
Small Basic is a free, beginner-friendly pro-
gramming language created by Microsoft.
Inspired by BASIC, which introduced program-
ming to millions of first-time PC owners in
the 1970s and 1980s, Small Basic is a modern
language that makes coding simple and fun.

Learn to Program with Small Basic
introduces you to the empowering world of
programming. You’ll master the basics with
simple activities like displaying messages
and drawing colorful pictures, and then work
your way up to programming games! Learn
how to:

 Program your computer to greet you
 by name

 Make a game of rock-paper-scissors using
 If/Else statements

 Create an interactive treasure map using
 arrays

 Draw intricate geometric patterns with
 just a few lines of code

 Simplify complex programs by breaking
 them into bite-sized subroutines

You’ll also learn to command a turtle
to draw shapes, create magical moving text,
solve math problems quickly, help a knight
slay a dragon, and more!

Each chapter ends with creative coding
challenges so you can take your skills to
the next level. Learn to Program with Small
Basic is the perfect place to start your com-
puter science journey.

ABOUT THE AUTHOrs

Majed Marji is a senior development engi-
neer at General Motors and an adjunct
faculty member at Wayne State University
in Michigan. He is also the author of Learn
to Program with Scratch (No Starch Press).

Ed Price is a senior program manager in
engineering at Microsoft. He holds an MBA in
technology management and has been a pro-
fessor at Bellevue College. He runs customer
feedback programs for Azure Development,
Visual Studio, and Small Basic.

SHELVE IN
: PROGRAM

M
ING LANGUAGES/

SM
ALL BASIC

www.nostarch.com

TH E F I N EST I N
G E E K E NTE RTA I N M E NT™

ages 10 and up

“Welcome to the Magical world
of programming. what do

you want to create today?”
—Vijaye Raji, Creator of Small Basic

“Welcome to the magical world
of programming. What do

you want to create today?”
—Vijaye Raji, creator of Small Basic

$34.95 ($40.95 CDN)

Covers Small Basic
Version 1.x. Windows 7

or higher required.

Learn to
Program with

Small Basic

Learn to
Program with

Small Basic
An Introduction to Programming

with Games, Art, Science, and Math

m a j e d m a r j i a n d e d p r i c e

L
e
a

r
n

 t
o

 P
r

o
g

r
a

m
 w

it
h

 S
m

a
l
l
 B

a
s

ic
L
e
a

r
n

 t
o

 P
r

o
g

r
a

m
 w

it
h

 S
m

a
l
l
 B

a
s

ic
M

a
r

j
i

a
n

d
P

r
ic

e

Learn to Program with
Small Basic

L e a r n t o
P r o g r a m w i t h

S m a ll B a s i c
 A n I n t r o d u c t i o n t o

P r o g r a m m i n g w i t h G a m e s ,
A r t , S c i e n c e , a n d M a t h

by Majed Marj i and Ed Price

San Francisco

Learn to Program with Small Basic. Copyright © 2016 by Majed Marji and Ed Price.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

20 19 18 17 16  1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-702-4
ISBN-13: 978-1-59327-702-4

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Josh Ellingson
Developmental Editors: Hayley Baker and Tyler Ortman
Technical Reviewer: Vijaye Raji
Copyeditor: Anne Marie Walker
Compositors: Laurel Chun and Kathleen Miller
Proofreader: Lisa Devoto Farrell
Indexer: BIM Indexing & Proofreading Services

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Marji, Majed, author. | Price, Ed, 1978- author.
Title: Learn to program with small basic : an introduction to programming
 with games, art, science, and math / by Majed Marji and Ed Price.
Description: San Francisco : No Starch Press, [2016] | Includes index.
Identifiers: LCCN 2015039128| ISBN 9781593277024 | ISBN 1593277024
Subjects: LCSH: BASIC (Computer program language)
Classification: LCC QA76.73.B3 M3743 2016 | DDC 005.1/3--dc23
LC record available at http://lccn.loc.gov/2015039128

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

B r i e f C o n t e n t s

Foreword by Vijaye Raji . xvii

Acknowledgments . xix

Introduction . xxi

Chapter 1: Introducing Small Basic . 1

Chapter 2: Getting Started . 13

Chapter 3: Drawing Basics . 27

Chapter 4: Using Variables . 43

Chapter 5: Drawing Shapes with Turtle Graphics . 55

Chapter 6: Getting User Input . . 73

Chapter 7: Empowering Programs with Math . 83

Chapter 8: Making Decisions with If Statements . 97

Chapter 9: Using Decisions to Make Games . 111

Chapter 10: Solving Problems with Subroutines . 129

Chatper 11: Event-Driven Programming . 149

Chatper 12: Building Graphical User Interfaces . 165

Chapter 13: Repeating For Loops . 181

Chapter 14: Creating Conditional While Loops . 195

Chapter 15: Grouping Data in One-Dimensional Arrays . 207

Chapter 16: Storing Data with Associative Arrays . . 227

Chapter 17: Expanding to Higher-Dimension Arrays . 241

Chapter 18: Advanced Text Magic . 263

Chapter 19: Receiving File Input and Output . 287

Where to Go from Here . . 307

Index . . 309

C o n t e n t s i n D e t a i l

Foreword by Vijaye Raji	 xvii

Acknowledgments	 xix

Introduction	 xxi
Who Should Read This Book? . . xxii
What’s in This Book? . . xxii
Online Resources . xxiii
A Note to the Reader .xxiv

1
Introducing Small Basic	 1
What Is a Computer? . 1
What Is a Computer Program? . 2
What Is Small Basic? . 2
The Vision of Small Basic . 3
The Basics of Small Basic . 3

The Small Basic Language . . 3
The Small Basic Library . 4
The Small Basic Development Environment . 4

Installing Small Basic . 4
The Small Basic IDE . . 4

Opening and Saving Your Work . 5
Sharing Your Work and Importing Games . 5
Copy and Paste; Undo and Redo . 6
Running Your Program and Graduating . 6

Writing and Running Your First Program . 6
Objects and Methods . 7
Naming Your Programs . 8
Files Generated by Small Basic . 8
Helping Hands: IntelliSense and Syntax Coloring . . 9

Drawing with Small Basic . . 9
Try It Out 1-1 . 10

Programming Challenges . 11

2
Getting Started	 13
The Parts of a Program . 14

Comments and Statements . . 14
Characters and Strings . 15
Arguments and Methods . 15

Try It Out 2-1 . 16

viii Contents in Detail

Exploring Other Features . 16
Case Sensitivity . 16
Sequential Execution . 17
Displaying Numbers and Doing Math . . 17
Joining Strings . 18

Try It Out 2-2 . 19
Object Properties . 19

Setting and Changing Property Values . 19
Working with Properties . 20

Try It Out 2-3 . 22
Arithmetic Operators . 22

Try It Out 2-4 . 23
Programming Errors . . 24

Syntax Errors . 24
Logic Errors . 25
Runtime Errors . 25

Programming Challenges . 25

3
Drawing Basics	 27
The Graphics Coordinate System . 27
Drawing Lines . . 28
Drawing Shapes . 30

Triangles . 30
Try It Out 3-1 . 30

Rectangles and Squares . 31
Try It Out 3-2 . 32

Ellipses and Circles . 32
Pen Size and Color . 34
Pen Width and Shape Size . 34

Try It Out 3-3 . 35
Drawing Text . 35
Inserting Images . 38
Programming Challenges . 39

4
Using Variables	 43
What’s a Variable? . 44
The Basics of Using Variables . 44

Assigning Expressions to Variables . . 45
Passing Variables to Methods . 45
Changing the Value of a Variable . 46
Using Spaces for Readability . 47

Try It Out 4-1 . 47
Rules for Naming Variables . 47

Say What You Mean . 48
Find the Right Length . 48

Contents in Detail ix

Stick with Your Style . 48
Let IntelliSense Work for You . 48
Avoid Naming Variables After Methods and Objects 49

Try It Out 4-2 . 49
Simplifying Expressions . 50

Try It Out 4-3 . 51
Using Variables to Solve Problems . 51

Try It Out 4-4 . 52
Two Kinds of Data . 53
Global Variables . 53

Try It Out 4-5 . 54
Programming Challenges . 54

5
Drawing Shapes with Turtle Graphics	 55
Meet the Turtle . 55
Moving the Turtle . 56

Absolute Motion . 57
Relative Motion . 59
Coloring Your Steps . 60
Controlling Your Speed . . 61

Try It Out 5-1 . 61
Introducing the For Loop . 62

Try It Out 5-2 . 64
Drawing Regular Polygons . 64

A Star Is Born . 65
Try It Out 5-3 . 66

Creating Polygon Art Using Nested Loops . 67
Try It Out 5-4 . 68

Endless Graphics . 69
Try It Out 5-5 . 70

Programming Challenges . 70

6
Getting User Input	 73
Talking to the Computer . 74

Your Number, Please? . 74
Introducing Yourself to Your Computer . 75
Writing Prompts for Input . 75
A Moment of Silence, Please (Pause) . 76

Working with User Input . 77
Converting Fahrenheit to Celsius . 77

Try It Out 6-1 . 78
Averaging Numbers . 78
Reading Text . 79

Try It Out 6-2 . 80
Programming Challenges . 81

x Contents in Detail

7
Empowering Programs with math	 83
Exponent Methods . 84

SquareRoot() and Good Old Pythagoras . . 84
Powerful Powers . . 85

Try It Out 7-1 . 86
Rounding Methods . 86

Traditional Rounding . 87
Rounding to the Nearest Hundredth . 88

Try It Out 7-2 . 88
Abs(), Min(), and Max() Methods . 88

Try It Out 7-3 . 90
The Remainder() Method . 90

Try It Out 7-4 . 91
Random Numbers . 92

Try It Out 7-5 . 92
Trigonometric Methods . 93

Try It Out 7-6 . 94
Programming Challenges . 95

8
Making Decisions with If Statements	 97
The If Statement . 98

Relational Operators . 100
Try It Out 8-1 . 101

Complex If Conditions . 101
Try It Out 8-2 . 102

Comparing Strings . 102
The If/Else Statement . 103

Try It Out 8-3 . 104
Nested If and If/Else Statements . 104

Try It Out 8-4 . 106
The Goto Statement . 107

Try It Out 8-5 . 108
Programming Challenges . 108

9
Using Decisions to Make Games	 111
The If/ElseIf Ladder . 112

Letter Grades . . 113
The Bug on the Ladder . 114

Try It Out 9-1 . 115
Let’s Get Logical . 115

Logical Operators in the Zoo . 116
The And Operator . 117
The Or Operator . 118
The Cosmic Order of Evaluation . 119

Try It Out 9-2 . 120
The Shapes Object . 120

Try It Out 9-3 . 122

Contents in Detail xi

Create a Game: Guess My Coordinates . 122
Step 1: Open the Startup File . 123
Step 2: Set Up the Game . 123
Step 3: Hide the Star . 124
Step 4: Let the User Guess . . 126

Try It Out 9-4 . 127
Programming Challenges . 127

10
Solving Problems with Subroutines	 129
Why Use Subroutines? . . 130
Writing Subroutines . . 130

Try It Out 10-1 . 133
Subroutine Input and Output . . 133

Try It Out 10-2 . 135
Nesting Subroutines . 135

Try It Out 10-3 . 138
Create a Dragon Game . 138

Step 1: Open the Startup File . 139
Step 2: Write the SetUp() Subroutine . 140
Step 3: Add a Bit of Chance . 141
Step 4: Let the Player Know What’s Going On . 142
Step 5: Get the Player in the Game with GetChoice() 142
Step 6: Process the Player’s Choice . 143
Step 7: Add Motion with MoveKnight() . 143
Step 8: Shoot Arrows with ShootArrow() . 145
Step 9: Swing the Sword with StabDragon() . 146
Step 10: Breathe Fire . 146

Try It Out 10-4 . 147
Programming Challenges . 147

11
Event-Driven Programming	 149
GraphicsWindow Events . 151

Create Patterns with the MouseDown Event . 151
Try It Out 11-1 . . 152

Fire Missiles with the KeyDown Event . 152
Try It Out 11-2 . . 154

Make a Typewriter Using the TextInput Event . 154
Try It Out 11-3 . . 155

Draw Pictures with the MouseMove Event . 155
Try It Out 11-4 . . 156

Useful Tips . 157
Create a Gold Rush Game . 157

Step 1: Open the Startup File . 158
Step 2: Move the Turtle . . 159
Step 3: Move the Bag of Gold . 160
Step 4: Update the User’s Score . 162

Try It Out 11-5 . . 162
Programming Challenges . 163

xii Contents in Detail

12
building Graphical User Interfaces	 165
Design a User Interface with the Controls Object . . 166

Step 1: The Design Phase . 166
Step 2: Program Interactivity . 168

Try It Out 12-1 . 169
Make a Colorful Drawing Program . 169

Try It Out 12-2 . 171
Explore Circuits with Code . 171

Step 1: Open the Startup File . 172
Step 2: Add the Main Code . 173
Step 3: Toggle the Switch . 174
Step 4: Respond to Changes . 175
Step 5: Update the Program’s Interface . . 175

Try It Out 12-3 . 176
Program Your Own Image Viewer . . 176

Try It Out 12-4 . 178
Programming Challenges . 178

13
Repeating For Loops	 181
The For Loop . 182

Try It Out 13-1 . 183
Magical Moving Text . 183

Try It Out 13-2 . 184
Adding ’em Up . 184

Try It Out 13-3 . 185
Formatting Your Output . . 185

Try It Out 13-4 . 186
Drawing All Kinds of Lines . 186

Try It Out 13-5 . 187
Changing the Step Size . 187

Counting Down by Twos . 187
Making a Fractional Step . 188

Try It Out 13-6 . 188
Nested Loops . 189

Tessellating for Fun . . 190
Try It Out 13-7 . 191

Multiple Nesting Levels . 191
Try It Out 13-8 . 192

Programming Challenges . 192

14
Creating Conditional While Loops	 195
When to Use While Loops . 196
Writing a While Loop . 196

Try It Out 14-1 . 198
Validating Your Inputs . 198

Try It Out 14-2 . 199

Contents in Detail xiii

Infinite Loops . 199
Try It Out 14-3 . 200

Create a Rock-Paper-Scissors Game . 200
Step 1: Open the Startup File . 201
Step 2: Add the MouseDown Handler . 202
Step 3: Switch the Images . 203
Step 4: Announce the Winner . 204

Try It Out 14-4 . 204
Programming Challenges . 204

15
Grouping Data in One-Dimensional Arrays	 207
Getting Started with Indexed Arrays . 208
Array Basics . 209
Initializing Arrays . 210

Try It Out 15-1 . 211
Filling Arrays with a For Loop . 211

Constant Initialization . 212
Random Initialization . 212
Formula Initialization . 212
User Initialization . 212

Try It Out 15-2 . 213
Displaying Arrays . 213

Try It Out 15-3 . 214
Processing Arrays . 214

Finding the Sum . 214
Finding the Maximum Element . 215

Using String Values in Arrays . 215
Try It Out 15-4 . 216

Saving Records . . 216
Using Indexed Arrays . 216

Random Selection . 216
A Magic 8 Ball . 217

Try It Out 15-5 . 218
Create the Catch Apples Game . 218

Step 1: Open the Startup File . 219
Step 2: Add the Apples . 220
Step 3: Position the Apples . 221
Step 4: Move the Apples . . 221
Step 5: Catch or Miss . 222

Try It Out 15-6 . 223
Programming Challenges . 223

16
Storing Data with Associative Arrays	 227
Associative Arrays . 228
Putting Associative Arrays to Use . 230

Days in French . . 230
Try It Out 16-1 . 231

xiv Contents in Detail

Storing Records . 231
Try It Out 16-2 . 232

The Array Object . 232
Is It an Array? . 232
How Big Is an Array? . 233
Does It Have a Particular Index? . 233
Does It Have a Particular Value? . 234
Give Me All the Indices . . 234

Try It Out 16-3 . 235
Your Computer the Poet . 235

Step 1: Open the Startup File . 236
Step 2: Set Up the Graphical User Interface . 237
Step 3: Respond to Button Clicks . 237
Step 4: Write the Poem’s First Line . 238
Step 5: Write the Poem’s Second and Third Lines . . 238

Try It Out 16-4 . 239
Programming Challenges . 239

17
Expanding to Higher-Dimension Arrays	 241
Two-Dimensional Arrays . . 242

A Random Matrix . . 242
Try It Out 17-1 . 244

A Matrix with User Input . 244
Animated Squares . 245

Try It Out 17-2 . 246
Using String Indices . 246

Try It Out 17-3 . 247
Going Interactive . 248

Try It Out 17-4 . 249
Common Operations on Numerical 2D Arrays . 249

Step 1: Add All Elements . 250
Step 2: Find the Sum of Each Column . 251

Try It Out 17-5 . 252
Arrays of Three or More Dimensions . 252

Try It Out 17-6 . 253
Create a Treasure Map Game . 253

Step 1: Open the Startup File . 254
Step 2: Create the GUI Elements . 255
Step 3: Start a New Game . 255
Step 4: Create a New Treasure Map . 256
Step 5: Draw Objects on the Map . 257
Step 6: Show the Player’s Location . 258
Step 7: Handle Button Clicks . 258

Try It Out 17-7 . 260
Programming Challenges . 260

Contents in Detail xv

18
Advanced Text Magic	 263
The Text Object . 263

Appending Strings and Getting Their Length . 264
Try It Out 18-1 . 265

Taking Strings Apart: Substrings . . 266
Try It Out 18-2 . 268

Changing Case . 268
Try It Out 18-3 . 270

Character Coding with Unicode . . 270
Try It Out 18-4 . 273

Practical Examples with Strings . 273
Counting Special Characters . 273

Try It Out 18-5 . 274
Palindrome Number Checker . . 274

Try It Out 18-6 . 275
Igpay Atinlay . . 276

Try It Out 18-7 . 277
Fix My Spelling . 277

Try It Out 18-8 . 278
Unscramble . 278

Try It Out 18-9 . 280
Rhyme Time: The House That Jack Built . 280

Try It Out 18-10 . 284
Programming Challenges . 284

19
Receiving File Input and Output	 287
The Case for Files . 288

Naming Files . 288
File Organization . . 289

The File Object . 291
File I/O Methods . 291

Try It Out 19-1 . 294
Try It Out 19-2 . 298

File Management . 298
Practical Programs . 301

The Poet . 301
Math Wizard . 302

Try It Out 19-3 . 305
Programming Challenges . 305

Where to Go From here	 307

Index	 309

F o r e w o r d

Computer programming is magical. Programmers
make computers come to life, and with the right tools,
the possibilities are limitless. But even today’s skilled
programmers started with something very small and
simple.

I have often wondered what exactly makes programming exciting.
The answer, I think, is how even tiny programs can make things happen
instantly. When I was twelve, I was introduced to BASIC for the first time.
The sheer simplicity of it struck me. It was inviting, not intimidating. And
at the time, BASIC was everywhere—it had taken the new world of micro-
computers by storm.

My first program worked flawlessly and gave me the instant gratification
that kept me wanting to do more. This is what it looked like:

10 PRINT "Hello"
20 GOTO 10

xviii Foreword

These two lines of code just printed Hello again and again and again—
but that’s all it took to get me hooked.

Fifteen years later, while working at Microsoft, I signed up to teach
programming to a group of fifth graders. It was then I realized that as pro-
gramming as a discipline had gotten more and more sophisticated, the
simplicity of BASIC had been lost. There was no easy way for children to
experience the same instant gratification that I experienced using BASIC.

When researching tools that could make learning computer science fun
and welcoming, I stumbled across the article “Why Johnny Can’t Code”1).
The article, published by Salon in 2006, argues that today’s children are
missing out on computer science because there aren’t easy-to-use languages
like BASIC readily available.

This inspired me to create Small Basic, a simple and easy way for chil-
dren to learn programming.

But it’s been far from an individual effort. Since launching Small Basic
in 2011, the outpouring of support from the community has been incred-
ible. The programming environment has extended in ways I couldn’t have
imagined—sensing hands and faces with Kinect, talking to robots, and
even integrating with enterprise databases. Small Basic has been translated
into more than twenty languages, and at the time of this writing, more than
280,000 programs have been uploaded to http://www.smallbasic.com/ by chil-
dren around the world.

The original vision of Small Basic is now being carried on by Ed Price
and Michael Scherotter, along with the support of active community mem-
bers like Nonki, LitDev, and many more.

Majed Marji is no stranger to teaching programming. Following his
success with Learn to Program with Scratch, I was really excited to hear he
was going to author this book along with Ed Price. I’m happy to see Learn
to Program with Small Basic come alive and be available for everyone who
wants to take their first step into programming. The book does a great job
of introducing beginners to programming concepts while keeping the con-
tent fun and engaging.

Welcome to the magical world of programming. What do you want to
create today?

Vijaye Raji
Creator of Small Basic
Director of Engineering, Facebook
Former Principal Software Architect, Microsoft

1. http://www.salon.com/2006/09/14/basic_2/

http://www.smallbasic.com/
http://www.salon.com/2006/09/14/basic_2/

A c k n o w l e d g m e n t s

This book represents the culmination of hard work
from many people to whom I owe my thanks. I’d like
to begin by recognizing the editorial and production
departments at No Starch who have done an outstand-
ing job in bringing out this book to life. In particular,
it is a pleasure to acknowledge the help of our edi-
tor, Hayley Baker, and our production editor, Laurel
Chun, who worked hard to ensure that everything
came together like it was supposed to.

I’d also like to thank the book’s technical editor, Vijaye Raji, for his
thorough review and numerous constructive comments. Many thanks go to
my coauthor, Ed Price, for making this book far better than it could have
been without him.

xx Acknowledgments

And above all, my gratitude goes to my wife, Marina, and my two sons,
Asad and Karam, who provided endless personal support. To them I owe
an apology for the time this project has taken and my greatest thanks. The
book is theirs too, and so is the spirit behind it. I dedicate this book to them
as a sincere expression of appreciation and love.

Majed Marji

Firstly, I’d like to thank Majed for bringing me on this amazing journey
with him. In college, I had a tough time learning C++, so with this book,
Majed and I tried to write the programming learning experience that I
wish I had had when I started programming.

I found Small Basic in 2012, while helping run Microsoft’s MSDN
forums, and was excited to see that the community was being led by the
teachers. Thank you to Vijaye for creating Small Basic and to the Small
Basic community for their passion, which inspired me to write for the
Small Basic blog and work on two new releases of Small Basic with Kinect
and LEGO® MINDSTORMS® support.

Thanks to my wife, my four daughters, and my infant son, Asher, who
was raised during this book. I’d also like to thank Tyler Ortman and Bill
Pollock from No Starch Press for their support and for sticking with us.

I dedicate this book to the Small Basic team (Michael, Ray, Li Xin,
François, Deva, and Liz) and Community Council (Nonki, Steve, Rick, Yan,
and Liam) for keeping the dream going!

Ed Price

I n t r o d u c t i o n

Have you ever wondered how people
create computer programs? Have you

ever wanted to conjure up your own video
game? Have you ever flipped through a pro-

gramming book and been discouraged by its dull
language and boring examples? If so, there may be
a computer programmer lurking inside you, waiting
to be unleashed. Welcome to Learn to Program with
Small Basic!

Microsoft Small Basic is a free, text-based programming language
designed for beginners. It provides a complete programming environment
that helps you write, test, and fine-tune your creations. This book shows
you how to install Small Basic and how to use it to do amazing things. We’ll
show you that programming can be fun, rewarding, and—best of all—easy!

xxii Introduction

Who Should Read This Book?
You! This book introduces you to Small Basic in a fun, engaging, and inter-
active way. We offer an abundance of sample programs that you can run,
explore, and tweak to make your own. Try every exercise and dig in to the
extra online resources, review questions, and practice exercises. By the time
you’re done with this book, you’ll be creating your own games!

If you’re feeling inspired, you can share your Small Basic creations
on the Small Basic MSDN forum, where the Small Basic Community
Council will be waiting to answer any questions and check out all your
awesome work.

What’s in This Book?
Each chapter builds on the last one to help you hone your programming
skills. We’ll start you with the basics, and by the end, you’ll be a total whiz!

•	 Chapter 1: Introducing Small Basic explains Small Basic’s features and
gets you set up. Then you’ll create your first program.

•	 Chapter 2: Getting Started walks you through creating simple pro-
grams using Small Basic’s built-in text window.

•	 Chapter 3: Drawing Basics shows you how to write programs that draw
shapes in the graphics window.

•	 Chapter 4: Using Variables explains how variables keep track of infor-
mation. Variables play a huge role in programming, and you’ll use
them throughout the book.

•	 Chapter 5: Drawing Shapes with Turtle Graphics teaches you how
to command your own artistic turtle. You’ll draw intricate geometric
shapes and patterns that would be tiresome to do by hand.

•	 Chapter 6: Getting User Input shows you how to bring your programs
to life by making them interactive. You’ll write a program that can greet
you by name.

•	 In Chapter 7: Empowering Programs with Math, you’ll use math to
make games, like a dice game that uses a random number generator.

•	 Chapter 8: Making Decisions with If Statements shows you how to
control the logic and flow of your programs. With If statements under
your belt, you’ll be able to create even more powerful and exciting
programs.

•	 In Chapter 9: Using Decisions to Make Games, you’ll build on your
knowledge of If statements and use them to make complex games.

•	 In Chapter 10: Solving Problems with Subroutines, you’ll break down
your code into simple sections that you use again and again. Then
you’ll put all your code together to make a game where you battle a
fire-breathing dragon!

Introduction xxiii

•	 In Chapter 11: Event-Driven Programming, you’ll make interactive pro-
grams, such as a simple drawing program, that respond to user input.

•	 Chapter 12: Building Graphical User Interfaces covers how to create a
full application with buttons, labels, and all the bells and whistles of a
professional program. You’ll build on your simple drawing program
and create buttons that let your user change the pen color.

•	 Chapter 13: Repeating For Loops will show you how to use For loops in
your programs to avoid repeating code. You’ll learn how to automate
boring tasks and draw a bunch of pictures in just a few lines of code.

•	 Chapter 14: Creating Conditional While Loops discusses more
advanced conditional programming and ends with making a game
of rock-paper-scissors you can play against the computer.

•	 Chapter 15: Grouping Data in One-Dimensional Arrays introduces
arrays and how to store large amounts of data. Storing and manipulat-
ing data is another important aspect of programming, and you’ll take
advantage of it to program a magic 8 ball.

•	 Chapter 16: Storing Data with Associative Arrays shows you how to
store strings in descriptive arrays. You’ll transform your computer into
a poet by writing a program that generates poems all on its own.

•	 Once you have a handle on arrays, in Chapter 17: Expanding to Higher-
Dimension Arrays, you’ll take arrays up to two or more dimensions,
which lets you put a lot more data in them. At the end you’ll create your
own treasure-hunting game.

•	 Chapter 18: Advanced Text Magic teaches you how to handle and pro-
cess text in your programs. Then you’ll use your knowledge to write a
simple spell-check program.

•	 Chapter 19: Receiving File Input and Output helps you build bigger
programs by teaching you how to handle files full of data. You’ll then
use that knowledge to create a program featuring a math wizard.

Online Resources
Visit http://www.nostarch.com/smallbasic/ to download the extra book
resources and to find updates. You’ll find these additional resources and
review questions for teachers and students:

Book Programs and Solutions  Download the finished programs,
all the images you’ll need, some skeleton code for the Programming
Challenges, and the solutions to the Programming Challenges and Try
It Out exercises. This will save wear and tear on your typing fingers!

Additional Resources  These are online articles that relate to the
topics covered in this book. Many of these were written just to supple-
ment the book!

http://www.nostarch.com/smallbasic/

xxiv Introduction

Review Questions  Test your knowledge (or your student’s knowledge).

Practice Exercises  In addition to the Try It Out exercises and the
Programming Challenges in the book, you can even find more exer-
cises to practice. This is also great for teachers who want more options
for assignments.

A Note to the Reader
When learning a new skill, there’s nothing more important than practice.
Reading this book is only the first step. To become a great programmer,
you must program! The more of the book’s resources you use, the more you
learn. Don’t be afraid to experiment. No matter what buttons you press or
what commands you give, you won’t hurt the computer. We promise.

With a little patience and dedication, you’ll soon amaze your friends
with the wonderful things you’ll create. We want to empower you to make
fun games and even to change the world!

1
I n t r o d u c i n g S m a ll B a s i c

Bill Gates once had a goal to get a com-
puter into every home. Now, nearly every

desk has a personal computer—so just
about anyone can learn to code, too. In this

book, you’ll learn to program with a language called
Microsoft Small Basic.

We’ll start this chapter by explaining some general computing con-
cepts and Small Basic itself. Then we’ll show you how to set up everything
you need to use Small Basic and top it off with writing your first program!

What Is a Computer?
A computer is an electronic device that processes data according to a set of
instructions—it’s that magical device in your pocket or on your desk or lap.
Computers can perform calculations (like your math teacher) and compare

2 Chapter 1

numbers (like in fantasy football), and they can store, retrieve, and pro-
cess data at high levels of speed and accuracy (like parents remembering a
curfew).

A computer’s hardware is everything you can touch on your computer—
inside the guts of every computer are hundreds of interconnected elec-
tronic pieces. If you want to imagine data inside your computer, picture
a massive mall with hundreds of stores and tens of thousands of shoppers
moving like clockwork between the stores.

But without something more, all that hardware couldn’t do anything
useful. Every computer requires programs to tell it what to do—we call
these instructions software. The people who can write software are called
programmers—and you’re about to become one today.

What Is a Computer Program?
A computer program is a set of instructions given to a computer to perform
a task (like a list of homework from your teacher). Your web browser, your
favorite video games, word processors—these are all computer programs.

A program tells the computer what data to read (like numbers or text),
where to read the data from (like from a user, file, or the Internet), how to
process this data (it might search, sort, or calculate the data), what kind of
information to produce (like paragraphs, reports, or graphs), where to store
the produced output (like a disk, network, or database), and how to display
the results (like through a monitor, printer, or plotter). Whoa, that’s a lot!

A computer program specifies every detail along the way. Computers
communicate in machine language, which is a bunch of 1s and 0s. (Can
you imagine talking 1s and 0s to your friends?) A long time ago, the first
computer programs ever written were actually entered into to the computer
by flipping some switches on the computer’s front panel (on for 1, off for 0).
Would you want to flip switches all day? Imagine the errors!

Luckily, computer scientists invented programming languages, which
are a lot easier to use than machine language. Today there are hundreds
of programming languages, but Small Basic is the programming language
you’ll learn in this book!

What Is Small Basic?
Small Basic is a free programming language that Microsoft created for any-
one who wants to learn programming. You can write all kinds of applica-
tions with Small Basic, including games, simulations, animations, and more.

How did the language come about? It started with a programmer at
Microsoft named Vijaye Raji. Raji had just read David Brin’s article, “Why
Johnny Can’t Code,”1 which describes how valuable it is to learn and teach
coding in BASIC. In his article, Brin challenged Microsoft to make a new

1. http://www.salon.com/2006/09/14/basic_2/

Introducing Small Basic 3

BASIC language that would help kids learn to code, and Raji accepted that
challenge. Although BASIC was crucial to Microsoft’s success in the 1970s,
1980s, and 1990s, there really wasn’t a great programming language suit-
able for beginners in 2007.

So Raji wondered if he could create a smaller version of BASIC using
only the simplest parts of the original language. On October 23, 2008, he
released Microsoft Small Basic v0.1, the first version of Small Basic.

The Vision of Small Basic
Small Basic’s four goals will help make your learning experience as awe-
some as possible:

•	 It’s Simple. Small Basic is a simple programming language with a help-
ful code Editor and a Help Area to make coding easy.

•	 It’s Fun. Small Basic lets you create games and other cool programs
right away. It also lets you command a turtle to make art, and it’s fun
to use!

•	 It’s Social. With Small Basic, you can publish your game to the Web on
the Microsoft gallery, show it to your friends, and embed it on your blog
or website. Your friends can import your program and collaborate with
you to make it better.

•	 It’s Gradual. Once you learn the fundamentals of programming with
Small Basic, it’s easy to export your code into the free Visual Studio
Community and start a new adventure with Visual Basic .NET, a pro-
gramming language that’s used by millions of professional program-
mers and an important next step in your learning journey.

We’ll cover everything you need to get started with Small Basic in
this book!

The Basics of Small Basic
The three main parts of Small Basic are the language, the supporting
library, and the programming environment, which is the interface you’ll use
to write your own programs. Let’s explore each element now.

The Small Basic Language
To form a valid sentence in English, you need to follow its grammatical
rules. In the same way, to write a valid Small Basic program, you must follow
the grammatical rules of Small Basic, which are called syntax rules. Syntax
includes punctuation, spelling, statement ordering, and so on. When you
break these rules, Small Basic detects all the syntax errors in your program
and reports them to you so you can fix them.

4 Chapter 1

The Small Basic Library
The Small Basic library contains hundreds of methods that you can use in
your programs to perform different tasks. For example, you can use these
methods when you want to tell the computer to display an image on the
screen, draw a circle, download a file from the Internet, or even compute
the square root of 275,625.

The Small Basic Development Environment
Small Basic comes with an integrated development environment (IDE), which is
the application you’ll use to write your programs. The IDE contains a text
Editor (in which you’ll type your program) and a Toolbar. The Toolbar has
buttons that let you save and run your program, open a program so you
can modify it, share your program on the Web, graduate your program to
Visual Basic, and much more.

Installing Small Basic
The first step in your learning journey is to install Small Basic on your
computer. Open your web browser, go to Microsoft’s Small Basic website
at http://www.smallbasic.com/, and click the Download button in the upper-
right corner. You’ll go to the Download page to pick your operating system
and language. When you start the download, a dialog appears asking for
your permission to open the SmallBasic.msi file. Click the Run or Open but-
ton to start the setup wizard.

When the wizard starts, click Next on the first page, accept the License
Agreement, click Next again, click Next for the default setup, and then
click Install. (If a User Access Control dialog pops up and asks for your
permission to install the program, click Yes.) Click Finish when the installa-
tion is done. If you need to see these steps in detail, check out http://tiny​.cc/
installationguide/.

The Small Basic IDE
Now that your installation is complete, let’s take a look at the Small Basic IDE.
Open the Windows Start menu, and either type Small Basic to search for it
(and click to open it) or select All Programs4Small BasicMicrosoft Small
Basic. When you run the program for the first time, you’ll see something like
Figure 1-1 (enter Prog in the Editor to see the IntelliSense menu).

The IDE contains four main parts. The Editor  is where you enter
your Small Basic programs. You can open and work with multiple Editor
windows at the same time, but only one Editor is active at once. Right-click
the Editor to see a pop-up menu with options like Cut, Copy, Paste, and
Find. The menu also has a Format Program option that indents the lines
in your program to make it easier to read.

http://nostarch.com/smallbasic
http://www.smallbasic.com
http://tiny.cc/installationguide/
http://tiny.cc/installationguide/

Introducing Small Basic 5

Editor

Toolbar

Help Area

Surface

Figure 1-1: The Small Basic IDE

The Toolbar  contains buttons that let you edit and run your pro-
gram, and the Help Area  provides instant information about the code
you enter into the Editor. The Surface  is an open area where you can
move and organize your Editor windows for each Small Basic program.

You’ll use the Toolbar a lot, so let’s explore it in detail.

Opening and Saving Your Work
In the Toolbar’s File group, click New (ctrl-N) to start programming from
scratch, or click Open (ctrl-O) to pick up where you left off in writing a
program. Save (ctrl-S) often so you don’t lose your work, and click Save As
to save your program in a new file.

Sharing Your Work and Importing Games
Let’s say your friend just published a new game to the Small Basic website,
and you want to check it out. In the Web group, click Import to enter the
Import ID (which you get from your friend) and download your friend’s
code. Then you can make the game even cooler with your own modifications.

Let’s try opening a game that someone has already made. Click Import,
and then enter the code TETRIS. You’ll see the code someone wrote to
re-create the famous game, and you can see how it was made. To play the
game now, click Run.

Later, when you’re ready to share your own programs, you can click
Publish, and Small Basic will publish your program to the Web so your
friends can play your game or app online and see your code. You can also
share your program in the Small Basic forum to get direct help from the

6 Chapter 1

community. Small Basic even gives you the option to embed your code snip-
pet so you can add the project to your website. You’ll find the embed code
on the published web page.

When you click Publish, you’ll see a dialog like the one in Figure 1-2.

Figure 1-2: The Publish to Web dialog

When you Publish your code, in addition to getting the Import ID and
the web page URL, you can also click Add More Details to enter a title,
description, and category (like game, sample exercise, example, math, fun, or
miscellaneous) for your program.

Copy and Paste; Undo and Redo
In Small Basic, you can edit your code like you’re editing any kind of text.
From the Clipboard group, click Cut (ctrl-X) to remove a piece of code
from one place in the Editor to paste it somewhere else. To avoid retyping
code, click Copy (ctrl-C). To select all your code, press ctrl-A, and then
cut or copy it.

After you cut or copy, click Paste (ctrl-V) to paste the contents into the
Editor. If you make a mistake, no worries! Just click Undo (ctrl-Z). If you
click Undo too many times, click Redo (ctrl-Y) to reverse the change. You
can also look for a bit of code in a large file. To open the Find window and
search for your text, just press F3, press ctrl-F, or right-click in the Editor
and click Find in the context menu.

Running Your Program and Graduating
When you finish a program, click Run (F5) in the Program group to compile
it; the Small Basic compiler, which is part of the IDE, checks if you have any
errors, and if not, builds your program. When you’ve mastered Small Basic,
just click Graduate to export your code into Visual Basic in Visual Studio
Community and go on to learn your next language.

Writing and Running Your First Program
Now that you know your way around the IDE, let’s write a Small Basic
program. First, create a new folder on your computer called Small Basic ;
this is where you’ll save all the programs you create throughout this book.

Introducing Small Basic 7

Then click the New button to open a new Editor window, and follow these
steps:

1.	 Enter the program in Listing 1-1 into the Editor. You’ll need to enter it
exactly as you see it.

1	' Greetings.sb
2	TextWindow.WriteLine("Greetings, Planet!")

Listing 1-1: Your first program

N o t e 	 When you enter a listing to try it out, don’t include the line numbers at the left! These
numbers are just for reference; we’ll use them to explain the code. You’ll see them in
your Editor, too, but they aren’t part of your code.

2.	 Click the Save button on the Toolbar (or press ctrl-S), browse to the
Small Basic folder you just made, and save your program as Greetings.sb.

3.	 Click Run on the Toolbar. If you didn’t make any typing mistakes, you’ll
see an output window like the one in Figure 1-3.

Figure 1-3: The output of Greetings.sb

N o t e 	 When you run this program, your window will have a black background; that is the
default background color for the text window. The images in this book were created
with a white background to make it easier for you to read them.

Even though it’s short, this is a complete Small Basic program! But what
does each piece of the program do? Let’s dissect it.

Objects and Methods
The window in Figure 1-3 is the text window, and it can only display text. You
told Small Basic to bring up the text window using TextWindow, one of the
many objects in the Small Basic library. You can think of an object as a little
toolbox for a specific job, such as doing math problems, defining words, or
drawing pictures.

Objects in Small Basic can perform predefined tasks using methods.
Methods are like the tools in your object toolbox. To get most methods
to do something, you have to give them one or more values (such as text or
numbers) to act on. Each value is called an argument.

WriteLine() is one method of the TextWindow object, and the message
"Greetings, Planet!" is an argument that goes in the parentheses. The state-
ment TextWindow.WriteLine() instructs the computer to display the message
Greetings, Planet! in the text window.

8 Chapter 1

Throughout this book we’ll include parentheses with the names of the
methods, like WriteLine(), so you can easily tell that they’re methods.

Naming Your Programs
Project names can make it easy for you to identify what your project is
about; these names don’t really matter much to Small Basic. Although we
asked you to save this program as Greetings.sb because it was what the pro-
gram was about, you could save it as SecretGarden.sb, FuzzyKittens.sb, or even
HungerBoardGames.sb, if you really wanted to. Just don’t change the .sb part
of the filename, which is called the extension. Small Basic programs use that
extension by default, and there’s no reason to change it!

Files Generated by Small Basic
When you click the Run button, Small Basic creates other files in order to
run your program. Open the folder where you saved your Greetings.sb pro-
gram. Table 1-1 lists the files you should find in that folder if you clicked
Run earlier.

Table 1-1: Files Generated by the Small Basic Compiler

File Description

Greetings.sb This is your source code file, which contains everything you
entered into the IDE. If you want to edit your code and make
it better, you edit this file.

Greetings.exe This is the executable file created by Small Basic. This file is
what your computer actually runs. Double-click this file, and
your program will run.

SmallBasicLibrary.dll You can ignore this file for now. The dynamic link library (.dll )
file contains executable code that supplements your Greetings​
.exe file. The Greetings.exe file won’t run without this file!

Greetings.pdb You can ignore this file for now, too. This program database
(.pdb) file contains information that is used by advanced tools
to debug, or fix any errors, in the program.

Now that you’ve compiled your source code, you can also run your
Greetings.sb program without using the IDE. You do this by double-clicking
the Greetings.exe file.

NOTE 	 When you click Run after editing your source file, Small Basic overwrites the .exe,
.dll, and .pdb files. If you want to keep these files, you need to manually copy them
to a different location before you click Run. Also, don’t forget to click Save to save the
changes to your .sb file.

Introducing Small Basic 9

Helping Hands: IntelliSense and Syntax Coloring
If you’re following along and typing in Small Basic, you’ve seen how it ana-
lyzes what you type, even before you finish the word. Small Basic offers a list
of suggestions that could help you complete what you’re typing. You can scroll
through this list by pressing the up and down arrows on your keyboard. Press
enter or double-click your selection to insert the highlighted text into your
code. This technology is called intelligent sense or IntelliSense for short. Use it to
speed up your typing time and reduce your syntax errors.

T i p 	 You can make IntelliSense transparent by just holding down the ctrl key to see your
code underneath it.

You might have also noticed that the Small Basic Editor used different
colors for some words in the program. This feature is called syntax coloring.
Keywords, which are reserved words with special meanings to Small Basic, are
shown in blue-purple. Strings, which are sequences of characters enclosed in
quotes, are orange, and so are numbers. Method names are dark red, object
names are blue-green, and so on. Syntax coloring helps you distinguish the
different parts of the code and makes your program easier to read. You’ll
learn more about these parts of code later in the book.

Drawing with Small Basic
The TextWindow object we used earlier works well for applications that don’t
have a graphical user interface (GUI), which is a user interface that contains
buttons, text boxes, and images, like Microsoft Word or Angry Birds (or
Angry Words). For example, you can use TextWindow to write applications
that perform math problems or that process data, where the input and out-
put use only characters (like text). This is called a text-based user interface.
If you want to create an application with a GUI (pronounced gooey, like a
candy bar), complete with buttons and images, you can use the Small Basic
library’s GraphicsWindow object. Using GraphicsWindow, you can create applica-
tions that show buttons, images, and more for your users to interact with.
Let’s try it out!

Enter the program in Listing 1-2 into the Editor, and then click Run in
the Toolbar.

1	' Graphic.sb
2	GraphicsWindow.DrawText(100, 50, "Greetings, Planet!")

Listing 1-2: Your first graphical program

10 Chapter 1

This program uses the DrawText() method of the GraphicsWindow object to
display a message. The DrawText() method requires three arguments. The
first two arguments tell Small Basic the horizontal (x) and vertical (y) posi-
tions of the output message, starting in the upper-left corner of the window.
The third argument tells Small Basic what text to display. The output of this
program is shown in Figure 1-4. As you can see, the message is displayed at
position (100, 50).

100
50

Figure 1-4: The output of Graphic.sb

The GraphicsWindow object contains many other methods that let you
create GUI applications; explore a few of them in Try It Out 1-1.

TR Y IT OUT 1-1

Enter the following program into the Editor, and then run it to see what happens:

GraphicsWindow.DrawEllipse(20, 20, 100, 100)
GraphicsWindow.DrawRectangle(140, 20, 100, 100)
GraphicsWindow.FillEllipse(260, 20, 200, 100)

The output of the program is shown in Figure 1-5. The numbers illustrate how
Small Basic followed your code.

100

100

10
0

20
20

200

100

Figure 1-5: The output of the program

Introducing Small Basic 11

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Identify the objects, methods, arguments, and keywords in the fol-
lowing code snippet. (Hint: the Small Basic editor shows keywords in
blue-purple.)

If (today = "Friday") Then
 TextWindow.WriteLine("Today is Friday.")
Else
 TextWindow.WriteLine("I lost track of what day it is.")
EndIf

2.	 Write a program to display your name in the text window.

3.	 Write a program to display your name in a message box using the
GraphicsWindow object. (Hint: use the ShowMessage() method.)

http://nostarch.com/smallbasic/

2
G e t t i n g S t a r t e d

Now we’ll walk through some code
step-by-step, so you can learn about

the important pieces. As you read, enter
the examples, and we’ll explain how to run

them and modify them. But don’t stop there: experi-
ment to give your programs a personal touch. We’ve
included exercises at the end of each section to help
you become a programming master (like a Jedi, but
without the dangerous lightsabers). Try out the exer-
cises to hone your skills.

14 Chapter 2

The Parts of a Program
Let’s explore the different parts of a program by looking at a simple example.
Listing 2-1 shows a program similar to the Greetings.sb program you wrote in
Chapter 1. Enter this program into the Small Basic Editor, and then click the
Run button on the Toolbar (or press F5 on your keyboard) to run it.

1	' Welcome.sb
2	TextWindow.WriteLine("Welcome to Small Basic.")

Listing 2-1: Writing a welcome message

These two lines are the source code of your Welcome.sb program. When
you run this code, you’ll see an output window that looks like Figure 2-1.
(Note that the window’s title shows where we saved the file, so yours could
be different.)

Figure 2-1: The output window for Welcome.sb

N o t e 	 Your console window will look slightly different from this one, since the window has
a black background by default. For the rest of the book, we’ll show the output as text,
except when it’s necessary to see the window.

Small Basic automatically adds the text Press any key to continue... to
the window to give you a chance to view the output (there isn’t an any key
on your keyboard, so don’t look for it). Otherwise, the screen would flash
your output and disappear.

Comments and Statements
The line that starts with a single quote (') is called a comment. You can add
comments to explain what your program does, and Small Basic just ignores
them. The comment on line 1 is the name of the file that contains your
source code.

N o t e 	 You should get into the habit of commenting your code, because you’ll often head to
the forums or to friends for help, and they’ll need to understand what your code is
trying to do.

The Small Basic Editor shows all comments in green so you can easily tell
them apart from lines of actual code, which are called statements. Comments
make programs easier to read, and you can add them anywhere! But be

Getting Started 15

careful not to use too many comments, or you might make your code even
harder to read! It’s a good practice to write comments at the beginning of
your code to describe your program or to explain any tricky parts.

If you add a blank line that separates the comments from the code,
Small Basic also ignores it, so add as many empty lines as you need to make
your program easier to read! Line 2 in Welcome.sb is your program’s first
statement, and that’s where the program begins executing. (Don’t worry:
nobody dies!)

Figure 2-2 shows the parts of our statement. Let’s break it down and see
what each part does!

TextWindow . WriteLine("Welcome to Small Basic.")

Dot notation

ArgumentMethodObject

Figure 2-2: The statement in Welcome.sb

TextWindow is an object built into Small Basic that takes text input and
sends text output to your screen. WriteLine() is a method of the TextWindow
object. This method displays the data passed to it in the output window.
When you use TextWindow.WriteLine(), you tell the TextWindow object to
execute its WriteLine() method. This is known as dot notation because of the
dot between the object and the method. Dot notation is used to access an
object’s method and follows this format: ObjectName.MethodName(Arguments).
In this example, "Welcome to Small Basic." is an argument to the WriteLine()
method. It tells the method exactly what you want to write.

Characters and Strings
Letters, numbers, punctuation marks (dot, colon, semicolon, and so on),
and other symbols are called characters. A sequence of these characters
surrounded by double quotes is called a string. The quotation marks show
where the string starts and ends.

In our Welcome.sb program, the text that reads "Welcome to Small Basic."
is a string.

Arguments and Methods
You pass arguments to a method inside its parentheses. An argument can
be a string, a number, or some other value. The WriteLine() method accepts
only one argument, and in your Welcome.sb program you pass it the string
"Welcome to Small Basic." as its argument.

Click the WriteLine() method in the Editor, and check Small Basic’s
Help Area (Figure 2-3). It’ll show you what kind of data to pass to that
method.

16 Chapter 2

The method’s name and a brief
description of what the method does.

How to call the method. This tells you
that WriteLine() takes one argument
as input.

The meaning of the method’s
argument(s).

What the method returns to the
caller.

Figure 2-3: The Help Area information for the WriteLine() method

The Help Area is your friend! Read it to avoid needless mistakes and
frustration.

Exploring Other Features
In this section, you’ll explore other key features of Small Basic by making
small changes to the Welcome.sb program. Each example highlights a differ-
ent feature, so let’s jump right in! Small Basic is warm and inviting!

Case Sensitivity
You originally entered TextWindow.WriteLine("Welcome to Small Basic."), but
Small Basic wouldn’t care if you changed the case of any letter in TextWindow
or WriteLine. For example, you could write: TextWindow.writeLINE("Welcome to
Small Basic."). This gives you the same output as before because Small Basic
is case insensitive, which means that it doesn’t matter if your code is written
in uppercase or lowercase letters.

Identifiers like Writeline, writeline, and WRiTeLiNe are all interpreted
the same way by the compiler, which reads each line of code and builds the

TR Y IT OUT 2-1

Point out the object, method, and arguments in these calls:

1.	 Shapes.AddRectangle(100, 50)

2.	 Math.Max(5, 10)

3.	 Sound.PlayBellRing()

Getting Started 17

application. But you should get into the habit of respecting the case of identi-
fiers because other languages are case sensitive. Small Basic is like a friendly
coach who won’t yell at you for improper capitalization. It’ll even fix your typ-
ing mistakes for you, thanks to IntelliSense’s autocorrect function.

But what happens if you change the string? Try entering the welcome
message in all capital letters:

TextWindow.WriteLine("WELCOME TO SMALL BASIC.")

When you run this program, WELCOME TO SMALL BASIC. is displayed in all
capital letters in the output window. Why? The reason is that Small Basic’s
WriteLine() method displays anything between the quotes exactly as you
wrote it!

Sequential Execution
Listing 2-1 displays only one line of text, but you could display as many lines
as you want. Let’s follow Listing 2-2 to extend the program to display three
lines!

1	' ThreeLines.sb
2	TextWindow.WriteLine("Welcome to Small Basic.")
3	TextWindow.WriteLine("")
4	TextWindow.WriteLine("Anyone can code!")

Listing 2-2: Displaying more lines

When you run this program, you’ll see this output:

Welcome to Small Basic.

Anyone can code!

Your program’s output shows that each line is executed in the order
it’s listed in the program, from top to bottom. Do you see that empty line
in the output? That was made by the statement in line 3 where you gave
WriteLine() a pair of double quotes with no characters inside them. Because
"" contains no characters, it’s called an empty string. Empty strings are useful
when you want to display empty lines to break up the program’s output and
make it easier to read.

Displaying Numbers and Doing Math
You can also use WriteLine() to display numbers. Try out Listing 2-3.

1	' TextAndNum.sb
2	TextWindow.WriteLine("5 + 7")
3	TextWindow.WriteLine(5 + 7)

Listing 2-3: Showing the difference between strings and numbers

18 Chapter 2

Here’s the output of this program:

5 + 7
12

When you pass anything to WriteLine() in double quotes, the output
window shows exactly what’s inside the quotes. So, when you pass "5 + 7" to
WriteLine() in line 2, Small Basic treats the plus sign inside the string like
any other character and doesn’t see it as an addition problem!

The WriteLine() command on line 3, however, is different. You passed
5 + 7 to WriteLine() without double quotes. In this case, Small Basic under-
stands that these are numbers, not parts of a string. Behind the scenes it
adds 5 to 7 to get 12 and passes the sum to WriteLine().

Joining Strings
You can also add strings together to build sentences or add to phrases, as
shown in Listing 2-4. Combining strings is called concatenation.

1	' JoinString.sb
2	TextWindow.WriteLine("Hello," + " oblate spheroid!")

Listing 2-4: Explaining concatenation

In line 2 of Listing 2-4, the WriteLine() method takes two strings, "Hello,"
and " oblate spheroid!", with a plus sign (+) between them. In this case,
because you’re not performing addition, the plus sign has a different mean-
ing: it’s called a concatenation operator, which joins two strings together into
a single string. Notice the extra space in " oblate spheroid!". It makes your
message display with a space between the words.

The plus sign (+) glues "Hello," onto " oblate spheroid!" and creates the
new string "Hello, oblate spheroid!".

You can also join strings and numbers together. Small Basic automati-
cally converts any number to a string so that concatenation can do its thing!
Take a look at Listing 2-5 and its output in Figure 2-4.

1	' JoinNum.sb
2	TextWindow.WriteLine("Let's concatenate: 5 + 7 = " + 12)

Listing 2-5: Adding a number to text

The WriteLine() method needs a string as an argument. To create that
string, Small Basic turns the entire argument into a string, as shown in
Figure 2-4. It converts the number 12 to a string ("12") and then glues it
to "Let's concatenate: 5 + 7 = " to make a new string: "Let's concatenate:
5 + 7 = 12".

Getting Started 19

TextWindow.WriteLine("Let's concatenate: 5 + 7 = " + 12)

NumberString

"Let's concatenate: 5 + 7 = 12"

Figure 2-4: Using the plus sign to join a string and a number

Object Properties
Small Basic objects can have properties (or attributes) that you can change.
If you change these properties, the object’s methods may give you different
outcomes when you call them.

For example, let’s imagine a new object named Frog that contains two
methods, Jump() and Eat(), and one property called EnergyLevel. When you
call the Jump() method, Frog jumps, but each jump causes its EnergyLevel to
go down. You can call the Eat() method to restore its energy. If you keep
ordering the Frog to jump without feeding it, the Frog runs out of energy
and can’t jump anymore. The outcome of calling the Jump() method depends
on the current value of the EnergyLevel property. The property changes the
state of the Frog object (whether it can jump or not). Calling Jump() at one
state (when EnergyLevel is high) gives a different output than calling Jump()
at a different state (when EnergyLevel is low). Poor hungry frog!

Setting and Changing Property Values
Here’s the general format for setting or changing a property of an object:

ObjectName.PropertyName = Value

TR Y IT OUT 2-2

Write a program to display Figure 2-5.

|(.)(.)|
\| /\ |/
 | __/ |
 --||--
 __/__

Figure 2-5: Making a face

20 Chapter 2

For example, to make the TextWindow object output yellow text, you
would enter:

TextWindow.ForegroundColor = "Yellow"

That statement changes the TextWindow object’s state: after this state-
ment, any text printed by calling WriteLine() is displayed in yellow. But any
text that has already been displayed in the text window won’t be affected.
The statement tells the TextWindow object, “From this point on display text
using a yellow color.”

Working with Properties
Listing 2-6 shows some ways you can put the TextWindow properties to use.

1	' Properties.sb
2	TextWindow.Title = "Discovering Properties..."
3	TextWindow.BackgroundColor = "Yellow"
4	TextWindow.Clear()
5	
6	TextWindow.CursorLeft = 4
7	TextWindow.CursorTop = 1
8	TextWindow.ForegroundColor = "Blue"
9	TextWindow.Write("BLUE TEXT")
10	
11	TextWindow.CursorTop = 3
12	TextWindow.ForegroundColor = "Red"
13	TextWindow.Write("RED TEXT")
14	
15	TextWindow.CursorLeft = 1
16	TextWindow.CursorTop = 5
17	TextWindow.BackgroundColor = "Green"

Listing 2-6: Placing and coloring your text

Running this code gives you the output in Figure 2-6.

Figure 2-6: The output of Properties.sb

Now let’s walk through the code. Figure 2-7 will help you visualize what’s
happening. It illustrates the text window as a rectangular grid of charac-
ters and shows the position of the cursor after Small Basic completes each
statement.

Getting Started 21

B L U E T E X T

R E D T E X T

P r e s s a n y k e y t o c o n t i n u e . . .
_

Column 0

Row 0

Column 4

Row 1

Row 3

Row 5

Column 21

TextWindow.CursorLeft = 4
TextWindow.CursorTop = 1
TextWindow.ForegroundColor = "Blue"
TextWindow.Write("BLUE TEXT")

 The cursor
is now here.

TextWindow.CursorTop = 3
TextWindow.ForegroundColor = "Red"
TextWindow.Write("RED TEXT")TextWindow.CursorLeft = 1

TextWindow.CursorTop = 5
TextWindow.BackgroundColor = "Green"









Column 13

Figure 2-7: Illustrating the output of Properties.sb

Line 2 sets the Title property, which tells Small Basic the title of the
text window. Line 3 sets the BackgroundColor property to "Yellow" for all the
upcoming text outputs. The Clear() method (line 4) tells TextWindow to repaint
itself using its BackgroundColor property, which is what makes the window’s
background yellow. Try removing this line from the program to see what
changes in your program’s output.

Lines 6–8 set the cursor position to column 4, row 1 and set the fore-
ground color (the text color) to blue for the next output. The Write()
method at line 9 writes the string "BLUE TEXT", starting at the current posi-
tion of the cursor. The Write() method is just like the WriteLine() method,
except it doesn’t move the cursor to the next line after it displays the string.
After this call, the cursor is at column 13 but still in row 1.

Line 11 moves the cursor down to row 3. Line 12 sets the foreground
color to red, and line 13 calls Write() to display the string "RED TEXT".

Lines 15 and 16 move the cursor to column 1, row 5; line 17 sets the
background color to green. This is the last statement, so the program ter-
minates at this point (because there’s no more code to run). Because the
foreground color of the text window is still set to red, the Press any key to
continue... message is displayed in red on a green background.

T i p 	 For a complete list of colors you can use in the text window, see http://tiny.cc/
twcolors/.

http://tiny.cc/twcolors/
http://tiny.cc/twcolors/

22 Chapter 2

Arithmetic Operators
Computers are excellent for crunching numbers (they megabyte!) and work
great as glorified calculators. Small Basic includes the four basic arithmetic
operations: addition, subtraction, multiplication, and division, which are
represented by +, –, *, and /, respectively. Those symbols are called operators
because they operate on values, which are called operands. Let’s look at a
few examples. These math operations will be familiar to you. Try entering
these lines in the Editor:

TextWindow.Writeline(4 + 5)
TextWindow.Writeline(3 / 6)
TextWindow.Writeline(8.0 / 4)
TextWindow.Writeline(3 * 4)
TextWindow.Writeline(9 - 3)

When you run this program, each answer appears on a new line,
like this:

9
0.5
2
12
6

But how would Small Basic find the result of an expression like this:
6 * 2 + 3? Does this mean multiply 6 times 2 and then add 3, which equals

TR Y IT OUT 2-3

Now you have a chance to go hi-tech next Valentine’s Day. Write a program that
draws a card similar to the one shown in Figure 2-8, and share it with your crush.
(Hint: draw the heart first with red. Then switch the foreground color to green and
call Write() three times to draw the text.) Get creative with your colors and make
it personal.

Figure 2-8: A Valentine’s Day heart

Getting Started 23

15, or multiply 6 times the sum of 2 and 3, which equals 30? When an arith-
metic expression contains different operators, Small Basic completes the
expression using the same priority used in algebra, as shown in Figure 2-9.

()

*
/

+
–

Parentheses come first, then . . .

multiplication and division are performed in
order of occurrence (from left to right), then . . .

addition and subtraction are performed in
order of occurrence (from left to right).







Figure 2-9: The order of operations in Small Basic

So, for 6 * 2 + 3 with no parentheses, Small Basic would multiply 6
times 2 and then add 3, for a result of 15.

As in ordinary math, each left parenthesis in a Small Basic program must
have a matching right parenthesis. For example, the expression (6 + 4) is
valid, but (6 + (8 – 2))) isn’t valid because it has an extra right parenthesis.

To make sure you get the results you want, use parentheses to clarify
the order of operations. This helps you avoid mistakes and makes your code
easier to understand. For example, enter the following:

TextWindow.WriteLine((3.5 + 6.5) - (5 - 2.5))

If you placed your parentheses correctly, you should get 7.5.
Adding a single space on both sides of an operator is also a good idea.

For example, the expression 5 + 4 * 8 is easier to read than 5+4*8. Although
Small Basic can read two consecutive arithmetic operators, as in 3*–8, it’s
best to put the negative number in parentheses, such as 3 * (–8) to make
your code easy to read and avoid any confusion.

TR Y IT OUT 2- 4

In Lewis Carroll’s Through the Looking Glass, the Red Queen and the White Queen ask
Alice to do some addition and subtraction in Wonderland. Using the WriteLine()
method, create Small Basic programs to help her solve these two problems:

“Can you do Addition?” the White Queen asked. “What’s one and
one and one and one and one and one and one and one and one
and one?”

“I don’t know,” said Alice. “I lost count.”

“She can’t do Addition,” the Red Queen interrupted, “Can you do
Subtraction? Take nine from eight.”

“Nine from eight I can’t, you know,” Alice replied very readily: “but—”

24 Chapter 2

Programming Errors
Just because a program runs doesn’t mean it’s correct. All programmers
make errors at some point, especially when they write long programs. But
don’t worry! You’ll make fewer errors the more you practice. Three main
types of errors in programming are syntax errors, logic errors, and runtime
errors; we’ll teach you how to find and fix them.

Syntax Errors
Errors pop up whenever a program breaks one of the language’s syntax
rules. Examples of syntax errors include the following:

•	 Missing punctuation, such as in TextWindow.WriteLine("Hello), which
includes a string without an ending quote

•	 Extra punctuation at the end of a statement

•	 Misspelled keywords, such as Whle instead of While

•	 Arithmetic operators used incorrectly, such as 5 ** 2

•	 Mismatched parentheses in arithmetic expressions, such as
5 * (6 - (3 + 2)

N o t e 	 A keyword is a special word that tells Small Basic to do something, like to repeat a
statement. We’ll explain each one in later chapters.

Fortunately, the minute you click the Run button, Small Basic discovers
any syntax errors and describes them in an error message. The error message
lists the line numbers in your source code where the errors were found (see
Figure 2-10). If your program contains a syntax error, look at the line that
contains the error and see if you can fix it!

Line 1, column 22

Cursor position

Figure 2-10: An example of a syntax error

Need to find the problem fast? Just double-click the error message to
jump to the line that contains the error. (Pretty awesome, huh?)

Getting Started 25

Logic Errors
Sometimes, you might make a mistake in your program’s logic. These logic
errors cause your programs to produce the wrong results. For example, if
you accidentally used a minus sign instead of a plus sign, you’ve made a
logic error. Your program runs normally, but the output’s incorrect!

Logic errors are called bugs, and debugging is the process we use for
finding and fixing these bugs. For short programs, you might be able to
locate the bugs by hand tracing, which means you read the program line by
line and write down the output you expect for each step. Another common
technique is to insert additional WriteLine() statements to display the output
at different parts of the program. This helps you narrow down the lines
where the program might have gone wrong.

Runtime Errors
Runtime errors happen after you run your program, when it experiences a
problem that’s not solved in your code. For example, your user may enter
bad numbers that can cause your program to stop working, or crash. You’ll
discover these errors yourself when you start tinkering with Small Basic.

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Write a program that displays your name and age, similar to the follow-
ing output. Use colors to make the output fit your own style!

My name is Sandra Wilson
I am 12 years old

2.	 Replace the question marks in the following program with strings that
give your user information about the order of an element in the peri-
odic table. Run the program to check its output.

TextWindow.Write("?" + " is the " + "?")
TextWindow.WriteLine(" element in the periodic table.")

3.	 Cathy wrote the following program to figure out how much money she
earned from babysitting. But there’s a problem: her program doesn’t
work. Help Cathy find the bug in her program and fix it.

' This program computes my earnings from babysitting.
' Hours worked: 20
' Pay rate: $4 per hour

TextWindow.WriteLine("I earned: $" (20 * 4))

http://nostarch.com/smallbasic/

26 Chapter 2

4.	 Write a program that creates a Christmas card similar to the one shown
here. Use any colors to decorate the tree.

3
D r a w i n g B a s i c s

With Small Basic you can become a mas-
terful artist. Instead of a paintbrush,

you’ve got the power of code. Let’s jump
in so you can start creating your very own

masterpiece! We showed you the TextWindow object,
but in this chapter, you’ll explore the GraphicsWindow
object, which includes methods that draw lines, tri-
angles, rectangles, ellipses, and even fancy text.

The Graphics Coordinate System
Think of the graphics window as a rectangular grid. Every point on this grid
is described with two numbers, called coordinates. The x-coordinate tells you
a point’s horizontal position, and the y-coordinate tells you a point’s vertical
position. You specify the point’s location using parentheses, like this: (x, y).

28 Chapter 3

In the system you use at school, point (0, 0) is in the middle of the
graph, but things are a little different in the graphics window. Figure 3-1
shows you that point (0, 0) is in the upper-left corner of the graphics win-
dow, which means you can only see the points that have positive x- and
y- values.

x

y

(0, 0)

(200, 80)

(60, 160)

x

Figure 3-1: The coordinate system of the
graphics window

Now that you know how the graphics window’s coordinate system
works, let’s play around with it. The next sections take you on a tour of
some methods you can use to draw simple pictures. Throughout the chap-
ter, we’ll show you drawings to create with Small Basic, and we’ll include
the gridlines to help you visualize the coordinates involved in each shape.

Drawing Lines
To draw a line, you can use the DrawLine() method:

GraphicsWindow.DrawLine(x1, y1, x2, y2)

The arguments x1, y1 and x2, y2 are for the x- and y-coordinates of the
two end points of the line. To put this method into action, run the program
in Listing 3-1, which draws two parallel lines.

1	' ParallelLines.sb
2	GraphicsWindow.Title = "Parallel Lines"
3	GraphicsWindow.DrawLine(40, 50, 100, 50) ' Top line
4	GraphicsWindow.DrawLine(40, 70, 100, 70) ' Bottom line

Listing 3-1: Drawing parallel lines

In line 3, Small Basic starts at the upper-left corner and then jumps to
the right 40 and down 50. From there, it draws the line to the right, to the
(100, 50) end point. Then, in line 4, it hops down to (40, 70) and draws a

Drawing Basics 29

second line to the right, at the (100, 70) end point. Each pair of end points
uses the same x-coordinates; the different y-coordinates draw the second
line below the first line.

Great job! But lines by themselves aren’t very exciting (unless they’re
short lines at Disneyland). Let’s use several different lines to draw a sailboat
like the one in Figure 3-2.

10
20
30
40
50
60
70
80
90

100

0
10 20 30 40 50 60 70 80 90 10

0
11

0

13
0

14
0

12
0

Figure 3-2: A sailboat drawn entirely with line segments

This shape’s made up of seven line segments, and your program
includes seven DrawLine() statements. The code for this program is in
Listing 3-2, and you can see its output in Figure 3-3.

1	' SailBoat.sb
2	GraphicsWindow.Title = "SailBoat"
3	GraphicsWindow.DrawLine(10, 70, 130, 70) ' Top of the boat
4	GraphicsWindow.DrawLine(130, 70, 110, 90) ' Right side
5	GraphicsWindow.DrawLine(110, 90, 30, 90) ' Bottom of the boat
6	GraphicsWindow.DrawLine(30, 90, 10, 70) ' Left edge
7	GraphicsWindow.DrawLine(100, 70, 100, 10) ' Mast
8	GraphicsWindow.DrawLine(100, 10, 40, 50) ' Slanted sail edge
9	GraphicsWindow.DrawLine(40, 50, 100, 50) ' Bottom edge of sail

Listing 3-2: Drawing a boat with seven lines

Congratulations, you’ve just drawn your first picture in Small Basic.
You’re well on your way to becoming a great artist.

Figure 3-3: The output
of SailBoat​.sb

30 Chapter 3

Drawing Shapes
You can draw lots of cool pictures using lines, but that can be super slow. You
can simplify your code by drawing geometric shapes with built-in methods,
which also saves you a lot of time!

Triangles
Use the DrawTriangle() and FillTriangle() methods to draw triangles:

GraphicsWindow.DrawTriangle(x1, y1, x2, y2, x3, y3)
GraphicsWindow.FillTriangle(x1, y1, x2, y2, x3, y3)

These methods take the x- and y-coordinates of the three corners of the
triangle.

The DrawTriangle() method draws the triangle’s outline, and the
FillTriangle() method fills the inside of the triangle with whatever color
you set the BrushColor property to.

T i p 	 For a complete list of colors you can use in the graphics window, please see http://
tiny.cc/hexcolors/.

For example, to fill a triangle with blue, use these two statements:

GraphicsWindow.BrushColor = "Blue"
GraphicsWindow.FillTriangle(100, 10, 40, 50, 100, 50)

If you want to see the border, then add a call to DrawTriangle():

GraphicsWindow.BrushColor = "Blue"
GraphicsWindow.FillTriangle(100, 10, 40, 50, 100, 50)
GraphicsWindow.DrawTriangle(100, 10, 40, 50, 100, 50)

Experiment with these methods to draw all kinds of triangles. Check
your understanding with Try It Out 3-1.

TR Y IT OUT 3-1

Write a program that draws the shape in Figure 3-4. (Hint: start by drawing the
four blue triangles, and then draw the four yellow triangles.)

Figure 3-4: A fancy pinwheel

http://tiny.cc/hexcolors/
http://tiny.cc/hexcolors/

Drawing Basics 31

Rectangles and Squares
Using the DrawRectangle() and FillRectangle() methods, you can draw rect-
angles or squares of different sizes:

GraphicsWindow.DrawRectangle(x, y, width, height)
GraphicsWindow.FillRectangle(x, y, width, height)

In both methods, the first two arguments (x and y) are the coordinates
of the upper-left corner of the rectangle. The third argument sets the width,
and the fourth argument sets the height. Use the same number for the
third and fourth arguments to draw a square.

To try out these methods, let’s write a program that draws the house
shown in Figure 3-5.

10

20
30

40
50
60

70
80
90

100

0

10 20 30 40 50 60 70 80 90 10
0

11
0

13
0

14
0

12
0

Front

Roof

Chimney

Door

Window

Figure 3-5: Drawing a house

The complete program is shown in Listing 3-3.

1	' House.sb
2	GraphicsWindow.Title = "House"
3	GraphicsWindow.DrawRectangle(30, 50, 80, 40) ' Front of the house
4	
5	GraphicsWindow.BrushColor = "Orange" ' Door is light orange
6	GraphicsWindow.FillRectangle(40, 60, 20, 30) ' Door
7	GraphicsWindow.DrawRectangle(40, 60, 20, 30) ' Door border
8	
9	GraphicsWindow.BrushColor = "Lightblue" ' Window is light blue
10	GraphicsWindow.FillRectangle(80, 60, 20, 20) ' Window
11	GraphicsWindow.DrawRectangle(80, 60, 20, 20) ' Window border
12	
13	GraphicsWindow.DrawRectangle(100, 20, 10, 30) ' Chimney
14	
15	GraphicsWindow.BrushColor = "Gray" ' Roof is gray
16	GraphicsWindow.FillTriangle(30, 50, 70, 10, 110, 50) ' Roof
17	GraphicsWindow.DrawTriangle(30, 50, 70, 10, 110, 50) ' Roof border

Listing 3-3: Building the house of your dreams

32 Chapter 3

Figure 3-6 shows what the output looks like. The
front side is a rectangle with its upper-left corner at
(30, 50), a width of 80, and a height of 40 (line 3). The
door is a filled rectangle with its upper-left corner at
(40, 60), a width of 20, and a height of 30 (line 6).

The window is a filled square with its upper-left
corner at (80, 60) and a side length of 20 (line 10).
The roof is a filled triangle whose three corner points
are at (30, 50), (70, 10), and (110, 50).

The chimney is also a rectangle with its upper-left
corner at (100, 20). Its width is 10 and height is 30
(line 13). However, part of this rectangle is covered by the roof, so you need
to draw the chimney first, and then draw the roof on top of it to cover the
bottom of the chimney.

Now you have the house of your dreams!

Ellipses and Circles
GraphicsWindow also has methods for drawing ellipses (ovals) and circles.
Here are two ellipse methods that use four arguments:

GraphicsWindow.DrawEllipse(x, y, width, height)
GraphicsWindow.FillEllipse(x, y, width, height)

Figure 3-8 explains these four arguments. The first two arguments,
x and y, set the upper-left coordinate of the ellipse. The third argument,
width, sets the width of the ellipse, and the fourth argument, height, sets the
height of the ellipse. To draw a circle, just set the width and the height of
the ellipse to the same value.

Figure 3-6: The
output of House.sb

TR Y IT OUT 3-2

Now that you can draw lines, triangles, rectangles, and squares, write a program
that draws the fox shown in Figure 3-7. Add some colors.

Figure 3-7: Drawing and
coloring the fox

Drawing Basics 33

Width

Height

(x, y)

Figure 3-8: The four arguments for the ellipse-
drawing methods

To use these drawing methods, let’s write a program that draws the face
shown in Figure 3-9.

10
20
30
40
50
60
70
80
90

0

10 20 30 40 50 60 70 80 90 10
0

11
0

13
0

12
0

Figure 3-9: Drawing a face

To draw the face, you just have to draw a circle and some different
ellipses using the right parameters. The full program is shown in Listing 3-4.

1	' Face.sb
2	GraphicsWindow.Title = "Face"
3	
4	GraphicsWindow.BrushColor = "Yellow" ' Color of the two ears
5	GraphicsWindow.FillEllipse(20, 30, 10, 40) ' Left ear
6	GraphicsWindow.DrawEllipse(20, 30, 10, 40) ' Left ear border
7	
8	GraphicsWindow.FillEllipse(100, 30, 10, 40) ' Right ear
9	GraphicsWindow.DrawEllipse(100, 30, 10, 40) ' Right ear border
10	
11	GraphicsWindow.BrushColor = "Lime" ' Color of the two eyes
12	GraphicsWindow.FillEllipse(40, 30, 10, 10) ' Left eye
13	GraphicsWindow.DrawEllipse(40, 30, 10, 10) ' Left eye border
14	
15	GraphicsWindow.FillEllipse(80, 30, 10, 10) ' Right eye
16	GraphicsWindow.DrawEllipse(80, 30, 10, 10) ' Right eye border
17	
18	GraphicsWindow.BrushColor = "SandyBrown" ' Color of the nose
19	GraphicsWindow.FillEllipse(60, 40, 10, 20) ' Nose
20	GraphicsWindow.DrawEllipse(60, 40, 10, 20) ' Nose border
21	

34 Chapter 3

22	GraphicsWindow.BrushColor = "LightCyan" ' Color of the mouth
23	GraphicsWindow.FillEllipse(50, 65, 30, 10) ' Mouth
24	GraphicsWindow.DrawEllipse(50, 65, 30, 10) ' Mouth border
25	
26	GraphicsWindow.DrawEllipse(30, 10, 70, 70) ' Face border

Listing 3-4: Drawing the most awesome ellipse face ever

The output of this program is shown in Figure 3-10. All of the ellipses
in this picture use the same pen size and color, but you can add even
more detail to your Small Basic drawings by changing those properties.
Let’s see how.

Figure 3-10: The
output of Face.sb

Pen Size and Color
To change the pen size and color, you can set the following properties
before you draw a line or a shape:

GraphicsWindow.PenWidth = 20 ' Sets line width
GraphicsWindow.PenColor = "Green" ' Sets line color

If you want to mix things up, you can change your pen color every
time you run your program by using the GetRandomColor() method of the
GraphicsWindow object. Check it out:

GraphicsWindow.PenColor = GraphicsWindow.GetRandomColor()

This method doesn’t have any arguments, which is why there’s nothing
in the GetRandomColor() method’s parentheses; it returns a randomly selected
color. Go ahead and try it out!

Pen Width and Shape Size
When drawing triangles, rectangles, and ellipses, the width of the pen you
use in the drawing affects the size of the shape. Listing 3-5 shows you what
we mean.

1	' PenWidthDemo.sb
2	GraphicsWindow.Title = "Pen Width Demo"
3	
4	GraphicsWindow.PenWidth = 20 ' Width of circle
5	GraphicsWindow.PenColor = "Lime" ' Color of circle

Drawing Basics 35

6	GraphicsWindow.DrawEllipse(20, 20, 100, 100) ' Circle border
7	
8	GraphicsWindow.PenWidth = 1 ' Width of square
9	GraphicsWindow.PenColor = "Black" ' Color of square
10	GraphicsWindow.DrawRectangle(20, 20, 100, 100) ' Square border

Listing 3-5: Using pen width to change the size of the shape

This program uses a pen with a width of 20 to draw the border of the
circle. Figure 3-11 shows that the border extends 10 pixels out from the
perimeter of the square, even though the circle and the square have the
same dimensions. When measured across the outside edges, the diameter
of the output circle is 120 pixels instead of the specified value of 100.

Figure 3-11: The output of
PenWidthDemo.sb

Drawing Text
A picture might be worth a thousand words, but you can also draw text in
the graphics window, like this:

GraphicsWindow.DrawText(x, y, "text")

TR Y IT OUT 3-3

Write a program that draws a bike like the one shown in Figure 3-12. (Hint: use
the given grid lines to figure out the coordinates of the different shapes to make
them easier to code.)

Figure 3-12: Drawing a bike

36 Chapter 3

DrawText() takes three arguments. The first two arguments set the x- and
y-coordinates of the upper-left corner of the text, and the third argument
takes a string of the text (or numbers) you want to draw. Remember to put
the string in quotes.

If you want to change how the text appears, use the GraphicsWindow
object properties in Table 3-1.

Table 3-1: GraphicsWindow Properties for the Font Name, Size, Style, and Color

Property Default Description

FontName "Tahoma" The name of the font

FontSize 12 The size of the font

FontBold "True" Whether or not the font’s bold

FontItalic "False" Whether or not the font’s italic

BrushColor "SlateBlue" The color of the brush that draws the text

If you don’t change any of these properties, Small Basic uses the default
values listed in Table 3-1. The program in Listing 3-6 changes these proper-
ties to draw some fancy text.

1	' Fonts.sb
2	GraphicsWindow.Title = "Fonts"
3	GraphicsWindow.BackgroundColor = "LightYellow"
4	GraphicsWindow.FontName = "Times New Roman"
5	GraphicsWindow.FontSize = 120
6	GraphicsWindow.FontItalic = "True"
7	
8	GraphicsWindow.BrushColor = "Silver" ' Text shadow color
9	GraphicsWindow.DrawText(5, 5, "Hello!") ' Shadow position/text
10	
11	GraphicsWindow.BrushColor = "RosyBrown" ' Text color
12	GraphicsWindow.DrawText(0, 0, "Hello!") ' Position and text

Listing 3-6: Trying out some fonts

In line 3, the BackgroundColor property changes the background color
of the graphics window. Lines 4–6 set the name, size, and italics properties
of the font you use in any calls to DrawText(). Line 8 sets the color of the font
using the BrushColor property, and line 9 draws the string "Hello!" starting
at point (5, 5). This line draws
the background shadow you see
in Figure 3-13. In line 11, the pro-
gram changes the BrushColor prop-
erty, and then line 12 draws the
same string in a slightly different
position. This creates the appear-
ance of text with a background
shadow, as shown in Figure 3-13.

Figure 3-13: The output of Fonts.sb

Drawing Basics 37

By layering text on top of other text like this, you can create some cool
effects. Try playing with this code to see what you can come up with!

You can also draw text to fit a certain width by using the DrawBoundText()
method:

GraphicsWindow.DrawBoundText(x, y, width, "text")

The parameters x, y, and "text" mean the same as they do in the
DrawText() method: x and y are where you start to draw, and "text" is the
string of text or numbers to draw. The third argument, width, tells Small
Basic the maximum available width for the text in the output. If the text
doesn’t fit in the given width, then it continues on a new line. Even though
the rectangle that the text appears in has a fixed width, the text keeps
going, so the rectangle text area stretches vertically for as long as it needs
to. But if one word’s too long to fit in your bound rectangle (which hap-
pens, especially if the font’s too big), then it gets clipped! The program in
Listing 3-7 and its output in Figure 3-14 show you what we mean.

1	' BoundTextDemo.sb
2	GraphicsWindow.Title = "DrawBoundText Demo"
3	
4	' No clipping
5	GraphicsWindow.FontSize = 15 ' Smaller font
6	GraphicsWindow.DrawBoundText(10, 10, 70, "Today is my birthday")
7	
8	' With clipping
9	GraphicsWindow.FontSize = 18 ' Larger font
10	GraphicsWindow.DrawBoundText(150, 10, 70, "Today is my birthday")
11	GraphicsWindow.DrawRectangle(150, 10, 70, 80)

Listing 3-7: Boundaries that contain the text

The text in the invisible rectangle on
the left automatically wraps to make sure
it doesn’t go beyond the width you speci-
fied. In the bound rectangle on the right,
the text gets clipped because it’s too long to
fit. Small Basic displays three dots, called
an ellipsis, indicating that text has been
clipped.

Inserting Images
Some images might be too complicated to draw with basic shapes, or
they might just take too long to code. Instead, you can draw those images
ahead of time with a paint program and then use them in your application.

Figure 3-14: The output of
BoundTextDemo.sb

38 Chapter 3

GraphicsWindow provides two methods to insert images. Although these
methods start with Draw, they actually insert an existing image in the
graphics window:

GraphicsWindow.DrawImage(imageName, x, y)
GraphicsWindow.DrawResizedImage(imageName, x, y, width, height)

Both methods take the image pathname and the x- and y-coordinates
to determine the image’s location in the graphics window. DrawResizedImage()
takes two additional arguments (width and height) so you can resize the input
image.

Listing 3-8 shows the DrawImage() method with an example image.

1	' ImageDemo.sb
2	GraphicsWindow.Title = "Image Demo"
3	GraphicsWindow.Width = 320 ' Same width as background image
4	GraphicsWindow.Height = 240 ' Same height as image
5	GraphicsWindow.DrawImage("C:\Small Basic\Ch03\BkGnd.bmp", 0, 0)
6	
7	GraphicsWindow.BrushColor = "White" ' Text color
8	GraphicsWindow.FontSize = 50
9	GraphicsWindow.DrawText(10, 120, "Hello Moon!")

Listing 3-8: Inserting your first image

The program starts by setting the
width and height of GraphicsWindow to
320 and 240 pixels, respectively, to
match the size of the image. Line 5
calls DrawImage() and passes in the
pathname where the image is saved.
In lines 7–9, the program draws
the white text Hello Moon! on top
of the background image. When
you run this program on your com-
puter, make sure you set the path in
line 5 to the correct location of the
BkGnd.bmp file on your computer.
Figure 3-15 shows the output.

N o t e 	 Small Basic can also draw images from the Web. Here’s an example:

GraphicsWindow.DrawImage("http://smallbasic.com/bkgnd.jpg", 0, 0)

Figure 3-15: The output of ImageDemo.sb

Drawing Basics 39

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Write a program that connects the following six points with line seg-
ments: (20, 110), (110, 50), (10, 50), (100, 110), (60, 20), (20, 110).
What shape do you get?

2.	 What’s the output of the following program?

GraphicsWindow.DrawLine(50, 18, 61, 37)
GraphicsWindow.DrawLine(61, 37, 83, 43)
GraphicsWindow.DrawLine(83, 43, 69, 60)
GraphicsWindow.DrawLine(69, 60, 71, 82)
GraphicsWindow.DrawLine(71, 82, 50, 73)
GraphicsWindow.DrawLine(50, 73, 29, 82)
GraphicsWindow.DrawLine(29, 82, 31, 60)
GraphicsWindow.DrawLine(31, 60, 17, 43)
GraphicsWindow.DrawLine(17, 43, 39, 37)
GraphicsWindow.DrawLine(39, 37, 50, 18)

3.	 What’s the output of the following program?

GraphicsWindow.DrawRectangle(10, 10, 90, 50)
GraphicsWindow.DrawRectangle(15, 60, 75, 4)
GraphicsWindow.DrawRectangle(34, 64, 6, 6)
GraphicsWindow.DrawRectangle(74, 64, 6, 6)
GraphicsWindow.DrawRectangle(30, 70, 75, 10)
GraphicsWindow.DrawRectangle(20, 80, 80, 2)

4.	 What’s the strangest thing in your house? Draw it using the DrawLine()
method.

The following problems show a grid to make it easier for you to draw the
shapes. You can use any size you like for the grid. We recommend 20 pixels.

5.	 Write a program that draws this star.

http://nostarch.com/smallbasic/

40 Chapter 3

6.	 Write a program that draws this bank, using any colors you’d like.

7.	 Write a program that draws this truck. For extra credit, add front wheels.

8.	 Write a program that draws a traffic light like this one.

9.	 Write a program that draws a train like this one.

Drawing Basics 41

10.	 Write a program that draws the following shape.

11.	 Write a program that draws this person.

12.	 Write a program that draws a soccer field similar to this one.

4
Us i n g V a r i a bl e s

Have you ever wanted to be a doctor,
astronaut, firefighter, animator, mayor,

botanist, or ninja? What if you could be
all of them but just one at a time? A variable

can be anything in your programs, like a string or a
number, but it can only be one thing at a time. For
example, a number-guessing game might ask the player to enter their name
(a string) and then greet the player using that name. Next, the program
might ask them to enter their first guess for the game (a number) and then
check to see if they guessed correctly.

For the game to work, it must remember, or store, the data entered by
the player. It also might need to track how many rounds it took the player
to guess the secret number. You can do all this using variables!

In this chapter, you’ll learn how to define variables and use them to
store text or numbers. You’ll then use variables in programs that solve prac-
tical problems.

44 Chapter 4

What’s a Variable?
A variable is used to store values, like numbers or text. You can use it simi-
larly to how you might use a treasure chest to store valuables if you were a
pirate. Think of a variable as a box. You can put different things inside your
box to use later on. You can change the value of your variable, just like you
can put something new inside your box, like your gum collection. Variables
are called variables because their contents can vary.

To create a variable in Small Basic, use an assignment statement like this:

treasureChest = "My booty!"

This statement creates the variable treasureChest and assigns it the string
"My booty!" The equal sign is an assignment operator. Assigning a value to a
variable for the first time is called initializing the variable.

Now let’s explore how to use variables in your programs. Anchors
aweigh!

The Basics of Using Variables
Karen has 12 stuffed bears. Her sister, Linda, has half as many. How many
bears does Linda have? You could do the math in your head or with a calcu-
lator, but let’s follow Listing 4-1 to do this problem the Small Basic way!

1	' Variables.sb
2	karenBears = 12 ' Karen has 12 bears
3	lindaBears = karenBears / 2 ' Linda has half as many bears as Karen
4	
5	TextWindow.Write("Karen's " + karenBears + " bears aren't as ")
6	TextWindow.WriteLine("fancy as Linda's " + lindabears + " bears!")

Listing 4-1: Demonstrating variables

The statement karenBears = 12 at line 2 creates a variable named
karenBears and assigns the value 12 to it. Line 3 divides karenBears by 2 and
then stores the result in a new variable named lindaBears. When line 3 runs,
lindaBears holds the value 12 ÷ 2, which is 6.

Line 5 outputs the string "Karen's ", and then the plus sign concatenates
the value of karenBears, which is 12, after the string. Then it concatenates
" bears aren't as " after the 12. (For a refresher on concatenation, refer to
“Joining Strings” on page 18.) Similarly, line 6 outputs the string "fancy as
Linda's " and then the value stored in the variable lindaBears. Finally, it adds
" bears!".

Now, let’s run the program to see the result. You should see this:

Karen's 12 bears aren't as fancy as Linda's 6 bears!

Using Variables 45

Try changing the value in karenBears and running the program again
to see what happens. Neat, huh? Changing the value of karenBears will also
change the value of lindaBears. Variables can make your programming life
so much easier!

Let’s check out some other important concepts you need to know for
when you want to use your own variables.

Assigning Expressions to Variables
Arithmetic expressions are combinations of variables, operators, and numbers.
They can be constant numbers (such as 3, 6.8, or –10), arithmetic operations
(such as 3 + 6 or 10 / 3), or algebraic expressions (karenBears / 2). Evaluating
an arithmetic expression in Small Basic is just like evaluating an expression
in math. For example, the expression 4 * 3 + 6 / 2 is evaluated as (4 × 3 + 6
÷ 2) = 12 + 3 = 15. You can also use parentheses in expressions to decide the
order of operations.

You can set variables to the result of an arithmetic expression using
an assignment statement. Your program grabs the value to the right of the
equal sign and assigns that value to the variable on the left of the equal
sign. You already did this in Listing 4-1; let’s build on that knowledge and
write some more variables set to arithmetic expressions!

Here’s an example:

barbies = 5 ' You have 5 Barbies
ponies = barbies + 7 ' You have 7 more My Little Ponies than Barbies
donate = (barbies * ponies) / 10 ' Total toys you need to donate

When you run this program, the variables barbies, ponies, and donate are
5, 12, and 6, respectively. Time to donate 6 toys!

You need to set the variable on the left of an assignment operator,
as you’ve seen in every assignment example so far. So this statement is
incorrect:

5 = barbies ' This is backwards, like the Twilight Zone

Try running it yourself to see if you get an error!

Passing Variables to Methods
A method’s arguments can be constants, variables, or even expressions. For
example, the argument to WriteLine() in the following statement is an arith-
metic expression:

TextWindow.WriteLine((3 * x + y) / (x - y))

If x = 7 and y = 5, this statement displays 13 on the screen. See if you
can figure out how to write and run this code. Remember to set x and y
first!

46 Chapter 4

Changing the Value of a Variable
When you create a new variable in your program, you assign it an initial
value using the assignment operator. You can also use the assignment
operator to change the value of an existing variable, which wipes out the
old value, like this:

ferrets = 5
ferrets = 15
TextWindow.WriteLine("There are " + ferrets + " ferrets in my bed!")

The first line in this example creates a new variable named ferrets and
assigns 5 to it, but the second line changes its value to 15. So the WriteLine
statement will output There are 15 ferrets in my bed!

Behind the scenes, the variable ferrets points to a storage area in the
computer’s memory. When you write ferrets = 15, you tell Small Basic to go
into the space in the memory reserved for ferrets and replace the 5 with a
15. When you display the value of ferrets, you grab whatever’s stored in the
space at that moment.

You can also add to a variable to change its value. Imagine you’re pro-
gramming a game in which the player has to shoot attacking airplanes. When
the player shoots an airplane, you want to increase their score (stored in a
variable named score) by five points. How would you update the score vari-
able? Here’s one way:

score = 10 ' Assumes the player already has 10 points
temp = score + 5 ' temp = 10 + 5 (= 15)
score = temp ' Now the player has 15 points

The second line uses a temporary variable named temp to store the
result of adding five to the current value of score. The value of temp is then
assigned to score.

But you can do this faster in one statement:

score = score + 5

Do you see how the same variable, score, is on both sides of the assign-
ment? This statement adds 5 to the current value of the variable score and
then stores the result back into the same variable. The old value of 10 is
replaced by the new value, 15. See Figure 4-1.

score = score + 5

New value
of score

Old value
of score

= + 51015

Figure 4-1: Illustrating the statement
score = score + 5

Using Variables 47

These two ways of updating the score variable are basically the same,
but the second method’s more common, and you’ll see it all the time in
other people’s programs.

Using Spaces for Readability
Add tabs and spaces to make your expressions more readable. For example,
look at these two expressions:

x=y+10*(x-3)-z
x = y + 10 * (x - 3) - z

They’re the same to Small Basic, but the spaces in the second line make
it easier for humans (and other nonrobots) to read.

Rules for Naming Variables
The names you give to variables are called identifiers. Variable names can
include letters (lowercase and uppercase), digits (0 to 9), and underscore
characters (_). You can name variables anything, as long as you follow a few
rules:

1.	 The name must start with a letter or underscore. It can’t start with a
number.

2.	 Don’t use any of Small Basic’s keywords, like If, Else, Then, And, or While.
These keywords have special meanings, and they can’t be used for any-
thing else. You’ll learn more about them later in this book.

TR Y IT OUT 4-1

The following program finds the average of the weekly hours you spend on home-
work for two classes. First, identify all the variables in this program. What does
this program display when you run it? Try it out!

mathHours = 8
scienceHours = 6
avgHours = (mathHours + scienceHours) / 2
TextWindow.Write("I spend " + mathHours)
TextWindow.Write(" hours a week on math homework and " + scienceHours)
TextWindow.WriteLine(" hours a week on science homework.")
TextWindow.Write("The average of " + mathHours + " and ")
TextWindow.WriteLine(scienceHours + " is " + avgHours + ".")

Now swap in the actual weekly hours you spend on two classes. How long
do you spend on homework? Show the results to your parents—it might be a good
primer before you discuss your report card!

48 Chapter 4

3.	 Variable names in Small Basic are case insensitive; side, SIDE, and siDE
are the same variable.

Based on these rules, MyAddress, totalScore, player1, sum, room_temperature,
and _x123 are all valid variable names.

In addition to the rules we mentioned, programmers also use other
guidelines when naming variables. These conventions are good program-
ming practices, and you should follow them, too. Let’s look at these addi-
tional conventions.

Say What You Mean
Although you can name a variable anything, we recommend you choose a
name that explains what the variable is for. For example, using a variable
named address to store a person’s address makes more sense than using a
variable named xy123 or TacoTruck.

Find the Right Length
Avoid single-letter names like m, j, x, and w, unless their meanings are very
clear, or you’ll just make your program harder to read and understand. But
don’t use names that are so long that they put your friends to sleep, either!

Choose short, meaningful names instead. For example, use name or
presidentName instead of the_name_of_the_president.

Stick with Your Style
It’s currently popular to name variables by starting with a lowercase letter
and then capitalizing the first letter of each additional word, like sideLength,
firstName, roomTemp, variablesAreAwesome, and scoobyDoo. This naming style is
called camel case because it has a hump in the middle. But don’t worry—
camel-cased variables won’t spit!

This book uses camel case, but if you prefer a different style, that’s
okay. Just use one naming convention and stick to it! Although Small Basic
is case insensitive when it comes to variable names, you should be consis-
tent about casing when you name your variables. If you name a variable
firstName, use the same capitalization throughout your program. This
makes it easier for you to find variables and for others to understand your
code. The IntelliSense autocomplete feature can help you. Let’s see how.

Let IntelliSense Work for You
When you create a variable in your program, the name of that variable
is added to the IntelliSense drop-down menu. When you want to reuse a
variable (or check its case), just type the first few letters and look for it in
IntelliSense, shown in Figure 4-2. Small Basic finishes your variable names,
just like a best friend who finishes your . . . sandwiches!

Using Variables 49

Figure 4-2: How a variable is added to the IntelliSense menu

Note how the name of the variable created in the first statement
(interestRate) appears in the menu. When I started to type in on the second
line, the IDE highlighted the name of the variable. Pressing the enter key
autocompletes what I started to type. Thanks, IntelliSense!

Avoid Naming Variables After Methods and Objects
Method names aren’t reserved keywords, so you could use them as variable
names. For example, Small Basic won’t complain if you write this:

writeline = 5
TextWindow.WriteLine(writeline)

Although this is valid, we strongly recommend you don’t name your
variables after existing methods. The world is confusing enough already.

TR Y IT OUT 4-2

1.	 Which of these variable names are invalid? If the name is invalid, explain why.

_myBooK
1MoreRound
$FinalScore
Level2

2.	 For each of the following values, what would you name a variable that repre-
sents it, and why?

•	 The score of a player in a game

•	 The hypotenuse of a right triangle

•	 The number of floors in a building

•	 The number of miles a car can drive per gallon of fuel

•	 The number of licks it takes to get to the center of a Tootsie Pop

50 Chapter 4

Simplifying Expressions
Variables can make calculating arithmetic expressions easier. Let’s say you
want to write a program that evaluates this expression:

1
5

5
7

7
8

2
3

+

−

You can write a bunch of different programs that would all give you the
right answer. For example, you could write a statement that evaluates the
whole expression at once:

TextWindow.WriteLine((1 / 5 + 5 / 7) / (7 / 8 - 2 / 3))

Or you might evaluate the numerator and the denominator separately
and then display the result of their division:

num = (1 / 5) + (5 / 7) ' Finds the numerator
den = (7 / 8) - (2 / 3) ' Finds the denominator
TextWindow.WriteLine(num / den) ' Does the division

You could also evaluate each fraction separately and then display the
result of the combined expression:

a = 1 / 5
b = 5 / 7
c = 7 / 8
d = 2 / 3
answer = (a + b) / (c - d)
TextWindow.WriteLine(answer)

Although these three programs give you the same answer, each program
uses a different style. The first program is the “chubby bunny” of program-
ming: it crams everything into one statement. If the original expression was
more complex, the statement would be really hard to follow. The third pro-
gram does the opposite: it represents every fraction in the expression with a
variable, and that can also be hard to read.

If you’re Goldilocks, the second solution is your “ just right.” It breaks
down the expression into just enough parts to make the program easier to
understand. The variables num and den clearly represent the numerator and
the denominator.

As these examples show, there’s often more than one way to solve a prob-
lem. If you ever get stuck on a problem, try breaking it into more manageable
pieces!

Using Variables 51

Using Variables to Solve Problems
People often solve problems without really thinking through every step of
the process. But computers can’t do this: they need you to think through
each step for them (at least until The Terminator or The Matrix come true).
That’s why it takes some planning to use a computer to solve a problem.
When developing a solution to a programming problem, you should do this:

1.	 Understand what the problem is.

2.	 Design a solution.

3.	 Write the program.

4.	 Test the program to make sure it works as you expect it to.

Let’s say you want to create a program that computes the area of a circle
with a given radius. To solve the problem, you need to answer these basic
questions:

1.	 What do you need the program to output?

2.	 What input do you need, and where will the program get this input from?

3.	 What processing will the program have to do to turn the input into the
output?

For this problem, here’s how you’d answer those questions:

1.	 Your program needs to output the area of a circle. It’ll show this output
to the user in the text window.

2.	 This program needs a single input from your user: the radius of the
circle.

3.	 Your program will need to compute the area using this formula, which
might be familiar from math class:

area = π × (radius)2

N o t e 	 The Greek letter π, pronounced pi, is a special number that can be rounded to
3.1416. We gave you free pi!

TR Y IT OUT 4-3

Write a program that evaluates the following expression. Try taking a couple dif-
ferent approaches. Try doing it while dancing! Don’t be shy!

1
9

7
8

1
5

6
7

+

+

52 Chapter 4

Now that you’ve defined your problem, let’s design a step-by-step solu-
tion, which is called an algorithm. First, we’ll break down each part of the
problem (the input, processing, and output) into detailed steps.

Get in the habit of writing an outline of the program that puts each step
in order. This outline is called pseudocode because it’s not a real program, but
it explains what the code should do. Looking at your pseudocode should give
you a clear idea of the real code you’ll need to write for each step. For com-
plex problems, pseudocode helps you express your thought process in simple
terms that you can then translate into real code. Figure 4-3 shows our algo-
rithm and pseudocode for the circle area problem.

PseudocodeAlgorithm

radius = 5

area = π × (radius)2

Display area

Create a variable named radius to hold
the input to our program.

Compute the area of the circle.

Display the result of the computation in the
text window.

�

�

�

Figure 4-3: Algorithm and pseudocode for calculating the area of a circle

The final step is to translate your pseudocode into a Small Basic pro-
gram. Because we haven’t shown you how to get values from the user yet,
you’ll use a fixed number for the radius. Enter the program in Listing 4-2.

1	' CircleArea.sb
2	radius = 5
3	area = 3.1416 * radius * radius
4	TextWindow.WriteLine("Area = " + area)

Listing 4-2: Computing the area of a circle

In line 2, you create a variable named radius and assign it a value of 5. In
line 3, you compute the area of the circle using the formula from page 51
and assign the result to a new variable named area. In line 4, you display the
value of the variable area after the text "Area = " to make it clear what the dis-
played number means.

When you run the code, you’ll see this:

Area = 78.5400

TR Y IT OUT 4- 4

Write a program that calculates and displays the circumference of a circle with
a radius of 5 units. We’ll give you a hint: the equation for the circumference of a
circle is 2 × p × radius.

Using Variables 53

Two Kinds of Data
Programs use all different types of data: applications that do calculations
use numbers, but others might use text.

Small Basic uses very simple data types. It has built-in support for just
two data types: numbers and strings. Numbers can be integers, like –2
and 2365, or decimal numbers, like 0.25 and –123.78. As you know, strings
are characters strung together between double quotation marks, like "The
Declaration of Independence" or "She sells seashells by the seashore."

You don’t need to tell Small Basic what type of data you’re going to
store in a variable. This is a beginner-friendly way of programming.

Global Variables
Variables in Small Basic are global in scope. This means you can define a
variable and access a variable from anywhere in your program. This fea-
ture is helpful because it lets you define variables just when you need them
(instead of having to put all your variables at the top of your program). But
you have to be careful! Because Small Basic reads your programs in order,
it’s possible to create logical errors. Try the program in Listing 4-3.

1	' LogicError.sb
2	y = x / 10
3	x = 20
4	TextWindow.WriteLine("y = " + y)

Listing 4-3: Logic error with global variables

If you’re reading this code closely, you’ve already noticed that, in line 2,
we’re using the variable x before we’ve assigned it any particular value. When
we run this code, we get the following output:

y = 0

Does that answer surprise you? Here’s what’s happening. When the
Small Basic compiler reads this code, it first makes a list of all the vari-
ables you defined in the program. The initial values for these variables are
left empty, like empty boxes. As long as the expressions in the program
use variable names from that list, the compiler’s happy and the program
will run.

When the program runs the expression x / 10 in line 2, it interprets
x as a number because division only makes sense for numbers. That’s why
it fills the empty box for x with 0. It then assigns the result of the division
(which is 0) to y. The variable x is changed to 20 in line 3, but it’s too late!
You get the wrong output.

54 Chapter 4

N o t e 	 Most other programming languages would report a syntax error because the expres-
sion x / 10 in line 2 uses a variable x that hasn’t been defined yet in the program.
Small Basic lets you define variables anywhere in your program; just don’t expect to
get away with it in other languages.

Be careful when you order your statements because Small Basic runs
top to bottom. Make sure you define your variables before you use them for
the first time.

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Do you like knock-knock jokes? Try the following program to see how to
tell them in Small Basic! Which program lines do you need to change
to tell a different joke? Make the change and run the program again to
see what happens:

' KnockKnock.sb
' Small Basic can tell knock-knock jokes!

name = "Orange"
reply = "you going to answer the door?"

TextWindow.WriteLine("Knock Knock")
TextWindow.WriteLine("Who's there?")
TextWindow.WriteLine(name)
TextWindow.WriteLine(name + " who?")
TextWindow.WriteLine(name + " " + reply)
TextWindow.WriteLine("")

2.	 Translate this pseudocode into a Small Basic program:

a.	 Set quantity to 10.

b.	 Set item price to 15 dollars.

c.	 Compute total price by multiplying quantity by item price.

d.	 Display total price.

TR Y IT OUT 4-5

What’s the output of this program? Explain what you see.

TextWindow.WriteLine("Before: x = " + x + " and y = " + y)
x = 10
y = 10
TextWindow.WriteLine("After: x = " + x + " and y = " + y)

http://nostarch.com/smallbasic/

5
D r a w i n g S h a p e s w i t h

T u r t l e G r a p h i c s

In Chapter 3 you learned how to draw pic-
tures using code, but in Small Basic you

can program a friendly turtle to draw pic-
tures for you! In this chapter, you’ll explore

the Turtle object. You’ll also learn how to use a For
loop to repeat lines of code a set number of times to
draw beautiful designs.

Meet the Turtle
Enter this statement in the Small Basic Editor:

Turtle.Show()

Now click Run. Presto! A turtle should appear in the center of the
graphics window (Figure 5-1), waiting for your commands.

56 Chapter 5

Figure 5-1: Hello, turtle!

You might wonder how useful this slow creature can be, but don’t under-
estimate its powers. Once upon a time a turtle won a race against the fastest
hare on Earth!

Small Basic’s turtle uses the GraphicsWindow object’s pen to draw lines.
It always carries this pen (perhaps it’s hidden in its shell next to the turtle
wax), and you can decide if the pen is up or down! When the pen is down,
the turtle draws as it moves. When the pen is up, the turtle moves without
leaving a trace. You can command the turtle to put down or lift up its pen
by using the PenDown() and PenUp() methods (see Figure 5-2).

Turtle.PenUp()Turtle.PenDown()

Figure 5-2: Illustrating the PenUp() and PenDown() methods

The default pen state is down, so the turtle’s ready to draw from the day
it’s born. Now let’s explore what it can do.

Moving the Turtle
You can enter commands to tell your turtle what to do. Just like Ash
Ketchum commands Pikachu, you’ll command your turtle. First, let’s use
the Turtle object to tell the turtle to move!

Give it a push by entering these lines in the Editor. Then click Run.

Turtle.Show()
Turtle.Move(100)

Go, turtle, go! The Move() method in this example commands the turtle
to move forward 100 pixels.

Now let’s look at the two different ways of moving your turtle: absolute
motion and relative motion.

Drawing Shapes with Turtle Graphics 57

Absolute Motion
With absolute motion, you tell your turtle to go to a point on the graphics win-
dow. No matter where the turtle is, it moves to the exact point you choose.

One way to move the turtle to a particular point on the graphics win-
dow is to change its X and Y properties. To see how, run the program shown
in Listing 5-1.

1	' SetTurtle.sb
2	Turtle.Show()
3	Program.Delay(1000)
4	Turtle.X = 100
5	Turtle.Y = 140

Listing 5-1: Setting the turtle’s position

The Show() method (line 2) causes the turtle to appear near the center
of the graphics window (320, 240). The Delay() method on line 3 makes the
program sleep for 1,000 milliseconds (which is 1 second), so you can see the
turtle’s initial position. Line 4 sets the turtle’s X position to 100, and line 5
sets the turtle’s Y position to 140. After running lines 4 and 5, the turtle
will appear at point (100, 140) on the graphics window, as illustrated in
Figure 5-3. Note that the turtle moved to the new location without leaving
any trace; it’s like the turtle got picked up and placed at (100, 140).

100

100

200

The turtle starts at
(320, 240).

After 1 second, it
moves to (100, 140).

200 300

Figure 5-3: Moving the turtle by setting its X and Y properties

Another way to move the turtle to an absolute position on the graphics
window is to use the MoveTo() method. This method takes the x- and y-​
coordinates of the desired position as arguments. Run the program in
Listing 5-2 to see what this method does.

58 Chapter 5

1	' MoveTo.sb
2	Turtle.Show()
3	Program.Delay(1000)
4	Turtle.MoveTo(100, 140)

Listing 5-2: Moving the turtle using absolute motion

You can see the output of this program in Figure 5-4. Again, the turtle
starts at (320, 240) pointing north (line 2), and the program sleeps for
1 second so you can watch the turtle in action (line 3). After 1 second, the
turtle turns toward (100, 140) before it starts its slow journey toward that
point. This time, the turtle draws a line while moving (because the turtle’s
pen is down by default). If you add Turtle.PenUp() anywhere before calling
MoveTo(), the turtle moves to (100, 140) without leaving any trace.

100

100

200

The turtle starts at
(320, 240).

After 1 second, it
moves to (100, 140).

200 300

Figure 5-4: Using MoveTo() to set the turtle’s absolute position

Note that when it stops moving, the turtle stays pointed in the direc-
tion it turned to. It doesn’t reset to face north again. Compare this figure to
Figure 5-3, where the turtle remains pointing north, like it’s been picked up
and moved to the new position.

Let’s say you want your turtle to face north after it completes its journey.
Add the following statement at the end of Listing 5-2:

Turtle.Angle = 0

When the turtle reaches point (100, 140), it’ll turn in place to point
north. Try it out! See Figure 5-5 to understand the relationship between the
Angle property and the direction in which the turtle’s facing.

Drawing Shapes with Turtle Graphics 59

 0 (360)

45 (–315)

90 (–270)

135 (–225)

180 (–180)

225 (–135)

315 (–45)

270 (–90) East

North

South

West

Figure 5-5: For the turtle, 0 is north, 90 is east, 180 is south, and 270 is west.

As you can see in Figure 5-5, when you set your turtle’s Angle to 0 or
360, it faces north. You can set the turtle’s Angle to 45, to make it face north-
east; 90, to make it face east; 135 (southeast); 180 (south); 225 (southwest);
270 (west); 315 (northwest); and 360 (back to north again). Of course, you
can set the turtle’s Angle to any number you want. Experiment by setting the
Angle property of the Turtle object to different numbers to see which direc-
tions the turtle will face. Don’t forget to try negative numbers.

Relative Motion
With relative motion you tell the turtle how far to move from its current posi-
tion; that is, you tell it how far to move relative to its current position.

Let’s practice by making the turtle hit an imaginary target. Listing 5-3
shows one way to program the turtle to hit the target.

1	' RelativeMotion.sb
2	Turtle.Show()
3	Turtle.Move(150)
4	Turtle.TurnRight()
5	Turtle.Move(100)

Listing 5-3: Moving the turtle using relative motion

The output is illustrated in Figure 5-6. Line 3 moves the turtle up
150 pixels, line 4 turns the turtle to the right, and line 5 moves the turtle
forward 100 pixels.

60 Chapter 5

50 steps

Turtle.Move(150) Turtle.TurnRight() Turtle.Move(100)Turtle.Show()

Figure 5-6: Moving the turtle using relative motion commands

Relative motion differs from absolute motion because we told the
turtle to move a certain distance instead of telling it to go to a set of
coordinates.

When you pass a negative number to Move(), your turtle will move back-
ward. You can also use the Turn() method to command your turtle to turn
in place by any angle you desire. Enter the code shown in Listing 5-4 to
play around with these options, and run the program to see the results in
action.

1	' Turn.sb
2	Turtle.Show()
3	Turtle.Turn(45)
4	Turtle.Move(100)
5	Turtle.Turn(-90)
6	Turtle.Move(-100)

Listing 5-4: Turning the turtle using relative motion

Line 3 turns the turtle to the right by 45 degrees. Line 4 moves the turtle
forward 100 pixels (see the left image in Figure 5-7). The –90 in line 5
turns the turtle to the left by 90 degrees. Line 6 moves the turtle backward
100 pixels (see the right image in Figure 5-7).

Turtle.Move(100)

Initial position

Final position Initial position

Final position

Turtle.Move(-100)

Turtle.Turn(-90)

Figure 5-7: Illustrating the turtle’s Move() and Turn() methods

Coloring Your Steps
You can set your turtle’s pen size and color using GraphicsWindow’s PenWidth
and PenColor properties. For example, the following code makes your turtle
draw with a red pen that’s 5 pixels wide.

Drawing Shapes with Turtle Graphics 61

GraphicsWindow.PenColor = "Red"
GraphicsWindow.PenWidth = 5

Add this code before commanding your turtle to move, and then
observe what happens.

Controlling Your Speed
The Turtle object has one more property that you need to know. The Speed
property sets how fast the turtle moves. The possible Speed values are 1 to 10.
Follow along with Listing 5-5 to watch your turtle race around your screen.

1	' TurtleSpeed.sb
2	Turtle.Show()
3	Turtle.Speed = 2 ' Sets the initial speed to 2
4	Turtle.Move(100) ' Moves the turtle forward 100 pixels
5	Turtle.Speed = 5 ' Changes the speed to 5
6	Turtle.TurnRight() ' Turns the turtle to its right
7	Turtle.Move(100)
8	Turtle.Speed = 9 ' Changes the speed to 9
9	Turtle.TurnRight()
10	Turtle.Move(100)

Listing 5-5: Setting the turtle’s speed

Line 3 sets the turtle’s speed to 2. The turtle slowly moves 100 pixels
(line 4) and then gets faster in line 5. You can already see the speed
increase as the turtle turns right (line 6) and darts forward 100 pixels
(line 7). Then you set the turtle to a speed of 9 (line 8). The turtle quickly
turns right (line 9) and sprints forward another 100 pixels (line 10). If
you don’t want to watch the turtle move slowly while drawing, set the Speed
property to 10 at the start of your program. The turtle will move so fast that
you’ll barely see it. It’s superturtle!

TR Y IT OUT 5-1

Write a program that makes your turtle draw this star (Figure 5-8). The coordi-
nates of each point are included.

(60, 20)

(20, 110)

(110, 50)(10, 50)

(100, 110)

Figure 5-8: A star pattern

62 Chapter 5

Introducing the For Loop
As you start writing longer programs, you’ll need to repeat some state-
ments. For example, let’s make the turtle draw a square: enter the code
shown in Listing 5-6.

1	' Square1.sb
2	Turtle.Move(60) ' Moves 60 pixels
3	Turtle.TurnRight() ' Turns right 90 degrees
4	Turtle.Move(60) ' Moves 60 pixels
5	Turtle.TurnRight() ' Turns right 90 degrees
6	Turtle.Move(60) ' Moves 60 pixels
7	Turtle.TurnRight() ' Turns right 90 degrees
8	Turtle.Move(60) ' Moves 60 pixels
9	Turtle.TurnRight() ' Turns right 90 degrees

Listing 5-6: Making the turtle draw a square

The turtle starts facing upward. This code tells the turtle to move
60 pixels up to draw one side of the square, turn 90 degrees to the right,
move 60 pixels to draw another side, turn 90 degrees to face downward,
move 60 pixels to draw a third side, turn 90 degrees to face left, and move
60 pixels to complete the square. Finally, the turtle turns 90 degrees one
last time so it’s facing upward like it was at the beginning. Check out the
result in Figure 5-9. Does your screen look the same?

20
Turtle.Move(60)

Turtle.TurnRight()
Turtle.Move(60)

Turtle.TurnRight()
Turtle.Move(60)

Turtle.TurnRight()
Turtle.Move(60)

Turtle.TurnRight()
Start

Figure 5-9: Drawing a square using move and turn commands

You repeated the Move(60) and TurnRight() methods four times. The com-
puter doesn’t mind repeating these tasks, but it’s boring for you to type all
that code. Wouldn’t it be great if you could make the turtle draw this square
using an easier approach?

Well, you can! You can make the turtle draw the same square as in
Listing 5-6, just by using a few lines of code. Use a For loop, like the one
in Listing 5-7.

1	' Square2.sb
2	For I = 1 To 4 ' Repeats 4 times
3	 Turtle.Move(60) ' Draws one side
4	 Turtle.TurnRight() ' Turns right 90 degrees
5	EndFor

Listing 5-7: Making the turtle draw a square using a For loop

Drawing Shapes with Turtle Graphics 63

The For loop runs Turtle.Move(60) and Turtle.TurnRight() four times. You
use a For loop when you know how many times you want to repeat some
code (for more on For loops, see Chapter 13). In this example, your pro-
gram starts the loop, runs the two lines of code, and then goes back to the
start of the loop to run it again. It runs four times and then exits the loop.
Try it out!

In this short program, you’re using three new Small Basic keywords:
For, To, and EndFor.

NOTE 	 The keywords (For, To, and EndFor) don’t have to be capitalized the way you see them
in Listing 5-7, and the statements in the For loop don’t have to be indented, but those
are the default formats. The Editor indents the statements inside the For loop as you
type to make your code easier to read.

Figure 5-10 shows what’s going on.

For I = 1 To 4
Turtle.Move(60)

 Turtle.TurnRight()
EndFor

This is the loop’s counter. You
can call it anything you want.
In this chapter, this will always be 1.

This is how many times you want to
repeat the code.

Put the statement(s) you want to
repeat between the For and EndFor
keywords.

Figure 5-10: The parts of the For loop

To repeat lines of code, you simply put the statement(s) you want to
repeat between the For and EndFor keywords. If you want to repeat these
statements four times, write this:

For I = 1 To 4

The variable I is the counter. It keeps track of how many times the loop
has been run and how many times it has left to go. Each time your program
runs the loop, it adds one to the counter.

Remember the For loop the next time you get in trouble at school! If
your teacher catches you chewing gum and asks you to write I won’t chew
gum in class again 100 times, Small Basic is there to rescue you! Write this
instead:

For I = 1 To 100
 TextWindow.WriteLine("I won't chew gum in class again.")
EndFor

Try it out. No, not chewing gum in class; try out the program!

64 Chapter 5

NOTE 	 Programmers usually use one-letter variables to name the loop’s counter (such as I, J,
or K), but any other name works too. It doesn’t matter if you use upper- or lowercase
letters—Small Basic would treat I and i as the same variable.

Drawing Regular Polygons
You can easily change the square-drawing program (Listing 5-7) to draw
other polygons. (Don’t be so square!) A polygon is just a simple closed figure.
For some examples, look at the three polygons in Figure 5-11.

90°

72°

60°

Figure 5-11: The exterior angles of three polygons

You use a general pattern to draw these shapes. To create the square in
Figure 5-11, you draw four sides with a 90-degree turn angle after each side
(that is, 360 degrees divided by 4). For the pentagon (the middle polygon),
you draw five sides with a 72-degree turn angle after each side (360 divided

TR Y IT OUT 5-2

Predict the output of the following program. Then run the program to check your
answer.

GraphicsWindow.PenColor = "Red"
GraphicsWindow.PenWidth = 3

For I = 1 To 4
 Turtle.Move(30)
 Turtle.Turn(-60)
 Turtle.Move(30)
 Turtle.Turn(120)
 Turtle.Move(30)
 Turtle.Turn(-60)
 Turtle.Move(30)
 Turtle.TurnRight()
EndFor

Drawing Shapes with Turtle Graphics 65

by 5). For the hexagon (the polygon on the right), you draw six sides with a
60-degree turn after each side (360 divided by 6). Do you see the pattern?
The angle is 360 degrees divided by the number of sides. With this in mind,
you can create the polygon-drawing program in Listing 5-8.

1	' Polygon.sb
2	numSides = 5 ' Set to 3 (triangle), 4 (square), 5 (pentagon)...
3	
4	For I = 1 To numSides
5	 Turtle.Move(60) ' Polygon's side length
6	 Turtle.Turn(360 / numSides)
7	EndFor

Listing 5-8: Drawing a regular polygon

To draw a different polygon, replace the whole number in the numSides
variable on line 2 with another number. Figure 5-12 shows eight polygons
(all with the same side length) you can draw with this program. Try it out!

Figure 5-12: The output of
Polygon.sb using different
values for numSides

What happens when you use a large number for the value of numSides?
The polygon begins to look more like a circle! Set numSides to 36, change
Move(60) on line 5 to Move(20), and see what happens.

A Star Is Born
With the knowledge you now have about the angles of different shapes,
what do you think happens when you turn the turtle by multiples of
72 degrees (which is the angle you used to draw a pentagon), such as
2 × 72 = 144 degrees or 3 × 72 = 216 degrees? Run the program shown
in Listing 5-9 to find out.

1	' PentaStar.sb
2	For I = 1 To 5
3	 Turtle.Move(150)
4	 Turtle.Turn(144) ' The turn angle is 2 * 72
5	EndFor

Listing 5-9: Drawing a pentagon star

66 Chapter 5

If the turn angle is 144 instead of 72, the output is a star instead of a
pentagon. Look at Figure 5-13 to see how this works.

144°

144°

144°
144°

144°

Figure 5-13: Illustrating the
output of PentaStar.sb

NOTE 	 If you’d like to hide the turtle after creating your masterpiece, call Turtle.Hide() at the
end of your program.

Try experimenting with different polygons and turn angles to discover
the various stars you can create. Figure 5-14 shows three examples to help
you get started.

Sides: 7
Angle: 3 × (360 ÷ 7)

Sides: 8
Angle: 3 × (360 ÷ 8)

Sides: 9
Angle: 4 × (360 ÷ 9)

Figure 5-14: Drawing different stars by using Listing 5-9

TR Y IT OUT 5-3

Write a program that directs the turtle to draw the pentagon in Figure 5-15. (Hint:
use the Angle property to set the turtle’s initial direction.)

18

Figure 5-15: A pentagon

Drawing Shapes with Turtle Graphics 67

Creating Polygon Art Using Nested Loops
You can create beautiful shapes using polygons and stars. In this section,
we’ll draw a pattern created by rotating a square 12 times (see Figure 5-16).

Figure 5-16: The output
of RotatedPolygon.sb

To make this art, you’ll use a nested loop, which is when you place one
loop inside another loop. Each time the outer loop runs, it also runs the
inner loop. Listing 5-10 shows you how to use a nested loop to create the
pretty drawing in Figure 5-16.

1	' RotatedPolygon.sb
2	 numSides = 4 ' Set to 3 (triangle), 4 (square)...
3	 repeatCount = 12 ' How many times to rotate the polygon
4	
5	For I = 1 To repeatCount
6	 ' 1) Draw the desired polygon
7	 For J = 1 To numSides
8	 Turtle.Move(60) ' The polygon's side length
9	 Turtle.Turn(360 / numSides)
10	 EndFor
11	 ' 2) Turn the turtle a little
12	 Turtle.Turn(360 / repeatCount)
13	EndFor

Listing 5-10: Drawing a pattern of rotated polygons

This program has two loops, one nested inside the other. The outer
loop (line 5) uses a loop counter named I and repeats 12 times to draw 12
squares. During each round of this loop, the program performs two tasks.
First, it draws a square using another For loop with a loop counter named J
(line 7). Then, in line 12, it turns the turtle a little (360° ÷ 12 = 30° in this
case) before it repeats the loop on line 5 to draw the next square. So fancy!

When you use nested loops, make sure you use different names for the
loop counters. In Listing 5-10, we used the I variable for the outer loop and
the J variable for the inner loop.

Change the numSides and repeatCount variables to experiment with differ-
ent polygons and rotation counts. Figure 5-17 shows some shapes you can
create by rotating a hexagon. Try changing the pen color and width to add
fancy touches to your creations. The possibilities are endless!

68 Chapter 5

repeatCount = 6

repeatCount = 12

repeatCount = 10repeatCount = 4

repeatCount = 20repeatCount = 15

Figure 5-17: Patterns created by rotating a hexagon

TR Y IT OUT 5- 4

Predict the output of the following program. Try to imagine the result of the code
before you run it. Then run the code to check your answer.

repeatCount = 5

For I = 1 To repeatCount
 For J = 1 To 4 ' Draws a square
 Turtle.Move(60)
 Turtle.Turn(90)
 EndFor

 For J = 1 To 3 ' Draws a triangle
 Turtle.Move(60)
 Turtle.Turn(120)
 EndFor

 Turtle.Turn(360 / repeatCount)
EndFor

Drawing Shapes with Turtle Graphics 69

Endless Graphics
In Listing 5-10 you created patterns by rotating a single polygon. You can
also create patterns using two or more polygons of different sizes. To keep
the code simple, let’s draw two polygons of different sizes and rotate them.

Run the program shown in Listing 5-11 to see what patterns you
can make.

1	' PolygonArt.sb
2	Turtle.Speed = 10
3	numSides = 6 ' Set to 3 (triangle), 4 (square)...
4	repeatCount = 8 ' How many times to rotate
5	sideLen1 = 30 ' Side length of polygon 1
6	sideLen2 = 40 ' Side length of polygon 2
7	
8	For I = 1 To repeatCount
9	 For J = 1 To numSides ' Draws the first polygon
10	 Turtle.Move(sideLen1)
11	 Turtle.Turn(360 / numSides)
12	 EndFor
13	
14	 For J = 1 To numSides ' Draws the second polygon
15	 Turtle.Move(sideLen2)
16	 Turtle.Turn(360 / numSides)
17	 EndFor
18	
19	 ' Turns the turtle to prepare for the next round
20	 Turtle.Turn(360 / repeatCount)
21	EndFor

Listing 5-11: Rotating two similar polygons

Figure 5-18 shows the output of this program. This
program rotates two hexagons (the first has a side
length of 30, and the second has a side length of 40)
eight times. The outer loop in line 8 repeats up to the
number in repeatCount. Each time the program loops,
the code performs three actions:

1.	 Draw the first polygon using the side length in
sideLen1 (lines 9–12).

2.	 Draw the second polygon using the side length in
sideLen2 (lines 14–17).

3.	 Turn the turtle to get ready for the next round of the loop (line 20).

Now try using the repeatCount values in Figure 5-19 to create lots of dif-
ferent patterns. Try setting sideLen1 = 40 and sideLen2 = 60!

Figure 5-18: The out-
put of PolygonArt.sb

70 Chapter 5

Using triangle with
repeatCount = 12

Using square with
repeatCount = 10

Using pentagon with
repeatCount = 10

Using hexagon with
repeatCount = 6

Using hexagon with
repeatCount = 8

Using octagon with
repeatCount = 8

Figure 5-19: Some of the patterns you can create by experimenting with PolygonArt.sb

Experiment with this program to see what other shapes you can discover!

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 This code draws a circle:

For K = 1 To 36
 Turtle.Move(6)
 Turtle.Turn(10)
EndFor

TR Y IT OUT 5-5

Change Listing 5-11 to draw three polygons (instead of two) of different sizes, and
then rotate them. Save your discoveries for your next art gallery. (Or, if you don’t
want to become a millionaire, go to http://tiny.cc/turtlepatterns/ and share them
with the world!)

http://nostarch.com/smallbasic/
http://tiny.cc/turtlepatterns

Drawing Shapes with Turtle Graphics 71

Write a program to have the turtle repeat this code 12 times to
create the pattern shown here:

2.	 Write a program to draw a flowerpot like this one:

3.	 Re-create the following code and experiment with it:

For I = 1 To 20 ' Repeats 20 times
 For K = 1 To 36 ' Draws a circle
 Turtle.Move(12)
 Turtle.Turn(10)
 EndFor
 Turtle.Turn(18) ' Gets ready for next circle
 Turtle.Move(12) ' Moves a little bit before drawing next circle
EndFor

Change the Move() distance after rotating each circle to discover
new patterns!

6
G e t t i n g Us e r I n p u t

To perform useful tasks or give you use-
ful information, some programs need

input from you. For example, in Microsoft
Word you enter text, click buttons to make it

look good, and enter a filename to save it. In a web
browser, you click links or enter a URL or search term
to find a web page. In drawing programs, you draw by clicking and drag-
ging the mouse. When you use a program and give it information that helps
it do its job, that information is called user input.

Programs need a way to ask users for input, process that input, and
respond correctly. Programs that do this are interactive. In this chapter,
you’ll make your programs interactive by giving them the capability to
accept and react to user input, which will be in the form of strings and
numbers.

74 Chapter 6

Talking to the Computer
Until now, all the information your programs needed was in the source
code. For example, look at the program in Listing 6-1.

1	' CircleArea.sb
2	radius = 5
3	area = 3.1416 * radius * radius
4	TextWindow.WriteLine("Area = " + area)

Listing 6-1: Finding the area of a circle

This program uses a fixed value of 5 for the radius in line 2. This is
called hard-coded data. Hard-coded data is part of the program. If you want
to change that data, you must change the source code. For example, to find
the area of a circle using a different radius, you’d open the file, change the
radius value in your code, save the file, and run the new code. It’s a pain
to do this every time you want to change the value of a variable. And if you
give this code to someone who doesn’t know how to program, it won’t be
very useful.

Your Number, Please?
Clearly, it’d be best if you could calculate the area of any circle without hav-
ing to change the source code. So let’s explore how to read values directly
input by users. We want our program to ask the user to enter a value for the
radius and then use that value in the calculation. To do this, you’ll use the
TextWindow method ReadNumber(). Replace line 2 in Listing 6-1 with the follow-
ing statement:

radius = TextWindow.ReadNumber()

When this statement runs, a flashing cursor appears in the text window,
as shown in Figure 6-1. The cursor is the program’s way of saying, “It’s your
turn to type. I’m waiting. Don’t make me come over there!”

Figure 6-1: Running the ReadNumber() method

When the user types a number and presses enter, the input is stored
for the rest of the program to use. Whatever number the user entered is
now stored in the radius variable.

N o t e 	 Run the program and try to enter a character other than a number. What happens?
The program won’t accept anything that’s not a number! That’s why the method is
named ReadNumber().

Getting User Input 75

Introducing Yourself to Your Computer
A program can also accept user input in the form of text, or strings. Let’s
imagine we want to greet the player with their name. We’ll store the player’s
name in a variable called userName but use a new TextWindow method called
Read(). Run the following program, and enter your name when you see the
cursor:

userName = TextWindow.Read()
TextWindow.Write("Hello " + userName + ". ")
TextWindow.WriteLine("It's really nice to meet you.")

The first statement accepts the text the user entered in the text win-
dow and stores that text in userName. The program then greets the user
with their name.

So what’s the difference between Read() and ReadNumber()? Read() works
exactly like ReadNumber(): they both show a flashing cursor and wait for
the user to type input and press enter. In fact, you can even use Read() to
get numbers from a user. But ReadNumber() will accept only a number from
a user, so we recommend you use it when you need your user to enter a
number.

Writing Prompts for Input
A flashing cursor without instructions doesn’t tell your user what kind of
data to input (like a number, a name, an address, or favorite type of mon-
key). Unless your program is written for a magician or a mind reader like
Professor X, you should provide some instructions before you allow your
program to accept input from Read() or ReadNumber(). To do this, you’ll dis-
play a prompt, which is a message that tells the user what kind of data to
enter.

From Listing 6-1, replace line 2 with these two lines:

TextWindow.Write("Please enter a radius; then press <Enter>: ")
radius = TextWindow.ReadNumber()

First, we call the Write() method and pass it a message to display. In this
program, the message you pass is a prompt telling your user to enter a value
for the radius and then press enter. You end the prompt with a colon to show
the user that the program’s waiting for keyboard input. (You don’t need the
colon, but it’s clearer to your user.) Use Write() instead of WriteLine() to keep
the cursor on the same line as the prompt. After you call Write(), you call
ReadNumber() to accept the number input by the user and store it in the vari-
able radius.

After adding these two statements, run your program to see something
like Figure 6-2.

76 Chapter 6

Figure 6-2: The text window waiting for input from
your user

When Small Basic runs the statement radius = TextWindow.ReadNumber(),
it waits for the user to enter a number and press enter. The program won’t
read what the user types until they press enter. When the user presses
enter, the program grabs the user input and assigns it to the radius vari-
able. The program then continues with the statement after the ReadNumber()
method.

Now that you’ve accepted the radius from your user, all that’s left is to
compute the area and display the result. Listing 6-2 shows the complete
program.

1	' CircleArea3.sb
2	TextWindow.Write("Please enter a radius; then press <Enter>: ")
3	radius = TextWindow.ReadNumber()
4	
5	area = 3.1416 * radius * radius
6	TextWindow.WriteLine("Area = " + area)

Listing 6-2: Letting the user enter the radius

Let’s see what the output looks like if you enter a radius of 8:

Please enter a radius; then press <Enter>: 8
Area = 201.0624

Try it out for yourself!

A Moment of Silence, Please (Pause)
At times you may need to display some instructions to your user (like explain-
ing the rules of Hide and Go Tickle) and then wait for them to read those
instructions. For example, you might display the instructions followed by
“Press any key to continue . . . ” and then wait for the user to press a key
to show that they’re ready to continue. You can do this by using the Pause()
method.

To see this method in action, let’s write a program that converts the com-
puter into a wisdom machine. Each time the user presses a key, the computer
displays a new bit of wisdom. The program is shown in Listing 6-3.

1	' WisdomMachine.sb
2	TextWindow.WriteLine("WISDOM OF THE DAY")
3	
4	TextWindow.WriteLine("A friend in need is a friend indeed.")

Getting User Input 77

5	TextWindow.Pause()
6	
7	TextWindow.WriteLine("A hungry man is an angry man.")
8	TextWindow.Pause()
9	
10	TextWindow.WriteLine("Love your enemies. They hate that.")

Listing 6-3: Demonstrating the Pause() method

After showing the first wise saying (line 4), the program calls Pause()
to give the user time to read it (line 5). This call displays “Press any key to
continue . . .” and waits for the user to press a key. When the user presses
a key, the program displays the next bit of wisdom (line 7) and pauses
again (line 8). The program continues to do this until the last statement
is executed. Add more wise sayings to this program, and then share it with
someone!

What if you want to display a statement other than “Press any key to
continue . . . ,” such as “Press any key to see the next line of wisdom . . .”?
Well, Small Basic provides you with the PauseWithoutMessage() method for this
purpose. You can write a custom prompt using Write() or WriteLine() as usual,
and then call PauseWithoutMessage() to wait for the user. Try it out. Replace the
calls to Pause() in lines 5 and 8 of Listing 6-3 with these statements:

TextWindow.WriteLine("Press any key to see the next line of wisdom...")
TextWindow.PauseWithoutMessage()

Your program runs the same way as before but uses a more descriptive
prompt.

Working with User Input
Let’s put your new knowledge to use by writing a couple of programs that
read input from a user, process the input, and display the output back to
the user.

Converting Fahrenheit to Celsius
Next, you’ll create a program that converts a temperature from degrees
Fahrenheit to degrees Celsius. The program prompts the user for the tem-
perature in Fahrenheit and then converts it to Celsius using this formula:

C F= ())5 9 32÷ × (−

Run the program in Listing 6-4 several times to see how it works. To use
the degree symbol, press and hold the alt key, type 248 on your numeric
keypad, and then release the alt key.

1	' Fahrenheit2Celsius.sb
2	TextWindow.Write("Enter a temperature in °F: ")
3	F = TextWindow.ReadNumber()

78 Chapter 6

4	C = (5 / 9) * (F - 32)
5	C = Math.Round(C) ' Rounds to nearest integer
6	TextWindow.WriteLine(F + " °F = " + C + " °C")

Listing 6-4: Converting Fahrenheit to Celsius

First, the program prompts the user to enter a temperature. When they
press enter, their input is assigned to the variable F. Your program then con-
verts the value stored in F to Celsius and stores the result in variable C (which
is all done in line 4). Next, the program uses Math.Round() on line 5 to take
the current value of C, round it to the nearest integer, and store the rounded
value in C, which replaces the old value of C. You’ll learn more about the
Round() method in Chapter 7, but we use it here to make the program’s out-
put easier to read. Finally, your program displays the output (line 6).

Averaging Numbers
Let’s write a program that finds the average of four numbers provided by
the user. There are a couple of ways to do this; the first is to use five vari-
ables, as shown in Listing 6-5.

1	' Avg1.sb
2	TextWindow.Write("Enter 4 numbers. ")
3	TextWindow.WriteLine("Press <Enter> after each one:")
4	n1 = TextWindow.ReadNumber()
5	n2 = TextWindow.ReadNumber()
6	n3 = TextWindow.ReadNumber()
7	n4 = TextWindow.ReadNumber()
8	avg = (n1 + n2 + n3 + n4) / 4
9	TextWindow.WriteLine("Average = " + avg)

Listing 6-5: Finding the average of four numbers

Look at the output when we enter 10, 20, 15, and 25:

Enter 4 numbers. Press <Enter> after each one:
10
20

TR Y IT OUT 6-1

Try to guess what the following program does. Run it to check your answer:

TextWindow.Write("How old are you? ")
age = TextWindow.ReadNumber()
TextWindow.WriteLine("In ten years, you'll be " + (age + 10))
TextWindow.WriteLine("Wow! You'll be so old!")

Getting User Input 79

15
25
Average = 17.5

The program prompts the user to enter four numbers and press enter
after each number. It reads these numbers, one by one, and saves them in
four variables: n1, n2, n3, and n4 (lines 4–7). It then computes the average of
these numbers, saves the average in the variable avg (line 8), and displays
the result (line 9).

Listing 6-6 shows a different way to write this program. Enter this pro-
gram, and then run it. This time you’ll use just one variable named sum.

1	' Avg2.sb
2	TextWindow.Write("Enter 4 numbers. ")
3	TextWindow.WriteLine("Press <Enter> after each one:")
4	sum = TextWindow.ReadNumber()
5	sum = sum + TextWindow.ReadNumber()
6	sum = sum + TextWindow.ReadNumber()
7	sum = sum + TextWindow.ReadNumber()
8	TextWindow.WriteLine("Average = " + (sum / 4))

Listing 6-6: Finding the average of four numbers using an accumulator

To understand how the program works, let’s say the user entered the
numbers 10, 20, 15, and 25 in response to the prompt. So, in line 4, sum
becomes 10. In line 5, the second number (20) is added to the first num-
ber (10) and saved to the sum variable (totaling 30). In lines 6–7, the third
number (15) and fourth number (25) are added and saved to sum (totaling
70). The program then displays the average, which is sum / 4, to the user
(line 8).

Because of how the sum variable keeps adding input to itself (or accu-
mulating), it’s known as an accumulator (also known as a running sum). (This
might be similar to how you accumulate hairbands or Pokémon cards, but
these numbers only take up computer memory and don’t clutter your room.)

Reading Text
Next, let’s write a simple program that makes silly sentences using the
words in Shakespeare’s famous quote: “To be or not to be : that is the ques-
tion.” You’ll ask the user to enter two verbs and a noun, and then you’ll use
these entries to replace the words be, be, and question in Shakespeare’s quote.
Listing 6-7 shows the complete program.

1	' Silly.sb
2	TextWindow.Write("Please enter a verb: ")
3	verb1 = TextWindow.Read()
4	
5	TextWindow.Write("Please enter another verb: ")
6	verb2 = TextWindow.Read()
7	
8	TextWindow.Write("Now, please enter a noun: ")

80 Chapter 6

9	noun = TextWindow.Read()
10	
11	TextWindow.Write("To " + verb1)
12	TextWindow.Write(" or not to " + verb2 + ":")
13	TextWindow.Write(" that is the " + noun + ".")
14	TextWindow.WriteLine("")

Listing 6-7: Silly Shakespeare lines

When we ran this code, we entered eat, swim, and cow. This is the
output:

Please enter a verb: eat
Please enter another verb: swim
Now, please enter a noun: cow
To eat or not to swim: that is the cow.

Try it out, and then come back. We’ll wait. Are you back? Was your out-
put funnier than ours? Well, go show someone!

TR Y IT OUT 6-2

Write an interactive Mad Libs–style program in which you ask the user to enter the
name of their favorite princess (such as Snow White), something evil, the name of
a school for princesses, something yummy, a name for a short wizard, something
so valuable that they’d never sell it, a verb, small creatures, and a superhero’s
power.

Then display the following story for the user, and replace the bracketed terms
with the user’s input:

“Princess [PrincessName] was traveling through the forest when suddenly
the evil [SomethingEvil] jumped out at her and offered her an apple. Princess
[PrincessName] refused, because her mother sent her to [NameOfSchool], where
she learned that you don’t take unwrapped food from strangers (it could be poi-
soned). So Princess [PrincessName] continued through the woods until she came
upon a house made of [SomethingYummy]! Not wanting to damage private prop-
erty, she kept walking. Next, Princess [PrincessName] came upon a spinning
wheel where a short man named [ShortWizard’sName] tempted her to use a
magic spinning wheel to make gold (in exchange for her [SomethingValuable]).
But Princess [PrincessName]’s mother had already told her that an evil fairy had
cast a spell on her when she was a baby and that she’d [Verb] forever if she
pricked her finger on a spinning wheel. So Princess [PrincessName] kept walk-
ing and arrived safely home to a cottage with seven [SmallCreatures], where she
locked herself in her room for the rest of her life because she had the power of
[SuperHeroPower].”

Then make your own interactive story program with a new character (like a
hero, ninja, pirate, or My Little Pony), and share it!

Getting User Input 81

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Using Small Basic, you can easily turn your computer into a number
wizard! Open the file Magician.sb from this chapter’s folder and run it.
Explain how the program works.

2.	 Make a silly Mad Libs–style game using the phrase, “One man’s trash is
another man’s treasure.” Another version of the phrase is, “One man’s
loss is another man’s gain.” For your version, ask the user for two living
creatures and two different nouns. Then have your program output
in this format: “One [Creature1]’s [Noun1] is another [Creature2]’s
[Noun2].”

3.	 Eve’s mom is having a garage sale. Because Eve wants to earn some
money, she sets up a table to sell lemonade, cookies, and her home-
made greeting cards as the customers come up the driveway (she’s a
genius salesperson, so she sells a lot). Help Eve count the money her
customers give her by creating a program that asks Eve to enter the
number of dollars, quarters, dimes, nickels, and pennies she earned.
Then have it convert them into a total dollar amount, and display that
amount in dollars and cents (like $23.34). Try your program using the
following amounts to make sure it works:

a.	 35 dollars, 3 quarters, 3 pennies

b.	 2 dollars, 1 quarter, 2 pennies

c.	 10 dollars, 1 nickel, 3 pennies

d.	 6 dollars, 1 quarter, 3 pennies

e.	 3 dollars, 2 quarters, 1 dime, 1 nickel, 3 pennies

f.	 1 dollar, 2 dimes, 1 nickel, 4 pennies

http://nostarch.com/smallbasic/

7
E m p o w e r i n g P r o g r a m s

w i t h M a t h

If mathematics bores or scares you, that’s
okay. You’ll soon realize how easy Small

Basic makes it for you to write programs
that do math for you. Many programs use

only simple operations like addition, subtraction, mul-
tiplication, and division. For these types of problems,
you need just the four basic math operators (+, –, *,
and /). The asterisk (*) represents multiplication, and
the slash (/) represents division.

Other programs need to use some of the math functions that you might
have learned in algebra (like square root, absolute value, and trigonometric
functions). Small Basic’s Math object provides these functions and many
others.

If you don’t know what a square root or a trigonometric function is,
don’t panic; you still can write programs using these functions. And it’s
okay to skip some of the examples in this chapter, too.

84 Chapter 7

To use any of the Math object methods, you’ll write a statement like this:

ans = Math.SquareRoot(16)

In this example, you call the SquareRoot() method and pass 16 to it (to
find the square root of 16). The output, or result of a method, is called the
return value. In this statement, the method’s return value is assigned to the
ans variable (short for answer). In this chapter, you’ll learn about the Math
object’s methods and how to put them to work.

Exponent Methods
The Math object has four methods related to exponents, but we’ll cover just
SquareRoot() and Power() in this book.

SquareRoot() and Good Old Pythagoras
In this first example, we’ll find the length of the longest side, or hypotenuse,
of a right triangle. If you call the lengths of the other two sides s1 and s2,
the Pythagorean Theorem tells you that the length of the hypotenuse is the
square root of the sum of each side squared. Here’s the equation:

() ()s s1
2

2
2+

We put this formula in the program in Listing 7-1 so you don’t have to
think about it too much. Given the two side lengths of a right triangle, the
following program uses the Pythagorean Theorem to calculate the length
of the hypotenuse.

1	' SquareRootDemo.sb
2	TextWindow.Write("Enter the length of side 1: ")
3	s1 = TextWindow.ReadNumber()
4	
5	TextWindow.Write("Enter the length of side 2: ")
6	s2 = TextWindow.ReadNumber()
7	
8	hypot = Math.SquareRoot(s1 * s1 + s2 * s2)
9	TextWindow.WriteLine("Hypotenuse = " + hypot)

Listing 7-1: Finding the length of a hypotenuse

This program prompts the user to enter the length of the first side
(line 2) and then saves the input in s1 (line 3). It then asks for the second
input and saves it in s2 (line 6). Then it computes the length of the hypot-
enuse (line 8) and displays the result (line 9). On line 8, notice how the
square of s1 (and s2) was computed by multiplying s1 (and s2) by itself.

Empowering Programs with Math 85

Here’s a sample run of our program. Remember that this program
works only with right triangles:

Enter the length of side 1: 3
Enter the length of side 2: 4
Hypotenuse = 5

Powerful Powers
You can use Power() for all sorts of calculations that involve exponents, like
taking 3 to the 5th power. You might see this written in math class as 35,
which is the same as 3 × 3 × 3 × 3 × 3. The 3 is called the base, and the 5 is
the exponent. Here’s how you could perform this calculation in Small Basic:

answer = Math.Power(3, 5)
TextWindow.Write(answer)

Notice that Power() takes two arguments: the first is the base, and the
second is the exponent. The result is saved in the answer variable. The sec-
ond statement displays the output so you can check the answer.

Now let’s look at a program that’s a little more complicated. We’ll use
the Power() method to show you how money grows. If you deposit P dollars
at a bank that gives an interest rate of r percent, then at the end of n years
you’ll have A dollars:

A P r n= × +()1

Without worrying about where this formula came from, let’s write a pro-
gram that computes the value of A for given values of P, r, and n (entered by
the user). Enter the program in Listing 7-2.

1	' PowerDemo.sb
2	TextWindow.Write("Principal (in dollars)........: ")
3	P = TextWindow.ReadNumber()
4	
5	TextWindow.Write("Interest rate (decimal form)..: ")
6	r = TextWindow.ReadNumber()
7	
8	TextWindow.Write("Number of years...............: ")
9	n = TextWindow.ReadNumber()
10	
11	A = P * Math.Power(1 + r, n)
12	
13	TextWindow.WriteLine("")
14	TextWindow.Write("After " + n + " years, ")
15	TextWindow.WriteLine("you will have $" + A)
16	TextWindow.WriteLine("That fortune is almost as big as Batman's!")

Listing 7-2: Calculating how your money grows

86 Chapter 7

Run the program to see how much money you’ll have in 20 years if you
deposit $1,000 with an interest rate of 6%:

Principal (in dollars)........: 1000
Interest rate (decimal form)..: 0.06
Number of years...............: 20

After 20 years, you will have $3207.1354722128500
That fortune is almost as big as Batman's!

We admit it’s rather strange to see dollars and cents written with so
many decimal places. In this case, you don’t need all those digits to the right
of the decimal point. Next, you’ll learn how to round this long answer to
the nearest dollars and cents.

Rounding Methods
Sometimes you’ll need to round numbers in your programs. For example,
if your program finds the average number of children per household in your
neighborhood, you don’t want your program to display 2.25 (two and a
quarter children per house). That wouldn’t make any sense!

The Math object gives you three methods that round or chop numbers:
Round(), Floor(), and Ceiling(). See Figure 7-1 for a quick overview of what
each method does to a number.

Round(x) returns the whole number (or integer) nearest to x. Floor(x)
returns the integer that’s less than or equal to x, and Ceiling(x) returns the
integer that’s greater than or equal to x. Experiment with each of these dif-
ferent methods to see what results you get.

Let’s use this rounding knowledge to fix the output of our interest cal-
culator. Add the following statement after line 11 in Listing 7-2:

A = Math.Round(A)

After computing A, you round it and assign the rounded result back
to A. When you run the program now with the same inputs, it will display
$3207. Much better!

TR Y IT OUT 7-1

The circus is looking for talent, and they think you’re the one! They want to pay
you $1 for balancing one cat on your head, $2 for balancing two cats on your
head, $4 for balancing a third cat, and so on, doubling the money with each
cat you add to the stack! Write a program to find out how much money you get
when you have n number of cats balanced on your head, where n is entered by
the user. Is it enough to retire and buy a cat mansion?

Empowering Programs with Math 87

Round()

Floor()

Ceiling()

Math.Round(3.4) = 3

Math.Round(3.6) = 4

Math.Round(-3.4) = -3

Math.Round(-3.6) = -4

Math.Floor(3.4) = 3

Math.Floor(3.6) = 3

Math.Floor(-3.4) = -4

Math.Floor(-3.6) = -4

Math.Ceiling(3.4) = 4

Math.Ceiling(3.6) = 4

Math.Ceiling(-3.4) = -3

Math.Ceiling(-3.6) = -3
-4 -3.5 -3 0 3 3.5 4

-4 -3.5 -3 0 3 3.5 4

-4 -3.5 -3 0 3 3.5 4

Round() behaves mostly how you’d expect it to
when rounding a number. Above 0.5, it’ll round
up; below 0.5, it’ll round down.

Floor() always rounds down, throwing away
any partial fraction of a whole. Look at what
happens with negative values!

Ceiling() always rounds up.

Figure 7-1: The rounding methods with example arguments and return values

Traditional Rounding
Be careful when you use the Round() method if the fraction part of the num-
ber is exactly 0.5. In this case, the Round() method rounds to the nearest
even integer (this is called banker’s rounding). For example, 0.5 and –0.5 are
rounded to 0, 1.5 and 2.5 are rounded to 2.0, and –1.5 and –2.5 are rounded
to –2. This is different from what you learned in algebra, where the 0.5 frac-
tions always round up to 1! Even though it’s not what you’re used to, banker’s
rounding is very common and is regularly used by bankers, which gives it
its name.

But how can we make Small Basic round numbers the way you learned
in school (where the 0.5 fraction is always rounded up)? We’ll do some fancy
footwork using the Floor() method instead of the Round() method, like this:

Math.Floor(x + 0.5)

Using this trick, x represents whatever value you want to round. So if x
is 0.6, then x + 0.5 = 1.1, and Floor(1.1) = 1. Cool! That’s exactly how we’d
expect it to work.

But let’s say x is 2.5. If we just used Math.Round(2.5), we would get 2, which
isn’t the result you would want if you wanted to use traditional rounding.
We want to round up and get 3. Using our fancy trick, you’d get x + 0.5 =
3.0, and Floor(3.0) = 3. Now that’s more like it! This gets the values you’d
expect if you wanted to round a number with a .5 fraction.

88 Chapter 7

Rounding to the Nearest Hundredth
Let’s explore Listing 7-2 a bit more. Using Round() or Floor() on the answer
gives you a whole number (dollars only). But what if you want to show the
amount of money to the nearest penny? How can you make Small Basic
round the answer to the nearest hundredth? Consider this statement:

Math.Floor(100 * x + 0.5) / 100

For example, if x = 2.8735, then 100 * x + 0.5 = 287.85, and the Floor()
method returns 287. Dividing 287 by 100 is 2.87, which is the result we want.

You can also round to the nearest hundredth using this statement:

Math.Round(x * 100) / 100

Let’s use this second technique to round the answer from Listing 7-2 to
the nearest penny. Add the following statement after line 11 in Listing 7-2:

A = Math.Round(A * 100) / 100

After computing A in line 11, the program rounds it to the nearest hun-
dredth (nearest penny) and saves the rounded answer back in A. If you run
the program now using the original inputs, the output will be $3207.14.
Perfect! Now we’re talking money!

Abs(), Min(), and Max() Methods
The Math object provides methods for you to find the absolute value of a
number. When you calculate the absolute value of a number, you’re finding
its distance from zero, which will always be a positive number. For example,
the absolute value of both –1 and 1 is 1.

TR Y IT OUT 7-2

Helen is having a tough time at her store. She uses a calculator to add the 6% sales
tax to the purchase price. For example, if a customer’s total comes to $27.46, she
multiplies 27.46 by 1.06 to get 29.1076. But should she charge the customer $29.10
or $29.11? She doesn’t have time to do these calculations herself! Her store keeps
her much too busy!

Helen heard about your programming skills, so she’s coming to you for help.
She needs a program that lets her enter the total purchase amount. Then she wants
the program to add the sales tax, round the result to the nearest penny, and dis-
play the answer. Create this program for Helen.

Empowering Programs with Math 89

This code snippet shows you some examples:

Math.Abs(-2) ' = 2
Math.Abs(-3.5) ' = 3.5
Math.Abs(4) ' = 4

The Abs() method takes in a number (positive or negative) and returns
that number’s distance from 0, or its absolute value. This return value is
always a positive number. (In other words, Abs() removes the minus sign.)

For example, let’s say the user of your game needs to guess a secret num-
ber (10), but the guess doesn’t have to be exact. Instead, your game accepts
any guess between 8 and 12. To check if the user’s guess is okay, you can test
the absolute difference between the user’s guess (saved in the guess variable)
and 10; that is Abs(guess - 10). If the result is less than or equal to 2, then your
player’s guess is good. You’ll learn how to perform checks like this one using
If statements in the next chapter.

Now let’s find the minimum or maximum of two numbers. The Min()
method returns the lower of two numbers, and the Max() method returns
the higher number:

Math.Min(5, 10) ' = 5
Math.Min(-3.5, -5.5) ' = -5.5
Math.Max(3, 8) ' = 8
Math.Max(-2.5, -4.7) ' = -2.5

You can use these methods to limit the numbers your user can input to
your program. For example, if your program expects a number that’s less
than 100, you can write this:

ans = TextWindow.ReadNumber()
ans = Math.Min(ans, 100)
TextWindow.WriteLine(ans)

Try it out! Run this code two times. The first time, enter a number less
than 100, and the second time, enter a number greater than 100. What hap-
pens? Can you modify the code so the entered number can’t go below 0?

What if you want to find the minimum of three numbers? For example,
let’s say you want to find the lowest score out of the three math quizzes you
took last week. One way is to write this:

minScore = Math.Min(Math.Min(score1, score2), score3)

The inner Min() method finds the minimum of the score1 and score2
variables. That result and score3 are passed to the outer Min() method to
determine which is lower: the first minimum (of score1 and score2) or
score3. The final result is saved in the minScore variable.

90 Chapter 7

The Remainder() Method
You can get the remainder from any division operation by using the
Remainder() method. For example, Math.Remainder(10, 3) returns 1 because
10 ÷ 3 = 3 with a remainder of 1.

You can use the Remainder() method to test whether one integer (whole
number) can be divided evenly by another, smaller integer. A remainder of
0 means that the larger number’s divisible by the smaller number (such as
how 9 is divisible by 3). Knowing if there’s a remainder has all sorts of inter-
esting uses. For example, if you want to check whether a number is even or
odd, you can examine the remainder of that number divided by 2: if the
remainder is 0, the number is even; otherwise, it’s odd.

To see the Remainder() method in action, let’s write a program that finds
the number of dollars, quarters, dimes, nickels, and pennies in a given
amount of money. To find the most efficient quantity of dollars and coins,
you’ll need to start with the largest denomination (dollars) and work your
way down the the smallest one (pennies). Listing 7-3 shows the complete
program and includes example output in the comments. Read through
the program, and see if you can figure out what happens when the input
is 25.36.

1	' Money.sb
2	TextWindow.Write("Enter an amount of money (such as 25.36): ")
3	total = TextWindow.ReadNumber() ' In dollars and cents = 25.36
4	cents = Math.Floor(total * 100) ' Total cents = 2536
5	dollars = Math.Floor(cents / 100) ' Number of dollars = 25
6	cents = Math.Remainder(cents, 100) ' Remaining cents = 36
7	quarters = Math.Floor(cents / 25) ' Number of quarters = 1
8	cents = Math.Remainder(cents, 25) ' Remaining cents = 11
9	dimes = Math.Floor(cents / 10) ' Number of dimes = 1
10	cents = Math.Remainder(cents, 10) ' Remaining cents = 1
11	nickels = Math.Floor(cents / 5) ' Number of nickels = 0
12	pennies = Math.Remainder(cents, 5) ' Number of pennies = 1
13	TextWindow.Write("$" + total + " = ")
14	TextWindow.Write("$" + dollars + ", ")
15	TextWindow.Write(quarters + "Q, ")
16	TextWindow.Write(dimes + "D, ")
17	TextWindow.Write(nickels + "N, ")
18	TextWindow.Write(pennies + "P.")
19	TextWindow.WriteLine("")

Listing 7-3: Finding dollar and coin denominations

TR Y IT OUT 7-3

Your favorite potato chips are sold at three local stores; each bag is a different
price. Write a program that prompts you to enter the price at each store and then
displays the lowest price. Saving money means more potato chips for you!

Empowering Programs with Math 91

Let’s walk through this program line by line to understand how it
works. The user enters 25.36 (that is, 25 dollars and 36 cents) in response
to line 2, so the total = 25.36. Line 4 computes the total cents as Floor(25.36
* 100) = 2536. This number is then divided by 100 to get 25 and saved in
dollars (line 5), with a remainder of 36, which is saved in cents (line 6).
Next, 36 cents is divided by 25 to get 1 quarter (line 7) and a remainder of
11 cents (line 8). The remainder of 11 cents is then divided by 10 to get
1 dime (line 9) with a remainder of 1 cent (line 10). Lines 11 and 12 com-
pute the available nickels and the remaining pennies in the same way. The
rest of the program (lines 13–19) displays the results. Figure 7-2 illustrates
this program.

Total cents dollars

quarters

dimes

nickels

pennies

How many
dollars?

How many
quarters?

How many
dimes?

How many
nickels?

Q: Quotient
R: Remainder

QR

25

1

1

0

15

10

25

100
÷

2536

÷
÷

÷
Q

Q

Q

R

R

R

36

11

1

Figure 7-2: Illustrating the output of Money.sb

Let’s try a different amount and look at the output:

Enter an amount of money (such as 25.36): 23.78
$23.78 = $23, 3Q, 0D, 0N, 3P.

That’s pretty handy if you’re making change!

TR Y IT OUT 7- 4

Write a program that reads a three digit number and outputs each digit fol-
lowed by its place value. For example, if the input is 368, the program should
display this:

3 Hundreds
6 Tens
8 Ones

(Hint: if you divide 368 by 100, you get 3 with a remainder of 68. If you
divide 68 by 10, you get 6 and a remainder of 8.)

92 Chapter 7

Random Numbers
Random numbers are used in many applications, like simulations and games.
They’re also used for software testing (to see how a program responds to
different input values) or to simulate random events (like the lottery).

The GetRandomNumber() method returns a random integer between one
and the upper limit you pass to the method. Using this method, your pro-
gram can generate random numbers that you can use in all sorts of excit-
ing applications, for instance, to see whether a troll bops your hero on the
head. Let’s look at some examples.

To simulate a roll of a die, write this:

dice = Math.GetRandomNumber(6)
TextWindow.WriteLine("You rolled: " + dice)

The variable, dice, contains a number between 1 and 6 that’s selected
at random, similar to picking it out of a hat (but not the Hogwart’s Sorting
Hat). Run the program several times to see for yourself.

To simulate the flip of a coin, you can write this:

coinFlip = Math.GetRandomNumber(2)
TextWindow.WriteLine("Outcome: " + coinFlip)

The variable coinFlip is either 1 or 2. The value 1 represents heads, and
the value 2 represents tails (or the other way around; it’s up to you!).

To simulate rolling a pair of dice and finding their sum, you can write
this code:

num1 = Math.GetRandomNumber(6)
num2 = Math.GetRandomNumber(6)
outcome = num1 + num2
TextWindow.Write("You got (" + num1 + "," + num2 + "). ")
TextWindow.WriteLine("The total is " + outcome)

Although your outcome will be a number between 2 (rolling two 1s)
and 12 (rolling two 6s), don’t make the mistake of writing this:

outcome = 1 + Math.GetRandomNumber(11)

Although this statement gives you a number between 2 and 12, the
probability you’d get from one random number is different from adding
two random numbers together.

TR Y IT OUT 7-5

A bag contains 20 balls numbered from 1 to 20. Write a program that simulates
drawing one ball from the bag at random.

Empowering Programs with Math 93

Trigonometric Methods
Trigonometric functions are those mischievous enemies of high school
students (sine, cosine, tangent, and so on). We won’t explain what these
are, but if you have no idea what a trigonometric function is or you’ve never
even heard the word trigonometry, don’t worry. Just skip ahead to Chapter 8.
Otherwise, let’s jump right in with an example.

Imagine that androids from the future have traveled back to our time
to destroy humanity, and you’re the only person who can stop their attack.
You’ll need to use your cannon to destroy their weapons warehouse, as
shown in Figure 7-3.

 v 2

32

v θ

d = sin(2θ)

Figure 7-3: Destroying the androids’ warehouse

Your cannon fires with an initial speed, v, of 160 feet per second. The
warehouse is 500 feet away. All you have to do is figure out the launch angle
q (the Greek letter theta). The program in Listing 7-4 prompts you to enter
the desired angle, and then it computes the missile range d (in feet) accord-
ing to the formula shown in the figure.

You need to run the program several times (using different launch
angles) to find the best angle for your shot.

1	' AndroidAttack.sb
2	v = 160 ' Initial speed = 160 feet/sec
3	
4	TextWindow.WriteLine("Shoot the cannon to destroy the warehouse!")
5	TextWindow.Write("Enter launch angle in degrees: ")
6	angle = TextWindow.ReadNumber()
7	theta = Math.GetRadians(angle) ' Angle in radians
8	
9	d = (v * v) * Math.Sin(2 * theta) / 32
10	d = Math.Round(d) ' Rounds to the nearest integer
11	
12	TextWindow.WriteLine("Distance = " + d + " feet.")

Listing 7-4: Finding the launch angle

94 Chapter 7

After the prompt, the program reads your input and saves it in the vari-
able angle (line 6). Then line 7 converts the angle from degrees to radians
using the GetRadians() method (the Sin() method requires its input to be
given in radians).

After that, the program computes the distance using the given formula
(line 9), rounds it to the nearest integer (line 10), and displays it (line 12).

Here’s a sample run:

Shoot the cannon to destroy the warehouse!
Enter launch angle in degrees: 45
Distance = 800 feet.

It looks like humanity isn’t quite safe yet. Enter some different angles in
the program until you get it right.

In addition to the Sin() method, the Math object also provides Cos(), Tan(),
ArcSin(), ArcCos(), and ArcTan(). You can read more about these methods in
the Additional Resources section for this chapter at http://www.nostarch.com/
smallbasic/.

TR Y IT OUT 7-6

You want to select a 20-foot Christmas tree (for your school’s festival) from a forest.
One way to find the right tree is to attach a tape measure to a monkey and have it
climb each tree, but let’s use a little trigonometry instead. If you measure the dis-
tance, d, from the base of the tree and the angle, q, as shown in Figure 7-4, you
can compute the height of the tree, h, like this:

h = d tan(q)

Write a program that lets you enter d and q, and computes the height of
the tree.

θ

d

h = d tan(θ)

Figure 7-4: Computing the height of a tree

http://nostarch.com/smallbasic/
http://nostarch.com/smallbasic/

Empowering Programs with Math 95

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Write a Small Basic statement for each of these algebraic expressions:

a.	 a r r h= +π 2 2

b.	 a x yz
= ()

c.	 a
x y

z
=

+

2.	 The following puzzle was written by the Egyptian scribe Ahmes in
1650 bce.

“Seven houses each have seven cats. Each cat kills seven mice.
Each mouse, if alive, would’ve eaten seven ears of grain. Each ear
of grain would have produced seven bushels of wheat. How many
bushels of wheat were saved by the cats?”

Write a Small Basic program to find the answer. (Hint: use the
Power() method.)

3.	 Create a program that converts a number of seconds (input by the user)
to the equivalent number of hours, minutes, and seconds. For example,
if the user enters 8110 seconds, the program reports 2 hours, 15 min-
utes, and 10 seconds.

http://nostarch.com/smallbasic/

8
M a k i n g D e c i s i o n s w i t h

I f S t a t e m e n t s

Which shirt should I wear? What should
I have for dinner? Where should I go?

Should I wear my pants so low that my
underwear shows? You ask yourself questions

like these and answer them every day. Just as you
make decisions, your programs can too! Of course,
they won’t do this on their own. Your programs only make the comparisons
you want them to make, and then they either run some statements or skip
them. In this chapter, you’ll write programs that can make decisions.

The programs you’ve written so far followed a simple path where the
statements execute from top to bottom. But sometimes you might need to
run some statements if a condition’s true or other statements if a condition’s
false. This is similar to how you make decisions in your life. For example, you
might say, “If there’s snow, then I’ll go skiing” or “If I finish my work before
4:00 pm, I’ll go to the movies; otherwise, I’ll just go to Steve’s house.” In both
cases, the action you take depends on a condition.

98 Chapter 8

Small Basic uses a few different ways to control which statements run
in a program: selection statements (If, If/Else, If/ElseIf), jump statements
(Goto), and iteration or loop statements (For and While). In this chapter and
the next, we’ll explain selection and jump statements, and we’ll explain
loops in Chapters 13 and 14. In this chapter, you’ll learn about relational
operators, Boolean expressions, and how you can use If/Else statements to
write some interesting programs.

The If Statement
Suppose your mom calls and tells you, “On your way home, stop at Captain
Snarf’s Pizza. If it’s open, get us a large pizza.” Her instructions don’t say
what to do if the pizza place is closed; you assume that you’ll just go home
empty-handed. Listing 8-1 represents this situation in code.

1	' SnarfPizza.sb
2	TextWindow.WriteLine("Is Snarf's Pizza open?")
3	TextWindow.Write("Enter 1 (for open) or 2 (for closed): ")
4	status = TextWindow.ReadNumber()
5	
6	If (status = 1) Then
7	 TextWindow.WriteLine("You bought a delicious pizza!")
8	EndIf
9	TextWindow.WriteLine("Time to go home!")

Listing 8-1: Using If and EndIf keywords

Run this program and enter 1 in response to the prompt (to indicate
that Snarf’s is open). Because the condition on line 6 is true, the program
displays the message on line 7, which is "You bought a delicious pizza!" The
statement on line 9 (which comes after the EndIf keyword) runs whether you
buy a pizza or not. Run this code again, but this time enter 2 in response to
the prompt. What happens?

The statement on line 6 is an If statement. The part of the statement
after the If keyword (status = 1) is the condition. The program checks to
see whether the condition is true. In this case, it checks whether Captain
Snarf’s Pizza is open. The code between the Then and the EndIf keywords is
the action—what the program does. The program does the action only if the
condition’s true. Programmers usually use the term code block to refer to the
statements between the If and the EndIf keywords (between lines 6 and 8).

N o t e 	 Small Basic doesn’t require you to place parentheses around conditional expressions,
meaning you can write the statement on line 6 like this: If status = 1 Then. But
parentheses make the statement easier to read, so we’ll use them in this book.

Is
condition

true?
Execute

statement(s)
between the
If and EndIf

keywords

Statement
after EndIf

Yes

No

Figure 8-1: The flowchart of the
If/Then/EndIf block

Making Decisions with If Statements 99

Small Basic automatically indents
If statements as you type the code. This
makes the program easier to read and
clearly shows when statements are part
of code blocks. If your code ever gets un-
indented, right-click in the Editor and
select Format Program from the pop-up
menu to indent all your code. Awesome!

The If statement is the basis of all
decision making in Small Basic. Check
out the illustration in Figure 8-1 to
understand how it works.

The condition of an If statement is
a logical expression (also called a Boolean
expression or a conditional expression) that’s
either true or false. If the condition is
true, the program runs the statements between the If and EndIf keywords
(which is called the body of the If statement). But if the condition is false,
the statements in the block are skipped. The program runs the statement
after the EndIf keyword whether the condition is true or not.

T i p 	 You can think of an If statement as a detour in the flow of a program. It’s like an
optional roller coaster loop.

Bool e a ns in t he R e a l Wor ld

The word Boolean is used in honor of George Boole, a 19th-century British
mathematician who invented a system of logic based on just two values: 1 and
0 (or true and false). Boolean algebra eventually became the basis for modern-
day computer science.

In real life, we use Boolean expressions all the time to make decisions.
Computers also use them to determine which branch of a program to follow. A
remote server may grant or deny access when you swipe your credit card at a
department store based on whether your card was valid (true) or invalid (false).
A computer in a vehicle will automatically deploy the airbags when it decides
that a collision has occurred (collision = true). Your cell phone may display
a warning icon when the battery is low (batteryLow = true) and remove the
icon when the battery’s charge is acceptable (batteryLow = false).

These are just few examples of how computers cause different actions to
be taken by checking the results of Boolean conditions.

Small Basic uses a few different ways to control which statements run
in a program: selection statements (If, If/Else, If/ElseIf), jump statements
(Goto), and iteration or loop statements (For and While). In this chapter and
the next, we’ll explain selection and jump statements, and we’ll explain
loops in Chapters 13 and 14. In this chapter, you’ll learn about relational
operators, Boolean expressions, and how you can use If/Else statements to
write some interesting programs.

The If Statement
Suppose your mom calls and tells you, “On your way home, stop at Captain
Snarf’s Pizza. If it’s open, get us a large pizza.” Her instructions don’t say
what to do if the pizza place is closed; you assume that you’ll just go home
empty-handed. Listing 8-1 represents this situation in code.

1	' SnarfPizza.sb
2	TextWindow.WriteLine("Is Snarf's Pizza open?")
3	TextWindow.Write("Enter 1 (for open) or 2 (for closed): ")
4	status = TextWindow.ReadNumber()
5	
6	If (status = 1) Then
7	 TextWindow.WriteLine("You bought a delicious pizza!")
8	EndIf
9	TextWindow.WriteLine("Time to go home!")

Listing 8-1: Using If and EndIf keywords

Run this program and enter 1 in response to the prompt (to indicate
that Snarf’s is open). Because the condition on line 6 is true, the program
displays the message on line 7, which is "You bought a delicious pizza!" The
statement on line 9 (which comes after the EndIf keyword) runs whether you
buy a pizza or not. Run this code again, but this time enter 2 in response to
the prompt. What happens?

The statement on line 6 is an If statement. The part of the statement
after the If keyword (status = 1) is the condition. The program checks to
see whether the condition is true. In this case, it checks whether Captain
Snarf’s Pizza is open. The code between the Then and the EndIf keywords is
the action—what the program does. The program does the action only if the
condition’s true. Programmers usually use the term code block to refer to the
statements between the If and the EndIf keywords (between lines 6 and 8).

N o t e 	 Small Basic doesn’t require you to place parentheses around conditional expressions,
meaning you can write the statement on line 6 like this: If status = 1 Then. But
parentheses make the statement easier to read, so we’ll use them in this book.

Is
condition

true?
Execute

statement(s)
between the
If and EndIf

keywords

Statement
after EndIf

Yes

No

Figure 8-1: The flowchart of the
If/Then/EndIf block

100 Chapter 8

You can test all sorts of conditions using relational operators, which
we’ll discuss next.

Relational Operators
The condition (status = 1) in Listing 8-1 tests whether the variable status is
equal to 1. We call the equal sign here a relational operator (or a comparison
operator) because it tests the relationship between two values (or expres-
sions). Small Basic supports five other relational operators that you can use
in conditions. Table 8-1 shows you these relational operators.

Table 8-1: Relational Operators in Small Basic

Operator Meaning Mathematical symbol

= Equal to =
< Less than <
<= Less than or equal to ≤

> Greater than >
>= Greater than or equal to ≥

<> Not equal to ≠

Let’s look at a couple of short examples to see how these operators
work. A lot of people want to be on Dancing with the Stars. You are hired
to write an application form that potential dancers will fill out. One of the
requirements is that the applicant must be at least 18 years old. How would
you check this condition in your program?

Well, that’s easy. You can write something like this:

TextWindow.Write("How old are you? ")
age = TextWindow.ReadNumber()

If (age < 18) Then
 TextWindow.WriteLine("Sorry! You're not old enough!")
EndIf

The If condition checks whether age is less than 18. If it is, the applicant
isn’t old enough, and their dream to dance with the stars is over. Nice try, tiny
dancer!

Another way to check the applicant’s age is like this:

If (age >= 18) Then
 TextWindow.WriteLine("So far so good. You may have a chance!")
EndIf

The If condition checks whether age is greater than or equal to 18. If
it’s true, the applicant passes this condition and still has a chance to dance
with the stars.

Making Decisions with If Statements 101

But what if the applicant also needs to have exactly 9 years of dancing
experience? (Don’t ask why!) You can write something like this:

TextWindow.Write("How many years of dancing experience do you have? ")
experience = TextWindow.ReadNumber()
If (experience <> 9) Then
 TextWindow.WriteLine("Sorry! You don't have the required experience.")
EndIf

Note that the If condition uses the not equal (<>) operator. If an appli-
cant enters any number other than 9, it’s game over for that dancer!

Complex If Conditions
Like arithmetic operators, relational operators also need two operands, one
on each side. These operands can be simple, using variables and constants,
or they can be complicated math expressions. For example, if you want to
check that you have enough money to buy two large pizzas and pay a $5 tip,
enter this:

If (myMoney >= (2 * pizzaPrice + 5)) Then

TR Y IT OUT 8 -1

Santa wants to deliver presents more efficiently. Instead of crawling down chim-
neys, he’ll drop the presents down the chimneys from his sleigh. He needs a pro-
gram that inputs the sleigh’s current height (in meters) and then computes the time
it takes (in seconds) for a present to fall to the chimney. Here is the formula:

time height
=

×10
49

The program must check that the height Santa enters is a positive number
before computing the time. Run the following program two times. Enter a positive
height in the first run and a negative height in the second. Explain what happens
in each case.

TextWindow.Write("Please enter the height (meters): ")
height = TextWindow.ReadNumber()
If (height > 0) Then
 time = Math.SquareRoot(10 * height / 49)
 time = Math.Round(time * 100) / 100 ' Rounds to 2 decimal places
 TextWindow.WriteLine("Fall time = " + time + " sec. ")
EndIf

102 Chapter 8

Small Basic first finds the value of 2 * pizzaPrice + 5 (using the current
value of pizzaPrice). It then compares the result with the current value of
myMoney to see whether the If condition is true or false.

You can also use any method that returns a value inside the If condi-
tion. For example, if you create a pizza delivery video game and want to give
the player an extra life when their score gets to 100, 200, 300, and so on,
you can enter this:

If (Math.Remainder(score, 100) = 0) Then

This condition checks the remainder of the current score, score, divided
by 100. If the remainder is 0, the If condition is true and the player gets the
extra life they earned.

Comparing Strings
We just showed you how to use relational operators to compare numbers,
but in some applications you’ll need to compare strings. For example, you
might need to check if a user entered the correct password for your pro-
gram or if they guessed the right word in a word-guessing game.

You can use the = (equal) or <> (not equal) operators to test whether two
strings are identical. Listing 8-2 asks the user to guess the secret passcode.

1	' SecretCode.sb
2	TextWindow.Write("Guess the secret code! ")
3	guess = TextWindow.Read()
4	If (guess = "Pizza rules!") Then
5	 TextWindow.WriteLine("You're right!")
6	EndIf
7	TextWindow.WriteLine("Goodbye!")

Listing 8-2: Comparing strings in Small Basic

Run this program several times, and try a few different guesses. For
example, try entering pizza rules! (using a lowercase p). What happens? Run
the program again, but this time enter Pizza rules! (with an uppercase P).

TR Y IT OUT 8 -2

Translate each of the following statements into a logical expression, and then
check whether the condition is true or false. Assume x = 4 and y = 5.

1.	 The sum of x and 3 is less than 8.

2.	 The remainder of x divided by 3 is 2.

3.	 The sum of x2 and y2 is greater than or equal to 40.

4.	 x is evenly divisible by 2.

5.	 The minimum of x and y is less than or equal to 10.

Making Decisions with If Statements 103

Did it work this time? Yep! The reason is that when you compare strings,
they must be an exact match. All the capitalization, spacing, and punctua-
tion must match.

Note that the other relational operators (<, <=, >, and >=) can’t be used
with strings. If you use any of these operators with non-numeric strings, the
result will always be false.

The If/Else Statement
Your mom calls you back again and
gives you more instructions: “One
more thing! If Captain Snarf’s is
closed, please stop by LongLine
Grocery and get a frozen pizza.”
Now you can use If/Else statements
in Small Basic to help you!

The If/Else statement (also called
the two-way If statement) lets you take
one action when the condition’s true
and another action when the condi-
tion’s false. Figure 8-2 illustrates how
this statement works.

If the condition is true, Small Basic
runs the statements in the If block
(between the If and Else keywords). If the condition is false, Small Basic
runs the Else block (between the Else and EndIf keywords). So Small
Basic runs the statements in only one of the two blocks (either the If
block or the Else block).

You can write your mom’s new instructions, as shown in Listing 8-3.

1	' SnarfPizza2.sb
2	TextWindow.WriteLine("Is Snarf's Pizza open?")
3	TextWindow.Write("Enter 1 (for open) or 2 (for closed): ")
4	status = TextWindow.ReadNumber()
5	
6	If (status = 1) Then
7	 TextWindow.WriteLine("You bought a delicious pizza!")
8	Else
9	 TextWindow.WriteLine("You got a frozen pizza!")
10	EndIf
11	TextWindow.WriteLine("Time to go home!")

Listing 8-3: Demonstrating the If/Else statement

If status = 1, meaning that Captain Snarf’s is open, you’ll buy a deli-
cious pizza and go home. But if status is not 1 (Captain Snarf’s is not open),
you’ll buy a frozen pizza from LongLine Grocery and go home.

Is
condition

true?
Execute

commands
in the Else

block

Execute
commands
in the If

block

No Yes

Figure 8-2: The flowchart of the If/Else
statement

104 Chapter 8

Your mom’s instructions assume that LongLine is always open and that
you’ll find what you’re looking for. But what if the grocery store has run out
of frozen pizzas? Stay tuned; you might receive another call from your mom
to give you new instructions!

Nested If and If/Else Statements
The statements you write in the body of an If (or Else) block can be any
kind of Small Basic statement, including another If or If/Else statement.
Writing an If (or If/Else) statement inside another one creates a nested If
statement (see Figure 8-3). The inner If statement can also include other If
or If/Else statements, and the nesting can continue to any level you want.
But be careful not to nest down too many levels, or you’ll get lost in all the
levels and might feel like Super Mario falling down an endless pit!

You can use nested If statements when you need to perform multiple
checks on the same variable or when you need to test multiple conditions.
Let’s look at an example that uses a nested If/Else block to test multiple
conditions.

TR Y IT OUT 8 -3

Complete the following program to create a brainteaser quiz. This program will
surprise you with its answers. Be sure to get creative with the way you present the
correct answers!

' Asks first question
TextWindow.Write("If you take 2 apples from 3 apples, how many apples 
do you have? ")
ans = TextWindow.ReadNumber()
If (ans = 2) Then
 TextWindow.Write("Correct. ")
Else
 TextWindow.Write("Nope. ")
EndIf
TextWindow.WriteLine("If you take 2 apples, then you have 2 apples!")
TextWindow.WriteLine("")

' Ask more fun questions here

Here are some suggestions for the questions you can add:

1.	 How many inches of soil are in a hole 1-foot deep and 1-foot wide?
(Answer: 0. Display: There is no soil in a hole!)

2.	 Is a ton of gold heavier than a ton of feathers? (Yes or No)
(Answer: No. Display: A ton of anything weighs a ton!)

3.	 How many 4-cent stamps are in a dozen?
(Answer: 12. Display: There are always 12 in a dozen!)

Making Decisions with If Statements 105

If (condition1) Then

Statement(s)

If (condition2) Then

Else

EndIf

If (condition3) Then

A nested If/Else statement

A nested If statement

Statement(s)

Statement(s)

Statement(s)

Statement(s)

Statement(s)

Statement(s)

Else

EndIf

EndIf

Figure 8-3: Illustrating nested If and If/Else statements

After hanging up with you, your mom thought LongLine Grocery
might be out of frozen pizzas. So she calls you again and says, “Listen, if
Captain Snarf’s is closed and LongLine doesn’t have any frozen pizzas,
then get a bag of frozen chicken wings.” Listing 8-4 shows how to turn these
instructions into code.

1	' SnarfPizza3.sb
2	TextWindow.WriteLine("Is Snarf's Pizza Open?")
3	TextWindow.Write("Enter 1 (for open) or 2 (for closed): ")
4	status = TextWindow.ReadNumber()
5	
6	If (status = 1) Then ' Snarf's is open
7	 TextWindow.WriteLine("You bought a delicious pizza!")
8	Else ' Snarf's is closed, so you'll go to LongLine
9	 TextWindow.WriteLine("Snarf's is closed. Try LongLine Grocery.")
10	 hasPizza = Math.GetRandomNumber(2) ' Checks your luck
11	 If (hasPizza = 1) Then
12	 TextWindow.WriteLine("You got a frozen pizza!")
13	 Else
14	 TextWindow.WriteLine("You got a bag of frozen chicken wings!")
15	 EndIf
16	EndIf
17	TextWindow.WriteLine("Time to go home!")

Listing 8-4: Demonstrating nested If conditions

There it is—a nested If/Else statement! If Captain Snarf’s is closed, you
run a nested If/Else statement to decide what to buy from the grocery store.
Line 10 sets the variable hasPizza randomly to either 1 or 2. A 1 means that
LongLine still has frozen pizzas, and a 2 means the grocery store has run
out. Run this program several times to see what you’ll pick up for dinner
tonight.

106 Chapter 8

But wait, your mom just realized that you might not have money, and
she’s calling back: “Sorry, I forgot to tell you. If you don’t have enough money,
just go to Steve’s house and have dinner there!” Now we have to add another
level of nesting. Listing 8-5 shows you how to handle this situation.

1	' SnarfPizza4.sb
2	TextWindow.Write("How many dollars do you have? ")
3	myMoney = TextWindow.ReadNumber()
4	
5	If (myMoney >= 25) Then ' I have enough money
6	 TextWindow.WriteLine("Is Snarf's Pizza Open?")
7	 TextWindow.Write("Enter 1 (for open) or 2 (for closed): ")
8	 status = TextWindow.ReadNumber()
9	
10	 If (status = 1) Then ' Snarf's is open
11	 TextWindow.WriteLine("You bought a delicious pizza!")
12	 Else ' Snarf's is closed, so you'll go to LongLine
13	 TextWindow.WriteLine("Snarf's is closed. Try LongLine Grocery.")
14	 hasPizza = Math.GetRandomNumber(2) ' Checks your luck
15	 If (hasPizza = 1) Then
16	 TextWindow.WriteLine("You got a frozen pizza!")
17	 Else
18	 TextWindow.WriteLine("You got a bag of frozen chicken wings!")
19	 EndIf
20	 EndIf
21	Else ' I don't have enough money
22	 TextWindow.Write("Go to Steve's house for dinner ")
23	 TextWindow.WriteLine("(it's earthworm pizza night).")
24	EndIf
25	TextWindow.WriteLine("Time to go home!")

Listing 8-5: More levels of nesting

As you can see, you make decisions in a program in the same way that
you make decisions in real life!

TR Y IT OUT 8 - 4

Change the following program so that it starts by reading the values for x and y
input by the user. Change the output messages to make the users laugh!

If (x > 5) Then
 If (y > 5) Then
 TextWindow.WriteLine("The skylight is falling!")
 Else
 TextWindow.WriteLine("Now it's time to play the piper!")
 EndIf
Else
 TextWindow.WriteLine("I'll huff, puff, and blow $5 on tacos!")
EndIf

Making Decisions with If Statements 107

The Goto Statement
The Goto statement also changes the flow of your program by letting you
branch to a statement that appears earlier or later in your program. Look
at Mark and Andy’s annoying conversation in Listing 8-6.

1	' GotoDemo.sb
2	Again:
3	TextWindow.Write("Mark: Pete and Repeat were in a boat. ")
4	TextWindow.WriteLine("Pete fell out, who was left?")
5	TextWindow.WriteLine("Andy: Repeat.")
6	TextWindow.WriteLine("")
7	Program.Delay(1000) ' Waits 1 sec to slow the program down
8	Goto Again

Listing 8-6: An endless Goto loop

The statement in line 2 is called a label; it’s used to identify a specific
line of the program. Labels end with a colon, and you can place them any-
where in a program.

This program then runs lines 3–7. When it reaches line 8, it returns
to line 2 (to the Again label), and Small Basic runs lines 3–7 again. A loop
is when you run the same block of code more than once, and this loop
goes on forever (like The Song That Never Ends and the Barney song). Run
this program to see its output (and try to get those songs out of your head;
mwahaha).

The Goto statement is an unconditional jump (or unconditional transfer)
statement, because the program jumps unconditionally (without asking any
questions) to the location given by the Goto’s label. The If/Then statement,
on the other hand, is a conditional transfer statement, because the program
changes its normal flow only when a certain condition is met.

Most programmers suggest that you don’t use Goto statements because
they can turn a program into spaghetti code—code that is so tangled and
complex that no one can follow it! But sometimes a Goto statement can be
very useful, and it’s helpful to know when it might come in handy.

One common use of Goto is to check the data entered by a user to make
sure it’s correct, as shown in Listing 8-7.

1	' VaildateWithGoto.sb
2	TryAgain:
3	TextWindow.Write("Enter a positive number: ")
4	num = TextWindow.ReadNumber()
5	If (num <= 0) Then
6	 Goto TryAgain
7	EndIf
8	TextWindow.Write("You entered: " + num)

Listing 8-7: Using Goto to check the user’s input

108 Chapter 8

This code asks the user to enter a positive number (line 3) and reads
the input into the num variable (line 4). If the user’s input number isn’t posi-
tive (line 5), the Goto statement sends the program back to the TryAgain label
and asks the user to reenter the number. If the input number’s positive, the
program continues to the statement on line 8. You’ll learn another way to
check users’ input using a While loop in Chapter 14.

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 The following program creates a simple coin toss game by asking the
user to toss a coin and enter either an h (for heads) or a t (for tails).
Based on the user’s input, the program displays a different message. Do
you think the computer’s playing a fair game? See if you can get a fam-
ily member or friend to play this unfair coin toss game!

TextWindow.Write("Toss a coin. Heads(h) or Tails(t)? ")
ans = TextWindow.Read()
If (ans = "h") Then
 TextWindow.WriteLine("I won. I'm the champion!")
Else
 TextWindow.WriteLine("You lost. Cry home to Momma.")
EndIf

TR Y IT OUT 8 -5

We (the authors of this book) plan to use the following program to measure our
readers’ satisfaction. Do you think it’s fair? We do! Rewrite it and make it per-
sonal. Then have someone take your survey!

Again:
TextWindow.Write("How many stars do you give this book [1-5]? ")
ans = TextWindow.ReadNumber()
ans = Math.Floor(ans) ' In case the user typed a decimal
If (ans <> 5) Then
 TextWindow.Write("Invalid number! Please enter an integer. ")
 TextWindow.WriteLine("That's greater than 4 but less than 6.")
 Goto Again
EndIf
TextWindow.WriteLine("Wow! Thank you. You made our day!")

http://nostarch.com/smallbasic

Making Decisions with If Statements 109

2.	 Captain James P. Cork is piloting the Century Hawk enterprise-class
starship. He has intercepted a message from the enemy Clingoffs and
needs your help cracking the code! The message has millions of sets
of three numbers; each set of numbers needs to be sorted and then
reentered to understand the message. Build a program that reads three
numbers from the user and then displays these numbers, sorted from
smallest to biggest, to Captain Cork. We wrote the sorting logic for you,
but you’ll need to write the user input part. Open the file CaptainCork_
Incomplete.sb from this chapter’s folder, and follow the comments to
complete this application and stop the vile Clingoffs!

3.	 You’re starting a new business called Mud in a Can. You’ve got mud, and
people want it, so why not put it in a can? Write a program that lets your
customer enter the height and radius of the can. The program should
then compute the can’s volume (to figure out how much mud to put in
it). Have the program display an appropriate error message if the user
enters a negative value for the height or the radius.

4.	 As the fairytale goes, Rumpelstiltskin helps a woman spin straw into gold.
In return, she promises to give her firstborn child to him. When the baby
is born, the woman refuses to give up the baby. Rumpelstiltskin agrees
to release his claim to the child if the woman can guess his name in
three days. Write a program that prompts the woman to enter her guess
and then checks whether her guess is correct. Here’s a sample run of the
program:

What is my name? Paul
No! Your child will be mine! Mwahaha!
What is my name? Peter
No! Your child will be mine! Mwahaha!
What is my name? Rumpelstiltskin
Correct. You can keep the child. She's a brat anyway!

9
Us i n g D e c i s i o n s t o

M a k e G a m e s

Sometimes decisions are complicated.
Let’s say a boy and a girl want to see a

movie. She wants to see an action movie,
but he wants to see a comedy. She’s willing

to see a comedy if it has action, if it has good reviews,
and if it stars an actress she likes. But the movie has to
start before 10 pm and must be within a 10-mile radius
of the restaurant where the couple is having dinner.
Imagine what the code would look like to make a deci-
sion like that!

In this chapter, we’ll continue the topic of decision-making and look
at some new statements. We’ll first introduce the If/ElseIf statement and
show how it makes writing nested If statements easier. Then, you’ll explore
the logical operators And and Or, which let you do even more with your If

112 Chapter 9

statements. We’ll also introduce the Shapes object so you get more comfort-
able working with graphics. And you’ll put all this new information into
action by building a game called Guess My Coordinates!

The If/ElseIf Ladder
It’s all over the news! Franko, the alien monster, has escaped from custody.
Luckily, you have your laser gun with you when you spot him attacking
people in your neighborhood. You aim and shoot. Run the program in
Listing 9-1 to see what happens next!

1	' AlienAttack.sb
2	TextWindow.Write("A salivating alien monster approaches. ")
3	TextWindow.WriteLine("Press any key to shoot...")
4	TextWindow.PauseWithoutMessage()
5	
6	damage = Math.GetRandomNumber(5) ' Randomly picks an outcome
7	If (damage = 1) Then
8	 TextWindow.Write("Wow! You got him. ")
9	 TextWindow.WriteLine("Now you can watch SpongeBob!")
10	ElseIf (damage = 2) Then
11	 TextWindow.Write("You injured him. ")
12	 TextWindow.WriteLine("He wants a Band-aid.")
13	ElseIf (damage = 3) Then
14	 TextWindow.Write("Weak shot. Run for your life! ")
15	 TextWindow.WriteLine("Now dance! You'll confuse him.")
16	Else
17	 TextWindow.Write("You missed! He got you. ")
18	 TextWindow.WriteLine("You should stick to video games.")
19	EndIf

Listing 9-1: Climbing the If/ElseIf ladder

The program picks a random number between 1 and 5 (line 6) and
then checks that number to decide the alien’s fate. Lines 7–19 are called the
If/ElseIf ladder, which is commonly used to build a chain of If statements.
Its general form is illustrated in Figure 9-1.

Starting from the first statement, the program runs through each
test condition. As soon as it finds a true condition, it runs the statement(s)
associated with that condition and moves down to the statement after the
EndIf, skipping the rest of the ladder. If none of the conditions is true, the
program runs the statements inside the Else clause at the end of the ladder,
and then the program moves to the statement after the EndIf.

That’s why the final Else statement is often called the default case. If you
don’t include the final Else statement in the ladder and all the test conditions
are false, the If/ElseIf ladder does nothing, and the program continues after
the EndIf keyword.

Using Decisions to Make Games 113

Condition 1

Condition 2

Condition x

Statement set 1

Statement set 2

Statement set x

True

True

True

False

False

False

Default statements

If (condition 1) Then
 Statement set 1

ElseIf (condition 2) Then
 Statement set 2

--snip--

ElseIf (condition x) Then
 Statement set x

Else
 Default statements

EndIf

Figure 9-1: The structure of the If/ElseIf ladder

Let’s look at another way to use the If/ElseIf ladder.

Letter Grades
In this example, you’ll create a program that reads a test score between 0
and 100, and displays a letter grade from Table 9-1.

Table 9-1: Letter-Grade Scores

Score Letter grade

score ≥ 90 A

80 ≤ score < 90 B

70 ≤ score < 80 C

60 ≤ score < 70 D

score < 60 F

The complete program is shown in Listing 9-2.

1	' GradeLetter.sb
2	TextWindow.Write("Enter the score: ")
3	score = TextWindow.ReadNumber()
4	If (score >= 90) Then
5	 grade = "A"
6	ElseIf (score >= 80) Then
7	 grade = "B"
8	ElseIf (score >= 70) Then
9	 grade = "C"
10	ElseIf (score >= 60) Then
11	 grade = "D"

114 Chapter 9

12	Else
13	 grade = "F"
14	EndIf
15	TextWindow.WriteLine("The grade is " + grade)

Listing 9-2: Grading papers

Try running the program and inputting some numbers to see the
results. Here are some output examples:

Enter the score: 90
The grade is A
Enter the score: 72
The grade is C

This program uses an If/ElseIf ladder to run tests on the entered score.
Let’s walk through how this program works.

The program tests whether the first condition, score >= 90, is true
(line 4). If it is true, grade is set to A and the program jumps to line 15.

If it’s not true, score must be less than 90, so the program checks the next
condition, score >= 80, on line 6. If this condition is true (which means that
score is greater than or equal to 80 but less than 90), grade is set to B and the
program jumps to line 15.

If that’s not true, then score must be less than 80, so the program
checks the condition score >= 70 on line 8. If this condition’s true (which
means that score is greater than or equal to 70 but less than 80), grade is set
to C and the program jumps to line 15.

If that’s not true either, then score must be less than 70. In this case, the
program checks the condition score >= 60 on line 10. If this condition is
true (which means that score is greater than or equal to 60 but less than 70),
grade is set to D and the program jumps to line 15.

Finally, if that last condition is still not true, score must be less than 60.
In this case, no conditions are checked, grade is set to F, and the program
jumps to line 15.

The Bug on the Ladder
When you’re writing If/ElseIf ladders, the order of the conditional state-
ments is very important. Be very careful with the order when testing your
conditions. For example, go back to Listing 9-2 and replace lines 4–7 with
the following code:

If (score >= 80) Then
 grade = "B"
ElseIf (score >= 90) Then
 grade = "A"

Using Decisions to Make Games 115

This change to the program means that you check the condition
score >= 80 first instead of score >= 90. Now, if the user enters 95, the pro-
gram just tests the first condition, sees that score >= 80 is true, and sets the
grade to B. In this code, grade never gets set to A, no matter how high the
value of score is. Nobody gets an A! When the program finds a true con-
dition in this If/ElseIf ladder, it skips all the other statements and goes
directly to EndIf.

To avoid this problem, make sure the conditions in the If/ElseIf ladder
are in the correct order. You’ll probably never want to check a middle value
first. Also, be sure to run your program a few times to test the values and
catch any problems before your users do.

Let’s Get Logical
Sometimes you might want to check multiple conditions to see whether to
run a statement. For example, you might adopt a dog only if the dog is big,
is potty trained, and has three heads. One way to test multiple conditions is
to nest If and If/Else statements like you have been doing in previous chap-
ters. Another way is to use logical operators (also called Boolean operators).
With logical operators, you can write test conditions that combine two or
more logical expressions. Let’s see how.

Do you remember something like 5 < x < 10
when you learned about inequalities in your ele-
mentary math class? This expression describes a
number, x, that is greater than 5 and less than 10.
Figure 9-2 shows you how to write this expression in
Small Basic.

This is a compound condition that’s made up of
two logical expressions, x > 5 and x < 10, that you
combine using the logical operator And. In order for
this compound condition to be true, both of the
expressions must be true.

Small Basic supports two logical operators: And and Or. Figure 9-3
describes how they work.

T ry I t Ou t 9-1

In Listing 9-2, you started by checking the condition score >= 90. You can also
start by checking the last condition, score < 60, then 60 <= score < 70, then 70
<= score < 80, and so on. Rewrite the program using this reverse order of check-
ing the grade.

(x > 5 And x < 10)

Logical
expression

Logical
expression

Logical operator

Figure 9-2: A compound
condition in Small Basic

116 Chapter 9

thingie And thingie

something Or something

is true only if both thingies are true.

is true if either or both of the somethings are true.

Figure 9-3: Explaining the logical operators And and Or

Next, we’ll explain these operators a bit more.

Logical Operators in the Zoo
Look at Figure 9-4 and answer this question: how would the monkey reach
the banana? That’s right: Door 1 And Door 2 And Door 3 must be open. If any
one of the three doors is closed, the poor monkey won’t get the banana!

Door 1 Door 2 Door 3

Figure 9-4: Performing logic with the And operator

Now look at Figure 9-5. In this case, the monkey just needs one door to
be open: Door 1 Or Door 2 Or Door 3. This monkey likes its chances!

Door 1

Door 2

Door 3

Figure 9-5: Performing logic with the Or operator

In Figure 9-6, the monkey has two options.

Using Decisions to Make Games 117

Door 1 Door 2

Door 3

Figure 9-6: Performing logic with And and Or

If it takes the upper path, it needs both doors (Door 1 And Door 2) to be
open. If it takes the lower path, it needs just Door 3 to be open. If you were
programming this condition, you’d describe it like this:

((Door1 = open) And (Door2 = open)) Or (Door3 = open)

Are you ready to practice using And and Or?

The And Operator
The And operator takes two logical expressions as operands. Operand refers
to the term that an operator acts on. Table 9-2 (called a truth table) lists
the output of the And operator for all possible combinations of its two oper-
ands, X and Y.

Table 9-2: Truth Table for the And Operator

If X is If Y is Then (X And Y) is

"True" "True" "True"

"True" "False" "False"

"False" "True" "False"

"False" "False" "False"

If both X and Y are true, then X And Y is true too. But if one of the oper-
ands is false, then X And Y is also false.

Listing 9-3 shows two conditions (gameLevel = 1 and score > 100) com-
bined using the And operator. The message You get 200 bonus points! is dis-
played when both conditions are true.

118 Chapter 9

1	' AndDemo.sb
2	TextWindow.Write("Game level: ")
3	gameLevel = TextWindow.ReadNumber()
4	
5	TextWindow.Write("Score.....: ")
6	score = TextWindow.ReadNumber()
7	
8	If ((gameLevel = 1) And (score > 100)) Then
9	 TextWindow.WriteLine("You get 200 bonus points!")
10	EndIf

Listing 9-3: The And operator

The statement inside the If block (line 9) is run only if gameLevel equals
1 and score is greater than 100. If either of these two conditions is false, the
entire condition is found false and Small Basic won’t run the WriteLine()
method on line 9.

You can perform the same check by replacing lines 8–10 with the fol-
lowing nested If statements:

If (gameLevel = 1) Then
 If (score > 100) Then
 TextWindow.WriteLine("You get 200 bonus points!")
 EndIf
EndIf

Do you see how the And operator is a more concise way to test multiple
conditions? The nested If statements require five lines of code, but using
And, you can do the same thing in only three lines of code!

The Or Operator
How do you like your pizza? You might want to eat pizza only if it has four
kinds of meat or if the crust is gooey. When you have multiple conditions
but only one condition needs to be true, the Or operator comes into play.
Take a look at the truth table for the Or operator in Table 9-3.

Table 9-3: Truth Table for the Or Operator

If X is If Y is Then (X Or Y) is

"True" "True" "True"

"True" "False" "True"

"False" "True" "True"

"False" "False" "False"

If either of the two operands is true, or if they’re both true, the com-
bined logical expression is true. The logical expression is false only when
both operands are false.

Using Decisions to Make Games 119

Listing 9-4 shows an example of using the Or operator. The goal is to
end the game if there’s no more time to play (timeLeft = 0) or if the player
has lost all their energy (energyLevel = 0).

1	' OrDemo.sb
2	TextWindow.Write("Time left: ")
3	timeLeft = TextWindow.ReadNumber()
4	
5	TextWindow.Write("Energy level: ")
6	energyLevel = TextWindow.ReadNumber()
7	
8	If ((timeLeft = 0) Or (energyLevel = 0)) Then
9	 TextWindow.WriteLine("Game Over!")
10	EndIf

Listing 9-4: The Or operator

If timeLeft is 0 or energyLevel is 0, Small Basic runs the command inside
the If block (line 9). Run this program several times using different inputs
to make sure you understand how the Or operator works.

You could use nested If statements to do the same thing. For example,
you could replace lines 8–10 with the following code:

If (timeLeft = 0) Then
 TextWindow.WriteLine("Game Over!")
Else
 If (energyLevel = 0) Then
 TextWindow.WriteLine("Game Over!")
 EndIf
EndIf

However, as you can see, using nested If statements takes up seven lines
of code, but using Or took only three! Using the Or operator is a more con-
cise way to test multiple conditions.

The Cosmic Order of Evaluation
Look at the following condition. How does Small Basic evaluate this
expression?

If (A = 1 Or B = 1 And C = 1) Then

As it turns out, Small Basic gives And a higher priority than Or. This
means it finds B = 1 And C = 1 first, and then the result is used as the right
operand for the Or expression. To change the order, you can use paren
theses, like this:

If ((A = 1 Or B = 1) And C = 1) Then

120 Chapter 9

This code finds A = 1 Or B = 1 first and uses the result as the left oper-
and for the And expression. We recommend you use parentheses to avoid any
confusion!

NOTE 	 Logical operators like And and Or are evaluated after any arithmetic operators (+, –,
*, /) and relational operators (=, <, <=, >, >=, <>) in combined expressions. Among the
logical operators, And takes priority over Or; use parentheses to change the order and
make your code easier to read.

It’s almost time to apply all the decision-making information you’ve
learned and build some exciting applications. But first we need to introduce
a new Small Basic object, the Shapes object, which lets you build your appli-
cations using rich graphics. Let’s make some pretty pictures!

The Shapes Object
In Chapter 3, you learned how to draw all sorts of shapes and images in the
graphics window. But those shapes were fixed: once you drew a shape at a
location, the only way to move it to a different spot was to clear the entire
window and redraw that shape in the new place. If you need to move some
shapes around in a program (like moving a character when the player
presses a key), it’s best to use the Shapes object.

The Shapes object lets you add, move, and rotate shapes in the graphics
window. Run this code to draw a rectangle:

rectID = Shapes.AddRectangle(100, 50)
Program.Delay(1000)
Shapes.Move(rectID, 400, 200)

The program calls AddRectangle() to add a 100×50 rectangle and saves
the identifier of the created shape in rectID. The created rectangle appears
by default in the upper-left corner of the graphics window. The second
statement pauses the program for 1 second so you can see the rectangle’s
initial position. The third statement calls Move() to move this rectangle so its
upper-left corner is at (400, 200). Note how rectID is passed as the first argu-
ment to Move() to let it know the identity of the shape to move.

T ry I t Ou t 9-2

Open the file DiceGame_Incomplete.sb from this chapter’s folder, and write the
missing code to complete this game. The player enters their bet (from $1 to $10)
and then throws a pair of dice. If the sum of the dice is 2 or 12, the player wins
three times their bet. If the sum is 4 or 10, the player wins two times their bet.
If the sum is 7 or 11, the player loses their bet. Otherwise, the player’s balance
doesn’t change, and the player rolls the dice again.

Using Decisions to Make Games 121

Think of the Shapes object as a “shape factory”—a factory that manufac-
tures lines, triangles, rectangles, ellipses, and other shapes. When you ask
it to create a new shape, it’ll make the shape and return an identifier. Every
time you want to do something with the shape you created, you’ll pass this
identifier to the Shapes object (as an argument to the method you call).

We won’t cover all the methods of the Shapes object here. Instead, we’ll
discuss the ones you’ll use in the next program. You’ll learn the other
methods as you progress through this book.

The two methods we’ll use now are AddImage() and Move(). To under-
stand how these methods work, open the file ImageDemo.sb from this chap-
ter’s folder. You’ll see the code shown in Listing 9-5, which moves an image.

1	' ImageDemo.sb
2	path = Program.Directory + "\Flower.png"
3	imgID = Shapes.AddImage(path)
4	Shapes.Move(imgID, 60, 20)

Listing 9-5: Moving an image using the Shapes object

Click the Run button. The output of this program is illustrated in
Figure 9-7 (we added the gridlines and the numbers to show how the code
works).

20
40
60
80
...

20 60 ...

Figure 9-7: Moving the flower image

Let’s assume that this program is saved to C:\Book\Ch09\ImageDemo.
The imageDemo folder also contains the Flower​.png image file. The
Program.Directory property (line 2) points to the directory C:\Book\Ch09\
ImageDemo, which contains the executable program (the .exe file). Line 2
uses the + symbol to append two things to the directory: a slash (\) and the
image filename (Flower.png). When the program runs line 2, the path vari-
able’s given the full file path (C:\Book\Ch09\ImageDemo\Flower.png).

Line 3 calls the AddImage() method and passes the path variable as an
argument. This method loads the image from the file and returns an identi-
fier of the loaded image; this identifier is saved in a variable named imgID.
An identifier is like a tag that the Shapes object uses to keep track of the
shapes it creates (for example, "Image1", "Rectangle3", "Line100", and so on).
The loaded image is displayed in the upper-left corner of the graphics
window.

122 Chapter 9

Line 4 calls the Move() method to move the image. The first argument is
the shape’s identifier, which the program got from AddImage() and was saved
into imgID (line 3). The other two arguments are the upper-left coordinates
of the new position. Figure 9-7 shows the flower image with its upper-left
corner at (60, 20).

The Flower.png image’s width is 100 pixels, and its height is 140 pixels. If
you want to move the image so its center’s at (100, 100), you’d write this:

Shapes.Move(imgID, 100 - 50, 100 - 70)

Because you want the image’s center to be at (100, 100), you need to
subtract half the image’s width (50) to center it horizontally and subtract
half the image’s height (70) to center it vertically.

This is all the information you need to learn about the Shapes object
for you to build the application in the next section. Time to make a guess-
ing game!

Create a Game: Guess My Coordinates
It’s game time! In this section, you’ll develop an interactive game called
Guess My Coordinates that tests people’s knowledge of the Cartesian coor-
dinate system, or how well they can read an x, y graph. The game displays
a star that represents a point on the Cartesian grid; Figure 9-8 shows what
the interface looks like. During each round of the game, the star moves to
a random location and asks the player to guess its x- and y-coordinates. The
game checks the player’s answers and displays a feedback message. It’s like
Battleship but more fun for math geeks!

The game uses the graphics window and the text window at the same
time. The graphics window shows the grid and the star, and the text window
reads the player’s answers and shows the program’s feedback. Now we’ll walk
you through the steps to create this game.

T ry I t Ou t 9-3

Use code like the following to point to a small image on your computer and dis-
play it in the graphics window:

imgID = Shapes.AddImage("C:\Temp\icon.png")
Shapes.Move(imgID, 40, 60)

Update the path with the correct path for your image. Change the second
statement to move your image to each of these positions: (100, 40), (10, 10),
(27, 78), and then center it in the middle of the graphics window.

Using Decisions to Make Games 123

Text windowGraphics window

Background image
(Grid.png)

Star.png

1st round

2nd round

3rd round

4th round

Figure 9-8: The user interface for the Guess My Coordinates game

Step 1: Open the Startup File
Start by opening the GuessMyCoordinate_Incomplete.sb file from this chapter’s
folder. This file contains only comments. You’ll add all the code one step
at a time.

The chapter’s folder also contains the two images you’ll use (Grid.png
and Star.png). Grid.png is a 480×360 image of the Cartesian grid, and Star.
png is a 24×24 image of a star.

N o t e 	 If you run into any problems, check out the finished program (GuessMyCoordinates​
.sb) included in the chapter folder to see what you did wrong.

Step 2: Set Up the Game
Enter the code in Listing 9-6 to set up the game’s user interface. This goes
at the beginning of the file.

1	GraphicsWindow.Title = "Guess My Coordinates"
2	GraphicsWindow.CanResize = "False"
3	GraphicsWindow.Width = 480 ' Same as background image
4	GraphicsWindow.Height = 360 ' Same as background image
5	GraphicsWindow.Top = 200 ' Position on your desktop
6	GraphicsWindow.Left = 50 ' Position on your desktop
7	TextWindow.Title = "Guess My Coordinates"
8	TextWindow.Top = GraphicsWindow.Top
9	TextWindow.Left = GraphicsWindow.Left + GraphicsWindow.Width + 15
10	

124 Chapter 9

11	path = Program.Directory ' Program's directory
12	bkgnd = Shapes.AddImage(path + "\Grid.png") ' Bkgnd (480 x 360)
13	star = Shapes.AddImage(path + "\Star.png") ' Star image (24 x 24)
14	
15	While ("True") ' Runs forever
16	 ' You'll add code from Listings 9-7 and 9-8 here
17	EndWhile

Listing 9-6: Setting up the game

Lines 1–6 set the title, size, and position of the graphics window. The
window’s size is set to be equal to the size of the grid image (lines 3–4).
Lines 7–9 set the title of the text window and position it to the right of the
graphics window (see Figure 9-8). The program then saves the program’s
directory (line 11) into path, which you’ll use to make the full path for both
images so you can draw them on the screen. Next, the program loads the
two images and saves their identifiers (which are returned by the Shapes
object) in these two variables: bkgnd and star (lines 12–13).

The While/EndWhile keywords on lines 15 and 17 are explained in detail in
Chapter 14. For now, you just need to know that this code creates an infinite
loop (a loop that repeats forever, like the Pete and Repeat program, GotoDemo​
.sb, you wrote in the Chapter 8). You’ll add the remaining code for the appli-
cation between these While/EndWhile keywords.

Test what you’ve written so far. You should see the two windows side by
side, just like in Figure 9-8. The star image appears in the upper-left corner
of the graphics window but doesn’t do anything because you didn’t write
any code to move it yet.

Now close either the graphics window or the text window so you can
add the remaining code.

Step 3: Hide the Star
During each round of the game, you’ll move the star to a random position
on the grid and then ask the player to guess its coordinates. Let’s add the
code to move the star.

Add the code in Listing 9-7 inside the While loop (line 16 back in
Listing 9-6).

1	 ' Finds the star's random position (in grid units)
2	 X0 = Math.GetRandomNumber(23) - 12 ' Ranges from -11 to 11
3	 Y0 = Math.GetRandomNumber(17) - 9 ' Ranges from -8 to 8
4	 pt = "(" + X0 + ", " + Y0 + ")" ' Example: (5, -3)
5	
6	 ' Sets to pixel units and moves the star to the random position
7	 xPos = ((X0 + 12) * 20) - 12 ' Sets 12 pixels to the left
8	 yPos = ((9 - Y0) * 20) - 12 ' And 12 pixels up
9	 Shapes.Move(star, xPos, yPos) ' Moves the star

Listing 9-7: Placing the star

Using Decisions to Make Games 125

In Figure 9-8, you see that the grid goes from –12 to 12 in the x-direction
and from –9 to 9 in the y-direction. If you place the star at any point on the
grid’s boundaries, the player sees only part of it; the part of the star outside
the grid gets clipped. That’s why you’ll restrict the star’s x-coordinate to the
range [–11, 11] and its y-coordinate to the range [–8, 8].

But how do you create a random number between –11 and 11? That’s
easy! From –11 to 11 there are 23 integers (–11, –10, . . . , 10, 11). If you call
GetRandomNumber(23), you’ll get a random integer between 1 and 23. If you sub-
tract 12 from this integer, the result will be an integer between –11 (1 – 12)
and 11 (23 – 12), which is what you need. Next, we’ll explain the code.

You use two variables, X0 and Y0, to hold the random coordinates of the
star. In line 2, the X0 variable is given a random value between –11 and 11,
as explained earlier. In line 3, the Y0 variable is given a random number
between –8 and 8. These random values for X0 and Y0 tell you which grid
intersection point the star lands on. Next, the program builds a string
named pt (short for point) in the form (X0, Y0). This string shows the cor-
rect coordinates to the player if they enter the wrong answer.

Now you need to move the star to this new coordinate that you just
created, (X0, Y0). Figure 9-9 shows part of the grid and an example of where
the star might be set. As you can see in the figure, each unit on the grid maps
to 20 pixels in the graphics window; compare this with Figure 9-8 to under-
stand the full scaling of the grid.

20
40
60
80

100
120
140
160
180
200

22
0

24
0

26
0

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

(X0, Y0) = (−10, 2)
(xPos, yPos) = (40, 140)

Figure 9-9: Grid coordinates for pixel positions
in the graphics window

To move the star to a random position, you’ll first need to translate the
(X0, Y0) grid units (what your user sees on the grid image) into (xPos, yPos)
pixel units (what Small Basic sees). Let’s do that now.

If the star’s x-coordinate is –11, you need to draw the star at horizontal
position 20 in the graphics window. If the star’s x-coordinate is –10, you
need to draw it at horizontal position 40, and so on. So you need a formula
to map the star’s x-coordinates, X0 = {–11, –10, –9, . . . , 0}, to their corre-
sponding horizontal positions, xPos = {20, 40, 60, . . . , 240}, in the graphics

126 Chapter 9

window. To do this, you add 12 to X0 to get {1, 2, 3, . . . , 12} and multiply the
result by 20. Test it out! When X0 = –11, (–11 + 12) × 20 = 20. When X0 = –10,
(–10 + 12) × 20 = 40, and so on. This is exactly what you want.

Mapping for the y-coordinate works the same way. If 8 is the star’s y-​
coordinate, you need to draw it at vertical position 20 in the graphics win-
dow. If 7 is the star’s y-coordinate, you need to draw it at vertical position
40, and so on. So you need a formula to map the star’s y-coordinates, Y0 =
{8, 7, 6, . . . , 0}, to their corresponding vertical positions, yPos = {20, 40, 60,
. . . , 180}, in the graphics window. You do this by subtracting Y0 from 9 and
multiplying the result by 20. Let’s test this out! When Y0 = 8, (9 – 8) × 20 =
20. When Y0 = 7, (9 – 7) × 20 = 40, and so on, which is what you need.

You still have one minor detail to consider. Let’s say the star’s (X0, Y0)
coordinates are (–10, 2), as shown in Figure 9-9. You map these coordi-
nates to pixels and find that you need to show the star at point (xPos, yPos)
= (40, 140) in the graphics window. But you need that star’s center to be
at (40, 140). Because the star image is 24×24 pixels, the star’s left position
must be 28 (40 – 12), and the star’s top position must be 128 (140 – 12).
These are the numbers you need to pass to the Move() method. In other
words, to align the star’s center with the intersection of the grid lines, you
have to subtract the star’s width (12 pixels) from xPos and the star’s height
(12 pixels) from yPos.

In Listing 9-7, line 7 finds the star’s xPos and line 8 finds the star’s yPos
in the graphics window. Line 9 then calls the Move() method to place the
star at the desired position on the grid.

Step 4: Let the User Guess
Now that the star is displayed on the grid, you need to ask the player to
guess its coordinates. Add the code in Listing 9-8 right after the code you
added from Listing 9-7, still inside the While loop.

1	 TextWindow.Write("What is the x-coordinate? ")
2	 xAns = TextWindow.ReadNumber()
3	 If (xAns = X0) Then ' Player guessed the correct x-coordinate
4	 TextWindow.Write("What is the y-coordinate? ")
5	 yAns = TextWindow.ReadNumber()
6	 If (yAns = Y0) Then ' Player guessed the correct y-coordinate
7	 TextWindow.WriteLine("Good job! You're a star!")
8	 Else ' Player entered an incorrect y-coordinate
9	 TextWindow.WriteLine("Sorry. The star is at " + pt)
10	 EndIf
11	 Else ' Player entered an incorrect x-coordinate
12	 TextWindow.WriteLine("Sorry. The star is at " + pt)
13	 EndIf
14	
15	 TextWindow.WriteLine("") ' Empties the line before a new round

Listing 9-8: Guessing the coordinates

Using Decisions to Make Games 127

This code asks the player to enter the x-coordinate of the star, and it
waits for an answer (lines 1–2). Then it checks whether the x-coordinate
guess is correct (line 3). If the answer is incorrect, the program moves to
line 12 to display the correct coordinates of the star (see the box labeled
2nd Round in Figure 9-8). But if the x-coordinate guess is correct, the code
asks the player to enter the y-coordinate of the star and waits for an answer
(lines 4–5). If the player answers correctly (line 7), the program displays
Good Job! You're a star!. If not, the program moves to line 9 to display the
correct coordinates.

In all these cases, the program ends up at line 15 to display an empty
line, and the While loop repeats for another round of the game. The game
never ends! (This is exactly how your parents feel when you’re playing video
games.)

The game is now complete. Try playing it now!

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 A love meter gives a number from 1 to 5 that indicates the warmth of
your heart (a lower number is warmer). Write a program that asks the
user to input their love indicator number and then displays one of these
messages:

1: Your heart is lava hot!
2: Your heart is warm.
3: Your heart is neutral.
4: Your heart is cold, like the North Pole!
5: If your heart was a movie, it would be Frozen!

2.	 Write a program to simulate a mouse’s search for food (see the follow-
ing figure). The mouse starts at room 1. From there, have the mouse
go to either room 2 or room 4 (decide randomly). Pause to display this
movement to the user. If the mouse goes to room 4, then for the next
step it can move to room 1, room 2, or room 5 (decide randomly and
then display the move). Make your simulation end when the mouse
goes to room 3 (and finds the cheese) or goes to room 5, where the cat
is patiently waiting for its snack. Open the file HungryMouse_Incomplete​
.sb from this chapter’s folder, and follow the instructions to complete
the simulation.

T ry I t Ou t 9- 4

Change Listing 9-8 to ask the player to enter the x- and y-coordinates, and then
use the And operator to check xAns and yAns in a single If statement.

128 Chapter 9

3.	 Obi-Wan Kenobi needs to know the day of the week. But R2-D2 just beeps
at him. Obi-Wan counts the beeps, but he needs your help to translate
that number into the day of the week. Write an If/ElseIf ladder that com-
pares the value of the variable dayNum with 1, 2, 3, . . . , 7 and sets the value
of the variable dayName to "Sunday", "Monday", "Tuesday", . . . , "Saturday"
(so 1 is Sunday and 7 is Saturday). Help Obi Wan Kenobi. You’re his
only hope!

10
S o lv i n g P r o bl e m s w i t h

S u b r o u t i n e s

The programs you’ve written so far are
short and easy to understand. But as you

start dealing with more complex prob-
lems, you’ll need to write longer programs.

Understanding long programs can be a challenge,
because you’ll need to keep track of many different
parts of the program. In this chapter, you’ll learn
how to organize your programs into smaller pieces.

An approach known as structured programming started in the mid-1960s
to simplify the process of writing, understanding, and maintaining com-
puter programs. Instead of writing a single, large program, you divide your
program into smaller pieces. Each piece solves one part of the overall task,
and subroutines implement these smaller pieces as part of a long program.

130 Chapter 10

Subroutines are basic building blocks for creating large programs (see
Figure 10-1). In this chapter, you’ll delve into the wild world of subroutines,
learn how to move data in and out of them, and use them to build large
programs and fun games!

Figure 10-1: Subroutines are the
building blocks of larger programs

Why Use Subroutines?
Let’s say you run a construction company. Your job is to coordinate the work
among your contractors and build houses. As a manager, you don’t have to
know all the nitty-gritty details of building a home: the plumber handles the
plumbing, the roofer shingles the roof, and the electrician runs all the wires.
Each contractor knows their job and is always ready to work when they
receive your call.

That’s very similar to how subroutines
work! Each subroutine has its own name, like
how the plumber’s name is Mario. Each sub-
routine does something different, just like how
the plumber and the roofer have different jobs,
but all are needed to build the house. As the
programmer, you’re the manager, and your job
is to solve problems as you build your program.
You call your contractors (that is, your subrou-
tines) and let them know when you need them
to work (see Figure 10-2). You start writing the
program by typing statements in the editor. When you need to perform a
job that a subroutine handles, you just call that subroutine and wait. When
the subroutine completes its task, you move on to the next step in your
program.

There’s nothing new about this call-and-wait strategy; you’ve been
doing it since Chapter 1. When you call an object’s method, you’re actually
giving the work to that object in the Small Basic library. Subroutines are
like methods, but you have to write all the statements in the subroutines.
Subroutines help you organize your thinking process and make it easier
to fix errors.

Writing Subroutines
Let’s use a fun example to learn how to write a subroutine: in his travels,
Gulliver had dinner with the king and queen of Lilliput (the land of tiny
people). During dinner, the king explained that he was 8.5 glum-gluffs tall.

Figure 10-2: The boss (main
program) calling the Bob
subroutine

Hello, Bob.
Please work
on the roof.

Boss

Sure, boss.
I’ll let you know
when I’m done.

Bob

Solving Problems with Subroutines 131

Gulliver later learned that 1 glum-gluff is about 0.75 inches. To find out how
the sizes of items in Lilliput compare to sizes in our land, write the program
in Listing 10-1, which converts glum-gluffs to inches.

1	' GlumGluff.sb
2	TextWindow.Write("How many glum-gluffs? ")
3	glumGluffs = TextWindow.ReadNumber()
4	
5	inches = 0.75 * glumGluffs ' Converts to inches
6	inches = Math.Round(inches * 100) / 100 ' Rounds to 2 decimal places
7	TextWindow.WriteLine("That's about " + inches + " inches.")

Listing 10-1: Converting measurements

This program looks just like the ones you’re already used to! You
prompt the user to enter the glum-gluff measurement (line 2), read the
input into the glumGluffs variable (line 3), convert the input number to
inches (line 5), round the answer to two decimal places (line 6), and then
display the result (line 7). Run the program to figure out how tall the king
is in inches; remember that he’s 8.5 glum-gluffs tall.

Next, let’s rewrite this program and put the conversion statements
(lines 5–6) in a subroutine named GlumGluffToInch(). Enter the code in
Listing 10-2.

1	' GlumGluff2.sb
2	TextWindow.Write("How many glum-gluffs? ")
3	glumGluffs = TextWindow.ReadNumber()
4	
5	GlumGluffToInch() ' Calls the subroutine
6	TextWindow.WriteLine("That's about " + inches + " inches.")
7	
8	' This subroutine converts from glum-gluffs to inches
9	' Input: glumGluff; the size in glum-gluff units
10	' Output: inches; the size in inches rounded to 2 decimal places
11	Sub GlumGluffToInch
12	 inches = 0.75 * glumGluffs
13	 inches = Math.Round(inches * 100) / 100
14	EndSub

Listing 10-2: Calling a subroutine

This code does the same thing as the code in Listing 10-1, but it uses a
subroutine. A subroutine is a collection of statements that do a specific job
( just like hiring Mario the plumber to build a fancy toilet). In this case,
your subroutine converts glum-gluffs to inches. The statements that make
up the subroutine are sandwiched between the Sub and EndSub keywords
(lines 11–14). The subroutine’s name comes after the Sub keyword (line 11).
When you define the subroutine, don’t put parentheses after its name.

But just because you define a subroutine doesn’t mean your program
will run it. To run a subroutine, you need to call (or invoke) it! To call a sub-
routine, you type its name followed by parentheses (line 5). The statement

132 Chapter 10

on line 5 means “run the subroutine named GlumGluffToInch(), and then
return to the line that comes after this subroutine call” (which is line 6 in
this example). It’s like taking a break from cleaning your room to go watch
some TV and then coming back to pick up where you left off. Figure 10-3
shows how a subroutine works in a program.

Main program

Subroutine
TextWindow.Write(...)

glumGluffs = ...

GlumGluffToInch()

TextWindow.WriteLine(...)

Sub GlumGluffToInch
...

EndSub

Figure 10-3: Showing how GlumGuff2.sb calls the GlumGluffToInch() subroutine

Here is one example of output from this program:

How many glum-gluffs? 8.5
That's about 6.38 inches.

A subroutine can access all the variables in the main program, and
the main program can access all the variables in a subroutine. The vari-
able glumGluffs was created and assigned a value in the main program
(line 3), but it was used by the subroutine to know how many glum-gluffs
it needs to convert (line 12). And the variable inches was created inside
the subroutine (line 12), but the main program reads it and displays its
value to the user (line 6).

Here are some good reasons to put the unit conversion code into a
subroutine:

1.	 You isolate (or separate) the unit conversion details from the main pro-
gram. The main program now doesn’t have to worry about how the con-
version is done. This makes your code easier to read and maintain.

2.	 If errors occur, you know where to look, which makes debugging much
easier to do.

3.	 You don’t have to write the same code over and over again! Without
using subroutines, if a program needs to run the same set of statements
more than once, you have to duplicate these statements in your code.
But if you put those statements in a subroutine, you can call it from
any point in your program (code reuse). You’ll practice this in the next
section.

NOTE 	 In this book, we’ll start the name of a subroutine with a capital letter. We’ll also write
all the subroutines at the bottom of every main program. We recommend you follow
the same practice in your own programs: it’ll help keep you organized!

Solving Problems with Subroutines 133

Subroutine Input and Output
You can think of a subroutine as a small program that provides a service
to the main program. When the main program needs that service, it pre-
pares the inputs that the subroutine needs and then calls the subroutine to
start its job. The subroutine runs, saves its output(s) in some variables, and
returns to the main program. When the main program continues, it looks
at any new information from the subroutine and then uses that data to
decide what to do next.

Small Basic doesn’t let you pass arguments to subroutines between
parentheses (like you do with an object’s method, such as the DrawLine()
method of GraphicsWindow). And it doesn’t define subroutines that directly
return a value (like the Math.Round() method does). So you need to use vari-
ables to pass data between the main program and your subroutines. Let’s
see how that works.

Great news! You inherited some land (Figure 10-4) from Uncle
Moneybags. But you need to know the area of the land before you can sell
it. The figure also shows Heron’s formula, which computes the area of a
triangle given the lengths of its three sides. Don’t worry if you’re not familiar
with this formula; you don’t need to fully understand something in order to
use it (or most people wouldn’t be allowed to use the toilet).

5 m
7 m

20.6 m

25 m

22.3 m 14
 m

a

b

c

Figure 10-4: Calculating the area of the piece of land you inherited

Because the land is made up of two triangles, you can compute the area
of these triangles and then add them together. Follow Listing 10-3 and note
how we put the code for calculating the triangle’s area (Heron’s formula) in
a subroutine.

TR Y IT OUT 10-1

When Gulliver asked what a glum-gluff was, he was told it was 1/20 of a mum-
gluff. Write a subroutine named MumGluffToFoot() that converts mum-gluffs to
feet. Write a program that prompts the user for a mum-gluff measurement, calls
the subroutine, and then displays the result.

134 Chapter 10

1	' LandArea.sb
2	' Calculates the area of the first triangle
3	side1 = 7
4	side2 = 20.6
5	side3 = 25
6	TriangleArea()
7	totalArea = area ' Saves the result from the subroutine call
8	
9	' Calculates the area of the second triangle
10	side1 = 30
11	side2 = 14
12	side3 = 22.3
13	TriangleArea()
14	totalArea = totalArea + area ' Adds the new area
15	
16	totalArea = Math.Round(totalArea * 100) / 100 ' Rounds the answer
17	TextWindow.WriteLine("Area = " + totalArea + " square meters")
18	
19	' Subroutine: computes the area of a triangle given its three sides
20	' Inputs: side1, side2, and side3; the length of the three sides
21	' Outputs: area; the area of the triangle
22	' Temporary variables: s; the semiperimeter
23	Sub TriangleArea
24	 s = 0.5 * (side1 + side2 + side3)
25	 area = Math.SquareRoot(s * (s - side1) * (s - side2) * (s - side3))
26	EndSub

Listing 10-3: Calling a subroutine multiple times

Here’s the output of this program:

Area = 208.63 square meters

The main program sets the lengths of the three sides of the first triangle
(lines 3–5) and then calls the TriangleArea() subroutine (line 6). The sub-
routine (lines 23–26) saves the computed area in a variable named area.
After the subroutine call, the main program stores this first area in the
totalArea variable (line 7). Without this, the value stored in area will be lost
the next time we call the TriangleArea() subroutine. Then the main program
sets the values to compute the area of the second triangle (lines 10–12) and
calls the subroutine again (line 13). When the subroutine ends, the main
program adds the new area to totalArea (line 14). The main program then
rounds the answer (line 16) and displays it (line 17).

The TriangleArea() subroutine uses a temporary variable named s to
store the semiperimeter, one-half of the perimeter of the current shape
(line 24). Note how this variable is used to compute the area in line 25.
This variable isn’t intended to be used by the main program, which just
cares about the area variable. But the main program knows about it (for
example, it can display the variable). Because your subroutines can change

Solving Problems with Subroutines 135

variables that belong to the main program, be sure to name your variables
carefully and clearly. For example, if the s variable seems confusing,
rename it to semiperimeter so you’ll remember what it does.

Nesting Subroutines
If your chore is to clean the house, you might get help by making a deal with
your sister to clean the windows and asking your dog to clean the floor under
the table. Similarly, a subroutine might call other subroutines to help it do
part of a larger job. In Figure 10-6, the main program calls a subroutine,
SubA(), which then calls another subroutine, SubC(). Subroutines called from
other subroutines are nested subroutines.

Main program

...

SubA()

...

SubB()

...

Sub SubA
...

SubC()
...
EndSub

Sub SubB
...
EndSub

Sub SubC
...

EndSub

Figure 10-6: Illustrating nested subroutines

NOTE 	 If your program contains many subroutines, you can place these subroutines at the
end of your program in any order you like. For example, it doesn’t matter if you put
the code for SubA() before or after SubB(). What matters is the order in which you call
these subroutines, not where you place them in your code!

TR Y IT OUT 10-2

Uncle Moneybags left you another piece of land (Figure 10-5)! Update the pro-
gram in Listing 10-3 to compute its area (all dimensions are in meters).

12 m

6 m

16 m

11 m

27 m
10 m

16 m

24 m

18 m

Figure 10-5: Your new piece of land

136 Chapter 10

To try out this concept, you’ll play Pepper Dare, an exciting game of
chance, against the computer. When the game starts, the player is handed
10 imaginary cards face down. One of those cards has a jalapeño pepper on
it; the rest are blank. The player picks a card and hopes for a blank one. If
the player picks the card with the jalapeño, the player has to eat a hot pep-
per and the computer wins! If the player doesn’t get the pepper card, the
computer takes a turn. The game ends when either the player or computer
eats the pepper and runs for a drink of water. Enter the main program in
Listing 10-4 into Small Basic. You’ll add the subroutines in a moment.

1	' PepperDare.sb
2	player = 1 ' 1 for player, 2 for computer
3	pepper = Math.GetRandomNumber(10) ' Which card has the pepper
4	
5	Again:
6	Pick() ' Updates the two variables: card and name
7	If (card = pepper) Then
8	 TextWindow.Write("Hot tamale, it's a pepper! ")
9	 TextWindow.WriteLine(name + " wins!")
10	 TextWindow.WriteLine("")
11	Else
12	 TextWindow.Write("The card is blank. ")
13	 TextWindow.WriteLine("You put it back in and shuffle the deck.")
14	 TextWindow.WriteLine("")
15	 player = 3 - player ' Switches the player
16	 Goto Again
17	EndIf

Listing 10-4: Setting up Pepper Dare

The game starts by setting the player variable to 1 to give you the first
turn (line 2). It then randomly picks 1 of the 10 cards to be the card that
has the jalapeño pepper (line 3). Then it starts a loop (lines 5–17) to take
turns. In each round, the game picks one card at random for the player (or
the computer) by calling the Pick() subroutine (line 6). If the picked card
has a pepper on it (line 7), the game displays the winner’s name (line 9),
and the game ends because the program moves out of the If loop and
jumps from line 10 to line 17, bypassing the Goto loop on line 16.

Otherwise, it displays The card is blank. You put it back in and shuffle
the deck. (lines 12–13) to indicate that the player (or the computer) picked
a blank card. The game then switches to the next player (line 15) and goes
back to start a new round (line 16). This is how the statement on line 15
works: if player is 1 (you, the user), then 3 – 1 is 2 (switching to the com-
puter’s turn), and if player is 2 (the computer), then 3 – 2 is 1 (switching
back to the user’s turn).

Next, you’ll add the Pick() subroutine in Listing 10-5 to the bottom of
your program.

1	Sub Pick
2	 If (player = 1) Then
3	 name = "The computer"

Solving Problems with Subroutines 137

4	 TextWindow.WriteLine("Your turn. Pick a card.")
5	 Else
6	 name = "The player"
7	 TextWindow.WriteLine("The computer picks a card.")
8	 EndIf
9	
10	 TextWindow.Write("[Press any key...]")
11	 TextWindow.PauseWithoutMessage()
12	 TextWindow.WriteLine("")
13	
14	 card = Math.GetRandomNumber(10) ' Picks a random card
15	 Animate() ' Animates the delay in picking a card
16	EndSub

Listing 10-5: The Pick() subroutine for Pepper Dare

The subroutine starts by checking the current player (either you or
the computer) and then sets the name variable (lines 3 and 6). Next, it asks
you to press any key to have you or the computer pick a card (lines 10–12).
Then it randomly picks a card (line 14) and calls the nested Animate() sub-
routine to animate an arrow in the text window.

Now add the Animate() subroutine in Listing 10-6 to the bottom of your
program.

1	Sub Animate
2	 For N = 1 To card
3	 TextWindow.Write("-")
4	 Program.Delay(100)
5	 EndFor
6	 TextWindow.Write("-> ")
7	EndSub

Listing 10-6: Subroutine to animate the delay

Don’t worry about the For loop here. You’ll learn about it in depth in
Chapter 13. For now, this code just slowly displays a variable-length arrow.
Here’s a sample run of the completed Pepper Dare program:

Your turn. Pick a card.
[Press any key...]
--> The card is blank. You put it back in and shuffle the deck.

The computer picks a card.
[Press any key...]
--------> The card is blank. You put it back in and shuffle the deck.

Your turn. Pick a card.
[Press any key...]
---------> Hot tamale, it's a pepper! The computer wins!

NOTE 	 Not only can a subroutine call other subroutines, but it can also call itself (this is
called recursion)! See the online resources to learn more.

138 Chapter 10

Create a Dragon Game
The previous example showed you how subroutines can add structure and
clarity to your programs. You break your program into smaller pieces and
tackle them one at a time. Although every problem is different and there’s
no one-size-fits-all solution, we recommend a few ways to think through any
problem.

First, spend some time trying to fully understand the problem. You
wouldn’t dive into a pool without looking at it first, right?! (What if it was
filled with pudding?) When you have a good idea of the problem you need
to solve, plan a general solution. Then divide it into major tasks. As the solu-
tion planner, you decide what those tasks are. There’s no right or wrong
answer; with practice you’ll get better at making these choices. But if you
start with the general solution and break it down into smaller tasks, the
logic of your program will be in good shape.

To show you this problem-solving strategy, let’s make the dragon game
shown in Figure 10-7.

msgText

distText arrowsText shieldText

Background
image

Figure 10-7: The dragon game’s user interface

In this game, you control the knight, and it’s your job to slay the
dragon. On the screen you can see which variables we’ll display to keep
score and where the player makes a choice of three actions to play.

When the game starts, Good Knight is on the right, some distance from
Draggy the dragon. Good Knight has a bow and some arrows, and his shield
has a certain strength level (the program picks these values at random).
The knight makes the first move. He can move 1 step forward, shoot an
arrow at the dragon, or stab the dragon with his sword (but only if he’s

TR Y IT OUT 10-3

Play the Pepper Dare game several times to understand how it works. Come up
with some ideas to improve it, and then try to implement those ideas.

Solving Problems with Subroutines 139

1 step away). If the arrow hits the dragon, it’ll slay him instantly! With the
sword, the knight has a 50-50 chance of slaying the dragon (but only when
he’s close enough). If Good Knight slays Draggy, he’ll become Knight of the
Year, win his very own dance party, and get his picture on the castle wall.

Once Good Knight makes his move, Draggy breathes his flames at the
knight. If he hits the knight, he’ll weaken the knight’s shield. When the
shield loses its strength, the knight is defenseless. After this point, if the
dragon’s fire hits the knight, it’ll burninate him! The entire city will be
under the attack of the merciless, ferocious dragon. Game over!

The game uses five images that you can find in this chapter’s folder:
the background image (your battlefield), two images for the dragon (one
image shows the dragon’s fire), the knight’s image, and an image of an
arrow. Follow steps 1–10 to make a fun dragon game!

Step 1: Open the Startup File
Open the Dragon_Incomplete.sb file from the code folder for this chapter.
This file contains the code in Listing 10-7 and has empty placeholders for
your subroutines. You’ll add the code for these subroutines one step at a
time. The program’s folder has all the images you need as well. It also has
the complete game, Dragon.sb, in case you get stuck.

1	' Dragon_Incomplete.sb
2	SetUp() ' Does one-time set up
3	
4	NewGame() ' Sets the parameters for a new game
5	
6	UpdateUserInterface() ' Shows values on background image
7	
8	NextMove:
9	GetChoice() ' Displays options and gets the knight's choice
10	
11	ProcessChoice() ' Processes the user's choice
12	
13	DragonFire() ' Now it's the dragon's turn
14	Goto NextMove

Listing 10-7: High-level structure of the dragon game

First, you call the SetUp() subroutine (line 2) to draw the background
image, create text shapes (for displaying the distance, number of arrows, and
so on), and load the game’s images (dragon, knight, and arrow). Line 4
calls NewGame() to set the parameters for a new game, including the knight’s
arrows, shield strength, and distance from the dragon. In line 6, you call
UpdateUserInterface() to update the game’s user interface (UI). Then the code
goes into a loop (lines 8–14) to manage the game. Each round, you ask the
knight for his next move (line 9), process his move by calling ProcessChoice()
on line 11, and then give the dragon a turn (line 13). As you’ll see in a
moment, these subroutines will keep track of the game’s status and end the
game when there’s a winner!

140 Chapter 10

Next, you’ll work on the subroutines one by one.

Step 2: Write the SetUp() Subroutine
You’ll start by writing the SetUp() subroutine, which creates the scenario for
your game. Add the code in Listing 10-8 to your program.

1	Sub SetUp
2	 GraphicsWindow.Title = "Slay the Dragon"
3	 TextWindow.Title = GraphicsWindow.Title
4	
5	 GraphicsWindow.Width = 480
6	 GraphicsWindow.Height = 380
7	 GraphicsWindow.CanResize = 0
8	 GraphicsWindow.FontSize = 14
9	 GraphicsWindow.Left = 40
10	 ' Positions the text window
11	 TextWindow.Left = GraphicsWindow.Left + GraphicsWindow.Width + 20
12	 TextWindow.Top = GraphicsWindow.Top
13	
14	 path = Program.Directory
15	 GraphicsWindow.DrawImage(path + "\bkgnd.png", 0, 0)
16	
17	 ' Creates text objects to show distance, arrows,
18	 ' shield strength, and message
19	 distText = Shapes.AddText("")
20	 arrowsText = Shapes.AddText("")
21	 shieldText = Shapes.AddText("")
22	 msgText = Shapes.AddText("Draggy VS Good Knight")
23	 Shapes.Move(distText, 60, 30)
24	 Shapes.Move(arrowsText, 200, 30)
25	 Shapes.Move(shieldText, 370, 30)
26	 Shapes.Move(msgText, 5, 362)
27	
28	 ' Loads the images for the knight, dragon, and arrow
29	 knightImg = Shapes.AddImage(path + "\knight.png")
30	 dragon1Img = Shapes.AddImage(path + "\dragon1.png")
31	 dragon2Img = Shapes.AddImage(path + "\dragon2.png")
32	 arrowImg = Shapes.AddImage(path + "\arrow.png")
33	 Shapes.Move(dragon1Img, 0, 250)
34	 Shapes.Move(dragon2Img, 0, 250)
35	 Shapes.Move(knightImg, 380, 250)
36	
37	 Shapes.HideShape(dragon2Img)
38	 Shapes.HideShape(arrowImg)
39	EndSub

Listing 10-8: Setting up the windows and properties

This code contains all the one-time setup for your game; it’s a little
long, but we’ll talk you through it. You set the titles for the graphics and
text windows (lines 2–3). These are displayed in the title bars for these win-
dows when the game is played (see Figure 10-7).

Solving Problems with Subroutines 141

Then you set the graphics window’s size (lines 5–7), font size (line 8),
and position (line 9). Next, you position the text window to appear to the
right of the graphics window (lines 11–12). After drawing the background
image (lines 14–15), you create and position the text shapes that you’ll use
to show all the numbers on the game’s UI (lines 19–26). Then you load
and position the images for the knight, dragon, and arrow (lines 29–35).
Finally, you hide the images for the firing dragon and the arrow because
they aren’t needed at this time (lines 37–38): you’ll show these images when
Draggy breathes fire and Good Knight shoots the arrow.

When we built this program, we figured out where to place the text and
images (with the numbers we’re using) on the background’s image by using
a trial-and-error method (we guessed and tweaked it until we got it right).
You’ll likely need to do that when designing your own UIs for your awesome
future games.

Step 3: Add a Bit of Chance
Next, you need to add some luck to the game. Each time we run the game,
we want Good Knight to get a different number of arrows, be a random
distance away from the dragon, and have a different shield strength. To do
this, add the NewGame() subroutine in Listing 10-9 to your program.

1	Sub NewGame
2	 dist = 9 + Math.GetRandomNumber(10) ' 10 to 19
3	 arrows = Math.Floor(0.4 * dist) ' 4 to 8
4	 shield = Math.Floor(0.4 * dist) ' 4 to 8
5	 moveStep = 280 / dist ' Knight's move in pixels
6	EndSub

Listing 10-9: Setting up a new game

In line 2, you add 9 to a random number between 1 and 10, which sets
the distance, dist, between 10 and 19. This is the number of steps Good
Knight has to take to get to Draggy. Next, you set the number of arrows
as 40 percent of the distance (line 3). The farther the knight is from the
dragon, the more arrows he’ll have. In line 4, you set the strength of the
knight’s shield—again, as a fraction of his distance.

Let’s think about the moveStep line a little. The width of the background
image is 480 pixels. The width of the dragon is 100 pixels, and the width of
the knight is 100 pixels. When we place the dragon and the knight on the
background, the distance from the dragon’s right edge to the knight’s left
edge is 280 pixels. So every time Good Knight moves forward, we’ll move
his image to the left by 280 / dist pixels.

TI P 	 You can change the fraction in lines 3 and 4 from 0.4 to a different value to make
the game easier or harder. After you complete the game, try changing the fraction and
play the game a couple of times!

142 Chapter 10

Step 4: Let the Player Know What’s Going On
After you set the game’s parameters, you’ll need to show them to the user.
Add the UpdateUserInterface() subroutine in Listing 10-10.

1	Sub UpdateUserInterface
2	 Shapes.SetText(distText, dist)
3	 Shapes.SetText(arrowsText, arrows)
4	 Shapes.SetText(shieldText, shield)
5	EndSub

Listing 10-10: Subroutine that updates the text

This subroutine is pretty basic (and small!). You just use the SetText()
method of the Shapes object and pass the identifier of the text shape and
the number you want to display. Recall that we saved these identifiers
when we created these text shapes in the SetUp() subroutine (lines 19–21
in Listing 10-8).

Step 5: Get the Player in the Game with GetChoice()
If you run the game now, you should see all the images and numbers in
place, but nothing will happen yet. You need to start taking the knight’s
orders, so it’s time to add the GetChoice() subroutine in Listing 10-11.

1	Sub GetChoice
2	 AskAgain:
3	 TextWindow.WriteLine("Select:")
4	 TextWindow.WriteLine(" [1] Move 1 step forward")
5	 TextWindow.WriteLine(" [2] Shoot an arrow")
6	 TextWindow.WriteLine(" [3] Stab the dragon (you have to be 1 step away)")
7	 TextWindow.Write(" Your choice [1-3]: ")
8	
9	 choice = TextWindow.ReadNumber()
10	 If((choice <> 1) And (choice <> 2) And (choice <> 3)) Then
11	 Goto AskAgain
12	 EndIf
13	
14	 If ((choice = 2) And (arrows = 0)) Then
15	 Shapes.SetText(msgText, "You ran out of arrows! Borrow some from Link.")
16	 Goto AskAgain
17	 EndIf
18	
19	 If ((choice = 3) And (dist > 1)) Then
20	 Shapes.SetText(msgText, "You're too far to use your sword. Too bad 

 you can't train dragons.")
21	 Goto AskAgain
22	 EndIf
23	

Solving Problems with Subroutines 143

24	 Shapes.SetText(msgText, "")
25	 TextWindow.WriteLine("")
26	EndSub

Listing 10-11: Getting the user’s choice and displaying any errors

You start by displaying the options to the user (lines 3–7). You read
the user’s choice for Good Knight (line 9) and make sure it’s valid. If your
user enters any number other than 1, 2, or 3, you ask them to enter a num-
ber again (lines 10–12). If the user chooses to shoot an arrow but doesn’t
have any arrows, you tell them they’re out of arrows and ask them again
(lines 14–17). If they want to stab the dragon but are too far away, you tell
them they’re too far away and ask them to choose again (lines 19–22).
Otherwise, the choice the user makes is acceptable. You clear the message
text in line 24, add an empty line to the text window in line 25 to prepare
for the next prompt, and return to the main program (line 26).

Step 6: Process the Player’s Choice
Now that the user has made their choice, you need to examine the choice
variable to decide what to do next. Add the ProcessChoice() subroutine in
Listing 10-12 to your program.

1	Sub ProcessChoice
2	 If (choice = 1) Then ' Move-forward subroutine
3	 MoveKnight()
4	 ElseIf (choice = 2) Then ' Shoot-arrow subroutine
5	 ShootArrow()
6	 Else ' Stab subroutine
7	 StabDragon()
8	 EndIf
9	EndSub

Listing 10-12: Jumping to the choice’s subroutine

You use an If/Else ladder on the choice variable and call a different sub-
routine for each choice. Next, you’ll write these three subroutines!

Step 7: Add Motion with MoveKnight()
Add the MoveKnight() subroutine in Listing 10-13 to breathe some life into
Good Knight and get him moving.

1	Sub MoveKnight
2	 dist = dist - 1
3	 Shapes.SetText(distText, dist)
4	
5	 Shapes.Move(knightImg, 100 + dist * moveStep, 250)

144 Chapter 10

6	
7	 If (dist = 0) Then ' Checks whether the knight touched the dragon
8	 Shapes.SetText(msgText, "The dragon swallowed you! You taste like chicken.")
9	 GameOver()
10	 EndIf
11	EndSub

Listing 10-13: The subroutine that moves Good Knight

You start by reducing the knight’s distance from the dragon by 1 step
(line 2), and then you show that new distance on the game’s UI (line 3).
You then move the knight’s image to the left (line 5).

To understand how this works, let’s assume that the knight’s initial dis-
tance from the dragon, dist, is 10, which makes moveStep = 28, as illustrated in
Figure 10-7. When the knight is 10 steps away from the dragon, the upper-left
corner of the knight’s image is at (100 + (10 × 28), 250). When the knight is
9 steps away from the dragon, the upper-left corner of the knight’s image is
at (100 + (9 × 28), 250), and when he’s 8 steps away, the image’s upper-left
corner is at (100 + (8 × 28), 250), and so on. To move the knight, you set the
image’s horizontal position to 100 plus the current distance, dist, times the
moveStep, and you set the image’s vertical position to 250 (see Figure 10-8).

dist = 10 moveStep = 280 / dist = 28

100 280 25
0

84
56

28

�

Figure 10-8: Illustrating the knight’s motion

After moving the knight, you check whether he touched the dragon
(line 7). If he did, you tell Good Knight how great the dragon thinks he
tastes and call the GameOver() subroutine. This subroutine is in Listing 10-14;
add it to your program now.

1	Sub GameOver
2	 TextWindow.Pause()
3	 Program.End()
4	EndSub

Listing 10-14: Running the GameOver() subroutine

This subroutine calls Pause() to give your user a chance to read the mes-
sage (line 2). When the user presses any key, the Pause() method ends, and
you call the End() method to exit your program (line 3).

Solving Problems with Subroutines 145

Step 8: Shoot Arrows with ShootArrow()
Add the ShootArrow() subroutine in Listing 10-15 to make the Good Knight a
master archer who puts Hawkeye to shame.

1	Sub ShootArrow
2	 arrows = arrows - 1
3	 Shapes.SetText(arrowsText, arrows)
4	
5	 range = Math.GetRandomNumber(dist)
6	
7	 ' Animates the arrow
8	 pos1X = 100 + dist * moveStep
9	 pos2X = 100 + (dist - range) * moveStep
10	 Shapes.Move(arrowImg, pos1X, 280)
11	 Shapes.ShowShape(arrowImg)
12	 Shapes.Animate(arrowImg, pos2X, 280, 2000)
13	 Program.Delay(2000)
14	 Shapes.HideShape(arrowImg)
15	
16	 If (range = dist) Then ' You hit the dragon right on
17	 Shapes.SetText(msgText, "Perfect shot. The dragon's dead! You kiss the 
 princess's frog.")

18	 GameOver()
19	 Else
20	 Shapes.SetText(msgText, "Your arrow missed! Robin Hood is giving lessons.")
21	 Program.Delay(2000) ' To read the message
22	 EndIf
23	EndSub

Listing 10-15: Shooting the arrow

You start by using one arrow (line 2) and show the remaining arrows
on the UI (line 3). You then set the arrow’s range randomly to a number
between 1 and the distance to the dragon (line 5). The closer the knight is
to the dragon, the better his chances are that he’ll hit his target. The next
block of code (lines 8–14) animates the arrow. The horizontal start position,
pos1X, is the same as the knight’s position (line 8), and the end position, pos2X,
is based on the selected range (line 9). You then move the arrow to its start
position (line 10), show it (line 11), animate it to its final position (line 12),
wait for it to reach its target (line 13), and then hide it (line 14). You can
change the value 2000 in lines 12 and 13 to make the animation shorter or
longer.

Once the animation is complete, you check whether the arrow hit the
dragon (line 16). If it did, the game is over (lines 17–18) and the dance party
is yours! Otherwise, you tell Good Knight that his arrow missed (line 20),
delay the program for your user to read the message (line 21), and return to
the ProcessChoice() subroutine, which returns to the main program to give the
dragon his turn.

146 Chapter 10

Step 9: Swing the Sword with StabDragon()
Now, add the last subroutine for the knight in Listing 10-16.

1	Sub StabDragon
2	 If (Math.GetRandomNumber(2) = 1) Then
3	 Shapes.SetText(msgText, "You killed the dragon! You marry the princess 
 and 7 dwarves.")
4	 GameOver()
5	 Else
6	 Shapes.SetText(msgText, "Your sword missed! Good one, Lance-a-Little!")
7	 Program.Delay(2000) ' To read the message
8	 EndIf
9	EndSub

Listing 10-16: Stabbing the dragon

You randomly pick the number 1 or 2. If the number is 1 (line 2), the
knight hits the dragon and the game ends (lines 3–4). If the knight misses,
you tell the knight that he missed (line 6), delay the program for your user
to read the message (line 7), and return to the ProcessChoice() subroutine.

Step 10: Breathe Fire
If the knight didn’t kill Draggy and end the game, the main program
calls DragonFire() to give the dragon a fair fight. Add Listing 10-17 to your
program.

1	Sub DragonFire
2	 Shapes.SetText(msgText, "The dragon ignited his fire. The Pokemon run.")
3	 Shapes.HideShape(dragon1Img)
4	 Shapes.ShowShape(dragon2Img)
5	 Program.Delay(1000)
6	 Shapes.HideShape(dragon2Img)
7	 Shapes.ShowShape(dragon1Img)
8	
9	 If (Math.GetRandomNumber(2) = 1) Then ' Knight is hit
10	 If (shield = 0) Then ' Shield is damaged
11	 Shapes.SetText(msgText, "The dragon's fire BURNINATED you!")
12	 GameOver()
13	 Else
14	 shield = shield - 1
15	 Shapes.SetText(shieldText, shield)
16	 Shapes.SetText(msgText, "You're hit! Your shield became weaker. Use 
 the force!")

17	 EndIf
18	 Else
19	 Shapes.SetText(msgText, "The fire missed you! Aunt Mildred could've used 
 your luck.")

20	 EndIf
21	EndSub

Listing 10-17: The dragon breathing fire on Good Knight

Solving Problems with Subroutines 147

Lines 3–7 animate the dragon’s fire. You hide the normal dragon
image (line 3) and show the one spitting fire (line 4). You wait 1 second
(line 5) and switch the images back (lines 6–7). After that, the dragon has
a 50-50 chance to hit the knight with his fire. You pick a random number
that’s either a 1 or a 2. A value of 1 means the dragon has hit the knight
(line 9). In this case, you check the shield’s strength (line 10); if it’s 0, the
game is over (lines 11–12). But if it isn’t 0, you reduce the shield’s strength
by 1 (line 14), display the new value (line 15), tell the knight that he was
hit (line 16), and return to the main program. If the random number is 2
(line 18), you tell the knight that the dragon’s fire missed him (line 19) and
return to the main program.

Your game is done! Play it several times and enjoy your creation!

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 The folder for this challenge has images for the head, eyes, mouth, and
body of an alien creature (see the following figure).

head.png

eyes.png

mouth.png

body.png

Write a program that prompts a user to enter the number of eyes
(2, 4, or 6) and the number of mouths (1 or 2) of the alien. Then

TR Y IT OUT 10- 4

The dragon game is fun, but it isn’t perfect. When you play the game several
times, you’ll notice some issues that you either don’t like or can improve. It’s now
your game; make any changes you think will make the game better. You can even
change the messages and the graphics. Head to http://tiny.cc/dragongame/ to
share your game in the gallery and see what others did!

http://nostarch.com/smallbasic/
http://tiny.cc/dragongame

148 Chapter 10

have your main program call DrawHead(), DrawEyes(), DrawMouths(), and
DrawBody() to draw the alien! For example, here’s an alien with six eyes
and two mouths:

2.	 In this challenge, you’ll develop the game Ghost Hunt (see the follow-
ing figure). Open the file GhostHunt_Incomplete.sb from this chapter’s
folder (which has all the images you need for this game). A ghost is hid-
ing in 1 of the 12 rooms. To find the ghost, the user picks a room. If the
user finds the ghost in that room, they win! Otherwise, the ghost tries
to find the user (by selecting a room number at random). If the ghost
finds the user, the game ends. Otherwise, the ghost moves to a different
room, and the user tries again.

11
Ev e n t - D r i v e n P r o g r a m m i n g

So far, the programs you’ve written have
been mostly sequential because they have

followed the lines of code in order, from
top to bottom. Some statements might have

made a comparison or called a subroutine to take a
detour, but overall the order of statements has been
mostly linear.

In some ways, this is comparable to how you go about your daily rou-
tine: you wake up, make your bed, take a shower, eat your breakfast, watch
TV, comb your hair, and so on. But what if the phone rings during your rou-
tine? If you’re expecting a call from a friend to confirm that night’s party,
you’d better take it! Even though you’re doing something at that moment,
you’re also listening for the phone. The minute you hear the ring (the
event), you drop everything and take the call (let’s just hope it isn’t your
aunt calling to see if you finished reading Little House on the Freeway).

Similarly, many computer programs (especially games) use event-
driven programming, which means they listen and respond to events raised

150 Chapter 11

by the operating system (see Figure 11-1). Think of an event as a signal
that’s raised in response to an action, like moving or clicking the mouse,
clicking a button, typing on the keyboard, having a timer expire, and so
on. Some objects in the Small Basic library can see these events and tell
you when they happen. Programmers say that an object raised an event.
You can write some exciting applications and games by handling these
events (like a super fun explosion farming game). These games typically
wait patiently for the player to move the mouse or press some keys, and
then they take action.

KeyDown KeyUp

MouseDown MouseMove

Sub OnKeyDown

EndSub

...
Sub OnMouseMove

EndSub

......

Event handler Event handler

Your application

Small Basic library

Events

Figure 11-1: The event-driven programming model

In Figure 11-1, the events are at the top. When a user triggers an action
(like pressing a key), the Small Basic library knows about it. If you want to
know when an event happens, you can ask Small Basic to inform you when
an event occurs so you can write programs that react to certain events.

The Small Basic library has three objects that handle events (see
Figure 11-2): GraphicsWindow, Timer, and Controls. You’ll study the events of
GraphicsWindow and Timer objects in this chapter, and you’ll tackle the events
of the Controls object in the next chapter.

Ev
en

ts

Ev
en

ts

Ev
en

ts

Object

GraphicsWindow

KeyDown
KeyUp
MouseDown
MouseUp
MouseMove
TextInput

Controls Timer

ButtonClicked

TextTyped
Tick

Figure 11-2: The available events in Small Basic

Event-Driven Programming 151

GraphicsWindow Events
Let’s start by exploring the events in GraphicsWindow. When a user interacts
with your application, GraphicsWindow knows when keys are pressed, which
keys are pressed, and if the user clicks or moves the mouse. Although
GraphicsWindow knows about these events, it doesn’t automatically do any-
thing when the events happen. You need to instruct GraphicsWindow to tell
you when these events happen so you can use them. Next, you’ll learn how
to use the information Small Basic knows about the user to create interest-
ing, interactive applications.

Create Patterns with the MouseDown Event
Let’s make a simple application that draws a randomly colored circle every
time the user clicks the graphics window. Enter the code in Listing 11-1.

1	' Circles.sb
2	GraphicsWindow.MouseDown = OnMouseDown
3	
4	Sub OnMouseDown
5	 GraphicsWindow.PenColor = GraphicsWindow.GetRandomColor()
6	 X0 = GraphicsWindow.MouseX - 10
7	 Y0 = GraphicsWindow.MouseY - 10
8	 GraphicsWindow.DrawEllipse(X0, Y0, 20, 20)
9	EndSub

Listing 11-1: Drawing circles with a click of the mouse

Run the program. A sample output is shown in Figure 11-3. When you
click inside the graphics window, you draw a circle with a random color.
Make a fun pattern, show it to someone else, and try to convince them that
Pablo Picasso painted it!

Figure 11-3: Sample output of Circles.sb

Let’s look at the code in Listing 11-1 to see how Small Basic handles
event-driven programming. Figure 11-4 shows an important line in this pro-
gram: line 2.

152 Chapter 11

Object Event Event handler

GraphicsWindow.MouseDown = OnMouseDown

Figure 11-4: The event-handler registration statement

The statement in line 2 tells the GraphicsWindow object that when the
MouseDown event happens, it should run the OnMouseDown() subroutine. This
subroutine is also known as an event handler, because its purpose is to
handle, or process, an event. Although you can name this subroutine any-
thing you want, it’s common to use the format OnEventName, which is why we
named the handler OnMouseDown. The statement on line 2 is known as regis-
tering an event handler. In this example, Small Basic calls the OnMouseDown()
subroutine every time the user clicks inside the graphics window.

When the user clicks inside the graphics window, the x and y mouse posi-
tions (relative to the window’s upper-left corner) are saved in the MouseX and
MouseY properties of GraphicsWindow. Because the program draws a circle with a
diameter of 20 centered around the mouse click, it subtracts 10 from MouseX
and MouseY (to mark the circle’s upper-left position) and saves the result in
the X0 and Y0 variables (lines 6–7). The subroutine then draws a circle with
a diameter of 20 that’s centered at the mouse-click position (line 8).

Fire Missiles with the KeyDown Event
Many computer games are played using the keyboard. For example, the
player might use the arrow keys to move the main character, the spacebar
to shoot a missile, F1 to get help, P to pick the character’s nose, and esc to
exit the game. If you want to make a game that uses the keyboard for input,
you need to add the KeyDown event to your program to let you know which
key the user presses and when.

To understand the KeyDown event, let’s write a simple application
that displays the name of each key a user presses. Enter the program in
Listing 11-2.

1	' KeyDown.sb
2	yPos = 10
3	GraphicsWindow.KeyDown = OnKeyDown

TR Y IT OUT 11-1

Change the code in Listing 11-1 to draw triangles and squares instead of a circle.
If you need help, refer back to Chapter 3 to review GraphicsWindow’s drawing
methods.

Event-Driven Programming 153

4	
5	Sub OnKeyDown
6	 GraphicsWindow.DrawText(10, yPos, GraphicsWindow.LastKey)
7	 yPos = yPos + 15
8	EndSub

Listing 11-2: Displaying each key a user presses

A sample run, with some comments, is shown in Figure 11-5.

A, B, and C keys

ENTER key

Numbers 1, 2, and 3

Arrow keys

Spacebar

Figure 11-5: A sample run of KeyDown.sb

The yPos variable sets the vertical position where you’ll display the
name of the key the user presses. It starts at 10 and increases by 15 after it
shows the name of the last pressed key (line 7).

You register the KeyDown event handler on line 3. Whenever a user
presses a key, the program runs the OnKeyDown() subroutine. The subroutine
displays the name of the pressed key (line 6) and increases yPos by 15
(line 7) to get ready to display the name of the next key on the next line.
The GraphicsWindow.LastKey property on line 6 provides the name of the
pressed key (as a string). This read-only property tells you the last key a
user pressed.

The importance of this example is that it shows you the names that
Small Basic assigns to the different keyboard keys. If you want to create an
application that responds to these keys, you need to know what Small Basic
calls them. Here are some other details you should know:

1.	 The names of the letter keys (A–Z) are always uppercase. For example,
if you type the letter "a", LastKey will register it as an uppercase "A"
regardless of whether caps lock is on or if you’re holding down the
shift key.

2.	 The name of a number key (0–9) uses the form "Ddigit". For example,
the name of the 5 key is "D5".

3.	 The four arrow keys are named "Up", "Down", "Right", and "Left".

4.	 The enter (or return) key is named "Return", and the spacebar is
named "Space".

154 Chapter 11

5.	 The KeyDown event is raised continuously (about every 35 milliseconds)
as long as a key is pressed. This is different from the MouseDown event,
which is raised only once (when the left mouse button is clicked).

Knowing the names of the keys is important if you want to test for cer-
tain keypresses in your programs.

Make a Typewriter Using the TextInput Event
The TextInput event is very similar to the KeyDown event, but it’s raised only
when the user presses a text-related key on the keyboard. This includes
letters (A–Z), digits (0–9), special characters (such as !@#$%^&), and other
keys, like enter, the spacebar, tab, and backspace. When the TextInput
event is raised, the last character pressed on the keyboard is saved in the
GraphicsWindow.LastText property.

Let’s see how this event works. Enter the code in Listing 11-3 to simulate
a typewriter. We know that typewriters are old school, but hey, it could be
worse; we could be simulating an abacus!

1	' Typewriter.sb
2	x = 0 ' x position for displaying the last character
3	y = 0 ' y position for displaying the last character
4	GraphicsWindow.Title = "Typewriter"
5	GraphicsWindow.FontName = "Courier New"
6	GraphicsWindow.TextInput = OnTextInput
7	
8	Sub OnTextInput
9	 Sound.PlayClick() ' Plays a typewriter sound effect
10	 If (GraphicsWindow.LastKey = "Return") Then
11	 x = 0 ' Moves to next line
12	 y = y + 15

TR Y IT OUT 11-2

Enter and run the following code. Press some keys on the keyboard and watch for
their names in the text window. Press and hold a key for a while to see what hap-
pens. (Make sure the graphics window is the active window when you type.)

TextWindow.Show()
GraphicsWindow.Show()
GraphicsWindow.KeyDown = OnKeyDown

Sub OnKeyDown
 TextWindow.WriteLine(GraphicsWindow.LastKey)
EndSub

What did you notice when you tried this example?

Event-Driven Programming 155

13	 Else
14	 GraphicsWindow.DrawText(x, y, GraphicsWindow.LastText)
15	 x = x + 8 ' Advances x position for the next character
16	 If (x > GraphicsWindow.Width) Then ' If more than right margin
17	 x = 0 ' Moves to the next line
18	 y = y + 15
19	 EndIf
20	 EndIf
21	EndSub

Listing 11-3: Making a typewriter sound with each keypress

Look at the sample output in Figure 11-6.

Figure 11-6: Sample output of Typewriter.sb

Lines 2 and 3 set the cursor at the corner of the graphics window.
Line 4 gives the window a title, line 5 sets the font style, and line 6 registers
the event handler. Line 9 plays the click sound, and lines 10–12 advance the
line if the user presses enter. Line 14 writes the character entered by the
user, line 15 moves the cursor to the next spot, and lines 16–18 move the
cursor to the next line when the cursor gets to the right edge.

N o t e 	 When you experiment with this application, you’ll notice that the TextInput event
looks at the states of the different keyboard keys before setting the value of the
LastText property. For example, if you press the A key while holding down shift,
the LastText property reports an uppercase "A"; if you don’t hold down shift, it
reports a lowercase "a".

Draw Pictures with the MouseMove Event
To understand how to use the MouseMove event, you’ll write an application
that lets a user draw with the mouse. The user clicks the left mouse button
in the graphics window and then drags the mouse to draw. The complete
program is shown in Listing 11-4.

TR Y IT OUT 11-3

Update Listing 11-3 to display each character in a random color. See Listing 11-1
for ideas on how to randomly change the color.

156 Chapter 11

1	' Scribble.sb
2	GraphicsWindow.MouseMove = OnMouseMove
3	
4	Sub OnMouseMove
5	 x = GraphicsWindow.MouseX ' Current x position of mouse
6	 y = GraphicsWindow.MouseY ' Current y position of mouse
7	
8	 If (Mouse.IsLeftButtonDown) Then
9	 GraphicsWindow.DrawLine(prevX, prevY, x, y)
10	 EndIf
11	
12	 prevX = x ' Updates the last (previous) position
13	 prevY = y
14	EndSub

Listing 11-4: Drawing a line as the user moves the mouse

A sample output of Scribble.sb is in Figure 11-7.

Figure 11-7: Sample output of Scribble.sb

The OnMouseMove() subroutine draws a line from the last mouse position,
which you save in the variables prevX and prevY in lines 12 and 13, to the new
mouse position, which you get from GraphicsWindow’s MouseX and MouseY prop-
erties. Because you want the user to draw only when the left mouse button
is down, the OnMouseMove() subroutine checks the state of the left mouse
button using the Mouse.IsLeftButtonDown property (line 8). This property
indicates whether the left mouse button is being held down. If this value is
true, the subroutine draws a line segment (line 9); if the value isn’t true, it
doesn’t draw the line.

TR Y IT OUT 11- 4

Change Listing 11-4 to use the TextInput event to set the pen’s color (R for red, G
for green, B for black, and so on).

Event-Driven Programming 157

Useful Tips
Before moving on, we’ll give you some tips for dealing with events and event
handlers. You can handle multiple events using the same subroutine. For
example, look at these statements:

GraphicsWindow.MouseDown = OnMouseEvent
GraphicsWindow.MouseMove = OnMouseEvent

These statements cause the MouseDown and MouseMove events to call the
OnMouseEvent() subroutine. This feature can come in handy for complex games
that use many events, so keep this feature in mind.

You can change the event-handler subroutine after you register it. For
example, let’s say you registered the OnMouseDown() subroutine to handle the
MouseDown event using this statement:

GraphicsWindow.MouseDown = OnMouseDown

If you later decide to stop responding to the MouseDown event (for example,
because the game is over), you can write this statement:

GraphicsWindow.MouseDown = DoNothing

Now DoNothing is the new handler for the MouseDown event. If you don’t
write any statements in your DoNothing() subroutine, your programs won’t do
anything in response to the MouseDown event.

A MouseDown event is usually followed by a MouseUp event, but don’t always
count on that MouseUp event happening. If you click the left mouse button in
the graphics window and then move the cursor outside the graphics win-
dow before you release the button, your application receives only a MouseDown
event notification. This is important to remember if you write an applica-
tion that needs to pair the two events (such as if you click to grab a ball and
release to throw it).

In the next section, you’ll put into practice what you’ve learned so far
by creating a complete game. You’ll also learn about the Timer object and its
Tick event. Get ready for an exciting adventure in computer gaming!

Create a Gold Rush Game
Let’s create a simple game in which a player uses the arrow keys to move a
turtle to collect as many bags of gold as possible (see Figure 11-8). The bag
of gold appears at random locations on the grid. If the player doesn’t grab
the bag in 2 seconds, it moves elsewhere. Let’s see how fast you can get the
turtle to move!

158 Chapter 11

Every time you pick up a bag your score
increases by 1.

Bags of gold will appear at random
locations on the grid.

Use the arrow keys to move the turtle to
pick up as much gold as possible. Hurry!
You have only 2 seconds to get to the bag.

The background image shows squares
that the player can move to.

60

120

180

240

300

360
60 12

0

18
0

24
0

30
0

36
0

42
0

48
0

Figure 11-8: Help the turtle grab as many bags of gold as possible.

N o t e 	 The grid is part of the background image, but we added the x- and y-coordinates in
Figure 11-8 to help you understand the numbers used in the code. Refer to this figure
to picture how the turtle and the bag of gold move.

Step 1: Open the Startup File
Open the file GoldRush_Incomplete.sb from this chapter’s folder. The folder
also has the three images you’ll need for this game. Follow the next four
steps to walk through the application’s code. The startup file contains the
program’s main code, as shown in Listing 11-5. It prepares the game’s user
interface, registers the event handlers, and initializes the game’s variables.
The file also contains empty placeholders (not shown in Listing 11-5) for all
the subroutines you’ll add.

1	' GoldRush_Incomplete.sb
2	GraphicsWindow.Title = "GOLD RUSH"
3	GraphicsWindow.CanResize = "False"
4	GraphicsWindow.Width = 480
5	GraphicsWindow.Height = 360
6	
7	path = Program.Directory
8	grid = Shapes.AddImage(path + "\Grid.png")
9	player = Shapes.AddImage(path + "\Turtle.png")
10	gold = Shapes.AddImage(path + "\Gold.png")
11	
12	' Places the player (turtle) near the middle
13	XP = 4 ' x position (from 0 to 7)
14	YP = 3 ' y position (from 0 to 5)
15	Shapes.Move(player, XP * 60, YP * 60)
16	
17	' Creates the score text shape (over a black rectangle)
18	GraphicsWindow.BrushColor = "Black"
19	Shapes.AddRectangle(90, 20)
20	GraphicsWindow.FontSize = 14

Event-Driven Programming 159

21	GraphicsWindow.BrushColor = "Red"
22	scoreID = Shapes.AddText("Score: 0") ' For now
23	
24	' Registers two event handlers
25	GraphicsWindow.KeyDown = OnKeyDown
26	Timer.Tick = OnTick
27	
28	' Initializes variables
29	Timer.Interval = 2000 ' Ticks every 2 sec
30	score = 0 ' Keeps track of player's score
31	bagCount = 0 ' Counts how many bags so far

Listing 11-5: Setting up the Gold Rush game

Lines 3–5 set the size of the graphics window to match the size of the
background image (grid.png). Lines 8–10 use the Shapes object to load the
three images (the background grid, the turtle, and the bag of gold) and
save the returned identifiers. You’ll need the identifiers to move the turtle
and the bag of gold later. Lines 13–15 place the turtle near the middle of
the grid. Note that each square on the grid is 60×60 pixels.

Lines 18–22 create the text shape you’ll use to display the player’s score.
The score is displayed in red on a black background in the upper-left corner
of the screen (see Figure 11-8). Lines 25–26 register two event handlers.
The OnKeyDown handler checks the arrow keys and then moves the turtle as
the player controls it. The OnTick handler handles the Timer object’s Tick
event to limit the player’s time to reach each bag. Line 29 sets the timer
interval to 2 seconds (2,000 milliseconds), telling the Timer object to raise a
Tick event every 2 seconds. Then the code initializes the two variables score
and bagCount to 0: score keeps track of the player’s score (line 30), and bagCount
keeps track of how many bags have appeared so far (line 31).

Run the code; you should see the turtle in the middle of the grid, the
bag of gold in the upper-left square of the grid, and the score text showing 0.

Step 2: Move the Turtle
To move the turtle when the player presses the arrow keys, add the code in
Listing 11-6 to the bottom of your file.

1	Sub OnKeyDown
2	 key = GraphicsWindow.LastKey
3	 If ((key = "Up") And (YP > 0)) Then
4	 YP = YP - 1
5	 ElseIf ((key = "Down") And (YP < 5)) Then
6	 YP = YP + 1
7	 ElseIf ((key = "Left") And (XP > 0)) Then
8	 XP = XP - 1
9	 ElseIf ((key = "Right") And (XP < 7)) Then
10	 XP = XP + 1
11	 EndIf

160 Chapter 11

12	 Shapes.Move(player, XP * 60, YP * 60)
13	 CheckTouch() ' Checks if the player touched the bag
14	EndSub

Listing 11-6: Moving the turtle as the player presses the arrow keys

The grid has eight horizontal and six vertical squares. Squares in
the horizontal direction are numbered 0 to 7, and squares in the vertical
direction are numbered 0 to 5. That means the XP variable (the player’s
x position) takes any value between 0 and 7, and the YP variable (the player’s
y position) takes any value between 0 and 5. The OnKeyDown() subroutine uses
an If/ElseIf ladder to check whether the pressed key is one of the four arrow
keys. If one of the arrow keys is pressed while the turtle is in the graphics
window, the subroutine adjusts XP or YP according to the pressed arrow key.

For example, lines 3 and 4 check if the player pressed the up arrow,
and if the turtle hasn’t reached the top edge yet, the turtle moves up one
square. You can find the exact location on the grid (in pixels) by multiplying
the square’s number by 60 (because each square is 60 pixels), which is what
line 12 does. The code then calls the CheckTouch() subroutine to check if the
player touched the bag of gold.

Run the application again to check the code you just added. You should
be able to move the turtle over the square grid using the arrow keys on the
keyboard. It’s alive!

Step 3: Move the Bag of Gold
Now you’ll add the OnTick handler to create a time limit and the code for
moving the bag of gold to a new spot. Add the subroutine in Listing 11-7 to
the bottom of your program.

1	Sub OnTick ' Timer expires
2	 NewRound()
3	EndSub

Listing 11-7: The OnTick() subroutine

As mentioned earlier, the bag of gold appears at a random location and
gives the player 2 seconds to grab it. If the timer expires, the player loses
because they didn’t grab the bag in time. In this case, the OnTick handler
calls the NewRound() subroutine (line 2) to start another round of the game.

The NewRound() subroutine is shown in Listing 11-8. Add it to the bot-
tom of your program.

1	Sub NewRound
2	 bagCount = bagCount + 1
3	 If (bagCount <= 20) Then

Event-Driven Programming 161

4	 XG = Math.GetRandomNumber(8) - 1 ' From 0 to 7
5	 YG = Math.GetRandomNumber(6) - 1 ' From 0 to 5
6	 Shapes.Move(gold, XG * 60, YG * 60)
7	 CheckTouch()
8	 Else
9	 Shapes.Remove(gold) ' Deletes the gold bag shape
10	 GraphicsWindow.KeyDown = OnGameOver ' Do nothing
11	 Timer.Tick = OnGameOver ' Do nothing
12	 EndIf
13	EndSub

Listing 11-8: Starting a new round when the timer expires

The NewRound() subroutine starts by increasing bagCount by 1 (line 2);
bagCount just counts how many bags have appeared so far. The plan is to
show a total of 20 bags to the player. If 20 total bags have not been shown
(line 3), the subroutine selects a random position for the bag (lines 4–5)
and then moves the bag to that location in the graphics window (line 6).
We use the variables XG and YG (for the x- and y-positions of the bag of
gold) in the CheckTouch() subroutine. After moving the bag, the code
calls CheckTouch() to see if the bag was placed right on top of the player
(line 7)—how lucky!

If bagCount is more than 20 (line 8), we delete the gold bag shape (line 9)
and register the OnGameOver handler, which is a subroutine with no state-
ments, for both the KeyDown and the Tick events to end the game. Then when
the player presses the arrow keys or when the timer expires after bag 20 has
appeared, nothing happens. Of course, this might surprise the user. There
are other ways to end the game, but we’ll leave this to your imagination if
you want to change it later.

The next subroutine you need to add is the OnGameOver() subroutine
shown in Listing 11-9.

1	Sub OnGameOver
2	EndSub

Listing 11-9: The OnGameOver() subroutine

If you run the game at this point, the bag of gold should move to random
positions on the grid every 2 seconds. You can still move the turtle with the
arrows. After 20 bags have appeared, the bag of gold disappears, and the
arrow keys will no longer move the turtle.

As you test this game, you might decide to give the user more time to
pick up the bags or to remove the lucky feature where a bag could appear
right on top of the player. Play around with this code until you think your
game is fun to play.

162 Chapter 11

Step 4: Update the User’s Score
To complete the game, add the CheckTouch() subroutine in Listing 11-10 to
check whether the player successfully picked up a bag of gold and, if so,
increase their score.

1	Sub CheckTouch
2	 If ((XP = XG) And (YP = YG)) Then
3	 score = score + 1 ' Gives the player one point
4	 Shapes.SetText(scoreID, "Score: " + score)
5	 Sound.PlayClick() ' Adds sound effect
6	 Timer.Pause() ' Resets the timer
7	 Timer.Resume() ' Starts the timer
8	 NewRound() ' Starts a new round
9	 EndIf
10	EndSub

Listing 11-10: Checking whether the turtle gets to the money

If the player’s x- and y-positions are the same as the bag, the turtle
grabs the bag (line 2). Happy turtle! If the lucky turtle gets the bag of gold,
we increase the score (line 3), show it (line 4), and use the Sound object to
play a short click (line 5) for a nice audio effect.

We also need to reset the timer to 2 seconds for the new round. We do
this by pausing the timer (line 6) and then resuming it (line 7). Then we call
NewRound() to set another bag in a random spot after this historic triumph.
Can your turtle do it again?

This completes the game, and you should be able to enjoy your creation
after all this hard work. What’s your top score? (Tip: hold down the arrow
key to move across squares faster.) Share it with your friends (just click
Publish in the Toolbar) to see if they can beat your score. Have fun!

TR Y IT OUT 11-5

Think of some ways to enhance the game, and try out your ideas. Here are some
ideas you could try:

•	 End the game with a bigger bang! Display a message or show some interest-
ing graphics.

•	 Add a second bag of gold.

•	 Make the time limit shorter each time the user grabs the bag.

Head to http://tiny.cc/turtlegame/ to share your turtle game updates.

Event-Driven Programming 163

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 He-Man is hanging out with his friends playing Twilight trivia and needs
a buzzer for when his friends get a question wrong. Make a program that
draws a big X in the graphics window and plays a sound when He-Man
clicks the left mouse button. The next click should erase the X. Make
sure He-Man can repeat this as often as he wants (it’s a long trivia game).

2.	 Make a program that stamps a turtle-face image where the mouse was
clicked each time the user clicks the mouse. Get turtleface.jpg from this
chapter’s folder. (Hint: start with the code in Listing 11-1, and use the
GraphicsWindow.DrawImage() method to draw your image.)

3.	 Open the Maze_Incomplete.sb file from this chapter’s folder. The goal is
to exit the maze in the shortest possible time, but this maze has no exit
yet. Figure out how to add a maze exit condition. When the player exits
the maze, display the time it took to solve the maze.

http://nostarch.com/smallbasic/

12
B u i ld i n g G r a p h i c a l

Us e r I n t e r f a c e s

Every device has a set of interfaces. For
example, an interface could be the but-

tons on a microwave or in an elevator, the
knobs on a dishwasher, or even the soda pop

dispenser at your favorite burger joint. Computer pro-
grams have interfaces as well. Back in the day, programs
had only text menus, but now we use different ways
to interact with computers, such as the icons on your
desktop.

Although you’ve written some very useful programs in this book, they
don’t look like the programs you’re used to, such as a word processor, a
paint program, a web browser, video games, and so on.

166 Chapter 12

Today, most programs use a graphical
user interface, or GUI (pronounced “gooey,”
but don’t worry, it’s not sticky). GUIs can
have menus, buttons, text boxes, and more.

One example is the Calculator pro-
gram shown in Figure 12-1. When a user
clicks one of the number buttons in the
program, that number appears in the box
at the top of the window. And when the
user clicks the = button, the program com-
putes the result of the math operation and
displays it.

In this chapter, you’ll learn about
the Controls object, which lets you create
graphical interfaces for your programs and
games.

Design a User Interface with the Controls Object
Let’s start with a simple program that lets users enter their first and last
name, and then the program greets them by name with a friendly message.
Figure 12-2 shows you FirstGUIApp.sb, the GUI you’ll create. The gridlines
and coordinate points in the figure aren’t part of the output, but they’re
included to illustrate the x- and y-coordinates of the interface’s different
components.

Labels Text boxes
Button

Multiline text box

(20, 20)

(20, 60)

(100, 20)

(100, 60)

(100, 100)

(280, 20)

Figure 12-2: The FirstGUIApp.sb user interface

Step 1: The Design Phase
In this program, a user enters their first and last name in the text boxes
and then clicks the Show Message button. If their first name is Alpaca
and their last name is Bag, the program shows a message like the following
(in the multiline text box).

Figure 12-1: The Calculator pro-
gram’s user interface

Building Graphical User Interfaces 167

Hello there, Alpaca Bag!

Start Small Basic and enter the following two lines:

GraphicsWindow.DrawText(20, 20, "First name:") ' Label
fnText = Controls.AddTextBox(100, 20) ' First name text box

The first statement draws the text First name: at position (20, 20). In the
second statement, the Controls object creates a text box with its upper-left
corner at (100, 20). The box’s identifier is saved in the variable fnText (first-
name text box). You’ll need this identifier later when you want to know what
the user entered in this text box.

Click Run, and you’ll see the First name: label and a text box placed to
its right. The size of the text box is about 160×20 (the default size).

Next, add the following two lines to create the Last name: label and its
associated text box:

GraphicsWindow.DrawText(20, 60, "Last name:") ' Label
lnText = Controls.AddTextBox(100, 60) ' Last name text box

Here, the box’s identifier is saved in lnText (last-name text box). Click
Run again, and you should see the text boxes and their labels perfectly
aligned in the graphics window.

Now you’ll create the Show Message button by calling the Controls
object’s AddButton() method:

showBtn = Controls.AddButton("Show Message", 280, 20) ' Button

The first argument of AddButton() is the button’s caption, "Show Message".
The second and the third arguments tell the Controls object where the
upper-left corner of the button should go. The button’s identifier is saved
in showBtn (show button). Click Run to see what you’ve just created. By default,
the button’s width will be as wide as its label. Try lengthening or shorten-
ing the button’s label, and run the program again to see what happens.

Next, you need to add the last GUI element—the box that shows the
output message. Because you can greet the user with a long message if you
want to, let’s use a multiline text box. The multiline text box has horizontal
and vertical scroll bars that appear automatically if needed, like Harry
Potter’s Room of Requirement. To create a multiline text box, call the
AddMultiLineTextBox() method:

msgText = Controls.AddMultiLineTextBox(100, 100) ' Message text box

Again, the two arguments specify the upper-left position of the box.
The box’s identifier is saved in msgText (message text box); you’ll need it
later to set the box’s text. Click Run, and you’ll see a multiline text box

168 Chapter 12

located at (100, 100). By default, the size of this box is about 200×80. Let’s
make this box wider by calling the SetSize() method. Add this line of code
just after creating the multiline text box:

Controls.SetSize(msgText, 280, 80) ' Makes width = 280 and height = 80

The first argument is the identifier of the control you want to resize,
in this case msgText. The second argument (280) is the width, and the third
(80) is the height. If you run the code now, you’ll see an interface similar to
the one shown earlier in Figure 12-2. Note that the upper-left corner of the
message text box didn’t change when you called SetSize().

Step 2: Program Interactivity
You’ve created all the controls you need and positioned them where you
wanted them. Next, you’ll make these controls interactive. You need to
write some code that responds to the button’s click. When a user clicks the
button, the program needs to read the contents of the first name and the
last name text boxes and then display the greeting in the multiline text box.
Add lines 13–21, as shown in Listing 12-1, to complete the program (you’ve
already written lines 2–11 to create the GUI elements).

1	' FirstGUIApp.sb
2	GraphicsWindow.DrawText(20, 20, "First name:") ' Label
3	fnText = Controls.AddTextBox(100, 20) ' First name text box
4	
5	GraphicsWindow.DrawText(20, 60, "Last name:") ' Label
6	lnText = Controls.AddTextBox(100, 60) ' Last name text box
7	
8	showBtn = Controls.AddButton("Show Message", 280, 20) ' Button
9	
10	msgText = Controls.AddMultiLineTextBox(100, 100) ' Message text box
11	Controls.SetSize(msgText, 280, 80) ' Makes width = 280 and height = 80
12	
13	Controls.ButtonClicked = OnButtonClicked ' Handler for button click
14	
15	Sub OnButtonClicked
16	 firstName = Controls.GetTextBoxText(fnText) ' First name text box
17	 lastName = Controls.GetTextBoxText(lnText) ' Last name text box
18	 fullName = firstName + " " + lastName ' Constructs full name
19	 message = "Hello there, " + fullName + "!" ' Greeting message
20	 Controls.SetTextBoxText(msgText, message)
21	EndSub

Listing 12-1: Creating a simple GUI program

Line 13 registers a handler for the ButtonClicked event. This line tells
the Controls object to call the OnButtonClicked() subroutine whenever the
user clicks the Show Message button.

In the OnButtonClicked() subroutine, GetTextBoxText() is called first to
get the text that’s entered into the first-name text box and save it into the

Building Graphical User Interfaces 169

firstName variable (line 16). This method takes one argument—the identi-
fier of the text box whose text is needed. GetTextBoxText() is called again, but
with a different argument, to get the text that’s entered into the last-name
text box and save it into lastName (line 17). Then the fullName variable is set by
concatenating firstName and lastName with a space between them (line 18). At
line 19 you create your greeting message and save it in the message variable.
Finally, you call SetTextBoxText() to set the text of the message text box. The
first argument is the control’s identifier whose text is to be set, and the sec-
ond argument is the new text (line 20). Run the program, enter some text in
the text boxes, and then click the button to see how the program works.

In the next section, you’ll learn how to make GUI programs that have
more than one button. Now you can push Small Basic’s buttons!

Make a Colorful Drawing Program
If you create a program with several buttons, the ButtonClicked event handler
gets called when a user clicks any of these buttons. To find out which button
was clicked, you can use the Controls.LastClickedButton property to get the
clicked button’s identifier; it’s like asking your friend to tell you who noticed
your brand-new shoes.

To show you how to use the
ButtonClicked event when a program
has more than one button, let’s add
to the Scribble.sb program you made
in Chapter 11 (see Listing 11-4 on
page 156). The user can select the
pen’s color by clicking a button. Check
out the program’s GUI in Figure 12-3.

Try out the updated program,
Scribble2.sb, shown in Listing 12-2. You
might notice that this program uses the
same OnMouseMove event handler as the
one in Listing 11-4.

1	' Scribble2.sb
2	btnR = Controls.AddButton("Red", 10, 30)
3	btnG = Controls.AddButton("Green", 10, 65)
4	btnB = Controls.AddButton("Blue", 10, 100)
5	Controls.SetSize(btnR, 60, 30)
6	Controls.SetSize(btnG, 60, 30)
7	Controls.SetSize(btnB, 60, 30)
8	

Figure 12-3: Sample output of
Scribble2.sb

TR Y IT OUT 12-1

Using the code in Listing 12-1, take the first name and last name from the user, and
then update the code to display a silly short story that includes the user’s name.

170 Chapter 12

9	GraphicsWindow.MouseMove = OnMouseMove
10	Controls.ButtonClicked = OnButtonClicked
11	
12	Sub OnButtonClicked ' Changes the pen color
13	 If (Controls.LastClickedButton = btnR) Then
14	 GraphicsWindow.PenColor = "Red"
15	 ElseIf (Controls.LastClickedButton = btnG) Then
16	 GraphicsWindow.PenColor = "Green"
17	 Else
18	 GraphicsWindow.PenColor = "Blue"
19	 EndIf
20	EndSub
21	
22	Sub OnMouseMove
23	 x = GraphicsWindow.MouseX ' Current x position of mouse
24	 y = GraphicsWindow.MouseY ' Current y position of mouse
25	
26	 If (Mouse.IsLeftButtonDown) Then
27	 GraphicsWindow.DrawLine(prevX, prevY, x, y)
28	 EndIf
29	
30	 prevX = x ' Updates the last (previous) position
31	 prevY = y
32	EndSub

Listing 12-2: Clicking the buttons to change the pen color

Lines 2–4 create the three color selection buttons. The coordinates of
the upper-left corner of the three buttons are (10, 30), (10, 65), and (10, 100).
The statements in lines 5–7 set the size of each button to 60 × 30 (width = 60
and height = 30). Lines 9–10 register the handlers for the MouseMove and
ButtonClicked events.

The program calls the OnButtonClicked() subroutine (line 12) when
a user clicks any of the three buttons. To know which one was clicked,
the subroutine uses an If/ElseIf ladder to compare the LastClickedButton
property with the identifiers of the three buttons (lines 13–19). After iden-
tifying the clicked button, the subroutine sets the PenColor property (of
GraphicsWindow) to the selected color. The OnMouseMove() subroutine is the
same as the one in the previous version of the program, and it is defined
on lines 22–32.

T i p 	 You can also write the OnButtonClicked() subroutine like this:

Sub OnButtonClicked
 btnID = Controls.LastClickedButton
 GraphicsWindow.PenColor = Controls.GetButtonCaption(btnID)
EndSub

Instead of hardcoding the color of the clicked button, you get the color from the
clicked button’s caption using the GetButtonCaption() method.

Building Graphical User Interfaces 171

Explore Circuits with Code
In this section, you’ll create a program that demonstrates an electrical
series circuit. (Your skills are shocking!) The circuit includes a battery,
three resistors, and a switch connected in series. A user can change the
battery’s voltage and the values of the three resistors by entering their
values in the text boxes. When the user enters a new value in any of the text
boxes, the Controls object raises the TextTyped event. In response to this event,
the program automatically calculates (and displays) the current that flows
through the circuit and the voltages across each of the three resistors (see
Figure 12-4).

Computed by the
application

On/off switch

r1Text

vText

r2Text

r3Text

Figure 12-4: A program that shows you the operation of a series circuit

Here are the equations that describe the science behind the program:

Total resistance  Rtot = R1 + R2 + R3

Current through the circuit  I = V ÷ Rtot , where V is the battery voltage

Voltage across R1  V 1 = I × R1

Voltage across R2  V 2 = I × R2

Voltage across R3  V 3 = I × R3

TR Y IT OUT 12-2

You can change the color of a button’s caption by setting the BrushColor property
of GraphicsWindow before you create the button. Change Listing 12-2 so the text
color of each button matches its caption (write the text of the Blue button in blue,
and so on).

172 Chapter 12

Let’s look at the computations. You calculate the total resistance (Rtot)
by adding the values of the three resistors together. Next, you calculate
the current (I ) that flows in the circuit by dividing the battery voltage (V )
by the total resistance. Then you calculate the voltage across each resis-
tor by multiplying the current by the value of that resistor. (Try reading
this paragraph aloud to your friends as if it’s super easy. It will blow their
minds!)

The following steps guide you through creating this program. So buckle
your seat belt, hold on tight, and get set to rocket into the exciting world of
computer simulations.

Step 1: Open the Startup File
To start creating this circuit simulator, open SeriesCircuit_Incomplete.sb from
this chapter’s folder. The file contains comments that tell you where to add
your code and empty placeholders for the subroutines you’ll write.

The folder for this chapter also includes the two background images
you’ll need: bkgndOff.bmp and bkgndOn.bmp (see Figure 12-5; we added the
image names for clarity). The two images are the same except for the state
of the switch: the switch is in the open position in bkgndOff.bmp but is closed
in bkgndOn.bmp.

bkgndOff.bmp bkgndOn.bmp

Figure 12-5: The two background images of SeriesCircuit.sb

When you start writing the code for this program, you’ll see many hard-
coded numbers. These numbers represent the coordinate points for the
text boxes and labels and for checking the switch’s boundaries. To help you
understand where these numbers come from, refer to Figure 12-6. In this
figure, we added coordinate axes and gridlines on top of the background
image, and we marked the coordinates of all the points you’ll use in the
program.

Building Graphical User Interfaces 173

(130, 80) (270, 80)

(270, 140)(130, 140)

(34, 100)

(57, 218)

(185, 300)

(308, 208)

(245, 340)

(415, 230)

40

80

120

160

200

240

280

320

360

40
0

44
0

48
0

40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

Figure 12-6: Illustrating the magic numbers used in SeriesCircuit.sb

Step 2: Add the Main Code
As in the previous examples, you’ll start by designing the user interface.
You’ll write the code to load the background images, create and position
the GUI elements (the text boxes), and then register the event handlers.
Add the main part of the program, which is shown in Listing 12-3.

1	' SeriesCircuit_Incomplete.sb
2	offImg = ImageList.LoadImage(Program.Directory + "\bkgndOff.bmp")
3	onImg = ImageList.LoadImage(Program.Directory + "\bkgndOn.bmp")
4	bkgndImg = offImg ' Starts with the switch-off image
5	
6	GraphicsWindow.Width = ImageList.GetWidthOfImage(offImg)
7	GraphicsWindow.Height = ImageList.GetHeightOfImage(offImg)
8	GraphicsWindow.DrawImage(bkgndImg, 0, 0)
9	
10	r1Text = Controls.AddTextBox(130, 140) ' R1 text box
11	r2Text = Controls.AddTextBox(270, 140) ' R2 text box
12	r3Text = Controls.AddTextBox(308, 208) ' R3 text box
13	vText = Controls.AddTextBox(57, 218) ' Voltage text box
14	Controls.SetSize(r1Text, 42, 25) ' Resizes the text boxes
15	Controls.SetSize(r2Text, 42, 25)
16	Controls.SetSize(r3Text, 42, 25)	
17	Controls.SetSize(vText, 48, 25)
18	Controls.SetTextBoxText(vText, 10) ' Sets the initial values
19	Controls.SetTextBoxText(r1Text, 4)
20	Controls.SetTextBoxText(r2Text, 4)
21	Controls.SetTextBoxText(r3Text, 2)
22	
23	GraphicsWindow.MouseDown = OnMouseDown
24	Controls.TextTyped = OnTextTyped

Listing 12-3: Setting up the GUI

174 Chapter 12

You start by loading the two background images and saving their iden-
tifiers in the offImg and onImg variables (line 2–3). The bkgndImg variable
holds the current background image, which changes when a user clicks
the switch. When the program starts, the switch is open, so the program
sets bkgndImg = offImg (line 4). Lines 6–7 adjust the width and height of the
graphics window to match the size of the background image, and line 8
draws the background image (offImg in this case) in the graphics window.

Lines 10–17 create the four text boxes (for the three resistors and the
battery voltage) and resize them so they’re exactly on top of their positions
in the background image. In lines 18–21, you set default values for these
text boxes. In line 23, you register a handler for the MouseDown event, because
you’ll want to know when a user clicks the switch. Line 24 registers a han-
dler for the TextTyped event, because you’ll calculate and display the values
of I, V1, V2, and V3 automatically when the user enters a new value in any of
the four text boxes.

Step 3: Toggle the Switch
When a user clicks the switch, you need to change the background image to
toggle the switch. Add the OnMouseDown() subroutine in Listing 12-4.

1	Sub OnMouseDown ' Switches the background image
2	 x = GraphicsWindow.MouseX
3	 y = GraphicsWindow.MouseY
4	 If ((x > 185) And (x < 245) And (y > 300) And (y < 340)) Then
5	 If (bkgndImg = offImg) Then
6	 bkgndImg = onImg
7	 Else
8	 bkgndImg = offImg
9	 EndIf
10	 UpdateUserInterface()
11	 EndIf
12	EndSub

Listing 12-4: Changing the background image

The subroutine starts by getting the x- and y-coordinates of the point
where the mouse was clicked and setting them to the variables x and y
(lines 2–3). Line 4 then checks if this point lies within the rectangular
region of the switch; if the mouse was inside the boundaries of the switch,
the subroutine toggles the current value of the bkgndImg variable (from on
to off or from off to on) at lines 5–9 and then calls the UpdateUserInterface()
subroutine to switch the background image and update the calculated
values (line 10). As you’ll see in a moment, if the user opens the switch,
the program shows only the offImg background image; the values of I, V1,
V2, and V3 won’t show because no current’s flowing through the circuit when
the switch is open.

Building Graphical User Interfaces 175

Step 4: Respond to Changes
Add the OnTextTyped() subroutine in Listing 12-5. This subroutine is called
when the user enters a new value in any of the four text boxes. As you can
see, this subroutine just calls UpdateUserInterface(), which updates the UI to
show the current values of V, R1, R2, and R3 as well as the state of the switch.

1	Sub OnTextTyped
2	 UpdateUserInterface()
3	EndSub

Listing 12-5: The OnTextTyped() subroutine

Step 5: Update the Program’s Interface
Now add the UpdateUserInterface() subroutine in Listing 12-6.

1	Sub UpdateUserInterface ' Puts new values on the background
2	 GraphicsWindow.DrawImage(bkgndImg, 0, 0)
3	 If (bkgndImg = onImg) Then
4	 R1 = Controls.GetTextBoxText(r1Text)
5	 R2 = Controls.GetTextBoxText(r2Text)
6	 R3 = Controls.GetTextBoxText(r3Text)
7	 V = Controls.GetTextBoxText(vText)
8	 Rtot = R1 + R2 + R3
9	 If (Rtot > 0) Then
10	 I = V / Rtot
11	 V1 = Math.Round(I * R1 * 100) / 100
12	 V2 = Math.Round(I * R2 * 100) / 100
13	 V3 = Math.Round(I * R3 * 100) / 100
14	 I = Math.Round(I * 100) / 100
15	 GraphicsWindow.DrawText(130, 80, V1 + " V")
16	 GraphicsWindow.DrawText(270, 80, V2 + " V")
17	 GraphicsWindow.DrawText(415, 230, V3 + " V")
18	 GraphicsWindow.DrawText(34, 100, I + " A")
19	 EndIf
20	 EndIf
21	EndSub

Listing 12-6: Updating the text boxes

The UpdateUserInterface() subroutine starts by redrawing the selected
background image. If the switch is in the off position, the If statement
on line 3 is false and the subroutine ends; the UI doesn’t show any of the
computed values (because no current is flowing through the circuit). But
if the switch is on (which means the current background image is set to
onImg), the subroutine moves on to compute the values of I, V1, V2, and V3.
It starts by collecting the content of the four text boxes (lines 4–7). It then
computes the total resistance by adding the values R1, R2, and R3 together

176 Chapter 12

(line 8). If the total resistance is greater than 0 (line 9), the subroutine
computes the current (I) that flows through the circuit (line 10) and the
values of V1, V2, and V3, rounding each value to the nearest hundredth
(lines 11–14). The subroutine then shows the computed values at the cor-
rect locations on top of the background image (lines 15–18).

Most of the work in this program was designing the GUI (drawing the
background images and positioning the text boxes on top of the background
image). Then you had to write the code for handling the events, performing
the calculations, and displaying the results. Congratulations; you just made
a virtual electrical circuit!

In the next section, you’ll write a GUI program that explains another
object in the Small Basic library, the Flickr object.

Program Your Own Image Viewer
In this section, you’ll create an image viewer called ImageViewer.sb that dis-
plays images from Flickr (a photo-sharing website) based on search input
from a user. Small Basic gives you an object, appropriately named Flickr,
which gets images from the Flickr website: http://www.flickr.com/. Figure 12-7
shows the GUI for this program.

Figure 12-7: Sample output of ImageViewer.sb

TR Y IT OUT 12-3

Think of ways to change this simulation to something else. Use different background
images, like architectural blueprints, a pizza, or a Google Maps photo of your
neighborhood. Then update the placement of the text boxes and the logic/math of
what’s entered to match your new theme. Head to http://tiny.cc/sharesimulation/
to show off your program and to see what others have created.

http://www.flickr.com/
http://tiny.cc/sharesimulation/

Building Graphical User Interfaces 177

N o t e 	 You’ll need Small Basic version 1.1 or later to use the Flickr object.

The ImageViewer.sb program includes a text box into which the user
enters the search tag and a button (labeled Next). When the user clicks the
button, the program uses the Flickr object to get (and display) an image
that matches the user’s search tag. The program is shown in Listing 12-7.

1	' ImageViewer.sb
2	GraphicsWindow.DrawText(10, 14, "Search for an image:")
3	tagText = Controls.AddTextBox(140, 10)
4	Controls.SetSize(tagText, 160, 26)
5	Controls.AddButton("Next", 305, 10)
6	
7	Controls.ButtonClicked = OnButtonClicked
8	
9	Sub OnButtonClicked
10	 tag = Controls.GetTextBoxText(tagText)
11	 If (tag <> "") Then
12	 img = ImageList.LoadImage(Flickr.GetRandomPicture(tag))
13	 If (img = "") Then
14	 GraphicsWindow.ShowMessage("No images found.", "Sorry.")
15	 Else
16	 GraphicsWindow.Width = ImageList.GetWidthOfImage(img)
17	 GraphicsWindow.Height = ImageList.GetHeightOfImage(img) + 40
18	 GraphicsWindow.DrawImage(img, 0, 40)
19	 EndIf
20	 EndIf
21	EndSub

Listing 12-7: Loading images from Flickr

The program starts by designing the GUI (lines 2–5) and registering
the ButtonClicked event handler (line 7). When the button is clicked, the
OnButtonClicked() subroutine gets the search text from the text box and
saves it in the tag variable (line 10). If tag isn’t empty (line 11), the code
searches Flickr using the given tag text for a random picture and then
grabs the URL (line 12) by using Flickr.GetRandomPicture().

That URL is passed to ImageList.LoadImage(), which loads an image from
a file or the Internet and saves it into the img variable (line 12). If img is empty,
which means Flickr didn’t find an image with the user’s tag, you let the user
know in a message box (line 14). If Flickr found an image, you resize the
graphics window to the dimensions of the loaded image (lines 16–17) and
draw the image directly below the text box and the button (line 18).

178 Chapter 12

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 In this program, you’ll create a hidden treasure game. Open the file
HiddenTreasure_Incomplete.sb from this chapter’s folder. When you run
the program, you’ll see the following interface.

The purpose of the game is to guess the location of a hidden trea-
sure. The player makes a guess by pressing one of the four buttons. If
they guess correctly, they gain $10. Otherwise, they lose $5. The game
ends after 10 rounds. Follow the comments shown in the program’s
source code to write the missing code and complete the program.

TR Y IT OUT 12- 4

Write a program to ask the user what their favorite animal is. Then search for that
animal using the Flickr object and display the returned image. Next, ask the user,
“Like this one?” and show them two buttons labeled Yes and No. If the user clicks
Yes, display Hooray! in a message box. If they click No, display a different ran-
dom picture of that animal and ask, “How about this one?” Continue these steps
until the user clicks Yes. You’ve just turned a simple program into a game!

 http://nostarch.com/smallbasic/

Building Graphical User Interfaces 179

2.	 In this exercise, you’ll create a program that computes the total cost
of attending a special show at Sea World. Open the file SeaWorld_
Incomplete.sb from this chapter’s folder. When you run the program,
you’ll see the following user interface. The user enters the number of
adult, senior, student, and VIP tickets they want to buy and then clicks
the Compute button to calculate the total charge. Complete the pro-
gram to display the total charge when the user clicks Compute.

Text box: txtBox1

Text box: txtBox2

Text box: txtBox3

Text box: txtBox4
Text box: txtBox5

Button: btn1

13
R e p e a t i n g F o r L o o ps

Have you ever noticed that no matter how
many times you take out the trash, clean

dirty dishes, and do laundry, you always have
to do it again? What if you only had to do each

task once, and then you created a robot version of
yourself to do it every time after that? That would be
amazing!

In the Small Basic universe, automating repetitive tasks is a breeze.
You only have to write code for a repetitive task once, and then you can use a
loop to repeat that task as many times as you need.

Small Basic uses two types of loop statements: For loops and While loops.
In this chapter, you’ll learn about For loops, explore nested For loops in
depth, and create some programs that take advantage of your computer’s
passion for repetition. You’ll learn how to use For loops in a wide range of
practical applications. Let’s get loopy!

182 Chapter 13

The For Loop
Let’s say you want to make a program that displays the multiplication
table for nine: 1 × 9, 2 × 9, 3 × 9, through 10 × 9. Your first attempt might
look like this:

TextWindow.WriteLine(" 1 x 9 = " + (1 * 9))
TextWindow.WriteLine(" 2 x 9 = " + (2 * 9))
TextWindow.WriteLine(" 3 x 9 = " + (3 * 9))
TextWindow.WriteLine(" 4 x 9 = " + (3 * 9))
TextWindow.WriteLine(" 5 x 9 = " + (3 * 9))
TextWindow.WriteLine(" 6 x 9 = " + (3 * 9))
TextWindow.WriteLine(" 7 x 9 = " + (3 * 9))
TextWindow.WriteLine(" 8 x 9 = " + (3 * 9))
TextWindow.WriteLine(" 9 x 9 = " + (3 * 9))
TextWindow.WriteLine("10 x 9 = " + (10 * 9))

Phew! Look at that wall-o-code! Although Small Basic lets you easily
copy and paste selected statements, this program repeats a lot of code.
What if you want to display the multiplication table up to 100 or 1000?
Clearly, this isn’t the best way to write your program. Here’s a version of
this program that uses a For loop to get the same result:

For N = 1 To 10
 TextWindow.WriteLine(N + " x 9 = " + (N * 9))
EndFor

Run this program and check out what happens. Wasn’t that easier than
writing out every line? Now you’ve seen the power of loops!

The loop runs the same statement but with a different value of N each
time. First, the code sets the value of N to 1, which is the value we want
to start creating the multiplication table from. Next, it runs all the state-
ments between the For and the EndFor keywords. In this case, it runs the
WriteLine() method, replacing N with its current value. This is called an
iteration of the loop.

Then it sets N to 2. The value of N is compared with the ending value
(or terminal value) of the loop, which is 10 in this case. If N is less than 10,
the statements in the body of the For loop run again, completing another
iteration of the loop. Note that the For loop automatically increases N by 1
during each iteration. This pro-
cess continues, using N = 3, then
N = 4, all the way to N = 10.

After the program runs the
tenth iteration, it moves to the
statement after the EndFor key-
word (if there is one), and the
loop is complete.

Now that you’ve seen a basic
For loop in action, look at the
syntax in Figure 13-1.

Figure 13-1: Syntax of a basic For loop

Loop counter

Initial value

Terminal value

Body
For N = 1 To 10
 Statement(s)
EndFor

Repeating For Loops 183

Each For loop starts with the keyword For. The statements contained
between the For and EndFor keywords are called the body of the For loop. The
variable, N, is the loop control variable (or loop counter). It controls the number
of times the loop runs, and it’s treated like any other variable in the pro-
gram. The 1 To 10 part of the statement determines how many times the
loop runs.

It’s important to note that the condition to check whether or not the
loop runs is tested at the top of the loop. For example, the following code
sets N to 1 and then compares it to a terminal value of –10. Because 1 is
greater than –10, the code won’t run even once:

For N = 1 To -10
 TextWindow.WriteLine(N) ' This won't be executed
EndFor

Let’s look at some fun examples that show you how to use a For loop.

Magical Moving Text
In this example, you’ll create a program that moves a word or sentence
across the text window from left to right. Figure 13-2 shows that with each
iteration, the word displayed in the last iteration disappears, so the text
appears to be animated, moving across the screen to the right.

CursorLeft 0 1 2 3 4 5 6 7 8 9 10 ...

Iteration 1

Iteration 2

Iteration 3

Iteration 4

M o v i n g

M o v i n g

M o v i n g

M o v i n g

Figure 13-2: Using the Write() method to move a word across the
text window

Recall that in Chapter 2 you used the CursorLeft property to display
text in different places inside the text window. In this example, you’ll set
CursorLeft to 0 and use the Write() method to write the word. After a short
delay, you’ll change CursorLeft to 1 and write the word again. You’ll then
change CursorLeft to 2, then 3, and so on. Using a For loop, you’ll automate
this process to make it look like the word is moving across the text window.
Enter the program in Listing 13-1.

TR Y IT OUT 13-1

Think about some other repetitive tasks that you could automate with a loop.
Describe a program you’d build with a For loop.

184 Chapter 13

1	' MovingWord.sb
2	For N = 0 To 40
3	 TextWindow.CursorLeft = N
4	 TextWindow.Write(" Moving") ' Erases the previous line
5	 Program.Delay(250) ' Delays so you can read it
6	EndFor
7	TextWindow.WriteLine("")

Listing 13-1: Moving a word across the text window

The program starts a loop that runs from N = 0 To 40 (line 2).
During each iteration, it sets the CursorLeft property equal to the loop
counter N (line 3) and then uses the Write() method to write the word
(line 4). The space before the text Moving helps to erase the previous
word. The Program.Delay(250) call at line 5 causes the program to wait for
250 milliseconds before it starts the next iteration of the loop. When the
loop ends, the program writes an empty line (line 7).

Let’s move on to another example.

TI P 	 Although it isn’t required, indenting the statements in the body of a For loop makes
your code easier to read.

Adding ’em Up
In programming, loops are used in different ways. One important use of
loops is called an accumulator loop, which accumulates (or adds up) a value
during each iteration of the loop. Accumulator loops are commonly used to
keep count of values in programs.

Let’s say you need to find the sum of all integers from 1 to 10: 1 + 2 +
3 + . . . + 10. That’s what the program in Listing 13-2 does.

1	' Sum.sb
2	sum = 0
3	For N = 1 To 10
4	 sum = sum + N ' Adds the new value of N to the sum
5	EndFor
6	TextWindow.WriteLine("sum = " + sum)

Listing 13-2: Using a For loop to add numbers

TR Y IT OUT 13-2

Change Listing 13-1 to animate your own message to your friends or family mem-
bers and share it with them. Mine is “I Like Tacos!”

Repeating For Loops 185

The program uses a variable named sum to hold the running total
(this variable is usually called an accumulator). The program starts by ini-
tializing sum to 0 (line 2). Then a For loop with a loop counter named N runs
from 1 to 10 (line 3). During each iteration, the program adds the value
of N to the accumulator by using the statement at line 4. This statement
adds the current value of N to the current value of sum and stores the result
back into sum. After the first iteration, sum is 1 (0 + 1); after the second iter-
ation, sum is 3 (1 + 2); after the third iteration, sum is 6 (3 + 3); and so on.
When the loop ends, the program displays the value of the sum variable on
line 6: sum = 55.

Formatting Your Output
The way you display the output of a
program is often just as important as
the information you display. If the out-
put is difficult to read, people won’t be
able to understand what the informa-
tion means. A well-laid-out display is an
essential part of your program design,
but getting the formatting right can be
tedious. To make it easier, you can use
For loops. For example, let’s use a For
loop to write a program that outputs the
squares of 1 to 5 in a table format (see
Figure 13-3).

Enter and run the program in Listing 13-3.

1	' SquareTable.sb
2	TextWindow.Title = "Table of Squares"
3	TextWindow.WriteLine(" Number Square")
4	TextWindow.WriteLine("======== =========")
5	
6	For N = 1 To 5
7	 TextWindow.CursorLeft = 3 ' Moves to middle of col 1
8	 TextWindow.Write(N) ' Writes the number

Figure 13-3: The output of
SquareTable.sb

TR Y IT OUT 13-3

When the great mathematician Carl Gauss first went to school, his teacher asked
the class to find the sum of all the numbers between 1 and 100, that is, 1 + 2 +
3 + 4 + . . . + 100. Gauss took one look at the problem and immediately put his
answer on the teacher’s desk. The teacher was amazed—Gauss was right! Write
a program to find the answer that Gauss worked out in his head. Of course, Gauss
didn’t use Small Basic, but he did find a shortcut. Can you figure out his secret
method?

186 Chapter 13

9	 TextWindow.CursorLeft = 14 ' Moves to next column
10	 TextWindow.WriteLine(N * N) ' Writes its square
11	EndFor

Listing 13-3: Using a For loop to display tabular data

Lines 3–4 write the headers for the two table columns. The loop at
line 6 writes the five numbers and their squares. The TextWindow.CursorLeft
property sets the desired position under each column (lines 7 and 9).
Each time the code loops, it displays the correct value in its proper spot.

Drawing All Kinds of Lines
You can use For loops to change all kinds of values, including visual dis-
plays. Listing 13-4 draws 10 lines of increasing width in the graphics window.

1	' Lines.sb
2	GraphicsWindow.Title = "Lines"
3	GraphicsWindow.PenColor = "Blue"
4	For N = 1 To 10
5	 GraphicsWindow.PenWidth = N
6	 y = N * 15 ' Vertical position of the line
7	 GraphicsWindow.DrawLine(0, y, 200, y)
8	EndFor

Listing 13-4: Increasing the line width with each iteration

After setting the window’s title and the pen’s
color (lines 2–3), the program starts a For loop
with a loop counter named N that runs from 1 to
10 (line 4). In each iteration, the program sets
the pen’s width to the current value of N (line 5),
sets the vertical position of the line (line 6), and
then draws a line that is 200 pixels long (line 7).
The output is shown in Figure 13-4.

Figure 13-4: The output of
Lines.sb

TR Y IT OUT 13- 4

The famous song Twelve Days of Christmas goes like this: “On the first day of
Christmas my true love gave to me a partridge in a pear tree. On the second
day of Christmas my true love gave to me two turtle doves and a partridge in a
pear tree. On the third day of…” and so on for 12 days. On the twelfth day, the
singer received 12 + 11 + . . . + 2 + 1 gifts. Write a program that shows the
total gifts received on each of the 12 days. Include two columns in your output:
the day number and the total gifts received on that day.

Repeating For Loops 187

Changing the Step Size
The previous section showed you the syntax of the For loop that automati-
cally increases the loop counter by one after each iteration. But For loops
have a general form that lets you control the Step size of the loop’s control
variable to increase it or decrease it by however much you want. Here’s the
general form of the For loop:

For N = A To B Step C
 Statement(s)
EndFor

It works like the simplified loop you saw earlier. But instead of incre-
menting the loop counter N by one, you can decide how much to change N.
You do this by setting the amount in the Step size, C, which can be a posi-
tive or negative number or any Small Basic expression. Let’s look at some
examples that show you how to use this general form of the For loop.

Counting Down by Twos
In this example, the program counts from a starting value (10 in this
case) down to 0, subtracting 2 at a time so the program writes the num-
bers 10, 8, 6, 4, 2, 0 in the text window. Enter and run the program in
Listing 13-5.

1	' CountDown.sb
2	For N = 10 To 0 Step -2 ' Uses a negative step size
3	 TextWindow.WriteLine(N)
4	EndFor

Listing 13-5: Counting down with Step

A negative value was used for the Step size (line 2) to reduce the value
of the loop counter by 2 after each iteration.

TR Y IT OUT 13-5

What does the following program do? Run the program to check your answer.

For N = 1 To 200
 GraphicsWindow.PenColor = GraphicsWindow.GetRandomColor()
 x2 = Math.GetRandomNumber(300)
 y2 = Math.GetRandomNumber(300)
 GraphicsWindow.DrawLine(0, 0, x2, y2)
EndFor

188 Chapter 13

Here’s the output:

10
8
6
4
2
0

Making a Fractional Step
The Step size doesn’t have to be an integer value. You can also use a decimal
value, as shown in Listing 13-6.

1	 ' DecimalStep.sb
2	 GraphicsWindow.FontSize = 10
3	 GraphicsWindow.BrushColor = "Black"
4	
5	 yPos = 0
6	 For angle = 0 To (2 * Math.PI) Step 0.3
7	 xPos = 100 * (1 + Math.Sin(angle))
8	 GraphicsWindow.DrawText(xPos, yPos, "Hello")
9	 yPos = yPos + 8
10	EndFor

Listing 13-6: Making a design with text

The loop counter in this example is an
angle (in radians) that uses the values from
0 to 2π in increments of 0.3 (line 6). In each
iteration, the sine of the angle is computed,
and the answer is used to set the horizontal
position of the cursor (line 7). The word Hello
is then displayed at that position (line 8),
and the variable yPos is adjusted to set the
vertical position for the next output text
(line 9). Experimenting with different Step
sizes can create some very cool stuff, like the
wavy design shown in Figure 13-5.

Figure 13-5: The output of
DecimalStep.sb

TR Y IT OUT 13-6

Write a program that finds the sum of all odd numbers from 5 to 25.

Repeating For Loops 189

Nested Loops
The statements in the body of a For loop can be any Small Basic statement,
including another For loop. Nesting is when you put one For loop inside
another For loop (no birds are involved). Using nested loops allows you to
create iterations in two or more dimensions. This technique is important,
and you can use it to solve a wide range of programming problems.

To understand the idea of nested For loops, you’ll examine a program
that causes your computer to “ jump” four times and “clap” three times after
each jump. Because the program needs to count two actions (jumps and
claps), it needs to use two loops, as shown in Listing 13-7. The counter for
the outer loop, j, runs from 1 to 4. The counter for the inner loop, c, runs
from 1 to 3.

1	' NestedLoops.sb
2	For j = 1 To 4 ' The jump counter
3	 TextWindow.Write("Jump " + j + ": ")
4	 For c = 1 To 3 ' The clap counter
5	 TextWindow.Write("Clap " + c + " ")
6	 EndFor
7	 TextWindow.WriteLine("")
8	EndFor

Listing 13-7: Nesting For loops

In the first iteration of the outer loop (where j = 1), the inner loop
repeats three times (for the three values of c); each time, it writes the word
Clap followed by a space, the current value of c, and another space (line 5).
When you nest For loops like this, the inner loop goes through all its itera-
tions for each iteration of the outer loop. So the first iteration of the outer
loop makes the program display Jump 1: Clap 1 Clap 2 Clap 3. When the
inner loop ends, the program outputs an empty line (line 7) to move the
cursor to the beginning of the next line, and the second iteration of the
outer loop starts with j = 2. The inner loop runs again for c = 1, 2, and 3.
This causes the program to display Jump 2: Clap 1 Clap 2 Clap 3. This con-
tinues, so the program displays Jump 3: Clap 1 Clap 2 Clap 3 and then Jump 4:
Clap 1 Clap 2 Clap 3. Then the program ends. Perhaps your computer wants
to be a cheerleader!

Figure 13-6 helps to explain how the program works. The outer circle
represents each time the outer loop runs: for example, at the top of the
outer circle, when j = 1 in the outer loop, the inner loop runs three times,
where c = 1, c = 2, and c = 3. Follow the outer loop and think through each
inner loop. Continue until you get all the way around the outer circle.

190 Chapter 13

j = 1

j = 2

j = 3

j = 4

c

c

c

c

1

2

3

1

1

1

22

2

3

3

3

Figure 13-6: How NestedLoops.sb works

The output should look like this:

Jump 1: Clap 1 Clap 2 Clap 3
Jump 2: Clap 1 Clap 2 Clap 3
Jump 3: Clap 1 Clap 2 Clap 3
Jump 4: Clap 1 Clap 2 Clap 3

Now let’s look at other problems where nested For loops come in handy!

Tessellating for Fun
In this example, an application covers the graphics window by stamping a
small image over it. The complete program is shown in Listing 13-8.

1	' Stamp.sb
2	GraphicsWindow.Title = "Stamp"
3	
4	path = Program.Directory
5	img = ImageList.LoadImage(path + "\Trophy.ico")
6	
7	width = ImageList.GetWidthOfImage(img) ' Width of image
8	height = ImageList.GetHeightOfImage(img) ' Height of image
9	
10	GraphicsWindow.Width = 8 * width ' 8 columns
11	GraphicsWindow.Height = 3 * height ' 3 rows
12	
13	For row = 0 To 2 ' 3 rows
14	 For col = 0 To 7 ' 8 columns
15	 GraphicsWindow.DrawImage(img, col * width, row * height)
16	 EndFor
17	EndFor

Listing 13-8: Stamping a pattern across the graphics window

Repeating For Loops 191

Copy the Trophy.ico file from this chap-
ter’s folder to your application’s folder, and
then run this program to see the result.
Your screen should look like Figure 13-7.
Way to go, champ!

The program loads an image file
(Trophy.ico) from your application’s folder
and saves the image’s identifier in a variable
named img (line 5). This is done by call-
ing the ImageList object’s LoadImage() method. The program then uses the
ImageList object’s methods to tell you the width and height of the loaded
image in pixels (lines 7–8). The image’s identifier (the img variable) is
passed as an argument to the called methods. In lines 10–11, the program
resizes the graphics window to hold eight horizontal and three vertical
copies of the image. The program then uses a nested loop to stamp the
image at different positions in the graphics window. The outer loop runs
for three rows, and the inner loop runs for eight columns, for a total of 24
(3 × 8) iterations (lines 13–14). In each iteration, the x- and y-positions of
the image are computed based on the dimensions of the image, and the
image is drawn at that location (line 15). Now your trophy collection is big-
ger than Michael Jordan’s is!

Multiple Nesting Levels
You can have more than two levels of nesting. Listing 13-9 displays all pos-
sible combinations of quarters, dimes, and nickels that add up to 50 cents.

1	' CoinsAdder.sb
2	TextWindow.WriteLine("Quarters Dimes Nickels")
3	TextWindow.WriteLine("-------- ----- -------")
4	
5	For Q = 0 To 2 ' Quarters
6	 For D = 0 To 5 ' Dimes
7	 For N = 0 To 10 ' Nickels
8	 If (Q * 25 + D * 10 + N * 5 = 50) Then
9	 TextWindow.Write(Q)
10	 TextWindow.CursorLeft = 13
11	 TextWindow.Write(D)
12	 TextWindow.CursorLeft = 24
13	 TextWindow.WriteLine(N)
14	 EndIf

Figure 13-7: The output of
Stamp.sb

TR Y IT OUT 13-7

Update Listing 13-8 to stamp a different image instead of a trophy. Then show
your friends and family!

192 Chapter 13

15	 EndFor
16	 EndFor
17	EndFor

Listing 13-9: Listing the combinations of coins that add up to 50 cents

The first loop initially keeps track of quarters by setting Q = 0. The
second loop runs six times and counts all the dimes: For D = 0 To 5. For each
pass of the second loop, the third loop runs 11 times, keeping track of the
nickels: For N = 0 To 10. That means the If condition in line 8 is checked
198 times (3 × 6 × 11)! If the coin values total 50, that combination is dis-
played (lines 9–13). While looping through, the code uses the CursorLeft
property to line up the columns and rows properly. Here’s the output:

Quarters Dimes Nickels
-------- ----- -------
0 0 10
0 1 8
0 2 6
0 3 4
0 4 2
0 5 0
1 0 5
1 1 3
1 2 1
2 0 0

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Write a For loop that displays this output:

I had 1 slices of pizza.
I had 2 slices of pizza.
I had 3 slices of pizza.
...
I had 10 slices of pizza.

TR Y IT OUT 13-8

Write a program that finds all the sets of three integers that are less than 20 and
can be the sides of a right triangle.

http://nostarch.com/smallbasic/

Repeating For Loops 193

2.	 Although the pizza in the previous exercise is very yummy, it’s not
grammatically correct, because the program outputs 1 slices of pizza.
Fix the program so that its output is grammatically correct (and you
won’t embarrass your English teacher). (Hint: use an If statement
inside the For loop.)

3.	 We built a game for you to quiz Alice on her multiplication so she’ll
be ready for the queen’s questions. The program generates 10 random
multiplication questions and asks Alice to enter the answer for each
question. Alice earns one point for each correct answer. If she enters a
wrong answer, show her the correct answer. The program ends by show-
ing her total score. Re-create the program, run it, and explain how it
works:

score = 0
For N = 1 To 10 ' Asks 10 questions
 n1 = Math.GetRandomNumber(10)
 n2 = Math.GetRandomNumber(10)

 TextWindow.Write(n1 + " x " + n2 + "? ")
 ans = TextWindow.ReadNumber()

 If (ans = n1 * n2) Then ' Increases the score
 score = score + 1
 Else ' Shows the correct answer
 TextWindow.WriteLine("Incorrect --> " + (n1 * n2))
 EndIf
EndFor	
TextWindow.WriteLine("Your score is: " + score + "/10")

4.	 Write a program that draws the following image. (Hint: use a For loop
to draw the line pattern for each of the four corners.)

14
C r e a t i n g C o n d i t i o n a l

W h i l e L o o ps

In Chapter 13, we showed you how to use
the For loop to repeat code a certain num-

ber of times. For loops are ideal to use when
you know exactly how many times you want to

repeat code. While is another Small Basic keyword that
lets you create loops. It’s useful when you don’t know
how many times you want to repeat a loop in advance,
because While loops keep running code as long as a
condition is true.

A While loop condition is similar to how your parents keep telling you
to clean your room until it’s spotless or how you keep eating Thanksgiving
turkey until you’re stuffed! When the loop’s condition becomes false, the
loop ends, and the program moves on.

196 Chapter 14

In this chapter, you’ll learn how to write While loops and use them to
verify user input and make games. While loops are a powerful programming
concept; once you master them, you’ll be able to make all kinds of cool
applications.

When to Use While Loops
Let’s say you want to make a number-guessing game that selects a random
number between 1 and 100 and prompts a player to guess it. If the player’s
guess is wrong, the game tells them whether their guess was higher or lower
than the secret number, and then it asks them to guess again. The game
keeps asking the player to guess the number until they get it right.

A For loop isn’t the best choice to use here, because you don’t know
how many times it will take a player to guess the secret number. Maybe the
player will get it right on the first try, or it might take 100 tries! While loops
are perfect in cases like this one.

In the next section, you’ll learn the While loop’s syntax and use it to
create your own number-guessing game.

Writing a While Loop
Try out the code in Listing 14-1.

1	' GuessMyNumber.sb
2	num = Math.GetRandomNumber(100) ' From 1 to 100
3	ans = 0 ' Any value that isn't equal to num
4	While (ans <> num) ' Repeats as long as the guess is wrong
5	 TextWindow.Write("Enter your guess [1-100]: ")
6	 ans = TextWindow.ReadNumber()
7	 If (ans = num) Then ' Player guessed correctly
8	 TextWindow.WriteLine("Good job! You get sprinkles!")
9	 ElseIf (ans > num) Then
10	 TextWindow.WriteLine("Too High. Lower your standards.")
11	 Else
12	 TextWindow.WriteLine("Too Low. Aim for the stars!")
13	 EndIf
14	EndWhile

Listing 14-1: Number-guessing game

The program randomly selects a number from 1 to 100 and assigns it to
num (line 2). Then a variable called ans, which will hold the player’s guess, is
created and set to 0 (line 3). We set this initial value to 0 because we need
it to be different from the correct answer. Let’s take a closer look at the first
line of the While loop (line 4):

While (ans <> num)

Creating Conditional While Loops 197

This piece of code simply says, “As long as ans is not equal to num, run
the statement(s) between the While and the EndWhile keywords.”

First, the test condition (ans <> num) is evaluated. If it’s true, the pro-
gram runs the statements in the loop’s body and keeps repeating until the
condition becomes false. When the test condition becomes false, the loop
ends, and the program moves to the next statement after the EndWhile key-
word. The flowchart in Figure 14-1 illustrates how the While loop works.

Condition?
Execute statements in

the body of the
While loop.

Move to the statement after
the EndWhile keyword.

False

True

Figure 14-1: Flowchart of the While loop

In the number-guessing game, when the program runs line 4 for
the first time, the condition (ans <> num) is true (because we know that
num can’t be 0), and the loop runs the statements in its body (lines 5–13).
During each iteration of the loop, the player is prompted to enter a guess
(line 5), which is saved into the variable ans (line 6). The code then com-
pares the player’s guess with the secret number. If the player guessed cor-
rectly (line 7), the code displays Good Job! You get sprinkles! and moves to
the statement after EndIf. In this example, it finds EndWhile, which takes your
program back to check the condition of the While loop. Because ans is now
equal to num, the test condition is false and the While loop terminates, ending
the program (because there are no statements after EndWhile).

If the player’s guess was incorrect, the code checks whether the guess
was higher than the secret number (line 9). If it’s higher, the program dis-
plays Too High. Lower your standards. Then the loop goes for another round.
If the player’s guess is lower than the secret number (the Else statement
on line 11), the program displays Too Low. Aim for the stars! (line 12) and
starts another round.

Here is an example of a rather lucky user playing the game:

Enter your guess [1-100]: 50
Too High. Lower your standards.
Enter your guess [1-100]: 25
Too Low. Aim for the stars!
Enter your guess [1-100]: 37
Good Job! You get sprinkles!

Play this game several times to see how it works!

198 Chapter 14

N o t e 	 Although it’s not required by Small Basic, we’ll make programs easier to read by using
parentheses around the While loop’s condition and indenting the body of a While loop.

In the next section, we’ll show you how to use a While loop to check data
entered by a user.

Validating Your Inputs
When you write a program that reads data from a user, you should always
check the input data before continuing with your program. This is called
validation. In this section, we’ll show you how to use While loops to ensure
that your user enters the correct input to your program.

Let’s say you need the user to enter a number between 1 and 5 (includ-
ing 1 or 5). If they enter a number less than 1 or greater than 5, you need
to prompt them to re-enter a number. Listing 14-2 shows you how to use a
While loop to achieve this.

1	' InputValidation.sb
2	num = -1 ' Invalid value (to force a pass through the loop)
3	
4	While ((num < 1) Or (num > 5))
5	 TextWindow.Write("Enter a number between 1 and 5: ")
6	 num = TextWindow.ReadNumber()
7	EndWhile
8	TextWindow.WriteLine("You entered: " + num)

Listing 14-2: Using a While loop to check the input number

Line 2 sets the variable num (which will hold the number entered by the
user) to –1. This makes the condition of the While loop (line 4) true, so the
loop’s body runs at least once. Although the loop in this example runs fine
without the initialization statement on line 2 (because the variable num will
be seen as 0), we recommend that you always initialize your variables and
not rely on their default values. This will help you prevent future mistakes.

The program prompts the user for a number and assigns their input
to the num variable (lines 5–6). Then the loop runs again. If num is less than
1 or greater than 5 (the user entered an invalid number), the loop’s body
runs again, prompting the user to re-enter the number. If num is between 1
and 5 (inclusive), the loop ends, and the program moves to line 8 to display
the number.

TR Y IT OUT 14-1

How much wood could a woodchuck chuck if a woodchuck could chuck wood?
Open the Woodchuck.sb file from this chapter’s folder, and run it to answer this
age-old question. Then figure out some ways to improve the program.

Creating Conditional While Loops 199

T i p 	 Make sure you initialize any variable before you use it in a While loop’s test condition.
If you don’t, your program might skip over the loop entirely!

Now you know how to verify user input using a While loop.

Infinite Loops
If a While loop’s condition doesn’t become false, the loop runs forever, creat-
ing an infinite loop. Sometimes this can cause a problem, but sometimes infi-
nite loops are useful, such as when you want to make a game run forever.

But how do you create an infinite loop in Small Basic? There are a few
ways to do this, but here is a common shortcut that many Small Basic pro-
grammers use:

While ("True")
 TextWindow.WriteLine("Loop forever!")
EndWhile

In this code, the loop’s condition is always true; the loop never stops,
and it displays Loop forever! forever. To see this in action, you’ll program a
simple game that quizzes kids on their addition skills. The complete code is
shown in Listing 14-3. Run this program to see how it works.

1	' AddTutor.sb
2	While ("True")
3	 num1 = Math.GetRandomNumber(10) ' Sets num1 between 1 and 10
4	 num2 = Math.GetRandomNumber(10) ' Sets num2 between 1 and 10
5	 correctAns = num1 + num2 ' Adds both numbers
6	 TextWindow.Write("What is " + num1 + " + " + num2 + "? ")
7	 ans = TextWindow.ReadNumber() ' User enters an answer
8	 If (ans = correctAns) Then ' Checks if the answer is correct
9	 TextWindow.WriteLine("This is correct.")
10	 Else ' Gives the correct answer
11	 TextWindow.WriteLine("Sorry. The answer is " + correctAns)
12	 EndIf
13	EndWhile

Listing 14-3: A program that quizzes a user with addition problems

In lines 3 and 4, num1 and num2 are set to random numbers between
1 and 10. Line 5 adds them together to set the correct answer. Line 6

TR Y IT OUT 14-2

Write a program that asks a user whether they think SpongeBob could become
Santa, and then prompt them to enter Y (for yes) or N (for no). They can also enter
y or n. Write a While loop that only accepts Y, y, N, or n as valid inputs. Then tell
the user what they did wrong each time.

200 Chapter 14

asks the user for the correct answer. Line 7 gets the user’s answer. Line 8
checks whether the answer is true, and if it is, line 9 tells them they’re right.
Otherwise, line 11 tells them the correct answer. The game runs forever.
When the user wants to quit, they can close the application by clicking the
X icon in the upper-right corner of the application’s window.

TI P 	 You can use a Goto statement inside a While loop to jump to a label outside the loop
in order to break out of the loop.

Now it’s time to put what you’ve learned in this chapter to work by
designing a complete game. Head to the fridge to get plenty of brain food
before reading on!

Create a Rock-Paper-Scissors Game
In this section, you’ll create a rock-paper-scissors game in which a user plays
against the computer. Figure 14-2 shows the user interface for this game.
The three buttons represent rock, paper, and scissors. The player chooses
one by clicking it. Then the computer randomly picks an action. The rules
that determine the winner are paper beats rock, rock beats scissors, and
scissors beats paper.

Bkgnd.png

Three images

P1 P2 P3

Three images

C1 C2 C3

Four images
W0
W1
W2
W3

Figure 14-2: The user interface for the rock-paper-scissors game

TR Y IT OUT 14-3

Change the AddTutor.sb program so it won’t give the correct answer to the player
when they get it wrong. Instead, have the program tell the player that their answer
is incorrect and let them try again.

Creating Conditional While Loops 201

Images P1, P2, and P3 show the player’s selection, and images C1, C2,
and C3 show the computer’s choice. Images W0, W1, W2, and W3 show the
result of each round of the game. Everything else you see in Figure 14-2
is part of the background image, including the rock, paper, and scissors
images that represent the three buttons.

Step 1: Open the Startup File
Open the file RockPaper_Incomplete.sb from this chapter’s folder and fol-
low along. The folder includes all the images you need for this game. The
startup file, shown in Listing 14-4, contains the main part of the game. It
also contains empty placeholders for all the subroutines you need to add.

1	' RockPaper_Incomplete.sb
2	GraphicsWindow.Title = "Rock, Paper, Scissors"
3	GraphicsWindow.CanResize = "False"
4	GraphicsWindow.Width = 480
5	GraphicsWindow.Height = 360
6	
7	path = Program.Directory
8	GraphicsWindow.DrawImage(path + "\Bkgnd.png", 0, 0)
9	choice1 = 0 ' 0 = Unknown; 1 = Rock; 2 = Paper; 3 = Scissors
10	GraphicsWindow.MouseDown = OnMouseDown
11	
12	While ("True") ' Loops forever
13	 If (choice1 <> 0) Then ' If player made a choice
14	 blankImg = path + "\W3.png" ' Clears last result
15	 GraphicsWindow.DrawImage(blankImg, 115, 310)
16	 choice2 = Math.GetRandomNumber(3) ' 1 to 3
17	 SwitchImages() ' Shows player and computer choices
18	 ShowWinner() ' Shows image for the result
19	 choice1 = 0 ' Ready for another round
20	 EndIf
21	 Program.Delay(10) ' Waits a little, then checks again
22	EndWhile

Listing 14-4: Setting up the window and choice

If you run the program now, all you’ll see is the background image
because you haven’t created any of the subroutines yet. You’ll get there, but
first let’s check out the setup and main loop of the game. First, the size of the
graphics window is set, and the background image is drawn (lines 2–8). The
variable choice1 holds the player’s choice: 0 means unknown, 1 means rock, 2
means paper, and 3 means scissors. To start, we set choice1 to 0, because the
player hasn’t made a choice yet (line 9). Then we register a handler for the
MouseDown event to be able to find out when the player clicks one of the three
buttons (line 10). Then the game’s main loop starts (lines 12–22).

The loop continuously checks the value of choice1. As you’ll see in a
moment, this variable is changed by the OnMouseDown() subroutine when
the player makes a choice. If choice1 is 0, the loop waits for 10 milliseconds
(line 21) and checks again. Using a loop makes the program wait for choice1

202 Chapter 14

to become a value other than 0 (this is called polling; it’s similar to asking
“Are we there yet?” during a long trip). When choice1 becomes a value other
than 0 (line 13), the body of the If block is executed (lines 14–19). We draw
image W3 to show a blank result (lines 14–15). Next, we set the computer’s
choice, choice2, to a random value between 1 and 3 (line 16). Then we call
SwitchImages() to show the images that correspond to choice1 and choice2
(line 17). Then we call ShowWinner() to show the result of this round of the
game (line 18). Finally, we set choice1 back to 0 to tell the OnMouseDown()
subroutine that the main loop is ready for another round of the game
(line 19).

Next, you’ll add each subroutine one at a time.

Step 2: Add the MouseDown Handler
Now let’s handle the MouseDown event to figure out the player’s choice. Add
the OnMouseDown() subroutine in Listing 14-5 to the bottom of the program.

1	Sub OnMouseDown
2	 If (choice1 = 0) Then ' Ready for another round
3	 y = GraphicsWindow.MouseY ' Vertical click position
4	 If ((y > 80) And (y < 120)) Then ' Within range
5	 x = GraphicsWindow.MouseX ' Horizontal click
6	 If ((x > 40) And (x < 80)) Then ' Rock
7	 choice1 = 1
8	 ElseIf ((x > 110) And (x < 150)) Then ' Paper
9	 choice1 = 2
10	 ElseIf ((x > 175) And (x < 215)) Then ' Scissors
11	 choice1 = 3
12	 EndIf
13	 EndIf
14	 EndIf
15	EndSub

Listing 14-5: Checking the choice the user clicked

Small Basic calls this subroutine when the player clicks anywhere in the
graphics window. First, the subroutine checks the value of choice1 (line 2).
If choice1 is 0, the subroutine checks where the player clicked to see whether
they clicked one of the three buttons. If choice1 is not 0, that means the
main loop is still processing the player’s last choice, so the subroutine just
ignores the mouse click. This way your game won’t get confused if the
player clicks all over the place.

To see whether the player clicks one of the three image buttons, the
subroutine checks the vertical position of the click (line 4). If it’s within the
range of the images, the subroutine checks the horizontal position (line 6).
The If/ElseIf ladder then compares the horizontal position with the left and
right edges of each image and sets choice1 accordingly (lines 6–12).

Creating Conditional While Loops 203

TI P 	 If you want to find out the exact positions of the three image buttons, add this code to
your program:

GraphicsWindow.MouseMove = OnMouseMove
Sub OnMouseMove
 mx = GraphicsWindow.MouseX
 my = GraphicsWindow.MouseY
 TextWindow.WriteLine(mx + ", " + my)
EndSub

Move the mouse over the background image to see the coordinates displayed in
the text window. Don’t forget to delete this code before you share your game with your
friends!

Step 3: Switch the Images
When the player makes a choice, you need to show the computer’s pick so
they know the computer isn’t cheating. To create some excitement, you’ll
animate the images before showing the final choices. Add the SwitchImages()
subroutine in Listing 14-6.

1	Sub SwitchImages
2	 For M = 1 To 10 ' Flips images 10 times
3	 N = 1 + Math.Remainder(M, 3) ' N = 1,2,3,1,2,3...
4	 img1 = path + "\P" + N + ".png" ' {\P1, \P2, or \P3}.png
5	 img2 = path + "\C" + N + ".png" ' {\C1, \C2, or \C3}.png
6	 GraphicsWindow.DrawImage(img1, 40, 150) ' Draws img1
7	 GraphicsWindow.DrawImage(img2, 280, 150) ' Draws img2
8	 Program.Delay(100) ' Waits a short time
9	 EndFor
10	
11	 ' Shows the actual choices of the player and the computer
12	 img1 = path + "\P" + choice1 + ".png"
13	 img2 = path + "\C" + choice2 + ".png"
14	 GraphicsWindow.DrawImage(img1, 40, 150)
15	 GraphicsWindow.DrawImage(img2, 280, 150)
16	EndSub

Listing 14-6: Switching images for a visual effect

SwitchImages() starts by switching the images for the player and the
computer 10 times very quickly for a fun visual effect (lines 2–9). Then the
code shows the images that correspond to choice1 and choice2 by appending
a number to the letters P and C, which represent the names of the images.

Run the code to test it. When you click any of the three image buttons,
the player and the computer selections will change 10 times before landing
on the images that correspond to the actual choices. (Don’t flip images too
quickly, or you’ll get a headache!)

204 Chapter 14

Step 4: Announce the Winner
The last part of the game, the ShowWinner() subroutine, checks the result and
displays the winner. Add the ShowWinner() subroutine in Listing 14-7.

1	Sub ShowWinner
2	 ' W0: Tie; W1: Player1; W2: Computer
3	 If ((choice1 = 1) And (choice2 = 2)) Then ' Paper (2) beats rock (1)
4	 img = "\W2.png"
5	 ElseIf ((choice1 = 1) And (choice2 = 3)) Then ' Rock (1) beats scissors (3)
6	 img = "\W1.png"
7	 ElseIf ((choice1 = 2) And (choice2 = 1)) Then ' Paper (2) beats rock (1)
8	 img = "\W1.png"
9	 ElseIf ((choice1 = 2) And (choice2 = 3)) Then ' Scissors (3) beats paper (2)
10	 img = "\W2.png"
11	 ElseIf ((choice1 = 3) And (choice2 = 1)) Then ' Rock (1) beats scissors (3)
12	 img = "\W2.png"
13	 ElseIf ((choice1 = 3) And (choice2 = 2)) Then ' Scissors (3) beats paper (2)
14	 img = "\W1.png"
15	 Else
16	 img = "\W0.png"
17	 EndIf
18	
19	 GraphicsWindow.DrawImage(path + img, 115, 310)
20	EndSub

Listing 14-7: Checking who won to display the right image

This subroutine compares the values of choice1 and choice2 using an
If/ElseIf ladder and decides which image (img) to display (lines 3–17).
Remember that choice 1 means rock, 2 means paper, and 3 means scissors.
Then, line 19 draws the selected image.

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Open the file Race_Incomplete.sb from this chapter’s folder. This applica-
tion simulates a race between two players. When you run the program,
you’ll see the following interface. Follow the comments provided in the
application’s source code to write the missing code and complete the
application.

TR Y IT OUT 14- 4

See if you can turn the rock-paper-scissors game into a two-player game!

http://nostarch.com/smallbasic/

Creating Conditional While Loops 205

2.	 Open the file SimpleSlot.sb from this chapter’s folder. This program
simulates a simple slot machine, as shown in the following figure.
When you click the mouse, the game displays three objects at random.
If all three objects are alike, you win $20. If two are alike, you win $5;
otherwise, you lose $1. After playing the game, study the code and
explain how the program works.

3.	 Open the file Space.sb from this chapter’s folder. In this game, you shoot
at a UFO flying across the top of the screen (see the following figure).
Use the left and right arrow keys to move, and press the spacebar to
shoot. You have only 100 shots, and the game tracks your score. Think
of some ways to improve the game and add them.

15
G r o u p i n g D a t a i n

O n e - D i m e n s i o n a l A r r a ys

So far you’ve worked with variables to store
single pieces of information, and you’ve

created some pretty awesome programs. But
you can create even more amazing programs by

storing lots of information in a single variable! In
Small Basic, you do that by using an array.

An array is a built-in data type that lets you work with groups of data.
For example, you wouldn’t build a separate closet for every pair of shoes you
own (unless you’re a giant who loves shoe shopping); you’d put them all in
one closet. Well, arrays let you store many pieces of data together to make
it easier to work with them all at once. You can think of the closet as a one-
dimensional array that contains a row of shoe boxes.

Small Basic has two types of arrays: indexed arrays and associative arrays.
The pieces of data in an indexed array are referenced using an integer index,
such as score[1], name[3], and so on. This is like putting a numbered label
on each shoe box in your closet. But the elements of an associative array are

208 Chapter 15

referenced using a string index, such as price["apple"] or address["John"].
This chapter explores indexed arrays. We’ll cover associative arrays, also
called hashes or maps, in the next chapter.

Getting Started with Indexed Arrays
Let’s say you want to write a program that takes four test scores from a user
and then displays them along with their average value. Based on what you’ve
learned so far, you might write a program like the one in Listing 15-1.

1	' Average1.sb
2	TextWindow.Write("Enter 4 scores. ")
3	TextWindow.WriteLine("Press <Enter> after each score.")
4	s1 = TextWindow.ReadNumber() ' Reads the 1st score
5	s2 = TextWindow.ReadNumber() ' Reads the 2nd score
6	s3 = TextWindow.ReadNumber() ' Reads the 3rd score
7	s4 = TextWindow.ReadNumber() ' Reads the 4th score
8	avg = (s1 + s2 + s3 + s4) / 4 ' Calculates the average
9	TextWindow.Write("Numbers: " + s1 + ", " + s2 + ", ")
10	TextWindow.WriteLine(s3 + ", " + s4)
11	TextWindow.WriteLine("Average: " + avg)

Listing 15-1: Storing scores in separate variables

This program prompts the user to enter four scores (lines 2–3). It reads
these scores and saves them in the four variables s1, s2, s3, and s4 (lines 4–7).
Then it computes the average (line 8), displays the four numbers on a single
line (lines 9–10), and displays the computed average (line 11).

Now imagine that you want a user to input 100 scores instead of 4.
Defining 100 variables and copying almost the same statement 100 times
would take a long time. Well, Small Basic’s array stores a collection of
values. Using an array, you don’t have to create each variable separately.
You can put all the values into one array variable. For example, you can
read 10 scores a user enters and store them in one array using this loop:

For N = 1 To 10
 score[N] = TextWindow.ReadNumber()
EndFor
TextWindow.WriteLine(score)

Instead of creating 10 variables, like s1, s2, and so on to s10, you create
one array variable called score. To refer to each piece of data in the score
array, you use the syntax score[N], where N is a variable that will take on the
values 1 through 10. Writing score[N] is like writing score[1], score[2], . . . ,
score[10], and the For loop increments N for you.

Run this code. After you enter 10 different numbers, Small Basic dis-
plays the score array, and you can see all 10 values stored in it (we’ll show
you a better way to display an array later in this chapter).

Grouping Data in One-Dimensional Arrays 209

One way to think of an array is as a collection of variables that share the
same name. For example, the average rainfall in the 10 largest US cities
could be saved in rainLevel[1] through rainLevel[10], and the daily sales
for the 100 McDonalds in your area could be saved in sales[1] through
sales[100]. Think of all the Happy Meals!

Arrays can help you organize your data in a way that makes the data
much easier to change and use. The name of an array follows the same
rules and guidelines you use for naming variables.

Array Basics
Each piece of information in an array is called an element. To access an ele-
ment in an array, you use this syntax:

arrayName[index]

The arrayName variable is the array’s name, and index is an identifier,
either a number or a string, that identifies an element in the array (see
Figure 15-1). This syntax is known as an indexed variable, or a subscripted
variable. The index, which is placed between square brackets, uniquely
identifies one element in the array.

Array named
score

Index

Element

...

...

score[2] = 85

score[1] = 80

80 85 90 95 92

1 2 3 4 5

score[3] = 90

Figure 15-1: Graphical representation of a one-dimensional array

You can treat an indexed variable just like a regular variable by using the
proper syntax. For example, the following statements initialize and display
the first three elements of the score array in Figure 15-1:

score[1] = 80
score[2] = 85
score[3] = 90
TextWindow.WriteLine(score[1] + ", " + score[2] + ", " + score[3])

If you run this code, you’ll see this output:

80, 85, 90

If you wanted to change the first score, you could write this statement:

score[1] = score[1] + 5

210 Chapter 15

This line of code adds five to the first score at index 1. If you displayed
the value of score now, you’d see that score[1] = 85. You could use the next
statement to multiply the two elements at indices 1 and 2:

score[1] = score[1] * score[2]

If score[1] is 80 and score[2] is 85, they are multiplied to get 6,800,
which is saved back into score[1]. High score!

Initializing Arrays
Before using an array in your program, you need to fill it up (or initialize
it) with some data. In Small Basic, you can do this in two ways: by direct
(element-by-element) initialization or string initialization.

Let’s say you want to create an array that holds four scores (not the Abe
Lincoln type). Here’s the direct way to do this:

score[1] = 80
score[2] = 85
score[3] = 90
score[4] = 95

You can also use a string initializer, which allows you to set the four
values in just one line like this:

score = "1=80;2=85;3=90;4=95;"

This string initializer has four tokens (or fields), which are terminated
by semicolons. Each token is in this form (and no, you can’t exchange these
tokens for prizes):

index=value;

In this example, the first token is 1=80, the second is 2=85, the third
is 3=90, and the fourth is 4=95. The number before the equal sign is the
element’s index, and the value after the equal sign is the value stored in
that element. Note that there are no spaces before or after the equal sign.
Figure 15-2 shows you how this string initializer works.

"1=80;2=85;3=90;4=95;"

score[1]

score[2]

score[3]

score[4]

80

85

90

95

score =

Figure 15-2: The syntax of an array’s string initializer

Grouping Data in One-Dimensional Arrays 211

The string initializer lets you fill an array in one statement, but its syn-
tax is a bit complex, and you could accidentally introduce errors in your
code. Until you become more comfortable with arrays, we recommend
that you stick to the basic element-by-element initialization technique in
your programs. But if you do use the string initializer and run into prob-
lems, try reinitializing your array one element at a time. We’ll use both
initialization types in this book, to save space and to get you more familiar
with them.

N o t e 	 Small Basic lets you choose any numbers you want for indices. It even lets you use
negative and decimal numbers, and it doesn’t require the indices to be consecutive.
But in this book we’ll always use integer indices starting from 1 for the first array
element.

Arrays and For loops are often used together. When the size of an array
is known, you can use a For loop to cycle through and perform operations
on every element in that array. The next examples show you how to use For
loops to perform operations on arrays.

Filling Arrays with a For Loop
Many times you’ll need to fill the elements of an array with a constant value,
a random value, a value calculated from a formula, or a value entered by a
user. Let’s look at each scenario!

TR Y IT OUT 15-1

Suppose that the elements in array S and variables A and B have the values in
Figure 15-3. What is S[A], S[B], S[A * B - 2], S[A + B], and S[A] - 2
* S[B]?

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

3

3.5

2

–1

6

8

2

3

A

B

S

Figure 15-3: Values in S array
and variables A and B

212 Chapter 15

Constant Initialization
The following code snippet shows how to initialize the first 10 elements of a
tasty array (named scoobySnack) with a constant value of 0.

For N = 1 To 10
 scoobySnack[N] = 0
EndFor

The For loop repeats 10 times. In the first iteration, the value of N is 1,
so the loop sets scoobySnack[1] = 0. In the second iteration, the value of N
is 2, so the loop sets scoobySnack[2] = 0, and so on. This creates an array with
10 elements, all of which are 0.

Random Initialization
You can also fill the elements of the scoobySnack array with random num-
bers, like this:

For N = 1 To 10
 scoobySnack[N] = Math.GetRandomNumber(5)
EndFor

The For loop iterates 10 times. In the Nth iteration, the element at index N,
scoobySnack[N], is assigned a random number between 1 and 5. Try displaying
the value of scoobySnack to see what random numbers you get! Add the follow-
ing statement after you set scoobySnack[N] inside the For loop:

TextWindow.WriteLine(scoobySnack[N])

Formula Initialization
You can also initialize the elements of an array using a formula. In this
example, you’ll set the Nth element of the scoobySnack array to N * 8; this
code will store the multiplication table of eight in your array:

For N = 1 To 10
 scoobySnack[N] = N * 8
EndFor

Add the code that displays the value of scoobySnack to see the results!

User Initialization
What if you want to initialize the elements of your array using values entered
by a user? The following program prompts the user to enter five numbers
and press enter after each number. The program then starts a For loop to
read the five numbers and store them in thunderCat[1], thunderCat[2], . . . ,
thunderCat[5].

Grouping Data in One-Dimensional Arrays 213

TextWindow.WriteLine("Enter 5 numbers. Press Enter after each one.")
For N = 1 To 5
 thunderCat[N] = TextWindow.ReadNumber()
EndFor

This technique is very useful for storing lots of data from a user. What
other collections of data might you ask for? How about breakfastMenu,
favoriteGames, bestPasswords, funnyJokes, or frozenNames?

Displaying Arrays
Let’s say we have an array named age that holds the ages of three brothers,
like this:

age[1] = 14
age[2] = 15
age[3] = 16

You can display the contents of this array in two ways. The first and easi-
est way is to pass the array’s name to the WriteLine() method, like this:

TextWindow.WriteLine(age)

Here’s the output of this statement:

1=14;2=15;3=16;

This statement displays the elements of the array on a single line sepa-
rated by semicolons. Each token in this string shows the index and the value
of the array’s element at that index. Can you see now where the array’s string
initializer syntax came from?

If you want to display the array in an easier-to-read format, you can use
a For loop to display each element of the array in its own row:

For N = 1 To 3
 TextWindow.WriteLine("age[" + N + "] = " + age[N])
EndFor

TR Y IT OUT 15-2

Write a program that fills an array called skeletor with even integers from 20 to
40 (for example, skeletor[1] = 20, skeletor[2] = 22, . . .).

214 Chapter 15

Here’s the output of this loop:

age[1] = 14
age[2] = 15
age[3] = 16

If you’re working with a short array, it’s fine to display it on a single line.
But if you’re working with a lot of data, it’s best to display the array in a for-
mat that’s easy to read.

Processing Arrays
Many programs involve processing the elements of an array, such as adding
them and finding their average, minimum, maximum, and so on. You’ll
learn how to do these tasks in this section.

Finding the Sum
A superhero named Super Here-O wants to know how much money he
rescued from 10 robbers in his town. The following program lets Super
Here-O enter the amounts he rescued into an array named moneyReturned.
The program finds the sum of all the elements of this array:

sum = 0
TextWindow.WriteLine("Enter the 10 amounts that were returned:")
For N = 1 To 10
 moneyReturned[N] = TextWindow.ReadNumber()
 sum = sum + moneyReturned[N]
EndFor
For N = 1 To 10
 TextWindow.Write("$" + moneyReturned[N])
 TextWindow.WriteLine(" rescued from robber " + N)
EndFor
TextWindow.WriteLine("$" + sum + " was rescued by Super Here-O!")

To find the sum, you start by initializing the sum variable to 0. You then
run a For loop to read each element of the moneyReturned array and add it to
the sum variable. When the loop terminates, you start another loop to show

TR Y IT OUT 15-3

Write a program that fills an array called burps with five random numbers
between 80 and 100 and then displays the array. Try displaying the array by
passing the array’s name to TextWindow.WriteLine() and then by using a For
loop. Which looks nicer?

Grouping Data in One-Dimensional Arrays 215

how much money was rescued from each robber, and then you display the
total amount returned. Run the program to find out whether it’s enough
money to buy a new superhero spandex suit!

Finding the Maximum Element
Say you’re competing with nine of your good friends to see who has the
most friends on Facebook. Use the following code snippet to find the larg-
est value in an array named friends:

friends = "1=10;2=30;3=5;4=10;5=15;6=8;7=1;8=23;9=6;10=11"
max = friends[1]
For N = 2 To 10
 If (friends[N] > max) Then ' Nth element is larger than max
 max = friends[N] ' Update max to hold the new maximum
 EndIf
EndFor
TextWindow.WriteLine("The most friends is " + max + ".")

First, we filled the 10 elements of the friends array with the number
of Facebook friends that you and your nine closest friends have. In this
example, your first friend has 10 friends, your second friend has 30, your
third friend has 5, and so on, and you (number 10 in the array) have 11
friends. Feel free to change these numbers. The program starts by assum-
ing that the first element, friends[1], is the largest. It then enters a loop
that examines the remaining elements of the array, starting at the second
element. Every time it finds a number larger than the current maximum, it
updates the maximum, max, to that number. When the loop terminates, the
maximum value displays.

Using String Values in Arrays
Arrays aren’t restricted to numbers. You can also use arrays to store strings.
Let’s say, for example, that you want to create an array to store the names of
the books in your collection. You could initialize this array:

book[1] = "The Hobbit"
book[2] = "Little Women"
book[3] = "My Little Pony vs Hello Kitty"

N o t e 	 You could also use a string initializer to initialize the book array like this (make sure
the entire statement is on one line):

book = "1=The Hobbit;2=Little Women;3=My Little Pony vs Hello Kitty"

216 Chapter 15

Saving Records
You can mix different data types within a single array. You can store numbers,
both whole and decimal, and strings as different elements in the same array.
For example, the following array is valid (do you know this building?):

arr[1] = 1600
arr[2] = "Pennsylvania Avenue NW"
arr[3] = 20500

The first and third elements of this array are numbers. The second ele-
ment is a string. These three elements could represent a home’s number, its
street name, and its ZIP code, respectively. This is one way to create a record,
which is a collection of related pieces of data, in Small Basic.

Whew! Well, we’ve covered more than enough to solve oodles of prob-
lems. Now let’s spend some time writing fun programs!

Using Indexed Arrays
The first example in this section shows you how to select random elements
from an array. The second example simulates a Magic 8 Ball game in which
the computer provides randomly selected answers to a player’s questions.
Let’s get random!

Random Selection
Let’s say we have a bag that contains 10 balls numbered 1 through 10, and
we want to take out five random balls (see Figure 15-4). We’ll write a pro-
gram that randomly selects five balls and then displays their numbers.

Select five balls and
place them into this jar.

1

2

3

4

5

6

7

8

9

10

Figure 15-4: Randomly selecting five balls from a bag

TR Y IT OUT 15- 4

Write a program that fills two arrays (noun and verb) with plural nouns and
verbs of your choice. Have the program display random sentences in this form:
noun verb noun (for example, dogs delight cats).

Grouping Data in One-Dimensional Arrays 217

To create this program, we’ll use an array named ball to hold the
numbers of the 10 balls (ball[1] = 1, ball[2] = 2, …, ball[10] = 10). Then
the program selects a random number between 1 and 10 to pick a ball. For
example, if it picks number 2, it sets ball[2] = 0 to indicate that the second
ball has been selected and is no longer available. Then it selects another
random number. Let’s say that the second number is also 2. First, the pro-
gram checks ball[2]. Because it’s 0, it knows that ball[2] has already been
selected (you can’t take the same ball out of the bag twice!), and it picks
another random number. It continues this until it selects five different
random numbers. The complete program is shown in Listing 15-2.

1	' RandomSelect.sb
2	For N = 1 To 10 ' Puts the 10 balls in an array
3	 ball[N] = N
4	EndFor
5	
6	For N = 1 To 5 ' Loops to select 5 balls
7	 idx = Math.GetRandomNumber(10) ' Gets random ball number
8	 While (ball[idx] = 0) ' Ball already selected
9	 idx = Math.GetRandomNumber(10) ' Gets another number
10	 EndWhile
11	
12	 TextWindow.Write(ball[idx] + ", ") ' Displays selected ball
13	 ball[idx] = 0 ' Marks it out (taken)
14	EndFor
15	TextWindow.WriteLine("")

Listing 15-2: Randomly selecting five different balls

The program starts by setting ball[1] = 1, ball[2] = 2, . . . , ball[10] = 10
in a For loop (lines 2–4). It then begins a loop to select the five balls (line 6).
In each iteration of the loop, it picks a random number, idx, between 1 and 10
(line 7). A While loop continually sets idx until ball[idx] is not 0 (lines 8–10).
After selecting a unique ball number, the program displays the number
(line 12), and then it marks that ball as selected by setting its array element
to 0 (line 13) so it doesn’t try to select that number again. Here’s a sample
run of this program:

5, 9, 10, 1, 2,

Run the program to see which numbers you get!

A Magic 8 Ball
In this example, we’ll write a program that simulates a Magic 8 Ball game.
A user asks a yes or no question, and the computer answers. Of course, it’s
just for fun, so don’t use it to make important decisions like choosing your
spouse or house! The complete program is shown in Listing 15-3.

1	' Magic8Ball.sb
2	ans[1] = "It is certain. Like really, really certain."

218 Chapter 15

3	ans[2] = "It is decidedly so. By me. I decided."
4	ans[3] = "Without a doubt. Maybe one doubt."
5	ans[4] = "Yes, definitely. Isn't it obvious?"
6	ans[5] = "Very doubtful. The doubt is very full."
7	ans[6] = "Maybe. Depends on the horse race."
8	ans[7] = "No. Wait, yes. Wait, no. Yes, it's no."
9	ans[8] = "Let me consult my Magic 8 Ball... It says yes."
10	ans[9] = "Outlook not so good. Restart Outlook."
11	ans[10] = "Try again. It's funny when you shake things."
12	
13	While ("True")
14	 TextWindow.WriteLine("Ask me a yes-no question. Do it!")
15	 ques = TextWindow.Read()
16	 num = Math.GetRandomNumber(10)
17	 TextWindow.WriteLine(ans[num])
18	 TextWindow.WriteLine("")
19	EndWhile

Listing 15-3: A Magic 8 Ball simulation

The game has 10 possible answers saved in the ans array. After initial-
izing the array (lines 2–11), the game starts an infinite loop to interact with
the user. In each iteration it asks the user to enter a yes or no question. It
reads the user’s question (line 15), generates a random number between 1
and 10 (line 16), and uses that number to display one of the answers using
ans[num] (line 17). After displaying the message, we display a blank line
(line 18). For someone who doesn’t know the trick, the computer might
look intelligent! Ask your friends to play this game, and see what they
think.

How’re you feeling? Sharp as a sponge and fresh as a tack? Great,
because it’s game creation time!

Create the Catch Apples Game
Figure 15-5 shows a game in which apples appear in random positions at
the top of the graphics window at random times and fall to the ground.
The player has to move the cart using the mouse to catch the apples before
they hit the ground. Each apple is worth 1 point. Don’t worry about bruising
the apples; they’re hard core!

TR Y IT OUT 15-5

Modify the Magic 8 Ball game so it shows each answer only once. End the game
when all the answers have been displayed.

Grouping Data in One-Dimensional Arrays 219

The apples fall
from the trees.

Using the mouse,
move the cart to
collect the apples
before they reach
the ground.

Figure 15-5: The Catch Apples game

Follow these steps to put this great game together one piece at a time.

Step 1: Open the Startup File
Open the file CatchApples_Incomplete.sb in this chapter’s folder. The folder
also has all the images you’ll need for this program. The startup file con-
tains the main code (shown in Listing 15-4) and empty placeholders for the
four subroutines that you’ll write. Let’s start with the main code.

1	' CatchApples_Incomplete.sb
2	GraphicsWindow.Title = "Catch Apples"
3	GraphicsWindow.CanResize = "False"
4	GraphicsWindow.Width = 480
5	GraphicsWindow.Height = 360
6	GraphicsWindow.FontSize = 14
7	GraphicsWindow.BrushColor = "Black"
8	
9	path = Program.Directory
10	GraphicsWindow.DrawImage(path + "\Background.png", 0, 0)
11	
12	msgID = Shapes.AddText("")
13	Shapes.Move(msgID, 240, 0)
14	
15	MAX_APPLES = 5 ' Change this to have more apples
16	AddApples() ' Creates the apple array
17	
18	cartImg = Shapes.AddImage(path + "\Cart.png") ' 100x80 pixels
19	

220 Chapter 15

20	numMissed = 0 ' Missed apples
21	numCaught = 0 ' Caught apples
22	
23	While ("True")
24	 Shapes.Move(cartImg, GraphicsWindow.MouseX - 50, 280)
25	 MoveApples()
26	 Program.Delay(5)
27	EndWhile

Listing 15-4: The main code for the Catch Apples game

In lines 2–7, we set the graphic window’s title; size, to match the size
of the background image; font size; and font color. Then we draw the back-
ground image (line 10) and create the text shape that displays the number
of caught and dropped apples (lines 12–13). The MAX_APPLES variable in
line 15 is the maximum number of apples that will appear in the graphics
window. Once you get the game running, experiment with this number to
make the game easier or harder.

Line 16 calls the AddApples() subroutine to create the array that will hold
the falling apples. Line 18 adds the cart’s image and saves its identifier in
cartImg; we need this identifier to move the cart.

Lines 20–21 initialize the variables numMissed (the number of missed
apples) and numCaught (the number of caught apples) to 0. The code then
starts the game’s main loop (lines 23–27). In each iteration, we move the
cart so its center lines up with the mouse’s x position (line 24). Because
the cart’s width is 100 pixels, the cart’s left position is set to MouseX – 50. The
cart’s y-position is fixed. We call the MoveApples() subroutine to make apples
fall and check whether they touch the cart or the ground (line 25); then
we wait 5 milliseconds before repeating these steps (line 26). But don’t tell
your dad to wait 5 milliseconds, or he might think you’re sassing!

Run the game now, and move the mouse. The cart follows the mouse,
but no apples appear yet. You’ll add the missing subroutines next to finish
the game.

Step 2: Add the Apples
Add the AddApples() subroutine in Listing 15-5.

1	Sub AddApples
2	 For aplNum = 1 To MAX_APPLES
3	 apple[aplNum] = Shapes.AddImage(path + "\Apple.png")
4	 scale = (3 + Math.GetRandomNumber(5)) / 10
5	 Shapes.Zoom(apple[aplNum], scale, scale)
6	 SetApplePosition()
7	 EndFor
8	EndSub

Listing 15-5: The AddApples() subroutine

Grouping Data in One-Dimensional Arrays 221

The subroutine uses a For loop to create the five apples. In each itera-
tion, we call AddImage() to load the apple’s image from the game’s folder and
save the returned identifier in the apple array (line 3). The first apple is
saved in apple[1], the second apple is saved in apple[2], and so on.

To add some variety to the apple game, we’ll change the sizes of the
apples. In line 4, we set the scale variable to a random value from the set
{0.4, 0.5, 0.6, 0.7, 0.8}, which is calculated by (3 + Math.GetRandomNumber(5))
/ 10. In line 5, we pass that value to the Zoom() method to change the apple’s
size. This sets the apple’s size to a fraction (between 40 and 80 percent) of
its original size.

Next, we’ll call the SetApplePosition() subroutine to position the new
apple. Let’s examine what this subroutine does.

Step 3: Position the Apples
Add the SetApplePosition() subroutine in Listing 15-6.

1	Sub SetApplePosition
2	 xPos = Math.GetRandomNumber(420)
3	 yPos = -Math.GetRandomNumber(500)
4	 Shapes.Move(apple[aplNum], xPos, yPos)
5	EndSub

Listing 15-6: The SetApplePosition() subroutine

We set the horizontal position to a random integer between 1 and
420 (line 2) and the vertical position to a negative value between –1 and
–500 (line 3). The call to Move() in line 4 puts the apple (at index aplNum in
the apple array) at some invisible point above the top edge of the graphics
window using the two numbers xPos and yPos. This way, when the apples start
falling, they appear at the top of the screen at random times; the apple that
was placed at yPos = –100 appears sooner than the one placed at yPos = –500
because it has less distance to fall. As you’ll see in a moment, we’ll also call
this subroutine when the player catches or misses an apple.

Step 4: Move the Apples
Now we’re ready to make it rain apples (give the cats and dogs a break).
Add the code in Listing 15-7 to the program in the placeholder for the
MoveApples() subroutine.

1	Sub MoveApples
2	 For aplNum = 1 To MAX_APPLES
3	 xPos = Shapes.GetLeft(apple[aplNum])
4	 yPos = Shapes.GetTop (apple[aplNum])
5	 Shapes.Move(apple[aplNum], xPos, yPos + 1)
6	

222 Chapter 15

7	 CheckCatch() ' Checks if the apple landed in the cart
8	 If (gotIt = 1) Then
9	 Sound.PlayClick()
10	 numCaught = numCaught + 1
11	 SetApplePosition()
12	 ElseIf (yPos > 320) Then
13	 numMissed = numMissed + 1
14	 SetApplePosition()
15	 EndIf
16	 EndFor
17	
18	 msg = "Caught: " + numCaught + " Missed: " + numMissed
19	 Shapes.SetText(msgID, msg)
20	EndSub

Listing 15-7: The MoveApples() subroutine

In line 2, we start a For loop to drop five apples. We get the upper-left
corner of each apple (lines 3–4), and then we move it down by 1 pixel
(line 5). We then call CheckCatch() to see whether this apple was caught by
the player (line 7). As you’ll see in a moment, this subroutine sets the gotIt
flag to 1 if the player caught the apple; otherwise, it sets gotIt to 0. It’s okay
if you miss an apple. You won’t hurt its peelings.

When CheckCatch() returns, we check the gotIt flag. If it’s 1 (line 8),
that means the apple was caught by the player. In this case, we play a click
sound, increment numCaught by 1, and call SetApplePosition() to reposition
this apple and let it fall again (lines 9–11). On the other hand, if gotIt
isn’t 1, we check the apple’s y-position to see whether it went below the
cart’s center, which means that the player missed it (line 12). In this case,
we increase numMissed by 1 and call SetApplePosition() to reposition this
apple and let it fall again (lines 13–14). If the apple was neither caught nor
missed, then it’s falling and will be processed again the next time we call
MoveApples().

After moving and checking the status of the five apples, we update the
message that shows the number of caught and missed apples (lines 18–19).

Step 5: Catch or Miss
The last piece to add is the CheckCatch() subroutine in Listing 15-8.

1	Sub CheckCatch
2	 xApple = Shapes.GetLeft(apple[aplNum]) + 32 ' Center point
3	 yApple = Shapes.GetTop(apple[aplNum]) + 32 ' Bottom point
4	 xCart = Shapes.GetLeft(cartImg) + 50 ' Center point
5	 yCart = Shapes.GetTop(cartImg) + 40 ' Around the center
6	 xdiff = Math.Abs(xApple - xCart)
7	 ydiff = Math.Abs(yApple - yCart)
8	 gotIt = 0 ' Assumes we didn't get the apple

Grouping Data in One-Dimensional Arrays 223

9	 If ((xdiff < 20) And (ydiff < 20)) Then
10	 gotIt = 1 ' We got it
11	 EndIf
12	EndSub

Listing 15-8: The CheckCatch() subroutine

This subroutine checks the distance between the center of an apple
(whose index is given by aplNum) and the center of the cart. If the apple
is within 20 pixels from the cart’s center, the subroutine sets gotIt to 1.
Otherwise, it sets gotIt to 0.

The game is now complete, and you can play it! Maybe you’ll catch
enough apples for an apple pie.

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Write a program that simulates rolling a die. Make the program roll
a die 10,000 times and keep track of how many times each number
appears. A sample run of the program follows. (Hint: use an array
named dice that has six elements. If you get 1 in a roll, increment
dice[1]. If you get 2, increment dice[2], and so on.)

Num Count Probability
1 1640 0.164
2 1670 0.167
3 1638 0.1638
4 1684 0.1684
5 1680 0.168
6 1688 0.1688

2.	 Open the file PinBall.sb in this chapter’s folder. This program simulates
a pinball machine. As shown in the following illustration, the ball is
dropped at the top of the machine. As it rolls down, it strikes fixed pins

TR Y IT OUT 15-6

Currently, the Catch Apples game runs forever. Think of a way to end the game,
and then implement it. Can you think of some other ways to improve the game?
Maybe you could give the player more points if they catch a big apple! What
about the statement to move the cart inside the While loop? Can you move this
statement to a new MouseMove event handler?

http://nostarch.com/smallbasic/

224 Chapter 15

and bounces to the left or to the right in a random fashion. At the end,
the ball lands in one of the seven pockets. The program drops the ball
10,000 times and counts the number of times it lands in each pocket.
Study the program and explain how it works.

Start at position 4

Position = 3.5

Position = 3

Position = 2.5

Position = 3

Position = 2.5

Position = 21 2 3 4 5 6 7

3.	 Open the file FlowerAnatomy.sb from this chapter’s folder. This program
presents an educational game that quizzes the player on the parts
of a flower (shown next). The player enters the letters to match the
labeled parts of the flower and then clicks the Check button to check
the answers. The program compares the user’s answers with the correct
ones; then it shows you how the user did by placing a green check mark
next to each correct answer and a red X next to each incorrect answer.
Study the program and explain how it works.

Nine edit boxes:
edit[1], edit[2],
..., edit[9]

Nine labels saved in
part[1], part[2],
..., part[9]

Two 18×20 images
(Yes and No)

35
0

37
0

40
0

Grouping Data in One-Dimensional Arrays 225

4.	 Open the file USMapQuiz_Incomplete.sb from this chapter’s folder. The
folder also contains the background image shown here (and the Yes
and No images from the previous exercise). Complete the program to
make this quiz work. Display the two-letter abbreviations for the nine
states and provide nine text boxes to let the player match each state
with its code.

16
S t o r i n g D a t a w i t h

Ass o c i a t i v e A r r a ys

On social websites like Facebook and
LinkedIn, people enter information into

text boxes, such as their names, relation-
ship statuses, and even regular updates to their

friends (like, “Oh noes!! I just stepped on a bug, and
I think I got bug poisoning!”). Programs that need to
search or filter this data may use associative arrays to
store the various parts of the text.

In addition to the indexed arrays you used in Chapter 15, Small Basic
supports other types of arrays that can simplify many programming tasks.
In this chapter, you’ll start by learning about associative arrays. Then you’ll
learn about the Array object, use it to create some fun applications, and
even turn your computer into a poet!

228 Chapter 16

Associative Arrays
In the previous chapter, you learned how to use an integer index to access
an array’s elements. But in Small Basic, an array’s index can also be a string.
Arrays indexed by strings are called associative arrays, maps, or dictionaries.
In this book, we’ll call them associative arrays. Just like an indexed array,
an associative array can store values of any type. You can use an associative
array to create an association between a set of keys (string indices) and a set
of values, which is called creating a map of key-value pairs.

The following code shows a simple example of an associative array in
action. It’s a list of states keyed by their two-letter abbreviations:

state["CA"] = "California"
state["MI"] = "Michigan"
state["OH"] = "Ohio"
' ... and so on

To display the name of a state, you simply use its corresponding key
and the proper syntax. For example, to display Michigan, you can write this
statement:

TextWindow.WriteLine(state["MI"])

By writing the name of the array followed by the key enclosed in square
brackets, you can access the corresponding item. An associative array works
like a lookup table that maps keys to values; if you know the key, you can find
its value very quickly.

To learn how to use associative arrays, let’s write a program that keeps
track of the ages of your friends by name. Enter the program in Listing 16-1.

1	' AssociativeArray.sb
2	age["Bert"] = 17
3	age["Ernie"] = 16
4	age["Zoe"] = 16
5	age["Elmo"] = 17
6	TextWindow.Write("Enter the name of your friend: ")
7	name = TextWindow.Read()
8	TextWindow.Write(name + " is [")
9	TextWindow.WriteLine(age[name] + "] years old.")

Listing 16-1: Using associative arrays

Lines 2–5 create an associative array named age with four elements in
it. You can add more if you’d like, or you can change the array to store the
ages of your own friends. Line 6 asks you to enter a friend’s name, and line
7 reads it into the name variable. In line 9, age[name] looks up the age of that
friend.

Storing Data with Associative Arrays 229

Let’s look at some sample runs of this program:

Enter the name of your friend: Ernie
Ernie is [16] years old.

Enter the name of your friend: ernie
ernie is [16] years old.

Note that the key is case insensitive: it doesn’t matter if you enter
age["Ernie"], age["ernie"], or even age["ERNIE"]. If the array contains a key
named Ernie, regardless of its case, Small Basic returns the value for
that key.

Let’s say you forget which friends’ names you stored in the array, and
you try to access the age of someone you forgot to include:

Enter the name of your friend: Grover
Grover is [] years old.

If the array doesn’t contain a certain key, Small Basic returns an empty
string, which is why age["Grover"] is empty.

Ass o c i at i v e A r r ays vs . t h e I f/Els e I f L a dd e r

In programming, there are usually lots of different ways to approach a particular
problem. Here’s another way to write the program like the one in Listing 16-1:

TextWindow.Write("Enter the name of your friend: ")
name = TextWindow.Read()
If (name = "Bert") Then
 age = 17
ElseIf (name = "Ernie") Then
 age = 16
ElseIf (name = "Zoe") Then
 age = 16
ElseIf (name = "Elmo") Then
 age = 17
Else
 age = ""
EndIf
TextWindow.WriteLine(name + " is [" + age + "] years old.")

Although this program seems similar to the one in Listing 16-1, the two
have one important difference: here, string comparison is case sensitive. If you
enter ernie (with a lowercase e), the program displays the following output:

ernie is [] years old.

(continued)

230 Chapter 16

Putting Associative Arrays to Use
Now that you understand the basics of associative arrays, let’s examine a
couple of programs that show you how to use them.

Days in French
The first example translates the days of the week from English to French.
This program prompts a user to enter the name of a day in English and
outputs that name in French. Enter the code in Listing 16-2.

1	' FrenchDays.sb
2	day["Sunday"] = "Dimanche"
3	day["Monday"] = "Lundi"
4	day["Tuesday"] = "Mardi"
5	day["Wednesday"] = "Mercredi"
6	day["Thursday"] = "Jeudi"
7	day["Friday"] = "Vendredi"
8	day["Saturday"] = "Samedi"
9	
10	TextWindow.Write("Enter the name of a day: ")
11	name = TextWindow.Read()
12	TextWindow.WriteLine(name + " in French is " + day[name])

Listing 16-2: An English-to-French translator

The day array stores the French names for the days of the week
(lines 2–8). Each key in the array is the day’s name in English. The
program prompts the user to enter the name of a day in English (line 10)
and stores the user’s input in the name variable (line 11). The program then
looks up the French name using the user’s input as a key, using the syntax
day[name], and displays it (line 12). Here’s the output from a sample run:

Enter the name of a day: Monday
Monday in French is Lundi

Do you know any other languages? Change the program to help your
friends learn how to say the days of the week in a new language. Feeling
sneaky? You could even make up your own secret language!

The expression If("ernie" = "Ernie") is false. This version of the pro-
gram is also harder to read and write. When you need to map between a set
of keys and values, it’s best to use associative arrays so you don’t have to
worry about case.

Storing Data with Associative Arrays 231

Storing Records
Business is booming, and Moe Mows, a local lawn-mowing service in your
town, has hired you to write a program that displays the contact information
of its customers. When the company enters a customer’s name, the program
needs to display the customer’s home address, phone number, and email
address. Enter the program in Listing 16-3.

1	' MoeMows.sb
2	address["Natasha"] = "3215 Romanoff Rd"
3	phone["Natasha"] = "(321) 555 8745"
4	email["Natasha"] = "blackwidow64@shield.com"
5	
6	address["Tony"] = "8251 Stark St"
7	phone["Tony"] = "(321) 555 4362"
8	email["Tony"] = "ironman63@shield.com"
9	
10	TextWindow.Write("Name of customer: ")
11	name = TextWindow.Read()
12	TextWindow.WriteLine("Address...: " + address[name])
13	TextWindow.WriteLine("Phone.....: " + phone[name])
14	TextWindow.WriteLine("Email.....: " + email[name])

Listing 16-3: Building a simple database

The program uses three associative arrays: address, phone, and email. All
three arrays use the customer’s name as a key, and the arrays are used collec-
tively to store customers’ records. A record is a collection of related data items.
In this example, each customer’s record has three fields: address, phone, and
email. Whether the program has two records or 1,000 records, the search
is done the same way. For example, the statement address[name] in line 12
returns the value associated with the key name in the address array. We don’t
have to search the address array; Small Basic does this for us, for free!

TR Y IT OUT 16-1

What’s the output of Listing 16-2 if the user enters an invalid day name (like
Windsday)? Update the program to display an error message when this happens.
Use an If statement like this one:

If (day[name] = "") Then
 ' Tell the user they entered a wrong name
Else
 ' Show the French translation
EndIf

232 Chapter 16

Here’s the output from a sample run of this program:

Name of customer: Tony
Address...: 8251 Stark St
Phone.....: (321) 555 4362
Email.....: ironman63@shield.com

The Array Object
The Array object in the Small Basic library can help you find important infor-
mation about the arrays in your programs. In this section, we’ll explore this
object in detail and look at some examples on how to use it. To explore the
Array object, let’s start by entering the following code:

name = "Bart" ' An ordinary variable
age["Homer"] = 18 ' An associative array with two elements
age["Marge"] = 17
score[1] = 90 ' An indexed array with one element

This code defines an ordinary variable called name, an associative array
called age that has two elements, and an indexed array called score that has
one element. You’ll use these arrays in the examples that follow. What can
the Array object tell you? Let’s find out!

Is It an Array?
Do you think Small Basic knows that name is an ordinary variable and that
age and score are arrays? Run the program in Listing 16-4 to find out.

1	' IsArray.sb
2	name = "Bart"
3	age["Homer"] = 18
4	age["Marge"] = 17
5	score[1] = 90
6	ans1 = Array.IsArray(name) ' Returns "False"
7	ans2 = Array.IsArray(age) ' Returns "True"
8	ans3 = Array.IsArray(score) ' Returns "True"
9	TextWindow.WriteLine(ans1 + ", " + ans2 + ", " + ans3)

Listing 16-4: Demonstrating the IsArray() method

TR Y IT OUT 16-2

Update the program in Listing 16-3 to store the contact information of some of
your friends (but not all 500 of your Facebook friends). Add another array that
stores the birth date of each friend. You’ll never forget a birthday again!

Storing Data with Associative Arrays 233

This code uses the Array object’s IsArray() method. If the variable is an
array, this method returns "True"; otherwise, it returns "False". This method
shows that the variables age and score are arrays, but the name variable isn’t
an array. The IsArray() method can help you to be sure that the variables in
your programs are arrays.

How Big Is an Array?
The Array object can also tell you how many elements are stored in your
arrays. Run the program in Listing 16-5.

1	' GetItemCount.sb
2	name = "Bart"
3	age["Homer"] = 18
4	age["Marge"] = 17
5	score[1] = 90
6	ans1 = Array.GetItemCount(name) ' Returns: 0
7	ans2 = Array.GetItemCount(age) ' Returns: 2
8	ans3 = Array.GetItemCount(score) ' Returns: 1
9	TextWindow.WriteLine(ans1 + ", " + ans2 + ", " + ans3)

Listing 16-5: Demonstrating the GetItemCount() method

The GetItemCount() method returns the number of items in the speci-
fied array. Note how GetItemCount(name) returns 0, because name isn’t an array.
The other two calls return the number of elements in each array. Use
GetItemCount() to keep track of how many items you’re storing in an array.
You might use this method in a game that allows the player to store items in
an inventory and you want to check how many items they have picked up.

Does It Have a Particular Index?
You can also use the Array object to find out whether one of your arrays
contains a certain index. To see how, run the program in Listing 16-6.

1	' ContainsIndex.sb
2	age["Homer"] = 18
3	age["Marge"] = 17
4	score[1] = 90
5	ans1 = Array.ContainsIndex(age, 1) ' Returns "False"
6	ans2 = Array.ContainsIndex(age, "homer") ' Returns "True"
7	ans3 = Array.ContainsIndex(age, "Lisa") ' Returns "False"
8	TextWindow.WriteLine(ans1 + ", " + ans2 + ", " + ans3)
9	
10	ans1 = Array.ContainsIndex(score, "1") ' Returns "True"
11	ans2 = Array.ContainsIndex(score, 1) ' Returns "True"
12	ans3 = Array.ContainsIndex(score, 2) ' Returns "False"
13	TextWindow.WriteLine(ans1 + ", " + ans2 + ", " + ans3)

Listing 16-6: Demonstrating the ContainsIndex() method

234 Chapter 16

The ContainsIndex() method takes two arguments. The first argument is
the name of the array, and the second argument is the index you’re check-
ing for. The method returns "True" or "False" depending on whether the
index exists in the array.

Line 6 shows that searching for the index is case insensitive, which is why
the search for the index homer returns "True". Also, searching the score array
for index "1" (as a string) or index 1 (as a number) both returned "True".

If you’re not sure whether an array includes a particular index, you can
use the ContainsIndex() method to find out. This method is especially helpful
if you’re working with very long arrays.

Does It Have a Particular Value?
The Array object also offers a method that checks whether an array con-
tains a certain value. Run the program in Listing 16-7 to discover how the
ContainsValue() method works.

1	' ContainsValue.sb
2	age["Homer"] = 18
3	age["Marge"] = 17
4	score[1] = 90
5	ans1 = Array.ContainsValue(age, 18) ' Returns "True"
6	ans2 = Array.ContainsValue(age, 20) ' Returns "False"
7	ans3 = Array.ContainsValue(score, 90) ' Returns "True"
8	TextWindow.WriteLine(ans1 + ", " + ans2 + ", " + ans3)

Listing 16-7: Demonstrating the ContainsValue() method

The ContainsValue() method returns "True" or "False" depending on
whether the value it checks for exists in the array.

N o t e 	 Unlike the ContainsIndex() method, the ContainsValue() method is case sensitive.
So it’s best to be consistent with your casing!

Give Me All the Indices
Another useful method of the Array object is GetAllIndices(). This method
returns an array that has all the indices of a given array. The first element
of the returned array has an index of 1. To understand how this method
works, run the program in Listing 16-8.

1	' GetAllIndices.sb
2	age["Homer"] = 18
3	age["Marge"] = 17
4	names = Array.GetAllIndices(age)
5	TextWindow.WriteLine("Indices of the age array:")

Storing Data with Associative Arrays 235

6	For N = 1 To Array.GetItemCount(names)
7	 TextWindow.WriteLine("Index" + N + " = " + names[N])
8	EndFor

Listing 16-8: Demonstrating the GetAllIndices() method

Line 4 calls GetAllIndices() to find all the indices of the age array. This
method returns an array, which it saves in the names identifier. The code
then starts a loop that runs from the first to the last element in names. Note
how the code uses the GetItemCount() method to figure out this value. Here’s
the output of this code:

Indices of the age array:
Index1 = Homer
Index2 = Marge

Now let’s put the methods you’ve learned to good use. Do you think
your computer is intelligent enough to write poems? Well, let’s see!

Your Computer the Poet
Now let’s use what we’ve learned about associative arrays to write a program
that generates poems. This artificial poet selects words randomly from five
lists (article, adjective, noun, verb, and preposition) and combines them into
a fixed pattern. To give the poems a central theme, all the words in these
lists are related to love and nature. Of course, we might still end up with
some silly poetry, but that’s just as fun!

N o t e 	 The idea of this program is adapted from Daniel Watt’s Learning with Logo
(McGraw-Hill, 1983).

TR Y IT OUT 16-3

Open the file AnimalSpeed.sb from this chapter’s folder. This game quizzes the
player on the top speed (in miles per hour) of different animals. The program has
an associative array that looks like this:

speed["cheetah"] = 70
speed["antelope"] = 60
speed["lion"] = 50
' ... and so on

Run this game to see how it works. Which Array object methods does the
game use? Explain how the game works, and then come up with some ideas to
make the game more fun. Make sure you do all of this assignment. Don’t be a
cheetah!

236 Chapter 16

Figure 16-1 shows the user interface for the application.

Figure 16-1: The user interface for Poet.sb

Every time you click the New button, the poet recites a new poem. Each
poem includes three lines that follow these patterns:

•	 Line 1: article, adjective, noun

•	 Line 2: article, noun, verb, preposition, article, adjective, noun

•	 Line 3: adjective, adjective, noun

The following sections guide you through the creation of this program.

Step 1: Open the Startup File
Open the file Poet_Incomplete.sb from this chapter’s folder. The file contains
one subroutine named CreateLists(), which creates the five lists you’ll need
in this program. This subroutine was added to save you from having to type
a whole bunch of words. This is what it looks like:

Sub CreateLists
 article = "1=a;2=the;...;5=every;"
 adjective = "1=beautiful;2=blue;...;72=young;"
 noun = "1=baby;2=bird;...;100=winter;"
 verb = "1=admires;2=amuses;...;92=whispers;"
 prepos = "1=about;2=above;...;37=without;"
EndSub

The ellipses (...) take the place of the missing array elements, but you
can see all these elements when you open the file. Note that the article
array also includes other determiners, such as one, each, and every.

Storing Data with Associative Arrays 237

Step 2: Set Up the Graphical User Interface
Add the code in Listing 16-9 to the beginning of the program file to set up
the graphical user interface (GUI) and register the button’s event handler.

1	GraphicsWindow.Title = "The Poet"
2	GraphicsWindow.CanResize = "False"
3	GraphicsWindow.Width = 480
4	GraphicsWindow.Height = 360
5	GraphicsWindow.FontBold = "False"
6	GraphicsWindow.FontItalic = "True"
7	GraphicsWindow.FontSize = 16
8	
9	path = Program.Directory
10	GraphicsWindow.DrawImage(path + "\Background.png", 0, 0)
11	Controls.AddButton("New", 10, 10)
12	
13	CreateLists()
14	
15	artCount = Array.GetItemCount(article)
16	adjCount = Array.GetItemCount(adjective)
17	nounCount = Array.GetItemCount(noun)
18	verbCount = Array.GetItemCount(verb)
19	prepCount = Array.GetItemCount(prepos)
20	
21	Controls.ButtonClicked = OnButtonClicked
22	OnButtonClicked()

Listing 16-9: Setting up the GUI

The program starts by initializing the graphics window (lines 1–7),
drawing the background image (lines 9–10), and creating the New button
(line 11). Next, it calls the CreateLists() subroutine to initialize the five
indexed arrays (line 13). Then the program uses the Array object to get
the number of items in each array and saves these values in lines 15–19.
This way, you can append more elements to the end of these arrays without
affecting the rest of the program. For example, if you wanted to add a 73rd
adjective, you could add 73=callipygous; within the quotes at the end of
the adjectives array line in the CreateLists() subroutine. Because line 16 in
Listing 16-9 gets the count of the elements in that array, the new elements
you add are automatically counted and randomly selected for the poem,
just like the other elements.

Finally, the program registers a handler for the ButtonClicked event
(line 21) and calls the handler subroutine to display the first poem (line 22).

Step 3: Respond to Button Clicks
Now you need to add the OnButtonClicked() subroutine, which is shown in
Listing 16-10.

238 Chapter 16

1	Sub OnButtonClicked
2	 GraphicsWindow.DrawImage(path + "\Background.png", 0, 0)
3	
4	 MakeLine1() ' Constructs poemLine1
5	 MakeLine2() ' Constructs poemLine2
6	 MakeLine3() ' Constructs poemLine3
7	
8	 GraphicsWindow.DrawText(180, 140, poemLine1)
9	 GraphicsWindow.DrawText(100, 165, poemLine2)
10	 GraphicsWindow.DrawText(180, 190, poemLine3)
11	EndSub

Listing 16-10: The OnButtonClicked() subroutine

This subroutine redraws the background image to clear the graphics
window (line 2). It then calls the three subroutines that author the three
lines of the poem (lines 4–6) and draws these lines in the graphics window
(lines 8–10). Next, you’ll add the three missing subroutines.

Step 4: Write the Poem’s First Line
The poem’s first line is written in this form: article, adjective, noun. Add the
subroutine in Listing 16-11, which creates the poem’s first line and assigns it
to the poemLine1 variable.

1	Sub MakeLine1
2	 art1 = article[Math.GetRandomNumber(artCount)]
3	 adj1 = adjective[Math.GetRandomNumber(adjCount)]
4	 noun1 = noun[Math.GetRandomNumber(nounCount)]
5	 poemLine1 = art1 + " " + adj1 + " " + noun1
6	EndSub

Listing 16-11: The MakeLine1() subroutine

The MakeLine1() subroutine selects three random words from the
article, adjective, and noun arrays and stores the values in art1, adj1, and
noun1 (lines 2–4). It then fills poemLine1 by appending these variables with a
whitespace in between them (line 5).

Step 5: Write the Poem’s Second and Third Lines
The MakeLine2() and MakeLine3() subroutines are very similar to the MakeLine1()
subroutine. The second line takes this form: article, noun, verb, preposi-
tion, article, adjective, noun. The third line takes this form: adjective, adjec-
tive, noun. Create these subroutines on your own. If you get stuck, open the
file Poet.sb to see how we wrote these subroutines. When you’re done, recite
your favorite poem output to your family or friends, and see if they think
you wrote it!

Storing Data with Associative Arrays 239

NOTE 	 The Array object includes three more methods that create a different type of array:
SetValue(), GetValue(), and RemoveValue(). Although these methods work well, the
bracketed style of array is more universal among programming languages and is the
reason this book focuses on that style.

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Write a program that keeps track of your friends’ phone numbers. Use
an associative array that uses your friends’ names as keys; for example,
phone["Yoda"] = "555-1138".

2.	 Write a program that saves book information. The key is the ISBN
of the book. For each book, you need to know the title, the author,
and the publication year. Use three associative arrays: title[ISBN],
author[ISBN], and year[ISBN].

3.	 Open the file VirtualPiano.sb from this chapter’s folder. The program
implements a virtual piano using the keyboard. Explain how the pro-
gram works.

TR Y IT OUT 16- 4

Run your poet program several times to see what a machine poet is capable of
authoring. Come up with different poem patterns, and teach this poet how to
create them. Then change the words to any words (and any amount of words)
that you want! Head to http://tiny.cc/sbpoet/ to share your poem program with the
community and to see what others created.

http://nostarch.com/smallbasic/
http://tiny.cc/sbpoet

17
E x p a n d i n g t o

H i g h e r - D i m e n s i o n A r r a ys

In the previous two chapters, you learned
how to use one-dimensional arrays to

store collections of items. In this chapter,
we’ll expand this concept to two dimensions

and higher. Working in more than one dimension is
also called working in higher dimensions.

In a two-dimensional (2D) array, you can store values in a table or a grid.
For example, think about the scoreboard at a baseball game (see Figure 17-1).
The left column lists the team names, and the right columns list the innings
and other statistics.

Figure 17-1: Baseball scoreboard

242 Chapter 17

The arrays you’ll make in this chapter are similar to a scoreboard. They
let you organize your data in rows and columns.

When you complete this chapter, you’ll understand 2D and other
higher-dimensional arrays and you’ll be able to use them to build new types
of applications, including a treasure-hunting game!

Two-Dimensional Arrays
A 2D array has two dimensions: rows and columns. You can think of a 2D
array as a table. For example, Figure 17-2 shows a 2D array named score
that stores a student’s test scores in three subjects.

Math

Science

English

2D array named score

3 91 89 83 90

1 2 3 4 5

951

2

87 90 85

80 85 77 89

Column index
Row index

Element

score[2][5] = 89

91

92

86
score[1][2] = 87

Figure 17-2: A pictorial view of a 2D array

The first row contains math test scores, the second row records the
science test scores, and the next row stores English scores. This 2D arrange-
ment of elements is also referred to as a matrix (the plural is matrices). But
this matrix won’t teach you slow-motion kung fu!

To access the individual elements of a matrix, you need two indices:
one for the rows and the other for the columns. Here are some examples:

score[1][1] = 95 ' Row 1, column 1
score[1][2] = 87 ' Row 1, column 2
score[2][1] = 80 ' Row 2, column 1
score[2][3] = 92 ' Row 2, column 3

The variable score is a double-scripted variable because it requires two
indices to access its elements. The first index is the row number, and the
second index is the column number.

As with one-dimensional arrays, the index of each dimension can be a
number or a string. Also, the values stored in the matrix can be numbers,
strings, or other identifiers returned by objects in the Small Basic library.
Let’s look at some simple examples of 2D arrays next.

A Random Matrix
A client named MI6 wants your help to generate passwords for security locks.
The program shown in Listing 17-1 creates a matrix named mat consisting of
random numbers. The matrix contains three rows and four columns, which
is a 3×4 (read 3 by 4) matrix, or a 3×4 array.

Expanding to Higher-Dimension Arrays 243

1	' Random2DArray.sb
2	For r = 1 To 3 ' 3 rows
3	 For c = 1 To 4 ' 4 columns
4	 mat[r][c] = Math.GetRandomNumber(9)
5	 EndFor
6	EndFor
7	
8	' Displays the matrix to see its contents
9	For r = 1 To 3 ' 3 rows
10	 For c = 1 To 4 ' 4 columns
11	 TextWindow.Write(mat[r][c] + " ")
12	 EndFor
13	 TextWindow.WriteLine("")
14	EndFor

Listing 17-1: Filling a 3×4 array with random numbers

The program uses a nested For loop to fill the matrix with random
numbers (lines 2–6). Nested For loops are extremely helpful when you’re
working with 2D arrays, because you can use one to loop through rows and
the other to loop through columns. In this example, the outer loop uses a
control variable r (for rows) and runs from 1 to 3 (line 2); the inner loop
uses a control variable c (for columns) and runs from 1 to 4 (line 3).

The first pass of the outer loop (r = 1) causes four passes inside the
inner loop (c = 1, 2, 3, and 4), which fills mat[1][1], mat[1][2], mat[1][3], and
mat[1][4]. The second pass of the outer loop (r = 2) causes another four
iterations of the inner loop (c = 1, 2, 3, and 4) and fills mat[2][1], mat[2][2],
mat[2][3], and mat[2][4]. Likewise, the third pass of the outer loop (r = 3)
fills the third row of the matrix. Figure 17-3 illustrates this process.

r

c

c

c

mat[1][1] mat[1][2] mat[1][3] mat[1][4]

mat[2][1] mat[2][2] mat[2][3] mat[2][4]

mat[3][1] mat[3][2] mat[3][3] mat[3][4]

1

2

3

1

1

1

2

2

2

3

3

3

4

4

4

Figure 17-3: Using a nested For loop to access the elements of a matrix

244 Chapter 17

Following along with this figure, when r = 1, the program takes the top c
branch and fills in all four sets of the 2D array elements. When r = 2, it iter-
ates through the middle branch four times. When r = 3, it iterates through
the bottom branch.

After filling the matrix with random numbers, the program uses another
nested loop to display its contents (lines 9–14) using a similar process. The
outer loop runs from 1 to 3 to index the three rows (line 9), and the inner
loop runs from 1 to 4 to index the four columns (line 10). Line 11 displays
the element at index mat[r][c] (column c in row r), followed by a space. When
the inner loop ends, it means an entire row has been displayed, and the cur-
sor moves to the next line to prepare to display the next row (line 13).

It’s time to turn your program over to your MI6 client. Here’s a sample
output of this program, but your output will most likely be different:

2 8 1 6
3 9 3 9
1 5 7 8

You can make matrices even more useful by programming them to
accept user input. We’ll look at how to do that next.

A Matrix with User Input
Your MI6 client loves the program you built, but now they want to be able
to enter certain numbers into the password matrix. You can easily change
Listing 17-1 to take input from the user instead of using random numbers.
Just replace line 4 with the following two lines:

TextWindow.Write("mat[" + r + "][" + c + "]: ")
mat[r][c] = TextWindow.ReadNumber()

The first statement prompts the user to enter an element in the matrix,
and the second line reads and stores the user’s entry. Make this change, and
try it out to see how it works.

But matrices aren’t only about numbers. You can use them to make
some fun, colorful applications too. In the next example, you’ll create a
colorful grid and animate it.

TR Y IT OUT 17-1

In Listing 17-1, the numbers in the matrix are stored by rows. First, row 1 is filled,
then row 2, and finally row 3. The reason is that we made the r loop (which rep-
resents rows) the outer loop and the c loop (which represents columns) the inner
loop. Change the program so it fills the matrix by columns first instead of rows.

Expanding to Higher-Dimension Arrays 245

Animated Squares
Let’s write a program that creates a 4×8 grid of randomly colored squares
and then animates these squares to fly to the upper-left corner of the
graphics window, as shown in Figure 17-4.

Before animation During animation

Figure 17-4: Illustrating the output of AnimatedSquares.sb

The complete application is shown in Listing 17-2.

1	' AnimatedSquares.sb
2	' Creates a 4x8 grid of randomly colored squares
3	For r = 1 To 4 ' 4 rows
4	 For c = 1 To 8 ' 8 columns
5	 clr = GraphicsWindow.GetRandomColor()
6	 GraphicsWindow.BrushColor = clr
7	 box[r][c] = Shapes.AddRectangle(20, 20) ' Adds a square
8	 Shapes.Move(box[r][c], c * 20, r * 20) ' Positions it
9	 EndFor
10	EndFor
11	
12	' Animates the squares to the upper-left corner of the window
13	For r = 1 To 4
14	 For c = 1 To 8
15	 Shapes.Animate(box[r][c], 0, 0, 1000)
16	 Program.Delay(400) ' A small delay (in milliseconds)
17	 EndFor
18	EndFor

Listing 17-2: Using a matrix to store shape IDs

The program uses a nested For loop to create the squares (lines 3–10).
The outer loop (which creates the rows) runs four times, and the inner
loop (which creates the columns) runs eight times (lines 3–4), for a total of
32 iterations (4×8). In each pass of the inner loop, the square’s color is set
by changing the BrushColor property (lines 5–6), and a square is created by
calling AddRectangle(). We save its identifier in box[r][c] (line 7) and then
move the created square to its position on the square grid (see Figure 17-4).
Let’s take a closer look at lines 7–8.

At line 7, the AddRectangle() method takes the width and the height of
the desired rectangle and returns an identifier of the created shape. In this
example, we pass 20 for both arguments to create a square, and we save
the returned identifier in box[r][c].

246 Chapter 17

To move the square, we call the Move() method of the Shapes object
(line 8). This method takes three arguments: the identifier of the shape we
want to move and the x- and y-coordinates of the position we’re moving it
to. The squares in each row have their x positions (left edge) at 1 × 20 = 20,
2 × 20 = 40, 3 × 20 = 60, and so on. The squares in each column have their
y positions (top edge) at 1 × 20 = 20, 2 × 20 = 40, 3 × 20 = 60, and so on.
This is why we use c * 20 and r * 20 in the call to Move().

At the end of this For loop, the box matrix contains 32 unique identifiers
for the 32 squares created by the Shapes object.

The program then animates the squares (lines 13–18), using a nested
For loop to access the rows and the columns of box. During each iteration,
we ask the Shapes object to animate one square (line 15) and then pause for a
short time (line 16). The Animate() method takes four arguments: the iden-
tifier of the shape we want to animate, the x- and y-coordinates of the destina-
tion, and the animation duration in milliseconds. We ask the Shapes object to
move each square to point (0, 0) in 1 second (1000 milliseconds).

Using String Indices
The previous examples used integer indices to access the elements of a
matrix. Our next example teaches you how use strings for indices. You’ll
examine an application that keeps track of students’ scores in different
subjects.

Welcome to Professor Xavier’s School for Gifted Youngsters! The class
has only three students right now: Scott, Jean, and Logan (the others are
on an important mission). The school teaches only three subjects: math,
science, and combat. Let's write a program that prompts the user to enter
a student’s name and then displays the student’s average score. The com-
plete program is shown in Listing 17-3.

1	' StudentAvg.sb
2	score["Scott"]["Math"] = 92
3	score["Scott"]["Science"] = 90
4	score["Scott"]["Combat"] = 87
5	score["Jean"]["Math"] = 85
6	score["Jean"]["Science"] = 82
7	score["Jean"]["Combat"] = 92
8	score["Logan"]["Math"] = 85
9	score["Logan"]["Science"] = 95
10	score["Logan"]["Combat"] = 99
11	

TR Y IT OUT 17-2

Change the program in Listing 17-2 to animate the squares by columns instead of
by rows. If you’re feeling artistic, try moving the squares to create a pattern in the
graphics window.

Expanding to Higher-Dimension Arrays 247

12	TextWindow.Write("Enter student name: ")
13	name = TextWindow.Read()
14	sum = score[name]["Math"]
15	sum = sum + score[name]["Science"]
16	sum = sum + score[name]["Combat"]
17	avg = Math.Round(sum / 3)
18	TextWindow.WriteLine(name + " average score = " + avg)

Listing 17-3: Using strings for indices

The program starts by initializing the score matrix with the scores of
the three students (lines 2–10). Rows are indexed by the students’ names,
and columns are indexed by the subjects. Figure 17-5 shows a visual repre-
sentation of the score matrix.

9092

92

99

87

85

85

82

95

Jean

Logan

Scott

M
at

h

Sc
ie

nc
e

C
om

ba
t

Figure 17-5: The score matrix in Listing 17-3

The program prompts the user to enter a student’s name (line 12) and
assigns the input to the name variable (line 13). It then pulls that student’s
math score into the sum variable (line 14), adds the student’s science score to
sum (line 15), and adds the student’s combat score (line 16). Finally, the pro-
gram computes the average score (line 17) and displays it (line 18).

Here’s the output from a sample run:

Enter student name: scott
scott average score = 90

The string index is case insensitive, which is why the program worked
when we entered scott with a lowercase s. What do you think the output will
be if you enter an invalid student name? Run the program to check your
answer.

TR Y IT OUT 17-3

Update the program in Listing 17-3 to display the score of a student in a given
subject. Have the user enter the name of the student and the subject.

248 Chapter 17

Going Interactive
Let’s explore how to get the students’ scores from the user rather than
hardcoding them within the program like we did in Listing 17-3. We’ll use
two loops to iterate over the students’ names and subjects, as shown in the
following pseudocode (you’ll learn how to translate this pseudocode into
real code in a moment):

For each student in the array: [Scott, Jean, Logan]
 For each subject in the array: [Math, Science, Combat]
 score[student][subject] = read score from user
 EndFor
EndFor

You can save the names of the students in a one-dimensional array,
save the names of the subjects in another one-dimensional array, and then
use nested For loops with integer indices to access the individual elements
of these two arrays. Then you can use the strings (student name and sub-
ject) as indices for a score matrix. Check out Listing 17-4 to see the code in
action.

1	' StudentAvg2.sb
2	nameList = "1=Scott;2=Jean;3=Logan;"
3	subjList = "1=Math;2=Science;3=Combat;"
4	
5	For I = 1 To 3 ' Three students
6	 name = nameList[I] ' Name of the Ith student
7	 For J = 1 To 3 ' Three subjects
8	 subj = subjList[J] ' Name of Jth subject
9	 TextWindow.Write(name + "'s " + subj + " score: ")
10	 score[name][subj] = TextWindow.ReadNumber()
11	 EndFor
12	EndFor
13	TextWindow.Write("Enter student name: ")
14	name = TextWindow.Read()
15	sum = score[name]["Math"]
16	sum = sum + score[name]["Science"]
17	sum = sum + score[name]["Combat"]
18	avg = Math.Round(sum / 3)
19	TextWindow.WriteLine(name + " average score = " + avg)

Listing 17-4: Reading scores from the user

The program starts by creating the name and subject arrays (lines 2–3).
Then a nested loop starts to fill the score matrix. The outer loop iterates
over the students, and the inner loop iterates over the subjects.

The outer loop starts with I = 1. Here name gets assigned to nameList[1],
which is "Scott" (line 6). Then the inner loop runs three times, the first
time with J = 1, and subject gets assigned to subjList[1], which is "Math"

Expanding to Higher-Dimension Arrays 249

(line 8). Line 9 displays Scott's Math score: , and line 10 waits for the user’s
input. The number entered by the user is saved in score["Scott"]["Math"],
and the inner loop repeats for J = 2. Now subject gets assigned to subjList[2],
which is "Science". The program displays Scott's Science score: , waits for
the user’s input, stores the entered number in score["Scott"]["Science"], and
repeats the inner loop with J = 3. Now subject gets assigned to subjList[3],
which is "Combat". The program displays Scott's Combat score: , waits for the
user’s input, and stores the entered number in score["Scott"]["Combat"]. This
ends the inner loop.

The outer loop repeats with I = 2. This sets name to nameList[2], which
is "Jean" and the inner loop works again to fill score["Jean"]["Math"],
score["Jean"]["Science"], and score["Jean"]["Combat"].

The outer loop repeats with I = 3. This sets name to nameList[3], which
is "Logan", and the inner loop works again to fill score["Logan"]["Math"],
score["Logan"]["Science"], and score["Logan"]["Combat"].

Trace through this second version of the program to understand how it
works. Thinking through what happens at each step is a great way to learn
how matrices work!

Common Operations on Numerical 2D Arrays
In this section, we’ll develop a useful set of subroutines that can perform
common operations on a 2D array made up of numbers. We’ll use the
sales of a fake company, Duckberg Industries, whose December sales
report is shown in Figure 17-6. The company has four stores (Beddy Buyz,
UBroke I.T. Emporium, LAN Lord’s Cyber Store, and Mother Bored
Electronics) and sells five types of products: Exploding Shoes (eShoes),
the iShirt Computer (iShirt), Shampoop, Dehydrated Water (dWater),
and the Invisible Hat (iHat). The numbers are the sales of each product
in thousands.

TR Y IT OUT 17- 4

Replace the statements that find the sum (lines 15–17) in Listing 17-4 with a For
loop, as shown in the following code snippet:

sum = 0
For J = 1 To 3
 ' Add each student's score in the Jth subject to sum
EndFor

250 Chapter 17

Duckberg Industries December Sales (in Thousands)

eShoes iShirt Shampoop dWater iHat

Beddy Buyz

UBroke I.T. Emporium

LAN Lord’s Cyber Store

Mother Bored Electronics

50

35

40

65

60

55

45

40

90

75

85

60

85

70

95

80

60

85

75

90

Figure 17-6: Duckberg Industries’ December sales report

Open the file Duckberg_Incomplete.sb from this chapter’s folder. The
file contains the data in Figure 17-6 in a sequence of statements that looks
like this:

sales[1][1] = 50 ' Beddy Buyz store; Exploding Shoes sales
sales[1][2] = 60 ' Beddy Buyz store; iShirt Computer sales
--snip--
sales[4][4] = 80 ' Mother Bored Electronics; Dehydrated Water sales
sales[4][5] = 90 ' Mother Bored Electronics; Invisible Hat sales

The program also defines the following variables:

ROWS = 4 ' Number of rows
COLS = 5 ' Number of columns
product = "1=eShoes;2=iShirt;3=Shampoop;4=dWater;5=iHat"

Follow the instructions in the next two sections to complete the
program.

Step 1: Add All Elements
Donald, the company’s sales manager, wants to know the total sales of
the company. You need to add all the numbers in the sales matrix. The
TotalSales() subroutine in Listing 17-5 shows you how to do that.

1	Sub TotalSales
2	 sum = 0 ' Initializes the running sum
3	 For r = 1 To ROWS ' For all rows
4	 For c = 1 To COLS ' For all columns
5	 sum = sum + sales[r][c] ' Adds number at row r, column c
6	 EndFor
7	 EndFor
8	 TextWindow.WriteLine("Total Sales: $" + sum + " K")
9	EndSub

Listing 17-5: Adding all numbers in a matrix

Expanding to Higher-Dimension Arrays 251

You start by initializing the sum variable (which holds the running
sum) to 0 (line 2). You then use a nested loop to iterate over all the rows
and columns (lines 3–4). For each iteration, you add the number stored in
sales[r][c] to sum (line 5). When the outer loop ends, you display the result
followed by K for thousands (line 8).

Add this subroutine to the program, and then add a statement to call it.
Here’s what you should see when you call the TotalSales() subroutine:

Total Sales: $1340 K

Step 2: Find the Sum of Each Column
Donald also wants to see the total sales for each Duckberg Industries prod-
uct. He needs to compare these numbers with those from his competitors
to assess his company’s market share.

To give Donald this information, you’ll use the ColumnSum() subroutine
in Listing 17-6 to compute the sum of each column in the sales matrix.

1	Sub ColumnSum
2	 For c = 1 To COLS ' For each column
3	 sum = 0 ' Initializes the sum for column c
4	 For r = 1 To ROWS ' Iterates over the rows
5	 sum = sum + sales[r][c] ' Adds number at row r, column c
6	 EndFor
7	 colName = product[c] + " Sales: $" ' Name to display
8	 TextWindow.WriteLine(colName + sum + " K")
9	 EndFor
10	EndSub

Listing 17-6: The ColumnSum() subroutine

You start the outer loop to iterate over the five columns (line 2). For
each column (each value of c), you initialize the column’s sum to 0 (line 3)
and then start a For loop to add the numbers from all the rows in that col-
umn to sum (lines 4–6). When the inner loop completes, you get the name
of the current product (from product[c]), append "Sales: $" to it, and save
the resulting string in colName (line 7). In line 8, you display that string fol-
lowed by the sum you just computed. The outer loop then restarts to find
and display the sum for the next column.

Add this subroutine to the program, and then add a statement to call it.
Here’s what you should see when you call the ColumnSum() subroutine:

eShoes Sales: $190 K
iShirt Sales: $200 K
Shampoop Sales: $310 K
dWater Sales: $330 K
iHat Sales: $310 K

252 Chapter 17

Arrays of Three or More Dimensions
You’ve learned that using 2D arrays is a convenient way to represent a table
or a matrix. Small Basic also supports arrays with more than two dimen-
sions. You can extend the syntax for creating 2D arrays to create arrays with
even higher dimensions. Next we’ll explore how to create three-dimensional
(3D) arrays in Small Basic.

Let’s work with a shelf that has five racks. Each rack has three rows and
four columns, and each position on the shelf has a box that contains screws
of a certain size. Look at Figure 17-7 and imagine boxes of different screw
sizes in each column and row (that’s 12 boxes). Then imagine that same
number of boxes on all five racks. That’s 60 boxes in total!

Row 1

Row 2

Row 3

Column1 Column 2 Column 3 Column 4

Rack 1
Rack 2
Rack 3
Rack 4
Rack 5

Figure 17-7: Visualizing a 3D array

We’ll examine a program that fills each box with a random number
that indicates the size of the screws in that box. The program is shown in
Listing 17-7.

1	' 3DArrayDemo.sb
2	For rack = 1 To 5 ' For each rack
3	 For row = 1 To 3 ' For each row

TR Y IT OUT 17-5

Donald wants to review the performance of his four stores by comparing the total
sales of each store. Write a subroutine, RowSum(), that calculates and displays the
sum for each row of the sales matrix.

Expanding to Higher-Dimension Arrays 253

4	 For col = 1 To 4 ' For each column
5	 box[rack][row][col] = Math.GetRandomNumber(9)
6	 EndFor
7	 EndFor
8	EndFor

Listing 17-7: Demonstrating the syntax for 3D arrays

This program creates a 3D array named box. Its elements are indexed
with three subscripts: rack runs from 1 to 5 (line 2), row runs from 1 to 3
(line 3), and col runs from 1 to 4 (line 4). This array has 60 elements
(5×4×3), just like the shelf in the example. Line 5 uses the syntax box[rack]
[row][col] to access the box in rack number rack, row number row, and col-
umn number col, and it puts a random number in that box.

Notice that another nested For loop is used, but in this example, we
nested three For loops instead of just two (lines 2–4). Generally, you’ll
need to use one For loop per dimension in your higher-dimension array;
as a result, you’ll be able to access every element in your array!

In the next section, you’ll use what you’ve learned so far to create an
exciting treasure game. Get ready for another adventure!

Create a Treasure Map Game
You woke up one morning and found you were alone on an island. A trea-
sure map and an old compass were lying next to you. You could hardly hold
back your excitement! You decided to look for the treasure. Figure 17-8
shows a sample map of the island.

TR Y IT OUT 17-6

Write a program that displays the output of the box array in Listing 17-7. Your out-
put should have the following format:

Rack 1:
2 7 3 2
4 3 1 3
1 2 6 4

Rack 2:
8 8 2 1
7 4 2 7
1 5 2 7
--snip--

254 Chapter 17

btnN

btnE

btnS

btnW

btnNew

txtID

Forest

Grass

Treasure

Volcano

Rain

Cave

Flower

Figure 17-8: The user interface for the Treasure Map game

You can move north, east, south, or west, one block at a time. But
because the compass is old, it might lead you in the wrong direction. For
example, if you go north or south, there’s a 20 percent chance that you’ll
also move one block to the left or to the right. And if you go east or west,
there’s a 20 percent chance that you’ll also move one block up or down.
Each time you move, you’ll receive information about your current location.
The game ends if you find the treasure or if you fall in the water where the
hungry sharks are waiting! Don’t think of Jaws while you’re playing this
game! (Sorry, that probably didn’t help.)

Because you have the treasure map in your hands, you should be able
to guess your location. For example, let’s say you’re in a forest, and when
you click the S button to go south, the game tells you you’re now next to a
volcano. Looking at the map, you can figure out that the treasure is just two
blocks west.

The following sections will guide you step-by-step to show you how to
put this game together. Adventure awaits!

Step 1: Open the Startup File
Open the TreasureMap_Incomplete.sb file from this chapter’s folder. This file
contains some comments and placeholders for the required subroutines.
You’ll add all the code one step at a time.

This folder also contains the eight images you’ll use. Background​.png is
a 580×450 image of the game’s background, and the seven 32×32 icons are
the different objects on the treasure map.

Expanding to Higher-Dimension Arrays 255

n o t e 	 If you run into any problems, check out the finished program TreasureMap.sb,
which is also included in this chapter’s folder.

Step 2: Create the GUI Elements
Add the code in Listing 17-8 to initialize the GraphicsWindow and create the
controls (buttons and text shapes) for the game.

1	GraphicsWindow.Title = "Treasure Map"
2	GraphicsWindow.Width = 580
3	GraphicsWindow.Height = 450
4	GraphicsWindow.CanResize = "False"
5	GraphicsWindow.FontSize = 14
6	GraphicsWindow.FontName = "Courier New"
7	
8	' Creates a text shape for showing the player's location
9	GraphicsWindow.BrushColor = "Black"
10	txtID = Shapes.AddText("")
11	Shapes.Move(txtID, 60, 415)
12	
13	' Creates the 4 movement buttons and the new game button
14	GraphicsWindow.BrushColor = "Red"
15	btnN = Controls.AddButton("N", 507, 10)
16	btnS = Controls.AddButton("S", 507, 90)
17	btnW = Controls.AddButton("W", 467, 50)
18	btnE = Controls.AddButton("E", 541, 50)
19	btnNew = Controls.AddButton("New Game", 480, 370)
20	
21	Controls.ButtonClicked = OnButtonClicked
22	
23	NewGame()

Listing 17-8: Initializing GraphicsWindow

Lines 1–6 set the properties of GraphicsWindow. Lines 9–11 create and posi-
tion the text that tells the player their current position on the island, and
lines 14–19 create the five buttons (see Figure 17-8). Line 21 registers a han-
dler to process the buttons, and line 23 calls NewGame() to start a new game.

Step 3: Start a New Game
Now you’ll add the NewGame() subroutine. This subroutine (shown in
Listing 17-9) is called when the player clicks the New Game button.

1	Sub NewGame
2	 gameOver = 0 ' Game isn't over yet
3	 moveNumber = 0 ' How many moves the player makes
4	 path = Program.Directory
5	
6	 GraphicsWindow.DrawImage(path + "\Background.png", 0, 0)
7	 CreateNewMap() ' Creates and draws a new treasure map

256 Chapter 17

8	 ShowLocation() ' Gives feedback to the player
9	EndSub

Listing 17-9: The NewGame() subroutine

You set the gameOver flag to 0 because the game isn’t over yet (line 2).
You also set moveNumber to 0 because the player hasn’t made any moves yet
(line 3). You then find the program’s path and assign it to the path variable.
You’ll use this variable when you draw the different icons on the treasure
map. In line 6, you draw a new copy of the background image to erase
the previous map. You then call CreateNewMap() to create and draw a new
treasure map (line 7) and call ShowLocation() to give feedback to the player
about their current location on the island (line 8). ShowLocation() updates
the text message to describe the player’s new location after they move.
You’ll add these subroutines next.

Step 4: Create a New Treasure Map
The CreateNewMap() subroutine builds a 10×10 array to represent the trea-
sure map. Each element in the array stores a number between 0 and 7. The
number 0 means clear, 1 means grass, 2 means forest, 3 means volcano,
4 means cave, 5 means rain, 6 means flowers, and 7 means treasure. The
CreateNewMap() subroutine is shown in Listing 17-10.

1	Sub CreateNewMap
2	 For row = 1 To 10
3	 For col = 1 To 10
4	 map[row][col] = 0 ' Clears all cells
5	 EndFor
6	 EndFor
7	
8	 objId = "1=1;2=1;3=1;4=1;5=1;6=1;7=1;8=1;9=2;10=2;11=2;12=2;13=2;14=2; 

 15=2;16=2;17=3;18=3;19=4;20=4;21=5;22=5;23=6;24=6;25=7;26=0"
9	 count = 1 ' Points to first element in objId
10	 While (count <= Array.GetItemCount(objId))
11	 row = Math.GetRandomNumber(10)
12	 col = Math.GetRandomNumber(10)
13	 If (map[row][col] = 0) Then ' Cell is clear
14	 map[row][col] = objId[count] ' Reserves the cell
15	 DrawObject()
16	 count = count + 1 ' Points to next element in objId
17	 EndIf
18	 EndWhile
19	
20	 rowP = row ' Player's current row
21	 colP = col ' Player's current column
22	EndSub

Listing 17-10: The CreateNewMap() subroutine

Expanding to Higher-Dimension Arrays 257

First, you set all the elements of the map to 0 (lines 2–6). In line 8, you
define an array, objId, that holds the identifiers of the objects you’ll add to
the map. This array asks for eight grass fields, eight forests, two volcanoes,
two caves, two rainy spots, two flower fields, and one treasure spot. The last
element in the array is intentionally set to 0 so that the While loop on line 10
finds an empty starting place for the player. When you’re feeling more adven-
turous, you can change the objId array to make the treasure map contain
more or fewer objects.

Next, you start a While loop to add the objects to the treasure map.
First, you select a random cell on the map (lines 11–12). If that cell is clear
(line 13), you mark it with a number that’s not zero to reserve it for the next
object from objId (line 14), call DrawObject() to draw the added object on
the treasure map (line 15), and increment the count variable to point to the
next element in objId (line 16). When the loop finishes, you set the player’s
current row, rowP, and column, colP, to the empty cell found by the While
loop in its last iteration (lines 20–21). This ensures the player starts on a
clear cell on the map.

Step 5: Draw Objects on the Map
Before you add the ShowLocation() subroutine, you need to add the
DrawObject() subroutine in Listing 17-11. You call this subroutine to draw
an object at map[row][col].

1	Sub DrawObject
2	 imgName = "1=Grass.ico;2=Tree.ico;3=Volcano.ico;4=Cave.ico;5=Rain.ico; 

 6=Flower.ico;7=Treasure.ico"
3	
4	 imgID = map[row][col]
5	 If ((imgID >= 1) And (imgID <= 7)) Then
6	 imgPath = path + "\" + imgName[imgID]
7	
8	 xPos = 52 + (col - 1) * 38
9	 yPos = 25 + (row - 1) * 38
10	 GraphicsWindow.DrawImage(imgPath, xPos, yPos)
11	 EndIf
12	EndSub

Listing 17-11: The DrawObject() subroutine

You define the imgName array that holds the name of the image file for
the seven objects in the game (line 2). In line 4, you get the number stored
in the map at row number row and column number col, and then you assign
this value to imgID. If this number is between 1 and 7 (line 5), you construct
the full path for the image that corresponds to this number (line 6) and
then draw that image at its position on the map (lines 8–10). The numbers
you see in lines 8–9 (52, 38, and 25) come from the background image.
These numbers ensure that the objects are drawn in the centers of the cells
in Figure 17-8.

258 Chapter 17

Step 6: Show the Player’s Location
Now you can add the ShowLocation() subroutine in Listing 17-12, which tells
the player their current location on the island.

1	Sub ShowLocation
2	 locID = map[rowP][colP]
3	 If (locID = 1) Then
4	 msg = "You're in a grass field."
5	 ElseIf (locID = 2) Then
6	 msg = "You're in a forest."
7	 ElseIf (locID = 3) Then
8	 msg = "You're next to a volcano."
9	 ElseIf (locID = 4) Then
10	 msg = "You're in a cave."
11	 ElseIf (locID = 5) Then
12	 msg = "You're in the rain."
13	 ElseIf (locID = 6) Then
14	 msg = "You're in a flower field."
15	 ElseIf (locID = 7) Then
16	 gameOver = 1
17	 msg = "Congratulations! You found the treasure!"
18	 Else
19	 msg = "You're in the clear!"
20	 EndIf
21	
22	 Shapes.SetText(txtID, "[" + moveNumber + "]: " + msg)
23	EndSub

Listing 17-12: The ShowLocation() subroutine

The subroutine uses an If/ElseIf ladder to create a message, msg,
based on the player’s current location, which is identified by rowP and colP
(lines 1–20). The subroutine then calls SetText() to show this message
using the text shape identified by txtID. Note how the player’s move num-
ber, moveNumber, is included in the message so they know how many times
they’ve moved.

Step 7: Handle Button Clicks
This is the final step to finish the game! You just need to process the button
clicks. Add the OnButtonClicked() subroutine shown in Listing 17-13.

1	Sub OnButtonClicked
2	 btnID = Controls.LastClickedButton
3	
4	 If (btnID = btnNew) Then
5	 NewGame()
6	 ElseIf (gameOver = 0) Then
7	 moveNumber = moveNumber + 1
8	
9	 MovePlayer() ' Finds the player's new row and column
10	

Expanding to Higher-Dimension Arrays 259

11	 If ((rowP < 1) Or (rowP > 10) Or (colP < 1) Or (colP > 10)) Then
12	 gameOver = 1
13	 Shapes.SetText(txtID, "Sorry! You were eaten by the shark!")
14	 Else
15	 ShowLocation() ' Tells the player their new position
16	 EndIf
17	 EndIf
18	EndSub

Listing 17-13: The OnButtonClicked() subroutine

Because you’re using five buttons, you start by finding the identifier of
the clicked button (line 2). If it’s the New Game button (line 4), you call
NewGame() to start all over (line 5). Otherwise, the player has clicked one
of the four movement buttons. You need to process the player’s request
only if the game isn’t over yet. If the game is still in progress (line 6), you
increment moveNumber (line 7), call MovePlayer() to set the player’s new loca-
tion (line 9), and then check the status after this move (lines 11–16). If
the player falls into the shark-infested water (line 11), you set gameOver to 1
(line 12) and inform the player of their bad luck (line 13). Otherwise, if the
player is still on the island, you call ShowLocation() to give them information
about their new location (line 15).

The last subroutine you need to add in this game is in Listing 17-14.
The MovePlayer() subroutine sets the player’s next position based on which
button (N, E, S, or W) they clicked.

1	Sub MovePlayer
2	 shift = 0 ' How much to shift direction
3	 randNum = Math.GetRandomNumber(10)
4	 If (randNum = 1) Then
5	 shift = 1
6	 ElseIf (randNum = 2) Then
7	 shift = -1
8	 EndIf
9	
10	 If (btnID = btnN) Then ' North
11	 rowP = rowP - 1
12	 colP = colP + shift
13	 ElseIf (btnID = btnS) Then ' South
14	 rowP = rowP + 1
15	 colP = colP + shift
16	 ElseIf (btnID = btnE) Then ' East
17	 colP = colP + 1
18	 rowP = rowP + shift
19	 ElseIf (btnID = btnW) Then ' West
20	 colP = colP - 1
21	 rowP = rowP + shift
22	 EndIf
23	EndSub

Listing 17-14: The MovePlayer() subroutine

260 Chapter 17

We mentioned that the old compass has a 20 percent chance of being
wrong. To simulate this, you create the variable shift to alter the player’s
direction. First, you get a random number between 1 and 10 (line 3). If
this number is 1, you set shift to 1. If this number is 2, you set shift to –1
(lines 4–8). Otherwise, you keep shift at 0, which means that you won’t
alter the player’s move in any way (line 2).

You start an If/ElseIf ladder to process the clicked button (lines 10–22).
If the player clicked the north button N (line 10), you move them up one
row (line 11) and change their current column by using the shift variable
(line 12). If shift is 0, the player’s current column won’t change, and they’ll
move north. The rest of the ladder works the same way.

Now that the game is complete, you can enjoy it. See how long it takes
you to find the treasure without getting eaten by the sharks!

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Okla is a fearless warrior
known for his courage and
wisdom. He’s now on a noble
mission in a haunted castle
looking for the four keys
needed to free the puppies
that are trapped inside! But
there’s a problem: the haunted
castle is guarded by evil mon-
sters who throw bombs all
over the castle. Each time one
of these bombs hits Okla, he
loses 10 units of energy. You
need to help Okla navigate his
way through the castle to find
the four keys before he loses
all his energy.

TR Y IT OUT 17-7

The Treasure Map game has a lot of room for improvement. For example, you
can give the player another chance if they fall victim to the sharks. You can also
give the player more clues about their current location. Come up with some ideas
to improve the game, and try to implement them. Make an adventure worthy of
Captain Jack Sparrow!

http://nostarch.com/smallbasic/

Expanding to Higher-Dimension Arrays 261

Open the file Okla.sb from this chapter’s folder, and run it to play
the game. After you play the game and understand how it works, come
up with some ideas to improve it, and try to implement them.

2.	 Open the file TicTacToe_Incomplete.sb from this chapter’s folder. This
game lets you play tic-tac-toe against the computer. The game’s board
is represented by a 3×3 matrix named board. When the player clicks a
square, the game draws an X in the clicked cell and fills the number 1
in its board element. The computer then takes its turn and picks an empty
cell at random (the computer isn’t that smart). The game draws an O
in the cell the computer selected and fills in the number 5 in that board
element. The following figure illustrates how the game works.

Board

1 1 0

5 5 5

51 1

Your task is to complete the CheckWinner() subroutine, which is
called after each move. You need to check the sum of each row, each
column, and the two diagonals. A sum of 3 means the player won the
game. A sum of 15 means the computer won the game. If there’s no
winner and nine moves have been made (the board is filled completely
with the Xs and Os), the game is a tie.

18
Adv a n c e d T e x t M a g i c

Although pictures of blue skies and green
fields are prettier to look at than a screen

full of words, many useful programs, such
as Facebook, Twitter, and Words with Friends,

work with text. That’s why Small Basic provides the Text
object for working with text. In this chapter, you’ll learn
how to use the Text object to find the length of a string, extract a small por-
tion of a string, and perform many other advanced string-processing tasks.
You’ll also write your own string-processing subroutines and apply what you
learn to create some interesting applications, like a pig latin translator and a
word scramble game!

The Text Object
You’ve been working with strings throughout this book. To recap, a string is
a sequence of characters that is enclosed between double quotes, such as
"stringY strinGy striNg strIng stRing". These characters can include letters

264 Chapter 18

(both uppercase and lowercase), digits (0 to 9), and other symbols on your
keyboard (such as +, –, &, @, and so on). You can use strings in your pro-
grams to store names, addresses, phone numbers, book titles, names of
Star Trek episodes, and more. The Text object contains many useful methods
for working with strings.

Figure 18-1 shows the complete list of the Text object’s methods. We’ve
divided these methods into four groups that we’ll discuss in the following
sections.

Text object

Case conversion

Character codesSubstrings

Append and length

Append(str1, str2)

GetLength(str)

ConvertToLowerCase(str)

ConvertToUpperCase(str)

GetCharacter(code)

GetCharacterCode(char)

IsSubText(str, sub)

EndsWith(str, sub)

StartsWith(str, sub)

GetSubText(str, pos, len)

GetSubTextToEnd(str, pos)

GetIndexOf(str, sub)

Figure 18-1: The Text object’s methods

Appending Strings and Getting Their Length
Combining strings and finding their length is a common task in program-
ming. Let’s look at how the Text object can help you out.

Appending Strings

The Append() method can join (or append) two strings together, as shown in
the following example:

str = Text.Append("He-", "Man")
TextWindow.WriteLine(str) ' Displays: He-Man

Advanced Text Magic 265

Earlier in the book, you learned how to join strings using the + sign.
But the Append() method is useful when you have text that the + sign treats
as numbers, as shown in the following example:

res = Text.Append("1", "5")
TextWindow.WriteLine(res) ' Output: 15 (1 followed by 5)
TextWindow.WriteLine("1" + "5") ' Output: 6

The first statement appends the two strings ("1" and "5") and assigns
the result to the variable res (short for result). The output of the second
statement shows that the string "5" was appended to the string "1", resulting
in a new string "15". The third statement shows that you can’t do this con-
catenation using the + sign. The + operator interprets its two operands as
numbers (1 and 5) and adds these numbers together, which is why the third
statement displays 6.

Using Append() is the only way to concatenate numbers in Small Basic.

Getting the Length of a String

The number of characters in a string makes up its length. To find the
length of a string, you can use the GetLength() method, as in the following
example:

1	res = Text.GetLength("") ' res = 0 (empty string)
2	res = Text.GetLength("Careless Bears") ' res = 14 (the space counts!)
3	res = Text.GetLength(1023) ' res = 4
4	res = Text.GetLength(-101.5) ' res = 6

GetLength() treats its argument as a string and returns the number of
characters in that string. Line 1 shows that an empty string has zero length.
Line 2 shows that the length of the string "Careless Bears" is 14, because
this string contains 14 characters (spaces are characters too). Line 3 calls
GetLength() using the number 1023 as an argument. GetLength() treats this
number as a string ("1023") and returns 4 as the length of this string. A
similar process happens in line 4 for the number –101.5, where GetLength()
returns 6 (four digits, the minus sign, and the decimal point).

TR Y IT OUT 18 -1

Write a program that prompts the user to enter an adjective. Have the program
display the corresponding adverb by appending ly to the input. For example, if
the user enters mad, the program displays madly. Will this program work for all
adjectives? (Hint: consider adjectives ending in y, such as happy, or adjectives
ending in ic, such as heroic.)

266 Chapter 18

Taking Strings Apart: Substrings
Just as you can join strings to create longer ones, you can also separate
strings into smaller strings, which are called substrings. A substring is just a
portion of a larger string. The Text object has six methods that let you work
with substrings. Let’s look at these methods.

The IsSubText() Method

You can use IsSubText() to find out if one string is part of another. This
method takes two arguments: the string you want to search through and
the substring you want to search for. It returns "True" or "False" depending
on whether the substring is in the source string. Here are some examples:

1	myString = "The quick brown fox"
2	res = Text.IsSubText(myString, "brown") ' res = "True"
3	res = Text.IsSubText(myString, "BROWN") ' res = "False"
4	res = Text.IsSubText(myString, "dog") ' res = "False"

As these examples show, IsSubText() is case sensitive when it searches for
substrings. This is why searching for "BROWN" in line 3 returns "False".

The EndsWith() Method

Use EndsWith() to find out if a string ends with a given substring. Here are
some examples:

1	myString = "The quick brown fox"
2	res = Text.EndsWith(myString, "fox") ' res = "True"
3	res = Text.EndsWith(myString, "x") ' res = "True"
4	res = Text.EndsWith(myString, "FOX") ' res = "False"
5	res = Text.EndsWith(myString, "dog") ' res = "False"

Again, the string’s case matters: the search for "FOX" in line 4 returns
"False".

The StartsWith() Method

Use StartsWith() to find out if a string starts with a given substring. Here are
some examples:

1	myString = "The quick brown fox"
2	res = Text.StartsWith(myString, "The") ' res = "True"
3	res = Text.StartsWith(myString, "T") ' res = "True"
4	res = Text.StartsWith(myString, "the") ' res = "False"

Similarly, the search for "the" in line 4 returns "False".

Advanced Text Magic 267

The GetSubText() Method

To extract text from any position in a string, you can use GetSubText(). This
method takes three arguments: the source string to get your substring from,
the starting position of the substring, and the length of the substring you
want. To understand how this method works, look at Figure 18-2.

T h e q u i c k b r o w n f o x

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 18-2: Illustrating character positions in strings

The first character has a position of 1, the second character has a
position of 2, and so on. Now consider the following examples:

1	myString = "The quick brown fox"
2	res = Text.GetSubText(myString, 1, 3) ' res = "The"
3	res = Text.GetSubText(myString, 0, 3) ' res = ""
4	res = Text.GetSubText(myString, 17, 3) ' res = "fox"
5	res = Text.GetSubText(myString, 17, 4) ' res = "fox"

Line 2 gets a substring of length 3 starting at position 1, which returns
the string "The". Line 3 fails to get a substring that starts at position 0,
because the first valid position is 1. Instead, it returns an empty string.
Line 4 gets the three-letter substring that starts at position 17, which returns
"fox". Line 5 requests a substring of length 4 starting at position 17. Because
that substring extends beyond the end of the string, the length is cut short,
and the method returns "fox", whose length is 3.

You can use GetSubText() inside a For loop to access the individual char-
acters of a string. For example, the following code writes each character of
strIn on a new line. Enter and run this code to make sure you understand
how it works:

strIn = "Pirate squids hate hot dogs."
For N = 1 To Text.GetLength(strIn) ' For each character
 ch = Text.GetSubText(strIn, N, 1) ' Gets the character at position N
 TextWindow.WriteLine(ch) ' Displays it on a new line
EndFor

The loop counter, N, runs from 1 to the end of the string. Each iteration
requests a substring of length 1 (a single character) that starts at position N
and displays that character.

The GetSubTextToEnd() Method

The GetSubTextToEnd() method is similar to GetSubText(), except it returns
a substring from one position all the way to the end of the string. It takes

268 Chapter 18

two arguments: the source string that you want to get your substrings from
and the starting position of the substring. Here are some examples (refer to
Figure 18-2 for context):

1	myString = "The quick brown fox"
2	res = Text.GetSubTextToEnd(myString, 13) ' res = "own fox"
3	res = Text.GetSubTextToEnd(myString, 19) ' res = "x"
4	res = Text.GetSubTextToEnd(myString, 20) ' res = ""

Line 2 gets the substring starting at position 17, which returns "own fox".
Line 3 gets the substring starting at position 19, which returns "x". Line 4
requests the substring starting at position 20. Because the source string
contains only 19 characters, this method returns an empty string.

The GetIndexOf() Method

You pass the GetIndexOf() method the substring you want to search for, and
it returns the index position of that substring in the source text. Here are
some examples:

1	myString = "The quick brown fox"
2	res = Text.GetIndexOf(myString, "The") ' res = 1
3	res = Text.GetIndexOf(myString, "quick") ' res = 5
4	res = Text.GetIndexOf(myString, "QUICK") ' res = 0
5	res = Text.GetIndexOf(myString, "o") ' res = 13
6	res = Text.GetIndexOf(myString, "dog") ' res = 0

The search is case sensitive, so line 4 returns 0 because "QUICK" isn’t
found in the source string. Line 5 requests the index of the letter o, but
because there are two, it gives you the index of the first one it finds. The
last line returns 0 because it doesn’t find "dog" in the source string.

Changing Case
Sometimes you might want to display strings in uppercase or lowercase
letters. The ConvertToLowerCase() and ConvertToUpperCase() methods can do
that for you. Run the example in Listing 18-1.

1	' ChangeCase.sb
2	var1 = "Ewok"

TR Y IT OUT 18 -2

A young boy named Franklin Roosevelt once signed letters to his mother back-
ward: Tlevesoor Nilknarf. Write a program that displays the characters of an input
string in reverse order. (Hint: start a loop that counts from the string’s length down
to 1, and use GetSubText() to extract each character.)

Advanced Text Magic 269

3	lwrCase = Text.ConvertToLowerCase(var1) ' lwrCase = "ewok"
4	TextWindow.WriteLine(lwrCase) ' Displays: ewok
5	TextWindow.WriteLine(var1) ' Displays: Ewok
6	uprCase = Text.ConvertToUpperCase(var1) ' uprCase = "EWOK"
7	TextWindow.WriteLine(uprCase) ' Displays: EWOK
8	TextWindow.WriteLine(var1) ' Displays: Ewok

Listing 18-1: Changing the case of a string

The call to ConvertToLowerCase() on line 3 returns the lowercase
string "ewok", which is displayed on line 4. The statement on line 5 shows
that the original string isn’t affected by the lowercase conversion; calling
ConvertToLowerCase() returns a brand-new string whose characters are low-
ercase. The ConvertToUpperCase() method on line 6 returns the uppercase
version of "EWOK", which is displayed on line 7. And line 8 also shows that
the original string isn’t affected by the conversion.

You can use these methods to make case-insensitive string comparisons.
For example, let’s say your program asks a user about their favorite Shrek
character. If the user likes Donkey, they win 200 points; otherwise, they
win 100 points. The user can enter donkey, DONKEY, Donkey, DOnkey, or any other
combination of cases in response to the question. Rather than checking for
all the possible combinations, you can convert the user’s response to upper-
case (or lowercase) and compare the result with that new string "DONKEY" (or
"donkey" if you’re using lowercase). Run the program in Listing 18-2.

1	' StringMatch.sb
2	While ("True")
3	 TextWindow.Write("Who's your favorite Shrek character? ")
4	 name = Text.ConvertToUpperCase(TextWindow.Read())
5	 If (name = "DONKEY") Then
6	 TextWindow.WriteLine("You won 200 ogre points!")
7	 Else
8	 TextWindow.WriteLine("You won 100 ogre points!")
9	 EndIf
10	EndWhile

Listing 18-2: Case-insensitive string matching

The Read() method on line 4 reads the text entered by the user. The
user’s text is then converted to uppercase, and the result is stored in the
name variable. Note how we used the Read() method directly as an argument to
ConvertToUpperCase(); this is equivalent to the following two statements:

name = TextWindow.Read()
name = Text.ConvertToUpperCase(name)

The If statement on line 5 compares the uppercase version of the user’s
input with the literal string "DONKEY" and awards the user accordingly.

270 Chapter 18

Here’s an output example:

Who's your favorite Shrek character? dOnkey
You won 200 ogre points!

Character Coding with Unicode
All computer data (including text) is stored as binary sequences of 0s and
1s. The letter A for example is 01000001. The mapping between a character
and its binary representation is called encoding.

Unicode is a universal encoding scheme that lets you encode more than a
million characters from many languages. Each character is assigned a unique
number (called a code point). For example, the code point for the character A
is 65, and the code point for the dollar sign ($) is 36. The GetCharacterCode()
method returns a character’s code point. But the GetCharacter() method does
the opposite; when you give it a character’s code point, it returns the corre-
sponding character.

Run the program in Listing 18-3.

1	' CharCode.sb
2	str = "ABab12"
3	For N = 1 To Text.GetLength(str)
4	 ch = Text.GetSubText(str, N, 1) ' Gets the Nth character
5	 code = Text.GetCharacterCode(ch) ' Gets its code point
6	 TextWindow.WriteLine(ch + ": " + code) ' Displays ch and its code point
7	EndFor

Listing 18-3: Demonstrating the GetCharacterCode() method

Line 2 defines a string that contains six characters. Line 3 starts a For
loop that accesses each of these characters; GetLength() sets the upper limit
of the loop. Each iteration of the loop reads one character from the string
and saves it in a variable named ch (line 4). Then the loop gets the Unicode
code point for that character and saves it in the code variable (line 5). Line 6
displays the character and its code point. When you run this program, you’ll
see the following output:

A: 65
B: 66

TR Y IT OUT 18 -3

Write a program that prompts the user with a yes/no question, such as “Can you
paint with all the colors of the wind?” Create a program that accepts y, yes, n, or
no using any casing as valid answers. If the answer is invalid, ask the user to
re-enter their answer.

Advanced Text Magic 271

a: 97
b: 98
1: 49
2: 50

Fancy Characters

Let’s explore some characters not used in English. Listing 18-4 shows a
simple program that displays the symbols for 140 Unicode characters, start-
ing with the character whose code point is 9728. You can change this num-
ber to explore other Unicode symbols.

1	' UnicodeDemo.sb
2	GraphicsWindow.BrushColor = "Black"
3	GraphicsWindow.FontSize = 30 ' Makes the font larger
4	
5	code = 9728 ' Code point for the first symbol
6	xPos = 0 ' Horizontal position for drawing a symbol
7	yPos = 0 ' Vertical position for drawing a symbol
8	For row = 1 To 7 ' Draws 7 rows
9	 xPos = 0 ' For each new row, start at the left edge
10	 For col = 1 To 20 ' 20 columns for each row
11	 ch = Text.GetCharacter(code) ' Gets a character
12	 GraphicsWindow.DrawText(xPos, yPos, ch) ' Draws it
13	 code = code + 1 ' Sets to next code point
14	 xPos = xPos + 30 ' Leaves a horizontal space
15	 EndFor
16	 yPos = yPos + 30 ' Moves to the next row
17	EndFor

Listing 18-4: Demonstrating Unicode characters

The outer For loop runs seven times (line 8). Each time the outer
loop runs, the inner loop displays 20 symbols that are placed 30 pixels
apart (lines 10–15). After drawing a complete row of symbols, we move
the vertical drawing position down 30 pixels to draw the next row (line 16).
Figure 18-3 shows the output of this program.

Figure 18-3: The output of UnicodeDemo.sb

272 Chapter 18

More on Code Points

The Unicode code points for lowercase letters are consecutive integers from
97 (a) to 122 (z). Similarly, the code points for uppercase letters range from
65 (A) to 90 (Z). The code point for a lowercase a is greater than the code
point for an uppercase A, and the difference between the code points for a
and A (97 – 65 = 32) is the same as the difference between the code points
for b and B (98 – 66 = 32), and so on. When given the code point for a lower-
case letter, which we’ll represent as ch, the code point for its correspond-
ing uppercase letter is 65 + (ch – 97). Here’s the formula:

code for uppercase ch = code(A) + (code for lowercase ch – code(a))

Now that you know that each character in a string is identified by a
code point, you can perform many useful operations on strings. The follow-
ing examples show what you can do.

Displaying a Quotation Mark

Let’s say you want to display the string "Bazinga" with the double quotes
included in the output. If you write TextWindow.WriteLine("Bazinga"), Small
Basic displays Bazinga without the quotation marks because the quotation
marks identify the start and end of a string. But Small Basic returns a
syntax error if you write TextWindow.WriteLine(""Bazinga""). So how do you
display the quotation marks? By using the quotation mark’s code point, you
can append the quotation mark characters to the string, as shown in the
following code snippet:

QUO = Text.GetCharacter(34) ' Gets the double quotation mark
TextWindow.WriteLine(QUO + "Bazinga" + QUO) ' Output: "Bazinga"

The first statement gets the quotation mark character from its Unicode
code point (34) and assigns it to the variable QUO. The second statement
inserts the string "Bazinga" between two QUO characters to output the desired
result.

Creating a Multiline String

You can create a multiline string by embedding the line feed character (code
point 10) into a string. Enter the following code snippet as an example:

LF = Text.GetCharacter(10)	 ' Code for line feed
TextWindow.WriteLine("Line1" + LF + "Line2") ' Displays two lines

When you run this code, the two strings, "Line1" and "Line2", are dis-
played on two lines. The result is identical to what you get when you use the
following two statements:

TextWindow.WriteLine("Line1")
TextWindow.WriteLine("Line2")

Advanced Text Magic 273

Armed with the knowledge you’ve gained so far, you’re ready to create
full-sized programs that use strings in all kinds of fancy ways!

Practical Examples with Strings
Earlier you learned how to use GetLength() to get a string’s length and
GetSubText() to access individual characters in a string. When you use these
two methods with a For loop, you can count special characters, examine
multiple characters, and do several other useful tasks with strings. Let’s
explore some examples!

Counting Special Characters
Listing 18-5 shows a program that counts the number of vowels in a string.
It asks the user to enter a string and then counts and displays the number
of vowels in that string.

1	' VowelCount.sb
2	TextWindow.Write("Enter a sentence: ") ' Prompts the user for text
3	str = TextWindow.Read() ' Reads text entered by the user
4	
5	count = 0 ' Sets vowel count to 0 (so far)
6	For N = 1 To Text.GetLength(str) ' Checks all characters
7	 ch = Text.GetSubText(str, N, 1) ' Gets Nth character
8	 ch = Text.ConvertToUpperCase(ch) ' Makes it uppercase
9	 If ((ch = "A") Or (ch = "E") Or (ch = "I") Or (ch = "O") Or (ch = "U")) Then
10	 count = count + 1 ' If it finds a vowel, increments count
11	 EndIf
12	EndFor
13	TextWindow.Write("Your sentence contains [") ' Shows result
14	TextWindow.WriteLine(count + "] vowels.")

Listing 18-5: Counting the number of vowels in a string

After getting the user’s input (lines 2–3), the program initializes the
count variable to 0, because no vowels have been found so far (line 5). Then
a loop starts to check the characters of the input string one by one (line 6).
The loop counter N points to the Nth character of the string.

TR Y IT OUT 18 - 4

The following program displays the letters of the English alphabet. Explain how
the program works.

For code = 65 To 90
 ch = Text.GetCharacter(code)
 TextWindow.WriteLine(ch)
EndFor

274 Chapter 18

Line 7 gets the Nth character of the input string using GetSubText() and
assigns it to the variable ch (short for character). The code then converts the
character to uppercase (line 8) and compares that uppercase letter with the
vowel characters (line 9). If the character is a vowel, count increases by 1
(line 10). When the loop ends, the program displays the number of vowels
counted (lines 13–14). Here’s a sample output from this program:

Enter a sentence: Small Basic is fun
Your sentence contains [5] vowels.

Enter a sentence: Giants leave nasty diapers.
Your sentence contains [9] vowels.

Palindrome Number Checker
In this section, we’ll write a program that checks whether an integer
entered by a user is a palindrome. A palindrome is a number, word, or
phrase that reads the same backward and forward. For example, 1234321
and 1122332211 are palindromes. Likewise, racecar, Hannah, and Bob are
also palindromes.

Let’s look at the input number 12344321 shown in Figure 18-4.

1 2 3 4 4 3 2 1

1 2 3 4 5 6 7 8Position:

pos1 pos2

Figure 18-4: Using two variables to check whether a number is a palindrome

To check whether this number is a palindrome, you need to compare
the first and eighth digits, the second and seventh digits, the third and

TR Y IT OUT 18 -5

Convert the code in Listing 18-5 into a game for two players. The first player
enters a word, and the second player has to guess the number of vowels in the
word. Then the players alternate turns. A player scores one point for each correct
guess. End the game after 10 rounds and display the winner.

Advanced Text Magic 275

sixth digits, and so on. If any two digits in the comparison aren’t equal, the
number isn’t a palindrome. As the figure illustrates, you can access the digits
you want to compare by using two variables (pos1 and pos2), which move in
opposite directions. The first variable (pos1) starts at the first digit and moves
forward, and the second variable (pos2) starts at the last digit and moves
backward. The number of required comparisons is at most one-half the
number of digits in the input number. In this example, you need at most
four comparisons because the input number has eight digits. The same
logic applies if the input integer has an odd number of digits, because the
digit in the middle of the number doesn’t need to be compared.

Listing 18-6 shows the complete program. The comments should help
you understand how the program works.

1	' Palindrome.sb
2	Again:
3	TextWindow.WriteLine("")
4	TextWindow.Write("Enter a number: ")
5	ans = TextWindow.ReadNumber() ' Saves user's input in ans
6	
7	length = Text.GetLength(ans) ' Number of digits of input number
8	pos1 = 1 ' Sets pos1 to read first digit
9	pos2 = length ' Sets pos2 to read last digit
10	For N = 1 To (length / 2) ' Performs (length/2) comparisons
11	 ch1 = Text.GetSubText(ans, pos1, 1) ' Reads digit at position pos1
12	 ch2 = Text.GetSubText(ans, pos2, 1) ' Reads digit at position pos2
13	 If (ch1 <> ch2) Then ' If not equal, no need to continue
14	 TextWindow.WriteLine(ans + " isn't a palindrome.") ' Shows result
15	 Goto Again
16	 EndIf
17	EndFor
18	
19	TextWindow.WriteLine(ans + " is a palindrome.")
20	Goto Again

Listing 18-6: Testing whether a number input by the user is a palindrome

Here’s a sample run of this program:

Enter a number: 1234321
1234321 is a palindrome.

Enter a number: 12345678
12345678 isn't a palindrome.

TR Y IT OUT 18 -6

Another way to create the program in Listing 18-6 is to reverse the input string
and then compare the reversed string with the original. Create a new palindrome-
checker program using this method.

276 Chapter 18

Igpay Atinlay
Let’s teach the computer a language game called pig latin. The rules for
creating pig latin words are simple. To convert a word into pig latin, move
the first letter to the end and add the letters ay after it. So, the word talk
becomes alktay, fun becomes unfay, and so on. Can you decipher the origi-
nal title of this section?

Figure 18-5 shows the strategy you’ll use to convert a word into pig
latin, using the word basic.

Extract substring (from letter 2
to the end) and assign it to the
output string.

Append the first letter to the
output string.

Append ay to the output
string.

Input

Output

a s i c

a as c b y

b

i

�

�

�

�

�

�

Figure 18-5: Translating an English word into pig latin

You first extract the substring from the second character to the end and
assign it to the output string. You then add the first letter in the input string
to the output, followed by ay. Enter the code in Listing 18-7 to implement
these steps.

1	' PigLatin.sb
2	TextWindow.Title = "Pig Latin"
3	
4	While ("True")
5	 TextWindow.Write("Enter a word: ")
6	 word = TextWindow.Read()
7	
8	 pigLatin = Text.GetSubTextToEnd(word, 2) ' Gets characters 2 to end
9	 pigLatin = pigLatin + Text.GetSubText(word, 1, 1) ' Appends first character
10	 pigLatin = pigLatin + "ay" ' Appends "ay"
11	 TextWindow.WriteLine(pigLatin) ' Displays the output
12	 TextWindow.WriteLine("")
13	EndWhile

Listing 18-7: Converting a word entered by the user into pig latin

The program runs an infinite loop to allow the user to try different
words (line 4). After reading the input word from the user (line 6), we
extract the substring that starts at position 2 (that is, from the second
character to the end of the input word) and assign it to pigLatin. Then we
extract the first letter from word and append it to pigLatin (line 9), followed
by ay (line 10). We display the pig latin word (line 11), followed by an empty
line (line 12) and go for another round. Ongratulationscay! Ouyay inishedfay
ouryay rogrampay!

Advanced Text Magic 277

Fix My Spelling
Now we’ll develop a game that displays misspelled words and asks the player
to enter the correct spelling. The game creates misspelled words by insert-
ing a random letter at a random position in an English word. There could
be more than one correct spelling of misspelled simple words. For example,
if the game displays mwall, either mall or wall could be correct. To keep the
game simple, we’ll ignore that possibility and insist on a particular spelling
for the correct answer.

First, we select the word to be misspelled
from a predefined array of words and save the
selected word in a variable named strIn. We
then pick a random character randChar to insert
into strIn. The insertion position charPos is a
random number between 1 and the length of
strIn. Figure 18-6 shows the process of generat-
ing the misspelled word hewlp.

We first extract the substring from letter 1
to the letter at position charPos – 1 and assign
it to strOut (because charPos is 3, this makes
strOut = "he"). We then append randChar to
strOut (this makes strOut = "hew"). We extract
the substring from position charPos to the end
("lp" in this case) and append it to strOut (this makes strOut = "hewlp").
Listing 18-8 shows the complete program. Make sure you download and
open FixMySpelling.sb from this chapter’s folder to get the full list of the
words we wrote for this program.

1	' FixMySpelling.sb
2	words = "1=mountain;2=valley;...;22=animation;" ' See file for full list
3	
4	While ("True") ' Runs forever
5	 strIn = words[Math.GetRandomNumber(Array.GetItemCount(words))]
6	 randChar = Text.GetCharacter(96 + Math.GetRandomNumber(26))
7	 charPos = Math.GetRandomNumber(Text.GetLength(strIn))
8	
9	 strOut = Text.GetSubText(strIn, 1, charPos - 1)
10	 strOut = strOut + randChar
11	 strOut = strOut + Text.GetSubTextToEnd(strIn, charPos)
12	
13	 TextWindow.Write("Enter correct spelling for [" + strOut + "]: ")
14	 ans = TextWindow.Read()
15	 ans = Text.ConvertToLowerCase(ans)
16	 If (ans = strIn) Then

Figure 18-6: Illustrating the
process of generating mis-
spelled words

TR Y IT OUT 18 -7

Write a program that takes a pig latin word as input and shows its original
English word.

h e l p

h e w l pw l p

strIn

randChar
at charPos 3

strOut

278 Chapter 18

17	 TextWindow.WriteLine("Good Job!")
18	 Else
19	 TextWindow.WriteLine("Incorrect. It is " + strIn + ".")
20	 EndIf
21	 TextWindow.WriteLine("")
22	EndWhile

Listing 18-8: Creating misspelled words and asking the player to fix them

The words array contains the words for this game (line 2). The program
randomly picks a word from the words array and saves that word as strIn
(line 5). Note how we used the array’s item count to set the upper limit of
the random number. The program then selects a random letter, randChar,
from the alphabet (line 6). It does that by getting a random number from 1
to 26 and adding 96 to it; this gives you a random number between 97 (the
code point for letter a) and 122 (the code point for letter z). Next, the pro-
gram picks a random position, charPos, in strIn (line 7): this is the position
where the random character is inserted. Then the program creates the mis-
spelled word and stores it in strOut (lines 9–11).

In line 13, the program asks the player to enter the correct spelling. It
reads the user’s answer (line 14) and converts it to lowercase (line 15). It
then compares the answer with the correct word (line 16). If the player’s
answer matches the original word, the game displays Good Job! (line 17).
Otherwise, the game displays an error message and shows the correct spell-
ing (line 19). In both cases, the program ends by displaying an empty line
(line 21), and the loop repeats to give the user a new misspelled word.

Here’s a sample run of this program:

Enter correct spelling for [mairror]: miror
Incorrect. It is mirror.

Enter correct spelling for [inteorface]: interface
Good Job!

Unscramble
Now we’ll create a word scramble game. The program starts with an English
word, scrambles the letters, displays the scrambled word to the player, and
asks them to guess the original word.

TR Y IT OUT 18 -8

Update the program in Listing 18-8 so the misspelled word contains two additional
random letters instead of just one random letter. Also, add more words to the list
for more variety.

Advanced Text Magic 279

Listing 18-9 shows the main part of the program. Open Unscramble.sb
from this chapter’s folder for the full list of words.

1	' Unscramble.sb
2	words = "1=mountain;2=valley;...;22=animation;" ' See file for full list
3	
4	While ("True")
5	 strIn = words[Math.GetRandomNumber(Array.GetItemCount(words))]
6	 Scramble() ' Returns strOut (a scrambled version of strIn)
7	
8	 TextWindow.Write("Unscramble [" + strOut + "]: ")
9	 ans = TextWindow.Read()
10	 ans = Text.ConvertToLowerCase(ans)
11	
12	 If (ans = strIn) Then
13	 TextWindow.WriteLine("Good Job!")
14	 Else
15	 TextWindow.WriteLine("No. It is " + strIn + ".")
16	 EndIf
17	 TextWindow.WriteLine("")
18	EndWhile

Listing 18-9: Scrambling words and asking the player to unscramble them

The words array contains the words for this game (line 2). The pro-
gram randomly picks a word from this array and saves that word as strIn
(line 5). It then makes a call to Scramble() to produce strOut, a scrambled
version of strIn (line 6): we’ll add the Scramble() subroutine in a moment.
Next, the program asks the player to unscramble strOut (line 8). It reads
their answer (line 9) and converts it to lowercase (line 10). It then com-
pares the player’s answer with the correct word (line 12). If the player’s
answer matches the original word, the game displays Good Job! (line 13).
Otherwise, the game displays the correct word (line 15). In both cases,
the program ends by displaying an empty line (line 17) to separate the
rounds and the loop repeats.

Now let’s look at the Scramble() subroutine, which shuffles the charac-
ters of a string into a random order. The caller sets the input string (strIn),
and the subroutine returns a new string (strOut) that contains the charac-
ters of strIn shuffled around. Listing 18-10 shows this subroutine.

1	Sub Scramble ' Scramble subroutine
2	 len = Text.GetLength(strIn)
3	 For N = 1 To len ' Loops up to length of word
4	 char[N] = Text.GetSubText(strIn, N, 1) ' Saves each letter into an array
5	 EndFor
6	
7	 strout = "" ' Empties the output string
8	 While (Text.GetLength(strout) < len)

280 Chapter 18

9	 pos = Math.GetRandomNumber(len) ' Picks where to place the letter
10	 If (char[pos] <> "") Then
11	 strout = strout + char[pos] ' Adds in the extra letter
12	 char[pos] = "" ' Empties the element
13	 EndIf
14	 EndWhile
15	EndSub

Listing 18-10: Word-scrambling subroutine

The subroutine saves the length of the input string into len (line 2).
It then uses a For loop to save the individual letters of strIn into an array
named char (lines 3–5). It empties the output string, strOut, and starts a
While loop to assemble strOut letter by letter (lines 7–14). The While loop
runs until strOut has the same length as strIn (which means that we’ve
added all the letters of strIn). Each iteration of the loop picks a random
element from the char array (line 9). If that element is empty, we loop again
to pick another one. Otherwise, we append the selected letter to strOut
(line 11) and empty that element to indicate that we’ve used it (to prevent
using it again) in line 12. Ouy fishendi eth egma!

Here’s a sample run of this program:

Unscramble [lalvey]: lovely
No. It is valley.

Rhyme Time: The House That Jack Built
Let’s finish this chapter with a program that displays a popular British
nursery rhyme and cumulative tale. In a cumulative tale, an action repeats
and builds up as the tale progresses. Figure 18-7 shows this program
in progress; more rhyme lines appear each time a user clicks the Next
button.

TR Y IT OUT 18 -9

Try to update the word-scrambling game using the skills you learned in previous
chapters. Make the game last 10 rounds and then display the user’s score: how
many words were unscrambled correctly out of the 10? Next, add 28 more words
to unscramble so you have a total of 50. Then show the game to your friends and
see who can get the best score!

Advanced Text Magic 281

Page1

Page 2

Page 3

Page 4

This is the House that Jack built.

This is the Malt,
That lay in the House that Jack built.

This is the Rat,
That ate the Malt,

That lay in the House that Jack built.

This is the Cat,
That killed the Rat,
That ate the Malt,

That lay in the House that Jack built.
. . .

Figure 18-7: The House That Jack Built rhyme

Examine this rhyme closely, and you’ll notice the common strings
among the story pages. Study Figure 18-8 to understand how to create this
rhyme by appending short strings at each stage.

the Dog,
That worried

the Cat,
That killed

the Rat,
That ate

the Malt,
That lay in

the House that Jack built.This is
�

�

�

�

�

Figure 18-8: The strings that make up the rhyme

For example, let’s trace the third row in this figure. Following the third
arrow, you’ll get the following:

This is the Rat,
That ate

282 Chapter 18

When you continue with the second arrow, you’ll get the following:

This is the Rat,
That ate the Malt,
That lay in

And, when you follow the first arrow, you’ll get the full rhyme that will
appear on the third page:

This is the Rat,
That ate the Malt,
That lay in the House that Jack built.

Open the file JackHouse_Incomplete.sb from this chapter’s folder. The file
contains the main program in Listing 18-11 and a placeholder for the
OnButtonClicked() subroutine, which we’ll add in a moment. The folder also
contains the 11 background images (Page1.png, Page2.png, . . . , Page11.png)
that we’ll display for each page of the rhyme.

1	' JackHouse.sb
2	GraphicsWindow.Title = "The House That Jack Built"
3	GraphicsWindow.CanResize = "False"
4	GraphicsWindow.Width = 480
5	GraphicsWindow.Height = 360
6	GraphicsWindow.FontBold = "False"
7	GraphicsWindow.FontSize = 20
8	GraphicsWindow.FontName = "Times New Roman"
9	
10	LF = Text.GetCharacter(10) ' Code for line feed
11	
12	rhyme[1] = "the Farmer who sowed the corn," + LF + "That fed "
13	rhyme[2] = "the Cock that crowed in the morn," + LF + "That waked "
14	rhyme[3] = "the Priest all shaven and shorn," + LF + "That married "
15	rhyme[4] = "the Man all tattered and torn," + LF + "That kissed "
16	rhyme[5] = "the Maiden all forlorn," + LF + "That milked "
17	rhyme[6] = "the Cow with the crumpled horn," + LF + "That tossed "
18	rhyme[7] = "the Dog," + LF + "That worried "
19	rhyme[8] = "the Cat," + LF + "That killed "
20	rhyme[9] = "the Rat," + LF + "That ate "
21	rhyme[10] = "the Malt," + LF + "That lay in "
22	rhyme[11] = "the House that Jack built."
23	
24	Controls.AddButton("Next", 420, 320)
25	Controls.ButtonClicked = OnButtonClicked
26	nextLine = 11
27	OnButtonClicked()

Listing 18-11: The main part of the House That Jack Built program

Advanced Text Magic 283

Lines 2–8 set up the GraphicsWindow object. Line 10 defines the line feed
character (for appending new lines to the strings). Lines 12–22 define the
rhyme array, which contains the strings for this rhyme. Note how the elements
of this array relate to the boxes in Figure 18-8. Line 24 creates the Next but-
ton, and line 25 registers the handler for the ButtonClicked event. Then the
nextLine variable is set to 11 to point to the 11th element of the rhyme array,
which is the first page of the story (line 26), and OnButtonClicked() is called
to show the first page of the rhyme (line 27).

Now we’ll add the OnButtonClicked() subroutine in Listing 18-12. This
subroutine is called when the user clicks the Next button.

1	Sub OnButtonClicked
2	 img = Program.Directory + "\Page" + (12 - nextLine) + ".png"
3	 GraphicsWindow.DrawImage(img, 0, 0)
4	
5	 strOut = "This is "
6	 For N = nextLine To 11
7	 strOut = Text.Append(strOut, rhyme[N])
8	 EndFor
9	 GraphicsWindow.DrawText(10, 10, strOut)
10	
11	 nextLine = nextLine - 1
12	 If (nextLine = 0) Then
13	 nextLine = 11
14	 EndIf
15	EndSub

Listing 18-12: The OnButtonClicked() subroutine

Line 2 fills img with the name of the image for the current page of the
rhyme. When nextLine is 11, we’ll show Page1.png (which is 12 minus 11).
When nextLine is 10, we’ll show Page2.png (12 minus 10), and when nextLine
is 9, we’ll show Page3.png (12 minus 9), and so on. Line 3 draws the image
on the graphics window. We then build up the output string (lines 5–8).
We set strOut to "This is " (line 5) and then start a loop that goes from
nextLine to 11 (lines 6–8). When nextLine is 11, the loop runs one time and
appends rhyme[11] to strOut. When nextLine is 10, the loop runs from 10 to 11
and appends rhyme[10] and then rhyme[11] to strOut. Similarly, when nextLine
is 9, the loop runs from 9 to 11 and appends rhyme[9], rhyme[10], and then
rhyme[11] to strOut.

When the loop ends, strOut contains the entire string for the rhyme at
this stage of the story. We display this string using DrawText() in line 9.

Then we decrease nextLine by 1 to point to the previous element in the
rhyme array (line 11). If nextLine becomes 0 (line 12), the story is done, so we
set it back to 11 to start over (line 13). As a result, when the user clicks the
Next button at the last page of the story, the program goes back to display-
ing the first page. We’ve finished the tale before it got stale!

284 Chapter 18

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Open the file Shoot_Incomplete.sb from this chapter’s folder. Run the pro-
gram to see the following interface.

The goal of this game is to estimate the turn angle and moving
distance between the turtle and the target. When a player enters their
input, it is saved in a variable named strIn. Your task is to split strIn into
two parts: assign the substring before the comma to angle, and assign
the substring after the comma to dist. The comments in the file tell you
where to add your code. If you get stuck, see the file Shoot.sb, which con-
tains the completed program.

2.	 Open the file BinaryToDecimal_Incomplete.sb from this chapter’s folder.
This program converts binary numbers to decimal numbers and then
asks the user to input an 8-bit binary number. It then shows the input
number in the graphics window, computes its decimal number, and dis-
plays the result of the conversion, as shown in the following figure.

TR Y IT OUT 18 -10

Use the techniques you learned in the House That Jack Built example to write a
program that tells your favorite story. Don’t have one? Make one about an alien
rat trapped in a tower with nothing but JELL-O, a slingshot, and an advanced
chemistry set. Explain how the rat got there and how it escapes!

http://nostarch.com/smallbasic/

Advanced Text Magic 285

Complete the GetInput() subroutine, which prompts the user to
enter an 8-bit binary number. You need to verify that the user’s input
isn’t empty and has at most eight binary digits (so it contains only 1s
and 0s). When the user enters a valid input, save it in strIn and return
from the subroutine. The comments in the file tell you what to do. If
you get stuck, see the file BinaryToDecimal.sb, which contains the com-
pleted code.

19
R e c e i v i n g F i l e I n p u t

a n d O u t p u t

The programs you’ve written so far in
this book took input from the keyboard

and sent output to the screen. But what
if you wanted to create a virtual phone book

and use thousands of lines of data in the program?
Working with that much data could make it difficult to
write and maintain your program. You’d have to input
every name and phone number each time you ran the
program!

Fortunately, a program can also receive input from a file and send its
output to a file, and both files can be saved on your computer. So all the
phone book information could be neatly tucked away in a file, and you’d
only have to input the data once. Today, many programs process data that
is stored in files.

288 Chapter 19

In most programming languages, working with files is an advanced topic,
but Small Basic makes file handling super simple. In this chapter, you’ll learn
about the File object and how it makes working with files a breeze!

The Case for Files
In your programs, you’ve used variables and arrays to store data. But data
stored in variables and arrays is temporary: all that data is lost when the
program ends or when you turn off your computer. When you run your pro-
gram again, it won’t remember the input you entered the last time it ran. If
you want to permanently store the data created in a program, you need to
save that data in a file. Data stored in files is called persistent data because it’s
retained even after you turn off your computer. It’s as persistent as a squir-
rel caching acorns.

Files provide a convenient way to handle large amounts of data. If
your program requires lots of data (like the names of your friends), you
can’t ask a user to input that data each time they run the program. Most
likely, they will get annoyed and stop using the program. If a program can
read its input data from a file, a user won’t need to enter data by hand and
might want to run the program many times. When programs use files, a
user could even customize the application by changing the data file. For
example, if you write a spelling game that reads its input from a file, the
user can set the game’s difficulty by changing the input file. For example,
they could use short words for an easy game and long words for a more
difficult game.

Getting data from a file is called reading the file, and the files a pro-
gram reads are generally called input files. Similarly, sending data to a file
is called writing to the file, and the files a program writes to (or creates) are
called output files. Storing data to (and reading data from) files on disk
is called file access. Working with files is called file I/O, which is short for
input/output.

Before we start working with files in programs, let’s look at filenames
and how files are saved on your computer.

Naming Files
When you create a new file, you give it a name. You can call it Fred or
DontOpenMe if you want, but it’s usually best to name it more specifically,
such as myFriends or myLoveStory.

The Windows operating system is case insensitive and doesn’t see any
difference between uppercase and lowercase letters in filenames, so myFile,
Myfile, and MYFILE would all refer to the same file. Windows also supports
filenames with two parts that are separated by a period, such as myFile.dat.
The part following the period (dat in this example) is called the file exten-
sion. The file extension usually indicates what kind of file it is (such as a
photo or text file). Table 19-1 lists some of the most common file extensions

Receiving File Input and Output 289

and their meanings. File extensions are usually added automatically by the
programs you use. For example, the Small Basic IDE adds an .sb extension
to source code files.

Table 19-1: Common File Extensions

Extension File type Used for

.dat General data file Storing information about a
specific application

.exe Executable file Applications

.gif Graphic Interchange Format Website images

.html Hypertext Markup Language
website file

Web pages

.jpg An image encoded with the
JPEG standard

Photos from a digital camera

.mp3 Music encoded in MPEG layer
3 audio format

Audio files

.pdf Portable Document Format file
for reading

Ebooks

.txt General text file Notes you might write in
Notepad

You’ll be working with text (.txt) files in this chapter.

File Organization
Imagine dozens of books organized in a cabinet with several shelves. Each
shelf has a different label (such as Science, Math, Novels, Dr. Seuss, and
so on) and is filled with books in that category. Each shelf serves as a con-
tainer that groups related books together. Similarly, files on a computer are
stored in containers called directories (or folders). A directory can contain
files as well as other directories. A directory within a directory is called a
subdirectory.

The filesystem is the part of the operating system that is responsible
for organizing files and directories on a computer and providing ways to
manage them. When you call a file-related method from your Small Basic
program (to create, delete, read from, or write to a file), the operating sys-
tem’s filesystem handles all the low-level details for you, so you don’t have
to worry whether the actual files are stored on a hard drive, flash memory,
a CD, a DVD, and so on. The Small Basic library talks to the operating sys-
tem to access files stored on various media, as illustrated in Figure 19-1.

Your program Small Basic
library

Operating
system

Hard drive

Flash memory

CD, DVD

Figure 19-1: How the filesystem lets you access files on different media

290 Chapter 19

The filesystem has a tree structure,
like the one shown in Figure 19-2. The top
of the tree is called the root directory (the
drive letter D: in this figure). The root
directory has a number of files and other
directories under it. Each of these directo-
ries might contain other files and
subdirectories.

You can locate any file by following
a path from the root directory down the
tree until you reach that file. The sequence
of directories you follow makes up the
pathname for the file. For example, to find
the last file in Figure 19-2, you would look
in the root directory D:, then in Book, and
then in Chapter03 to locate the file. If you
write the path using a backslash (\) to sep-
arate each directory, the pathname is D:\
Book\Chapter03\Ch03.docx. You can locate
each file on the system using its pathname.

To access a file from a Small Basic program, you need to specify the file’s
pathname. To learn how, look at the executable file Test.exe in Figure 19-2.
When you run this file, the running program knows its current directory
(which is D:\Book\Chapter01\Examples in this case). If you want Test.exe to
access a data file (such as Test1.dat or Test2.dat), you need to specify the
pathname—the sequence of folders, starting from the root, that the pro-
gram needs to navigate to reach the file. This is also called the absolute path.
In Figure 19-2, the absolute path for Test1.dat is D:\Book\Chapter01\Examples\
Test1.dat, and the absolute path for Test2.dat is D:\Book\Chapter01\Examples\
Data\Test2.dat.

If you write a program that only you will use, you can save the data files
needed by this program anywhere you like and access these files using abso-
lute paths hardcoded in your program. For example, you can write this:

str = File.ReadContents("D:\Book\Chapter01\Examples\Test1.dat")

But if you give this program to a friend to try, it will fail unless your
friend has the same file tree as you. A better solution is to build the desired
path(s) in your program at runtime, like this:

path = Program.Directory
str = File.ReadContents(path + "\Test1.dat")

Now the program will add Test1.dat to the end of its current directory,
which means it will look for Test1.dat in the same folder that the program
is in. Then your friend only needs to place Test.exe and Test1.dat in the
same folder; the absolute path will no longer matter. You can just zip your

Figure 19-2: The filesystem as a tree

D:
Book

Chapter01

Chapter02

Chapter03

Examples

Data

Figures

Test1.dat
Test.exe

Test2.dat

Fig1.bmp
Fig2.png

Ch02.docx
Test3.dat

Ch03.docx

Receiving File Input and Output 291

program’s folder (right-click the folder, click Send to, and click Compressed
(zipped) folder) and send that ZIP file to your friend. Your friend can save
the files contained in the ZIP file under C:\ , D:\ , C:\Temp, or any other folder
of their choice, and your program will work as you designed it.

With an understanding of files and pathnames, you’re ready to learn
about the File object and how to use its methods to read data from files,
write data to files, and perform other file management operations. Let’s go
single file!

The File Object
Small Basic’s File object includes all the methods that handle reading and
writing file data, deleting and copying files, and listing directory contents.
Because this object supports many methods, this section is divided into two
parts. First, we’ll explore the methods related to reading from and writing
to files. Second, we’ll look at the methods related to file management.

File I/O Methods
The File object’s most frequently used methods are those used to write data
to files and read data from files. Let’s explore these methods in detail.

To start, open Notepad and type some words in the editor so it looks like
Figure 19-3. Make sure that you don’t press enter after the last line.

Figure 19-3: An example text file

Save the file as Test1.txt in C:\Temp so its absolute pathname is C:\Temp\
Test1.txt. If you don’t want to create the file, you can find it in this chapter’s
folder; just copy it to C:\Temp.

Reading from a File

Now let’s try reading the contents of Test1.txt. You can use the File object’s
ReadContents() method to read the entire contents of a file at once. This
method opens a file, reads it, and returns its entire contents as a string.
Enter and run the program in Listing 19-1 to see how this method works.

1	' ReadContentsDemo.sb
2	path = "C:\Temp\Test1.txt"
3	str = File.ReadContents(path)
4	len = Text.GetLength(str)

292 Chapter 19

5	TextWindow.WriteLine(str)
6	TextWindow.WriteLine("This file has " + len + " characters.")

Listing 19-1: Demonstrating the ReadContents() method

Here is the output of this program:

This
is a

Test.
This file has 19 characters.

Line 2 sets the file’s absolute path. Line 3 reads the entire contents of
the file and saves the returned string in a variable named str using the
ReadContents() method. ReadContents() takes one argument: the pathname of
the file you want to read. Line 4 gets the length of the string and saves it in
a variable named len. Lines 5–6 display the str and len variables.

But why does GetLength() output 19 characters for the string’s length
when the string "This is a Test." contains only 15? To understand what’s
going on, you need to examine the actual characters that make up the
str variable. Remember from Chapter 18 that characters are encoded in a
format (such as ASCII or Unicode). Add the following code to the end of
Listing 19-1, and run the program again:

For N = 1 To len
 ch = Text.GetSubText(str, N, 1) ' Gets one character
 code = Text.GetCharacterCode(ch) ' Gets the code for this character
 TextWindow.WriteLine(code) ' Displays it
EndFor

This code shows that the str variable has 19 characters. Figure 19-4
breaks down what the program is doing.

Code

Character

84 104 105 115 32 97 13 10 13 84 101 115 116 46101013115105

T th i s i s sa e t .

Sp
ac

e

C
ar

ria
ge

 re
tu

rn

Lin
e

fe
ed

C
ar

ria
ge

 re
tu

rn

Lin
e

fe
ed

C
ar

ria
ge

 re
tu

rn

Lin
e

fe
ed

Figure 19-4: The 19 characters of the str variable in Listing 19-1

Notepad inserts two special characters (called carriage return and line
feed, whose ASCII codes are 13 and 10) to mark the end of each line. Think
of the newline (or end-of-line) marker as a pair of characters produced
when you press enter on the keyboard. Without these characters, the lines

Receiving File Input and Output 293

in the file would run together in one long line. The newline characters are
control characters; they only control the position of the cursor on the screen
or the printer.

The ReadContents() method returns the entire contents of the file as a
single string, including newline characters between lines in the file.

Writing to a File

The WriteContents() method lets you save the contents of a string in a pro-
gram to a file of your choice. If you want to create multiple lines of text, you
need to insert the newline characters manually. For example, let’s write a
program that reads text input from the keyboard and writes it back to a file.
The program is shown in Listing 19-2.

1	' WriteContentsDemo.sb
2	CR = Text.GetCharacter(13) ' Code for carriage return
3	LF = Text.GetCharacter(10) ' Code for line feed
4	outFile = "C:\Temp\Out.txt" ' Absolute path of output file
5	
6	strOut = "" ' Text to be written to file
7	strIn = "" ' One line (read from the user)
8	While(strIn <> "exit") ' Until user enters exit
9	 TextWindow.Write("Data (exit to end): ") ' Prompts for text
10	 strIn = TextWindow.Read() ' Reads line
11	 If (strIn <> "exit") Then ' If user didn't enter exit
12	 strOut = strOut + strIn + CR + LF ' Appends text to strOut
13	 EndIf
14	EndWhile
15	
16	File.WriteContents(outFile, strOut) ' Writes strOut to file

Listing 19-2: Demonstrating the WriteContents() method

Here’s a sample run of this program showing the user input:

Data (exit to end): If Peter Piper picked a peck of pickled peppers,
Data (exit to end): Where's the peck of pickled peppers? I'm hungry.
Data (exit to end): exit

Now open the output file C:\Temp\Out.txt in Notepad and check its con-
tents. The file contains what the user entered in the text window. Pretty
cool, huh? You wrote all of that text without using Notepad!

Here’s how the program works. We define the codes for the carriage
return and the line feed characters in lines 2–3 and define the output file’s
path in line 4. We then start a loop to get the user’s text (line 8–14). In each
iteration of the loop, we prompt the user to enter any text they want (line 9)
and read the input text into a variable named strIn (line 10). If the user
enters any text other than exit (line 11), we append that text followed by a
carriage return and line feed to the strOut string (line 12). When the user
enters exit, the loop ends, and we call WriteContents() to write strOut to the

294 Chapter 19

output file (line 16). If the file doesn’t exist, WriteContents() automatically
creates it. If the file does exist, WriteContents() overwrites its contents with
whatever is in the strOut variable.

Checking for Errors

Similar to when you work with user input, you can’t control what the user
saves in a file that your program reads. Sometimes the data in a file might
be incorrect due to human error. Many things can go wrong (as you’ll see
in a moment), and your programs need to be ready to handle these errors.

Fortunately, Small Basic is always prepared! A call to WriteContents()
returns "SUCCESS" or "FAILED" automatically based on whether the opera-
tion was successful. A well-written program checks the returned string
and takes action in case of failure. Let’s update Listing 19-2 to check the
return value of WriteContents(). Replace the statement on line 16 with the
code in Listing 19-3.

1	result = File.WriteContents(outFile, strOut) ' Writes strOut to file
2	If (result = "SUCCESS") Then
3	 TextWindow.WriteLine("Output saved to: " + outFile)
4	Else
5	 TextWindow.WriteLine("Failed to write to: " + outFile)
6	 TextWindow.WriteLine(File.LastError)
7	EndIf

Listing 19-3: Checking the return value of WriteContents()

First, we save the return of WriteContents() in a variable named result
(line 1), and then we check the method’s return value. If the method
succeeds (line 2), we inform the user that the output has been saved suc-
cessfully (line 3). If the operation fails (line 4), we tell the user that the
program failed to write to the output file (line 5), and then we display the
reason for the failure using the File object’s LastError property (line 6).
This property is automatically updated by WriteContents() if writing to a file
fails.

After writing the code to handle the failure case, we need to test the
code by making it fail on purpose. Here are some things that can cause
WriteContents() to fail:

1.	 The path of the output file doesn’t exist.

2.	 The output file is already open in another program.

3.	 There is not enough space to save the file.

TR Y IT OUT 19-1

Write a program that reads an input text file, converts the text to lowercase, and
then saves the result to a new output file.

Receiving File Input and Output 295

Let’s experiment with the first possibility to see what happens.

Path Doesn’t Exist

Run the short program in Listing 19-4.

1	' BadPath.sb
2	path = "C:\Temp\Folder1\Out.txt"
3	res = File.WriteContents(path, "Hello")
4	TextWindow.WriteLine(res + ": " + File.LastError)

Listing 19-4: Writing to a file when the path doesn’t exist

You should see this output:

FAILED: Could not find a part of the path 'C:\Temp\Folder1\Out.txt'.

The program attempts to write the string "Hello" to an output file
(lines 2–3). The directory Temp exists, but the subdirectory Folder1 doesn’t
exist, so WriteContents() fails.

Appending to a File

The AppendContents() method opens the specified file and adds data to the
end of the file without erasing its original contents. AppendContents() takes
two arguments: the pathname of the output file and the string you want
to append to the end of the file. If the operation is successful, the method
returns "SUCCESS"; otherwise, it returns "FAILED". If the file you pass to
AppendContents() doesn’t exist, it’s created for you, and the string is written
to it. If the file already exists, the string is appended to its end.

To see the AppendContents() method in use, let’s say you need to main-
tain a log file that records actions, errors, and other events in your pro-
gram. To keep the program simple, let’s just record the times when your
program is executed. Every time your program runs, you add a record to
a log file that includes the date and time. The complete program is shown
in Listing 19-5.

1	' AppendContentsDemo.sb
2	outFile = Program.Directory + "\Log.txt"
3	
4	strLog = Clock.WeekDay + ", " + Clock.Date + ", " + Clock.Time
5	result = File.AppendContents(outFile, strLog)
6	If (result = "FAILED") Then
7	 TextWindow.WriteLine("Failed to write to: " + outFile)
8	 TextWindow.WriteLine(File.LastError)
9	EndIf
10	
11	TextWindow.WriteLine("Thank you for using this program. And for using 

deodorant.")

Listing 19-5: Demonstrating the AppendContents() method

296 Chapter 19

When you run this program, it creates a log string that contains the
current day of the week, date, and time (line 4), and it appends this string
to the end of a log file named Log.txt that is in the program’s directory
(line 5). If writing to the file fails, the program displays an error message
explaining the cause of the failure (lines 7–8). Then the program displays
a message (line 11) and ends.

Each time you run this program, a new line is appended to the end of
the Log.txt file. Here’s the output of Log.txt after running the program three
times:

Sunday, 7/19/2015, 12:40:39 PM
Sunday, 7/19/2015, 12:43:21 PM
Sunday, 7/19/2015, 12:47:25 PM

ReadLine(), WriteLine(), and InsertLine()

The ReadContents() and WriteContents() methods let you read and write the
entire contents of a file at once. Sometimes this is just what you need. But in
other situations, reading or writing one line at a time might be better.

The File object provides the ReadLine() method for reading a single
line of text from a file. A line of text consists of a string of characters that
ends with a carriage return and line feed pair. ReadLine() reads all the text
on that line up to (but not including) the carriage return character. This
method takes two arguments: the path of the file and the line number of
the text to be read. The first line of a file is line number 1, the second line
is 2, and so on. If the file contains the specified line number, the method
returns the text at that line. Otherwise, it returns an empty string.

The File object also provides the WriteLine() method for outputting a
line of text to a file. This method takes three arguments: the path of the
file, the line number to write text to, and the text to write. Keep the follow-
ing information in mind when you’re using this method:

1.	 If the file doesn’t exist, WriteLine() creates it.

2.	 If the file contains the specified line number, WriteLine() overwrites
that line.

3.	 If the specified line number is larger than the number of lines in the
file, the specified text is appended to the end of the file. For example, if
the file contains three lines and you ask WriteLine() to write new text at
line 100, the specified text is written at line 4.

4.	 WriteLine() automatically writes a carriage return and line feed at the
end of the passed text. This means you don’t have to append these
characters to your strings manually.

5.	 If the operation is successful, WriteLine() returns "SUCCESS"; otherwise, it
returns "FAILED".

In addition to ReadLine() and WriteLine(), the File object provides the
InsertLine() method for you to insert a line of text into a file, at a specified

Receiving File Input and Output 297

line number. As with the WriteLine() method, this method takes three argu-
ments: the path of the file, the line number where you want the new text
to be inserted, and the text you want to insert. InsertLine() won’t overwrite
any existing content at the specified line. If the operation is successful,
InsertLine() returns "SUCCESS"; otherwise, it returns "FAILED".

As an example, let’s write a simple program that creates login names
from the first and last names of users. The program will read an input file
that contains the first and last names of users, and it will create an output
file that contains the login names for these users. The login name for a
user is composed of the first letter of the user’s first name and up to five
characters from their last name. For example, if the user’s name is Jack
Skellington, his login name is jskell. If the user’s name is Stan Lee (three-
letter last name), his login name will be slee. The complete program is
shown in Listing 19-6.

1	' LoginName.sb
2	inFile = Program.Directory + "\Users.txt"
3	outFile = Program.Directory + "\LoginNames.txt"
4	
5	N = 1 ' Tracks the line number
6	While (N > 0) ' We'll set N = 0 when we detect end of file
7	 strLine = File.ReadLine(inFile, N) ' Reads the Nth line
8	 If (strLine = "") Then ' If the string's empty
9	 N = 0 ' Exits the While loop
10	 Else ' We have an entry
11	 idx = Text.GetIndexOf(strLine, " ") ' Finds space in strLine
12	 firstChar = Text.GetSubText(strLine, 1, 1)
13	 lastName = Text.GetSubText(strLine, idx + 1, 5)
14	 loginName = firstChar + lastName
15	 loginName = Text.ConvertToLowerCase(loginName)
16	 File.WriteLine(outFile, N, loginName) ' Saves to a file
17	 N = N + 1 ' Gets ready for the next line
18	 EndIf
19	EndWhile

Listing 19-6: Creating login names from first and last names

We start by giving the paths for the input and output files (lines 2–3).
We then start a loop to read the contents of the input file, one line at a
time (lines 6–19). After reading a line (line 7), we check whether that line
is empty, and if it is (line 8), we set N equal to 0 to end the loop (line 9).
Otherwise, we process the user’s name that is read from the input file to
create the lowercase login name (lines 11–15). First, we find the space
between the first name and the last name (line 11). Next, we get the first
letter of the first name (line 12) and the first five letters of the last name
(line 13), combine them to create the login name (line 14), and convert
the login name to lowercase (line 15). Then we write the login name to the
output file (line 16) and increment N by 1 to read the next line in the input
file (line 17).

298 Chapter 19

To keep the code simple, we didn’t add error-checking code. We also
assumed that the input file was properly formatted: each line contained a
user’s first and last names separated by a single space. Table 19-2 shows an
example input file for this program and the output file.

Table 19-2: Creating Login Names

User’s name Login name

Tina Fey tfey

Jimmy Fallon jfallo

David Letterman dlette

Jay Leno jleno

Amy Poehler apoehl

File Management
In addition to the methods that let you perform file I/O, the File object
also provides a couple of methods related to file and directory management.
Using these methods, you can copy and delete files, create and delete
directories, and list files and directories from your program.

Copying and Deleting Files

You can use the CopyFile() method to create a copy of an existing file. This
method takes the pathnames of the source file and the destination file as
arguments. The source file isn’t affected by this operation. If the operation
is successful, the method returns "SUCCESS". Otherwise, it returns "FAILED".

If the destination path points to a location that doesn’t exist, the method
attempts to create it automatically. For example, look at the following code:

srcPath = "C:\Temp\Test1.txt" ' Path of the source file
dstPath = "C:\Temp\Temp1\Temp2\Test1.txt" ' Path of the destination file
File.CopyFile(srcPath, dstPath)

If the subfolders Temp, Temp1, and Temp2 don’t exist, CopyFile() attempts
to create all the directories in the destination path, beginning with the
root. When you run this code, you’ll have two copies of the Test1.txt file: the
original source file and the duplicate file under C:\Temp\Temp1\Temp2.

TR Y IT OUT 19-2

Write a program that reads an input file and counts the number of lines, charac-
ters, and spaces it contains.

Receiving File Input and Output 299

WARNING 	 If the destination path points to an existing file, that file will be overwritten. So be
careful when you use the CopyFile() method, because you might overwrite some of
your files!

If you want to delete a file, use the DeleteFile() method. This method
takes one argument: the pathname of the file you want to delete. If the opera-
tion is successful, the method returns "SUCCESS". Otherwise, it returns "FAILED".

WARNING 	 The deleted file doesn’t go to the recycle bin; instead, it’s completely deleted from your
system. So be extra careful when you use the DeleteFile() method!

Using CopyFile() and DeleteFile(), you can create your own subroutines
for moving and renaming files. To move a file to a new location, copy the
file to the new location and then delete the original file. To rename a file,
make a copy of the file, give the copy a new name, and then delete the
original file.

Creating and Deleting Directories

You can easily create or delete a directory. The CreateDirectory() method
takes a single argument: the pathname of the directory you want to create. If
the directories don’t exist, the method attempts to create all the directories
in the path, beginning with the root. If the operation is successful, the
method returns "SUCCESS". Otherwise, it returns "FAILED". Here’s an example:

File.CreateDirectory("C:\Temp\Temp1\Temp2")

If the directories C:\Temp, C:\Temp\Temp1, and C:\Temp\Temp1\Temp2
don’t exist, CreateDirectory() creates them. If the directory path already
exists, the function does nothing and returns "SUCCESS".

The DeleteDirectory() method also takes a single argument: the path-
name of the directory you want to delete. All files and folders under
the path are deleted. If the operation is successful, the method returns
"SUCCESS". Otherwise, it returns "FAILED". Figure 19-5 shows an example of
DeleteDirectory().

File.DeleteDirectory("C:\abc\cat") File.DeleteDirectory("C:\abc\bat")

Figure 19-5: Demonstrating the DeleteDirectory() method

300 Chapter 19

WARNING 	 When you call DeleteDirectory(), all the files and folders under the pathname are
deleted. So make sure you don’t have any files tucked away that you don’t want
to delete!

List Files and Directories

The File object includes the GetFiles() method, which lets you list all the
files in a directory. This method takes the path of the target directory as its
argument. The example in Listing 19-7 shows you how to use this method.

1	' GetFilesDemo.sb
2	path = "D:\Temp"
3	fileArray = File.GetFiles(path)
4	count = Array.GetItemCount(fileArray)
5	TextWindow.WriteLine(path + " contains " + count + " files:")
6	For N = 1 To count
7	 TextWindow.WriteLine(" " + fileArray[N])
8	EndFor

Listing 19-7: Demonstrating the GetFiles() method

Here is the output after running this program (change the path variable
in line 2 to a directory on your computer):

D:\Temp contains 3 files:
 D:\Temp\Fig01.bmp
 D:\Temp\keys.txt
 D:\Temp\Test.sb

We start by specifying the path of the directory we want to list (line 2).
Next, we call GetFiles() with the desired path (line 3). This method creates
an array that contains the pathnames of all the files in the directory; we save
the identifier of the returned array in fileArray. Then we call GetItemCount()
to find out the number of elements in the returned array (line 4) and use a
For loop to display its elements (lines 6–8).

N o t e 	 If GetFiles() fails, then fileArray stores the string "FAILED". In this case, the call
to Array.GetItemCount(fileArray) returns 0. So you might not need to perform an
extra check on the return of GetFiles().

The GetDirectories() method lets you list all the subdirectories in a
given directory. Listing 19-8 shows an example of this method.

1	' GetDirectoriesDemo.sb
2	path = "D:\Temp"
3	dirArray = File.GetDirectories(path)
4	count = Array.GetItemCount(dirArray)
5	TextWindow.WriteLine(path + " contains " + count + " directories:")

Receiving File Input and Output 301

6	For N = 1 To count ' Displays the array's elements
7	 TextWindow.WriteLine(" " + dirArray[N])
8	EndFor

Listing 19-8: Demonstrating the GetDirectories() method

Here is the output after running this program:

D:\Temp contains 3 directories:
 D:\Temp\Chapter01
 D:\Temp\Chapter02
 D:\Temp\Chapter03

But your output will probably look different, depending on what
your Temp directory looks like. This program is similar to Listing 19-7.
We start by storing the path we’re interested in (line 2). Next, we call
GetDirectories() with the path (line 3). This method creates an array that
contains the pathnames of all the directories in the specified path; we save
the identifier of the returned array in dirArray. Then we call GetItemCount()
to find out the number of elements in the returned array (line 4) and use a
For loop to display its elements (lines 6–8). Try changing line 2 to access a
different directory.

At this point, we’ve covered everything you need to know about the File
object. Let’s put some of this newfound knowledge to work to create some
cool applications!

Practical Programs
We’ll present two programs intended to highlight different aspects of file
I/O and give you some ideas and new techniques that you can use in your
own creations.

The Poet
In this example, we’ll modify the Poet program we created in Chapter 16 so
it reads its input from files instead of hardcoding the word lists into the pro-
gram. By doing so, your program will be more awesome and concise, and it
will be easy to add words to!

The program uses five input files: article.txt, adjective.txt, noun.txt, verb​
.txt, and preposition.txt. The article.txt file contains a list of articles and quali-
fiers; the adjective.txt file contains a list of adjectives, and so on. To take
advantage of the way Small Basic handles arrays, each of the five files is for-
matted to make it easy to be read into an array in your program.

Look at this statement:

art = File.ReadContents("article.txt")

302 Chapter 19

We automatically load the contents of the article.txt file into an array
named art that contains the five elements shown in Figure 19-6.

art[5] = every

art[4] = each

art[3] = one

art[2] = the

art[1] = a

Figure 19-6: Reading the contents of article.txt into an array named art

Open the file Poet_Incomplete.sb from this chapter’s folder, which also
contains the background image and the five input files we’ll need. The file
has an empty placeholder for the CreateLists() subroutine, which you’ll add
now. This subroutine is shown in Listing 19-9.

1	Sub CreateLists
2	 article = File.ReadContents(path + "\article.txt")
3	 adjective = File.ReadContents(path + "\adjective.txt")
4	 noun = File.ReadContents(path + "\noun.txt")
5	 verb = File.ReadContents(path + "\verb.txt")
6	 prepos = File.ReadContents(path + "\preposition.txt")
7	EndSub

Listing 19-9: The CreateLists() subroutine

Run this program. It should work the same way as before but with an
advantage: the user can now change the input files to create their own cus-
tom poems.

Math Wizard
In this example, we’ll create a program featuring a wizard who seems to
know a lot about math. The wizard isn’t Merlin, Gandalf, or Harry Potter:
welcome to the world of the Math Wizard! The wizard starts by asking the
user to think of a secret number. He then requests that the user perform
some mathematical operations on that number (such as doubling the num-
ber, subtracting 2, dividing the answer by 10, and so on). At the end, the
wizard uses his magical powers to tell the user the resulting number after
performing these operations (although he doesn’t know the user’s secret
number)!

The idea of the program is very simple. We’ll save each math puzzle in a
text file that has the format shown in Figure 19-7. The first line contains the
puzzle’s answer, and the remaining lines contain the instructions that the

Receiving File Input and Output 303

wizard asks the user to perform. This program includes 11 puzzles saved in
Puzzle01.txt, Puzzle02.txt, . . . , Puzzle11.txt. You can add more puzzles by creat-
ing additional puzzle files (follow the format shown in Figure 19-7).

Puzzle answer

Puzzle instructions

Figure 19-7: The format of a puzzle file

The strategy for developing this program is outlined as follows:

1.	 When the program starts, we’ll list the files in the program’s directory
to get the pathnames of the puzzle files.

2.	 For each round of the program, we’ll select one of the available puzzles.

3.	 We read the first line of the selected puzzle’s file and interpret it as the
puzzle’s answer. The remaining lines represent the instructions the
wizard displays.

4.	 The wizard displays the puzzle’s instructions one by one until the pro-
gram reaches an empty line. The wizard asks the user to press enter
after each instruction.

5.	 The wizard displays the puzzle’s answer.

Open the Wizard_Incomplete.sb file from this chapter’s folder. This file
contains the program’s main code, shown in Listing 19-10, and empty place-
holders for the DoPuzzle() subroutine that you’ll add. The folder also con-
tains the text files for the 11 premade puzzles.

1	' Wizard_Incomplete.sb
2	TextWindow.Title = "MATH WIZARD"
3	TextWindow.WriteLine("========== MATH WIZARD ==========")
4	TextWindow.WriteLine("Press Enter after each instruction")
5	TextWindow.WriteLine("==================================")
6	TextWindow.WriteLine("")
7	
8	puzzle = File.GetFiles(Program.Directory) ' Stores filenames into an array
9	
10	For P = 1 To Array.GetItemCount(puzzle)
11	 path = puzzle[P] ' File in the app's directory
12	 If (Text.EndsWith(path, ".txt") = "True") Then
13	 DoPuzzle()
14	 EndIf
15	EndFor

304 Chapter 19

16	TextWindow.WriteLine("The game was won, the math was fun, and the magic is 
done!")

17	TextWindow.WriteLine("There is one Math Wizard to rule them all! Bye!")

Listing 19-10: The main code of the Math Wizard program

After displaying the program’s title and its instructions (lines 2–6), we
call GetFiles() to get a list of all the files in the program’s directory, and
we save the identifier of the returned array in the puzzle variable (line 8).
We then start a loop to process the files we found (lines 10–15). In each
iteration, we get one pathname from the puzzle array (line 11) and check
whether it has a .txt extension (line 12). If the file has a .txt extension (which
means it contains a puzzle), we call DoPuzzle() to show that puzzle to the
user (line 13). The program ends with a message from the Math Wizard
(lines 16–17).

Add the DoPuzzle() subroutine shown in Listing 19-11 to the bottom of
the Wizard_Incomplete.sb program.

1	Sub DoPuzzle
2	 puzzleAns = File.ReadLine(path, 1) ' Reads answer from first line
3	 N = 2 ' Starts from second line
4	 line = "?" ' To enter the loop
5	 While (line <> "") ' Loops as long as we have instructions
6	 line = File.ReadLine(path, N) ' Reads the Nth line
7	 If (line <> "") Then ' If we have an instruction
8	 TextWindow.Write(line + "... ") ' Writes instruction
9	 TextWindow.PauseWithoutMessage() ' Waits for user to press a key
10	 TextWindow.WriteLine("")
11	 N = N + 1 ' Prepares to read next line
12	 EndIf
13	 EndWhile
14	 TextWindow.WriteLine("You still have: " + puzzleAns)
15	 TextWindow.WriteLine("")
16	EndSub

Listing 19-11: The DoPuzzle() subroutine

We read the first line from the file and save it in puzzleAns (line 2).
Next, we set N to 2 to read the second line of the file and set the line string
to "?" to enter the While loop (lines 3–4). In each iteration of the loop, we
read one line from the puzzle’s file (line 6) and check whether the program
reached the last instruction. If line is not empty (line 7), we display the
instruction the program just read (line 8) and wait for the user to press any
key (line 9). When the player presses any key, we increment N to read the
next instruction in the file (line 11). When the program reads an empty
line, the While loop ends, and the program moves to line 14, where we display
the puzzle’s answer followed by an empty line (lines 14–15).

Receiving File Input and Output 305

Figure 19-8 shows a sample run of the program.

Figure 19-8: Sample output of the Math Wizard program

Programming Challenges
If you get stuck, check out http://nostarch.com/smallbasic/ for the solutions
and for more resources and review questions for teachers and students.

1.	 Let’s write a spelling quiz game using homonyms. Homonyms are
words that sound the same but have different meanings. Use Notepad
to create the following text file:

In your math class;ad/add;add
Halloween queen;which/witch;witch
Eyes do this;sea/see;see
In the church;altar/alter;altar
A rabbit;hair/hare;hare
A good story;tail/tale;tale
Animals have them;clause/claws;claws
Pencils do this;right/write;write

Each line in this file contains three fields separated by semicolons.
The first field is the hint you’ll show the player, such as In your math
class. The second field is the two possible answers that your player will
choose from, such as ad/add. The third field is the correct answer, such
as add.

In each round, have the program display the hint and the two pos-
sible answers to the player, and then wait for them to enter their answer.
Have the program compare the user’s answer with the correct answer,
and then let them know whether their answer is correct.

TR Y IT OUT 19-3

Think of ways to improve the Math Wizard program, and try to implement them.
For example, add some colors to make the output look fancier or draw something
after each puzzle.

http://nostarch.com/smallbasic/

306 Chapter 19

2.	 Write a science quiz that tests the student’s knowledge of the animal
kingdom. First, use Notepad to create the following text file:

1=Invertebrates;2=Fish;3=Amphibians;4=Reptiles;5=Birds;6=Mammals
Bat;6
Clam;1
Dog;6
Frog;3
Lizard;4
Peacock;5
Salamander;3
Salmon;2
Spider;1
Turkey;5
Turtle;4

The first line contains the possible classifications. Each of the
remaining lines contains an animal’s name and its correct classifica-
tion. Display an animal’s name to the player, and then ask them to
classify that animal by entering the number of the correct class. Then
process the player’s answer and let them know whether their answer is
correct; if their answer is incorrect, display the correct classification.

W h e r e t o G o f r o m H e r e

So you’ve mastered the basics of programming with
Small Basic. Congratulations! If you’re itching for
more, there are extra resources online that you can
explore.

Online Resources
Visit http://www.nostarch.com/smallbasic/ to download the extra resources for
this book. Once you’ve downloaded and unzipped the file, you’ll see the
following materials:

Book Programs and Solutions  Download the finished programs,
all the images you’ll need, some skeleton code for the Programming
Challenges, and the solutions to the Programming Challenges and Try
It Out exercises. This will save wear and tear on your typing fingers!

Additional Resources  These are online articles that relate to the
topics covered in this book. Many of these were written just to supple-
ment the book!

http://www.nostarch.com/smallbasic

308 Where to Go from Here

Review Questions  Test your knowledge (or your student’s knowledge).

Practice Exercises  In addition to the Try It Out exercises and the
Programming Challenges in the book, you can find even more exer-
cises to practice. This is also great for teachers who want more options
for assignments.

The Small Basic Website
Visit http://www.smallbasic.com/ to explore the world of Small Basic and pro-
gramming. You’ll find featured games and programs, documentation, a
curriculum for teachers, and much more.

Play Games  Visit the program gallery to check out what other pro-
grammers have made.

Join the Community  Post on the forums at http://aka.ms/
SmallBasicForum/ to ask questions and share your games and
programs with the entire Small Basic community.

Learn the Latest News  Find out about new releases, extensions, and
featured content, games, and apps at http://blogs.msdn.com/b/smallbasic/.

Get Teaching Support  Teachers can join a private network to get
personal support from Microsoft on all Microsoft products at http://aka​
.ms/MCSTN/.

Connect with the Team  Email Ed Price and the rest of the Small
Basic team at smallbasic@microsoft.com. Tell them the book sent you!

Graduating to Visual Basic
You can convert any Small Basic program into an equivalent Visual Basic
program, which lets you transition to the full power of a professional pro-
gramming language. First, you’ll need to download Visual Studio for free.
Go to http://www.visualstudio.com/ and click Free Visual Studio in the upper
right.

Next, go to the Small Basic toolbar, click Graduate, select your Output
Location, and click Continue. Visual Studio will open with the code trans-
lated into Visual Basic! Head back to the Visual Studio website for getting
started documentation on Visual Basic and the Visual Studio interface. And
if you have any questions about the graduating experience, ask us in the
Small Basic forum.

http://www.smallbasic.com
http://aka.ms/smallbasicforum
http://aka.ms/smallbasicforum
http://blogs.msdn.com/b/smallbasic/
http://aka.ms/MCSTN
http://aka.ms/MCSTN
mailto:smallbasic@microsoft.com
http://www.visualstudio.com

Numbers and Symbols
3DArrayDemo.sb, 252–253
= (assignment operator), 44
* (asterisk), 83
+ (concatenation operator), 18–19, 83
<> (not equal operator), 101
/ (slash sign), 83

A
Abs() method, 88–89
absolute motion, 57–59
absolute path, 290
accumulators, 79
accumulator loops, 184–185
AddApples() subroutine, 220–221
AddButton() method, 167
AddImage() method, 121
AddMultiLineTextBox() method, 167
AddRectangle() method, 120, 245
AddTutor.sb, 199
algorithm, 52
AlienAttack.sb, 112
AndDemo.sb, 118
And operator, 117–118
AndroidAttack.sb, 93
Angle property, 58–59
AnimatedSquares.sb, 245–246
Animate() method, 246
Animate() subroutine, 137
AppendContentsDemo.sb, 295
AppendContents() method, 295–296
Append() method, 264–265
ArcCos() method, 94
ArcSin() method, 94
ArcTan() method, 94
arguments, 7, 15
arithmetic expressions, 45

calculating, 50
arithmetic operators, 21, 120
Array object, 232–235

arrays, 207–225
associative. See associative arrays
defined, 205
displaying, 213–214
elements, 209
filling with For loops, 211–213
indexed, 207, 208–209, 216–218
initializing, 210–211
processing, 214–215
saving records, 216
string values in, 215
three-dimensional, 252–253
two-dimensional, 241–251
variables, 208

assignment operator (=), 44
assignment statements, 44
associative arrays, 207–208, 227–239.

See also arrays; indexed
arrays

defined, 228
vs. If/ElseIf ladder, 229
using, 230–232

AssociativeArray.sb, 228
asterisk (*), 83
Average1.sb, 208
Avg1.sb, 78–79
Avg2.sb, 79

B
BackgroundColor property, 21
BadPath.sb, 295
banker’s rounding, 87
BASIC language, 2–3
BinaryToDecimal_Incomplete.sb, 284–285
Boole, George, 99
Boolean expressions, 99
Boolean operators, 115–120
BoundTextDemo.sb, 37
Brin, David, 2
BrushColor property, 245
bugs, 25
ButtonClicked event handler, 168, 169,

177, 237

I n d e x

310 Index

C
CaptainCork_ Incomplete.sb, 109
case sensitivity, 16–17
Catch Apples game, 219–223

AddApples() subroutine, 220–221
CheckCatch() subroutine, 222–223
MoveApples() subroutine, 221–222
SetApplePosition() subroutine, 221
startup file, 219–220

Ceiling() method, 86–87
Celsius, converting Fahrenheit to,

77–78
characters, 15
CheckCatch() subroutine, 222–223
CheckTouch() subroutine, 160, 162
CircleArea3.sb, 76
CircleArea.sb, 52, 74
Circles.sb, 151–152
Clear() method, 21
code blocks, 98
CoinsAdder.sb, 191–192
ColumnSum() subroutine, 251
comments, 14–15
comparison operators, 100
compiler, 16–17
compiling, 6
complex If conditions, 101–102
compound condition, 115
computers, 1–2
concatenation, 18
concatenation operator (+), 18–19, 83
conditional expressions, 99
conditional transfers, 107
ContainsIndex() method, 235
ContainsIndex.sb, 233
ContainsValue() method, 235
ContainsValue.sb, 235
Controls object, 166–169
ConvertToLowerCase() method, 268–269
ConvertToUpperCase() method, 268–269
coordinates, 28
CopyFile() method, 298–299
copying and pasting, 6
Cos() method, 94
CountDown.sb, 187
counters, 63, 64
CreateDirectory() method, 299
CreateLists() subroutine, 237, 301
CreateNewMap() subroutine, 256–257
cumulative tales, 280

current directory, 290
CursorLeft property, 183–184

D
data types, 53
.dat files, 289
debugging, 25
decimal numbers, 53
decisions, 112–128

And operator, 117–118
If/ElseIf ladder, 112–115
logical (Boolean) operators,

115–120
Or operator, 118–119

default case, 113
Delay() method, 57
DeleteDirectory() method, 299–300
DeleteFile() method, 299
dictionaries, 228
directories, 289. See also files

creating, 299
deleting, 299–300
listing, 300–301

.dll (dynamic link library) files, 8
DoPuzzle() subroutine, 304
dot notation, 15
DragonFire() subroutine, 146–147
Dragon.sb (game), 138–147

DragonFire() subroutine, 146–147
GameOver() subroutine, 144
GetChoice() subroutine, 142–143
MoveKnight() subroutine, 143–144
NewGame() subroutine, 141
Pause() method, 144
ProcessChoice() subroutine, 143
SetUp() subroutine, 139–140
ShootArrow() subroutine, 145
StabDragon() subroutine, 146
startup file, 139
UpdateUserInterface()

subroutine, 142
DrawBoundText() method, 37
DrawEllipse() method, 32–34
drawing 9–10

lines, 28–29
shapes, 30–35, 120–122

circles, 32–34
ellipses, 32–34
polygons, 64–70
rectangles, 31–32

Index 311

squares, 31–32
star, 65–66
triangles, 30
with turtle graphics, 55–80

text, 35–37
drawing program, creating, 169–170
DrawLine() method, 28–29, 133
DrawObject() subroutine, 257
DrawRectangle() method, 31–32
DrawResizedImage() method, 38
DrawText() method, 9–10, 35–37
DrawTriangle() method, 30
Duckberg_Incomplete.sb, 250

adding all elements, 250–251
ColumnSum() subroutine, 251
TotalSales() subroutine, 250–251

dynamic link library (.dll) files, 8

E
Editor, 4–6
element, 209
Else keyword, 103
embedding programs, 6
empty strings, 17
EndFor keyword, 63, 182–183
EndIf keyword, 103, 113
endless graphics, 69–70
EndsWith() method, 266
EndWhile keyword, 197
errors, 24–25

logic, 25
runtime, 25
syntax, 24

event-driven programming, 149–163
defined, 149–150
Gold Rush game, 157–162
GraphicsWindow events, 151–156
model, 150

event handlers, 152
events, 150
executable (.exe) files, 8
exponent methods, 84–86
expresssions

arithmetic, 45
assigning to variables, 45
simplifying, 50

F
Facebook, 227, 263
Face.sb, 33–34

Fahrenheit, converting to Celsius,
77–78

Fahrenheit2Celsius.sb, 76–77
fancy characters, 270
features, 28–29
file input/output, 288
File object, 291–301

AppendContents() method, 295–296
CopyFile() method, 298–299
DeleteFile() method, 299
GetFiles() method, 300
InsertLine() method, 297
ReadContents() method, 291–292
ReadLine() method, 296
WriteContents() method, 292–293
WriteLine() method, 296–297

files. See also directories
appending to, 295–296
checking for errors in, 294–295
copying, 298–299
current directory, 290
deleting, 299
extensions, 289
importing, 5
listing, 300–301
naming, 288
opening, 5
organization, 289–290
pathname, 290
reading, 288
reading from, 291–292
saving, 5
sharing, 5
writing to, 292–293

FillEllipse() method, 32–34
FillRectangle() method, 31–32
FillTriangle() method, 30
FirstGUIApp.sb, 166–169

design phase, 166–168
program interactivity, 168–169

first program, writing and
running, 6–9

FixMySpelling.sb, 277–278
Flickr, 176–177
Floor() method, 86–88
FlowerAnatomy.sb, 224
Fonts.sb, 36
For keyword, 63, 183
For loops, 62–64, 181–193

body of, 183
filling arrays with, 211–213
iteration of, 182

312 Index

Format Program, 99
FrenchDay.sb, 230–231

G
GameOver() subroutine, 144
Gates, Bill, 1
GetAllIndices() method, 234–235
GetAllIndices.sb, 234–235
GetCharacterCode() method, 270
GetCharacter() method, 270
GetChoice() subroutine, 142–143
GetDirectoriesDemo.sb, 300–301
GetDirectories() method, 300–301
GetFiles() method, 300–301, 304
GetIndexOf() method, 268
GetInput() subroutine, 285
GetItemCount() method, 233
GetLength() method, 265, 270
GetRadians() method, 94
GetRandomNumber() method, 92, 125
GetSubText() method, 267
GetSubTextToEnd() method, 267–268
GetTextBoxText(), 168–169
GhostHunt_Incomplete.sb, 148
.gif files, 289
global variables, 53–54
GlumGluff2.sb, 131
GlumGluff.sb, 131
Gold Rush game, 157–158

CheckTouch() subroutine, 160, 162
DragonFire() subroutine, 158–162
moving the bag of gold, 160–161
moving the turtle, 159–160
NewRound() subroutine, 160–161
OnGameOver() subroutine, 161
OnKeyDown handler, 159
OnTick handler, 159
startup code, 158–159
updating user’s score, 162

GotoDemo.sb, 107
GoTo statement, 107–108
GradeLetter.sb, 113–114
Graduate command, 6, 308
graphical user interfaces (GUI), 9

designing, 166–169
Poet.sb, 237
Treasure Map game, 255

graphics coordinate system, 28–29
Graphics.sb, 9–10
GraphicsWindow events, 151–156
GraphicsWindow object, 10, 28, 60, 133

Greetings.sb, 7–8
Guess My Coordinates game, 122–127
GuessMyNumber.sb, 196
GUI (graphical user interfaces).

See graphical user
interfaces (GUI)

H
hand tracing, 25
hard-coded data, 74
hashes, 208
Help Area, 5, 16
Heron’s formula, 133
HiddenTreasure_Incomplete.sb, 178
House.sb, 31–32
House That Jack Built, The (game),

280–283
.html files, 289

I
IDE (integrated development

environment). See
integrated development
environment (IDE)

identifiers, 47
If/ElseIf ladder, 112–115, 202, 204,

228–229, 258
If/Else statement, 103–104

nested, 104–106
If keyword, 103
If statement, 98–103

nested, 104–106
two-way, 102–103

ImageDemo.sb, 38, 121
ImageList object, 191
images, inserting 37–38
ImageViewer.sb, 177
importing files, 5
indenting code, 99
indexed arrays, 207, 208–209, 216–218.

See also arrays; associative
arrays

indexed variables, 209
inequalities, 115–120
infinite loops, 199–200
input files, 288
InputValidation.sb, 198
InsertLine() method, 297
installing Small Basic, 4
integers, 53

Index 313

integrated development environment
(IDE), 4–6

defined, 4
Editor, 4
Help Area, 5
Surface, 5
Toolbar, 5

IntelliSense, 9
naming variables, 48–49

interactive programs, 73
IsArray() method, 232–233
IsArray.sb, 232
IsSubText() method, 265
iteration statements, 97

J
JackHouse_Incomplete.sb, 281
JoinNum.sb, 18
JoinString.sb, 18
.jpg files, 289
jump statements, 97

K
KeyDown event handler, 153
KeyDown.sb, 152–154
keywords, 9
KnockKnock.sb, 54

L
labels, 107
LandArea.sb, 131
LastClickedButton property, 170
library, 4
lines, drawing, 28–29
Lines.sb, 186
LinkedIn, 227
LoadImage() method, 191
logical expressions, 99
logical operators, 115–120
logic errors, 25
LogicError.sb, 53
LoginName.sb, 297
lookup tables, 228
loops, 98

accumulator, 184–185
control variables, 183
counter, 183
defined, 107
infinite, 199–200

iteration of, 182
For loops. See For loops
nested, 67–68, 189–190
Step size, 187
terminal value of, 182
While, 195–205

M
machine language, 2
MagicBall.sb, 217–218
Magician.sb, 81
MakeLine1() subroutine, 238
MakeLine2() subroutine, 238
MakeLine3() subroutine, 238
maps, 208, 228
math, 17–18
Math object, 83. See also numbers

Abs() method, 88–89
Ceiling() method, 86–87
exponent methods, 84–86
Floor() method, 86–88
GetRandomNumber() method, 92, 125
Max() method, 88–89
Min() method, 88–89
Power() method, 85–86
Remainder() method, 90–91
rounding methods, 86–88
Round() method, 78, 86–88
SquareRoot() method, 84–85
trigonometric methods, 93–94

math operators, 83
Math.Round() method, 78, 133
Math Wizard program, 302–304
Max() method, 88–89
Maze_Incomplete.sb, 163
methods, 7, 15

passing variables to, 45
Min() method, 88–89
misspelled words, 277–278
MoeMows.sb, 231–232
Money.sb, 90
MouseDown event, 152, 154, 157, 173, 201
MouseMove event, 155–156, 157
MouseUp event, 157
MouseX property, 152, 156
MouseY property, 152, 156
MoveApples() subroutine, 221–222
MoveKnight() subroutine, 143–144
Move() method, 56, 60, 62–63,

121–122, 246
MoveTo() method, 57–58

314 Index

MovingWord.sb, 184
.mp3 files, 289
multiline strings, 272–273
multiple nesting, 191–192

N
naming programs, 8
nested If/Else statements, 104–106
nested If statements, 104–106
nested loops, 67–68, 189–190
NestedLoops.sb, 189–190
nested subroutines, 135–137
nesting, 189
NewGame() subroutine, 141, 255–256
NewRound() subroutine, 160–161
not equal operator (<>), 101
Notepad, 291
numbers, 53. See also Math object

averaging, 78–79
displaying, 17–18
random, 92
reading, 74

O
objects

Array, 232–235
Controls, 166–169
File, 291–301
GraphicsWindow, 10, 28, 60, 133
ImageList, 191
Math. See Math object
properties of, 18–19
Shapes, 120–122, 159, 246
Text. See Text object
TextWindow, 7, 15, 16, 20

Okla.sb, 260–261
OnButtonClicked() subroutine, 168, 170,

237–238, 258–260, 282–283
OnGameOver() subroutine, 161
OnKeyDown() subroutine, 153, 159, 160
OnMouseDown() subroutine, 152, 157, 173,

174, 201, 202
OnMouseMove() subroutine, 156, 170
OnTextTyped() subroutine, 175
OnTick handler, 159, 160
opening files, 5
operands, 22, 101–102, 117
operators

arithmetic, 22–23
relational, 100–101, 120

OrDemo.sb, 119

Or operator, 118–119
output files, 288

P
palindromes, 274–275
Palindrome.sb, 275
ParallelLines.sb, 28
pathname, 290
Pause() method, 76–77, 144
PauseWithoutMessage() method, 77
.pdb (program database) files, 8
.pdf files, 289
pen, 34–35
PenColor property, 60, 170
PenDown() method, 56
PentaStar.sb, 65–66
PenUp() method, 56
PenWidthDemo.sb, 34–35
PenWidth property, 60
PepperDare.sb, 136–137
persistent data, 288
Pick() subroutine, 136
pig latin, 276
PigLatin.sb, 276
Pinball.sb, 223–224
Poet.sb, 235–239

CreateLists() subroutine, 301
graphical user interface, 237
MakeLine1() subroutine, 238
MakeLine2() subroutine, 238
MakeLine3() subroutine, 238
OnButtonClicked() subroutine,

237–238
startup file, 236, 302

polling, 202
polygon art, 67–68
PolygonArt.sb, 69
polygons, drawing, 64–70
Polygon.sb, 65
PowerDemo.sb, 85
Power() method, 85–86
ProcessChoice() subroutine, 143
program database (.pdb) files, 8
programmers, 2
programming errors, 24–25

logic errors, 25
runtime errors, 25
syntax errors, 24

programs
compiling, 6
naming, 8

Index 315

parts of, 14–16
publishing, 5–6
running, 5–6
terminating, 21
writing and running, 6–9

prompts, 75–76
properties

setting and changing, 19–20
working with, 20–21

Properties.sb, 20–21
pseudocode, 52, 248
publishing programs, 5–6

Q
quotation marks, 272

R
Race_Incomplete.sb, 204–205
Raji, Vijaye, xvii–xviii, 2–3
Random2DArray.sb, 243
random matrix, 243–244
random numbers, 92
random selection, 216–217
RandomSelect.sb, 217
readability, 47
ReadContentsDemo.sb, 291–292
ReadContents() method, 291–292
reading

numbers, 74
text, 79–80

ReadLine() method, 296
Read() method, 75, 269
ReadNumber() method, 74, 75, 76
registering, event handlers, 152
relational operators, 100–101, 120
relative motion, 59–60
Remainder() method, 90–91
Rock-Paper-Scissors game, 200–204

announcing winner in, 204
game setup, 201–202
MouseDown handler, 202–203
switching images in, 203

root directory, 290
RotatedPolygon.sb, 67
rounding methods, 86–88
Round() method, 78, 86–88
running sum, 79
running programs, 5–6
runtime errors, 25

S
SailBoat.sb, 29
saving

files, 5
records in arrays, 216

Scribble2.sb, 169–170
Scribble.sb, 156
SeaWorld_Incomplete.sb, 179
selection statements, 97
semiperimeter, 134
sequential execution, 17
SeriesCircuit.sb, 173–176

main code, 172–174
OnMouseDown() subroutine, 174
OnTextTyped() subroutine, 175
startup file, 172
toggling switch in, 174
UpdateUserInterface() subroutine,

174, 175–176
updating interface, 175–176

SetApplePosition() subroutine, 221
SetSize() method, 167–168
SetTextBoxText(), 169
SetText() routine, 258
SetTurtle.sb, 54
SetUp() subroutine, 139–140
shapes, drawing, 30–35, 120–122

circles, 32–34
ellipses, 32–34
polygons, 64–70
rectangles, 31–32
squares, 31–32
star, 65–66
triangles, 30

Shapes object, 120–122, 159, 246
sharing files, 5
ShootArrow() subroutine, 145
Shoot_Incomplete.sb, 284
ShowLocation() subroutine, 256, 257–258
Show() method, 57
ShowWinner() subroutine, 202, 204
Silly.sb, 79–80
SimpleSlot.sb, 205
Sin() method, 94
slash sign (/), 83
Small Basic

blog, 3, 308
forum, 5, 14, 308
goals of, 3
history of, 2–3

316 Index

Small Basic, continued
integrated development

environment. See
integrated development
environment (IDE)

language, 3
library, 4
parts of, 3–4
website, 4, 308

Small Basic folder, creating, 6
SnarfPizza2.sb, 103
SnarfPizza3.sb, 105
SnarfPizza4.sb, 106
SnarfPizza.sb, 98
software, 2
source code, 8, 14–15, 74
spaces, using for readability, 47
Space.sb, 205
spaghetti code, 107
special characters, counting, 273–274
Speed property, 61
spelling, 277–278
Square1.sb, 62
Square2.sb, 62–63
SquareRootDemo.sb, 84
SquareRoot() method, 84–85
SquareTable.sb, 185–186
StabDragon() subroutine, 146
Stamp.sb, 190–191
stars, drawing, 65–66
StartsWith() method, 266
statements, 14–15
Step size, 187–188
string indices, 246–247
strings, 9, 15

appending, 264–265
comparing, 102–103
counting special characters,

273–274
defined, 263
initializing, 210–211
joining, 18–19
length of, 265
multiline, 272–273
substrings, 266–268

structured programming, 129
StudentAvg2.sb, 248–249
StudentAvg.sb, 246–247
subdirectory, 289
subroutines, 129–148

defined, 129–130
input, 132–133

nesting, 135–137
output, 132–133
using, 130
writing, 131–132

subscripted variables, 209
substrings, 266–268
Sum.sb, 184
Surface, 5
SwitchImages() subroutine, 203
syntax coloring, 9
syntax errors, 3, 24
syntax rules, 3

T
Tan() method, 94
terminating programs, 21
tesselation, 190–191
text

drawing, 35–37
reading, 79–80

TextAndNum.sb, 17
text-based user interface, 9
TextInput event, 154–155
Text object, 264–273

Append() method, 264–265
ConvertToLowerCase() method,

268–269
ConvertToUpperCase() method,

268–269
EndsWith() method, 266
GetCharacterCode() method, 270
GetCharacter() method, 270
GetIndexOf() method, 268
GetLength() method, 265, 270
GetSubText() method, 267
GetSubTextToEnd() method, 267–268
IsSubText() method, 265
methods, 264
StartsWith() method, 266

TextTyped event, 171
text window, 7
TextWindow object, 7, 15, 16, 20
three-dimensional arrays, 252–253
ThreeLines.sb, 17
TicTacToe_Incomplete.sb, 261
To keyword, 63
Toolbar, 5
TotalSales() subroutine, 250–251
Treasure Map game, 253–260

CreateNewMap() subroutine, 256–257
DrawObject() subroutine, 257

Index 317

NewGame() subroutine, 255–256
OnButtonClicked() subroutine,

258–260
ShowLocation() subroutine, 257–258
startup file, 254
user interface, 255

TreasureMap_Incomplete.sb, 254
TriangleArea() subroutine, 134
triangles, 30
trigonometric methods, 93–94
Turn() method, 60
TurnRight() method, 62–63
Turtle object, 55–56

drawing shapes with, 55–80
moving, 56–61

absolute motion, 56–59
coloring steps, 60–61
controlling speed, 61
relative motion, 59–60

TurtlesSpeed.sb, 61
Twitter, 263
two-dimensional arrays, 241–251
two-way If statements, 102
.txt files, 289
Typewriter.sb, 154–155

U
unconditional jump statements, 107
undo and redo, 6
Unicode, 270–272
Unscamble.sb, 279–280
UpdateUserInterface() subroutine, 142,

174, 175–176
user input, 73, 77–80
USMapQuiz_Incomplete.sb, 225

V
validation, 198–199
variables, 43–53

assigning expressions to, 45
changing value of, 46–47
defined, 44
global, 53–54
indexed, 209
initializing, 44
naming conventions, 47–49
passing to methods, 45
solving problems with, 50–51
subscripted, 209
using, 44–47

Variables.sb, 44
VirtualPiano.sb, 239
VowelCount.sb, 273

W
Welcome.sb, 14–16
While/EndWhile keyword, 124
While keyword, 197
While loops, 124. See also loops

body of, 198
creating, 195–205
flowchart, 197
Goto statement inside, 199
using, 196
using parentheses in, 198
validating inputs in, 198–199
writing, 196–197

WisdomMachine.sb, 76–77
Wizard_Incomplete.sb, 303–304
Words with Friends, 263
WriteContents() method, 292–293, 294
WriteContentsDemo.sb, 292
WriteLine() method, 7, 15, 16, 17–18, 20,

76, 182, 213, 296–297
Write() method, 21, 76, 184

Z
ZIP files, 291

Updates
Visit http://nostarch.com/smallbasic/ for updates, errata, and other
information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

Super Scratch
Programming Adventure!
Learn to Program by Making Cool Games
by the lead project

october 2013, 160 pp., $24.95
isbn 978-1-59327-531-0
full color

Learn to Program
with Scratch
A Visual Introduction to Programming
with Games, Art, Science, and Math
by majed marji

february 2014, 288 pp., $34.95
isbn 978-1-59327-543-3
full color

Learn to program
with minecraft ®
Transform Your World with the
Power of Python
by craig richardson

december 2015, 320 pp., $29.95
isbn 978-1-59327-670-6
full color

The LEGO® MINDSTORMS ®
EV3 Discovery Book
A Beginner’s Guide to Building and
Programming Robots
by laurens valk

june 2014, 396 pp., $34.95
isbn 978-1-59327-532-7
full color

Python for Kids
A Playful Introduction to Programming
by jason r. briggs

december 2012, 344 pp., $34.95
isbn 978-1-59327-407-8
full color

Scratch Programming
Playground
Learn to Program by Making Cool Games
by al sweigart

fall 2016, 200 pp., $24.95
isbn 978-1-59327-762-8
full color

More no-nonsense books from No Starch Press

Small Basic is a free, beginner-friendly pro-
gramming language created by Microsoft.
Inspired by BASIC, which introduced program-
ming to millions of first-time PC owners in
the 1970s and 1980s, Small Basic is a modern
language that makes coding simple and fun.

Learn to Program with Small Basic
introduces you to the empowering world of
programming. You’ll master the basics with
simple activities like displaying messages
and drawing colorful pictures, and then work
your way up to programming games! Learn
how to:

 Program your computer to greet you
 by name

 Make a game of rock-paper-scissors using
 If/Else statements

 Create an interactive treasure map using
 arrays

 Draw intricate geometric patterns with
 just a few lines of code

 Simplify complex programs by breaking
 them into bite-sized subroutines

You’ll also learn to command a turtle
to draw shapes, create magical moving text,
solve math problems quickly, help a knight
slay a dragon, and more!

Each chapter ends with creative coding
challenges so you can take your skills to
the next level. Learn to Program with Small
Basic is the perfect place to start your com-
puter science journey.

ABOUT THE AUTHOrs

Majed Marji is a senior development engi-
neer at General Motors and an adjunct
faculty member at Wayne State University
in Michigan. He is also the author of Learn
to Program with Scratch (No Starch Press).

Ed Price is a senior program manager in
engineering at Microsoft. He holds an MBA in
technology management and has been a pro-
fessor at Bellevue College. He runs customer
feedback programs for Azure Development,
Visual Studio, and Small Basic.

SHELVE IN
: PROGRAM

M
ING LANGUAGES/

SM
ALL BASIC

www.nostarch.com

TH E F I N EST I N
G E E K E NTE RTA I N M E NT™

ages 10 and up

“Welcome to the Magical world
of programming. what do

you want to create today?”
—Vijaye Raji, Creator of Small Basic

“Welcome to the magical world
of programming. What do

you want to create today?”
—Vijaye Raji, creator of Small Basic

$34.95 ($40.95 CDN)

Covers Small Basic
Version 1.x. Windows 7

or higher required.

Learn to
Program with

Small Basic

Learn to
Program with

Small Basic
An Introduction to Programming

with Games, Art, Science, and Math

m a j e d m a r j i a n d e d p r i c e

L
e
a

r
n

 t
o

 P
r

o
g

r
a

m
 w

it
h

 S
m

a
l
l
 B

a
s

ic
L
e
a

r
n

 t
o

 P
r

o
g

r
a

m
 w

it
h

 S
m

a
l
l
 B

a
s

ic
M

a
r

j
i

a
n

d
P

r
ic

e

	Brief Contents

	Contents in Detail
	Foreword by Viyaye Raji
	Acknowledgments
	Introduction
	Who Should Read This Book?
	What’s In This Book?
	Online Resources
	A Note to the Reader

	Chapter 1: Introducing Small Basic
	What Is a Computer?
	What Is a Computer Program?
	What Is Small Basic?
	The Vision of Small Basic
	The Basics of Small Basic
	The Small Basic Language
	The Small Basic Library
	The Small Basic Development Environment

	Installing Small Basic
	The Small Basic IDE
	Opening and Saving Your Work
	Sharing Your Work and Importing Games
	Copy and Paste; Undo and Redo
	Running Your Program and Graduating

	Writing and Running Your First Program
	Objects and Methods
	Naming Your Programs
	Files Generated by Small Basic
	Helping Hands: IntelliSense and Syntax Coloring

	Drawing with Small Basic
	Programming Challenges

	Chapter 2: Getting Started
	The Parts of a Program
	Comments and Statements
	Characters and Strings
	Arguments and Methods

	Exploring Other Features
	Case Sensitivity
	Sequential Execution
	Displaying Numbers and Doing Math
	Joining Strings

	Object Properties
	Setting and Changing Property Values
	Working with Properties

	Arithmetic Operators

	Programming Errors
	Syntax Errors
	Logic Errors
	Runtime Errors

	Programming Challenges

	Chapter 3: Drawing Basics
	The Graphics Coordinate System
	Drawing Lines
	Drawing Shapes
	Triangles
	Rectangles and Squares
	Ellipses and Circles
	Pen Size and Color
	Pen Width and Shape Size

	Drawing Text
	Inserting Images
	Programming Challenges

	Chapter 4: Using Variables
	What’s a Variable?
	The Basics of Using Variables
	Assigning Expressions to Variables
	Passing Variables to Methods
	Changing the Value of a Variable
	Using Spaces for Readability

	Rules for Naming Variables
	Say What You Mean
	Find the Right Length
	Stick with Your Style
	Let IntelliSense Work for You
	Avoid Naming Variables After Methods and Objects

	Simplifying Expressions
	Using Variables to Solve Problems
	Two Kinds of Data
	Global Variables
	Programming Challenges

	Chapter 5: Drawing Shapes with Turtle Graphics
	Meet the Turtle
	Moving the Turtle
	Absolute Motion
	Relative Motion
	Coloring Your Steps
	Controlling Your Speed

	Introducing the For Loop
	Drawing Regular Polygons
	A Star Is Born
	Creating Polygon Art Using Nested Loops
	Endless Graphics

	Programming Challenges

	Chapter 6: Getting User Input
	Talking to the Computer
	Your Number, Please?
	Introducing Yourself to Your Computer
	Writing Prompts for Input
	A Moment of Silence, Please (Pause)

	Working with User Input
	Converting Fahrenheit to Celsius
	Averaging Numbers
	Reading Text

	Programming Challenges

	Chapter 7: Empowering Programs with Math
	Exponent Methods
	SquareRoot() and Good Old Pythagoras
	Powerful Powers

	Rounding Methods
	Traditional Rounding
	Rounding to the Nearest Hundredth

	Abs(), Min(), and Max() Methods
	The Remainder Method
	Random Numbers
	Trigonometric Methods
	Programming Challenges

	Chapter 8: Making Decisions with If Statements
	The If Statement
	Relational Operators
	Complex If Conditions
	Comparing Strings

	The If/Else Statement
	Nested If and If/Else Statements
	The Goto Statement
	Programming Challenges

	Chapter 9: Using Decisions to Make Games
	The If/ElseIf Ladder
	Letter Grades
	The Bug on the Ladder

	Let’s Get Logical
	Logical Operators in the Zoo
	The And Operator
	The Or Operator
	The Cosmic Order of Evaluation

	The Shapes Object
	Create a Game: Guess My Coordinates
	Step 1: Open the Startup File
	Step 2: Set Up the Game
	Step 3: Hide the Star
	Step 4: Let the User Guess

	Programming Challenges

	Chapter 10: Solving Problems with Subroutines
	Why Use Subroutines?
	Writing Subroutines
	Subroutine Input and Output
	Nesting Subroutines
	Create a Dragon Game
	Step 1: Open the Startup File
	Step 2: Write the SetUp() Subroutine
	Step 3: Add a Bit of Chance
	Step 4: Let the Player Know What’s Going On
	Step 5: Get the Player in the Game with GetChoice()
	Step 6: Process the Player’s Choice
	Step 7: Add Motion with MoveKnight()
	Step 8: Shoot Arrows with ShootArrow()
	Step 9: Swing the Sword with StabDragon()
	Step 10: Breathe Fire

	Programming Challenges

	Chapter 11: Event-Driven Programming
	GraphicsWindow Events
	Create Patterns with the MouseDown Event
	Fire Missiles with the KeyDown Event
	Make a Typewriter Using the TextInput Event
	Draw Pictures with the MouseMove Event

	Useful Tips
	Create a Gold Rush Game
	Step 1: Open the Startup File
	Step 2: Move the Turtle
	Step 3: Move the Bag of Gold
	Step 4: Update the User’s Score

	Programming Challenges

	Chapter 12: Building Graphical User Interfaces
	Design a User Interface with the Controls Object
	Step 1: The Design Phase
	Step 2: Program Interactivity

	Make a Colorful Drawing Program
	Exploring Circuits with Code
	Step 1: Open the Startup File
	Step 2: Add the Main Code
	Step 3: Toggle the Switch
	Step 4: Respond to Changes
	Step 5: Update the Program’s Interface

	Program Your Own Image Viewer
	Programming Challenges

	Chapter 13: Repeating For Loops
	The For Loop
	Magical Moving Text
	Adding ’em Up
	Formatting Your Output
	Drawing All Kinds of Lines

	Changing the Step Size
	Counting Down by Twos
	Making a Fractional Step

	Nested Loops
	Tessellating for Fun
	Multiple Nesting Levels

	Programming Challenges

	Chapter 14: Creating Conditional While Loops
	When to Use While Loops
	Writing a While Loop
	Validating Your Inputs
	Infinite Loops
	Create a Rock-Paper-Scissors Game
	Step 1: Open the Startup File
	Step 2: Add the MouseDown Handler
	Step 3: Switch the Images
	Step 4: Announce the Winner

	Programming Challenges

	Chapter 15: Grouping Data in One-Dimensional Arrays
	Getting Started with Indexed Arrays
	Array Basics
	Initializing Arrays
	Filling Arrays with a For Loop
	Constant Initialization
	Random Initialization
	Formula Initialization
	User Initialization

	Displaying Arrays
	Processing Arrays
	Finding the Sum
	Finding the Maximum Element

	Using String Values in Arrays
	Saving Records
	Using Indexed Arrays
	Random Selection
	A Magic 8 Ball

	Create the Catch Apples Game
	Step 1: Open the Startup File
	Step 2: Add the Apples
	Step 3: Position the Apples
	Step 4: Move the Apples
	Step 5: Catch or Miss

	Programming Challenges

	Chapter 16: Storing Data with Associative Arrays
	Associative Arrays
	Putting Associative Arrays to Use
	Days in French
	Storing Records

	The Array Object
	Is It an Array?
	How Big Is an Array?
	Does It Have a Particular Index?
	Does It Have a Particular Value?
	Give Me All the Indices

	Your Computer the Poet
	Step 1: Open the Startup File
	Step 2: Set Up the Graphical User Interface
	Step 3: Respond to Button Clicks
	Step 4: Write the Poem’s First Line
	Step 5: Write the Poem’s Second and Third Lines

	Programming Challenges

	Chapter 17: Expanding to Higher-Dimension Arrays
	Two-Dimensional Arrays
	A Random Matrix
	A Matrix with User Input
	Animated Squares
	Using String Indices
	Going Interactive

	Common Operations on Numerical 2D Arrays
	Step 1: Add All Elements
	Step 2: Find the Sum of Each Column

	Arrays of Three or More Dimensions
	Create a Treasure Map Game
	Step 1: Open the Startup File
	Step 2: Create the GUI Elements
	Step 3: Start a New Game
	Step 4: Create a New Treasure Map
	Step 5: Draw Objects on the Map
	Step 6: Show the Player’s Location
	Step 7: Handle Button Clicks

	Programming Challenges

	Chapter 18: Advanced Text Magic
	The Text Object
	Appending Strings and Getting Their Length
	Taking Strings Apart: Substrings
	Changing Case
	Character Coding with Unicode

	Practical Examples with Strings
	Counting Special Characters
	Palindrome Number Checker
	Igpay Atinlay
	Fix My Spelling
	Unscramble

	Rhyme Time: The House That Jack Built
	Programming Challenges

	Chapter 19: Receiving File Input and Output
	The Case for Files
	Naming Files
	File Organization

	The File Object
	File I/O Methods
	File Management

	Practical Programs
	The Poet
	Math Wizard

	Programming Challenges

	Where to Go From Here

	Online Resources

	The Small Basic Website

	Graduating to Visual Basic

	Index

	Updates

	More No-Nonsense Books from No Starch Press!

	About the Authors

