The preceding rm command above will not remove /usr/src/linux if it is a directory
instead of a file. (If /usr/src/linux is a directory on your system, move it instead with
the mv command.)

You should now have your shell’s current working directory set to the top
level directory of the kernel source tree, and you’re ready to go on to the
next step.

Step 2: Set the Options You Want

Your actions here will depend upon whether you decide to install a new
kernel, upgrade your existing kernel source code, or patch your existing
kernel source code.

Installing a New Kernel
If you decide to install a new kernel (rather than patch or upgrade your
existing one), you must first clean the source code tree of any files left
behind from previous kernel compilations with the make clean command.
Then use the make mrproper command to erase all .config files from the top
level of the source code directory tree so that you can start with a clean slate.
The make oldconfig command is then used to build a fresh .config file from
scratch. Thus, the commands you would enter in the top level of the kernel
source tree to prepare it for a new compilation are as follows:

#make clean
#make mrproper
make oldconfig

Upgrading or Patching the Kernel
If you decide to upgrade or patch your existing kernel, save a copy of your
existing /usr/src/linux/.config file first. Select an archival directory that you’ll
remember, and use it to store your old .config files in case you ever need to
go back to an old kernel configuration. For example, to save the current
.config file from the top level of your kernel source tree to the /boot
directory, you would use a command that looks like this:

#cp .config /boot/config-<version>
56 Chapter 3

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE When upgrading to a newer version of the kernel, you can copy your old .config file to
the top level of the new kernel source tree and then issue the make oldconfig command
to upgrade your .config file to support the newer version of the kernel.

Upgrading a Kernel from a Distribution Vendor

If you are upgrading your existing kernel source code, and this kernel source
code was supplied by your distribution vendor, you should locate the .config
file that was used to originally build the kernel you are currently running on
your system. The distribution vendor may have left this configuration file in
the top level of their kernel source distribution tree, or they may have a
separate directory where they place a variety of .config files for different
hardware architectures.

When you find this configuration file, be sure to place it in the top-level
directory of your kernel source tree into the file .config. If you are upgrading
to a newer version of the kernel, you should then issue the command:

#make oldconfig

This command will prompt you for any kernel options that have changed
since the .config file was originally created by your distribution vendor, so it
never hurts to run this command (even when you are not upgrading your
kernel) to make sure you are not missing any of the options required to
compile your kernel.

NOTE In the top of the kernel source tree you’ll also find a Makefile. You can edit this file and
change the value of the EXTRAVERSION number that is specified near the top of the
file. If you do this, you will be assigning a string of characters that will be added to the
end of the kernel version number. Specifying an EXTRAVERSION number is optional,
but it may help you avoid problems when your boot drive is a SCSI device (see the “SCSI
Gotchas” section near the end of this chapter).

Set Your Kernel Options

You now need to set your kernel options regardless of whether you installed a
new kernel, are upgrading your existing kernel source code, or are patching
your existing kernel source code.

You select the options you want to enable in your kernel from a text
console screen by running the command:

#make menuconfig

One of the most important options you can select from within the make
menuconfig utility is whether or not your kernel compiles as a monolithic or
a modular kernel. When you specify the option to compile the kernel as a
modular kernel (see “A Note About Modular Kernels” for details), a large
portion of the compiled kernel code is stored into files in the /lib/modules
Compil ing the Kernel 57
No Starch Press, Copyright © 2005 by Karl Kopper

directory on the hard drive, and it is only used when it is needed. If you select
the option to compile the kernel as a monolithic kernel (you disable
modular support in the kernel), then all of the kernel code will be compiled
into a single file.

Knowing which of the other kernel options to enable or disable could be
the subject of another book as thick as this one, so we won’t go into much
detail here. However, if you are using a 2.4 kernel, you may want to start by
selecting nearly all of the kernel options available and building a modular
kernel. This older kernel code is likely to compile (thanks to the efforts of
thousands of people finding and fixing problems), and this modular kernel
will only load the kernel code (the modules) necessary to make the system
run. Newer kernels, on the other hand, may require a more judicious
selection of options to avoid kernel compilation problems.

NOTE The best place to find information about the various kernel options is to look at the
inline kernel help screens available with the make menuconfig command. These help
screens usually also contain the name of the module that will be built when you compile
a modular kernel.

To continue our example of using the kernel source code supplied on
the CD-ROM, enter the following lines from the top of the kernel source tree:

#cp /mnt/cdrom/chapter3/sample-config .config
#umount /mnt/cdrom
#make oldconfig
#make menuconfig3

3 If the make menuconfig command complains about a clock skew problem, check to make sure
your system time is correct, and use the hwclock command to force your hardware clock to match
your system time. See the hwclock manual page for more information.

A N O T E A B O U T M O DU L A R K E R N E L S

Modular kernels require more effort to implement when using a SCSI boot disk (see
“SCSI Gotchas” later in this chapter). However, they are more efficient because they
load or run only the kernel modules required, as they are needed. For example, the
CD-ROM driver will be unloaded from memory when the CD-ROM drive has not
been used for a while. Modular kernels allow you to compile a large number of
modules for a variety of hardware configurations (several different NIC drivers, for
example) and build a one-size-fits-all, generic kernel.

To build a modular kernel, you simply select Enable Loadable Module Support
on the Loadable Module Support menu when you run the make menuconfig utility. As
a general rule, you should always enable loadable module support1 so you can then
decide as you select each kernel option whether it will be compiled into the kernel, by
placing an asterisk (*) next to it, or compiled as a module, by placing an M next to it.

1 Packages such as VMware require loadable module support.
58 Chapter 3

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE The .config file placed into the top of the kernel source tree is hidden from the normal
ls command. You must use ls -a to see it.

The sample-config file used in the previous command will build a
modular kernel, but you can change it to create a monolithic kernel by
disabling loadable module support. To do so, deselect it on the Loadable
Module Support submenu. Be sure to enter the Processor Type and Features
submenu and select the correct type of processor for your system, because
even a modular kernel only compiles for one type of processor (or family of
processors). See the contents of the file /proc/cpuinfo to find out which CPU
the kernel thinks your system is using. Also, you normally should always select
SMP support even if your system has only one CPU.

NOTE When building a monolithic kernel, you can reduce the size of the kernel by deselecting
the kernel options not required for your hardware configuration. If you are currently
running a modular kernel, you can see which modules are currently loaded on your sys-
tem by using the lsmod command. Also see the output of the following commands to
learn more about your current configuration:

#lspci –v | less
#dmesg | less
#cat /proc/cpuinfo
#uname –m

Once you have saved your kernel configuration file changes, you are
ready to begin compiling your new kernel.

Step 3: Compile the Code

To compile your kernel, you first need to convert the kernel source code files
into object code with the gcc compiler, using the make utility.

If you are using the 2.4 kernel supplied with this book, start with the make
dep command to build the kernel module dependencies. However, you can
skip this step if you are compiling a kernel from the 2.6 series.

Also, you must clean the kernel source tree regardless of which version
of the kernel you are using, whether you are building a modular or mono-
lithic kernel, or whether you are patching, upgrading, or compiling a new
kernel. Use the make clean command, which will clean the kernel source tree
and remove any temporary files that were left behind by a previous kernel
compilation.

Once the kernel source tree is clean, you are ready to tell the gcc compiler
to build a new kernel with the make bzImage command; then, if you are building
a modular kernel, you’ll need to add the make modules and make modules_install
commands to build and install the kernel modules into the /lib/modules
directory.
Compil ing the Kernel 59
No Starch Press, Copyright © 2005 by Karl Kopper

To store the lengthy output of the compilation commands in a file,
precede the make commands with the nohup command, which automatically
redirects output to a file named nohup.out. If you have difficulty compiling the
kernel, you can enter each make command separately and examine the output
of the nohup.out file after each command completes to try and locate the
source of the problem. In the following example, all of the make commands
are combined into one command to save keystrokes.

#cd /usr/src/linux
#nohup make dep clean bzImage modules modules_install

NOTE If you are building a monolithic kernel, simply leave off the modules modules_install
arguments, and if you are building a 2.6 kernel, leave off the dep argument.

Make sure that the kernel compiles successfully by looking at the end of
the nohup.out file with this command:

#tail nohup.out

If you see error messages at the end of this file, examine earlier lines in
the file until you locate the start of the problem. If the nohup.out file does not
end with an error message, you should now have a file called bzImage located
in the /usr/src/linux/arch/*/boot (where * is the name of your hardware
architecture). For example, if you are using Intel hardware the compiled
kernel is now in the file /usr/src/linux/arch/i386/boot/bzImage. You are now
ready to install your new kernel.

Step 4: Install the Object Code and Configuration File

The make modules_install command has already done part of this installation
step, placing all of the modular kernel executables into a /lib/modules
subdirectory based on the version number of the kernel. Now you just need
to install the main part of the kernel by copying the kernel executable from
the kernel source tree to a directory where your boot loader can find it at
system boot time. Because boot loaders normally look for the kernel in the
/boot directory, we’ll place a copy of the kernel executable there.

Enter this command to copy the kernel executable file you just
compiled, named bzImage, to where your boot loader expects to find it when
the system first starts:

#cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz-<version>

Replace <version> in this example command with the version number of
your kernel, and i386 with the proper name of the hardware architecture you
are using. (Remember to also add the EXTRAVERSION number if you
specified one in the Makefile in Step 2.)
60 Chapter 3

No Starch Press, Copyright © 2005 by Karl Kopper

Install the System.map

Your system may need a file called System.map when it loads a module to
resolve any module dependencies (a module may require other modules for
normal operation).4

Copy the System.map file into place with this command:

#cp /usr/src/linux/System.map /boot/System.map

4 The System.map file is only consulted by the modutils package when the currently running
kernel’s symbols (in /proc/ksyms) don’t match what is stored in the /lib/modules directory.

W H E N M A KE F A I LS

If the nohup.out file ends with an error, or if the bzImage file is not created, or if the
/lib/modules subdirectory does not exist,1 try copying different versions of the
.config file into place or use the make mrproper and make oldconfig commands to
build a new .config file from scratch.2 Then rerun the make commands to compile the
kernel again to see if the kernel will compile with a different .config file.

You should also try turning on SMP support for your kernel through the make
menuconfig command (if you are not already using one of the SMP .config files from
your distribution).

If the nohup.out file contains just a few lines of output, and you see error
messages about the .hdepend file, try removing this temporary file (if you are using a
2.4 or earlier kernel), and then enter the nohup make dep clean bzImage modules
modules_install command again. Or, if you cannot get a newer kernel to compile,
try an older, more stable version from the 2.4 series.

If none of this helps, try entering each of the make commands separately: make
dep, then make clean, then make bzImage, and so forth, and send the output of each
command to the screen and to a separate log file:

#make dep 2>&1 | tee /tmp/dep.log
#make clean 2>&1 |tee /tmp/clean.log

#make bzImage 2>&1 | tee /tmp/bzimage.log

#make modules 2>&1 | tee /tmp/modules.log

#make modules_install _2>&1 | tee /tmp/modules_install.log

This should help you isolate the problem, at which point you can go online to
find a solution. Try the comp.os.linux newsgroups (or comp.os.linux.redhat,
dedicated to problems with Red Hat Linux). Also, see the Linux section at http://
marc.theaimsgroup.com.

Before posting a kernel compilation question to one of these newsgroups, read
the Linux FAQ (http://www.tldp.org), the Linux-kernel mailing list FAQ (http://
www.tux.org/lkml), and the Linux-kernel HOWTO.

1 The /lib/modules subdirectory should be created when building a modular kernel.
2 This method should at least get the kernel to compile even if it doesn’t have the options you
want. You can then go back and use the make menuconfig command to set the options you need.
Compil ing the Kernel 61
No Starch Press, Copyright © 2005 by Karl Kopper

Save the Kernel Configuration File

For documentation purposes, you can now save the configuration file used to
build this kernel. Use the following command:

#cp /usr/src/linux/.config /boot/config-<version>

Again, <version> in this command should be replaced with the kernel
version you have just built.

Step 5: Configure Your Boot Loader

The previous four steps are used to install any program, but the Linux kernel
executable is part of the operating system, so we have to do a few additional
things to cause the computer to recognize the kernel at boot time.

To complete this step, you must know what type of boot loader your
system is using. Newer Linux distributions use GRUB as the boot loader of
choice, but many older distributions use the LILO boot loader. (Reboot your
system and watch it boot if you are not sure—the type of boot loader you are
using will be displayed during bootup.)

NOTE If you are using a SCSI boot disk, see the “SCSI Gotchas” section later in the chapter.

Both LILO and GRUB give you the ability at boot time to select which
kernel to boot from, selecting from those listed in their configuration files.
This is useful if your new kernel doesn’t work properly. Therefore, you
should always add a reference to your new kernel in the boot loader
configuration file and leave the references to the previous kernels as a
precaution.

If you are using LILO, you’ll modify the /etc/lilo.conf file; if you are
using GRUB, you’ll modify the /boot/grub/grub.conf file (or the /boot/grub/
menu.lst if you installed GRUB from source).

Add your new kernel to lilo.conf with an entry that looks like this:

image=/boot/vmlinuz-<version>
 label=linux.orig
 initrd=/boot/initrd-<version>.img
 read-only
 root=/dev/hda2

Add your new kernel to grub.conf with an entry that looks like this:

title My New Kernel (<version>)
 root (hd0,0)
 kernel /vmlinuz-<version> ro root=/dev/hda2
 initrd /initrd-<version>.img
62 Chapter 3

No Starch Press, Copyright © 2005 by Karl Kopper

You do not need to do anything to inform the GRUB boot loader about
the changes you make to the grub.conf configuration file, because GRUB
knows how to locate files even before the kernel has loaded. It can find its
configuration file at boot time. However, when using LILO, you’ll need to
enter the command lilo -v to install a new boot sector that tells LILO where
the configuration file resides on the disk (because LILO doesn’t know how
to use the normal Linux filesystem at boot time).

B O O T L O A D E R S A N D R O O T F I L E S Y S T E M S

The name / is given to the Linux root filesystem mount point. This mount point can be
used to mount an entire disk drive or just a partition on a disk drive, though normally
the root filesystem is a partition. (On Red Hat systems, Linux uses the second partition
of the first disk device at boot time; the first partition is usually the /boot partition).

To find out which root partition or device your system is using, use the df
command. For example, the following df command shows that the root filesystem is
using the /dev/hda2 partition:

df
Filesystem 1K-blocks Used Available Use% Mounted on

/dev/hda2 8484408 1195652 6857764 15% /

/dev/hda1 99043 9324 84605 10% /boot

When you modify the boot loader configuration file, you must tell the Linux
kernel which device, or device and partition, to use for the root filesystem. When
using LILO as your boot loader, you specify the root filesystem in the lilo.conf file
with a line that looks like this:

root=/dev/hda2

The grub.conf configuration file entry looks like this:

kernel /vmlinuz-<version> ro root=/dev/hda2

Note, however, that the Red Hat kernel allows you to use a symbolic name that
looks like this:

kernel /vmlinuz-<version> ro root=LABEL=/

Using the syntax LABEL=/ to specify the root filesystem is only possible when
using Red Hat kernels. If you compile the stock kernel, you must specify the root
partition device name, such as /dev/hda2.

One final concern when specifying the root filesystem using GRUB is that the
GRUB boot loader also has its own root filesystem. The GRUB root filesystem has
nothing to do with the Linux root filesystem and is usually on a different partition (it is
the /boot partition on Red Hat systems).

To tell GRUB which disk partition to use at boot time as its root filesystem,
create an entry such as the following in the grub.conf configuration file:

root (hd0,0)
Compil ing the Kernel 63
No Starch Press, Copyright © 2005 by Karl Kopper

Now you are ready to reboot and test the new kernel.
Enter reboot at the command line, and watch closely as the system boots.

If the system hangs, you may have selected the wrong processor type. If the
system fails to mount the root drive, you may have installed the wrong
filesystem support in your kernel. (If you are using a SCSI system, see the
“SCSI Gotchas” section for more information.)

If the system boots but does not have access to all of its devices, review
the kernel options you specified in step 2 of this chapter.

Once you can access all of the devices connected to the system, and you
can perform normal network tasks, you are ready to test your application or
applications.

This tells GRUB to use the first partition of the first hard drive as the GRUB root
filesystem. GRUB calls the first hard drive hd0 (whether it is SCSI or IDE), and
partitions are numbered starting with 0. So to use the second partition of the first
drive, the syntax would be as follows:

root (hd0,1)

Note: see the /boot/grub/device.map file for the list of devices on your system.1

Again, this is the root filesystem used by GRUB when the system first boots, and it
is not related to the root filesystem used by the Linux kernel after the system is up and
running. To list all of the partitions on a device, you can use the command sfdisk –l.

1 The /boot/grub/device.map file is created by the installation program anaconda on Red Hat
systems.

S C S I G O T C H A S

If you are using a SCSI disk to boot your system, you may want to avoid some
complication and compile support for your SCSI driver directly into the kernel,
instead of loading it as a module. If you do this on a kernel version prior to version
2.6, you will save yourself the trouble of building the initial RAM disk. However, if
you are building a modular kernel from version 2.4 or an earlier series, you will still
need to build an initial RAM disk so the Linux kernel can boot up far enough to load
the proper module to communicate with your SCSI disk drive. (See the man page for
the mkinitrd Red Hat utility for the easiest way to do this on Red Hat systems. The
mkinitrd command automates the process of building an initial RAM disk.) The initial
RAM disk, or initrd file, must then be referenced in your boot loader configuration
file so that the system knows how to mount your SCSI boot device before the modular
kernel runs.

Also, if you recompile your 2.4 modular kernel without changing the
EXTRAVERSION number in the Makefile, you may accidentally overwrite your
existing /lib/modules libraries. If this happens, you may see the error "All of your
loopback devices are in use!" when you run the mkinitrd command. If you see this
error message, you must rebuild the kernel (before rebooting the system!) and add
the SCSI drivers into the kernel. Do not attempt to build the drivers as modules and
skip the mkinitrd process altogether.
64 Chapter 3

No Starch Press, Copyright © 2005 by Karl Kopper

In Conclusion

You gain more control over your operating system when you know how to
configure and compile your own kernel. You can selectively enable and
disable features of the kernel to improve security, enhance performance,
support hardware devices, or use the Linux operating system for special
purposes. The Linux Virtual Server (LVS) kernel feature, for example, is
required to build a Linux Enterprise Cluster. While you can use the pre-
compiled kernel included with your Linux distribution, you’ll gain con-
fidence in your skills as a system administrator and a more in-depth
knowledge of the operating system when you learn how to configure and
compile your own kernel. This confidence and knowledge will help to
increase system availability when problems arise after the kernel goes into
production.
Compil ing the Kernel 65
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

PART II
H I G H A V A I L A B I L I T Y
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

4
S Y N C H R O N I Z I N G S E R V E R S

W I T H R Y S N C A N D S S H

This chapter describes one method of
automating the copying of data and config-

uration files from one server to another. In
its simplest form, synchronizing the data on two

(or more) servers is just a matter of copying files from
one server to another. One server acts as a primary
repository for data, and changes to the data can only be
made on this server (in a high-availability configuration,
only one server owns a resource at any given point in time). A regularly
scheduled copy utility then sends the data after it has been changed on the
primary server to the backup server so it is ready to take ownership of the
resource if the primary server crashes.

In a cluster configuration all nodes need to access and modify shared
data (all cluster nodes offer the same services), so you will probably not use
this method of data synchronization on the nodes inside the cluster. You can,
No Starch Press, Copyright © 2005 by Karl Kopper

however, use the method of data synchronization described in this chapter
on highly available server pairs to copy data and configuration files that
change infrequently.

rsync

The open source software package rsync that ships with the Red Hat
distribution allows you to copy data from one server to another over a
normal network connection. rsync is more than a replacement for a simple
file copy utility, however, because it adds the following features:

� Examines the source files and only copies blocks of data that change.1

� (Optionally) works with the secure shell to encrypt data before it passes
over the network.

� Allows you to compress the data before sending it over the network.

� Will automatically remove files on the destination system when they are
removed from the source system.

� Allows you to throttle the data transfer speed for WAN connections.

� Has the ability to copy device files (which is one of the capabilities that
enables system cloning as described in the next chapter).

Online documentation for the rsync project is available at http://
samba.anu.edu.au/rsync (and on your system by typing man rsync).

NOTE rsync must (as of version 2.4.6) run on a system with enough memory to hold about
100 bytes of data per file being transferred.

rsync can either push or pull files from the other computer (both must
have the rsync software installed on them). In this chapter, we will push files
from one server to another in order to synchronize their data. In Chapter 5,
however, rsync is used to pull data off of a server.

NOTE The Unison software package can synchronize files on two hosts even when changes are
made on both hosts. See the Unison project at http://www.cis.upenn.edu/~bcpierce/
unison, and also see the Csync2 project for synchronizing multiple servers at http://
oss.linbit.com.

Because we want to automate the process of sending data (using a
regularly scheduled cron job) we also need a secure method of pushing files
to the backup server without typing in a password each time we run rsync.
Fortunately, we can accomplish this using the features of the Secure Shell
(SSH) program.

1 Actually, rsync does a better job of reducing the time and network load required to
synchronize data because it creates signatures for each block and only passes these block
signatures back and forth to decide which data needs to be copied.
70 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

Open SSH 2 and rsync

The rsync configuration described in this chapter will send all data through
an Open Secure Shell 2 (henceforth referred to as SSH) connection to the
backup server. This will allow us to encrypt all data before it is sent over the
network and use a security encryption key to authenticate the remote request
(instead of relying on the plaintext passwords in the /etc/passwd file).

A diagram of this configuration is shown in Figure 4-1.

Figure 4-1: rsync and SSH

The arrows in Figure 4-1 depict the path the data will take as it moves
from the disk drive on the primary server to the disk drive on the backup
server. When rsync runs on the primary server and sends a list of files that are
candidates for synchronization, it also exchanges data block signatures so the
backup server can figure out exactly which data changed, and therefore
which data should be sent over the network.

SSH: A Secure Data Transport

Because we will push data from the primary server to the backup server, we
will configure the primary server as an SSH client and then turn the backup
server into an SSH server capable of accepting this data. The SSH
connection between these two servers will need to enforce the following
security configuration:

� When the primary server initiates a connection to the backup server, it
should verify that it is in fact talking to the true backup server (and not a
bogus host created by a hacker trying to hijack our data).

� The backup server should only accept connections from the primary
server. In fact, the backup server should only accept connections from
one trusted account on the primary server.

� All data sent over the network connection should be encrypted.

Primary data on disk Copy of primary
data on disk

Encrypted
data blocks

Primary node
rsync sends data

Backup node
rsync receives data

NIC NIC SSH
Synchron i zing Server s with r ysnc and SSH 71
No Starch Press, Copyright © 2005 by Karl Kopper

Using these security features, our data replication method can also be
used on an untrusted public network such as the Internet.

This security configuration will also need to be fully automated (we
should never need to walk over to the system console and enter a password to
get the SSH connection working), and it should survive system reboots.

We can accomplish all of these security configuration goals using SSH
encryption keys that allow us to establish a two-way trust relationship between
the client and the server.

SSH Encryption Keys

Encryption keys, or asymmetric encryption keys (to be exact), always have
two halves: a public half and a private half. The private half should be zealously
guarded and never transmitted over the network. The public half should be
given to anyone who wants, or needs, to send encrypted data. For SSH to
work properly, we need to configure two types of encryption keys: the SSH
host encryption key and the user encryption key.

The Host Encryption Key

The host encryption key is configured once for each SSH server and stored
in a file on a locally attached disk drive. Red Hat stores the private and public
halves of this key in separate files:2

/etc/ssh/ssh_host_rsa_key
/etc/ssh/ssh_host_rsa_key.pub

This key, or these key files, are created the first time the /etc/rc.d/init.d/
sshd script is run on your Red Hat system. However, we really only need to
create this key on the backup server, because the backup server is the SSH
server.

The User Encryption Key

This key is created on the primary server manually by running the ssh-keygen
utility. This key is stored in two files in the user’s home directory in the .ssh
subdirectory. For user web with a home directory of /home/web, the key would
be stored in the following two files:

/home/web/.ssh/id_rsa
/home/web/.ssh/id_rsa.pub

The public half of this key is then copied to the backup server (the SSH
server) so the SSH server will know this user can be trusted.

2 You will also see DSA files in the /etc/ssh directory. The Digital Signature Algorithm, however,
has a suspicious history and may contain a security hole. See SSH, The Secure Shell: The Definitive
Guide, by Daniel J. Barrett and Richard E. Silverman (O’Reilly and Associates).
72 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

Session Keys

As soon as the client decides to trust the server, they establish yet another
encryption key: the session key. As its name implies, this key is valid for only
one session between the client and the server, and it is used to encrypt all
network traffic that passes between the two machines. The SSH client and
the SSH server create a session key based upon a secret they both share—
called the shared secret. You should never need to do anything to administer
the session key, because it is generated automatically by the running SSH
client and SSH server (information used to generate the session key is stored
on disk in the /etc/ssh/primes file).

Establishing a two-way trust relationship between the SSH client and the
SSH server is a two-step process. In the first step, the client figures out if the
server is trustworthy and what session key it should use. Once this is done,
the two machines establish a secure SSH transport.

The second step occurs when the server decides it should trust the client.

Establishing the Two-Way Trust Relationship: Part 1

Let’s examine how this two-way trust relationship is established in more
detail. First, the client must decide whether it can trust the server; then, the
server must decide whether it can trust the client. So Part 1 of establishing
the two-way trust relationship is when the client computer determines
whether it is talking to the proper server.

Should the SSH Client Trust the SSH Server?

The first step in building a secure SSH transport is initiated by the client.
The client needs to know if it is talking to the right server (no one has
hijacked the IP address or hostname of our SSH server). This is
accomplished during the SSH key exchange processes.

NOTE If you need to reuse an IP address on a different machine and retrain the security con-
figuration you have established for SSH, you can do so by copying the SSH key files
from the old machine to the new machine.

The SSH Key Exchange Process

The SSH key exchange process starts when an SSH client sends a connection
request on port 22 to the SSH server (as shown in Figure 4-2).

Figure 4-2: SSH client connection request

SSH connection request

Primary node

SSH
client

Backup node

SSH
server
Synchron i zing Server s with r ysnc and SSH 73
No Starch Press, Copyright © 2005 by Karl Kopper

Once the server and the client make some agreements about the SSH
protocol, or version, they will use to talk to each other (SSH version 1 or SSH
version 2), they begin a process of synchronized mathematical gymnastics
that only requires a minimum amount of data to pass over the network. The
goal of these mathematical gymnastics is to send only enough information
for the client and server to agree upon a shared secret for this SSH session
without sending enough information over the network for an attacker to
guess the shared secret. Currently, this is called the diffie-hellman-group1-sha1
key exchange process.

The last thing the SSH server sends back to the client at the end of the
diffie-hellman-group1-sha1 key exchange process is the final piece of data
the client needs to figure out the shared secret along with the public half of
its host encryption key (as shown in Figure 4-3).

Figure 4-3: SSH server response

NOTE The SSH server never sends the entire SSH session key or even the entire shared secret
over the network, making it nearly impossible for a network-snooping hacker to guess
the session key.

At this point, communication between the SSH client and the SSH servers
stops while the SSH client decides whether or not it should trust the SSH
server. The SSH client does this by looking up the server’s host name in a
database of host name-to-host-encryption-key mappings called known_hosts2
(referred to as the known_hosts database in this chapter3). See Figure 4-4. If
the encryption key and host name are not in the known_hosts database, the
client displays a prompt on the screen and asks the user if the server should
be trusted.

If the host name of the SSH server is in the known_hosts database, but
the public half of the host encryption key does not match the one in the
database, the SSH client does not allow the connection to continue and
complains.

Public half of the
SSH server host
encryption key

+
portion of the

shared secret data

Primary node

SSH
client

Backup node

SSH
server

shared secret

3 Technically, the known_hosts database was used in Open SSH version 1 and renamed
known_hosts2 in Open SSH version 2. Because this chapter only discusses Open SSH version 2,
we will not bother with this distinction in order to avoid any further cumbersome explanations
like this one.
74 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 4-4: The SSH client searches for the SSH server name in its known_hosts database

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint4 for the RSA key sent by the remote host is
6e:36:4d:03:ec:2c:6b:fe:33:c1:e3:09:fc:aa:dc:0e.
Please contact your system administrator.
Add correct host key in /home/web/.ssh/known_hosts2 to get rid of this
message.
Offending key in /home/web/.ssh/known_hosts2:1
RSA host key for 10.1.1.2 has changed and you have requested strict checking.

(If the host key on the SSH server has changed, you will need to remove
the offending key from the known_hosts database file with a text editor such
as vi.)

Once the user decides to trust the SSH server, the SSH connection will
be made automatically for all future connections so long as the public half of
the SSH server’s host encryption key stored in its known_hosts database
doesn’t change.

The client then performs a final mathematical feat using this public half
of the SSH server host encryption key (against the final piece of shared secret
key data sent from the server) and confirms that this data could only come
from a server that knew the private half of the public host encryption key it
received from the SSH server. Once the client has successfully done this, the
client and the server are said to have established a secure SSH transport (see
Figure 4-5).

4 You can verify the “fingerprint” on the SSH server by running the following command:
#ssh-keygen –l –f /etc/ssh/ssh_host_rsa_key.pub

Match?

Public half
of the SSH
server host

encryption key
+

SSH server
host name

Backup node

SSH
server

shared secret

known_hosts
database

Primary node

SSH
client

shared secret
Synchron i zing Server s with r ysnc and SSH 75
No Starch Press, Copyright © 2005 by Karl Kopper

Now, all information sent back and forth between the client and the
server can be encrypted with the session key (the encryption key that was
derived on both the client and the server from the shared secret).

Figure 4-5: The SSH client and SSH server establish an SSH transport

Establishing the Two-Way Trust Relationship: Part 2

We’ve described half of the process for establishing the two-way trust
relationship between the client and the server. Now, for Part 2, we need to
discuss the other half, which takes places on the SSH server.

Can the Server Trust the Client?

We have solved only half the problem of a two-way trust between the client
and the server; the client trusts the server—now the server needs to decide
whether it should trust the client.

This can be accomplished using either hostbased authentication or user
authentication.

Hostbased Authentication

Historically, hostbased authentication was accomplished using nothing more
than the client’s source IP address or host name. Crackers could easily break
into servers that used this method of trust by renaming their server to match
one of the acceptable host names, by spoofing an IP address, or by circum-
venting the Domain Name System (DNS) used to resolve host names into IP
addresses.

System administrators, however, are still tempted to use hostbased authen-
tication because it is easy to configure the server to trust any account (even the
root account) on the client machine. Unfortunately, even with the improve-
ments SSH has introduced, hostbased authentication is still cumbersome and
weak when compared to the other methods that have evolved, and it should
not be used.

User Authentication

When using user authentication, the SSH server does not care which host
the SSH connection request comes from, so long as the user making the
connection is a trusted user.

Backup node

SSH
server

shared secret
session key

Primary node

SSH
client

shared secret
session key

SSH transport
76 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

SSH can use the user’s normal password and account name for
authentication over the secure SSH transport. If the user has the same
account and password on the client and server, the SSH server knows this
user is trustworthy. The main drawback to this method, however, is that we
need to enter the user’s password directly into our shell script on the SSH
client to automate connections to the SSH server. So this method should also
not be used. (Recall that we want to automate data synchronization between
the primary and backup servers.)

User Authentication Using SSH Encryption Keys

Fortunately, a method that is better than either of these two methods is
available using SSH encryption keys. All we have to do is store the public half
of a user’s encryption key on the SSH server. When we try to connect to the
SSH server from the SSH client, the server will send us a challenge (a
random number encrypted with the public half of the user encryption key),
and only a client that knows the private half of the encryption key will be able
to decrypt this challenge.

The private half of the user’s encryption key on the SSH client is
normally also protected by a passphrase. A passphrase is just a long password
(it can contain spaces) selected by the user that is used to encrypt the private
half of the user’s real encryption key before it is stored on disk. We will not
use a passphrase, however, because the passphrase would need to be added
to our shell script to automate it.

NOTE You can instead use the Linux Intrusion Detection System, or LIDS, to deny anyone
(even root) from accessing the private half of our user encryption key that is stored on the
disk drive. See also the ssh-agent man page for a description of the ssh-agent daemon.

Here is a simple two-node SSH client-server recipe.

Two-Node SSH Client-Server Recipe

List of ingredients:

Primary server (preferably with two Network Interface Cards and cables)

Backup server (preferably with two Network Interface Cards and cables)

Crossover cable or mini hub

Copy of the rsync RPM file

Copy of Open SSH (version 2.2 or later)

Included on the CD-ROM with this book is a copy of the Open SSH
package and the rsync package in RPM format in the chapter4 subdirectory.
Your distribution should already contain Open SSH. To find out which
version is loaded on your system, type:

#rpm –qa | grep ssh
Synchron i zing Server s with r ysnc and SSH 77
No Starch Press, Copyright © 2005 by Karl Kopper

If you do not have version 2.2 or later, you will need to install a newer
version either from your distribution vendor or from the CD-ROM included
with this book before starting this recipe.

NOTE Please check for the latest versions of these software packages from your distribution or
from the project home pages so you can be sure you have the most recent security updates
for these packages.

Create a User Account That Will Own the Data Files

Perform this step on the SSH client and the SSH server. The SSH client in
this recipe is the primary server at IP address 10.1.1.1. The SSH server is the
backup server at IP address 10.1.1.2 (see Figure 4-1).

You can use the root account or any user account (you can create a
special non-root account dedicated to providing SSH access). You can then
grant this user access to commands or scripts as the root user using the sudo
program (see man sudo for more information). But if you want to take a
shortcut and just use the root account, you will need to modify the default
SSHD config file (/etc/ssh/sshd_config) that comes with the Red Hat
distribution and change the PermitRootLogin variable so it looks like this:

PermitRootLogin without-password

In this recipe, we will use the more secure technique of creating a new
account called web and then giving access to the files we want to transfer to
the backup node (in the directory /www) to this new account; however, for
most high-availability server configurations, you will need to use the root
account or the sudo program.

1. Add the web user account with the following command:

#useradd –u 100 –g 48 –d /home/web –s /bin/bash –c "Web File Owner" –p
passw0rd web

NOTE For added security, we will (later in this recipe) remove the shell and password for this
account in order to prevent normal logons as user web.

The useradd command automatically created a /home/web directory
and gave ownership to the web user, and it set the password for the web
account to passw0rd.

2. Now create the /www directory and place a file or two in it:

#mkdir /www
#mkdir /www/htdocs
#echo "This is a test" > /www/htdocs/index.html
#chown -R web /www
78 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

These commands create the /www/htdocs directory and subdirectory
and place the file index.html with the words This is a test in it.
Ownership of all of these files and directories is then given to the web
user account we just created.

Configure the Open SSH2 Host Key on the SSH Server

If you installed the sshd daemon on your system using the Red Hat RPM file,
then all you need to do to create your SSH host keys on the backup server is
start the sshd daemon. Check to see if it is already running on the backup
server with the command:

#ps –elf | grep sshd

If it is not running, start it with the command:

#/etc/init.d/sshd start

or

#service sshd start

NOTE If sshd was not running, you should make sure it starts each time the system boots—see
Chapter 1.

Use the following two commands to check to make sure the Open SSH
version 2 (RSA) host key has been created. These commands will show you
the public and private halves of the RSA host key created by the sshd daemon.

The private half of the Open SSH2 RSA host key:

#cat /etc/ssh/ssh_host_rsa_key

The public half of the Open SSH2 RSA host key:

#cat /etc/ssh/ssh_host_rsa_key.pub

NOTE The /etc/rc.d/init.d/sshd script on Red Hat systems will also create Open SSH1 DSA
host keys (that we will not use) with similar names.

Create a User Encryption Key for This New Account on the SSH Client

To create a user encryption key for this new account:

1. Log on to the SSH client as the web user you just created. If you are logged
on as root, use the following command to switch to the web account:

#su - web
Synchron i zing Server s with r ysnc and SSH 79
No Starch Press, Copyright © 2005 by Karl Kopper

2. Make sure you are the web user with the command:

#whoami

3. Now create an Open SSH2 key with the command:

#ssh-keygen –t rsa

The output of this command will look like this:

Generating public/private rsa key pair.
Enter file in which to save the key (/home/web/.ssh/id_rsa):
Enter passphrase (empty for no passphrase): <return> h
Enter same passphrase again: <return> h
Your identification has been saved in /home/web/.ssh/id_rsa.
Your public key has been saved in /home/web/.ssh/id_rsa.pub.
The key fingerprint is:
a3:ec:9f:63:52:4e:42:66:11:6a:38:8d:de:5e:66:84 web@primary.mydomain.com

Leave the lines marked with arrows (h) blank.

NOTE We do not want to use a passphrase to protect our encryption key, because the SSH pro-
gram would need to prompt us for this passphrase each time a new SSH connection was
needed.5

As the output of the above command indicates, the public half of
our encryption key is now stored in the file:

/home/web/.ssh/id_rsa.pub

4. View the contents of this file with the command:

#cat /home/web/.ssh/id_rsa.pub

You should see something like this:

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAz1LUbTSq/
45jE8Jy8lGAX4e6Mxu33HVrUVfrn0U9+nlb4DpiHGWR1DXZ15dZQe26pITxSJqFabTD47uGWVD
0Hi+TxczL1lasdf9124jsleHmgg5uvgN3h9pTAkuS06KEZBSOUvlsAEvUodEhAUv7FBgqfN2VD
mrV19uRRnm30nXYE= web@primary.mydomain.com

NOTE This entire file is just one line.

5 If you don’t mind entering a passphrase each time your system boots, you can set a passphrase
here and configure the ssh-agent for the web account. See the ssh-agent man page.
80 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

Copy the Public Half of the User Encryption Key from the SSH Client to the
SSH Server

Because we are using user authentication with encryption keys to establish
the trust relationship between the server and the client computer, we need to
place the public half of the user’s encryption key on the SSH server. Again,
you can use the web user account we have created for this purpose, or you can
simply use the root account.

1. Use the copy-and-paste feature of your terminal emulation software (or
use the mouse at one of the system consoles)—even if you are just typing
at a plain-text terminal, this will work on Red Hat—and copy the above
line (from the id_rsa.pub file on the SSH client) into the paste buffer.6

2. From another window, log on to the SSH server and enter the following
commands:

#mkdir /home/web/.ssh
#vi /home/web/.ssh/authorized_keys2

This screen is now ready for you to paste in the private half of the web
user’s encryption key.

3. Before doing so, however, enter the following:

from="10.1.1.1",no-X11-forwarding,no-agent-forwarding, ssh-dss

This adds even more restriction to the SSH transport.7 The web user
is only allowed in from IP address 10.1.1.1, and no X11 or agent
forwarding (sending packets through the SSH tunnel on to other
daemons on the SSH server) is allowed. (In a moment, we’ll even disable
interactive terminal access.)

4. Now, without pressing ENTER, paste in the public half of the web user’s
encryption key (on the same line). This file should now be one very long
line that looks similar to this:

from="10.1.1.1",no-port-forwarding,no-X11-forwarding,no-agent-forwarding,
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAz1LUbTSq/
45jE8Jy8lGAX4e6Mxu33HVrUVfrn0U9+nlb4DpiHGWR1DXZ15dZQe26pITxSJqFabTD47uGWVD
0Hi+TxczL1lasdf9124jsleHmgg5uvgN3h9pTAkuS06KEZBSOUvlsAEvUodEhAUv7FBgqfN2VD
mrV19uRRnm30nXYE= web@primary.mydomain.com

6 Security experts cringe at the thought that you might try and do this paste operation via telnet
over the Internet because a hacker could easily intercept this transmission and steal your
encryption key.
7 An additional option that could be used here is no-port-forwarding which, in this case, could
mean that the web user on the SSH client machine cannot use the SSH transport to pass IP traffic
destined for another UDP or IP port on the SSH server. However, if you plan to use the
SystemImager software described in the next chapter, you need to leave port forwarding
enabled on the SystemImager Golden Client.
Synchron i zing Server s with r ysnc and SSH 81
No Starch Press, Copyright © 2005 by Karl Kopper

5. Set the security of this file:

#chmod 600 /home/web/.ssh/authorized_keys2

NOTE See man sshd and search for the section titled AUTHORIZED_KEYS FILE FORMAT for more
information about this file.

You should also make sure the security of the /home/web and the /home/web/
.ssh directories is set properly (both directories should be owned by the web
user, and no other user needs to have write access to either directory).

The vi editor can combine multiple lines into one using the keys SHIFT+J.
However, this method is prone to errors, and it is better to use a telnet copy-
and-paste utility (or even better, copy the file using the ftp utility or use the
scp command and manually enter the user account password).

Test the Connection from the SSH Client to the SSH Server
Log on to the SSH client as the web user again, and enter the following
command:

#ssh 10.1.1.2 hostname

Because this is the first time you have connected to this SSH server, the
public half of the SSH server’s host encryption key is not in the SSH client’s
known_hosts database. You should see a warning message like the following:

The authenticity of host '10.1.1.2 (10.1.1.2)' can't be established.
RSA key fingerprint is a4:76:aa:ed:bc:2e:78:0b:4a:86:d9:aa:37:bb:2c:93.
Are you sure you want to continue connecting (yes/no)?

When you type yes and press ENTER, the SSH client adds the public half of
the SSH server’s host encryption key to the known_hosts database and displays:

Warning: Permanently added '10.1.1.2' (RSA) to the list of known hosts.

NOTE To avoid this prompt, we could have copied the public half of the SSH server’s host
encryption key into the known_hosts database on the SSH client.

The SSH client should now complete your command. In this case, we
asked it to execute the command hostname on the remote server, so you
should now see the name of the SSH server on your screen and control
returns to your local shell on the SSH client.

A new file should have been created (if it did not already exist) on the
SSH client called /home/web/.ssh/known_hosts2.

Instead of the remote host name, your SSH client may prompt you for a
password with a display such as the following:

web@10.1.1.2's password:
82 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

This means the SSH server was not able to authenticate your web user
account with the public half of the user encryption key you pasted into the
/home/web/.ssh/authorized_keys2 file. (Check to make sure you followed all of
the instructions in the last section.)

If this doesn’t help, try the following command to see what SSH is doing
behind the scenes:

#ssh –v 10.1.1.2 hostname

The output of this command should display a listing similar to the
following:

OpenSSH_2.5.2p2, SSH protocols 1.5/2.0, OpenSSL 0x0090600f
debug1: Seeding random number generator
debug1: Rhosts Authentication disabled, originating port will not be trusted.
debug1: ssh_connect: getuid 100 geteuid 0 anon 1
debug1: Connecting to 10.1.1.2 [10.1.1.2] port 22.
debug1: Connection established.
debug1: unknown identity file /home/web/.ssh/identity

A V O I DI N G S S H V E R S I O N 1

If you see (RSA1) instead of (RSA) in the above message, this means you have fallen
back to SSH-level security instead of SSH2, and you will need to do the following
(you will also need to do this if you see a complaint about the fact that you might be
doing something NASTY):

On the SSH client, remove the known_hosts file that was just created:

#rm /home/web/.ssh/known_hosts

On the SSH server, check the file /etc/ssh/sshd_conf and make sure the Proto-
col entry looks like this:

Protocol 2,1

This indicates that we want the SSHD server to first attempt to use the SSH2
protocol and only if this doesn’t work should it fall back to the SSH1 version of the
protocol. Now restart the SSHD daemon on the SSH server with the command:

#/etc/rc.d/init.d/sshd restart

Now try the ssh 10.1.1.2 hostname command again to see if you can log on to
the SSH server (at IP address 10.1.1.2 in this example).

If you receive the message Connection refused, this might indicate that the sshd
daemon on the server is listening to the wrong network interface card or not listening
at all (or you may have ipchains/iptables firewall rules blocking access to the sshd
server). To see if sshd is listening on the server, run the command netstat –apn |
grep ssh. You should see that sshd is listening on port 22. To check or modify which
interface sshd is listening on (again on the server), examine the ListenAddress line in
the /etc/ssh/sshd_config file.
Synchron i zing Server s with r ysnc and SSH 83
No Starch Press, Copyright © 2005 by Karl Kopper

debug1: identity file /home/web/.ssh/identity type -1
debug1: unknown identity file /home/web/.ssh/id_rsa
debug1: identity file /home/web/.ssh/id_rsa type -1
debug1: identity file /home/web/.ssh/id_dsa type 2
debug1: Remote protocol version 1.99, remote software version OpenSSH_2.5.2p2
debug1: match: OpenSSH_2.5.2p2 pat ^OpenSSH
Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_2.5.2p2
debug1: send KEXINIT
debug1: done
debug1: wait KEXINIT
debug1: got kexinit: diffie-hellman-group-exchange-sha1,diffie-hellman-group1-
sha1
debug1: got kexinit: ssh-rsa,ssh-dss
debug1: got kexinit:
aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,aes192-cbc,aes256-
cbc,rijndael128-cbc,rijndael192-cbc,rijndael256-cbc,rijndael-
cbc@lysator.liu.se
debug1: got kexinit:
aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,aes192-cbc,aes256-
cbc,rijndael128-cbc,rijndael192-cbc,rijndael256-cbc,rijndael-
cbc@lysator.liu.se
debug1: got kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-
ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96
debug1: got kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-
ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96
debug1: got kexinit: none,zlib
debug1: got kexinit: none,zlib
debug1: got kexinit:
debug1: got kexinit:
debug1: first kex follow: 0
debug1: reserved: 0
debug1: done
debug1: kex: server->client aes128-cbc hmac-md5 none
debug1: kex: client->server aes128-cbc hmac-md5 none
debug1: Sending SSH2_MSG_KEX_DH_GEX_REQUEST.
debug1: Wait SSH2_MSG_KEX_DH_GEX_GROUP.
debug1: Got SSH2_MSG_KEX_DH_GEX_GROUP.
debug1: dh_gen_key: priv key bits set: 129/256
debug1: bits set: 1022/2049
debug1: Sending SSH2_MSG_KEX_DH_GEX_INIT.
debug1: Wait SSH2_MSG_KEX_DH_GEX_REPLY.
debug1: Got SSH2_MSG_KEXDH_REPLY.
debug1: Host '10.1.1.2' is known and matches the RSA host key.
debug1: Found key in /home/web/.ssh/known_hosts2:1
debug1: bits set: 1025/2049
debug1: ssh_rsa_verify: signature correct
debug1: Wait SSH2_MSG_NEWKEYS.
debug1: GOT SSH2_MSG_NEWKEYS.
debug1: send SSH2_MSG_NEWKEYS.
84 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

debug1: done: send SSH2_MSG_NEWKEYS.
debug1: done: KEX2.
debug1: send SSH2_MSG_SERVICE_REQUEST
debug1: service_accept: ssh-userauth
debug1: got SSH2_MSG_SERVICE_ACCEPT
debug1: authentications that can continue: publickey,password
debug1: next auth method to try is publickey
debug1: try privkey: /home/web/.ssh/identity
debug1: try privkey: /home/web/.ssh/id_dsa
debug1: try pubkey: /home/web/.ssh/id_rsa
debug1: Remote: Port forwarding disabled.
debug1: Remote: X11 forwarding disabled.
debug1: Remote: Agent forwarding disabled.
debug1: Remote: Pty allocation disabled.
debug1: input_userauth_pk_ok: pkalg ssh-dss blen 433 lastkey 0x8083a58 hint 2
debug1: read SSH2 private key done: name rsa w/o comment success 1
debug1: sig size 20 20
debug1: Remote: Port forwarding disabled.
debug1: Remote: X11 forwarding disabled.
debug1: Remote: Agent forwarding disabled.
debug1: Remote: Pty allocation disabled.
debug1: ssh-userauth2 successful: method publickey
debug1: fd 5 setting O_NONBLOCK
debug1: fd 6 IS O_NONBLOCK
debug1: channel 0: new [client-session]
debug1: send channel open 0
debug1: Entering interactive session.
debug1: client_init id 0 arg 0
debug1: Sending command: hostname
debug1: channel 0: open confirm rwindow 0 rmax 16384
debug1: client_input_channel_req: channel 0 rtype exit-status reply 0
debug1: channel 0: rcvd eof
debug1: channel 0: output open -> drain
debug1: channel 0: rcvd close
debug1: channel 0: input open -> closed
debug1: channel 0: close_read
bottompc.test.com
debug1: channel 0: obuf empty
debug1: channel 0: output drain -> closed
debug1: channel 0: close_write
debug1: channel 0: send close
debug1: channel 0: is dead
debug1: channel_free: channel 0: status: The following connections are open:
 #0 client-session (t4 r0 i8/0 o128/0 fd -1/-1)
debug1: Transferred: stdin 0, stdout 0, stderr 0 bytes in 0.0 seconds
debug1: Bytes per second: stdin 0.0, stdout 0.0, stderr 0.0
debug1: Exit status 0

Notice the lines that are bold in this listing, and compare this output to
yours.
Synchron i zing Server s with r ysnc and SSH 85
No Starch Press, Copyright © 2005 by Karl Kopper

If you are prompted for the password and you are using the root account,
you did not set PermitRootLogin yes in the /etc/ssh/sshd_config file on the
server you are trying to connect to. If you did not set the IP address correctly
in authorized_keys2 file on the server, you may see an error such as the
following:

debug1: Remote: Your host '10.1.1.1' is not permitted to use this key for login.

If you see this error, you need to specify the correct IP address in the
authorized_keys2 file on the server you are trying to connect to. (You’ll find
this file is in the .ssh subdirectory under the home directory of the user you
are using.)

Further troubleshooting information and error messages are also
available in the /var/log/messages file and the /var/log/secure files.

Using the Secure Data Transport

Now that we have established a secure data transport between the SSH client
and the SSH server, we can copy files, send commands, or create an
interactive shell.

� To copy files, use the scp command. Here is an example command to
copy the file /etc/hosts on the SSH client to /tmp/hosts on the SSH server:

#scp /etc/hosts 10.1.1.2:/tmp/hosts

� To send commands to the SSH server from the ssh client, use a com-
mand such as the following:

#ssh 10.1.1.2 who

This executes the who command on the 10.1.1.2 machine (the SSH
server).

� To start an interactive shell on the SSH server, enter the following com-
mand on the SSH client:

#ssh 10.1.1.2

This logs you on to the SSH server and provides you with a normal,
interactive shell. When you enter commands, they are executed on the
SSH server. When you are done, type exit to return to your shell on the
SSH client.

Improved Security

Once you have tested this configuration and are satisfied that the SSH client
can connect to the SSH server, you can improve the security of your SSH
client and SSH server. To do so, perform the following steps.
86 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

1. Remove the interactive shell access for the web account on the SSH
server (the backup server) by editing the authorized_keys2 file and add
the no-pty option:

#vi /home/web/.ssh/authorized_keys2

2. Change the beginning of this one-line file to look like this:

from="10.1.1.1",no-X11-forwarding,no-agent-forwarding ssh-dss, no-pty

3. Once you have finished with the rsync recipe shown later in this chapter,
you can deactivate the normal user account password on the backup
server (the SSH server) with the following command:

#usermod –L web

This command inserts an ! in front of the web user’s encrypted
password in the /etc/shadow file. (Don’t use this command on the root
account!)

rsync over SSH

Your distribution should already have the rsync program. Check to make
sure it is installed on both systems with the command:

#rpm –qa | grep rsync

NOTE If you do not have the rsync program installed on your system, you can load the rsync
source code included on the CD-ROM with this book in the chapter4 subdirectory.
(Copy the source code to a subdirectory on your system, untar it, and then type
./configure, make then make install.)

Now that we have a secure, encrypted method of transmitting data
between our two cluster nodes, we can configure the rsync program to
collect and ship data through this SSH transport. In the following steps, we’ll
create files in the /www directory on the SSH client and then copy these files to
the SSH server using the rsync program and the web account.

1. Log on to the SSH client (the primary server) as root, and then enter:

#mkdir /www
#mkdir /www/htdocs
#echo "This is a test" > /www/htdocs/index.html

2. Give ownership of all of these files to the web user with the command:

#chown -R web /www
Synchron i zing Server s with r ysnc and SSH 87
No Starch Press, Copyright © 2005 by Karl Kopper

3. Now, on the SSH server (the backup server), we need to create at least
the /www directory and give ownership of this directory to the web user
because the web user does not have permission to create directories at the
root level of the drive (in the / directory). To do so, log on to the SSH
server (the backup server) as root, and then enter:

#mkdir /www
#chown web /www

4. At this point, we are ready to use a simple rsync command on the SSH cli-
ent (our primary server) to copy the contents of the /www directory (and
all subdirectories) over to the SSH server (the backup server). Log on to
the SSH client as the web user (from any directory), and then enter:

#rsync -v -a -z –e ssh --delete /www/ 10.1.1.2:/www

NOTE If you leave off the trailing / in /www/, you will be creating a new subdirectory on the
destination system where the source files will land rather than updating the files in the
/www directory on the destination system.

Because we use the -v option, the rsync command will copy the files
verbosely. That is, you will see the list of directories and files that were in the
local /www directory as they are copied over to the /www directory on the
backup node.8

We are using these rsync options:

-v

Tells rsync to be verbose and explain what is happening.

-a

Tells rsync to copy all of the files and directories from the source directory.

-z

Tells rsync to compress the data in order to make the network transfer
faster. (Our data will be encrypted and compressed before going over
the wire.)

-e ssh

Tells rsync to use our SSH shell to perform the network transfer. You can
eliminate the need to type this argument each time you issue an rsync
command by setting the RSYNC_RSH shell environment variable. See
the rsync man page for details.

--delete

Tells rsync to delete files on the backup server if they no longer exist on
the primary server. (This option will not remove any primary, or source,
data.)

8 If this command does not work, check to make sure the ssh command works as described in
the previous recipe.
88 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

/www/

This is the source directory on the SSH client (the primary server) with a
trailing slash (/). A trailing slash is required if you want rsync to copy the
entire directory and its contents.

10.1.1.2:/www

This is the destination IP address and destination directory.

NOTE To tell rsync to display on the screen everything it will do when you enter this command,
without actually writing any files to the destination system, add a -n to the list of
arguments.

If you now run this exact same rsync command again (#rsync -v -a -z –e
ssh --delete /www/ 10.1.1.2:/www), rsync should see that nothing has changed
in the source files and send almost nothing over the network connection,
though it will still send a little bit of data to the rsync program on the
destination system to check for disk blocks that have changed.

To see exactly what is happening when you run rsync, add the --stats
option to the above command, as shown in the following example. Log on to
the primary server (the SSH client) as the web user, and then enter:

rsync -v -a -z –e ssh --delete --stats /www/ 10.1.1.2:/www

rsync should now report that the Total transferred file size is 0 bytes,
but you will see that a few hundred bytes of data were written.

Copying a Single File with rsync

To copy just one file using rsync, enter:

#rsync -v -a -z -e ssh /etc/sysconfig/iptables 10.1.1.2:/etc/sysconfig/

Notice in this example that the destination directory is specified but that
the destination file name is optional.

Here is how to copy one file from a remote machine (10.1.1.2) to the
local one:

#rsync -v -a -z -e ssh 10.1.1.2:/etc/sysconfig/iptables /etc/sysconfig/iptables

In this example, we have specified the destination directory and the
(optional) destination file name.

rsync over Slow WAN Connections

If your primary and backup server connect to each other via the Internet (or
a slow connection such as a private T1 line), you may also want to add the
--bwlimit to the rsync command. The number you specify following --bwlimit
is the maximum number of kilobytes that rsync should try to send over the
Synchron i zing Server s with r ysnc and SSH 89
No Starch Press, Copyright © 2005 by Karl Kopper

network per second. For example, to limit the rsync connection to 8 KB per
second (or 1/24 of the total of a T1 connection), you could log on to the
SSH client as the web user and enter:

rsync -v -a -z –e ssh --delete --bwlimit=8 /www/ 10.1.1.2:/www

Scheduled rsync Snapshots

Once you are happy with your rsync configuration, you can add a cron job to
your primary server that will perform the rsync operation at regular intervals.
For example, to synchronize the data in the /www directory at 30 minutes past
the hour, every hour, you would enter the following command while logged
on to the primary server as the web account:

#crontab -e

This should bring up the current crontab file for the web account in the
vi editor.9 You will see that this file is empty because you do not have any
cron jobs for the web account yet. To add a job, press the I key to insert text
and enter:

30 * * * * rsync -v -a -z –e ssh --delete /www/ 10.1.1.2:/www > /dev/null 2>&1

NOTE You can add a comment on a line by itself to this file by preceding the comment with the
character. For example, your file might look like this:

This is a job to synchronize our files to the backup server.
30 * * * * rsync -v -a -z –e ssh --delete /www/ 10.1.1.2:/www

Then press ESC, followed by the key sequence :wq to write and quit the file.
We have added > /dev/null 2>&1 to the end of this line to prevent cron

from sending an email message every half hour when this cron job runs
(output from the rsync command is sent to the /dev/null device, which means
the output is ignored). You may instead prefer to log the output from this
command, in which case you should change /dev/null in this command to
the name of a log file where messages are to be stored.

To cause this command to send an email message only when it fails, you
can modify it as follows:

rsync -v -a -z –e ssh --delete /www/ 10.1.1.2:/www || echo "rsync failed"
| mail admins@yourdomain.com

9 This assumes that vi is your default editor. The default editor is controlled by the EDITOR shell
environment variable.
90 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

U S I N G R S Y N C T O C O P Y

C O N F I G U R A T I O N F I L E S F O R H I G H A V A I L A B I L I T Y

In a Linux Enterprise Cluster, we need to build high-availability server pairs (using
the Heartbeat package discussed later in this part of the book) to support the cluster.
These high-availability servers will do things like offer print services to the cluster,
load balance incoming requests to use the cluster, provide user account authen-
tication information to the cluster nodes, and a variety of other things that help the
cluster to function normally.

Most of these functions (except for load balancing) will be placed on a high-
availability server pair called the cluster node manager. The cluster node manager
will help to support the cluster (printing, user authentication, and so on) from one
server while a backup cluster node manager server stands by ready to take over if
this primary cluster node manager goes down. To do this, the backup cluster node
manager—and every backup server in a high-availability server pair—needs to use
the same configuration files as the primary server. The system administrator can
create identical configuration files on a primary and backup server in a high-
availability server pair by hand-editing each configuration file on both systems, but
this method is prone to errors and is difficult to maintain. An easier method of
keeping the backup server’s configuration files the same as the primary server’s is to
simply copy them over the network using our secure data transport provided by
Open SSH with the rsync utility.

Copying the configuration files from the primary server to the backup server in
a high-availability server pair using Open SSH and rsync can also be automated by
placing the rsync commands into a shell script that is then regularly executed by the
cron daemon.

Here is a sample script that will copy the configuration files for the Heartbeat
program itself1 (which is described in Chapters 6 through 9), the Mon monitoring
daemon (described in Chapter 17) and the LPRng printing system (which is
described in Chapter 19).

#!/bin/bash
#
rsync script to copy configuration files between primary
and backup servers.
#
backup_host="10.1.1.2"
OPTS="--force --delete --recursive --ignore-errors -a -e ssh -z"
rsync $OPTS /etc/ha.d/ $backup_host:/etc/ha.d/
rsync $OPTS /etc/hosts $backup_host:/etc/hosts
rsync $OPTS /etc/printcap $backup_host:/etc/printcap
rsync $OPTS /var/spool/lpd/ $backup_host:/var/spool/lpd/
rsync $OPTS /etc/mon $backup_host:/etc/mon
rsync $OPTS /usr/lib/mon/ $backup_host:/usr/lib/mon/

1 As we’ll see later in these chapters, the configuration files for Heartbeat should always be the
same on the primary and the backup server. In some cases, however, the Heartbeat program
must be notified of the changes to its configuration files (service heartbeat reload) or even
restarted to make the changes take effect (when the /etc/ha.d/haresources file changes).
Synchron i zing Server s with r ysnc and SSH 91
No Starch Press, Copyright © 2005 by Karl Kopper

To view your cron job listing, enter:

#crontab –l

This cron job will take effect the next time the clock reads thirty minutes
after the hour.

The format of the crontab file is in section 5 of the man pages. To read
this man page, type:

#man 5 crontab

NOTE See Chapter 1 to make sure the crond daemon starts each time your system boots.

ipchains/iptables Firewall Rules for rsync and SSH
If your primary server uses its eth1 network interface to connect to the
backup server, you can prevent unwanted (outside) attempts to use SSH or
rsync with the following ipchains/iptables rules.

NOTE You can accomplish the same thing these rules are doing by using access rules in the
sshd_config file.

SSH uses port 22:

ipchains -A input -i eth1 -p tcp -s 10.1.1.0/24 1024:65535
–d 10.1.1.1 22 -j ACCEPT

or

iptables -A INPUT -i eth1 -p tcp -s 10.1.1.0/24 --sport 1024:65535
–d 10.1.1.1 --dport 22 -j ACCEPT

rsync uses port 873:

ipchains -A input -i eth1 -p tcp -s 10.1.1.0/24 1024:65535
–d 10.1.1.1 873 -j ACCEPT

Note: Directories contain a / at the end. See Chapter 18 for another example
of this script when used on a server that will run batch cron jobs for the cluster.

This script file is also provided on the CD-ROM included with this book.
Normally, to copy configuration files, you will need to use the root account,
although you can use the sudo program if you do not want to use the root account to
copy the configuration files (see the sudo man page for details). This script is then
run as a regularly scheduled root cron job on the backup server in the high-
availability server pair with additional lines added to copy the configuration files for
all of the services that need to be made highly available. (In the next section, we’ll
describe how to create a cron job entry.)
92 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

or

iptables -A INPUT -i eth1 -p tcp -s 10.1.1.0/24 --sport 1024:65535
–d 10.1.1.1 --dport 873 -j ACCEPT

In Conclusion

To build a highly available server pair that can be easily administered, you
need to be able to copy configuration files from the primary server to the
backup server when you make changes to files on the primary server. One
way to copy configuration files from the primary server to the backup server
in a highly available server pair is to use the rsync utility in conjunction with
the Open Secure Shell transport.

It is tempting to think that this method of copying files between two
servers can be used to create a very low-cost highly available data solution
using only locally attached disk drives on the primary and the backup servers.
However, if the data stored on the disk drives attached to the primary server
changes frequently, as would be the case if the highly available server pair is
an NFS server or an SQL database server, then using rsync combined with
Open SSH is not an adequate method of providing highly available data. The
data on the primary server could change, and the disk drive attached to the
primary server could crash, long before an rsync cron job has the chance to
copy the data to the backup server.10 When your highly available server pair
needs to modify data frequently, you should do one of the following things to
make your data highly available:

� Install a distributed filesystem such as Red Hat’s Global File System (GFS)
on both the primary and the backup server (see Appendix D for a partial
list of additional distributed filesystems).

� Connect both the primary and the backup server to a highly available
SAN and then make the filesystem where data is stored a resource under
Heartbeat’s control.

� Attach both the primary and the backup server to a single shared SCSI
bus that uses RAID drives to store data and then make the filesystem
where data is stored a resource under Heartbeat’s control.

When you install the Heartbeat package on the primary and backup
server in a highly available server pair and make the shared storage file
system (as described in the second two bullets) where your data is stored a
resource under Heartbeat’s control, the filesystem will only be mounted on
one server at a time (under normal circumstances, the primary server).
When the primary server crashes, the backup server mounts the shared

10 Using rsync to make snapshots of your data may, however, be an acceptable disaster recovery
solution.
Synchron i zing Server s with r ysnc and SSH 93
No Starch Press, Copyright © 2005 by Karl Kopper

storage filesystem where the data is stored and launches the SQL or NFS
server to provide cluster nodes with access to the data. Using a highly
available server pair and shared storage in this manner ensures that no data
is lost as a result of a failover.

I’ll describe how to make a resource highly available using the Heartbeat
package later in this part of the book, but before I do, I want to build on the
concepts introduced in this chapter and describe how to clone a system using
the SystemImager package.
94 Chapter 4

No Starch Press, Copyright © 2005 by Karl Kopper

5
C L O N I N G S Y S T E M S W I T H

S Y S T E M I M A G E R

Now that we have a secure and reliable way
to transfer files between computers (the

subject of Chapter 4), we can make a backup
copy, or system image, of one computer and store it

on the disk drive of another computer. This system
image can then be used to recover a system in the
event of a disk crash, or it can be used to make a clone of the original system.
Cloned systems can become backup servers in high-availability server pairs,
or they can become cluster nodes. When changes are made to the original
system, the cloned systems can be easily updated using a newly created
system image of the original system.

SystemImager

Using the SystemImager package, we can turn one of the cluster nodes into a
Golden Client that will become the master image used to build all of the other
cluster nodes. We can then store the system image of the Golden Client on
No Starch Press, Copyright © 2005 by Karl Kopper

the backup server (offering the SSH server service discussed in the previous
chapter). In this chapter, the backup server is called the SystemImager server,
and it must have a disk drive large enough to hold a complete copy of the
contents of the disk drive of the Golden Client, as shown in Figure 5-1.

Figure 5-1: The SystemImager server and Golden Client

Cloning the Golden Client with SystemImager

Clones 1, 2, and 3 in this diagram are all exact copies of the Golden Client—
only their IP address information and host names are different.

Here, then, are the steps for cloning a system using the SystemImager
package.

NOTE The following recipe and the software included on the CD-ROM do not contain
support for SystemImager over SSH. To use SystemImager over SSH (on RPM-based
systems) you must download and compile the SystemImager source code as described
at http://www.systemimager.org/download.

SystemImager Recipe

The list of ingredients follows. See Figure 5-2 for a list of software used on the
Golden Client, SystemImager server, and clone(s).

Computer that will become the Golden Client (with SSH client software
and rsync)

Computer that will become the SystemImager server (with SSH server
software and rsync)

Computer that will become a clone of the Golden Client (with a network
connection to the SystemImager server and a floppy disk drive)

SystemImager server Golden Client

Clone 1

Clone 2

Clone 3

System image of
Golden Client

SystemImager
disk drive
96 Chapter 5

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 5-2: Software used on SystemImager server, Golden Client, and clone(s)

Install the SystemImager Server Software on the SystemImager Server

The machine you select to be the SystemImager server should have enough
disk space to hold several system images. After you decide which machine to
use, you can install the software using the installation program available on the
download page of the SystemImager website, http://www.systemimager.org,
or you can install the software using the CD-ROM included with this book.
Before we can install the software, however, we need to install a few Perl
modules that SystemImager depends upon for normal operation: AppConfig,
MLDBM, and XML-Simple. The source code for these three Perl modules is
included on the CD-ROM in tar.gz format in the chapter5/perl-modules
directory. Copy them to a directory on the hard drive (/usr/local/src/
systemimager/perlmodules in the following example), and compile and install
them with the commands perl Makefile.PL, make, make test, and make install.

When you have finished installing these Perl modules, you’re ready to
install the SystemImager server package. If you are using an RPM-based
distribution such as Red Hat, you can use the RPM files included with this
book. Mount the CD-ROM, switch to the chapter5 directory, and then type:

#rpm -ivh *rpm

NOTE Only the RPM files for i386 hardware are included on the CD-ROM. For other types of
hardware, see the SystemImager website.

Software and Commands

rsync

prepareclient

(ssh)

Software and Commands

rsync

getimage

addclients

makeautoinstalldiskette

(makedhcpserver)

(dhcpd)

(sshd)

SystemImager server
Golden Client

Clone(s)

Software and Commands

rsync

(ssh)

updateclient
Clon ing Sys tems w ith Sys temImager 97
No Starch Press, Copyright © 2005 by Karl Kopper

The RPM command may complain about failed dependencies. If the
only dependencies it complains about are the Perl modules we just installed
(AppConfig, which is sometimes called libappconfig, MLDBM, and XML-Simple), you
can force the RPM command to ignore these dependencies and install the
RPM files with the command:

#rpm -ivh --nodeps *rpm

Using the Installer Program from SystemImager

If you just installed the software using the CD-ROM included with this book,
you can skip this section.

The list of software installed by the SystemImager install program is
currently located (and downloaded each time the script runs) at http://
sisuite.org/tags/stable.txt. It contains URLs to locate the common software
(common to both the SystemImager client and the SystemImager server)
required on the SystemImager server, and the server software. You will also see
different versions of the kernel boot architecture rpms. The install script will
download only the packages you specify and any dependencies they have that
are also in the list (--list). For all versions of i86 hardware, the i386 boot rpm
is used. You can download all available boot architectures, but normally you will
only need one (to support the architecture you are using on all cluster nodes).
The commands to list the available SystemImager packages are as follows:

#wget http://sisuite.org/install
#chmod +x install
#./install –list
Then install the packages you need using a command like this:
#./install –verbose systemimager-common systemimager-server systemimager-
i386boot-standard

NOTE The installer program runs the rpm command to install the packages it downloads.

Install the SystemImager Client Software on the Golden Client

Also included on the CD-ROM with this book is the SystemImager client
software. This software is located in the chapter5/client directory.

NOTE As with all of the software in this book, you can download the latest version of the
SystemImager package from the Internet.

Before you can install this software, you’ll need to install the Perl AppConfig
module, as described in the previous step (it is located on the CD-ROM in the
chapter5/perl-modules directory). Again, because the RPM program expects to
find dependencies in the RPM database, and we have installed the AppConfig
module from source code, you can tell the rpm program to ignore the depen-
dency failures and install the client software with the following commands.
98 Chapter 5

No Starch Press, Copyright © 2005 by Karl Kopper

#mount /mnt/cdrom
#cd /mnt/cdrom/chapter5/client #rpm -ivh --nodeps *

You can also install the SystemImager client software using the installer
program found on the SystemImager download website (http://www.system-
imager.org/download).

Once you have installed the packages, you are ready to run the command:

#/usr/sbin/prepareclient –server <servername>

This script will launch rsync as a daemon on this machine (the Golden
Client) so that the SystemImager server can gain access to its files and copy
them over the network onto the SystemImager server. You can verify that this
script worked properly by using the command:

#ps –elf | grep rsync

You should see a running rsync daemon (using the file /tmp/rsyncd.conf as
a configuration file) that is waiting for requests to send files over the network.

Create a System Image of the Golden Client on the SystemImager Server

We are now ready to copy the contents of the Golden Client’s disk drive(s) to
the SystemImager server. The images will be stored on the SystemImager
server in the /var/lib/systemimager directory. Check to make sure you have
enough disk space in this directory by doing the following:

#df –h /var/lib/systemimager

If this is not enough space to hold a copy of the contents of the disk drive
or drives on the Golden Client, use the -directory option when you use the
getimage command, or change the default location for images in the /etc/
systemimager/systemimager.conf file and then create a link back to it, ln –s
/usr/local/systemimager /var/lib/systemimager.

Now (optionally, if you are not running the command as root) give the
web user1 permission to run the /usr/sbin/getimage command by editing the
/etc/sudoers file with the visudo command and adding the following line:

web siserver.yourdomain.com = NOPASSWD:/usr/sbin/getimage

where siserver.yourdomain.com is the host name (see the output of the hostname
command) of the SystemImager server.

We can now switch to the web user account on the SystemImager server
and run the /usr/sbin/getimage command.

1 Or any account of your choice. The command to create the web user was provided in Chapter 4.
Clon ing Sys tems w ith Sys temImager 99
No Starch Press, Copyright © 2005 by Karl Kopper

Logged on to the SystemImager server:

#sudo /usr/sbin/getimage –user-ssh web -golden-client 10.1.1.2 –image
backup.yourdomain.com

In this example, the Golden Client is at IP address 10.1.1.2.
If you are logged on as root and do not need to use the SSH protocol to

encrypt your network traffic, use the following command:

#/usr/sbin/getimage -golden-client 10.1.1.2 -image backup.yourdomain.com

Notes:

� The -image name does not necessarily need to match the host name of
the Golden Client, though this is normally how it is done.

� You cannot get the image of a Golden Client unless it knows the IP
address and host name of the image server (usually specified in the /etc/
hosts file on the Golden Client).

� On busy networks, the getimage command may fail to complete properly
due to timeout problems. If this happens, try the command a second or
third time. If it still fails, you may need to run it at a time of lower net-
work activity.

� When the configuration changes on the backup server, you will need to
run this command again, but thanks to rsync, only the disk blocks that
have been modified will need to be copied over the network. (See “Per-
forming Maintenance: Updating Clients” at the end of this chapter for
more information.)

Once you answer the initial questions and the script starts running, it will
spend a few moments analyzing the list of files before the copy process
begins. You should then see a list of files scroll by on the screen as they are
copied to the local hard drive on the SystemImager server.

When the command finishes, it will prompt you for the method you
would like to use to assign IP addresses to future client systems that will be
clones of the backup data server (the Golden Client). If you are not sure,
select static for now.

When prompted, select y to run the addclients program (if you select n
you can simply run the addclients command by itself later).

You will then be prompted for your domain name and the “base” host
name you would like to use for naming future clones of the backup data
server. As you clone systems, the SystemImager software automatically assigns
the clones host names using the name you enter here followed by a number
that will be incremented each time a new clone is made (backup1, backup2,
backup3, and so forth in this example).

The script will also help you assign an IP address range to these host
names so they can be added to the /etc/hosts file. When you are finished,
100 Chap te r 5

No Starch Press, Copyright © 2005 by Karl Kopper

the entries will be added to the /etc/hosts file (on the SystemImager server)
and will be copied to the /var/lib/systemimager/scripts/ directory. The entries
should look something like this:

backup1.yourdomain.com backup1
backup2.yourdomain.com backup2
backup3.yourdomain.com backup3
backup4.yourdomain.com backup4
backup5.yourdomain.com backup5
backup6.yourdomain.com backup6

and so on, depending upon how many clones you plan on adding.

Make the Primary Data Server into a DHCP Server
Normally, you will skip this section and use the static method to assign IP
addresses (so that you can skip this section entirely by placing the IP address
of the client on the boot floppy created in the next section). If you already
use DHCP or don’t want to install a DHCP server on your network, skip to
the next section now.

First, we need to be sure the DHCPD and TFTPD software is loaded on
the SystemImager server. On a Red Hat system, you can do this with the
following commands:

#rpm -qa | grep dhcp

You may have the DHCP client software installed on your computer. The
DHCP client software RPM package is called dhcpcd, but we need the dhcp
package.

If this command does not return the version number of the currently
installed DHCP software package, you will need to install it either from your
distribution CD or by downloading it from the Red Hat (or Red Hat mirror)
FTP site (or using the Red Hat up2date command).

NOTE As of Red Hat version 7.3, the init script to start the dhcpd server (/etc/rc.d/init.d/
dhcpd) is contained in the dhcp RPM.

We are now ready to modify the DHCPD configuration file /etc/
dhcpd.conf. Fortunately, the SystemImager package includes a utility called
mkdhcpserver,2 which will ask questions and then do this automatically.

As root on the SSH server, type the command:

#mkdhcpserver

Once you have entered your domain name, network number, and
netmask, you will be asked for the starting IP address for the DHCP range.
This should be the same IP address range we just added to the /etc/hosts file.

2 Older versions of SystemImager used the command makedhcpserver.
Cloning Sys tems wi th Sys temImage r 101
No Starch Press, Copyright © 2005 by Karl Kopper

In this example, we will not use SSH to install the clients.3

The IP address of the image server will also be the cluster network
internal IP address of the primary data server (the same IP address as the
default gateway):

Here are the values you have chosen:

###
DNS domain name: yourdomain.com
Network number: 10.1.1.0
Netmask: 255.255.255.0
Starting IP address for your DHCP range: 10.1.1.3
Ending IP address for your DHCP range: 10.1.1.254
First DNS server:
Second DNS server:
Third DNS server:
Default gateway: 10.1.1.1
ImageServer: 10.1.1.1
SSH files download URL:
###

Are you satisfied? (y/[n]):

If all goes well, the script should ask you if you want to restart the DHCPD
server. You can say no here because we will do it manually in a moment.

View the /etc/dhcpd.conf file to see the changes that this script made by
typing:

#vi /etc/dhcpd.conf

Before we can start DHCPD for the first time, however, we need to create
the leases file. This is the file that the DHCP server uses to hold a particular
IP address for a MAC address for a specified lease period (as controlled by
the /etc/dhcpd.conf file). Make sure this file exists by typing the command:

#touch /var/lib/dhcp/dhcpd.leases

Now we are ready to stop and restart the DHCP server, but as the script
warns, we need to make sure it is running on the proper network interface
card. Use the ifconfig -a command and determine what the eth number is
for your cluster network (the 10.1.1.x network in this example).

If you have configured your primary data server as described in this
chapter, you will want DHCP to run on the eth1 interface, so we need to edit
the DHCPD startup script and modify the daemon line as follows.

3 If you really need to create a newly cloned system at a remote location by sending your system
image over the Internet, see the SystemImager manual online at http://systemimager.org for
instructions.
102 Chap te r 5

No Starch Press, Copyright © 2005 by Karl Kopper

#vi /etc/rc.d/init.d/dhcpd

Change the line that reads:

daemon /usr/sbin/dhcpd

so it looks like this:

daemon /usr/sbin/dhcpd eth1

Also, (optionally) you can configure the system to start DHCP automati-
cally each time the system boots (see Chapter 1). For improved security and
to avoid conflicts with any existing DHCP servers on your network, however,
do not do this (just start it up manually when you need to clone a system).

Now manually start DHCPD with the command:

#/etc/init.d/dhcpd start

(The command service dhcpd start does the same thing on a Red Hat
system.)

Make sure the server starts properly by checking the messages log with
the command:

#tail /var/log/messages

You should see DHCP reporting the “socket” or network card and IP
address it is listening on with messages that look like this:

dhcpd: Listening on Socket/eth1/10.1.1.0
dhcpd: Sending on Socket/eth1/10.1.1.0
dhcpd: dhcpd startup succeeded

Create a Boot Floppy for the Golden Client

We are now ready to create a floppy diskette that can be used to boot a new
system and automatically copy over the entire system image to the hard drive.
Create a new Linux4 boot floppy on the primary data server by placing a
blank floppy in the drive and typing the SystemImager command5:

#mkautoinstalldiskette

4 This boot floppy will contain a version of Linux that is designed for the SystemImager project,
called Brian’s Own Embedded Linux or BOEL. To read more about BOEL, see the following
article at LinuxDevices.com (http://www.linuxdevices.com/articles/AT9049109449.html).
5 Older versions of SystemImager used the command makeautoinstalldiskette.
Cloning Sys tems wi th Sys temImage r 103
No Starch Press, Copyright © 2005 by Karl Kopper

NOTE We will not use the SSH protocol to install the Golden Client for the remainder of this
chapter. If you want to continue to use SSH to install the Golden Client (not required
to complete the install), see the help page information on the mkautoinstalldiskette
command.

If, after the script formats the floppy, you receive the error message
stating that:

mount: fs type msdos not supported by kernel

you need to recompile your kernel with support for the MSDOS filesystem.6

NOTE The script will use the superformat utility if you have the fd-utils package installed on
your computer (but this package is not necessary for the mkautoinstalldiskette script
to work properly).

If you did not build a DHCP server in the previous step, you should now
install a local.cfg file on your floppy.7 The local.cfg file contains the
following lines:

#
"SystemImager" - Copyright (C) Brian Elliott Finley <brian@systemimager.org>
#
This is the /local.cfg file.
#
HOSTNAME=backup1
DOMAINNAME=yourdomain.com
DEVICE=eth0
IPADDR=10.1.1.3
NETMASK=255.255.255.0
NETWORK=10.1.1.0
BROADCAST=10.1.1.255
GATEWAY=10.1.1.1
GATEWAYDEV=eth0
IMAGESERVER=10.1.1.1

Create this file using vi on the hard drive of the image server (the file is
named /tmp/local.cfg in this example), and then copy it to the floppy drive
with the commands:

#mount /mnt/floppy
#cp /tmp/local.cfg /mnt/floppy
#umount /mnt/floppy

6 In the make menuconfig screen, this option is under the Filesystems menu. Select (either as M for
modular or * to compile it directly into the kernel) the DOS FAT fs support option and the MSDOS fs
support option will appear. Select this option as well; then recompile the kernel (see Chapter 3).
7 You can also do this when you execute the mkautoinstalldiskette command. See
mkautoinstalldiskette -help for more information.
104 Chap te r 5

No Starch Press, Copyright © 2005 by Karl Kopper

When you boot the new system on this floppy, it will use a compact
version of Linux to format your hard drive and create the partitions to match
what was on the Golden Client. It will then use the local.cfg file you installed
on the floppy, or if one does not exist, the DHCP protocol to find the IP
address it should use. Once the IP address has been established on this new
system, the install process will use the rsync program to copy the Golden
Client system image to the hard drive.

Also, if you need to make changes to the disk partitions or type of disk
(IDE instead of SCSI, for example), you can make changes to the script file
that will be downloaded from the image server and run on the new system
by modifying the script located in the scripts directory (defined in the /etc/
systemimager/systemimager.conf file).8 The default setting for this directory
path is /var/lib/systemimager/scripts.9 This directory should now contain a list
of host names (that you specified when the addclients script in Step 3 of this
recipe). All of these host-name files point to a single (real) file containing a
script that will run on each clone machine at the start of the cloning process.
So in this example, the directory listing would look like this:

#ls -ls /var/lib/systemimager/scripts/backup*

The output of this command looks like this:

 /var/lib/systemimager/backup1.sh -> backup.yourdomain.com.master
 /var/lib/systemimager/backup2.sh -> backup.yourdomain.com.master
 /var/lib/systemimager/backup3.sh -> backup.yourdomain.com.master
 /var/lib/systemimager/backup4.sh -> backup.yourdomain.com.master
 /var/lib/systemimager/backup5.sh -> backup.yourdomain.com.master
 /var/lib/systemimager/backup6.sh -> backup.yourdomain.com.master
 /var/lib/systemimager/backup7.sh -> backup.yourdomain.com.master
 /var/lib/systemimager/backup.yourdomain.com.master

Notice how all of these files are really symbolic links to the last file on
the list:

 /var/lib/systemimager/backup.yourdomain.com.master

This file contains the script, which you can modify if you need to change
anything about the basic drive configuration on the clone system. It is
possible, for example, to create a Golden Client that uses a SCSI disk drive
and then modify this script file (changing the sd to hd and making other
modifications) and then install the clone image onto a system with an IDE
hard drive. (The script file contains helpful comments for making disk
partition changes.)

8 See “How do I change the disk type(s) that my target machine(s) will use?” in the
SystemImager FAQ for more information.
9 /tftpboot/systemimager in older versions of SystemImager.
Cloning Sys tems wi th Sys temImage r 105
No Starch Press, Copyright © 2005 by Karl Kopper

This kind of modification is tricky, and you need the right type of kernel
configuration (the correct drivers) on the original Golden Client to make it
all work, so the easiest configuration by far is to match the hardware on the
Golden Client and any clones you create.

Start rsync as a Daemon on the Primary Data Server

You’ll need to start rsync as a daemon on the SystemImager server and point
it at the rsync configuration file created and maintained by the SystemImager
programs in the /etc/systemimager directory. The SystemImager installation
procedure should have created the init script /etc/init.d/systemimager-server-
rsyncd. This script starts rsync as a daemon (rsync stays running in the back-
ground waiting for the cloning processes to start on a new system) when you
enter the command:

#/etc/init.d/systemimager-server-rsyncd start

(Or service systemimager-server-rsyncd start on Red Hat systems.)
You can also start rsync manually with the command:

#rsync --daemon --config=/etc/systemimager/rsyncd.conf

rsync gets its configuration from the file /etc/systemimager/rsyncd.conf.
This file tells the rsync daemon to report its error messages to the file /var/
log/systemimager/rsyncd. Examine this log now with the command:

#tail -f /var/log/systemimager/rsyncd

This should show log file entries indicating that rsync was successfully
started (press CTRL-C to break out of this command).

Install the Golden Client System Image on the New Clone

Connect your new clone system to the network and boot it from the floppy
disk you just created. After it boots from this floppy, it will use the local.cfg
file to set its IP address information or contact the DHCP server and receive
the next IP address you have configured for your clones.

This newly connected virginal clone machine will then use an rsync
command such as the following to pull down the Golden Client system image:

rsync –av –bwlimit=10000 –numeric-ids 10.1.1.1::backup.yourdomain.com/ /a/

This command is asking the 10.1.1.1 machine (the SystemImager server)
to send all of the files it has for the backup.yourdomain.com image. How does
rsync running on the SystemImager server know which files to send? It
examines the /etc/systemimager/rsyncd.conf file for an entry such as the
following.
106 Chap te r 5

No Starch Press, Copyright © 2005 by Karl Kopper

[backup.yourdomain.com]
 path = /var/lib/systemimager/images/backup.yourdomain.com

This allows the rsync program to resolve the rsync module name backup.
yourdomain.com into the path /var/lib/systemimager/images/backup.yourdomain.com
to find the correct list of files.

You can watch what is happening during the cloning process by running
the tcpdump command on the server (see Appendix B) or with the command:

#tail -f /var/log/systemimager/rsyncd

To see the network queues, type:

#netstat –tn

When rsync is finished copying the Golden Client image to the new
system’s hard drive, the installation process runs System Configurator to
customize the boot image (especially the network information) that is now
stored on the hard drive so that the new system will boot with its own host
and network identity.

When the installation completes, the system will begin beeping to indi-
cate it is ready to have the floppy removed and the power cycled. Once you
do this, you should have a newly cloned system.

Post-installation Notes

The system cloning process modifies the Red Hat network configuration file
/etc/sysconfig/network. Check to make sure this file contains the proper

W H E N T H E S Y S T E M I M A G E R B O O T F L O P P Y F A I L S

If the system does not boot properly, you can use the Linux shell prompt left by the
SystemImager client software to test network connectivity to the SystemImager server
using the ping and telnet commands. You can also use the sample rsync command
above to test the configuration before rebooting on the floppy once you have
resolved the network communication issues.

If you see an error message indicating you have exceeded the size of the disk
drive when the SystemImager software attempts to write the partition information to
the new hard drive, you should check the output of the dmesg command on both the
original machine and from the shell prompt after the system fails to install from the
floppy. From the output of the dmesg command, you can determine the raw size of
the disk drives connected to the original machine (the Golden Client) and the new
clone. If the disk drive is smaller on the new clone, you need to modify the
installation script on the image server (the installation script is copied down to the
clone after the system boots from the floppy, so there is no need to rebuild the
floppy). By default, scripts are stored in the /var/lib/systemimager/scripts directory
(see the /etc/systemimager/systemimager.conf file for the location on your system).
Cloning Sys tems wi th Sys temImage r 107
No Starch Press, Copyright © 2005 by Karl Kopper

network settings after booting the system. (If you need to make changes, you
can rerun the network script with the command service network restart, or
better yet, test with a clean reboot.)

Check to make sure the host name of your newly cloned host is in its
local /etc/host file (the LPRng daemon called lpd, for example, will not start
if the host name is not found in the hosts file).

Configure any additional network interface cards. On Red Hat systems,
the second Ethernet interface card is configured using the file /etc/sysconfig/
network-scripts/ifcfg-eth1, for example.

If you are using SSH, you need to create new SSH keys for local users
(see the ssh-keygen command in the previous chapter) and for the host
(on Red Hat systems, this is accomplished by removing the /etc/ssh/ssh_host*
files). Note, however, the simplest and easiest configuration to administer is
one that uses the same SSH keys on all cluster nodes. (When a client
computer connects to the cluster using SSH, they will always see the same
SSH host key, regardless of which cluster node they connect to, if all cluster
nodes use the same SSH configuration.)

If you started a DHCP server, you can turn it back off until the next time
you need to clone a system:

#/etc/rc.d/init.d/dhcpd stop

Finally, you will probably want to kill the rsync daemon started by the
prepareclient command on the Golden Client.

Performing Maintenance: Updating Clients

If you make changes to the Golden Client, simply enter the getimage
command on the SystemImager server; then updateclient on the cloned
systems (the backup servers in the high-availability server pairs or the cluster
nodes inside the cluster).

NOTE If you need to exclude certain directories from an update, create an entry in /etc/
systemimager/updateclient.local.exclude.

SystemInstaller

The SystemInstaller project grew out of the Linux Utility for cluster
Installation (LUI) project and allows you to install a Golden Image directly
to a SystemImager server using RPM packages. SystemInstaller does not use a
Golden Client; instead, it uses RPM packages that are stored on the
SystemImager server to build an image for a new clone, or cluster node.10

 The SystemInstaller website is currently located at http://system-
installer.sourceforge.net.

10 This is the method used by the OSCAR project, by the way. SystemInstaller runs on the “head
node” of the OSCAR cluster.
108 Chap te r 5

No Starch Press, Copyright © 2005 by Karl Kopper

SystemInstaller uses RPM packages to make it easier to clone systems
using different types of hardware (SystemImager works best on systems with
similar hardware).

System Configurator

As we’ve previously mentioned, SystemImager uses the System Configurator
to configure the boot loader, loadable modules, and network settings when it
finishes installing the software on a clone. The System Configurator software
package was designed to meet the needs of the SystemImager project, but is
distributed and maintained separate from the SystemImager package with
the hope that it will be used for other applications. For example, System
Configurator could be used by a system administrator to install driver
software and configure the NICs of all cluster nodes even when the cluster
nodes use different model hardware and different Linux distributions.

For more information about System Configurator, see http://
sisuite.org/systemconfig.

System Installation Suite, SystemInstaller, SystemImager, and System
Configurator are collectively called the System Installation Suite. The goal of
the System Installation Suite is to provide an operating system independent
method of installing, maintaining, and upgrading systems.

For more information on the System Installation Suite, see http://
sisuite.sourceforge.net.

In Conclusion

The SystemImager package uses the rsync software and (optionally) the SSH
software to copy the contents of a system, called the Golden Client, onto the
disk drive of another system, called the SystemImager server. A clone of the
Golden Client can then be created by booting a new system off of a specially
created Linux boot floppy containing software that formats the locally
attached disk drive(s) and then pulls the Golden Client image off of the
SystemImager server.

This cloning process can be used to create backup servers in high-
availability server pairs, or cluster nodes. It can also be used to update cloned
systems when changes are made to the Golden Client.
Cloning Sys tems wi th Sys temImage r 109
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

6
H E A R T B E A T I N T R O D U C T I O N

A N D T H E O R Y

This chapter introduces a software package
called Heartbeat that gives you the ability to

failover a resource from one computer to
another. The following three chapters will explore

Heartbeat and high-availability techniques in detail.
Part III of this book will build on the techniques
described here, and it will explain how to build a
highly available cluster. Once you know how to use
Heartbeat properly, you can deploy just about any
service and make it highly available.

NOTE A highly available system has no single points of failure. A single point of failure is a
single system component that upon failing causes the whole system to fail.

Heartbeat works like this: you tell Heartbeat which computer owns a
particular resource (which computer is the primary server), and the other
computer will automatically be the backup server. You then configure the
No Starch Press, Copyright © 2005 by Karl Kopper

Heartbeat daemon running on the backup server to listen to the “heartbeats”
coming from the primary server. If the backup server does not hear the
primary server’s heartbeat, it initiates a failover and takes ownership of the
resource.

The Physical Paths of the Heartbeats

The Heartbeat program running on the backup server can check for heart-
beats coming from the primary server over the normal Ethernet network
connection, but normally Heartbeat is configured to work over a separate
physical connection between the two servers. This separate physical connec-
tion can be either a serial cable or another Ethernet network connection (via a
crossover cable1 or mini hub, for example).

Heartbeat will work over one or more of these physical connections at
the same time and will consider the primary node active as long as heartbeats
are received on at least one of the physical connections. Figure 6-1 shows
three physical connections, or paths, between the servers. The first path, the
normal Ethernet network used to connect systems to each other on the
network, is the least preferred for sending the heartbeats, because it will add
extra traffic to your network (though this is a trivial load under normal
circumstances). Your choice of whether to use one or more new serial or
Ethernet connections will depend on your situation.

Figure 6-1: Physical paths for heartbeats

1 A crossover cable is simpler and more reliable than a mini hub because it does not require
external power.

Primary server Backup server

Company switch

Serial cable

Ethernet crossover cable

Heartbeats
112 Chap te r 6

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE High-availability best practices dictate that heartbeats should travel over multiple
independent communication paths.2 This helps eliminate the communications path
from being a single point of failure.

Serial Cable Connection
A serial connection is slightly more secure than an Ethernet connection,
because a hacker will not be able to run telnet, ssh, or rlogin over the serial
cable if they break into one of the systems. (The serial cable is a simple
crossover cable connected to the COM port on each system.) However,
because serial cables are short,3 the servers must be located near each other,
usually in the same computer room.

Ethernet Cable Connection
Using a new Ethernet network (or Ethernet crossover cable) eliminates any
distance limitation between the servers. It also allows you to synchronize the
filesystems on the two servers (as described in Chapter 4) without placing any
extra network traffic on your normal Ethernet network.

Using two physical paths to connect the primary and backup servers
provides redundancy for heartbeat control messages and is therefore a
requirement of a no-single-point-of-failure configuration. The two physical
paths between the servers need not be of the same type; an Ethernet and a
serial connection can be used together in the same configuration.

Partitioned Clusters and STONITH
For true redundancy, two physical connections should carry heartbeat control
messages between the primary and backup server. These two physical
connections will help prevent a situation where a network or cable failure
causes both nodes to try and assume ownership of the same resources. This
condition is known as a split-brain or partitioned cluster,4 and it can have dire
consequences if you are using two heartbeat nodes to control one physical
device (such as a shared SCSI or Fibre Channel disk drive). To avoid this
situation, take the following precautions:

� Create a redundant, reliable physical connection between heartbeat
nodes (preferably using both a serial connection and an Ethernet con-
nection) to carry heartbeat control messages.

� Allow for the ability to forcibly shut down one of the heartbeat nodes
when a partitioned cluster is detected.

2 In Blueprints for High Availability, Evan Marcus and Hal Stern define three different types of
networks used in failover configurations: the Heartbeat network, the production network (for
client access to cluster resources), and an administrative network (for system administrators to
access the servers and do maintenance tasks).
3 The original EIA-232 specification did not specify a distance limitation, but 50 feet has become
the industry’s de facto distance limit for normal serial communication. See the Serial HOWTO
for more information.
4 Sometimes the term cluster fencing or i/o fencing is used to describe what should happen when a
cluster is partitioned. It means that the cluster must be able to build a fence between partitions
and decide on which side of the fence the cluster resources should reside.
Hear tbea t In t roduc ti on and Theo ry 113
No Starch Press, Copyright © 2005 by Karl Kopper

This second precaution has been dubbed “shoot the other node in the
head,” or STONITH. Using a special hardware device that can power off a
node through software commands (sent over a serial or network cable),
Heartbeat can implement a Stonith5 configuration designed to avoid cluster
partitioning. (See Chapter 9 for more information.)

NOTE It is difficult to guarantee exclusive access to resources and avoid split-brain conditions
when the primary and backup heartbeat servers are not in close proximity. You will very
likely reduce resource reliability and increase system administration headaches if you try
to use Heartbeat as part of your disaster recovery or business resumption plan over a
wide area network (WAN). In the cluster solution described in this book, no Heartbeat
pairs of servers need communicate over a WAN.

Heartbeat Control Messages

In this chapter we will look at the three most basic heartbeat control messages6
(three kinds of packets, if you are using an Ethernet network):

� Heartbeats or status messages

� Cluster transition messages

� Retransmission requests

Heartbeats

Heartbeats (sometimes called status messages) are broadcast, unicast, or
multicast packets that are only about 150 bytes long. You control how often
each computer broadcasts its heartbeat and how long the heartbeat daemon
running on another node should wait before assuming something has gone
wrong.

Cluster Transition Messages

The two most prevalent cluster transition messages are ip-request and ip-
request-resp. These messages are relatively rare and contain the conversation
between heartbeat daemons when they want to move a resource from one
computer to another.

When you repair the primary server and it comes back online, it uses ip-
request to ask the backup server to release the resource it took ownership of
when the primary server failed. The backup server then shuts off the service
and replies with an ip-request-resp message to inform the primary server that
it no longer owns the resource. When the primary server receives this ip-
request-resp, it starts up the service and offers it to the client computers
again (it takes back ownership of the resource).

5 Although an acronym at birth, this term has moved up in stature to become, by all rights, a
word—it will be used as such throughout the remainder of this book.
6 For a complete list of heartbeat control message types see this website: http://www.linux-
ha.org/comm/Heartbeat-msgfmt.html.
114 Chap te r 6

No Starch Press, Copyright © 2005 by Karl Kopper

Retransmission Requests

The rexmit-request (or ns_rexmit) message—a request for a retransmission of
a heartbeat control message—is issued when one of the servers running
heartbeat notices that it is receiving heartbeat control messages that are out of
sequence. (Heartbeat daemons use sequence numbers to ensure packets are
not dropped or corrupted.) Heartbeat daemons will only ask for a
retransmission of a heartbeat control message (with no sequence number,
hence the “ns” in ns_rexmit) once every second, to avoid flooding the network
with these retry requests when something goes wrong.

Ethernet Heartbeat Control Messages

All three of these heartbeat control messages are sent using the UDP protocol
to either the port number specified in the /etc/ha.d/ha.cf file, or to the
multicast address specified in this same configuration file (when using
Ethernet).

Currently Heartbeat does not support more than two nodes.7 More
than one pair of heartbeat servers can share the same Ethernet network
connection and exchange heartbeats and heartbeat control messages, but
each of these pairs of heartbeat servers must use a unique UDP port number
as specified in the /etc/ha.d/ha.cf file, or a unique unicast or multicast
address.

Security and Heartbeat Control Messages

In addition to using a numbering sequence to recover from dropped or
corrupted packets, Heartbeat digitally signs each packet using either a 128-bit
hashing algorithm called MD5 (see RFC8 1321), or the even more secure 160-
bit HMAC-SHA1 (see RFC 2104). (You enter the same encryption password for
either of these methods on both the primary and the backup heartbeat
nodes.)

NOTE The Heartbeat developers recommend that you use one of these encryption methods even
on private networks to protect Heartbeat from an attacker (spoofed packets or a packet
replay attack).

How Client Computers Access Resources

Normally client computers know the name of the server offering the resource
they want to use (mail.mydomain.com or www.mydomain.com, for example),
and they use the Domain Name System (DNS) to look up the proper IP

7 To be more accurate, Heartbeat will only allow two nodes to share haresources entries (see
Chapter 8 for more information about the proper use of the haresources file). In this book we
are focusing on building a pair of high-availability LVS-DR directors to achieve high-availability
clustering.
8 The Requests for Comments (RFCs) can be found at http://www.rfc-editor.org.
Hear tbea t In t roduc ti on and Theo ry 115
No Starch Press, Copyright © 2005 by Karl Kopper

address of the server. Once the routing of the packet through the Internet or
WAN is done, however, this IP address has to be converted into a physical
network card address called the Media Access Control (MAC) address.

At this point, the router or the locally connected client computers use
the Address Resolution Protocol (ARP) to ask: “Who owns this IP address?”
When the computer using the IP address responds, the router or client
computer adds the IP address and its corresponding MAC address to a table
in its memory called the ARP table so it won’t have to ask each time it needs
to use the IP address. After a few minutes, most computers let unused ARP
table entries expire, to make sure they do not hold unused (or inaccurate)
addresses in memory.9

Failover Using IP Address Takeover (IPAT)

In order to move a resource (a service or daemon and its associated IP address)
from one computer to another, we need a way to move the IP address from
the primary computer to the backup computer. The method normally used
by Heartbeat is called IP address takeover (sometimes called IPAT). To
accomplish IPAT, Heartbeat uses secondary IP addresses (formerly called IP
aliases in older Linux kernels) and gratuitous ARP broadcasts.

Secondary IP Addresses and IP Aliases

Secondary IP addresses and IP aliases are two different methods for adding
multiple IP addresses to the same physical network card. The first IP address
(also called the primary address) is added to the NIC at boot time. Additional IP
addresses are then added by Heartbeat based on entries in the haresources
configuration file (we’ll discuss this file in detail in Chapter 8)—additional IP
addresses are either IP aliases or secondary IP addresses. As of this writing, the
Linux kernel supports both IP aliases and secondary IP addresses, though IP
aliases are deprecated in favor of secondary IP addresses.

9 For more information see RFC 826, “Ethernet Address Resolution Protocol.”

FA I L I N G O V E R M U L T I P L E I P A L I A S E S

In theory, you can add as many secondary IP addresses (or IP aliases) as your
network IP address numbering scheme will allow (depending upon your kernel
version). However, if you want Heartbeat to move more than a few IP addresses
from a primary server to a backup server when the primary server fails, you may
want to use a different method for IP address failover than the method described in
this chapter. In fact, Heartbeat versions prior to version 0.4.9 were limited to eight IP
addresses per network interface card (NIC) unless you used this method. (See the file
/usr/share/doc/packages/heartbeat/faqntips.html after installing the Heartbeat
RPM for instructions on how to configure your router for this alternative method.)
116 Chap te r 6

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE IP aliasing (sometimes called network interface aliasing) is a standard feature of the
Linux kernel when standard IPv4 networking is configured in the kernel. Older ver-
sions of the kernel required you to configure IP alias support as an option in the kernel.

By using secondary IP addresses or IP aliases you can offer a service such
as sendmail on one IP address and offer another service, like HTTP, on
another IP address, even though these two IP addresses are really owned by
the same computer (one physical network card at one MAC address).

When you use Heartbeat to offer services on a secondary IP address (or
IP alias) the service is owned by the server (meaning the server is the active,
or primary, node) and the server also owns the IP addresses used to access
the service. The backup node must not be using this secondary IP address
(or IP alias). When the primary node fails, and the service should be offered
by the backup server, the backup server will not only need to start the service
or daemon, it will also need to add the proper secondary IP address or IP
alias to one of its network cards.

A diagram of this two-node Heartbeat cluster configuration using an
Ethernet network to carry the heartbeat packets is shown in Figure 6-2.

In Figure 6-2 the IP address 209.100.100.2 is the primary IP address of the
primary server, and it never needs to move to the backup server. The backup
server’s primary IP address is 209.100.100.5, and this IP address will likewise
never need to move to another network card. However, the IP addresses
209.100.100.3 and 209.100.100.4 are each associated with a particular service
running on the primary server. If the primary server goes down, these IP
addresses need to move to the backup server, as shown in Figure 6-3.

I P A L I A S E S A N D S O U R CE A DD R E S S

Whether you use secondary IP addresses or IP aliases, the source address used in
packets that originate from the server (connections created from the server) will use
the primary IP address on the NIC. You can force the kernel to make the source
address appear to be one of the secondary IP addresses or IP aliases associated
with the NIC by using the ip command and the undocumented src option. For
example:

#ip route add default via 209.100.100.254 src 209.100.100.3 dev eth0

In this example, 209.100.100.254 is the gateway, and 209.100.100.3 is the
secondary IP address (or IP alias) you want to use as a source address for outgoing
packets. This method is used by the ipsrcaddr resource script included with the
Heartbeat package. (You can also use the command ip route get 209.100.100.10
to see which interface and source address is returned by the kernel’s routing table
for a particular IP address.)

Note: Forcing the kernel to use a secondary IP address or IP alias for the return
address in the packet header does not work if both sides of an active/active
Heartbeat pair of servers use the ipsrcaddr resource, or if different resources need to
use different source addresses.
Hear tbea t In t roduc ti on and Theo ry 117
No Starch Press, Copyright © 2005 by Karl Kopper

Figure 6-2: A basic Heartbeat configuration

Figure 6-3: The same basic Heartbeat configuration after failure of the primary server

Heartbeats

209.100.100.2 10.1.1.1 209.100.100.510.1.1.2

LAN

Primary server Backup server

Heartbeat

Resource:
Sendmail
eth0:0

IP
209.100.100.3

Resource:
HTTP
eth0:1

IP
209.100.100.4

Heartbeats

209.100.100.2 10.1.1.1 209.100.100.510.1.1.2

Primary server Backup server

Heartbeat

IP

Resource:
HTTP
eth0:1

IP
209.100.100.4

LAN
118 Chap te r 6

No Starch Press, Copyright © 2005 by Karl Kopper

Ethernet NIC Device Names

The Linux kernel assigns the physical Ethernet interfaces names such as eth0,
eth1, eth2, and so forth. These names are assigned either at boot time or when
the Ethernet driver for the interface is loaded (if you are using a modular
kernel), and they are based on the configuration built during the system
installation in the file /etc/modules.conf (or /etc/conf.modules on older versions
of Red Hat Linux). You can use the following command to see the NIC driver,
interrupt (IRQ) address, and I/O (base) address assigned to each PCI network
interface card (assuming it is a PCI card) that was recognized during the boot
process:

#lspci -v | less

You can then check this information against the interface configuration
using the ifconfig command:

#ifconfig -a | less

This should help you determine which eth number is assigned to a
particular physical network card by the kernel eth numbering scheme.
(See Appendix C for more information about NICs.)

Secondary IP Address Names

Secondary IP addresses are added after a primary IP address has already been
configured for a NIC. The primary IP address can be assigned to a NIC using
the ifconfig command (this is normally how Linux distributions assign IP
addresses at boot time) or by using the ip command. Secondary IP addresses,
however, can only be added using the ip command. When Heartbeat needs to
add a secondary IP address to a NIC it uses the script IPaddr2 (included with
the Heartbeat distribution) to run the proper ip command.

Both the primary and the secondary IP addresses can be viewed with this
command:

#ip addr sh

NOTE Secondary IP addresses are not shown by the ifconfig command.

Creating and Deleting Secondary IP Addresses with the ip Command

Creating and deleting secondary IP addresses in Linux is easy. To create (add)
a secondary IP address for the eth0 NIC, use this command:

#ip addr add 209.100.100.3/24 broadcast 209.100.100.255 dev eth0
Hear tbea t In t roduc ti on and Theo ry 119
No Starch Press, Copyright © 2005 by Karl Kopper

In this example, we are assuming that the eth0 NIC already has an IP
address on the 209.100.100.0 network, and we are adding 209.100.100.3 as an
additional (secondary) IP address associated with this same NIC. To view the
IP addresses configured for the eth0 NIC with the previous command, enter
this command:

#ip addr sh dev eth0

To remove (delete) this secondary IP address, enter this command:

#ip addr del 209.100.100.3/24 broadcast 209.100.100.255 dev eth0

NOTE The ip command is provided as part of the IProute2 package. (The RPM package
name is iproute.)

Fortunately, you won’t need to enter these commands to configure your
secondary IP addresses—Heartbeat does this for you automatically when it
starts up and at failover time (as needed) using the IPaddr2 script.

IP Aliases

As previously mentioned, you only need to use one method for assigning IP
addresses under Heartbeat’s control: secondary IP addresses or IP aliases. If
you are new to Linux, you should use secondary IP addresses as described in
the previous sections and skip this discussion of IP aliases.

You add IP aliases to a physical Ethernet interface (that already has an IP
address associated with it) by running the ifconfig command. The alias is
specified by adding a colon and a number to the interface name. The first IP
alias associated with the eth0 interface is called eth0:0, the second is called
eth0:1, and so forth. Heartbeat uses the IPaddr script to create IP aliases.

Creating and Deleting IP Aliases with the ifconfig Command

In our previous example, we were using IP address 209.100.100.2 with a
network mask of 255.255.255.0 on the eth0 Ethernet interface. To manually add
IP alias 209.100.100.3 to the same interface, use this command:

#ifconfig eth0:0 209.100.100.3 netmask 255.255.255.0 up

You can then view the list of IP addresses and IP aliases by typing the
following:

#ifconfig –a

or simply

#ifconfig
120 Chap te r 6

No Starch Press, Copyright © 2005 by Karl Kopper

This command will produce a listing that looks like the following:

eth0 Link encap:Ethernet su HWaddr 00:99:5F:0E:99:AB
 inet addr:209.100.100.2 Bcast:209.100.100.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MTU:1500 Metric:1
 RX packets:976 errors:0 dropped:0 overruns:0 frame:0
 TX packets:730 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 Interrupt:11 Base address:0x1400

eth0:0 Link encap:Ethernet HWaddr 00:99:5F:0E:99:AB
 inet addr:209.100.100.3 Bcast:209.100.100.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MTU:1500 Metric:1
 Interrupt:11 Base address:0x1400

From this report you can see that the MAC addresses (called HWaddr in
this report) for eth0 and eth0:0 are the same. (The interrupt and base
addresses also show that these IP addresses are associated with the same
physical network card.) Client computers locally connected to the computer
can now use an ARP broadcast to ask “Who owns IP address 209.100.100.3?”
and the primary server will respond with “I own IP 209.100.100.3 on MAC
address 00:99:5F:0E:99:AB.”

NOTE The ifconfig command does not display the secondary IP addresses added with the ip
command.

IP aliases can be removed with this command:

#ifconfig eth0:0 down

This command should not affect the primary IP address associated with
eth0 or any additional IP aliases (they should remain up).

NOTE Use the preceding command to see whether your kernel can properly support IP aliases.
If this command causes the primary IP address associated with this network card to
stop working, you need to upgrade to a newer version of the Linux kernel. Also note
that this command will not work properly if you attempt to use IP aliases on a different
subnet.10

Offering Services

Once you are sure a secondary IP address or IP alias can be added to and
removed from a network card on your Linux server without affecting the
primary IP address, you are ready to tell Heartbeat which services it should
offer, and which secondary IP address or IP alias it should use to offer the
services.
10 The “secondary” flag will not be set for the IP alias if it is on a different subnet. See the output
of the command ip addr to find out whether this flag is set. (It should be set for Heartbeat to
work properly.)
Hear tbea t In t roduc ti on and Theo ry 121
No Starch Press, Copyright © 2005 by Karl Kopper

NOTE Secondary IP addresses and IP aliases used by highly available services should always
be controlled by Heartbeat (in the /etc/ha.d/haresouces file as described later in this
chapter and in the next two chapters). Never use your operating system’s ability to add
IP aliases as part of the normal boot process (or a script that runs automatically at boot
time) on a Heartbeat server. If you do, your server will incorrectly claim ownership of
an IP address when it boots. The backup node should always be able to take control of a
resource along with its IP address and then reset the power to the primary node without
worrying that the primary node will try to use the secondary IP address as part of its
normal boot procedure.

Gratuitous ARP (GARP) Broadcasts

As mentioned previously, client computers normally use the Address
Resolution Protocol (ARP) to figure out which hardware address owns a
particular IP address, and then they store this address in an ARP table.
The Heartbeat program uses a little trick, called Gratuitous ARP (GARP)
broadcasts, to forcibly update these client computer ARP tables with a new
hardware (MAC) addresses when the primary server fails, effectively
convincing the client computers to talk to the backup server.11

GARP broadcasts12 are just sneaky ARP broadcasts (broadcasts,
remember, are only seen by locally connected nodes). The GARP broadcast
asks every node connected to the network, “Who owns this IP address?”
when, in fact, the ARP request packet header has a source (or reply) IP
address equal to the requested IP address. This forces all nodes connected
to the network to update their ARP tables with the new source address.

NOTE As of Heartbeat version 0.4.9.1 the send_arp program included with Heartbeat uses
both ARP request and ARP reply packets when sending GARPs (send_arp version 1.6).
If you experience problems with IP address failover on older versions of Heartbeat, try
upgrading to the latest version of Heartbeat.

Heartbeat uses the /usr/lib/heartbeat/send_arp program (formerly
/etc/ha.d/resource.d/send_arp) to send these specially crafted GARP
broadcasts. You can use this same program to build a script that will send
GARPs. The following is an example script (called iptakeover) that uses
send_arp to do this.

11 To use the Heartbeat IP failover mechanism with minimal downtime and minimal disruption
of the highly available services you should set the ARP cache timeout values on your switches and
routers to the shortest time possible. This will increase your ARP broadcast traffic, however, so
you will have to find the best trade-off between ARP timeout and increased network traffic for
your situation. (Gratuitous ARP broadcasts should update the ARP table entries even before
they expire, but if they are missed by your network devices for some reason, it is best to have
regular ARP cache refreshes.)
12 Gratuitous ARPs are briefly described in RFC 2002, “IP Mobility Support.” Also see RFC 826,
“Ethernet Address Resolution Protocol.”
122 Chap te r 6

No Starch Press, Copyright © 2005 by Karl Kopper

#!/bin/bash
#
iptakeover script
#
Simple script to take over an IP address.
#
Usage is "iptakeover {start|stop|status}"

#

SENDARP is the program included with the Heartbeat program that

sends out an ARP request. Send_arp usage is:

#

#

SENDARP="/usr/lib/heartbeat/send_arp"

#

REALIP is the IP address for this NIC on your LAN.

#

REALIP="299.100.100.2"

ROUTERIP is the IP address for your router.
#
ROUTER_IP="299.100.100.1"
#
SECONDARYIP is the first IP alias for a service/resource.
#
SECONDARYIP1="299.100.100.3"
or
#IPALIAS1="299.100.100.3"

#
NETMASK is the netmask of this card.
#
NETMASK="24"
or
NETMASK="255.255.255.0"
#
BROADCAST="299.100.100.0"
#
MACADDR is the hardware address for the NIC card.
(You'll find it using the command "/sbin/ifconfig")
#
MACADDR="091230910990"
case $1 in
start)

Make sure our primary IP is up
/sbin/ifconfig eth0 $REALIP up
Hear tbea t In t roduc ti on and Theo ry 123
No Starch Press, Copyright © 2005 by Karl Kopper

Associate the virtual IP address with this NIC
/sbin/ip addr add $SECONDARYIP1/$NETMASK broadcast $BROADCAST dev eth0
Or, to create an IP alias instead of secondary IP address, use the
command:
/sbin/ifconfig eth0:0 $IPALIAS1 netmask $NETMASK up

Create a new default route directly to the router
/sbin/route add default gw $ROUTER_IP

Now send out 5 Gratuitous ARP broadcasts (ffffffffffff)
at two second intervals to tell the local computers to update
their ARP tables.

$SENDARP -i 2000 -r 5 eth0 $SECONDARYIP1 $MACADDR $SECONDARYIP1 ffffffffffff
;;
stop)

Take down the secondary IP address for the service/resource.
/sbin/ip addr del $SECONDARYIP1/$NETMASK broadcast $BROADCAST dev eth0
or
/sbin/ifconfig eth0:0 down

;;
status)

We check to see if we own the IPALIAS.
OWN_ALIAS=`ifconfig | grep $SECONDARYIP1`
if ["$OWN_ALIAS" != ""]; then
echo "OK"
else
echo "DOWN"
fi

;;
End of the case statement.
 esac

NOTE You do not need to use this script. It is included here (and on the CD-ROM) to demon-
strate exactly how Heartbeat performs GARPs.

The important line in the above code listing is marked in boldface.
This command runs /usr/lib/heartbeat/send_arp and sends an ARP

broadcast (to hexadecimal IP address ffffffffffff) with a source and
destination address equal to the secondary IP address to be added to the
backup server.

You can use this script to find out whether your network equipment
supports IP address failover using GARP broadcasts. With the script installed
on two Linux computers (and with the MAC address in the script changed to
the appropriate address for each computer), you can move an IP address
back and forth between the systems to find out whether Heartbeat will be
able to do the same thing when it needs to failover a resource.
124 Chap te r 6

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE When using Cisco equipment, you should be able to log on to the router or switch and
enter the command show arp to watch the MAC address change as the IP address moves
between the two computers. Most routers have similar capabilities.

Resource Scripts

All of the scripts under Heartbeat’s control are called resource scripts. These
scripts may include the ability to add or remove a secondary IP address or IP
alias, or they may include packet-handling rules (see Chapter 2) in addition to
being able to start and stop a service. Heartbeat looks for resource scripts in
the Linux Standards Base (LSB) standard init directory (/etc/init.d) and in
the Heartbeat /etc/ha.d/resource.d directory.

Heartbeat should always be able to start and stop your resource by
running your resource script and passing it the start or stop argument. As
illustrated in the iptakeover script, this can be accomplished with a simple
case statement like the following:

#!/bin/bash
case $1 in
start)
 commands to start my resource
 ;;
stop)
 commands to stop my resource
 ;;
status)
 commands to test if I own the resource
 ;;
*)
 echo "Syntax incorrect. You need one of {start|stop|status}"
 ;;
esac

The first line, #!/bin/bash, makes this file a bash (Bourne Again Shell)
script. The second line tests the first argument passed to the script and
attempts to match this argument against one of the lines in the script
containing a closing parenthesis. The last match, *), is a wildcard match that
says, “If you get this far, match on anything passed as an argument.” So if the
program flow ends up executing these commands, the script needs to
complain that it did not receive a start, stop, or status argument.

Status of the Resource

Heartbeat should always know which computer owns the resource or resources
being offered. When you write a script to start or stop a resource, it is
important to write the script in such a way that it will accurately determine
whether the service is currently being offered by the system. If it is, the script
Hear tbea t In t roduc ti on and Theo ry 125
No Starch Press, Copyright © 2005 by Karl Kopper

should respond with the word OK, Running, or running when passed the status
argument—Heartbeat requires one of these three responses if the service is
running. What the script returns when the service is not running doesn’t
matter to Heartbeat—you can use DOWN or STOPPED, for example. However, do
not say not running or not OK for the stopped status. (See the “Using init Scripts
as Heartbeat Resource Scripts” section later in this chapter for more
information on proposed standard exit codes for Linux.)

NOTE If you want to write temporary scratch files with your resource script and have Heart-
beat always remove these files when it first starts up, write your files into the directory
/var/lib/heartbeat/rsctmp (on a standard Heartbeat installation on Linux).

Resource Ownership

So how do you write a script to properly determine if the machine it is running
on currently owns the resource? You will need to figure out how to do this for
your situation, but the following are two sample tests you might perform in
your resource script.

Testing for Resource Ownership—Is the Daemon Running?

Red Hat Linux and SuSE Linux both ship with a program called pidof that can
test to see if a daemon is running. The pidof program finds the process
identifier (PID) of a running daemon when you give it the name of the
program file that was used to start the daemon.

When you run the pidof script from within your resource script you
should always pass it the full pathname of the daemon you want to search for
in the process table. For example, to determine the PID of the sendmail
program, you would use this command:

#pidof /usr/sbin/sendmail

If sendmail is running, its PID number will be printed, and pidof exits
with a return code of zero. If sendmail is not running, pidof does not print
anything, and it exits with a nonzero return code.

NOTE See the /etc/init.d/functions script distributed with Red Hat Linux for an example
use of the pidof program.

A sample bash shell script that uses pidof to determine whether the
sendmail daemon is running (when given the status argument) might look
like this:

#!/bin/bash
#
case $1 in
status)
126 Chap te r 6

No Starch Press, Copyright © 2005 by Karl Kopper

 if /sbin/pidof /usr/sbin/sendmail >/dev/null; then
 echo "OK"
 else
 echo "DOWN"
 fi
;;
esac

If you place these commands in a file, such as /etc/ha.d/resource.d/
myresource, and chmod the file to 755, you can then run the script with this
command:

#/etc/ha.d/resource.d/myresource status

If sendmail is running, the script will return the word OK; if not, the script
will say DOWN. (You can stop and start the sendmail daemon for testing purposes
by running the script /etc/init.d/myresource and passing it the start or stop
argument.)

Testing for Resource Ownership—Do You Own the IP Address?

If you use Heartbeat’s built-in ability to automatically failover secondary IP
addresses or IP aliases, you do not need to worry about this second test (see the
discussion of the IPaddr2 resource script and the discussion of resource groups
in Chapter 8). However, if you are using the iptakeover script provided on the
CD-ROM, or if you are building a custom configuration that makes changes to
network interfaces or the routing table, you may want to check to see if the
system really does have the secondary IP address currently configured as part
of your script’s status test.

To perform this check, the script needs to look at the current secondary
IP addresses configured on the system. We can modify the previous script
and add the ip command to show the secondary IP address for the eth0 NIC
as follows:

#!/bin/bash
#
case $1 in
status)

if /sbin/pidof /usr/sbin/sendmail >/dev/null; then
ipaliasup=`/sbin/ip addr show dev eth0 | grep 200.100.100.3`
if ["$ipaliasup" != ""]; then
echo "OK"
exit 0
fi
fi

 echo "DOWN"
;;
esac
Hear tbea t In t roduc ti on and Theo ry 127
No Starch Press, Copyright © 2005 by Karl Kopper

Note that this script will only work if you use secondary IP addresses. To
look for an ip alias, modify this line in the script:

ipaliasup=`/sbin/ip addr show dev eth0 | grep 200.100.100.3`

to match the following:

ipaliasup=`/sbin/ifconfig eth0 | grep 200.100.100.3`

This changed line of code will now check to see if the IP alias 200.100.100.3
is associated with the interface eth0. If so, this script assumes the interface is
up and working properly, and it returns a status of OK and exits from the
script with a return value of 0.

NOTE Testing for a secondary IP address or an IP alias should only be added to resource
scripts in special cases; see Chapter 8 for details.

Testing a Resource Script

You can test to make sure the Heartbeat system will work properly with your
newly created resource script by running the following command:

#/usr/lib/heartbeat/ResourceManager status <resource-name>

where <resource-name> is the name of your newly created resource script
in the /etc/rc.d/init.d or /etc/ha.d/resource.d directory. Then tell your
shell to display the value of your resource script’s return code with this
command:

#echo $?

The $? must be the next command you type after running the script—
otherwise the return value stored in the shell variable ? will be overwritten.

If the return code is 3, it means your script returned something other
than OK, Running, or running, which means that Heartbeat thinks that it does
not own the resource. If this command returns 0, Heartbeat considers the
resource active.

Once you have built a proper resource script and placed it in the /etc/
rc.d/init.d directory or the /etc/ha.d/resource.d directory and thoroughly
tested its ability to handle the start, stop, and status arguments, you are ready
to configure Heartbeat.

Using init Scripts as Heartbeat Resource Scripts

Most of the /etc/init.d scripts (the scripts used at system boot time by the init
process) will already properly handle the start, stop, and status arguments. In
fact, the Linux Standard Base Specification (see http://www.linuxbase.org)
128 Chap te r 6

No Starch Press, Copyright © 2005 by Karl Kopper

states that in future releases of Linux, all Linux init scripts running on all
versions of Linux that support LSB must implement the following: start, stop,
restart, reload, force-reload, and status.

The LSB project also states that if the status argument is sent to an init
script it should return 0 if the program is running.

For the moment, however, you need only rely on the convention that a
status command should return the word OK, or Running, or running to standard
output (or “standard out”).13 For example, Red Hat Linux scripts, when
passed the status argument, normally return a line such as the following
example from the /etc/rc.d/init.d/sendmail status command:

sendmail (pid 4511) is running...

Heartbeat looks for the word running in this output, and it will ignore
everything else, so you do not need to modify Red Hat’s init scripts to use
them with Heartbeat (unless you want to also add the test for ownership of
the secondary IP address or IP alias).

However, once you tell Heartbeat to manage a resource or script, you
need to make sure the script does not run during the normal boot (init)
process. You can do this by entering this command:

#chkconfig --del <scriptname>

where <scriptname> is the name of the file in the /etc/init.d directory. (See
Chapter 1 for more information about the chkconfig command.)

The init script must not run as part of the normal boot (init) process,
because you want Heartbeat to decide when to start (and stop) the daemon.
If you start the Heartbeat program but already have a daemon running that
you have asked Heartbeat to control, you will see a message like the following
in the /var/log/messages file:

WARNING: Non-idle resources will affect resource takeback.

If you see this error message when you start Heartbeat, you should
stop all of the resources you have asked Heartbeat to manage, remove
them from the init process (with the chkconfig --del <scriptname>
command), and then restart the Heartbeat daemon (or reboot) to put
things in a proper state.

13 Programs and shell scripts can return output to standard output or to standard error. This
allows programmers to control, through the use of redirection symbols, where the message will
end up—see the “REDIRECTION” section of the bash man page for details.
Hear tbea t In t roduc ti on and Theo ry 129
No Starch Press, Copyright © 2005 by Karl Kopper

Heartbeat Configuration Files

Heartbeat uses three configuration files:

/etc/ha.d/ha.cf

Specifies how the heartbeat daemons on each system communicate with
each other.

/etc/ha.d/haresources

Specifies which server should normally act as the primary server for a
particular resource and which server should own the IP address that cli-
ent computers will use to access the resource.

/etc/ha.d/authkeys

Specifies how the Heartbeat packets should be encrypted.

NOTE The ha in these scripts stands for high availability. (The name “haresources” is not
related to bunny rabbits.)

In Conclusion

This chapter has introduced the Heartbeat package and the theory behind
properly deploying it. To ensure client computers always have access to a
resource, use the Heartbeat package to make the resource highly available. A
highly available resource does not fail even if the computer it is running on
crashes.

In Part III of this book I’ll describe how to make the cluster load-
balancing resource highly available. A cluster load-balancing resource that is
highly available is the cornerstone of a cluster that is able to support your
enterprise.

In the next few chapters I’ll focus some more on how to properly use the
Heartbeat package and avoid the typical pitfalls you are likely to encounter
when trying to make a resource highly available.
130 Chap te r 6

No Starch Press, Copyright © 2005 by Karl Kopper

7
A S A M P L E H E A R T B E A T

C O N F I G U R A T I O N

The last chapter introduced the three
configuration files used to control the

operation of Heartbeat: ha.cf, haresources,
and authkeys. The recipe in this chapter describes

how to use these files on two servers, or nodes, so that
Heartbeat can deploy resources in a high-availability
configuration.

In a normal Heartbeat configuration, these files will be the same on the
primary and the backup server (complex and subtle problems can be
introduced into your high-availability configuration if they are not). The
recipe in this chapter is a lab exercise that demonstrates how the Heartbeat
system starts resources and fails them over to a backup server.
No Starch Press, Copyright © 2005 by Karl Kopper

Recipe

List of ingredients:

2 servers running Linux (each with two network interface cards and
cables)

1 crossover cable (or standard network cables and a mini hub) and/or a
serial cable

1 copy of the Heartbeat software package (from http://www.linux-
ha.org/download or the CD-ROM)

Preparations

In this recipe, one of the Linux servers will be called the primary server and
the other the backup server. Begin by connecting these two systems to each
other using a crossover network cable, a normal network connection
(through a mini hub or separate VLAN), or a null modem serial cable. (See
Appendix C for information on adding NICs and connecting the servers.)
We’ll use the network connection or serial connection exclusively for
heartbeats messages (see Figure 7-1).

If you are using an Ethernet heartbeat connection, assign IP addresses to
the primary and backup servers for this network connection using an IP
address from RFC 1918. For example, use 10.1.1.1 on the primary server and
10.1.1.2 on the backup server as shown in Figure 7-1. (These are IP addresses
that will only be known to the primary and backup servers.)

RFC 1918 defines the following IP address ranges for “private internets”:

� 10.0.0.0 to 10.255.255.255 (10/8 prefix)

� 172.16.0.0 to 172.31.255.255 (172.16/12 prefix)

� 192.168.0.0 to 192.168.255.255 (192.168/16 prefix)

In this recipe, we will use 10.1.1.1 as the primary server’s heartbeat IP
address and 10.1.1.2 as the secondary server’s heartbeat IP address.

Before taking the following steps, be sure that you can ping between
these two systems on the network connection that you added (the crossover
cable or separate network connection through a mini hub/dedicated
VLAN). That is, you should get a response when you enter ping 10.1.1.2 on
the primary server, and ping 10.1.1.1 on the backup server. (See Appendix C
if you need help.)

Step 1: Install Heartbeat

The CD-ROM included with this book contains the Heartbeat RPMs. You can
install these versions using the following commands (though you may
instead want to check for the latest versions available for download from
http://www.linux-ha.org/download).
132 Chap te r 7

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 7-1: The Heartbeat network configuration

#mount /mnt/cdrom
#rpm –ivh /mnt/cdrom/chapter7/heartbeat-pils-*.rpm1

#rpm –ivh /mnt/cdrom/chapter7/hearbeat-stonith-*.rpm
#rpm –ivh /mnt/cdrom/chapter7/hearbeat-*i386.rpm

NOTE You do not need the source (src) RPM file for this recipe. The ldirectord software is also
not required in this chapter—it will be discussed in Chapter 15.

1 The PILS package was introduced with version 0.4.9d of Heartbeat. PILS is Heartbeat’s
generalized plug-in and interface loading system, and it is required for normal Heartbeat
operation.

10.1.1.1 10.1.1.2

Enterprise
switch

Mini hub

Intranet client

Internet client

The Internet

Primary server Backup server

Intranet client

Internet router
A Sample Hear tbea t Conf igurat ion 133
No Starch Press, Copyright © 2005 by Karl Kopper

Once the RPM package finishes installing, you should have an /etc/ha.d
directory where Heartbeat’s configuration files and scripts reside. You
should also have a /usr/share/doc/packages/heartbeat directory containing
sample configuration files and documentation.

Step 2: Configure /etc/ha.d/ha.cf

Now you need to tell the heartbeat daemons that you want them to use the
new Ethernet network (or the Ethernet crossover or serial cable) to send and
receive heartbeat packets.

1. Find the ha.cf sample configuration file that the Heartbeat RPM
installed by using this command:

#rpm –qd heartbeat | grep ha.cf

I N C A S E O F E R R O R S

If you receive error messages about failed dependencies for crypto software when
you attempt to install the Stonith RPM, issue the following command to make sure
that you have the openssl and openssl-devel packages installed:

rpm –q –a | grep openssl

These packages are only required for Stonith devices that use SSL for
communications, but because of the RPM dependency mechanisms, this package
will be marked as required for all installations.

For SNMP dependency failures, run this command:

rpm –q –a | grep snmp

If the version numbers returned by these commands are lower than the version
number required by Stonith, upgrade your packages.1

If the installation still complains about failed dependencies, even though you
know you have the latest versions installed, you can force the RPM to override this
error message with the following command:

#rpm -ivh --nodeps /usr/local/src/heartbeat/heartbeat-*i386.rpm

If you receive dependency errors that complain about lib.so or GLIBC, see
Appendix D.

Note: Instead of using the method just described to install Heartbeat, you can
use the Heartbeat src.rpm package and the rpm --rebuild option, as in this
command:

#rpm --rebuild /usr/local/src/heartbeat/heartbeat-*src.rpm

1 Note that the SNMP package used to be called ucd-snmp, but it has been renamed net-snmp.
134 Chap te r 7

No Starch Press, Copyright © 2005 by Karl Kopper

2. Copy the sample configuration file into place with this command:

#cp /usr/share/doc/packages/heartbeat/ha.cf /etc/ha.d/

3. Edit the /etc/ha.d/ha.cf file, and uncomment these lines:

#udpport 694
#bcast eth0 # Linux

NOTE Older versions of Heartbeat use udp instead of bcast.

For example, to use eth1 to send heartbeat messages between your
primary and backup server, the second line would look like this:

bcast eth1

If you use two physical network connections to carry heartbeats,
change the second line to this:

bcast eth0 eth1

If you use a serial connection and an Ethernet connection,
uncomment the lines for serial Heartbeat communication:

serial /dev/ttyS0
baud 19200

4. Also, uncomment the keepalive, deadtime, and initdead lines so that they
look like this:

keepalive 2
deadtime 30
initdead 120

The initdead line specifies that after the heartbeat daemon first starts,
it should wait 120 seconds before starting any resources on the primary
server, or making any assumptions that something has gone wrong on
the backup server. The keepalive line specifies how many seconds there
should be between heartbeats (status messages, which were described in
Chapter 6), and the deadtime line specifies how long the backup server
will wait without receiving a heartbeat from the primary server before
assuming something has gone wrong. If you change these numbers,
Heartbeat may send warning messages that indicate that you have set the
values improperly (for example, you might set a deadtime too close to the
keepalive time to ensure a safe configuration).

5. Add the following two lines to the end of the /etc/ha.d/ha.cf file:

node primary.mydomain.com
node backup.mydomain.com
A Sample Hear tbea t Conf igurat ion 135
No Starch Press, Copyright © 2005 by Karl Kopper

Or, you can use one line for both nodes with an entry like this:

node primary.mydomain.com backup.mydomain.com

The primary.mydomain.com and backup.mydomain.com entries should be
replaced with the names you have assigned to your two hosts when you
installed Linux on them (as returned by the uname –n command).

The host names of the primary and backup servers are not usually
related to any of the services offered by the servers. For example, the
host name of your primary server might be primary.mydomain.com, even
though it will host a web server called mystuff.mydomain.com.

NOTE On Red Hat systems, the host name is specified in the /etc/sysconfig/network file
using the hostname variable, and it is set at boot time (though it can be changed on a
running system by using the hostname command).

Step 3: Configure /etc/ha.d/haresources

Normally the /etc/ha.d/haresources file will contain the names of the resources
the primary server should own. Heartbeat generally controls its resources with
the normal init script that comes with your distribution, or with a script you
build, such as the iptakeover script shown in Chapter 6, but for now we will use
a very simple test script to see how they work. Follow these steps:

1. Create a script called test1 in the /etc/ha.d/resource.d directory with the
following command (this script is also included on the CD-ROM in the
chapter7 subdirectory):

#vi /etc/ha.d/resource.d/test1

2. Now press the I key to enter insert mode, and then enter the following
simple bash script:

#!/bin/bash
logger $0 called with $1
case "$1" in
start)
 # Start commands go here
 ;;
stop)
Stop commands go here
 ;;
status)
 # Status commands go here
;;
esac
136 Chap te r 7

No Starch Press, Copyright © 2005 by Karl Kopper

The logger command in this script is used to send a message to the
syslog daemon. syslog will then write the message to the proper log file
based on the rules in the /etc/syslog.conf file. (See the man pages for
logger and syslog for more information about custom message logging.)

NOTE The case statement in this script does not do anything. It is included here only as a
template for further development of your own custom resource script that can handle the
start, stop, and status arguments that Heartbeat will use to control it.

3. Quit this file and save your changes (press ESC, and then type :wq).

4. Make this script executable by entering this command:

#chmod 755 /etc/ha.d/resource.d/test

5. Run the script by entering the following command:

#/etc/ha.d/resource.d/test start

6. You should be returned to the shell prompt where you can enter this
command to see the end of the messages:

#tail /var/log/messages

The last message line in the /var/log/messages file should look like this:

[timestamp] localhost root: /etc/ha.d/resource.d/test called with start

This line indicates that the test resource script was called with the
start argument and is using the case statement inside the script properly.

Configure the haresources File

You can use this simple test script to see what Heartbeat does with resources
by telling it that test is a resource. To do so, locate and copy the sample
haresources file into place with these commands:

#rpm –qd heartbeat | grep haresources
#cp /usr/share/doc/packages/heartbeat/haresources /etc/ha.d

Now edit /etc/ha.d/haresources (which really just contains commented
documentation at this point), and add the following line to the end of the file:

primary.mydomain.com test

In this example, primary.mydomain.com should be replaced with the name
of the primary server as returned by the command uname -n.
A Sample Hear tbea t Conf igurat ion 137
No Starch Press, Copyright © 2005 by Karl Kopper

The haresources file tells the Heartbeat program which machine owns a
resource. The resource name is really a script in either the /etc/init.d
directory or the /etc/ha.d/resource.d directory. (A copy of this script must
exist on both the primary and the backup server.)

Heartbeat uses the haresources configuration file to determine what to
do when it first starts up. For example, if you specify that the httpd script
(/etc/init.d/httpd) is a resource, Heartbeat will run this script and pass it the
start command when you start the heartbeat daemon on the primary server.
If you tell Heartbeat to stop (with the command /etc/init.d/heartbeat stop or
service heartbeat stop), Heartbeat will run the /etc/init.d/httpd script and
send it the stop command. Therefore, if Heartbeat is not running, the
resource daemon (httpd in this case) will not be running.

If you use a previously existing init script (from the /etc/init.d directory)
that was included with your distribution, be sure to tell the system not to start
this script during the normal boot process with the chkconfig --del <scriptname>
command. (See Chapter 1 for a detailed description of the chkconfig
command.)

NOTE If you’re not using Red Hat or SuSE, you should also make sure the script prints OK,
Running, or running when it is passed the status argument. See Chapter 6 for a discus-
sion of using init scripts as Heartbeat resource scripts.

The power and flexibility available for controlling resources using the
haresources file will be covered in depth in Chapter 8.

R E S P A W N I N G D A E M O N S W I T H H E A R T B E A T

You can tell Heartbeat to start a daemon each time it starts, and then to restart this
daemon automatically if the daemon stops running. To do so, use a line like this in
the /etc/ha.d/ha.cf file:

respawn userid /usr/bin/mydaemon

Note, though, that such a daemon (called /usr/bin/mydaemon in this example)
will not failover to the backup server. If you use this method to start a daemon, it will
always be running when Heartbeat is running, so this technique is probably only
useful for a daemon that needs to run on the primary and the backup server1 in
conjunction with Heartbeat (the ipfail daemon described in Chapter 9 is an
example of one such daemon).

For high-availability daemons that would normally be started from init with the
respawn option, and that need to failover from the primary server to the backup
server (such as a serial telecommunications program like Hylafax) you must use the
cl_respawn program included with the Heartbeat package, or a separate package,
such as Daemontools (discussed in Chapter 8) in conjunction with Heartbeat.

1 In a good high-availability configuration, the ha.cf, haresources, and authkeys files will be the
same on the primary and the backup server.
138 Chap te r 7

No Starch Press, Copyright © 2005 by Karl Kopper

Step 4: Configure /etc/ha.d/authkeys

In this step we will install the security configuration file called /etc/ha.d/
authkeys. The sample configuration file included with the Heartbeat distri-
bution should be modified to protect your configuration from an attack by
doing the following:

1. Locate and copy the sample authkeys file into place with these commands:

#rpm –qd heartbeat | grep authkeys
#cp /usr/share/doc/packages/heartbeat/authkeys /etc/ha.d

2. Edit the /etc/ha.d/authkeys file so the only uncommented lines look
like this:

auth1
1 sha1 testlab

NOTE In these lines, don’t mistake the number 1 for the letter l. The first line is auth followed
by the digit one, and the second line is the digit one followed by sha, the digit one, and
then testlab.

In this example, testlab is the digital signature key used to digitally
sign the heartbeat packets, and Secure Hash Algorithm 1 (sha1) is the
digital signature method to be used. Change testlab in this example to a
password you create, and make sure it is the same on both systems.

3. Make sure the authkeys file is only readable by root:

#chmod 600 /etc/ha.d/authkeys

CAUTION If you fail to change the security of this file using this chmod command, the Heartbeat
program will not start, and it will complain in the /var/log/messages file that you
have secured this file improperly.

Step 5: Install Heartbeat on the Backup Server

Install the RPM packages on the backup server as described in the “Step 1:
Install Heartbeat” section of this chapter, or use the SystemImager package
described in Chapter 5 to clone the primary server. Then execute the fol-
lowing command on the primary server to copy all of the configuration files
over to the backup system:

#scp -r /etc/ha.d backupnode:/etc/ha.d

Here backupnode is the IP address or host name (as defined in /etc/hosts
on the primary server) of the backup server. The scp command is the secure
copy command that uses the SSH protocol to copy data between the two
A Sample Hear tbea t Conf igurat ion 139
No Starch Press, Copyright © 2005 by Karl Kopper

nodes. The -r option to scp recursively copies all of the files and directories
underneath the /etc/ha.d directory on the primary server.

The first time you run this command, you will be asked if you are sure
you want to allow the connection before the copy operation begins. Also, if
you have not inserted the private key for the backup server into the primary
server’s SSH configuration file for the root account, you will be prompted for
the root password on the backup server. (See Chapter 4 for more information
about the SSH protocol.)

Step 6: Set the System Time

While Heartbeat does not require the primary and the backup servers to
have synchronized system clocks, the system times on the two servers should
be within a few minutes of each other, or some high-availability services may
misbehave under some circumstances. You should manually check and set
the system time (with the date command) before starting Heartbeat on both
systems.

NOTE For a better long-term solution you should synchronize the clocks on both systems using
the NTP software.

Step 7: Launch Heartbeat

Before starting the heartbeat daemon, run the following ResourceManager
tests on the primary server and the backup server to make sure you have set
up the configuration files correctly:

#/usr/lib/heartbeat/ResourceManager listkeys `/bin/uname –n`

This command looks at the /etc/ha.d/haresources file and returns the list
of resources (or resource keys) from this file. The only resource we have
defined so far is the test resource, so the output of this command should
simply be the following:

test

Launch Heartbeat on the Primary Server

Once you have the test resource script configured properly on the primary
server, start the Heartbeat program, and watch what happens in the /var/log/
messages file.

Start Heartbeat (on the primary server) with one of these commands:

#/etc/init.d/heartbeat start

or
140 Chap te r 7

No Starch Press, Copyright © 2005 by Karl Kopper

#service heartbeat start

Then look at the system log again, with this command:

#tail /var/log/messages

To avoid retyping this command every few seconds while Heartbeat is
coming up, tell the tail command to display new information on your screen
as it is appended to the /var/log/messages file by using this command:

#tail –f /var/log/messages

Press CTRL-C to break out of this command.

NOTE To change the logging file Heartbeat uses, uncomment the following line in your /etc/
ha.d/ha.cf file:

logfile /var/log/ha-log

You can then use the tail -f /var/log/ha-log command to watch what Heartbeat
is doing more closely. However, the examples in this recipe will always use the
/var/log/messages file.2 (This does not change the amount of logging taking place.)

Heartbeat will wait for the amount of time configured for initdead in the
/etc/ha.d/ha.cf file before it finishes its startup procedure, so you will have to
wait at least two minutes for Heartbeat to start up (initdead was set to 120
seconds in the test configuration file).

When Heartbeat starts successfully, you should see the following message
in the /var/log/messages file (I’ve removed the timestamp information from
the beginning of each of these lines to make the messages more readable):

primary root: test called with status
primary heartbeat[4410]: info: **************************
primary heartbeat[4410]: info: Configuration validated. Starting heartbeat
<version>
primary heartbeat[4411]: info: heartbeat: version <version>
primary heartbeat[2882]: WARN: No Previous generation - starting at 13

primary heartbeat[4411]: info: Heartbeat generation: 1
primary heartbeat[4411]: info: UDP Broadcast heartbeat started on port 694
(694) interface eth1
primary heartbeat[4414]: info: pid 4414 locked in memory.

2 The recipe for this chapter is using this method so that you can also watch for messages from
the resource scripts with a single command (tail –f /var/log/messages).
3 The Heartbeat “generation” number is incremented each time Heartbeat is started. If
Heartbeat notices that its partner server changes generation numbers, it can take the proper
action depending upon the situation. (For example, if Heartbeat thought a node was dead and
then later receives another Heartbeat from the same node, it will look at the generation
number. If the generation number did not increment, Heartbeat will suspect a split-brain
condition and force a local restart.)
A Sample Hear tbea t Conf igurat ion 141
No Starch Press, Copyright © 2005 by Karl Kopper

primary heartbeat[4415]: info: pid 4415 locked in memory.
primary heartbeat[4416]: info: pid 4416 locked in memory.
primary heartbeat[4416]: info: Local status now set to: 'up'
primary heartbeat[4411]: info: pid 4411 locked in memory.
primary heartbeat[4416]: info: Local status now set to: 'active'
primary logger: test called with status
primary last message repeated 2 times
primary heartbeat: info: Acquiring resource group: primary.mydomain.com test
primary heartbeat: info: Running /etc/init.d/test start
primary logger: test called with start
primary heartbeat[4417]: info: Resource acquisition completed.
primary heartbeat[4416]: info: Link primary.mydomain.com:eth1 up.

The test script created earlier in the chapter does not return the word OK,
Running, or running when called with the status argument, so Heartbeat
assumes that the daemon is not running and runs the script with the start
argument to acquire the test resource (which doesn’t really do anything at
this point). This can be seen in the preceding output. Notice this line:

primary.mydomain.com heartbeat[2886]: WARN: node backup.mydomain.com: is dead

Heartbeat warns you that the backup server is dead because the heartbeat
daemon hasn’t yet been started on the backup server.

NOTE Heartbeat messages never contain the word ERROR or CRIT for anything that should
occur under normal conditions (even during a failover). If you see an ERROR or CRIT
message from Heartbeat, action is probably required on your part to resolve the problem.

Launch Heartbeat on the Backup Server

Once Heartbeat is running on the primary server, log on to the backup
server, and start Heartbeat with this command:

/etc/init.d/heartbeat start

The /var/log/messages file on the backup server should soon contain the
following:

backup heartbeat[4650]: info: **************************
backup heartbeat[4650]: info: Configuration validated. Starting heartbeat
<version>
backup heartbeat[4651]: info: heartbeat: version <version>
backup heartbeat[4651]: info: Heartbeat generation: 9
backup heartbeat[4651]: info: UDP Broadcast heartbeat started on port 694
(694) interface eth1
backup heartbeat[4654]: info: pid 4654 locked in memory.
backup heartbeat[4655]: info: pid 4655 locked in memory.
backup heartbeat[4656]: info: pid 4656 locked in memory.
backup heartbeat[4656]: info: Local status now set to: 'up'
142 Chap te r 7

No Starch Press, Copyright © 2005 by Karl Kopper

backup heartbeat[4651]: info: pid 4651 locked in memory.
backup heartbeat[4656]: info: Link backup.mydomain.com:eth1 up.
backup heartbeat[4656]: info: Node primary.mydomain.com: status active
backup heartbeat: info: Running /etc/ha.d/rc.d/status status
backup heartbeat: info: Running /etc/ha.d/rc.d/ifstat ifstat
backup heartbeat: info: Running /etc/ha.d/rc.d/ifstat ifstat
backup heartbeat[4656]: info: No local resources [/usr/lib/heartbeat/
ResourceManager listkeys backup.mydomain.com]
backup.mydomain.com heartbeat[4656]: info: Resource acquisition completed.

Notice in this output how Heartbeat declares that this machine (the
backup server) does not have any local resources in the /etc/ha.d/haresources
file. This machine will act as a backup server and sit idle, simply listening for
heartbeats from the primary server until that server fails. Heartbeat did not
need to run the test script (/etc/ha.d/resource.d/test). The Resource acquisi-
tion completed message is a bit misleading because there were no resources
for Heartbeat to acquire.

NOTE All resource script files that you refer to in the haresources file must exist and have
execute permissions4 before Heartbeat will start.

Examining the Log Files on the Primary Server

Now that the backup server is up and running, Heartbeat on the primary
server should be detecting heartbeats from the backup server. At the end of
the /var/log/messages file you should see the following:

primary heartbeat[2886]: info: Heartbeat restart on node backup.mydomain.com
primary heartbeat[2886]: info: Link backup.mydomain.com:eth2 up.
primary heartbeat[2886]: info: Node backup.mydomain.com: status up
primary heartbeat: info: Running /etc/ha.d/rc.d/status status
primary heartbeat: info: Running /etc/ha.d/rc.d/ifstat ifstat
primary heartbeat[2886]: info: Node backup.mydomain.com: status active
primary heartbeat: info: Running /etc/ha.d/rc.d/status status

If the primary server does not automatically recognize that the backup
server is running, check to make sure that the two machines are on the same
network, that they have the same broadcast address, and that no firewall
rules are filtering out the packets. (Use the ifconfig command on both
systems and compare the bcast numbers; they should be the same on both.)
You can also use the tcpdump command to see if the heartbeat broadcasts are
reaching both nodes:

#tcpdump -i all -n -p udp port 694

4 Script files are normally owned by user root, and they have their permission bits configured
using a command such as this: chmod 755 <scriptname>.
A Sample Hear tbea t Conf igurat ion 143
No Starch Press, Copyright © 2005 by Karl Kopper

This command should capture and display the heartbeat broadcast
packets from either the primary or the backup server.

Stopping and Starting Heartbeat

Now is a good time to practice starting and stopping Heartbeat on both the
primary and backup machines to see what happens.

Go ahead and stop Heartbeat on the primary server with one of these
commands:

#/etc/init.d/heartbeat stop

or

#service heartbeat stop

You should see the backup server declare that the primary server has
failed, and then it should run the /etc/ha.d/resource.d/test script with the
start argument. The /var/log/messages file on the backup server contain
messages like these:

backup.mydomain.com heartbeat[5725]: WARN: node primary.mydomain.com: is dead
backup.mydomain.com heartbeat[5725]: info: Link primary.mydomain.com:eth1
dead.
backup.mydomain.com heartbeat: info: Running /etc/ha.d/rc.d/status status
backup.mydomain.com heartbeat: info: Running /etc/ha.d/rc.d/ifstat ifstat
backup.mydomain.com heartbeat: info: Taking over resource group test
*** /etc/ha.d/resource.d/test called with status
backup.mydomain.com heartbeat: info: Acquiring resource group:
primary.mydomain.
com test
backup.mydomain.com heartbeat: info: Running /etc/ha.d/resource.d/test start
*** /etc/ha.d/resource.d/test called with start
backup.mydomain.com heartbeat: info: mach_down takeover complete.

The /etc/ha.d/resource.d/test resource or script was first called with the
status argument and then with the start argument to complete the failover.

Once that’s done, try starting Heartbeat on the primary server again, and
watch what happens. The test script on the backup server should be called
with the stop argument, and it should be called with the start argument on
the primary server.5

Once you have performed these tests, you may also want to test other
means of initiating a failover (such as unplugging the power or network
connection on the primary server).

5 This assumes you have enabled auto_failback, which will be discussed in Chapter 9.
144 Chap te r 7

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE No failover will take place if heartbeat packets continue to arrive at the backup server.
So, if you specified two paths for heartbeats in the /etc/ha.d/ha.cf file (a null modem
serial cable and a crossover Ethernet cable, for example) unplugging only one of the
physical paths will not cause a failover—both must be disconnected before a failover
will be initiated by the backup server.

Monitoring Resources

Heartbeat currently does not monitor the resources it starts to see if they are
running, healthy, and accessible to client computers. To monitor these
resources, you need to use a separate software package called Mon (discussed
in Chapter 17).

With this in mind, some system administrators are tempted to place
Heartbeat on their production network and to use a single network for both
heartbeat packets and client computer access to resources. This sounds like a
good idea at first, because a failure of the primary computer’s connection to
the production network means client computers cannot access the resources,
and a failover to the backup server may restore access to the resources.
However, this failover may also be unnecessary (if the problem is with the
network and not with the primary server), and it may not result in any
improvement. Or, worse yet, it may result in a split-brain condition.

For example, if the resource is a shared SCSI disk, a split-brain condition
will occur if the production network cable is disconnected from the backup
server. This means the two servers incorrectly think that they have exclusive
write access to the same disk drive, and they may then damage or destroy the
data on the shared partition. Heartbeat should only failover to the backup
server—according to the high-availability design principles used to develop
it—if the primary server is no longer healthy. Using the production network
as the one and only path for heartbeats is a bad practice and should be
avoided.

NOTE Normally the only reason to use the Heartbeat package is to ensure exclusive access to a
resource running on a single computer. If the service can be offered from multiple com-
puters at the same time (and exclusive access is not required) you should avoid the
unnecessary complexity of a Heartbeat high-availability failover configuration.

In Conclusion

This chapter used a “test” resource script to demonstrate how Heartbeat
starts a resource and fails it over to a backup server when the primary server
goes down. We’ve looked at a sample configuration using the three configu-
ration files /etc/ha.d/ha.cf, /etc/ha.d/haresources, and /etc/ha.d/authkeys.
These configuration files should always be the same on the primary and the
backup servers to avoid confusion and errant behavior of the Heartbeat
system.
A Sample Hear tbea t Conf igurat ion 145
No Starch Press, Copyright © 2005 by Karl Kopper

The Heartbeat package was designed to failover all resources when the
primary server is no longer healthy. Best practices therefore dictate that we
should build multiple physical paths for heartbeat status messages in order to
avoid unnecessary failovers. Do not be tempted to use the production network
as the only path for heartbeats between the primary and backup servers.

The examples in this chapter did not contain an IP address as part of the
resource configuration, so no Gratuitous ARP broadcasts were used. Neither
did we test a client computer’s ability to connect to a service running on the
servers.

Once you have tested resource failover as described in this chapter (and
you understand how a resource script is called by the Heartbeat program),
you are ready to insert an IP address into the /etc/ha.d/haresources file (or
into the iptakeover script introduced in Chapter 6). This is the subject of
Chapter 8, along with a detailed discussion of the /etc/ha.d/haresources file.
146 Chap te r 7

No Starch Press, Copyright © 2005 by Karl Kopper

8
H E A R T B E A T R E S O U R C E S

A N D M A I N T E N A N C E

This chapter describes how to use the
high-availability resources file, haresources,

to control resources on a pair of servers1
running Heartbeat. We will also explore some of

the common maintenance tasks required to keep the
Heartbeat high-availability system functioning properly.

The Haresources File Syntax

The /etc/ha.d/haresources file must be the same on both the primary and the
backup Heartbeat servers.

Each line in the haresources file usually contains the following:

� The name of the server where the resource should normally run (the pri-
mary server), followed by a space or tab.

1 In this book, we are only concerned with Heartbeat’s ability to failover a resource from a
primary server to a backup server.
No Starch Press, Copyright © 2005 by Karl Kopper

� An (optional) IP alias that Heartbeat should add to the system before
launching the resource, followed by a space. (The IP alias definition may
include a network subnet mask and a broadcast address separated from
each other by the forward slash (/) character.)

� A resource script (the script used to start and stop the resource) located
in either the /etc/init.d or the /etc/ha.d/resource.d directory.2 If argu-
ments need to be passed to the resource script, they are added after two
colons and are separated from each other by two colons.

Additional resource scripts can be added to the line using the space
character as a separator.

NOTE If you need to create a haresources line that is longer than the line of text that fits on
your screen, you can add the backslash character (\) to indicate that the haresources
entry continues on the next line.

A simplified summary of this syntax, for a single line with two resources,
each with two arguments, looks like this:

primary-server [IPaddress] resource1[::arg1::arg2] [resource2[::arg1::arg2]

In practice, this line might look like the following on a server called pri-
mary.mydomain.com running sendmail and httpd on IP address 209.100.100.3:

primary.mydomain.com 209.100.100.3 sendmail httpd

Let’s examine each element of the haresources file in more detail.

Haresources File Syntax: Primary-Server Name

The primary-server name you enter at the start of the haresources line should
match one of the server names you’ve already specified in the /etc/ha.d/ha.cf
file. It should also match the name returned by the uname -n command on the
primary server.

Haresources File Syntax: IP Alias

Although it is not required, an IP alias3 is usually specified in the haresources
file. This IP alias can then be offered from either the primary or the backup
server, depending upon which system is healthy. For example:

primary.mydomain.com 209.100.100.3

2 Recall from Chapter 6 that this is the system init directory (/etc/init.d, /etc/rc.d/init.d/, /sbin/
init.d, /usr/local/etc/rc.d or /etc/rc.d) and the Heartbeat resource directory (/etc/ha.d/resource.d).
3 IP aliases were introduced in Chapter 6.
148 Chap te r 8

No Starch Press, Copyright © 2005 by Karl Kopper

Heartbeat will add 209.100.100.3 as an IP alias to one of the existing NICs
connected to the system and send Gratuitous ARP4 broadcasts out of this
NIC to the locally connected computers when it first starts up. It will only do
this on the backup server if the primary server goes down.

Actually, when Heartbeat sees an IP address in the haresources file, it
runs the resource script in the /etc/ha.d/resource.d directory called IPaddr
and passes it the requested IP address as an argument. The /etc/ha.d/
resource.d/IPaddr script then calls the program included with the Heartbeat
package, findif (find interface), and passes it the IP alias you want to add.
This program then automatically selects the physical NIC that this IP alias
should be added to, based on the kernel’s network routing table.5 If the
findif program cannot locate an interface to add the IP alias to, it will
complain in the /var/log/messages file with a message such as the following:

heartbeat: ERROR: unable to find an interface for 200.100.100.3

NOTE You cannot place the primary IP address for the interface in the haresources file.
Heartbeat can add an IP alias to an existing interface, but it cannot be used to bring
up the primary IP address on an interface.

Heartbeat’s Automated Network Interface Card Selection Process

Heartbeat uses the findif program to select which NIC the IP alias you specify
in the haresources file will be added by comparing the IP alias to each of the
destination addresses listed in your kernel’s network routing table. As
described in Chapter 2, you can view this routing table with the route -n
command. For example:

#route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
200.100.100.2 0.0.0.0 255.255.255.0 U 0 0 0 eth1
10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 200.100.100.1 0.0.0.0 UG 0 0 0 eth1

NOTE The output of this command is based on entries the kernel stores in the /proc/net/route
file that is created each time the system boots using the route commands in the /etc/
init.d/network script on a Red Hat system. See Chapter 2 for an introduction to the
kernel network routing table.

When findif is able to match the network portion of the destination
address in the routing table with the network portion of the IP alias from the
haresources file, it returns the interface name (eth1, for example) associated

4 GARP broadcasts were also introduced in Chapter 6.
5 See “Routing Packets with the Linux Kernel” in Chapter 2.
Hear tbea t Resou rces and Maintenance 149
No Starch Press, Copyright © 2005 by Karl Kopper

with the destination address to the IPaddr script. The IPaddr script then adds
the IP alias to this local interface and adds another entry to the routing table
to route packets destined for the IP alias to this local interface. So the
routing table, after the 209.100.100.3 IP alias is added, would look like this:

#route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
200.100.100.2 0.0.0.0 255.255.255.0 U 0 0 0 eth1
200.100.100.3 0.0.0.0 255.255.255.0 U 0 0 0 eth1
10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 200.100.100.1 0.0.0.0 UG 0 0 0 eth1

The IPaddr script has executed the command route add –host 209.100.100.3
dev eth1.

Finally, to complete the process of adding the IP alias to the system, the
IPaddr script sends out five gratuitous ARP broadcasts to inform locally
connected computers that this IP alias is now associated with this interface.

NOTE If more than one entry in the routing table matched the IP alias being added, the findif
program will use the metric entry in the routing table to select the interface with the few-
est hops (the lowest metric).

Finding the Right Network

To compare the network portion of the IP alias to the network portion of the
“destination” address entry in the routing table, findif needs to know which
portion of the address represents a network and which portion represents a
node. In other words, it needs to know which network mask to apply to
both the destination address in the routing table and the IP alias from the
haresources file before it can determine whether the network portions of the
two addresses match.

The findif program will use the network mask for each entry in the routing
table and apply it to both the routing table entry and the IP alias being
requested to see if they match. If the two network portions of the addresses
match, they are on the same network, and findif knows to add the IP alias
being requested to the interface associated with this routing table entry.

The findif program will not use the default route specified in your
routing table (the entry with a destination address of 0.0.0.0) unless you
specify a network mask in your haresources file. For example, the entry:

primary.mydomain.com 209.100.100.3/24 myresource

says that Heartbeat should use a network mask of 255.255.255.0. It also says
that if no other entry in the routing table with its associated network mask
applied to it matches this address, the default route in the routing table
should be used.
150 Chap te r 8

No Starch Press, Copyright © 2005 by Karl Kopper

However, under normal circumstances your routing table has an entry
that will match your IP alias correctly without the need to consult the default
route, so you will probably never need to enter the network mask in the
haresources file. In the above routing table, for example, before Heartbeat
added the IP alias, the first entry looked like this:

Destination Gateway Genmask Flags Metric Ref Use Iface
200.100.100.2 0.0.0.0 255.255.255.0 U 0 0 0 eth1

This entry matches the 209.100.100.3 IP alias once the 255.255.255.0
netmask from this routing table entry is applied to both addresses for the
comparison (both addresses are on the 209.100.100 network). So the correct
interface (eth1 in this case) is selected even though the default route was not
used in the interface selection process.

Specifying a Network Interface Card

You can avoid this auto-selection process by specifying the interface Heartbeat
should use in the haresources file with an entry like this:

primary.mydomain.com 209.100.100.3/24/eth0/209.100.100.255

This entry uses the following syntax:

primary-server IPalias/number-of-netmask-bits/interface-name/broadcast-address

Thus, in this example, the IP alias is 209.100.100.3 with a 24-bit netmask
(equivalent to a network mask of 255.255.255.0) on network interface card
eth0, using a broadcast address of 209.100.100.255.

To specify this as the IP alias and interface to be used for the httpd
daemon, enter the following line:

primary.mydomain.com 209.100.100.3/24/eth0/209.100.100.255 httpd

With this entry in the haresources file, Heartbeat will always use the eth0
interface for the 209.100.100.3 IP alias when adding it to the system for the
httpd daemon to use.6

Customizing IP Address Takeover with the iptakeover Script

If you need to modify the routing table as part of the process of taking over
an IP address, then you may want to use the iptakeover script described in
Chapter 7 to perform Gratuitous ARP broadcasts yourself. To use this script,
add a line like the following to the haresources file.

6 Note that the resource daemon (httpd in this case) may also need to be configured to use this
interface or this IP address as well.
Hear tbea t Resou rces and Maintenance 151
No Starch Press, Copyright © 2005 by Karl Kopper

primary.mydomain.com iptakeover myresource

Heartbeat will then run /etc/ha.d/resource.d/iptakeover status followed
by /etc/ha.d/resource.d/myresource start. This makes it possible for you to
decide exactly which interface you want your IP alias to appear on, to modify
the routing table if need be, and to perform the Gratuitous ARP broadcasts
from a single script. However, under most circumstances this is not required
and should be avoided if possible—specify an IP address in the haresources
file and let Heartbeat do all of this work for you.7

The Haresources File Syntax: Resources

Each line in the haresources file can contain one or more resource script
names. The resources are separated by a space. Arguments can be passed to
the resource scripts using two colons between the arguments. For example,
if you need Heartbeat to send a special argument (let’s say FILE1) to your
resource script (before the word start, status or stop), you would use the
syntax:

primary.mydomain.com myresource::FILE1

Assuming you add this line to the haresources file on both the primary
and the backup server, Heartbeat will run8 /etc/ha.d/resource.d/myresource
FILE1 start when it first starts on the primary server, and then again on the
backup server when the primary server fails. When the resource needs to be
“released” or stopped, Heartbeat will run the script with the command /etc/
ha.d/resource.d/myresource FILE1 stop.

If we wanted to combine our iptakeover script with the myresource script
and its FILE1 argument, we would use the line:

primary.mydomain.com iptakeover myresource::FILE1

To send your resource script several arguments, enter them all on the
same line after the script name with each argument separated by a pair of
colons. For example, to send the myresource script the arguments FILE1,
UNAME=JOHN, and L3, your haresources entry would look like this:

primary.mydomain.com iptakeover myresource::FILE1::UNAME=JOHN::L3

NOTE The haresources syntax is also documented online at http://wiki.trick.ca/linux-ha/
HeartbeatResourceAgent.

7 Also, as we’ll see in Part III, you’ll want to leave IP alias assignment under Heartbeat’s control
so Ldirectord can failover to the backup load balancer.
8 This assumes the script myresource is located in the /etc/ha.d/resource.d directory and not in the
/etc/init.d directory—in which case the command would be /etc/rc.d/resource.d FILE1 start.
152 Chap te r 8

No Starch Press, Copyright © 2005 by Karl Kopper

Resource Groups

Until now, we have only described resources as independent entries in
the haresources file. In fact, Heartbeat considers all the resources specified
on a single line as one resource group. When Heartbeat wants to know if a
resource group is running, it asks only the first resource specified on the
line. Multiple resource groups can be added by adding additional lines to
the haresources file.

For example, if the haresources file contained an entry like this:

primary.mydomain.com iptakeover myresource::FILE1::UNAME=JOHN::L3

only the iptakeover script would be called to ask for a status when Heartbeat
was determining the status of this resource group. If the line looked like this
instead:

primary.mydomain.com myresource::FILE1::UNAME=JOHN::L3 iptakeover

Heartbeat would run the following command to determine the status of this
resource group (assuming the myresource script was in the /etc/ha.d/
resource.d directory):

/etc/ha.d/resource.d/myresource FILE1 UNAME=JOHN L3 status

NOTE If you need your daemon to start before the IP alias is added to your system, enter the IP
address after the resource script name with an entry like this:

primary.mydomain.com myresource IPaddr::200.100.100.3

Resource Script Arguments and Resource Groups

To combine Heartbeat’s ability to send arguments to a script with its ability
to create multiple resource groups, you could, for example, write one script
that started both SERVICE-A and SERVICE-B based upon the argument it
was passed. For example, let’s call this combined resource script resAB and
assume it can handle the argument SERVICE-A or SERVICE-B followed by the
word start, stop, or status to control both daemons. You could then create
haresources entries like this:

primary.mydomain.com resAB::SERVICE-A
primary.mydomain.com resAB::SERVICE-B

Using this haresources file entry, when Heartbeat wanted to know if these
resource groups were active, it would run the commands:

/etc/ha.d/resource.d/resAB SERVICE-A status
/etc/ha.d/resource.d/resAB SERVICE-B status
Hear tbea t Resou rces and Maintenance 153
No Starch Press, Copyright © 2005 by Karl Kopper

and it would start the resource group by executing:

/etc/ha.d/resource.d/resAB SERVICE-A start
/etc/ha.d/resource.d/resAB SERVICE-B start

Load Sharing with Heartbeat

Using Heartbeat and two computers, we can offer one daemon, or service,
from the primary server and then offer a different service from the backup
server. If either server fails, the other one will start offering both services.

This is a form of load sharing called an active-active server configuration,
but to use it you will have to ensure that each system has the processing
power and ability to handle the network load that will allow it to offer both
services in the event of a failure. This configuration, however, is much more
difficult to administer and support in a production environment. Neither
server can go down for maintenance or upgrades without causing a failover
of at least one service. Figure 8-1 shows a sample diagram of this type of
Heartbeat configuration.

The two-line haresources entry used to create the configuration shown
in Figure 8-1 (again, the primary and the backup server should always have
identical haresources files) looks like this:

primary.mydomain.com 209.100.100.3 sendmail
backup.mydomain.com 209.100.100.4 httpd

Figure 8-1: Heartbeat active-active configuration

Heartbeat network

209.100.100.2 10.1.1.1 209.100.100.510.1.1.2

Primary server Backup server

Heartbeat Heartbeat

Resource:
Sendmail
eth0:0

IP
209.100.100.3

Resource:
HTTP

eth0:0
IP

209.100.100.4

Production network
154 Chap te r 8

No Starch Press, Copyright © 2005 by Karl Kopper

Once Heartbeat is running on both servers, the primary.mydomain.com
computer will offer sendmail at IP address 209.100.100.3, and the backup.
mydomain.com computer will offer httpd at IP address 209.100.100.4. If the
backup server fails, the primary server will perform Gratuitous ARP broad-
casts for the IP address 209.100.100.4 and run httpd with the start argument.
(The names “primary” and “backup” are really meaningless in this config-
uration because both computers are acting as both a primary and a backup
server.) Client computers would always look for the sendmail resource at
209.100.100.3 and the http resource at 209.100.100.4, and even if one of these
servers went down, the resource would still be available once Heartbeat
started the resource and moved the IP alias over to the other computer.

NOTE This configuration is more difficult to administer than an active-standby configura-
tion, because you will always be making changes on a “live” system unless you failover
all resources so they run on a single server before you do your maintenance.

This configuration is also not recommended when using local data (data
stored on a locally attached disk drive of either server) because complex data
replication and synchronization methods must be used.9

Load Sharing with Heartbeat: Round-Robin DNS

But what if you wanted to offer just one resource from both computers and
have them share the work? This is the goal of the cluster described in this
book, and it will be possible to attain that goal using load-balancing software
described in Part III. However, for now we can achieve a simple form of load
balancing using round-robin DNS.

One feature of the Domain Name System called round-robin DNS is that
it allows you to offer one service on two (or more) IP addresses. For example,
the host name (or web URL) is first resolved at IP address 209.100.100.4, then
at 209.100.100.3, and then back at 209.100.100.4 again, and so on in round-
robin fashion. The DNS (BIND version 4.9.3 or later) entry for your server
might look like this:

;Round-robin entry for www.mydomain.com
www.mydomain.com IN A 209.100.100.3
www.mydomain.com IN A 209.100.100.4

with reverse address entries for the 209.100.100.3 and 209.100.100.4 IP
addresses that look like this:

3 IN PTR www.mydomain.com
4 IN PTR www.mydomain.com

9 See Chapter 7, “Failover Configurations and Issues,” in Blueprints for High Availability by Evan
Marcus and Hal Stern.
Hear tbea t Resou rces and Maintenance 155
No Starch Press, Copyright © 2005 by Karl Kopper

The entry in your haresources file for this type of configuration would
then look like this:

primary.mydomain.com 209.100.100.3 httpd
backup.mydomain.com 209.100.100.4 httpd

Problems with Round Robin DNS Load Balancing

When using round-robin DNS, the two servers would, in theory, each get half
of the client requests, and Heartbeat would ensure that both IP addresses are
available even if one of the servers goes down. Most client computers,
however, have a name services caching daemon or NSCD that will cause
them to remember (at least for a while) an IP address once they learn it.
Storing this IP address on the client computer reduces the need for the
client computer to repeatedly ask, “What is the IP address for this host
name?” and helps improve the chances that client computers will not enter
into a dialog (such as an HTTPS secure transaction) with one web server
only to end up improperly sending a response (such as a credit card
number) to another web server.

Caching IP address–to–host name can cause a cache-only DNS server on
the Internet to respond to client requests for an IP address with a non-
authoritative reply using only one of the IP addresses. This intervening,
cache-only DNS server effectively blocks the round-robin DNS replies from
your authoritative DNS server.

You can try to stop this behavior by setting a very low time to live (TTL)
value for your DNS replies. Once the amount of time specified in your time
to live entry elapses, the intervening DNS server should drop the IP address–
to–host name mapping it has stored in its memory and ask your authoritative
DNS server once again for the proper IP address.

But there’s a problem: If everyone on the Internet started using a one-
second DNS TTL value, every client computer on the Internet would
effectively end up asking only the authoritative DNS server for the correct IP
address when doing a host name–to–IP address resolution. This would
circumvent the design of the DNS system whereby intervening DNS servers
cache this information and thus reduce both the time it takes to resolve a
host name and the amount of DNS traffic that has to be passed around on
the Internet. (A very low TTL value for DNS entries means a more heavily
loaded authoritative DNS server.10)

Using round-robin DNS and this type of heartbeat configuration for load
sharing, however, lets you locate your two servers at two different physical
locations. In the event of a true disaster, one of the servers would be able to
take over both (or all) IP addresses, and once the routers on the Internet
figured out where the IP address had moved to, eventually allow the client
computers to continue to connect to your web server at its new location.

10 To prevent this problem from ever happening, many DNS clients and servers ignore small
TTL values and use cached information anyway.
156 Chap te r 8

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE This configuration is very susceptible to a split-brain condition. If exclusive access to
resources is required, automatic failover mechanisms that require heartbeats to traverse
a WAN or a public network should not be used.

Wide-Area Load Balancing

Now, what if the client computer on the Internet is much closer to one of the
two web servers offering the same web page and it accidentally ends up with
the IP address that happens to be on a server located on the other side of the
world? It would make sense to offer your resources from the servers closest to
the Internet client and only force the client to route to another server in the
event of a failure or system crash.

This is called wide-area load balancing or globally distributed content and can
be accomplished with an open source program for Linux called Super
Sparrow. A server running Super Sparrow will examine the client’s source
address and determine whether the client computer would be better off
talking to a different server with synchronized content that is closer to the
client computer. If so, the client computer’s request is redirected to the
closest available server. (For more information, see the Super Sparrow
website at http://www.supersparrow.org.)

Operator Alerts: Audible Alarm

To cause an alarm to sound when the backup server has to take over for the
primary server, use a haresources entry like this:

primarynode AudibleAlarm::primarynode

This entry says that the host named primarynode should normally “own”
the resource AudibleAlarm, but that the AudibleAlarm should never sound
on the primary server. The AudibleAlarm resource, or script, allows you to
specify a list of host names that should never sound an alarm. In this case, we
are telling the AudibleAlarm script not to run or sound on the primarynode.
When a failover occurs, Heartbeat running on the backup server will sound
the alarm (an audible beep every one second).

NOTE These haresources entries rely on the scripts /etc/ha.d/resource.d/AudibleAlarm and /
etc/ha.d/resource.d/MailTo. These scripts are located in the chapter8 subdirectory on
the CD-ROM. You can also download them from the Linux-ha CVS repository (see the
heartbeat/resource.d directory for additional scripts).

The AudibleAlarm script can also be modified to flash the floppy drive
light if you have installed the fdutils packages. The fdutils package contains
a utility called floppycontrol. You can easily download and compile the
fdutils package (download the tar file from http://fdutils.linux.lu, then
run ./configure, then make) and uncomment the lines in the /etc/ha.d/
resource.d/AudibleAlarm script to make the floppy drive light flash.
Hear tbea t Resou rces and Maintenance 157
No Starch Press, Copyright © 2005 by Karl Kopper

Operator Alerts: Email Alerts
To send an email alert, use the MailTo resource script with a haresources entry
like this:

primarynode MailTo::operator@mailhost.com,root@mailhost.com

or to specify a subject line for an email alert, use:

primarynode MailTo::operator@mailhost.com,root@mailhost.com::Mysubject

Heartbeat Maintenance

Thanks to the fact that Heartbeat resource scripts are called by the heartbeat
daemon with start, stop, or status requests, you can restart a resource without
causing a cluster transition event. For example, say your Apache web server
daemon is running on the primary.mydomain.com web server, and the
backup.mydomain.com server is not running anything; it is waiting to offer the
web server resource in the event of a failure of the primary computer. If you
needed to make a change to your httpd.conf file (on both servers!) and you
wanted to stop and restart the Apache daemon on the primary computer,
you would not want this to cause Heartbeat to start offering the service on
the backup computer. Fortunately, you can run the /etc/init.d/httpd restart
command (or /etc/init.d/httpd stop followed by the /etc/init.d/httpd start
command) without causing any change to the cluster status as far as Heartbeat
is concerned.

Thus, you can safely stop and restart all of the cluster resources Heartbeat
has been asked to manage, with perhaps the exception of filesystems, without
causing any change in resource ownership or causing a cluster transition
event. Of course, many daemons will also recognize the SIGHUP (or kill –HUP
<process-ID-number>) command as well, so you can force a resource daemon
to reload its configuration files after making a change without stopping and
restarting it.

Again, in the case of the Apache httpd daemon, if you change the
httpd.conf file and want to notify the running daemons of the change, you
would send them the SIGHUP signal with the following command:

#kill –HUP `cat /var/run/httpd.pid`

NOTE The file containing the httpd parent process ID number is controlled by the PidFile
entry in the httpd.conf file (this file is located in the /etc/httpd/conf directory on Red
Hat Linux systems).

Changing Heartbeat Configuration Files
If you need to make a change to the heartbeat configuration file /etc/ha.d/
authkeys, or /etc/ha.d/ha.cf, you can force the running heartbeat daemon to
reload these configuration files with the following command.
158 Chap te r 8

No Starch Press, Copyright © 2005 by Karl Kopper

#/etc/init.d/heartbeat reload

or

#service heartbeat reload

When you change a haresources file, you need to restart Heartbeat on
both the primary and the backup server to make your changes take effect
(the reload option will not work).

Server Maintenance and the Heartbeat auto_failback Option

Normally, when the primary server crashes and the backup server takes
ownership of a resource, the backup server will only hold this resource until
the primary server comes back up. Once the primary server is up and
running again, the backup server will release the resource and the primary
server will assume ownership once again; it will start the resource script and
start offering the service to client computers. This is the default heartbeat
failback configuration.

To modify this Heartbeat behavior, add the following line before the
node entries in your /etc/ha.d/ha.cf file (through version 1.1.2 of Heartbeat):

nice_failback on

For Heartbeat versions 1.1.2 and later, the syntax is more intuitively
obvious:

auto_failback off

These options tell Heartbeat to leave the resource on the backup server
even after the primary server comes back on line. Make this change to the
ha.cf file on both heartbeat servers and then issue the following command
on both servers to tell Heartbeat to re-read its configuration files:

#/etc/init.d/heartbeat reload

You should see a message like the following in the /var/log/messages file:

heartbeat[1032]: info: nice_failback is in effect.

This configuration is useful when you want to perform system mainte-
nance tasks that require you to reboot the primary server. When you take
down the primary server and the resources are moved to the backup server,
they will not automatically move back to the primary server.

Once you are happy with your changes and want to move the resource
back to the primary server, you would remove the nice_failback option from
the ha.cf file and again run the following command on the backup server.
Hear tbea t Resou rces and Maintenance 159
No Starch Press, Copyright © 2005 by Karl Kopper

#/etc/init.d/heartbeat reload

(You do not need to run this command on the primary server because
we are about to restart the heartbeat daemon on the primary server anyway.)
Now, force the resource back over to the primary server by entering the
following command on the primary server:

#/etc/init.d/heartbeat restart

NOTE If you want auto_failback turned off as the default, or normal, behavior of your
Heartbeat configuration, be sure to place the auto_failback option in the ha.cf file on
both servers. If you neglect to do so, you may end up with a split-brain condition; both
servers will think they should own the cluster resources. The setting you use for the
auto_failback (or the deprecated nice_failback) option has subtle ramifications and
will be discussed in more detail in Chapter 9.

Forcing the Primary Server into Standby Mode

In a two-node Heartbeat configuration, you can force the primary server to
relinquish its resources, without stopping Heartbeat, by forcing the primary
server into standby mode. This causes the backup server to start the resource
scripts and take ownership of the Heartbeat resources. Run this command as
root on the primary server:

#/usr/lib/heartbeat/hb_standby

The primary server will not go into standby mode if it cannot talk to the
heartbeat daemon on the backup server. In Heartbeat versions through 1.1.2,
the hb_standby command required nice_failback to be turned on. With the
change in syntax from nice_failback to auto_failback, Heartbeat no longer
requires auto_failback to be turned off. However, if you are using an older
version of Heartbeat that still supports nice_failback, it must still be turned
on to use the hb_standby command.

In this example, the primary server (where we ran the hb_standby
command) is requesting that the backup server take over the resources.
When the backup server receives this request, it asks the primary server to
release its resources. If the primary server does not release the resources,11
the backup server will not start them.

NOTE The hb_standby command allows you to specify an argument of local, foreign, or all
to specify which resources should go into standby (or failover to the backup server).

11 There is a 20-minute timeout period (it was a 10-second timeout period prior to version 1.0.2).
160 Chap te r 8

No Starch Press, Copyright © 2005 by Karl Kopper

Tuning Heartbeat’s Deadtime Value

Sometimes Heartbeat will report that it cannot hear its own heartbeat,
or that heartbeat times are too long. If the heartbeat logs indicate that a
heartbeat was not received within the deadtime timeout period and the
backup server tried to take over for the primary server when you did not
want it to, you need to properly tune your deadtime value to account for
system and network environmental conditions that may be causing
heartbeats to get lost or to not be heard. This can occur on systems that
are heavily loaded with network processing tasks, or even with heavy CPU
utilization.

To tune the heartbeat deadtime value for these conditions, set the deadtime
value to a large value such as 60 seconds or higher, and set the warntime value
to the number of seconds you would like to use for your deadtime value.

Now run the system for a few weeks and carefully watch the /var/log/
messages file and the logfile /var/log/ha-log for warntime messages indicating
the longest period of time your system went without hearing a heartbeat.
Armed with that information, set your warntime to this amount, and multiply
this warntime value by 1.5 to 2 to arrive at the smallest possible value you
should use for your deadtime. Leave logging enabled and continue to monitor
your logs to make sure you have not set the value too low.

Informational Messages in Heartbeat’s Log

You may see messages such as the following in your message log file:

heartbeat: info: RealMalloc stats: 976 total malloc bytes. pid [369/HBREAD
heartbeat: info: MSG stats: 0/441708 age 0 [pid370/MST_STATUS]
heartbeat: info: ha_malloc stats: 0/9035987 0/0

These messages will appear every 24 hours, beginning when Heartbeat was
started. After a few days of operation, the total number of bytes used should
not grow. These informational messages from Heartbeat can be ignored
when Heartbeat is operating normally.

Failover and Respawn (Automatically Restarting Failed Resources)

On a normal Unix/Linux server, the init daemon will start daemons (usually
serial line communication services or tty related services) based on entries in
the /etc/inittab file. If the entry contains the word respawn, init will monitor
the daemon and restart it if it dies for any reason.

If you need to run a service that needs to be restarted or respawned
automatically when it fails, you have a few options:

� If the application should run on both the primary and the backup server
all of the time, create an entry for the application in /etc/inittab (see the
man page for inittab for syntax details).
Hear tbea t Resou rces and Maintenance 161
No Starch Press, Copyright © 2005 by Karl Kopper

� If the application should only run when Heartbeat is running, you can
create a respawn entry for the service in the /etc/ha.d/ha.cf file that looks
like this:

respawn root /usr/sbin/faxgetty ttyQ01e0

This line tells Heartbeat to run the /usr/sbin/faxgetty program and
pass it the argument ttyQ01e0. Heartbeat will do this when it first starts up
on both the primary and the backup Heartbeat servers (recall that the
Heartbeat configuration files should always be the same on both servers).

� If the application should run on only one of the Heartbeat servers at a
time, you will have to implement a service under Heartbeat’s control that
knows how to restart failed daemons, such as the Daemontools package
(http://cr.yp.to/daemontools.html), or that can use the cl_respawn
utility included with the Heartbeat package. To use the cl_respawn util-
ity, create a line such as the following in the start section of your resource
script:

cl_respawn /usr/sbin/faxgetty ttyQ01e0

When Heartbeat calls your resource script and passes it the start
argument, it will then run the utility cl_respawn with the arguments /usr/
sbin/faxgetty and ttyQ01e0. The cl_respawn utility is a small program that
is unlikely to crash, because it doesn’t do much—it just hangs around in
the background and watches the daemon it started (faxgetty in this
example) and restarts the daemon if it dies. (Run cl_respawn -h from a
shell prompt for more information on the capabilities of this utility.)

License Manager Failover

A license manager daemon such as lmgrd from GlobeTrotter Software can be
configured to failover in conjunction with an IP address, just like any other
daemon. However, before you can use a license manager, you will need a
second set of licenses from your software vendor for the backup server’s
hostid. Some software vendors will allow you to have two sets of licenses if you
agree to use the second set only when the primary license server goes down.

In Conclusion

To make a resource highly available, you need to eliminate single points of
failure and understand how to properly administer a highly available server
pair. To administer a highly available server pair, you need to know how to
failover a resource from the primary server to the backup server manually so
that you can do maintenance tasks on the primary server without affecting
the resource’s availability. Once you know how to failover a resource
manually, you can place it under Heartbeat’s control by creating the proper
entry or entries in the haresources file to automate the failover process.
162 Chap te r 8

No Starch Press, Copyright © 2005 by Karl Kopper

9
S T O N I T H A N D I P F A I L

Recall from Chapter 6 that a split-brain
condition occurs when more than one

server thinks it has exclusive ownership of
a resource. The consequences of a split-brain

condition can include the inability to answer client
computer requests for service, or perhaps even worse,
the ability to answer requests inaccurately. For example,
if two servers have the ability to offer client computers access to a warehouse
inventory database that is stored locally on each server’s disk drive in a high-
availability configuration, only one server should be able to modify the data-
base at a time. If each server allows users to modify its copy of the inventory
database, then neither database will be accurate, and correcting the errors in
the data will be difficult, if not impossible.

NOTE The situation is even worse if both servers share access to a single disk drive (using a
shared SCSI bus, for example). In the scenario just described, the local copy of the data-
base will be out of date on both servers, but if a split-brain condition occurs when the
primary and backup server both try to write to the same database (stored on the shared
disk drive), the entire database may become corrupted.
No Starch Press, Copyright © 2005 by Karl Kopper

This chapter explains how to avoid a split-brain condition using a
component in the Heartbeat package called Stonith. We’ll discuss how to use
a feature of Heartbeat called ipfail, which allows Heartbeat servers to detect
which server should own the resources based on the Heartbeat servers’
ability to communicate on the network. We’ll also show you how to use the
kernel capability called Watchdog, which allows the system to reboot itself if
the Heartbeat program hangs, and we’ll conclude with the basic tests you
should perform on your high-availability servers before they go into
production.

Stonith

Stonith, or “shoot the other node in the head,”1 is a component of the
Heartbeat package that allows the system to automatically reset the power of
a failing server using a remote or “smart” power device connected to a
healthy server. A Stonith device is a device that can turn power off and on in
response to software commands. A serial or network cable allows a server
running Heartbeat to send commands to this device, which controls the
electrical power supply to the other server in a high-availability pair of
servers. The primary server, in other words, can reset the power to the
backup server, and the backup server can reset the power to the primary
server.

NOTE Although there is no theoretical limitation on the number of servers that can be con-
nected to a remote or “smart” power device capable of cycling system power, the majority
of Stonith implementations use only two servers. Because a two-server Stonith configu-
ration is the simplest and easiest to understand, it is likely in the long run to
contribute to—rather than detract from—system reliability and high availability.2

This section will describe how to get started with Stonith using a two-
server (primary and backup server) configuration with Heartbeat. When the
backup server in this two-server configuration no longer hears the heartbeat
of the primary server, it will power cycle the primary server before taking
ownership of the resources. There is no need to configure sophisticated
cluster quorum election algorithms in this simple two-server configuration;3
the backup server can be sure it will be the exclusive owner of the resource
while the primary server is booting. If the primary server cannot boot and
reclaim its resources, the backup server will continue to maintain ownership
of them indefinitely. The backup server may also keep control of the
resources if you enable the auto_failback option in the Heartbeat ha.cf
configuration file (as discussed in Chapter 8).

1 Other high-availability solutions sometimes call this Stomith, or “shoot the other machine in
the head.”
2 “Complexity is the enemy of reliability,” writes Alan Robertson, the lead Heartbeat developer.
3 With three or more servers competing for cluster resources, a quorum, or majority-wins,
election process is possible (quorum election will be included in Release 2 of Heartbeat).
164 Chap te r 9

No Starch Press, Copyright © 2005 by Karl Kopper

Forcing the primary server to reboot with a power reset is the crudest
and surest way to avoid a split-brain condition. As mentioned in Chapter 6,
a split-brain condition can have dire consequences when two servers share
access to an external storage device such as a single SCSI bus connection to
one disk drive. If the server with write permission, the primary server, mal-
functions, the backup server must take great precautions to ensure that it will
have exclusive access to the storage device before it modifies data.4

Stonith also ensures that the primary server is not trying to claim
ownership of an IP address after it fails over to a backup server. This is more
important than it sounds, because many times a failover can occur when the
primary server is simply not behaving properly and the lower-level network-
ing protocols that allow the primary server to respond to ARP requests
(“Who owns this IP address?”) are still working. The backup server has no
reliable way of knowing that the primary server is engaging in this sort of
improper behavior once communication with the daemons on the primary
server, especially with the Heartbeat daemon, is lost.

An Unconventional Approach: Using a Single Stonith Device

In this chapter, I will use an unconventional approach to deploying a high-
availability configuration. I will describe how to make resources highly
available using only one Stonith device. Normally, high-availability config-
urations are built using two Stonith devices (one connected to the primary
server and one connected to the backup server). In this chapter, however,
I will describe how to deploy Heartbeat using only one Stonith device, which
introduces two important limitations into your high-availability configuration:

1. All resources must run on the primary server (no resources are allowed
on the backup server as long as the primary server is up).

2. A failover event can only occur one time and in one direction. In other
words, the resources running on the primary server can only failover to
the backup server once. When the backup server takes ownership of the
resources, the primary server is shut down, and operator intervention is
required to restore the primary server to normal operation.

When you use only one Stonith device, you must run all of the highly
available resources on the primary server, because the primary server will not
be able to reset the power to the backup server (the primary server needs to
reset the power to the backup server when the primary server wants to take
back ownership of its resources after it has recovered from a crash). Resources
running on the backup server, in other words, are not highly available with-
out a second Stonith device. Operator intervention is also required after a

4 More sophisticated methods are possible through advanced SCSI commands, which are not
implemented in all SCSI devices and are not currently a part of Heartbeat.
Stoni th and ipfai l 165
No Starch Press, Copyright © 2005 by Karl Kopper

failover event when you use only one Stonith device, because the primary
server will go down and stay down—you will no longer have a highly available
server pair.

With a clear understanding of these two limitations, we can continue our
discussion of Heartbeat and Stonith using a sample configuration that only
uses one Stonith device.

Sample Heartbeat with Stonith Configuration

Figure 9-1 shows a two-server, high-availability configuration using Heartbeat
and a single Stonith device with three client computers connecting to
resources on the primary server.

Figure 9-1: Two-server Heartbeat with Stonith—normal operation

Normally, the primary server broadcasts its heartbeats and the backup
server hears them and knows that all is well. But when the backup server no
longer hears heartbeats coming from the primary server, it sends the proper
software commands to the Stonith device to cycle the power on the primary
server, as shown in Figure 9-2.

Primary server Backup server

Stonith
device

Serial or network
connection

Heartbeats

Power supply

Client
computer

Production network

Client
computer

Client
computer

Request Request Request

Request
Reply
166 Chap te r 9

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 9-2: Stonith sequence of events

Stonith Sequence of Events

As shown in Figure 9-2, the Stonith operation proceeds as follows:

1. The Stonith event begins when heartbeats are no longer heard on the
backup server.

NOTE This does not necessarily mean that the primary server is not sending them. The heart-
beats may fail to reach the backup server for a variety of reasons. This is why at least
two physical paths for heartbeats are recommended in order to avoid false positives.

2. The backup server issues a Stonith reset command to the Stonith device.

3. The Stonith device turns off the power supply to the primary server and
then turns it back on.

4. As soon as the power is cut off from the primary server, it is no longer
able to access cluster resources and is no longer able to offer resources to
client computers over the network. This guarantees that client computers
are unable to access the resources on the primary server and eliminates
the possibility of a split-brain condition.

Power reset
command

Primary node Backup node

Stonith
device

Serial or network
connection

Heartbeats

Power supply

Production network

Request Request Request

Request
Reply

4 1 5

3
2

Client
computer

Client
computer

Client
computer
Stoni th and ipfai l 167
No Starch Press, Copyright © 2005 by Karl Kopper

5. The backup server then acquires the primary server’s resources. Heart-
beat runs the proper resource script(s) with the start argument and per-
forms gratuitous ARP broadcasts so that client computers will begin
sending their requests to its network interface card.

Once the primary server finishes rebooting it will attempt to reclaim
ownership of its resources again by asking the backup server to relinquish
them, unless both servers have the auto_failback turned off.5

NOTE Client computers should always access cluster resources on an IP address that is under
Heartbeat’s control. This should be an IP alias and not an IP address that is automat-
ically added to the system at boot time.

Stonith Devices

Here is a partial listing of the Stonith devices supported by Heartbeat:

Stonith supports two additional methods of resetting a system:

5 Formerly (prior to version 1.1.2) the nice_failback option turned on.

Stonith Name Device Company Website

apcmaster APC Master Switch AP9211 www.apcc.com

apcmastersnmp APC Masterswitch (SNMP) www.apcc.com

apcsmart APC Smart-UPSa

a Comments in the code state that no configuration file is used with this device. Apparently it will
always use the /dev/ups device name to send commands, so you need to create a link to /dev/ups
from the proper /dev/tty device.

www.apcc.com

Tested with 900XLI

baytech Tested with RPC-5b

b The code implies other RPC devices should work as well.

www.baytechdcd.com

nw_rpc100s Micro Energetics microenergeticscorp.com

Night/Ware RPC100S

rps10 Western Telematics RPS-10M www.wti.com

wti_nps Western Telematics

Network Power Switches NPS-xxx

Western Telematics Telnet Power
Switches (TPS-xxx)

Meatware Operator alert; this tells a human being to do the power reset. It is used
in conjunction with the meatclient program.

SSH Usually used only for testing. This causes Stonith to attempt to use the
secure shell SSHa to connect to the failing server and perform a reboot
command.

a See Chapter 5 for a description of how to set up and configure SSH between cluster, or Heart-
beat, servers.
168 Chap te r 9

No Starch Press, Copyright © 2005 by Karl Kopper

You may also still see a null device. This “device” was originally used by
the Heartbeat developers for coding purposes before the SSH device was
developed.

Viewing the Current List of Supported Stonith Devices

If you download the source RPM file, you can view the list of currently
supported Stonith devices in the file:

/usr/src/redhat/SOURCES/heartbeat-<version>/STONITH/README

Or you can list the Stonith device names with the command:

#/usr/sbin/stonith -L

The Stonith Meatware “Device”

Before purchasing one of the supported Stonith devices, you can use a
meatware “device” to experiment with Stonith. A meatware device is a
whimsical reference to a human being. When you use a meatware device,
Heartbeat simply raises an operator alert (instead of resetting the power
using software commands to a hardware device connected to a serial or
network cable). After following the recipe in Chapter 7 that told you how to
download and install the Heartbeat and Stonith RPMs, enter the following
command to create a meatware device for a nonexistent host we will call
chilly:

#/usr/sbin/STONITH –t meatware –p "" chilly

This command tells Stonith to create a device of type (-t) meatware with
no parameters (-p "") for host chilly.

The Stonith program normally runs as a daemon in the background, but
we’re running it in the foreground for testing purposes. Log on to the same
machine again (if you are at the console you can press CTRL+ALT+F2), and
take a look at the messages log with the command:

#tail /var/log/messages
STONITH: OPERATOR INTERVENTION REQUIRED to reset test.
STONITH: Run "meatclient -c test" AFTER power-cycling the machine.

Stonith has created a special file in the /tmp directory that you can
examine with the command:

#file /tmp/.meatware.chilly
/tmp/.meatware.chilly: fifo (named pipe)
Stoni th and ipfai l 169
No Starch Press, Copyright © 2005 by Karl Kopper

Now, because we don’t really have a machine named chilly we will just
pretend that we have obeyed the instructions of the Heartbeat program
when it told us to reset the power to host chilly. If this were a real server, we
would have walked over and flipped the power switch off and back on before
entering the following command to clear this Stonith event:

#meatclient -c chilly

The meatclient program should respond:

WARNING!
If server "chilly" has not been manually power-cycled or disconnected from all
shared resources and networks, data on shared disks may become corrupted and
migrated services might not work as expected.
Please verify that the name or address above corresponds to the server you
just rebooted.
PROCEED? [yN]

After entering y you should see:

Meatware_client: reset confirmed.

Stonith should also report in the /var/log/messages file:

STONITH: server chilly Meatware-reset.

Using the Stonith Meatware Device with Heartbeat

Now that we have used the Stonith software commands and the meatware
device manually, let’s configure Heartbeat to do the same thing for us
automatically at the time of a failover. On both of your Heartbeat servers add
the following entry to the /etc/ha.d/ha.cf file:

stonith_host * meatware

Normally the first parameter after the word stonith_host is the name of
the Heartbeat server that has a physical connection to the Stonith device. If
both (or all) Heartbeat servers can connect to the same Stonith device, you
can use the wildcard character (*) to indicate that any Heartbeat server can
perform a power reset using this device. (Normally this would be used with a
smart or remote power device that is connected via an Ethernet network
capable which allows both Heartbeat servers to connect to it.)

Because meatware is an operator alert message sent to the /var/log/messages
file and not a real device we do not need to worry about any additional cabling
and can safely assume that both the primary and backup servers will have
“access” to this Stonith “device.” They need only be able to send messages to
their log files.
170 Chap te r 9

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE When following this recipe, be sure that the auto_failback option is turned on in your
ha.cf file. With Heartbeat version 1.1.2, the auto_failback option can be set to either
on or off and ipfail will work. Prior to version 1.1.2 (when nice_failback changed to
auto_failback), the nice_failback option had to be set to on for ipfail to work.

1. Use a simple haresources entry like this:

#vi /etc/ha.d/haresources
primary.mydomain.com sendmail

The second line says that the primary server should normally own
the sendmail resource (it should run the sendmail daemon).

2. Now start Heartbeat on both the primary and backup servers with the
commands:

primaryserver> service heartbeat start
backupserver> service heartbeat start

or

primaryserver> /etc/init.d/heartbeat start
backupserver> /etc/init.d/heartbeat start

NOTE The examples above and below use the name of the server followed by the > character to
indicate a shell prompt on either the primary or the backup Heartbeat server.

3. Now kill the Heartbeat daemons on the primary server with the following
command:

primaryserver> killall -9 heartbeat

NOTE Stopping Heartbeat on the primary server using the Heartbeat init script (service
heartbeat stop) will cause Heartbeat to release its resources. Thus the backup server
will not need to reset the power of the primary server. To test a Stonith device, you’ll
need to kill Heartbeat on the primary server without allowing it to release its resources.
You can also test the operation of your Stonith configuration by disconnecting all phys-
ical paths for heartbeats between the servers.

4. Watch the /var/log/messages file on the backup server with the command:

backupserver> tail -f /var/log/messages

You should see Heartbeat issue the Meatware Stonith warning in the
log and then wait before taking over the resource (sendmail in this case):

backupserver heartbeat[835]: info: **************************
backupserver heartbeat[835]: info: Configuration validated. Starting
heartbeat <version>
backupserver heartbeat[836]: info: heartbeat: version <version>
Stoni th and ipfai l 171
No Starch Press, Copyright © 2005 by Karl Kopper

backupserver heartbeat[836]: info: Heartbeat generation: 3
backupserver heartbeat[836]: info: UDP Broadcast heartbeat started on port
694 (694) interface eth0
backupserver heartbeat[841]: info: Status update for server backupserver:
status up
backupserver heartbeat: info: Running /etc/ha.d/rc.d/status status
backupserver heartbeat[841]: info: Link backupserver:eth0 up.
backupserver heartbeat[841]: WARN: server primaryserver: is dead
backupserver heartbeat[841]: info: Status update for server backupserver:
status active
backupserver heartbeat[847]: info: Resetting server primaryserver with
[Meatware Stonith device]
backupserver heartbeat[847]: OPERATOR INTERVENTION REQUIRED to reset
primaryserver.
backupserver heartbeat[847]: Run "meatclient -c primaryserver" AFTER
power-cycling the machine.
backupserver heartbeat: info: Running /usr/local/etc/ha.d/rc.d/status
status
backupserver heartbeat[852]: info: No local resources [/usr/local/lib/
heartbeat/ResourceManager listkeys backupserver]
backupserver heartbeat[852]: info: Resource acquisition completed.

Notice that Heartbeat did not start the sendmail resource; it is
waiting for you to clear the Stonith Meatware event.

5. Clear that event by entering the command:

backupserver> meatclient -c primaryserver

The /var/log/messages file should now indicate that Heartbeat has
started the sendmail resource on the backup server:

backupserver heartbeat[847]: server primaryserver Meatware-reset.
backupserver heartbeat[847]: info: server primaryserver now reset.
backupserver heartbeat[841]: info: Resources being acquired from
primaryserver.
backupserver heartbeat: info: Running /usr/local/etc/ha.d/rc.d/stonith
STONITH
backupserver heartbeat: info: Running /usr/local/etc/ha.d/rc.d/status
status
backupserver heartbeat: stonith complete
backupserver heartbeat: info: Taking over resource group sendmail
backupserver heartbeat: info: Acquiring resource group: primaryserver
sendmail
backupserver heartbeat: info: Running /etc/init.d/sendmail start

Heartbeat on the backup server is now satisfied: it owns the primary
server’s resources and will listen for Heartbeats to find out if the primary
server is revived.
172 Chap te r 9

No Starch Press, Copyright © 2005 by Karl Kopper

To complete this simulation, you can really reset the power on the
primary server, or simply restart the Heartbeat daemon and watch the /var/
log/messages file on both systems. The primary server should request that the
backup server give up its resources and then start them up again on the
primary server where they belong. (The sendmail daemon should start
running on the primary server and stop running on the backup server in this
example.)

NOTE Notice in this example how you will have a much easier time performing system mainte-
nance when you place all of your resources on a primary server and leave the backup
server idle. However, you may want to place active services on both the primary and
backup Heartbeat server and use the hb_standby command to failover resources when
you need to do maintenance on one or the other server.

Using a “Real” Stonith Device

Each Stonith device has unique configuration options. To view the config-
uration options for any Stonith device, enter the command:

#stonith -help

You can also obtain syntax configuration information for a particular
Stonith device using the stonith command from a shell prompt as in the
following example:

/usr/sbin/stonith –l -t rps10 test

This causes Stonith to report:

STONITH: Cannot open /etc/ha.d/rpc.cfg
STONITH: Invalid config file for rps10 device.
STONITH: Config file syntax: <serial_device> <server> <outlet> [<server>
<outlet> [...]]
All tokens are white-space delimited.
Blank lines and lines beginning with # are ignored

This output provides you with the syntax documentation for the rps10
Stonith device. The syntax for the parameters you can pass to this Stonith
device (also called the configuration file syntax) include a /dev serial device
name (usually /dev/ttyS0 or /dev/ttyS1); the server name that is being
supplied power by this device; and the physical socket outlet number on the
rps10 device. Thus, the following syntax can be used in the /etc/ha.d/ha.cf file
on both the primary and the backup server in the /etc/ha.d/ha.cf config-
uration file:

STONITH_host backupserver rps10 /dev/ttyS0 primaryserver.mydomain.com 0
Stoni th and ipfai l 173
No Starch Press, Copyright © 2005 by Karl Kopper

This line tells Heartbeat that the backup server controls the power
supply to the primary server using the serial cable connected to the /dev/
ttyS0 port on the backup server, and the primary server’s power cable is
plugged in to outlet 0 on the rps10 device.

NOTE For Stonith devices that connect to the network you will also need to specify a login and
password to gain access to the Stonith device over the network before Heartbeat can
issue the power reset command(s). If you use this type of Stonith device, however, be sure
to carefully consider the security risk of potentially allowing a remote attacker to reset the
power to your server, and be sure to secure the ha.cf file so that only the root account can
access it.

Avoiding Multiple Stonith Events

One potential advantage of offering all of the resoures from the primary
server and not running any resources on the backup server (which you will
recall is a limitation of the single-Stonith configuration I have been
describing in this chapter) is that you can simply power off the primary
server when the backup server takes ownership of the resources. This
prevents the situation where confused Heartbeat servers start reseting each
other’s power and resources move back and forth between the primary and
backup server.

To cause Heartbeat to power down, rather than power reset the primary
server during a Stonith event, you can do one of two things:

1. Look at the driver code in the Heartbeat package for your Stonith device
and see if it supports a poweroff (rather than a power reset)—most do. If
it does, you can simply change the source code in heartbeat that does the
stonith command and change it from this:

rc = s->s_ops->reset_req(s, ST_GENERIC_RESET, nodename);

to this:

rc = s->s_ops->reset_req(s, ST_POWEROFF, nodename);

This allows you to power off rather than power reset any Stonith
device that supports it.

2. If you don’t want to compile Heartbeat source code, you may be able to
simply configure the system BIOS on your primary server so that a power
reset event will not cause the system to reboot. (Many systems support
this, check your system documentation to see if yours is one of them.)
174 Chap te r 9

No Starch Press, Copyright © 2005 by Karl Kopper

Network Failures

Even with these preparations, we still have not eliminated all single points of
failure in our two-server Heartbeat failover design. For example, what
happens if the primary server simply loses the ability to communicate
properly with the client computers over the normal, or production network?

In such a case, if you have a properly configured Heartbeat
configuration the heartbeats will continue to travel to the backup server.
This is thanks to the redundancy you built into your Heartbeat paths (as
described in Chapter 8), and no failover will occur. Still, the client
computers will no longer be able to access the resource daemons on the
primary server (the cluster resources).

We can solve this problem in at least two ways:

� Run an external monitoring package, like the Perl program Mon, on the
primary server and watch for the failure of the public NIC. When Mon
detects the failure of this NIC it should shut down the Heartbeat dae-
mon (or force it into standby mode) on the primary server. The backup
server will then takeover the resources and, assuming it is healthy and
can communicate on its public network interface, the client computers
will once again have access to the resources. (See Chapter 17 for more
information about Mon.)

� Use the ipfail API plug-in, which allows you to specify one or more ping
servers in the Heartbeat configuration file. If the primary server sud-
denly fails to see one of the ping servers, it asks the backup server, “Did
you see that ping server go down too?” If the backup server can still talk
to the ping server, it knows that the primary server is not communicating
on the network properly and it should now take ownership of the
resources.

ipfail

Beginning with Heartbeat version 0.4.9d, the ipfail plug-in is included with
the Heartbeat RPM package as part of the standard Heartbeat distribution.
To use ipfail, decide which network device (IP address) both Heartbeat
servers should be able to ping at all times (such as a shared router, a network
switch that is never supposed to go offline, and so on). Next, enter this IP
address in your /etc/ha.d/ha.cf file and tell Heartbeat to start the ipfail
plug-in each time it starts up:

#vi /etc/ha.d/ha.cf
Stoni th and ipfai l 175
No Starch Press, Copyright © 2005 by Karl Kopper

Add three lines before the final server lines at the end of the file like so:

respawn hacluster /usr/lib/heartbeat/ipfail
ping 10.1.1.254 10.1.1.253
auto_failback off

The first line above tells Heartbeat to start the ipfail program on both
the primary and backup server,6 and to restart or respawn it if it stops, using
the hacluster user created during installation of the Heartbeat RPM package.
The second line specifies one or more ping servers or network nodes that
Heartbeat should ping at heartbeat intervals to be sure that its network
connections are working properly. (If you are building a firewall machine,
for example, you will probably want to use ping servers on both interfaces, or
networks.7)

NOTE If you are using a version of Heartbeat prior to version 1.1.2, you must turn
nice_failback on. Version 1.1.2 and later allow auto_failback (the replacement for
nice_failback but with the opposite meaning) to be either on or off.

Now start Heartbeat on both servers and test your configuration. You
should see a message in /var/log/messages indicating that Heartbeat started
the ipfail child client process. Try removing the network cable on the
primary server to break the primary server’s ability to ping one of the ping
servers, and watch as ipfail forces the primary server into standby mode. The
backup server should then take over the resources listed in haresources.

Watchdog and Softdog

The kernel has its own method to handle a hung system, called watchdog.
Watchdog is simply a kernel module that checks a timer to make sure the
system is healthy. If watchdog thinks the kernel is hung, it can take drastic
action such as a system reboot. If you want to protect your high-availability
server configuration from a server hang that causes an interruption in
services even when the server hang is not detected by Heartbeat, you should enable
watchdog in your kernel.

NOTE We are talking about a server hang here and not an application problem. Heartbeat
(prior to Heartbeat release 2, which is not yet available as of this writing) does not mon-
itor resources or the applications under its control to see if they are healthy—to do this
you need to use another package such as the Mon monitoring system discussed in
Part IV.

6 The /etc/ha.d/ha.cf configuration file should be the same on the primary and backup server.
7 And, of course, be sure to configure your iptables or ipchains rules to accept ICMP traffic
(see Chapter 2).
176 Chap te r 9

No Starch Press, Copyright © 2005 by Karl Kopper

A watchdog device is normally connected to a system to allow the kernel
to determine whether the system has hung (when the kernel no longer sees
the external timer device updating properly, it knows that something has
gone wrong).

The watchdog code also supports a software replacement for external
hardware timers called softdog. Softdog maintains an internal timer that is
updated as soon as another process on the system writes to the /dev/watchdog
device file. If softdog doesn’t see a process write to the /dev/watchdog file, it
assumes that the kernel must be malfunctioning, and it will initiate a kernel
panic. Normally a kernel panic will cause a system to shut down, but you can
modify this default behavior and, instead, cause the system to reboot.

Enable Watchdog in the Kernel
To enable watchdog in the kernel, you first need to make sure that the
softdog module is compiled for your kernel.

NOTE On a normal Red Hat or SuSe distribution you will not need to add watchdog to your
kernel because the modular version of the Red Hat kernel contains a compiled copy of
the softdog module already.

If you have compiled your own kernel from source code, run makemenu
config from the /usr/src/linux directory, and check or enable the “Software
Watchdog” option on the following submenu:

Character Devices

Watchdog Cards --->

[*] Watchdog Timer Support

[M] Software Watchdog (NEW)

If this option was not already selected in the kernel, follow the steps in
Chapter 3 to recompile and install your new kernel. If you are using the
standard modular version of the kernel included with Red Hat (or if you
have just finished compiling your own kernel with modular support for the
Software Watchdog), enter the following commands to make sure that the
module loads into your running kernel:

#insmod softdog
#lsmod

You should see softdog listed. Normally the Heartbeat init script will
insert this module for you if you have enabled watchdog support in /etc/
ha.d/ha.cf as described later in this section. Assuming that watchdog is
enabled, you should now remove it from the kernel and allow Heartbeat to
add it for you when it starts. Remove softdog from the kernel with the
command:

#modprobe -r softdog
Stoni th and ipfai l 177
No Starch Press, Copyright © 2005 by Karl Kopper

Kernel Panic—Hang or Reboot?

To force the system to reboot instead of halt if the kernel panics, modify the
boot arguments passed to the kernel. To do this on a system using the Lilo8
boot loader, for example, edit /etc/lilo.conf near the top of the file, and
before image= lines so it will take effect for all versions of the kernel you have
configured, and add the following line:

append="panic=60"

Then be sure to run the command:

#lilo -v

Alternatively, you could also use the command:

#echo 60 > /proc/sys/kernel/panic

But you would need to add this command to an init script so that it
would be executed each time the system boots.

Configure Heartbeat to Support Watchdog

In addition to using the softdog timer as we’ve just described (as part of the
normal configuration of your server to improve its reliability when the system
hangs) you can tell Heartbeat to update the softdog timer. This lets
watchdog know that Heartbeat is running and healthy. If the timer doesn’t
get updated, watchdog will notice and force a kernel panic. In effect, we are
telling watchdog to watch Heartbeat.

NOTE With Heartbeat release 1.2.3, you can have apphbd watch Heartbeat and then let
watchdog watch apphbd instead.

When you enable the watchdog option in your /etc/ha.d/ha.cf file,
Heartbeat will write to the /dev/watchdog file (or device) at an interval equal to
the deadtime timer raised to the next second. Thus, should anything cause
Heartbeat to fail to update the watchdog device, watchdog will initiate a
kernel panic once the watchdog timeout period has expired (which is one
minute, by default).

#vi /etc/ha.d/ha.cf

Uncomment the line:

watchdog /dev/watchdog

8 See Chapter 3 for a discussion of the Lilo boot loader.
178 Chap te r 9

No Starch Press, Copyright © 2005 by Karl Kopper

Now restart Heartbeat to give the Heartbeat init script the chance to
properly configure the watchdog device, with the command:

#service heartbeat restart

You should see softdog listed when you run:

#lsmod

NOTE You should do this on all of your Heartbeat servers to maintain a consistent Heartbeat
configuration.

To test the watchdog behavior, kill all of the running Heartbeat
daemons on the primary server with the following command:

#killall -9 heartbeat

You will see the following warning on the system console and in the /var/
log/messages file:

Softdog: WDT device closed unexpectedly. WDT will not stop!

This error warns you that the kernel will panic. Your system should
reboot instead of halting if you have modified the /proc/sys/kernel/panic
value as described previously.

Testing Your Heartbeat Configuration

Before you put your Heartbeat high-availability server pair into production,
here are a few things to try:

Unplug the power cord on the primary server

Heartbeat on the backup server should detect the loss of heartbeat pack-
ets from the primary server and initiate a failover. Using Stonith, the
backup server should turn off or reset the power to the primary server.
Heartbeat on the backup server should then run the proper resource
scripts (when the Stonith event has “cleared” or completed) to take own-
ership of the resources. Heartbeat on the backup server should also send
gratuitous ARP broadcasts to notify clients and/or network equipment
that the MAC addresses for the resource IP addresses have changed.

Client computers, and network equipment such as routers and
switches should update their ARP caches to reflect the new MAC address
of the backup server. Check the ARP cache on your Cisco IOS network
equipment, for example, with the command:

show ip arp
Stoni th and ipfai l 179
No Starch Press, Copyright © 2005 by Karl Kopper

Or use the command:

show ip arp 209.100.100.3

where 209.100.100.3 is the IP alias that fails over to the backup server. The
MAC address should change automatically when the backup server sends
out gratuitous ARP broadcasts.9

Check all of the client computers that share the same network
broadcast address with this command, which works on Windows PCs and
Linux hosts:

arp –a

Test the behavior of the hb_standby command

Use the hb_standby command on the primary server to force resources to
failover to the backup server. Then use the command again on the
backup server to force the resources back to the primary server. ipfail will
not work properly if the hb_standby command is not working properly.

Unplug the production network cable on the primary server

Using ipfail (or Mon,10 or a similar monitoring tool), the network con-
nection failure should be detected and the resources and IP aliases
should failover to the backup server.

Remove one of the heartbeat paths between the two servers

Use more than one heartbeat path between the servers to avoid false
positives (the backup server incorrectly assumes the primary server has
died). When you remove only one of these paths, such as the crossover
network cable or serial cable connecting them, nothing should happen.

Remove all of the heartbeat paths between the two servers

What happens when you remove all heartbeat paths between the two
servers? If you are using Stonith, the backup server should assume that
the primary server has died, initiate a Stonith event, and take over the
resources. What happens next depends upon how you have Stonith
configured and whether or not you are using the auto_failback option.

With two Stonith devices (each server controlling the other server’s
power supply) and the auto_failback option turned on, the two servers
may start repeatedly cycling each other’s power or Stonith-ing each
other. To avoid this, you can disable auto_failback or use the method
described earlier in this chapter to power off rather than power cycle the
primary server.

9 You may need to make sure the Cisco equipment accepts Gratuitous ARP broadcasts with the
Cisco IOS command ip gratuitous-arps.
10 See Chapter 17.
180 Chap te r 9

No Starch Press, Copyright © 2005 by Karl Kopper

Kill the heartbeat daemon on the primary server (killall -9 heartbeat)

Stonith is especially important when you are using IP aliases to offer
resources to client computers. The backup server must Stonith or power
off/reset the primary server before trying to assume ownership of the
resources to avoid a split-brain condition.

Kill the resource daemon(s) on the primary server

This case was not addressed by the Heartbeat configuration used in this
chapter. Depending on your needs, you can run cl_status, included with
the Heartbeat package, or cl_respawn, which is also included with the
Heartbeat package, to monitor or automatically restart services when they
fail. You can also use the Mon application (described in detail in Chapter
17) to monitor daemons and then take specific action (such as sending an
alert to your cell phone or pager) when the service daemons fail.

Power reset (or reboot) both servers

Do the servers boot properly and leave the resources on the primary
server where they belong once both systems have finished booting? You
may need to adjust the initdead time in the /etc/ha.d/ha.cf file if the
backup server tries to grab the resources away from the primary server
before it finishes booting.

In Conclusion

Preventing the possibility of a split-brain condition while eliminating single
points of failure in a high-availability server configuration is tricky. The goal
of your high-availability server configuration should be to accomplish this
with the least amount of complexity required. When you finish building your
high-availability server pair you should test it thoroughly and not feel satisfied
that you are ready to put it into production until you know how it will behave
when something goes wrong (or to use the terminology sometimes used in the
high-availability field: test your configuration for its ability to properly handle a
fault, and make sure you have good fault isolation).

This ends Part II. I have spent the last several chapters describing how to
offer client computers access to a service or daemon on a single IP address
without relying on a single server. This capability—the ability to move a
resource from one server to another—is an important building block of the
high-availability cluster configuration that will be the subject of Part III.
Stoni th and ipfai l 181
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

PART III
C L U S T E R T H E O R Y A N D

P R A C T I C E
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

10
H O W T O B U I L D A L I N U X
E N T E R P R I S E C L U S T E R

So far this book has focused on how to
build a highly available pair of servers that

can support mission-critical applications with
no single point of failure. In this part of the book,

we will look at how to build a cluster of servers that are
all capable of running the same services to support the
end users.

A cluster is more than a highly available pair of servers, because all of the
nodes in the cluster can share the processing load. When one node goes
down, all of the users that were logged on to that node are affected, and they
can simply log back on again to reconnect to a working cluster node.
No Starch Press, Copyright © 2005 by Karl Kopper

Steps for Building a Linux Enterprise Cluster

To build a Linux Enterprise Cluster, you need to do several things, each of
which are outlined in this chapter:

� Decide which NAS server you will use.

� Understand the basic concepts of the Kernel Netfilter and kernel packet
routing.

� Learn how to clone a Linux machine.

� Decide on a naming scheme for your cluster.

� Learn how to apply system configuration changes to all cluster nodes.

� Build a Linux Virtual Server Network Address Translation (LVS-NAT)
cluster that uses a separate physical network for the cluster.

� Build an LVS Direct Routing (LVS-DR) cluster.

� Install software to automatically remove failed cluster nodes.

� Install software to monitor the cluster.

� Learn how to monitor the performance of the cluster nodes.

� Learn how to update software packages on your cluster nodes and
servers using an automated tool.

� Decide which method you will use to centralize user account
administration.

� Install a printing system that supports the cluster.

� Install a highly available batch job-scheduling system.

� Purchase the cluster nodes.

NAS Server

If your cluster will run legacy mission-critical applications that rely on normal
Unix lock arbitration methods (discussed in detail in Chapter 16) the Network
Attached Storage (NAS) server will be the most important performance
bottleneck in your cluster, because all filesystem I/O operations will pass
through the NAS server.

You can build your own highly available NAS server on inexpensive hard-
ware using the techniques described in this book,1 but an enterprise-class
cluster should be built on top of a NAS device that can commit write opera-
tions to a nonvolatile RAM (NVRAM) cache while guaranteeing the integrity
of the cache even if the NAS system crashes or the power fails before the write
operation has been committed to disk.

1 Techniques for building high-availability servers are described in this book, but building an
NFS server is outside the scope of this book; however, in Chapter 4 there is a brief description of
synchronizing data on a backup NAS server. (Another method of synchronizing data using open
source software is the drbd project. See http://www.drbd.org.)
186 Chap te r 10

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE For testing purposes, you can use a Linux server as an NAS server. (See Chapter 16 for
a discussion of asynchronous Network File System (NFS) operations and why you can
normally only use asynchronous NFS in a test environment and not in production.)

Kernel Netfilter and Kernel Packet Routing

Before you can build a cluster load balancer, you’ll need to understand how
you can alter the fate of the network packets as they pass through the Linux
kernel. The ability to alter the fate of the packet as it passes through the
kernel allows you to build a cluster load balancer that distributes incoming
requests for services across all cluster nodes. The command-line tools used to
alter the fate of a packet are iptables, route, and the ip utility. You should be
familiar with these tools before using them to build an enterprise-class
cluster on top of them. (See Chapter 2 for more information on these tools.)

Cloning a Linux Machine

Chapters 4 and 5 describe a method for cloning a Linux machine using the
SystemImager package. It would not be practical to build a cluster of nodes
that are all configured the same way without using system-cloning software.

Cluster Naming Scheme

To automate the cloning process, each node should begin with a common
string of characters followed by a sequential cluster-node number. For
example, the first cluster-node host name could be clnode1, the second
could be clnode2, and so forth.

Applying System Configuration Changes to All Nodes

A cluster administrator needs to know how to automatically apply system
administration changes to all cluster nodes. This can be done using the
SystemImager package’s updateclient command. Before the cluster goes into
production, practice using the updateclient command to apply changes made
on the Golden Client to all of the cluster nodes (see Chapter 5 for more
information).

Building an LVS-NAT Cluster

Building a Linux Virtual Server Network Address Translation (LVS-NAT)
cluster will help you understand how the Linux Virtual Server (LVS) software
works. It will also help you ensure that your load balancer is in charge of
allocating nodes inside the cluster for inbound connection requests. (See
Chapter 11 for an introduction to load balancing and Chapter 12 for an
introduction to LVS-NAT.)
How to Bui ld a L inux En terp ri se Clu s te r 187
No Starch Press, Copyright © 2005 by Karl Kopper

Building an LVS-DR Cluster

Once you know how to build an LVS-NAT cluster, you are ready to convert it
to a Linux Virtual Server Direct Routing (LVS-DR) cluster, as described in
Chapter 13. An enterprise-class cluster that is based on LVS-DR is superior to
an LVS-NAT cluster for mission-critical applications for several reasons:

� The LVS-DR cluster is easier to administer. LVS-DR cluster nodes can be
administered from outside the cluster network using telnet and ssh to
make a connection to the cluster nodes. In an LVS-NAT cluster, the
physical network cabling or VLAN configuration prevents you from mak-
ing direct connections to the cluster nodes.

� The LVS-DR cluster can send replies from the cluster nodes back to the
client computers without passing the packets through an intermediate
machine (the load balancer).

� The LVS-DR cluster load balancer can malfunction and not render all
of the cluster nodes useless. In contrast, if the primary and backup LVS-
NAT cluster load balancers both crash at the same time, the entire
LVS-NAT cluster is down. In an LVS-DR cluster, if the primary and
backup LVS load balancers crash at the same time, the cluster nodes
can still be used as separate or distributed servers. (See Chapter 13 for
the details of how to build an LVS-DR cluster.) In practice, however,
this is a selling point to management and not a “feature” of an LVS-DR
cluster.

NOTE The Linux Enterprise Cluster should be protected from an outside attack by a firewall.
If you do not protect your cluster nodes from attack with a firewall, or if your cluster
must be connected to the Internet, shell access to the cluster nodes should be physically
restricted. You can physically restrict shell access to the cluster nodes by building a sepa-
rate network (or VLAN) that connects the cluster nodes to an administrative machine.
This separate physical network is sometimes called an administrative network.2

Installing Software to Remove Failed Cluster Nodes

In this book we will use the ldirectord software package (included on the CD-
ROM) to automatically remove nodes from the cluster when they fail.
Chapter 15 will describe how to install and configure ldirectord.

As cluster administrator, you will also want to know how to manually
remove a node from the cluster for maintenance purposes without affecting
users currently logged on to the system. We’ll look at how to do this in
Chapter 19.

2 See the discussion of administrative networks in Evan Marcus and Hal Stern’s Blueprints for High
Availability (John Wiley and Sons, 2003).
188 Chap te r 10

No Starch Press, Copyright © 2005 by Karl Kopper

Installing Software to Monitor the Cluster Nodes

You cannot wade through the log files on every cluster node every day. You
need monitoring software capable of sending email messages, electronic
pages, or text messages to the administrator when something goes wrong on
one of the cluster nodes.

Many open source packages can accomplish this task, and Chapter 17
describes a method of doing this using the Simple Network Management
Protocol (SNMP) and the Mon software package. SNMP and the Mon moni-
toring package together allow you to monitor the cluster nodes and send an
alert when a threshold that you have specified is violated.

Monitoring the Performance of Cluster Nodes

In addition to monitoring the cluster nodes for problems, you will also want
to be able to monitor the processing load on each node to see if they are
balancing the workload properly. The Ganglia package is an excellent tool
for doing this. Chapter 18 will describe how to use Ganglia and will discuss a
few of the performance metrics (such as the system load average) that
Ganglia collects from all of the cluster nodes.

Managers and operations staff can use web pages created with the Gan-
glia software package to watch the processing load on the cluster in real time.
The day your cluster goes into production, this will be one of the most
important tools you have to see what is going on inside the cluster.

Updating Software on Cluster Nodes and Servers

You will also need a method of automatically downloading and installing
packages to fix security holes as they are found and plugged. The automated
tool Yum, described in Appendix D, is one way of doing this. You’ll want to
learn how to use Yum or another of the many automated package update
utilities before going into production to make sure you have built a system
that can continue to evolve and adapt to change.

You’ll also need to take into account subtle problems, like the fact that
the SystemImager updateclient command may overwrite the package registra-
tion information or the list of software (RPM) packages stored on the cluster
node’s disk drive. (To resolve this problem, you may want to install software
on one node—the SystemImager Golden Client—and then just use the
updateclient command to upgrade the remaining cluster nodes.)

Centralizing User Account Administration

You will need to somehow centralize the administration of user accounts on
your cluster. See Chapters 1 and 19 for discussions of the possible account-
administration methods, such as NIS, LDAP, Webmin, OPIUM (part of the
OSCAR package), or a cron job that copies information stored on a central
How to Bui ld a L inux En terp ri se Clu s te r 189
No Starch Press, Copyright © 2005 by Karl Kopper

server to the local /etc/passwd file on each cluster node. (Whichever method
you select, you will also want to decide if this is the right method for central-
izing group and host information as well.)

Installing a Printing System

You will need to set up a printing system that allows you to have a single point
of control for all print jobs from the cluster without creating a single point of
failure. The use of the LPRng package for this purpose in a cluster environ-
ment will be briefly discussed in Chapter 19.

Installing a Highly Available Batch Job-Scheduling System

Building a highly available cluster will not improve the reliability of your
system if your batch job scheduling system is not highly available. We’ll look
at how to build a batch job scheduling system with no single point of failure
in Chapter 18.

Purchasing the Cluster Nodes

Clusters built to support scientific research can sometimes contain thousands
of nodes and fill the data centers of large research institutions (see http://
clusters.top500.org). For the applications that run on these clusters, there
may be no practical limit to the amount of CPU cycles they can use—as more
cycles become available, more work gets done. By contrast, an enterprise
cluster has a practical upper limit on the amount of processing cycles that an
application can use. An enterprise workload will have periods of peak
demand, where processing needs may be double, triple, or more, compared
to processing needs during periods of low system activity. However, at some
point more processing power does not translate into more work getting
done, because external factors (such as the number and ability of the people
using the cluster) will determine this limitation.

A Linux Enterprise Cluster will therefore have an optimal number of
nodes, determined by the requirements of the organization using it, and by
the costs of building, maintaining, and supporting it. In this section, we’ll
look at two basic design considerations for finding the optimal number of
nodes: cluster performance and the impact of a single node failure.

Capacity Planning and Cluster Performance

Applications spend most of their idle time in one of four states: waiting for
user input, waiting for the CPU, waiting for filesystem I/O, or waiting for the
network I/O. When you build a cluster, you greatly reduce only one of these—
the amount of time applications spend waiting for the CPU. By spreading users
out over several cluster nodes, you also reduce the likelihood of several CPU-
bound processes competing for the same CPU at the same time.
190 Chap te r 10

No Starch Press, Copyright © 2005 by Karl Kopper

Most organizations can easily afford to purchase enough cluster nodes to
eliminate the CPU as the performance bottleneck, and building a cluster
doesn’t help you prevent the other three performance bottlenecks. There-
fore, the second cluster design consideration (the impact of a single node
failure) is likely to influence capacity planning in most organizations more
than performance.

Capacity Planning and the Impact of a Single Node Failure

The second and more significant design consideration for most organizations
is the business impact of a node failure, and the ability to perform routine
(planned) maintenance. When you are deciding how many nodes to purchase,
the business impact of a single node failure on the enterprise or on the user
community may be the single most important design consideration.

Purchasing more nodes than the number needed for peak CPU process-
ing may make sense because the extra nodes will reduce the impact of the
failure of a single node on the end-user community, and it will also make
cluster maintenance easier. (The cluster administrator can remove a node
from the cluster for maintenance, and the cluster will still have enough pro-
cessing power to continue to get the job done.)

Assuming your budget will allow you to purchase more nodes than you
need to adequately meet your CPU processing requirements, you’ll need to
examine how your workload will be distributed across the cluster nodes and
determine the business impact of a node failure (for example, how many
users would be affected or how many user sessions would be affected). You
can then provide management with the total cost of ownership for each addi-
tional cluster node and explain the benefits of purchasing additional nodes.

O T H E R P E R F O R M A N C E A N D

DE S I G N C O N S I D E R A T I O N S

In this greatly simplified discussion, we are leaving out two performance issues that
are worth considering: the upper limit on the number of user sessions that can be
placed on a single node (which is based on the profile1 of the application or
applications that will be running on each cluster node), and the potentially huge
differences in the various profiles of the different applications that will be running on
the cluster. In Chapters 16 and 18 this topic will be discussed further. As the
processing ceiling all but disappears in a cluster environment, the performance of
the cluster file system or the backend database takes on an increasingly important
role. (Note that the backend database may also run on a cluster. See the section
“Clustering Zope” in Chapter 20 for one example.)

1 CPU and memory requirements, disk I/O, network bandwidth, and so on.
How to Bui ld a L inux En terp ri se Clu s te r 191
No Starch Press, Copyright © 2005 by Karl Kopper

In Conclusion

Building a cluster allows you to remove the CPU performance bottleneck
and improve the reliability and availability of your user applications. With
careful testing and planning, you can build a Linux Enterprise Cluster that
can run mission-critical applications with no single point of failure. And with
the proper hardware capacity (that is, the right number of nodes) you can
maintain your cluster during normal business hours without affecting the
performance of end-user applications.

C O N V E R T I N G L E G A C Y A P PL I C A T I O N S

F R O M U N I X T O L I N U X

If you are converting to a Linux Enterprise Cluster from a Unix operating system,
there is an additional advantage of using a Linux cluster during the conversion
process. As you test and develop the new Linux cluster, you can make the cluster
nodes NFS clients of your existing Unix server (assuming, of course, your existing
Unix server can become an NFS server). While this server is not likely to make a
very good NFS server for production purposes, it will make an adequate server that
is capable of providing access to production data files during the testing phase. The
server will arbitrate lock access, making it possible to test the Linux cluster using live
data, while still running on your old system.1

1 Note that this will not work if your software applications have to contend with conversion
endian issues. Sparc hardware, for example, uses big-endian byte ordering, while Intel
hardware uses little-endian byte ordering. To learn more about endian conversion issues and
Linux, see Gulliver’s Travels or IBM’s “Solaris-to-Linux porting guide” (http://www-
106.ibm.com/developerworks/linux/library/l-solar).
192 Chap te r 10

No Starch Press, Copyright © 2005 by Karl Kopper

11
T H E L I N U X V I R T U A L S E R V E R :
I N T R O D U C T I O N A N D T H E O R Y

This chapter will introduce the cluster
load-balancing software called IP Virtual

Server (IPVS). The IPVS software is a collec-
tion of kernel patches that were merged into the

stock version of the Linux kernel starting with version
2.4.23. When combined with the kernel’s routing and
packet-filtering capabilities (discussed in Chapter 2) the IPVS-enabled kernel
lets you turn any computer running Linux into a cluster load balancer.
Together, the IPVS-enabled cluster load balancer and the cluster nodes are
called a Linux Virtual Server (LVS).

The LVS cluster load balancer accepts all incoming client computer
requests for services and decides which cluster node should reply to each
request. The load balancer is sometimes called an LVS Director or simply a
Director. In this book the terms LVS Director, Director, and load balancer all
refer to the same thing.
No Starch Press, Copyright © 2005 by Karl Kopper

The nodes inside an LVS cluster are called real servers, and the computers
that connect to the cluster to request its services are called client computers.
The client computers, the Director, and the real servers communicate with
each other using IP addresses the same way computers have always
exchanged packets over a network; however, to make it easier to discuss this
network communication, the LVS community has developed a naming
convention to describe each type of IP address based on its role in the
network conversation. So before we consider the different types of LVS
clusters and the choices you have for distributing your workload across the
cluster nodes (called scheduling methods), let’s look at this naming convention
and see how it helps describe the LVS cluster.

LVS IP Address Name Conventions

In an LVS cluster, we cannot refer to network addresses as simply “IP
addresses.” Instead, we must distinguish between different types of IP
addresses based on the roles of the nodes inside the cluster. Here are four
basic types of IP addresses used in a cluster:

Virtual IP (VIP) address

The IP address the Director uses to offer services to client computers

Real IP (RIP) address

The IP address used on the cluster nodes

Director’s IP (DIP) address

The IP address the Director uses to connect to the D/RIP network

Client computer’s IP (CIP) address

The IP address assigned to a client computer that it uses as a source IP
address for requests sent to the cluster

The Virtual IP (VIP)

The IP address that client computers use to connect to the services offered
by the cluster are called virtual IP addresses (VIPs). VIPs are IP aliases or
secondary IP addresses on the NIC that connects the Director to the normal,
public network.1 The LVS VIP is important because it is the address that
client computers will use when they connect to the cluster. Client computers
send packets from their IP address to the VIP address to access cluster
services. You tell the client computers the VIP address using a naming service
(such as DNS, DDNS, WINS, LDAP, or NIS), and this is the only name or
address that client computers ever need to know in order to use the services
inside the cluster. (The remaining IP addresses inside the cluster are not
known to the client computer.)

1 As you’ll see in Chapter 15, the VIPs in a high-availability configuration are under Heartbeat’s
control.
194 Chap te r 11

No Starch Press, Copyright © 2005 by Karl Kopper

A single Director can have multiple VIPs offering different services to
client computers, and the VIPs can be public IP addresses that can be routed
on the Internet, though this is not required. What is required, however, is
that the client computers be able to access the VIP or VIPs of the cluster. (As
we’ll see later, an LVS-NAT cluster can use a private intranet IP address for
the nodes inside the cluster, even though the VIP on the Director is a public
Internet IP address.)

The Real IP (RIP)

In LVS terms, a node offering services to the outside world is called a real
server. (We will use the terms cluster node and real server interchangeably
throughout this book.) The IP address used on the real server is therefore
called a real IP address (RIP).

The RIP address is the IP address that is permanently assigned to the NIC
that connects the real server to the same network as the Director. We’ll call
this network cluster network or the Director/real-server network (D/RIP
network). The Director uses the RIP address for normal network
communication with the real servers on the D/RIP network, but only the
Director needs to know how to talk to this IP address.

The Director’s IP (DIP)

The Director’s IP (DIP) address is used on the NIC that connects the Director
to the D/RIP network. As requests for cluster services are received on the
Director’s VIP, they are forwarded out the DIP to reach a cluster node. As is
discussed in Chapter 15, the DIP and the VIP can be on the same NIC.

The Client Computer’s IP (CIP)

The client computer’s IP (CIP) address may be a local, private IP address on
the same network as the VIP, or it may be a public IP address on the Internet.

IP Addresses in an LVS Cluster

A schematic of an LVS cluster containing one cluster node (one real server)
and one Director is shown in Figure 11-1.

In this figure, the Director’s public NIC, using the VIP address, is
connected to the company network switch, or this could be an Internet
router. The NIC connected to the D/RIP network has the DIP address on it.
Figure 11-1 shows a D/RIP network hub or switch, though as we’ll see, some
cluster configurations can use the same network switch for both the public
NIC and the cluster NIC (in LVS-DR clusters). Finally, the NIC that connects
the real server to the D/RIP network is shown with a RIP address. Incoming
packets destined for the real server arrive on the VIP, pass through the
Director and out its DIP, and finally reach the real server’s RIP.
The L inux Vi r t ua l Se rve r: In t roduc ti on and Theo ry 195
No Starch Press, Copyright © 2005 by Karl Kopper

Figure 11-1: LVS cluster schematic

Types of LVS Clusters

Now that we’ve looked at some of the IP address name conventions used to
describe LVS clusters, let’s examine the LVS packet-forwarding methods.

LVS clusters are usually described by the type of forwarding method the
LVS Director uses to relay incoming requests to the nodes inside the cluster.
Three methods are currently available:

� Network address translation (LVS-NAT)

� Direct routing (LVS-DR)

� IP tunneling (LVS-TUN)

Although more than one forwarding method can be used on a single
Director (the forwarding method can be chosen on a per-node basis), I’ll
simplify this discussion and describe LVS clusters as if the Director is only
capable of using one forwarding method at a time.

The best forwarding method to use with a Linux Enterprise Cluster is
LVS-DR (and the reasons for this will be explained shortly), but an LVS-NAT
cluster is the easiest to build. If you have never built an LVS cluster and want
to use one to run your enterprise, you may want to start by building a small
LVS-NAT cluster in a lab environment using the instructions in Chapter 12,
and then learn how to convert this cluster into an LVS-DR cluster as
described in Chapter 13. The LVS-TUN cluster is not generally used for
mission-critical applications and is mentioned in this chapter only for the
sake of completeness. It will not be described in detail.

Network Address Translation (LVS-NAT)

In an LVS-NAT configuration, the Director uses the Linux kernel’s ability
(from the kernel’s Netfilter code) to translate network IP addresses and
ports as packets pass through the kernel. (This is called Network Address
Translation (NAT), and it was introduced in Chapter 2).

Real serverDirector

VIP DIP RIP

Company
network
switch

Network
hub or
switch
196 Chap te r 11

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE We’ll examine the LVS-NAT network communication in more detail in Chapter 12.

As shown in Figure 11-2, a request for a cluster service is received by the
Director on its VIP, and the Director forwards this requests to a cluster node
on its RIP. The cluster node then replies to the request by sending the packet
back through the Director so the Director can perform the translation that is
necessary to convert the cluster node’s RIP address into the VIP address that
is owned by the Director. This makes it appear to client computers outside the
cluster as if all packets are sent and received from a single IP address (the VIP).

Figure 11-2: LVS-NAT network communication

Basic Properties of LVS-NAT

The LVS-NAT forwarding method has several basic properties:

� The cluster nodes need to be on the same network (VLAN or subnet) as
the Director.

� The RIP addresses of the cluster nodes normally conform to RFC 19182
(that is, they are private, non-routable IP addresses used only for intra-
cluster communication).

� The Director intercepts all communication (network packets going in
either direction) between the client computers and the real servers.

� The cluster nodes use the Director’s DIP as their default gateway for
reply packets to the client computers.

� The Director can remap network port numbers. That is, a request
received on the Director’s VIP on one port can be sent to a RIP inside
the cluster on a different port.

� Any type of operating system can be used on the nodes inside the cluster.

� A single Director can become the bottleneck for the cluster.

At some point, the Director will become a bottleneck for network traffic
as the number of nodes in the cluster increases, because all of the reply
packets from the cluster nodes must pass through the Director. However, a

2 RFC 1918 reserves the following IP address blocks for private intranets:
10.0.0.0 through 10.255.255.255
172.16.0.0 through 172.31.255.255
192.168.0.0 through 192.168.255.255

Director Cluster node

Client
computer

CIP
CIP

CIP
VIP VIP

DIP

RIP

RIP

Reply

Request

Reply

Request
The L inux Vi r t ua l Se rve r: In t roduc ti on and Theo ry 197
No Starch Press, Copyright © 2005 by Karl Kopper

400 MHz processor can saturate a 100 Mbps connection, so the network is
more likely to become the bottleneck than the LVS Director under normal
circumstances.

The LVS-NAT cluster is more difficult to administer than an LVS-DR
cluster because the cluster administrator sitting at a computer outside the
cluster is blocked from direct access to the cluster nodes, just like all other
clients. When attempting to administer the cluster from outside, the admin-
istrator must first log on to the Director before being able to telnet or ssh to
a specific cluster node. If the cluster is connected to the Internet, and client
computers use a web browser to connect to the cluster, having the admin-
istrator log on to the Director may be a desirable security feature of the
cluster, because an administrative network can be used to allow only internal
IP addresses shell access to the cluster nodes. However, in a Linux Enterprise
Cluster that is protected behind a firewall, you can more easily administer
cluster nodes when you can connect directly to them from outside the
cluster. (As we’ll see in Part IV of this book, the cluster node manager in an
LVS-DR cluster can sit outside the cluster and use the Mon and Ganglia
packages to gain diagnostic information about the cluster remotely.)

Direct Routing (LVS-DR)

In an LVS-DR configuration, the Director forwards all incoming requests to
the nodes inside the cluster, but the nodes inside the cluster send their
replies directly back to the client computers (the replies do not go back
through the Director).3 As shown in Figure 11-3, the request from the client
computer or CIP is sent to the Director’s VIP. The Director then forwards
the request to a cluster node or real server using the same VIP destination IP
address (we’ll see how the Director does this in Chapter 13). The cluster
node then sends a reply packet directly to the client computer, and this reply
packet uses the VIP as its source IP address. The client computer is thus
fooled into thinking it is talking to a single computer, when in reality it is
sending request packets to one computer and receiving reply packets from
another.

Figure 11-3: LVS-DR network communication

3 Without the special LVS “martian” modification kernel patch applied to the Director, the
normal LVS-DR Director will simply drop reply packets if they try to go back out through the
Director.

Director Cluster node

Client
computer

CIP
CIP

VIP

DIP

RIP

RIP

Reply

Request

Request
198 Chap te r 11

No Starch Press, Copyright © 2005 by Karl Kopper

Basic Properties of LVS-DR

These are the basic properties of a cluster with a Director that uses the LVS-
DR forwarding method:

� The cluster nodes must be on the same network segment as the
Director.4

� The RIP addresses of the cluster nodes do not need to be private IP
addresses (which means they do not need to conform to RFC 1918).

� The Director intercepts inbound (but not outbound) communication
between the client and the real servers.

� The cluster nodes (normally) do not use the Director as their default
gateway for reply packets to the client computers.

� The Director cannot remap network port numbers.

� Most operating systems can be used on the real servers inside the
cluster.5

� An LVS-DR Director can handle more real servers than an LVS-NAT
Director.

Although the LVS-DR Director can’t remap network port numbers the
way an LVS-NAT Director can, and only certain operating systems can be
used on the real servers when LVS-DR is used as the forwarding method,6
LVS-DR is the best forwarding method to use in a Linux Enterprise Cluster
because it allows you to build cluster nodes that can be directly accessed from
outside the cluster. Although this may represent a security concern in some
environments (a concern that can be addressed with a proper VLAN
configuration), it provides additional benefits that can improve the reliability
of the cluster and that may not be obvious at first:

� If the Director fails, the cluster nodes become distributed servers, each
with their own IP address. (Client computers on the internal network, in
other words, can connect directly to the LVS-DR cluster node using their
RIP addresses.) You would then tell users which cluster-node RIP address
to use, or you could employ a simple round-robin DNS configuration to
hand out the RIP addresses for each cluster node until the Director is
operational again.7 You are protected, in other words, from a cata-
strophic failure of the Director and even of the LVS technology itself.8

4 The LVS-DR forwarding method requires this for normal operation. See Chapter 13 for more
info on LVS-DR clusters.
5 The operating system must be capable of configuring the network interface to avoid replying to
ARP broadcasts. For more information, see “ARP Broadcasts and the LVS-DR Cluster” in
Chapter 13.
6 The real servers inside an LVS-DR cluster must be able to accept packets destined for the VIP
without replying to ARP broadcasts for the VIP (see Chapter 13).
7 See the “Load Sharing with Heartbeat—Round-Robin DNS” section in Chapter 8 for a
discussion of round-robin DNS.
8 This is unlikely to be a problem in a properly built and properly tested cluster configuration.
We’ll discuss how to build a highly available Director in Chapter 15.
The L inux Vi r t ua l Se rve r: In t roduc ti on and Theo ry 199
No Starch Press, Copyright © 2005 by Karl Kopper

� To test the health and measure the performance of each cluster node,
monitoring tools can be used on a cluster node manager that sits outside
the cluster (we’ll discuss how to do this using the Mon and Ganglia pack-
ages in Part IV of this book).

� To quickly diagnose the health of a node, irrespective of the health of
the LVS technology or the Director, you can telnet, ping, and ssh directly
to any cluster node when a problem occurs.

� When troubleshooting what appear to be software application problems,
you can tell end-users9 how to connect to two different cluster nodes
directly by IP (RIP) address. You can then have the end-user perform the
same task on each node, and you’ll know very quickly whether the prob-
lem is with the application program or one of the cluster nodes.

NOTE In an LVS-DR cluster, packet filtering or firewall rules can be installed on each cluster
node for added security. See the LVS-HOWTO at http://www.linuxvirtualserver.org
for a discussion of security issues and LVS. In this book we assume that the Linux
Enterprise Cluster is protected by a firewall and that only client computers on the
trusted network can access the Director and the real servers.

IP Tunneling (LVS-TUN)

IP tunneling can be used to forward packets from one subnet or virtual LAN
(VLAN) to another subnet or VLAN even when the packets must pass
through another network or the Internet. Building on the IP tunneling
capability that is part of the Linux kernel, the LVS-TUN forwarding method
allows you to place cluster nodes on a cluster network that is not on the same
network segment as the Director.

NOTE We will not use the LVS-TUN forwarding method in any recipes in this book, and it is
only included here for the sake of completeness.

The LVS-TUN configuration enhances the capability of the LVS-DR
method of packet forwarding by encapsulating inbound requests for cluster
services from client computers so that they can be forwarded to cluster nodes
that are not on the same physical network segment as the Director. For
example, a packet is placed inside another packet so that it can be sent across
the Internet (the inner packet becomes the data payload of the outer
packet). Any server that knows how to separate these packets, no matter
where it is on your intranet or the Internet, can be a node in the cluster, as
shown in Figure 11-4.10

9 Assuming the client computer’s IP address, the VIP and the RIP are all private (RFC 1918) IP
addresses.
10 If your cluster needs to communicate over the Internet, you will likely need to encrypt packets
before sending them. This can be accomplished with the IPSec protocol (see the FreeS/WAN
project at http://www.freeswan.org for details). Building a cluster that uses IPSec is outside the
scope of this book.
200 Chap te r 11

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 11-4: LVS-TUN network communication

The arrow connecting the Director and the cluster node in Figure 11-4
shows an encapsulated packet (one stored within another packet) as it passes
from the Director to the cluster node. This packet can pass through any
network, including the Internet, as it travels from the Director to the cluster
node.

Basic Properties of LVS-TUN

An LVS-TUN cluster has the following properties:

� The cluster nodes do not need to be on the same physical network seg-
ment as the Director.

� The RIP addresses must not be private IP addresses.

� The Director can normally only intercept inbound communication
between the client and the cluster nodes.

� The return packets from the real server to the client must not go
through the Director. (The default gateway can’t be the DIP; it must be a
router or another machine separate from the Director.)

� The Director cannot remap network port numbers.

� Only operating systems that support the IP tunneling protocol11 can be
servers inside the cluster. (See the comments in the configure-lvs script
included with the LVS distribution to find out which operating systems
are known to support this protocol.)

We won’t use the LVS-TUN forwarding method in this book because we
want to build a cluster that is reliable enough to run mission-critical applica-
tions, and separating the Director from the cluster nodes only increases the
potential for a catastrophic failure of the cluster. Although using geograph-
ically dispersed cluster nodes might seem like a shortcut to building a
disaster recovery data center, such a configuration doesn’t improve the
reliability of the cluster, because anything that breaks the connection
between the Director and the cluster nodes will drop all client connections
to the remote cluster nodes. A Linux Enterprise Cluster must be able to

11 Search the Internet for the “Linux 2.4 Advanced Routing HOWTO” for more information
about the IP tunneling protocol.

Director Cluster node

Client
computer

CIP
CIP

VIP
DIP VIP

Reply

Request

Encapsulated
request VIP
The L inux Vi r t ua l Se rve r: In t roduc ti on and Theo ry 201
No Starch Press, Copyright © 2005 by Karl Kopper

share data with all applications running on all cluster nodes (this is the
subject of Chapter 16). Geographically dispersed cluster nodes only decrease
the speed and reliability of data sharing.

LVS Scheduling Methods

Having discussed three ways to forward packets to the nodes inside the
cluster, let’s look at how to distribute the workload across the cluster nodes.
When the Director receives an incoming request from a client computer to
access a cluster service on its VIP, it has to decide which cluster node should
get the request. The scheduling methods the Director can use to make this
decision fall into two basic categories: fixed scheduling and dynamic scheduling.

NOTE When a node needs to be taken out of the cluster for maintenance, you can set its weight
to 0 using either a fixed or a dynamic scheduling method. When a cluster node’s weight
is 0, no new connections will be assigned to it. Maintenance can be performed after all
of the users log out normally at the end of the day. We’ll discuss cluster maintenance in
detail in Chapter 19.

Fixed (or Non-dynamic) Scheduling Methods

In the case of fixed, or non-dynamic, scheduling methods, the Director
selects the cluster node to use for the inbound request without checking to
see how many of the previously assigned connections are active. Here is the
current list of fixed scheduling methods:

Round-robin (RR)

When a new request is received, the Director picks the next server on its
list of servers, rotating through them in an endless loop.

Weighted round-robin (WRR)

You assign each cluster node a weight or ranking, based on how much
processing load it can handle. This weight is then used, along with the
round-robin technique, to select the next cluster node to be used when a
new request is received, regardless of the number of connections that
are still active. A server with a weight of 2 will receive twice the number of
new connections as a server with a weight of 1. If you change the weight
of a server to 0, no new connections will be allowed to the server (but
currently active connections will not be dropped). We’ll look at how LVS
uses this weight to balance the incoming workload in the “Weighted
Least-Connection (WLC)” section of this chapter.

Destination hashing

This method always sends requests for the same IP address to the same
server in the cluster. Like the locality-based least-connection (LBLC)
scheduling method (which will be discussed shortly), this method is use-
ful when the servers inside the cluster are really cache or proxy servers.
202 Chap te r 11

No Starch Press, Copyright © 2005 by Karl Kopper

Source hashing

This method can be used when the Director needs to be sure the reply
packets are sent back to the same router or firewall that the requests
came from. This scheduling method is normally only used when the
Director has more than one physical network connection, so that the
Director knows which firewall or router to send the reply packet back
through to reach the proper client computer.

Dynamic Scheduling Methods

Dynamic scheduling methods give you more control over the incoming
workload, with little or no penalty, since they only require a small amount of
extra processing load on the Director. When dynamic scheduling methods
are used, the Director keeps track of the number of active and inactive
connections for each cluster node and uses this information to determine
which cluster node to use when a new request arrives for a cluster service. An
active connection is a TCP network session that remains open (in the
ESTABLISHED state) while the client computer and cluster node are
sending data to each other. In a Linux Enterprise Cluster, telnet or ssh
sessions remain active as long as the user is logged on.12

An inactive connection, on the other hand, is any network connection
that is not in the ESTABLISHED state. If a TCP inactivity timeout causes the
connection to drop, or if the client computer sends a FIN packet to close the
connection, LVS keeps the connection in the IPVS table for a brief period in
case subsequent packets for the connection arrive to reestablish the TCP
connection. This may happen, for example, when packets are resent due to
transmission problems. The Director, in other words, attempts to protect the
integrity of the connection between the client computer and the cluster
node when there are minor network transmission problems.

NOTE This discussion is more theoretical than practical when using telnet or ssh for user ses-
sions in a Linux Enterprise Cluster. The profile of the user applications (the way the
CPU, disk, and network are used by each application) varies over time, and user ses-
sions last a long time (hours, if not days). Thus, balancing the incoming workload
offers only limited effectiveness when balancing the total workload over time.

As of this writing, the following dynamic scheduling methods are
available:

� Least-connection (LC)

� Weighted least-connection (WLC)

� Shortest expected delay (SED)

� Never queue (NQ)

12 Of course, it is possible that no data may pass between the cluster node and client computer
during the telnet session for long periods of time (when a user runs a batch job, for example).
See the discussion of the TCP session timeout value in the “LVS Persistence” section in Chapter 14.
The L inux Vi r t ua l Se rve r: In t roduc ti on and Theo ry 203
No Starch Press, Copyright © 2005 by Karl Kopper

� Locality-based least-connection (LBLC)

� Locality-based least-connection with replication scheduling (LBLCR)

Least-Connection (LC)

With the least-connection scheduling method, when a new request for a
service running on one of the cluster nodes arrives at the Director, the
Director looks at the number of active and inactive connections to determine
which cluster node should get the request.

The mathematical calculation performed by the Director to make this
decision is as follows: For each node in the cluster, the Director multiplies
the number of active connections the cluster node is currently servicing by
256, and then it adds the number of inactive connections (recently used
connections) to arrive at an overhead value for each node. The node with the
lowest overhead value wins and is assigned the new incoming request for
service.13

If the mathematical calculation results in the same overhead value for all
of the cluster nodes, the first node found in the IPVS table of cluster nodes is
selected.14

Weighted Least-Connection (WLC)

The weighted least-connection scheduling method combines the least-
connection method and a specified weight or ranking for each server to
select the cluster node. (This is the default selection method if you do not
specify one.) This method was intended for use in clusters with nodes that
have differing processing capabilities.

The Director determines which cluster node to assign to a new inbound
request for a cluster service by first calculating the overhead value (as
described earlier in the discussion of the LC scheduling method) for each
cluster node and then dividing this value by the weight you have assigned to
the cluster node to arrive at a WLC value for each cluster node. The cluster
node with the lowest WLC value wins, and the incoming request is assigned
to that node.15

If the WLC value for all of the nodes is the same, the first node found in
the list of cluster nodes is selected. (We’ll talk more about this list, which is
called the IPVS table, in the next three chapters.)

The WLC scheduling method is a good choice for a Linux Enterprise
Cluster because it does a good job of balancing the workload of a typical
enterprise.

13 See the 143 lines of source code in the ip_vs_lc.c file in the LVS source code distribution
(version 1.0.10).
14 The first cluster node that is capable of responding for the service (or port number) the client
computer is requesting. We’ll discuss the IP Virtual Server or IPVS table in more detail in the
next three chapters.
15 The code actually uses a mathematical trick to multiply instead of divide to find the node with
the best overhead-to-weight value, because floating-point numbers are not allowed inside the
kernel. See the ip_vs_wlc.c file included with the LVS source code for details.
204 Chap te r 11

No Starch Press, Copyright © 2005 by Karl Kopper

Shortest Expected Delay (SED)

SED is a recent addition to the LVS scheduling methods, and it may offer a
slight improvement over the WLC method for services that use TCP and
remain in an active state while the cluster node is processing each request
(large batch jobs are a good example of this type of request).

The SED calculation is performed as follows: The overhead value for each
cluster node is calculated by adding 1 to the number of active connections.
The overhead value is then divided by the weight you assigned to each node
to arrive at the SED value. The cluster node with the lowest SED value wins.

There are two things to notice about the SED scheduling method:

� It does not use the number of inactive connections when determining
the overhead of each cluster node.

� It adds 1 to the number of active connections to anticipate what the over-
head will look like after the new incoming connection has been
assigned.

For example, let’s say you have two cluster nodes and one is three times
faster than the other (one has a 1 GHz processor and the other has a 3 GHz
processor16), so you decide to assign the slower machine a weight of 1 and
the faster machine a weight of 3. Suppose the cluster has been up and
running for a while, and the slower node has 10 active connections and the
faster node has 30 active connections. When the next new request arrives,
the Director must decide which cluster node to assign. If this new request is
not added to the number of active connections for each of the cluster nodes,
the SED values would be calculated as follows:

Because the SED values are the same, the Director will pick whichever
node happens to appear first in its table of cluster nodes. If the slower cluster
node happens to appear first in the table of cluster nodes, it will be assigned
the new request even though it is the slower node.

If the new connection is first added to the number of active connections,
however, the calculations look like this:

The faster node now has the lower SED value, so it is properly assigned
the new connection request.

16 For the moment, we’ll ignore everything else about the performance capabilities of these two
nodes.

Slower node (1 GHz processor) 10 active connections / weight 1 = 10

Faster node (3 GHz processor) 30 active connections / weight 3 = 10

Slower node (1 GHz processor) 11 active connections / weight 1 = 11

Faster node (3 GHz processor) 31 active connections / weight 3 = 10.34
The L inux Vi r t ua l Se rve r: In t roduc ti on and Theo ry 205
No Starch Press, Copyright © 2005 by Karl Kopper

A side effect of adding 1 to the number of active connections is that a
cluster node may sit idle even though multiple requests are assigned to
another cluster node. For example, let’s use our same two cluster nodes, but
this time we’ll assume the slower cluster node has no active connections and
the faster node has one active connection. The SED calculation for each
node looks like this (recall that 1 is added to the number of active
connections):

So the new request gets assigned to the faster cluster node even though
the slower cluster node is idle. This may or may not be desirable behavior, so
another scheduling method was developed, called never queue.

Never Queue (NQ)

This scheduling method enhances the SED scheduling method by adding
one new feature: if a cluster node has no active connections, it is always
assigned the new incoming request for service, regardless of the result of the
calculated SED values for each cluster node.

Locality-Based Least-Connection (LBLC)

Directors can also direct outbound traffic to a set of transparent proxy
servers. In this configuration, the cluster nodes are transparent proxy or web
cache servers that sit between client computers and the Internet.17

When the LBLC scheduling method is used, the Director attempts to
send all requests destined for a particular IP address (a particular web server)
to the same transparent proxy server (cluster node). In other words, the first
time a request comes in for a web server on the Internet, the Director will
pick one proxy server to service this destination IP address using a slightly
modified version of the WLC scheduling method,18 and all future requests
for this same destination IP address will continue to go to the same proxy
server. This method of load balancing, like the destination-hashing
scheduling method described previously, is, therefore, a type of destination
IP load balancing.

The Director will continue to send all requests for a particular
destination IP address to the same cluster node (the same transparent proxy
server) until it sees that another node in the cluster has a WLC value that is
half of the WLC value of the assigned cluster node. When this happens, the

Slower node (1 GHz processor) 1 active connection / weight 1 = 1

Faster node (3 GHz processor) 2 active connections / weight 3 = .67

17 A proxy server stores a copy of the web pages, or server responses, that have been requested
recently so that future requests for the same information can be serviced without the need to ask
the original Internet server for the same information again. See the “Transparent Proxy with
Linux and Squid mini-HOWTO,” available at http://www.faqs.org/docs/Linux-mini/
TransparentProxy.html among other places.
18 The modification is that the overhead value is calculated by multiplying the active connections
by 50 instead of by 256.
206 Chap te r 11

No Starch Press, Copyright © 2005 by Karl Kopper

Director will reassign the cluster node that is responsible for the destination
IP address (usually an Internet web server) by selecting the least loaded
cluster node using the modified WLC scheduling method.

In this method, the Director tries to associate only one proxy server to
one destination IP address. To do this, the Director maintains a table of
destination IP addresses and their associated proxy servers. This method of
load balancing attempts to maximize the number of cache hits on the proxy
servers, while at the same time reducing the amount of redundant, or
replicated, information on these proxy servers.

Locality-Based Least-Connection with Replication Scheduling (LBLCR)

The LBLCR scheduling method (which is also a form of destination IP load
balancing) attempts to improve on the LBLC scheduling method by
maintaining a set of proxy servers that can service each destination IP
address. When a new connection request comes in, the Director will select
the proxy server with the fewest number of active connections from this set
of servers.

NOTE See the file /proc/net/ip_vs_lblcr for the servers associated with each destination IP
address on a Director that is using the LBLC scheduling method.

At the time of a new connection request from a client computer, proxy
servers are added to this set for a particular destination IP address when the
Director notices a cluster node (proxy server) that has a WLC19 value equal
to half of the WLC value of the least loaded node in the set. When this
happens, the cluster node with the lowest WLC value is added to the set and
is assigned the new incoming request.

Proxy servers are removed from the set when the list of servers in the set
has not been modified within the last six minutes (meaning that no new
proxy servers have been added, and no proxy servers have been removed). If
this happens, the Director will remove the server with the most active
connections from the set. The proxy server (cluster node) will continue to
service the existing active connections, but any new requests will be assigned
to a different server still in the set.

NOTE None of these scheduling methods take into account the processing load or disk or net-
work I/O a cluster node is experiencing, nor do they anticipate how much load a new
inbound request will generate when assigning the incoming request. You may see refer-
ences to two projects that were designed to address this need, called feedbackd and LVS-
KISS. As of this writing, however, these projects are not widely deployed, so you should
carefully consider them before using them in production.

19 Again the overhead value used to calculate the WLC value is calculated by multiplying the
number of active connections by 50 instead of 256.
The L inux Vi r t ua l Se rve r: In t roduc ti on and Theo ry 207
No Starch Press, Copyright © 2005 by Karl Kopper

In Conclusion

This chapter introduced the Linux Virtual Server (LVS) cluster load
balancer called the LVS Director and the forwarding and scheduling
methods it uses to pass incoming requests for cluster services to the nodes
inside the cluster.

The forwarding methods used by the Director are called Network
Address Translation, direct routing, and tunneling, or LVS-NAT, LVS-DR,
and LVS-TUN respectively. Although the Director can select a different
forwarding method for each node inside the cluster, most load balancers use
only one type of forwarding method for all of the nodes in the cluster to
keep the setup simpler. As I’ve discussed briefly in this chapter, an LVS-DR
cluster is the best type of cluster to use when building an enterprise-class
cluster.

The LVS scheduling methods were also introduced in this chapter. The
Director uses a scheduling method to evenly distribute the workload across
the cluster nodes, and these methods fall into two categories: fixed and
dynamic. Fixed scheduling methods differ from dynamic methods in that no
information about the current number of active connections is used when
selecting a cluster node using a fixed method.

The next two chapters take a closer look at the LVS-NAT and LVS-DR
forwarding methods.
208 Chap te r 11

No Starch Press, Copyright © 2005 by Karl Kopper

12
T H E L V S - N A T C L U S T E R

Recall from the last chapter that the
computers outside the cluster that access

cluster services are called client computers,
the cluster load balancer is called the Director,

and nodes inside the cluster are called real servers.
In this chapter, I’ll look at how client computers access services on real
servers in a Linux Virtual Server Network Address Translation (LVS-NAT)
cluster, and at how the Director uses the LVS-NAT forwarding method. I’ll
then give you a recipe for building an LVS-NAT web cluster.

How Client Computers Access LVS-NAT Cluster Resources

To understand how client computers access cluster services, we’ll use the
example of a client that is connected to the Internet and is calling up a web
page offered by the LVS-NAT cluster. (We’ll look at how to build this cluster
in the “Building an LVS-NAT Web Cluster” section, later in this chapter.)
Figure 12-1 shows the beginning of this network conversation.1

1 For the moment, we will ignore the lower-level TCP connection establishment packets (called
SYN and ACK packets).
No Starch Press, Copyright © 2005 by Karl Kopper

Figure 12-1: In packet 1 the client computer sends a request to the LVS-NAT cluster

As you can see in the figure, the client computer initiates the network
conversation with the cluster by sending the first packet from a client IP
(CIP1), through the Internet, to the VIP1 address on the Director. The
source address of this packet is CIP1, and the destination address is VIP1
(which the client knew, thanks to a naming service like DNS). The packet’s
data payload is the HTTP request from the client computer requesting the
contents of a web page (an HTTP GET request).

When the packet arrives at the Director, the LVS code in the Director
uses one of the scheduling methods that were introduced in Chapter 11 to
decide which real server should be assigned to this request. Because our
cluster network has only one cluster node, the Director doesn’t have much
choice; it has to use real server 1, which has the address RIP1.

NOTE The Director does not examine or modify the data payload of the packet.

In Chapter 14 we’ll discuss what goes on inside the kernel as the packet
passes through the Director, but for now we only need to know that the
Director has made no significant change to the packet—the Director simply
changed the destination address of the packet (and possibly the destination
port number of the packet).

Real server 1Director

VIP1 DIP RIP1

NAT cluster

Mini
hub

Packet 1

Client
computer

Source address

Destination address

CIP1

VIP1

Content:

Show me web page
www.example.com

Internet
210 Chap te r 12

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE LVS-NAT is the only forwarding method that allows you to remap network port num-
bers as packets pass through the Director.

This packet, with a new destination address and possibly a new port
number, is sent from the Director to the real server, as shown in Figure 12-2,
and now it’s called packet 2. Notice that the source address in packet 2 is the
client IP (CIP) address taken from packet 1, and the data payload (the HTTP
request) remains unchanged. What has changed is the destination address—
the Director changed the destination of the original packet to one of the real
server RIP addresses inside the cluster (RIP1 in this example). Figure 12-2
shows the packet inside the LVS-NAT cluster on the network cable that
connects the DIP to the cluster network.

Figure 12-2: In packet 2 the Director forwards the client computer’s request to a cluster node

Real server 1Director

VIP1 DIP RIP1

NAT cluster

Mini
hub

Client
computer

Source address

Destination address

CIP1

RIP1

Content:

Show me web page
www.example.com

Packet 2

Internet
The LVS-NAT Clu s te r 211
No Starch Press, Copyright © 2005 by Karl Kopper

When packet 2 arrives at real server 1, the HTTP server replies with the
contents of the web page, as shown in Figure 12-3. Because the request was
from CIP1, packet 3 (the return packet) will have a destination address of
CIP1 and a source address of RIP1. In LVS-NAT, the default gateway for the
real server is normally an IP address on the Director (the DIP), so the reply
packet is routed through the director.2

Figure 12-3: In packet 3 the cluster node sends a reply back through the Director

2 The packets must pass back through the Director in an LVS-NAT cluster.

Real server 1Director

VIP1 DIP RIP1

NAT cluster

Mini
hub

Client
computer

Source address

Destination address CIP1

RIP1

Content:

Here is the web page
www.example.com

Packet 3

Internet
212 Chap te r 12

No Starch Press, Copyright © 2005 by Karl Kopper

Packet 3 is sent through the cluster network to the Director, and its data
payload is the web page that was requested by the client computer. When the
Director receives packet 3, it passes the packet back through the kernel, and
the LVS software rewrites the source address of the packet, changing it from
RIP1 to VIP1. The data payload does not change as the packet passes
through the Director—it still contains the HTTP reply from real server 1.
The Director then forwards the packet (now called packet 4) back out to the
Internet, as shown in Figure 12-4.

Figure 12-4: In packet 4 the Director forwards the reply packet to the client computer

Packet 4, shown in Figure 12-4, is the reply packet from the LVS-NAT
cluster, and it contains a source address of VIP1 and a destination address of
CIP1. The conversion of the source address from RIP1 to VIP1 is what gives
LVS-NAT its name—it is the translation of the network address that lets the
Director hide all of the cluster node’s real IP addresses behind a single
virtual IP address.

Real server 1Director

DIP RIP1

NAT cluster

Mini
hub

Packet 4

Client
computer

Source address

Destination address CIP1

VIP1

Content:

Here is the web page
www.example.com

Internet

VIP1
The LVS-NAT Clu s te r 213
No Starch Press, Copyright © 2005 by Karl Kopper

There are several things to notice about the process of this conversation:

� The Director is acting as a router for the cluster network.3

� The cluster nodes (real servers) use the DIP as their default gateway.4

� The Director must receive all of the inbound packets destined for the
cluster.

� The Director must reply on behalf of the cluster nodes.

� Because the Director is masquerading the network addresses of the clus-
ter nodes, the only way to test that the VIP addresses are properly reply-
ing to client requests is to use a client computer outside the cluster.

NOTE The best method for testing an LVS cluster, regardless of the forwarding method you use,
is to test the cluster’s functionality from outside the cluster.

Virtual IP Addresses on LVS-NAT Real Servers

If you need to offer client computers access to different services on separate
VIP addresses, cluster nodes in an LVS-NAT cluster can also use multiple RIP
addresses (IP aliases or secondary IP addresses) to identify the VIP address
the client computer used in the original request. As you can see in Figure
12-5, the Director can be configured to send packets to the cluster nodes
(real servers) using multiple virtual RIP addresses. In this scenario, client
computers will still only know the VIPs configured on the Director; the
Director is responsible for sending the packets into the cluster through the
proper virtual RIP address (using a load-balancing or scheduling method).

You might choose this scenario to load balance different types of users
on different IP addresses. For example, accounting and reporting users
might use one IP address, and customer service and simple transaction-based
users would use another. You may also want to use IP-based virtual hosts for
your web pages (see Appendix F for a detailed discussion of Apache virtual
hosting).

Figure 12-5 shows the Director using three VIPs to receive network
requests from client computers. The Director uses the LVS-NAT forwarding
method to select one of the virtual RIP addresses on the real servers inside
the cluster (any other LVS forwarding method could be used, too). In this
configuration, the VIP addresses would normally be associated with the
virtual RIP addresses, as shown in Figure 12-6.

3 The Director can also act as a firewall for the cluster network, but this is outside the scope of
this book. See the LVS HOWTO (http://www.linuxvirtualserver.org) for a discussion of the
Antefacto patch.
4 If the cluster nodes do not use the DIP as their default gateway, a routing table entry on the
real server is required to send the client reply packets back out through the Director.
214 Chap te r 12

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 12-5: An LVS-NAT cluster with multiple VIPs

Figure 12-6: Multiple VIPs and their relationship with the multiple virtual RIPs

Like the VIPs on the Director, the virtual RIP addresses can be created on
the real servers using IP aliasing or secondary IP addresses. (IP aliasing and
secondary IP addresses were introduced in Chapter 6.) A packet received on

RIP2

Virtual RIP2-1
Virtual RIP2-2
Virtual RIP2-3

Director

Client 1

VIP1
VIP2
VIP3

Company
hub 1 CIP1

DIP1 Cluster
hub

VIP1

VIP2

VIP3

Director

Virtual RIP1-1

Virtual RIP1-2

Virtual RIP1-3

Real server 1

Virtual RIP2-1

Virtual RIP2-2

Virtual RIP2-3

Real server 2
The LVS-NAT Clu s te r 215
No Starch Press, Copyright © 2005 by Karl Kopper

the Director’s VIP1 will be forwarded by the Director to either virtual RIP1-1
on real server 1 or virtual RIP2-1 on real server 2. The reply packet (from the
real server) will be sent back through the Director and masqueraded so that
the client computer will see the packet as coming from VIP1.

NOTE When building a cluster of web servers, you can use name-based virtual hosts instead
of assigning multiple RIPs to each real server. For a description of name-based virtual
hosts, see Appendix F.

Building an LVS-NAT Web Cluster

This recipe describes how to build an LVS-NAT web cluster consisting of
a Director and a real server, using the Apache web server, as shown in
Figure 12-7.

Figure 12-7: LVS-NAT web cluster

10.1.1.1 10.1.1.2

Network
switch

Mini hub

Intranet client

Internet client computer

Director Real server

LVS NAT cluster

Internet
216 Chap te r 12

No Starch Press, Copyright © 2005 by Karl Kopper

The LVS-NAT web cluster we’ll build can be connected to the Internet,
as shown in Figure 12-7. Client computers connected to the internal network
(connected to the network switch shown in Figure 12-7) can also access the
LVS-NAT cluster. Recall from our previous discussion, however, that the
client computers must be outside the cluster (and must access the cluster
services on the VIP).

NOTE Figure 12-7 also shows a mini hub connecting the Director and the real server, but a
network switch and a separate VLAN would work just as well.

Before we build our first LVS-NAT cluster, we need to decide on an IP
address range to use for our cluster network. Because these IP addresses do
not need to be known by any computers outside the cluster network, the
numbers you use are unimportant, but they should conform to RFC 1918.5
We’ll use this IP addressing scheme:

Assign the VIP address by picking a free IP address on your network.
We’ll use a fictitious VIP address of 209.100.100.100.

Let’s continue with our recipe metaphor.

Recipe for LVS-NAT

List of ingredients:

2 servers running Linux6

1 client computer running an OS capable of supporting a web browser

3 network interface cards (2 for the Director and 1 for the real server)

1 mini hub with 2 twisted-pair cables (or 1 crossover cable)7

Step 1: Install the Operating System

When you install Linux on the two servers, be sure to configure the systems
as web servers without any iptables (firewall or security) rules. The normal
Red Hat installation process, for example, will automatically load Apache
and create the /etc/httpd directory containing the Apache configuration files
when you tell it that you would like your server to be a web server. Also, you
do not need to load any X applications or a display manager for this recipe.

5 RFC 1918 reserves the following IP address blocks for private intranets:
10.0.0.0 through 10.255.255.255
172.16.0.0 through 172.31.255.255
192.168.0.0 through 192.168.255.255

10.1.1.0 LVS-NAT cluster network (10.1.1.)
10.1.1.255 LVS-NAT cluster broadcast address
255.255.255.0 LVS-NAT cluster subnet mask

6 Technically the real server (cluster node) can run any OS capable of displaying a web page.
7 As mentioned previously, you can use a separate VLAN on your switch instead of a mini hub.
The LVS-NAT Clu s te r 217
No Starch Press, Copyright © 2005 by Karl Kopper

Step 2: Configure and Start Apache on the Real Server

In this step you have to select which of the two servers will become the real
server in your cluster. On the machine you select, make sure that the Apache
daemon starts each time the system boots (see Chapter 1 for a description of
the system boot process). You may have to use the chkconfig command to
cause the httpd boot script to run at your default system runlevel. (See
Chapter 1 for complete instructions.)

Next, you should modify the Apache configuration file on this system so
it knows how to display the web content you will use to test your LVS-NAT
cluster. (See Appendix F for a detailed discussion.)

After you’ve saved your changes to the httpd.conf file, make sure the
error log and access log files you specified are available by creating empty
files with these commands:

#touch /var/log/httpd/error_log
#touch /var/log/httpd/access_log

NOTE The touch command creates an empty file.

Also make sure your DocumentRoot exists and contains an index.html
file—this is the default file the web server will display when you call up the
URL. Use these commands:

#mkdir –p /www/htdocs
#echo "This is a test (from the real server)" > /www/htdocs/index.html

Start Apache on the Real Server

You are now ready to start Apache using one of these commands:

#/etc/init.d/httpd start

or

#service httpd start

If the HTTPd daemon was already running, you will first need to enter
one of these commands to stop it:

/etc/init.d/httpd stop

or

service httpd stop

The script should display this response: OK. If it doesn’t, you probably
have made an error in your configuration file (see Appendix F).
218 Chap te r 12

No Starch Press, Copyright © 2005 by Karl Kopper

If it worked, confirm that Apache is running with this command:

#ps –elf | grep httpd

You should see several lines of output indicating that several HTTPd
daemons are running. If not, check for errors with these commands:

#tail /var/log/messages
#cat /var/log/httpd/*

If the HTTPd daemons are running, see if you can display your web page
locally by using the Lynx command-line web browser:8

#lynx –dump 10.1.1.2

If everything is set up correctly, you should see the contents of your
index.html file dumped to the screen by the Lynx web browser:

This is a test (from the real server)

Step 3: Set the Default Route on the Real Server

Real servers in an LVS-NAT cluster need to send all of their replies to client
computers back through the Director. To accomplish this, we must set the
default route for the real servers to the DIP. We can do so on Red Hat Linux
by setting the GATEWAY variable in the /etc/sysconfig/network file.

Open the file in the vi text editor with this command:

#vi /etc/sysconfig/network

Add, or set, the GATEWAY variable to the Director’s IP (DIP) address with
an entry like this:

GATEWAY=10.1.1.1

We can enable this default route by rebooting (or re-running the /etc/
init.d/network script) or by manually entering it into the route table with the
following command:

#/sbin/route add default gw 10.1.1.1

This command might complain with the following error:

SIOCADDTR: File exists

8 For this to work, you must have selected the option to install the text-based web browser when
you loaded the operating system. If you didn’t, you’ll need to go get the Lynx program and
install it.
The LVS-NAT Clu s te r 219
No Starch Press, Copyright © 2005 by Karl Kopper

If it does, this means the default route entry in the routing table has
already been defined. You should reboot your system or remove the
conflicting default gateway with the route del command.

Step 4: Install the LVS Software on the Director

In this step you will make changes to the second server—the Director. (For
the moment we are done making changes on the server you selected to be
the real server.) The changes described here do not require you to reload
your Linux distribution, but you will need to install a new kernel.

The Linux kernel is included on the CD-ROM that accompanies this
book. This kernel contains the LVS software, but you’ll need to compile and
install this kernel with the LVS options enabled. You’ll also need to install
the ipvsadm utility to configure the Director. Older versions of the stock
Linux kernel do not contain the LVS code, so you’ll have to download the
LVS patch and apply it to the kernel if you must use a kernel older than
2.4.23.

Copy the kernel source files included on the CD-ROM with this book
(or download a kernel from http://www.kernel.org) and run the make
menuconfig utility to enable the proper LVS and network options. Then
use the instructions in Chapter 3 to compile and install this kernel on your
system.

NOTE You can avoid compiling the kernel by downloading a kernel that already contains
the LVS patches from a distribution vendor. The Ultra Monkey project at http://
www.ultramonkey.org also has patched versions of the Red Hat Linux kernel that can
be downloaded as RPM files.

Once you have rebooted your system on the new kernel,9 you are ready
to install the ipvsadm utility, which is also included on the CD-ROM. With
the CD mounted, type these commands:

#cp /mnt/cdrom/chapter12/ipvsadm* /tmp
#cd /tmp
#tar xvf ipvsadm*
#cd ipvsadm-*
#make
#make install

If this command completes without errors, you should now have the
ipvsadm utility installed in the /sbin directory. If it does not work, make sure
the /usr/src/linux directory (or symbolic link) contains the source code for
the kernel with the LVS patches applied to it.

9 As the system boots, watch for IPVS messages (if you compiled the IPVS schedulers into the
kernel and not as modules) for each of the scheduling methods you compiled for your kernel.
220 Chap te r 12

No Starch Press, Copyright © 2005 by Karl Kopper

Step 5: Configure LVS on the Director

Now we need to tell the Director how to forward packets to the cluster node
(the real servers) using the ipvsadm utility we compiled and installed in the
previous step.

One way to do this is to use the configure script included with the LVS
distribution. (See the LVS HOWTO at http://www.linuxvirtualserver.org for
a description of how to use this method to configure an LVS cluster.) In this
chapter, however, we will use our own custom script to create our LVS cluster
so that we can learn more about the ipvsadm utility.

NOTE We will abandon this method in Chapter 15 when we use the ldirectord daemon to
create an LVS Director configuration—ldirectord will enter the ipvsadm commands
to create the IPVS table automatically.

Create an /etc/init.d/lvs script that looks like this (this script is included
in the chapter12 subdirectory on the CD-ROM that accompanies this book):

#!/bin/bash
#
LVS script
#
chkconfig: 2345 99 90
description: LVS sample script
#
case "$1" in
start)
 # Bring up the VIP (Normally this should be under Heartbeat's
control.)
 /sbin/ifconfig eth0:1 209.100.100.3 netmask 255.255.255.0 up

Since this is the Director we must be
able to forward packets.10

 echo 1 > /proc/sys/net/ipv4/ip_forward

Clear all iptables rules.
 /sbin/iptables -F

Reset iptables counters.
 /sbin/iptables -Z

Clear all ipvsadm rules/services.
 /sbin/ipvsadm -C

Add an IP virtual service for VIP 209.100.100.3 port 80

10 Many distributions also include the sysctl command for modifying the /proc pseudo filesystem.
On Red Hat systems, for example, this kernel capability is controlled by sysctl from the /etc/
rc.d/init.d/network script, as specified by a variable in the /etc/sysctl.conf file. This setting will
override your custom LVS script if the network script runs after your custom LVS script. See
Chapter 1 for more information about the boot order of init scripts.
The LVS-NAT Clu s te r 221
No Starch Press, Copyright © 2005 by Karl Kopper

 /sbin/ipvsadm -A -t 209.100.100.3:80 -s rr

Now direct packets for this VIP to
to the real server IP (RIP) inside the cluster
 /sbin/ipvsadm -a -t 209.100.100.3:80 -r 10.1.1.2 -m
 ;;

stop)
 # Stop forwarding packets
 echo 0 > /proc/sys/net/ipv4/ip_forward

 # Reset ipvsadm
 /sbin/ipvsadm -C

 # Bring down the VIP interface
 ifconfig eth0:1 down
 ;;
*)
 echo "Usage: $0 {start|stop}"
 ;;
esac

NOTE If you are running on a version of the kernel prior to version 2.4, you will also need to
configure the masquerade for the reply packets that pass back through the Director. Do
this with the ipchains utility by using a command such as the following:

/sbin/ipchains -A forward -j MASQ -s 10.1.1.0/24 -d 0.0.0.0/0

Starting with kernel 2.4, however, you do not need to enter this command because
LVS does not use the kernel’s NAT code. The 2.0 series kernels also needed to use the
ipfwadm utility, which you may see mentioned on the LVS website, but this is no longer
required to build an LVS cluster.

The two most important lines in the preceding script are the lines that
create the IP virtual server:

/sbin/ipvsadm -A -t 209.100.100.3:80 -s rr
/sbin/ipvsadm -a -t 209.100.100.3:80 -r 10.1.1.2 -m

The first line specifies the VIP address and the scheduling method
(-s rr). The choices for scheduling methods (which were described in the
previous chapter) are as follows:

ipvsadm Argument Scheduling Method

-s rr Round-robin
-s wrr Weighted round-robin
-s lc Least-connection
-s wlc Weighted least-connection
222 Chap te r 12

No Starch Press, Copyright © 2005 by Karl Kopper

In this recipe, we will use the round-robin scheduling method. In
production, however, you should use a weighted, dynamic scheduling
method (see Chapter 11 for explanations of the various methods).

The second ipvsadm line listed above associates the real server’s RIP
(-r 10.1.1.2) with the VIP (or virtual server), and it specifies the forwarding
method (-m). Each ipvsadm entry for the same virtual server can use a
different forwarding method, but normally only one method is used. The
choices are as follows:

In this recipe, we are building an LVS-NAT cluster, so we will use the -m
option.11

When you have finished entering this script or modifying the copy on
the CD-ROM, run it by typing this command:

#/etc/init.d/lvs start

If the VIP address has been added to the Director (which you can check by
using the ifconfig command), log on to the real server and try to ping this VIP
address. You should also be able to ping the VIP address from a client com-
puter (so long as there are no intervening firewalls that block ICMP packets).

NOTE ICMP ping packets sent to the VIP will be handled by the Director (these packets are not
forwarded to a real server). However, the Director will try to forward ICMP packets
relating to a connection to the relevant real server.

To see the IP Virtual Server table (the table we have just created that tells
the Director how to forward incoming requests for services to real servers
inside the cluster), enter the following command on the server you have
made into a Director:

#/sbin/ipvsadm -L -n

-s lblc Locality-based least-connection
-s lblcr Locality-based least-connection with replication
-s dh Destination hashing
-s sh Source hashing
-s sed Shortest expected delay
-s nq Never queue

ipvsadm Argument Forwarding Method

-g LVS-DR
-i LVS-TUN
-m LVS-NAT

11 Note that you can’t simply change this option to -g to build an LVS-DR cluster.

ipvsadm Argument Scheduling Method
The LVS-NAT Clu s te r 223
No Starch Press, Copyright © 2005 by Karl Kopper

This command should show you the IPVS table:

 IP Virtual Server version 1.0.10 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 209.100.100.3:80 rr
 -> 10.1.1.2:80 Masq 1 0 0

This report wraps both the column headers and each line of output onto
the next line. We have only one IP virtual server pointing to one real server,
so our one (wrapped) line of output is:

TCP 209.100.100.3:80 rr
 -> 10.1.1.2:80 Masq 1 0 0

This line says that our IP virtual server is using the TCP protocol for VIP
address 209.100.100.3 on port 80. Packets are forwarded (->) to RIP address
10.1.1.2 on port 80, and our forwarding method is masquerading (Masq),
which is another name for the Network Address Translation, or LVS-NAT.
The LVS forwarding method reported in this field will be one of the
following:

Step 6: Test the Cluster Configuration

The next step is to test the cluster configuration. In this step, <DR> will precede
the commands that should be entered on the Director, and <RS> will
precede the commands that should be entered on the real server.

The first thing to do is make sure the network interface cards are
configured properly and are receiving packets. Enter the following
command (on the Director):

<DR>#ifconfig –a

The important thing to look for in the output of this command is
whether or not the interface is UP, and how many packets have been
transmitted (TX) and received (RX). In the following sample output I’ve
marked this information in bold:

eth0 Link encap:Ethernet HWaddr 00:10:5A:16:99:8A
 inet addr:209.100.100.2 Bcast:209.100.100.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

Report Output LVS Forwarding Method

Masq LVS-NAT
Route LVS-DR
Tunnel LVS-TUN
224 Chap te r 12

No Starch Press, Copyright © 2005 by Karl Kopper

 RX packets:481 errors:0 dropped:0 overruns:0 frame:0
 TX packets:374 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 Interrupt:5 Base address:0x220

eth0:1 Link encap:Ethernet HWaddr 00:10:5A:16:99:8A
 inet addr:209.100.100.3 Bcast:209.100.100.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 Interrupt:5 Base address:0x220

 eth1 Link encap:Ethernet HWaddr 00:80:5F:0E:AB:AB
 inet addr:10.1.1.1 Bcast:10.1.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:210 errors:0 dropped:0 overruns:0 frame:0
 TX packets:208 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 Interrupt:11 Base address:0x1400

If you do not see the word UP displayed in the output of your ifconfig
command for all of your network interface cards and network interface
aliases (or IP aliases), as shown in the bold sections in this example, then the
software driver for the missing network interface card is not configured
properly (or the card is not installed properly). See Appendix C for more
information on working with network interface cards.

NOTE If you use secondary IP addresses instead of IP aliases, use the ip addr sh command to
check the status of the secondary IP addresses instead of the ifconfig -a command. You
can then examine the output of this command for the same information (the report
returned by the ip addr sh command is a slightly modified version of the sample output
I’ve just given).

If the interface is UP but no packets have been transmitted (TX) or
received (RX) on the card, you may have network cabling problems.

Once you have a working network configuration, test the communica-
tion from the real server to the Director by pinging the Director’s DIP and
then VIP addresses from the real server. To continue the example, you would
enter the following commands on the real server:

<RS>#ping 10.1.1.1
<RS>#ping 209.100.100.3

The first of these commands pings the Director’s cluster IP address
(DIP), and the second pings the Director’s virtual IP address (VIP). Both of
these commands should report that packets can successfully travel from the
real server through the cluster network to the Director and that the Director
successfully recognizes both its DIP and VIP addresses. Once you are sure
this basic cluster network’s IP communication is working properly, use a
client computer to ping the VIP address from outside the cluster.
The LVS-NAT Clu s te r 225
No Starch Press, Copyright © 2005 by Karl Kopper

When you have confirmed that all of these tests work, you are ready to
test the service from the real server. Use the Lynx program to send an HTTP
request to the locally running Apache server on the real server:

<RS>#lynx –dump 10.1.1.2

If this does not return the test web page message, check to make sure
HTTPd is running by issuing the following commands (on the real server):

<RS>#ps –elf | grep httpd
<RS>#netstat –apn | grep httpd

The first command should return several lines of output from the
process table, indicating that several HTTPd daemons are running. The
second command should show that these daemons are listening on the
proper network ports (or at least on port 80). If either of these commands
does not produce any output, you need to check your Apache configuration
on the real server before continuing.

If the HTTPd daemons are running, you are ready to access the real
server’s HTTPd server from the Director. You can do so with the following
command (on the Director):

<DR>#lynx –dump 10.1.1.2

This command, which specifies the real server’s IP address (RIP), should
display the test web page from the real server.

If all of these commands work properly, use the following command to
watch your LVS connection table on the Director:

<DR>#watch ipvsadm –Ln

At first, this report should indicate that no active connections have been
made through the Director to the real server, as shown here:

IP Virtual Server version 1.0.10 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 209.100.100.3:80 rr
 -> 10.1.1.2:80 Masq 1 0 0

Leave this command running on the Director (the watch command will
automatically update the output every two seconds), and from a client
computer use a web browser to display the URL that is the Director’s virtual
IP address (VIP):

http://209.100.100.3/
226 Chap te r 12

No Starch Press, Copyright © 2005 by Karl Kopper

If you see the test web page, you have successfully built your first LVS
cluster.

If you look quickly back at the console on the Director, now, you should
see an active connection (ActiveConn) in the LVS connection tracking table:

IP Virtual Server version 1.0.10 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 209.100.100.3:80 rr
 -> 10.1.1.2:80 Masq 1 1 0

In this report, the number 1 now appears in the ActiveConn column. If you
wait a few seconds, and you don’t make any further client connections to this
VIP address, you should see the connection go from active status (ActiveConn)
to inactive status (InActConn):

IP Virtual Server version 1.0.10 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 209.100.100.3:80 rr
 -> 10.1.1.2:80 Masq 1 0 1

In this report, the number 1 now appears in the InActConn column, and
then it will finally drop out of the LVS connection tracking table altogether:

IP Virtual Server version 1.0.10 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 209.100.100.3:80 rr
 -> 10.1.1.2:80 Masq 1 0 0

The ActiveConn and InActConn columns are now both 0.

LocalNode: Using the Director as a Real Server

When you build an enterprise-class cluster, you will need to decide whether
you want to dedicate two Linux servers to be the primary and backup LVS
Directors. For the moment, however, you can test to make sure the load-
balancing function is working properly (regardless of what your final design
configuration will be) by configuring and installing Apache on the Director
(as described in the “Step 2: Configure and Start Apache on the Real Server”
section of this chapter) and then configuring your Director to send client
computer requests to this locally running copy of Apache as if the Director
were also a node inside the cluster. This configuration is called LocalNode or
LocalNode mode.
The LVS-NAT Clu s te r 227
No Starch Press, Copyright © 2005 by Karl Kopper

NOTE A limitation of using a LocalNode configuration is that the Director cannot remap port
numbers—whatever port number the client computer used in its request to access the
service must also be used on the Director to service the request. The LVS HOWTO
describes a workaround for this current limitation in LVS that uses iptables/ipchains
redirection.

Assuming you have Apache up and running on the Director, you can
modify the /etc/init.d/lvs script on the Director so two cluster nodes are
available to client computers (the Director and the real server) as follows:

Add an IP virtual service for VIP 209.100.100.3 port 80
/sbin/ipvsadm -A -t 209.100.100.3:80 -s rr

Now direct packets for this VIP to
the real server IP (RIP) inside the cluster
/sbin/ipvsadm -a -t 209.100.100.3:80 -r 10.1.1.2 -m
And send requests to the locally running Apache
server on the Director.
/sbin/ipvsadm -a -t 209.100.100.3:80 -r 127.0.0.1 -m

The last two uncommented lines cause the Director to send packets
destined for the 209.100.100.3 VIP address to the RIP (10.1.1.2) and to the
locally running daemons on the Director (127.0.0.1).

Use ipvsadm to display the newly modified IP virtual server table:

<DR>#ipvsadm –Ln

IP Virtual Server version 1.0.10 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 209.100.100.3:80 rr
 -> 127.0.0.1:80 Masq 1 0 0
 -> 10.1.1.2:80 Masq 1 0 0

Now we have two servers capable of responding to requests received on
209.100.100.3—the cluster node and the Director.

Use the Lynx program to make sure you have created a default web page
on your Director that is different from the default web page used on your
real server. On the Director type this command:

<DR>#lynx –dump 127.0.0.1

This should produce output that shows the default web page you have
created on your Director.

NOTE For testing purposes you may want to create test pages that display the name of the real
server that is displaying the page. See Appendix F for more info on how to configure
Apache and how to use virtual hosts.
228 Chap te r 12

No Starch Press, Copyright © 2005 by Karl Kopper

Now you can watch the IP virtual server round-robin scheduling method
in action. From a client computer (outside the cluster) call up the web page
the cluster is offering by using the virtual IP address in the URL:

http://209.100.100.3/

This URL specifies the Director’s virtual IP address (VIP). Watch for this
connection on the Director and make sure it moves from the ActiveConn to
the InActConn column and then expires out of the IP virtual server table. Then
click the Refresh button12 on the client computer’s web browser, and the
web page should change to the default web page used on the real server.

In Conclusion

In this chapter we looked at how client computers communicate with real
servers inside an LVS-NAT cluster, and we built a simple LVS-NAT web
cluster. As I mentioned in Chapter 10, the LVS-NAT cluster will probably be
the first type of LVS cluster that you build because it is the easiest to get up
and working. If you’ve followed along in this chapter you now have a working
two-node LVS-NAT cluster. But don’t stop there. Continue on to the next
chapter to learn how to improve the LVS-NAT configuration and build an
LVS-DR cluster.

12 You may need to hold down the SHIFT key while clicking the Refresh button to avoid accessing
the web page from the cached copy the web browser has stored on the hard drive. Also, be aware
of the danger of accessing the same web page stored in a cache proxy server (such as Squid) if
you have a proxy server configured in your web browser.
The LVS-NAT Clu s te r 229
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

13
T H E L V S - D R C L U S T E R

The Linux Virtual Server Direct Routing
(LVS-DR) cluster is made possible by

configuring all nodes in the cluster and the
Director with the same VIP address; despite

having this common address, though, client com-
puters will only send their packets to the Director.
The Director can, therefore, balance the incoming workload from the client
computers by using one of the LVS scheduling methods we looked at in
Chapter 12.

The LVS-DR cluster configuration that we use in this chapter assumes
that the Director is a computer dedicated to this task. In Chapter 14 we’ll
take a closer look at what is going on inside this computer, and in Chapter 15
we’ll see how the load-balancing resource1 can be placed on a real server and
made highly available using the Heartbeat package.

1 Recall from our discussion of Heartbeat in Chapter 6 that a service, along with its associated IP
address, is known as a resource. Thus, the virtual services offered by a Linux Virtual Server and
their associated VIPs can also be called resources in high-availability terminology.
No Starch Press, Copyright © 2005 by Karl Kopper

But before we build an enterprise-class, highly available LVS-DR cluster
(in Chapter 15), let’s examine how the LVS-DR forwarding method works in
more detail.

How Client Computers Access LVS-DR Cluster Services

Let’s examine the TCP network communication that takes place between a
client computer and the cluster. As with the LVS-NAT cluster network
communication described in Chapter 12, the LVS-DR TCP communication
starts when the client computer sends a request for a service running on the
cluster, as shown in Figure 13-1.2

Figure 13-1: In packet 1 the client sends a request to the LVS-DR cluster

The first packet, shown in Figure 13-1, is sent from the client computer
to the VIP address. Its data payload is an HTTP request for a web page.

2 We are ignoring the lower-level TCP connection request (the TCP handshake) in this
discussion for the sake of simplicity.

Real server 1Director

VIP1 RIP1

LVS-DR cluster

Pa
ck

et
 1

Client
computer

Source address

Destination address

CIP1

VIP1

Content:

Show me web page
www.example.com

VIP1

Production
network
switch
232 Chap te r 13

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE An LVS-DR cluster, like an LVS-NAT cluster, can use multiple virtual IP (VIP)
addresses, so we’ll number them for the sake of clarity.

Before we focus on the packet exchange, there are a couple of things to
note about Figure 13-1. The first is that the network interface card (NIC) the
Director uses for network communication (the box labeled VIP1 connected
to the Director in Figure 13-1) is connected to the same physical network
that is used by the cluster node and the client computer. The VIP the RIP
and the CIP, in other words, are all on the same physical network (the same
network segment or VLAN).

NOTE You can have multiple NICs on the Director to connect the Director to multiple VLANs.

The second is that VIP1 is shown in two places in Figure 13-1: it is in a
box representing the NIC that connects the Director to the network, and it is
in a box that is inside of real server 1. The box inside of real server 1
represents an IP address that has been placed on the loopback device on real
server 1. (Recall that a loopback device is a logical network device used by all
networked computers to deliver packets locally.) Network packets3 that are
routed inside the kernel on real server 1 with a destination address of VIP1
will be sent to the loopback device on real server 1—in other words, any
packets found inside the kernel on real server 1 with a destination address of
VIP1 will be delivered to the daemons running locally on real server 1. (We’ll
see how packets that have a destination address of VIP1 end up inside the
kernel on real server 1 shortly.)

Now let’s look at the packet depicted in Figure 13-1. This packet was
created by the client computer and sent to the Director. A technical detail
not shown in the figure is the lower-level destination MAC address inside this
packet. It is set to the MAC address of the Director’s NIC that has VIP1
associated with it, and the client computer discovered this MAC address
using the Address Resolution Protocol (ARP).

An ARP broadcast from the client computer asked, “Who owns VIP1?”
and the Director replied to the broadcast using its MAC address and said that
it was the owner. The client computer then constructed the first packet of
the network conversation and inserted the proper destination MAC address
to send the packet to the Director. (We’ll examine a broadcast ARP request
and see how they can create problems in an LVS-DR cluster environment
later in this chapter.)

NOTE When the cluster is connected to the Internet, and the client computer is connected to the
cluster over the Internet, the client computer will not send an ARP broadcast to locate
the MAC address of the VIP. Instead, when the client computer wants to connect to the

3 When the kernel holds a packet in memory it places the kernel into an area of memory that is
references with a pointer called a socket buffer or sk_buff, so, to be completely accurate in this
discussion I should use the term sk_buff instead of packet every time I mention a packet inside
the director.
The LVS-DR Clu s te r 233
No Starch Press, Copyright © 2005 by Karl Kopper

cluster, it sends packet 1 over the Internet, and when the packet arrives at the router
that connects the cluster to the Internet, the router sends the ARP broadcast to find the
correct MAC address to use.

When packet 1 arrives at the Director, the Director forwards the packet
to the real server, leaving the source and destination addresses unchanged,
as shown in Figure 13-2. Only the MAC address is changed from the
Director’s MAC address to the real server’s (RIP) MAC address.

Figure 13-2: In packet 2 the Director forwards the client computer’s request to a cluster
node

Notice in Figure 13-2 that the source and destination IP address have not
changed in packet 2: CIP1 is still the source address, and VIP1 is still the
destination address. The Director, however, has changed the destination
MAC address of the packet to that of the NIC on real server 1 in order to
send the packet into the kernel on real server 1 (though the MAC addresses

Real server 1Director

VIP1 RIP1

LVS-DR cluster

Client
computer

Source address

Destination address

CIP1

VIP1

Content:

Show me web page
www.example.com

VIP1

Production
network
switch

Packet 2
234 Chap te r 13

No Starch Press, Copyright © 2005 by Karl Kopper

aren’t shown in the figure). When the packet reaches real server 1, the
packet is routed to the loopback device, because that’s where the routing
table inside the kernel on real server 1 is configured to send it. (In Figure
13-2, the box inside of real server 1 with the VIP1 address in it depicts the
VIP1 address on the loopback device.) The packet is then received by a
daemon running locally on real server 1 listening on VIP1, and that daemon
knows what to do with the packet—the daemon is the Apache HTTPd web
server in this case.

The HTTPd daemon then prepares a reply packet and sends it back out
through the RIP1 interface with the source address set to VIP1, as shown in
Figure 13-3.

Figure 13-3: In packet 3 the cluster node sends a reply back through the Director

The packet shown in Figure 13-3 does not go back through the Director,
because the real servers do not use the Director as their default gateway in an
LVS-DR cluster. Packet 3 is sent directly back to the client computer (hence
the name direct routing). Also notice that the source address is VIP1, which
real server 1 took from the destination address it found in the inbound
packet (packet 2).

Real server 1Director

VIP1 RIP1

LVS-DR cluster

Client
computer

Source address

Destination address CIP1

VIP1

Content:

Here is the web page
www.example.com

VIP1

Production
network
switch

Packet 3
The LVS-DR Clu s te r 235
No Starch Press, Copyright © 2005 by Karl Kopper

Notice the following points about this exchange of packets:

� The Director must receive all the inbound packets destined for the cluster.

� The Director only receives inbound cluster communications (requests
for services from client computers).

� Real servers, the Director, and client computers can all share the same
network segment.

� The real servers use the router on the production network as their
default gateway (unless you are using the LVS martian patch on your
Director). If client computers will always be on the same network seg-
ment as the cluster nodes, you do not need to configure a default gate-
way for the real servers.4

ARP Broadcasts and the LVS-DR Cluster

As we’ve just seen, placing VIP addresses on the loopback (lo) device on each
cluster node allows the cluster nodes in an LVS-DR cluster to accept packets
that are destined for the VIP address. However, this has one dangerous side
effect: the real servers inside the cluster will try to reply to ARP broadcasts
from client computers that are looking for the VIP. Unless special precautions
are taken, the real servers will claim to own the VIP address, and client
computers will send their packets directly to real servers, thus circumventing
the cluster load-balancing method and destroying the integrity of network
communication with the Director (where packets that use the VIP as their
destination address are supposed to go).

To understand this problem (called “The ARP Problem” in the LVS-
HOWTO), let’s look at how a client computer uses the VIP address to find
the correct MAC address by using ARP.

Client Computers and ARP Broadcasts

Figure 13-4 shows a client computer sending an ARP broadcast to an LVS-DR
cluster. Notice that because the Director and the cluster node (real server 1)
are connected to the same network, they will both receive the ARP broadcast
asking, “Who owns VIP1?”

In Figure 13-4, gray arrows represent the path taken by an ARP broadcast
sent from the client computer. The ARP broadcast packet is sent to all nodes
connected to the local network (the VLAN or physical network segment), so
a gray arrow is shown on the physical wires that connect the Director and real
server 1 to the network switch. This is normal network behavior.

However, we want real server 1 to ignore this ARP request and only the
LVS-DR Director to respond to it, as shown in Figure 13-5. In the figure, a
gray arrow depicts the path of the ARP reply. It should only come from the
Director and not real server 1.

4 This, however, would be an unusual configuration, because real servers will likely need to
access both an email server and a DNS server residing on a different network segment.
236 Chap te r 13

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 13-4: An ARP broadcast to an LVS-DR cluster

Figure 13-5: An ARP response from the LVS-DR Director

VIP1 RIP1

LVS-DR cluster

Production
network
switch

VIP1

CIP1

W
ho

 o
w

ns
 V

IP
1?

W
ho

 o
w

ns
 V

IP
1?

W
ho

 o
w

ns
 V

IP
1?

VIP1 RIP1

LVS-DR cluster

Production
network
switch

VIP1

CIP1

I o
w

n
VI

P1
The LVS-DR Clu s te r 237
No Starch Press, Copyright © 2005 by Karl Kopper

To prevent real servers from replying to ARP broadcasts for the LVS-DR
cluster VIP, we need to hide the loopback interface on all of the real servers.
Several techniques are available to accomplish this, and they are described in
the LVS-HOWTO.

NOTE Starting with Kernel version 2.4.26, the stock Linux kernel contains the code necessary
to prevent real servers from replying to ARP broadcasts. This is discussed in Chapter 15.

In Conclusion

We’ve examined the LVS-DR forwarding method in detail in this chapter,
and we examined a sample LVS-DR network conversation between a client
computer and a cluster node. We’ve also briefly described a potential
problem with ARP broadcasts when you build an LVS-DR cluster.

In Chapter 15, we will see how to build a high-availability, enterprise-class
LVS-DR cluster. Before we do so, though, Chapter 14 will look inside the
load balancer.
238 Chap te r 13

No Starch Press, Copyright © 2005 by Karl Kopper

14
T H E L O A D B A L A N C E R

In this chapter, we take a closer look at
what happens when the Director receives a

packet destined for a real server (a cluster
node). This will lead us into a discussion of

LVS persistence—the technique LVS uses to
assign the same client computer to a particular real
server. We’ll also describe how packets can be selected
with the iptables utility for processing by LVS using a
technique called packet marking.

LVS and Netfilter

In Figure 14-1, the five Netfilter hooks that were introduced in Chapter 2 are
shown. Superimposed on top of these hooks is a series of small black boxes
representing packets passing through the kernel. The kernel places each
packet it receives into a memory structure called a socket buffer, or sk_buff for
short. Each of the little black boxes in Figure 14-1 is thus representing an
sk_buff inside the kernel, but in this discussion we’ll continue to call them
No Starch Press, Copyright © 2005 by Karl Kopper

packets. The gray arrows in the figure represent the path that all incoming
LVS packets (packets from client computers) take as they pass through the
Director on their way to a real server (cluster node).

Let’s begin by looking at the five Netfilter hooks introduced in Chapter
2. Figure 14-1 shows these five hooks in the kernel.

Figure 14-1: Incoming packets inside the Director

Notice in Figure 14-1 that incoming LVS packets hit only three of the five
Netfilter hooks: PRE_ROUTING, LOCAL_IN, and POST_ROUTING.1 Later in this chapter,
we’ll discuss the significance of these Netfilter hooks as they relate to your
ability to control the fate of a packet on the Director. For the moment, we
want to focus on the path that incoming packets take as they pass through
the Director on their way to a cluster node, as represented by the two gray
arrows in Figure 14-1.

The first gray arrow in Figure 14-1 represents a packet passing from the
PRE_ROUTING hook to the LOCAL_IN hook inside the kernel. Every packet
received by the Director that is destined for a cluster service regardless of the
LVS forwarding method you’ve chosen2 must pass from the PRE_ROUTING hook
to the LOCAL_IN hook inside the kernel on the Director. The packet routing
rules inside the kernel on the Director, in other words, must send all packets
for cluster services to the LOCAL_IN hook. This is easy to accomplish when you

Routing

PRE_ROUTING

eth1

FORWARD

LOCAL_OUTLOCAL_IN

Running daemons

POST_ROUTING

eth0

Cl
ie

nt
 c

om
pu

te
rs Cluster nodes

1 LVS also uses the IP_FORWARD hook to recognize LVS-NAT reply packets (packets sent from the
cluster nodes to client computers).
2 LVS forwarding methods were introduced in Chapter 11.
240 Chap te r 14

No Starch Press, Copyright © 2005 by Karl Kopper

build a Director because all packets for cluster services that arrive on the
Director will have a destination address of the virtual IP (VIP) address. Recall
from our discussion of the LVS forwarding methods in the last three chapters
that the VIP is an IP alias or secondary IP address that is owned by the
Director. Because the VIP is a local IP address owned by the Director, the
routing table inside the kernel on the Director will always try to deliver
packets locally. Packets received by the Director that have the VIP as a
destination address will therefore always hit the LOCAL_IN hook.

The second gray arrow in Figure 14-1 represents the path taken by the
incoming packets after the kernel has recognized that a packet is a request
for a virtual service. When a packet hits the LOCAL_IN hook, the LVS software
running inside the kernel knows the packet is a request for a cluster service
(called a virtual service in LVS terminology) because the packet is destined for
a VIP address. When you build your cluster, you use the ipvsadm utility to add
virtual service VIP addresses to the kernel so LVS can recognize incoming
packets sent to the VIP in the LOCAL_IN hook. If you had not already added
the VIP to the LVS virtual service table (also known as the IPVS table), the
packets destined for the VIP address would be delivered to the locally
running daemons on the Director. But because LVS knows the VIP address,3
it can check each packet as it hits the LOCAL_IN hook to decide if the packet is
a request for a cluster service. LVS can then alter the fate of the packet
before it reaches the locally running daemons on the Director. LVS does this
by telling the kernel that it should not deliver a packet destined for the VIP
address locally, but should send the packet to a cluster node instead. This
causes the packet to be sent to the POST_ROUTING hook as depicted by the
second gray arrow in Figure 14-1. The packets are sent out the NIC
connected to the D/RIP network.4

The power of the LVS Director to alter the fate of packets is therefore
made possible by the Netfilter hooks and the IPVS table you construct with
the ipvsadm utility. The Director’s ability to alter the fate of network packets
makes it possible to distribute incoming requests for cluster services across
multiple real servers (cluster nodes), but to do this, the Director must keep
track of which real servers have been assigned to each client computer so the
client computer will always talk to the same real server.5 The Director does
this by maintaining a table in memory called the connection tracking table.

NOTE As we’ll see later in this chapter, there is a difference between making sure all requests
for services (all new connections) go to the same cluster node and making sure all pack-
ets for an established connection return to the same cluster node. The former is called
persistence and the latter is handled by connection tracking.

3 Or VIP addresses.
4 The network that connects the real servers to the Director.
5 Throughout the IP network conversation or session for a particular cluster service.
The Load Ba lancer 241
No Starch Press, Copyright © 2005 by Karl Kopper

The Director’s Connection Tracking Table

The Director’s connection tracking table (also sometimes called the IPVS
connection tracking table, or the hash table) contains 128 bytes for each new
connection from a client computer in order to store just enough information
to return packets to the same real server when the client computer sends in
another network packet during the same network connection.

Hash Table Structure

The tracking table consists of both rows and columns. Each row is called a
hash bucket, and each column is a connection tracking record. Each record in the
connection tracking table contains timer information; the protocol used by
the packet; the client’s IP address or CIP and the client’s port number; the
virtual IP address or VIP and the VIP port number; and some additional
control information. Each row, or hash bucket, can contain an unlimited
number of these records.

Because the Director looks for a match in this table every time it receives
a packet, table lookups need to be as fast as possible. LVS speeds up table
lookups by using a hashing technique to determine which row it should
search first. Ideally, then, the table should have a very small number of
connection records stored in each bucket (each row), because it takes less
time for the hash function to locate the correct bucket than it would to run a
sequential search through a large number of records within the bucket. The
LVS programmers recommend 16 records per row and no more than 20.

Controlling the Hash Buckets

You control the number of buckets (rows) in the LVS hash table with the
kernel option “IP masquerading VS table size” in kernel 2.2, and with “IPVS
connection table size” in 2.4 and later. The number two is raised to the
power of the value you enter for this kernel parameter; by default, LVS will
create 212 or 4,096 hash buckets in the LVS hash table. This is the number of
hash buckets the Director will use to speed connection record lookups, not
the maximum number of simultaneous connections your Director will
support. (The number of connection records the table will hold is limited
only by the amount of available memory on the Director.)

NOTE One client may have multiple connection tracking table entries if it is accessing cluster
resources on different ports (each connection is one connection tracking record in the
connection tracking table).
242 Chap te r 14

No Starch Press, Copyright © 2005 by Karl Kopper

Viewing the Connection Tracking Table

In the 2.4 and later series kernel, you can view the contents of the
connection tracking table with the command:6

#ipvsadm –lcn

The size of the connection tracking table is displayed when you run the
ipvsadm command:

#ipvsadm
IP Virtual Server version 0.8.2 (size=4096)

This first line of output from ipvsadm shows that the size of the
connection tracking table is 4,096 bytes (the default).

Timeout Values for Connection Tracking Records

When network communication between a client computer and a real server
(cluster node) is no longer active, the timeout value for a connection
tracking record is set to expire using a timeout value in the connection
tracking record. In other words, for services like telnet that use the TCP
protocol, the Director will hold the connection tracking record in memory as
long as the TCP connection is in an ESTABLISHED state and packets are
received from the client computer; when the TCP connection drops, the
connection tracking record timeout value is set so the record will eventually
be removed from the connection tracking table.

LVS also uses a larger connection tracking timeout value for all
connection tracking records in the hash table so that it can remove
connections that remain unused for a long period of time.

NOTE The kernel also has TCP session timeout values, but they are much larger than the val-
ues imposed by LVS. For example, the ESTABLISHED TCP connection timeout value
is five days in the 2.4 kernel. See the kernel source code file ip_conntrack_proto_tcp.c
for a complete list and the default values used by the kernel.

LVS has three important timeout values for expiring connection
tracking records:

� A timeout value for idle TCP sessions.

� A timeout value for TCP sessions after the client computer has closed the
connection (a FIN packet was received from the client computer).7

6 In the 2.2 series kernel, you can view the contents of this table with the command #netstat –Mn.
7 For a discussion of TCP states and the FIN packet, see RFC 793.
The Load Ba lancer 243
No Starch Press, Copyright © 2005 by Karl Kopper

� A timeout value for UDP packets. Because UDP is a connectionless proto-
col, the LVS Director expires UDP connection tracking records if
another packet from the client computer is not received within an arbi-
trary timeout period.

NOTE To see the default values for these timers on a 2.4 series kernel, look at the contents of
the timeout_* files in the /proc/sys/net/ipv4/vs/ directory.8 As of this writing, these
values are not implemented in the 2.6 kernel, but they will be replaced with setsockopt
controls under ipvsadm’s control. See the latest version of the ipvsadm man page for
details.

These three timeout values can be modified by specifying the number
of seconds to use for each timer using the --set argument of the ipvsadm
command. All three values must be specified when you use the --set
argument, so the command:

#ipvsadm --set 28800 30 36000

sets the connection tracking record timeout values to: 8 hours for established
but idle TCP sessions, 30 seconds for TCP sessions after a FIN packet is
received, and 10 minutes for each UDP packet.9

To implement these timeouts, LVS uses two tables: a connection timeout
table called the ip_vs_timeout_table and connection state table called tcp_states.
When you use ipvsadm to modify timeout values as shown in the previous
example, the changes are applied to all current and future connections
tracked by LVS inside the Director’s kernel using these two tables.

NOTE If you set /proc/sys/net/ipv4/vs/secure_tcp to a nonzero value, LVS uses a
different pair of tables to implement timeouts called vs_timeout_table_dos and
vs_tcp_states_dos. You must, therefore, re-issue the ipvsadm command to set timeout
values whenever you enable or disable secure_tcp.

We will discuss another timer that the Director uses to return a client
computer’s request for service to the same real server, called the persistence
timeout, shortly. But first, let’s look at how the Director handles packets going
in the other direction: from the cluster node to the client computer.

Return Packets and the Netfilter Hooks

So far in this chapter, we have only discussed incoming packets for virtual
services and how these packets pass through the kernel on the Director.
When you build an LVS-NAT cluster, however, packets will also pass back

8 The values in this directory are only used on 2.4 kernels and only if the /proc/sys/net/ipv4/vs/
secure_tcp is nonzero. Additional timers and variables that you find in this directory are
documented on the sysctrl page at the LVS website (currently at http://
www.linuxvirtualserver.org/docs/sysctl.html). These sysctrl variables are normally only
modified to improve security when building a public web cluster susceptible to a DoS attack.
9 A value of 0 indicates that the default value should be used (it does not represent infinity).
244 Chap te r 14

No Starch Press, Copyright © 2005 by Karl Kopper

through the Director in the opposite direction as real servers reply to the
client computers. Recall from Chapter 12 that these reply packets must pass
back through the Director in an LVS-NAT cluster because the Director needs
to perform the Network Address Translation to convert the source IP address
in the packets from the real server’s RIP to the Director’s VIP.

The source IP address Network Address Translation for reply packets
from the real servers is made possible on the Director thanks to the fact that
LVS is inserted into the FORWARD hook. As packets “walk” back through the
Netfilter hooks on their way back through the Director to the client
computer, LVS can look them up in its connection tracking table to find out
which VIP address it should use to replace the RIP address inside the packet
header (again, this is only for LVS-NAT).

Figure 14-2 shows the return path of packets as they pass back through
the Director on their way to a client computer when LVS-NAT is used as the
forwarding method.

Figure 14-2: Outgoing LVS-NAT packets inside the Director

Notice in Figure 14-2 that the NIC depicted on the left side of the
diagram is now the eth1 NIC that is connected to the DRIP network (the
network the real servers and Director are connected to). This diagram, in
other words, is showing packets going in a direction opposite to the direction
of the packets depicted in Figure 14-1. The kernel follows the same rules for
processing these inbound reply packets coming from the real servers on its
eth1 NIC as it did when it processed the inbound packets from client
computers on its eth0 NIC. However, in this case, the destination address of

Routing

PRE_ROUTING

FORWARD

LOCAL_OUTLOCAL_IN

Running daemons

POST_ROUTING
eth0

Client com
puters

Cl
us

te
r

no
de

s

eth1
The Load Ba lancer 245
No Starch Press, Copyright © 2005 by Karl Kopper

the packet does not match any of the routing rules in the kernel that would
cause the packet to be delivered locally (the destination address of the
packet is the client computer’s IP address or CIP). The kernel therefore
knows that this packet should be sent out to the network, so the packet hits
the FORWARD hook, shown by the first gray arrow in Figure 14-2.

This causes the LVS code10 to de-masquerade the packet by replacing
the source address in the packet (sk_buff) header with the VIP address. The
second gray arrow shows what happens next: the packet hits the POST_ROUTING
hook before it is finally sent out the eth0 NIC. (See Chapter 12 for more on
LVS-NAT.)

Regardless of which forwarding method you use, the LVS hooks in the
Netfilter code allow you to control how real servers are assigned to client
computers when new requests come in, even when multiple requests for
cluster services come from a single client computer. This brings us to the
topic of LVS persistence. But first, let’s have a look at LVS without
persistence.

LVS Without Persistence

LVS clusters are normally built without using persistence. The general rule
for a Linux Enterprise Cluster is that each new connection to the cluster is
sent to the least loaded real server (the cluster node with the fewest number
of active connections) in order to achieve the best possible distribution of
the workload.11 To achieve this, you create an IP virtual server table and
specify each port separately with commands like these (for LVS-NAT):

/sbin/ipvsadm -A -t 209.100.100.3:23 -s wrr
/sbin/ipvsadm -a -t 209.100.100.3:23 -r 10.1.1.2 -m
/sbin/ipvsadm -a -t 209.100.100.3:23 -r 10.1.1.3 –m

The first command creates the LVS virtual service for port 23 (the telnet
port) using VIP 209.100.100.3. The next two lines specify which real servers
are available to service requests that come in on port 23 for this VIP. (Recall
from Chapter 12 that the -m option tells the Director to use the LVS-NAT
forwarding method, though any LVS forwarding method would work.)

As the Director receives each new network connection request, the real
server with the fewest connections is selected, using the weighted round
robin or wrr scheduling method. As a result, if a client computer opens three
telnet sessions to the cluster, it may be assigned to three different real
servers.

This may not be desirable, however. If, for example, you are using a
licensing scheme such as the Flexlm floating license12 (which can cause a
single user to use multiple licenses when they run several instances of the

10 Called ip_vs_out.
11 Here I am making a general correlation between number of connections and workload.
12 Flexlm has other more cluster-friendly license schemes such as a per-user license scheme.
246 Chap te r 14

No Starch Press, Copyright © 2005 by Karl Kopper

same application on multiple real servers), you may want all of the
connections from a client computer to go to the same real server regardless
of how that affects load balancing.

Keep in mind, however, that using LVS persistence can lead to load-
balancing problems when many clients appear to come from a single IP
address (they may all be behind a single NAT firewall), or if they are, in fact,
all coming from a single IP address (all users may be logged on to one
terminal server or one thin client server13). In such a case, all of the client
computers will be assigned to a single real server and possibly overwhelm it
even though other nodes in the cluster are available to handle the workload.
For this reason, you should avoid using LVS persistence if you are using Thin
Clients or a terminal server.

In the next few sections, we’ll examine LVS persistence more closely and
discuss when to consider using it in a Linux Enterprise Cluster.

LVS Persistence

Regardless of the LVS forwarding method you choose, if you need to make
sure all of the connections from a client return to the same real server, you
need LVS persistence. For example, you may want to use LVS persistence to
avoid wasting licenses if one user (one client computer) needs to run
multiple instances of the same application.14 Persistence is also often
desirable with SSL because the key exchange process required to establish an
SSL connection will only need to be done one time when you enable
persistence.

Persistent Connection Template
When using LVS persistence, the Director is internally using a connection
tracking record called a persistent connection template to ensure that all
connections from the client computer are assigned to the same real server.
As the client computer makes connection requests to the cluster, the
director creates a normal connection tracking record for each connection,
but it does so only after it looks at the persistent connection template record
and decides which real server has already been assigned to this type of
connection. What do I mean by type of connection? I’ll discuss that in a
moment, but first let me explain how the Director removes persistent
connection templates based on a timeout value you specify.

Persistence Timeout

Use the ipvsadm utility to specify a timeout value for the persistent connection
template on the Director. I’ll show you which ipvsadm commands to use to
set the persistence timeout for each type of connection in a moment when I
get to the discussion of the types of LVS persistence. The timeout value you

13 See the Linux Terminal Server Project at http://www.ltsp.org.
14 Again, this depends on your licensing scheme.
The Load Ba lancer 247
No Starch Press, Copyright © 2005 by Karl Kopper

specify is used to set a timer for each persistent connection template as it is
created. The timer will count down to zero whether or not the connection is
active, and can be viewed15 with ipvsadm –L –c.

If the counter reaches zero and the connection is still active (the client
computer is still communicating with the real server), the counter will reset
to a default value16 of two minutes regardless of the persistent timeout value you
specified and will then begin counting down to zero again. The counter is
then reset to the default timeout value each time the counter reaches 0 as
long as the connection remains active.

NOTE You can also use the ipvsadm utility to specify a TCP session timeout value that may be
larger than the persistent timeout value you specified. A large TCP session timeout
value will therefore also increase the amount of time a connection template entry
remains on the Director, which may be greater than the persistent timeout value you
specify.

Types of Persistent Connections

Now that I’ve introduced you to the method LVS uses to expire unused
persistent connection template records, let’s examine the five types
of persistent connections. They are:

1. Persistent client connections (PCC), which cause all services a client is
accessing to persist. (Also called zero port connections.)

2. Persistent port connections (PPC), which cause a single service to persist.

3. Persistent Netfilter Marked Packet persistence, which causes packets that have
been marked with the ipchains/iptables utility to persist.

4. FTP connections (FTP connections require careful handling due to the
complex17 nature of FTP connections).

5. Expired persistence, which is used internally by the Director to expire con-
nection tracking entries when the persistent connection template
expires.18

15 The value in the “expire” column.
16 Controlled by the TIME_WAIT timeout value in the IPVS code. If you are using secure tcp to
prevent a DoS attack as discussed earlier in this chapter, the default TIME_WAIT timeout value is
one minute.
17 In normal FTP connections, the server connects back to the client to send or receive data. FTP
can also switch to a passive mode so that the client can connect to the server to send or receive
data.
18 To avoid the time-consuming process of searching through the connection tracking table for
all of the connections that are no longer valid and removing them (because a persistent
connection template cannot be removed until after the connection tracking records it is
associated with expire), LVS simply enters 65535 for the port numbers in the persistent
connection template entry and allows the connection tracking records to expire normally
(which will ultimately cause the persistent connection template entry to expire).
248 Chap te r 14

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE If you are building a web cluster, you may need to set the persistence granularity that
LVS should use to group CIPs. Normally, each CIP is treated as a unique address when
LVS looks up records in the persistent connection template. You can, however, group
CIPs using a network mask (see the –M option on the ipvsadm man page and the LVS
HOWTO for details).

We are most interested in PPC, PCC, and Netfilter Marked Packet
persistence.

Persistent Client Connection (PCC)

A persistent client connection (PCC) forces all connections from a client
computer to a single real server. A PCC is simply a virtual service created with
no port number (or port number 0) and with the -p flag set. You would use a
persistence client connection when you want all of the connections from a
client computer to go to the same real server. If a customer adds items to a
shopping cart on your web cluster using the HTTP protocol and then clicks
the checkout button to use the encrypted HTTPS protocol, you want to use a
persistent client connection so that both port 80 (HTTP) and port 443
(HTTPS) will go to the same real server inside the cluster. For example:

/sbin/ipvsadm -A -t 209.100.100.3:0 -s rr -p
/sbin/ipvsadm -a -t 209.100.100.3:0 -r 10.1.1.2 -m
/sbin/ipvsadm -a -t 209.100.100.3:0 -r 10.1.1.3 -m

These three lines create a PCC virtual service on VIP address
209.100.100.3 using real servers 10.1.1.2 and 10.1.1.3.

The default timeout value of 360 seconds can be modified by supplying
the -p option with the number of seconds that the persistent connection
template should remain on the Director. For example, to create a one-hour
PCC virtual service, use:

/sbin/ipvsadm -A -t 209.100.100.3:0 -s rr -p 3600
/sbin/ipvsadm -a -t 209.100.100.3:0 -r 10.1.1.2 -m
/sbin/ipvsadm -a -t 209.100.100.3:0 -r 10.1.1.3 -m

Persistent Port Connection (PPC)

A persistent port connection (PPC) forces all connections from a client
computer for a particular destination port number to the same real server.
For example, let’s say you want to allow a user to create multiple telnet
sessions,19 and you would like all of the telnet sessions to go to the same real
server; however, when the user calls up a web page, you’d like to assign this

19 From one client computer.
The Load Ba lancer 249
No Starch Press, Copyright © 2005 by Karl Kopper

request to any node, regardless of which real server they are using for telnet.
In this case, you could use persistent port connections for the telnet port
(port 23) and the HTTP port (port 80), as follows:

/sbin/ipvsadm -A -t 209.100.100.3:80 -s rr -p 3600
/sbin/ipvsadm -a -t 209.100.100.3:80 -r 10.1.1.2 -m
/sbin/ipvsadm -a -t 209.100.100.3:80 -r 10.1.1.3 -m
/sbin/ipvsadm -A -t 209.100.100.3:23 -s rr -p 3600
/sbin/ipvsadm -a -t 209.100.100.3:23 -r 10.1.1.2 -m
/sbin/ipvsadm -a -t 209.100.100.3:23 -r 10.1.1.3 –m

Port Affinity

The key difference between PCC and PPC persistence is sometimes called
port affinity. With PCC persistence, all connections to the cluster from a
single client computer end up on the same real server. Thus, a client
computer talking on port 80 (using HTTP) will connect to the same real
server when it needs to use port 443 (for HTTPS). When you use PCC, ports
80 and 443 are therefore said to have an affinity with each other.

On the other hand, when you create an IPVS table with multiple ports
using PPC, the Director creates one connection tracking template record for
each port the client uses to talk to the cluster so that one client computer
may be assigned to multiple real servers (one for each port used). With PPC
persistence, the ports do not have an affinity with each other.

In fact, when using PCC persistence, all ports have an affinity with each
other. This may increase the chance of an imbalanced cluster load if client
computers need to connect to several port numbers to use the cluster. To
create port affinity that only applies to a specific set of ports (port 80 and port 443
for HTTP and HTTPS communication, for example), use Netfilter Marked
Packets.

Netfilter Marked Packets

Netfilter Marked Packets (formerly called fwmarked packets) have been
marked by either the ipchains or the iptables utility on the Director. The
Netfilter mark only affects the packet while it is on the Director; once the
packet leaves the Director, it is no longer marked (real servers can’t see the
marks made on the Director).

When you specify the criteria for marking a packet (using iptables or
ipchains), you assign a mark number. This number is then associated with an
IP virtual service (using the ipvsadm utility), so that the marked packets will
be sent to the proper real server.

The Netfilter mark number is placed in the socket buffer (called
sk_buff), not in the packet header, and is only associated with the packet
while it is being processed by the kernel on the Director.
250 Chap te r 14

No Starch Press, Copyright © 2005 by Karl Kopper

Your iptables rules cause the Netfilter mark number to be placed inside
the packet sk_buff entry before the packet passes through the routing
process in the PRE_ROUTING hook. Once the packet completes through the
routing process and the kernel decides which packets should be delivered
locally, it reaches the LOCAL_IN hook. At this point, the LVS code sees the
packet and can check the Netfilter mark number to determine which IP
virtual server (IPVS) to use, as shown in Figure 14-3.

Figure 14-3: Netfilter Marked Packets and LVS

Notice in Figure 14-3 that the Netfilter mark is placed into the incoming
packet header (shown as a white square inside of the black box representing
packets) in the PRE_ROUTING hook. The Netfilter mark can then be read by the
LVS code that searches for IPVS packets in the LOCAL_IN hook. Normally, only
packets destined for a VIP address that has been configured as a virtual
service by the ipvsadm utility are selected by the LVS code, but if you are
using Netfilter to mark packets as shown in this diagram, you can build a
virtual service that selects packets based on the mark number.20 LVS can
then send these packets back out a NIC (shown as an eth1 in this example)
for processing on a real server.

Routing

PRE_ROUTING

eth1

FORWARD

LOCAL_OUTLOCAL_IN

Running daemons

POST_ROUTING

eth0

Cl
ie

nt
 c

om
pu

te
rs Cluster nodes

Write
MARK

Read
MARK

20 Regardless of the destination address in the packet header.
The Load Ba lancer 251
No Starch Press, Copyright © 2005 by Karl Kopper

Marking Packets with iptables

For example, say we want to create one-hour persistent port affinity between
ports 80 and 443 on VIP 209.100.100.3 for real servers 10.1.1.2 and 10.1.1.3.
We’d use these iptables and ipvsadm commands:

/sbin/iptables –F –t mangle
/sbin/iptables -A PREROUTING -i eth0 -t mangle -p tcp \

-d 209.100.100.3/24 --dport 80 -j MARK --set-mark 99
/sbin/iptables -A PREROUTING -i eth0 -t mangle -p tcp \

-d 209.100.100.3/24 --dport 443 -j MARK --set-mark 99
/sbin/ipvsadm -A –f 99 -s rr -p 3600
/sbin/ipvsadm -a –f 99 -r 10.1.1.2 -m
/sbin/ipvsadm -a –f 99 -r 10.1.1.3 -m

NOTE The \ character in the above commands means the command continues on the next line.

The command in the first line flushes all of the rules out of the iptables
mangle table. This is the table that allows you to insert your own rules into
the PRE_ROUTING hook.

The commands on the second line contain the criteria we want to use
to select packets for marking. We’re selecting packets that are destined for
our VIP address (209.100.100.3) with a netmask of 255.255.255.0. The /24
indicates the first 24 bits are the netmask. The balance of that line says to
mark packets that are trying to reach port 80 and port 443 with the Netfilter
mark number 99.

The commands on the last three lines use ipvsadm to send these packets
using round robin scheduling and LVS-NAT forwarding to real servers
10.1.1.2 and 10.1.1.3.

To view the iptables we have created, you would enter:

#iptables -L -t mangle –n
Chain PREROUTING (policy ACCEPT)
target prot opt source destination
MARK tcp -- 0.0.0.0/0 209.100.100.3 tcp dpt:80 MARK set 0x63
MARK tcp -- 0.0.0.0/0 209.100.100.3 tcp dpt:443 MARK set 0x63

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Recall from Chapter 2 that iptables uses table names instead of Netfilter
hooks to simplify the administration of the kernel netfilter rules. The chain
called PREROUTING in this report refers to the netfilter PRE_ROUTING hook shown
in Figure 14-3. So this report shows two MARK rules that will now be applied
to packets as they hit the PRE_ROUTING hook based on destination address,
protocol (tcp), and destination ports (dpt) 80 and 443. The report shows
that packets that match this criteria will have their MARK number set to hexa-
decimal 63 (0x63), which is decimal 99.
252 Chap te r 14

No Starch Press, Copyright © 2005 by Karl Kopper

Now, let’s examine the LVS IP Virtual Server routing rules we’ve created
with the following command:

#ipvsadm -L –n
IP Virtual Server version x.x.x (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
FWM 99 rr persistent 3600
 -> 10.1.1.2:0 Masq 1 0 0
 -> 10.1.1.3:0 Masq 1 0 0

The output of this command shows that packets with a Netfilter marked
(fwmarked) FWM value of decimal 99 will be sent to real servers 10.1.1.2 and
10.1.1.3 for processing using the Masq forwarding method (recall from
Chapter 11 that Masq refers to the LVS-NAT forwarding method).

Notice the flexibility and power we have when using iptables to mark
packets that we can then forward to real servers with ipvsadm forwarding and
scheduling rules. You can use any criteria available to the iptables utility to
mark packets when they arrive on the Director, at which point these packets
can be sent via LVS scheduling and routing methods to real servers inside
the cluster for processing.

The iptables utility can select packets based on the source address,
destination address, or port number and a variety of other criteria. See
Chapter 2 for more examples of the iptables utility. (The same rules that
match packets for acceptance into the system that were provided in Chapter
2 can also match packets for marking when you use the -t mangle option and
the PREROUTING chain.) Also see the iptables man page for more
information or search the Web for “Rusty’s Remarkably Unreliable Guides.”

In Conclusion

You don’t have to understand exactly how the LVS code hooks into the
Linux kernel to build a cluster load balancer, but in this chapter I’ve
provided you with a look behind the scenes at what is going on inside of the
Director so you’ll know at what points you can alter the fate of a packet as it
passes through the Director. To balance the load of incoming requests across
the cluster using an LVS Director, however, you will need to understand how
LVS implements persistence and when to use it, and when not to use it.
The Load Ba lancer 253
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

15
T H E H I G H - A V A I L A B I L I T Y

C L U S T E R

In this chapter, we’ll combine the
Heartbeat package with the LVS software to

build a high-availability LVS-DR cluster with
no single point of failure that will serve as the

foundation for our enterprise-class cluster. (We’ll add a
filesystem, a method of scheduling batch jobs, and
application monitoring software in later chapters.)

In order to build a high-availability cluster we need to use redundant
LVS Directors, and we must be able to automatically remove real servers
(cluster nodes) when they fail. Before we discuss all of the design goals of a
high-availability cluster, we’ll examine these two basic requirements.

NOTE See the Keepalived project for another approach to building a high-availability cluster.

Redundant LVS Directors

A high-availability LVS cluster has two LVS Directors: a primary and a
backup. When the two Directors first boot, the primary Director owns the
No Starch Press, Copyright © 2005 by Karl Kopper

cluster load-balancing resource (the VIP and the LVS forwarding and
scheduling rules). The secondary (backup) Director listens to the heartbeats
coming from the primary Director. If the secondary Director does not hear
the primary server's heartbeat, it initiates a failover and takes ownership of
the cluster load-balancing resource by doing the following:

� Adding the VIP address to one of its NICs.

� Sending GARP broadcasts to let other machines on the network know
that it now has the VIP.

� Creating an IPVS table to load balance incoming requests for (virtual)
services.

� Possibly shutting off the power (Stonith) to the primary Director.

High-Availability Cluster Design Goals

To be highly available with no single point of failure, our cluster must handle
these situations in the following ways:

� If the Primary Director no longer responds to requests for cluster
resources on its public network interface, the secondary Director should
take over and shut off or reset the power to the Primary Director (to
avoid a split-brain condition).

� If one of the real servers (cluster nodes) inside the cluster no longer
responds to requests for its services, the real server should be removed
from the cluster.

� If the Director is operating in LocalNode1 mode and a locally running
daemon stops responding, the Director should stop routing requests for
cluster resources locally and forward all requests to real servers inside the
cluster instead.2

A highly available cluster should also:

� Use separate physical switches for the primary and secondary Director in
order to avoid a single point of failure with the network hardware.

� Use a highly available NAS server in order to avoid a single point of fail-
ure with the shared file system. (See Chapter 16 for a discussion of a
shared storage technique that address lock arbitration problems.)3

NOTE Many LVS clusters will not need to use NAS for shared storage. See Chapter 20 for a
discussion of SQL database servers and a brief overview of the Zope project—two exam-
ples of sharing data that do not use NAS.

1 LocalNode was introduced in Chapter 12.
2 Although this is normally a very unlikely scenario.
3 Your NAS vendor will have a redundancy solution for this problem as well.
256 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

� Use a hardened Linux distribution such as EnGarde or LIDS (http://
www.lids.org) in order to protect the real servers when the real servers
are connected to the Internet.

NOTE See “LVS defense strategies against DoS attack” on the LVS website for ways to drop
inbound requests in order to avoid overwhelming an LVS Director when it is under
attack. Building a cluster that uses these techniques is outside the scope of this book.

The High-Availability LVS-DR Cluster

In this chapter, we will describe how to build a Linux Enterprise Cluster that
uses the LVS-DR forwarding method in conjunction with the Heartbeat
package for high availability.

A diagram of a highly available LVS cluster with two Directors is shown
in Figure 15-1. The Directors, real servers, and client computers are all
connected to the same network segment. The short dotted arrow connecting
the LVS Director and the backup LVS Director in this figure represents a
separate physical connection for heartbeats.

Figure 15-1: A highly available DR cluster

LVS
director

Backup
LVS

director

Cluster node Cluster node

Client
computer

Client
computer

Client
computer

Stonith
device

Heartbeats

Request Request Request

Ethernet
network

Request Reply Reply Reply Reply

Replies are
sent back to
clients directly
(LVS-DR)

LVS forwards
resource

requests to
real servers

in the cluster
The H igh -Avai lab i l i t y Clu s te r 257
No Starch Press, Copyright © 2005 by Karl Kopper

Using this configuration, the heartbeats can pass over the normal
Ethernet network and a dedicated network or serial cable connection
between the LVS Director and the backup LVS Director. Recall from
Chapter 6 that heartbeats should be able to travel over two physically
independent paths between the servers in a high-availability server pair.4

This diagram also shows a Stonith device (as described in Chapter 9)
that provides true high availability. The backup node has a serial or network
connection to the Stonith device so that Heartbeat can send power reset
commands to it. The primary node has its power cable plugged into the
Stonith device.5

The dashed gray arrows that originate from the LVS Director and point
to each cluster node represent incoming packets from the client computers.
Because this is an LVS-DR cluster, the reply packets are sent directly back out
onto the Ethernet network by each of the cluster nodes and directly back to
the client computers connected to this Ethernet network.

As processing needs grow, additional cluster nodes (LVS real servers)
can easily be added to this configuration,6 though two machines outside the
cluster will always act as a primary and backup Director to balance the
incoming workload.

Introduction to ldirectord

To failover the LVS load-balancing resource from the primary Director to
the backup Director and automatically remove nodes from the cluster, we
need to use the ldirectord program. This program automatically builds the
IPVS table when it first starts up and then it monitors the health of the
cluster nodes and removes them from the IPVS table (on the Director) when
they fail.

How ldirectord Monitors Cluster Nodes (LVS Real Servers)

The ldirectord daemon monitors the health of real servers by sending
requests to access cluster resources on the real IP (RIP) of each real server.
This is true for all LVS cluster types: LVS-DR, LVS-TUN, and LVS-NAT.
Normally, one ldirectord daemon runs for each VIP address on the Director.
When a real server does not reply to the ldirectord daemon running on the
Director, the ldirectord daemon issues the correct ipvsadm command to
remove it from the IPVS table for the VIP address. (Later, when the real
server comes back online, ldirectord issues the correct ipvsadm command to
add the real server back into the IPVS table.)

4 Avoid the temptation to put heartbeats only on the real or public network (as a means of
service monitoring), especially when using Stonith as described in this configuration. See
Chapter 9 for more information.
5 See Chapter 9 for a discussion of the limitations imposed on a high availability configuration
that does not use two Stonith devices.
6 Using the SystemImager package described in Chapter 5.
258 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

To monitor real servers inside a web cluster, for example, the ldirectord
daemon uses the HTTP protocol to ask each real server for a specific web
page. The Director knows what it should receive back from the real servers if
they are healthy. If the reply string, or web page, takes too long to come back
from the real server, or never comes back at all, or comes back changed in
some way, ldirectord will know something is wrong, and it will remove the
node from the IPVS table of valid real servers for a given VIP.

Figure 15-2 shows the ldirectord request to view a special health check
web page (not normally viewed by client computers) on the first real server.

Figure 15-2: ldirectord requests a health check URL

The URL in this figure (http://10.1.1.2/.healthcheck.html) relies on a file
named .healthcheck.html on real server 1 at RIP 10.1.1.2. The Apache web
server daemon running on real server 1 will use this file (which contains only
the word OKAY) to reply to the ldirectord daemon as shown in Figure 15-3.

Notice in Figure 15-2 that the destination address of the packet is the
RIP address of a real server (real server 1). Also notice that the return
address of the packet is the Director’s IP address (the DIP).

In Figure 15-3, the packet sent back from the real server to the Director’s
DIP is shown.

If anything other than the expected reply (the word OKAY as shown in
this example) is received by the ldirectord daemon on the Director, the real
server will be removed from the IPVS table.

VIP1 DIP RIP1

Mini
hub

ldirectord packet
from the Director

Source address

Destination address RIP1

DIP

Content:

Show me web page
http://10.1.1.2/.healthcheck.html
The H igh -Avai lab i l i t y Clu s te r 259
No Starch Press, Copyright © 2005 by Karl Kopper

Figure 15-3: Real server 1 sends back the reply

Health checks for cluster resources must be made on the RIP addresses
of the real servers inside the cluster regardless of the LVS forwarding method used.
In the case of the HTTP protocol, the Apache web server running on the real
servers must be listening for requests on the RIP address. (Appendix F
contains instructions for configuring Apache in a cluster environment.)
Apache must be configured to allow requests for the health check web page
or health check CGI script on the RIP address.

VIP1 DIP RIP1

Mini
hub

Reply from
Real server 1

Source address

Destination address

RIP1

DIP

Content:

OKAY

D I S A B L I N G S U P E R FL U O U S A P A C H E M E S S A G E S

Apache normally writes a log entry each time the health check web page is
accessed. This will quickly cause your access_log and disk drive to fill up with
useless information. To avoid this situation, create an httpd.conf entry like this:

SetEnvIf Request_URI \.healthcheck\.html$ dontlog

Place this line before the CustomLog entry for the access_log in the httpd.conf
file. Next, modify the CustomLog entry to ignore all requests that have been flagged
with the dontlog environment variable by adding env=!dontlog so that the CustomLog
line now looks like this:

CustomLog logs/access_log combined env=!dontlog

Then restart the Apache daemon.
260 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE Normally, the Director sends all requests for cluster resources to VIP addresses on the
LVS-DR real servers, but for cluster health check monitoring, the Director must use the
RIP address of the LVS-DR real server and not the VIP address.

Because ldirectord is using the RIP address to monitor the real server
and not the VIP address, the cluster service might not be available on the VIP
address even though the health check web page is available at the RIP
address.

LVS, Heartbeat, and ldirectord Recipe

In this recipe, we’ll build the highly available LVS-DR cluster shown in
Figure 15-1.

NOTE If you haven’t already built an LVS-DR according to the instructions in Chapter 13,
you should do so before you attempt to follow this recipe.

List of ingredients:

Kernel with LVS support and the ability to suppress ARP replies (2.4.26
or greater in the 2.4 series, 2.6.4 or greater in the 2.6 series)

Copy of the Heartbeat RPM package

Copy of the ldirectord Perl program

Hide the Loopback Interface

We need to tell the real servers to ignore ARP broadcasts from client
computers that are searching for the owner (the MAC address) of the VIP
(see the section “ARP Broadcasts and the LVS-DR Cluster” in Chapter 13 for
an explanation of why this is required in an LVS-DR cluster).

There are two commonly used methods to accomplish this, and you can
use either one: either create a script that is launched by the init program
when the system boots (see Chapter 1), or modify the /etc/sysctrl.conf file
and issue the sysctl -p command each time the system boots.7 The chapter15
subdirectory on the CD-ROM contains a copy of the following sample init
script that will let you use the first method. The script adds the VIP address to
the hidden loopback device, adds a routing table entry8 for the VIP, enables
packet forwarding, and tells the kernel to hide the VIP.

NOTE This script can be used on real servers and on the primary and backup Director
because the Heartbeat program9 knows how to remove a VIP address on the hidden
loopback device when it conflicts with an IP address specified in the /etc/ha.d/
haresources file. In other words, the Heartbeat program will remove the VIP from the

7 This method is also discussed on the Ultra Monkey website.
8 See Chapter 2 for a discussion of the routing table.
9 The IPaddr and IPaddr2 resource scripts.
The H igh -Avai lab i l i t y Clu s te r 261
No Starch Press, Copyright © 2005 by Karl Kopper

hidden loopback device when it first starts up10 on the primary Director, and it will
remove the VIP from the hidden loopback device on the backup Director when the
backup Director needs to acquire the VIP (because the primary Director has crashed).

#!/bin/bash
#
lvsdrrs init script to hide loopback interfaces on LVS-DR
Real servers. Modify this script to suit
your needs—You at least need to set the correct VIP address(es).
#
Script to start LVS DR real server.
#
chkconfig: 2345 20 80
description: LVS DR real server
#
You must set the VIP address to use here:
VIP=209.100.100.2
host=`/bin/hostname`
case "$1" in
start)
 # Start LVS-DR real server on this machine.
 /sbin/ifconfig lo down
 /sbin/ifconfig lo up

 echo 1 > /proc/sys/net/ipv4/conf/lo/arp_ignore
 echo 2 > /proc/sys/net/ipv4/conf/lo/arp_announce
 echo 1 > /proc/sys/net/ipv4/conf/all/arp_ignore
 echo 2 > /proc/sys/net/ipv4/conf/all/arp_announce

 /sbin/ifconfig lo:0 $VIP netmask 255.255.255.255 up11

 /sbin/route add -host $VIP dev lo:0
;;
stop)
 # Stop LVS-DR real server loopback device(s).
 /sbin/ifconfig lo:0 down
 echo 0 > /proc/sys/net/ipv4/conf/lo/arp_ignore

 echo 0 > /proc/sys/net/ipv4/conf/lo/arp_announce
 echo 0 > /proc/sys/net/ipv4/conf/all/arp_ignore
 echo 0 > /proc/sys/net/ipv4/conf/all/arp_announce

;;
status)
 # Status of LVS-DR real server.
 islothere=`/sbin/ifconfig lo:0 | grep $VIP`
 isrothere=`netstat -rn | grep "lo:0" | grep $VIP`
 if [! "$islothere" -o ! "isrothere"];then
 # Either the route or the lo:0 device
 # not found.

10 This assumes that the Heartbeat program is started after this script runs.
11 Use netmask 255.255.255.255 here no matter what netmask you normally use for your network.
262 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

 echo "LVS-DR real server Stopped."
 else
 echo "LVS-DR Running."
 fi
;;
*)
 # Invalid entry.
 echo "$0: Usage: $0 {start|status|stop}"
 exit 1
;;
esac

Place this script in the /etc/init.d directory on all of the real servers and
enable it using chkconfig, as described in Chapter 1, so that it will run each
time the system boots.

NOTE The Linux Virtual Server website (http://www.linuxvirtualserver.org) also contains
an installation script that will build an init script similar to this for you automatically.

Install the Heartbeat on a Primary and a Backup Director

We will use Heartbeat to start ldirectord and bring up the VIP IP alias or
secondary IP address on the primary Director. The ldirectord program and
the VIP will be one resource group (see Chapter 8) under Heartbeat’s
control. If the primary Director crashes, Heartbeat running on the backup
Director will take over this resource group and client computers will
continue to be able to access the cluster.

Install ldirectord and Its Required Software Components

ldirectord is a Perl program that relies on several prewritten Perl modules
that help it to connect to the real servers using HTTP, POP, telnet, and so
on. The following sections discuss how to install the necessary Perl modules.

Install Perl Modules Located on the CD-ROM

The chapter15/ldirectord/dependencies directory on the CD-ROM in this book
includes the current Perl module dependencies for ldirectord from the Ultra
Monkey website.12 Use the following commands to extract and build each
Perl module.

#mkdir –p /usr/local/src/perldeps
#mount /mnt/cdrom
#cp -r /mnt/cdrom/chapter15/ldirectord/dependencies /usr/local/src/perldeps
#cd /usr/local/src/perldeps
#tar xzvf libnet*
#cd libnet-<version>

12 They originally came from CPAN.
The H igh -Avai lab i l i t y Clu s te r 263
No Starch Press, Copyright © 2005 by Karl Kopper

#perl Makefile.PL
#make
#make install

Download Perl Modules from CPAN

If you choose not to install from the CD-ROM, you can download the
necessary Perl modules for free from the Comprehensive Perl Archive
Network or CPAN (http://www.cpan.org). Here is a list of the protocols and
services that ldirectord can monitor, as well as the associated CPAN Perl
modules required to monitor them.

Start the CPAN program with the commands:13

#cd /
#perl -MCPAN -e shell

NOTE If you’ve never run this command before, it will ask if you want to manually configure
CPAN. Say no if you want to have the program use its defaults.

You should install the CPAN module MD5 to perform security checksums
on the download files the first time you use this method of downloading CPAN
modules. While optional, it gives Perl the ability to verify that it has correctly
downloaded a CPAN module using the MD5 checksum process:

cpan> install MD5

The MD5 download and installation should finish with a message like this:

/usr/bin/make install -- OK

Now install the CPAN modules with the following case-sensitve
commands. You will need to respond to questions about your network
configuration.

Service PERL Module

HTTP LWP::UserAgent, (libwww-perl)

HTTPS Net::SSLeay, (Net_SSLeay)

FTP Net::FTP (libnet)

LDAP Net::LDAP (perl-ldap)

NNTP IO::Socket/IO::Select (already part of Perl)

SMTP Net::SMTP (libnet)

POP Net::POP3 (libnet)

IMAP Mail::IMAPClient (Mail-IMAPClient)

13 You can also use Webmin as a web interface or GUI to download and install CPAN modules.
264 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE You do not need to install all of these modules for ldirectord to work properly. However,
installing all of them allows you to monitor these types of services later by simply mak-
ing a configuration change to the ldirectord configuration file.

cpan> install LWP::UserAgent
cpan> install Net::SSLeay
cpan> install Mail::IMAPClient
cpan> install Net::LDAP
cpan> install Net::FTP
cpan> install Net::SMTP
cpan> install Net::POP3

Some of these packages will ask if you want to run tests to make sure
that the package installs correctly. These tests will usually involve using the
protocol or service you are installing to connect to a server. Although these
tests are optional, if you choose not to run them, you may need to force the
installation by adding the word force at the beginning of the install command.
For example:

cpan> force install Mail::IMAPClient

Each command should complete with the following message to indicate
a successful installation:

/usr/bin/make install -- OK

NOTE ldirectord does not need to monitor every service your cluster will offer. If you are using
a service that is not supported by ldirectord, you can write a CGI program that will run
on each real server to perform health or status monitoring and then connect to each of
these CGI programs using HTTP.

If you want to use the LVS configure script (not described in this book) to configure
your Directors, you should also install the following modules:

cpan> install Net::DNS
cpan> install strict
cpan> install Socket

When you are done with CPAN, enter the following command to return
to your shell prompt:

cpan>quit

The Perl modules we just downloaded should have been installed under
the /usr/local/lib/perl<MAJOR-VERSION-NUMBER>/site_perl/<VERSION-NUMBER>
directory. Examine this directory to see where the LWP and Net directories
are located, and then run the following command.
The H igh -Avai lab i l i t y Clu s te r 265
No Starch Press, Copyright © 2005 by Karl Kopper

#perl -V

The last few lines of output from this command will show where Perl
looks for modules on your system, in the @INC variable. If this variable does
not point to the Net and SWP directories you downloaded from CPAN, you
need to tell Perl where to locate these modules. (One easy way to update the
directories Perl uses to locate modules is to simply upgrade to a newer
version of Perl.)

NOTE In rare cases, you may want to modify Perl’s @INC variable. See the description of the -I
option on the perlrun man page (type man perlrun), or you can also add the -I option
to the ldirectord Perl script after you have installed it.

Install ldirectord

You’ll find ldirectord in the chapter15 directory on the CD-ROM. To install
this version enter:

#mount /mnt/cdrom
#cp /mnt/cdrom/chapter15/ldirectord* /etc/ha.d/resource.d/ldirectord
#chmod 755 /usr/sbin/ldirectord

You can also download and install ldirectord from the Linux HA CVS
source tree (http://cvs.linux-ha.org), or the ldirectord website (http://
www.vergenet.net/linux/ldirectord). Be sure to place ldirectord in the /usr/
sbin directory and to give it execute permission.

NOTE Remember to install the ipvsadm utility (located in the chapter12 directory) before you
attempt to run ldirectord.

Test Your ldirectord Installation

To test the installation of ldirectord, ask it to display its help information
with the -h switch.

#/usr/sbin/ldirectord -h

Your screen should show the ldirectord help page. If it does not, you will
probably see a message about a problem finding the necessary modules.14
If you receive this message, and you cannot or do not want to download
the Perl modules using CPAN, you can edit the ldirectord program and

14 Older versions of ldirectord would only display the help page if you ran the program as a non-
root user. If you see a security error message when you run this command, you should upgrade
to at least version 1.46.
266 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

comment out the Perl code that calls the methods of healthcheck
monitoring that you are not interested in using.15 You’ll need at least one
module, though, to monitor your real servers inside the cluster.

Create the ldirectord Configuration File

ldirectord uses a configuration file to build the IPVS table. You can call this
file any legal file name you wish, but you must place it in the /etc/ha.d/conf
directory. For example, the configuration file for the IPVS on VIP
209.100.100.3 can be:

checktimeout=20
checkinterval=5
autoreload=yes
quiescent=no
logfile="info"
virtual=209.100.100.3:80

real=127.0.0.1:80 gate 1 ".healthcheck.html", "OKAY"
real=209.100.100.100:80 gate 1 ".healthcheck.html", "OKAY"
service=http
checkport=80
protocol=tcp
scheduler=wrr
checktype=negotiate
fallback=127.0.0.1

NOTE You must indent the lines after the virtual line with at least four spaces or the tab
character.

The first four lines in this file are “global” settings; they apply to
multiple virtual hosts. When used with Heartbeat, however, this file should
normally contain virtual= sections for only one VIP address, as shown here.
This is so because when you place each VIP in the haresources file on a
separate line, you run one ldirectord daemon for each VIP and use a
different configuration file for each ldirectord daemon. Each VIP and
its associated IPVS table thus becomes one resource that Heartbeat can
manage.

Let’s examine each line in this configuration file.

checktimeout=20

15 Making custom changes to get ldirectord to run in a test environment such as the one being
described in this chapter is fine, but for production environments you are better off installing
the CPAN modules and using the stock version of ldirectord to avoid problems in the future
when you need to upgrade.
The H igh -Avai lab i l i t y Clu s te r 267
No Starch Press, Copyright © 2005 by Karl Kopper

This sets the checktimeout value to the number of seconds ldirectord will
wait for a health check (normally some type of network connection) to
complete. If the check fails for any reason or does not complete within the
checktimeout period, ldirectord will remove the real server from the IPVS
table.16

checkinterval=5

This checkinterval is how long ldirectord sleeps between checks.

autoreload=yes

This enables the autoreload option, which causes the ldirectord program
to periodically calculate an md5sum to check this configuration file for
changes and automatically apply them when you change the file. This handy
feature allows you to easily change your cluster configuration. A few seconds
after you save changes to the configuration file, the running ldirectord
daemon will see the change and apply the proper ipvsadm commands to
implement the change, removing real servers from the pool of available
servers or adding them in as needed.17

NOTE You can also force ldirectord to reload its configuration file by sending the ldirectord
daemon a HUP signal (with the kill command) or by running ldirectord reload.

quiescent=no

A node is “quiesced” (its weight is set to 0) when it fails to respond within
its checktimeout period. When you set this option, ldirectord will remove the
real server from the IPVS table rather than “quiesce” it. Removing the node
from the IPVS table breaks all of the existing client connections and causes
LVS to drop all connection tracking records and persistent connection
templates for the node. If you do not set this option to no, the cluster may
appear to be down to some of the client computers when a node crashes,
because they were assigned to the node before it crashed and the connection
tracking record or persistent connection template still remains on the
Director.

When using this option, you may also want to use a command18 like this
at boot time:

echo 1 > /proc/sys/net/ipv4/vs/expire_nodest_conn

16 The checktimeout and checkinterval values for ldirectord have nothing to do with the keepalive,
deadtime, and initdead variables used by Heartbeat.
17 If you simply want to be able to remove real servers from the cluster for maintenance and you
do not want to enable this feature, you can disconnect the real server from the network, and the
real server will be removed from the IPVS table automatically when you have configured
ldirectord properly.
18 Or set this value in the /etc/sysctl.conf file on Red Hat systems.
268 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

Setting this kernel variable to 1 causes the connection tracking records
to expire immediately if a client with a pre-existing connection tracking entry
tries to talk to the same server again but the server is no longer available.19

NOTE All of the sysctl variables, including the expire_nodest_conn variable, are documented
at the LVS website (http://www.linuxvirtualserver.org/docs/sysctl.html).

logfile="info"

This entry tells ldirectord to use the syslog facility for logging error
messages. (See the file /etc/syslog.conf to find out where messages at the
“info” level are written.) You can also enter the name of a directory and file
to write log messages to (precede the entry with /). If no entry is provided,
log messages are written to /var/log/ldirectord.log.

virtual=209.100.100.3:80

This line specifies the VIP addresses and port number that we want to
install on the LVS Director. Recall that this is the IP address you will likely
add to the DNS and advertise to client computers. In any case, this is the IP
address client computers will use to connect to the cluster resource you are
configuring.

You can also specify a Netfilter mark (or fwmark) value on this line
instead of an IP address. For example, the following entry is also valid:

virtual=2

This entry indicates that you are using ipchains or iptables to mark
packets as they arrive on the LVS Director20 based on criteria that you specify
with these utilities. All packets that contain this mark will be processed
according to the rules on the indented lines that follow in this config-
uration file.

NOTE Packets are normally marked to create port affinity (between ports 443 and port 80, for
example). See Chapter 14 for a discussion of packet marking and port affinity.

The next group of indented lines specifies which real servers inside the
cluster will be able to offer the resource to client computers.

real=127.0.0.1:80 gate 1 ".healthcheck.html", "OKAY"

19 The author has not used this kernel setting in production, but found that setting quiescent to
“no” provided an adequate node removal mechanism.
20 The machine running ldirectord will also be the LVS Director. Recall that packet marks only
apply to packets while they are on the Linux machine that inserted the mark. The packet mark
created by iptables or ipchains is forgotten as soon as the packet is sent out the network
interface.
The H igh -Avai lab i l i t y Clu s te r 269
No Starch Press, Copyright © 2005 by Karl Kopper

This line indicates that the Director itself (at loopback IP address
127.0.0.1), acting in LocalNode mode, will be able to respond to client
requests destined for the VIP address 209.100.100.3.

NOTE Do not use LocalNode in production unless you have thoroughly tested failing over the
cluster load-balancing resource. Normally, you will improve the reliability of your clus-
ter if you avoid using LocalNode mode.

real=209.100.100.100:80 gate 1 ".healthcheck.html", "OKAY"

This line adds the first LVS-DR real server using the RIP address
209.100.100.100.

Each real= line in this configuration file uses the following syntax:

real=RIP:port gate|masq|ipip [weight] "Request URL", "Response Expected"

This syntax description tells us that the word gate, masq, or ipip must be
present on each real line in the configuration file to indicate the type of
forwarding method used for the real server. (Recall from Chapter 11 that the
Director can use a different LVS forwarding method for each real server
inside the cluster.) This configuration file is therefore using a slightly
different terminology (based on the switch passed to the ipvsadm command)
to indicate the three forwarding methods. See Table 15-1 for clarification.

Following the forwarding method on each real= line is the weight
assigned to the real servers in the cluster. This is used only with one of the
weighted scheduling methods. The last two parameters on the line indicate
which web page or URL ldirectord should ask for when checking the health
of the real server, and what response ldirectord should expect to receive
from the real server. Both of these parameters need to be in quotes as shown,
separated by a comma.

service=http

This line indicates which service ldirectord should use when testing the
health of the real server. You must have the proper CPAN Perl module
loaded for the type of service you specify here.

Table 15-1: Different Terms for the LVS Forwarding Methods

ldirectord
Configuration
Option

Switch Used When
Running ipvsadm

Output of
ipvsadm -L
Command

LVS Forwarding
Method

gate -g Route LVS-DR
ipip -i Tunnel LVS-TUN
masq -m Masq LVS-NAT
270 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

checkport=80

This line indicates that the health check request for the http service
should be performed on port 80.

protocol=tcp

This entry specifies the protocol that will be used by this virtual service.
The protocol can be set to tcp, udp, or fwm. If you use fwm to indicate marked
packets or fwmarked marked packets, then you must have already used the
Netfilter mark number (or fwmark) instead of an IP address on the virtual=
line that all of these indented lines are associated with.

scheduler=wrr

The scheduler line indicates that we want to use the weighted round-
robin load-balancing technique (see the previous real lines for the weight
assignment given to each real server in the cluster). See Chapter 11 for a
description of the scheduling methods LVS supports. The ldirectord
program does not check the validity of this entry; ldirectord just passes
whatever you enter here on to the ipvsadm command to create the virtual
service.

checktype=negotiate

This option describes which method the ldirectord daemon should use
to monitor the real servers for this VIP. checktype can be set to one of the
following:

negotiate

This method connects to the real server and sends the request string
you specify. If the reply string you specify is not received back from the
real server within the checktimeout period, the node is considered dead.
You can specify the request and reply strings on a per-node basis as we
have done in this example (see the discussion of the real lines earlier in
this section), or you can specify one request and one reply string that
should be used for all of the real servers by adding two new lines to your
ldirectord configuration file like this:

request=".healthcheck.html"
receive="OKAY"

connect

This method simply connects to the real server at the specified checkport
(or port specified for the real server) and assumes everything is okay on
the real server if a basic TCP/IP connection is accepted by the real
The H igh -Avai lab i l i t y Clu s te r 271
No Starch Press, Copyright © 2005 by Karl Kopper

server. This method is not as reliable as the negotiate method for detect-
ing problems with the resource daemons (such as HTTP) running on
the real server. Connect checks are useful when there is no negotiate
check available for the service you want to monitor.

A number

If you enter a number here instead of the word negotiate or connect, the
ldirectord daemon will perform the connection test the number of times
specified, and then perform one negotiate test. This method reduces the
processing power required of the real server when responding to health
checks and reduces the amount of cluster network traffic required for
health check monitoring of the services on the real servers.21

off

This disables ldirectord’s health check monitoring of the real servers.

fallback=127.0.0.1

The fallback address is the IP address and port number that client
connections should be redirected to when there are no real servers in the
IPVS table that can satisfy their requests for a service. Normally, this will
always be the loopback address 127.0.0.1, in order to force client connections
to a daemon running locally that is at least capable of informing users that
there is a problem, and perhaps letting them know whom to contact for
additional help.

You can also specify a special port number for the fallback web page:

fallback=127.0.0.1:9999

NOTE We did not use persistence to create our virtual service table. Persistence is enabled in
the ldirectord.conf file using the persistent= entry to speciify the number of seconds
of persistence. See Chapter 14 for a discussion of LVS persistence.

Create the Health Check Web Page

Now, on each real server and on the Director enter a command like this to
create a simple health check web page:

#echo "OKAY" > /www/htdocs/.healthcheck.html

NOTE The directory used here should be whatever is specified as the DocumentRoot in your
httpd.conf file. Also note the period (.) before the file name in this example.22

21 How much it reduces network traffic is based on the type of service and the size of the
response packet that the real server must send back to verify that it is operating normally.
22 This is not required, but is a carryover from the Unix security concept that file names starting
with a period (.) are not listed by the ls command (unless the -a option is used) and are
therefore hidden from normal users.
272 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

See if the Healthcheck web page displays properly on each real server
with the following command:

#lynx -dump 127.0.0.1/.healthcheck.html

Start ldirectord Manually and Test Your Configuration

In a moment we’ll use Heartbeat to start our ldirectord monitoring daemon,
but first you need to try starting the daemon on the Director to see if your
IPVS table is created.

1. Enter this command:

#/etc/ha.d/resource.d/ldirectord –d ldirectord-209.100.100.3.conf start

You should see the ldirectord debug output indicating that the
ipvsadm commands have been run to create the virtual server followed
by commands such as the following:

DEBUG2: check_http: http://209.100.100.100/.healthcheck.html is down

2. Now if you bring the real server online at IP address 209.100.100.100, and
it is running the Apache web server, the debug output message from
ldirectord should change to:

DEBUG2: check_http: http://209.100.100.100/.healthcheck.html is up

3. Check to be sure that the virtual service was added to the IPVS table with
the command:

#ipvsadm -L -n

4. Once you are satisfied with your ldirectord configuration and see that it
is able to communicate properly with your health check URLs, press
CTRL-C to break out of the debug display.

5. Restart ldirectord (in normal mode) with:

#/usr/sbin/ldirectord ldirectord-209.100.100.3.conf start

6. Then start ipvsadm with the watch command to automatically update the
display:

#watch ipvsadm -L -n
The H igh -Avai lab i l i t y Clu s te r 273
No Starch Press, Copyright © 2005 by Karl Kopper

You should see an ipvsadm table like this:

IP Virtual Server version x.x.x (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 209.100.100.3:80 wrr
 -> 209.100.100.100:80 Route 1 0 0
 -> 127.0.0.1:80 Local 1 0 0

7. Test ldirectord by shutting down Apache on the real server or discon-
necting its network cable. Within 20 seconds, or the checktimeout value
you specified, the real server’s weight should be set to 0 so that no future
connections will be sent to it.

8. Turn the real server back on or restart the Apache daemon on the real
server, and you should see its weight return to 1.

Add ldirectord to the Heartbeat Configuration

Now it’s time to tell Heartbeat about our ldirectord configuration so that it
will start it automatically at boot time.

1. Follow the recipe in Chapter 7 to install the Heartbeat program if you
have not done so already; then create the following entry in your /etc/
ha.d/haresources file:

primary.yourdomain.com 209.100.100.3 ldirectord::ldirectord-
209.100.100.3.conf

where primary.yourdomain.com is the host name (as returned by uname -n) of
your primary Director.

This haresources entry tells Heartbeat that the machine named
primary.yourdomain.com should normally own the ldirectord resource for
VIP 209.100.100.3. The ldirectord resource, or script, is started by
Heartbeat, and based on this entry, passed to the configuration file
named /etc/ha.d/conf/ldirectord-209.100.100.3.conf in this example.

2. Stop ldirectord with the command:

#/etc/ha.d/resource.d/ldirectord ldirectord-209.100.100.3.conf stop

3. Make sure ldirectord is no longer running with:

#ps -elf | grep ldirectord

This command should not return any output if ldirectord is not
running. If you see a running process here, be sure to kill it before going
on with the next command.
274 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

4. Make sure ldirectord is not started as a normal boot script with the
command:

#chkconfig --del ldirectord

5. Stop Heartbeat with the command:

#/etc/rc.d/init.d/heartbeat stop

6. Clean out the ipvsadm table so that it does not contain any test configu-
ration information with:

#ipvsadm –C

7. Now start the heartbeat daemon with:

#/etc/rc.d/init.d/heartbeat start

and watch the output of the heartbeat daemon using the following
command:

#tail -f /var/log/messages

NOTE For the moment, we do not need to start Heartbeat on the backup Heartbeat server.

The last line of output from Heartbeat should look like this:

heartbeat: info: Running /etc/ha.d/resource.d/ldirectord ldirectord-
209.100.100.3.conf start

You should now see the IPVS table constructed again, according to your
configuration in the /etc/ha.d/conf/ldirectord-209.100.100.3 conf file. (Use
the ipvsadm -L -n command to view this table.)

To finish this recipe, install the ldirectord program on the backup LVS
Director, and then configure the Heartbeat configuration files exactly the
same way on both the primary LVS Director and the backup LVS Director.
(You can do this manually or use the SystemImager package described in
Chapter 5.)

Stateful Failover of the IPVS Table

As we’ve just seen, when the primary Director crashes and ldirectord needs
to rebuild the IPVS table on the backup Director it can do so because you
have placed all of the ipvsadm configuration rules into an ldirectord
configuration file. However, the active client connections (the connection
tracking records) are not re-created by ldirectord on the backup Director at
failover time. All client computer connections to the cluster nodes are lost
during a failover using the recipe we have just built.
The H igh -Avai lab i l i t y Clu s te r 275
No Starch Press, Copyright © 2005 by Karl Kopper

These connections (entries in the connection tracking table) change
rapidly on a heavily loaded cluster as client connections come and go, so we
need a method of sending connection tracking records from a primary
Director to a backup Director as they change. The LVS programers
developed a technique to do this (replicate the connection tracking table to
the backup director) using multicast packets. This technique was originally
called the server sync state daemon, and even though it was implemented
inside the kernel (the server sync state daemon does not run in userland) the
name stuck. To turn on the server sync state daemon, as it is called, inside
the kernel run the following command on the primary Director:

/sbin/ipvsadm --start-daemon master

Then, on the backup Director, run the command:

/sbin/ipvsadm --start-daemon backup

The primary and backup Directors must be able to communicate with
each other using multicast packets on multicast address 224.0.0.81 for the
master server sync state daemon to announce changes to the connection
tracking records, and for the backup server sync state daemon to hear about
these changes and insert them into its idle connection tracking table. To find
out if your cluster nodes support multicast, see the output of the ifconfig
command and look for the word MULTICAST. It should be present for each
interface that will be using multicast; if it isn’t you’ll need to recompile your
kernel and provide support for multicast (see Chapter 3).23

NOTE To stop the sync state daemon (either the master or the backup) you can issue the com-
mand ipvsadm --stop-daemon.

Once you have issued these commands on the primary and backup
Director (you’ll need to add these commands to an init script so the system
will issue the command each time it boots—see Chapter 1), your primary
Director can crash, and then when ldirectord rebuilds IPVS table on the
backup Director all active connections24 to cluster nodes will survive the
failure of the primary Director.

NOTE The method just described will failover active connections from the primary Director to
the backup Director, but it does not failback the active connections when the primary
Director has been restored to normal operation. To failover and failback active IPVS
connections you will need (as of this writing) to apply a patch to the kernel. See the LVS
HOWTO (http://www.linuxvirtualserver.org) for details.

23 You may also be able to specify the interface that the server sync state daemon should use to
send or listen for multicast packets using the ipvsadm command (see the ipvsadm man page);
however, early reports of this feature indicate that a bug prevents you from explicitly specifying
the interface when you issue these commands.
24 All connections that have not been idle for longer than the connection tracking timeout
period on the backup Director (default is three minutes, as specified in the LVS code).
276 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

Modifications to Allow Failover to a Real Server Inside the Cluster

We have finished building our pair of highly available load balancers (with
no single point of failure). However, before we leave the topic of failing over
the Director as a resource under Heartbeat’s control, let’s look at how the
Director failover works in conjunction with the LVS LocalNode mode.

Because a Linux Enterprise Cluster will have a relatively small number of
incoming requests for cluster services (perhaps only one or two for each
employee25), dedicating a server to the job of load balancing the cluster may
be a waste of resources. We can fully utilize the CPU capacity on the Director
by making the Director a node inside the cluster; however, this may reduce the
reliability of the cluster and should be avoided, if possible.26 When we tell one of the
nodes inside the cluster to be the Director, we will also need to tell one of the
nodes inside the cluster to be a backup Director if the primary Director fails.

Heartbeat running on the backup Director will start the ldirectord
daemon, move all of the VIP addresses, and re-create the IPVS table in order
to properly route client requests for cluster resources if the primary Director
fails, as shown in Figure 15-4.

Notice in Figure 15-4 that the backup Director is also replying to client
computer requests for cluster services—before the failover the backup
Director was just another real server inside the cluster that was running
Heartbeat. (In fact, before the failover occurred the primary Director was
also replying to its share of the client computer requests that it was
processing locally using the LocalNode feature of LVS.)

Although no changes are required on the real servers to inform them of
the failover, we will need to tell the backup LVS Director that it should no
longer hide the VIP address on its loopback device. Fortunately, Heartbeat
does this for us automatically, using the IPaddr2 script27 to see if there are
hidden loopback devices configured on the backup Director with the same
IP address as the VIP address being added. If so, Heartbeat will automatically
remove the hidden, conflicting IP address on the loopback device and its
associated route in the routing table. It will then add the VIP address on one
of the real network interface cards so that the LVS-DR real server can
become an LVS-DR Director and service incoming requests for cluster
services on this VIP address.

NOTE Heartbeat will remember that it has done this and will restore the loopback addresses to
their original values when the primary server is operational again (the VIP address
fails back to the primary Heartbeat server).

25 Compare this to the thousands of requests that are load balanced across large LVS web
clusters.
26 It is easier to reboot real servers than the Director. Real servers can be removed from the
cluster one at a time without affecting service availability, but rebooting the Director may impact
all client computer sessions.
27 The IPaddr script, if you are using ip aliases.
The H igh -Avai lab i l i t y Clu s te r 277
No Starch Press, Copyright © 2005 by Karl Kopper

Figure 15-4: Failure of primary Director

In Conclusion

An enterprise-class cluster must have no single point of failure. It should also
know how to automatically detect and remove a failed cluster node. If a node
crashes in a Linux Enterprise Cluster, users need only log back on to resume
their session. If the Director crashes, a backup Director will take ownership
of the load-balancing resource and VIP address that client computers use to
connect to the cluster resources.

Client
computer

Client
computer

Client
computer

Request Request Request

Ethernet
network

Request Reply Reply Reply

Replies are
sent back to
clients directly
(LVS-DR)

LVS director
Backup
LVS director Cluster node Cluster node
278 Chap te r 15

No Starch Press, Copyright © 2005 by Karl Kopper

16
T H E N E T W O R K F I L E S Y S T E M

The Network File System (NFS) looks like
a single, unified filesystem to users and

application programs running on the
cluster nodes. A key feature of NFS is its

ability to share data with all of the cluster nodes
while providing a locking mechanism to protect the
integrity of the data. To build a cluster that does not
require any changes to existing multiuser application programs, this locking
mechanism must support the locking methods used by programs that are
unaware of the fact that they are running on a cluster node. That is, NFS and
its locking mechanism should be transparent to the existing multiuser
applications. This transparency of the shared filesystem is one of the defining
characteristics of the Linux Enterprise Cluster—applications see the cluster
as a single, unified computing resource.

In this chapter, we’ll examine what the term lock means, what locking
methods are normally used on multiuser operating systems, and how NFS
allows existing legacy, multiuser applications that are running on cluster
nodes to share access to data. (If you do not need to run legacy Unix
No Starch Press, Copyright © 2005 by Karl Kopper

applications on your Linux Enterprise Cluster, you can skip over most of the
locking information in this chapter.) I’ll also introduce you to a few
performance issues you will face when using NFS and provide you with an
example of the NFS client configuration options you can use on each node
inside the cluster.

NOTE In Chapter 20, we’ll look at how a database system such as MySQL or Postgres can be
used in a cluster environment.

Lock Arbitration

When an application program reads data from stable storage (such as a disk
drive) and stores a copy of that data in a program variable or system memory,
the copy of the data may very soon be rendered inaccurate. Why? Because a
second program may, only microseconds later, change the data stored on the
disk drive, leaving two different versions of the data: one on disk and one in
the program’s memory. Which one is the correct version?

To avoid this problem, well-behaved programs will first ask a lock
arbitrator to grant them access to a file or a portion of a file before they
touch it. They will then read the data into memory, make their changes, and
write the data back to stable storage. Data accuracy and consistency are
guaranteed by the fact that all programs agree to use the same lock arbitra-
tion method before accessing and modifying the data.

Because the operating system does not require a program to acquire a
lock before writing data,1 this method is sometimes called cooperative,
advisory, or discretionary locking. These terms suggest that programs know
that they need to acquire a lock before they can manipulate data. (We’ll use
the term cooperative in this chapter.)

The cooperative locking method used on a monolithic multiuser server
should be the same as the one used by applications that store their data using
NFS: the application must first acquire a lock on a file or a portion of a file
before reading data and modifying it. The only difference is that this lock
arbitration method must work on multiple systems that share access to the
same data.

The Lock Arbitrator

We can divide cooperative lock arbitration into three categories based on
who or what is acting as the lock arbitrator:

Kernel lock arbitration

The program asks the kernel for a lock on a particular file or a portion of
a file. This is perhaps the most common method used by programmers
when developing applications such as an order-entry system in a typical
multiuser environment such as Linux or Unix.

1 Except in the case of mandatory locks.
280 Chap te r 16

No Starch Press, Copyright © 2005 by Karl Kopper

File lock arbitration

The program creates a new file called a lock file or a dotlock file on stable
storage to indicate that it would like exclusive access to a data file. Pro-
grams that access the same data must look for this file or examine its con-
tents.2 This method is typically used in order to avoid subtle differences
in kernel lock arbitration implementations (in different versions of Unix
for example) when programmers want to develop software that will run
on a variety of different operating systems.

External lock arbitration daemon

The program asks a daemon to track lock and unlock requests. This type
of locking is normally used for shared storage. Examples of this type of
lock arbitration include sophisticated database applications, distributed
lock managers (that can run on more than one node at the same time
and share lock information), and the Network Lock Manager (NLM)
used in NFSv3, which will be discussed shortly.

NOTE Additional lock arbitration methods for cluster file systems are provided in Appendix E.

Our cluster environment should use a cooperative lock arbitration
method that works in conjunction with shared storage while still honoring
the classic Unix or Linux kernel lock arbitration requests (so we do not have
to rewrite all of the user applications that will share data in the cluster).
Fortunately, Linux supports a shared storage external lock arbitration
daemon called lockd. But before we get into the details of NFS and lockd, let’s
more closely examine the kernel lock arbitration methods used by existing
multiuser applications.

The Existing Kernel Lock Arbitration Methods
The three most common cooperative kernel lock arbitration methods
available on Linux are BSD flock, System V lockf, and Posix fcntl.

BSD flock

This is considered an antiquated method of locking files because it only
supports locking an entire file, not a range of bytes (called a byte offset) within
a file. There are two types of flocks: shared and exclusive. As their names imply,
many processes may hold a shared lock on one file, but only one process may
hold an exclusive lock. (A file cannot be locked with both shared and
exclusive locks at the same time.) Because this method only supports locking
the entire file, your existing multiuser applications are probably not using
this locking mechanism to arbitrate access to shared user data. We’ll discuss
this further in “The Network Lock Manager (NLM).”

System V lockf

The System V locking method is called lockf. On a Linux system, lockf is really
just an interface to the Posix fcntl method discussed next.

2 The PID of the process that created the dotlock file is usually placed into the file.
The Ne twork Fi le System 281
No Starch Press, Copyright © 2005 by Karl Kopper

Posix fcntl

The Posix-compliant fcntl system call used on Linux does a variety of things,
but for the moment we are only interested in the fact that it allows a program
to lock a byte-range portion of a file.3 Posix fcnlt locking supports the same
two types of locks as the BSD flock method but uses the terms read and write
instead of shared and exclusive. Multiple read locks are allowed at the same
time, but when a program asks the kernel for a write lock, no other programs
may hold either type of lock (read or write) for the same range of bytes within
the file.

When using Posix fcnlt, the programmer decides what will happen when
a lock is denied or blocked by the kernel by deciding if the program should
wait for the call to fcntl to succeed (wait for the lock to be granted). If the
choice is to wait, the fcntl call does not return and the kernel places the
request4 into a blocked queue. When the program that was holding the lock
releases it and the reason for the blocked lock no longer exists, the kernel
will reply to the fcntl request, waking up the program from a “sleep” state
with the good news that its request for a lock has been granted.

For example, three processes may all hold a Posix fcntl read lock on the
byte range 1,000–1,050 of the same file at the same time. But when a fourth
process comes along and wants to acquire a Posix fcntl write lock to the same
range of bytes, it will be placed into the blocked queue. As long as any one
of the original three programs continues to hold its read lock, the fourth
program’s request for a write lock will remain in the blocked queue. However,
if a fifth program asks for a Posix fcntl read lock, it will be granted it imme-
diately. Now the fourth program is still waiting for its write lock and it may
have to wait forever if new processes keep coming along and acquiring new
read locks. This complexity makes it more difficult to write a program that
uses both Posix fcntl read and Posix fcntl write locks.

Also of note, when considering Posix fcntl locks:

1. If a process holds a Posix fcntl lock and forks a child process, the child
process (running under a new process id or pid) will not inherit the lock
from its parent.

2. A program that holds a lock may ask the kernel for this same lock a sec-
ond time and the kernel will “grant” it again without considering this a
conflict. (More about this in a moment when we discuss the Network
Lock Manager and lockd.)

3. The Linux kernel currently does not check for collisions with Posix fcntl
byte-range locks and BSD file flocks. The two locking methods do not
know about each other.

3 If the byte range covers the entire file, then this is equivalent to a whole file lock.
4 Identified by the process id of the calling program as well as the file and byte range to be
locked.
282 Chap te r 16

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE There are at least three additional kernel lock arbitration methods available under
Linux: whole file leases, share modes (similar to Windows share modes), and manda-
tory locks. If your application relies on one of these methods for lock arbitration, you
must use NFS version 4.

Now that we’ve talked about the existing kernel lock arbitration methods
that work on a single, monolithic server, let’s examine a locking method that
allows more than one server to share locking information: the Network Lock
Manager.

The Network Lock Manager (NLM)

The NFS was originally conceived and built to manage distributed access to a
single data storage device, with separate programs added to provide a
cooperative lock arbitration method. Because the filesystem and its locking
method were implemented separately, the original NFS developers felt that
they were providing a generic means of network lock arbitration that could
be used in conjunction with any network file system. However, the network
lock manager (NLM), as it became known, has only been widely used as a
lock arbitration method by NFSv3 servers and NFS version 3 clients. The
NFSv4 protocol does not use a separate daemon or protocol for locking, but
many of the concepts are the same, so we’ll introduce NFS locking by
discussing the NFSv3 NLM.

The NLM consists of two daemons called statd and lockd. Both daemons
are supposed to be running all the time on the NFS server and on all NFS
clients to ensure that everyone agrees upon what is locked and which
programs or processes own the locks. The statd daemon running on both
the client and the server keeps a list of the hosts that are currently holding or
granting locks (NFS clients, if the machine is acting as an NFS server, and
NFS servers, if the machine is an NFS client5). The lockd daemon on the NFS
client is in charge of making a lock request over the network by talking to the
lockd daemon running on the NFS server.

Let’s examine these two daemons more closely.

statd

In a cluster, statd, also called rpc.statd, runs on each cluster node in case
the node crashes while it holds a lock on the NFS server. If this happens,
the rpc.statd program on the cluster node will notify the NFS server
when the cluster node is rebooted that it is now operational again. statd
on the NFS client knows that it should do this, because it writes the name
of each NFS server to a local disk drive the first time a process running
on the cluster node tries to lock a file on the NFS server. When the NFS
server receives this notification after an NFS client reboots, it assumes all
of the processes that were holding locks from this cluster node (or NFS
client) are no longer running, and it releases them.

5 Actually, it always keeps a list of both if the machine is both an NFS client and an NFS server.
The Ne twork Fi le System 283
No Starch Press, Copyright © 2005 by Karl Kopper

NOTE statd or rpc.statd is sometimes described as an implementation of a network status
monitor (NSM).

lockd

The Linux kernel knows when a Posix fcntl lock request is for a file or
portion of a file stored on an NFS server, because the file is stored on an
NFS-mounted filesystem. If the Linux machine is an NFS client, the ker-
nel knows it needs to pass the lock request to the locally running lockd
daemon.6 The lockd daemon on the NFS client then contacts the lockd
daemon running on the NFS server and requests the lock. The lockd dae-
mon on the NFS server then asks its own kernel for the lock on behalf of
the NFS client.

If the same program or process asks for the same lock7 more than
once, it will be granted the lock each time; the kernel doesn’t consider
this to be a violation of the lock. Before lockd became a part of the
kernel, the ability for a single process to be granted the same lock more
than once meant that the lockd daemon had to track lock requests that it
had made on behalf of the NFS clients and deny any conflicts before
asking the kernel for the lock. Were it not to do so, lockd could
unknowingly ask for, and be granted, the same lock twice on behalf of
two different NFS clients.

NLM and Kernel Lock Arbitration

Let’s look at how NLM works in conjunction with the kernel lock arbitration
methods on the NFS clients (the cluster nodes). Remember that we want to
support existing multiuser applications that use one or more of the existing
kernel lock arbitration methods so that we do not have to rewrite user
applications to run them on the cluster.

NLM and Kernel BSD flock
The Linux kernel currently does not pass BSD flock requests for whole file
locks to the NLM. As such, this method of file locking will not work on the
Linux Enterprise Cluster when access to shared data is required across all
cluster nodes.

Because BSD flocks can only lock whole files, your existing multiuser
applications aren’t likely to use them to share user data. BSD flocks are more
commonly used by applications that fork child processes in order to prevent
the child processes from doing things that would cause conflicts with each
other. For example, the LPRng printing system creates child processes for
sending print jobs, and the child processes create temporary control files
in the /var/spool/lpd directory to ensure that print jobs are sent in the
correct order.

6 The lockd daemon actually runs inside the kernel as a kernel thread on Linux and is called
klockd, but for our purposes, we’ll talk about it as if it were outside the kernel.
7 At least this is true for Posix fcntl locks in NFS version 3.
284 Chap te r 16

No Starch Press, Copyright © 2005 by Karl Kopper

In fact, most daemons that use BSD flocks create temporary files in a
subdirectory underneath the /var directory, so when you build a Linux
Enterprise Cluster you should not use a /var directory over NFS. By using a
local /var directory on each cluster node, you can continue to run existing
applications that use BSD flocks for temporary files.8

NOTE In the Linux Enterprise Cluster, NFS is used to share user data, not operating
system files.

NLM and Kernel System V lockf

The System V lockf method is a wrapper around the Posix fcntl method of
lock arbitration. See the next section for details.

NLM and Kernel Posix fcntl

When an application running on an NFS client issues an fcntl lock operation
on data that is mounted over an NFS filesystem, several things happen:

1. Any file data or file attribute information stored in the local NFS client
computer’s cache is flushed.

2. The NFS server is contacted9 to check the attributes of the file again, in
part to make sure that the permissions and access mode settings on the
file still allow the process to gain access to the file.

3. lockd on the NFS server is contacted to determine if the lock will be
granted.

4. If this is the first lock made by the particular NFS client, the statd dae-
mon on both the NFS client and the NFS server records the fact that this
client has made a lock request.

Posix fcntl locks that use the NLM (for files stored using NFS) are very
slow when compared to the ones granted by the kernel. Also notice that due
to the way the NFS client cache works, the only way to be sure that the data
inside your application program’s memory is the same as the data stored on
the NFS server is to lock the data before reading it. If your application reads
the data without locking it, another program can modify the data stored on
the NFS server and render your copy (which is stored in your program’s
memory) inaccurate.

We’ll discuss the NLM performance issues more shortly.

8 When you use the LPRng printing system, printer arbitration is done on a single print spool
server (called the cluster node manager in a Linux Enterprise Cluster), so lock arbitration
between child LPRng printing processes running on the cluster nodes is not needed. We’ll
discuss LPRng printing in more detail in Chapter 19.
9 Using the GETATTR call.
The Ne twork Fi le System 285
No Starch Press, Copyright © 2005 by Karl Kopper

NFS and File Lock (dotlock) Arbitration

Recall from our discussion earlier in this chapter that applications that use
the lock arbitration method (called file lock arbitration or dotlocking) check for
a dotlock file10 as a means of arbitrating access to a data file. Because NFS
clients are normally configured to use locally cached data that may not be
the same as the data stored on the NFS server, the dotlock file arbitration
method must be implemented to work over NFS.

In order to use dotlock file arbitration, the programmer must use a
method of creating dotlock files that ensures that the dotlock file has been
stored on the NFS server and is not just sitting in the local NFS client’s cache.
This is accomplished (as described on the “open” man page) by creating the
dotlock file, linking to it, and then checking to make sure that the link
command worked or that the count of the number of links associated with
the dotlock file has increased to 2.

Apache, sendmail, and LPRng all use dotlock file lock arbitration.
However, none of these use dotlock arbitration to share writable data in a
normal Linux Enterprise Cluster configuration.

NOTE A CGI program running under Apache on a cluster node may share access to writable
data with a CGI program running on another cluster node, but the CGI programs can
implement their own locking method independent of the dotlock method used by Apache
and thus avoid the complexity of implementing dotlock file locking over NFS. For an
example, search CPAN11 for “File::NFSLock.”

Finding the Locks Held by the Linux Kernel

We will now leave the theoretical discussion of the NLM and its interaction
with the kernel lock arbitration methods and discuss system administration
and maintenance activities as they relate to kernel and NLM lock arbitration.

To see what Posix fcntl and BSD flocks are currently granted by the
kernel, examine the contents of the /proc/locks file. Although you can do this
on any Linux system, this technique is perhaps most useful for trouble-
shooting locking problems on cluster nodes that have NFS-mounted data.

To view the current locks, first cat the /proc/locks kernel file:

#cat /proc/locks
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1: POSIX ADVISORY WRITE 14555 21:06:69890 0 EOF cd4f87f0 c02d9fc8 cd4f8570 00000000 cd4f87fc
2: POSIX ADVISORY WRITE 14005 21:06:69889 0 EOF cd4f87f0 cd4f873c cd4f8ca0 00000000 cd4f87fc
3: POSIX ADVISORY WRITE 8508 21:07:56232 0 EOF cd4f8f7c cd4f873c cd4f8908 00000000 cd4f8f88
4: FLOCK ADVISORY WRITE 12435 22:01:2387398 0 EOF cd4f8904 cd4f8f80 cd4f8ca0 00000000 cd4f8910
5: FLOCK ADVISORY WRITE 12362 22:01:1831448 0 EOF cd4f8c9c cd4f8908 cd4f83a4 00000000 cd4f8ca8

10 Or they check the contents of the dotlock file to see if a conflicting PID already owns the
dotlock file.
11 See Chapter 15 for how to search and download CPAN modules.
286 Chap te r 16

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE I’ve added column numbers to this output to help make the following explanation
easier to understand.

Column 1 displays the lock number and column 2 displays the locking
mechanism (either flock or Posix fcntl). Column 3 contains the word advi-
sory or mandatory; column 4 is read or write; and column 5 is the PID (process
ID) of the process that owns the lock. Columns 6 and 7 are the device major
and minor number of the device that holds the lock,12 while column 8 is the
inode number of the file that is locked. Columns 9 and 10 are the starting
and ending byte range of the lock, and the remaining columns are internal
block addresses used by the kernel to identify the lock.

To learn more about a particular lock, use lsof to examine the process
that holds it. For example, consider this entry from above:

1: POSIX ADVISORY WRITE 14555 21:06:69890 0 EOF cd4f87f0 c02d9fc8 cd4f8570 00000000 cd4f87fc

The PID is 14555, and the inode number is 69890. (See boldface text.)
Using lsof, we can examine this PID further to see which process and file it
represents:

#lsof –p 14555

The output of this command looks like this:

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
lockdemo 14555 root cwd DIR 33,6 2048 32799 /root
lockdemo 14555 root rtd DIR 33,6 2048 2 /
lockdemo 14555 root txt REG 33,6 14644 69909 /tmp/lockdemo
lockdemo 14555 root mem REG 33,6 89547 22808 /lib/ld-2.2.5.so
lockdemo 14555 root mem REG 33,6 1401027 26741 /lib/i686/libc-2.2.5.so
lockdemo 14555 root 0u CHR 136,3 5 /dev/pts/3
lockdemo 14555 root 1u CHR 136,3 5 /dev/pts/3
lockdemo 14555 root 2u CHR 136,3 5 /dev/pts/3
lockdemo 14555 root 3u REG 33,6 1024 69890 /tmp/mydata

The last line in this lsof report tells us that the inode 69890 is called /tmp/
mydata and that the name of the command or program that is locking this file
is called lockdemo.13

To confirm that this process does, in fact, have the file open, enter:

#fuser /tmp/mydata

12 You can see the device major and minor number of a filesystem by examining the device file
associated with the device (ls -l /dev/hda2, for example).
13 The source code for this program is currently available online at http://
www.ecst.csuchico.edu/~beej/guide/ipc/flock.html.
The Ne twork Fi le System 287
No Starch Press, Copyright © 2005 by Karl Kopper

The output gives us the file name followed by any PIDs that have the
file open:

/tmp/mydata: 14555

To learn more about the locking methods used in NFSv3, see RFC 1813,
and for more information about the locking methods used in NFSv4, see
RFC 3530. (Also see the Connectathon lock test program on the
“Connectathon Test Suites” link at http://www.connectathon.org.)

Performance Issues with NFS—Bottlenecks and Perceptions

Now that we’ve examined the locking issues required to build a cluster
filesystem that can support existing multiuser applications, we need to
examine how well the NLM and NFS perform. The two basic areas of
concern when analyzing the performance of a NFS are:

1. Where are the performance bottlenecks?

2. How will the end-user perceive the overall NFS performance?

Like an engineer building a suspension bridge, a cluster architect wants
to know how NFS will bear the load of the traffic that it will carry. As such, we
need to analyze the amount of traffic and know where the stress points or
bottlenecks are likely to occur. We also need to know the difference between
the raw numbers used to describe the speed of an NAS device and the end-
user’s perception of how well the system as a whole performs.

We'll first look at the size of the pipes used to send and receive data over
the network. As shown in Figure 16-1, the size of the network “pipe” connec-
ting the NAS server to the Ethernet backbone will normally support a gigabit
per second (Gbps). Also, as shown in Figure 16-1, the cluster node has two
network connections. The first is a 100 Mbps pipe to the network that connects
the cluster node’s real IP address (RIP) to the Director’s IP (DIP), called the
D/RIP network in LVS terms. The second network connection is used to
connect the cluster node to a network that is dedicated to NFS traffic (labeled
the “NFS Network” in Figure 16-1).

The Gigabit pipe on the NAS server and the switched Ethernet backbone
(which can be hundreds of Gbps) for the NFS network are not likely to be
the first stress points of performance. In fact, most NAS vendors support
multiple Gigabit Ethernet pipes to the Ethernet backbone. Cluster nodes can
also be built with multiple Gigabit pipes to the Ethernet backbone, though
most multiuser applications running in a cluster environment will not
saturate a single 100 Mbps pipe. (Remember that one of the benefits of using
a cluster is that more nodes can always be added if too many instances of the
same application or service on a single node are competing for access to the
100 Mbps pipe to the Ethernet backbone.)14

14 The cost to add additional nodes may be less than the cost to build multiple Gigabit pipes to
each cluster node.
288 Chap te r 16

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 16-1: Ethernet performance bottlenecks

Where, then, is the likely stress point in a shared filesystem? To answer
this question, we turn our attention to the end-user’s perception of the
overall NFS performance.

NOTE In the following discussion, the term database refers to flat files or an indexed sequen-
tial access method (ISAM) database used by legacy applications. For a discussion of
relational and object databases (MySQL, Postgres, ZODB), see Chapter 20.

Single Transactions and User Perception of NFS Performance

For example, consider users who enter orders into a system and who need to
run reports against this data. Here’s what happens: A customer calls, and a
customer service agent pulls up the customer’s record. The agent then starts
a new order and types in information. Up to this point, the difference
between clustered NFS disk performance at 100 Mbps and locally attached
storage is negligible.

The agent searches for a desired item (product, airline seat, classified ad,
and so forth). If the application can find the data the agent is looking for
using a key such as a product number or a flight number, the performance
hit created by the NFS overhead is negligible because the application does
not need to bring a significant amount of information over the network to
complete the search.

Next, the agent selects the item to modify. Now, a Posix fcntl lock
operation ensures that another agent cannot select the same item or
product. As with the above, the NFS locking overhead on a single byte range
within a file is not likely to create a noticeable performance difference as far
as the agent is concerned.

NAS device
(NFS server)

Switched Ethernet backbone

Switched Ethernet backbone

Cluster
node

NFS network

D/RIP network

G
igabit pipe

100 M
bps pipe

100 M
bps pipe
The Ne twork Fi le System 289
No Starch Press, Copyright © 2005 by Karl Kopper

Once the agent has picked his or her item, the database quantity is
updated to reflect the change in inventory, the lock is released, and perhaps
a new record is added to another database for the line item in the order.
This process is repeated until the order is complete and a final calculation
is performed on the order (total amount, tax, and so on). Again, this calcu-
lation is likely to be faster on a cluster node than it would be on a monolithic
server because more CPU time is available to make the calculation.

Given this scenario, or one like it, there is little chance that the extra
overhead imposed by NFS will impact the customer service agent’s percep-
tion of the cluster’s performance.15 But what about users running reports?

Multiple Transactions and User Perception of NFS Performance

The situation is different for the user running reports or multiple trans-
actions in a batch. This user’s perception of the cluster’s performance is
likely to depend upon how quickly the NAS server can perform I/O oper-
ations and how many lock and GETATTR operations are required for each
read or write transaction.

NOTE Historically, one drawback to using NAS servers (and perhaps a contributing factor for
the emergence of storage area networks) was the CPU overhead associated with packetiz-
ing and de-packetizing filesystem operations so they could be transmitted over the net-
work. However, as inexpensive CPUs push past the multi-GHz speed barrier, the
packetizing and de-packetizing performance overhead fades in importance. And, in a
cluster environment, you can simply add more nodes to increase available CPU cycles if
more are needed to packetize and de-packetize Network File System operations (of course,
this does not mean that adding additional nodes will increase the speed of NFS by itself).

The speed of your NAS server (the number of I/O operations per
second) will probably be determined by your budget. Discussing all of the
issues involved with selecting the best NAS hardware is outside the scope of
this book, but one of the key performance numbers you’ll want to use when
making your decision is how many NFS operations the NAS server can
perform per second. The NAS server performance is likely to become the
most expensive performance bottleneck to fix in your cluster.16

The second performance stress point—the quantity of lock and
GETATTR operations—can be managed by careful system administration
and good programming practices.

15 Unless, of course, the NAS server is severely overloaded. See Chapter 18.
16 At the time of this writing, a top-of-the-line NAS server can perform a little over 30,000 I/O
operations per second.
290 Chap te r 16

No Starch Press, Copyright © 2005 by Karl Kopper

Managing Lock and GETATTR Operations in a Cluster
Environment

You’ve seen lock operations; GETATTR operations are simply file operations
that examine the attributes of a file (who owns it, what time it was last modi-
fied, and so forth17). Lock and GETATTR operations require the NFS client
to communicate with the NAS server using the get attribute or GETATTR
call of the NFS protocol. This brings us to the topic of attribute caching—
a method you can use to improve the performance of GETATTR calls.

Managing Attribute Caching

The file metadata information that NFS clients read using the NFS GETATTR
call can be read from a cached copy of this information stored on the NFS
client instead of from the NFS server.

NOTE Some applications such as Oracle’s 9iRAC technology require you to disable attribute
caching, so the noac option discussed next may not be available to improve NFS client
performance under all circumstances.

To see the difference in performance between GETATTR operations
that use the NFS server and GETATTR calls that use cached attribute
information, mount the NFS filesystem with the noac option on the NFS
client and then run a typical user application with the following command
(also on the NFS client):

#watch nfsstat –c

Watch the value for “getattr” on this report increase as the application
performs GETATTR operations to the NFS server. Now remove the noac
option, and run the database report again. If the change in value for the
getattr number is significantly lower this time, you should leave attribute
caching turned on.

NOTE Most applications with I/O-intensive workloads will perform approximately 40 percent
more slowly when attribute caching is turned off.

The performance of the attribute caching is also affected by the timeout
values you specify for the attribute cache. See the options acregmin, acregmax,
acdirmin, acdirmax, and actimeo on the nfs man page.

NOTE Even with attribute caching turned on, the NFS client (cluster node) will remove
attribute information from its cache each time the file is closed. This is called close-to-
open or cto cache consistency. See the nocto option on the nfs man page.

17 All inode information about the file.
The Ne twork Fi le System 291
No Starch Press, Copyright © 2005 by Karl Kopper

Managing Interactive User Applications and Batch Jobs in a
Cluster Environment

In the previous discussion, you saw two types of users: interactive users who
perform many small I/O operations from the keyboard, and users who run
batch jobs and database reports.18 Each type of user places different
demands on the cluster node CPUs and on the NAS server. The first type
wants to use the CPU and the NAS server briefly and intermittently during
normal business hours, while the second wants to grab as many CPU cycles
and NAS I/O operations as possible for long periods of time. To satisfy both
types, the cluster administrator can isolate each type of user application on
two different cluster nodes.

NOTE Historically, on a monolithic server, the Unix system administrator reduced the impact
of batch jobs (CPU- and I/O-hungry programs) by running them at night or by start-
ing them with the nice command. The nice command allows the system administrator
to lower the priority of batch programs and database reports relative to other processes
running on the system by reducing the amount of the CPU time slice they could grab.
On a Linux Enterprise Cluster, the system administrator can more effectively accom-
plish this by allocating a portion of the cluster nodes to users running reports and allo-
cating another portion of the cluster to interactive users (because this adds to the
complexity of the cluster, it should be avoided if possible).

Run Batch Jobs Outside the Cluster

The NAS server, however, is still a single point of contention for these two
types of applications, so you’ll want to purchase the fastest NAS server you
can afford. Another way to reduce the contention for the NAS server, if your
budget doesn’t allow you to purchase one that is fast enough to handle both
types of users at the same time, is to use the rsync utility to make a nightly
copy of the data stored on the NAS server and place this copy of the data
onto local storage on an old server. You can then run batch jobs that do not
require up-to-the-minute data on this server (month-end accounting reports
can use the rsync snapshot of yesterday’s data, for example).

Use Multiple NAS Servers

Of course, you can also eliminate the NAS server as a single point of
contention by using more than one NAS server and spreading your data
across two or more NAS servers. For example, the central data center for a
multi-warehouse facility could store the data for each warehouse on a
separate NAS server.

However, if your budget allows, the easiest configuration for the system
administrator to build and maintain is the one that lets users store all of their
data in one place: on a single NAS server. And how fast does the NAS server

18 Possibly batch jobs that run outside of the normal business hours.
292 Chap te r 16

No Starch Press, Copyright © 2005 by Karl Kopper

need to be? In the next two sections, we will look at a few of the methods you
can use to evaluate a NAS server when it will be used to support the cluster
nodes running legacy applications.

Measuring NFS Latency

To find out how long your application program is idle and waiting for the
network and the NAS server, you can run a simulation19 or a batch program
preceded by the time command. For example, let’s say you have a batch
program called mytest in the /usr/local/bin directory that will perform read
and write operations using data stored on the NAS server.20 To test its
performance, start it from a shell prompt with the command:

#time /usr/local/bin/mytest

When the mytest program finishes executing you will receive a report
such as the following:

real 0m7.282s
user 0m1.080s
sys 0m0.060s

This report indicates the amount of wall clock time (real) the mytest
program took to complete, followed by the amount of CPU user and CPU
system time it used. Add the CPU user and CPU system time together, and
then subtract them from the first number, the real time, to arrive at a rough
estimate for the latency21 of the network and the NAS server.

NOTE This method will only work for programs (batch jobs) that perform the same or similar file-
system operations throughout the length of their run (for example, a database update that
requires updating the same field in all of the database records that is performed inside of a
loop). The method I’ve just described is useful for arriving at the average I/O require-
ments of the entire job, not the peak I/O requirements of the job at a given point in time.

You can use this measurement as one of the criteria for evaluating NAS
servers, and also use it to study the feasibility of using a cluster to replace
your monolithic Unix server. Keep in mind, however, that in a cluster, the
speed and availability of the CPU may be much greater than on the mono-
lithic server.22 Thus, even if the latency of the NAS server is greater than
locally attached storage, the cluster may still outperform the monolithic box.

19 The Expect programming language is useful for simulating keyboard input for an application.
20 You can use a Linux box as an NFS server for testing purposes. Alternatively, if your existing
data resides on a monolithic Unix server, you can simply use your monolithic server as an NFS
server for testing purposes. See the discussion of the async option later in this chapter.
21 The time penalty for doing filesystem operations over the network to a shared storage device.
22 Because processor speeds increase each year, I’m making a big assumption here that your
monolithic server is a capital expenditure that your organization keeps in production for several
years—by the end of its life cycle, a single processor on the monolithic server is likely to be much
slower than the processor on a new and inexpensive cluster node.
The Ne twork Fi le System 293
No Starch Press, Copyright © 2005 by Karl Kopper

Measuring Total I/O Operations

The second measurement you’ll need to make before you shop for a NAS
solution is the total number of I/O operations per second that your appli-
cations will require at peak processing times. To find this number, use a
Linux machine that is not doing anything else (preferably the hardware you
will use for your cluster nodes) and run the nfsstat -c command. Sample
output for this command looks like this:

Client rpc stats:
calls retrans authrefrsh
667813156 38 0
Client nfs v2:
null getattr setattr root lookup readlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
read wrcache write create remove rename
0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
link symlink mkdir rmdir readdir fsstat
0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Client nfs v3:
null getattr setattr lookup access readlink
0 0% 129765080 0% 523295 0% 10521226 1% 86507757 0% 46448 0%
read write create mkdir symlink mknod
314127903 2% 23687043 4% 748925 0% 17 0% 225 0% 0 0%
remove rmdir rename link readdir readdirplus
372452 0% 17 0% 390726 0% 4155 0% 563968 0% 0 0%
fsstat fsinfo pathconf commit
2 0% 2 0% 0 0% 12997359 2%

Assuming you have configured this machine to use NFS version 3 (a
sample /etc/fstab entry to do this is provided later in this chapter), you can
add up all of the values listed under the Client nfs v3: section of this report
and then run your sample application using the time command I just
described. When the application finishes running, use the nfsstat –c
command again, and add up the total number of NFS calls that were made.
You can then simply subtract the first number from the second number to
arrive at the total number of NFS operations your application performed.
Divide this number by the total number of elapsed seconds your application
ran (the first number returned by the time command) to determine the
average NFS I/O operations per second your application uses. Now multiply
this number by the total number of applications that will be running at peak
system load (order processing deadline for example) to arrive at a very rough
estimate of the total number of I/O operations you’ll need on your NAS
server. (For a more accurate picture of the total number of I/O operations
per second you will require, perform the same analysis using a batch job, and
add this number to your total as well.)
294 Chap te r 16

No Starch Press, Copyright © 2005 by Karl Kopper

Now let’s examine a few of the options you have for configuring your
NFS environment to achieve the best possible performance and reliability.

Achieving the Best NAS Performance Possible

Now that you know a few of the considerations you’ll need to make before
moving your legacy applications on to a cluster filesystem that uses the NFS
protocol, note a few of the things you can do to make your cluster filesystem
perform optimally:

� Dedicate a network to isolate NFS traffic.

� Use a high-quality NAS server from a NAS vendor (these NAS servers
use nonvolatile RAM to commit NFS write operations as quickly as
possible).

� Play with the read and write sizes used on the NFS client (see “wsize” and
“rsize” on the mount man page). When using NFS over TCP (discussed
in a moment), the recommended read and write size is 32K. (The read
and write size should always be larger than the NFS client’s page size,
which is usually 4K.) Sending larger read and write requests from an NFS client
can significantly reduce the latency of NFS operations; however, you can’t always
control the size of NFS packets by simply changing these numbers (the application
program that uses NFS may also need to be modified).

� Use specialized networking techniques from your NAS vendor (such as
trunking multiple network connections) to remove network perfor-
mance bottlenecks.23

NOTE In an effort to boost the NFS server’s performance, the current default Linux NFS server
configuration uses asynchronous NFS. This lets a Linux NFS server (acting as an
NAS device) commit an NFS write operation without actually placing the data on the
disk drive. This means if the Linux NFS server crashes while under heavy load, severe
data corruption is possible. For the sake of data integrity, then, you should not use
async NFS in production. An inexpensive Linux box using asynchronous NFS will,
however, give you some feel for how well an NAS system performs.24

Don’t assume you need the added expense of a GigE network for all of
your cluster nodes until you have tested your application using a high-quality
NAS server.

In Chapter 18, we’ll return to the topic of NFS performance when we
discuss how to use the Ganglia monitoring package.

23 Although, as we’ve already discussed the network is not likely to become a bottleneck for most
applications.
24 Though async NFS on a Linux server may even outperform a NAS device.
The Ne twork Fi le System 295
No Starch Press, Copyright © 2005 by Karl Kopper

NFS Client Configuration Options

Now let’s examine the NFS mount options you can use on the cluster nodes.

Putting It All Together

The NFS mount options just described can be used in an /etc/fstab entry
that looks like this:

nasserver:/clusterdata /clusterdata nfs rw, hard, nointr, tcp,
vers=3, rsize=32k, wsize=32k, fg 0 0

This single line says to mount the filesystem called /clusterdata from the
NAS server host named nasserver on the mount point called /clusterdata.
The options that follow on this line specify: the type of filesystem is NFS
(nfs), the type of access to the data is both read and write access (rw), the
cluster node should retry failed NFS operations indefinitely (hard), the NFS
operations cannot be interrupted (nointr), all NFS calls should use the TCP
protocol instead of UDP (tcp), NFS version 3 should always be used (vers=3),

tcp The Linux NFS client support for TCP helps to improve NFS
performance when network load would otherwise force an NFS
client using UDP to resend its network packets. Because UDP
performance is better when network load is light, and because NFS
is supposed to be a connectionless protocol, it is tempting to use
UDP, but TCP is more efficient when you need it most—when the
system is under heavy load. To specify tcp on the NFS client, use
mount option tcp.

vers To make sure you are using NFS version 3 and not version 2, you
should also specify this in your mount options on the NFS clients.
This is mount option vers=3.

hard To continue to retry the NFS operation and cause the system to not
return an error to the user application performing the I/O, use
mount option hard.

fg To prevent the system from booting when it cannot mount the
filesystem, use mount option fg.

N F S D I R E C T I / O

The kernel option that was introduced in kernel version 2.4.22, called
CONFIG_NFS_DIRECTIO, gives the ability to read and write directly to the NFS server to
applications that use the O_DIRECT open() flag. The NFS client, in other words, does
not cache any data. Using this kernel option is useful in cases where applications
implement their own cache coherency methods that would conflict with the normal
NFS client’s caching techniques, or when large data files (such as streaming audio
files) would not benefit from the use of an NFS client’s cache.
296 Chap te r 16

No Starch Press, Copyright © 2005 by Karl Kopper

the read (rsize) and write (wsize) size of NFS operations are 32K to improve
performance, the system will not boot when the filesystem cannot be
mounted (fg), and dump program does not need to back up the filesystem
(0) and the fsck25 program does not need to check the file system at boot
time (0).

Developing NFS

The NFS protocol continues to evolve and develop with strong support
from the industry. One example of this is the continuing effort that was
started with NFSv426 file delegation to remove the NFS server performance
bottleneck by distributing file I/O operations to NFS clients. With NFSv4,
delegation of the applications running on an NFS client can lock different
byte-range portions of the file without creating any additional network traffic
to the NAS server. This has led to a development effort called NFS Extensions
for Parallel Storage. The goal of this effort is to build a highly available
filesystem with no single point of failure by allowing NFS clients to share file
state information and file data without requiring communication with a
single NAS device for each filesystem operation.

For more information about the NFS Extensions for Parallel Storage, see
http://www.citi.umich.edu/NEPS.

Additional Starting Points for Information on Linux and NFS

In this chapter, we have only scratched the surface of a complex topic: how
to configure and use a NAS server. The focus has mostly been on lock
information and basic performance issues to get you started thinking about
the issues involved when you convert from a monolithic server to a Linux
Enterprise Cluster that will run legacy multiuser applications. Here are
additional resources to assist you:

� When building an NFS client on Linux, begin by reading the Network
Appliance Technical Article “TR3183.”

� The home page for the open source version of NFS is http://nfs.source-
forge.net.

� Linux NFS performance tuning is discussed at http://linux-
perf.nl.linux.org.

� Also, for Linux NFS performance tuning, see the “Linux NFS-HOWTO”
at http://nfs.sourceforge.net/nfs-howto/performance.html.

25 A filesystem sanity check can be performed by the fsck program on all locally attached storage
at system boot time.
26 NFSv4 (see RFC 3530) will provide a much better security model and allow for better
interoperability with CIFS. NFSv4 will also provide better handling of client crashes and robust
request ordering semantics as well as a facility for mandatory file locking.
The Ne twork Fi le System 297
No Starch Press, Copyright © 2005 by Karl Kopper

NOTE See especially the online transaction processing (OLTP) benchmark, which was pat-
terned after the widely used TCP-C benchmark.

� An excellent discussion of the methods for troubleshooting NFS prob-
lems is available in the book Linux NFS and Automounter Administration
by Erez Zadok.

In Conclusion

If you are deploying a new application, your important data—the data that is
modified often by the end-users—will be stored in a database such as
Postgres, MySQL, or Oracle. The cluster nodes will rely on the database
server (outside the cluster) to arbitrate write access to the data, and the
locking issues I’ve been discussing in this chapter do not apply to you.27
However, if you need to run a legacy application that was originally written
for a monolithic Unix server, you can use NFS to hide (from the application
programs) the fact that the data is now being shared by multiple nodes
inside the cluster. The legacy multiuser applications will acquire locks and
write data to stable storage the way they have always done without even
knowing that they are running inside of a cluster—thus the cluster, from the
inside as well as from the outside, appears to be a single, unified computing
resource.

27 To build a highly available SQL server, you can use the Heartbeat package and a shared storage
device rather than a shared filesystem. The shared storage device (a shared SCSI bus, or SAN
storage) is only mounted on one server at a time—the server that owns the SQL “resource”—so
you don’t need a shared filesystem.
298 Chap te r 16

No Starch Press, Copyright © 2005 by Karl Kopper

PART IV
M A I N T E N A N C E A N D

M O N I T O R I N G
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

17
T H E S I M P L E N E T W O R K

M A N A G E M E N T P R O T O C O L
A N D M O N

In this chapter, we’ll see how the Simple
Network Management Protocol (SNMP)

can be used in conjunction with the Mon
monitoring package to alert you of problems

on the cluster nodes. The SNMP daemon, snmpd,
runs on each cluster node, and the Mon monitoring
daemon runs on the cluster node manager sitting outside of the cluster.
When Mon finds a problem, it alerts you via an email message or a text
message sent to your PDA device, so that you can take action before the
problem affects users running mission-critical applications on the cluster.

Mon

The humbly named Mon monitoring package uses a hierarchical relation-
ship between events to decide whether or not to alert the system admin-
istrator. For example, if you are watching the http and telnet daemons on
a cluster node, and you are also watching to see if the node is alive using
the ping utility (and ICMP packets), you don’t need three alerts: the first
No Starch Press, Copyright © 2005 by Karl Kopper

reporting that http is not available, the second complaining that telnet
doesn’t work, and finally a third telling you the node is not available on
the network.

Mon Alerts

Mon can send alerts using a variety of methods, including:

� SNMP traps.

� Email messages.

� Short Message System (SMS) text messages to a cell phone or
PDA device.

� A custom script or program.

Mon allows you to control how often an alert is sent if a service continues
to be down for a specified time period and to control where and how often
alerts are sent according to the day of the week or the time of day.

Mon Monitoring Scripts

To monitor a service, Mon runs a monitoring script and passes arguments to
it (an IP address to monitor, for example). Mon looks at three things
returned by the script:

� The exit or return status of the script.

� The first line of output printed by the monitor script (the status summary
in Mon-speak).

� Any remaining output from the monitor script (the status detail).

Mon and Monitoring Script Return Codes

Mon looks at the return code of the monitoring script. If the return code is
0, Mon knows that nothing bad has happened. Any nonzero return value tells
Mon that the test failed. If a script returns a nonzero status more than
once, Mon will start comparing the status summary, which is the first line
of text printed by the script, to see if it should issue another alert due to the
change in the status summary.

Where to Run Mon

In the Linux Enterprise Cluster we will run Mon on a cluster node manager,
a machine outside the cluster (see Figure 17-1). The cluster node manager
can also offer services to other cluster nodes such as a print spooler, an NIS
or LDAP server, a fax server, an email server, and so forth.
302 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE The cluster node manager should be built in a high-availability configuration (a pair
of servers running Heartbeat as described in Part II) in order to avoid a single point of
failure. Examples of how to use Mon with Heartbeat are discussed later in this chapter.

Figure 17-1: Mon and snmpd for cluster monitoring

Figure 17-1 shows Mon running on the primary cluster node manager
and one snmpd daemon running on each cluster node. We’ll see in the recipe
that follows how to configure Mon to communicate with the snmpd daemon
on each node.

Basic Mon Recipe

This chapter has three Mon recipes that build on each other to provide a
Mon configuration capable of monitoring the cluster nodes using SNMP.
Each cluster node runs the snmpd daemon, which monitors system resources
and writes information to a Management Information Base (MIB) stored
locally on each cluster node. Mon, running on the cluster node manager,
examines the health of each cluster node by reading each of these MIBs
across the network, as shown in Figure 17-2.

Notice in Figure 17-2 that the MIB is stored locally on each cluster node.
Mon can select the information it wants from each MIB on the cluster nodes.

List of ingredients:

The Mon software (on the CD-ROM included with this book or from
http://www.kernel.org)

The fping package (on the CD-ROM or from http://www.fping.com)

The SNMP software package

Primary cluster
node manager

Backup cluster
node manager

LVS director Backup LVS
director

Cluster node Cluster node

Client
computer

Ethernet
network

Mon

snmpd snmpd snmpd snmpd
The Simple Network Management Protoco l and Mon 303
No Starch Press, Copyright © 2005 by Karl Kopper

Figure 17-2: Mon examines the MIB of each cluster node

Step 1: Compile and Install the fping Package

Your first step is to compile and install the fping package. You’ll find the
fping source code on the CD-ROM in the chapter17 directory. After untarring
the fping package (see Appendix A), enter the following commands in the
fping source directory to install the /usr/local/sbin/fping program:

#./configure
#make
#make check
#make install

NOTE You can use fping in conjunction with your own script to monitor the status of the clus-
ter nodes in the network, as discussed on the fping man page. However, in this recipe
we will use the powerful features of the Mon package.

Step 2: Install the SNMP Package

Next, you need to install the Perl SNMP package that Mon will use to
monitor hosts using SNMP. Your distribution probably already ships with
SNMP support, but it may not include the Perl SNMP package.

You can compile the Perl SNMP package from CPAN (called simply
“SNMP”). If this compile fails, you’ll need to rebuild the entire SNMP
package and the Perl SNMP package from the source code on the CD-ROM
included with this book. To do so, first untar the net-snmp-version.tar file
from the CD-ROM on to your local hard drive, and then from inside the net-
snmp-version source directory, enter the following.

Primary cluster
node manager

Cluster node 1

Mon

Cluster node 2

Cluster node 3

MIBMIB

MIB

snmpd

snmpd

snmpd
304 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

#./configure
#make
#umask 022
#make install

NOTE You must run these commands as root.

To build and install the Perl SNMP package, enter:

#cd perl
#perl Makefile.PL -NET-SNMP-CONFIG="../net-snmp-config"
#make
#make install

NOTE The perl directory is located underneath the net-snmp source code directory.

Instead of compiling and installing the source from the CD-ROM
included with this book, you may want to get the latest version by
installing the net-snmp-devel package found on the download link at
http://net-snmp.sourceforge.net and using CPAN to install SNMP with
the commands:

#perl –MCPAN –e shell
cpan> install SNMP

These two commands download and install the latest Perl SNMP package
from the CPAN site.

Step 3: Install the Required CPAN Modules for Mon

The chapter17/dependencies directory on the CD-ROM holds the Perl modules
you need to get Mon up and running. To install these modules, copy them to
your local hard drive, untar them, and then cd into each directory and enter
the commands:

#perl Makefile.PL
#make
#make test
#make install

NOTE If the SNMP installation fails, use the net-snmp source code included on the CD-ROM
as described in the previous section.
The Simple Network Management Protoco l and Mon 305
No Starch Press, Copyright © 2005 by Karl Kopper

Step 4: Install the Mon Software

Before installing Mon, create the directory where the Mon files will reside
before downloading:

#mkdir –p /usr/lib/mon

Next, untar the Mon tar file located in the chapter17 directory on the CD-
ROM into this directory (or download Mon from http://www.kernel.org/
software/mon).

#mount /mnt/CD
#cd /mnt/CD/chapter17
#tar xvf mon-<version>.tar -C /usr/lib
#mv /usr/lib/mon-<version> /usr/lib/mon

You should now have a /usr/lib/mon directory with a list of files that looks
like this:

alert.d clients CREDITS INSTALL mon.d README utils
cgi-bin COPYING doc KNOWN-PROBLEMS mon.lsm state.d VERSION
CHANGES COPYRIGHT etc mon muxpect TODO

D O W N L O A D I N G M O D U L E S F R O M C P A N

You can also download the CPAN modules (see Chapter 16 for an example and
more information about how to use CPAN) using the commands:

#perl -MCPAN -e shell
cpan>install Time::Period

cpan>install Time::HiRes

cpan>install Convert::BER

cpan>install Mon::Protocol

cpan>install Mon::SNMP

cpan>install Mon::Client

And, depending upon what you want to monitor, you may also wish to install
the following optional modules:

cpan>install Filesys::DiskSpace
cpan>install Net::Telnet

cpan>install Net::LDAPapi

cpan>install Net::DNS

cpan>install SNMP
306 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

Edit /etc/services, and add the following two lines to the end of the file:

mon 2583/tcp # MON
mon 2583/udp # MON traps

Step 5: Create the /etc/mon/mon.cf Configuration File

To help make administration of Mon easier, create a symbolic link from
the /usr/lib/mon/etc directory (just created by the software download) to
the /etc/mon directory on the system with the following command:

#ln -s /usr/lib/mon/etc /etc/mon

The chapter17 directory on the CD-ROM contains the following sample
configuration file.

NOTE Do not enter the arrows and the numbers that follow them; they appear here for docu-
mentation purposes only.

#
Simplified cluster "mon.cf" configuration file
#
alertdir = /usr/lib/mon/alert.d h 1
mondir = /usr/lib/mon/mon.d h 2
logdir = /usr/lib/mon/logs h 3
histlength = 500 h 4
dtlogging = yes h 5
dtlogfile = /usr/lib/mon/logs/dtlog h 6

hostgroup clusternodes clnode1 clnode2 clnode3 h 7
h 8

watch clusternodes h 9
 service cluster-ping-check h 10

interval 5s h 11
monitor fping.monitor h 12
period wd {Sa-Su} h 13

alert mail.alert alert@domain.com h 14
upalert mail.alert alert@domain.com h 15
alertevery 1h h 16

1 f Path to the alert scripts.
2 f Path to the monitor scripts.
3 f Path to the log file.
4 f The maximum number of events to save in the log.
5 f Enable downtime logging.
6 f Log to store downtime events.
7 f List of cluster nodes assigned to a group.
8 f Required empty line after each hostgroup.
The Simple Network Management Protoco l and Mon 307
No Starch Press, Copyright © 2005 by Karl Kopper

9 f Watch all of the nodes in the group.
10 f Call the service anything you want.
11 f How frequently the fping utility is run.
12 f Use the fping.monitor script.
13 f Type perldoc Time::Period for syntax.1
14 f When one of the nodes goes down.
15 f When one of the nodes comes up.
16 f Only send alert email once per hour.

NOTE This configuration file is located on the CD-ROM in the chapter17 directory.

Note the time period definition in this configuration file is period wd {Sa-
Su}. If the host does not reply to a ping attempt when Mon is running outside
this time period, no alert will be sent. This example uses Saturday thru Sunday
as its period, which means the host can fail at any time and Mon will report it.

NOTE We are using a very short interval of five seconds (5s) for testing purposes. You may
want to reduce the amount of ping (ICMP) traffic on your network by increasing this
time interval when you use Mon in production.

Step 6: Test by Running the fping.monitor and mail.alert Scripts Manually

To simulate what Mon will do, run our alert script manually:

#/usr/lib/mon/mon.d/fping.monitor clnode1

1 wd is a code passed to the Time::Period Perl program to indicate the scale used to define the
time period. The Perl period program tests to see if the time right now falls within the time
period value you assign using the wd scale. The wd scale permits 1-7 or su, mo, tu, we, th, fr, sa to be
used in the period definition. Thus, {Sa-Su} means the period is Saturday through Sunday, which
is the same as saying all week or anytime. (A blank period would mean the same thing.)

C O M P L E X M O N C O N FI G U R A T I O N F I L E S

A N D T H E M 4 M A C R O P R O C E S S O R

Complex Mon configuration files can be built using the GNU m4 macro processor.
The full documentation for the m4 processor is available online at http://
www.gnu.org/software/m4/manual/index.html. Why use the m4 macro processor
to process your Mon configuration files? The m4 macro processor allows you to
create sophisticated configuration files that contain, among other things, variables.
You don’t have to retype the same thing multiple times throughout the configuration
file (one email address for all of your alerts, for example). See the /usr/lib/mon/etc/
example.m4 configuration file that comes with the Mon distribution for an example.
When you build a configuration file that relies on the m4 processor, you can
manually convert it to a normal configuration file that Mon understands by passing it
through the m4 macro processor each time you make a change, or you can start
Mon with the -c option followed by the full path and file name of the configuration
file and Mon will pass your configuration file through the m4 macro processor for
you automatically.
308 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

Assuming the clnode1 computer is online and able to reply to ICMP
packets, you should see output that looks like this:

start time: <current date>
end time : <current date>
duration : 0 seconds

--
reachable hosts rtt
--
209.100.100.2 58.10 ms

This report indicates that cluster node1 at IP address 209.100.100.2
responded to the ping in 58.10 milliseconds.

If this script does not work properly, you may need to tell Perl where to
find the fping utility. For example, edit the fping.monitor file, and change
the line:

my $CMD = "fping -e -r $RETRIES -t $TIMEOUT";

so it looks like this:

my $CMD = "/usr/local/sbin/fping -e -r $RETRIES -t $TIMEOUT";

To test the email alert, enter:

#echo "Testing 123" | /usr/lib/mon/alert.d/mail.alert alert@domain.com

where alert@domain.com is the email address you would like to send email
messages to.

Step 7: Create the Mon Log Directory and Mon Log File

Create the Mon log directory based on the logdir parameter you used in the
mon.cf file.

#mkdir -p /usr/lib/mon/logs

Step 8: Start the Mon Program in Debugging Mode and Test

Before we run Mon as a daemon, we can run it from a shell prompt to check
our configuration for syntax errors with the command:

#/usr/lib/mon/mon -d
The Simple Network Management Protoco l and Mon 309
No Starch Press, Copyright © 2005 by Karl Kopper

If all of the cluster nodes are “pingable,” you will see (among other
things) lines like the following scroll by at each interval (recall that we set the
interval to five seconds for testing purposes):

PID 8211 (clusternodes/cluster-ping-check) exited with [0]

This line indicates that the cluster responded to the ping test. However,
if you take down a cluster node, you’ll see the exit status of the script change
from 0 to 1. You can also watch the /var/log/messages file for a report that the
mail.alert script was run. When Mon sees the node drop off the network, you
should get an email alert, and when it returns to the network, you should
receive an email upalert.

Now let’s build on this basic Mon configuration by adding support for
the SNMP protocol.

Mon and SNMP “Proof of Concept” Recipe

SNMP is a protocol for network management, and a clustered environment
of homogenous, or even semi-homogenous, hosts is the ideal way to take full
advantage of it.

But before you can use SNMP, you’ll need to install the Net-SNMP
(formerly UCD-SNMP) package on each cluster node.

Step 1: Install Net-SNMP Client Software on Each Cluster Node

You can build and compile the net-snmp package using the source tar ball
located in the chapter17 directory on the CD-ROM included with this book,
but your distribution probably already contains the SNMP software. Red Hat,
for example, uses the following two RPM packages:

� ucd-snmp

� ucd-snmp-utils

Check to see whether you already have them with the command:

#rpm –qa | grep ucd-snmp

If you don’t, you’ll need to install them (see Appendix D).

NOTE We built the Net-SNMP software from source code earlier in this recipe because Mon
requires the Perl SNMP support. However, this only needs to be done on the cluster node
manager; it is not required on each cluster node (though there’s no harm in compiling
and installing SNMP from source code on all of your cluster nodes).
310 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

Step 2: Create the snmp.conf Configuration File

All cluster nodes use the same snmp.conf configuration file. You can create it
by entering the following lines into the /etc/snmp/snmpd.conf file:

syslocation "Room 133" h 1
syscontact alert@domain.com h 2
rwcommunity private h 3
rocommunity public h 4
authtrapenable 1 h 5
trapcommunity trapServ h 6
trapsink localhost h 7
trap2sink localhost h 8
disk / 100000 h 9
disk /var 100000 h 9

1 f Quoted string.
2 f Who is responsible for this system?
3 f Community names are really passwords.
4 f Password for read-only information.
5 f Report SNMP authentication failures.
6 f Password to use when sending traps.
7 f Where to send SNMP traps.
8 f SNMP version 2 traps.
9 f Disk partition and minimum freespace.

NOTE If you have an existing /etc/snmp/snmpd.conf file, you can make a backup copy and
remove everything from the file except for the lines shown in this example.

The community read-write and read-only names in this file (rwcommunity
and rocommunity) are really the SNMP “passwords” used to access and write to
the SNMP MIBS for this agent. Do not use these common values unless you
are building your system behind a firewall.

The last two disk lines tell SNMP to raise an alert when there is less than
100 MB of free disk space on either of the disk partitions / or /var.

Step 3: Start the SNMP Agent

The init script to start the SNMP agent should have been installed with the
RPM package. Check for the existence of the file in the /etc/init.d directory,
and then run the command:

#service snmpd start

or

#/etc/init.d/snmpd start
The Simple Network Management Protoco l and Mon 311
No Starch Press, Copyright © 2005 by Karl Kopper

The /var/log/messages file should report:

snmpd: snmpd startup succeeded

NOTE Be sure snmpd starts each time the system boots on all of the cluster nodes. See
“Respawning Services with init” in Chapter 1 for instructions on how to automatically
restart the snmpd daemon on each cluster node if it fails.

Step 4: View the SNMP MIB Locally

Examine the MIB on a cluster node with the command:

#snmpwalk localhost -v 1 -c public

This command should produce a long report showing the MIB on the
cluster node indicating that the local SNMP agent (snmpd) is responding to
the query.

Now let’s look at something useful with the command:

#snmpwalk -v 1 localhost -c public .1.3.6.1.4.1.2021.9

NOTE In this command, we are using a numeric value instead of a symbolic name to locate
information in the SNMP management information base, or MIB. To find the symbolic
or textual name of this numeric object identifier (OID) number, use:

 #snmptranslate .1.3.6.1.4.1.2021.9

If you set the disk values as shown in the configuration file example, you
should see a disk report like this:

enterprises.ucdavis.dskTable.dskEntry.dskIndex.1 = 1
enterprises.ucdavis.dskTable.dskEntry.dskIndex.2 = 2
enterprises.ucdavis.dskTable.dskEntry.dskPath.1 = /
enterprises.ucdavis.dskTable.dskEntry.dskPath.2 = /var
enterprises.ucdavis.dskTable.dskEntry.dskDevice.1 = /dev/sdb2
enterprises.ucdavis.dskTable.dskEntry.dskDevice.2 = /dev/sda3
enterprises.ucdavis.dskTable.dskEntry.dskMinimum.1 = 100000
enterprises.ucdavis.dskTable.dskEntry.dskMinimum.2 = 100000
enterprises.ucdavis.dskTable.dskEntry.dskMinPercent.1 = -1
enterprises.ucdavis.dskTable.dskEntry.dskMinPercent.2 = -1
enterprises.ucdavis.dskTable.dskEntry.dskTotal.1 = 381121
enterprises.ucdavis.dskTable.dskEntry.dskTotal.2 = 253871
enterprises.ucdavis.dskTable.dskEntry.dskAvail.1 = 268888
enterprises.ucdavis.dskTable.dskEntry.dskAvail.2 = 162940
enterprises.ucdavis.dskTable.dskEntry.dskUsed.1 = 92554
enterprises.ucdavis.dskTable.dskEntry.dskUsed.2 = 77824
312 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

enterprises.ucdavis.dskTable.dskEntry.dskPercent.1 = 26
enterprises.ucdavis.dskTable.dskEntry.dskPercent.2 = 32
enterprises.ucdavis.dskTable.dskEntry.dskPercentNode.1 = 18
enterprises.ucdavis.dskTable.dskEntry.dskPercentNode.2 = 0
enterprises.ucdavis.dskTable.dskEntry.dskErrorFlag.1 = 0
enterprises.ucdavis.dskTable.dskEntry.dskErrorFlag.2 = 0
enterprises.ucdavis.dskTable.dskEntry.dskErrorMsg.1 =
enterprises.ucdavis.dskTable.dskEntry.dskErrorMsg.2 =

NOTE You see the University of California at Davis name in this disk space SNMP MIB
because they developed it.

Notice especially the dskEntry.dskErrorFlag lines (shown in bold in this
example). These lines indicate whether the disk is below (value 0) or above
(value 1) the threshold you specified in the snmpd.conf file. Take a moment to
modify the disk threshold value (in megabytes) to one that is less than the
amount of free disk space on one of the partitions (use the command df -m
to check). Then enter:

#service snmpd restart

or

#/etc/init.d/snmpd restart

NOTE A kill HUP to the PID of the snmpd daemon accomplishes the same thing.

Then enter the same snmpwalk command again:

#snmpwalk -v 1 localhost –c public .1.3.6.1.4.1.2021.9

You should now see that the error flag has been set to indicate that the
disk partition is running out of disk space.

Step 5: Install the SNMP Monitoring Agents

We’re now ready to tell Mon to examine the SNMP MIB on the cluster node
manager. In this test, we are using Mon to monitor the SNMP agent running
on the local host (the cluster node manager itself) as an example. You’ll be
able to do the same for the entire cluster by simply launching SNMP daemons
on all of your cluster nodes and adding them to the Mon configuration file
on the cluster node manager.

NOTE You must have installed the Perl SNMP package as described earlier in this chapter so
that the SNMP monitoring scripts that come with the Mon package can run properly
on the cluster node manager.
The Simple Network Management Protoco l and Mon 313
No Starch Press, Copyright © 2005 by Karl Kopper

In this example, we will use the SNMP disk monitoring program called
netsnmp-freespace.monitor located on the CD-ROM in the chapter17
directory and online at http://ftp.kernel.org/pub/software/admin/mon/
contrib/index.html. To install, enter:

#cp /mnt/CDROM/chapter17/netsnmp-freespace.monitor /usr/lib/mon/mon.d/
#chmod 755 /usr/lib/mon/mon.d/netsnmp-freespace.monitor
#/usr/lib/mon/mon.d/netsnmp-freespace.monitor localhost

If you downloaded this monitoring utility and you see the error message
localhost returned an SNMP error: Unknown user name, modify the netsnmp-
freespace.monitor script to force it to use Version 2 of the SNMP protocol.
(See the netsnmp-freespace.monitor script included on the CD-ROM for this
one-line change.)

If you need to use a community name other than public to be able to
read the SNMP MIB (because you specified something other than public in
the snmpd.conf file), use the -c option to the netsnmp-freespace.monitor script.

Examine the Output of netsnmp-freespace.monitor

This script returns nothing if a disk space threshold has not been violated.
Try modifying the freespace threshold in /etc/snmp/snmpd.conf, and then
restart the snmpd service (service snmpd restart or /etc/init.d/snmpd restart)
and run this command again. When a disk is violating a freespace threshold,
you’ll see a report like this:

#/usr/lib/mon/mon.d/netsnmp-freespace.monitor localhost
localhost
localhost:/(/dev/sdb2) total=372 used=91(26%) free=261 err=/: less than 300000
free (= 267767)

Install Mon on All Cluster Nodes

You are now ready to put Mon to work and ask it to watch the disk space on
all of your cluster nodes. To do so, install the /etc/snmp/snmpd.conf file you
created on all of your cluster nodes, and start the snmpd daemon on each
node.

You can use this sample mon.cf configuration file on the cluster node
manager to add netsnmp-freespace.monitor.

alertdir = /usr/lib/mon/alert.d
mondir = /usr/lib/mon/mon.d
logdir = /usr/lib/mon/logs
histlength = 500
dtlogging = yes
dtlogfile = /usr/lib/mon/logs/dtlog
314 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

hostgroup clusternodes localhost

watch clusternodes
service cluster-ping-check

interval 30s
monitor fping.monitor
period wd {Su-Sa}

alert mail.alert alert@domain.com
upalert mail.alert alert@domain.com
alertevery 1h

service disk-space-check
interval 15m
monitor netsnmp-freespace.monitor
period wd {Su-Sa}

alert mail.alert alert@domain.com
upalert mail.alert alert@domain.com

For the moment, the clusternodes group contains only localhost (which
should point to the loopback IP address 127.0.0.1 in the /etc/hosts file). Start
Mon again, and you can generate alerts based on disk thresholds on the local
system by modifying the /etc/snmp/snmpd.conf file and restarting the snmpd
daemon.2

Now that we have a proof of concept for an SNMP configuration using
Mon and SNMP, let’s build a configuration that can be used to monitor
important system functions on each cluster node.

Mon and SNMP “Real-World” Recipe

Sophisticated resource monitoring is easy with SNMP. By simply adding the
correct line to your snmpd.conf file, you can add useful information to the
MIB that can then be accessed by the Mon daemon from the cluster node
manager.

Step 1: Create the snmpd.conf on All Cluster Nodes

On the CD-ROM in the chapter17 directory, you’ll find a file called
snmpd.conf.example that contains the following configuration to monitor both
disk space and processes:

GENERAL SNMP INFORMATION
syslocation "Room 133"
syscontact alert@domain.com
rwcommunity private
rocommunity public
authtrapenable 1

2 If you used the technique described in Chapter 1 to start snmpd from an entry in the /etc/inittab
file, you need only enter the following command to restart snmpd:
#killall snmpd
The Simple Network Management Protoco l and Mon 315
No Starch Press, Copyright © 2005 by Karl Kopper

trapcommunity trapServ
trapsink localhost
trap2sink localhost

DISK SPACE MONITORING
Disk partitions should have at least 100 MB of
freespace.
disk / 100000
disk /var 100000
disk /home 10000
disk /usr 10000

PROCESS MONITORING
System init
proc init

Job Scheduling and system time.
proc atd
proc ntpd

System logging
proc syslogd

Start services based on in-bound connections
proc xinetd

Remote machine login
proc sshd

Printing
proc lpd

Web services (may be used in cluster environment
for monitoring servers inside the cluster).
proc httpd

NFS Client software
proc portmap
proc lockd
proc rpc.statd
Optional Automounter daemon
proc automount

NIS Client software
proc ypbind

NOTE The crond daemon is not included here because we will only run the cron daemon on
one node. (See Chapter 19.)
316 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

Copy this file into place by naming it /etc/snmp/snmpd.conf, and then
restart the snmpd daemon and check the /var/log/messages file to see if any
errors are reported when the snmpd daemon first starts.

Step 2: Install netsnmp-proc.monitor and the New mon.cf File on the Cluster
Node Manager

Mon only needs to be run on the cluster node manager. The netsnmp-
proc.monitor script is also included on the CD-ROM (modified to support
establishing the SNMP session using version 2 of the protocol).3 Copy it to
the /usr/lib/mon/mon.d directory and make sure to set the execute permissions
on the file:

#cp /mnt/CDROM/chapter17/netsnmp-proc.monitor /usr/lib/mon/mon.d/
#chmod 755 /usr/lib/mon/mon.d/netsnmp-proc.monitor

The CD-ROM also includes another mon.cf configuration file named
mon.cf.2:

alertdir = /usr/lib/mon/alert.d
mondir = /usr/lib/mon/mon.d
logdir = /usr/lib/mon/logs
histlength = 500
dtlogging = yes
dtlogfile = /usr/lib/mon/logs/dtlog

hostgroup clusternodes localhost clnode1 clnode2 clnode3

watch clusternodes
service cluster-ping-check

interval 30s
monitor fping.monitor
depend clusternodes:cluster-ping-check
period wd {Su-Sa}

alert mail.alert alert@domain.com
upalert mail.alert alert@domain.com
alertevery 1h

service disk-space-check
interval 15m
monitor netsnmp-freespace.monitor –t 10000000
depend clusternodes:cluster-ping-check
period wd {Su-Sa}

alert mail.alert alert@domain.com
upalert mail.alert alert@domain.com

service process-check
interval 30s

3 You can also download the script from http://ftp.kernel.org/pub/software/admin/mon/
contrib/monitors/netsnmp/.
The Simple Network Management Protoco l and Mon 317
No Starch Press, Copyright © 2005 by Karl Kopper

monitor netsnmp-proc.monitor –t 10000000
depend clusternodes:cluster-ping-check

period wd {Su-Sa}
alert mail.alert alert@domain.com
upalert mail.alert alert@domain.com

service telnet-check
description telnet to servers in cluster
interval 2m
monitor telnet.monitor
depend clusternodes:cluster-ping-check
period wd {Sun-Sat}

alertevery 1h

You may want to add additional (hostgroup) entries to this file in order to
monitor the LDAP server,4 the DNS server, and the mail server using
additional monitor scripts available from the download site.

NOTE The SNMP monitors are being passed the -t 10000000 argument, which means that the
SNMP response can take up to ten seconds.

This configuration file introduces the syntax necessary to create a
hierarchical relationship between the things being monitored. The line:

depend clusternodes:cluster-ping-check

when inserted in each service paragraph causes Mon to suppress alerts if a
cluster node does not respond to a ping.

NOTE See the Mon man page for the complete description of the depend syntax. (You can use
any Perl expression that evaluates as true or false to create complex dependencies.)

Step 3: Install the Mon init Script

The chapter17 directory on the CD-ROM contains a script called mon that can
be placed in the /etc/init.d directory and then added to the normal boot
process using the chkconfig command (on Red Hat systems).

#cp /mnt/CDROM/chapter17/mon /etc/init.d/mon
#chmod 755 /etc/init.d/mon
#chkconfig --add mon

4 Requires the Net::LDAP package (which requires the Convert::ASN1 package) from CPAN.
Here is a sample mon entry to use the ldap.monitor to look up the account admin in the LDAP
database for basedn yourdomain.com:
monitor ldap.monitor -basedn "dc=yourdomain,dc=com" -filter="uid=admin" -attribute=uid -value=admin
318 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

Step 4: Run SNMP and Mon

With the new configuration files in place, restart the SNMP service on each
cluster node and the Mon service on the cluster node manager.5 On each
cluster node, enter:

#service snmpd restart

On the cluster node manager, start Mon in debug mode to make sure
your configuration file is working properly (use /usr/lib/mon/mon -d). Once you
are sure that Mon works, start it using the init script with the command:

#service mon start

or

#/etc/init.d/mon start

NOTE If you receive an error message that the fping monitor could not be located, see the
instructions earlier in this chapter for specifying the path to the fping binary in the
/usr/lib/mon/mon.d/fping.monitor script.

Email Alerts from Mon

When Mon sends an email alert about a failed process, it looks like this:

Subject: ALERT clusternodes/process-check: localhost:ntpd,ypbind

Summary output : localhost:ntpd,ypbind

Group : clusternodes
Service : process-check
Time noticed : <Time and Date>
Secs until next alert :
Members : localhost

Detailed text (if any) follows:

localhost:ntpd Count=0 Min=0 Max=0
localhost:ypbind Count=0 Min=0 Max=0

The status summary is placed in the subject line of the email, and the
status detail is included in the body of the message. This example shows Mon
alerting you that ypbind and ntpd are not running on the localhost (the
machine Mon is running on).

5 In Chapter 19, we will discuss how to run a command on all cluster nodes.
The Simple Network Management Protoco l and Mon 319
No Starch Press, Copyright © 2005 by Karl Kopper

Creating Your Own SNMP Script

The SNMP software package allows you to create your own resource
monitoring script, which is run (usually not more than every 30 seconds) to
check the health of system resources and report errors into an SNMP MIB
that can be monitored by the Mon program running on a central monitoring
server. This not only allows you to customize what you are monitoring by
writing a simple script, but with a slightly more complex program or script
(one that stores values in a temporary file), you can also monitor the system
for sudden changes (like a sudden increase in swap space usage). By default,
SNMP runs your script and places the exit status of the program after each
execution into MIB 1.3.6.1.4.1.2021.8.1.100 and the first line of output (on
stdout) from the script into MIB 1.3.6.1.4.1.2021.8.1.101. (Any additional
output returned by the script is ignored.)

The syntax in the /etc/snmp/snmpd.conf file to specify the name of the
script, or program, to run looks like this:

sh NAME PROG [ARGS]

where:

NAME is an arbitrary name to describe your monitoring script.

PROG is the full path and file name of your script, or program.

ARGS an optional argument or list of arguments to pass to the script.

A sample entry in the /etc/snmp/snmpd.conf configuration file looks like
this:

sh check-dns /usr/local/check-dns

Here, the program /usr/local/check-dns will run (without arguments)
when the MIB is queried, or every 30 seconds if the MIB is queried more
often than that.

A Sample Custom SNMP Script
Now, let’s create the /usr/local/check-dns script with the following simple
bash script:

#!/bin/bash
host=`uname -n`

hostnotfound=`/usr/bin/host www.google.com | grep "not found"`

if ["$hostnotfound"];then
echo "DNS lookup not working properly on $host"
exit 1
fi
320 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

If the DNS query of host www.google.com fails, the script returns one line of
error and exits with a return value of 1. Save this script to the file /usr/local/
check-dns (be sure to set the execute bits with the command chmod 755 /usr/
local/check-dns) and run it first with a known good host like www.google.com;
then modify the script and try a bogus host name (one that does not resolve).
Then add the line shown above to your /etc/snmp/snmpd.conf file and start, or
restart, the snmpd daemon.

When using a bogus host entry in the script file, you should see the
following output when you examine the MIB entry:

#snmpwalk -v 1 localhost -c public 1.3.6.1.4.1.2021.8.1.101
UCD-SNMP-MIB::extOutput.1 = STRING: DNS services not working properly on
primary.yourdomain.com

And when you change the script back to a valid host name for the DNS
query, you should see nothing in the MIB when you run the same snmpwalk
command.

Monitoring Your SNMP Script with Mon

Now let’s monitor this SNMP MIB with another SNMP monitoring script
called netsnmp-exec.monitor. Copy this script from the chapter17 directory on
the CD-ROM into the /usr/lib/mon/mon.d directory, and set the permissions of
the file so Mon can execute it:

#cp /mnt/CDROM/chapter17/netsnmp-exec.monitor /usr/lib/mon/mon.d
#chmod 755 /usr/lib/mon/mon.d/netsnmp-exec.monitor

Create a mon.cf service entry (underneath the existing watch clusternodes
entry) that looks like this:

service custom-snmp-monitor-script
description Checks the output of the custom SNMP script
interval 5s
monitor netsnmp-exec.monitor
depend clusternodes:ping
period wd {Su-Sa}
alert mail.alert alert@yourdomain.com
upalert mail.alert alert@yourdomain.com

(Of course, you would normally install this script on all of the cluster
nodes and modify the /etc/snmp/snmpd.conf file on all of the cluster nodes.)

You can test this Mon configuration (once you’ve restarted Mon) by
modifying the check-dns script again and changing the host to a bogus host.
This should cause Mon to raise the alert you have specified (Mon will send
an email to alert@yourdomain.com in this example).
The Simple Network Management Protoco l and Mon 321
No Starch Press, Copyright © 2005 by Karl Kopper

You can have multiple custom monitoring scripts. Each additional script
can be monitored individually with the netsnmp-exec.monitor script by passing
it the -n argument followed by a number to represent which script to use
from the snmpd.conf file. The default, if the -n argument is not used, is to
check all scripts.

NOTE You may also want to use the -t 10000 argument to specify a timeout value for the
netsnmp-exec.monitor script in your mon.cf entry.

Things to Monitor with SNMP Monitoring Scripts

Using this method, you will only be able to send one line of an error
message;6 however, a single script can return a different line of output each
time it runs, and Mon will report it each time (because Mon will consider
each change in output a new alert).

Here are a few things that you might want to monitor with your custom
monitoring scripts:

� A sudden increase in page faults. (A bash script to do this called page-
faults.sh is included in the chapter17 directory on the CD-ROM.)7

� A sudden increase or decrease in free swap space, or if free swap space is
getting too close to the maximum. (See the script swap.sh also included
on the CD-ROM in the chapter17 directory.)

� The number of defunct8 processes on the system.

� Logins with very high idle (inactivity) times.

� Processes consuming too much of the CPU.

� Assuming you are using NFS clients, you may also want to monitor the
number of IP reassembly failures (failed attempts by the kernel to reas-
semble network packets containing fragmented data) by examining the
SNMP variable IP-MIB::ipReasmFails. Here is a sample command that will
do this:

#snmpwalk localhost -c public IP-MIB::ipReasmFails.0

NOTE You can write a script that calls another script, but just be sure to pass the exit status of
the child script back as the exit status of the main script or SNMPD will not see it.

6 See the SNMP traps and sending SNMP trap alerts sections in the SNMP and Mon
documentation if you need to send more than one-line error messages in your SNMP messages.
7 The first time you run this script you’ll see an error that you can ignore because the historical
page faults information doesn’t exist.
8 Defunct processes are shown on a ps report and usually cannot be removed from the system
without rebooting.
322 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

Forcing a Stonith Event with Mon

We can use Mon on the cluster node manager to access cluster services from
outside the cluster. Mon can test the health of the cluster from the
perspective of a client computer and use custom scripts to take corrective
action to return the services to normal operation. For example, if the cluster
services are not available on the VIP address, Mon can check to see if the
services are still available on the cluster node RIP addresses. If the services
are working normally on the RIP addresses but not the VIP address, Mon
knows the Director is malfunctioning and corrective action is required.

Here is a sample mon.cf configuration file to accomplish this:

alertdir = /usr/lib/mon/alert.d
mondir = /usr/lib/mon/mon.d
logdir = /usr/lib/mon/logs
histlength = 500
dtlogging = yes
dtlogfile = /usr/lib/mon/logs/dtlog

The list of cluster node host names.
hostgroup clusternodes clnode1 clnode2 clnode3 clnode4

209.100.100.2 is the LVS VIP address
hostgroup clusterservices 209.100.100.2

watch clusternodes
service RIP

interval 30s
monitor telnet.monitor
period wd {Su-Sa}

alert mail.alert alert@domain.com
upalert mail.alert alert@domain.com
alertevery 1h

watch clusterservices
service VIP

interval 1m
monitor telnet.monitor
depend clusternodes:RIP
period wd {Su-Sa}

alterafter 5
alert mail.alert alert@domain.com
alert initiate.stonith.event

NOTE The telnet.monitor script is included with the Mon distribution.

This configuration file tells Mon to watch the telnet service on the
cluster nodes, and if the cluster nodes are available when telnet is not
available on the cluster VIP (from the LVS Director), the Mon server will
The Simple Network Management Protoco l and Mon 323
No Starch Press, Copyright © 2005 by Karl Kopper

reset the power to the Director (the standby Director should take over the
cluster load-balancing service and resume offering the telnet service to client
computers).

The initiate.stonith.event script should contain the Stonith commands
to power reset the LVS Director. To create this script, we first need to build a
Stonith configuration file—we’ll call ours /etc/stonith.cfg. In this file, place
the correct syntax for your Stonith device (see Chapter 9). Here is the syntax
for a Western Telematic Remote Power Switch rps10 device:

#vi /etc/stonith.cfg
/dev/ttyS0 lvsdirector 0

This single line in the /etc/stonith.cfg file tells the stonith command
(we’ll use it in a moment) that the RPS10 device is connected to the first
serial port on the cluster node manager, and that it is controlling power to
the host named lvsdirector using the first port on the RPS device.

Now create the initiate.stonith.event script containing:

#!/bin/bash
#
initiate.stonith.event
#
/usr/sbin/stonith -F /etc/stonith.cfg lvsdirector

Place this file in the /usr/lib/mon/alert.d directory, and make sure it has
the execute bit set:

#chmod 600 /usr/lib/mon/alert.d/initiate.stonith.event

NOTE You will probably also want to create a mon.cf entry to monitor the VIP address that
does not depend on the RIP addresses that will notify you via email or pager when the
VIP address isn’t accessible. Regardless of what has gone wrong, you’ll want to know
when resources cannot be accessed on the VIP.

Forcing a Heartbeat Failover with Mon

Another method to accomplish a failover is to run Mon on the LVS Director
and force the LVS Director to release all of its resources using the
hb_standby program when Mon detects that something has gone wrong.
(The Heartbeat package comes with the hb_standby program.)

By running Heartbeat and Mon on the LVS Director, you can initiate a
Heartbeat failover with a Mon alert script that executes the hb_standby
program.
324 Chap te r 17

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE Heartbeat will not stop resources in a resource group (recall that a resource group is a
list of resources on a single line in Heartbeat’s /etc/ha.d/haresources file) when the
hb_standby program is used to initiate a failover. To avoid a possible split brain condi-
tion, you must use Stonith.

In Conclusion

An enterprise-class cluster needs to be monitored so you can take action
before a problem affects the services that are offered to the client computers.
One method of doing this is to use the humbly named Mon package.

Mon is a powerful monitoring system that can enforce complex,
hierarchical relationships between conditions and threshold violations when
deciding what events should cause alert notifications. Alert notifications can
take any form that can be programmed or scripted.

S O P H I S T I C A T E D S N M P M O N I T O R I N G

A more sophisticated SNMP monitoring technique than the method described in this
chapter is available to you when you use the Mon monitoring script called
snmpvar.monitor. This script is available for download from the Mon contrib page of
the Mon website at http://www.kernel.org/software/mon.

The snmpvar.monitor script allows you to specify SNMP variables along with
their associated minimum and maximum values in a configuration file (snmpvar.cf).
The snmpvar.monitor script can then check the SNMP variables on a remote host and
tell Mon to raise an alert if a value falls outside of the range you specify.

If you need help with installing the snmpvar.monitor monitoring script (or if you
have any questions about Mon), you can post your question to the Mon mailing list
at http://www.kernel.org/software/mon/list.html.
The Simple Network Management Protoco l and Mon 325
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

18
G A N G L I A

The Ganglia software package provides a
sophisticated mechanism for collecting

and storing cluster node performance data,
and it includes tools for displaying this data in

a web browser.
Once your cluster goes into production, you’ll use Ganglia’s data

visualization tools to watch the cluster manage and distribute its workload.
This will help you to determine if there are any trends that indicate a load-
balancing problem, a runaway process, or hardware under capacity.
Historical graphs allow you to watch the cluster and see the daily, weekly, and
even yearly demand for cluster services and hardware resources.

NOTE Ganglia requires very little CPU, memory, and network resources in order to run—even
for clusters with more than 100 nodes.
No Starch Press, Copyright © 2005 by Karl Kopper

Introduction to Ganglia

The Ganglia project was started at the University of California, Berkeley to
support scientific research that depends on computers for data analysis. The
Ganglia web page says the project “strives to advance science by creating a
ubiquitous, continuous, and pervasive national computational infrastructure:
the Grid.” For the moment, however, we are only concerned with Ganglia’s
ability to monitor and display information about the cluster we have built.

NOTE Like the term cluster, the term grid has been used to describe a variety of computa-
tional systems. The most common use of the term evolved from the scientific community
where it was used to describe multiple independently managed geographically disparate
computing clusters. Using this definition, a grid can contain a cluster, but a cluster
does not contain a grid. Both a grid and cluster, however, are computational environ-
ments where workloads run in parallel.

The Ganglia package consists of several command-line utilities, which
we’ll see shortly, and daemons that run on the cluster nodes. Let’s briefly
examine two of the Ganglia daemons before I describe how to install Ganglia
on the cluster.

gmond

gmond is the Ganglia monitoring daemon. gmond’s job is to gather performance
metrics on the machine it is running on and to keep track of the status of
every other gmond daemon running in the cluster. If one of the gmond daemons
dies (due to a failure of the cluster node, for example), all surviving gmond
daemons find out about it.

The gstat utility can report the information collected by gmond in XML
format. Starting with version 2.7.0, gmond can compress this XML data before
it is sent over the network.

gmetad

The gmond daemon is required on every cluster node, but the gmetad daemon
only needs to run on the cluster node manager.1 The gmetad daemon polls
the gmond daemons for their performance metric information every 15
seconds and then stores this information in a round-robin database using the
RRDtool. (In a round-robin database, the newest data overwrites the oldest
data, so the database never fills up.)

gmetad displays the information it collects using the Apache web server.
Its ability to display web pages is made possible by the Ganglia Web package
(formerly called the Ganglia Web Frontend). We’ll discuss Ganglia Web
shortly.

1 See the introduction for a description of the cluster node manager.
328 Chap te r 18

No Starch Press, Copyright © 2005 by Karl Kopper

Installing Ganglia’s Prerequisite Packages

I’ll explain how Ganglia works as I describe how to install and use it. Begin by
installing gmond on the cluster nodes and then gmetad and the Ganglia Web
package on the cluster node manager. But first, install the other packages
required for gmetad and the Ganglia Web package to run on the cluster node
manager: PHP, RRDtool, and Apache.

Install PHP

The Ganglia Web package requires PHP. The source code for PHP is
included in the chapter18/version2/dependencies directory on the CD-ROM
included with this book, but you’ll probably find it easier to install the PHP
software included with your distribution. If you are using Red Hat, for
example, the name of the rpm file for php is php-<version-number>.rpm. You
must install PHP on the cluster node manager before attempting to install
Ganglia.

Install RRDtool

Next, install the RRDtool on the cluster node manager from source code
(chapter18/version2/dependencies on the CD-ROM). Untar the source file, and
then use the following statements at the top of the RRDtool source directory
tree to compile it:

NOTE Watch for the small, harmless joke from the RRDtool installation script as it pretends to
order a CD for developer Tobi Oeriker. You can help support RRDtool development and
maintenance by contributing to the Happy Tobi Project (see http://www.rrdtool.com/
license.html).

#./configure --enable-shared
#make site-perl-install
#make install

NOTE You only need to install PHP and RRDtool on the cluster node manager.

The Ganglia monitoring core gmetad RPM expects to find the shared
library for the RRDtool (librrd.so.0) in the /usr/lib directory. Copy it into
place with the following command:

#cp /usr/local/RRDtool-<version>/lib/librrd.so* /usr/lib

Next, place the RRDtool binaries in a standard system path where
Apache can find them:

#cp /usr/local/RRDtool-<version>/bin/* /usr/bin
Ganglia 329
No Starch Press, Copyright © 2005 by Karl Kopper

Install Apache on the Cluster Node Manager

Chapter 12 discusses how to install and configure Apache on cluster nodes
(see also Appendix F), and you can use these instructions to install Apache
on the cluster node manager as well.

For the Ganglia Web package to work properly, Apache must be
configured to support the PHP module, as we’ll discuss shortly.

Installing Ganglia on the Cluster Node Manager

With the required packages installed, you’re ready to install Ganglia on the
cluster node manager.

Download the latest Ganglia software RPM packages from the Ganglia
website, and install them using the standard RPM commands. Here is the list
of RPM package names before and after Ganglia release 3.0:

On the cluster node manager, you need to install ganglia-gmetad,
ganglia-gmond, ganglia-web, ganglia-devel, and (optionally) ganglia-gexec-
client.

NOTE You may have to use --nodeps when installing to force the ganglia-web RPM to ignore
dependencies, because the RPM database will have no record of the RRDtool or PHP
software if you installed RRDtool and PHP from source.

If you compiled gmond from source instead of loading it from RPM, you must use
the --enable-gexec flag to support gexec.

Installing Ganglia on the Cluster Nodes

Install ganglia-gmond on the cluster nodes, but not gmetad (we do not want to
collect and store historical performance metrics on each node—we’ll do this
only on the cluster node manager).

Here again are the RPM package names before and after the Ganglia 3.0
release:

Old RPM Package Name 3.0 and Later RPM Package Name

ganglia-monitor-core ganglia-gmetad

ganglia-monitor-core-gmond ganglia-gmond

ganglia-webfrontend ganglia-web

ganglia-monitor-core-lib ganglia-devel

gexec and authd ganglia-gexec-client

Old RPM Package Name New (3.0) RPM Package Name

ganglia-monitor-core-gmond ganglia-gmond

ganglia-monitor-core-lib ganglia-devel

gexec ganglia-gexec-server
330 Chap te r 18

No Starch Press, Copyright © 2005 by Karl Kopper

Configuring gmetad and gmond on the Cluster Node
Manager

It’s time to configure Ganglia. Let’s start with gmetad and gmond on the
cluster node manager. gmetad is controlled by the /etc/gmetad.conf file, and
gmond is controlled by the /etc/gmond.conf file.

Modify /etc/gmetad.conf

The /etc/gmetad.conf file on the cluster node manager only needs to contain
one line where you specify the name of the cluster2 and the name of the
nodes inside the cluster. For example, the following entry defines a cluster
named Cluster1 and places the localhost (the cluster node manager) and two
cluster nodes named clnode1 and clnode2:

data_source "Cluster1" localhost clnode1 clnode2

NOTE If a cluster node name changes, you will need to modify the /etc/gmetad.conf file on
the cluster node manager, restart gmond on all cluster nodes, and then restart gmetad
on the cluster node manager to make the change take effect.

Each of the nodes in the data source should have identical information for
Ganglia to monitor. Because Ganglia communication uses a symmetrical model
(multicast), a failure on one node in the list means that Ganglia can connect to the
next node. For this reason, it is not necessary to specify every host in a cluster for each
data_source entry.

Modify /etc/gmond.conf

The /etc/gmond.conf file need only contain one line that specifies the name of
the cluster. We’ll use this same configuration file on all of the cluster nodes
shortly. For example:

name "Cluster1"

NOTE See the comments in the /etc/gmond.conf file for other options you may need to specify
for your configuration (for example, the Ethernet port gmond should use, the number of
multicast hops allowed if you are monitoring clusters that are not connected to the
same Ethernet switch, and the level of compression gmond should use for XML data3).

2 This is the first (and only) time in this book that we have been required to provide a name for
our cluster for any of the software packages we’ve installed (except for the host name you used
for your VIP address that client computers use to connect to cluster services).
3 The default compression level is 0, or no compression. You should only need to use
compression on very large clusters, or when you are monitoring a grid (a cluster of clusters).
Ganglia 331
No Starch Press, Copyright © 2005 by Karl Kopper

Start gmond and gmetad

After making changes to the two configuration files (/etc/gmond.conf and
/etc/gmetad.conf) on the cluster node manager, start gmond and gmetad:

#service gmond restart
#service gmetad restart

NOTE See Chapter 1 for instructions on how to start these services automatically when the sys-
tem boots.

Now, test to make sure gmond is working properly by entering the
following command on the cluster node manager:

#telnet 127.0.0.1 8649

Press ENTER twice to send a carriage return through port 8649 to the
gmond daemon on the cluster node manager.4 This should cause your screen
to fill up with a long listing of XML code containing the performance
metrics that gmond is monitoring.

NOTE The gmetad daemon stores this information using RRDtool in a subdirectory under-
neath the /var/lib/ganglia/rrds/ directory. For clusters with over 100 nodes, you may
want to put this directory on a RAM filesystem because the disk I/O for this database
will be very high.

Add the Ganglia Page to Your Apache Configuration
You’re now ready to point Apache to the Ganglia PHP scripts. The RPM
installation of gmetad placed the PHP programs for Ganglia into the directory
/var/www/html/ganglia/. You’ll need to create an Apache virtual host to point to
these files or configure Apache’s DocumentRoot to use the /var/www/html/
ganglia/ directory as the default directory. (See “Modifying the Apache
Configuration File” in Appendix F.)

Once you’ve changed the Apache configuration file5 and restarted the
Apache daemon, you are ready to point your web browser to the Ganglia
Web package web page. If, for example, you set the Apache DocumentRoot
to /var/www/html, you can use the following URL: http://clusternodemanager/
ganglia/index.php.

In this example, the host name clusternodemanager resolves to the IP
address of the cluster node manager.

Your web browser should now display the Ganglia main page. In the next
section, we’ll examine this web page in more detail.

4 If you tell gmond to compress the XML data (in the /etc/gmond.conf file), you’ll need to use the
netcat (netcat.sf.net) program to uncompress that XML data to make it legible. After installing
netcat the command to use is nc localhost 8649 | gunzip.
5 On some versions of Apache, you’ll need to uncomment the lines in the httpd.conf
configuration file to enable the LoadModule command to load the php4_module.
332 Chap te r 18

No Starch Press, Copyright © 2005 by Karl Kopper

The Ganglia Web Package

The Ganglia Web package allows you to view a current snapshot of the
performance metrics stored in the RRDtool round-robin database discussed
earlier. We’ll divide the Ganglia Web package into two sections: title and node
snapshot. Let’s look at each in turn.

NOTE Our example Ganglia web page comes from the cluster named IBM Cluster at the
Berkeley Millennium project (http://monitor.millennium.berkeley.edu). You can call
up this public web page from your web browser to see a live demonstration of the figures
we’ll use in this chapter.

The Title Section
The Ganglia Web package title section is shown in Figure 18-1. By default,
the package uses the Full View to display the cluster (click the Physical View
link to see the same data in a different format). The data displayed is a
snapshot of the performance metrics collected by gmond. To refresh the data,
click the Get Fresh Data button.

Figure 18-1: The Ganglia Web package title section

NOTE The webfrontend pages refresh every 300 seconds (5 minutes) by default. This can be
modified in ./config.php as with all Ganglia Web parameters.

The pull-down lists in the title section control what is displayed in the
overview and snapshot sections. The Last menu lets you select up to a year’s
worth of data that will be graphed in the overview section. When you click
the Metric pull-down list, you’ll see the list of collected performance metrics.
The default metric is load_one, which is the one-minute load average on the
cluster nodes. (We’ll discuss this shortly.)
Ganglia 333
No Starch Press, Copyright © 2005 by Karl Kopper

Also notice that you can specify a sort order for the output of the metric
you select, which is used in the display of the nodes in the node snapshot
section.

The last line of text in the title section allows you to select a different
cluster to monitor if you have configured your gmetad daemon to monitor the
gmond daemons on more than one cluster. In this example, the group of
clusters monitored can be seen when you click the Grid link. As you can see
in the figure, the IBM Cluster is selected and will be used to display the
information contained in the next two sections of the web page.

The Node Snapshot Section
The node snapshot section of the Ganglia Web page (Figure 18-2) contains
one graph for each cluster node, representing the metric and time period
you selected in the title section. The graphs are sorted in the order you select
in the title section: descending, ascending, or by host name.

Figure 18-2: The Ganglia Web package node snapshot section

The node snapshot section allows you to examine the history of one
performance metric on all of the cluster nodes. The graphs in Figure 18-2
show the load_one performance metric for the previous hour for each
cluster node. Let’s examine the load_one (one-minute load average)
performance metric in more detail.

Load Average

Inside the kernel,6 the 1-, 5-, and 15-minute load average is recalculated
automatically every five seconds based on the current system load.

6 See sched.h in the kernel source tree.
334 Chap te r 18

No Starch Press, Copyright © 2005 by Karl Kopper

The current system load is the number of processes that are running on the
system plus the number of processes that are waiting to run7 (in other words,
processes in the “TASK_RUNNING” and “TASK_UNINTERRUPTIBLE”
state). On a lightly loaded system (a system that is not processor bound), the
current system load fluctuates between 1 and 0.

NOTE You can also use the utilities uptime, w, and procinfo from the shell prompt to see the 1-,
5-, and 15-minute load averages.

The kernel uses three numbers to store the 1-, 5-, and 15-minute load
averages in memory; it does not keep any historical information about the
system load except these three numbers in memory. Thus, to make the three
load averages represent an average of the system load for the three time
intervals (1, 5, and 15 minutes), a sophisticated mathematical formula called
an exponentially smoothed moving average function8 is used to apply a portion of
the current system load toward increasing or decreasing the load averages,
depending on whether the current system load is higher or lower than the
load averages that were calculated 5 seconds ago. The longer the time
interval represented by the load average value, the lower the impact the
current system load has on the new load averages. Thus, a sudden increase or
drop in the current load affects the 1-minute load average more than it
affects the 5- and 15-minute load averages.

The load average is not the same as the CPU utilization, even though the
CPU is usually 100 percent busy when the load average is 1. For example, if a
cluster node is idle except for three concurrently running processes that
each consume about 33 percent of the total CPU time, the CPU utilization is
100 percent and the load average is 3.9 Or, to take another example, if an
idle system with a load average of 0 starts running one CPU-bound process,
the CPU utilization is immediately 100 percent, but the 1-minute load
average will only be approximately .5 after 30 seconds and won’t reach 1
until about one minute.

Red Cluster Nodes

When you see a node turn red in the Ganglia Web overview section, it means
the per-CPU load average on a cluster node is greater than 1. When this
happens, one or more processes on a cluster node are processor bound; that
is, they would run faster on a cluster node that was less heavily loaded or on a
cluster node with a faster CPU.

In the Linux Enterprise Cluster, where users running reports compete
with users doing data transactions, a red cluster node in the overview section
may simply indicate that a report is running on one of the cluster nodes. If all
of the cluster nodes are red, however, your users are waiting for CPU resources
(even the users who do data transactions), and they would therefore benefit
from additional or faster cluster nodes.

7 Process in the run queue or a short-term sleep state.
8 See http://www.teamquest.com/html/gunther/ldavg1.shtml for complete details.
9 That is, the one-minute load average is 3 if the processes have been running for more than a
minute.
Ganglia 335
No Starch Press, Copyright © 2005 by Karl Kopper

Examining the Cluster Node from the Ganglia Web Package

If you click a node in the Ganglia Web package overview section, your
browser will display the Ganglia Web Host Report web page for the node.
The Host Report web page contains all of the information that has been
collected by gmond for one cluster node. Like the main Ganglia Web web
page, the Host Report web page contains a title section that allows you to
select the period of time you would like to use for the graphs presented
on the page (you can select hour, day, week, month, or year), as shown in
Figure 18-3.

Figure 18-3: The Host Report Title Section

The next section of this web page is the Host Report overview section.
As shown in Figure 18-3, this section summarizes the string and constant
metrics, and it displays three graphs of the CPU load and CPU and memory
utilization on the cluster node. When the string metric gexec is set to ON,
the gexec batch jobs can be run on the cluster node. This screen also lists the
version of the Linux kernel running on the cluster node and displays several
basic pieces of information about the cluster node.

The constant metrics values, such as the total amount of memory, the
number of CPUs in the system, and processor speed, normally do not change
without a system reboot.

The next section of the Host Report web page shown in Figure 18-4
(again, we are now looking at just one cluster node) contains one graph for
each volatile system metric you collect using the gmond daemon. (I’ll describe
how to add your own metric to this list later, in the “Creating Custom Metrics
with gmetric” section in this chapter.) When you select a time period in the
336 Chap te r 18

No Starch Press, Copyright © 2005 by Karl Kopper

Host Report title section that is greater than one hour—such as a day or
week—these graphs can help you to spot trends in system hardware resource
utilization during periods of peak system load so that you can determine
whether additional hardware is required to meet the processing needs of
your users.

Figure 18-4: The Host Report overview section

While we won’t discuss in detail how to interpret all of the data you see
on these graphs, we will describe how to create and interpret a custom metric
in the “Creating Custom Metrics with gmetric” section in this chapter.

Examining the Cluster Node from the Shell Prompt

When a node turns red, meaning its load average per CPU is greater than 1,
you can examine the collected performance metrics with the Ganglia Web
page, or you can log on to the cluster node and run top to see a list of
processes that are consuming the most CPU time. The top command ranks
the running processes based on the amount of CPU time each is consuming
and automatically refreshes the list every five seconds. To investigate a
particular process, run the strace command against the PID of the process:

#strace –p 3456

where 3456 is the PID of the process that is hogging the CPU. strace will
display the calls made by this process on your screen. To learn more about
these system calls, look at the man pages for each. Looking at these manual
Ganglia 337
No Starch Press, Copyright © 2005 by Karl Kopper

pages may help you to see if the process is stuck in a loop and not doing
anything other than wasting CPU cycles.

NOTE If the process is functioning normally, see if it can be moved to a dedicated cluster node
or scheduled to run after hours, so that it will not affect other users contending for
CPU time.

gstat

Installation of the gmond RPM also installed gstat on your cluster nodes.
You can use gstat to list information about the cluster if you need to
manually decide which node has the least load. To try it out enter:

#gstat

This command outputs a list of cluster nodes based on gmond’s knowl-
edge of the cluster. The node with the least load is listed first. (Enter gstat -h
for a list of the command line switches gstat supports.)

NOTE You won’t be using gstat for maintenance or monitoring. I mention it for the sake of
completeness.

Running a Command on the Least-Loaded Cluster Node Using gstat

You can use the secure shell (ssh) and the output of gstat to run a command
on the least-loaded cluster node, as shown in the following example:

#ssh `gstat -m | head -1 | awk -F: '{print $1}'` uptime

This command can be executed from any cluster node, and ssh will run
the command you enter on the least-loaded node (the first node returned by
the gstat command). In this example, the command uptime will run on the
cluster node, and the output of the command will be displayed on your
screen. (See Chapters 4 and 19 for a more detailed discussion of ssh.)

Creating Custom Metrics with gmetric

If you want to use Ganglia to report and graph a performance metric that is
not included with the standard Ganglia distribution, you can write your own
performance monitoring script to report to the locally running gmond on
each cluster node with gmetric. You’ll find sample gmetric scripts in the
Gmetric Script Repository available online (http://ganglia.sourceforge.net/
gmetric).

The following is a sample custom gmetric script to create four NFS client
performance metrics.
338 Chap te r 18

No Starch Press, Copyright © 2005 by Karl Kopper

#!/bin/bash
#
Linux NFS Client statistics
#
Report number of NFS client read, write and getattr calls Because we were
last called.
#
(Use utility "nfsstat -c" to look at the same thing).
#
Note: Uses temp files in /tmp
#

GETATTR
if [-f /tmp/nfsclientgetattr]; then
 thisnfsgetattr=`cat /proc/net/rpc/nfs | tail -1 | awk '{printf "%s\
n",$4}'`
 lastnfsgetattr=`cat /tmp/nfsclientgetattr`
 let "deltagetattr = thisnfsgetattr - lastnfsgetattr"
 # echo "delta getattr $deltagetattr"
 /usr/bin/gmetric -nnfsgetattr -v$deltagetattr -tuint16 -ucalls
fi

READ
if [-f /tmp/nfsclientread]; then
 thisnfsread=`cat /proc/net/rpc/nfs | tail -1 | awk '{printf "%s\
n",$9}'`
 lastnfsread=`cat /tmp/nfsclientread`
 let "deltaread = thisnfsread - lastnfsread"
 # echo "delta read $deltaread"
 /usr/bin/gmetric -nnfsread -v$deltaread -tuint16 -ucalls
fi

WRITE
if [-f /tmp/nfsclientwrite]; then
 thisnfswrite=`cat /proc/net/rpc/nfs | tail -1 | awk '{printf "%s\
n",$10}
'`
 lastnfswrite=`cat /tmp/nfsclientwrite`
 let "deltawrite = thisnfswrite - lastnfswrite"
 # echo "delta write $deltawrite"
 /usr/bin/gmetric -nnfswrite -v$deltawrite -tuint16 -ucalls
fi

NFS Quality Assurance RATIO (nfsqaratio)
If this value shrinks too much then perhaps an application
program change introduced excessive GETATTR calls into production.
if ["$deltagetattr" -ne 0];then
 let "nfsqaratio = (deltaread + deltawrite) / deltagetattr"
 /usr/bin/gmetric -nnfsqaratio -v$nfsqaratio -tuint16 -ucalls
fi
Ganglia 339
No Starch Press, Copyright © 2005 by Karl Kopper

Update the old values on disk for the next time around. (We ignore
the fact that they have probably already changed while we made this
calculation).
cat /proc/net/rpc/nfs | tail -1 | awk '{printf "%s\n",$9}' > /tmp/
nfsclientread
cat /proc/net/rpc/nfs | tail -1 | awk '{printf "%s\n",$10}' > /tmp/
nfsclientwrite
cat /proc/net/rpc/nfs | tail -1 | awk '{printf "%s\n",$4}' > /tmp/
nfsclientgetattr

Notice that this script calculates four custom NFS client performance
metrics and then stores them in variables (deltagetattr, deltaread, deltawrite,
nfsqaratio). It then reports these values using gmetric. The script divides the
sum of the NFS read and write calls by the number of GETATTR calls to
produce an NFS quality assurance ratio (nfsqaratio). As the value of the
nfsqaratio gets bigger, there are fewer NFS GETATTR calls relative to the
total NFS read and write calls—which is a good thing—but if this value
shrinks while the system is busy doing numerous NFS read and write
operations, it means that programs using the NFS filesystem are causing
excessive NFS GETATTR calls. (As discussed in Chapter 16, an excessive
number of GETATTR calls will cause your network filesystem to perform
poorly.)

We’ll see how to schedule this script as a batch job for execution on all
cluster nodes in the next chapter.

In Conclusion

In this chapter, I provided a brief introduction to the sophisticated Ganglia
package. Ganglia uses the RRDtool to store performance metrics from all of
the cluster nodes into a round-robin database on the cluster node manager.
The Ganglia Web package displays the cluster nodes through an Apache web
server using colors to graphically represent the load average on each cluster
node and to display performance metrics collected by gmond. This allows you
to quickly spot problems on the cluster nodes and to drill down into the
detailed performance metric information for a specific cluster node by
simply selecting that node.
340 Chap te r 18

No Starch Press, Copyright © 2005 by Karl Kopper

19
C A S E S T U D I E S I N C L U S T E R

A D M I N I S T R A T I O N

Cluster administration is more complex
than system administration because a

cluster has multiple points of control and
multiple points of failure. In a cluster, for example,

there is more than one place where a print job can get
stuck and more than one place where a user’s logon can fail. The cluster
administrator needs to know where all of these points of control and points
of failure are in order to troubleshoot problems.

Because Linux Enterprise Cluster administration is a new discipline, best
practices for Linux cluster administration have not yet evolved. In this chapter,
I will therefore describe several case studies in Linux cluster administration:

� Administering accounts without Active Directory

� Building a fault-tolerant print spooler

� Rebooting nodes for preventative maintenance

� Sending and receiving email in a cluster environment

� Remote administration of cluster nodes
No Starch Press, Copyright © 2005 by Karl Kopper

Administering Accounts Without Active Directory

The cluster administrator must decide which account validation method to use
to grant users access to the cluster and to the shared data inside the cluster.

For example, if an organization already uses Microsoft’s Active Directory
product for its email and Windows desktop systems, the system administra-
tion staff will naturally be inclined to use Active Directory for cluster account
validation. But careful consideration during the design phase of the cluster
implementation project should be given to the potential problems that using
Active Directory could add to the cluster—in terms of both complexity and
reliability.

Using Active Directory for account validation will introduce an additional
proprietary high-availability system (assuming you use Microsoft’s recom-
mended methodologies for deploying Active Directory) on top of the open
source high-availability software stack that was described in Part II of this
book. The cluster administrator will have to know both, and if either one
fails, the cluster will appear to be inoperable. If Active Directory topples,
in other words, it will take the cluster with it. The added complexity of
supporting two high-availability systems is therefore likely to decrease the
reliability of the cluster.

Fortunately, there are at least three account validation methods available
on Linux that have been used in Unix environments for years: local password
files, NIS,1 and LDAP. There are benefits and drawbacks to each of these
methods, and no single method is best for all situations. In this case study, we
will explore how to build a cluster account validation method that is based
on all three of these methods.

NOTE If you build a Zope (or Plone) web cluster (see Chapter 20), you will very likely use the
password authentication mechanism built into the Zope Content Management Frame-
work (CMF) instead of one of these operating system methods of user authentication.

Legacy Unix Account Administration Methods: The Problem

The NIS and LDAP systems can be deployed using a master server and
multiple slave servers that can take over for the master server if it crashes.
The problem with these methods is that they can be difficult to set up and
cumbersome to administer. (However, many organizations may have them
already, so for them, adding a Linux Enterprise Cluster that uses these
methods is easy.)

The NIS and LDAP servers can also be placed under Heartbeat’s control
so that a catastrophic failure of the primary, or master, account authentica-
tion server will cause the account authentication resource2 (NIS or LDAP)
to failover to a backup server. The benefit of doing this is that the system
administrator only needs to understand one high-availability technique for

1 Either the NIS or the NIS+ system.
2 See Part II of this book for a discussion of Heartbeat resources.
342 Chap te r 19

No Starch Press, Copyright © 2005 by Karl Kopper

all services (DNS, NIS, LDAP, email, MySQL, and so on). However, the lone
primary NIS or LDAP server can then become a performance bottleneck for
the cluster if it is running legacy Unix applications (user credentials may
need to be examined more than once to complete a single transaction, for
example).

The Best of Both Worlds

In this case study, we will therefore see how to deploy an account authenti-
cation system that will support the Linux Enterprise Cluster for an organi-
zation that does not already use NIS or LDAP. This hypothetical organization
has deployed Active Directory for Windows users but would like to use a
different system on its mission-critical business system. Because this organi-
zation has several hundred users, a centralized method of administering the
accounts is required, but the mission-critical application running on the
Linux Enterprise Cluster will be a legacy Unix application that requires
multiple account validation operations to complete a single business trans-
action. Thus, using the local password files is the preferred method. (In fact,
this is the method that is currently used on the monolithic Unix server that is
running the mission-critical application that the organization would like to
move to the Linux Enterprise Cluster.)

Building a Reliable Cluster Account Authentication Mechanism

The system administrator would like to use a central LDAP server to
administer all of the users accounts, but would also like to use the local /etc/
passwd and /etc/group files on each cluster node to improve the reliability and
performance of the account authentication system. The system administrator
also needs to support a few Unix servers that are currently NIS clients of an
existing NIS system that is used along with the local /etc/passwd file on the
existing Unix monolithic server. The Linux Enterprise Cluster in this case
study will be protected by a firewall, and only internal employees will be
allowed to access it.

The goal of this case study, then, is to make the /etc/passwd (and /etc/
group) file the same on all of the cluster nodes by using a simple script that
will pull the account and group information out of the LDAP server. This
script can then run as a regularly scheduled cron job on all of the cluster
nodes.

Using the Local passwd and Group File on Each Cluster Node

Unix and Linux systems normally store user accounts in the /etc/passwd file
and encrypted user passwords in the /etc/shadow file. The historical reason
for doing this is to protect the encrypted passwords by “hiding” them from
users in a file that only the root account can access (so users can’t grab the
encrypted passwords and run a tool like Crack that will guess the password).
Case Studies in Clus ter Admin i st rat ion 343
No Starch Press, Copyright © 2005 by Karl Kopper

In this case study, however, the cluster nodes sit behind a firewall, and the
system administrator does not allow users access to a shell (where they might
be able to run the crack program to guess encrypted passwords), so the
encrypted passwords do not need to be stored in the /etc/shadow file. (Linux
will use an encrypted password if it finds one in the second field in the /etc/
passwd file instead of consulting the /etc/shadow file.) We can therefore meet
the needs of this organization by writing a simple script that pulls the user
and group information out of the LDAP server and places it into the local
/etc/group and /etc/passwd file on each node, and we need only update the
/etc/nsswitch.conf file on the cluster nodes to tell them to use their local files
for accounts and groups.

NOTE See http://webmin.com and http://symark.com for two additional methods of distribut-
ing user accounts to each cluster node.

A Simple Script
The script that runs on each cluster node could pull the user and account
information out of the LDAP server using the ldapsearch command, but
because this organization also needs to continue to support NIS clients, it has
decided to purchase the NIS/LDAP gateway from PADL software (http://
www.padl.com). With this software installed on the high-availability LDAP
server (the cluster node manager running the LDAP server as a resource
under Heartbeat’s control), the cluster nodes can run the ypbind daemon
and communicate with the LDAP server as if it were an NIS server. The script
can therefore use the familiar ypcat command to access the user and group
information that is stored on the LDAP server, even though the server is
really an LDAP server and the /etc/nsswitch.conf file on the cluster nodes
points to the local /etc/passwd and /etc/group files. The script then only
needs to contain the following two lines:

ypcat passwd > /etc/passwd
ypcat group > /etc/group

These commands will overwrite all of the /etc/passwd and /etc/group
entries on the system with the information stored on the NIS (LDAP) server,
so be sure to create all of the normal system accounts (especially the root
user account) on the LDAP server.

One downside to this method is that a glitch in the network or NIS
system may cause corrupted account information to overwrite the local /etc/
passwd file on all cluster nodes. Thus, an even better way to apply the changes
to each node is with the patch and diff commands; for example, with a shell
script like this:

ypcat passwd > /tmp/passwd
diff –e /etc/passwd /tmp/passwd > /tmp/passwd.diff
patch –be /etc/passwd /tmp/passwd.diff
344 Chap te r 19

No Starch Press, Copyright © 2005 by Karl Kopper

Because these commands use the ed editor (the -e option) to modify
only the changed lines in the /etc/passwd file, this script can be run at any
time without affecting users logged on to the system. To avoid corrupting the
/etc/passwd file with garbage data, have this script check to make sure that the
NIS server is operating normally with a test like this:

ypcat passwd > /tmp/passwd

if [! -s /tmp/passwd]; then
 logger "Empty password file retrieved from LDAP. Aborting."
 exit 1
fi

The if statement in this bash shell script code will check to make sure
the file that contains the passwd lines that were downloaded from the LDAP
server is not empty. This test should be done before the patch command
is used to apply the changes (if there are any) to the local passwd file as
described in the preceding paragraphs.

As you can see from this case study, choosing the right account admin-
istration technique for your Linux Enterprise Cluster will depend on your
situation.

Building a Fault-Tolerant Print Spooler

In this case study, we’ll build a central print spooler that allows all of the
cluster nodes to send their print jobs through a central print spooler on the
cluster node manager. As with the preceding case study, the “right” choice
for the printing software package you choose and for the architecture of your
printing system will depend upon your situation. The hypothetical organi-
zation that we will use in this case study has a very heavy volume of print jobs
that are sent to laser printers located on the internal company LAN.

Let’s look at how to install a printing system that will meet the needs of
this organization and provide a single point of control for print jobs sent
from the cluster nodes without creating a single point of failure.

Cluster Nodes and Job Ordering

For proper job ordering, print jobs should be sent to this central print server
as quickly as possible. If, for example, user A on node 1 sends 100 print jobs
to a printer, then shortly thereafter user B on node 2 sends another 100 print
jobs to the same printer, we want user A’s jobs to finish printing before B’s
jobs start. This is normally not a problem with a monolithic server because it
takes only a few seconds for user A’s application to finish sending the jobs
to the local print queue. However, in a cluster environment, as with any
distributed printing environment with a central print spooler, the jobs may take
more time to travel from the cluster node to the central print server. This
Case Studies in Clus ter Admin i st rat ion 345
No Starch Press, Copyright © 2005 by Karl Kopper

introduces the possibility that another application on another cluster node
printing to the same printer will begin interleaving print jobs. Due to the
large number of print jobs used by our hypothetical organization, we’ll need
to take care when configuring a printing system for the cluster so that print
jobs do not sit for very long in the queue or spool directory on the cluster
nodes.

LPRng: A Linux Enterprise Cluster Printing System

While LPRng can be difficult to install and complex to use, it is quite
powerful and a great choice for use as an enterprise cluster printing system.

NOTE This section provides a sample printer configuration and a few sample printer com-
mands. It is not meant to replace the extensive documentation written by Dr. Patrick
Powell and available online in the LPRng-HOWTO and the IFHP-HOWTO.

Cluster Nodes and Print Jobs

As Figure 19-1 shows, applications running on cluster nodes create print jobs
and send them to the locally running lpd daemon on the cluster node. The
lpd daemon places each print job onto the local hard drive of the cluster
node.3 While the lpd daemon on the cluster node could send the jobs
directly to the printers, for better administration of the print queues and
printer configurations, all print jobs will be sent to a central print server—
the highly available cluster node manager. The central print server will then
save, or spool, the print jobs again onto its local hard drive before sending
them on to the printer.

As you can see in Figure 19-1, each cluster node is storing print jobs
locally before passing them on to the central print server. As previously
mentioned, the cluster nodes should hold their print jobs in the local
spooler on each cluster node and then send them to the central print
spooler as quickly as possible to avoid job interleaving problems when
multiple cluster nodes print to the same printer at the same time. Also, as
you can see in the figure, the central print spooler is where the connection
is made to the actual print device—the laser printer in this case. If this
central print spooler fails (though it shouldn’t, because it will be built as a
resource under Heartbeat’s control), the print jobs will wait in the print
spooler on each cluster node until the central print spooler returns to
normal operation.

3 LPRng clients need not run the lpd daemon. For example, if you need to print very large GIS
files, you do not need to spool them to the local hard drive on the cluster node before sending
them to the central print spooler.
346 Chap te r 19

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 19-1: LPRng in a cluster environment

Building the Cluster Printing System Based on LPRng

Now that you know which printer software package you want to use (LPRng)
and how you would like to configure it, you are ready to install the software
on each cluster node and on the central print spooler (the cluster node
manager).

To build the configuration shown in Figure 19-1, first download and
install the “stock” version of the LPRng package (version 3.8.20 or later) on
the cluster node manager and on all of your cluster nodes.

Install LPRng on the Central Print Server

Once you’ve done that, you can modify the standard /etc/init.d/lpd
initialization script on the central print server so that it no longer runs the
printconf-backend program from Red Hat and instead just starts up the
“stock” LPRng lpd daemon. The start section of the /etc/init.d/lpd init script
need only contain the following:

Start () {
/usr/sbin/checkpc -f
daemon /usr/sbin/lpd

}

The checkpc program is part of the LPRng package and checks the
printer configuration. If any small problems are found, such as directory
permissions not set correctly on the spool directories, the checkpc program

PrinterLPD

LPD LPD LPD

Local
spooler

Central
print

spooler

Local
spooler

Local
spooler
Case Studies in Clus ter Admin i st rat ion 347
No Starch Press, Copyright © 2005 by Karl Kopper

attempts to fix them automatically if you pass it the -f argument. Normally,
you use this command after making a change to the printing system.

Install LPRng on the Cluster Nodes

On the cluster nodes, however, you do not need to modify the /etc/init.d/
lpd script. You can use the standard version supplied by Red Hat or your
distribution. When the printconf-backend script runs (each time the script is
called with the start argument), the /etc/printcap file is overwritten on the
cluster node. Thus, you never modify the /etc/printcap file on the cluster
nodes. Instead, each cluster node knows what printers are available on the
central print server because the printers are listed in the /etc/printcap.local
file on each cluster node (of course, this can be a symbolic link to a single file
stored on an NFS-mounted drive, so you only need to make changes to one
file for all cluster nodes to see the change). Each time you modify the /etc/
printcap.local file, you must restart the lpd daemon on all cluster nodes for
the change to take effect.

NOTE On the central printer server (with the modified /etc/init.d/lpd init script), you
always modify the /etc/printcap file, because the /etc/printcap.local file is not used
on the central print server.

To summarize the configuration we’ve just built: the /etc/printcap file on
the central print server contains the actual printer definitions (what
interface script to use for a particular printer, what IP address location the
printer has, and so on), and the /etc/printcap.local file on the cluster nodes
contains only enough information for the cluster nodes to be able to send
the print jobs to the central print server (how long the network timeouts
should last when communicating with the central print server, the host name
of the central print server, and so forth).

Modify the /etc/printcap.local File on the Cluster Nodes

An entry in the /etc/printcap.local file on each of the cluster nodes looks
like this:

All printers on the cluster nodes can use these same default values:
.default:
:fifo
:sd=/var/spool/lpd/%P
:lp=%P@centralprintserver
:connect_interval=60
:connect_grace=3
:reuse_addr=true
:send_job_rw_timeout=0
:send_query_rw_timeout=0
:send_try=0
348 Chap te r 19

No Starch Press, Copyright © 2005 by Karl Kopper

:retry_econnrefused=true
:retry_nolink=true
:wait_for_eof=true
:connect_timeout=600
:force_localhost

Then place each printer after the default values in the
file (/etc/printcap.local) with entries like this:

printer1:tc=.default
printer2:tc=.default
printer3:tc=.default

where centralprintserver in this example is the host name of the central print
server (and is resolved using DNS/LDAP/NIS or the local /etc/hosts file on
each cluster node).

Modify the /etc/printcap File on the Central Print Server

On the LPRng central print server an /etc/printcap entry looks like this:

A list of definitions for laserjet style printers that will use the
"ifhp" print filter.

.laserjet
:fifo
:filter=/usr/libexec/filters/ifhp
:ifhp=waitend@
:af=acct
:lf=log
:mx=0
:sd=/var/spool/lpd/%P
:sh

The following printers use the "laserjet" definition
above. Here are their IP addresses.

printer1
:tc=.laserjet
:lp=192.160.0.201%9100

printer2
:tc=.laserjet
:lp=192.160.0.202%9100

printer3
:tc=.laserjet
:lp=192.160.0.203%9100
Case Studies in Clus ter Admin i st rat ion 349
No Starch Press, Copyright © 2005 by Karl Kopper

Of course, you can have more than one type of printer—a printer type
other than laserjet—defined at the top of the /etc/printcap file on the central
print server.

NOTE Because the standard Red Hat distribution uses a slightly modified version of the
LPRng system, you may see references to the “printconf-tui” (tui stands for text user
interface) and “printconf-gui” (the graphical user interface version of printconf avail-
able under an X Windows display) tools. Do not use either of these printconf utilities on
the central print server.

This case study will conclude with a look at the day-to-day activities the
system administrator will use to administer print jobs on the cluster using the
LPRng printing system.

Managing Print Jobs on the Central Print Server

Print queues and print jobs can then be managed with the lpc command, as
follows, on the central print server.

List all printers and their current status:

#lpc status all

Hold all jobs currently waiting to print on printer1:

#lpc hold printer1 all

Release jobs waiting to print on printer1:

#lpc release printer1 all

Place the printer in a hold state so new jobs can still be sent from the
cluster nodes, but the central print server will not send them on to the
printer:

#lpc holdall printer1

Take the printer out of the “hold” state:

#lpc noholdall printer1

When a printer hangs, use the following command (print jobs are not
removed or lost, but the subserver process started by the main lpd daemon to
process the jobs within the print queue will be killed and a new one
restarted):

#lpc kill printer1
350 Chap te r 19

No Starch Press, Copyright © 2005 by Karl Kopper

Managing Print Jobs from the Cluster Nodes

The same commands can be used by users4 on the cluster nodes with the
added -S option:

#lpc –Scentralprinterserver hold printer1 all
#lpc –Scentralprinterserver holdall printer1
#lpc –Scentralprinterserver release printer1 all
#lpc –Scentralprinterserver noholdall printer1

When the lpc command is used from a cluster node without the -S
argument, the command only affects the print queue on the cluster node
(the local print queue on the cluster node). Forgetting to use the -S
argument to the lpc command when you issue the holdall command for one
of the printers on a cluster node can lead to the situation where a printer
stops working for some users but not for all of the users. When this happens,
the print jobs are not lost, however, and the cluster administrator need only
log on to the cluster node and release the print jobs.

4 The LPRng system has a security system to control which commands a user can apply to a
printer queue. See the LPRng documentation for details.

C R E A T E CU S T O M S C R I P T S

O N T H E C E N T R A L P R I N T S E R V E R

One of the useful features of the LPRng printing system is that you can write your own
scripts to handle print jobs. The script can contain a line as simple as this:

cat > /tmp/job.$$

This line will take the input stream of characters (normally PostScript) and send
them to the file /tmp/job.pid, where pid is the process ID of your custom script when
it is launched by the lpd daemon on the central print server. You can then
manipulate the file (/tmp/job.$$) within your script to do things like send the job as a
fax (using the Hylafax program1) or convert the file into PDF using the ps2pdf utility
and store the file in an SQL database as a binary large object (blob).2

Note: Windows PC users can print to the LPRng printers using the Samba
package. See http://www.samba.org. (Samba is probably already included with
your distribution.)

1 See the smbfax project.
2 You can then later retrieve the blob using a variety of methods such as the Perl DBI package or
a Python script in conjunction with the Zope or Plone packages for display on a web server.
Case Studies in Clus ter Admin i st rat ion 351
No Starch Press, Copyright © 2005 by Karl Kopper

Rebooting Nodes for Preventative Maintenance

In this case study, we’ll examine one method of performing preventative
maintenance on the cluster. The cluster was built as described in Part III of
this book, using ldirectord in conjunction with the Heartbeat program to
make the LVS Director a highly available server (a primary and a backup
server with no single point of failure). When built this way, there are several
options for removing cluster nodes for maintenance. Cluster nodes can be
removed by doing any one of the following:

� Modifying the contents of the health check file (htdocs/.healthcheck.html
was used in the examples in Chapter 15) on the cluster node. ldirectord
will then automatically remove the node from the cluster.

� Killing the daemon responsible for the port that ldirectord is monitoring
on the cluster node. For, example if ldirectord is monitoring port 80
(the http port), simply stopping the httpd daemon on the cluster node
will cause ldirectord to remove it from the cluster.

� Modifying the ldirectord configuration5 file on the primary Director and
removing the cluster node. If you have set the autoreload=yes option in
this file, the change will be made automatically by ldirectord.

� Modifying the IPVS table on the Director using ipvsadm commands. If
this method is used, the ldirectord configuration file should also be
modified to match the changes made with the ipvsadm command.

NOTE In this case study we will use the fourth method.

Using ipvsadm Commands to Remove a Cluster Node

There are two methods for removing a cluster node from the IPVS table
using ipvsadm commands. The first is to set the weight of the cluster node to
0 (assuming you are using a weighted scheduling algorithm), and the second
is to simply remove the server from the table.

Changing the Weight of a Cluster Node to 0

By setting the weight of a cluster node, or real server, to 0, you deny any
future clients access to the node. However, all of the existing connections
remain unaffected. The purpose for using this method is to remove nodes
for maintenance without affecting users. Unfortunately, this method does
not always guarantee that you will have an unloaded node if users continue
to reconnect to the cluster before their connection template entry expires
(see Chapter 14), especially if you are using a large TCP session timeout
value.

5 Usually located in the /etc/ha.d/conf directory.
352 Chap te r 19

No Starch Press, Copyright © 2005 by Karl Kopper

Disabling Telnet Access to One of the Cluster Nodes

Clients only connect to the Linux Enterprise Cluster in this case study using
telnet. To remove a node from the cluster, the cluster administrator will
therefore only need to use the following command to edit the IPVS table on
the LVS Director:

#ipvsadm -e -t 209.100.100.100:23 -r 10.11.11.11:23 -g -w 0

In this command, 209.100.100.100 is the VIP, 10.0.0.1 is the cluster node
to remove, and :23 is the telnet port.

New users that connect to the cluster (the VIP) will not be able to access
the 10.11.11.11 cluster node until its weight is set back to a number greater
than 0. The hypothetical organization in this case study changes shifts at
5:00 p.m. each day. When all of the users log out at 5:00 p.m. and the new
shift comes on duty, the system administrator can safely reboot the cluster
node without affecting any of the users.

When ldirectord running on the Director sees the cluster node come
back online after the reboot, it will automatically add it back into the IPVS
table and make it available for the end-users.

Sending and Receiving Email in a Cluster Environment

In this case study, we want to use an application on each of the cluster nodes
that sends outbound email to customers. Each cluster node will therefore
need to masquerade outbound email so it appears to come from a single
domain using the following entry in the /etc/mail/sendmail.mc file on each
cluster node:

MASQUERADE_AS(`yourdomain.com')dnl
FEATURE(`always_add_domain')dnl
FEATURE(`masquerade_envelope')dnl
FEATURE(`allmasquerade')dnl

We’ll also send outbound email to a central (relay) email server, to make
it easier to troubleshoot problems when email is not delivered properly, by
adding the following line to the /etc/mail/sendmail.mc file on each cluster
node:

define(`SMART_HOST',`mailserver.yourdomain.com')dnl

where mailserver.yourdomain.com is, of course, the host name of your SMTP
server.

This SMART_HOST rule, however, will not send email to the central mail
server when the mail is destined for a user with a passwd entry on the local
cluster node (either in the local /etc/passwd file, LDAP, or NIS, and so on),
and nothing is specified after the @ sign in the email address. An example
Case Studies in Clus ter Admin i st rat ion 353
No Starch Press, Copyright © 2005 by Karl Kopper

would be email sent to joseph or sam when Joseph and Sam have accounts on
the cluster node. To force these email messages to the central mail server,
you will also need to add:

define(`LOCAL_RELAY',``mailserver.yourdomain.com'')dnl

If you need to make an exception and force some mail to be delivered
locally (for example, email sent to orderprocessing that is really an email alias
that sends email on to a program for automated processing) on the cluster
nodes, you can use an entry like this:

LOCAL_USER(`orderprocessing')dnl

NOTE The user root is always on the LOCAL_USER exception list.

Once the changes have been made to the sendmail.mc file on each cluster
node, you need to create a new sendmail.cf file with the command:

#m4 /etc/mail/sendmail.mc > /etc/sendmail.cf

Then, stop and restart the sendmail daemon on all cluster nodes.

Creating a Batch Job-Scheduling System with No Single Point
of Failure

In the final case study, we want to build a batch job scheduler with no single
point of failure. In this case study, we again assume the cluster is protected by
a firewall and security barriers are not required between the cluster nodes.
(As with a monolithic server of old, a root compromise means the cracker
will have access to everything.)

We’ll first use ssh to construct a method of accessing a shell or running a
command on any cluster node from a single machine.

T E S T I N G E M A I L F R O M T H E C O M M A N D L I N E

You can use the command mail –v testuser@whereever.com to test if this change
makes any difference to the From address of an outbound email. This command will
prompt you for a Subject line and then give you the opportunity to enter email
message body text. Enter . on a line by itself to indicate the end of the message and
press ENTER when asked for the Cc: email address. You’ll see the transcript of the
email session as sendmail running on the cluster node attempts to contact the remote
mail server (or central relay email server, if you have used the SMART_HOST option just
described) and the From address the cluster node is using.
354 Chap te r 19

No Starch Press, Copyright © 2005 by Karl Kopper

Run ssh-keygen

Recall from Chapter 4 that the ssh-keygen command can be used without a
passphrase, so the ssh command can be used later without the need to key in
a password each time. Run the following command on the cluster node
manager:

#ssh-keygen -t rsa

Do not enter a passphrase when prompted. Now copy the contents of the
file /root/.ssh/id_rsa.pub on the cluster node manager to each cluster node’s
/root/.ssh/authorized_keys2 file.

Modify the sshd_config File on Each Cluster Node

We are trusting in the ssh keys to protect the cluster from a root user attack
(you have to know the private half of the RSA key used on the cluster node
manager to connect as the root user to the cluster node). The root user
account on the cluster node manager and the protection of the RSA key will
now be as important as protecting the root password. You can use LIDS
(http://www.lids.org) to hide this file for increased security, or you can
create a separate cluster administrative account without root privileges.6

Modify the PermitRootLogin line in each cluster node’s /etc/ssh/
sshd_config file so it looks like this:

permitRootLogin without-password

Then start or restart the sshd daemon on each cluster node.

NOTE Make sure the sshd daemon is started each time the cluster nodes boot (see Chapter 1).

Create the (RSA) known_hosts Entries on the Cluster Node Manager

Type a simple command such as the following on the cluster node
manager:

#ssh clnode1 hostname

Run the command once for each cluster node, substituting clnode1 in
this example with the name of each cluster node. You should see a message
like the following that will allow you to save the host key for each node on the
cluster node manager.

6 See the discussion of the sudo command in Chapter 4 for a method of giving special
administrative account access to only certain root-level commands or capabilities.
Case Studies in Clus ter Admin i st rat ion 355
No Starch Press, Copyright © 2005 by Karl Kopper

The authenticity of host 'node1' can't be established.
RSA key fingerprint is 04:54:c1:f3:33:ff:89:14:a0:8d:f3:5d:67:f5:43:21.
 Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'node1' (RSA) to the list of known hosts.

NOTE If you are prompted for the password on each cluster node, review Chapter 4 for details
on how to troubleshoot your ssh configuration.

The Batch Job Scheduler

We’ll call the system where we launch batch jobs the batch job scheduler. The
batch job scheduler in this case study is the cluster node manager (that now
has ssh access to all of the cluster nodes). The batch job scheduler is a highly
available server pair that places the cron daemon under Heartbeat’s control
and uses crontab7 entries to submit batch jobs using the clustersh script that is
included on the CD-ROM in the chapter19 directory. A sample cron table
entry on the batch job scheduler looks like this:

30 14 * * * clustersh /clusterdata/scripts/myscript

This crontab entry says that every day at 2:30 p.m. the program
/clusterdata/scripts/myscript should run on the cluster node with the
least activity.

NOTE The clustersh script contains the host names of the nodes inside your cluster. You’ll
need to modify this script file before you can use it on your cluster (see the script for
detailed documentation).

If a cluster node goes down, the clustersh script will not attempt to
execute the /clusterdata/scripts/myscript on it.

To run the same script on all cluster nodes at 1:30 p.m. each day, the
crontab entry would look like this:

30 14 * * * clustersh –a /clusterdata/scripts/myscript

By running cron jobs from the highly available batch job scheduler, you
avoid a single point of failure for your regularly scheduled batch jobs.

NOTE The /etc/ha.d/haresources file, in the Heartbeat configuration file on the batch job
scheduler, should specify that the crond daemon is started only on the primary server and
that it starts automatically on the backup server only if the primary server goes down.

One danger of using this configuration, however, is that you may change
the crontab file on the primary batch job scheduler and forget to make the
same change on the backup batch job scheduler. To automate copying the

7 The crontab file is the name of the file the cron daemon uses to store the list of cron jobs it
should run. Edit the crontab file with crontab –e.
356 Chap te r 19

No Starch Press, Copyright © 2005 by Karl Kopper

crontab file from the primary batch job scheduler to the backup batch job
scheduler, use rsync from the following script, which copies the contents of
the /var/spool/cron directory (where the crontab file resides):

#!/bin/bash
OPTS=" --force --delete --recursive --ignore-errors -a -e ssh -z "
rsync $OPTS /etc/ha.d/ backup:/etc/ha.d/
rsync $OPTS /etc/hosts backup:/etc/hosts
rsync $OPTS /etc/printcap backup:/etc/printcap
rsync $OPTS /var/spool/lpd/ backup:/var/spool/lpd/
rsync $OPTS /etc/mon backup:/etc/mon
rsync $OPTS /usr/lib/mon/ backup:/usr/lib/mon/
rsync $OPTS /var/spool/cron/ backup:/var/spool/cron/

The last line in this configuration file tells rsync to copy the contents of
the /var/spool/cron file to the backup batch job scheduler with the host name
backup.

In Conclusion

As with monolithic server administration, cluster administration is more of
an art than a science, requiring an in-depth knowledge of the environment
where the cluster will be deployed. Each of the cluster administration design
and implementation decisions will impact the reliability and availability of
the cluster, so precautions should be taken to avoid single points of failure
even when single points of administrative control are required. In this
chapter, we have examined a few of the common system administration tasks
and seen case studies that describe how these administration tasks translate
into a cluster environment.
Case Studies in Clus ter Admin i st rat ion 357
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

20
T H E L I N U X C L U S T E R

E N V I R O N M E N T

In this chapter, I’ll provide a high-level
review of the material presented in this

book and a proposal for a new type of
computing environment that is based on parallel

processing and hardware redundancy using free
software.

Before I begin, I should point out that I do not expect anyone who reads
this book to have the opportunity to build a data center for a large organiza-
tion from scratch. Large organizations already have data centers, and even
small organizations that grow big enough to need a data center will have a
legacy of information technology decisions that influence the development
and design of their first data center. You will, therefore, probably not have
free dominion over every design decision that lets you build the ideal data
center or enterprise computing environment, no matter what your situation
is. In this chapter, however, I would like to ask the question: “What would the
ideal data center look like if you could build it?” My answer is based on my
practical experience building the cluster I’ve described in this book. As you’ll
No Starch Press, Copyright © 2005 by Karl Kopper

see in this chapter, I believe the three foundations of the ideal data center
are free software, low-cost commodity hardware, and a highly available Linux
Enterprise Cluster.

The Linux Enterprise Cluster

Let’s start with the cluster. Remember that all cluster nodes run the same
application programs (they offer the same services to the client computers).
Console access to these nodes is made possible by a keyboard video mouse
(KVM) device, as shown in Figure 20-1.

Figure 20-1: Figure of a ten-node cluster with a KVM device

The black box shown connected to the first two servers is a Stonith
device that allows the primary LVS Director to reset the power to backup LVS
Director. This hardware configuration is required as part of the Heartbeat
package (a typical Stonith configuration will require two Stonith devices).
Two computers act as a primary and backup load balancer and run the
Heartbeat daemon. The ldirectord daemon runs on the primary LVS load
balancer and removes nodes from the cluster when they fail. If the primary
LVS load balancer crashes, Heartbeat running on the backup LVS load
balancer starts the ldirectord daemon and begins load balancing the
incoming requests from the client computers.

KVM

LVS cluster

LVS directors

Heartbeat

ldirectord

Heartbeat

Apache

Plone

telnetd

sshd
360 Chap te r 20

No Starch Press, Copyright © 2005 by Karl Kopper

The telnetd and sshd daemons are also shown in Figure 20-1. Like the
Apache daemon, they run on all cluster nodes to allow client computers to
access the cluster. What about the business applications running inside the
cluster? In the next section, I’ll examine applications that run in the ideal
data center on a cluster more closely.

Applications Running on the Cluster

The cluster runs objects that are the business tier of N-Tier applications.
The term N-Tier applications refers to a conceptual model for breaking up
an application program into layers in order to separate the application’s
functional components into basic categories that must exist for an applica-
tion to do its job properly. The three most fundamental tiers in the N-Tier
application model are the data, business, and presentation tiers. Briefly, the
data tier is where the database server resides, the business tier is where the
objects that define business rules reside, and the presentation tier is simply
the user interface to the application (the user interface to the other tiers).
So to refine the statement that this paragraph started with, I should say that
an enterprise cluster is where business tier objects run in parallel. This is the
same thing as saying that copies of the business tier object-oriented programs
will run inside the cluster on all of the cluster nodes.

In a Linux Enterprise Cluster like business tier objects run in parallel;
however, they do not know of each other’s existence. Applications running
inside the cluster, therefore, do not need to communicate with each other
and objects that remain inside the cluster never need to be serialized.
Shared data and stateful information about user sessions is stored in a
session database outside the cluster. If a cluster node crashes, the load
balancer reassigns user sessions to a new node, but the user sessions are
persistent because the business tier objects running inside the cluster use
the unique session ID as the key into the session database.

The Cluster Node Manager

The cluster node manager sits outside the cluster and provides services to all
of the cluster nodes. It helps to support the mission-critical applications
running inside the cluster. For example, the cluster node manager may:

� Be the central account database for LDAP, NIS, or Active Directory
accounts.1

� Be a central print server using the LPRng software.

� Run the Ganglia software to display colorful graphs of the cluster’s
activity.

� Run the cron daemon to schedule batch jobs for submission to the
cluster.

1 An LDAP server can act like an NIS server, using software from PADL software (http://
www.padl.com), as discussed in Chapter 19.
The L inux Clu s te r Env ironmen t 361
No Starch Press, Copyright © 2005 by Karl Kopper

� Run license management software (such as Flexlm).

� Run the Mon monitoring package to monitor cluster nodes.

� Act as a central fax server to send and receive faxes using Hylafax.

� Act as a DNS or email server for the cluster.

By using the high-availability techniques we’ve discussed in Part II of this
book, we can build the cluster node manager to make these cluster server
services highly available. (See Figure 20-2.)

Figure 20-2: High-availability cluster node manager

Like the black box shown in Figure 20-1, the black box in Figure 20-2
represents a Stonith device. This device makes it possible for the backup
cluster node manager to reset the power to the primary cluster node
manager should it need to failover the resources. When this happens, the
LDAP, sendmail, Hylafax, Named, Mon, and Ganglia (gmetad and gmond)
daemons move to the backup server.

The Clients

The end-user sits at a client computer and accesses the services offered by the
cluster using code (objects) at the presentation tier. The client computer can
be any type of operating system capable of running the presentation tier appli-
cation. This includes desktop machines that contain a local copy of an oper-
ating system and all of the application code stored locally on their disk drives
(fat clients) and desktop machines that boot from a centrally stored copy of
the operating system where the application programs reside (Thin Clients).
One type of Thin Client based on Linux is called the Linux Terminal Server
Project (LTSP) Thin Client (see http://www.ltsp.org). LTSP Thin Clients run
the LTSP client software on old PC hardware or small, diskless workstations
designed to run LTSP (see http://www.disklessworkstations.com). The clients
can then run X applications that run on Linux, such as the Mozilla web
browser or the OpenOffice suite of applications. The LTSP server software
runs on a pair of servers (to provide high-availability), as shown in Figure 20-3.

LDAP

Mon

Heartbeat
362 Chap te r 20

No Starch Press, Copyright © 2005 by Karl Kopper

Figure 20-3: High-availability LTSP servers and Thin Clients

Notice in this configuration that all requests for cluster services originate
from the LTSP servers, because the X applications will normally run on the
CPU of one of the LTSP servers.2 Thus, care must be taken to ensure that
load balancing works properly when all of the client requests originate from
a single IP address (as discussed in the section entitled “LVS Persistence” in
Chapter 14).

NOTE It may be possible to build an LVS cluster in which all real servers run the LTSP server
software. Depending upon your situation, however, this may make it harder to main-
tain both the LTSP server software and your mission-critical applications, if they must
run on the same machine (a cluster node). A cluster that runs presentation and busi-
ness tier objects, in other words, may not be the ideal cluster.

The NAS Server

The NAS server (see Figure 20-4) stores all data used by the cluster legacy
applications and the Thin Clients, and it can run a lock manager (discussed
in Chapter 16) that can be said to reside at the data tier to arbitrate business
tier object access to data. (If all of the shared data is stored in a database
management system, the DBMS may act as the lock arbitrator at the data tier
instead of the lock manager running on the NAS device.)

The NAS server will normally connect to the Ethernet backbone using
one or more high-speed connections and may provide enough redundancy
of critical components (power supply, fans, disks, and so on) in a single
enclosure to eliminate worry about a second NAS device for high availability.

2 Although LTSP clients can be configured to run applications on the local CPU of each Thin
Client.

Heartbeat

Mozilla

OpenOffice
The L inux Clu s te r Env ironmen t 363
No Starch Press, Copyright © 2005 by Karl Kopper

Figure 20-4: High-availability NAS server

High-Availability NAS Server

As shown in Figure 20-4, your highly available NAS server will use RAID
drives to eliminate the disk drives as a single point of failure. Not shown in
Figure 20-4 is the network connection used by the NAS device. Normally, a
mission-critical NAS configuration will also use two physical connections to
the Ethernet backbone and thus eliminate the network connection as a
single point of failure.

NOTE A second NAS server is required at another location for disaster recovery.

Storing your data centrally makes it easier to back it up, allows you to
create online snapshots, gives you the ability to grow volume sets without
reformatting disk drives as disk space requirements grow and lets you use a
vendor-supplied data replication system for creating a disaster recovery site.3

Highly Available Serial Devices

The ideal data center will support both past and future hardware devices,
and one type of device you are likely to use in your data center from the past
is a serial communication device.

Although the need for most serial devices has been eliminated by newer
technology, most data centers retain some legacy hardware that still uses this
simple method of transferring data. Fortunately, several vendors now build a
device that converts serial communication into network packets. These
serial-to-IP network devices make it possible to communicate with the serial
device from any computer attached to the network.

Redundant power supplies

Redundant array of disks

3 Many, if not all, of these functions can be built using open source software such as RAID, LVM,
and the rsync program (rsync was discussed in Chapter 4). Describing how to build a NAS server
and how to implement disaster recovery data replication is outside the scope of this book.
364 Chap te r 20

No Starch Press, Copyright © 2005 by Karl Kopper

For example, if you need to send faxes from a business tier application
running on the cluster (or anywhere else inside your network), you may want
to run a fax server software package such as the open source Hylafax
program. The Hylafax server can run on the cluster node manager and
provide faxing capabilities to all of the cluster nodes. To prevent the fax
modem(s) from becoming a single point of failure, you can purchase double
the number of modems you require and connect half of them to the primary
cluster node manager and half of them to the backup cluster node manager.
Alternatively, you can connect these modems to a serial-to-IP communication
device.

Serial-to-IP Communication Device

A serial-to-IP communication device (see Figure 20-5) allows you to failover
the application program (Hylafax, in this example) that talks to the serial
device from a primary to a backup server. When you use this type of device,
you load special driver software from the serial-to-IP device manufacturer
that allows you to fool the application programs running on the cluster node
manager into thinking they are communicating with a serial device directly
connected to the system, when in fact the serial device is really only
accessible over the network. Of course, you must purchase two of these
devices (and at least two serial devices) to avoid a single point of failure.

Figure 20-5: Serial-to-IP communication devices

High-Availability Modems

The dark lines connecting the modems to the serial-to-IP devices in Figure
20-5 represent serial cables. The network cables connecting the serial-to-IP
devices to the Ethernet backbone are not shown.

NOTE As noted in Chapter 8, Heartbeat’s cl_respawn program may be required to failover a
service that needs to restart automatically when the service fails (typically the case for
applications communicating with serial devices).

Highly Available Database Server

If write access is required to data stored in an SQL database by the business
tier objects running on the cluster nodes, an SQL server is placed outside the
cluster to arbitrate access to this data (see Figure 20-6). The SQL client

HA serial-to-IP devicesHA modem
The L inux Clu s te r Env ironmen t 365
No Starch Press, Copyright © 2005 by Karl Kopper

program should allow you to specify the IP address of the SQL server when it
first starts up. You should also be able to specify the host (along with port,
user, password, and database) through any of the SQL APIs when connecting
to a database. (You always connect to a database before doing anything else
with the data.)

The SQL commands and data sent from the SQL client (on each cluster
node) are then sent to the central SQL server where the SQL commands are
executed.

The SQL server (Postgres, MySQL, Oracle, and so on) accesses the data
from locally attached, high-speed RAID disk drives or (not shown) a SAN.

Figure 20-6: A highly available database server

High-Availability SQL Server

As shown in Figure 20-6, a Stonith device is used to control the power to the
primary SQL server. If it malfunctions, the Heartbeat program running on
the backup SQL server resets or turns off the power to the primary server and
takes ownership of the database resource. The database resource is the SQL
server daemon(s), the filesystem where the SQL data resides, and the IP
address where the cluster nodes send their SQL commands.

Another technique to avoid a single point of failure for SQL data is
usually also provided through a replication mechanism built into the SQL
server. (See the documentation for your SQL package for instructions on
how to replicate your SQL data to a backup server.)

NOTE SQL databases use special methods to protect the integrity of each transaction.
These techniques are called ACID (Atomicity, Consistency, Isolation, Durability).
See “SQL Databases for Linux” on freshmeat.net (at the following URL as of
spring 2005: http://freshmeat.net/articles/view/305) for details.

RAID drives

Shared
SCSI bus

Shared
SCSI bus

mysqld Heartbeat
366 Chap te r 20

No Starch Press, Copyright © 2005 by Karl Kopper

Putting It All Together

The cluster node manager, the NAS device, the Thin Client server, the SQL
server, and the high-availability serial solution we’ve built all sit outside the
cluster, as shown in Figure 20-7.

The Cluster Environment

As you can see, both PC clients and LTSP Thin Clients can access the cluster
services, using a web browser, for example. (For telnet access to Linux from a
Windows PC, see the free telnet client called PuTTY.) Notice in this figure
that all of the servers used to support the applications that run on the cluster
are built with no single point of failure.

C LU S T E R I N G Z O P E

Another method of deploying a database in a cluster environment that is a relatively
new technology is provided by the Zope Object Database (ZODB) and the Zope
Enterprise Objects (ZEO) packages.

The Zope project (http://www.zope.org) uses Python to allow web developers
to use an HTML-like language called TAL (or DTML) to write web pages that the Zope
Python programs then interpret and execute to produce valid HTML code dynamically
(when the web page is requested by a client computer). This dynamic HTML code
(which is not the same thing as DHTML) at the business tier can access objects stored
in the ZODB at the data tier, which is normally just a file on the local disk drive where
the Zope server runs. With the addition of the ZEO program,1 the dynamic HTML
code interpreted by the Zope server can access ZODB objects at an IP address
rather than a file. Each cluster node then becomes a ZEO client, and a highly avail-
able ZODB database server can be built outside the cluster as described in the
previous SQL server example. The highly available ZODB server owns the IP address
the ZEO clients use to access the ZODB objects and is therefore called a ZEO server.

Dynamic HTML pages written in TAL (or DTML) are called products by the Zope
developers. The best known Zope product is perhaps the Plone project (http://
www.plone.org). The Zope (business tier) products that access ZODB objects can be
installed on all of the cluster nodes and share access to the same data stored on the
ZEO server (or on your own server). The ZEO server arbitrates access to the data
without using a locking mechanism by informing all of the ZEO clients when an
object stored in the central ZODB has changed.2 The ZEO client-server model is
therefore designed for data objects that are read more than they are written or
changed. (The http://www.zope.org website, by the way, runs on an LVS cluster.)3

Zope TAL (and DTML) programs can also connect to SQL databases using
Zope database connection products. You can quickly develop applications to run on
your cluster using Zope that access the highly available SQL or ZODB database
server outside the cluster.

1 ZEO ships as part of the ZODB package.
2 See http://www.zope.org/Wikis/ZODB/MultiVersionConcurrencyControl.
3 According to the documentation available on the zope.org website at the time of this writing.
The L inux Clu s te r Env ironmen t 367
No Starch Press, Copyright © 2005 by Karl Kopper

Figure 20-7: The Linux Enterprise Cluster

NOTE Figure 20-7 does not show the underlying network infrastructure that the cluster is
built on top of. If your budget permits, you should also build this network infrastruc-
ture with no single point of failure and split each server and half of the cluster nodes on
to separate network hardware components (separate network switches). Also not shown
in Figure 20-7 is the disaster recovery data center that contains a mirror copy of the
hardware, software, and critical data.

In Conclusion

The cluster’s ability to reliably offer business tier applications to the end-user
rests upon servers outside the cluster nodes such as data tier servers and a
cluster node manager. The data tier servers ensure data integrity by imple-
menting a lock arbitration method that protects the data from changes made
by the same business tier object running concurrently on multiple cluster
nodes. The cluster node manager also helps you implement security policies
and control access to external devices (such as printers and serial devices)
that sit outside the cluster. Care must be taken when building data tier
servers and the cluster node manager to ensure that they—like the cluster
itself—have no single point of failure.

With open source software, you can build an enterprise-class cluster using
inexpensive commodity hardware, and if you design the cluster environment
properly, you’ll eliminate downtime caused by single-component failures.

PC clients LTSP Thin Clients

HA LTSP server

HA NAS server

HA serial-to-IP devicesHA modem

HA SQL server

RAID drives

Shared
SCSI bus

Shared
SCSI bus

Heartbeat mysqld Heartbeat

KVM

HA cluster node
manager
368 Chap te r 20

No Starch Press, Copyright © 2005 by Karl Kopper

A
D O W N L O A D I N G S O F T W A R E

F R O M T H E I N T E R N E T
(F R O M A T E X T T E R M I N A L)

The File Transfer Protocol (FTP) is used,
like the HyperText Transfer Protocol

(HTTP), to move data over the Internet.
FTP, however, was designed specifically to

transfer large files undamaged over a network.
You can use FTP from a text terminal with the ncftp utility. This utility

makes downloading easier by doing the following:

� It automatically logs on to FTP servers anonymously.
� It automatically attempts to reconnect to FTP servers when they refuse

your login request when too many users are already logged in to the
server.

� It works through firewalls (it supports passive FTP).

If you purchased the Red Hat CD-ROM, you can install the ncftp
program by inserting the CD-ROM and typing:

#mount /mnt/cdrom
#rpm -ivh /mnt/cdrom/RedHat/RPMS/ncftp*
No Starch Press, Copyright © 2005 by Karl Kopper

Once the line of hash marks (#) goes by, you should be able to type:

#/usr/bin/ncftp

This will start the ncftp utility and provide you with the ncftp> prompt
where you can type help for the list of commands ncftp understands.

If you don’t have a CD-ROM with the ncftp utility, you can download it
using the ftp utility.

Next, you need to find the FTP server with the files you need. When you
are looking for Red Hat’s RPM files, you should look at Red Hat’s FTP site,
one of the Red Hat mirror sites, or http://www.rpmfind.net. (Also see
Appendix D for a description of the Yum package.) For the latest version of a
package like Apache, however, you may want to go directly to their FTP
server. Here are a few examples:

You can open a connection to the FTP server running at one of these
addresses and log in using the anonymous account (this is what your web
browser does for you when you use ftp:// instead of http:// in the Address
field of the browser).

At the ncftp prompt, type:

ncftp>open ftp.redhat.com

Or at the Linux shell prompt, you could have typed:

#ncftp ftp.apache.org

You should see a banner message indicating a successful connection to
an FTP server and eventually the Logged in to ftp.apache.org message.

From here, you will normally use the simple cd (change directory) and
get commands to locate and download a file. To first position your local ftp
client program in the proper directory where you would like the files
downloaded, you can use the lcd (which means local change directory)
command:

ncftp> lcd /usr/local/src

(This tells the ftp program that you would like files retrieved with the get
command to be loaded locally into the /usr/local/src directory on your
computer.)

To check which directory you are in, type:

ncftp> lcd .

Red Hat’s FTP site ftp.redhat.com

Apache’s FTP site ftp.apache.org
370 Appendix A

No Starch Press, Copyright © 2005 by Karl Kopper

NOTE There is a space between the lcd and the period.

Now you need to look on the remote FTP server to locate the file you are
interested in downloading. This is usually somewhere underneath a directory
called /pub (for public), so if you are not sure, you can start by changing to
this directory and listing files:

ncftp>cd /pub

NOTE This changes to the /pub directory on the FTP server.

ncftp>ls

Once you find the file you want to download, you should tell the ncftp
program if it contains binary data or ASCII (plaintext) before issuing the get
command:

ncftp>bin

(If you download a file with a .zip, .gzip, .tar, or .Z extension, you should
use binary.)

Then tell the ftp program to begin downloading the file to your local
hard drive with the command:

ncftp>get apache.x.x.tar.Z

You should now see a display indicating that the file is downloading to
your local hard drive.

Quit out of the ncftp program by typing exit.

ncftp>exit

Skip now to the discussion later in this appendix, “What to Do with the
File You Downloaded.”

Using Lynx

Some sites (like http://www.linuxvirtualserver.org) only allow you to down-
load files using the HTTP protocol. For these cases, you can use the text-
based web browser called Lynx or the non-interactive tool wget (discussed in
the next section). The commands to start a download with lynx might look
like this:

#cd /usr/local/src
#lynx www.linuxvirtualserver.org
Download ing Sof tware f rom the Internet (f rom a Tex t Terminal) 371
No Starch Press, Copyright © 2005 by Karl Kopper

Then press the down arrow key until the link you want is highlighted.
When you press ENTER on a link that points to a file for downloading, the
system will inform you of the file type and then prompt you: D)ownload or
C)ancel. After you press D and the download completes, the system will
display a screen with “Standard download options: Save to Disk” or “Local
additions: View with less” (less is a program that will attempt to display the
contents of the file on the screen one screen, or page, at a time).

Highlight “Save to Disk,” and press ENTER. Lynx will prompt you for a file
name with the downloaded file name already set as the default. You can just
press ENTER on this screen, and the file you just downloaded will be saved to
whatever directory you were in when you started lynx (/usr/local/src, in this
case).

After the downloaded copy of the file is saved to disk, quit out of lynx by
pressing the Q key twice.

Using Wget

The wget utility is similar to Lynx in that it uses the HTTP protocol, but wget
is a non-interactive HTTP download utility, so you’ll need to know the exact
URL of the file you want to download. To download the kernel source code
tar ball, for example, with wget the command might look like this:

#wget http://www.kernel.org/pub/linux/kernel/v2.4/linux-x.x.x.tar.gz

Where x.x.x is the kernel version number you want to download. wget
will display a percentage complete counter using text on your terminal
screen as it downloads the file using the HTTP protocol.

What to Do with the File You Downloaded

The command you need to enter next depends on the name of the file you
downloaded. To be more specific, it depends upon the extension of the file
name you downloaded. You probably are downloading files that look like
this: filename.tar.gz or filename.tar.bz or filename.rpm.gz, and so forth. For
the moment, we are only concerned with the final portion of the file name
extension that is indicating the type of compression used by the file’s creator
to make the file smaller for transmission over slow networks. This extension
and the command you need to use to uncompress the file will probably be
one of the following:

.bz or .tbz #bunzip2 filename.tar.bz or filename.rpm.bz

.bz2 or .tbz2 #bunzip2 filename.tar.bz2 or filename.rpm.bz2

.Z #uncompress filename.tar.Z

.gz #gunzip filename.tar.gz or filename.rpm.gz

.bz2.tar #bzcat filename.bz2.tar | tar xv or filename.rpm.gz
372 Appendix A

No Starch Press, Copyright © 2005 by Karl Kopper

After issuing one of these commands on the file you downloaded, you
should have a file with either a .tar or .rpm extension (in the same directory
as the original file). We’ll discuss how to handle these two types of files next.

tar Files

The .tar portion of the file name indicates this is a tape archive file
containing several files rolled into one. To untar the files in the tape archive,
enter the command:

#tar xvf <filename>.tar

This normally creates a directory in the current directory (where the
command is executed and where the file you downloaded resides)
containing the uncompressed files (and subdirectories).

NOTE You can uncompress a tar.gz file with a single tar command:

#tar zxvf filename.tar.gz

rpm Files

To (optionally) view the list of files contained within this Red Hat Package
Manager (RPM) file without installing them on your system, type the
command:

#rpm –qlp filename.rpm

You can then install the package with the following command:

#rpm -ivh filename.rpm

If you receive an error that a previous version of this package is already
installed, you can upgrade to this newer version with the command:

#rpm -Uvh filename.rpm

NOTE To view the packages already installed on your system, type:

#rpm –qa

Combine this command with the grep command to search for a specific package:

#rpm –qa | grep package-name

See Appendix D for an in-depth discussion of how to use the rpm
program to install packages.
Download ing Sof tware f rom the Internet (f rom a Tex t Terminal) 373
No Starch Press, Copyright © 2005 by Karl Kopper

Creating Your Own Tape Archive (tar) File

How do developers create those compressed tape archive files? In this section,
we’ll provide brief instructions using your kernel source files as an example.

First, place all of the files into the tar file with the command:

#tar cvf /tmp/kernellibs.2.6.x.tar /lib/modules/2.6.x

This command takes all of the files and all subdirectories of files and
places them into the file /tmp/kernellibs.2.6.x.tar (leaving the original files
untouched).

To reassure yourself that this tape archive file really contains all of your
files and directories, you can list the contents of the file (without untarring
it) with the command:

#tar tvf /tmp/kernellibs.2.6.x.tar

You can then compress this file with one of the following compression
methods:

#compress /tmp/kernellibs.2.6.x.tar
#gzip /tmp/kernellibs.2.6.x.tar
#bzip2 /tmp/kernellibs.2.6.x.tar

This will change the name of the file and add the proper extension to
indicate the type of compression you selected.

You can then copy these files over to the destination system and
uncompress and untar them using the commands in the previous section.1

1 Note that an easier method to accomplish the same thing when you are the administrator of
both hosts is to use the scp or secure copy command with the -r option. See the scp man page for
more information.
374 Appendix A

No Starch Press, Copyright © 2005 by Karl Kopper

B
T R O U B L E S H O O T I N G W I T H T H E

T C P D U M P U T I L I T Y

The tcpdump utility can be used for low-
level diagnostics of packet communications.

Normally, you run tcpdump on the system that
is either receiving or sending the packets and examine
the output as it scrolls by.

The tcpdump utility supports command-line arguments that allow
you to control which packets are displayed. tcpdump works outside of the
ipchains/iptables and routing rules you have created. This makes it very
useful for examining packets to see what is really coming into the system.
No Starch Press, Copyright © 2005 by Karl Kopper

If, for example, you sit at host realserver1 and have the following
Netfilter rule in place:

#iptables -A INPUT -s client10 -j DROP

and then you run tcpdump with the argument to display only packets from
client10 with the following command:

#tcpdump host client10

you will still see the packets dump onto the screen even though client10’s
packets never make it up to the listening daemons on the system.

You can also control which interface tcpdump listens on by adding a -i
<interfacename> argument. For example, to only see the packets hitting the
eth1 interface, you would use:

#tcpdump -i eth1 host client10

NOTE To view IP addresses instead of host names, use the -n argument to tcpdump.

(If you leave off the -i argument, tcpdump will listen on all of its devices
and add the device name to each line it prints out.)

Here is what one packet from tcpdump looks like:

16:36:25.667437 eth0 < 10-1-1-1.my.test.domain.1391 > 10-1-1-
2.my.test.domain.telnet: S 2644956594:2644956594(0) win 16384 <mss

Let’s examine this line in more detail.
After the timestamp, the eth0 is indicating that this packet was seen on

the eth0 device. The next character is either a < to indicate an inbound
packet or > to indicate an outbound packet. The next two parameters are the
source and destination hosts followed by the port number or port name (or
to be more accurate, the service name listed in /etc/services). This packet
was sent to the telnet port on eth0 from the 10.1.1.1 host. The 10.1.1.1 host is
expecting a response back on port 1391 (an unprivileged port). Next, the
letter S indicates the SYN flag was set in the packet. The complete list of IPv4
flags is: S (SYN), F (FIN), P (PUSH), or R (RST) or a single . to indicate no
IPv4 flag is set.

You have to know more about how network communication protocols
are supposed to work to troubleshoot much further (see the tcpdump man
page for some examples near the end that might help). But for most of the
work you do to set up cluster, simply knowing that a packet was received on
the correct port is often all the information you need. You test for packets
received (or sent) on a particular port with the command:

#tcpdump –n port 80
376 Appendix B

No Starch Press, Copyright © 2005 by Karl Kopper

This command listens to all HTTP packets on any Network Interface
Card connected to the system.

You can combine tcpdump packet criteria (with and) to see if a specific
client’s HTTP request is received:

#tcpdump -i eth1 host client10 and port 80

This command says to listen on interface eth1 for packets sent to or from
client10 on port 80.

One of the most useful things tcpdump will tell you is that the network
communication between the client and the host is being reset. Look for
packet reports from tcpdump that contain an R (instead of an S or no flag,
which is usually the case). Using tcpdump, you can determine which host
(the client or the real server or the Director) is attempting to reset the
connection. This usually means it “sees” a packet coming in on an established
connection but the packet does not contain the sequencing or
acknowledgement number expected. If you see this happening, check to
make sure there is a service or daemon running on the server that is sending
the reset. Usually, the reset occurs when this server is not running the
daemon the client computer is trying to talk to. You can check to see which
ports have daemons listening by running the following command on the
server:

#netstat –apn

Also look for tcpdump reports that indicate packets are only going in
one direction. In other words, all of the packets you see between your web
server and the host connecting to it contain only a < or they all contain only a
>. This probably means you have created Netfilter rules that DROP (iptables) or
DENY (ipchains) the packets you are interested in.

tcpdump might even show you an ICMP message you get back
somewhere on the communication path between the web server and the
client. If you see the message Admin Prohibited Filter, this indicates a firewall
between you and the client is blocking the packets. (You’ll know which one,
because the ICMP source address—the address on the left—is the firewall
that is blocking you.)

If you see a port unreachable message such as the following:

16:41:19.273329 eth0 > host1 > host2: icmp: host1 udp port tftp
unreachable [tos 0xc0]

this probably indicates that the specified port (tftp, in this case) is either
blocked by ipchains/iptables rules or that there is no daemon running
(tftpd, in this case) to answer requests on this port.

Another useful diagnostic tool is the free Ethereal tool available at
http://www.ethereal.com.
T roubleshooti ng w ith the tcpdump Ut i l i t y 377
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

C
A D D I N G N E T W O R K I N T E R F A C E

C A R D S T O Y O U R S Y S T E M

The easiest way to configure network
interface cards (NICs) on your system is to

set them up during the installation of your
Linux distribution.

The next easiest method is to use either the netconfig or the linuxconf
utilities. In this appendix, we’ll focus on the linuxconf utility. If your
distribution does not include the linuxconf utility, you can download it from
http://www.solucorp.qc.ca/linuxconf/download.hc.

(If you prefer not to run utilities to modify your network configuration
and would rather make the changes “manually,” you can simply edit the files
in the /etc/sysconfig/network-scripts and the /etc/sysconfig directories.)

Before you can use either of these methods, you need to determine what
type of NIC you are adding to your system and which kernel module (or
driver) it uses.

The kernel module, or network driver software, allows the Linux kernel
to work properly with your particular NIC and is normally supplied by the
company that built the NIC. You will need to consult their website or
documentation to find out the name of their Linux driver (they may even
No Starch Press, Copyright © 2005 by Karl Kopper

have instructions for compiling and installing a new version of their driver
software, but normally you will not need to do this because the kernel source
usually contains the driver software you need).

Monolithic Versus Modular Kernels

If you are using a monolithic kernel and need to add a new NIC driver to
your system, you must rebuild your kernel (described in Chapter 3) with the
new driver compiled into the kernel binary. However, if you are using a
modular kernel,1 you probably already have a compiled network driver
module that will support your NIC, and you simply need to insert this
module into the kernel.

You can insert modules into the kernel using the insmod command.
However, the system will forget about your insmod change to the running
kernel the next time you reboot, so you need to use the linuxconf utility to
make the change permanent—the linuxconf utility will also make changes to
the proper files in the /etc/sysconfig directory and to the /etc/modules.conf
and the /etc/sysconfig files to make your IP address and netmask settings
permanent.

View Your Existing Configuration

Before installing the new NIC into your system, enter the following
commands:

#lspci –v

and

#ifconfig –a | more

Note from the output of these commands which NIC’s base addresses
are already in use on your system and write them down (assuming it is a PCI
NIC). You can also enter the command:

#lsmod

This will display the currently loaded modules your kernel is using (if
you are using a modular kernel). On a standard Red Hat installation (which
uses a modular kernel), this command will show you the network driver
module the system has loaded to support your existing NIC(s).

1 And you are using the .config file as supplied by Red Hat or one like it that builds the NIC
drivers as modules in the /lib/modules directory.
380 Appendix C

No Starch Press, Copyright © 2005 by Karl Kopper

Install the Card and Reboot

Now power down the system and install the new NIC, reboot, and log back in
as the root user and enter:

#lspci –v

You should be able to determine from this command what type of NIC
the system thinks is connected to the PCI bus, and if you know the proper
name of the Linux driver (based on the documentation from your NIC
vendor), you are ready to run linuxconf.

Getting Ready to Run linuxconf

Enter the following command:

#rpm –qa | grep linuxconf

If this command does not return the version number of the currently
installed linuxconf RPM package, you need to load it by following this next
set of instructions. If you already have linuxconf loaded on your system, go to
the next section.

Insert the proper CD-ROM (probably the first or second CD-ROM)
included with your Red Hat distribution, or the first CD in prior releases,
into the CD-ROM drive, and then enter:

#mount /mnt/cdrom
#cd /mnt/cdrom/RedHat/RPMS
#ls linuxconf*

You should now see a list of linuxconf RPM packages on your CD. If this
CD does not have linuxconf installed on it, you will need to try another CD
(enter the command cd / ; eject and start over.)

Note that you can also download linuxconf from the ftp.redhat.com FTP
site or one of its mirrors.

If you see a listing that contains linxconf-<version> and linuxconf-devel-
<version>, you can proceed with the following command to load it onto your
system:

#rpm –ivh linuxconf-<version>

(You do not need the linuxconf-devel-<version> RPM package.)
Again, remember that you can use the TAB key to complete this

command once you have entered enough characters to make the file name
unique.
Adding Ne twork In terface Cards to Your System 381
No Starch Press, Copyright © 2005 by Karl Kopper

Eject the CD out of your system with the commands:

#cd /
#eject

Once the package is installed, enter the following command to tell your
shell to review files in its current PATHs:

#rehash

(If you don’t enter this command, you will get command not found when
you type linuxconf until you start a new shell.)

Run linuxconf

You are now ready to start the linuxconf utility with the command:

#linuxconf

A welcome screen appears, and you need to click QUIT (or press the TAB
key to highlight QUIT and press ENTER) to start using linuxconf.

Once you are past this screen, you can now use the arrow keys on your
keyboard and press ENTER until you are at the following submenu:

Config

Networking

Client tasks

Host name and IP network devices

Pressing ENTER on “Host name and IP network devices” will bring up the
screen that allows you to enter the following information to enable your NIC.

(First press the SPACE bar while on the “[] Enabled” line of the proper
“Adaptor” section—Adaptor numbers should be the same as the eth device
numbers to make things clear.)

Primary name + domain

Enter a registered DNS host name if you have one for your system. This
field is not required. (Most hosts within the Linux cluster will not have,
or need, DNS registered host names.) However, if you are running
sendmail or lpd on your cluster nodes, your host should have a name,
and its IP address should be in the local /etc/hosts file on each cluster
node.

Aliases (opt)

Optional host name aliases for this machine.
382 Appendix C

No Starch Press, Copyright © 2005 by Karl Kopper

IP address

The IP address you want to use for the NIC.

Netmasks (opt)

All of the hosts in your network should use the same netmask. The
examples in this book (for the Linux clustered computers) are using
255.255.255.0 (meaning only the last byte is used for the host IP address—
the first three bytes contain the network portion of the address).

Net device

Enter the eth device number you determined above into this field.
For example:

eth1

Kernel module

Enter the name of the kernel module. Here are a few examples:
For the Intel Ethernet Pro Card, you might use:

eepro100

For the old 3COM 3C509 card, you can use:

3c509

Another 3COM driver for 3c59 series network cards is:

3c59x

I/P port (opt)

You can take the guesswork out of the eth device name mappings by
entering the base address from the lspci –v command in this field.

As you quit out of linuxconf, tell the utility to activate your changes.

Testing the New NIC

Check to make sure the system recognizes your new NIC with the command:

#ifconfig –a | more

You should now see your new NIC listed along with its associated IP
address. If not, try entering the command to manually bring up the NIC you
just defined (for example):

#ifup eth1
Adding Ne twork In terface Cards to Your System 383
No Starch Press, Copyright © 2005 by Karl Kopper

Changes Made by linuxconf

linuxconf should have made changes to add the definition for your new NIC
to the /etc/sysconfig/network-scripts directory, and created (or modified) a
file in this directory named after the eth device number you have added (for
example, ifcfg-eth1).

NOTE The ifcfg-lo file in this directory is for the loopback device on your computer. Do not
remove it.

linuxconf may have also made changes to the /etc/sysconfig/network file.
It should have also added an “alias” to tell the Linux kernel which network
driver module to associate with this eth device (if you are using a modular
kernel) in the /etc/modules.conf file.

These changes are permanent, because the boot script /etc/rc.d/init.d/
network uses these files (on a Red Hat system) to know how to configure the
NICs on your system.

Using the New NIC

Once you have added these NICs to these scripts, you can also use the
following shortcut to bring the interfaces up or down (instead of entering
the full ifconfig command):

#ifup eth1
#ifdown eth1

Testing and Troubleshooting

You can test to see whether the new NIC is operational (at least the kernel
module) by pinging its IP address (for example):

#ping 10.1.1.1

(Press CTRL-C to break out of this listing and see a summary report of
your ping statistics. It should indicate “0% packet loss,” if everything is
working properly.)

If it does not work, you will see:

10.1.1.1: Destination Host Unreachable

(Press CTRL-C to break out of this listing as well.)
The first step in troubleshooting this new NIC (after you have made sure

the network cable is connected) is to enter the command:

#ifconfig –a | more
384 Appendix C

No Starch Press, Copyright © 2005 by Karl Kopper

Make sure your new eth device has been added to this listing and
contains the following line:

UP BROADCAST RUNNING MULTICAST MTU:nnnn Metric:n

(Where n indicates a number.)
If you do not see the word UP at the beginning of this line, it means your

ifup command did not work properly. You will need to go back and make
sure you have the correct eth device and network driver (either compiled
into the kernel or compiled as a module in the /lib/modules directory).

If you do see the word UP, try pinging the IP address of this eth device
(the local IP address on your machine) which in this example would be the
following command:

#ping 10.1.1.2

If this does not report 0% packet loss when you press CTRL-C, it probably
means you have made a mistake in the above steps and need to go back and
check everything you have entered again.

If this works, however, it means there is still something blocking your
packets from getting to the destination host and back (Internet Control
Message Protocol or ICMP packets, to be precise).

Make sure you do not have any ipchains or iptables rules that would
block communication between your system and another host. You can
remove all ipchains or iptables rules with the -F (flush) option:

#ipchains –F or #iptables -F

List the rules with the -L option:

#ipchains –L or #iptables –L

Your input, forward, and output default policy should now be ACCEPT.
(Of course, make sure the host you are trying to ping is not blocked by an
intervening firewall and that it is also not using iptables/ipchains rules to
block your ICMP ping packets.) See Chapter 2 for more information on how
to configure the ipchains and iptables rules properly.

NOTE If the ping command now works, you may need to modify your ipchains rules in the file
/etc/sysconfig/ipchains or /etc/sysconfig/iptables.

If the ping command still does not work, you might try using another
method of communicating with the remote host (try to telnet to it). If this
works, it probably means a firewall between your systems is blocking ICMP
traffic.

See the online manual, “Linux Network Administrators Guide,” for more
information about configuring and enabling NICs on your Linux system.
Adding Ne twork In terface Cards to Your System 385
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

D
S T R A T E G I E S F O R D E P E N D E N C Y

F A I L U R E S

The strategies for dealing with rpm depen-
dency failures can be broken down into

two basic categories: automated methods of
resolving dependency failures and manual methods.

Automated methods are not available, however, when
you install packages that are not a part of your distribution. In this appendix,
I’ll briefly describe how to use one of the automated methods (Yum) after I
describe how to resolve dependency failures manually, but first you need to
understand what they are and how rpm enforces them.

What Are Dependencies?

Programs depend upon shared libraries of program code so that they can
make system calls to send output to a device, open files, and so forth.1
Without shared libraries, every programmer would have to rewrite these
basic system operations from scratch every time they developed a new

1 Shared libraries exist for a wide variety of things not limited to system calls.
No Starch Press, Copyright © 2005 by Karl Kopper

program. When a program is compiled, the programmer links his or her
code to these libraries. If the link is static, the compiled shared library object
code is added to the program executable; if the link is dynamic, the compiled
shared library object code is only loaded by the program when it is needed at
run time. Dynamic executables, as they are called, depend upon the correct
shared libraries or shared objects for normal operation. rpm dependencies try
to enforce the shared object requirements of dynamic executables at
installation time so that later—when the program runs—there won’t be any
problems with the dynamic linking process.

NOTE There is a second type of dependency that rpm enforces based on an explicit entry into
the rpm configuration files by the programmer, but for the moment we’re not concerned
with this type of dependency, which is easy to understand and resolve. We want to focus
on the more complex shared object dependencies that rpm enforces.

Dynamic Executables and Shared Objects

Dynamic executables look for shared objects using the shared object name
or soname of the library file that was used at the time the program was
originally compiled and linked. They look in a few standard places, such as in
the /lib and /usr/lib directories and in whatever directories are specified by
the LD_LIBRARY_PATH environment variable (see the man page for ld.so for the
complete list of possible directories). The shared objects found in these
library directories may not be real files, by the way; they might be symbolic
links to the real library file located somewhere else (but normally, still in one
of the standard library directories).

But the confusing thing—at least from the system administrator’s point
of view—is that normally there is little relationship between the name of the
shared library package that was used to create the shared library file and the
name of the shared library file. For example, the GLIBC 2.3 package is used
to create the libc.so.6 shared library file. Notice also from this example that
the version number tacked on to the end of the shared library file name (.6)
is not related to the version number of the package used to create it (2.3).
This is intentionally done by the shared library package developers so that a
new release of GLIBC, for example, can reuse the same shared library file
name, or soname libc.so.6. This allows you to load a new version of GLIBC
on your system without breaking all of your programs that are dynamically
linked to the libc.so.6 shared library file—assuming, of course, that the new
version of GLIBC is backward compatible with the older version of GLIBC
that your dynamic executables were originally linked against. So even though
the library files, or shared object files, have version numbers associated with
them, these version numbers do not help you to determine which version of
the shared library package they came from.

NOTE Information about the existing shared objects that were loaded on the system using
rpm packages is available when you use the –whatprovides option to the rpm query
command.
388 Appendix D

No Starch Press, Copyright © 2005 by Karl Kopper

This confusion is compounded by the fact that a single shared library file
may support a range of shared library package versions (for backward
compatibility). To examine the GLIBC shared library package version
numbers supported by the soname library file /lib/libc.so.6, for example,
run the command:

#objdump --all-headers /lib/libc.so.6 | less

Scroll down through this report until you reach the Version definitions:
section to see which GLIBC versions are supported by your libc.so.6 shared
library file:

Version definitions:
1 0x01 0x0865f4e6 libc.so.6
2 0x00 0x0d696910 GLIBC_2.0
3 0x00 0x0d696911 GLIBC_2.1
 GLIBC_2.0
4 0x00 0x09691f71 GLIBC_2.1.1
 GLIBC_2.1
5 0x00 0x09691f72 GLIBC_2.1.2
 GLIBC_2.1.1
6 0x00 0x09691f73 GLIBC_2.1.3
 GLIBC_2.1.2
7 0x00 0x0d696912 GLIBC_2.2
 GLIBC_2.1.3
8 0x00 0x09691a71 GLIBC_2.2.1
 GLIBC_2.2
9 0x00 0x09691a72 GLIBC_2.2.2
 GLIBC_2.2.1
10 0x00 0x09691a73 GLIBC_2.2.3
 GLIBC_2.2.2
11 0x00 0x09691a74 GLIBC_2.2.4
 GLIBC_2.2.3
12 0x00 0x0963cf85 GLIBC_PRIVATE
: GLIBC_2.2.4
13 0x00 0x0b792650 GCC_3.0

In this example, the libc.so.6 shared library file supports all the dynamic
executables that were originally developed for GLIBC versions 2.0 through
2.2.4.

NOTE You can also use the objdump command to extract the soname from a shared library file
with a command like this:

#objdump --all-headers /lib/libcrypto.so.0.9.6b | grep SONAME

Next, I’ll discuss how the rpm package is built so that these shared library
dependencies are known when the rpm package is installed on a new system.
St rateg ies for Dependency Fai lures 389
No Starch Press, Copyright © 2005 by Karl Kopper

rpm Packages and Shared Library Dependencies

When the programmer builds an rpm package, the ldd command is used to
report all of the shared libraries used by all of the dynamic executables in
their package. Another confusion is added by the fact that different dynamic
executables within the same software package may have been linked with
different versions of the same shared library package. For example, different
programs within the Heartbeat package may have been developed and
dynamically linked to different GLIBC versions of the libc.so.6 soname
shared library file.

You can see the full list of the shared libraries required by an rpm
package with the –q and --requires arguments to the rpm command. For
example, to see all of the required dependencies for the Heartbeat rpm
package, use the command:

#rpm -q --requires -p heartbeat-1.x.x.i386.rpm

This produces the following report:

sysklogd
/bin/sh
/bin/sh
/usr/bin/python
ld-linux.so.2
libapphb.so.0
libc.so.6
libc.so.6(GLIBC_2.0)
libc.so.6(GLIBC_2.1)
libc.so.6(GLIBC_2.1.3)
libc.so.6(GLIBC_2.2)
libc.so.6(GLIBC_2.3)
libccmclient.so.0
libdl.so.2
libglib-1.2.so.0
libhbclient.so.0
libpils.so.0
libplumb.so.0
libpthread.so.0
librt.so.1
libstonith.so.0

Notice from this report that the libc.so.6 soname is required and that
this shared library must support dynamic executables that were linked using
the GLIBC shared package version numbers 2.0, 2.1, 2.1.3, 2.2, and 2.3. This
is due to the fact that different dynamic executables within the Heartbeat
package were linked against each of these different versions of the libc.so.6
library.
390 Appendix D

No Starch Press, Copyright © 2005 by Karl Kopper

With this background knowledge of how dynamic executables, shared
objects, sonames, and shared library packages relate to each other, we are
ready to look at an example of what happens when you try to install an rpm
package and it fails due to a dependency error.

Fixing a Dependency Failure Manually

Usually, you will encounter rpm dependency errors when you attempt to
install a package that was not included with your distribution (and therefore
one that cannot have its dependencies automatically resolved by an update
tool such as up2date, apt-get, or Yum).

For example, if you attempt to install all three Heartbeat rpm packages
in the chapter7 subdirectory on the CD-ROM using the rpm –ivh *rpm
command on an older Linux distribution, you may encounter the following
error:

error: failed dependencies:
 libc.so.6(GLIBC_2.3) is needed by heartbeat-1.x.x
 libc.so.6(GLIBC_2.3) is needed by heartbeat-pils-1.x.x
 libcrypto.so.0.9.6 is needed by heartbeat-stonith-1.x.x
 libsnmp-0.4.2.6.so is needed by heartbeat-stonith-1.x.x

Notice that the rpm command did not bother to report each of the
GLIBC shared library package version numbers that are required—it only
reported the highest numbered one that was required (GLIBC_2.3).2 All of
these failures are reporting the shared library names or sonames (not file
names) that are required (sonames always start with “lib”). However, you can
remove the version numbers tacked on to the end of the sonames reported
by rpm and quickly check to see if you have these shared libraries installed
on your system using the locate command.3 For example, to look for the
libcrypto shared library file you would enter:

#locate libcrypto

If this command does not find a libcrypto shared library file on your
system, you’ll have to go on the Internet and find out which shared library
package contains this shared library file. One quick and easy way to do this is
to simply enter the name of the shared library into the Google Linux search
at http://www.google.com/linux. If you enter the text libcrypto.so into this
search page, you’ll quickly learn that this shared library is provided by the
openssl package.

2 The assumption is that the original package developer would not dynamically link executables
within the same package to incompatible versions of a shared library package.
3 Assuming your locate database is up to date. See the man page for locate or slocate for more
information.
St rateg ies for Dependency Fai lures 391
No Starch Press, Copyright © 2005 by Karl Kopper

If an older version of the shared library package is already installed on
your system, you can confirm that this package contains the shared library
file you need with a command like this:

#rpm -q --provides openssl

This command reports everything this rpm package provides (which
includes the sonames of the shared library files provided by the package).

NOTE As stated previously, the shared library package version numbers do not, and should
not, have any correspondence to the shared library file (soname) version number. I’ve
left out of this discussion the fact that a soname symbolic link may point to different
versions of a shared library file. This is also done in an effort to avoid breaking exist-
ing dynamic executables when a new version of a shared library package is installed.

Fixing a Dependency Failure Automatically

Dependency failures can quickly turn into a nightmare when you work with
rpm packages to build, upgrade, or add new features to your system. You can
avoid this nightmare by simply using your distribution vendor’s update
service or tool. For example, the Red Hat utility up2date automatically
downloads and installs any rpm dependencies directly from Red Hat when
you select an rpm package to install. Several community-supported, free
methods to accomplish the same thing are listed on the website http://
www.rpm.org/software/updaters. In this appendix, we’ll take a closer look at
just one of these automatic update tools: Yum.

Using Yum to Install rpm Packages

The Yellow dog Updater, Modified, or Yum program can be downloaded (as
an rpm package) from http://linux.duke.edu/projects/yum/download.ptml.

After downloading this package, you can install it like any other rpm
package with the command:

#rpm -ivh yum*

You may need to update the repository you would like to use to down-
load your rpm packages from. See the list of available Yum repositories for
Fedora at http://www.fedoratracker.org. To switch to a different repository,
download one of these files and install it as your /etc/yum.conf file.

Now we can tell Yum to report all packages stored in the Yum rpm
Internet repositories that are available for install with the command:

#yum list
392 Appendix D

No Starch Press, Copyright © 2005 by Karl Kopper

Installing a New rpm Package with Yum

In this example, we’ll install a new GLIBC package. Install the latest GLIBC
and all of its dependencies with the simple command:

#yum update glibc

If all goes well, the Yum program will automatically detect, download,
and install any rpm packages that are required for the latest GLIBC package
that was built for your distribution (not necessarily the latest version of the
GLIBC package that is available4).

You can also look for a package to install using the list argument to Yum
and the grep command. For example, to look for a package with SNMP in the
name, you would enter:

 #yum list | grep snmp

This returns a report that looks like this:

php-snmp i386 <version>
ucd-snmp i386 <version>
ucd-snmp-devel i386 <version>
ucd-snmp-utils i386 <version>

You can now easily download and install all of these rpm packages
using Yum.

In Conclusion

You’ll have to manually resolve rpm dependency failures when you install
packages that are not a part of your distribution. However, once you know
the name of the shared library package that was used to create the shared
object, or soname, reported in the rpm dependency failure error message,
you may be able to use an automated tool to download and install it.

The trick is that the soname reported in the dependency failure error
message by rpm is normally not related to the shared library package name
(and thus the shared library rpm package name) that was used to create it.

4 Use the GLIBC shared library package version number that is approved for your distribution or
you risk installing a version of the GLIBC package that does not work with the dynamic
executables required for normal system operation.
St rateg ies for Dependency Fai lures 393
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

E
O T H E R P O T E N T I A L C L U S T E R

F I L E S Y S T E M S A N D L O C K
A R B I T R A T I O N M E T H O D S

Additional open source, or free, filesystem
technologies that may be considered when

building a shared data solution in a Linux
enterprise environment include the following:

CODA

Allows multiple file servers to store the same data. For the latest informa-
tion, see http://www.coda.cs.cmu.edu (see the CODA FAQ “general”
question, “How stable and usable is CODA?”).

DRBD

Mirrors a storage device at the block level over the network. A primary
node has read/write access to the data, and when used in combination
with the Heartbeat package (discussed in Part II of this book), a backup
node has the ability to gain read/write access to the data when the
primary node fails. For the latest information, see http://www.comp-
lang.tuwien.ac.at/reisner/drbd.
No Starch Press, Copyright © 2005 by Karl Kopper

Intermezzo

Another distributed open source filesystem with great promise. Inter-
mezzo was “deeply inspired” by the CODA filesystem and entered the
Linux kernel at version 2.4.15. However, Intermezzo is not designed for
high-performance write access to a single file or database by multiple clus-
ter nodes. For the latest information, see http://www.inter-mezzo.org.

Lustre

A cluster filesystem that is capable of supporting tens of thousands of
nodes. For the latest information, see http://www.lustre.org.

Polyserve

A high performance NAS cluster for Linux that uses a SAN for data
storage (http://www.polyserve.com).

Oracle Cluster File System (CFS)

Part of the Linux Single System Image (SSI) project. For the latest
information, see http://ssic-linux.sourceforge.net.

Panasas

For the latest information, see http://www.panasas.com.

V9fs

For the latest information, see http://v9fs.sourceforge.net.

The Open Distributed Lock Manager (DLM) project

This is a GNU open source project originally started at IBM that will cur-
rently work with a two-node Heartbeat configuration. The Open DLM
package provides application programming interface (API) routines that
will perform lock arbitration. You can then use these lock arbitration
APIs if you are writing your own application to access the data. For the
latest information, see http://oss.software.ibm.com/developerworks/
projects/dlm.

Open Global File System (GFS)

This used to be an open source project that turned into a product from
the Sistana company that was then purchased by Red Hat. Somewhere
along the line the open source version of GFS was revived, so now there
are two projects: Open GFS and GFS. At the time of this writing informa-
tion about GFS is available online at http://www.redhat.com/software/
rha/gfs.
396 Appendix E

No Starch Press, Copyright © 2005 by Karl Kopper

F
L V S C L U S T E R S A N D T H E A P A C H E

C O N F I G U R A T I O N F I L E

You will use either IP-based or name-based
VirtualHost containers in your Apache

configuration file to override the general
options set at the top of the file when configuring

Apache to run on a real server in an LVS cluster. The
IP-based or name-based virtual host containers select
the proper directory for web files and CGI scripts1 for
each web host that the real server needs to offer to client computers. We’ll
discuss when and how to use these two types of Apache virtual hosts later in
this appendix, but first let’s look at some of the general options you can set
in the Apache configuration that will enable the Apache daemon to work
properly on an LVS real server.

1 This recipe does not discuss CGI scripting. You will need to look at the general configuration
file ScriptAlias directive in addition to the general directives mentioned here if you are working
with CGI scripts.
No Starch Press, Copyright © 2005 by Karl Kopper

You should check these general settings, as discussed in the following
sections:

� ServerName

� DocumentRoot

� BindAddress (only for Apache versions prior to 2.0)

� Port (only for Apache versions prior to 2.0)

� Listen (replacement for BindAddress and Port)

ServerName

Edit the ServerName line in the Apache configuration file (/etc/httpd/conf/
httpd.conf on Red Hat), and specify the name of your server as follows:

#vi /etc/httpd/conf/httpd.conf

Remove the # in the line that looks like this:

#ServerName <yourserver>

and insert your server name:

ServerName www.yourdomain.com

Replace www.yourdomain.com in this example with the default web host
name you have registered in DNS for your web server. Or, if you are testing
in a lab environment, enter the IP address you want to assign to the machine.
(We will override this value in a VirtualHost container shortly.)

DocumentRoot

Set the DocumentRoot directive to the full path name of the default directory
where your HTML files will reside (we will override this default value with a
virtual host entry shortly).

DocumentRoot "/www/htdocs"

Next, you should modify the first line of the Directory container that
follows the DocumentRoot directive to use the same directory you specified for
the DocumentRoot. In this example, the line in the configuration file looks
like this after you make the change:

<Directory "/www/htdocs">
398 Appendix F

No Starch Press, Copyright © 2005 by Karl Kopper

BindAddress

If you are using an Apache version prior to 2.0, make sure the BindAddress
directive in this file is commented out, like this:

#BindAddress *

This tells the Apache daemon(s) to listen for connection requests on all
RIPs used on the real server. If you add an IP address to this directive (and
uncomment it), you limit the Apache daemon so that it can only receive
requests on a particular IP address. (On Apache 2.0 and newer, use the
Listen directive instead of the BindAddress directive, as described later in this
section.)

NOTE Leave the BindAddress line commented out, or use it as is (without an IP address).

Port

In Apache versions prior to 2.0, the Port entry points to the default port used
when self-referential URLs in any of your virtual hosts attempt to connect
back to the server (without explicitly appending a port number in their
URLs). We’ll discuss self-referential URLs in more detail later in this
appendix. You can specify only one port. You should use either port 80 (the
default) or port 443. Use port 443 if you want the default value for self-
referential URLs to point to the secured content; otherwise, use port 80.

Listen

The Listen directive replaced the BindAddress and Port directives in Apache
version 2.0 and is now required. It can be used to combine an IP address and
a port number that Apache should listen on.

Multiple Listen directives are allowed. For example:

Listen 209.100.100.3:80
Listen 209.100.100.3:443

While these entries would be valid, because we want Apache to listen on
all IP addresses, you should not use an IP address here. If you must control
the port numbers Apache listens on, specify them using the Listen directive
without an IP address, like this:

 Listen 80
 Listen 443
LVS Clus ters and the Apache Conf igurat ion F i l e 399
No Starch Press, Copyright © 2005 by Karl Kopper

Then start Apache, and check to make sure that it is listening on the
proper ports with this command:

#netstat -apn | more

You should see netstat reporting that Apache is listening on both ports
(80 and 443).

Now that we’ve looked at the general options you can use in the Apache
configuration file, let’s look at how you create an Apache virtual host.

Apache Virtual Host Configuration on Cluster Nodes

If your node(s) only need to serve a single web host address (one DNS
registered host name), you would be done at this point with your changes to
the httpd.conf file. However, you will most likely need to configure each
cluster node as a web server able to offer several different addresses or web
host names. Apache lets you do so using either IP-based or name-based
virtual hosts.

Apache IP-Based Virtual Hosts

Older web browsers (Netscape version 1.1 or early releases of Internet
Explorer) that do not know how to send requests with the web host name
embedded (HTTP version 1.0) and HTTPS requests (even when sent from
new web browsers) require IP-based virtual hosts.2

The Apache web servers running on the real servers inside the cluster
can serve several IP-based web hosts from a single real server using IP-based
VirtualHost containers in the Apache configuration file. Each VIP address
the cluster offers to client computers will have one VirtualHost container
associated with it that looks like this:

<VirtualHost 209.100.100.3:80 10.1.1.2:80>
 #
 # 209.100.100.3 is the VIP address known to client computers
 # 10.1.1.2 is the RIP address on LVS-NAT cluster node 1
 #
 ServerName www.yourdomain.com
 ServerAdmin yourname@yourdomain.com
 DocumentRoot /www/htdocs
 ErrorLog /var/log/httpd/error_log
 TransferLog /var/log/httpd/access_log
</VirtualHost>

2 IP-based virtual hosts are also required for the Microsoft FrontPage extensions at the time of
this writing.
400 Appendix F

No Starch Press, Copyright © 2005 by Karl Kopper

In this example, both the VIP and the RIP addresses are placed on the
VirtualHost line so we can use the same httpd.conf file on both the real server
and the Director.

When you add another cluster node, add it to the VirtualHost directive,
as shown in the following example:

<VirtualHost 209.100.100.3:80 10.1.1.2:80 10.1.1.3:80>
#
209.100.100.3 is the VIP address known to client computers
10.1.1.2 is the RIP address on LVS-NAT cluster node 1
10.1.1.3 is the RIP address on LVS-NAT cluster node 2
#
ServerName www.yourdomain.com
ServerAdmin yourname@yourdomain.com
DocumentRoot /www/htdocs
ErrorLog /var/log/httpd/error_log
TransferLog /var/log/httpd/access_log

</VirtualHost>

The format of the VirtualHost container is:

<VirtualHost VIP:Port Virtual RIP1-1:Port Virtual RIP2-1:Port ... >
 Options that will override the general server options.
</VirtualHost>

Adding all of the cluster node RIP addresses to the VirtualHost directive
allows you to use the same Apache configuration file on all cluster nodes
instead of forcing you to maintain separate configuration files on each
cluster node.

NOTE In an LVS-DR cluster, you can leave out the RIP addresses and only use the VIP
addresses because the real servers receive the HTTP packets from the Director on a VIP
address.

Name-Based Virtual Hosts

All web browsers now know how to send a web host name embedded in the
HTTP request. This allows you to conserve IP addresses and specify several
different web host names (or CNAMES in DNS) for a single VIP address.
When the Apache3 web server receives a request for a name-based virtual host,
it needs to know which virtual host container in the httpd.conf file to use.

Apache decides which container to use for name-based virtual hosts by
matching the IP address used in the HTTP request with a VirtualHost
container and then looking inside this container at the ServerName directive.

3 Name-based virtual hosting was introduced in Apache version 1.3; for the NameVirtualHost
directive to accept the wildcard character * (discussed in a moment), Apache version 1.3.13 or
higher is required.
LVS Clus ters and the Apache Conf igurat ion F i l e 401
No Starch Press, Copyright © 2005 by Karl Kopper

If the ServerName directive is equal to the web host name embedded in the
client computer’s HTTP request, Apache knows it has found the correct
container.4

For example, if you had registered both www1.yourdomain.com and
www2.yourdomain.com to IP address 209.100.100.3 using DNS, you could
create httpd.conf entries that looked like this:

Enable Name-based virtual hosts on all IP addresses.
NameVirtualHost *

First name-based virtual web: www1.yourdomain.com
<VirtualHost *>

ServerAdmin yourname@yourdomain.com
UseCanonicalName off
DocumentRoot /www/ww1/htdocs
ServerName www1.yourdomain.com
ErrorLog /var/log/httpd/error_log
TransferLog /var/log/httpd/access_log

</VirtualHost>

Second name-based virtual web: www2.yourdomain.com
<VirtualHost *>

ServerAdmin yourname@yourdomain.com
UseCanonicalName off
DocumentRoot /www/www2/htdocs
ServerName www2.yourdomain.com
ErrorLog /var/log/httpd/error_log
TransferLog /var/log/httpd/access_log

</VirtualHost>

NOTE First-generation web browsers that do not send a web host name embedded in their
HTTP request will be sent, by default, to the first virtual host container defined. (See
the workaround to overcome this problem using the ServerPath directive on the Apache
website.)

Notice that we have enabled named-based virtual hosts by adding the
NameVirtualHost directive (before the VirtualHost containers).

You cannot use name-based virtual hosts on a web server that will use the
SSL protocol (to provide a secure page to enter credit card information, for
example). The encrypted SSL secure transport must be established prior to
the HTTP connection (prior to the HTTP GET request that tells Apache
which virtual host name the client computer is trying to access). One

4 Apache will also match the IP address in the HTTP request against the NameVirtualHost directive
if you use an IP address instead of the wildcard character * in the NameVirtualHost directive. If you
do this, however, you will need multiple NameVirtualServer directives (one for each IP address)
outside of the VirtualHost containers.
402 Appendix F

No Starch Press, Copyright © 2005 by Karl Kopper

workaround to this problem is to specify the IP address that is shared by the
virtual hosts along with HTTP port 80 in the NameVirtualHost directive and in
each virtual host container, as shown in the following example:

Enable Name-based virtual hosts for one IP address
NameVirtualHost 209.100.100.3:80

First name-based virtual web: www1.yourdomain.com
<VirtualHost 209.100.100.3:80>

ServerAdmin yourname@yourdomain.com
UseCanonicalName off
DocumentRoot /www/ww1/htdocs
ServerName www1.yourdomain.com
ErrorLog /var/log/httpd/error_log
TransferLog /var/log/httpd/access_log

</VirtualHost>

Second name-based virtual web: www2.yourdomain.com
<VirtualHost 209.100.100.3:80>

ServerAdmin yourname@yourdomain.com
UseCanonicalName off
DocumentRoot /www/www2/htdocs
ServerName www2.yourdomain.com
ErrorLog /var/log/httpd/error_log
TransferLog /var/log/httpd/access_log

</VirtualHost>

 Using this configuration will allow you to acquire a security certificate
for your IP address (209.100.100.3, in this example) and use the SSL features
of Apache to provide for secure and encrypted communication. Describing
how to use SSL with Apache is outside the scope of this book.

Self-Referential (Redirection) URLs

Normally, web page developers do not use the complete web host name,
directory, subdirectory, and file name (called the absolute path name) for every
link they create within a website. Web developers like to use relative path
names to files (so their code can easily be moved around in the directory
structure if need be), and relative path names allow them to leave out the
web host name when they create a link on a web page. This type of web page
link is called a self-referential (or redirection) URL because the web
developer wanted Apache to assume—if the web host name was not included
in the link—the URL refers back to the current web host or web server.
LVS Clus ters and the Apache Conf igurat ion F i l e 403
No Starch Press, Copyright © 2005 by Karl Kopper

IP-Based Virtual Hosts and Self-Referential URLs

With IP-based virtual hosts, the web host server name used in self-referential
URLs is, by default, the value you give to the ServerName directive inside of the
VirtualHost container. (Starting with version 2.0 of Apache, the ServerName
directive can contain a fully qualified host name followed by an optional
colon and port number.)

Name-Based Virtual Hosts and Self-Referential URLs

For name-based virtual hosts, the situation is different and much easier. As
shown in the previous name-based virtual host example, the UseCanonicalName
directive was set to off. This means self-referential URLs5 are set to the host
name sent by the client computer (embedded in their HTTP request). The
same Apache configuration file can then be used on all of the cluster nodes
inside an LVS-NAT cluster without modification, and the self-referential
URLs will work properly.6 (Again, note that with Apache version 2.0 and
later, the value you give to the ServerName directive can be the fully qualified
host name followed by a colon and a port number.)

Verify Your Virtual Host Configuration

When you have modified the Apache configuration file to add a virtual host,
you can verify that it is configured properly before you start Apache with the
following command.

5 And the CGI script variables SERVER_NAME and SERVER_PORT.
6 In Chapter 14, we discuss persistence and explain how to configure your cluster so that self-
referential URLs will even end up back on the same cluster node.

R E V E R S E DN S Q U E R I E S

A N D S E LF - R E F E R E N T I A L U R L S

If, for some reason, you do not want to set the ServerName directive inside of each
IP-based VirtualHost container, you can leave it out and instead set the directive
UseCanonicalName to dns. When you set UseCanonicalName to dns, Apache will figure
out the ServerName to use in self-referential URLs by performing a reverse DNS query
on the IP address specified in the VirtualHost container (the IP address the client used
in the HTTP request). This IP address is sent to a DNS server to find out which host
name it is associated with. This method will not resolve self-referential URLs on real
servers in an LVS-NAT cluster because the IP address will be a RIP address (not a VIP
address), and RIP addresses are not stored in DNS.1 (To resolve self-referential URLs
in an LVS-NAT cluster, specify the ServerName directive in the VirtualHost container,
and set the directive UseCanonicalName to on.)

1 They can be stored in an internal naming service that the cluster nodes use to resolve IP
addresses, though this is not normally done.
404 Appendix F

No Starch Press, Copyright © 2005 by Karl Kopper

#/usr/sbin/httpd -t -DDUMP_VHOSTS

NOTE Most versions of Apache also support the same functionality with the command:

 /usr/sbin/httpd –S

The output of this command will depend on the virtual host method you
selected.

For IP-based virtual hosts, both the VIP and the RIP addresses will appear
on this report:

#/usr/sbin/httpd -t -DDUMP_VHOSTS
VirtualHost configuration:
10.1.1.2:80 www.yourdomain.com (/etc/httpd/conf/httpd.conf:1215)
209.100.100.3:80 www.yourdomain.com (/etc/httpd/conf/httpd.conf:1215)

This example output indicates that line 1215 in the httpd.conf file
contains the definition for both of these VirtualHost IP addresses.

For named-based virtual hosts, the output of this command looks like this:

#/usr/sbin/httpd -t -DDUMP_VHOSTS
VirtualHost configuration:
wildcard NameVirtualHosts and _default_ servers:
: www1.yourdomain.com (/etc/httpd/conf/httpd.conf:1215)
: www2.yourdomain.com (/etc/httpd/conf/httpd.conf:1225)

This example output indicates that two name-based virtual hosts have
been defined in the httpd.conf file. When Apache runs as a daemon on this
server it will be able to serve content for these two virtual hosts in response to
HTTP requests from client computers.

I F D N S I S N O T C O N F I G U R E D P R O P E R L Y

If you are using IP-based virtual hosts and you used the UseCanonicalName DNS
directive, this command will cause Apache to perform a reverse DNS query on the IP
addresses you have specified in your VirtualHost containers. If you don’t have DNS
configured properly on your cluster nodes, Apache will complain:

10.1.1.2:80 Bogus_host_without_reverse_dns (/etc/httpd/conf/httpd.conf:1200)

This error indicates that line 1200 of the /etc/httpd/conf/httpd.conf file
contains an IP address (the 10.1.1.2 RIP address, in this example) that Apache
cannot find in DNS.
LVS Clus ters and the Apache Conf igurat ion F i l e 405
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

I N D E X

A
absolute path names, 403
account administration

without Active Directory,
342–343

for clusters, 189–190
in SSH, 78–79

ACID techniques, 366
active-active server configuration,

154
active connections, 203
Active Directory, 341–343, 361
addclients program, 100, 105
Address Resolution Protocol (ARP)

GARP, 122–125
for LVS-DR cluster broadcasts,

233–234, 236–238
addresses, IP. See IP addresses
administrative networks, 113
ADSL (Asymmetric Digital

Subscriber Line), 26
advanced power management, 22
advisory locking, 280
aep1000 script, 21
affinity, port, 250
alarms in Heartbeat, 157
alerts

Heartbeat, 157–158
Mon, 302, 319
SNMP, 28

aliases
IP

creating and deleting,
120–121

failing over, 116

in haresources file, 148–149
in Heartbeat, 116–125
for source addresses, 117

in linuxconf, 382
anacron script, 21–23, 29
Apache

CGI programs under, 286
configuration, 397–398

BindAddress entry, 399
on cluster nodes, 400–403
DocumentRoot entry, 398
Listen entry, 399–400
Port entry, 399
on real server, 218–219
self-referential URLs,

403–404
ServerName entry, 398
verifying, 404–405

for Ganglia, 330, 332
superfluous messages in, 260

apcmaster device, 168
apcmastersnmp device, 168
apcsmart device, 168
API (application programming

interface), 3, 396
apmd script, 22
AppConfig module, 97
arbitration, lock, 5, 280

kernel, 280–283
NLM for, 284–285
potential methods, 395–396

ARP (Address Resolution Protocol)
GARP, 122–125
for LVS-DR cluster broadcasts,

233–234, 236–238
arpwatch script, 22
No Starch Press, Copyright © 2005 by Karl Kopper

Asymmetric Digital Subscriber Line
(ADSL), 26

atd script, 22, 316
attribute caching, 291
audible alarms, 157
authentication

for cluster accounts, 343–345
in SSH, 76–77

auto_failback entry, 159–160, 164,
176

autofs script, 22
automated processes

dependency failure fixing, 392
NIC selection process, 149–151

autoreload entry, 268

B
backup Directors, Heartbeat

installation on, 263
backup servers in Heartbeat, 112

configuration on, 131
installation on, 139–140
launching on, 142–143

backupserver entry, 171–172
bash statements, 18
batch job systems

for clusters, 190
in NFS, 292–293
with no single points of failure,

354–357
baud entry, 135
baytech device, 168
bcast entry, 135
bcm5820 script, 22
big-endian byte ordering, 192
bin command, 371
BindAddress entry, 399
boot floppies

failures in, 107
for Golden Client, 103–106

/boot/grub/device.map file, 64
/boot/grub/menu.lst file, 62
boot loaders

configuring, 62–64
and root filesystems, 63–64

/boot/System.map file, 61
booting from SCSI disks, 64

bottlenecks, NFS, 288–290
broadcasts

for Heartbeat, 122–125
for LVS-DR clusters, 233–234,

236–238
BSD flock lock arbitration, 281,

284–285
business tiers in N-Tier applications,

361
byte offers for BSD flock, 281
.bz file, 372
.bz2.tar file, 372
bzImage file, 60–61

C
cable connections in Heartbeat, 113
caching

attributes, 291
in round-robin DNS, 156

capacity planning, 190–192
case studies, 341

account administration without
Active Directory, 342–343

batch job-scheduling systems,
354–357

cluster account authentication
mechanisms, 343–345

email, 353–354
fault-tolerant print spoolers,

345–351
rebooting nodes for

preventative maintenance,
352–353

cat command, 59
central print servers

custom scripts on, 351
/etc/printcap on, 349–350
LPRng installation on, 347–348
print job management on, 350

centralizing account
administration, 189–190

CFS (Cluster File System), 396
CGI programs under Apache, 286
chain policies, 38
checkinterval entry, 268
checkport entry, 271
checktimeout entry, 267–268
408 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

checktype entry, 271
chkconfig command, 18–20, 129,

138, 275
CIP (client computer's IP)

addresses, 195
cl_respawn utility, 162
client-servers for SSH. See two-node

SSH client-servers
clients

access to
in Heartbeat, 115–116
LVS-DR cluster services,

232–236
LVS-NAT cluster resources,

209–216
in data center example,

362–363
for Golden Client, 98–99
for LVS clusters, 194
for LVS-DR clusters and ARP

broadcasts, 236–238
NFS configuration options,

296–297
in SystemImager, 108–109

clock skew, 58
cloned systems. See SystemImager

package
close-to-open (cto) cache

consistency, 291
Cluster File System (CFS), 396
cluster node managers, 5–6

in data center example,
361–362

Ganglia installation on, 330
known_hosts entries on,

355–356
SNMP files on, 317–318

cluster nodes
Apache configuration on,

400–403
configuration changes for, 187
Ganglia for. See Ganglia

software package
in Heartbeat configuration,

135–136
least-loaded, 338
load averages for, 334–335
LPRng installations on, 348

monitoring
by ldirectord, 258–261
performance, 189

net-SNMP client software
installation on, 310

for print spoolers, 345–347
/etc/printcap file on,

349–350
/etc/printcap.local file on,

348–349
print job management on,

351
purchasing, 190–192
removing, 188, 352
software updates on, 189
sshd_config file on, 355
telnet access to, 353
weight of, 352

cluster transition messages, 114
clusters, 1, 185

architecture of, 4–5
authentication mechanisms for,

343–345
building, 186–192
capacity planning, 190–192
case studies. See case studies
filesystems for, 395–396
high-availability. See high-

availability clusters
LVS-DR. See LVS-DR (Linux

Virtual Server Direct
Routing) clusters

LVS-NAT. See LVS-NAT (Linux
Virtual Server Network
Address Translation)
clusters

partitioned, 113–114
properties of, 2–3
single points of failure in, 6–7

clustersh script, 356
CMF (Content Management

Framework), 342
CODA filesystem, 395
command line, testing email from,

354
common Unix printing system, 23
compiling

fping package, 304
INDEX 409
No Starch Press, Copyright © 2005 by Karl Kopper

compiling, continued
kernel, 53

boot loader configuration,
62–64

object code and
configuration files for,
60–62

options for, 56–59
process, 59–60
requirements for, 54
source code for, 54–56

Comprehensive Perl Archive
Network (CPAN)

for module downloads,
264–266, 306

for Mon package, 305–306
compression methods, 70, 331,

372–374
.config file, 56–57
CONFIG_NFS_DIRECTIO option, 296
configuration files

copying with rsync, 91–92
Heartbeat, 130, 158–159
installing, 60–62
ldirectord, 267–272

connect entry, 271–272
connection templates, 247–248
connection tracking records

for Director, 242–243
timeout values for, 243–244

connections
in Heartbeat, 113
in LVS scheduling, 203
persistent. See persistence
in SSH, 82–86

Content Management Framework
(CMF), 342

control messages in Heartbeat,
114–115

converting Unix legacy
applications, 192

cooperative locking, 280
copying

encryption keys, 81–82
files with rsync, 89, 91–92

CPAN (Comprehensive Perl
Archive Network)

for module downloads,
264–266, 306

for Mon package, 305–306
cron jobs

for batch job-scheduling
systems, 356–357

from cluster node manager,
361

for rsync snapshots, 90, 92
crond script, 23, 316, 356
crontab file

for batch job-scheduling
systems, 356–357

format of, 92
for rsync snapshots, 90

crossover cable, 112, 132
cto (close-to-open) cache

consistency, 291
cups script, 23
custom metrics, 338–340
CustomLog entry, 260

D
D/RIP network, 195, 241, 288
daemons, 10

for resource ownership,
126–127

respawning, 138
starting, 15–21

data center example, 359–360
clients in, 362–363
cluster node manager in,

361–362
clusters in, 360–361
final product, 367–368
highly available database servers

in, 365–366
highly available serial devices

in, 364–365
NAS server in, 363–364

data synchronization, 69–70
data tiers in N-Tier applications,

361
database servers

highly available, 365–366
in N-Tier applications, 361
410 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

deadtime entry, 135, 161
debugging mode for Mon package,

309–310
default chain policies, 38
default routes and gateways

for Heartbeat, 150–151
for LVS-DR real server, 235–236
for LVS-NAT clusters, 219–220
for routing, 44–46
for SystemImager, 102

Denial of Service (DoS) attacks,
244, 248

dependencies, 387–388
dynamic executables and

shared objects, 388–389
failures in, 391–392
rpm package shared libraries,

390–391
SystemImager server software,

98
Yum for, 392–393

design goals for high-availability
cluster, 256–257

destination hashing scheduling
methods, 202

destination hosts, matching packets
to, 45–47

/dev/ttyS0 file, 173
/dev/watchdog file, 177–178
devices, Stonith. See Stonith (shoot

the other node in the head)
df command, 63, 99, 313
DHCP servers, 101–103
diff command, 30, 344
diffie-hellman-group1-sha1 key

exchange process, 74
DIP (director’s IP) addresses, 195
direct I/O in NFS, 296
direct routing, 198–200, 235
Directors

connection tracking table for,
242–243

Heartbeat installation on, 263
for LVS

configuration, 221–224
installation, 220
redundant, 255–256

as real servers, 227–229

Director’s IP (DIP) addresses, 195
disaster recovery, 364
discretionary locking, 280
diskless workstations, 362
distributed content, 157
Distributed Lock Manager (DLM)

project, 396
distributed objects, 3, 361
distribution kernels, 55
distribution vendors, 57
DLM (Distributed Lock Manager)

project, 396
dmesg command, 59
DNS (Domain Name System)

with Apache, 401, 405
with cluster node manager, 362
for iptables and ipchains, 41
monitoring, 321
reverse queries in, 404
round-robin, 155–157

DocumentRoot entry, 398
DoS (Denial of Service) attacks,

244, 248
dotlock arbitration, 286
dotlock files, 281
downloading

FTP for, 369–371
Lynx for, 371–372
Perl modules, 264–266, 306
wget for, 372–373

DRBD filesystem, 395
dynamic executables, shared objects

for, 388–390
dynamic HTML, 367
dynamic scheduling methods,

203–207

E
echo entry, 268–269
eject command, 382
email, 3, 5

for iptables and ipchains, 42–43
monitoring, 264
sending and receiving, 353–354

email alerts
in Heartbeat, 158
in Mon, 319
INDEX 411
No Starch Press, Copyright © 2005 by Karl Kopper

encryption keys in SSH, 72–73, 77
copying, 81–82
creating, 79–80
exchange process, 73–76
host, 79

endian issues, 192
EnGarde distribution, 257
enterprise clusters. See clusters
error logging, 29, 137, 316
/etc/anacrontab file, 21
/etc/conf.modules file, 119
/etc/dhcpd.conf file, 101–102
/etc/gmetd.conf file, 331
/etc/gmond.conf file, 331
/etc/group file, 31, 343–344
/etc/ha.d/authkeys file, 130, 139
/etc/ha.d/conf file, 267
/etc/ha.d/ha.cf file

configuring, 134–136
for control messages, 115
for daemons, 130
for ipfail, 175
for primary server, 148
for respawning, 138, 162
for stonith, 170
for watchdog, 178

/etc/ha.d/haresources file, 147–148
for batch job scheduler, 356
configuring, 136–148
for IP address takeover,

151–152
for IP aliases in, 148–149
for NIC selection process,

149–151
for primary server, 130, 148
for resources, 152–154
for Stonith, 170–171

/etc/ha.d/resource.d file, 125, 138,
149

/etc/ha.d/resource.d/AudibleAlarm
file, 157

/etc/ha.d/resource.d/MailTo file, 157
/etc/hosts file, 100
/etc/httpd/conf/httpd.conf file, 398
/etc/init.d file, 20, 38, 50
/etc/init.d/lpd file, 347
/etc/init.d/lvs file, 221, 228
/etc/init.d/sshd file, 79

/etc/init.d/systemimager-server-

rsyncd file, 106
/etc/inittab file, 16–18, 28, 161
/etc/lilo.conf file, 62, 178
/etc/mail/sendmail.mc file, 353–354
/etc/modules.conf file, 119, 380
/etc/mon/mon.cf file, 307–308,

317–318, 323
/etc/nsswitch.conf file, 30
/etc/passwd file, 30–31, 343–345, 353
/etc/printcap file, 348–350
/etc/printcap.local file, 25, 348–349
/etc/rc.d/init.d file, 17
/etc/rc.d/init.d/dhcpd file, 103
/etc/rc.d/init.d/sshd file, 72
/etc/rc.d/rc file, 17–18
/etc/sendmail.cf file, 354
/etc/services file, 307, 376
/etc/shadow file, 31, 87, 343–345
/etc/snmp/snmpd.conf file, 311, 314,

320
/etc/ssh/ssh_host_rsa_key file, 72, 79
/etc/ssh/ssh_host_rsa_key.pub file,

72, 79
/etc/ssh/sshd_conf file, 83
/etc/ssh/sshd_config file, 78, 83, 86,

355
/etc/stonith.cfg file, 324
/etc/sudoers file, 99
/etc/sysconfig file, 24–25, 38,

379–380
/etc/sysconfig/ipchains file, 385
/etc/sysconfig/iptables file, 43, 385
/etc/sysconfig/network file, 31, 107,

136, 219, 384
/etc/sysconfig/network-scripts file,

379, 384
/etc/sysconfig/network-scripts/ifcfg-

eth1 file, 108
/etc/sysctrl.conf file, 261
/etc/syslog.conf file, 29, 137, 269
/etc/systemimager/rsyncd.conf file,

106
/etc/systemimager/systemimager.conf

file, 105
/etc/systemimager/updateclient.local.

exclude file, 108
/etc/xinetd.conf file, 30
412 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

/etc/yum.conf file, 392
Ethernet

backbones, 288
for Heartbeat

cable connections in, 113
control messages in, 115
NIC device names for, 119

events in Stonith
with Mon, 323–324
multiple, 174
sequences of, 167–168

exclusive BSD flocks, 281
executables, shared objects for,

388–389
exit command, 371
Expect programming language, 293
expire_nodest_conn variable, 269
expired persistence, 248
exponentially smoothed moving

average function, 335
external lock arbitration daemon,

281
EXTRAVERSION number, 57, 60,

64

F
failback configuration, 159–160
failed cluster nodes, removing, 188
failing devices, Stonith for. See

Stonith (shoot the other
node in the head)

failover, 10
in Heartbeat, 161–162

license manager, 162
with Mon, 324–325

IPAT for, 116
stateful, 275–278

fallback entry, 272
fat clients, 362
fault-tolerant print spoolers, 345

cluster nodes in, 345–347
/etc/printcap file for, 349–350
/etc/printcap.local file for,

348–349
job ordering in, 345–346
LPRng for, 346–348
print jobs in, 346–347, 350–351

faxes, 362, 365
fcntl system, 282–283, 285
fdutils package, 157
fg option, 296
file lock arbitration, 281, 286
File Transfer Protocol (FTP)

for downloading software,
369–371

for iptables and ipchains,
40–41

monitoring, 264
persistent connections, 248

filesystems
for clusters, 395–396
root, 63–64

filters for packets, 34–38
FIN packets, 243–244
findif program, 149–150
finding locks held by kernel,

286–288
firewalls, 34, 92–93
firstboot script, 23
fixed scheduling methods, 202–203
floating licenses, 246–247
floppycontrol utility, 157
force-reload command, 129
forcing

CPAN module installation, 265
Heartbeat failover, 324–325
standby mode, 160
Stonith events, 323–324
system reboots, 178

FORWARD hooks, 245–246
FORWARD rules, 35–37
fping.monitor script

paths in, 319
running, 308–309

fping package
compiling and installing, 304
path to, 319

FTP (File Transfer Protocol)
for downloading software,

369–371
for iptables and ipchains, 40–41
monitoring, 264
persistent connections, 248

functions script, 23, 126
fwmarked packets, 250–253
INDEX 413
No Starch Press, Copyright © 2005 by Karl Kopper

G
Ganglia software package, 327

command utilities in, 328
for custom metrics, 338–340
gmetad and gmond

configuration for, 331–332
installing, 330
prerequisite packages for,

329–330
Web package, 333–337

GARP (gratuitous ARP) broadcasts,
122–125

gate option, 270
gateways, default, 44
get command, 371
GETATTR operations, 290–291,

340
getimage command, 100, 108
GFS (Global File System), 396
GLIBC packages, 388–391, 393
gmetad daemon, 328

configuring, 331
starting, 332

gmetric scripts, 338–340
gmond daemon, 328

configuring, 331
starting, 332

Golden Client
boot floppies for, 103–106
client software for, 98–99
cloning, 95
image installation for, 106–107
system images for, 99–101

gpm script, 23
graphs in Ganglia Web package,

334–337
gratuitous ARP (GARP) broadcasts,

122–125
grids in Ganglia, 328, 334
GRUB bootloader, 62–64
grub.conf file, 63
gstat utility, 328, 338
gunzip command, 372
.gz file, 372

H
halt script, 23
Happy Tobi Project, 329
hard option, 296
haresources file. See

/etc/ha.d/haresources file
hash buckets, 242
hash table structure, 242
hashing scheduling methods,

202–203
hb_standby command, 160, 180, 324
Healthcheck web page, 272–273
Heartbeat, 112

client computer resource access
in, 115–116

configuration, 130–131,
158–159
backup servers, 139–140
/etc/ha.d/authkeys for, 139
/etc/ha.d/ha.cf for, 134–136
/etc/ha.d/haresources for.

See /etc/ha.d/haresources
file

installation, 132–134
launching, 140–144
ldirectord in, 274–275
preparations for, 132
resource monitoring, 145
stopping and starting,

144–145
system time, 140
testing, 179–181

control messages in, 114–115
deadtime value for, 135, 161
failover in, 161–162

license manager, 162
with Mon, 324–325

GARP broadcasts in, 122–125
for high-availability clusters, 263
informational messages in logs,

161
load sharing with, 154–157
maintenance, 158–162
network failures in, 175–176
operator alerts in, 157–158
physical paths in, 112–114
414 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

respawning with, 138, 161–162
scripts for, 125–129
secondary IP addresses and IP

aliases in, 116–125
service offers in, 121–122
Stonith for. See Stonith (shoot

the other node in the
head)

watchdog for, 176–179
hiding loopback interfaces, 261–263
high-availability clusters, 10–11, 255

design goals for, 256–257
Healthcheck web page for,

272–273
Heartbeat installation for, 263
ldirectord. See ldirectord

program
loopback interface hiding in,

261–263
LVS-DR, 257–258
NAS server, 364
redundant LVS Directors,

255–256
stateful failover for

of IPVS table, 275–276
modifications for, 277–278

highly available database servers,
365–366

highly available serial devices,
364–365

holdall command, 351
hooks, Netfilter

for load balancer, 244–246
rules for, 34–35

host encryption keys, 72, 79
Host Report web page, 336–337
hostbased authentication, 76
hostname command, 136
hosts

matching packets to, 45–47
virtual, 400–405

HTTP
for iptables and ipchains, 43
with ldirectord, 264

httpd script, 23
hung systems, 176–179
hwclock command, 58
HylaFax program, 361–362, 365

I
i/o fencing, 113
I/O operations

measuring, 294–295
in NFS, 296

I/P port entry, 383
ICMP (Internet Control Message

Protocol)
with firewalls, 385
for iptables and ipchains, 43
ping packets in, 223, 385
tcpdump for, 377

identd script, 24
IEEE Task Force, 2
ifconfig command

for cluster configuration, 224
for IP aliases, 120
for NICs, 119, 380, 383

ifup command, 383
inactive connections in LVS

scheduling, 203
@INC file, 266
informational log messages, 161
init scripts, 16–17

on cluster nodes, 21–31
as Heartbeat resource scripts,

128–129
for Mon, 318
for respawning services, 18
symbolic links for, 18–21

initdeadline entry, 135
initiate.stonith.event script, 324
inittab file, 16–17
INPUT rules

for ipchains, 39–40
in Netfilter, 35–37

insmod command, 177, 380
installing

CPAN modules, 265, 305–306
fping programming, 304
Ganglia, 330
Heartbeat, 132–134, 139–140,

263
kernels, 56
ldirectord, 266
LPRng, 347–348
LVS software, 220
INDEX 415
No Starch Press, Copyright © 2005 by Karl Kopper

installing, continued
Mon software, 306–307
NICs, 381–382
object code and configuration

files, 60–62
rpm packages, 392–393
SNMP package, 304–305
System.map file, 61
SystemImager server software,

97–98
Integrated Services Digital

Networks (ISDN), 24
interactive user applications in NFS,

292–293
Intermezzo filesystem, 396
Internet Control Message Protocol

(ICMP)
with firewalls, 385
for iptables and ipchains, 43
ping packets in, 223, 385
tcpdump for, 377

IP address takeover (IPAT), 116
IP addresses

in Heartbeat, 116–125, 131
in linuxconf, 383
in LVS, 194–196
names for, 119–120
ownership of, 127–128
takeover of, 151–152
virtual, 194–195, 214–216, 241

IP aliases
creating and deleting, 120–121
failing over, 116
in haresources file, 148–149
in Heartbeat, 116–125
for source addresses, 117

IP-based virtual hosts, 400–401, 404
ip command

for packets, 50
for secondary IP addresses,

119–120
ip-request messages, 114
ip-request-resp messages, 114
ip route list command, 47
IP tunneling, 200–202
IP Virtual Server (IPVS) software,

193

ip_vs_timeout_table tables, 244
IPaddr script, 150
IPAT (IP address takeover), 116
ipchains and iptables

clearing existing rules for, 39
default policies in, 38
DNS for, 41
email for, 42–43
firewall rules for, 92–93
FTP for, 40–41
HTTP for, 43
ICMP for, 43
INPUT policy for, 39–40
marketing packets with,

252–253
in Netfilter, 35–37
for NICs, 385
routing scripts for, 47–50
SSH for, 42
tcpdump for, 376
telnet for, 42

ipchains script, 24
ipfail plug-in, 175–176
ipfwadm command, 222
ipip option, 270
iproute command, 120
iptables script, 24
iptakeover script, 152–153
IPVS (IP Virtual Server) software,

193
IPVS table, stateful failover of,

275–276
ipvsadm command

for cluster nodes, 352–353
for connection tracking,

243–244
for Director, 221–223, 228
for timeouts, 247–248

irda script, 24
ISDN (Integrated Services Digital

Networks), 24
isdn script, 24

J
job management in print spoolers,

345–346, 350–351
416 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

job-scheduling system
for clusters, 190
with no single points of failure,

354–357

K
kdcrotate script, 24
keepalive entry, 135
Kerberos security, 24
kernel lock arbitration, 280

methods, 281–283
and NLM, 284–285

kernels
for clusters, 187
compiling, 53

boot loader configuration,
62–64

object code and
configuration files for,
60–62

options for, 56–59
process, 59–60
requirements for, 54
source code for, 54–56

finding locks held by, 286–288
hanging, 178
installing, 56
modular, 57–59, 119, 380
for NICs, 380
for packets, 44–50
upgrading and patching, 56–57

keys, encryption, 72–73, 77
copying, 81–82
creating, 79–80
exchange process, 73–76
host, 79

keytable script, 24
kill command, 17, 158
killall command, 24, 179
klockd daemon, 25
known_hosts database

on cluster node manager,
355–356

for SSH, 74–75
kudzu script, 24

L
LAN Information Server service, 24
latency, NFS, 293
launching Heartbeat, 140

backup primary servers,
142–143

log files for, 143–144
on primary servers, 140–142

LBLC (locality-based least-
connection) scheduling
method, 206–207

LBLCR (locality-based least-
connection with
replication) scheduling
method, 207

LC (least-connection) scheduling
method, 204

lcd command, 370–371
LDAP systems, 342–343
ldapsearch command, 344
ldd command, 390
ldirectord program

cluster node monitoring by,
258–261

configuration file for, 267–272
in Heartbeat configuration,

274–275
installing, 266–267
Perl modules for, 263–266
starting and testing, 273–274

least-connection (LC) scheduling
method, 204

least-loaded cluster nodes, 338
legacy account administration

methods, 342–343
legacy applications, converting, 192
/lib/modules file, 57, 59, 61, 64
libraries, shared, 390–391
license manager failover, 162
licenses, floating, 246–247
LIDS (Linux Intrusion Detection

System), 77, 257, 355
LILO bootloader, 62–64
lilo.conf file, 62
links

library, 388
INDEX 417
No Starch Press, Copyright © 2005 by Karl Kopper

links, continued
symbolic

chkconfig for, 18–20
ntsysv for, 20–21
for source code, 56

Linux Intrusion Detection System
(LIDS), 77, 257, 355

Linux Standard Base (LSB)
Specification, 128–129

Linux Terminal Server Project
(LTSP), 362–363

Linux Utility for cluster Installation
(LUI) project, 108

Linux Virtual Server. See LVS
(Linux Virtual Server)

Linux Virtual Server Direct Routing
clusters. See LVS-DR (Linux
Virtual Server Direct
Routing) clusters

Linux Virtual Server Network
Address Translation
clusters. See LVS-NAT
(Linux Virtual Server
Network Address
Translation) clusters

linuxconf command, 379–384
lisa script, 24
Listen entry, 399–400
little-endian byte ordering, 192
lmgrd daemon, 162
load averages, 334–335
load balancer, 4, 239

Director connection tracking
table for, 242–243

LVS for
with Netfilter, 239–241
with persistence, 247–253
without persistence,

246–247
return packets and Netfilter

hooks for, 244–246
timeout values for, 243–244

load sharing in Heartbeat, 154–157
local.cfg file, 104–105
LOCAL_IN hook, 240–241, 251
local passwords in authentication,

343–345

locality-based least-connection
(LBLC) scheduling
method, 206–207

locality-based least-connection with
replication (LBLCR)
scheduling method, 207

LocalNode configuration, 227–229
locate command, 391
lock arbitration, 5, 280–281

kernel, 281–283
NLM for, 284–285
potential methods, 395–396

lock arbitrators, 280–283
lock files, 281
lockd daemon, 281, 283–284
lockdemo command, 287
lockf method, 281, 285
locks

finding, 286–288
managing, 291
NLM for, 283–285
performance issues in, 288–290

log files
in Heartbeat, 141

informational messages in,
161

on primary servers,
143–144

for Mon package, 309
logfile command, 141
logfile entry, 269
logger command, 137
loopback devices, 233–235
loopback interface, hiding, 261–263
lpc command, 350–351
lpd script, 25, 108
LPRng package

child processes in, 284
for fault-tolerant print spoolers,

346–348
installing, 347–348

ls command, 59, 371
LSB (Linux Standard Base)

Specification, 128–129
lsmod command

for loaded modules, 59
for NICs, 380
for watchdog, 177, 179
418 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

lsof command, 287
lspci command, 19

for loaded modules, 59
for NICs, 119, 380–381

LTSP (Linux Terminal Server
Project), 362–363

LUI (Linux Utility for cluster
Installation) project, 108

Lustre filesystem, 396
LVS (Linux Virtual Server),

193–194
Apache configuration files for.

See Apache
IP address name conventions

in, 194–196
for load balancer, 239–241
monitoring, 258–261
with persistence, 247–253
without persistence, 246–247
redundant Directors, 255–256
scheduling methods in

dynamic, 203–207
fixed, 202–203

types of, 196–202
LVS-DR (Linux Virtual Server

Direct Routing) clusters,
198, 231–232

ARP broadcasts for, 236–238
building, 188
client computer access to

services, 232–236
high-availability, 257–258
properties of, 199–200

LVS-NAT (Linux Virtual Server
Network Address
Translation) clusters,
196–198, 209

building, 187, 216
Apache configuration and

starting for, 218–219
default routes for, 219–220
LVS configuration for,

221–224
LVS installation for, 220
operating system

installation for, 217
testing configuration for,

224–227

client computer access to
resources, 209–216

LocalNode configuration for,
227–229

virtual IP addresses for,
214–216

LVS-TUN (IP tunneling), 200–202
Lynx program

for downloading software,
371–372

for web pages, 228

M
m4 macro processor, 308
MAC addresses, 22, 233–234
mail.alert script, 308–309
mail command, 354
MailTo script, 158
make bzImage command, 59
make clean command, 56, 59
make dep command, 59
make menuconfig command, 57–58
make modules command, 59
make modules_install command,

59–60
make mrproper command, 56
make oldconfig command, 56–57
make process, failures in, 61
Management Information Base

(MIB)
in Mon, 303
for SNMP, 312–313

marked packets, 250–253
masq option, 270
matching packets

to destination hosts, 45–47
to networks, 45

MD5 checksum process, 264
measuring

I/O operations, 294–295
NFS latency, 293

meatclient command, 170
meatware devices, 168–173
Message Passing Interface (MPI), 3
messages

Heartbeat, 114–115
superfluous, 260
INDEX 419
No Starch Press, Copyright © 2005 by Karl Kopper

MIB (Management Information
Base)

in Mon, 303
for SNMP, 312–313

mkautoinstalldiskette command,
103–104

mkdhcpserver utility, 101
mkinitrd command, 64
MLDBM module, 97
/mnt/floppy file, 104
modems, high-availability, 365
modprobe command, 177
modular kernels, 57–59, 119, 380
Mon package, 301–302

compiling and installing, 304
CPAN modules for, 305–306
debugging mode for, 309–310
email alerts in, 319
/etc/mon/mon.cf file for, 307–308
Heartbeat failover with,

324–325
init script for, 318
logs for, 309
for network failures, 175
running, 302–303
SNMP operation in

package installation for,
304–305

proof of concept, 310–315
real word, 315–319
scripts for, 320–322
software installation for,

306–307
Stonith events with, 323–324
testing installation of, 308–309

mon script, 318
monitoring

cluster nodes
with ldirectord, 258–261
performance, 189

Heartbeat resources, 145
Mon scripts, 302
SNMP, 325

monitoring agents for,
313–314

scripts, 321–322
monolithic kernels, 380
mounting NFS directories, 22

MPI (Message Passing Interface), 3
multicasts, 115, 276
multiple IP aliases, failing over, 116
multiple NAS servers, 292–293
multiple NFS transactions, 290
multiple Stonith events, 174
mv command, 56

N
N-Tier applications, 361
name-based virtual hosts, 401–405
named service, 41
names

clusters, 187
IP addresses

in LVS, 194–196
secondary, 119–120

NIC devices, 119
primary servers, 148

NameVirtualHost directive, 402–403
NAS servers

for clusters, 186–187
in data center example,

363–364
for high availability, 256
multiple, 292–293
performance of, 295

NAT (network address translation).
See LVS-NAT (Linux Virtual
Server Network Address
Translation) clusters

ncftp utility, 369–371
ncurses package, 54
negotiate method, 271
net-SNMP client software

installation, 310
net-snmp package, 134
net-snmp-devel package, 304
net-snmp-version.tar file, 304
Netfilter system

for clusters, 187
history of, 35–38
for load balancer, 239–241,

244–246
Marked Packets in, 250–253
for packets, 34–35

netfs script, 25
420 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

netmasks, 123, 151, 383
netsnmp-exec.monitor script, 321–322
netsnmp-freespace.monitor script,

314–315
netsnmp-proc.monitor files, 317–318
netstat command

for Apache configuration, 400
for HTTPd, 226
for network queues, 107
for routing rules, 47
for sshd, 83
with tcpdump, 376

network address translation (NAT).
See LVS-NAT (Linux Virtual
Server Network Address
Translation) clusters

Network File System. See NFS
(Network File System)

network interface aliases. See IP
aliases

Network interface cards. See NICs
(network interface cards)

Network Lock Manager (NLM),
283–284

and kernel lock arbitration,
284–285

performance issues of, 288–290
network script, 25
Network Time Protocol daemon, 26
networks

failures in, 175–176
matching packets to, 45

never queue (NQ) scheduling
method, 205

NFS (Network File System)
attribute caching in, 291
batch jobs in, 292–293
client configuration in, 296–297
developing, 297
directory mounting for, 22
I/O operations in, 294–296
interactive user applications in,

292–293
latency in, 293
locks in, 280–283

finding, 286–288
managing, 291
NLM for, 283–285

NAS performance in, 295
performance issues in, 288–290,

338–339
resources for, 297–298

NFS Extensions for Parallel Storage
project, 297

nfs script, 25
nfslock script, 25
nfsstat command, 294
nice command, 292
nice_failback entry, 159–160
NICs (network interface cards),

379–380
configuration for, 381–384
device names for, 119
existing configuration for, 380
in haresources, 149–151
installing, 381–382
for load balancer, 245–246
for LVS-DR clusters, 233–235
monolithic vs. modular kernels

for, 380
testing, 383–385

NIS/LDAP gateways, 30
NIS systems

for cluster account
authentication, 343–345

for cluster node manager, 361
for legacy Unix account

administration, 342–343
for ypbind, 30–31
for yppasswd, 31

NLM (Network Lock Manager),
283–284

and kernel lock arbitration,
284–285

performance issues of,
288–290

No Single Point of Failure (NSPoF)
in batch job-scheduling systems,

354–357
cluster architecture for, 6–7
in Heartbeat, 111
in high-availability

configuration, 10, 255
in print spoolers, 345

nodes. See cluster nodes
nohup.out file, 60
INDEX 421
No Starch Press, Copyright © 2005 by Karl Kopper

non-dynamic scheduling methods,
202–203

NQ (never queue) scheduling
method, 205

ns_rexmit messages, 115
nscd script, 25
ntpd script, 26, 316, 319
ntsysv program, 20–21
nw_rpc100s device, 168

O
objdump command, 389
object code, installing, 60–62
Oeriker, Tobi, 329
Open Distributed Lock Manager

(DLM) project, 396
Open Global File System (GFS),

396
Open SSH2. See SSH (secure shell)
operating system for LVS-NAT

clusters, 217
operator alerts in Heartbeat

audible alarms, 157
email alerts, 158

Oracle Cluster File System (CFS),
396

OUTPUT rules in Netfilter, 35–37
overhead values in scheduling,

204–205
ownership of Heartbeat resources,

126–128

P
packages for kernel compilation, 54
packets and packet routing, 33–34

for clusters, 187
default chain policies, 38
ip for, 50
iptables and ipchains, 39,

252–253
kernel for, 44–50
with load balancer, 240–241,

244–246
marked, 239, 250–253
matching, 45–47
Netfilter for, 34–38

Panasas filesystem, 396
partitioned clusters, 113–114
passive FTP, 41
passwords in authentication,

343–345
patch command, 30, 344
patching kernel, 56–57
path names for links, 403
paths in Heartbeat, 112–114
PCCs (persistent client

connections), 249
pcmcia script, 26
perceptions of NFS performance,

288–290
performance

cluster node, 189–191
Ganglia for. See Ganglia

software package
gmetric for, 338–340
NAS, 295
NFS, 288–290, 388

Perl modules
for ldirectord, 263–266
for SystemImager, 97–98

persistence
in LVS, 247–253

connection templates for,
247

connection types for,
248–249

Netfilter Marked Packets,
250–253

PCC, 249
port affinity, 250
PPC, 249–250

LVS without, 246–247
persistent client connections

(PCCs), 249
persistent connection templates,

247–248
persistent port connections (PPCs),

249–250
PHP for Ganglia, 329
physical paths in Heartbeat, 112–114
pidof program, 126
PIDs (process identifiers)

determining, 126
with locks, 287–288
422 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

ping command and packets
for ICMP, 223, 385
for NICs, 384–385

ping entry for ipfail, 176
pipes in NFS performance, 288
Plone clusters, 342, 351
points of failure. See No Single

Point of Failure (NSPoF)
Polyserve filesystem, 396
port affinity, 250
Port entry, 399
portmap script, 26
Posix fcntl system, 282–283
Posix kernel lock arbitration, 285
POST_ROUTING hook, 240–241
power control, Stonith for. See

Stonith (shoot the other
node in the head)

PPCs (persistent port connections),
249–250

pppoe script, 26
PRE_ROUTING hook, 240–241
prepareclient command, 99, 108
presentation tiers, 361
preventative maintenance,

rebooting nodes for,
352–353

primary Directors
Heartbeat installation on, 263
LVS, 255–256

primary IP addresses, 116
primary names in linuxconf, 382
primary servers in Heartbeat, 112

configuration, 131
in haresources file, 148
launching Heartbeat on,

140–142
log files on, 143–144
standby mode for, 160

primaryserver entry, 171
print job management, 346–347

on central print servers, 350
on cluster nodes, 351

print servers, 5
custom scripts on, 351
/etc/printcap on, 349–350
LPRng installation on, 347–348
print job management on, 350

print spoolers, fault-tolerant, 345
cluster nodes in, 345–347
/etc/printcap file for, 349–350
/etc/printcap.local file for,

348–349
job ordering in, 345–346
LPRng for, 346–348
print jobs in, 346–347,

350–351
printing systems for clusters, 190
private encryption keys, 72
/proc/cpuinfo file, 59
/proc/ksyms file, 61
/proc/locks file, 286
/proc/net/ip_vs_lblcr file, 207
/proc/net/route file, 149
/proc/net/rpc/nfs file, 339
/proc/sys/net/ipv4/conf/all/arp_

announce file, 262
/proc/sys/net/ipv4/conf/all/arp_

ignore file, 262
/proc/sys/net/ipv4/conf/lo/arp_

announce file, 262
/proc/sys/net/ipv4/conf/lo/arp_ignore

file, 262
/proc/sys/net/ipv4/ip_forward file,

45, 49–50, 221
/proc/sys/net/ipv4/vs/expire_nodest_

conn file, 268
/proc/sys/net/ipv4/vs/secure_tcp file,

244
process identifiers (PIDs)

determining, 126
with locks, 287–288

processes, 10
procinfo utility, 335
products in Zope, 367
prompt, cluster node examinations

from, 337–338
protocol entry, 271
proxy servers, 206–207
public encryption keys

copying, 81–82
in SSH, 72

purchasing cluster nodes, 190–192
PuTTY client, 367
pxe script, 26
Python programs, 367
INDEX 423
No Starch Press, Copyright © 2005 by Karl Kopper

Q
queries, DNS reverse, 404
quiescent entry, 268
quorum elections, 164

R
random script, 26
rankings in weighted round-robin

scheduling, 202
rawdevices script, 26
rc program, 17
reads in fcntl locking, 282
real entry, 269–270
real IP (RIP) addresses, 195
real servers

Apache configuration and
starting on, 218–219

default route setting on,
219–220

Directors as, 227–229
ldirectord for, 258–261
for LVS clusters, 194
stateful failover modifications

for, 277–278
virtual IP addresses on, 214–216

rebooting
for preventative maintenance,

352–353
with watchdog, 178

red cluster nodes, 335
Red Hat init scripts, 21–31
redirection URLs, 403–404
redundant LVS Directors, 255–256
refreshing Ganglia Web package,

333
rehash command, 382
relative path names for links, 403
reload command, 129
removing

cluster nodes, 188, 352
services, 21

resource groups, file, 153
resources

in Heartbeat
client computer access to,

115–116
in haresources file, 152–154

monitoring, 145
scripts for, 125–129

LVS-NAT cluster, accessing,
209–216

respawn entry, 162
respawn hacluster entry, 176
respawning

in Heartbeat, 138, 161–162
services, 18

restart command, 129
retransmission request messages,

115
return packets, 244–246
reverse DNS queries, 404
rexmit-request messages, 115
rhnsd script, 27
RIP (real IP) addresses, 195
rm command, 56
root filesystems, 63–64
round-robin DNS, 155–157
round-robin (RR) scheduling

methods, 202
route command, 47
routes and routing

default, 44
for iptables, 47–50
for LVS-NAT clusters, 219–220
packets. See packets and packet

routing
rules for, 47

routing start command, 50
routing status command, 50
rpm command, 77
rpm files, 373
.rpm.bz file, 372
.rpm.bz2 file, 372
.rpm.gz file, 372
rpm packages

installing, 392–393
shared libraries for, 390–391

rps10 device, 168
RR (round-robin) scheduling

methods, 202
RRDtool, 329
rstatd script, 27
rsync command

for batch jobs, 292
for copying files, 89, 91–92
424 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

over slow WAN connections,
89–90

snapshots with, 90–92
with SSH. See SSH (secure

shell)
synchronizing servers with,

69–70
in SystemImager servers, 106

rules for iptables and ipchains, 39
DNS, 41
email, 42–43
FTP, 40–41
HTTP, 43
ICMP, 43
INPUT policy, 39–40
reviewing and saving, 43–44
SSH, 42, 92–93
telnet, 42

runlevel command, 17
rup command, 27
rusersd script, 27
rwall script, 27
rwhod script, 27

S
Samba package, 28
sample Heartbeat in Stonith, 166
SASL (Simple Authentication and

Security Layer), 26
saslauthd script, 27
saving

iptable rules, 43–44
kernel configuration files, 62

/sbin/ifconfig file, 123
/sbin/ip file, 128
/sbin/route file, 124
scheduler entry, 271
schedules and scheduling methods

batch jobs with no single points
of failure, 354–357

in LVS, 194
dynamic, 203–207
fixed, 202–203

rsync snapshots, 90–92
scripts for, 21–23

scp command, 139–140
scripts

arguments for, 153–154
on central print servers, 351
for cluster account

authentication, 344–345
for Heartbeat, 125–129
init, 16–17

on cluster nodes, 21–31
for Heartbeat resources,

128–129
for Mon, 318
for respawning services, 18
symbolic links for, 18–21

Mon, 302
SNMP

creating, 320–321
monitoring, 321–322

SCSI disks, booting from, 58, 64
secondary IP addresses

in Heartbeat, 116–125
names for, 119–120

secondary LVS Directors, 255–256
secondaryserver entry, 171
secure data transport, 71–72, 86
secure shell. See SSH (secure shell)
Secure Socket Layer (SSL)

encryption, 21
security control messages, 115
security in SSH, 86–87
SED (shortest expected delay)

scheduling method, 205
self-referential URLs, 403–404
send_arp program, 122
sendmail daemon, 354
sendmail script, 27
sequences, event, in Stonith,

167–168
serial cable connections, 113
serial devices, highly available,

364–365
serial entry, 135
serial-to-IP communication devices,

365
ServerName entry, 398
ServerPath directive, 402, 404
INDEX 425
No Starch Press, Copyright © 2005 by Karl Kopper

servers
DHCP, 101–103
failures in, Stonith for. See

Stonith (shoot the other
node in the head)

in Heartbeat, 112
configuration on, 131
in haresources file, 148
installation on, 139–140
launching on, 140–143
log files on, 143–144
maintenance of, 159–160
standby mode for, 160

highly available, 365–366
in N-Tier applications, 361
print, 5

custom scripts on, 351
/etc/printcap on, 349–350
LPRng installation on,

347–348
print job management on,

350
proxy, 206–207
software updates on, 189
synchronizing, 69–70
for SystemImager, 97–98

service command, 21
service entry, 270
services, 10

Heartbeat
offers, 121–122
status of, 125–126

LVS-DR clusters, client
computer access to,
232–236

removing, 21
respawning, 18
starting, 15–21

session keys in SSH, 73
shared BSD flocks, 281
shared data in N-Tier applications,

361
shared libraries, 390–391
shared objects, 388–389
shared secrets, 73
shared storage devices, 5
shell prompt, cluster node

examinations from, 337–338

shoot the other node in head. See
Stonith (shoot the other
node in the head)

shortest expected delay (SED)
scheduling method, 205

show ip arp command, 179–180
shutdown program, 17
SIGHUP command, 158
Simple Authentication and Security

Layer (SASL), 26
Simple Network Management

Protocol. See SNMP (Simple
Network Management
Protocol)

single node failures, 191
single points of failure. See No

Single Point of Failure
(NSPoF)

single script, 27
single transactions in NFS

performance, 289–290
sk_buff structure, 233, 239, 246,

250–251
skew, clock, 58
slow WAN connections, rsync over,

89–90
smb script, 28
snapshots

for Ganglia Web page, 334–337
rsync, 90–92

SNMP (Simple Network
Management Protocol),
301, 315

alerts in, 28
package installation for,

304–305
proof of concept operations,

310–315
real word operations, 315–319
scripts for

creating, 320–321
monitoring, 321–322

software installation for,
306–307

snmpd.conf file, 315–317
snmpd daemon, 28, 301, 303, 317
snmptranslate command, 312
snmptrapd script, 28
426 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

snmpvar.monitor script, 325
snmpwalk command, 312–313, 322
socket buffer structure, 239,

250–251
source addresses, IP aliases for, 117
source code

acquiring, 54–56
compiling, 59–60

source hashing scheduling methods
in LVS, 203

split-brain. See Stonith (shoot the
other node in the head)

spoolers, fault-tolerant, 345
cluster nodes in, 345–347
/etc/printcap file for, 349–350
/etc/printcap.local file for,

348–349
job ordering in, 345–346
LPRng for, 346–348
print jobs in, 346–347, 350–351

SQL servers, 365–366
squid script, 28, 206
SSH (secure shell), 71

encryption keys in, 72–73, 77
copying, 81–82
creating, 79–80
exchange process, 73–76
host, 79

for iptables and ipchains, 42
for least-loaded clusters, 338
rsync over, 87–89
for secure data transport, 71–72
in Stonith, 168
two-node client-servers. See two-

node SSH client-servers
two-way trust relationships in,

73–77
version 1, 83

ssh-agent daemon, 77
ssh-keygen command, 72, 80, 355
sshd_config file, 92–93, 355
sshd daemon, 28, 355, 360–361
SSHD file, 78
SSL (Secure Socket Layer)

encryption, 21
Stallman, Richard, 9
standby mode, 160
start command, 129

start script, 17
starting

Heartbeat, 144–145
services, 15–21

statd daemon, 283–284
stateful failover

for high-availability cluster,
277–278

of IPVS table, 275–276
status command, 129
status of Heartbeat services

determining, 125–126, 129
messages for, 114

stock kernels, 54–55
Stomith, 164
Stonith (shoot the other node in

the head), 113–114,
163–164

background, 164–165
configuration of, 166
device support in, 168–174
events in

with Mon, 323–324
multiple, 174
sequences of, 167–168

single devices in, 165–166
stonith_host entry, 170
stop command, 129
stopping Heartbeat, 144–145
strace command, 338
Super Sparrow program, 157
superfluous Apache messages, 260
symbolic links

chkconfig for, 18–20
ntsysv for, 20–21
for source code, 56

synchronizing servers, 69–70
syslog script, 29, 137, 316
system configuration changes for

clusters, 187
System Configurator, 109
system hangs, watchdog for,

176–179
System.map file, 61
system reboots, forcing, 178
system time, 140
System V lockf kernel lock

arbitration, 281, 285
INDEX 427
No Starch Press, Copyright © 2005 by Karl Kopper

SystemImager package, 95–96
boot floppies for, 103–107
client software for, 98–99
client updates in, 108–109
DHCP servers with, 101–103
for Golden Client cloning,

95–96
installer program in, 98
post-installation notes, 107–108
rsync in, 106
server software for, 97–98
system images on, 99–101,

106–107
SystemInstaller project, 108–109

T
tail command, 60
TAL program, 367
tar (tape archive) files, 373–374
.tar.bz file, 372
.tar.bz2 file, 372
.tar.gz file, 372
.tar.Z file, 372
.tbz file, 372
.tbz2 file, 372
tcp option, 296
tcp_states table, 244
tcpdump utility, 143, 375–377
telnet

for cluster node access, 353
for iptables and ipchains, 42
persistence for, 249
PuTTY for, 367
for user sessions, 203
xinetd for, 16, 29

telnet.monitor script, 323
telnetd daemon, 360–361
templates, persistent connection,

247–248
testing

email, 354
Heartbeat configuration,

179–181
ldirectord configuration,

273–274
ldirectord installation, 266–267

LVS-NAT cluster configuration,
224–227

Mon package installation,
308–309

NICs, 383–385
for resource ownership,

126–128
resource scripts, 128
two-node SSH client-server

connections, 82–86
Thin Clients, 362–363
time command, 293
time in Heartbeat configuration,

140
time to live (TTL) setting, 156
timeouts

for connection tracking
records, 243–244

persistence, 247–248
timers, watchdog, 178
title section for Ganglia Web

package, 333–334
top command, 338
total I/O operations, measuring,

294–295
touch command, 218
tracking connection records

for Director, 242–243
timeout values for, 243–244

transactions in NFS performance,
289–290

traps, SNMP, 28
troubleshooting

NICs, 384–385
tcpdump for, 375–377

trust relationships in SSH, 73–77
TTL (time to live) setting, 156
tunneling, 200–202
tux script, 29
two-node SSH client-servers, 77–78

connection tests in, 82–86
copying files in, 89
firewall rules in, 92–93
host key configuration in, 79
rsync over slow WAN

connections, 89–90
rsync over SSH in, 87–89
428 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

scheduled snapshots in, 90–92
secure data transport in, 86
security improvements in,

86–87
user accounts in, 78–79
user encryption keys for, 79–82

two-way trust relationships, 73–77

U
ucd-snmp package, 310
ucd-snmp-utils package, 310
udpport entry, 135
uname command, 55, 59, 137
uncompress command, 372
Unison project, 70
Unix

account administration
methods, 342–343

converting applications from,
192

updateclient command, 108, 187
updates

cluster node software, 189
SystemImager client, 108–109

upgrading kernel, 56–57
uptime utility, 335
URLs, self-referential, 403–404
UseCanonicalName directive, 404
user account administration

without Active Directory,
342–343

for clusters, 189–190
in SSH, 78–79

user applications, interactive,
292–293

user authentication
for cluster accounts, 343–345
in SSH, 76–77

user encryption keys in SSH, 72
copying, 81–82
creating, 79–80

user perceptions of NFS
performance, 288–290

useradd command, 78
/usr/lib/heartbeat/hb_standby file,

160

/usr/lib/heartbeat/ResourceManager
file, 140

/usr/lib/heartbeat/send_arp file, 122
/usr/lib/mon/logs file, 309
/usr/sbin/checkpc file, 347
/usr/sbin/getimage file, 99
/usr/sbin/httpd file, 405
/usr/sbin/prepareclient file, 99
/usr/sbin/stonith file, 173
/usr/share/doc/packages/heartbeat

file, 134
/usr/src/linux file, 56
/usr/src/linux/arch/i386/boot/bzImage

file, 60
/usr/src/linux/.config file, 56
/usr/src/linux/System.map file, 61

V
V9fs filesystem, 396
/var/lib/heartbeat/rsctmp file, 126
/var/lib/systemimager file, 99
/var/lib/systemimager/scripts file,

105
/var/log/ha-log file, 141, 161
/var/log/ldirectord.log file, 269
/var/log/messages file, 161
/var/log/secure file, 86
/var/log/systemimager/rsyncd file,

106–107
/var/spool/cron file, 357
verifying Apache configuration,

404–405
vers option, 296
versions, kernel, 55–56
virtual entry, 269
virtual host configuration, 400–405
virtual IP (VIP) addresses

with load balancer, 241
in LVS, 194–195
on LVS-NAT real servers,

214–216
virtual services with load balancer,

241
vs_tcp_states_dos table, 244
vs_timeout_table_dos tables, 244
INDEX 429
No Starch Press, Copyright © 2005 by Karl Kopper

W
w utility, 335
WAN connections, rsync over,

89–90
warntime value, 161
watch command, 273, 291
watchdog, 176–177

configuration for, 178–179
enabling, 177
rebooting with, 178

Web package, Ganglia, 333–337
weight of cluster nodes, 352
weighted least-connection (WLC)

scheduling method, 204
weighted round-robin (WRR)

scheduling method, 202
wget utility, 372–373
whoami command, 80
wide-area load balancing, 157
winbindd script, 29
wireless infrared communication,

24
WLC (weighted least-connection)

scheduling method, 204
writes in fcntl locking, 282
WRR (weighted round-robin)

scheduling method, 202
wti_nps device, 168

X
xfs script, 29
xinetd script, 29–30
XML-Simple module, 97

Y
Yellow dog Updater, Modified

(Yum) program, 392–393
ypbind script, 30–31
yplapd daemon, 30
yppasswd script, 31
ypserv script, 31
Yum (Yellow dog Updater,

Modified) program,
392–393

Z
.Z file, 372
ZEO program, 367
zero port connections, 248
Zope, 342, 351, 367
430 INDEX
No Starch Press, Copyright © 2005 by Karl Kopper

No Starch Press, Copyright © 2005 by Karl Kopper

More No-Nonsense Books from

HOW LINUX WORKS
What Every Superuser Should Know

by BRIAN WARD

How Linux Works describes the inside of the Linux system for systems
administrators, whether they maintain an extensive network in the office
or one Linux box at home. While some books try to give copy-and-paste
instructions for how to deal with every single system program out there,
How Linux Works shows the reader how the Linux system functions so that
they will have the knowledge to solve any problem that comes up.

MARCH 2004, 368 PP., $37.95 ($55.95 CAN)
ISBN 1-59327-035-6

THE LINUX COOKBOOK 2ND EDITION
Tips and Techniques for Everyday Use

by MICHAEL STUTZ

The Linux Cookbook 2nd Edition shows you the best ways to do things on Linux,
so that you can get your work done, quickly and easily. Organized by the
general things that you use your computer for, the book gives you "recipes"
for each task, each one with simple, step-by-step instructions, and an example
that shows how to use the technique in practice. Covers the major Linux
distributions.

APRIL 2004, 576 PP., $39.95 ($59.95 CAN)
ISBN 1-59327-031-3

WICKED COOL SHELL SCRIPTS
101 Scripts for Linux, Mac OS X and Unix Systems

by DAVE TAYLOR

The UNIX shell is the main scripting environment of every Linux, Mac OS X
and UNIX system. This cookbook of useful and fun scripts gives you the
tools to solve many common problems and personalize your computing
environment. Among the more than 100 scripts included are an interactive
calculator, a spell checker, and a disk backup utility.

JANUARY 2004, 488 PP., $29.95 ($44.95 CAN)
ISBN 1-59327-012-7

NO STARCH PRESS

No Starch Press, Copyright © 2005 by Karl Kopper

HACKING
The Art of Exploitation

by JON ERICKSON

A comprehensive introduction to the techniques of exploitation and creative
problem-solving methods commonly referred to as “hacking.” Shows how
hackers exploit programs and write exploits, instead of just how to run other
people’s exploits. Explains the technical aspects of hacking, including stack-
based overflows, heap-based overflows, string exploits, return-into-libc,
shellcode, and cryptographic attacks on 802.11b.

“From all the books I’ve read so far, I would consider this the seminal
hacker’s handbook.”—Security Forums.com

NOVEMBER 2003, 264 PP., $39.95 ($59.95 CAN)
ISBN 1-59327-007-0

THE BOOK OFTM POSTFIX
State-of-the-Art Message Transport

by RALF HILDEBRANDT and PATRICK KOETTER

Developed with security and speed in mind, Postfix has become a popular
alternative to Sendmail. The Book of Postfix is a complete guide to Postfix
whether used by the home user or as a company mailserver. Practical
examples show how to deal with daily challenges like protecting mail users
from SPAM and viruses, managing multiple domains, and offering roaming
access.

MARCH 2004, 328 PP., $39.95 ($59.95 CAN)
ISBN 1-59327-001-1

PHONE:
800.420.7240 OR

415.863.9900
MONDAY THROUGH FRIDAY,
9 A.M. TO 5 P.M. (PST)

FAX:
415.863.9950
24 HOURS A DAY,
7 DAYS A WEEK

EMAIL:
SALES@NOSTARCH.COM

WEB:
HTTP://WWW.NOSTARCH.COM

MAIL:
NO STARCH PRESS

555 DE HARO ST, SUITE 250
SAN FRANCISCO, CA 94107
USANo Starch Press, Copyright © 2005 by Karl Kopper

U P D A T E S

Visit http://www.nostarch.com/cluster.htm for updates, errata,
and other information.
No Starch Press, Copyright © 2005 by Karl Kopper

A B O U T T H E C D - R O M

The CD-ROM includes copies of the stock Linux 2.4 and 2.6 kernels with the LVS
kernel modules; the ldirectord software and all of its dependencies; the Mon
monitoring package, monitoring scripts, and dependencies; the Ganglia package;
OpenSSH; rsync; SystemImager; and Heartbeat. The latest versions of all these
software packages can be downloaded from the Internet for free.

The CD-ROM also includes copies of all the figures and illustrations used
in the book so you can use and modify them to suit your needs.
No Starch Press, Copyright © 2005 by Karl Kopper

C D L I C E N S E A G R E E M E N T

This CD-ROM bundled with the book The Linux Enterprise Cluster, ISBN 1-59327-036-4,
contains electronic versions of all figures and illustrations (“Figures”) that appear in
the book, as well as a collection of relevant software. See the specific license for each
software package located in the source files on the CD. All software is published
under the GNU General Public License (GPL), http://www.gnu.org/copyleft/
fdl.html, except Ganglia, which is released under the BSD license.

The Figures on the Linux Enterprise Cluster CD-ROM are released under the
Creative Commons Attribution-NonCommercial-ShareAlike License (http://
creativecommons.org/licenses/by-nc-sa/2.0). This license applies only to the
Figures on the CD-ROM.

You are free to copy, distribute, display, and perform the Figures contained on
the CD-ROM and to make derivative works from them but you must give the original
author credit, you may not use this work for commercial purposes, and if you alter,
transform, or build upon the Figures, you may distribute the resulting work only under
a license identical to this one.

The penguin art is owned by Karl Kopper and released under the Creative
Commons license.

For any reuse or distribution, you must make clear to others the license terms
of this work. Any of these conditions can be waived if you get permission from the
copyright holder.

No Warranty

The software provided is free of charge and without warranty. The software is
provided “as is” without warranty of any kind, either expressed or implied. The
software is provided without warranty for merchantability or fitness for any purpose.
The entire risk as to the quality and performance of the software is with the user.
If any software provided proves to be defective or insecure or to cause damages of
any kind, the user assumes all cost of repair.

No Starch Press, Copyright © 2005 by Karl Kopper

	Technical Reviewers
	Acknowledgments
	Introduction
	Properties of a Linux Enterprise Cluster
	Architecture of the Linux Enterprise Cluster
	The Load Balancer
	The Shared Storage Device
	The Print Server

	The Cluster Node Manager
	No Single Point of Failure
	In Conclusion

	Primer
	High Availability Terminology
	Linux Enterprise Cluster Terminology

	PART I: Cluster Resources
	1: Starting Services
	How Do Cluster Services Get Started?
	Starting Services with init
	The /etc/inittab File
	Respawning Services with init
	Managing the init Script Symbolic Links with chkconfig
	Managing the init Script Symbolic Links with ntsysv
	Removing Services You Do Not Need

	Using the Red Hat init Scripts on Cluster Nodes
	In Conclusion

	2: Handling Packets
	Netfilter
	A Brief History of Netfilter
	Setting the Default Chain Policy
	Using iptables and ipchains
	Clear Existing Rules
	Set the Default INPUT Chain Policy
	FTP
	Passive FTP
	DNS
	Telnet
	SSH
	Email
	HTTP
	ICMP
	Review and Save Your Rules

	Routing Packets with the Linux Kernel
	Matching Packets for a Particular Destination Network
	Matching Packets for a Particular Destination Host
	Matching Packets for Any Destination or Host
	To View Your Routing Rules
	Making Your Routing Rules Permanent
	iptables and Routing Resource Script
	The ip Command

	In Conclusion

	3: Compiling the Kernel
	What You Will Need
	Step 1: Get the Source Code
	Using the Stock Kernel
	Using the Kernel Supplied with Your Distribution
	Decide Which Kernel Version to Use

	Step 2: Set the Options You Want
	Installing a New Kernel
	Upgrading or Patching the Kernel
	Upgrading a Kernel from a Distribution Vendor
	Set Your Kernel Options

	Step 3: Compile the Code
	Step 4: Install the Object Code and Configuration File
	Install the System.map
	Save the Kernel Configuration File

	Step 5: Configure Your Boot Loader
	In Conclusion

	PART II: High Availability
	4: Synchronizing Servers with rysnc and SSH
	rsync
	Open SSH 2 and rsync
	SSH: A Secure Data Transport
	SSH Encryption Keys
	Establishing the Two-Way Trust Relationship: Part 1
	Establishing the Two-Way Trust Relationship: Part 2

	Two-Node SSH Client-Server Recipe
	Create a User Account That Will Own the Data Files
	Configure the Open SSH2 Host Key on the SSH Server
	Create a User Encryption Key for This New Account on the SSH Client
	Copy the Public Half of the User Encryption Key from the SSH Client to the SSH Server
	Test the Connection from the SSH Client to the SSH Server
	Using the Secure Data Transport
	Improved Security
	rsync over SSH
	Copying a Single File with rsync
	rsync over Slow WAN Connections
	Scheduled rsync Snapshots
	ipchains/iptables Firewall Rules for rsync and SSH

	In Conclusion

	5: Cloning Systems with SystemImager
	SystemImager
	Cloning the Golden Client with SystemImager

	SystemImager Recipe
	Install the SystemImager Server Software on the SystemImager Server
	Using the Installer Program from SystemImager
	Install the SystemImager Client Software on the Golden Client
	Create a System Image of the Golden Client on the SystemImager Server
	Make the Primary Data Server into a DHCP Server
	Create a Boot Floppy for the Golden Client
	Start rsync as a Daemon on the Primary Data Server
	Install the Golden Client System Image on the New Clone
	Post-installation Notes

	Performing Maintenance: Updating Clients
	SystemInstaller
	System Configurator

	In Conclusion

	6: Heartbeat Introduction and Theory
	The Physical Paths of the Heartbeats
	Serial Cable Connection
	Ethernet Cable Connection
	Partitioned Clusters and STONITH

	Heartbeat Control Messages
	Heartbeats
	Cluster Transition Messages
	Retransmission Requests
	Ethernet Heartbeat Control Messages
	Security and Heartbeat Control Messages

	How Client Computers Access Resources
	Failover Using IP Address Takeover (IPAT)

	Secondary IP Addresses and IP Aliases
	Ethernet NIC Device Names
	Secondary IP Address Names
	IP Aliases
	Offering Services
	Gratuitous ARP (GARP) Broadcasts

	Resource Scripts
	Status of the Resource
	Resource Ownership
	Using init Scripts as Heartbeat Resource Scripts

	Heartbeat Configuration Files
	In Conclusion

	7: A Sample Heartbeat Configuration
	Recipe
	Preparations
	Step 1: Install Heartbeat
	Step 2: Configure /etc/ha.d/ha.cf
	Step 3: Configure /etc/ha.d/haresources
	Configure the haresources File

	Step 4: Configure /etc/ha.d/authkeys
	Step 5: Install Heartbeat on the Backup Server
	Step 6: Set the System Time
	Step 7: Launch Heartbeat
	Launch Heartbeat on the Primary Server
	Launch Heartbeat on the Backup Server
	Examining the Log Files on the Primary Server

	Stopping and Starting Heartbeat
	Monitoring Resources
	In Conclusion

	8: Heartbeat Resources and Maintenance
	The Haresources File Syntax
	Haresources File Syntax: Primary-Server Name
	Haresources File Syntax: IP Alias
	Heartbeat’s Automated Network Interface Card Selection Process
	Specifying a Network Interface Card
	Customizing IP Address Takeover with the iptakeover Script
	The Haresources File Syntax: Resources

	Load Sharing with Heartbeat
	Load Sharing with Heartbeat: Round-Robin DNS
	Problems with Round Robin DNS Load Balancing
	Wide-Area Load Balancing

	Operator Alerts: Audible Alarm
	Operator Alerts: Email Alerts
	Heartbeat Maintenance
	Changing Heartbeat Configuration Files
	Server Maintenance and the Heartbeat auto_failback Option
	Forcing the Primary Server into Standby Mode
	Tuning Heartbeat’s Deadtime Value
	Informational Messages in Heartbeat’s Log
	Failover and Respawn (Automatically Restarting Failed Resources)
	License Manager Failover

	In Conclusion

	9: Stonith and ipfail
	Stonith
	An Unconventional Approach: Using a Single Stonith Device
	Sample Heartbeat with Stonith Configuration
	Stonith Sequence of Events
	Stonith Devices
	Viewing the Current List of Supported Stonith Devices
	The Stonith Meatware “Device”
	Using the Stonith Meatware Device with Heartbeat
	Using a “Real” Stonith Device
	Avoiding Multiple Stonith Events

	Network Failures
	ipfail

	Watchdog and Softdog
	Enable Watchdog in the Kernel
	Kernel Panic-Hang or Reboot?
	Configure Heartbeat to Support Watchdog

	Testing Your Heartbeat Configuration
	In Conclusion

	PART III: Cluster Theory and Practice
	10: How to Build a Linux Enterprise Cluster
	Steps for Building a Linux Enterprise Cluster
	NAS Server
	Kernel Netfilter and Kernel Packet Routing
	Cloning a Linux Machine
	Cluster Naming Scheme
	Applying System Configuration Changes to All Nodes
	Building an LVS-NAT Cluster
	Building an LVS-DR Cluster
	Installing Software to Remove Failed Cluster Nodes
	Installing Software to Monitor the Cluster Nodes
	Monitoring the Performance of Cluster Nodes
	Updating Software on Cluster Nodes and Servers
	Centralizing User Account Administration
	Installing a Printing System
	Installing a Highly Available Batch Job-Scheduling System
	Purchasing the Cluster Nodes

	In Conclusion

	11: The Linux Virtual Server: Introduction and Theory
	LVS IP Address Name Conventions
	The Virtual IP (VIP)
	The Real IP (RIP)
	The Director’s IP (DIP)
	The Client Computer’s IP (CIP)
	IP Addresses in an LVS Cluster

	Types of LVS Clusters
	Network Address Translation (LVS-NAT)
	Direct Routing (LVS-DR)
	IP Tunneling (LVS-TUN)

	LVS Scheduling Methods
	Fixed (or Non-dynamic) Scheduling Methods
	Dynamic Scheduling Methods

	In Conclusion

	12: The LVS-NAT Cluster
	How Client Computers Access LVS-NAT Cluster Resources
	Virtual IP Addresses on LVS-NAT Real Servers

	Building an LVS-NAT Web Cluster
	Recipe for LVS-NAT
	Step 1: Install the Operating System
	Step 2: Configure and Start Apache on the Real Server
	Step 3: Set the Default Route on the Real Server
	Step 4: Install the LVS Software on the Director
	Step 5: Configure LVS on the Director
	Step 6: Test the Cluster Configuration

	LocalNode: Using the Director as a Real Server
	In Conclusion

	13: The LVS-DR Cluster
	How Client Computers Access LVS-DR Cluster Services
	ARP Broadcasts and the LVS-DR Cluster
	Client Computers and ARP Broadcasts
	In Conclusion

	14: The Load Balancer
	LVS and Netfilter
	The Director’s Connection Tracking Table
	Hash Table Structure
	Controlling the Hash Buckets
	Viewing the Connection Tracking Table

	Timeout Values for Connection Tracking Records
	Return Packets and the Netfilter Hooks
	LVS Without Persistence
	LVS Persistence
	Persistent Connection Template
	Types of Persistent Connections
	Persistent Client Connection (PCC)
	Persistent Port Connection (PPC)
	Port Affinity
	Netfilter Marked Packets

	In Conclusion

	15: The High-Availability Cluster
	Redundant LVS Directors
	High-Availability Cluster Design Goals
	The High-Availability LVS-DR Cluster
	Introduction to ldirectord
	How ldirectord Monitors Cluster Nodes (LVS Real Servers)

	LVS, Heartbeat, and ldirectord Recipe
	Hide the Loopback Interface
	Install the Heartbeat on a Primary and a Backup Director
	Install ldirectord and Its Required Software Components
	Install ldirectord
	Test Your ldirectord Installation
	Create the ldirectord Configuration File
	Create the Health Check Web Page
	Start ldirectord Manually and Test Your Configuration
	Add ldirectord to the Heartbeat Configuration
	Stateful Failover of the IPVS Table
	Modifications to Allow Failover to a Real Server Inside the Cluster

	In Conclusion

	16: The Network File System
	Lock Arbitration
	The Lock Arbitrator
	The Existing Kernel Lock Arbitration Methods

	The Network Lock Manager (NLM)
	NLM and Kernel Lock Arbitration
	NLM and Kernel BSD flock
	NLM and Kernel System V lockf
	NLM and Kernel Posix fcntl

	NFS and File Lock (dotlock) Arbitration
	Finding the Locks Held by the Linux Kernel
	Performance Issues with NFS-Bottlenecks and Perceptions
	Single Transactions and User Perception of NFS Performance
	Multiple Transactions and User Perception of NFS Performance

	Managing Lock and GETATTR Operations in a Cluster Environment
	Managing Attribute Caching
	Managing Interactive User Applications and Batch Jobs in a Cluster Environment
	Run Batch Jobs Outside the Cluster
	Use Multiple NAS Servers

	Measuring NFS Latency
	Measuring Total I/O Operations
	Achieving the Best NAS Performance Possible
	NFS Client Configuration Options
	Putting It All Together

	Developing NFS
	Additional Starting Points for Information on Linux and NFS
	In Conclusion

	PART IV: Maintenance and Monitoring
	17: The Simple Network Management Protocol and Mon
	Mon
	Mon Alerts
	Mon Monitoring Scripts

	Where to Run Mon
	Basic Mon Recipe
	Step 1: Compile and Install the fping Package
	Step 2: Install the SNMP Package
	Step 3: Install the Required CPAN Modules for Mon
	Step 4: Install the Mon Software
	Step 5: Create the /etc/mon/mon.cf Configuration File
	Step 6: Test by Running the fping.monitor and mail.alert Scripts Manually
	Step 7: Create the Mon Log Directory and Mon Log File
	Step 8: Start the Mon Program in Debugging Mode and Test

	Mon and SNMP “Proof of Concept” Recipe
	Step 1: Install Net-SNMP Client Software on Each Cluster Node
	Step 2: Create the snmp.conf Configuration File
	Step 3: Start the SNMP Agent
	Step 4: View the SNMP MIB Locally
	Step 5: Install the SNMP Monitoring Agents
	Examine the Output of netsnmp-freespace.monitor
	Install Mon on All Cluster Nodes

	Mon and SNMP “Real-World” Recipe
	Step 1: Create the snmpd.conf on All Cluster Nodes
	Step 2: Install netsnmp-proc.monitor and the New mon.cf File on the Cluster Node Manager
	Step 3: Install the Mon init Script
	Step 4: Run SNMP and Mon

	Email Alerts from Mon
	Creating Your Own SNMP Script
	A Sample Custom SNMP Script

	Monitoring Your SNMP Script with Mon
	Things to Monitor with SNMP Monitoring Scripts
	Forcing a Stonith Event with Mon
	Forcing a Heartbeat Failover with Mon
	In Conclusion

	18: Ganglia
	Introduction to Ganglia
	gmond
	gmetad

	Installing Ganglia’s Prerequisite Packages
	Install PHP
	Install RRDtool
	Install Apache on the Cluster Node Manager

	Installing Ganglia on the Cluster Node Manager
	Installing Ganglia on the Cluster Nodes
	Configuring gmetad and gmond on the Cluster Node Manager
	Modify /etc/gmetad.conf
	Modify /etc/gmond.conf
	Start gmond and gmetad
	Add the Ganglia Page to Your Apache Configuration

	The Ganglia Web Package
	The Title Section
	The Node Snapshot Section
	Examining the Cluster Node from the Ganglia Web Package
	Examining the Cluster Node from the Shell Prompt
	gstat
	Running a Command on the Least-Loaded Cluster Node Using gstat

	Creating Custom Metrics with gmetric
	In Conclusion

	19: Case Studies in Cluster Administration
	Administering Accounts Without Active Directory
	Legacy Unix Account Administration Methods: The Problem
	The Best of Both Worlds

	Building a Reliable Cluster Account Authentication Mechanism
	Using the Local passwd and Group File on Each Cluster Node
	A Simple Script

	Building a Fault-Tolerant Print Spooler
	Cluster Nodes and Job Ordering
	LPRng: A Linux Enterprise Cluster Printing System
	Cluster Nodes and Print Jobs
	Building the Cluster Printing System Based on LPRng
	Install LPRng on the Central Print Server
	Install LPRng on the Cluster Nodes
	Modify the /etc/printcap.local File on the Cluster Nodes
	Modify the /etc/printcap File on the Central Print Server
	Managing Print Jobs on the Central Print Server
	Managing Print Jobs from the Cluster Nodes

	Rebooting Nodes for Preventative Maintenance
	Using ipvsadm Commands to Remove a Cluster Node
	Changing the Weight of a Cluster Node to 0
	Disabling Telnet Access to One of the Cluster Nodes

	Sending and Receiving Email in a Cluster Environment
	Creating a Batch Job-Scheduling System with No Single Point of Failure
	Run ssh-keygen
	Modify the sshd_config File on Each Cluster Node
	Create the (RSA) known_hosts Entries on the Cluster Node Manager
	The Batch Job Scheduler

	In Conclusion

	20: The Linux Cluster Environment
	The Linux Enterprise Cluster
	Applications Running on the Cluster

	The Cluster Node Manager
	The Clients
	The NAS Server
	High-Availability NAS Server

	Highly Available Serial Devices
	Serial-to-IP Communication Device
	High-Availability Modems

	Highly Available Database Server
	High-Availability SQL Server

	Putting It All Together
	The Cluster Environment

	In Conclusion

	A: Downloading Software from the Internet (from a Text Terminal)
	Using Lynx
	Using Wget
	What to Do with the File You Downloaded
	tar Files
	rpm Files

	Creating Your Own Tape Archive (tar) File

	B: Troubleshooting with the tcpdump Utility
	C: Adding Network Interface Cards to Your System
	Monolithic Versus Modular Kernels
	View Your Existing Configuration
	Install the Card and Reboot
	Run linuxconf
	Testing the New NIC
	Changes Made by linuxconf
	Using the New NIC
	Testing and Troubleshooting

	D: Strategies for Dependency Failures
	What Are Dependencies?
	Dynamic Executables and Shared Objects

	rpm Packages and Shared Library Dependencies
	Fixing a Dependency Failure Manually
	Fixing a Dependency Failure Automatically

	Using Yum to Install rpm Packages
	Installing a New rpm Package with Yum

	In Conclusion

	E: Other Potential Cluster Filesystems and Lock Arbitration Methods
	F: LVS Clusters and the Apache Configuration File
	ServerName
	DocumentRoot
	BindAddress
	Port
	Listen
	Apache Virtual Host Configuration on Cluster Nodes
	Apache IP-Based Virtual Hosts
	Name-Based Virtual Hosts

	Self-Referential (Redirection) URLs
	IP-Based Virtual Hosts and Self-Referential URLs
	Name-Based Virtual Hosts and Self-Referential URLs

	Verify Your Virtual Host Configuration

	Index
	Updates
	About the CD-ROM
	CD License Agreement

