
You’ve bested creepers, traveled deep into
caves, and maybe even gone to The End
and back—but have you ever transformed
a sword into a magic wand? Built a palace
in the blink of an eye? Designed your own
color-changing disco dance floor? In Learn to
Program with Minecraft®, you’ll do all this and
more with the power of Python, a free language
used by millions of professional and first-time
programmers!

Begin with some short, simple Python
lessons and then use your new skills to modify
Minecraft to produce instant and totally awe-
some results. Learn how to customize Minecraft
to make mini-games, duplicate entire buildings,
and turn boring blocks into gold. You’ll also
write programs that:

 Take you on an automated teleportation
 tour around your Minecraft world

 Build massive monuments, pyramids,
 forests, and more in a snap!

 Make secret passageways that open when
 you activate a hidden switch

 Create a spooky ghost town that vanishes
 and reappears elsewhere

 Show exactly where to dig for rare blocks

 Cast a spell so that a cascade of flowers
 (or dynamite if you’re daring!) follows
 your every move

 Make mischief with dastardly lava traps
 and watery curses that cause huge floods

Whether you’re a Minecraft megafan or a
newbie, you’ll see Minecraft in a whole new
light while learning the basics of programming.
Sure, you could spend all day mining for pre-
cious resources or building your mansion by
hand, but with the power of Python, those
days are over!

ABOUT THE AUTHOR

Craig Richardson is a software developer
and Python educator. He has worked for the
Raspberry Pi Foundation, taught high school
computing classes, and led many workshops
on Python programming with Minecraft.

SHELVE IN
:

PROGRAM
M

ING LANGUAGES/PYTHON

For kids aged 10+ (and their parents)

A Blocky
introduction to

Programming

A Blocky
Introduction to

Programming

$29.95 ($34.95 CDN)

This book is not authorized
or endorsed by Mojang.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

The code in this book will run on
Windows 7 or later, OS X 10.10 or
later, or the Raspberry Pi. (See the
last page for detailed requirements.)

Learn to
Program with

Minecraft

Learn to
Program with

Minecraft
Transform Your World

with the Power of Python

C r a i g R i c h a r d s o n

®

Learn to Program
with Minecraft®

Learn to
Program with

Minecraft®

Transform Your World with the
Power of Python

by Craig Richardson

San Francisco

Learn to Program with minecraft. Copyright © 2016 by Craig Richardson.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed on demand in USA.

ISBN-10: 1-59327-670-2
ISBN-13: 978-1-59327-670-6

Publisher: William Pollock
Production Editor: Riley Hoffman
Cover Illustration: Josh Ellingson
Developmental Editors: Hayley Baker and Tyler Ortman
Technical Reviewer: John Lutz
Copyeditor: Anne Marie Walker
Compositor: Riley Hoffman
Proofreader: Paula L. Fleming

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Richardson, Craig (Software developer), author.
Title: Learn to program with Minecraft : transform your world with the power
 of python / by Craig Richardson.
Description: San Francisco : No Starch Press, [2016] | Includes index.
Identifiers: LCCN 2015035298| ISBN 9781593276706 | ISBN 1593276702
Subjects: LCSH: Python (Computer program language) | Computer
 games--Programming. | Minecraft (Game) | Raspberry Pi (Computer)
Classification: LCC QA76.73.P98 R53 2016 | DDC 005.13/3--dc23
LC record available at http://lccn.loc.gov/2015035298

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

Minecraft is a registered trademark of Mojang Synergies AB, which does not authorize or endorse this book.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

To the countless adults and children that read the early drafts
of this book, used my recipe cards, and attended my talks and

workshops: thank you so much for your enthusiasm and support.
This book is for you.

about the author
Craig Richardson is a software developer and Python educator. He
has worked for the Raspberry Pi Foundation, taught high school
computing classes, and led many workshops on Python programming
with Minecraft.

about the Technical Reviewer
John Lutz is a math teacher in the New Orleans public school system,
where he also teaches extracurricular courses on Scratch, Arduino
robotics, and 3D printing. He piloted his school’s computer science
program, which continues to grow and attract bright new minds to
coding. Since helping with this book, John is working on a Python
program that will destroy all baby zombies in his Minecraft world,
forever.

BRief ConTenTs

Acknowledgments .xvii

Introduction . xix

Chapter 1: Setting Up for Your Adventure . 1

Chapter 2: Teleporting with Variables . 27

Chapter 3: Building Quickly and Traveling Far with Math . 47

Chapter 4: Chatting with Strings . 65

Chapter 5: Figuring Out What’s True and False with Booleans . 81

Chapter 6: Making Mini-Games with if Statements . 103

Chapter 7: Dance Parties and Flower Parades with while Loops . 123

Chapter 8: Functions Give You Superpowers . 145

Chapter 9: Hitting Things with Lists and Dictionaries . 167

Chapter 10: Minecraft Magic with for Loops . 195

Chapter 11: Saving and Loading Buildings with Files and Modules 231

Chapter 12: Getting Classy with Object-Oriented Programming 257

Afterword . 283

Block ID Cheat Sheet . 285

Index . 291

ConTenTs in DeTaiL

acknowledgments xvii

introduction xix
Why Learn to Program? . xx
Why Python? . xx
Why Minecraft? . xx
What’s in This Book? . xx
Online Resources . xxii
Let the Adventure Begin! . xxii

1
setting Up for Your adventure 1
Setting Up Your Windows PC . 2

Installing Minecraft . 2
Installing Python . 3
Installing Java . 4
Installing the Minecraft Python API and Spigot . 6
Running Spigot and Creating a Game . 7
Starting Over with a New World . 8
Playing Offline . 9
Switching to Survival Mode . 10

Setting Up Your Mac . 11
Installing Minecraft . 12
Installing Python . 13
Installing Java . 14
Installing the Minecraft Python API and Spigot . 15
Running Spigot and Creating a Game . 16
Starting Over with a New World . 17
Playing Offline . 18
Switching to Survival Mode . 18

Setting Up Your Raspberry Pi . 18
Getting to Know IDLE . 20

Getting to Know the Python Shell . 20
Say Hello to IDLE’s Text Editor . 21
When to Use the Python Shell and When to Use the Text Editor 23
The Prompts Used in This Book . 23

Testing Your Minecraft Python Setup . 24

x Contents in Detail

2
Teleporting with Variables 27
What Is a Program? . 27
Storing Data with Variables . 28

The Structure of Programming Languages . 29
Syntax Rules for Variables . 30
Changing the Values of Variables . 30
Integers . 31
Mission #1: Teleport the Player .31
Floats . 37
Mission #2: Go Exactly Where You Want . .38

Slowing Down Teleportation Using the time Module . 39
Mission #3: Teleportation Tour .40

Debugging . 42
Mission #4: Fix the Buggy Teleportation . .43

What You Learned . 45

3
Building Quickly and Traveling far with Math 47
Expressions and Statements . 47
Operators . 48

Addition . 48
Mission #5: Stack Blocks .49
Mission #6: Super Jump .51
Subtraction . 52
Mission #7: Change the Blocks Under You .52
Using Math Operators in Arguments . 54
Mission #8: Speed Building .55
Multiplication . 58
Division . 58
Mission #9: Spectacular Spires .58

Exponents . 60
Parentheses and Order of Operations . 61
Handy Math Tricks . 62

Shorthand Operators . 62
Playing with Random Numbers . 62
Mission #10: Super Jump Somewhere New! .63

What You Learned . 64

4
Chatting with strings 65
What Are Strings? . 66
The print() Function . 66

Mission #11: Hello, Minecraft World .67
The input() Function . 68

Mission #12: Write Your Own Chat Message .69
Joining Strings . 71

Converting Numbers to Strings . 71
Concatenating Integers and Floats . 72
Mission #13: Add Usernames to Chat .72

Contents in Detail xi

Converting Strings to Integers with int() . 74
Mission #14: Create a Block with input .74

Bounce Back from Errors . 76
Mission #15: Only Numbers Allowed .77
Mission #16: Sprint Record .78

What You Learned . 80

5
figuring out What’s True and false
with Booleans 81
Boolean Basics . 82

Mission #17: Stop Smashing Blocks! .82
Concatenating Booleans . 83
Comparators . 83

Equal To . 84
Mission #18: Am I Swimming? .85
Not Equal To . 86
Mission #19: Am I Standing in Something Other Than Air?87
Greater Than and Less Than . 88
Greater Than or Equal To and Less Than or Equal To 89
Mission #20: Am I Above the Ground? .90
Mission #21: Am I Close to Home? .91

Logical Operators . 92
and . 93
Mission #22: Am I Entirely Underwater? .93
or . 95
Mission #23: Am I in a Tree? . .95
not . 96
Mission #24: Is This Block Not a Melon? .97
Logical Operator Order . 98
Is My Number Between Two Others? . 99
Mission #25: Am I in the House? .100

What You Learned . 101

6
Making Mini-games with if statements 103
Using if Statements . 104

Mission #26: Blast a Crater .105
else Statements . 107
Mission #27: Prevent Smashing, or Not .108
elif Statements . 109
Mission #28: Offer a Gift .110
Chaining Together elif Statements . 112
Mission #29: Teleport to the Right Place . .113
Nested if Statements . 115
Mission #30: Open a Secret Passage .115

Using if Statements to Test a Range of Values . 117
Mission #31: Restrict Teleport Locations .118

Boolean Operators and if Statements . 119
Mission #32: Take a Shower .120

What You Learned . 122

xii Contents in Detail

7
Dance Parties and flower Parades
with while Loops 123
A Simple while Loop . 123

Mission #33: A Random Teleportation Tour .125
Controlling Loops with a Count Variable . 127

Mission #34: The Watery Curse . .128
Infinite while Loops . 130
Mission #35: Flower Trail .130

Fancy Conditions . 131
Mission #36: Diving Contest .132
Boolean Operators and while Loops . 134
Checking a Range of Values in while Loops . 135
Mission #37: Make a Dance Floor .135
Nested if Statements and while Loops . 137
Mission #38: The Midas Touch . .138

Ending a while Loop with break . 139
Mission #39: Create a Persistent Chat with a Loop .139
while-else Statements . 141
Mission #40: Hot and Cold .141

What You Learned . 144

8
functions give You superpowers 145
Defining Your Own Functions . 146

Calling a Function . 146
Functions Take Arguments . 147
Mission #41: Build a Forest .148
Refactoring a Program . 150
Mission #42: Refactor Away .151
Commenting with Docstrings . 152
Line Breaks in Arguments . 153
Function Return Values . 153
Mission #43: Block ID Reminder .155

Using if Statements and while Loops in Functions . 157
if Statements . 157
Mission #44: Wool Color Helper .158
while Loops . 159
Mission #45: Blocks, Everywhere . .160

Global and Local Variables . 162
Mission #46: A Moving Block .163

What You Learned . 165

9
hitting Things with Lists and Dictionaries 167
Using Lists . 168

Accessing a List Item . 168
Changing a List Item . 169
Mission #47: High and Low . .169

Contents in Detail xiii

Manipulating Lists . 171
Adding an Item . 171
Inserting an Item . 172
Deleting an Item . 172
Mission #48: Progress Bar . .173

Treating Strings like Lists . 175
Tuples . 175

Setting Variables with Tuples . 176
Mission #49: Sliding .177
Returning a Tuple . 179

Other Useful Features of Lists . 179
List Length . 179
Mission #50: Block Hits .180
Randomly Choosing an Item . 182
Mission #51: Random Block .183
Copying a List . 183
Items and if Statements . 185
Mission #52: Night Vision Sword .186

Dictionaries . 188
Defining a Dictionary . 188
Accessing Items in Dictionaries . 189
Mission #53: Sightseeing Guide .190
Changing or Adding an Item in a Dictionary . 191
Deleting Items in Dictionaries . 192
Mission #54: Block Hits Score .192

What You Learned . 194

10
Minecraft Magic with for Loops 195
A Simple for Loop . 195

Mission #55: Magic Wand .196
The range() Function . 198
Mission #56: Magic Stairs .199
Playing Around with range() . 200

Other List Functions . 201
Mission #57: Pillars .202
Mission #58: Pyramid .203

Looping Over a Dictionary . 205
Mission #59: Scoreboard .205

for-else Loops . 206
Breaking a for-else Loop . 207
Mission #60: The Diamond Prospector .207

Nested for Loops and Multidimensional Lists . 208
Thinking in Two Dimensions . 209
Accessing Values in 2D Lists . 213
Mission #61: Pixel Art . .214
Generating 2D Lists with Loops . 216
Mission #62: A Weather-Worn Wall .217
Thinking in Three Dimensions . 218
Outputting 3D Lists . 219

xiv Contents in Detail

Accessing Values in 3D Lists . 223
Mission #63: Duplicate a Building .225

What You Learned . 230

11
saving and Loading Buildings with
files and Modules 231
Using Files . 232

Opening a File . 232
Writing to and Saving a File . 233
Reading a File . 234
Reading a Line of a File . 234
Mission #64: To-Do List .235
Part 1: Writing the To-Do List . 235
Part 2: Displaying the To-Do List . 237

Using Modules . 238
The pickle Module . 238
Importing pickle . 238
Importing One Function with the from Clause . 240
Importing All Functions with * . 241
Giving a Module a Nickname . 241
Mission #65: Save a Building .242
Part 1: Saving the Building . 242
Part 2: Loading the Building . 245

Storing Lots of Data with the shelve Module . 247
Opening a File with shelve . 247
Adding, Modifying, and Accessing Items with shelve 247
Mission #66: Save a Collection of Structures .248
Part 1: Saving a Structure to a Collection . 248
Part 2: Loading a Structure from a Collection . 249

Installing New Modules with pip . 252
Using pip on Windows . 252
Using pip on a Mac or Raspberry Pi . 253

Using a Module from pip: Flask . 253
Mission #67: Position Website . .255

What You Learned . 256

12
getting Classy with object-oriented
Programming 257
Object-Oriented Basics . 258
Creating a Class . 258

Creating an Object . 259
Accessing Attributes . 259
Mission #68: Location Objects .260

Understanding Methods . 261
Mission #69: Ghost House . .263

Returning Values with Methods . 266
Mission #70: Ghost Castle . .266

Contents in Detail xv

Creating Multiple Objects . 269
Mission #71: Ghost Town .269

Class Attributes . 271
Understanding Inheritance . 273

Inheriting a Class . 274
Adding New Methods to Subclasses . 275
Mission #72: Ghost Hotel .275

Overriding Methods and Attributes . 278
Mission #73: Ghost Tree .280

What You Learned . 282

afterword 283

Block iD Cheat sheet 285

index 291

aCknoWLeDgMenTs

Massive thanks to the fine people at No Starch Press—Riley Hoffman,
Hayley Baker, Tyler Ortman, and Jennifer Griffith-Delgado—and the very
dedicated technical reviewer John Lutz.

Thanks to David Whale and Martin O’Hanlon who were immensely
helpful whenever I had a technical issue. I’d also like to thank Mojang for
releasing the Minecraft: Pi Edition (which had the original implementation
of the Minecraft Python API) for free. Without the people who dedicate
their free time to Spigot and CanaryMod, this book would not have been
possible. The same goes for the fine people who updated the Minecraft API
to Python 3 and also Alex Bradbury for his work on Raspbian.

If you ever meet David Whale, Matthew Timmons Brown, David
Honess, Rachel Rayns, Andrew Robinson, or Jenny Brennan, give them
a round of applause for helping out at Minecraft and Python workshops.
Likewise, a round of applause for Tim Richardson, Michael Horne, Alan
O’Donohoe, and Laura Dixon for arranging events that helped these
workshops reach young people across the country.

Without Brian Corteil, the Minecraft mission that uses Flask would have
been a lot more boring. Charlotte Godley helped immensely by loaning me
her Mac so I could write the Mac installation instructions for this book.

Finally, to all my friends, family, and colleagues, I am forever grateful
for your support during my various phases of bearded reclusiveness.

inTRoDUCTion

Welcome to Learn to Program with Minecraft!
In this book, you’ll learn how to write

programs with a programming language
called Python to control what happens in your

Minecraft world. You’ll learn how programming works,
and then use what you learn to create buildings with
code, write mini-games, and transform boring Minecraft items into excit-
ing new toys. By the end of the book, you should have the skills you need to
bring all of your wildest ideas to life.

Programming is creative and imaginative, just like Minecraft. With the
skills you learn in this book, you’ll be able to make all kinds of things (like
games, apps, and useful tools) beyond programs that use Minecraft. This is
the first step in your journey to becoming an amazing programmer and a
Minecraft master!

xx introduction

Why Learn to Program?
One of the main reasons to learn to program is that it teaches you how to
solve problems. You’ll discover how to break down big problems into smaller
parts to make them easier to tackle. Many of the problems you try to solve
will require you to think in creative ways and test different ideas.

Another benefit of programming is that it teaches you to think logically
to better understand and plan the structure and flow of your programs.
Even when you’re not working with computer code, problem solving, cre-
ativity, and thinking logically are valuable skills to have.

Careers in programming are very rewarding, too. Every day you get to
come up with creative solutions to problems. Even if you don’t choose to
become a programmer, programming as a hobby is engaging and entertain-
ing. In fact, I started programming as a hobby and it led to a full-time job.

Most importantly, programming can be loads of fun! Nothing is more
satisfying than seeing a program you’ve created do something cool!

Why Python?
So, why should you learn to program with Python? Python is a great first
language for any beginning programmer. It’s easy to read and write, and it’s
powerful enough to create real computer programs. Python is one of the
most popular programming languages in the world!

Why Minecraft?
Minecraft is very popular because it’s fun and creative. In your Minecraft
world, you have total freedom over what you create. You can let your imagi-
nation run free. By integrating Minecraft with your own Python programs,
you can take even more control of Minecraft and unlock even more of your
creativity. You’ll be able to do things (like constructing a huge building in
just seconds) that are not possible with Minecraft alone.

Sometimes it’s difficult to begin programming because you have to
learn a bunch of code that doesn’t do anything exciting. But by combining
Python and Minecraft, you’ll be able to see the results of your awesome pro-
grams instantly in your Minecraft world.

What’s in This Book?
Each chapter focuses on a single Python concept. As you progress through
the book, you’ll build on your knowledge of Python programming. Included
in each chapter are explanations of how Python works, examples that show
Python in action, and Minecraft missions. In the missions, you’ll write pro-
grams that interact with Minecraft. I’ll provide you with some skeleton
code, and it will be up to you to fill in the gaps and complete the programs.
As a result, you’ll develop the problem-solving skills that are essential for
any programmer.

introduction xxi

Let’s review what you’ll explore in each chapter.

•	 Chapter 1: Setting Up for Your Adventure helps you set up Python and
Minecraft so you’re ready to forge ahead and get started programming!

•	 Chapter 2: Teleporting with Variables teaches you how to instantly tele-
port your player by manipulating variables. You’ll learn about variables
and how they remember data in your programs. You’ll even build on
your fancy teleportation skills to go on a magical teleportation tour of
your world.

•	 Chapter 3: Building Quickly and Traveling Far with Math shows you
how to use math to grant yourself superpowers and build your creations
at superfast speeds. Do you want to build a Minecraft house in less than
a second? Math operators can help you do that. Do you want to jump
super high in the air? Math operators have your back!

•	 In Chapter 4: Chatting with Strings, you’ll learn all about strings to
make an interactive chat. In programming, a string means text. You’ll
learn how to write Minecraft Python programs that deliver messages to
you and your players.

•	 Chapter 5: Figuring Out What’s True and False with Booleans teaches
you how to use Booleans and logic so your programs can answer ques-
tions. In other words, you’ll be able to make your programs tell you
whether something is true or false. Your Minecraft Python programs
can answer all kinds of questions: Am I underwater? Am I in a tree?
Am I near my house?

•	 Chapter 6: Making Mini-Games with if Statements takes Boolean logic
to the next level. Using if statements, you’ll learn how to create pro-
grams that make decisions based on the data they’re given. Have you
ever wanted a secret passage to open in Minecraft when you put a cer-
tain block in a certain place? You can do that using if statements!

•	 Chapter 7: Dance Parties and Flower Parades with while Loops shows
you a very cool way to make your programs repeat using loops. You’ll be
able to automate code to make amazing things happen. For example,
imagine a trail of flowers following the player or a magical dance floor
that flashes different colors. These are some of my favorite programs to
show off to people.

•	 In Chapter 8: Functions Give You Superpowers, you’ll learn to build
entire forests and cities instantly by using functions. You’ll also learn
how to make your programming life easier by reusing parts of your
programs.

•	 In Chapter 9: Hitting Things with Lists and Dictionaries, you’ll learn
to make mini-games with lists. Lists are a powerful programming con-
cept because they let you store important information in one place.
You’ll use lists to make your program remember all the blocks you hit
with your sword, and with a few extra lines of code, you’ll turn that into
a mini-game. Pretty neat!

xxii introduction

•	 Chapter 10: Minecraft Magic with for Loops shows you how to build
structures, such as pyramids, using for loops. You can even use for
loops to draw pixel art or duplicate your Minecraft buildings. You can
build a glorious statue, and then duplicate it to create an entire army of
statues!

•	 In Chapter 11: Saving and Loading Buildings with Files and Modules,
you’ll use your programs to create and edit files to save objects that you
build, and then load them into different game worlds. In other words,
you’ll convert your buildings into files that you can transfer anywhere.
Do you want to save that incredible mansion you built? No problem!
With files, you’ll be able to save it and load it wherever you go.

•	 Chapter 12: Getting Classy with Object-Oriented Programming
introduces some advanced topics: classes, objects, and inheritance.
When you’ve finished this chapter, you’ll be a Python master. In the
missions, you’ll start with some code that builds a building. Then you’ll
use classes, objects, and inheritance to easily build duplicates and varia-
tions, like villages and hotels, with only a couple extra lines of code.

•	 The Block ID Cheat Sheet is a handy reference of Minecraft block IDs
that you can use in your programs.

online Resources
All the code and resources for this book are available on its companion
website, https://www.nostarch.com/pythonwithminecraft/. Download the code
for the Minecraft missions if you get stuck and want to check out the
solutions—or if you want to modify the code to create your own awesome
programs! You can also download the setup files—I’ll walk you through
the setup in Chapter 1.

Let the adventure Begin!
I hope you’re as excited as I am to get going. I’ve really enjoyed writing this
book and making all the Minecraft missions that will help you learn to pro-
gram. Let’s get started!

1
seTTing UP foR YoUR

aDVenTURe

Before you can start making cool Python
programs for your Minecraft world, you

need to set up Minecraft, Python, and a few
other things on your computer. In this chapter,

I’ll show you how to install and run all the required
software.

You can use Minecraft on your Windows PC or Mac, or you can
use Minecraft: Pi Edition on a Raspberry Pi computer. If you’re using a
Windows PC, just keep reading. If you’re using a Mac, flip to “Setting Up
Your Mac” on page 11. If you’re using a Raspberry Pi, flip to “Setting
Up Your Raspberry Pi” on page 18.

No t e For information on other platforms and updates to these instructions, visit https://
www.nostarch.com/pythonwithminecraft/.

2 Chapter 1

setting Up Your Windows PC
You need to install five things so you can control Minecraft with Python:

•	 Minecraft

•	 Python 3

•	 Java

•	 Minecraft Python API

•	 Spigot Minecraft Server

In this section, I’ll guide you through installing each of these on your
computer. Let’s start with Minecraft.

installing Minecraft
If you already own Minecraft and have the latest version installed on your PC,
skip ahead to “Installing Python” on page 3. If you’re not sure whether
you have the latest version of Minecraft, follow the steps in this section to
install the latest version.

If you don’t already own the game, you can buy a copy from the official
Minecraft website, https://minecraft.net/. You might need to grab a grown-up
to help you with that! Remember the username and password you use when
you purchase Minecraft—you’ll need it to log in later.

After you’ve purchased Minecraft, follow these steps to install Mine-
craft on your PC:

1. Go to https://minecraft.net/download.

2. Under the Minecraft for Windows section, find the Minecraft.msi link
and click it to download it. If you’re given the option to save or open
the file, select Save File.

3. Wait for the file to download and then open it. If a dialog pops up ask-
ing whether you want to run this file, click Run. Don’t worry, we know
this file is safe!

4. When the Minecraft Setup Wizard opens, click Next. Then click Next
once more. Then click Install.

5. You might be asked whether you want to install Minecraft. Of course
you do! Click Yes. Wait a bit while Minecraft installs. I got a glass of
water and a cookie while the game installed.

6. After the installation completes, click Finish.

Minecraft should now be installed.

setting Up for Your adventure 3

You know what would be a great idea? Playing Minecraft, of course.
Take a few minutes to get it up and running:

1. To open Minecraft, click the Start Menu (or press the Windows key
on your keyboard), find Minecraft in the list of programs, and click
the icon.

2. Minecraft will start up and might install updates.

3. The login window will open next. Enter the username and password
you used when you purchased Minecraft and click Log In.

4. Click Play. Minecraft will download a couple more updates before
opening.

5. Finally, click Single Player4Create New World. Name your world what-
ever you want and click Create New World. The world will generate,
and you can play to your heart’s content.

Have some fun! If you’ve never played Minecraft before, try playing
around for a while, until it gets dark in your Minecraft world. Watch out for
monsters! Note that when you use Minecraft with Python, you’ll be using a
multiplayer game world, which will be different from this world. We’ll get to
that in “Running Spigot and Creating a Game” on page 7.

Back to work! It’s time to install Python. To free your cursor from Mine-
craft, just press esc on your keyboard. Close Minecraft before continuing
the rest of the installation.

installing Python
Python is the programming language you’ll learn in this book. Let’s install
it now.

1. Go to http://www.python.org/downloads/.

2. Click the button labeled Download Python 3.5.0. (This is the latest ver-
sion of Python 3 at the time of this writing, but you might see a later
version. Install the most recent version.)

3. Python will begin to download. If you’re asked to choose between sav-
ing or opening the file, select Save File.

4. When the installer has downloaded, click it. If a dialog pops up asking
whether you want to run the file, click Run.

5. When the installer opens, select the Add Python 3.5 to Path checkbox, as
shown at the bottom of Figure 1-1. Then click Install Now.

4 Chapter 1

Figure 1-1: Make sure you select Add Python 3.5 to Path.

6. A dialog might ask whether you want to allow the program to install
software on the computer. Click Yes and then wait for Python to install.
I stood up to close the window while it was installing, and the installa-
tion had finished when I sat back down.

7. Click Finish. Python is now installed.

installing Java
Now that Minecraft and Python are both installed, you’ll have to set things
up so that they can talk to each other. You’ll use a program called Spigot to
do that, but in order for Spigot to work, you first need to make sure Java is
installed on your computer. Let’s do that now.

First, check whether Java is already installed:

1. Click the Start Menu (or press the Windows key on your keyboard) and
enter cmd in the search box. Open the program called cmd.

2. You’ll see a window with a black background and a prompt (mine says
C:\Users\Craig>). At the prompt, type java -version and press enter.

3. If you see a message like the one in Figure 1-2, Java is already installed.
Skip ahead to “Installing the Minecraft Python API and Spigot” on
page 6.

4. If you get a message that says that Java is not recognized, install it using
the following instructions.

setting Up for Your adventure 5

Figure 1-2: After entering the java -version command, I can see that Java is installed.

To install Java, follow these steps:

1. Go to http://www.java.com/en/download/.

2. Click the Free Java Download button. Then click the Agree and Start
Free Download button.

3. When the installer has downloaded, click it. If a dialog pops up asking
whether you want to let the program make changes to your computer,
choose Yes.

4. When the installer opens, click Install.

5. This bit is super important! If a page opens that asks if you want to
install another program, such as the Ask Search App, a Yahoo! search
bar, or something else, uncheck the box so that this extra program will
not install. That’s just another program that you don’t need.

6. You might be asked if you want to set Yahoo! as your homepage. You
probably don’t. Select Do not update browser settings and click Next.

7. Wait while Java installs. I wrote a short message to a friend before it
installed. Click Close when it finishes.

Now let’s check whether Java has installed properly:

1. Click the Start Menu and enter cmd in the search box. Open the cmd
program.

2. In the cmd window, type java -version at the prompt and press enter.

3. If you see a message like the one in Figure 1-2, Java installed correctly. If
you get an error that says “‘Java’ is not recognized as an internal or exter-
nal command, operable program or batch file,” Java hasn’t installed
properly. To fix this, try reinstalling Java and running it again. If you
still get this error after reinstalling, go to http://www.java.com/en/
download/help/path.xml for more information.

6 Chapter 1

That’s it! Java is set up and ready to run the Minecraft server! Let’s get
to that next.

installing the Minecraft Python aPi
and spigot
Next you need to install the Minecraft Python API and the Minecraft server
on your computer.

API stands for application programming interface. It lets programs com-
municate with applications that other people have created. In this case, the
Minecraft Python API allows programs that you write in Python to commu-
nicate with Minecraft. For example, you could write a Python program that
uses the API to tell Minecraft to make a block in the game or to change the
position of the player.

A standard Minecraft single-player game does not support an API.
Instead, your programs will interact with a Minecraft server, which allows
the use of APIs. Minecraft servers are mostly used online so that many
people can play together in a single game world. You can also run a server
on your own computer and play by yourself. Both multiplayer and single-
player Minecraft servers allow you to use an API with Minecraft. In this
book, you’ll be using a single-player Minecraft server called Spigot on your
computer.

Now that you know what an API and a server do, let’s get them installed
on your computer. I’ve created a handy download so you can get these set
up quickly. Just follow these steps:

1. Go to https://www.nostarch.com/pythonwithminecraft/ and download the
Minecraft Tools.zip file for Windows.

2. When the file has downloaded, right-click it and choose Extract All.
You will be asked where you want to put the extracted files. Click the
Browse button and go to your My Documents folder. Click the Make a
New Folder button and call the new folder Minecraft Python. Select this
folder and click OK. Click Extract to extract the files.

3. Go to the Minecraft Python folder in your My Documents folder, where you
should see the extracted files.

4. Open the Minecraft Tools folder. Its contents are shown in Figure 1-3.

5. Double-click the file called Install_API. This will open a new window
and install the Minecraft Python API. If you get a warning message,
click Run Anyway.

6. When the installation completes, press any key to finish.

No t e If you get an error message that says pip is not recognized, that means you didn’t
install Python correctly. Go back to “Installing Python” on page 3 and reinstall
Python. Make sure you select the checkbox that says Add Python 3.5 to Path.

The Minecraft Python API and Minecraft server are now installed. The
final step is to run the server. We’ll do that in the next section.

setting Up for Your adventure 7

Figure 1-3: The Minecraft Tools folder

Running spigot and Creating a game
When Spigot runs for the first time, it will create a Minecraft world for you.
To start Spigot, follow these steps:

1. Go to your Minecraft Python folder and open your Minecraft Tools folder.

2. In the Minecraft Tools folder, double-click the Start_Server file. If you get
a message asking whether you want to allow access, click Allow.

3. Spigot will start your Minecraft server. You’ll see a window pop up
with a bunch of text in it while Spigot generates the game world for
you. When Spigot is done, your screen will look like Figure 1-4. Keep
this window open.

Figure 1-4: The Spigot server is ready

8 Chapter 1

4. Open Minecraft and click Multiplayer.

5. Click the Add Server button.

6. In the Server Name box, name your server Minecraft Python World, and
in the Server Address box, type localhost, as shown in Figure 1-5. Then
click Done.

Figure 1-5: Setting up the server

7. Double-click Minecraft Python World, and the world created by Spigot
will open.

Let’s have a quick look at your new Minecraft world on the Spigot
server. The world is set up in Creative Mode so you can fly around. Double-
tap the spacebar to fly. Holding the spacebar will make you fly higher, and
holding shift will lower you toward the ground. If you want to stop flying,
just double-tap the spacebar again.

starting over with a new World
Creating a brand-new Minecraft world with a server is a little different from
creating a new world in single-player mode. Follow these steps to create a
new world:

1. Go to the Minecraft Python folder. Right-click the Minecraft Tools folder
and click Copy.

2. Right-click anywhere in the Minecraft Python folder and click Paste. This
will create a copy of the Minecraft Tools folder with the name Minecraft
Tools - Copy.

3. Right-click the Minecraft Tools - Copy folder and click Rename. I named
the new folder New World, but you can name yours anything you want.

setting Up for Your adventure 9

4. Open the New World folder (or whatever you named it) and then open
the server folder.

5. In the server folder, select the world, world_nether, and world_the_end
folders, as shown in Figure 1-6. Press delete to delete these.

Figure 1-6: I’ve highlighted the folders that you need to delete.

6. Still in the server folder, click the start file. (Note that it’s impor-
tant to click this start file inside of the server folder, not the original
Start_Server file!) This will start the server again and generate a new
world.

7. Now when you open Minecraft and open the Minecraft Python World,
you will see a newly generated world.

You can repeat this process to create a new world as many times as you
want. If you want to open the old world, you can still run it by clicking the
Start_Server file in the Minecraft Tools folder.

To delete a world and replace it with a new one, just delete the world,
world_nether, and world_the_end folders in the folder of the world you want
to replace.

Playing offline
If you don’t have access to an Internet connection, you’ll get an error when
you try to connect to the Minecraft server from your Minecraft game. You
can fix this by changing the server’s properties. First, make sure you have
closed the server window. Then open the Minecraft Python folder, then the
Minecraft Tools folder, and then the server folder. Open the server.properties
file in a text editor, such as Notepad, and change the online-mode setting

10 Chapter 1

(Figure 1-7) from true to false. Save the changes. Then go back to your
Minecraft Tools folder and double-click Start_Server to start the server again.
Now you’ll be able to play offline.

Figure 1-7: Change the highlighted setting from true to false.

switching to survival Mode
I’ve set the default game mode for your Minecraft server to Creative Mode.
This will make things easier for you when you’re writing and running
Python programs because you won’t have to worry about the player losing
health, getting hungry, or being attacked.

But you might want to test some programs in Survival Mode just for
fun. It’s easy to switch the server from Creative Mode to Survival Mode
and back.

To switch the server from Creative Mode to Survival Mode, follow
these steps:

1. Open the Minecraft Tools folder. Inside this folder open the server folder.

2. Find the server.properties file and open it with a text editor, such as
Notepad.

3. In the file, find the line that says gamemode=1 and change it to gamemode=0,
as shown in Figure 1-8.

setting Up for Your adventure 11

Figure 1-8: I’ve switched to Survival Mode by setting gamemode to 0.

4. Save the file and close it.

5. Start the server by clicking the Start_Server file in the Minecraft Tools
folder. When you join the Minecraft Python World game, it will now
be in Survival Mode.

You can change back to Creative Mode at any time. Just repeat these
steps, but in step 3, change gamemode=0 to gamemode=1 in the server.properties file.

Now you’re set up on your PC! Next let’s meet IDLE, which is where
you’ll be writing your code. Flip to “Getting to Know IDLE” on page 20.

setting Up Your Mac
You need to install five things so you can control Minecraft with Python:

•	 Minecraft

•	 Python 3

•	 Java Development Kit

•	 Minecraft Python API

•	 Spigot Minecraft Server

In this section, I’ll guide you through installing each of these on your
computer. Let’s start with Minecraft.

12 Chapter 1

installing Minecraft
If you already own Minecraft and have the latest version installed on your
Mac, skip ahead to “Installing Python” on page 13. If you’re not sure
whether you have the latest version of Minecraft, follow the steps in this
section to install the latest version.

If you don’t already own the game, you can buy a copy from the official
Minecraft website, https://minecraft.net/. You might need to grab a grown-up
to help you with that! Remember the username and password you use when
you purchase Minecraft—you’ll need it to log in later.

After you’ve purchased Minecraft, follow these steps to install Mine-
craft on your Mac:

1. Go to https://minecraft.net/download.

2. Under the Minecraft for Mac OS X section, find the Minecraft.dmg link
and click it to download it. (If the Minecraft for Mac OS X section isn’t
visible, click Show all platforms.)

3. Wait for the file to download (I looked out the window for a moment)
and then open it. When the window pops up, drag the Minecraft icon
to the Applications folder as shown in Figure 1-9.

Figure 1-9: Drag the Minecraft icon into the Applications
folder to install it.

Minecraft should now be installed.
You know what would be a great idea? Playing Minecraft, of course.

Take a few minutes to get it up and running:

1. To open Minecraft, click the Finder icon on the Dock to open the file
browser.

2. In the sidebar, click Applications.

3. Find Minecraft in the Applications folder as shown in Figure 1-10.
Double-click it and select Open.

4. You might be asked whether you want to open Minecraft, because it was
downloaded from the Internet. Click Open.

5. Minecraft will start up and might install updates.

6. The login window will open next. Enter the username and password
you used when you purchased Minecraft and click Log In.

setting Up for Your adventure 13

Figure 1-10: Find Minecraft in the Applications folder.

7. Click Play. Minecraft will download a couple more updates, then open.

8. Finally, click Single Player4Create New World. Name your world what-
ever you want and click Create New World. The world will generate,
and you can play to your heart’s content.

Have some fun! If you’ve never played Minecraft before, try playing
around for a while, until it gets dark in your Minecraft world. Watch out
for monsters! Note that when you use Minecraft with Python, you’ll be
using a multiplayer game world, which will be different from this world.
We’ll get to that in “Running Spigot and Creating a Game” on page 16.

Back to work! It’s time to install Python. To free your cursor from Mine-
craft, just press esc on your keyboard. Close Minecraft before continuing
the rest of the installation.

installing Python
Python is the programming language you’ll learn in this book. Let’s install
it now.

1. Go to https://www.python.org/downloads/mac-osx/.

2. Click the link that says Latest Python 3 Release - Python 3.5.0. (This is
the latest version of Python 3 at the time of this writing, but you might
see a later version. Install the most recent version.) Python will begin to
download.

3. When the installer has downloaded, click it.

4. When the installer opens, click Continue three times. You’ll be asked to
agree to the terms of the software license agreement. Click Agree.

5. Click Install and then wait for Python to install. I checked the weather
forecast while I waited.

6. Click Close. Python is now installed.

14 Chapter 1

installing Java
Now that Minecraft and Python are both installed, you’ll have to set things
up so that they can talk to each other. You’ll use a program called Spigot to
do that, but in order for Spigot to work, you first need to install the latest
Java Development Kit (JDK) on your computer. Let’s do that now:

1. Go to http://www.oracle.com/technetwork/java/javase/downloads/index.html
and click the Java Download button.

2. Select Accept License Agreement and then click Mac OSX x64.

3. When the installer has downloaded, click it.

4. When the installer opens, double-click the Install icon.

5. When asked for your password, enter it.

6. Wait for Java to install. Click Close when it finishes.

Now let’s test whether the JDK has installed properly:

1. Click System Preferences.

2. You should see a Java icon under System Preferences, as shown in
Figure 1-11.

Figure 1-11: Java is installed.

That’s it! Java is set up and ready to run the Minecraft sever! Let’s get to
that next.

setting Up for Your adventure 15

installing the Minecraft Python aPi
and spigot
Next you need to install the Minecraft Python API and the Minecraft server
on your computer.

API stands for application programming interface. It lets programs com-
municate with applications that other people have created. In this case, the
Minecraft Python API allows programs that you write in Python to commu-
nicate with Minecraft. For example, you could write a Python program that
uses the API to tell Minecraft to make a block in the game or to change the
position of the player.

A standard Minecraft single-player game does not support an API.
Instead, your programs will interact with a Minecraft server, which allows
the use of APIs. Minecraft servers are mostly used online so that many
people can play together in a single game world. You can also run a server
on your own computer and play by yourself. Both multiplayer and single-
player Minecraft servers allow you to use an API with Minecraft. In this
book, you’ll be using a single-player Minecraft server called Spigot on your
computer.

Now that you know what an API and a server do, let’s get them installed
on your computer. I’ve created a handy download so you can get these set
up quickly. Just follow these steps:

1. Go to https://www.nostarch.com/pythonwithminecraft/ and download the
MinecraftTools Mac.zip file.

2. When the file has downloaded, open the Downloads folder and click
Show in Finder.

3. In Finder, control-click on the file and select Copy MinecraftTools
Mac.zip.

4. Go to your Documents folder. control-click in the folder and select New
Folder. Call the new folder MinecraftPython. Make sure you don’t include
a space in the name of the folder.

5. Open the MinecraftPython folder. control-click in the folder and select
Paste Item. The MinecraftTools Mac.zip file will be copied here.

6. control-click and choose Open With4Archive Utility. When
Archive Utility has opened the zip file, you’ll have a new folder
called MinecraftTools.

7. Open the MinecraftTools folder. Its contents are shown in Figure 1-12.

8. control-click the file called Install_API.command and select Open. This
will open a new window. Enter your password to install the Minecraft
Python API.

No t e If you get an error that says Install_API.command can’t be opened because it is
from an unidentified developer, click System Preferences, and then click Security
and Privacy. You will see a message that says “Install_API.command was not
opened because it is from an unidentified developer.” Click Open Anyway. Then
the window should pop up.

16 Chapter 1

Figure 1-12: The contents of the MinecraftTools folder

9. When the installation completes, close the window.

The Minecraft Python API and Minecraft server are now installed. The
final step is to run the server. We’ll do that next.

Running spigot and Creating a game
When Spigot runs for the first time, it will create a Minecraft world for you.
To start Spigot, follow these steps:

1. Go to your MinecraftPython folder and open your MinecraftTools folder.

2. In the MinecraftTools folder, control-click the Start_Server file and select
Open. If you get an error message, go to System Preferences and then
to Security and Privacy and click Open Anyway.

3. Spigot will start your Minecraft server. You’ll see a window pop up
with a bunch of text in it while Spigot generates the game world for you.
When it’s done, make sure you keep this window open.

4. Open Minecraft and click Multiplayer.

5. Click the Add Server button.

6. In the Server Name box, name your server Minecraft Python World, and
in the Server Address box, type localhost, as shown in Figure 1-13. Then
click Done.

7. Double-click Minecraft Python World, and the world created by Spigot
will open.

Let’s have quick look at your new Minecraft world on the Spigot server.
The world is set up in Creative Mode so you can fly around. Double-tap the
spacebar to fly. Holding the spacebar will make you fly higher, and hold-
ing shift will lower you toward the ground. If you want to stop flying, just
double-tap the spacebar again.

setting Up for Your adventure 17

Figure 1-13: Add the server so that you can access it easily in the future.

starting over with a new World
Creating a brand-new Minecraft world with a server is a little different from
creating a new world in single-player mode. Follow these steps to create a
new world:

1. Go to the MinecraftPython folder. control-click the MinecraftTools folder
and click Copy.

2. control-click anywhere in the folder and click Paste. This will create a
copy of the MinecraftTools folder with the name MinecraftTools copy.

3. control-click the MinecraftTools copy folder and click Rename. I named
the new folder New World, but you can name yours anything you want.

4. Open the New World folder (or whatever you named it) and then open
the server folder.

5. In the server folder, select the world, world_nether, and world_the_end
folders. Press shift-delete to delete these.

6. Go back to the New World folder and click the Start_Server file. This will
start the server again and generate a new world.

7. Now when you open Minecraft and open the Minecraft Python World
you will see a newly generated world.

You can repeat this process to create a new world as many times as you
want. If you want to open the old world, you can still run it by clicking the
Start_Server file in the MinecraftTools folder instead of the New World folder.

To delete a world and replace it with a new one, just delete the world,
world_nether, and world_the_end folders in the folder of the world you want
to replace.

18 Chapter 1

Playing offline
If you don’t have access to an Internet connection, you’ll get an error when
you try to connect to the Minecraft server from your Minecraft game. You
can fix this by changing the server’s properties. First, make sure you have
closed the server window. Then open the MinecraftPython folder, then the
MinecraftTools folder, and then the server folder. Open the server.properties file
in a text editor, such as TextEdit, and change the online-mode setting from
true to false (see Figure 1-7 on page 10). Save the changes. Then go back
to your MinecraftTools folder and click Start_Server to start the server again.
Now you’ll be able to play offline.

switching to survival Mode
I’ve set the default game mode for your Minecraft server to Creative Mode.
This will make things easier for you when you’re writing and running
Python programs because you won’t have to worry about the player losing
health, getting hungry, or being attacked.

But you might want to test some programs in Survival Mode just for
fun. It’s easy to switch the server from Creative Mode to Survival Mode
and back.

To switch the server from Creative Mode to Survival Mode, follow these
steps:

1. Open the MinecraftTools folder. Inside this folder open the server folder.

2. Find the server.properties file and open it with a text editor, such as
TextEdit.

3. In the file, find the line that says gamemode=1 and change it to gamemode=0
(see Figure 1-8 on page 11).

4. Save the file and close it.

5. Start the server by clicking the Start_Server file in the MinecraftTools
folder. When you join the Minecraft Python World game, it will now be
in Survival Mode.

You can change back to Creative Mode at any time. Just repeat these
steps, but in step 3, change gamemode=0 to gamemode=1 in the server.properties file.

Now you’re set up on your Mac! Next let’s meet IDLE, which is where
you’ll be writing your code. Flip to “Getting to Know IDLE” on page 20.

setting Up Your Raspberry Pi
Log in to your Raspberry Pi and start the desktop with the startx command.
(If you’re using the most recent version of the Raspberry Pi operating sys-
tem, you won’t need to enter this command.)

Depending on your Raspberry Pi, you might have two or three different
versions of Python installed. For this book, you’ll use the most recent ver-
sion of Python, Python 3.

setting Up for Your adventure 19

By default, the Raspberry Pi computer comes installed with a simpli-
fied version of Minecraft called Minecraft: Pi Edition. Everything you need
to get started programming your Minecraft world with Python is already
installed. If you’re new to using a Raspberry Pi, you can find instructions for
getting started on the official website, http://www.raspberrypi.org/.

If you’re using an older SD card image (created before August 2014),
you might find that Minecraft is not installed. It’s easy to install if it isn’t
already there. First you’ll need to connect to the Internet with your Rasp-
berry Pi. You can find a guide for connecting your Raspberry Pi to the
Internet at http://www.raspberrypi.org/.

Once you’re connected to the Internet, follow these steps:

1. On the desktop, double-click LXTerminal.

2. Once LXTerminal is open, enter this command:

$ sudo apt-get update

3. Once the update has finished, enter this command:

$ sudo apt-get install minecraft-pi

4. Wait until the installation is complete. Minecraft is now installed.

There are some limitations to Minecraft on the Raspberry Pi compared
to the desktop edition. The game world is a lot smaller, and a lot of blocks
and other features (such as Survival Mode) are missing, but you’ll still be
able to write and run all the awesome programs in this book.

Before we move on, let’s create a folder where you can store your Python
programs. On the taskbar, click the file browser icon. Open the Documents
folder, and then right-click in the background of the file browser and select
Create New...4Folder. Name the folder Minecraft Python and click OK.

No t e If you’re using an original Raspberry Pi, you’ll find that some of the programs in this
book run slowly due to limitations of the Raspberry Pi. The Raspberry Pi 2 will have
fewer problems with speed.

To open Minecraft, click the start menu in the top-left corner of the
desktop. (If you’re using an older version of the Raspberry Pi operating
system, the start menu will be in the bottom-left corner.) Go to Games and
click Minecraft. Minecraft will open. The first time you open Minecraft,
you’ll have to click Create World.

As a general rule, don’t resize the window, as you might encounter some
problems.

Sometimes when you open other windows or dialogs (such as confirma-
tion that you want to save a file in Python), they’ll hide behind the Mine-
craft window. Just minimize Minecraft when you want to use other windows.
If you’re having any issues, try restarting your Raspberry Pi after installing
Minecraft.

20 Chapter 1

getting to know iDLe
Now that you have everything installed and set up, let’s check out IDLE,
the software you’ll be using to write and run your Python programs. Your
Python installation includes IDLE, so you don’t need to install it separately.
Let’s open IDLE now!

Windows Open the Start Menu and enter IDLE in the search box.

Mac Open the Applications folder and click the IDLE icon.

Raspberry Pi On the desktop, double-click the IDLE icon labeled
Python 3.

An IDLE window will open, as shown in Figure 1-14. This window is
called the Python shell. The Python shell is so awesome that it blew my
mind when I learned how to program with Python!

Figure 1-14: An IDLE window that is used for writing Python programs

getting to know the Python shell
The Python shell allows you to write and run programs one line at a time.
You can write a line of code, instantly run it and see what happens, and
then write another line. This is great because you can play around and test
your code easily.

setting Up for Your adventure 21

In the window you should see three chevrons (>>>) at the beginning of
the line. This is called the command prompt. The command prompt is the
Python shell telling you that it’s ready for you to give it a command. Let’s
start with a really basic command: getting Python to add two numbers.

Click in the Python shell, next to the command prompt, and type 2 + 2.
Note that you don’t have to type the command prompt itself (>>>). You
should have something that looks like this:

>>> 2 + 2

After you type this command, press enter. The Python shell will output
the result. In this case it’s 4:

>>> 2 + 2
4

You can also use the shell with text. Type this code into the Python
shell and press enter:

>>> "W" + "o" * 5
Wooooo

As you can see, this code outputs the word Wooooo. The number at the
end of the command determines how many o’s there are in the word. By
changing this number, you can change how long the word is. Try changing
it to 20 (or any other number that you want):

>>> "W" + "o" * 20
Woooooooooooooooooooo

Woooooooooooooooooooo! The Python shell can be a lot of fun.
Notice that IDLE colors the code. This is called syntax highlighting, and

it makes the different parts of the code easier to see. All of the code in this
book is the same color as it is in IDLE so the colors will match when you
write your programs.

Next let’s look at IDLE’s text editor.

say hello to iDLe’s Text editor
When it comes to writing longer programs, you can’t use the shell. IDLE’s
text editor is the solution! Unlike the shell, it doesn’t run a line of code
immediately after you enter it. Instead, it runs the whole program when
you tell it to.

In IDLE, click File on the menu bar and select New File. A new window
will open that looks like the one in Figure 1-15. This is the text editor.

22 Chapter 1

Figure 1-15: IDLE’s text editor

“Hey!” I hear you say. “The text editor looks just like IDLE’s Python
shell.” Well, yes it does, but there is one really big difference. The new win-
dow doesn’t have a command prompt (>>>) at the beginning of each line.

Let’s see what that means. On the first line of the text editor, type this
code and press enter:

print(2 + 2)

Did you expect something to happen? Pressing enter doesn’t run the
code here—it just creates a new line. Because the text editor doesn’t run
code when you press enter, you can write as many lines as you want before
running them. Let’s add a few more lines. This is what your file should look
like when you’re done:

print(2 + 2)
print("W" + "o" * 20)
print("PYTHON!")
print("<3s")
print("Minecraft")

Before you run your Python code from IDLE’s text editor, you need
to save it. To save the program, click File, then Save As. Create a folder
in your Minecraft Python folder called Setting Up. Save this program as
pythonLovesMinecraft.py in the Setting Up folder.

Now let’s run it. Go to Run on the menu and click Run Module. The
shell window will open and your program will run in it. The output is
shown in Figure 1-16.

setting Up for Your adventure 23

Figure 1-16: The output of the Python program

Unlike in the shell, commands run from the text editor will not auto-
matically output their results. This is why you use print() to output the
results of your code. Don’t worry too much about the details now—you’ll
learn all about this later in the book.

Whenever you run programs from IDLE’s text editor, the shell will
open to run the program. Even though you write the program in a separate
window, IDLE always uses the shell to run your program.

When to Use the Python shell
and When to Use the Text editor
Now that you’ve seen the difference between IDLE’s Python shell and
IDLE’s text editor, you might be wondering when it’s better to use one over
the other. As a general rule, I use the Python shell when I only want to test
a few lines and I don’t intend to reuse them. As you follow along with this
book, I recommend that you run the short examples using the Python shell.

I use the text editor for programs that have quite a few lines of code or
that I want to reuse. All of the missions in this book use the text editor so you
can save your progress, but you can always play around in the shell when-
ever you want to try something out quickly.

The Prompts Used in This Book
Throughout this book, whenever you see a piece of code that is written in
IDLE’s Python shell, it will begin with the command prompt (>>>) like this:

>>> print("Wooooo Minecraft")

24 Chapter 1

I recommend that you copy the code into IDLE as you read so that you
can familiarize yourself with it. Any output from the shell will be written on
the next line:

>>> print("Wooooo Minecraft")
Wooooo Minecraft

Code that’s written in the text editor won’t begin with the command
prompt, like so:

print("Adventures")

The output for the code won’t automatically display on your computer.
To show you what the output should look like when you run it, I’ll either
explain it or display it in a new box. For example, running the code above
should output:

Adventures

To make it easier for you to follow the explanations of the code in the
book, I’ve included markers to point out what I’m talking about. Whenever
you see one in the code, there’ll be a corresponding explanation in the text,
and vice versa. The markers look like this:

u v w x y z

Testing Your Minecraft Python setup
Let’s make sure you have all of the software installed correctly. To do this,
we’ll take a quick dive into a very basic Python program that will interact
with Minecraft.

First things first: if you’re using a PC or a Mac, you need to open three
pieces of software. Follow these steps:

1. Open Spigot by going to your Minecraft Tools folder and clicking
Start_Server.

2. Open Minecraft and connect to the Spigot server by selecting
Minecraft Python World from the multiplayer menu.

3. Hit esc on your keyboard to free your cursor from the Minecraft
window, and then open a Python shell in IDLE.

You’ll need to have these three pieces of software open whenever you
write programs that interact with Minecraft.

If you’re using a Raspberry Pi, open IDLE and Minecraft.
Now enter this line into your shell. Make sure that you enter lowercase

and uppercase letters to match exactly!

>>> from mcpi.minecraft import Minecraft

setting Up for Your adventure 25

Press enter so you’re on the next line in the shell. Then enter this line:

>>> mc = Minecraft.create()

At this point, if you see an error message that looks something like Fig-
ure 1-17, there’s something wrong.

Figure 1-17: An error message that means I haven’t started Spigot

Check these things in order: Do you have Minecraft open? Is Spigot
running? Are you in the multiplayer world? Are you using the correct ver-
sion of Python (3, not 2)? If the error occurred after you typed the first
line, that means you didn’t install the API correctly. Go through the steps to
install the API again. If the error happened after the second line, you might
not have Java or Spigot installed correctly. Try reinstalling these things one
at a time.

If you get an error that says ImportError: No module named 'mcpi', you
might be using an older version of Python. Make sure you have the latest
version installed!

If you don’t get an error message, add this line to the program in IDLE:

mc.player.setTilePos(0, 120, 0)

When you do this, the player will fly high into the air! This code tele-
ports the player to a new position. You’ll learn more about this in Chap-
ter 2. Turn the page to get started!

2
TeLePoRTing WiTh VaRiaBLes

Are you ready to control your Minecraft
world with the power of Python? In this

chapter, you’ll take a brief tour through the
basics of Python. Then you’ll put your new skills

to the test and create your own teleportation tour of
your Minecraft world!

The concepts described in this chapter aren’t specific to Minecraft
Python, so you’ll be able to use them in any Python program that you
create.

What is a Program?
A program is a set of instructions that makes your computer do a specific
task or tasks. Imagine a stopwatch app on a mobile phone. The stopwatch
program has instructions that tell it what to do when you press start and
stop. It also has instructions that display the time on the screen as it’s being
counted. Some guy or gal programmed that stopwatch to work.

28 Chapter 2

Millions of programs are used every day all around the world. A phone’s
messaging app is a program, traffic lights are controlled by programs, and
even computer games like Minecraft are programs.

In this book, you’ll learn the fundamentals of programming and how
to write programs to make your ideas come to life in Minecraft.

storing Data with Variables
Let’s start by learning how to store data with variables. Variables let you store
data to use later in a program. Data is any information you might want to
record, such as numbers, names, any kind of text, lists of items, and so on.
For example, here’s a variable called pickaxes that stores the number value 12:

>>> pickaxes = 12

Variables can store numbers, words, and even complete sentences, such
as “Get out of here, Creeper!” You can also change variables, which lets you
do some pretty neat things in Minecraft. In fact, shortly you’ll use variables
to take advantage of the power of teleportation!

To create a variable in Python, you’ll use a variable name, an equal
sign (=), and a value. Let’s say you’re about to take off on a grand adventure
through many Minecraft biomes; you’ll want to bring a lot of food with you.
You can represent food as a variable. For example, in the following Python
shell, bread is the variable name and 145 is the value:

>>> bread = 145

The variable’s name is always on the left of
the equal sign, and the value you want to store
is always on the right, as shown in Figure 2-1.
This Python code line declares the variable
bread and assigns the value 145 to it.

After you’ve declared a variable and
assigned it a value, you can enter the name
of the variable into the Python shell to check
what it’s holding:

>>> bread
145

You can use almost any name for a variable, but it’s best to use a name
that describes the variable’s purpose so you’ll understand what’s going on
in your program. Although it’s not a rule, you should start variable names
with a lowercase letter instead of a capital letter. This is a style that Python
programmers follow, and it’s good practice for you to follow, too, so others
can easily read your code if you ever want to share it.

bread = 145

variable name value

Figure 2-1: Parts of a vari-
able declaration. You must
be very hungry if you have
145 loaves of bread.

Teleporting with Variables 29

No t e Although the value of a variable is stored, it is not saved. The value of a variable
is stored in the computer’s temporary memory, meaning that when the computer is
switched off or the program stops running, the value of the variable is no longer
stored. Try closing IDLE and then opening it again. When you try to get the value
of bread, what happens?

The structure of Programming Languages
Syntax is the set of rules that describes the grammar and punctuation of
a programming language, similar to the grammar and punctuation in a
human language. Once you understand Python’s syntax, you’ll be better
able to write programs that a computer can follow; however, if you don’t
use correct syntax, the computer won’t understand what you’re telling it
to do.

Think of a single instruction in your code as a sentence. To end a
sentence in English, you use a period (called a full stop in the United
Kingdom). Instead of a period, Python uses a new line to indicate the end
of an instruction and the start of the next. Each instruction on a new line is
called a statement.

For example, say you want to keep track of how many pickaxes, iron ore
blocks, and cobblestone blocks you have. In the Python shell, you’d write it
like this:

>>> pickaxes = 12
>>> iron = 30
>>> cobblestone = 25

Figure 2-2 shows what this looks like in the Python shell.

Figure 2-2: Entering code in the Python shell

30 Chapter 2

Notice that each statement is on its own line. Because of the new lines,
Python will understand that you want to keep track of three different items.
But if you don’t put each statement on a new line, Python gets confused and
gives you a syntax error:

>>> pickaxes = 12 iron = 30 cobblestone = 25
SyntaxError: invalid syntax

A syntax error is Python’s way of telling you it doesn’t understand.
Python won’t be able to follow these instructions because it doesn’t know
where one statement ends and another begins.

Python also won’t know what to do if you start lines with a space:

>>> iron = 30
SyntaxError: unexpected indent

If you look closely, you’ll see that the code has spaces at the beginning
of the line. When you get an unexpected indent syntax error, like the one
here, you’ll know that your line of code starts with spaces when it shouldn’t.

Python is very picky about how you write code. If you get a syntax error
when entering the examples in this book, check your work carefully. Most
likely, you’ll find a small mistake.

syntax Rules for Variables
You need to know a few syntax rules for naming variables so Python can
understand them:

•	 Don’t include symbols in your variable names, except for underscores (_),
or you’ll get a syntax error.

•	 Don’t start a variable name with a number, as in 9bread. Using numbers
elsewhere in a variable name is fine, as in bread9.

•	 You don’t need to add spaces on either side of the equal sign: your pro-
gram will run fine without them. But they do make the code easier to
read, so it’s a good idea to add them.

Variables are very handy. Next, you’ll learn how to change the value of
variables, and then you’ll be ready to teleport your player!

Changing the Values of Variables
You can change the value of a variable at any time in the same way you’d
declare a variable. For example, say you meet five Minecraft cats and you
want to save this value as a variable. First you declare a variable, cats, and
assign the value 5 to it, which would look like this in a Python shell:

>>> cats = 5
>>> cats
5

Teleporting with Variables 31

Later you meet five more cats and decide you want to update this value.
What happens if you change the value of cats to 10?

>>> cats = 10
>>> cats
10

When you ask Python for the new value of cats, it’s no longer 5!
Now when you use the cats variable in a program, it will use the new
value of 10.

There are many types of data that you can store in variables. Data types
tell the computer how to work with a particular piece of data. I’ll start by
discussing one of the types you’ll use most often: integers. Later in the
chapter, I’ll also introduce the floats data type.

integers
Integers are positive or negative whole numbers. Values such as 10, 32, −6,
194689, and −5 are integers, but 3.14 and 6.025 are not.

You probably use integers every day without even thinking about it,
even in Minecraft! For example, you might see 12 cows on a hillside while
you’re on your way to mine 5 diamonds with 2 fresh apples in your inven-
tory. All those numbers are integers.

Let’s say you have five pigs in your Minecraft world and you want to
write a program that uses the number of pigs in some way. In Python, you’d
declare an integer variable to represent the number of pigs:

>>> pigs = 5

You can also store negative values in variables. For example, to say the
temperature is negative five degrees, you would set a variable like so:

>>> temperature = -5

To use Python variables and integers with Minecraft, complete the first
mission.

Mission #1: Teleport the Player
In this mission, you’ll explore how variables work by teleporting your player
to a new location using integers.

As shown in Figure 2-3, your player has a position in the Minecraft world
that is represented by three coordinates: x, y, and z. The letter y represents
height, and x and z represent horizontal positions on a flat plane.

32 Chapter 2

y

x

z

(0,0,0)

Figure 2-3: 3D coordinates

If you’re using the Raspberry Pi version of the game, the player’s posi-
tion is given by three numbers in the top-left corner of the game window,
which you can see in Figure 2-4. If you’re using the desktop edition of the
game, you can see the player’s coordinates by pressing F3 and finding the
first line in the second block of text on the left, labeled XYZ, as shown in
Figure 2-5.

Move your player around the game and watch the position numbers
change; the coordinates should update in real time as the player walks.
Pretty cool, right? But walking long distances takes a long time. Why
spend so much time walking when you can change positions instantly
using Python? Let’s look at how to do this.

Figure 2-4: The player’s position displayed in Minecraft: Pi Edition

Teleporting with Variables 33

Figure 2-5: The player’s position displayed in the desktop edition of Minecraft

Switch on your computer or Raspberry Pi and follow these steps:

1. Open IDLE and click File4New File (or New Window on some
computers). You can see the empty text editor window in Figure 2-6.
If you’re using a Raspberry Pi or have more than one version of
Python installed on your computer, make sure you use Python 3,
not Python 2.7.

Figure 2-6: A new text editor window in IDLE

34 Chapter 2

2. When the new window appears, click File4Save As.

3. Create a new folder called variables inside the Minecraft Python folder
that you created in Chapter 1.

4. Open the variables folder, name your file teleport.py, and click Save.

Now that you’re working in IDLE’s text editor, add the following two
lines of code at the top of your program:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

These lines connect your program to Minecraft; you’ll use them in
every program that interacts with Minecraft. Next, create three integer vari-
ables called x, y, and z.

x = 10
y = 110
z = 12

These variables represent the position that you want to teleport your
player to. For now, set these variables to 10, 110, and 12, as shown here.

Then enter the following line of code, which will transport the player:

mc.player.setTilePos(x, y, z)

The setTilePos() part of the program is a function, which is a prewritten
and reusable piece of code. The setTilePos(x, y, z) function tells Minecraft
to change the player’s position using the three variables you just set. The
values inside the parentheses are called arguments. You passed the variables
you just created to the function as arguments so the function can use the
values of x, y, and z when it runs.

Wa r N i N g If you’re using a Raspberry Pi, don’t use values larger than 127 or smaller than −127
for the x and z variables. The Minecraft Pi world is small, and numbers outside this
range will crash the game.

Listing 2-1 contains the full code to teleport your player, which you can
also see in Figure 2-7:

u # Connect to Minecraft
from mcpi.minecraft import Minecraft
mc = Minecraft.create()

Set x, y, and z variables to represent coordinates
x = 10
y = 110
z = 12

teleport.py

Teleporting with Variables 35

Change the player's position
mc.player.setTilePos(x, y, z)

Listing 2-1: The finished teleport code

To make this program easier to understand, I’ve included some com-
ments u. Comments are useful statements in code that describe what the code
does but are ignored by Python. In other words, when you run the program,
Python passes commented lines without doing anything. A single-line com-
ment begins with a hash mark (#). My comments describe what each part of
teleport.py does. It’s a good habit to write comments in your code so you can
remember what the parts of your program do when you return to them later.

Figure 2-7 shows the completed program written in IDLE’s text editor.

Figure 2-7: The completed program in IDLE’s text editor

Now let’s run the program! Follow these steps:

1. Open Minecraft by clicking the desktop icon.

2. If you’re using a Raspberry Pi, click Start Game and Create a New
World. If you’re using the desktop edition of Minecraft, open the
game world using the instructions in “Running Spigot and Creating a
Game” on page 7 for Windows and on page 16 for Mac.

3. After the world has been generated, press the esc key (or tab if you’re
using a Raspberry Pi) to release the mouse. You can now move the mouse
outside of the Minecraft window or double-click the Minecraft window
to reselect the game. Figure 2-8 shows the IDLE and Minecraft windows
on my computer.

36 Chapter 2

Figure 2-8: This is how I like to arrange my Minecraft and IDLE text editor windows.

4. Click the IDLE text editor window that has your teleport.py program.

5. Click Run4Run Module or press f5. If you haven’t saved the program,
IDLE will always ask if you want to save before running. Click OK to
save the program. If you click Cancel, the program won’t run.

No t e When you’re running programs from IDLE on a Raspberry Pi, a dialog asking you
to save your program might appear and hide itself behind the Minecraft window. If
you think IDLE has frozen, it might be that the dialog is hiding. Just minimize the
Minecraft window and click OK in the IDLE dialog. After clicking OK, maximize
the Minecraft window.

Well done! Your program should now run, and after a few seconds,
your player should be teleported to coordinates (10, 110, 12), as shown in
Figure 2-9. Your world isn’t the same as mine, so you’ll see some differences
when you run it on your computer.

BonUs oBJeCTiVe: JUMP aRoUnD

Do you think you’ve got the hang of teleportation? Try replacing x, y, and z with
other integers to see where your player ends up! Try negative values, too!

Teleporting with Variables 37

Figure 2-9: I’ve teleported from my house to position (10, 110, 12), which is above
a swamp. Look out below!

floats
Not all numbers are whole numbers. Decimal points are used to represent
values that can’t be described with whole numbers. For example, you might
have half (0.5) of an apple. Numbers that use decimal points are called
floating point numbers, or floats. This is another data type that Python uses.
Floating point numbers are used instead of integers when you want to be
more precise. Floats can also represent whole numbers (as in 3.0), but inte-
gers can’t represent numbers with decimal places.

38 Chapter 2

You might have noticed that your player’s position coordinates (as
shown in Figures 2-4 and 2-5) include decimals, which means they’re
floats!

In Python, you declare a float variable in the same way that you
declare an integer variable. For example, to set the variable x to 1.34,
you’d write this:

>>> x = 1.34

To create a negative float, put a minus sign (-) before the value:

>>> x = -1.34

In the next mission, you’ll gain even more control over your teleporta-
tion powers by using floats to teleport the player to precise locations.

Mission #2: go exactly Where You Want
You learned how to set the player’s position using integers, but you can set
the player’s position more accurately if you use floats. In this mission, we’ll
revise the program from Mission #1 to teleport the player using a float
value:

1. In IDLE, open the teleport.py program (page 34) by clicking File4
Open and selecting the file from your variables folder.

2. Save a copy of the program as teleportPrecise.py in your variables folder.

3. In the teleportPrecise.py file, change the x, y, and z variables to use floats
instead of integers. That is, change the values of x, y, and z from 10, 110,
and 12 to 10.0, 110.0, and 12.0.

4. Change the last line of code to mc.player.setPos(x, y, z) by removing
the word Tile.

5. Save the program.

6. Open a Minecraft world and run the code.

The final result should look like this:

Connect to Minecraft
from mcpi.minecraft import Minecraft
mc = Minecraft.create()

Set x, y, and z variables to represent coordinates
x = 10.0
y = 110.0
z = 12.0

Change the player's position
mc.player.setPos(x, y, z)

teleportPrecise
.py

Teleporting with Variables 39

Notice the difference between mc.player.setPos(x, y, z), used here,
and mc.player.setTilePos(x, y, z), used in Listing 2-1. The setTilePos() func-
tion uses integers to tell the game the position of the block that you want
to teleport to. The setPos() function is a little different—it uses floats to tell
the game the position of the block as well as the precise position on that
block that you want to teleport to. Using my program, I teleported to the
top of my tower, as shown in Figure 2-10.

Figure 2-10: I’ve teleported myself to the top of my tower, using floats to be very precise.

BonUs oBJeCTiVe: TeLePoRT aCCURaTeLY

Change the values of the x, y, and z variables using a mixture of positive and
negative floats and run the program . Then, change the decimal values slightly from
your new ones . What happens?

slowing Down Teleportation Using
the time Module

Python runs your code as fast as possible. But you can slow down the
action by making your programs wait a certain number of seconds before
continuing.

To use time in your programs, you need the time module, which con-
tains a set of prewritten functions relating to time. To use the time module,
add the following line of code to the top of your programs:

import time

40 Chapter 2

Order is very important when you’re using the time module and the
sleep() function, which is part of the time module. The sleep() function will
make a program wait a specified number of seconds before continuing.
You must always import the time module before you use the sleep() func-
tion. If you don’t, Python won’t be able to find the sleep() function and will
be so confused that it will stop your program from running. This is why
it’s best to import any module you use at the top of your code. All of your
import statements will be grouped together at the top of the program. For
example, I usually include the lines of code to connect to Minecraft first,
and then add the import time statement on the third line.

Here is an example of how to use the sleep() function:

time.sleep(5)

This line of code pauses your program for five seconds. You can use any
number, including integers and floats, as the following example shows:

time.sleep(0.2)

When your program reaches this line of code, it will wait 0.2 seconds.
Now that you can control the flow of time, you’re ready for the next
mission!

Mission #3: Teleportation Tour
The beauty of teleportation in Minecraft is that you can send your player
anywhere. Using all the skills you’ve learned so far, you’ll send your player
on an automated tour of your entire Minecraft world!

In this mission, you’ll practice changing the values of variables by modi-
fying the code from Mission #1 (page 31) to teleport the player to several
locations across the map. The player will teleport to one location, wait a few
seconds, and then teleport to another location.

1. In IDLE, open the teleport.py program (page 34) by clicking File4
Open and selecting the file from your variables folder.

2. Save a copy of the program as tour.py in your variables folder.

3. Just after the code that connects your program to Minecraft, add
import time.

4. At the end of the program, add time.sleep(10).

5. Copy the lines with the x, y, and z variables and the setTilePos() func-
tion and paste them at the end of the program, so those lines appear
twice.

Teleporting with Variables 41

6. Change the values of both sets of x, y, and z variables to any numbers
you want. You can find the coordinates for any position in your game
by moving there and writing down the player’s coordinates like you did
earlier in this chapter.

7. Save the program.

8. Open a Minecraft world and run the code.

The final result should look like this, with new coordinates filled in:

Connect to Minecraft
from mcpi.minecraft import Minecraft
mc = Minecraft.create()
import time

Set x, y, and z variables to represent coordinates
x = # Fill in
y = # Fill in
z = # Fill in

Change the player's position
mc.player.setTilePos(x, y, z)

Wait 10 seconds
time.sleep(10)

Set x, y, and z variables to represent coordinates
x = # Fill in
y = # Fill in
z = # Fill in

Change the player's position
mc.player.setTilePos(x, y, z)

The player should teleport to the first location, wait 10 seconds, and
then teleport to the second location, as shown in Figure 2-11.

BonUs oBJeCTiVe: MoRe TeLePoRTaTion

Copy the tour.py code to move the player as many times as you want . Replace
the 10 in the function time.sleep(10) with a different value . You could even use a
different number for each sleep() function so your player waits a different amount
of time at each location .

Then edit the code so that between teleports, only one of the x, y, and z
variables changes . You don’t have to change every variable every time! Try using
floats instead of integers, too .

tour.py

42 Chapter 2

Figure 2-11: I’ve set the coordinates in my program to teleport to my house and then to
teleport to the desert.

Debugging
Everyone makes mistakes; often, even the best programmers don’t get their
code right the first time. Writing a program that works is just one skill that a
good programmer needs. Fixing programs when they don’t work is another
essential skill. This process is called debugging, and each problem in a mis-
behaving program is called a bug. In this section, you’ll learn tips and tricks
to fix all your future programs.

Bugs can completely stop a program from running, or they can make
the program behave in an unexpected way. When a program doesn’t run,
Python will show you an error message, such as the one in Figure 2-12.

Teleporting with Variables 43

Figure 2-12: Python gives me an error message because I didn’t stick to
Python’s syntax.

In Figure 2-12 you can see that I’ve entered some code in the Python
shell, and it has returned an error message. A lot of information is displayed
in the error message, but based on the last line (NameError: name 'x' is not
defined) I can tell that something is wrong with my x variable. Specifically,
the x variable has not been defined. To fix this, I need to add an extra line
of code that defines the x variable, like so:

>>> x = 10

This line will fix the error message, but it doesn’t mean all errors will
be fixed.

Bugs that allow the program to run but cause it to behave strangely
won’t show an error message, but you’ll know something is wrong when
your program produces an unexpected result. For example, if you forget to
write a line of code in your teleportation programs, such as setTilePos(), the
program will run without any errors, but the player won’t change position.
That’s not a very useful teleportation program!

Wa r N i N g Typos are among the most common causes of bugs. Spelling something in a way the
computer doesn’t expect can stop your program from running. Be careful, and make
sure your spelling and capitalization are correct!

Mission #4: fix the Buggy Teleportation
In this mission, you’ll debug two programs. The first program, Listing 2-2,
is similar to teleport.py (page 34), but this version has five mistakes. Open
a new file in the IDLE text editor, copy Listing 2-2 into it, and save it as
teleportBug1.py.

44 Chapter 2

from mcpi.minceraft inport Minecraft
mc = Minecraft.create()

x = 10
 y = 11
z = 12

Listing 2-2: A broken version of the teleport program

To debug this program, complete the following steps:

1. Run teleportBug1.py.

2. When you get an error message, read the last line for a hint about
what’s wrong.

3. Correct the bug and run the code again.

4. Keep correcting the bugs until the program teleports the player to a
new location.

H i N t Don’t forget to double-check that you’re actually calling the setTilePos() function!

Let’s try debugging another program. The version of teleport.py in List-
ing 2-3 runs, but for some reason, the player doesn’t teleport to the specified
position. Copy Listing 2-3 into an IDLE file and save it as teleportBug2.py.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

x = 10
y = 110
z = -12

mc.player.setPos(x, z, y)

Listing 2-3: The teleport program with bugs

Unlike with teleportBug1.py, you won’t get any error messages when you
run the program. To fix this program, you’ll need to read the code until
you find the mistake. The program should teleport the player to position
(10, 110, −12). Run the program and check the coordinates that the player
has teleported to. This might help you debug the program and identify the
problem with it.

When you’ve squashed all the bugs in these two programs, add a com-
ment to each to explain what the problems were. Jotting down problems
you encounter in debugging can help you remember to watch out for simi-
lar bugs in the future.

teleportBug1
.py

teleportBug2
.py

Teleporting with Variables 45

What You Learned
Congratulations! You’ve written your first Python programs to control
a Minecraft player through the power of variables and functions. You
explored two data types (integers and floats), controlled time, and debugged
broken programs. You also learned two useful functions specific to the
Minecraft Python API : setPos() and setTilePos().

In Chapter 3, you’ll master the art of speed building in Minecraft,
using mathematical operations and functions that set blocks!

3
BUiLDing QUiCkLY anD

TRaVeLing faR WiTh MaTh

In Chapter 2, you learned how to create a
variable and change its value. In this chap-

ter, you’ll learn how to use math in Python
to generate any block you want and quickly build

complex structures in your Minecraft world. You’ll
even give yourself superpowers to make the player
super jump!

expressions and statements
When you’re having a conversation with someone, you want them to under-
stand what you’re telling them. You use short phrases, such as “three dia-
monds” or “behind a tree,” to give information to the person you’re talking
to. However, the phrases don’t make sense on their own unless they’re com-
bined into sentences, such as “I found three diamonds behind a tree.”

48 Chapter 3

Python programming has concepts similar to phrases and sentences,
which are called expressions and statements.

You can combine values, variables, and operators to create small pieces
of code called expressions, like 2 + 2. Expressions can be combined into
statements, which you learned about in Chapter 2. Statements are single
lines or short blocks of code that do something in a program, such as
zombies = 2 + 2. In this example, 2 + 2 is an expression and is part of the
statement zombies = 2 + 2.

For longer programs that use a text editor instead of the Python shell,
be sure to write entire statements. For example, the Python shell and a pro-
gram written in a text editor will treat the expression 2 + 2 entirely differ-
ently. When you’re using the Python shell in IDLE, Python will output 4 as
the result of 2 + 2, as shown here:

>>> 2 + 2
4

However, when you’re using a text editor, Python won’t do anything
with the expression because it’s not part of a complete statement. To turn
this expression into a complete statement, you could assign its value to a
variable, like this:

zombies = 2 + 2

Then print that variable to see its value:

print(zombies)

When you run this code, it will print 4.
Again, when writing programs in the text editor, it’s very important that

you use full statements, not just expressions.

operators
In math, operators are used to alter and combine numbers. For example, the
addition operator lets you add two (or more) numbers, and the subtraction
operator is used to subtract one number from another.

Python uses all the basic math operators that you already know—
addition, subtraction, multiplication, and division—as well as more
advanced operators, like exponents. Let’s start with addition.

addition
In Python, addition looks like you would normally write it using the plus
sign (+). For example, if you have two flowers and you pick two more, you
could describe that with a statement using addition:

>>> flowers = 2 + 2

Building Quickly and Traveling Far with Math 49

Python works out the result of the expression on the right side of the
equal sign and then assigns it to the variable on the left. In this case, the
result of the expression on the right is 4. For the rest of the time that this
particular code is in use, the variable flowers will have a value of 4.

You can use addition in Minecraft to build things in the blink of an eye.
Are you ready for your next mission? Let’s get started!

Mission #5: Stack Blocks
You can use the setBlock() function to create and place a block in
Minecraft. Just like setPos() and setTilePos(), setBlock() takes x-, y-,
and z-coordinates as arguments, but it also needs a fourth value: the
block type. This value identifies the kind of block you want to place in
the game.

Whether it’s grass, lava, melon, or any other block, each type is repre-
sented by a specific integer. For example, grass is 2, empty air is 0, water is 8,
and melon is 103. For a full list of blocks and their integer values, see “Block
ID Cheat Sheet” on page 285.

To use setBlock(), pass values for the x-, y-, and z-coordinates and the
integer representing the block type to the function, separated by commas.
For example, let’s place a melon block (type 103) at coordinates (6, 5, 28):

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
mc.setBlock(6, 5, 28, 103)

After the first two familiar lines that you’ll see in all Minecraft Python
programs, just call setBlock() with all the values you want to use. You can
also use variables instead of numbers to get the same effect, as shown in
Listing 3-1.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
x = 6
y = 5
z = 28
blockType = 103
mc.setBlock(x, y, z, blockType)

Listing 3-1: A program to create a melon block

First, create variables to represent the block coordinates (x, y, and z) and
type (blockType). Then, pass all the variables to the setBlock() function, and
the Minecraft Python API works its magic. Now you can use those variables
again anywhere in your program, and if you decide to change their values
later, you only have to change them in one place.

When you combine this code with math operators, you can do some
pretty cool things. Let’s create a stack of blocks.

blockStack.py

50 Chapter 3

Create a new folder called math within the Minecraft Python folder. Open
IDLE and create a blank program using IDLE’s text editor. Save this file
as blockStack.py in the math folder. Copy the code from Listing 3-1 into your
editor and add the two lines from Listing 3-2 to stack another melon block
on top of the one you just set.

u y = y + 1
v mc.setBlock(x, y, z, blockType)

Listing 3-2: Extra code to stack a second melon block on top of the first melon

You’re adding 1 to the value of y u, and you’re using the setBlock()
function to create another new block v. By increasing the value of y by 1,
the second block is placed higher on the y-axis than the first block, so the
second block is stacked on top of the first one.

From here, your mission is to add two more blocks to the stack. Try
modifying your blockStack.py program so it stacks four blocks instead of two!
When you run your program, a stack of four melon blocks should appear,
as shown in Figure 3-1.

Figure 3-1: I’ve made a stack of melon blocks.

H i N t To add a second block on top of the first, we increased the y variable by 1 and then
used the setBlock() function again. What do you think would happen if you reused
these two statements at the end of your program? What if you used them three times?
Would this be a solution for creating a stack of four blocks?

blockStack.py

Building Quickly and Traveling far with Math 51

BonUs oBJeCTiVe: CReaTe a RainBoW

You could write many variations of the blockStack.py program . By modifying the
block types, you can create a rainbow or a tower of lava! Try changing the block
types to see what you can create .

Mission #6: super Jump
In Chapter 2, you learned how to change the player’s location. Let’s take
that skill one step further and send the player high into the air using the
power of addition. First, find out where the player is by calling getTilePos(),
as shown in Listing 3-3.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

position = mc.player.getTilePos()
x = position.x
y = position.y
z = position.z

Listing 3-3: Code to find the player’s position

The dot between the position variable and the x, y, and z is called dot nota-
tion. Dot notation is used by certain variables and functions, such as all of the
functions you use in the Minecraft Python API (for example, mc.setTilePos()).
You’ll learn more about dot notation in Chapters 11 and 12.

Once you have the player’s position, you can set the x, y, and z variables
to the player’s current coordinates, which are represented by position.x,
position.y, and position.z. You can then teleport the player anywhere you
want in relation to the current coordinates, as shown in Listing 3-4.

x = x + 5
mc.player.setTilePos(x, y, z)

Listing 3-4: Code to move the player’s x position up by 5 blocks

Here, I’ve transported the player 5 blocks along the x-axis, but this isn’t
that special: you can move the player around horizontally any time you want
in Minecraft. Let’s give the player a super jump instead!

Your mission is to make the player jump 10 blocks into the air above
their current position. You should be able to do this using the code in
Listings 3-3 and 3-4 but with some slight differences. Copy the code in List-
ings 3-3 and 3-4 into IDLE, save it as superJump.py, and change the y variable
in a similar way to how I changed the x variable. When you run the pro-
gram, the player should jump into the air, as in Figure 3-2.

superJump.py

superJump.py

52 Chapter 3

Figure 3-2: Here’s the super jump in action!

subtraction
Python handles subtraction similarly to how it handles addition. Let’s say
you’re out exploring a cave, a spider attacks you, and you lose some health:

health = 20
health = health - 2

The value of health in the statement is now 18. Just as with the addition
operation, Python works out the result of the operation on the right of the
equal sign and sets the variable to that value.

Let’s have some fun with subtraction in Minecraft!

Mission #7: Change the Blocks Under You
Have you ever wanted to set a trap for someone in Minecraft? Imagine
the ground beneath the player suddenly changing to lava when they least
expect it. You can use Python to make your wish come true. Using subtrac-
tion, you can place blocks below the player’s current position. In fact, it
takes only a few lines of code to place any block you want directly below the
player!

In this mission, you’ll change the block underneath the player to
lava using getTilePos() and setBlock(). But this is a dangerous mission, so
be careful when testing it: if you don’t move the player to a new position
quickly enough, they might fall into the lava!

The program in Listing 3-5 creates a block at the player’s current posi-
tion. Copy this code into a new file in IDLE and save it as blockBelow.py.
Then, using your knowledge of the subtraction operator, change the
code so it places a lava block directly below the player’s feet, as shown in
Figure 3-3.

Building Quickly and Traveling far with Math 53

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z
blockType = 10
mc.setBlock(x, y, z, blockType)

Listing 3-5: This code places a block at the player’s current location.

Notice that I’ve named the variable that stores the player’s position pos.
I chose this name because I use this variable a lot, it’s easy to understand
what the name means, and it’s shorter and faster to type than position.

The y-coordinate determines how high or low a block is. Your mission is
to figure out how to change the y variable to place a block below the player.

Figure 3-3: After the block below me changed, I fell into the lava.

BonUs oBJeCTiVe: BLoCks aLL aRoUnD YoU

You’ve learned how to place blocks below the player . Can you work out how
to place a block above the player? Once you’ve figured out how to do this, try to
place several blocks around the player at once . Then you’ll be able to start creat-
ing buildings around the player!

Try combining this program with the one from Mission #6 (page 51) . Can
you work out how to make the player jump into the air and then place a block
immediately below them so they don’t fall? Feeling evil? You could write a pro-
gram that has the player fall from a great height into a pool of lava .

blockBelow.py

54 Chapter 3

Using Math operators in arguments
When you use a function, such as setBlock() or setTilePos(), you give the
function arguments, which specify the values you want the function to use
when it runs.

So far, you’ve been introduced to the addition and subtraction opera-
tors. You can use these operators inside a function’s parentheses to set
the values of arguments. Let’s revisit the stacking blocks in Mission #5
(page 49). We can use the addition operator inside the parentheses of
the setBlock() function, as shown in Listing 3-6, and it will add two values
together within the parentheses without the need for an extra statement.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

x = 6
y = 5
z = 28
blockType = 103
mc.setBlock(x, y, z, blockType)

u mc.setBlock(x, y + 1, z, blockType)

Listing 3-6: The block stacking program with an operator in the arguments

Listing 3-6 is the almost same as the stacking blocks program. How-
ever, it uses the addition operator in the setBlock() function’s parentheses
instead of in a separate statement. The last line uses y + 1 as an argument
in the function u. Although the value of this argument is 6 (5 + 1), the
value of the y variable is still 5. The argument lets you add to the y vari-
able without actually changing its value, which is useful if you want to use y
again somewhere else in your code.

You can also add two variables together and use them as a single argu-
ment. Listing 3-7 is the same as Listing 3-6, but an extra variable named up
determines the distance the new block will be placed on the y-axis.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

x = 6
y = 5
z = 28
blockType = 103
up = 1
mc.setBlock(x, y, z, blockType)

u mc.setBlock(x, y + up, z, blockType)

Listing 3-7: Another version of the stacking program that uses an addition operator in the
arguments

On the last line, the y and up variables are added together u. As in List-
ing 3-6, this makes the setBlock() function’s second argument 6. Variables
are useful because if you want to place the new block two blocks higher on

blockStack1.py

blockStack2.py

Building Quickly and Traveling far with Math 55

the y-axis, all you have to do is change your code and set up to 2. You can
see the effect of all three versions (Listings 3-1 and 3-2, 3-6, and 3-7) of the
program in Figure 3-4.

Figure 3-4: The three versions of the program have the same effect, even though they are
different.

Mission #8: speed Building
Usually, you spend your first day in Minecraft building a shelter. With what
you’ve learned so far, you can build a simple house and spend your first
night in style! The program in this mission will help you quickly generate a
building’s walls, ceiling, and floor. Instead of spending lots of time placing
every block by hand, you can construct the basic structure of your building
in a few lines of code.

You’ve used setBlock() to create a single block, but setBlock() has a
friend called setBlocks(), which creates several blocks in the shape of a
cuboid. A cuboid is a 3D rectangle. A cuboid’s length, width, and height can
all be different values.

The setBlocks() function lets you
create many blocks in a large area.
To use setBlocks(), just pass it two sets
of coordinates and the block type.
The first set of coordinates identifies
where you want one corner of the
cuboid, and the second set specifies
where you want the opposite corner.
Figure 3-5 shows you the corners
of the cuboid, labeled with their
coordinates.

Let’s create the cuboid in Fig-
ure 3-5. As you can see in Listing 3-8,

*not to scale

(6, 5, 18)

(12, 10, 32)

Figure 3-5: A cuboid and the coordi-
nates used to set its dimensions

56 Chapter 3

mine is made of cobblestone, but use any block type you like. Well, you can
use anything except for lava, water, or air—those would give you a pretty
strange house!

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u pos = mc.player.getPos()
x = pos.x
y = pos.y
z = pos.z
width = 10
height = 5
length = 6

v blockType = 4
w air = 0

mc.setBlocks(x, y, z, x + width, y + height, z + length, blockType)

Listing 3-8: Code that builds a cuboid of blocks

Notice that I’ve used getPos() u instead of getTilePos(). The getPos()
function is the same as the getTilePos() function, but it returns the coordi-
nates as three floats instead of three integers.

The width, height, and length of this cuboid are 10, 5, and 6 respec-
tively, and I’ve used a block ID of 4 to generate cobblestone v. You can see
the finished building in Figure 3-6.

Figure 3-6: The building that the program creates

However, the house has a slight problem: it’s completely solid! After I
ran the program, I punched a hole in the side of the building so you can
see that it’s solid in the center. This cuboid is a great start, though, and now
you’ll be in charge of hollowing it out so the player can actually go inside.

Your mission is to change the program to create a building with walls, a
ceiling, and a floor at the player’s position. To accomplish this, you’ll create

building.py

Building Quickly and Traveling far with Math 57

a cuboid made of air inside the solid cuboid you just made. The two cuboids
together should produce an empty box. You can see the result of the fin-
ished program in Figure 3-7. I’ve created a hole in the side so you can see
the hollow center.

Figure 3-7: When your program is finished, it should create a hollow cuboid. A cuboid is
perfect for creating buildings quickly!

Listing 3-8 already includes a variable called air w, which you can use
to set the blocks inside the building to air. Copy Listing 3-8 into IDLE, save
it as building.py, and adapt it to create a second cuboid made of air. You’ll
need to add an extra setBlocks() function on the last line to create this air
cuboid. The air cuboid should be one block inside the walls all the way
around, which is what you need to figure out how to do using addition and
subtraction. Be patient: if your first try doesn’t work, try something else!

H i N t To create the air cuboid one block inside the walls, you can use the addition and
subtraction operators. Create the air cuboid using setBlocks() and increase the first
x, y, and z arguments by 1. Then subtract 1 from the x + width, y + height, and
z + length arguments.

BonUs oBJeCTiVe: BUiLD aLL kinDs of Things

You can reuse the code you wrote to create the building whenever you want .
What if you want to construct a different-sized building? Can you work out how
to change the width, height, and length of the building?

With just a few changes, your program can also have many other uses . Can
you work out how to use it to generate a swimming pool? Hint: You’ll need to
change the block type of the inner cuboid to water (block ID 8) and remove the
top of the outer cuboid so the player can get in the pool .

58 Chapter 3

Multiplication
In Python code, multiplication looks slightly different from what you’re
probably used to seeing. Instead of writing an × to multiply two numbers,
you use an asterisk (*). But other than the symbol, multiplication works the
same as usual. The expression 2 * 2 equals 4, just like 2 × 2.

Imagine there are four trees outside your Minecraft house, and sud-
denly the number of trees doubles. You can represent this calculation in
Python like this:

trees = 4
trees = trees * 2

The value of trees in this example is 8, which is 4 multiplied by 2.

Division
In Python, division is represented by a forward slash (/) instead of the ÷
symbol.

The division operator divides one value by another. Just put the num-
ber that you want to divide on the left side of the forward slash (/) and the
number you want to divide by on the right.

Let’s say eight skeletons are outside your Minecraft fortress, but half
of them walk away. To find out how many are left, you would divide 8 by 2.
Here’s how you’d represent this using a division operator in Python:

skeletons = 8
skeletons = skeletons / 2

Now just 4 skeletons are outside your fortress. Phew! Let’s try out these
two operators in Minecraft.

Mission #9: spectacular spires
One strength of variables is that you can change the value of a single vari-
able, and its value will change everywhere the variable appears in the pro-
gram. You can make a program do totally different things just by changing
a single variable using math operators, like multiplication and division.

In this mission, you’ll discover how to use division and multiplication to
build a very tall, thin tower, also called a spire.

Figure 3-8 shows what the spire will look like when the program is
finished.

Building Quickly and Traveling far with Math 59

Figure 3-8: A spire created from stone blocks

The program will use a single variable to set the spire’s height. Using
multiplication and division, you’ll set different spire heights.

In Listing 3-9, I’ve started the program that creates the spire, but I
haven’t used the height variable or math operators to set the height of
each part.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z

height = 2
blockType = 1

Spire sides: should be same as height
sideHeight = height
mc.setBlocks(x + 1, y, z + 1, x + 3, y + sideHeight - 1, z + 3, blockType)

Spire point: should be two times the height
u pointHeight = 4

mc.setBlocks(x + 2, y, z + 2, x + 2, y + pointHeight - 1, z + 2, blockType)

Spire base: should be half the height
v baseHeight = 1

mc.setBlocks(x, y, z, x + 4, y + baseHeight - 1, z + 4, blockType)

Listing 3-9: The spire-building program

spire.py

60 Chapter 3

Copy Listing 3-9 into a new file in IDLE and save it as spire.py in the
math folder. This program will create a spire, but changing the height vari-
able and rerunning the program won’t affect the height of all parts of the
spire.

To fix this program so all parts of the spire’s height change when
you change the height variable, you need to change the pointHeight u and
baseHeight v variables to include expressions that use the height variable
and multiplication or division operators. You want pointHeight to be twice
the size of height and baseHeight to be half the size of height. For example, if I
wanted the spire point to be three times the height of the spire sides, I would
change the code to pointHeight = height * 3 and baseHeight = height / 2.

After you’ve made these changes, when you change the height variable,
all the spire’s parts will change size.

You don’t need to change any other parts of the program.
You can test the program by changing the original height variable and

rerunning it. If you change the height variable to 3, your spire will look like
Figure 3-9.

Figure 3-9: You can make the spire taller just by changing the height variable.

Because you use the height variable to set the values for pointHeight and
baseHeight, it’s very easy to change the spire. Play around with this code by
changing the original height variable to a few different numbers. Rerun the
program each time to see what happens!

exponents
You can use an exponent to show that a number should be multiplied by itself
a certain number of times. For example, 34 (three to the power of four) is a
short way of saying 3 * 3 * 3 * 3.

Building Quickly and Traveling far with Math 61

In Python, ** is the exponential operator. The number you want to mul-
tiply (the base) goes on the left of the operator, and the number of times
you want to multiply it by itself (the exponent) goes on the right.

Say you want to start a Minecraft farm. You need to till four plots of
land. You want each plot of land to be four blocks by four blocks so you can
grow lots of wheat. Mathematically, you can write this as 4 * 4 * 4, or 43.
Here’s the code to work out how much wheat you’re growing:

wheat = 4 ** 3

Your answer should be 64 individual plots of wheat, because 4 * 4 is 16
and 16 * 4 is 64.

Parentheses and order of operations
When you use several math operators in one expression, you need to be
careful how you arrange them. Different operators have different priority.
When you’re using multiple operators, division and multiplication are
evaluated first from left to right, and then addition and subtraction are
calculated. Let’s look at how this expression is evaluated:

mooshroom = 5 * 2 – 1 + 4 / 2

Because multiplication and division always happen before addition and
subtraction, Python starts on the left by multiplying 5 by 2 to get 10, and
then divides 4 by 2 to get 2. That gives us 10 – 1 + 2. Next, Python starts
back on the left by subtracting 1 from 10, and then adds 2 to that, setting
mooshroom to 11.

But you can control the order of operations by using parentheses.
Expressions with operators in parentheses will evaluate the operations in
parentheses before anything else. Let’s look at how parentheses change
the order of operations. To start, here’s a statement that doesn’t use any
parentheses:

zombiePigmen = 6 * 3 - 2

Written this way, zombiePigmen ends up with a value of 16, because 6
times 3 is 18, and 18 minus 2 is 16. However, with parentheses, the result
changes:

zombiePigmen = 6 * (3 - 2)

zombiePigmen now has a value of 6! Instead of following the usual order,
first Python subtracts 2 from 3, which results in 1, and then multiplies 6 by
1 to get 6.

When you want a calculation to happen in a certain order, use paren-
theses to tell Python what to do first. This gives you even more control over
Python.

62 Chapter 3

handy Math Tricks
In the following sections, I’ll teach you two more math skills to level up
your Python programming, and then we’ll combine what you’ve learned
so far in one more mission.

shorthand operators
Quite often, you’ll want to use an operator on a variable and then store the
result in the same variable. For example, you might want to add five sheep
to your existing herd:

sheep = 6
sheep = sheep + 5

But typing sheep = sheep + 5 will probably get tiresome after a while.
Don’t worry; there’s a shorter way! Python has shorthand operators that let you
use a math operator on a variable and reassign the result to the same vari-
able. Here are the four shorthand operators:

•	 Addition (+=)

•	 Subtraction (-=)

•	 Multiplication (*=)

•	 Division (/=)

For example, you can rewrite the sheep example using the addition
shorthand operator:

sheep = 6
sheep += 5

The value of sheep equals 11, just like before.

Playing with Random numbers
Using random numbers is one way to add some mystery and fun to your
programs. You never know what you’ll end up with! Many real-world board
games rely on random numbers: think about how many games you’ve played
where you had to roll the dice to see how many spaces you could move. A dice
roll is a classic example of random numbers in action.

Python can generate random numbers for you easily, so let’s simulate
the roll of a die. The number generated should be between 1 and 6:

u import random
v diceValue = random.randint(1, 6)

When you want to create random numbers, make sure you include
import random u at the start of your program. The randint() v function

Building Quickly and Traveling far with Math 63

generates an integer value that the program can use just like any other
number. The numbers you place inside the parentheses as arguments
tell randint() to generate values between the first number and the second
number. In this example, the number generated can have a value of 1, 2, 3,
4, 5, or 6.

You can use randint() to add a random number to the value of a vari-
able, and you can even generate negative numbers. Let’s see how!

import random
score = 0
score += random.randint(0, 99)
points = random.randint(-99, 99)

The lowest number that Python can generate to add to score is 0, and
the highest is 99. On the other hand, because of the negative argument,
points might get set to a number as low as −99!

Mission #10: super Jump somewhere new!
In this chapter’s last mission, you’ll make the player jump a random dis-
tance on the x-, y-, and z-axes by storing the player’s current position and
then adding a random number to each of the three coordinates. Use the
random numbers between −10 and 10 to change the x and z values, and
make sure the random values for y are between 0 and 10.

To get started, copy Listing 3-10 into a new file in IDLE and save it as
randomJump.py.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
import random

pos = mc.player.getPos()
x = pos.x
y = pos.y
z = pos.z

u x = x + random.randint(-10, 10)
mc.player.setPos(x, y, z)

Listing 3-10: The incomplete random jump program

The random number generation code for the y and z variables is miss-
ing, and it’s up to you to add it. Once you do, the player will have the ability
to jump anywhere, as I did in Figure 3-10. Let the randomness take you to
new and exciting places!

At the moment, the code doesn’t use shorthand operators to change
the values of the variables. Try changing the addition expression at u to use
shorthand instead.

randomJump
.py

64 Chapter 3

Figure 3-10: I jumped in a random direction and ended up on top of this tree. Where did
you end up?

BonUs oBJeCTiVe: RanDoM BLoCks TeLePoRTaTion

Let’s make the randomJump.py program even more random! After the player jumps
to a random position, place a random block below them . You could also adapt
the teleportation tour program from Mission #1 (see teleport.py on page 34)
to make the player teleport to a random position each time . If you accidentally
teleport somewhere and get stuck, you can always rerun teleport.py, which
should teleport you to somewhere safe .

What You Learned
In this chapter, you learned how to do math in Python. You’ll use addition,
subtraction, multiplication, and division frequently in the Python programs
in the rest of this book and in the programs that you create in the future.
You’ve also learned how to generate random numbers and created some
very useful programs in Minecraft along the way. Great job!

In Chapter 4, you’ll learn about the string data type in Python, which
is used to contain letters, symbols, and numbers. Strings are very useful in
Minecraft, because you can use them to post messages to Minecraft’s chat.
You’ll also explore strings to manipulate Minecraft’s chat and do other
cool things.

4
ChaTTing WiTh sTRings

In Chapters 2 and 3, you worked with
integers and floats, which are both number

types. In this chapter, you’ll use another data
type called strings. You can use strings to work

with letters and symbols as well as numbers.
Strings help you display data to people using your programs—an

important part of programming. Using strings, you can to tell Python to
output data to the screen, which displays and communicates information to
the user.

With Minecraft you can use strings in various places, such as posting
messages to the chat, which is a way of communicating with other players
when you are in multiplayer mode. Although posting messages is a standard
feature in other versions of Minecraft, it is a hidden feature in the Rasp-
berry Pi version. But you can access this feature through the power of pro-
gramming. You’ll be able to share secret information with your friends and
brag about your treasures!

66 Chapter 4

You’ll also learn about functions in this chapter. If you are eagle-eyed,
you’ll notice that you’ve seen some functions already. setPos(), setTilePos(),
setBlock(), setBlocks(), getPos(), and getTilePos() are all functions—reusable
blocks of code that make it easier for you to complete tasks. Pretty cool, huh?

In this chapter’s missions, you’ll build on the knowledge you’ve learned
so far. You’ll print messages to the Minecraft chat using strings and practice
inputting data to create objects in your Minecraft world.

What are strings?
A string data type includes any amount of text, from a single letter or
symbol—like "a" or "&"—to a large block of text. Each letter, number,
or symbol in a string is called a character. When you want to include letters,
symbols, words, sentences, or a combination of these things in your pro-
gram, you use strings.

With the string data type, you can store letters, numbers, and symbols.
All strings are enclosed in quotation marks. For example, this is a string:

"Look out! There's a zombie behind you!"

The following is also a string:

'Welcome to my secret base!'

Did you catch the slight difference in the way these examples are
written? When writing a string, you can use either single or double quota-
tion marks: ' or ". Be careful not to mix quotation marks! If you start a
string with a single quote, you must end it with a single quote. If you start
with a double quote, end with a double quote. There is a good reason for
including both of these options in the Python programming language;
for example, if you want to use an apostrophe in your string, you can safely
include it if you enclose your string in double quotes.

The print() function
Displaying text and other information to the user is important for user
interaction; otherwise, the user won’t know what’s going on in your pro-
grams. The information you display to the user is called output. To output
data to the user’s screen, you use the print() function.

To output a message, pass a string to the print() function as an
argument:

>>> print("String")

Chatting with strings 67

This tells Python that you want to display the word String to the user. So
to print chocolate to the Python shell, you write:

>>> print("chocolate")

And that output would be:

chocolate

You can also use print() to print the values of variables. For example, if
you have a variable called name that stores a name as a string, and you want
to display it to the screen, you can do this:

>>> name = "Steve the Miner"

After you store the string "Steve the Miner" in name, you can simply write
print(name) to display this output:

>>> print(name)
Steve the Miner

Now that you know the basics of strings, complete the mission to say
hello to your Minecraft world!

Mission #11: hello, Minecraft World
If you want to chat with other players in Minecraft Pi, the Minecraft Python
API lets you send messages to the chat using the postToChat() function. The
postToChat() function takes a string as an argument and posts that string to
the Minecraft chat window. For example, Listing 4-1 posts "Hello, Minecraft
World" to the chat.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
mc.postToChat("Hello, Minecraft World")

Listing 4-1: Use Python to send a greeting over Minecraft chat.

Recall that an argument is information that you pass to a function
when you call the function. The function needs this information in order
to do its job. For example, in the previous chapter, we needed to pass num-
bers to our functions to define what we wanted them to do. In this case,
postToChat() needs a string, such as "Hello, Minecraft World".

The postToChat() function is similar to the print() function. Both can
show strings on the screen, and both can take a variable that stores a
string as an argument. The difference is that the print() function outputs
strings to the Python shell while postToChat() displays the output in the
Minecraft chat.

message.py

68 Chapter 4

Copy the code from Listing 4-1 and save it as message.py in a new folder
called strings. When you run the program, you should see the message
posted to chat, as shown in Figure 4-1.

Figure 4-1: My message was posted in the chat.

Try passing a different string to postToChat() to make it display a differ-
ent chat message.

BonUs oBJeCTiVe: WheRe aRe YoU?

You can post all sorts of information to the chat using the mc.postToChat() function .
Try displaying the player’s current x position or the block type they’re standing on .
Recall that the mc.player.getTilePos() function gets the player’s current position
and the mc.getBlock() function tells you the block type at certain coordinates .

The input() function
So far, all of your variables have been set in your programs, or hardcoded. To
change the value of a variable, you’d have to edit the program. It would be
handy to be able to change these variables while the program is running or
accept user input from the player.

One way of adding this kind of interactivity to your program is by using
the input() function. It prints a string to the console (to tell the user what
kind of information they should enter) and then waits for the user to type a
response. Try entering this code into the Python shell to see what happens:

>>> input("What is your name? ")

Chatting with strings 69

You’ll see the string that you passed to input(), and you’ll be able to
type in a response.

What is your name?

When you enter a response, you should see something like this:

What is your name? Craig
'Craig'

Neat! But if you want to use this input somewhere in your program,
you’ll have to save it to a variable. Unlike the Python shell, programs
created in the text editor do not automatically output the results of state-
ments. For example:

>>> name = input("What is your name? ")
What is your name? Craig

Notice how this time after you type in your name and press enter, the
program doesn’t automatically display your input. To see the saved input,
just pass the variable name as an argument to the print() function:

>>> print(name)
Craig

Awesome! Now you’ve stored your input in a variable and printed the
variable’s value. This is very handy because it lets you get input from the
user to use anywhere in your program. Let’s use this technique to write
chat messages to the Minecraft chat!

Mission #12: Write Your own Chat Message
Let’s make the chat more interactive! You can use the Python shell to write
a message in Minecraft chat, as you did in Mission #11. In this mission, we’ll
write a slightly different program that saves the string you want to post to
the chat in a variable named message.

Listing 4-2 will get you started. Copy it into a new file in IDLE and save
it as messageInput.py in your strings folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u message = "This is the default message."
v mc.postToChat(message)

Listing 4-2: How to output strings to Minecraft’s chat

The program stores the message you want to output to chat in the
variable message u. In this case, the variable is a string that says "This is
the default message." Then the program passes message to the postToChat()
function v, which outputs the string to the Minecraft chat.

messageInput
.py

70 Chapter 4

In this program, the string is hardcoded, meaning it will be the same
every time the program runs. But with a single change, you can make it
print whatever the user writes! In other words, you can write your own cus-
tom messages every time you run the program. You’ll create your very own
chat program.

To make the program accept input, replace the string "This is the
default message." u with the input() function. Give the input() function
an argument, such as "Enter your message: ". Remember to put this string
inside the input() function’s parentheses! After you’ve made the changes
to the program, run it. You should see a prompt in the Python shell
displaying "Enter your message: ". Enter your message and press enter.
The message displays in the shell and in the Minecraft chat, as shown in
Figure 4-2.

Figure 4-2: When I enter a message in the IDLE shell, it’s posted to Minecraft’s chat.

Now your program lets you write a message to display to chat, instead of
you having to write the message in your program. See how much easier it is
to chat using input?

BonUs oBJeCTiVe: MoRe Messages

The program asks for one message, but can you figure out how to make it ask for
one message, wait a few seconds (using the sleep() function), and then ask for a
second message?

Chatting with strings 71

Joining strings
Often, you’ll need to print a combination of strings. This is called joining,
or concatenating, strings, and Python makes it easy.

In Chapter 3 we used the addition operator (+) to add numbers, but
you can also use it to concatenate strings. For example:

firstName = "Charles"
lastName = "Christopher"
print(firstName + lastName)

The output of print() will be "CharlesChristopher". If you want a space
character between the values, you can add a space by using the addition
operator like this:

print(firstName + " " + lastName)

Python often provides multiple ways to achieve the same result. In this
case, you could use a comma to create the space instead:

print(firstName, lastName)

Both of these statements will output "Charles Christopher". You can con-
catenate hardcoded strings with variables that happen to be strings too. Just
write the value like you would write any other string:

print("His name is " + firstName + " " + lastName)

This will output "His name is Charles Christopher".
Putting together blocks of text is useful, but sometimes you’ll want to

join strings to another data type, like an integer. Python will not let you
concatenate a string with an integer; in this case, you need to tell Python
to first convert the integer to a string. Let’s try it.

Converting numbers to strings
Converting one variable type to another is handy. For example, imagine
you store the number of golden apples you have, which is an integer, in a
variable called myGoldenApples. You want to brag to your friends about how
many golden apples you have, because they’re rare and you like to brag. You
could print a message like "My not-so-secret golden apple stash: ", followed
by the value stored in myGoldenApples. But before you can include the value of
myGoldenApples in the printed message, you have to tell Python to change the
integer in myGoldenApples to a string.

The str() function converts non-string data types, like integers and
floats, into strings. To convert to a string, put the value you want to convert
inside the parentheses of the str() function.

72 Chapter 4

Let’s go back to your golden apple stash. Say you’ve set myGoldenApples
to 2, and you want Python to treat that 2 as a string instead of an integer.
Here’s how you’d print your message:

print("My not-so-secret golden apple stash: " + str(myGoldenApples))

This statement outputs the string "My not-so-secret golden apple stash: 2".
You can convert floats to strings as well. Say you ate half a golden apple,

and now myGoldenApples stores 1.5 apples. str(myGoldenApples) works the same
on the 1.5 as it did on the 2. It converts 1.5 to a string so you can include it
in your message.

After you’ve converted numbers to strings, you can concatenate them
however you like. Let’s have some fun turning numbers into strings and
concatenating them!

Concatenating integers and floats
If you want to concatenate two pieces of data, they must be strings. But the
plus sign is used for both addition and concatenation, so if you’re concat-
enating integers, floats, and other numbers, Python will try to add them
instead. You must change number values to strings in order to join them
using concatenation.

To join two numbers instead of adding them, just use the str() method:

print(str(19) + str(84))

Because you told Python to treat the numbers 19 and 84 as strings and
concatenate them, this statement outputs 1984 instead of 103, the sum of 19
and 84.

You can use concatenation as many times as you want within a state-
ment. For example:

print("The year is " + str(19) + str(84))

This line of code outputs The year is 1984.
Now that you have a bit of practice using concatenation, let’s put your

new skills to the test in the next mission!

Mission #13: add Usernames to Chat
When you’re playing a game with more than two people, it can be confus-
ing to figure out who is writing a message in Minecraft chat. The obvious
solution is to include the user’s name at the start of their message. In this
mission, you’ll modify the program from Mission #12 to include a user-
name for all messages sent to chat.

Open messageInput.py in IDLE and save it as a new file called userChat.py
in the strings folder. Then add code to take in the user’s name as input
before taking in their message. The message posted to chat should be in

Chatting with strings 73

the following format: "Anna: I need TNT." You’ll need to use concatenation
to accomplish this mission.

In the program, find this line of code:

message = input("Enter your message: ")

On the line above it, you need to add another variable called username
and set its value to input("Please enter a username: "). After you’ve added the
username variable, find this line:

mc.postToChat(message)

Using concatenation, join the username and message strings inside the
postToChat() function. Add ": " between the two strings so the output has
a colon and a space between the username variable and the message vari-
able. Figure 4-3 shows what the output of the finished program should
look like.

Figure 4-3: Now when I post to chat using my program, it displays my username.

Save your updated program and run it. In the Python shell you will be
asked to enter a username. Type your name and press enter. Then you’ll
be prompted to write a message, so do that as well. Your username and mes-
sage should be displayed in Minecraft chat.

BonUs oBJeCTiVe: a UseR WiThoUT a naMe

What happens if you leave the username blank and press enter? Why do you
think this is?

74 Chapter 4

Converting strings to integers
with int()

Like the str() function, which converts non-string data types into strings,
the int() function converts non-integer data types into integers.

The int() function is useful when used with the input() function. The
input() function returns the user input as a string, but you’ll often want to
use this input in math operations. To do that, you’ll first have to convert the
input to an integer type using int().

Here’s how it works. Suppose we have already assigned an integer value
to a variable called cansOfTunaPerCat, and we want a program that tells us
how much tuna gets eaten, depending on the number of cats the user has.
Here’s an example of a program we could write:

cansOfTunaPerCat = 4
cats = input("How many cats do you have? ")
cats = int(cats)
dailyTunaEaten = cats * cansOfTunaPerCat

You can do the same thing in a single line by putting one function
inside the other:

cats = int(input("How many cats do you have? "))
dailyTunaEaten = cats * cansOfTunaPerCat

Now that you know how to convert input into an integer, you can use it
to input block types into Minecraft programs.

Mission #14: Create a Block with input
There are tons of block types in Minecraft. Although you can choose lots of
blocks in creative mode, many others cannot be used. However, the Python
API for Minecraft gives you access to all of the block types and lets you set
them using the setBlocks() function.

You’ve used the setBlocks() function before, but you had to hardcode
the block type into your program. This means you couldn’t change it while
your program was running. Now you can use the input() function. By writ-
ing a program that accepts input, every time you run the program you can
choose the type of block you want to create. You could create a wool block
the first time you run the program, then create iron ore the second time.

In this mission, you’ll write a program that lets your user decide which
kind of block they want to set. Copy Listing 4-3 into a new file and save it as
blockInput.py in your strings folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u blockType = # Add input() function here
pos = mc.player.getTilePos()

blockInput.py

Chatting with strings 75

x = pos.x
y = pos.y
z = pos.z
mc.setBlock(x, y, z, blockType)

Listing 4-3: Code to set a block at the player’s position

This program sets a block at the player’s current position. Change it so
the blockType variable is set using the input() function u. I suggest including
a question or other text prompt so the user knows to type a block number,
not some other kind of input. If you don’t include a prompt, IDLE will just
wait on a blank line until the user enters something, and you want to make
it clear that the program needs a number from the user.

Recall that input() returns your input as a string, and in order for it
to input the value as an integer, you need to use the int() function. The
expression to collect input for the block type should look like this:

blockType = int(input("Enter a block type: "))

Save your modified program, run it, and enter any block number you
like. Figure 4-4 shows the result of the program.

Figure 4-4: I can now create whichever block I want!

BonUs oBJeCTiVe: MoRe inTeRaCTiVe gaMes

You can use as many inputs in the program as you want . At the moment, the pro-
gram creates the block at the player’s current position . Work out how you’d set the
x, y, and z variables using input . If you’re feeling really adventurous, try teleport-
ing the player to specific coordinates using input .

76 Chapter 4

Bounce Back from errors
Python uses exception handling to make sure your program can recover from
errors and continue running when they occur. For example, exception
handling is one way to manage incorrect user input.

Say your program requested an integer, but the user entered a string.
Normally, the program would display an error message, which is also called
throwing an exception, and then stop running.

With exception handling, you can manage that error yourself: you can
keep the program running smoothly, display a useful error message to the
user—such as "Please enter a number instead"—and give them a chance to
fix their problem without restarting the program.

A try-except statement is one tool you can use to handle errors. It is
particularly good for providing useful feedback to the user when they enter
incorrect input, and it can prevent your program from stopping when an
error occurs.

The statement is made up of two parts: the try and the except. The first
part, try, is the code you want to run if no errors occur. This code might
take input or print a string. The except part of the statement will run only if
an error occurs in the try part.

Imagine a bit of code that asks you how many pairs of sunglasses you
own (I own three pairs):

try:
u noOfSunglasses = int(input("How many sunglasses do you own? "))

except:
v print("Invalid input: please enter a number")

This program requires a number. If you enter letters or symbols, it will
print "Invalid input: please enter a number". The error occurs because the
int() function can only convert strings that contain only integers u. If you
enter a number, the code will work, but if you enter something that isn’t
a number, like many sunglasses, this input will cause an error in the int()
function.

By the way, did you notice anything different about this bit of code?
It is our first time using a statement that calls for indentation, which is
when you type several spaces before typing any text. I’ll discuss indentation
more when I cover if statements in Chapter 6 and for loops in Chapters 7
and 9. For now, just make sure you type your code exactly as it appears in
this book.

Usually when an error occurs, Python shows a message that is difficult
to understand and doesn’t clearly tell the user how to fix the problem. But
with try-except, you can stop Python’s error messages from being displayed
to the user when they enter the wrong type of data; instead, you can give
the user simple, helpful instructions on what to do. Sometimes the user will
just press enter instead of entering input. Normally, this creates an error,
but with the code inside the try-except statement u, the string "Invalid
input: please enter a number" will be printed instead v.

Chatting with strings 77

You can put almost any code inside a try-except statement, even other
try-except statements. Try it out in the next mission!

Mission #15: only numbers allowed
Remember the program you wrote in Mission #14? When you entered an
integer value, the program worked exactly as it was supposed to and created
a block. But if you entered a string, the program would stop working and
show an error, as shown in Figure 4-5.

Figure 4-5: cake is not a number, so the program did not create a block.

This error message makes sense when you’re used to Python. But
what if someone who had never used Python before tried to enter a string
instead of an integer? They’d get an error message they wouldn’t under-
stand. Your mission is to use error handling to write a message that’s easy
to understand.

Open the program blockInput.py that you created in Mission #14. Save
the program as blockInputFix.py in the strings folder.

You’ll change the program so it uses a try-except statement when it asks
for a block number. Find the last line of code in the program. It should look
like this:

mc.setBlock(x, y, z, blockType)

Add a try statement on the line above this one and add four spaces
at the start of the line before the mc.setBlock() function. Next, on the line
above setBlock(), add this code to get an input from the user: blockType =
int(input("Enter a block type: ")).

Then, on the line just after the setBlock() function, write an except
statement. Inside the except statement add a line of code that posts a mes-
sage to the Minecraft chat to say that the block type must be a number;

78 Chapter 4

for example, "You didn't enter a number! Enter a number next time.". Here’s
what the changed code should look like (notice the four spaces, or inden-
tation, at the start of lines u and v):

try:
u blockType = int(input("Enter a block type: "))

 mc.setBlock(x, y, z, blockType)
except:

v mc.postToChat("You did not enter a number! Enter a number next time.")

The int() function expects to convert the input entered by the user into
an integer u. Because we’ve added the try-except statement to the program,
if the user enters input that contains something that isn’t a number (such
as letters or symbols), an error will occur. Instead of displaying the normal
Python error message, the program will output a string to the chat asking
the user to enter only a number v. You might want to change the chat mes-
sage so it’s a bit more polite!

When you’re finished entering a friendlier error message, save the
blockInputFix.py file, and run it to admire your handiwork. The result
should look something like Figure 4-6.

Figure 4-6: The error message shown in the chat is much easier to understand.

Mission #16: sprint Record
This chapter’s final mission combines everything you’ve learned about vari-
ables (Chapter 2) and math operators (Chapter 3) with posting messages to
the chat. Your task is to create a record keeper: the program will work out
how far the player travels in 10 seconds and display the results in the chat.

Chatting with strings 79

Remember that you can use the following code to make your programs
wait, or sleep, a certain number of seconds:

import time # Place this somewhere near the top of your program
time.sleep(30) # Makes the program wait 30 seconds

Use this sleep() example and type in the following code to get started
with this new program:

import time
from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u pos1 = mc.player.getTilePos()
x1 = pos1.x
y1 = pos1.y
z1 = pos1.z

time.sleep(10)

v pos2 = mc.player.getTilePos()
x2 = pos2.x
y2 = pos2.y
z2 = pos2.z

Compare the difference between the starting position and ending position
w xDistance = x2 – x1

yDistance =
zDistance =

Post the results to the chat
x mc.postToChat("")

Let’s break down this code. The program gets the player’s starting posi-
tion u, waits 10 seconds, and then gets the player’s finishing position at v.
To finish the program, you need to work out the difference between the
starting and finishing positions. To do this, set the values of the yDistance
and zDistance variables, which start at w. To help you out, I’ve included the
value of the xDistance variable, which should be x2 – x1. The values of the
yDistance and zDistance variables should be similar to this, but use different
variables instead of x1 and x2.

On the last line, output the results to the Minecraft chat x. The results
should be in the following format: "The player has moved x: 10, y: 6, and
z: -3". Use strings, concatenation, and the values of xDistance, yDistance, and
zDistance variables to do this.

Save this program in the strings folder as sprint.py and run it. Figure 4-7
shows the result of the program.

sprint.py

80 Chapter 4

Figure 4-7: The distance I traveled is displayed when the program finishes.

If you have the program running but you’re finding it difficult to switch
between the command line and Minecraft fast enough, try adding a three-
second countdown before step 2. Post this countdown to the chat.

BonUs oBJeCTiVe: as The CRoW fLies

At this point, the program displays the distance traveled along each axis sepa-
rately: the x direction, the y direction, and the z direction . How would you create
and display the distance traveled as a single integer, that is, as the crow flies?
Hint: You’ll need to use trigonometry, specifically the Pythagorean theorem . If
you’re not sure how to do this now, don’t worry; you’ll see a similar program
with code to calculate the distance traveled as a single integer in Mission #40
(page 141) .

What You Learned
Congratulations! You’ve learned a lot in this chapter. You created strings,
displayed strings using print statements, and joined them using concatena-
tion. You wrote programs that accept user input, changed the data types
of values, and handled exceptions. Along the way, you applied your Python
knowledge to make your Minecraft chat more lively.

In Chapter 5, you’ll learn how to control the flow of the program and
tell your programs how to make decisions.

5
figURing oUT WhaT’s TRUe
anD faLse WiTh BooLeans

You ask yes-or-no questions all the time:
Is it raining? Is my hair too long? Once

you know whether the answer is yes or
no, you can decide what to do next: bring an

umbrella, or not; trim your hair, or not. In all these
situations, what you do depends on whether the
answer to the question is yes or no. Deciding what to do based on
the answer to a question is also important in programming. In this
chapter, you’ll learn how to ask questions in Python.

In programming, the questions you ask are usually about comparing
values. Is one value equal to another? Is a value bigger or smaller than
another? The yes-or-no question is called a condition, and the answer isn’t
yes or no but True or False. Say you ask the question “Do I have more gold
blocks than my friend?” or, in other words, “Is my gold stash greater than
my friend’s gold stash?” To make that question into a condition that Python
can understand, we have to phrase it as a statement (such as “My gold stash
is greater than my friend’s”) that can be true or false.

82 Chapter 5

Testing whether a condition is true or false is so useful in Python that
there’s a special data type just for storing the values True and False. So far
you’ve seen a few other data types: integer, float, and string data types. The
data type that stores True and False values is the Boolean data type. Booleans
can only be True or False. When you use Python to ask questions, the result
is either True or False. When a condition is true or false, programmers say
that it evaluates to True or evaluates to False.

In this chapter you’ll use Booleans, comparison operators, and logical
operators to test different conditions involving values. Then you’ll be ready
for Chapter 6, where you’ll use the answers to questions to make decisions
about what to do next in a program.

Boolean Basics
A Boolean is a bit like a light switch: it is either True (on) or False (off). In
Python, you can declare a Boolean variable like this to represent that the
light is on:

light = True

Here you assign the value True to the variable light. To turn the light
off, you could assign the value False to light:

light = False

Always capitalize the first letter of True and False. If you don’t, Python
won’t recognize the value as a Boolean and will throw an exception instead
of evaluating your calculation!

In the next mission, you’ll use Booleans to stop the player from smash-
ing blocks in the game world.

Mission #17: stop smashing Blocks!
In Minecraft, it’s easy to smash blocks, which is great when you want to
mine for resources. But it’s annoying to spend ages building a really cool
structure and then accidentally smash and destroy it! In this mission, you’ll
make your Minecraft world indestructible.

By using setting("world_immutable", True) you can make blocks immutable,
which means they can’t be changed. The setting() line of code is a function
like the setTilePos() and setPos() functions you’ve seen. Listing 5-1 shows
how to make the world immutable.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

mc.setting("world_immutable", True)

Listing 5-1: Code that stops blocks from being broken

immutableOn
.py

figuring out What’s True and false with Booleans 83

The setting() function has options that you can set to True to turn them
on. One of the options is "world_immutable". To turn a setting() option on,
you write True after the name of the setting inside the parentheses.

Type Listing 5-1 into IDLE and save it as immutableOn.py in a new folder
called booleans. When you run it, you shouldn’t be able to smash most blocks,
as shown in Figure 5-1. But what happens when you do want to break blocks
again? Copy your program into a new file and change it to allow the player
to smash blocks. (Hint: Use a Boolean!) Save the new file as immutableOff.py
in the booleans folder.

Figure 5-1: No matter how hard I try, the block won’t break!

Concatenating Booleans
Like integers and floats, Booleans must be converted to strings before they
can be concatenated. For example, you concatenate Booleans and strings
when you want to output Booleans using the print() function. To do this,
use the str() function:

>>> agree = True
>>> print("I agree: " + str(agree))
I agree: True

The agree variable stores a Boolean. It is converted to a string on the
second line with str(agree), concatenated to the "I agree: " string, and
printed.

Comparators
You are very good at comparing values. You know that 5 is greater than 2,
8 and 8 are the same number, and 6 and 12 are not the same number. A
computer is also good at comparing values; you just need to tell it exactly

84 Chapter 5

which kind of comparison you want by typing in a symbol called a compara-
tor. For example, do you want it to check if one value is bigger than the
other, or do you want it to check if it’s smaller?

Comparators (or comparison operators) in Python let you compare data.
Python uses six comparators:

•	 Equal to (==)

•	 Not equal to (!=)

•	 Less than (<)

•	 Less than or equal to (<=)

•	 Greater than (>)

•	 Greater than or equal to (>=)

Each comparator returns a Boolean value (True or False) that states
whether the condition has been met. Let’s look at these comparators and
explore how to use them!

equal To
When you want to find out whether two values are the same, you can use the
equal to comparator (==). When the values are the same, the comparison
returns the Boolean value True. When the values are different, the compari-
son returns False.

For example, let’s assign the value of two variables and then use the
equal to operator to compare them:

>>> length = 2
>>> width = 2
>>> length == width
True

The result is True because the values of the length and width variables are
the same.

But if they are different, the result is False:

>>> length = 4
>>> width = 1
>>> length == width
False

You can use the equal to comparator on all variable types: strings, inte-
gers, floats, and Booleans.

Notice how I used == to compare length and width instead of =, which
is used to set a variable. Python uses the == operator to tell the difference
between a comparison (asking whether two values are equal) and setting
a variable (making a variable equal some value). Try to remember this dif-
ference to avoid bugs in your code. Don’t worry; even I make the mistake of
using = instead of == once in a while!

figuring out What’s True and false with Booleans 85

Mission #18: am i swimming?
Now you’ll use comparators to make a program that states whether or not
you’re standing in water. The results will be posted to Minecraft chat.

To find out the block type at certain coordinates, you’ll use the
getBlock() function. This function takes coordinates as three arguments
and returns the block type as an integer. For example:

blockType = mc.getBlock(10, 18, 13)

Here, I stored the result of mc.getBlock(10, 18, 13) in a variable called
blockType. If the block type at coordinates (10, 18, 13) is melon (block value
103), the blockType variable will hold a value of 103.

Let’s put the getBlock() function to work. Listing 5-2 checks whether the
player is standing on dry land.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

pos = mc.player.getPos()
x = pos.x
y = pos.y
z = pos.z

blockType = mc.getBlock(x, y, z)
mc.postToChat(blockType == 0)

Listing 5-2: This code checks the block type where the player’s legs are.

Here, I get the three coordinates of the player’s position and pass those
coordinates as arguments to getBlock(). I store the result of mc.getBlock(x,
y, z) in blockType. The expression blockType == 0 checks whether the block
is air; if it is air, you know you’re just standing somewhere in your Minecraft
world, the expression is True, and True is posted to chat. If it’s not air, False is
posted to chat, so you must be underwater or maybe drowning in sand!

Copy Listing 5-2 and save it as swimming.py in the Chapter 5 directory.
Then change the code so it checks whether the player is standing in water
(block type 9) and run it.

Try standing in water and running the program. Make sure that
when the player is in water, the chat displays True. When the player isn’t
in water, the chat should display False.

The output of the program should look like Figure 5-2.

No t e At this point, you will not be able to run this program continuously. You must run
the program every time you want to check the block below the player. This applies to
all the other missions in this chapter as well.

swimming.py

86 Chapter 5

Figure 5-2: Although I can see that I am standing in water, Python kindly confirms this.

BonUs oBJeCTiVe: i ’M fLYing!

With a couple of changes to the code, you can check whether the block below
you is air . This would tell you that you’re flying or jumping . How would you
do this?

not equal To
The not equal to comparator is the opposite of the equal to comparator.
Instead of checking whether two values are the same, it checks whether they
are different. When the two values are different, the comparison evaluates
to True. When they are the same, it evaluates to False.

Say you want to make sure that an object is a rectangle but not a square.
Because a non-square rectangle has a different length and width, you could
write a comparison to check that the length and width are not equal:

>>> width = 3
>>> length = 2
>>> width != length
True

The width != length expression asks whether the values of width and
length are different.

The result of this comparison is True because the width variable and the
length variable have different values.

figuring out What’s True and false with Booleans 87

But if these values are the same, the comparison returns False:

>>> width = 3
>>> length = 3
>>> width != length
False

The not equal to comparator also works with strings, integers, floats,
and Booleans, just like the equal to comparator.

Mission #19: am i standing in something
other Than air?
Let’s say you want to check whether you’re standing in something other
than air, such as water, lava, dirt, gravel, or any other type of block. In
Mission #18, you checked whether the block at your current position was
air, and you worked out how to check whether you were standing in water.
You could copy and paste the program many times, changing it slightly
each time to check for lava, dirt, gravel, and so on, one by one. But that
would be very boring. Instead, use the not equal to comparator to check
whether you’re underground, trapped in sand, at the bottom of the ocean,
or even drowning in lava!

Open the program from Mission #18 (swimming.py) and save it as notAir.py
in the booleans folder. Delete the last line of the program and replace it with
Listing 5-3.

u notAir = blockType == 0
mc.postToChat("The player is not standing in air: " + str(notAir))

Listing 5-3: Changes to the swimming program

The last line of this code will print whether you’re not standing in air.
The result of the comparison is stored in the notAir variable u. When the
comparison evaluates to True, the value of the notAir variable will be True,
and when the comparison evaluates to False, the value of the notAir variable
will be False.

But the comparison on the first line isn’t quite right u. It currently
checks whether the blockType is equal to air using the equal to comparator
(==). Instead it should check whether the blockType variable is not equal to
air using the not equal to comparator (!=). Change the first line to use the
not equal to comparator instead of the equal to comparator. This will check
whether the block at the player’s current position is not equal to air.

When you run the program, make sure it works when you’re standing
in air and when you’re underwater, in lava, in gravel, in sand, or teleported
into the ground. The message posted to the chat when the condition is True
is shown in Figure 5-3.

notAir.py

88 Chapter 5

Figure 5-3: Just taking a nice, relaxing swim in some water, which is not air.

greater Than and Less Than
When you need to figure out whether one value is bigger than another, you
use the greater than comparator. The greater than comparator will return
True when the value on the left is greater than the value on the right. If the
value on the left is less than or the same as the value on the right, the com-
parison will return False.

Say we have a minecart that can’t lift more than 99 blocks of obsidian.
As long our minecart’s lifting limit is greater than the number of obsidian
blocks it’s trying to lift, the blocks can be lifted:

>>> limit = 100
>>> obsidian = 99
>>> limit > obsidian
True

Brilliant! Our minecart can carry any number of obsidian blocks that
is less than 100, and 99 is less than 100, so limit > obsidian evaluates to True.
But what if someone adds another block of obsidian to the pile?

>>> limit = 100
>>> obsidian = 100
>>> canLift = limit > obsidian
False

Oh no, now the limit has been reached! The result is now False: 100 is
not greater than 100; it’s the same. Our minecart can’t lift the obsidian.

The less than comparator works the same way.

figuring out What’s True and false with Booleans 89

A van driving under a bridge needs to know whether it’s small enough
to fit under it:

>>> vanHeight = 8
>>> bridgeHeight = 12
>>> vanHeight < bridgeHeight
True

In this case, the van will fit because it’s smaller than the bridge height:
8 is less than 12. Later in its journey, the same van might encounter another
bridge that is too low to drive under:

>>> vanHeight = 8
>>> bridgeHeight = 7
>>> vanHeight < bridgeHeight
False

Because 8 is not less than 7, the result is False.

greater Than or equal To and
Less Than or equal To
Like the greater than comparator, the greater than or equal to comparator
determines whether one value is greater than another. Unlike the greater
than comparator, it will also evaluate to True if the values are the same.

Let’s say I’m giving stickers to all the people who came to see my amaz-
ing program presentation. I need to check whether I have enough stickers
for everyone:

>>> stickers = 30
>>> people = 30
>>> stickers >= people
True

 I have enough stickers: 30 is the same as 30, so stickers >= people
evaluates to True. But say one of my friends thinks the stickers look cool
and wants one. Now, 31 people want stickers:

>>> stickers = 30
>>> people = 31
>>> stickers >= people
False

I don’t have enough stickers: 30 is not greater than or equal to 31. It
looks like my friend can’t have a sticker.

By now, you’re ready to tackle almost any comparison. While you’re
at IDLE, try out the less than or equal to comparator (<=) to see how it
works, too.

90 Chapter 5

No t e The greater than, greater than or equal to, less than, and less than or equal to com-
parators don’t work with strings, although they do work with integers, floats, and
Booleans.

Mission #20: am i above the ground?
The y-coordinate of a player in Minecraft shows how high they are in the
game. Blocks are also stored using coordinates, which allows you to get the
block types at specific coordinates using getBlock() and to create blocks at
specific coordinates using setBlocks().

To get the highest block in Minecraft, you can use the getHeight()
function. The function takes an x- and z-coordinate and returns
the y-coordinate for the highest block at that position, as shown in
Listing 5-4.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z
highestBlockY = mc.getHeight(x, z)
mc.postToChat(highestBlockY)

Listing 5-4: Code to find the y-coordinate of the highest block at the player’s current
location

This program gets the current position of the player, gets the
y-coordinate for the highest block at the player’s position, and then
posts this value to Minecraft chat.

By combining this program with a greater than or equal to compara-
tor, you can check whether or not the player is above the ground. Let’s do
that now.

Copy the program in Listing 5-4 and save it as aboveGround.py. Change
the program to check whether the player’s y-coordinate is greater than the
highestBlockY variable. Then, add code to post the result to chat in the for-
mat of "The player is above the ground: True/False".

H i N t Remember that you can store the result of a comparison in a variable. For
example, if I wanted to check whether y is greater than or equal to 10 and store
the answer in a variable called highEnough, I would use the following statement:
highEnough = y >= 10.

Run the program when you’ve made these changes. The output for the
program’s False outcomes are shown in Figure 5-4.

above Ground
.py

figuring out What’s True and false with Booleans 91

Figure 5-4: Now I’m in a cave, so Python is very much correct that I’m not above ground.

Mission #21: am i Close to home?
As you wander around the Minecraft world, you might get lost and forget
where your home is. You could wander for hours only to discover you were
close to home when you first lost your way.

With a single line of code, you can check how far you are from any
coordinates in the game. For example, you could use the coordinates of
your house and your current position to calculate how far away you are. By
adding a comparator, you can also check whether or not you are within a
certain number of blocks from your house. We’ll say you’re close to home if
you’re only 40 blocks away.

Let’s write a Python program to check this for you! The code for this mis-
sion should check how far you are from your house, as shown in Listing 5-5.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
import math

u homeX = 10
homeZ = 10
pos = mc.player.getTilePos()
x = pos.x
z = pos.z

v distance = math.sqrt((homeX - x) ** 2 + (homeZ - z) ** 2)
w mc.postToChat(distance)

Listing 5-5: Code that outputs the distance to your house

This code assumes your house is at the coordinates x = 10 and z = 10,
which are set with the homeX and homeZ variables u. In this case, we don’t
need to know about the y-coordinate. I use the getTilePos() function to get
the player’s position and set the x and z values.

farFromHome
.py

92 Chapter 5

To calculate the distance variable, we use a formula called the Pythagorean
theorem. It calculates the length of a side of a right triangle, and you can use it
in Minecraft to work out the distance between two points. You may have seen
this formula written in math class as a2 + b2 = c2, where
a and b are the two legs of a right triangle, and c is the
hypotenuse of the triangle, as shown in Figure 5-5.
At v, we’re solving for c, which is represented by the
variable distance.

Save Listing 5-5 as farFromHome.py in the booleans
folder.

To finish the program, use a less than or equal to
comparator to check whether the value of the distance
variable is less than or equal to 40 and post the result
to chat in the format of "Your house is nearby: True/
False" w. Use concatenation to combine the string
with the result of the comparison. Update the contents
of the postToChat() w function to output the string.

Test the program. When you are within 40 blocks of your house, you
should receive a True message; when you aren’t within 40 blocks, you should
see a False message. Figure 5-6 shows the program in operation.

Figure 5-6: I’m definitely within 40 blocks of my house. In fact, there’s the front door!

Logical operators
Combining two or more comparators is often necessary in programs. You
might want to determine whether two conditions are True: for example,
you might want a car that is red and costs less than $10,000.

To combine two or more comparators, you use logical operators. Like
comparators, you can use logical operators anywhere that you would use
a Boolean value. Logical operators are also called Boolean operators. You’ll
learn about three kinds of logical operators: and, or, and not.

a

b

c

Figure 5-5: A right
triangle

figuring out What’s True and false with Booleans 93

and
Use the and operator when you want to check whether two comparisons are
both True. For an expression with an and operator to be True, both compari-
sons must be True. If either comparison is False, the statement will return
False.

Say I want to find out whether a person is older than 18 and owns a car.
I might write the following program:

>>> age = 21
>>> ownsCar = True
>>> age > 18u and ownsCar == Truev
True

Here, we’re combining two comparators at u and v with and. Because
the age of the person is greater than 18 (age > 18 evaluates to True) and they
own a car (ownsCar == True), the entire expression age > 18 and ownsCar == True
evaluates to True.

If one of these comparisons was False, the statement would evaluate to
False. Say the person doesn’t own a car but is older than 18:

>>> age = 25
>>> ownsCar = False
>>> age > 18 and ownsCar == True
False

Here, age > 18 evaluates to True and ownsCar == True evaluates to False,
making the entire expression False.

Table 5-1 summarizes the results of all of the possible Boolean combi-
nations and results when using the and operator.

Table 5-1: The Different Combinations of True and False with the and Operator

Comparison A Comparison B A and B

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

Mission #22: am i entirely Underwater?
In Mission #18 (page 85), you checked whether the player was swimming.
The program returned True or False depending on whether the block at
the player’s current position was equal to water. That told you whether the
player’s legs were underwater, but it would give the same result whether or
not the player’s head was underwater. How would you check whether both
the player’s legs and head were underwater?

94 Chapter 5

With a few simple changes to include an and operator, the swimming.py
program can check whether the player’s legs and head are underwater.
Open swimming.py and save it as underwater.py.

Make the following changes so the program checks whether the player
is entirely underwater:

1. Add a second variable that checks the block type at the player’s y posi-
tion + 1. This variable stores the block type at the player’s head. Call
this variable blockType2.

2. Check whether blockType is equal to water and whether blockType2 is
equal to water.

3. Post the result of the comparison to chat with this message: "The player
is underwater: True/False".

H i N t To check whether blockType and blockType2 are equal to water, you can use the
and operator. First, you check whether blockType is equal to water with the expres-
sion blockType == 9. Second, you check whether blockType2 is equal to water with
the expression blockType2 == 9. To combine the two, you put an and operator in the
middle, like this: blockType == 9 and blockType2 == 9.

When you run the program, make sure you test that it works in all three
cases (when the player is above the water, when only the player’s legs are in
the water, and when they’re entirely under the water). Figure 5-7 shows an
example of the program working.

Figure 5-7: The player is under the water, running along the seafloor.

figuring out What’s True and false with Booleans 95

BonUs oBJeCTiVe: aM i in a TUnneL?

Check whether the player is or isn’t in a dirt tunnel or a cobblestone tunnel . To do
this, you’ll need to check the blocks above and below the player .

or
The or operator works differently than and. When either or both compari-
sons are True, the or expression will return True. As long as one comparison
is True, the expression will still be True. But if neither comparison is True, the
expression will evaluate to False.

Let’s say I want to adopt a cat that is either black or orange in color. I
could use the following code to get user input, and then see if the value of
the string is either "black" or "orange":

catColor = input("What color is the cat?")
myCatNow = catColor == "black" or catColor == "orange"
print("Adopt this cat: " + str(myCatNow))

As long as the catColor is either "black" or "orange", I’ll adopt it. But if it’s
a different color, like "gray", myCatNow would be False and I wouldn’t adopt
the cat.

Table 5-2 contains all of the possible combinations and results of using
the or operator with Booleans.

Table 5-2: The Different Combinations of True and False with the or Operator

Comparison A Comparison B A or B

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

Mission #23: am i in a Tree?
The programs you’ve created so far in this chapter have displayed True or
False depending on whether the player is standing on or in a particular
block type. But what if you wanted to check whether the player is in a tree?
How would you do this? Because trees are made of wood and leaves, you’d
have to check whether the player is standing on wood or leaves.

Let’s write a program. Open swimming.py again and save it as a new pro-
gram called inTree.py.

96 Chapter 5

Change the program so it checks the type of block that is one block
below the player. You’ll want to use the or operator to check whether the
block below the player is leaves (block type 18) or wood (block type 11),
then post the result to chat.

Recall that you can check the block below the player using y = y - 1.

No t e Although trees and leaves both come in different colors, all trees share the same
block ID, and all leaves share the same block ID. (The only exceptions are Acacia
and Dark Oak wood and leaves, which are a different block type. For now, let’s just
ignore Acacia and Dark Oak.) The color is set using a second value, which you’ll
learn about in a later chapter.

When you run the program, you should see the same output as in
Figure 5-8.

Figure 5-8: I’m in a tree.

not
The not operator is quite a bit different from the and and or operators. It’s
used on a single Boolean value or comparison and simply changes its value
to the opposite.

In other words, not changes True to False and False to True:

>>> not True
False
>>> not False
True

figuring out What’s True and false with Booleans 97

The not operator is handy when you start combining it with other logi-
cal operators. Let’s assign the value of timeForBed if you’re not hungry and you
are sleepy.

>>> hungry = False
>>> sleepy = True
>>> timeForBed = not hungry and sleepy
>>> print(timeForBed)
True

The not operator only applies to the Boolean it is in front of. Here
it reverses the value of the hungry variable and leaves the sleepy variable
alone. Because we set hungry to False earlier, writing not hungry now changes
the value to True. The value of sleepy is True. Both values are now True, so
timeForBed is True.

Mission #24: is This Block not a Melon?
You’re hungry and want to know whether you have food at home. Your
favorite food is melon, which you always store in the same space in your
house. But you can’t remember if you have any melon left, and you need
to decide whether to get food on your way home.

Thankfully, you’re learning Python! With a bit of brain power, you can
write a Python program to check whether you have a melon at home.

In this mission, you’ll create a program that says whether or not you
need to find food before you return to your Minecraft house. The program
will check whether there is a melon at certain coordinates. The coordinates
you’ll check are up to you—they could be in your house, on your farm, or
anywhere you might decide to keep some melon. Placing a melon at these
coordinates is also up to you.

Copy Listing 5-6 and save it as notAMelon.py.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

x = 10
y = 11
z = 12

u melon = 103
v block = mc.getBlock(x, y, z)

w noMelon = # Check the block is not a melon

x mc.postToChat("You need to get some food: " + str(noMelon))

Listing 5-6: The start of the code to check whether there is a melon at a specific location

notAMelon.py

98 Chapter 5

The code is meant to check whether the block at a specific position is
a melon block. I’ve included a variable called melon that stores the block ID
of a melon (103) u, and I’ve called the getBlock() method and stored the
result in a variable called block v. To complete this program, you need to
finish the line at w that checks whether the melon variable is not equal to
the block variable. The result should be stored in the noMelon variable so that
it can be output to the Minecraft chat on the last line x.

You can write the check w to see if the melon and block variables are not
equal in two ways: you can use the not equal to comparator or the not logi-
cal operator. Although the program will work either way, try using the not
logical operator for this program.

Run the program when you’ve made the changes. The result should
look something like Figure 5-9.

Figure 5-9: There’s a melon on my farm, so I don’t need to find some other food.

BonUs oBJeCTiVe: a WeLL-sToCkeD LaRDeR

Change the block type that the program checks for . You could check if corn is
growing on your farm or if someone’s stolen your front door .

Logical operator order
You can combine as many logical operators as you want in a single statement.
For example, here’s a pretty fancy combination using and, or, and not:

>>> True and not False or False
True

figuring out What’s True and false with Booleans 99

This code evaluates to True. Are you surprised? In this example, the not
False part of the statement is evaluated first to True. This is equivalent to:

>>> True and True or False
True

The and is then evaluated, and True and True evaluates to True, which is
equivalent to:

>>> True or False
True

Finally, the or is evaluated, so True or False becomes True.
When Python evaluates logical operators, it uses a certain order. If you

get the order wrong, you might get a result you weren’t expecting! Here’s
what Python evaluates first, second, and third:

1. not

2. and

3. or

Practice creating statements with logical operators in IDLE and see if
you can guess the result of each.

is My number Between Two others?
Often, you’ll want to check whether a value is less than one value and
greater than another. Let’s imagine you wanted to make sure that you had
between 10 and 20 wolves, because you love wolves and want more than 10,
but 20 or more might cause problems as you’d run out of food. You could
test for this condition by using an and operator:

wolves = input("Enter the number of wolves: ")
enoughWolves = wolves > 10 and wolves < 20
print("Enough wolves: " + str(enoughWolves))

But you could also do it another way. Instead of using the and operator,
write the variable once in the middle of two comparisons:

wolves = input("Enter the number of wolves: ")
enoughWolves = 10 < wolves < 20
print("Enough wolves: " + str(enoughWolves))

If you run either of these programs and enter a number between 10
and 20 but not equal to either, then enoughWolves will be True. You can do the

100 Chapter 5

same using the greater than or equal to operators (>=) and the less than or
equal to operators (<=):

wolves = input("Enter the number of wolves: ")
enoughWolves = 10 <= wolves <= 20
print("Enough wolves: " + str(enoughWolves))

In this case, entering 10 or 20 would also give enoughWolves a value
of True.

Mission #25: am i in the house?
With Python code, you can make cool actions happen when you walk onto
a certain area on the map. You could make a secret door open when the
player walks onto a specific block, or you could trap them in a box when
they walk over a trap. In this mission, I’ll show you how to detect if someone
is in your Minecraft house.

In Mission #8 (page 55), you created a program that automatically
builds the walls, ceiling, and floor of a building. You saved the program as
building.py in the math folder. Open this program.

Read the code in the building.py program and make a note of the values
of the width, height, and length variables (by default the values were 10, 5,
and 6, respectively). Also, write down the coordinates that you are currently
standing at. Run the building program to build a house.

Now that you’ve created a building, we can write a program like List-
ing 5-7 that checks whether the player is standing inside it.

from mcpi.minecraft import Minecraft
mc = minecraft.create()

u buildX =
buildY =
buildZ =

v width = 10
height = 5
length = 6

pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z

w inside = buildX < x < buildX + width and

Listing 5-7: The start of the program to check whether the player is inside their house

Listing 5-7 is supposed to check that the player’s x-coordinate is within
the building created by building.py, but the program isn’t finished! Your job
is to make sure the program also checks the y- and z-coordinates against
the coordinates of the house that you built with the building.py program.

insideHouse
.py

figuring out What’s True and false with Booleans 101

Copy Listing 5-7 into a new file and save it as insideHouse.py. You’ll com-
plete the program so it checks whether the player is inside the building.

To complete the program, do the following:

1. Add the coordinates of the building (these are the coordinates you
were standing at when you ran the building.py program) u.

2. Correct the width, height, and length variables if they are different from
the ones used in your building.py program v.

3. Complete the comparison for the inside variable so it checks whether
the player’s coordinates are inside the building. The first part, to check
whether the x position is in the house, has been done for you w. You
need to add the comparisons for the y and z positions. The expressions
are similar to the one that I’ve included for the x position (buildX < x <
buildX + width).

4. Post the value of the inside variable to the chat.

5. When you’ve made the changes, save and run the program. You should
see output similar to Figure 5-10.

Figure 5-10: I’m in my bedroom, which is indeed inside my house.

What You Learned
In this chapter, you used Booleans, comparators, and logical operators to
answer questions in your programs. In Chapter 6, you’ll write programs
that make decisions based on the answers to these questions. You’ll check
whether a condition is true or not, and you’ll tell the program to run some
code if the condition is true or run different code if it’s false. In Chapter 7,
your programs will keep running a piece of code as long as a condition
is true and stop if the condition becomes false. This is the real power of
Booleans and comparators. They help you control which code gets run in
your program and exactly when the code gets run.

6
Making Mini-gaMes WiTh

if sTaTeMenTs

In Chapter 5, you learned how to ask
questions in Python. You used compari-

son operators (like ==, !=, >, <, and so on)
and logical operators (and, or, not) to find out

whether a condition or set of conditions evaluated to
True or False. In this chapter, you’ll use the answers
to these questions—the results of the conditions you
test—to decide what code to run.

You make decisions based on conditions every day. Is it nighttime? If
so, you wear your diamond armor and bring a sword to fight off monsters.
If not, you might leave all your gear in your secret base. Are you hungry? If
that’s true, you eat some bread or an apple. If not, you might go off on
a grand adventure to work up an appetite. Just as you make decisions in
everyday life, your programs need to do different tasks depending on a
condition.

We’ll use a bit of Python code to help your programs make decisions.
if statements tell your program whether or not to run a particular piece of

104 Chapter 6

code. An if statement means “If this condition is true, run this code.” For
example, you could check whether the player is standing in a forbidden
room and turn the floor to lava if they are. Or, you could check whether
they placed a certain block at a certain location and open a hidden door
if they did. Using conditions and if statements, you can begin to make your
own mini-games in Minecraft.

Using if statements
Being able to control the execution of your program is a very powerful
ability; in fact, it’s crucial to coding! Programmers sometimes call this con-
cept flow control. The easiest way to add this kind of control is by using the
simple if statement, which runs code when a condition is True.

An if statement has three parts:

•	 The if operator

•	 A condition to test

•	 A body of code to run if the condition is True

Let’s look at an if statement in action. The following code will print
"That's a lot of zombies." only if there are more than 20 zombies. Other-
wise, it won’t do anything.

zombies = int(input("Enter the number of zombies: "))
if zombies > 20:
 print("That's a lot of zombies.")

Here, zombies > 20 is the condition we’re testing, and print("That's a
lot of zombies.") is the body of the if statement; it’s the code that runs if
zombies > 20 is True. The colon (:) at the end of the if line tells Python that
the next line will start the body of the if statement. The indentation tells
Python which lines of code make up this body. Indentation means there is
extra space at the beginning of a line of text. In Python you indent lines
by four spaces. If we wanted to add more lines of code to run inside the if
statement, we would put the same number of spaces in front of all of them,
indenting them just like print("That's a lot of zombies.").

Try running this code a few times, testing each condition, and see what
happens. For example, try entering a number that is less than 20, the num-
ber 20, and a number that is greater than 20. Here is what happens if you
enter 22:

Enter the number of zombies: 22
That's a lot of zombies.

Okay, the result makes sense. Let’s run it another time and see what
happens when the condition isn’t met.

Enter the number of zombies: 5

Making Mini-games with if statements 105

Notice that nothing happens if the condition is False. The body of the
if statement is entirely ignored. An if statement will execute the code in
its body only if the condition is True. When the if statement is finished, the
program continues on the line after the if statement.

Let’s look at another example to better understand how this works. The
following code uses an if statement to check whether a password is correct:

password = "cats"
attempt = input("Please enter the password: ")
if attempt == password:
 print("Password is correct")
print("Program finished")

The expression after the if statement is the condition: attempt ==
password. The indented line after if attempt == password: is the if statement’s
body: print("Password is correct").

The code will print "Password is correct" only if the value stored in the
attempt variable is the same as the value in the password variable. If they are
not the same, it will not print anything. The last line will run and print
"Program finished" whether or not the body of the if statement runs.

Now let’s try something a little more explosive.

Mission #26: Blast a Crater
You’ve already learned how to make the player teleport and jump high.
Now you’ll make the blocks around the player disappear.

When the program runs, the blocks above, below, and around the player
will turn into air. This power is very destructive, so be careful when you use it.
To be safe, the program will ask the user whether they are sure they want to
destroy the blocks, and it will only do so if the user’s answer is yes.

Listing 6-1 creates a crater around the player by deleting all the blocks
above, below, and around them. Then it posts "Boom!" to chat. Save this pro-
gram as crater.py in a new folder called ifStatements.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

answer = input("Create a crater? Y/N ")

u # Add an if statement here

pos = mc.player.getPos()
v mc.setBlocks(pos.x + 1, pos.y + 1, pos.z + 1, pos.x - 1, pos.y - 1, pos.z - 1, 0)

mc.postToChat("Boom!")

Listing 6-1: This code creates a crater, no matter what the user enters.

The answer variable uses the input() function to ask the user whether
they want to create a crater. At the moment, however, the code will create
a crater no matter what the user enters—Y, N, something else, or nothing.

crater.py

106 Chapter 6

To complete this program, you’ll need to add an if statement to check
whether the user has input Y in response to the question. You can add that
logic to the game at u. Remember that the user’s response is stored in the
answer variable, so your if statement should check the answer variable. After
you add your if statement, the program should only run the last three lines
of code when the player inputs Y. To do this, you must indent these lines by
four spaces.

Keep in mind that the very last argument of the setBlocks() function
should be the block type you want to set. Here, the last argument is 0, the
block type for air. In other words, the crater is created using setBlocks() to
set the blocks to air v, making it look like all the blocks around the player
have been destroyed. By adding and subtracting 1 to the values of pos.x,
pos.y, and pos.z, the code places air blocks around the player’s position as
a 3 by 3 cube. This is the crater.

After you’ve made the changes to the program, save it and run it. The
question Create a Crater? Y/N will appear in the Python shell. Enter either Y
or N. Make sure the Y is a capital letter, or the program won’t work properly.

When the user enters Y, a crater will appear, as shown in Figure 6-1.

Figure 6-1: Boom! There’s a crater around me.

BonUs oBJeCTiVe: BUiLD a hoUse

What else can you make this program do? Try changing the program to build a
house around the player instead of creating a crater .

Making Mini-games with if statements 107

else statements
Now we’ll look at a more advanced statement to use if we want to run a
different piece of code when the if condition is False. That’s where the else
statement comes in.

An else statement works together with an if statement. First you write
an if statement to run some code if the condition is True. After the if, you
write an else statement to run other code when the condition evaluates to
False. It’s like you’re saying, “If the condition is true, do this. Otherwise, do
something else.”

The following program will print "Ahhhh! Zombies!" if more than
20 zombies are in a room; otherwise, it will print "You know, you zombies
aren't so bad."

zombies = int(input("Enter the number of zombies: "))
if zombies > 20:
 print("Ahhhh! Zombies!")
else:
 print("You know, you zombies aren't so bad.")

Like the if statement, the else statement uses a colon and indentation
to indicate which code belongs to the body of the else statement. But the
else statement can’t be used by itself; an if must come before it. The else
statement does not have its own condition; the body of the else statement
runs only if the if statement’s condition (zombies > 20 in this example) is
not True.

Going back to the earlier password example, we can add an else state-
ment to print a message when the password is incorrect, like this:

password = "cats"
attempt = input("Please enter the password: ")
if attempt == password:
 print("Password is correct.")
else:
 print("Password is incorrect.")

When the value of attempt matches the value of password, the condition
will be True. The program runs the code that prints "Password is correct."

When attempt does not match password, the condition will be False. The
program runs the code that prints "Password is incorrect."

What if an else statement is used without an if statement? For example,
if a program had just these two lines:

else:
 print("Nothing happened.")

Python wouldn’t understand what was going on, and you’d get an error.

108 Chapter 6

Mission #27: Prevent smashing, or not
In Mission #17 (page 82), you made a program that stopped the
player from smashing blocks by making the world immutable using
mc.setting("world_immutable", True). The program helped you protect
your precious creations from accidents or vandals. But even though it
was useful, the program wasn’t very flexible. Turning it off required a
second program, which is pretty inconvenient!

Using an if statement, an else statement, and console input, you can
make a program that turns immutable on and off. Your program will ask
whether you want the blocks to be immutable and then set immutable to
True or False depending on your response.

Open IDLE and create a new file. Save the file as immutableChoice.py in
the ifStatements folder. Follow these instructions to complete the program:

1. The program needs to ask the user whether they want to make the
blocks immutable:

"Do you want blocks to be immutable? Y/N"

Add this string as an argument inside input() and store the input in
a variable called answer.

2. The program checks whether the value stored in the answer variable is
"Y". If it is, it runs the following code:

mc.setting("world_immutable", True)
mc.postToChat("World is immutable")

Copy this code and put it in an if statement so it runs only if the
value of the answer variable is equal to "Y". Don’t forget to indent!

3. The program runs the following code if the answer variable is not "Y".

mc.setting("world_immutable", False)
mc.postToChat("World is mutable")

Copy this code and put it in an indented else statement.

Save and run the program. When it asks whether or not you want to
make the blocks immutable, type Y or N and press enter. Test the program.
When you choose to make blocks immutable, they shouldn’t break; other-
wise, they should be breakable.

Figure 6-2 shows the output message and question in the shell.
You’ll get the same result if you enter "N" as you will if you enter non-

sensical input like "banana". Why do you think this happens?

Making Mini-games with if statements 109

Figure 6-2: I can choose to make the world immutable, and now I can’t destroy any of the
blocks.

BonUs oBJeCTiVe: a BeTTeR inTeRfaCe

We could make this program more user friendly by using Boolean operators to
accept variations on "Yes" and "No", such as lowercase "yes", uppercase "YES",
and a single-character response "y" . Give it a shot!

elif statements
Using an if statement and an else statement, your program was able to run
some code if a condition was True and different code if the condition was
False. But what if you want more than two blocks of code to run?

To do this, you can use an else-if statement, or elif in Python. First you
write an if statement, then you write an elif statement, and then you write
an else statement. When you use these statements together, you’re saying,
“If a condition is True, run this code. Otherwise, if a second, different condi-
tion is True, run some other code. Finally, if neither of those two conditions
is True, run some other code.”

Let’s take a look at it. Say you’re deciding what flavor to buy at the ice
cream shop. You might say, “If there’s any chocolate ice cream left, I’ll get
that. If there isn’t chocolate, but there’s strawberry, I’ll get strawberry. If
there isn’t chocolate or strawberry, I’ll get vanilla.”

In a program, this decision process looks like this:

hasChocolate = False
hasStrawberry = True

110 Chapter 6

if hasChocolate:
 print("Hooray! I'm getting chocolate.")
elif hasStrawberry:
 print("I'm getting the second best flavor, strawberry.")
else:
 print("Vanilla is OK too, I guess.")

The first two lines just set the stage for the scenario: we’ll assume that
today, the ice cream shop doesn’t have any chocolate left but does have
strawberry. So we set hasChocolate to False and hasStrawberry to True.

Next is the logic of the decision process: an if statement prints "Hooray!
I'm getting chocolate." if hasChocolate is True. But in this example, it’s False,
so that message isn’t printed. Instead, the program goes on to the elif state-
ment and tests whether hasStrawberry is True. Because it is, the code in the
body of the elif statement runs and prints "I'm getting the second best
flavor, strawberry."

As you can see, this elif statement has its own condition and body. The
elif statement executes only when the condition of the if statement is False
and the condition of the elif statement is True.

Finally, the else statement after the elif statement executes when the if
statement’s condition is False and the elif statement’s condition is also False.
In this example, the else statement’s code would run if both hasChocolate and
hasStrawberry were False, printing "Vanilla is OK too, I guess."

For another example, let’s go back to the program that printed "Ahhhh!
Zombies!" if more than 20 zombies were in a room. We can add an elif state-
ment to test another condition when the if statement’s condition is False:

zombies = int(input("Enter the number of zombies: "))
if zombies > 20:
 print("Ahhhh! Zombies!")
elif zombies == 0:
 print("No zombies here! Phew!")
else:
 print("You know, you zombies aren't so bad.")

We add an elif statement to compare zombies and 0. If zombies == 0 is
True, the code in the elif statement’s body prints "No zombies here! Phew!"
If this elif statement’s condition is False, the code moves on to the else
statement and prints "You know, you zombies aren't so bad."

Mission #28: offer a gift
Let’s create a program that checks whether a certain block has a gift placed
on it and outputs different responses to chat depending on what the gift is.

The program will allow you to place one of two different gifts. One
gift is a diamond block, and because not everyone has that many diamond
blocks, the other is a tree sapling.

Making Mini-games with if statements 111

Listing 6-2 checks whether a block at position 10, 11, 12 is a diamond
block or a tree sapling or if there’s no gift. However, the program is not
complete.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
x = 10
y = 11
z = 12
gift = mc.getBlock(x, y, z)

if gift is a diamond block
u if

else if gift is a sapling
v elif

else:
 mc.postToChat("Bring a gift to " + str(x) + ", " + str(y) + ", " + str(z))

Listing 6-2: The start of the code that checks whether you’ve delivered a gift

Create a new file in IDLE and save it as gift.py in the ifStatements
folder. Copy Listing 6-2 into the file. The code that gets the block type has
been done for you. The block type is stored in the gift variable. The else
statement will run if neither a diamond block nor a tree sapling has been
placed, and it will post a message to chat instructing the player to bring a
gift to these coordinates. You can change the coordinates in the x, y, and z
variables to any location you like.

To complete the program, follow these steps:

1. Complete the if statement at u so it checks whether the gift variable
contains the value for a diamond block (57). If it does, make it post this
message to chat: "Thanks for the diamond."

2. Add an elif statement under the second comment at v that checks
whether the gift variable contains the value for a tree sapling (6). If it
does, make it post this message to chat: "I guess tree saplings are as
good as diamonds..."

After making the changes, save and run the program. Try putting a
diamond block at the coordinates and see what happens. Do the same with
a tree sapling, and also try leaving nothing at the coordinates. Don’t forget
that the sapling needs to be planted in a dirt or grass block! Do you get the
correct response in each situation? You’ll need to rerun the program each
time to check that it works. Figure 6-3 shows my working program.

gift.py

112 Chapter 6

Figure 6-3: I’ve placed a tree sapling as a gift.

BonUs oBJeCTiVe: PRaise The MeLon goD

You can use lots of different blocks in this mission . Try changing the code so it
checks whether you’ve placed a gold block or a melon as a gift . Try writing code
that destroys the gift block once you’ve placed it .

Chaining Together elif statements
There is no limit to the number of elif statements that you can include with
an if statement. You can have one elif statement or 100 elif statements.
Python just evaluates them one after the other.

Here’s an example using the “number of zombies” program:

zombies = int(input("Enter the number of zombies: "))
if zombies > 20:
 print("Ahhhh! Zombies!")

u elif zombies > 10:
 print("There's just half a Minecraft zombie apocalypse.")
elif zombies == 0:
 print("No zombies here! Phew!")
else:
 print("You know, you zombies aren't so bad.")

Here we’ve added a new elif statement at u, right after the if statement,
to check if more than 10 zombies are in the room. If there are, it prints
"There's just half a Minecraft zombie apocalypse."; otherwise, the code moves
on to the next elif.

Making Mini-games with if statements 113

The order of the if and elif statements is very important. If you put
them in the wrong order, some of the code may never be reached, and your
program will not run as expected.

For example, if we swap the if statement’s condition with the first elif
statement’s condition, we run into a problem:

zombies = int(input("Enter the number of zombies: "))
if zombies > 10:
 print("There's just half a Minecraft zombie apocalypse.")
elif zombies > 20:
 print("Ahhhh! Zombies!")
elif zombies == 0:
 print("No zombies here! Phew!")
else:
 print("You know, you zombies aren't so bad.")

Why is this wrong? Let’s look at what happens when zombies is, say, 22.
Because 22 is greater than 10, the first if statement’s condition, zombies >
10, is True, and the if statement’s code runs. Once this happens, none of
the other elif and else statements will run. The program never reaches
elif zombies > 20 because it already ran the body of the if statement. This
is a bug.

If you ever get unexpected results from your if statements, always
double-check that your if and elif statements are in the correct order.

Mission #29: Teleport to the Right Place
When if and elif statements are in the wrong order, code you expect to
run will not run, and code you don’t expect to run will run. This can cause
weird bugs in your programs. To fix the program, you need to put the con-
ditions in the right order. Let’s give this a try.

Listing 6-3 won’t work. It’s supposed to teleport the player to different
locations depending on how many points the user enters. The points match
up to the correct locations, but it looks like the conditions are not in the
right order.

The more points a player has, the better the location. Here’s the code.
The conditions are set using setPos() for each location transport.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

points = int(input("Enter your points: "))
if points > 2:
 mc.player.setPos(112, 10, 112)
elif points <= 2:
 mc.player.setPos(0, 12, 20)
elif points > 4:
 mc.player.setPos(60, 20, 32)

teleport Score
.py

114 Chapter 6

elif points > 6:
 mc.player.setPos(32, 18, -38)
else:
 mc.postToChat("I don't know what to do with that information.")

Listing 6-3: Depending on your points, you will teleport to a different location.

There’s a separate condition for greater than 6 points, greater than 4
points, greater than 2 points, and then 2 or fewer points.

The last line, inside the else statement, won’t run unless the user inputs
something totally weird, like a string of text instead of their points, or
enters nothing at all.

Create a new file in IDLE and save it as teleportScore.py in the ifStatements
folder. Change the program so the conditions are in the correct order and
all the locations can be reached. Test the program with different numbers
of points to make sure the code for each teleport destination can run. Fig-
ure 6-4 shows the program not working.

Figure 6-4: I didn’t expect to end up here!

Because the program doesn’t work at the moment, when I enter 5, it
teleports me to the location for more than 2 points, even though I should
go to the location for more than 4 points.

BonUs oBJeCTiVe: BeaM Me UP, sCoTTY

Create a program that allows you to input a location you want to teleport to as a
string, such as "castle" . Use if statements and elif statements to choose which
location you want to teleport to . For example, "sea fortress" will teleport you to
one location and "tree house" will teleport you to another .

Making Mini-games with if statements 115

nested if statements
Say you have an if statement, and if its condition is True, you want to test
another condition (and run some code if this second condition is True).
For example, if you’re trying to make the entrance to your home base extra
secret, you might write some code that checks whether you’re standing on
a switch. If that’s true, another line of code checks whether you’re holding
the secret item that will unlock the door. How would you do that?

You can put one if statement inside the body of another if statement.
This is known as a nested if statement.

Listing 6-4 is an example of a nested if statement. A simple cash machine
checks whether you have enough money and then asks you to confirm your
withdrawal if you do. If you confirm, the program performs the withdrawal.

withdraw = int(input("How much do you want to withdraw? "))
balance = 1000

u if balance >= withdraw:
 confirm = input("Are you sure? ")

v if confirm == "Yes":
 print("Here is your money.")
else:
 print("Sorry, you don't have enough money.")

Listing 6-4: An imaginary cash machine written with Python

Notice that the second if statement is indented inside the first if
statement. If the outer if statement’s condition u is True, you have enough
money in your account, and the line confirm = input("Are you sure? ") runs.
Then, if the inner if statement’s condition v is True, the code prints "Here
is your money."

Mission #30: open a secret Passage
In this mission, you’ll expand on the previous example a bit. You’ll create
a building with a secret passage that opens only when a diamond block is
placed on a pedestal. When any other type of block is placed on the pedes-
tal, the floor will turn to lava!

First, build a building. To do this quickly, find the building.py program
(page 56) in the math folder and run it. Don’t add a door to the building.
Outside, where you want to code the entrance to the building, place a single
block to represent the pedestal. When you place a diamond block on top of
the pedestal, the code will open a secret entrance in the side of the build-
ing. Listing 6-5 provides some skeleton code that you can use to get started.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

x = 10
y = 11
z = 12

secretDoor.py

116 Chapter 6

gift = mc.getBlock(x, y, z)
if gift != 0:
 # Add your code here
else:
 mc.postToChat("Place an offering on the pedestal.")

Listing 6-5: The start of the code to open a secret door when you place a gift on a
pedestal

Create a new file in IDLE and save it as secretDoor.py in the ifStatements
folder. Change the coordinates in this program to match the location where
your diamond block key will need to be placed in your Minecraft world.

Copy Listing 6-5 and add code for these tasks:

•	 If a diamond block (57) is on the pedestal, open a secret passage to the
secret room. (Hint: To create an opening in the building, try setting
the blocks to air.)

•	 When a block that is not diamond is on the pedestal, make the floor
under the player turn to lava (10).

You’ll need to use a nested if statement to complete this program.
Because this is a more complex program, you should build and test it in

stages. When you’ve added a feature, run the program and make sure that
part works before moving on. Debugging small code pieces is easier than
fixing lengthy code pieces. Figure 6-5 shows the secret passage opening.

Figure 6-5: The secret passage to the temple is now open.

BonUs oBJeCTiVe: esCaLaToR

What else could you make by changing the secretDoor.py program? Could you
make an automatic door that detects when the player is next to it or an escalator
that automatically moves the player up some stairs when they stand at the bottom?

Making Mini-games with if statements 117

Using if statements to Test a Range
of Values

As you learned in Chapter 5, you can determine whether one value is
between two other values in Python. Because a range check evaluates to
True or False, you can use a range check as the condition in an if statement,
just like you’d use a simple less than/greater than or equal to/not equal to
comparison. Any expression that evaluates to True or False can be a condi-
tion of an if statement.

Say you’ve spent all day gathering ingredients to bake some delicious
Minecraft cakes. You find enough ingredients to bake 30 cakes, and now
you want to sell the cakes. The person buying cakes from you must buy 1
cake but less than 30; otherwise, you won’t sell cakes to that person. They
can’t hog all the cakes!

This code represents the cake situation:

cakes = int(input("Enter the number of cakes to buy: "))
u if 0 < cakes < 30:

 print("Here are your " + str(cakes) + " cakes.")
v elif cakes == 0:

 print("Don't you want some delicious cake?")
w else:

 print("That's too many cakes! Don't be selfish!")

If the cakes variable has a value between 0 and 30, such as 15, we print
"Here are your 15 cakes." u. Otherwise, we print a different message. If cakes
has a value of 0, we print "Don't you want some delicious cake?" v and if it’s
greater than 30, we print "That's too many cakes! Don't be selfish!" w.

We can test a more complicated expression by adding a Boolean opera-
tor. If I was really weird and didn’t want people to buy a quantity of bread
between 20 and 30, I could do this using the not operator:

bread = int(input("Enter the amount of bread: "))
if not 20 <= bread <= 30:
 print("Here are your " + bread + " breads.")
else:
 print("I don't sell that amount of bread for some reason.")

Here I use a not operator and the greater than or equal to comparisons
to test a range of values as the first condition. The range check determines
whether the amount of bread people want to buy is between 20 and 30.
Then, the not flips a True to False and a False to True. So if bread is in the
range, the overall expression evaluates to False, and we run the code in the
else statement. If bread is not in the range between 20 and 30—say it’s 40—
the overall expression is True, and we print "Here are your 40 breads."

If someone tries to buy 23 breads, I won’t let them. But 17 or 32 is
just fine.

118 Chapter 6

Mission #31: Restrict Teleport Locations
Remember the teleport program you created back in Chapter 2? It was
called teleport.py. In this mission, you’ll use range checks and if statements
to limit where the player can teleport to. If you’re using Minecraft on the
Raspberry Pi, there are places outside the game world that don’t exist, but
your program will still let you teleport to them. If you’re using the desk-
top edition of Minecraft, your world is much bigger, so you don’t have the
same restrictions as in the Pi edition of the game, but this program is still
useful. For example, you could use it in a game of hide-and-seek to limit
the area where players can hide.

Listing 6-6 is supposed to get the x-, y-, and z-coordinates from the
user’s input and teleport them to that position. But the program isn’t
complete.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
valid = True

x = int(input("Enter x: "))
y = int(input("Enter y: "))
z = int(input("Enter z: "))

if not -127 < x < 127:
 valid = False

check if y is not between -63 and 63

check if z is not between -127 and 127

if valid:
 mc.player.setPos(x, y, z)
else:
 mc.postToChat("Please enter a valid location")

Listing 6-6: A program to limit the locations that the player can teleport to

In order to restrict where the player can teleport to, we make a variable
called valid. This variable will store a True or a False to represent whether or
not all the coordinates in the destination are valid. We ask the user to input
values for x, y, and z. Then we have an if statement check whether the x
variable is not between −127 and 127. If it’s not, this x-coordinate is invalid,
and the valid variable is set to False.

When the program reaches the final if statement, setPos() will be
called only if valid is True. And valid will be True only if all three conditions
have been met. Otherwise, the player doesn’t get to teleport, and we post a
chat message telling the user to enter a valid location.

Create a new file in IDLE and copy Listing 6-6 into it. Save the program
as teleportLimit.py in the ifStatements folder.

teleportLimit.py

Making Mini-games with if statements 119

Complete the program so it uses if statements and range checks on the
y and z variables and sets valid to False if the values are not valid.

When you think you’ve finished the program, run it. The program
should teleport you when you enter values that are within the −127 to 127
range for the x and z variables and within the −63 to 63 range for the y
variable. When you enter a value that isn’t in these ranges, the program
shouldn’t teleport you. Figure 6-6 shows how the game should look when
the user enters an invalid number.

Figure 6-6: The z variable was too big, so I didn’t teleport.

BonUs oBJeCTiVe: sTaY aBoVe gRoUnD

One of the problems with the teleport program is that it can teleport you under-
ground, trapping you there . You can make changes to the program to stop the
player from teleporting underground . Compare the y-coordinate that the user
inputs with the getHeight() function to check that the player will teleport above
ground and stop them if they will teleport underground .

Boolean operators and if statements
In the previous mission, you used not in your if statements. You can also
use and and or. In this case, the if statement will act just like it did with one
simple condition: if the overall expression evaluates to True, the body of the
statement will run. Here’s a program that asks someone if they have cake
and whether they want to give us some cake:

hasCake = input("Do you have any cake? Y/N")
wouldShare = input("Would you give me some cake? Y/N")

120 Chapter 6

if hasCake == "Y" and wouldShare == "Y":
 print("Yay!")
else:
 print("Boo!")

This code uses the and operator, so Python will only print "Yay!" if the
person has cake (hasCake == "Y" is True) and is willing to share it (wouldShare
== "Y" is True). If either of these comparisons is not True, the code inside the
else statement will print "Boo!"

You can replace and with the or operator to make Python print "Yay!" if
the person either has cake or would be willing to share it:

hasCake = input("Do you have any cake? Y/N")
wouldShare = input("Would you give me some cake? Y/N")

if hasCake == "Y" or wouldShare == "Y":
 print("Yay!")
else:
 print("Boo!")

If either hasCake == "Y" or wouldShare == "Y" is True, the whole expression
evaluates to True, and we print "Yay!" The only time we print "Boo!" is if nei-
ther condition is True: the person doesn’t have cake and wouldn’t share it if
they did.

Let’s try using the not operator with an if statement:

wearingShoes = input("Are you wearing shoes? Y/N")
if not wearingShoes == "Y":
 print("You're not wearing shoes.")

This program asks the user to enter Y if they are wearing shoes and N if
they aren’t. It stores the input in wearingShoes. Next is a comparison between
wearingShoes and "Y" to see whether they’re equal. The not operator reverses
the result of a comparison—True becomes False and False becomes True—so
if the user entered Y, the comparison starts off True and not makes it False,
making the overall expression False. We don’t print a message. If the user
didn’t enter Y, the comparison is False and not makes it True. The overall
expression evaluates to True, and we print "You're not wearing shoes."

Mission #32: Take a shower
The best Minecraft houses have a lot of attention to detail. Many people
include wooden flooring, fireplaces, and pictures in their houses to make
them feel more like home. You’ll go one step further and make a working
shower.

To get the shower to work, you need to use range checks and Boolean
operators. You’ll create a shower area, and when the player walks into the

Making Mini-games with if statements 121

shower, the water will switch on. In other words, when the player walks
within a range of coordinates, the program should create water blocks
above them.

Listing 6-7 provides the basic structure of the program with a few lines
of code to help you get started. It’s your job to fill in the rest.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u shwrX =
shwrY =
shwrZ =

v width = 5
height = 5
length = 5

pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z

w if shwrX <= x < shwrX + width and
 mc.setBlocks(shwrX, shwrY + height, shwrZ,
 shwrX + width, shwrY + height, shwrZ + length, 8)
else:
 mc.setBlocks(shwrX, shwrY + height, shwrZ,

x shwrX + width, shwrY + height, shwrZ + length, 0)

Listing 6-7: The start of the shower program

Copy Listing 6-7 and save it as shower.py in the ifStatements folder.
To finish the program, add the coordinates for your shower in the shwrX,

shwrY, and shwrZ variables u. Next, add the size of the shower in the width,
height, and length variables v. I’ve included a default value of 5, but you
should change this to make your shower the size you want it to be.

Finish the if statement so it checks whether the y and z variables are
within the shower area w. I’ve included the check for the x position to help
you out (shwrX < x < shwrX + width). The expressions for the y and z positions
are similar to this. Hint: You’ll want to combine all these checks using and.

The shower is switched on and off using the setBlocks() function x. The
blocks are set to water (block ID 8) to switch on the shower and air (block
ID 0) to switch off the shower.

The setBlocks() functions in the last if/else statement are broken across
two lines because their arguments are very long. Python allows you to do
this. They could be written on a single line; I wrote them on two lines just
to make them easier to read.

Figure 6-7 shows my shower working.

shower.py

122 Chapter 6

Figure 6-7: Here I am, having a shower.

When you run the program, it will create water above you if you’re
standing in the shower. The water will not stop until you leave the shower
and run the program again. Have fun!

BonUs oBJeCTiVe: saVe WaTeR

Add a time limit that turns off the shower after a set amount of time .

What You Learned
Your programs can now make decisions. In this chapter, you learned how
to use conditions with if statements, else statements, and elif statements.
In Chapter 7, you’ll learn about while loops. Like if statements, while loops
help your program decide what to do and when. But unlike if and else
statements—which you use to run some code if a condition is true and
different code if it’s not true—while loops run code while a condition is
true and keep running it repeatedly until the condition becomes false.

7
DanCe PaRTies anD fLoWeR
PaRaDes WiTh WhiLe LooPs

Loops make it easy to repeat code again and
again. Instead of copying and pasting the

same code, you can use a loop to repeat the
code as many times as you want. You’ll use loops

in this chapter to make your programs repeat with-
out having to rerun them. We’ll focus on one type of
Python loop known as the while loop.

a simple while Loop
You use while loops to repeat blocks of code. Similar to if statements, a while
loop will execute the code inside it as long as a condition is True. That is,
a condition must be met in order for the body of the statement to run.

The difference between a while loop and an if statement is that the
code in the if statement executes only once at the most, whereas the code
in the while loop can repeat many times. Programmers call the repeating of
code iteration. When a loop repeats, you say it iterates.

124 Chapter 7

For example, this code uses a while loop to print the numbers 1 to 5:

count = 1
while count <= 5:
 print(count)
 count += 1
print("Loop finished")

The count variable records the number of times that the loop has
repeated. It starts with the value of 1. The condition in the while loop
checks whether the count is less than or equal to 5.

No t e In Chapter 3 you learned that += is a shorthand operator. You could use the standard
addition operator count = count + 1 to do the same thing.

The first time the loop runs, the value of count is 1, which is less than 5.
The condition of the loop is True, and the body of the loop runs. Next, the
program prints the value of count to the Python shell, and then it adds 1 to
the value of count. The while loop now starts again and checks the condition
again, going through each step until the count variable is greater than 5.

Outside the loop is one final line, which prints "Loop finished".
Save this program and run it; you should see the following output:

1
2
3
4
5
Loop finished

Try experimenting a bit with the code. Change the conditions so you
list more than 5 numbers or change the amount by which the count variable
increases. Here’s a refresher on how the code works. The while statement
follows these steps:

1. Check whether the condition is True.

2. If the condition is True:

a. Execute the body of code.

b. Repeat step 1.

3. If the condition is False:

a. Ignore the body of code.

4. Continue to the line after the while loop block.

Let’s try using a while loop in Minecraft to teleport to lots of new places!

Dance Parties and flower Parades with while Loops 125

Mission #33: a Random Teleportation Tour
In Mission #3 (page 40), you teleported the player to different positions
in the game. Let’s rewrite that program using a while loop so you can repeat
the teleportation again and again.

By looping some code that will teleport the player to a random loca-
tion, you can make the program more powerful and a lot easier to read.
Cool, huh?

The following code will teleport the player to a random location once
by picking random values in the game world for the variables x, y, and z.
Then it will set the player’s position using those variables.

import random
from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u # Add the count variable here
v # Start the while loop here
w x = random.randint(-127, 127) # Indent the code from this line

y = random.randint(0, 64)
z = random.randint(-127, 127)

mc.player.setTilePos(x, y, z)
x # Add 1 to the value of the count variable here

Right now, however, the code will only teleport the player once.
Although that’s pretty cool, you can make it totally awesome. Let’s write a
loop so the code repeats five times, making this quite a whirlwind tour.

To change the code to use a loop, follow these four steps:

1. Create a count variable to control the loop u.

2. Add a while loop with a condition based on count v.

3. Indent the body of the while statement w.

4. Increment the value of count with each loop x.

The purpose of the count variable and the count increment is to keep
track of the number of times the loop has repeated. I’ll talk more about
them in the next section. For now, all you need to know is that count lets us
control how many times this code repeats.

Listing 7-1 shows the code with the changes added.

import random
from mcpi.minecraft import Minecraft
mc = Minecraft.create()

count = 0
while count < 5:
 x = random.randint(-127, 127)
 y = random.randint(0, 64)
 z = random.randint(-127, 127)

random
Teleport.py

126 Chapter 7

 mc.player.setTilePos(x, y, z)
 count += 1

Listing 7-1: Code to randomly teleport the player around the game world

Copy Listing 7-1 into a new file, save it as randomTeleport.py in a new
folder called whileLoops, and run the code. You should see the player zip
around the Minecraft world. But the code runs far too quickly! The entire
journey is over in less than a second. Let’s fix that together.

You’ll use the time module to slow down the code. Follow these steps:

1. On the first line of the program, add the statement import time. This
imports Python’s time module, which contains a set of handy functions
related to timing and more.

2. Add the line time.sleep(10) at the end of the body of your while loop to
add a delay of 10 seconds to your program. Make sure you indent this
new final line of your program so it’s within the while loop!

Save the program and run it. Now the player should teleport to a new
random location every 10 seconds. Figure 7-1 shows my program running.

Figure 7-1: Every 10 seconds, the program teleports me to a new location.

Dance Parties and flower Parades with while Loops 127

BonUs oBJeCTiVe: sLeeP TighT

At the moment, the program will wait for 10 seconds at the end of every loop .
What happens if you move the time.sleep(10) statement to the start of the loop?

Controlling Loops with a Count
Variable

Count variables are a common way of storing the number of times a pro-
gram has repeated. You’ve seen these variables in action a few times now.
Let’s look at another example:

count = 0
while count < 5:
 print(count)
 count += 1

The while loop’s condition tests that the value of the count variable is
less than 5. In the body of the loop, I’ve changed the value of the count vari-
able to record the number of times the count has repeated. Adding to the
value of a count variable is called incrementing.

The last line of this code increases the value of the count variable by 1.
Each time the code repeats, it will check the new value of the count variable
to see whether it is less than 5. When it is equal to or greater than 5, the loop
will stop.

If you forget to increment the count variable, you’ll end up with an
infinite loop, which will repeat the loop forever, as shown in the following
example:

count = 0
while count < 5:
 print(count)

The value of count is always 0 because it’s never incremented. So, the
condition of the loop will always be True, and the loop will repeat forever. If
you don’t believe me, try running the code!

0
0
0
0
0
--snip--

128 Chapter 7

To break the execution of this infinite program, press ctrl-C. To cor-
rect the code, just add the line count += 1 to the loop’s body. Now you won’t
get trapped in an infinite loop. Phew!

Counts don’t always have to be incremented by 1. In some situations
you may want to increment the count by a different value. In the following
example, the count is incremented by 2 every time; the result is that the
code prints all the even numbers between 0 and 100:

count = 0
while count < 100:
 print(count)
 count += 2

You can also count backward using a negative number to decrement the
value of the count. The following code counts down from 100 to 1:

count = 100
while count > 0:
 print(count)
 count -= 1

The only difference between this example and the previous examples is
the condition. Here I’ve used a greater than comparator (>). As long as the
count is greater than 0, the loop continues; when the count reaches 0, the
loop stops.

No t e The variable used to control a loop isn’t always called count. You could call it repeats
or anything else you want. If you look at other people’s code, you will see a huge range
of different names.

Mission #34: The Watery Curse
Let’s try something a bit nasty and write a curse for the player that lasts for
just a short time. Curses in video games might debuff the character in some
way, such as slowing them down or making them weaker, often for just a
little while.

We’ll create a curse program that places a flowing water block at the
player’s position once a second for 30 seconds. This will make it difficult for
the player to move without being pushed around by flowing water.

The following code places a flowing water block at the player’s position:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

pos = mc.player.getPos()
mc.setBlock(pos.x, pos.y, pos.z, 8)

waterCurse.py

Dance Parties and flower Parades with while Loops 129

This code will place a water block at the player’s current position only
once. It is your task to make it repeat. The final code should repeat 30
times, and each iteration of the loop should last 1 second.

Save this code as waterCurse.py in the whileLoops folder and run it once
to make sure it works. You should see a single water block appear at the
player’s position before the program stops.

Let’s talk through what to add next to make this curse last. Use what
you learned about while loops and count variables to do the following:

1. Add a count variable to the program.

2. Add a loop to the program to repeat the last two lines of code. The
loop should repeat 30 times.

3. Increment the count variable at the end of the loop.

4. Import the time module (on the first line of your program) and then
add a 1 second sleep on the last line of the while loop.

Save the program and test it. As you walk around the game world, the
program should create one block of water every second for 30 seconds. If
you get stuck, go back to the steps in Mission #33 (page 125) for help.

Figure 7-2 shows the curse in action.

Figure 7-2: Oh no! I’m being followed by a small flood.

BonUs oBJeCTiVe: a fasTeR fLooD

How would you make the loop repeat twice as fast (every half a second) while still
lasting for 30 seconds?

130 Chapter 7

infinite while Loops
In most cases, it is very important that the Boolean condition in your while
loop eventually become False; otherwise, the loop will iterate forever, and
your computer might crash.

But there are times when you may want to program an infinite loop.
For example, video games often use an infinite loop to check for user input
and manage player movement. Of course, these video games include a Quit
button so you can pause or stop the infinite loops when you need to take a
break!

A simple way to create an infinite loop is to use a True condition when
you define a while loop, as shown here:

while True:
 print("Hello")

This code will repeat forever, printing the string "Hello" over and over
again. Whether or not you meant to create an infinite loop, pressing ctrl-C
in the Python shell is a common way to stop it. In IDLE you can select
Shell4Restart Shell to stop the loop as well.

Note that any code that is placed after an infinite while loop will never
run. In the following example, the last line of code is unreachable due to
the infinite while loop that comes before it:

while True:
 print("Hello")
print("This line is never reached")

Although infinite loops can sometimes be tricky, you can also create
them to do lots of cool things. Let’s try this next!

Mission #35: flower Trail
The program you’ll write in this mission is like the one in Mission #34,
but instead of placing water blocks, you’ll create a trail of flowers behind
the player. Flowers are much nicer than floods!

Open the file waterCurse.py in the whileLoops folder and then save it as
flowerTrail.py.

To make an infinite trail of flowers appear as the player walks around
the game, make the following changes to the program:

1. Change the condition of the while loop to True.

2. Delete the count variable and the increment.

3. Change the block type argument in the setBlock() function from 8 to 38.

4. Reduce the value of the argument in the sleep() function to 0.2 to make
five flowers appear every second.

5. Save the program and run it. Figure 7-3 shows what you should see.

Dance Parties and flower Parades with while Loops 131

Figure 7-3: Look at all the beautiful flowers!

BonUs oBJeCTiVe: a TRaiL of DesTRUCTion

The flowerTrail.py program is very flexible . Try changing the block type that is
placed by the program . A fun block type to try is explosive TNT (setBlock(x, y,
z, 46, 1)) . Notice the extra argument 1 after 46, which is the TNT block type . The
1 sets the state of the TNT to make it detonate just by hitting it, without needing
flint and steel . Just click the left mouse button a few times when pointing at the TNT
to make it explode!

fancy Conditions
Because while loops expect a Boolean value for their condition, you can use
any of the comparators and Boolean operators that you’ve learned about
so far. For instance, you’ve already seen that the greater than and less than
operators work just like they did in earlier chapters.

But you can control while loops with comparators and Boolean opera-
tors in other ways as well. Let’s take a look!

We’ll start by writing a more interactive condition. The following code
creates the continueAnswer variable before the loop starts and checks that the
value is equal to "Y". Note that we can’t use the word continue as a variable
name because it is a reserved word in Python.

continueAnswer = "Y"
coins = 0
while continueAnswer == "Y":
 coins = coins + 1
 continueAnswer = input("Continue? Y/N")
print("You have " + str(coins) + " coins")

132 Chapter 7

In the last line of the while loop, the program asks for input from the
user. If the user presses anything besides "Y" in response, the loop will exit.
The user can repeatedly press Y and Y and Y, and each time the value of the
coins variable will increase by 1.

Notice that the variable being checked, continueAnswer, is created
before the loop starts. If it wasn’t, the program would display an error.
That’s why the variable we use to test the condition must exist before we try
to use it, and it must be True when the program reaches the while loop the
first time; otherwise, the condition won’t be met, and the while loop’s body
statement will never execute.

Mission #36: Diving Contest
Let’s have some fun with while loops and the equal to (==) comparator. In
this mission, you’ll create a mini-game in which the player dives underwater
for as long as they can. The program will record how many seconds they
stay underwater and display their score at the end of the program. To con-
gratulate the player, the program will shower them with flowers if they stay
underwater longer than 6 seconds.

Here is some code to get you started:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
import time

score = 0
pos = mc.player.getPos()

u blockAbove = mc.getBlock(pos.x, pos.y + 2, pos.z)

v # Add a while loop here
time.sleep(1)
pos = mc.player.getPos()

w blockAbove = mc.getBlock(pos.x, pos.y + 2, pos.z)
x score = score + 1

mc.postToChat("Current score: " + str(score))

mc.postToChat("Final score: " + str(score))

y if score > 6:
 finalPos = mc.player.getTilePos()
 mc.setBlocks(finalPos.x - 5, finalPos.y + 10, finalPos.z - 5,
 finalPos.x + 5, finalPos.y + 10, finalPos.z + 5, 38)

Save the program as divingContest.py in your whileLoops folder. The score
variable keeps track of how many seconds the player is underwater.

Run the code to see what happens. At the moment, the program isn’t
complete: it only checks whether the player is underwater once and then
finishes.

diving Contest
.py

Dance Parties and flower Parades with while Loops 133

Before you fix this, let’s look at what the rest of the code does. The
blockAbove variable stores the type of the block located at the player’s head u.
For example, if the player’s head is underwater, this variable will store a
value of 8 (which means the block is water). Later in the code, you’ll set
blockAbove to store the value of the block above the player’s head again w
so when you create your while loop, it will update blockAbove to the current
block above the player’s head. At x, the program adds 1 point to the total
for every second the player is underwater, and at y, it uses an if statement
to create a shower of flowers above the player if the score is greater than 6.

It’s up to you to add a loop to the program that uses the blockAbove
variable as a condition at v. Make the while loop check whether blockAbove
is equal to water (block type 8) or equal to flowing water (block type 9).
You can use the following condition in the while loop to check this: while
blockAbove == 8 or blockAbove == 9. This checks whether the player is cur-
rently underwater and will continue to check whether the player is under-
water every time the loop repeats.

To test your program, find some water that’s at least three blocks deep
and dive into it. The program will run only if you’re already underwater.
When you run the program, it should start displaying how many seconds
you’ve been underwater. After a while, swim to the surface. The program
should display your score and shower you with flowers if you were under-
water for 6 seconds or more. Figure 7-4 shows the player underwater and
the score being displayed. Figure 7-5 shows the flowers that appear when
you win.

Figure 7-4: I’m holding my breath underwater, and the number of seconds I’ve been
underwater is displayed.

134 Chapter 7

Figure 7-5: I won my very own flowery celebration!

BonUs oBJeCTiVe: a WinneR is YoU

Try adding extra prizes by writing more code in the if statement at the end of the
program . If the player gets a high score, you could give them a gold block . Try
adding several levels of difficulty with different prizes for each one .

Boolean operators and while Loops
You can use Boolean operators like and, or, and not with a while loop when
you want the loop to use more than one condition. For example, the follow-
ing loop will iterate while the user has not input the correct password and
has made three attempts or fewer:

password = "cats"
passwordInput = input("Please enter the password: ")
attempts = 0

u while password != passwordInput and attempts < 3:
v attempts += 1
w passwordInput = input("Incorrect. Please enter the password: ")

x if password == passwordInput:
 print("Password accepted.")

The while loop condition u does two tasks: it checks whether the
password is different from the user’s input (password != passwordInput) and
checks whether the user has tried to enter the password three times or less
(attempts < 3). The and operator allows the while loop to check both condi-
tions at the same time. If the condition is False, the loop increments the

Dance Parties and flower Parades with while Loops 135

attempts variable v and asks the user to reenter the password w. The loop
will finish if the user enters the correct password or the attempts variable
is greater than 3. After the loop finishes, the program will output Password
accepted only if the user entered the correct password x.

Checking a Range of Values in while Loops
You can also check for values in a certain range using a while loop. For
example, the following code checks whether the value the user has entered
is between 0 and 10. If it is not, the loop will exit.

position = 0
u while 0 <= position <= 10:

 position = int(input("Enter your position 0-10: "))
 print(position)

If the position variable is greater than 10, the loop won’t repeat u. The
same will happen if the value is less than 0. This is useful in Minecraft when
you’re checking whether the player’s position is in a certain area in the
game, as you’ll see in the next mission.

Mission #37: Make a Dance floor
It’s time to dance! But before you can bust out some sweet moves, you’ll
need a dance floor. The program in this mission will generate a dance
floor that flashes different colors every half second as long as the player
stays on the floor.

The following is the start of the code. It creates a dance floor at the
player’s current position and uses an if statement to change colors. But the
code is not complete.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
import time

pos = mc.player.getTilePos()
floorX = pos.x – 2
floorY = pos.y - 1
floorZ = pos.z – 2
width = 5
length = 5
block = 41

u mc.setBlocks(floorX, floorY, floorZ,
 floorX + width, floorY, floorZ + length, block)

v while floorX <= pos.x <= floorX + width and # Check z is within the floor
w if block == 41:

 block = 57
 else:
 block = 41

danceFloor.py

136 Chapter 7

 mc.setBlocks(floorX, floorY, floorZ,
 floorX + width, floorY, floorZ + length, block)
 pos = mc.player.getTilePos()
 time.sleep(0.5)

Open IDLE, create a new file, and save the program as danceFloor.py in
the whileLoops folder. The code builds the dance floor based on the player’s
current position u and stores the dance floor’s location and size in the
floorX, floorY, floorZ, width, and length variables. Inside the while loop, the
code uses an if statement to alternate the blocks that the dance floor is
made of w, making the dance floor look like it’s flashing.

To get the program to work properly, you need to change the while loop’s
condition to check whether the player’s z-coordinate is on the dance floor v.
In other words, check whether pos.z is greater than or equal to floorZ and
less than or equal to floorZ plus length. For guidance, look at how I checked
whether pos.x is on the dance floor by using (floorX <= pos.x <= floorX +
width). Figure 7-6 shows the dance floor in action!

Figure 7-6: I’m showing off my moves on the dance floor.

When you’ve completed the program, save it and run it. A dance floor
should appear below the player and change every half second. Dance

Dance Parties and flower Parades with while Loops 137

around a bit—have some fun! When you’re done, leave the dance floor
and make sure it stops flashing. It won’t switch on again unless you run
the program again to create a new dance floor.

BonUs oBJeCTiVe: PaRTY’s oVeR

When the player is finished dancing on the dance floor, make the floor disappear .
To do this, change the dance floor to air when the loop finishes .

nested if statements and while Loops
You can write more powerful programs by using if statements and nested if
statements inside while loops. You may have noticed a nested if statement in
the code in Mission #37 (page 135).

In the following example, the nested if statement checks the last word
that was printed and decides whether to print the words "mine" and "craft".
The loop repeats 50 times.

word = "mine"
count = 0
while count < 50:
 print(word)
 if word == "mine":
 word = "craft"
 else:
 word = "mine"

The word variable stores the first word that will be printed. The if
statement in the loop checks whether the current word is "mine" and, if it
is, changes the word to "craft" and prints it on the next iteration of the
loop. If the word isn’t "mine", it will be changed to "mine". This is an infi-
nite loop, so be sure to use ctrl-C to escape!

You can also nest elif statements and other while loops inside while
loops.

The following program asks the user if they want to print all the num-
bers between one and a million:

userAnswer = input("Print the numbers between 1 and 1000000? (yes/no): ")

u if userAnswer = "yes":
 count = 1

v while count <= 1000000:
 print(count)
 count += 1

The if statement checks whether the user’s input is yes u. If it is, the
program runs the loop that is nested in the if statement v. If the input is
anything else, the program won’t run the loop and will finish.

138 Chapter 7

Mission #38: The Midas Touch
Midas is a king of legend. Everything he touched turned to gold. Your
mission is to write a program that changes every block below the player to
gold—except for air and water, of course, or you’d be in real trouble! Recall
that the gold block has a value of 41, still water is 9, and air is 0.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

air = 0
water = 9

u # Add an infinite while loop here
 pos = mc.player.getTilePos()
 blockBelow = mc.getBlock(pos.x, pos.y - 1, pos.z)

v # Add if statement here
 mc.setBlock(pos.x, pos.y - 1, pos.z, 41)

Open IDLE and create a new file. Save the file as midas.py in the
whileLoops folder. You need to add a bit more to the program so it can do
what you need it to do. First, you’ll add an infinite while loop u. Remember
that an infinite while loop has a condition that is always True. You also need
to add an if statement that checks whether the block below the player is not
equal to air and not equal to still water v. The value of the block below the
player is stored in the blockBelow variable, and the values for air and water
are stored in the air and water variables.

When you’ve completed the program, save it and run it. The player
should leave a trail of gold behind them. When you jump in water or fly in
the air, the blocks below you should not change. Figure 7-7 shows the pro-
gram in action.

Figure 7-7: Every block I walk on turns to gold.

midas.py

Dance Parties and flower Parades with while Loops 139

To exit the infinite loop, go to Shell4Restart Shell in your IDLE shell
or click in the shell and press ctrl-C.

BonUs oBJeCTiVe: i ’M a PLoWMan

You can change midas.py to serve a variety of purposes . How would you change
it so it automatically changes dirt blocks to hoed farmland? How about changing
dirt blocks to grass blocks?

ending a while Loop with break
With while loops, you have complete control over how and when the loop
ends. So far you’ve only used conditions to end loops, but you can also use a
break statement. The break statement lets your code immediately exit a while
loop. Let’s look at this concept!

One way to use break statements is to put them in an if statement nested
in the loop. Doing so immediately stops the loop when the if statement’s
condition is True. The following code continually asks for user input until
they type "exit":

u while True:
v userInput = input("Enter a command: ")
w if userInput == "exit":
x break

 print(userInput)
y print("Loop exited")

This is an infinite loop because it uses while True u. Each time the loop
repeats, it asks for the user to enter a command v. The program checks
whether the input is "exit" w using an if statement. If the input meets the
condition, the break statement stops the loop from repeating x, and the
program continues on the line immediately after the body of the loop,
printing "Loop exited" to the Python shell y.

Mission #39: Create a Persistent Chat
with a Loop
In Mission #13 (page 72), you created a program that posts the user’s
message to chat using strings, input, and output. Although this program
was useful, it was quite limited because you had to rerun the program
every time you wanted to post a new message.

In this mission, you’ll improve your chat program using a while loop
so users can post as many messages as they want without restarting the
program.

140 Chapter 7

Open the userChat.py file in the strings folder and then save it as
chatLoop.py in the whileLoops folder.

To post a new message every time you want to without rerunning the
program, add the following to your code:

1. Add an infinite while loop to the program.

2. Add an if statement to the loop to check whether the user’s input is
"exit". If the input is "exit", the loop should break.

3. Make sure the userName variable is defined before the start of the loop.

When you’ve added the changes, save your program and run it.
A prompt in the Python shell will ask you to type in a username. Do this
and press enter. The program will then ask you to enter a message. Type
a message and then press enter. The program will keep asking you to
enter a message until you type exit. Figure 7-8 shows my chat program
running.

Figure 7-8: I’m chatting with myself.

BonUs oBJeCTiVe: BLoCk ChaT

Expand the chat feature so users can create blocks . For example, if the user enters
"wool", the program creates a wool block . You can do this by adding elif state-
ments to your if statement to check user input .

Dance Parties and flower Parades with while Loops 141

while-else statements
Like an if statement, while loops can have secondary conditions triggered
by else statements.

The else statement executes when the condition of a while statement is
False. Unlike the body of a while statement, the else statement will execute
only once, as shown here:

message = input("Please enter a message.")

while message != "exit":
 print(message)
 message = input("Please enter a message.")
else:
 print("User has left the chat.")

This loop repeats as long as the message entered is not equal to "exit". If
the message is "exit", the loop will stop repeating, and the body of the else
statement will print "User has left the chat."

If you use a break statement in the while statement, the else isn’t exe-
cuted. The following code is similar to the preceding example but includes
a nested if statement and a break statement. When the user types abort
instead of exit, the chat loop will exit without printing the "User has left
the chat." message to the chat.

message = input("Please enter a message.")

while message != "exit":
 print(message)
 message = input("Please enter a message.")
 if message == "abort":
 break
else:
 print("User has left the chat.")

The if statement checks whether the message entered is "abort". If this
is True, the break statement runs and the loop will exit. Because the break
statement was used, the body of the else statement will not run, and "User
has left the chat." will not be printed.

Mission #40: hot and Cold
In this mission, we’ll create a Hot and Cold game in Minecraft. If you’ve
never played, the idea is that your friend hides an object and you have to
find it. Your friend gives you hints based on how far away from the object
you are. If you’re close, your friend says “Hot,” and if you’re far away, they’ll
say “Cold.” When you’re right next to the object, they’ll say “You’re on fire!”
and if you’re very far away, they’ll say “Freezing!”

142 Chapter 7

The object of the game is to find and stand on the diamond block that
has been placed randomly in the game world. In this version of the game,
you’ll play by yourself, and the Python program will tell you how far away
from the hidden block you are. The game ends when you stand on the dia-
mond block.

Listing 7-2 places a block in a random location.

from mcpi.minecraft import Minecraft
import math
import time
import random
mc = Minecraft.create()

destX = random.randint(-127, 127)
destZ = random.randint(-127, 127)

u destY = mc.getHeight(destX, destZ)

block = 57
v mc.setBlock(destX, destY, destZ, block)

mc.postToChat("Block set")

while True:
 pos = mc.player.getPos()

w distance = math.sqrt((pos.x - destX) ** 2 + (pos.z - destZ) ** 2)

x if distance > 100:
 mc.postToChat("Freezing")
 elif distance > 50:
 mc.postToChat("Cold")
 elif distance > 25:
 mc.postToChat("Warm")
 elif distance > 12:
 mc.postToChat("Boiling")
 elif distance > 6:
 mc.postToChat("On fire!")
 elif distance == 0:

y mc.postToChat("Found it")

Listing 7-2: The start of the Hot and Cold program

Before randomly placing a block, the program makes sure that the
block won’t be placed underground. To do so, it uses the getHeight() func-
tion u, which finds the block that is the highest y-coordinate (that is, on the
surface) for any position in the game. Then it places a diamond block at a
random position v.

The code at w calculates the distance to the diamond block. It uses
the sqrt() function, which is in the math module—this is why import math is
needed at the beginning of the program. The sqrt() function calculates the
square root of a number.

blockHunter.py

Dance Parties and flower Parades with while Loops 143

No t e Listing 7-2 uses a formula called the Pythagorean theorem. The formula uses two
sides of a triangle to calculate the length of the third. In this case, I use the distance
from the player to the hidden block on the x-axis and the z-axis to calculate the dis-
tance to the hidden block in a straight line.

The message that the program displays depends on how far away you
are from the block, which you can find out using an if statement and the
distance variable x. The program displays "Freezing" if you’re very far away
and "On fire!" if you’re very close.

Copy Listing 7-2 into a new file in IDLE and save the program as
blockHunter.py in the whileLoops folder.

At the moment the program works, but it doesn’t end when you find
the block. To finish the code, you need to add a break statement when the
player’s distance from the block is 0 y.

When you’ve completed the program, save it and run it. A random
block will be generated, and you’ll need to find it. The program should
stop when you find the block and stand on it. Figure 7-9 shows that I’ve just
found the block.

Figure 7-9: I’ve found the block, and now I just need to stand on it.

BonUs oBJeCTiVe: TiMe foR TiMe

The blockHunter.py program gives you as long as you need to find the block . Can
you think of a way to display how long it takes the player to find the block or even
limit the amount of time they have to play the game?

144 Chapter 7

What You Learned
Well done! You’ve learned a lot about while loops. You can create while
loops and infinite while loops, and you can use loops with conditions
and Boolean operators. Using loops, you can now write programs that
repeat code, which will save you lots of time so you can focus on mastering
Minecraft. In Chapter 8, you’ll learn another way to make reusable code
using functions.

8
fUnCTions giVe YoU

sUPeRPoWeRs

Functions are reusable blocks of code that
perform specific tasks. Say you want to

write code that builds a tree in Minecraft.
You could rewrite the tree-building code every

time you need to use it in your program (or copy and
paste it); however, this would be inefficient, especially
if you wanted to change it.

Instead of copying and pasting, you could write the tree-building code
as a function. Recall that we used some functions in earlier chapters: str(),
input(), and int(). They’re all functions that are built into Python. You’ve
even been using Minecraft functions, such as the getBlocks() and setPos()
functions, which come with the Minecraft Python API. In this chapter,
you’ll create your own functions.

You create and use functions for the following reasons:

Reusability Functions save time. Because you don’t have to rewrite the
same code over and over again, writing a program is faster and easier.

146 Chapter 8

Debugging By containing tasks in groups of code, it is easier to iden-
tify where a problem originates and make changes to fix the problem.

Modularity You can develop different functions to use in the same
program independently of one another. This makes it easier to share
code with other people and reuse functions in other programs.

Scalability Using functions makes it easier to increase the size of a
program and the amount of data it processes.

Defining Your own functions
Let’s look at how you can use functions in your code. In the following
example, I make a function called greeting() that simply prints two lines:

def greeting():
 print("Hello")
 print("Nice to meet you")

The def keyword, which is an abbreviation for define, tells Python
you’re writing a function. Anytime you want to write a function, you must
first write def followed by the function’s name. In this example, greeting
is the name of the function. Don’t forget to add the parentheses and the
colon at the end of the first line. The lines that follow the colon are the
body of the function, which is the code that will run when the function is
called.

No t e Keep indentation consistent in your code. Always indent the body of the function by
using four spaces.

A function can contain as many statements as you want. It can also
include if statements, loops, variables, conditions, math operators, and so
on. When you reach the end of the function code, stop indenting lines so
Python knows which statements belong to the function and which state-
ments belong to other parts of your code.

You can create as many functions as you want in a program, as long as
they have different names.

Calling a function
To use, or call, a function, you write the name of the function with any
arguments it might require in parentheses. If your function doesn’t
take any arguments, just write the function’s name and a set of empty
parentheses.

To call the greeting() function defined earlier, you would use the follow-
ing code:

greeting()

functions give You superpowers 147

You can call the function as many times as you want. Let’s call the
greeting() function three times:

greeting()
greeting()
greeting()

When you run the program, it should produce the output of the func-
tion three times, like so:

Hello
Nice to meet you
Hello
Nice to meet you
Hello
Nice to meet you

You must call the function in the body of your code, or the function
will not do anything. This is a common mistake. If you run a program that
defines some functions and your code doesn’t do anything, it might be
because you forgot to call the functions you created.

You can also call functions from within another function that you’ve
created. These include built-in Python functions as well as those you’ve cre-
ated. You’ll see this in action in just a moment.

functions Take arguments
The parentheses in a function contain its arguments, which are values the
function uses. The values are used for specific variables inside the func-
tion when it runs. Not every function needs arguments. For example, the
greeting() function doesn’t take arguments.

But let’s say I want to display a greeting to someone using their name.
I’ll write this as a function so I can reuse the code to greet different people:

def fancyGreeting(personName):
 print("Hello, " + personName)

fancyGreeting("Mario")
fancyGreeting("Steve")

In this example, function is called twice using different arguments,
"Mario" and "Steve". When you run the program, the output looks like this:

Hello, Mario
Hello, Steve

If you forget to include an argument when you call a function that
needs one, you will get an error. Also, if a function needs multiple

148 Chapter 8

arguments and you forget to include even one of them, you will get an
error. For example, let’s try calling the fancyGreeting() function with no
arguments, like this:

fancyGreeting()

The following error message is displayed:

Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
 fancyGreeting()

u TypeError: fancyGreeting() takes exactly 1 argument (0 given)

This is a useful error message because the last line explains what is
wrong with the code u. The fancyGreeting() function takes one argument,
but because it was given no argument, that caused the error.

You can create a function that takes several arguments. For example,
the following program contains a function that says hello to someone,
waits a number of seconds, and then says goodbye. The function uses an
argument for the person’s name and the number of seconds the program
will wait:

import time

u def helloAndGoodbye(personName, secsToWait):
 print("Hello, " + personName)
 time.sleep(secsToWait)
 print("Goodbye, " + personName)

v helloAndGoodbye("Mario", 10)
helloAndGoodbye("Steve", 23)

Each argument is separated by a comma when the function is defined u.
Then, when the functions are called, the arguments are passed in the same
order in which they were defined v.

No t e You might encounter the terms argument and parameter used almost interchange-
ably. The parameters of a function define the types of arguments it accepts or requires,
and the arguments are the values that you pass to the function when you call it. For
simplicity, we’ll just use the term argument in this book.

Mission #41: Build a forest
Your mission is to create a forest of trees in Minecraft. Because a forest is
just a bunch of trees, we’ll create the forest by making a function that builds
one tree and then call that function many times to create a forest.

functions give You superpowers 149

Listing 8-1 is the basic code you’ll be using.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u def growTree(x, y, z):
 # Creates a tree at the coordinates given
 # Write your code to make a tree here

pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z

v growTree(x + 1, y, z)

Listing 8-1: The structure of a program that uses functions to create a forest of trees

The growTree() function u created in this code takes arguments for the
coordinates where the tree will be built. Your task is to write code in the
body of the function that creates a tree at the given coordinates. You’ll use
the setBlock() and setBlocks() functions to do this.

Copy Listing 8-1 into a new file in IDLE and save it as forest.py in a new
folder called functions.

When you’ve created something that resembles a tree and it appears
onscreen, try writing more calls to the function using different arguments so
trees appear at different locations. The first one has been done for you v.
Try creating at least nine trees in front of the player each time you run your
program. Figure 8-1 shows the trees that my program created.

Figure 8-1: I’ve just grown a beautiful row of trees.

forest.py

150 Chapter 8

BonUs oBJeCTiVe: RanDoM foResT

Use the randint() function in the random module to randomize the distance between
the trees in the forest .

Refactoring a Program
Quite often you’ll write a program that uses the same block of code several
times. Making changes to the program will become tedious when you want
to change the same code in different places. You might have done this in
programs you’ve written in the past, but there’s a much better way.

You can restructure your programs to use functions. To do this, move
the code that is repeated several times into a single function that you can
then use as many times as you want in the rest of the code. Because you’ll
only need to make changes in one place instead of several, you’ll save space
and the program will be easier to maintain. The process of restructuring
your code in this way is called refactoring.

For example, the following code asks three people their names and
then prints a greeting to each of them:

name1 = input("Hello, what is your name?")
print("Pleased to meet you, " + name1)
name2 = input("Hello, what is your name?")
print("Pleased to meet you, " + name2)
name3 = input("Hello, what is your name?")
print("Pleased to meet you, " + name3)

The code here repeats the same two statements three times. What if
you wanted to change the question or the greeting? It’s not much of a prob-
lem changing the code for 3 people, but what if you were writing code for
100 people?

The alternative is to write the code as a function and call it three times.
Here is the code after refactoring it:

def helloFriend():
 name = input("Hello, what is your name?")
 print("Pleased to meet you, " + name)

helloFriend()
helloFriend()
helloFriend()

Now when the program runs, it will ask for input and then output a
string, and it will do both tasks three times. Here are the input and output:

Hello, what is your name? Craig
Pleased to meet you, Craig
Hello, what is your name? Still Craig

functions give You superpowers 151

Pleased to meet you, Still Craig
Hello, what is your name? Craig again
Pleased to meet you, Craig again

The second version of the code has the same outcome as the first ver-
sion, but as you can see, it’s much easier to read and much easier to change.

Mission #42: Refactor away
Sometimes you’ll write a program only to realize afterward that you should
have used functions (I do this all the time). Refactoring code to include
functions is a very important skill.

In this mission, you’ll practice refactoring a program to use a function
instead of repeating the same statements several times.

Listing 8-2 places a melon block underneath the player every 10 sec-
onds. We’ll rewrite the code to use a function. Currently, the program
places three blocks by using the same line of code three times. Figure 8-2
shows the result of the program.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import time

pos = mc.player.getPos()
x = pos.x
y = pos.y
z = pos.z
mc.setBlock(x, y - 1, z, 103)
time.sleep(10)

pos = mc.player.getPos()
x = pos.x
y = pos.y - 1
z = pos.z
mc.setBlock(x, y, z, 103)
time.sleep(10)

pos = mc.player.getPos()
x = pos.x
y = pos.y - 1
z = pos.z
mc.setBlock(x, y, z, 103)
time.sleep(10)

Listing 8-2: Some code that needs refactoring

This code isn’t very pretty, is it? Several lines are repeated, which is
always a sign that the code needs refactoring with the help of a function
definition.

H i N t Identify which parts of the code repeat to get an idea of what your function should do.

melon
Function.py

152 Chapter 8

Figure 8-2: Three delicious melons under the ground

Change the code so it places six blocks in total by calling your function
six times. Create a new file and save it as melonFunction.py in the functions
folder. Copy Listing 8-2 into your file and refactor the code to use a func-
tion. Call the new function makeMelon().

BonUs oBJeCTiVe: BLoCks UnDeRfooT

Add arguments to your makeMelon() function to control the type of block, sleep
time, or distance below the player .

Commenting with Docstrings
Using comments in Python code is a way to explain what code does. When
Python runs a program, it ignores everything in a comment, so comments
don’t affect how the code runs. The main purpose of comments is to explain
what your code is supposed to do to others who might look at or use your
code. Comments are also useful reminders for yourself in the future.

Because functions are supposed to be reusable, it makes sense to
explain their purpose. To write explanations for our functions, we’ll use
long explanations called docstrings. A docstring is a multiline comment that
you place at the start of a function to explain its use.

The duplicateWord() function in the following example has a docstring
that explains its task:

def duplicateString(stringToDbl):
u """ Prints a string twice on the same line.

 stringToDbl argument should be a string """
 print(stringToDbl * 2)

functions give You superpowers 153

The docstring should be on the first line of a function u. The docstring
begins and ends with a set of three quotation marks (""") and can be written
across as many lines as necessary.

Line Breaks in arguments
To make long lists of arguments easier for programmers to read, Python
allows you to place arguments across several lines. For example, the func-
tion call in this program has its arguments split across several lines to
increase readability:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

pos = mc.player.getPos()
width = 10
height = 12
length = 13
block = 103
mc.setBlocks(pos.x, pos.y, pos.z,
 pos.x + width, pos.y + height, pos.z + length, block)

Line breaks in arguments are particularly useful when you want to
use math operators on arguments, when you are using long variable
names as arguments, or when you have several arguments to provide to
a function.

function Return Values
There are two types of functions: those that return a value and those that
don’t. So far, you’ve created functions that don’t return a value. Let’s look
at those that do return a value.

Returning a value from a function is very useful, because it allows a
function to work with data and then return a value to the main body of the
program. For example, imagine you sell cookies. To calculate the price you
have to sell each cookie at to make enough profit, you add two gold coins to
the amount you paid to make the cookie and then multiply the sum by 10.
By using a function that returns a value, you can write this calculation and
reuse it in Python.

When making your own functions, you can use the return keyword to
return a value from the function. For example, here is the code to calculate
your selling price for a cookie:

def calculateCookiePrice(cost):
 price = cost + 2
 price = price * 10
 return price

154 Chapter 8

To return a value, you just write return followed by the value you want,
which in this case is price. To use a function that returns a value, you call
it in a place that would expect a value. For example, to set the priceOfCookie
variable, call the calculateCookiePrice() function and enter a cost, such as 6:

priceOfCookie = calculateCookiePrice(6) # Value will be 80

You can use functions that return values to set the values of variables,
and you can use them anywhere that you are expected to put a value, even
as an argument for another function.

Functions that do not return a value cannot be used to set the values
of variables. Let’s take a quick look at the difference.

Because the following function returns a value, it can be used any-
where a value can be used, such as to set a variable or even as an argu-
ment in another function call:

def numberOfChickens():
 return 5

coop = numberOfChickens()
print(numberOfChickens())

Run this code to see its output. You can treat the result from the func-
tion like a value and even do math with it. Here I add 4 to the returned
value and store it in a variable called extraChickens:

extraChickens = 4 + numberOfChickens() # Value of 9

However, the following function doesn’t have a return statement, which
means you can’t use it in place of a value. All you can do is call the function:

def chickenNoise():
 print("Cluck")

chickenNoise()

Writing this code in the text editor and running it prints "Cluck",
although it can’t be used in other statements because it doesn’t return a
value to the program. For example, I could try to concatenate the func-
tion with a string, like so:

multipleNoises = chickenNoise() + ", Bork"

If I ran this program, I would get the following error message:

Traceback (most recent call last):
 File "<pyshell#3>", line 1, in <module>
 multipleNoises = chickenNoise + ", Bork"
TypeError: unsupported operand type(s) for +: 'function' and 'str'

Functions Give You Superpowers 155

This error means you can’t combine this function with a string, because
the function doesn’t return a value.

However, if I change the code to return a value instead of just printing it:

def chickenNoise():
 return "Cluck"

multipleNoises = chickenNoise() + ", Bork"
print(multipleNoises)

the file would run and display the following output:

Cluck, Bork

Keep this difference in mind. Remember to include a return statement
when you need it and exclude it when your function doesn’t need to return
a value. The more experienced you become with functions, the easier it will
be to decide whether you want your function to return a value.

Mission #43: Block ID Reminder
Because Minecraft has so many blocks, it’s difficult to remember all the
block IDs. I always remember the melon (103) and air (0) values but forget
others, so I keep having to build houses out of melons!

To make remembering easier, I want you to create a program for me
that returns the values of different blocks. Your program should have many
functions that help me remember block IDs. The name of each function
should be the same as the name of the block whose value it returns. For
example, Listing 8-3 has a function called melon() that returns the value of
the melon block (103).

def melon():
 """ Returns the value of the melon block """
 return 103

Listing 8-3: The start of the program that will help me remember block IDs

Create a new file in IDLE and save it as blockIds.py in the functions folder.
Copy Listing 8-3 into the file and add functions to it that return the values
of the following blocks (see “Block ID Cheat Sheet” on page 285):

•	 Water

•	 Wool

•	 Lava

•	 TNT

•	 Flower

•	 Diamond block

blockIds.py

156 Chapter 8

After you’ve added your functions, test them by calling the functions to
create blocks. Because your new functions return a block’s value, you can
use them to set the value of a variable to pass into the setBlock() function.
The following code will help you get started:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

Functions go here

block = melon()
pos = mc.player.getTilePos()
mc.setBlock(pos.x, pos.y, pos.z, block)

Figure 8-3 shows the result of the completed program with a test for the
melon() function. Notice that the placement of any block is hardcoded into
this program; it will always place a block at your current location.

Figure 8-3: Now I don’t have to remember the block types, all thanks to this handy
function.

H i N t To place a diamond block, TNT, or any other kind of block, you’ll first need to define
the function that returns the value of the block you want. Then you’ll need to call that
function in your code, just like I called the melon() function in this example.

BonUs oBJeCTiVe: MoRe BLoCks

Add extra functions for any other block types that you want .

functions give You superpowers 157

Using if statements and while Loops
in functions

In Chapters 6 and 7, you learned about putting if statements inside of other
if statements and while loops inside of other while loops. You learned that
you can even put if statements within while loops and vice versa! In this sec-
tion, you’ll learn how to put if statements and loops inside functions. This
makes your functions very flexible, because you can use them to make deci-
sions and repeat code.

if statements
When you’re writing an if statement within a function, the syntax is
identical to that of a regular if statement. You just need to remember to
indent the if statement by an extra four spaces at the start of every line so
Python knows it’s part of the function.

The following code takes a number written as a string and returns the
number as an integer. For example, the argument "four" returns the value 4:

def wordToNumber(numToConvert):
 """ Converts a number written as a word to an integer """
 if numToConvert == "one":
 numAsInt = 1
 elif numToConvert == "two":
 numAsInt = 2
 elif numToConvert == "three":
 numAsInt = 3
 elif numToConvert == "four":
 numAsInt = 4
 elif numToConver == "five":
 numAsInt = 5

 return numAsInt

Let’s look at another example. The following function checks whether
you’ve met a person before and uses an appropriate greeting depending on
the result:

u def chooseGreeting(metBefore):
 """ Chooses a greeting depending on whether you've met someone before.
 metBefore argument should be a Boolean value """
 if metBefore:

v print("Nice to see you again")
 else:

w print("Nice to meet you")

chooseGreeting(True)
chooseGreeting(False)

158 Chapter 8

The chooseGreeting() function takes one Boolean argument, called
metBefore u. The if statement inside the function then prints output based
on the value of the argument. If the value is True, the output will be "Nice to
see you again" v, and if it is False w, the output will be "Nice to meet you".

Mission #44: Wool Color Helper
You’ve used the setBlock() and setBlocks() methods with arguments to set
block coordinates and block type, but these methods also have an optional
extra argument that will set the block state.

Each block in Minecraft has 16 states, 0 to 15. Wool, for example, has
a different color for every state. TNT (block ID 46) won’t explode when
you smash the block in its default state (state 0), but it is explosive when you
smash it in block state 1. Although every block has 16 states, not all of them
have different behaviors.

To set a block’s state, you provide the setblock() or setblocks() function
with an extra argument. The following code creates a pink block of wool:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

block = 35
state = 6
Creates a single block of pink wool
mc.setBlock(10, 3, -4, block, state)

Creates a cuboid of pink wool
mc.setBlocks(11, 3, -4, 20, 6, -8, block, state)

Wool (block ID 35) has many uses in Minecraft due to its different
colors, but it’s difficult to remember the different block states. Fortunately,
you don’t need to memorize the different block states when you can use a
program to remind you.

Let’s make a program that contains the wool block’s states. The pro-
gram will contain a function with an argument that takes the color you
want written as a string. The function then returns the block state for the
wool color as an integer. The function will contain the bulk of the code for
the program. However, you’ll add a couple of code lines to take input from
a user and place the block in the game, and you’ll use your fancy new func-
tion to set the color.

First, you’ll need to find out the block states for the different colors
of wool. You can find them in the “Block ID Cheat Sheet” on page 285.
Here’s some code to get you started (pink is block state 6):

def getWoolState(color):
 """ Takes a color as a string and returns the wool block state for
 that color """

u if color == "pink":
 blockState = 6

woolColors.py

functions give You superpowers 159

 elif # Add elif statements for the other colors
 # Return the blockState here

v colorString = input("Enter a block color: ")
state = getWoolState(colorString)

w pos = mc.player.getTilePos()
mc.setBlock(pos.x, pos,y, pos.z, 35, state)

At the moment, the program has just the beginnings of the getWoolState()
function. It only has an if statement for the color pink u. Also included
is code at the end of the program to take user input for the block color v
and code to place the wool block at the player’s position w.

Add to the getWoolState() function using elif statements for other wool
colors and their corresponding block states. The program should take an
argument for the color of the block and return the integer value of the
block state. For example, providing the argument "pink" will return the
value 6. You’ll also need to add a return statement to the program. Use the
comments to guide you.

Save the file as woolColors.py in the functions folder.
If you want to make the program more user friendly, you can post a

message to chat if the argument is not a valid color. Figure 8-4 shows the
input in the Python shell and the wool block being placed in the game.

Figure 8-4: Now I can create a wool block in any color by entering the name of the color
I want.

while Loops
Just like if statements, loops can be written inside functions. The syntax for
a loop inside a function is the same as that for a regular loop. You just need
to remember that the loop should be indented by an extra four spaces on
each line to indicate that it belongs to the function.

160 Chapter 8

In the following example, the while loop within the function will print
the toPrint argument. The number of times the loop repeats is determined
by the repeats argument.

def printMultiple(toPrint, repeats):
 """ Prints a string a number of times determined by the repeats variable """
 count = 0
 while count < repeats:
 print(toPrint)
 count += 1

You can also use return statements and while loops in the same function.
In most cases, you’ll want the return statement to be outside the loop. (If
you use the return statement inside a loop, it will break the loop and end the
function.) Let’s look at an example:

def doubleUntilHundred(numberToDbl):
 """ Doubles a number until it is greater than 100. Returns the number of
 times the number was doubled """
 count = 0
 while numToDbl < 100:
 numberToDbl = numberToDbl * 2
 count += 1

u return count

print(doubleUntilHundred(2))

This program doubles a number until it is greater than 100. It then
returns the number of times the loop repeated u.

You can also put function calls within loops, as you did in previous
chapters.

Mission #45: Blocks, everywhere
By using loops inside functions, you can use an argument to determine the
number of times a loop repeats. By using the setBlock() function, you can
also determine the type of block to be placed within the loop.

Wa r N i N g The program in this mission could be destructive, so you might want to try it in a new
world to preserve your precious creations.

In this mission, you’ll create a function that places blocks randomly
around the map. The number of blocks it places and the block type it places
are determined by function arguments.

Listing 8-4 generates a melon at a random location on the map.

functions give You superpowers 161

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
import random

def randomBlockLocations(blockType, repeats):
u count = 0
v # Add the loop here

 x = random.randint(-127, 127)
 z = random.randint(-127, 127)

w y = mc.getHeight(x, z)
 mc.setBlock(x, y, z, blockType)
 count += 1

Listing 8-4: When called, this function will place a block randomly in the game.

Copy Listing 8-4 into a new file in IDLE and save it as blocksEverywhere.py
in the functions folder. At v, add a while loop inside the function so the
code repeats. The count variable u makes it easier for you to tell how many
times the loop has repeated. Compare the repeats argument to the count
variable in the loop’s condition to set how many times the loop should
repeat. Indent all the lines inside the function after v so they are also
inside the loop. The getHeight() function ensures that the block is placed
above the ground w.

Finally, add three function calls to create blocks. The first function
should create 10 blocks, the second one should create 37 blocks, and the
third should create 102 blocks. Choose any block types that you want.

Save the program and run it. The program should create blocks ran-
domly around the map. Figure 8-5 shows an example.

Figure 8-5: You can see some of the blocks that the program has placed randomly.
I created a new world to demonstrate this program so it didn’t damage any of my
buildings.

blocks
Everywhere.py

162 Chapter 8

global and Local Variables
When you’re defining functions, you have a new challenge to deal with,
namely the scope of a variable. The scope of a variable describes how your
program can access its data. The best way to learn about scope is to see it in
action, so let’s look at some code. Let’s say you’re using the following code,
which increases the number of eggs you have for a party:

u eggs = 12

def increaseEggs():
v eggs += 1

 print(eggs)

increaseEggs()

Two variables are named eggs, one outside the function u and another
inside the function v. Nothing looks terribly wrong, but Python will throw
an error. Here’s part of the error message:

UnboundLocalError: local variable 'eggs' referenced before assignment

The problem is that the eggs variable is defined outside the function,
but when you try to add to it inside the function, Python can’t see the vari-
able. To Python, the variable inside the function is totally different from the
one outside the function, even though they have the same name. Python
does this on purpose to stop variables inside different functions from acci-
dentally sharing the same names and causing unexpected bugs.

In Python code, you have two ways to approach the variables in a file:
you can either make a variable global, which means it affects an entire pro-
gram or file, or make a variable local, which means it can be seen only by
the code in a particular function or loop. In other words, you can use the
same variable inside and outside a function, or you can make two different
variables that affect different parts of the code.

A global variable will be treated as the same variable inside and outside
a function. Any changes to the variable inside the function will affect the
variable that was defined outside the function and vice versa. To make a
global variable, use the global keyword u:

eggs = 12

def increaseEggs():
u global eggs

 eggs += 1
 print(eggs)

increaseEggs()

In this example, the value of eggs will be 13 when it is printed.

functions give You superpowers 163

You can treat the variable as a local variable instead to produce a differ-
ent effect. In this case, the variables inside and outside the function will be
treated as different variables. Changes to the variable inside the function
will not affect the variable outside the function and vice versa. So you could
change the code to make the variable a local variable u, like this:

eggs = 12

def increaseEggs():
u eggs = 0

 eggs += 1
v print(eggs)

increaseEggs()
w print(eggs)

When the value of eggs in the function is printed v, it will be 1 because
the value of the eggs variable outside the function does not affect the local
variable inside the function. The value of eggs inside the increaseEggs()
function is 1, and the global eggs variable still has the value of 12 w.

Mission #46: a Moving Block
A while ago, I thought it would be cool to make a block move around the
Minecraft world by itself. Every second it would move forward. If it hit a
wall, a tree, or something tall, it would turn and make its way in a different
direction. If it fell in a hole, however, it would get stuck and wouldn’t be
able to escape.

 Listing 8-5 is the start of a program to make a magical block that
moves on its own.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import time

def calculateMove():
 """ Changes the x and z variables for a block. If the block
 in front of the block is less than 2 blocks higher, it will move
 forward; otherwise it will try to move left, then backward,
 then finally right. """

u # Create global variables here

 currentHeight = mc.getHeight(x, z) - 1

 forwardHeight = mc.getHeight(x + 1, z)
 rightHeight = mc.getHeight(x, z + 1)
 backwardHeight = mc.getHeight(x - 1, z)
 leftHeight = mc.getHeight(x, z - 1)

moving Block
.py

164 Chapter 8

 if forwardHeight - currentHeight < 3:
 x += 1
 elif rightHeight - currentHeight < 3:
 z += 1
 elif leftHeight - currentHeight < 3:
 z -= 1
 elif backwardHeight - currentHeight < 3:
 x -= 1

 y = mc.getHeight(x, z)

pos = mc.player.getTilePos()
x = pos.x
z = pos.z
y = mc.getHeight(x, z)

while True:
 # Calculate block movement
 calculateMove()

 # Place block
 mc.setBlock(x, y, z, 103)

 # Wait
 time.sleep(1)

 # Remove the block
 mc.setBlock(x, y, z, 0)

Listing 8-5: Unfortunately, this code won’t work until global variables are added.

But this code won’t run yet because the variables in the calculateMove()
function aren’t global.

Your mission is to finish the code in Listing 8-5. Copy it into IDLE and
save it as movingBlock.py in the functions folder. Add code to the start of the
function to make the x, y, and z variables global. The global definitions
should be placed at u.

After you’ve declared some global variables, run the program. Your
block should move around. Figure 8-6 shows the block move up to a wall
and then start to move around it.

BonUs oBJeCTiVe: a MoRe inTeLLigenT MeLon BLoCk

When you run the movingBlock.py program, you might notice that the block moves
forward along the x-axis the most, sometimes causing it to get stuck in a loop
between two blocks . The reason is that the code doesn’t take into account the
directions that the block has already moved in and will always try to move along
the x-axis first . Can you work out how to store the last direction that the block
moved in and change the if statement to move in that direction first?

functions give You superpowers 165

Figure 8-6: It was fun watching the melon move forward and then try to move around the wall.

What You Learned
Hooray! In this chapter, you learned how to create and call functions. With
return statements you can make functions return values, and you can write
loops and if statements inside functions. In Chapter 9, you’ll learn about
lists, which allow you to store several pieces of data in a single variable.

9
hiTTing Things WiTh LisTs

anD DiCTionaRies

We use lists, such as shopping lists or lists
of instructions, to remember a group of

items or to work through steps in a certain
order. Lists in Python are very similar: they’re

used to store a collection of data within a sequence.
A list can store several types of data, including strings,
numbers, Booleans, and even other lists.

Normally, variables can hold only one value. Lists are useful because
they allow you to store several values in a single variable, such as the num-
bers from 1 to 100 or your friends’ first names. In other programming
languages, lists are sometimes called arrays.

You can use lists of block IDs, coordinates, or a variety of other things
to gain lots of power over your Minecraft world. Because lists can store sev-
eral kinds of values in a single variable, they give you flexibility that a regu-
lar variable can’t offer.

168 Chapter 9

In this chapter, you’ll learn how to use lists with the Minecraft Python
API to create a mini-game for recording height, make a progress bar, and
write a program that randomly slides the player around the game.

Using Lists
Making a list with Python is straightforward. To define a list, use square
brackets around any number of values—or no values at all, which is called
an empty list. Each item in a list needs to be separated by a comma.

For example, a list of ingredients for noodle soup might look like this:

>>> noodleSoup = ["water", "soy sauce", "spring onions", "noodles", "beef"]

The noodleSoup list contains several items and all of them are strings.
You can create an empty list like this:

>>> emptyList = []

Use an empty list when you want to add values later in your program.
You can store any data type in your list and even mix different data

types. For example, you could have a list that contains integers and strings:

>>> wackyList = ["cardigan", 33, "goofballs"]

Sometimes your lists will be very long, making them difficult for humans
to read. But you can format long lists across several lines in Python so pro-
grammers can read them easily. Using several lines for items has no effect
on how the Python code runs. For example, the following format for soup
ingredients works the same as the earlier noodleSoup list:

>>> noodleSoup = ["water",
 "soy sauce",
 "spring onions"
 "noodles",
 "beef"]

Next, we’ll look at how you can access and change items in a list.

accessing a List item
To access a value in a list, reference the item’s position in the list, which is
known as its index. Using the noodle soup example, you can access the
first item in the list like this:

>>> print(noodleSoup[0])
water

hitting Things with Lists and Dictionaries 169

It’s important to note that the first index in a list is 0. The second item
is index 1, the third is index 2, and so on. The reason for this is that com-
puters count from zero when using lists.

Counting from zero might seem silly, but there’s a good reason for it.
Early computers were very slow and had a very little memory. It was faster
and more efficient to start counting indexes from zero. Even though com-
puters are much faster these days, they still count from zero.

It’s also important to note that if you try to access a list index that is
greater than the number of items in the list, you’ll get an error message.
The following line tries to print the item in index position 5:

>>> print(noodleSoup[5])

Here’s part of the error message:

IndexError: list index out of range

The IndexError tells me that there is no data in the index I want to access.
Index position 5 in the list has no data because it’s outside the length of the
list. Python can’t return a value that doesn’t exist!

Changing a List item
Just like you can change the value of variables, you can change individual
items in lists as well. This is because lists are mutable, which means they can
be changed. To change an item in a list, you use the item’s index position
and set its value the same way you would set the value of a variable (by using
an equal sign).

Let’s change the beef item in the noodle soup to chicken. Beef is the
fifth item in the list, so it has an index of 4 (remember, you count from zero
in lists). We can easily change item 4 to chicken, like so:

>>> noodleSoup[4] = "chicken"

Now let’s do something cool with lists in Minecraft.

Mission #47: high and Low
When I’m exploring the Minecraft world, it’s interesting to look back over
my journey. From the highest mountains to the lowest caves, exploration is
one of my favorite activities in the game. Sometimes when I’m playing with
friends, we race each other to see who can get to the highest or lowest point
in the game the fastest. So no one cheats, I wrote a program that stores the
lowest and highest y-coordinates the player reaches within 60 seconds.

When I run the program, it tells me the highest and lowest places in the
game that I traveled to during one minute. Listing 9-1 contains the code
I’ve started for you. Copy it into a new file and save it as highAndLow.py in a
new folder called lists.

170 Chapter 9

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import time

u heights = [100, 0]
count = 0

while count < 60:
 pos = mc.player.getTilePos()

 if pos.y < heights[0]:
v # Set the lowest height to the y variable

 elif pos.y > heights[1]:
w # Set the highest height to the y variable

 count += 1
 time.sleep(1)

x mc.postToChat("Lowest: ") # Output lowest height
y mc.postToChat("Highest: ") # Output highest height

Listing 9-1: The start of the code to get the lowest and highest positions the player visits

The program will store the lowest and highest y-coordinates you’ve trav-
eled to in a list called heights u. The first item in the list (index position 0)
stores the lowest coordinate and the second (index position 1) stores the
highest. We need to start with a high “lowest” value and a low “highest”
value so that the first time we run the program, the player’s position will
be the new lowest or highest value and will be displayed in the chat. Here
I’ve used a default lowest value of 100 and a default highest value of 0.

The while loop runs once per second for 60 seconds to constantly
update the values in heights. The if statement checks whether the player’s
current height is lower than the lowest value stored in the list v. Then the
elif statement checks whether the current height is greater than the high-
est position stored in the list w.

To complete the code, you need to set the value of the lowest height,
height[0], to the value of pos.y at v. Remember that you set the values in
lists like you would a variable, so the line of code should look like this:
height[0] = pos.y. You also need to set the highest height, height[1], to the
value of pos.y w.

Finally, you need to output the value of the lowest x and highest y
heights in the last two lines of the program. To do this, you’ll need to access
the index positions for the lowest and highest heights from the heights list
(again, index 0 is the lowest height and index 1 is the highest height).

Run the program and start running around the game. See how high
and how low you can get. After 60 seconds, the loop will stop, and the pro-
gram will display your highest and lowest heights. Run the program several
times and see if you can beat your record!

Figure 9-1 shows one of my attempts.

highAndLow
.py

hitting Things with Lists and Dictionaries 171

Figure 9-1: The lowest y-coordinate I visited was 15 and the highest was 102.

BonUs oBJeCTiVe: an UnexPeCTeD BUg

In highAndLow.py, the default values for the lowest and highest positions are set
to 100 and 0 . This isn’t a problem as long as you go lower than 100 and higher
than 0 . However, if you don’t go lower than 100 and higher than 0, the value
won’t change, which can make the program inaccurate . Can you work out how
to fix this?

Manipulating Lists
Lists have a set of built-in functions that let you manipulate them. These
functions include common operations like adding an item to a list, insert-
ing an item, or deleting an item.

adding an item
You can add an item to the end of a list using the append() function: just
include the value of the item you want to append as an argument.

The noodle soup would be better if we added some vegetables. To do
this, use the append() function:

>>> noodleSoup.append("vegetables")

Now the noodleSoup list contains a "vegetables" string as the last item in
the list.

172 Chapter 9

Appending items is very useful when you start with an empty list. By
using the append() function, you can add the first item to an empty list:

>>> food = []
>>> food.append("cake")

inserting an item
It’s also possible to insert an item into the middle of a list. The insert()
function places an item between two existing items and changes the index
positions for all the items after the newly inserted item.

This function takes two arguments, the index position where you want
to insert the item and the value that you want to insert.

For example, here’s our current noodleSoup list:

>>> noodleSoup = ["water", "soy sauce", "spring onions", "noodles", "beef",
"vegetables"]

Let’s add "pepper" to the list in the third index position:

>>> noodleSoup.insert(3, "pepper")

The updated list holds the following values after the insert:

["water", "soy sauce", "spring onions", "pepper", "noodles", "beef", "vegetables"]

If you try to insert an item at an index position that is greater than the
length of the list, the item will be added after the last item. For example, if
your list has seven items, but you try to insert at item position 10, the item
will just be added to the end of the list.

>>> noodleSoup.insert(10, "salt")

After running this code, the last item in the list will be "salt":

["water", "soy sauce", "spring onions", "pepper", "noodles", "beef",
"vegetables", "salt"]

Notice that salt isn’t in index position 10; instead it is in index position 7.

Deleting an item
Sometimes you’ll want to get rid of an item in a list. You use the del keyword
for this. The keyword goes before the name of the list, with the index posi-
tion of the item you want to delete in the square brackets.

For example, to delete the "beef" item, which is now in index position 5
in the noodleSoup list, do this:

>>> del noodleSoup[5]

hitting Things with Lists and Dictionaries 173

You can also use the del keyword in combination with the index() func-
tion if you want to find the index position of a value and then delete it:

>>> beefPosition = noodleSoup.index("beef")
>>> del noodleSoup[beefPosition]

After deleting an item, the index positions in a list will change. This is
what the list will look like after we delete "beef" at index position 5:

["water", "soy sauce", "spring onions", "pepper", "noodles", "vegetables", "salt"]

The "vegetables" index position changes from 6 to 5, and the "salt" index
position changes from 7 to 6. Note that only indexes after the deleted item
will be affected; any indexes before the deleted item will be unchanged. Keep
this in mind when deleting items from your lists.

Mission #48: Progress Bar
Let’s use some of the list functions to create a progress bar in Minecraft. It
will look like the one you see onscreen when you’re downloading a file from
the Internet or when you’re keeping track of your next level up in a role-
playing game.

The program will use the progress bar to count to 10 seconds. When
the program starts, the progress bar will be made of glass blocks. For every
second that passes, the progress bar will replace a glass block with a lapis
lazuli block. Figure 9-2 shows the first five steps in the progress bar.

Figure 9-2: The progress bar shows the progress at 50 percent (5 out of 10 blocks are
lapis lazuli).

Open IDLE and create a new file. Save it as progressBar.py in the lists
folder. An incomplete version of the program is in Listing 9-2. Copy it into
your text editor.

174 Chapter 9

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import time

pos = mc.player.getTilePos()
x = pos.x + 1
y = pos.y
z = pos.z

Add 10 glass blocks (ID 20) to this empty list
u blocks = []

barBlock = 22 # Lapis lazuli

count = 0
while count <= len(blocks):

 mc.setBlock(x, y, z, blocks[0])
 mc.setBlock(x, y + 1, z, blocks[1])
 mc.setBlock(x, y + 2, z, blocks[2])

v # Add setBlock() for the remaining blocks in the list

 count += 1

w # Delete the last block in the list

x # Insert a lapis lazuli block at the first position in the list

 time.sleep(2)

Listing 9-2: Incomplete code to make a progress bar

To complete the program in Listing 9-2, you’ll need to do the following:

1. Add 10 glass blocks (ID 20) to the empty blocks list at u.

2. Use the setBlock() function to set all 10 blocks v from the list in the
game world. The first three blocks have been set for you.

3. Write a statement that deletes the last block in the list (index posi-
tion 9) w. Remember that you use the del keyword to delete an item
from a list.

4. Insert a new lapis lazuli block at the start of the list x. Use the insert()
function with the barBlock variable to insert a new lapis lazuli block in
index position 0.

Comments are included in the code to help you find where you need to
do these tasks.

progressBar
.py

hitting Things with Lists and Dictionaries 175

BonUs oBJeCTiVe: UP anD DoWn again

At the moment, the progress bar in progressBar.py only counts upward and stops
when it’s full . Can you work out how to make the progress bar count down in the
opposite direction?

Treating strings Like Lists
Strings can be treated like lists, because a string is also a sequence of data.
You can access individual characters in a string using their index; how-
ever, you cannot change the characters in each index position using the
append or insert functions because strings are immutable. That means that
they cannot be changed.

The following code will print the second letter in the string "Grape":

>>> flavor = "Grape"
>>> print(flavor[1])
r

This shows that you can access parts of a string like you would items in a
list. For example, you could access the first letters of someone’s first and last
names to print their initials:

>>> firstName = "Lyra"
>>> lastName = "Jones"
>>> initials = firstName[0] + " " + lastName[0]
>>> print(initials)
L J

The new string "L J" that you get by accessing parts of a string using
index positions is called a substring. Note that the index for a string also
counts from zero!

Tuples
Tuples are a type of list that is immutable. But like other lists, they’re a
sequence of items of any variable type. Tuples use parentheses instead
of square brackets, and they use commas to separate items.

For example, say a nation’s only Olympic athlete, from an underfunded
training program, records a number of distances for their long jumps in
meters:

>>> distance = (5.17, 5.20, 4.56, 53.64, 9.58, 6.41, 2.20)

176 Chapter 9

If the athlete jumped only once, you could also create a tuple with a
single value. To write a tuple with a single value, you still have to include a
comma:

>>> distance = (5.17,)

When you’re defining a tuple, the parentheses are optional, so you can
just define a tuple by placing commas between values, like this:

>>> distance = 5.17, 5.20, 4.56, 53.64, 9.58, 6.41, 2.20

To access values of tuples, use the square bracket notation that you use
with regular lists. Let’s assign the value in index 1 of the distance tuple to
the variable jump:

>>> jump = distance[1]
>>> print(jump)
5.20

The main difference between lists and tuples is that tuples are immu-
table: you can’t change their contents. You can’t append items to the end
of the tuple, insert items, delete items, or update any values. You use tuples
instead of lists when your program doesn’t need to change the values of the
items in the tuple.

setting Variables with Tuples
A useful feature of tuples is that you can use them to set more than one
variable at the same time. This saves space and can keep related variables
clustered together.

Normally, you would refer to a tuple like you would a list, by using a
single variable name:

measurements = 6, 30

However, let’s say we want to store the values in two variables instead
of one. The syntax to do so isn’t complex. You separate the variable names
with commas, then use an equal sign, and then write the tuples on the
other side of the equal sign. Each tuple value will be assigned to the vari-
able in the corresponding position. Let’s take a look.

In this example, two variables, width and height, are set to the values 6
and 30, respectively:

width, height = 6, 30

Now we have two variables. One is called width and has a value of 6, and
the other is called height and has a value of 30. And we did it by using just a
single line of code!

hitting Things with Lists and Dictionaries 177

Mission #49: sliding
Setting variables with tuples is a quick and easy way to save space in your
programs. It’s also useful for setting related variables together in one place
in your program. For example, throughout the book you’ve used code like
this for setting the values of the x, y, and z variables:

x = 10
y = 11
z = 12

Instead, you can use a tuple to set all of these values in one line:

x, y, z = 10, 11, 12

Next, you’ll put your new code-writing abilities to use! Your mission
is to create a program that moves the player randomly around the game
world in small steps, making it look like you’re skating on ice. I’ve started
the program for you in Listing 9-3; some bits are missing and you need to
complete them.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import random
import time

u # Get the player's position

v # Set the x, y, and z variables on the same line using a tuple

while True:
w x += random.uniform(-0.2, 0.2)

 # Change the z variable by a random float
x z +=

 y = mc.getHeight(x, z)

 mc.player.setPos(x, y, z)
 time.sleep(0.1)

Listing 9-3: The start of the code to make the player slide around the map

Copy Listing 9-3 into a new file and save it as sliding.py in your lists
folder. To finish the program, you need to get the player’s starting posi-
tion u and set the values of the x, y, and z variables v. Use a tuple to set
these values. This program also uses the uniform() function w, which is like
the randint() function (see “Playing with Random Numbers” on page 62)
but returns a random float value instead of an integer value. Use the
uniform() function to change the value of the z variable in the loop x.
This has already been done for the x variable w.

sliding.py

178 Chapter 9

Figure 9-3 shows my player sliding slowly around my game.

Figure 9-3: Slowly sliding backwards around my garden

BonUs oBJeCTiVe: sLiDing BLoCks

The sliding.py program makes the player slide randomly around the game . Can
you work out how to change the program so it makes a block slide around?

hitting Things with Lists and Dictionaries 179

Returning a Tuple
Some of Python’s built-in functions return a tuple. When you define your
own functions, they can return the result as a tuple as well. To do that,
you put a tuple after the return keyword. For example, let’s create a func-
tion to convert a date into a tuple. We give the date as a string argument,
and the function will return the year, the month, and the day in a tuple.
Here’s the code:

def getDateTuple(dateString):
 year = int(dateString[0:4])
 month = int(dateString[5:7])
 day = int(dateString[8:10])
 return year, month, day

When we call the function and give it a date as a string, it returns a
tuple containing the year, month, and day in that order:

>>> getDateTuple("1997-09-27")
(1997, 9, 27)

When we call the function, we can store the returned tuple however we
want. This code stores each value in a separate variable:

year, month, day = getDateTuple("1997-09-27")

Now we can quickly convert date strings to individual variables. In my
work as a software developer, I use code that’s very similar to this all the time.

other Useful features of Lists
You can do many other tasks with lists. This section explains how to find the
length of a list, how to randomly choose an item from a list, and how to use
an if statement to check whether a value is in a list.

List Length
The len() function is a quick way to find the length of any list in Python. The
function returns the number of items in a list when a list is used as an argu-
ment. Let’s see it in action:

>>> noodleSoup = ["water", "soy sauce", "spring onions", "noodles", "beef",
"vegetables"]
>>> print(len(noodleSoup))
6

Although Python starts counting indexes at zero, it counts how many
items are in a list in regular counting numbers. The highest index in this
list is 5, but Python knows there are 6 total items!

180 Chapter 9

Mission #50: Block hits
The Minecraft Python API has a handy function that returns a list of loca-
tions you’ve hit with your sword. You can use the items in the list to get the
coordinates of blocks you’ve hit. You’ll see how useful this is in programs
later in this chapter and later in the book.

You can also make a short and fun game that counts the number of
blocks you can hit in a minute. In this mission, you’ll do just that. It’s quite a
fun game: play against a friend and try to beat each other’s scores! You can
also expand it, for example, by keeping a high score.

Figure 9-4 shows the program in action.

Figure 9-4: In 60 seconds I hit 197 blocks.

Not much code is required to make this game. Here’s a summary of the
code structure:

1. Connect to the Minecraft game.

2. Wait 60 seconds.

3. Get the list of block hits.

4. Display the length of the block hits list to chat.

The following code shows the only part you haven’t seen so far, which is
the code that gets the list of block hits from the game:

blockHits = mc.events.pollBlockHits()

This code uses the pollBlockHits() function to return a list of block hits
and stores that list in a variable named blockHits. The blockHits variable will
act like any other kind of list, so you can access data from index positions
and get the length of the list.

When you play this game, you’ll have to right-click blocks to keep
count of them. The reason is that the pollBlockHits() function records all
the blocks you right-click with a sword. On the PC version of Minecraft,

hitting Things with Lists and Dictionaries 181

right-clicking with your sword looks more like you’re defending yourself
than hitting something, but it still records which blocks you’ve clicked.
Figure 9-5 shows what this looks like. Make sure you only right-click with
your sword: left clicks with your sword won’t be recorded, and neither will
right-clicking with something else in your hand! But you can use any type
of sword, including iron, gold, and diamond.

Figure 9-5: When I right-click, the player holds the sword like this.

When you print the output of the list, it should look similar to this,
although the values will change each time depending on where you hit:

[BlockEvent(BlockEvent.HIT, 76, -2, 144, 1, 452),
BlockEvent(BlockEvent.HIT, 79, -2, 145, 1, 452),
BlockEvent(BlockEvent.HIT, 80, -3, 147, 1, 452),
BlockEvent(BlockEvent.HIT, 76, -3, 149, 1, 452)]

This list output stores the details of four block hits. Each item contains
the hit’s coordinates. You’ll learn how to access these coordinates in Mis-
sion #55 (page 196).

182 Chapter 9

To help you get started with the program, I’ve written the basic struc-
ture in Listing 9-4.

Connect to the Minecraft game
from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import time

Wait 60 seconds
time.sleep(60)

Get the list of block hits
u blockHits =

Display the length of the block hits list to chat
v blockHitsLength =

mc.postToChat("Your score is " + str(blockHitsLength))

Listing 9-4: Beginnings of the sword hits game

To complete this program, open IDLE, create a new file, and copy
Listing 9-4 into it. Save this file as swordHits.py in the lists folder. Set
the blockHits variable using the pollBlockHits() function u and set the
blockHitsLength variable by getting the length of the blockHits variable v.

Randomly Choosing an item
By now you might have realized that I really like using randomly generated
things in my programs. Randomness makes a program behave somewhat
unpredictably every time you run it.

When you’re using lists, you’ll want to access random items from the
list from time to time. For example, you might want to choose a block at
random from a list of blocks.

The choice() function in the random module is the go-to function for
choosing a list item at random. The function takes one argument, the list
that you want to use, and returns a random item from within the list.

In Listing 9-5, the colors list contains the names of several colors. It
chooses one at random using the choice() function and then prints it:

import random
colors = ["red", "green", "blue", "yellow", "orange", "purple"]
print(random.choice(colors))

Listing 9-5: Printing a random color from a list of colors

When you run the code, the program will output an item from the list
at random.

swordHits.py

hitting Things with Lists and Dictionaries 183

Mission #51: Random Block
In Minecraft, selecting a random block ID from a range of numbers can
cause problems in the program because some block IDs don’t have corre-
sponding blocks. One solution is to use a list of valid blocks to select from at
random. Lists allow you to create a limited number of items and then select
one at random using the choice() function.

Your mission is to create a list of block IDs, select a random block from
that list, and then set the block to the player’s position. You can use List-
ing 9-5 as a starting point.

First, create a list of block IDs. Second, use the random.choice() function
to select a block from the list. Third, use the setBlock() function to place
the random block in the Minecraft game.

Save the program as randomBlock.py in the lists folder.
Include as many blocks as you want in your list. For my list I chose five

blocks, including melon, diamond, and gold. You can see the result of run-
ning the program in Figure 9-6.

Figure 9-6: The program randomly selected a gold block.

Copying a List
Copying lists is quite tricky in most programming languages. List vari-
ables do not actually contain values; instead, they contain a reference to
an address in your computer’s memory that has further references to the
values contained in the list. Although your computer takes care of this capa-
bility behind the scenes, it’s worthwhile to understand how it works because
it will make you a smarter programmer! You can view the memory address
of a list using the id() function:

>>> cake = ["Eggs",
 "Butter",
 "Sugar",

184 Chapter 9

 "Milk",
 "Flour"]
>>> print(id(cake))

For example, the output of this code on my computer was 3067456428.
The value 3067456428 is the memory location where cake is stored. When
you run this code on your computer, you’ll probably get a different number
because it’s stored in a different place in your computer’s memory.

You don’t need to understand this behavior fully, but you do need to
know that it has consequences when you want to copy a list into another
variable. Instead of the values in the list being copied as you would expect,
the memory location of the list is copied into the new variable. This means
that when you change a value in either list, it will affect the other.

For example, the following program creates a list called cake and then
sets the value of chocolateCake to be the same as cake. An item, "Chocolate", is
then added to the chocolateCake list:

>>> cake = ["Eggs",
 "Butter",
 "Sugar",
 "Milk",
 "Flour"]

>>> # Store the list in a second variable
>>> chocolateCake = cake
>>> chocolateCake.append("Chocolate")

Unfortunately, "Chocolate" is also added to the cake list, even though you
didn’t want it to be. You can see this mistake when the lists are printed:

>>> print(cake)
['Eggs', 'Butter', 'Sugar', 'Milk', 'Flour', 'Chocolate']
>>> print(chocolateCake)
['Eggs', 'Butter', 'Sugar', 'Milk', 'Flour', 'Chocolate']

This problem happens because the variables store the memory location
of the list, not the items in the list.

A simple way to overcome this problem is to use a list slice. When you
slice food with a knife, you are cutting it into different parts. A list slice in
Python is similar. When you slice a list, you take a piece of the list. You can
use a list slice to take only certain items in a list, but in this case, you’ll be
using a list slice to copy every item in a list. To copy the cake list into the
chocolateCake variable, use this code:

>>> chocolateCake = cake[:]

The chocolateCake variable will now contain the values of the cake list but
with a different memory address.

hitting Things with Lists and Dictionaries 185

The code for the cake ingredients can be corrected using the list slice:

>>> cake = ["Eggs",
 "Butter",
 "Sugar",
 "Milk",
 "Flour"]

>>> # Store the list in a second variable
u >>> chocolateCake = cake[:]

>>> chocolateCake.append("Chocolate")

You can see that the items in cake have been copied to chocolateCake
using [:] at u.

Here’s the output:

>>> print(cake)
['Eggs', 'Butter', 'Sugar', 'Milk', 'Flour']
>>> print(chocolateCake)
['Eggs', 'Butter', 'Sugar', 'Milk', 'Flour', 'Chocolate']

Notice that the values in both lists are now different—only chocolateCake
contains the "Chocolate" value.

items and if statements
To find out whether a value is in a list, you can use the in operator. The in
operator goes between a value and the list you want to check. If the value is
in the list, the expression will evaluate to True; if the value is not in the list,
the expression will evaluate to False.

The following example checks whether the value "Eggs" is in the cake list:

>>> cake = ["Eggs", "Butter", "Sugar", "Milk", "Flour"]
>>> print("Eggs" in cake)

The value True will be printed, because "Eggs" is in the list.
You can of course use the in operator as part of an if statement condi-

tion. The following code extends and adapts this example to use an if state-
ment instead of printing the Boolean value. It checks whether "Ham" is in the
cake list and prints different messages depending on whether it is or isn’t in
the list:

>>> cake = ["Eggs", "Butter", "Sugar", "Milk", "Flour"]
>>> if "Ham" in cake:
>>> print("That cake sounds disgusting.")
>>> else:
>>> print("Good. Ham in a cake is a terrible mistake.")

186 Chapter 9

You can combine the not operator with the in operator to produce the
opposite effect. Instead of returning True when an item is in a list, the code
will return False and vice versa. Here’s how that looks (note that the bodies
of the if and else statements have also been swapped):

>>> cake = ["Eggs", "Butter", "Sugar", "Milk", "Flour"]
>>> if "Ham" not in cake:
>>> print("Good. Ham in a cake is a terrible mistake.")
>>> else:
>>> print("That cake sounds disgusting")

You can use either technique in your programs. Just choose the one
that you think makes the most sense!

Mission #52: night Vision sword
Do you forget to bring enough torches with you when you’re exploring
caves in Minecraft? I do that all the time. Sometimes I forget to bring any
torches, and I’m too far into the cave to go back. So I fumble around in the
dark, not really sure if I’m finding anything useful. But with your Python
knowledge, you can make a program to help you find diamonds with your
sword.

Let’s write a basic program that uses the pollBlockHits() function to
check whether any of the blocks you’ve hit are diamond ore. This is useful
for exploring caves with no light or playing a game of “find the diamond
ore” in the dark. The code is in Listing 9-6. Copy it into a new file and save
it as nightVisionSword.py in the lists folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import time

blocks = []

while True:
 hits = mc.events.pollBlockHits()
 if len(hits) > 0:
 hit = hits[0]

u hitX, hitY, hitZ = hit.pos.x, hit.pos.y, hit.pos.z
 block = mc.getBlock(hitX, hitY, hitZ)
 blocks.append(block)

v # Add the if statement here

 time.sleep(0.2)

Listing 9-6: This program will help you find diamond ore in the dark.

nightVision
Sword.py

hitting Things with Lists and Dictionaries 187

Notice how hit.pos.x, hit.pos.y, and hit.pos.z are used u. Each hit
stores the coordinates of the block that was clicked using a tuple. You can
access these coordinates using dot notation. In this example, the variable
name hit is used to name the list that contains each block hit, so I access
the coordinates using hit.pos.x, hit.pos.y, and hit.pos.z.

The code is nearly complete. The only remaining task is to check whether
you’ve found some diamond. Add an if statement v to check whether dia-
mond ore (block ID 56) is in the blocks list and post a message to chat say-
ing "You found some diamond ore!" if it is. Add a break statement inside the if
statement as well so the loop stops repeating when you find the ore.

Figure 9-7 shows the program in action.

Figure 9-7: It’s dark, but I found some diamond ore. Yay!

If you’re not as forgetful as I am and remember to bring torches with
you into caves, you can still use this code—as a game. Make an underground
room with no light and put a single diamond ore somewhere on the wall.
Run the program and see how long it takes you to find the diamond ore
in the dark. Remember to right-click with a sword! That’s the only way the
pollBlockHits() function can record which blocks you’re hitting.

BonUs oBJeCTiVe: DiaMonD ChaLLenge

It would be cool to change the nightVisionSword.py program into a full mini-game .
Can you automatically generate a room with a single diamond block placed at
random, put the player in that room, and then time how long it takes them to find
the block in the dark?

188 Chapter 9

Dictionaries
Dictionaries are a type of list that uses a different approach. Instead of
using an index to identify items, dictionaries identify items using a set of
keys defined by the programmer.

For example, this raceTimes dictionary stores the names of people who
ran in a race and their race times:

raceTimes = {'Katy': 26,
 'Alex': 30,
 'Richard': 19}

The key uniquely identifies each value in the dictionary. In this example,
the key is the name of the person. The 'Katy' key has an associated value
of 26.

Like lists, dictionaries are mutable; their content can be changed.

Defining a Dictionary
To define a dictionary, use a pair of curly brackets around a set of key-value
pairs. For example, you can use a dictionary to describe a person. You can
use keys like 'name' and 'favoriteAnimal' to store information about the per-
son, like so:

person = {'name': 'David',
 'age': 42,
 'favoriteAnimal': 'Snake',
 'favoritePlace': 'Inside a cardboard box'}

In this example, every key is a string. Each key is paired with a value
using a colon. For example, 'age' is a key and 42 is its corresponding value.
Items in the dictionary are then separated by commas.

You may have noticed that using dictionaries makes it easy for a pro-
grammer to understand what each item in the list represents; for example,
it’s easy to understand that the 'name' key stores a name, not a number or
some other random information.

You can also use integers and floats as dictionary keys. Using floats or
integers in dictionaries is very useful when the keys you want to match with
values don’t follow a strict sequence.

The following example creates a dictionary of train times. The train
time (which is a float) is stored as the key, and the destination of the train is
stored as the value:

trainTimes = {1.00: 'Castle Town',
 2.30: 'Sheep Farm',
 3.15: 'Lake City',

hitting Things with Lists and Dictionaries 189

 3.45: 'Castle Town',
 3.55: 'Storage Land'
 }

Because dictionaries can store two pieces of data that go together as
a pair, they’re ideal for a situation like this. If I used a list of train destina-
tions instead of a dictionary, I wouldn’t be able to match up the times to
the destinations. I would only be able to use the list’s index positions, which
would be 0, 1, 2, 3, 4, and so on, instead of the times.

accessing items in Dictionaries
To access the value of an item in a dictionary, you use square brackets and
a key instead of an index. The key is usually a string or an integer. When
you’re creating a dictionary that uses strings as keys, make sure you put
them in quotation marks.

For example, to access the value of the 'name' key in the person diction-
ary created earlier, you would use this syntax:

person = {'name': 'David',
 'age': 42,
 'favoriteAnimal': 'Snake',
 'favoritePlace': 'Inside a cardboard box'}

agentName = person['name']

The agentName variable will contain the value 'David' because it accesses
the value of the 'name' key. In the same way, if you wanted to access the age
of the agent, you would use the 'age' key:

agentAge = person['age']

This would store the value 42 in the agentAge variable.
In the trainTimes example, you can access the values in the dictionary

(the destinations)using their key values (the train times), which are floats:

trainTimes = {1.00: 'Castle Town',
 2.30: 'Sheep Farm',
 3.15: 'Lake City',
 3.45: 'Castle Town',
 3.55: 'Storage Land'
 }

myTrain = trainTimes[3.15]

Accessing the 3.15 key in the trainTimes dictionary sets the myTrain vari-
able to 'Lake City'.

190 Chapter 9

Mission #53: sightseeing guide
When you’re using dictionaries, you can store any data type as the value,
even lists and tuples. For example, you could store a tuple containing values
for x, y, and z. Here’s an example of code that does just that:

places = {'Living room': (76, 1, -61), 'Bedroom': (61, 9, -61)}

The places dictionary stores two items. The dictionary key is the name
of a location in my Minecraft game (such as my living room or bedroom),
and the value is a tuple of the coordinates. If I wanted to access the coordi-
nates of my living room, I would use the following code:

location = places['Living room']
x, y, z = location[0], location[1], location[2]

Your mission is to create a program that uses a dictionary to store the
locations of different places in your Minecraft game so you can teleport to
them by name. Include as many locations in the dictionary as you want. To
teleport to those locations, you need to access the tuple of coordinates stored
in the dictionary and then set x, y, and z to the values stored in the tuple.
Comments in the code show where to do this.

Copy Listing 9-7 into the IDLE text editor and save it in the lists folder
as sightseeingGuide.py.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

Add locations to the dictionary
places = {}

choice = ""
while choice != "exit":

u choice = input("Enter a location ('exit' to close): ")
v if choice in places:

 # Store the dictionary item's value using its key (choice)
 location =
 # Store the values stored in the tuple in the x, y, and z variables
 x, y, z =
 mc.player.setTilePos(x, y, z)

Listing 9-7: Some neat code to teleport to different locations

I’ve included a statement that asks you to enter the name of the loca-
tion you want to go to. This input is stored in the choice variable u. The
program then uses an if statement to check whether the value of choice
is in the dictionary v. The last line uses the x, y, and z variables to teleport
the player to the position stored in the dictionary.

When the program runs, enter the name of the location that you want
to go to. Figure 9-8 shows my version of the program teleporting me to dif-
ferent places in my game.

sightseeing
Guide.py

hitting Things with Lists and Dictionaries 191

Figure 9-8: I teleported to my living room (top) and my bedroom (bottom).

Changing or adding an item in
a Dictionary
It doesn’t take much work to change the value of an item in a dictionary.
You use square brackets with a key to access the item and set it as you would
a normal variable (with an equal sign). You can also add a new item using
this approach.

Let’s change the value of the age item in the person dictionary from 42
to 43:

person['age'] = 43

192 Chapter 9

Let’s also add a new item called location with the value 'USS Discovery':

person['location'] = 'USS Discovery'

After running this code, the dictionary will have a new key called
location that has the value of 'USS Discovery'.

Deleting items in Dictionaries
Sometimes you’ll want to delete an item in a dictionary. As with a list, you
use the del keyword to do this. For example, to delete the favoriteAnimal
item in the person dictionary, you would do this:

del person['favoriteAnimal']

As you can see, it works just like deleting items from a list.

Mission #54: Block hits score
In Mission #50 (page 180), you wrote a program that counts the number
of times the player hits a block with their sword in 60 seconds. As fun as the
program is, it would be even cooler if you could record the scores of every-
one who played.

To add a scoreboard to the game, you’ll use a dictionary. The diction-
ary will store the player’s name and their score, which can then be displayed
alongside everyone else’s scores.

To get started, open swordHits.py and save it as swordHitsScore.py in the
lists folder. Update the code to match Listing 9-8, where I’ve made some
changes to the program so it repeats, asks the player for their name, and
then prints all the scores. (I’ve also included the solutions to the missing
code from swordHits.py.) The older sections are grayed out. (Remember to
indent everything inside the loop.)

Connect to the Minecraft game
from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import time

name = ""
scoreboard = {}

while True:
 # Get the player's name
 name = input("What is your name? ")

swordHits
Score.py

hitting Things with Lists and Dictionaries 193

 # Break loop if name is exit
 if name == "exit":
 break
 mc.postToChat("Go!")

 # Wait 60 seconds
 time.sleep(60)

 # Get the list of block hits
 blockHits = mc.events.pollBlockHits()

 # Display the length of the block hits list to chat
 blockHitsLength = len(blockHits)
 mc.postToChat("Your score is " + str(blockHitsLength))

u # Add the player to the scoreboard

 # Display the scoreboard
 print(scoreboard)

Listing 9-8: When the code is complete, it will add a scoreboard to the block hits game.

To finish the program, you need to store the name and score of every
player who plays the game. Do this by adding a new dictionary item using
the pieces of data in the code at u. The dictionary is called scoreboard,
and the name of the player is stored in the name variable.

Figure 9-9 shows the output of my scoreboard.

Figure 9-9: My friends and I played a game, and Jim is the winner with 274 block hits.

No t e You might have noticed that when the scoreboard dictionary is printed, it isn’t easy to
read. You’ll learn how to fix this in Mission #59 (page 205).

194 Chapter 9

BonUs oBJeCTiVe: BesT sCoRe

At the moment, if someone plays the swordHitsScore.py game two or more times
(and enters the same username), the program will only record their most recent
score . Can you work out how to use an if statement to check whether the player
has already entered a score and store the new score only if it is greater than the
previous one? Here’s the beginning of the code to help you out . It checks whether
someone’s name is already in the scoreboard dictionary:

if name in scoreboard:

What You Learned
Excellent job! In this chapter you learned about lists, tuples, and diction-
aries. You saw that they can store several data values in a single variable.
They are a very useful way to structure and store data in your programs.

In the missions, you created several fun programs that use lists, diction-
aries, and tuples. With lists, you created a progress bar using lapis lazuli
and glass. Using tuples, you learned a quicker way to set the x, y, and z vari-
ables. And dictionaries allowed you to store the coordinates of things you’ve
built and then teleport to them by entering their names.

In Chapter 10, you’ll further develop your knowledge of lists by learn-
ing about for loops. You’ll create some very cool programs, including one
that you can use to duplicate items you’ve built.

10
MineCRafT MagiC WiTh

foR LooPs

Now it’s time to learn about for loops.
for loops are super useful because they

iterate over lists of items, like the lists you
saw in Chapter 9. This means that they are per-

fect when you want to use loops with lists in your
programs.

While following along with the missions in this chapter, you’ll use for
loops to generate stairs, pillars, pyramids, and weather-beaten walls. With
nested for loops and lists, you’ll be able to create pixel art and generate
new structures in seconds. for loops are very powerful tools for building in
Minecraft!

a simple for Loop
A for loop repeats a block of code for each item in a list until the list ends,
rather than using a condition like a while loop or an if statement.

196 Chapter 10

The list you use in a for statement can contain any number of items of
any data type. The for loop will iterate through each one in order, that is,
by its index. For example, to print every item in the noodle soup list, we
would use the following code:

noodleSoup = ["water", "soy sauce", "spring onions", "pepper", "noodles",
"beef", "vegetables"]

for ingredient in noodleSoup:
 print(ingredient)

We use the for operator to tell Python we’re using a loop.
After the for operator is a variable, ingredient, that represents the item

that the loop is currently using. The value changes every time the loop iter-
ates until it has looped through each item in the list. The first time the loop
executes, the value will be the item in index position 0 (in this case "water"),
the second time the value will be the item in index 1 ("soy sauce"), the third
time the value will be the item in index 2 ("spring onions"), and so on.

The in operator and the list name at the end of the statement tell
Python which list you’re using. The name of the list in this example is
noodleSoup.

The loop executes once for each item in the list and then ends when it
reaches the end of the list. Here’s the output for this program:

water
soy sauce
spring onions
pepper
noodles
beef
vegetables

Every item in the list is printed! Now let’s have some fun with for loops
in Minecraft.

Mission #55: Magic Wand
Every tool in Minecraft has its own purpose. The shovel digs dirt, the
pickaxe breaks stone blocks, the axe cuts wood, and the sword hits baddies.
Usually, you can’t change how the tools behave; you just have to accept that
the sword only hits enemies. But with Python, you can change how the tools
work. In this program, we’ll turn the sword into a magic wand.

In Chapter 9, you learned about the pollBlockHits() function. This func-
tion returns a list of block coordinates that the sword has hit. Using a for
loop, you can access each set of coordinates in this list. We’re going to
turn all the blocks we hit in the last 60 seconds into melons. You can see
how this works in Figure 10-1.

Minecraft Magic with for Loops 197

Figure 10-1: Abracadabra! All the blocks I hit are now melons.

Listing 10-1 contains the start of the program. Save it as magicWand.py
in a new folder called forLoops.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import time

time.sleep(60)

u hits = mc.events.pollBlockHits()
block = 103

v for
w x, y, z = hit.pos.x, hit.pos.y, hit.pos.z
x # Set melon blocks at the coordinates

Listing 10-1: The start of the magic wand program

To get the list of block hits, we call the pollBlockHits() function and
store the result in the hits variable u.

Included is a line of code that will get the position of any block you hit
and store its coordinates in the x, y, and z variables w. It uses a tuple (intro-
duced in “Tuples” on page 175) to assign the three variables in a single line.

At the moment, this line of code won’t work because the hit variable
doesn’t exist. Create a for loop at v and call the variable of the for loop hit.
The for loop should iterate over the hits list. The code for the first part of
the for loop should look like this:

for hit in hits:

magic Wand
.py

198 Chapter 10

Make sure you indent the line of code that gets the x, y, and z values
inside the for loop at w. On the last line of the for loop, add the setBlock()
function to set a melon block at the x-, y-, and z-coordinates x.

When the user runs the completed program, they’ll have 60 seconds
to run around and right-click as many blocks as they can with their sword.
After 60 seconds, all the blocks that were hit with the sword will turn to
melons.

BonUs oBJeCTiVe: YoU’Re a WizaRD

Change the magicWand.py program so it teleports the player: the first hit sets the
location, and the second hit takes them there .

The range() function
The range() function creates a list of integers. It’s a good way to create a list
of numbers for your for loops very quickly. Let’s take a look and pass two
arguments, 0 and 5, to the range() function:

aRange = range(0, 5)

This is a faster way to create a list than writing each item in the list indi-
vidually, which would look like this:

aRange = [0, 1, 2, 3, 4]

Notice that the range() function’s second argument is 5, but the last
item in the list is 4. This is because the function only creates values that are
less than but not equal to the second argument.

To create a loop that uses the range() function to print the numbers 1 to
15, you would use the following code:

for item in range(1, 16):
 print(item)

You could print double the value of every item in a list like so:

for item in range(1, 16):
 print(item * 2)

You can do the same thing with a while loop, which you learned about
in Chapter 7. The following code uses a while loop instead of a for loop to
print the numbers 1 to 15:

count = 1
while count < 16:
 print(count)
 count += 1

Minecraft Magic with for Loops 199

Notice that the for loop is simpler and easier to read. In large and com-
plex programs, a for loop is often a better choice than a while loop with
count.

Mission #56: Magic stairs
One of the best features of using Minecraft with Python is that you can
build things quickly with just a few lines of code. Instead of spending lots of
time building walls, you can just run some code and it’s done. You can also
reuse the code as many times as you want, saving time and effort.

Building stairs is one task that often takes a long time to do. Fortunately,
with just a few lines of Python code, you can quickly create a staircase in
Minecraft. In this mission, you’ll use a for loop to make a staircase appear
in the game world.

Listing 10-2 creates a staircase in Minecraft using a while loop. Save it as
stairs.py in the forLoops folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

pos = mc.player.getTilePos()
x, y, z = pos.x, pos.y, pos.z

stairBlock = 53

step = 0
while step < 10:
 mc.setblock(x + step, y + step, z, stairBlock)
 step += 1

Listing 10-2: A program that creates a staircase using a while loop

Although you can use a while loop for this program, as shown here, a
for loop is actually more suitable. Unlike the while loop, a for loop doesn’t
require a count or step variable. Instead, you can use the range() function to
determine how many times the loop repeats.

To complete the program, change the code so it uses a for loop instead
of a while loop.

You can see the result of the program in Figure 10-2.

BonUs oBJeCTiVe: going DoWn?

At the moment, the stairs.py program only builds stairs in one direction . Try to
work out how to build stairs in other directions . Hint: You’ll use the optional block
states argument in the setBlock() function and add to or take away from the x or
z variables .

stairs.py

200 Chapter 10

Figure 10-2: Where will your magic staircase lead?

Playing around with range()
You’ve learned a bit about the range() function and what happens when you
pass two arguments to the function. What if you pass just one argument?
Enter this code in the IDLE shell to see what happens:

>>> aRange = range(5)
>>> list(aRange)
[0, 1, 2, 3, 4]

When you give the range() function only one argument, it will start at
0 and store each value up to one less than the value you pass in as an argu-
ment. In other words, it’s as if you passed 0 for the first argument and 5 for
the second argument. In this example, the list() function shows the list
values created by the range() function (otherwise, you wouldn’t see them!).
As you can see, the value of list(aRange) is a list of five numbers that start
at 0: [0, 1, 2, 3, 4]. This is a fast way to create a range if you want to start
with 0 as the first value.

As you’ve seen, when you pass two arguments to range(), the list starts at
the first argument provided and ends before the second argument:

>>> aRange = range(2, 5)
>>> list(aRange)
[2, 3, 4]

This example creates a range equivalent to the list [2, 3, 4].
When you give range() three arguments, the third argument defines the

step between items. Normally, each value in the list created by the range()
function is one larger than the previous value. By changing the step, you
change the difference between values. For example, a step of 2 would make

Minecraft Magic with for Loops 201

the next value in a list 2 more than the previous item. A step of 3 would
make it 3 more than the previous item, and so on.

For example, this list adds 2 to the previous value to get the next value:

>>> aRange = range(3, 10, 2)
>>> list(aRange)
[3, 5, 7, 9]

Notice that each item is 2 more than the previous item (5 is 3 + 2, 7 is
5 + 2, and 9 is 7 + 2).

You can even give range() a negative step value, like this:

>>> newRange = range(100, 0, -2)
>>> list(newRange)
[100, 98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 72, 70, 68, 66, 64,
62, 60, 58, 56, 54, 52, 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26,
24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2]

Notice that the values in the list decrease by 2 because of the negative
step value.

other List functions
Because we’re working with lists, let’s explore a few other functions designed
to interact with lists.

The reversed() function takes one argument, the list you want to use,
and returns the list reversed. The last item will be the first item, the second-
to-last item will be the second item, and so on. Let’s reverse an earlier list:

>>> backwardsList = reversed(aRange)
>>> list(backwardsList)
[9, 7, 5, 3]

Items in the list have been reversed, just as we wanted. This kind of list
manipulation comes in handy when you’re writing for loops.

The following example generates a list of numbers from 1 to 100 using
the range() function. It then reverses the list and prints it using a for loop,
effectively creating a countdown from 100 to 1:

countDown = range(1, 101)
countDown = reversed(countDown)
for item in countDown:
 print(item)

Run it to see the output!

100
99
98
97
96

202 Chapter 10

--snip--
3
2
1

You can also reverse the list when you declare the for loop without
needing a variable to store the list:

for item in reversed(range(0, 101)):
 print(item)

This program requires fewer lines of code while having the same effect.
Use this trick to save time so you can focus on building!

Mission #57: Pillars
Wouldn’t it be cool to build a palace in Minecraft? Because palaces should
be grand, ours should have rows of tall, imposing pillars. Obviously, we
don’t want to build them by hand, so using a loop to build them is the best
solution.

We’ll create a function that builds a pillar and then call the function
when we want to build one. Listing 10-3 contains the function to build
a pillar. Copy it into a new file called pillars.py and save it in the forLoops
folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

def setPillar(x, y, z, height):
 """ Creates a pillar. Args set position and height of pillar """
 stairBlock = 156
 block = 155

 # Pillar top
 mc.setBlocks(x - 1, y + height, z - 1, x + 1, y + height, z + 1, block, 1)
 mc.setBlock(x - 1, y + height - 1, z, stairBlock, 12)
 mc.setBlock(x + 1, y + height - 1, z, stairBlock, 13)
 mc.setBlock(x, y + height - 1, z + 1, stairBlock, 15)
 mc.setBlock(x, y + height - 1, z - 1, stairBlock, 14)

 # Pillar base
 mc.setBlocks(x - 1, y, z - 1, x + 1, y, z + 1, block, 1)
 mc.setBlock(x - 1, y + 1, z, stairBlock, 0)
 mc.setBlock(x + 1, y + 1, z, stairBlock, 1)
 mc.setBlock(x, y + 1, z + 1, stairBlock, 3)
 mc.setBlock(x, y + 1, z - 1, stairBlock, 2)

 # Pillar column
 mc.setBlocks(x, y, z, x, y + height, z, block, 2)

pos = mc.player.getTilePos()
x, y, z = pos.x + 2, pos.y, pos.z

pillars.py

Minecraft Magic with for Loops 203

u # Add the for loop here
v # Call the function here

Listing 10-3: A function that creates a pillar

The setPillar() function creates a pillar. It takes four arguments: the x-,
y-, and z-coordinates and the pillar height.

To finish the program, add a for loop u that calls the setPillar() func-
tion v. We want to create a row of 20 pillars that are each 5 blocks apart.
To do that, use a range() function with three arguments to determine how
many pillars will be created and how far apart they will be. By adding
the values stored in the for loop’s variable to the x or z variable in the
setPillar() function call, you can make each pillar an equal distance apart.

Figure 10-3 shows some of the pillars.

Figure 10-3: A brilliant row of pillars

Mission #58: Pyramid
Continuing the theme of building awesome stuff with for loops, let’s build
a pyramid. A pyramid is made up of many levels. The bottom level is the
widest, and the top level—the peak—is the narrowest. Each level is a square
of blocks. We’ll make a pyramid that’s two blocks narrower on each level.
For example, if the base level is seven blocks wide, the next level would be
five blocks wide, then three blocks, and finally the top level would be one
block wide.

Listing 10-4 creates a pyramid. Copy it into a new file called pyramid.py
and save it in the forLoops folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

pyramid.py

204 Chapter 10

block = 24 # sandstone
u height = 10
v levels = range(height)

pos = mc.player.getTilePos()
w x, y, z = pos.x + height, pos.y, pos.z

x for level in levels:
y mc.setBlocks(x - level, y, z - level, x + level, y, z + level, block)

 y += 1

Listing 10-4: An upside-down pyramid program

Although Listing 10-4 creates a pyramid, it contains a minor bug you
need to fix! We store the pyramid’s height in the height variable u. You can
change the value of the height variable to anything you want. The levels
variable uses the range() function to create a list that contains one item for
each level of the pyramid v. The height variable is added to the player’s
x-coordinate when we set the x, y, and z variables w. If we didn’t do this, the
player would be trapped at the center of the pyramid when it’s built.

The for loop iterates for each level in the levels list x. The line of code
that creates each level of the pyramid uses the level variable to work out the
width of each square of blocks that it creates y. The width and length of
each pyramid level will always be twice the size of the level variable.

Remember that bug I mentioned earlier? Run the program to see what
the problem is. The pyramid is upside down!

To fix this issue and make the pyramid right side up, you’ll need to use
the reversed() function on the levels variable to make a list that gets smaller
over time. Or you could be sneaky and call the range() function with a nega-
tive value.

Figure 10-4 shows the finished pyramid.

Figure 10-4: A magnificent pyramid

Minecraft Magic with for Loops 205

Looping over a Dictionary
You can also use a for loop to loop over a dictionary. When you’re using a
dictionary with a for loop, the syntax is the same as a for loop with a list;
however, the loop will only iterate through the dictionary’s keys.

For example, the following code prints the for loop’s variable each
time the loop iterates. In this case, it prints the key of each item in the
dictionary:

inventory = {'gems': 5, 'potions': 2, 'boxes': 1}

for key in inventory:
 print(key)

This code prints the following:

gems
potions
boxes

To print the value associated with each item in the dictionary, you need
to use the dictionary[key] syntax. Here’s how to change the code so it prints
the value of each item as well as the key:

inventory = {'gems': 5, 'potions': 2, 'boxes': 1}

for key in inventory:
 print(key + " " + str(inventory[key]))

This example now prints the following:

gems 5
potions 2
boxes 1

Notice that this output is much easier to read than the dictionary itself.
By using a loop to output the values of a dictionary, you have much more
control over how the information is displayed.

Mission #59: scoreboard
Recall the swordHitsScore.py game from Mission #54 (page 192). The
game recorded the number of blocks a player hit in a minute. The score
was stored in a dictionary along with the name of the player. Although
the program worked just fine, the scoreboard at the end of the program
didn’t output the scores and names in a very readable format. It just
printed a dictionary without any formatting.

To improve the program, in this mission you’ll modify swordHitsScore.py
so it outputs the scoreboard dictionary in an easy-to-read format. To do this,
you’ll use a for loop.

206 Chapter 10

Open your swordHitsScore.py program (it should be in the lists folder)
and save it as scoreBoard.py in the forLoops folder. In the program, find and
delete this line:

 print(scoreboard)

Replace this line with a for loop that prints the name of each player and
their score. These values are stored in the scoreboard dictionary: each player’s
name is a key in the dictionary, and their score is the value of the key.

Figure 10-5 shows the updated output.

Figure 10-5: The output of the program is now easier to read.

for-else Loops
You can also use the else statement with a for loop. When you use else with
a for loop, it executes after the for loop reaches the end of the list. If the for
loop doesn’t reach the end of its list, the else statement will not execute.

For example, here’s a bit of code that prints the ingredients of a sand-
wich and then uses an else statement:

sandwich = ["Bread", "Butter", "Tuna", "Lettuce", "Mayonnaise", "Bread"]

for ingredient in sandwich:
 print(ingredient)
else:
 print("This is the end of the sandwich.")

When you run this code, it prints the following:

Bread
Butter

Minecraft Magic with for Loops 207

Tuna
Lettuce
Mayonnaise
Bread
This is the end of the sandwich.

You might think this code is just the same as writing the following:

for ingredient in sandwich:
 print(ingredient)
print("This is the end of the sandwich.")

Well, yes it is. Both pieces of code will do the same thing. So what is the
point of using else with a for loop? Well, when used with a break statement,
the else statement will behave differently. Let’s look at that next.

Breaking a for-else Loop
Using a break statement to exit a for loop is one way to prevent the else state-
ment from executing.

The following example incorporates a break statement within an if
statement. The loop will break if the current item is "Mayonnaise":

sandwich = ["Bread", "Butter", "Tuna", "Lettuce", "Mayonnaise", "Bread"]

for ingredient in sandwich:
 if ingredient == "Mayonnaise":
 print("I don't like mayonnaise on my sandwich.")
 break
 else:
 print(ingredient)
else:
 print("This is the end of the sandwich.")

Can you predict what the output will be? Think about it before running
this code, and then run the code and see what happens.

Mission #60: The Diamond Prospector
Sometimes when I’m playing Minecraft with friends, they won’t let me use
Python programs to generate diamond blocks. But I still need diamonds for
armor, tools, and building diamond castles. Digging straight down for dia-
mond is easy enough, but you don’t always find it.

To save some time, I wrote a program that checks whether any diamond
ore is directly below me. The program gets my current position and then
uses a for loop to check the blocks below me one at a time to see whether
they’re diamond ore. If diamond ore is found, the program tells me how
deep the ore is; if no diamond ore is found, the program posts a message to
say no diamond ore is below me.

208 Chapter 10

Create a new program and save it as diamondSurvey.py in the forLoops
folder.

Use a for loop to change the value of the y variable by −1 each time the
loop iterates. In total, the loop should repeat 50 times to check 50 blocks
deep. For each iteration, use an if statement to check whether the block
at that position is diamond ore (block ID 56). If it is a diamond ore block,
post a message to the chat to say how far the block is below the player and
break the loop. If no diamond ore blocks are found, use an else statement
in your for loop to post a message that says no diamond ore blocks are
directly below the player.

Figure 10-6 shows the working program.

Figure 10-6: It looks like a diamond ore block is four blocks below me. Time to start
digging!

BonUs oBJeCTiVe: goLD in TheM ThaR hiLLs

Change the diamondSurvey.py program so it looks for other ore blocks as well,
such as iron ore or gold ore .

nested for Loops and
Multidimensional Lists

Within your programs, you can use multiple lists together for a variety of
reasons. It’s possible to include lists within lists, which are called multi-
dimensional lists. In this section, we’ll use two-dimensional (2D) and three-
dimensional (3D) lists to build structures in Minecraft.

Minecraft Magic with for Loops 209

Thinking in Two Dimensions
You’ve learned how to write lists, specifically one-dimensional lists. They’re
called one-dimensional lists because each position in the list contains only
one item.

For example, look at the following list, called oneDimensionalRainbowList.
The formatting of this list is a bit different just to emphasize that each
position contains a single item; otherwise, it’s the same as other lists you’ve
worked with:

oneDimensionalRainbowList = [0,
 1,
 2,
 3,
 4,
 5]

There are six items in this list: the numbers 0 to 5. Each item in the list
has only one value, making the list a one-dimensional list.

Listing 10-5 displays this list in Minecraft as wool blocks. The program
file, rainbowStack1.py, is available in the book’s resources. Download the
code files from https://www.nostarch.com/pythonwithminecraft/ or type it your-
self and play along!

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u oneDimensionalRainbowList = [0, 1, 2, 3, 4, 5]

pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z

v for color in oneDimensionalRainbowList:
 mc.setBlock(x, y, z, 35, color)
 y += 1

Listing 10-5: Building a rainbow stack of blocks

The program creates a list of block colors u and then uses a for loop to
create a stack of wool blocks with colors based on the colors in the list v.

When you run the program, you’ll get a single stack of wool blocks, as
you can see in Figure 10-7. Notice that the stack is six blocks high and one
block wide. You’ve used the x, y, and z variables throughout this book. Each
of these variables can also be referred to as a dimension. This program cre-
ates a stack of six blocks on the y-dimension. By changing the x variable on
the last line of the code instead of the y variable, you can build a stack of
blocks on the x-dimension, which you can see in Figure 10-8.

rainbow
Stack1.py

210 Chapter 10

Figure 10-7: The rainbow stack of blocks created by rainbowStack1 .py

Figure 10-8: Swapping the y variable for the x variable on the last line of the program
builds the blocks in a horizontal row.

Because the list is one-dimensional, you can change the value of only
one variable on a single dimension at a time. In other words, you can change
the value of the y variable, x variable, or z variable but can’t change all of
them at once.

So, it’s time to start thinking about two dimensions! One-dimensional
lists allow you to have a single list with only one value in each position, but
two-dimensional lists allow you to have many values in each position of
a list. You do this by putting a list at each position of the original list, as
follows.

Minecraft Magic with for Loops 211

u twoDimensionalRainbowList = [[0, 0, 0],
v [1, 1, 1],
w [2, 2, 2],

 [3, 3, 3],
 [4, 4, 4],

x [5, 5, 5]]

Look closely and you’ll see an opening square bracket on the first line
followed by a list full of zeroes and then a comma u. That is a list inside a
list! We can call the main list the outer list and say that it contains nested lists.

In index position 1 is a list that contains three 1s v. In index position 2
is another list, this one containing three 2s w. This repeats on every line.
On the last line is a list of three 5s, followed by a square bracket, which
closes the outer list x. This code shows a list with six items in it, each of
which is also a list. This is a two-dimensional list!

You’ll better understand two-dimensional lists when you use them in
Minecraft. Let’s look at an example. By modifying rainbowStack1.py, we can
make it work with the two-dimensional list. This new program is named
rainbowRows.py:

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

twoDimensionalRainbowList = [[0, 0, 0],
 [1, 1, 1],
 [2, 2, 2],
 [3, 3, 3],
 [4, 4, 4],
 [5, 5, 5]]

pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z

u startingX = x

v for row in twoDimensionalRainbowList:
w for color in row:
x mc.setBlock(x, y, z, 35, color)
y x += 1
z y += 1
{ x = startingX

Before I explain the code, look at Figure 10-9 to see the output of
rainbowRows.py, which is a set of blocks six blocks high on the y-dimension
and three blocks wide on the x-dimension.

rainbowRows
.py

212 Chapter 10

Figure 10-9: Using a two-dimensional list to make a rainbow wall

Because we’re working with two dimensions, we need two for loops to
output the values in the twoDimensionalRainbowList list. The first loop iterates
through each item in the outer list v. The second loop w, called a nested
loop because it is inside another loop, then goes through each item in each
nested list.

For example, the first time the outer loop runs, it gets the item stored
in index position 0 of the twoDimensionalRainbowList list and stores it in a vari-
able called row v. The value of row is [0, 0, 0] because it’s the first item in
the list.

The second loop then works through each item in the row list and stores
it in the color variable w. In this case, each item will be 0. The program then
sets the blocks using the color variable to determine the color of each wool
block x. The nested loop finishes after it has placed all three blocks for
that row, and then the outer loop runs again. Next, the outer loop moves
to index position 1 and stores the value in the row variable, which is now
[1, 1, 1]. It then runs through the nested loop to set the blocks again and
iterates again until it reaches the end of the twoDimensionalRainbowList list.

When you’re working in two dimensions, you can change two coor-
dinate variables at the same time. In this example, we increment the y
variable on the second-to-last line of the outer for loop z so each row of
blocks will be placed above the previous row. We also increment the x vari-
able inside the nested for loop y to make sure the blocks are placed in
a row. Then we need to reset the x variable to its original value (which is
stored in the startingX variable u) every time the outer for loop iterates {.
Resetting the x variable causes the first block of each row to be placed
directly on top of the first block in the previous row, and so on, so the
rows line up correctly with one another.

Minecraft Magic with for Loops 213

accessing Values in 2D Lists
When getting or setting a value in a one-dimensional list, you use square
brackets and the index position. For example, this code creates a list called
scores that records a player’s scores, and then it changes the item in index
position 2 from 6 to 7:

scores = [1, 5, 6, 1]
scores[2] = 7

Using or changing values in a two-dimensional list isn’t much differ-
ent. You still use square brackets and the index position, but because you’re
accessing two lists at the same time, you use two sets of indexes and square
brackets. Let’s have a look!

Here’s the list you saw earlier:

twoDimensionalRainbowList = [[0, 0, 0],
 [1, 1, 1},
 [2, 2, 2],
 [3, 3, 3],
 [4, 4, 4],
 [5, 5, 5]]

If we wanted to change the second item (index position 1) in the first
list (index position 0) to the value of 7, we would use this code:

twoDimensionalRainbowList[0][1] = 7

Because we’re using two lists and one list is nested inside the other, we
need to use two sets of square brackets. The first one picks the index posi-
tion 0 of the twoDimensionalRainbowList list, which is its first nested list. In the
second bracket we put the index position we want to access in the nested
list, 1. We then set the value of this position to 7 using the equal sign.

I added this code to the rainbowRows.py program (page 211) and
reran it. Figure 10-10 shows the result. Notice that the second block on
the first row has changed because we changed the value in the nested
list to 7.

If you wanted to get the value of an item in a two-dimensional list, you
would also use two sets of square brackets. For example, if you wanted to
print the value in the first position (index 0) of the last row (index 5), you
would use this code:

print(twoDimensionalRainbowList[5][0])

This code outputs the value 5.

214 Chapter 10

Figure 10-10: Changing one of the values in a nested list to get a different result

Mission #61: Pixel art
Pixels are single-colored squares that make up images on your computer. By
combining lots of pixels in a grid, your computer can display text, images,
videos, and everything else shown on your monitor. All photos and draw-
ings on your computer are displayed using pixels.

Pixel art is quite popular in Minecraft. Using different colored blocks
in the Minecraft game, players build pictures in Minecraft. Pictures of char-
acters from 2D video games are some of the most popular. You can create
pixel art by hand, or of course, you can use a Python program to generate
the pixel art.

In this program, you’ll use a 2D list and nested loops to create pixel art
in Minecraft. Listing 10-6 contains the beginning of the program. Copy it
into a new file called pixelArt.py and save it in the forLoops folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

pos = mc.player.getTilePos()
x, y, z = pos.x, pos.y, pos.z

u blocks = [[35, 35, 35, 35, 35, 35, 35, 35],
 [35, 35, 35, 35, 35, 35, 35, 35],
 [35, 35, 35, 35, 35, 35, 35, 35],
 [35, 35, 35, 35, 35, 35, 35, 35]]

pixelArt.py

Minecraft Magic with for Loops 215

v for row in reversed(blocks):
 for block in row:
 mc.setBlock(x, y, z, block)
 x += 1
 y += 1
 x = pos.x

Listing 10-6: A two-dimensional list that draws a smiley face

The program creates a two-dimensional list called blocks that contains
block IDs u and then uses two loops to set the blocks in the Minecraft
world v. To make sure the first row of the list is at the top when it is placed
in Minecraft and the bottom row of the list is placed at the bottom, the
reversed() function is included with the first for loop v. If it wasn’t, the
image would be upside down compared to the order of the blocks list.

At the moment, the blocks are all white wool blocks and don’t display
a picture. To finish the program, you need to rewrite the two-dimensional
blocks list so it draws a smiley face, as shown in Figure 10-11.

Figure 10-11: A smiley face drawn with blocks

Change the values inside the lists so the output matches Figure 10-11.
You’ll need to change some of the values in the lists from wool blocks
(block ID 35) to lapis lazuli blocks (block ID 22). For example, change the
first line to this:

blocks = [[35, 35, 22, 22, 22, 22, 35, 35],

You’ll also need to add more rows to the blocks list so the height of the
image matches the one in the picture.

216 Chapter 10

BonUs oBJeCTiVe: DRaW iT YoURseLf

Try changing the values in the two-dimensional list in pixelArt.py to display a differ-
ent picture . You can change the lengths of the lists as well . Sketch your designs on
graph paper first . Then convert them into two-dimensional lists so you can create
them in Minecraft!

generating 2D Lists with Loops
Programs that use random numbers are fun because they behave differ-
ently every time you run them. In the past, I’ve created lots of programs
that use random numbers in two-dimensional lists to create pictures. Each
random number might display a color, or in the case of Minecraft, a differ-
ent block.

Here’s the beginning of a program that generates random numbers
and stores them in a two-dimensional set of lists:

import random
u randomNumbers = []

for outer in range(10):
v randomNumbers.append([])

 for inner in range(10):
w number = random.randint(1, 4)

 randomNumbers[outer].append(number)
print(randomNumbers)

The program starts with an empty list called randomNumbers u. Every time
the outer for loop repeats, it adds a new empty list into the randomNumbers
list v. In the inner loop, the program then generates a random number
between 1 and 5 and stores this in the inner list w. The inner loop repeats
10 times to generate 10 items in each inner list.

After we add line breaks for readability, the output of the program
looks like this (notice the 10 items in the 10 inner lists):

[[3, 1, 4, 1, 4, 1, 2, 3, 2, 2],
 [1, 3, 4, 2, 4, 3, 4, 1, 3, 2],
 [4, 2, 4, 1, 4, 3, 2, 3, 4, 4],
 [1, 4, 3, 4, 3, 4, 3, 3, 4, 4],
 [3, 1, 4, 2, 3, 3, 3, 1, 4, 2],
 [4, 1, 4, 2, 3, 2, 4, 3, 3, 1],
 [2, 4, 2, 1, 2, 1, 4, 2, 4, 3],
 [3, 1, 3, 4, 1, 4, 2, 2, 4, 1],
 [4, 3, 1, 2, 4, 2, 2, 3, 1, 2],
 [3, 1, 3, 3, 1, 3, 1, 4, 1, 2]]

By incorporating random numbers into your 2D Minecraft creations, you
can create some very cool effects that would be difficult to make by hand!

Minecraft Magic with for Loops 217

Mission #62: a Weather-Worn Wall
When I build walls in Minecraft, I don’t use a single block type. By swapping
some cobblestone blocks for mossy cobblestone blocks, I can turn a plain
wall into a wall that looks damaged, weather-beaten, organic, and cool. As
fun as it is to build a wall by hand, I can never get the blocks I’ve added ran-
domly to look random enough. You’ve probably guessed that the solution to
making broken walls look more random is to use a Python program.

To generate a weather-worn wall with Python, you need to break down
the program into two main steps:

1. Create a two-dimensional list and store block values in the list.

2. Output the two-dimensional list into the Minecraft world.

To get you started, Listing 10-7 includes the code to choose a random
block value, set up the list, and get the player’s position. Copy the listing
into a new file called brokenWall.py and save it in the forLoops folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import random

u def brokenBlock():
 brokenBlocks = [48, 67, 4, 4, 4, 4]
 block = random.choice(brokenBlocks)
 return block

pos = mc.player.getTilePos()
x, y, z = pos.x, pos.y, pos.z

brokenWall = []
height, width = 5, 10

Create the list of broken blocks

Set the blocks

Listing 10-7: The start of the program to create a broken wall

The brokenBlock() function returns a random block value that’s used to
build the wall u. The width and height variables set the width and the height
of the wall.

To finish the program, you need to generate a two-dimensional list of
block values, then use those values to build the design in Minecraft.

Start with the blank list brokenWall. Using a for loop nested inside another
for loop, generate random block values with the brokenBlock() function. Store
the block values in lists, and store those lists in the brokenWall list. Then use
another set of nested loops to place the blocks in Minecraft.

brokenWall.py

218 Chapter 10

When your program is complete, move to where you want to build your
weather-worn wall in your Minecraft world and run the code. You can use
the program to decorate a castle or create spooky-looking ruins in the
forest. Experiment with different locations to see what you like best! Fig-
ure 10-12 shows what a wall will look like when you run the program.

Figure 10-12: A wall with randomly generated broken blocks. It looks like it might be
haunted!

BonUs oBJeCTiVe: CReaTe a CoLoRfUL WaLL

In the brokenWall.py program, change the block values in the brokenBlock() func-
tion’s brokenBlocks list to create all kinds of walls . Try changing the block values to
different colors of wool and see what happens!

Thinking in Three Dimensions
Of course, Minecraft is a game that uses three dimensions. And you’ve used
three dimensions throughout this book. Each of the x, y, and z variables you
used in most programs represents a dimension.

You’ve seen how to put one group of lists inside another to get a two-
dimensional list and create cool pixel art and weathered walls. Putting a third
group of lists inside a two-dimensional list creates a three-dimensional list,
which lets you take your building skills to a whole new dimension!

Three-dimensional lists are extremely useful in Minecraft because you
can use them to duplicate 3D structures, such as buildings, sculptures, and
lots of other things.

The three-dimensional list in Listing 10-8 has four lists nested inside it.
The kicker is that inside each index of those nested lists is another list! Basi-
cally, each item in this list is a 2D list. I’ve added blank comments to make
the list easier to read.

Minecraft Magic with for Loops 219

cube = [[[57, 57, 57, 57],
 [57, 0, 0, 57],
 [57, 0, 0, 57],
 [57, 57, 57, 57]],
 #
 [[57, 0, 0, 57],
 [0, 0, 0, 0],
 [0, 0, 0, 0],
 [57, 0, 0, 57]],
 #
 [[57, 0, 0, 57],
 [0, 0, 0, 0],
 [0, 0, 0, 0],
 [57, 0, 0, 57]],
 #
 [[57, 57, 57, 57],
 [57, 0, 0, 57],
 [57, 0, 0, 57],
 [57, 57, 57, 57]]]

Listing 10-8: A three-dimensional list with nested lists

Code like this can be used to make a cool cube structure! Next we’ll dig
into a program that does just that.

outputting 3D Lists
Lists that have three dimensions are perfect for storing data about three-
dimensional objects, such as your awesome Minecraft buildings. Storing
three-dimensional objects is important, and correctly outputting them
to Minecraft is just as important. Because a three-dimensional list is a list
within a list that is within a list, you can use a for loop inside another for
loop that is also inside another for loop to access all the data. In other
words, you can use three nested for loops.

In Listing 10-9, I’ve copied the three-dimensional list from Listing 10-8
and created a program called cube.py. This program uses three nested for
loops to output all the values of the three-dimensional list one at a time to
build a cube structure in the Minecraft world.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z
cube = [[[57, 57, 57, 57], [57, 0, 0, 57], [57, 0, 0, 57], [57, 57, 57, 57]],
 [[57, 0, 0, 57], [0, 0, 0, 0], [0, 0, 0, 0], [57, 0, 0, 57]],
 [[57, 0, 0, 57], [0, 0, 0, 0], [0, 0, 0, 0], [57, 0, 0, 57]],
 [[57, 57, 57, 57], [57, 0, 0, 57], [57, 0, 0, 57], [57, 57, 57, 57]]]

startingX = x
u startingY = y

cube.py

220 Chapter 10

v for depth in cube:
 for height in reversed(depth):
 for block in height:
 mc.setBlock(x, y, z, block)
 x += 1
 y += 1
 x = startingX

w z += 1
x y = startingY

Listing 10-9: Code to create a three-dimensional cube made of diamonds

Figure 10-13 shows the result of this program.

Figure 10-13: The cube created by the cube.py program

The code in cube.py is very similar to the two-dimensional rainbowRows
.py program (page 211) that builds a rainbow wall. The main difference
is that cube.py uses three for loops instead of two, because it works with a
three-dimensional list. The extra for loop adds an extra dimension to the
structure, depth v. So now the structure has width, height, and depth.

Each time the outer loop for depth in cube runs, it creates a two-
dimensional list using the two nested loops, for height in reversed(depth)
and for block in height. The code in the two nested loops is similar to the
code in the rainbowRows.py program, which means these loops build a wall
in Minecraft.

Let’s look at the result of the outer loop each time it repeats so we can
see it build the cube step-by-step. The first time the outer loop runs, it out-
puts the blocks in index position 0 of the cube list. That list looks like this:

[[57, 57, 57, 57],
 [57, 0, 0, 57],
 [57, 0, 0, 57],
 [57, 57, 57, 57]]

Minecraft Magic with for Loops 221

Figure 10-14 shows the output: our first wall of blocks.

Figure 10-14: The result of the first two-dimensional loop, cube index 0

After each two-dimensional list is built in the game, the value of the z
variable in cube.py w is increased to move one block farther along the z-axis.
This gives the cube depth, so we’re not just building a wall. We also need to
reset the value of the y variable at x to its original value u so the blocks on
the bottom of the cube line up with each other every time the outer loop
repeats. If the y variable wasn’t reset, the y-coordinate of each set of blocks
would keep getting higher and higher, creating some weird-looking stairs!
Figure 10-15 shows what this would look like.

Figure 10-15: We reset the y variable so this won’t happen!

222 Chapter 10

The second time the outer loop runs, it outputs the blocks in index
position 1 of the cube list, which looks like this:

[[57, 0, 0, 57],
 [0, 0, 0, 0],
 [0, 0, 0, 0],
 [57, 0, 0, 57]]

This adds the next part of the cube, as you can see in Figure 10-16.
After this part of the cube is built, the z variable increases by 1 w and the y
variable is reset to its original value again x.

Figure 10-16: The result of the second two-dimensional loop, cube index 1

The next time the loop repeats, it outputs the two-dimensional list in
index position 2 of cube:

[[57, 0, 0, 57],
 [0, 0, 0, 0],
 [0, 0, 0, 0],
 [57, 0, 0, 57]]

Figure 10-17 shows the result. Again, the z value is increased by 1 and
the y value is reset.

Then the loop repeats a fourth and final time, outputting index posi-
tion 3 of cube:

[[57, 57, 57, 57],
 [57, 0, 0, 57],
 [57, 0, 0, 57],
 [57, 57, 57, 57]]

Figure 10-18 shows the finished cube structure.

Minecraft Magic with for Loops 223

Figure 10-17: The result of the third two-dimensional loop, cube index 2

Figure 10-18: The result of the last two-dimensional loop, in the final cube index position

Experiment with this program—use a different block type, try making
a larger cube, or anything else you can imagine! In the next section, I’ll
show you how to access values in three-dimensional lists so you can make
some of these changes.

accessing Values in 3D Lists
The values inside three-dimensional lists can be changed just as in one-
dimensional and two-dimensional lists, using square brackets and index
positions.

224 Chapter 10

Let’s start with our three-dimensional diamond cube list:

cube = [[[57, 57, 57, 57],
 [57, 0, 0, 57],
 [57, 0, 0, 57],
 [57, 57, 57, 57]],
 #
 [[57, 0, 0, 57],
 [0, 0, 0, 0],
 [0, 0, 0, 0],
 [57, 0, 0, 57]],
 #
 [[57, 0, 0, 57],
 [0, 0, 0, 0],
 [0, 0, 0, 0],
 [57, 0, 0, 57]],
 #
 [[57, 57, 57, 57],
 [57, 0, 0, 57],
 [57, 0, 0, 57],
 [57, 57, 57, 57]]]

I want to change the bottom-left block on the front of my cube to gold.
First I need to access the index of the cube list that contains the front of

the cube, which is 0. So the first part of the expression will look like this:

cube[0]

If I printed the value of this expression, I would get the following out-
put (which I’ve formatted to make it easier to read):

[[57, 57, 57, 57],
 [57, 0, 0, 57],
 [57, 0, 0, 57],
 [57, 57, 57, 57]]

This two-dimensional list represents the front of the cube. Next, I want
to access the bottom row, which is index 3. So I add [3] to my expression:

cube[0][3]

If I printed the list stored at this position, I would get the following:

[57, 57, 57, 57]

Finally, I want to access the leftmost block in the row, which is index 3. So
the final expression to change the bottom-left block to a gold block looks
like this:

cube[0][3][3] = 41

Minecraft Magic with for Loops 225

When I run the cube.py program with this line added, I get a cube made
of diamonds with one single golden block, as in Figure 10-19.

Figure 10-19: The modified cube with a single golden corner

Mission #63: Duplicate a Building
Even though building things in Minecraft using a Python program saves a
lot of time, if you’re like me, you might still spend a considerable amount
of effort adding details, like pictures and furniture, to your buildings.
Sometimes you might need to make an identical copy of a particular object,
and copying an object by hand can take lots of time. Placing each block
one by one is a lot of work as well, and you might place a block in the wrong
spot. The obvious solution is to make a program that copies a building in
Minecraft and builds a copy of it in the game for you!

The finished program will need to do two things: first it will copy an
area of the game and store it in a three-dimensional list, and then it will
build the copied structure using that three-dimensional list.

I’ve included the start of the program in Listing 10-10 to help you.
Copy the listing into a new file and save it as duplicateArea.py in the forLoops
folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u def sortPair(val1, val2):
 if val1 > val2:
 return val2, val1
 else:
 return val1, val2

duplicate Area
.py

226 Chapter 10

v def copyStructure(x1, y1, z1, x2, y2, z2):
 # Sort the highest and lowest x, y, and z values
 x1, x2 = sortPair(x1, x2)
 y1, y2 = sortPair(y1, y2)
 z1, z2 = sortPair(z1, z2)

 width = x2 - x1
 height = y2 - y1
 length = z2 - z1

 structure = []

 print("Please wait...")

w # Copy the structure

 return structure

x def buildStructure(x, y, z, structure):
 xStart = x
 yStart = y

y # Build the structure

Get the position of the first corner
z input("Move to the first corner and press enter in this window")

pos = mc.player.getTilePos()
x1, y1, z1 = pos.x, pos.y, pos.z

Get the position of the second corner
{ input("Move to the opposite corner and press enter in this window")

pos = mc.player.getTilePos()
x2, y2, z2 = pos.x, pos.y, pos.z

Copy the building
| structure = copyStructure(x1, y1, z1, x2, y2, z2)

Set the position for the copy
} input("Move to the position you want to create the structure and press ENTER 
 in this window")

pos = mc.player.getTilePos()
x, y, z = pos.x, pos.y, pos.z
buildStructure(x, y, z, structure)

Listing 10-10: When the program is finished, it will duplicate buildings.

This program is divided into several parts. First, the sortPair() func-
tion u sorts a pair of values into a tuple with the lowest value in the first
index position and the highest value in the second index position. For
example, if I gave sortPair() the arguments 9 and 3, it would return a tuple
with the value of (3, 9) because 3 is less than 9. I use this function to sort
pairs of x, y, and z values so the width, length, and depth variables are always
positive when calculated.

Minecraft Magic with for Loops 227

Next, the copyStructure() function v copies the structure from the game
world, but it’s incomplete w. The buildStructure() function x builds the
structure, but it is also incomplete y. You’ll complete both in this mission.

I’ve added a neat trick to get the coordinates of the building you want
to copy and the location in the game where you want to build the copy:
Using the input() function, the program first asks you to move your char-
acter to one corner of the building and press enter z. The input() func-
tion makes the code wait until you’ve moved the player to where you want
them to be. As soon as you press enter, it gets the player’s position using
the getTilePos() function. We do the same again at the opposite corner
of the building {. Then the copyStructure() function uses these two sets of
coordinates to copy the building |. (When copying larger structures, this
part of the program can take a while to run.) Finally, you move to where
you want the building to be built and press enter } to pass the player’s last
position to the buildStructure() function.

To finish the program, it’s your job to complete the copyStructure() and
buildStructure() functions. Add three nested loops to the copyStructure()
function to copy all the blocks between the coordinates given in the argu-
ment into a three-dimensional list at w. To finish the buildStructure()
function, add three nested for loops that output the block values from the
three-dimensional list at y. The function should use the given coordinates
in its arguments.

Make sure the program works through x, y, and z positions inside the
structure. Use the for loops to change the x, y, and z positions.

Although duplicateArea.py is a long program, it’s very useful and worth
the effort. After you finish this mission, you’ll be able to build entire cities
in your Minecraft world! I used duplicateArea.py to duplicate an interesting
cliff I found when I was exploring. Figure 10-20 shows the cliff that I wanted
to copy.

Figure 10-20: I liked the look of this cliff, so I made a copy of it.

228 Chapter 10

When you’re using the duplicateArea.py program to make copies, first
stand outside (if your structure is a building) and near the bottom corner
of the object you want to copy. Then press enter in IDLE. Figure 10-21
shows me standing on the first corner.

Figure 10-21: First I moved to one corner of the structure and pressed enter in IDLE.

Next, fly up and around to the opposite corner of the object you want
to copy and press enter a second time. Figure 10-22 shows that I’ve flown
into the air and moved around the cliff.

Figure 10-22: Then I moved to the opposite corner of the structure and pressed enter.

Minecraft Magic with for Loops 229

You’ll get a message asking you to wait a moment while the structure is
being copied by the program. Move to the location where you want to build
the copy and wait for a message asking you where you want to build the new
structure (Figure 10-23).

Figure 10-23: I waited a while for the structure to copy. Then I moved to where I wanted
to build the copy and pressed enter to build it.

Press enter when you’re in the right place for the new building, and a
copy of it will be built right in front of you! Figure 10-24 shows my copy of
the cliff.

Figure 10-24: The copy of the original cliff!

230 Chapter 10

What You Learned
This chapter covered a lot of ground. You learned how to use for loops
with lists, and you learned how to use the range() function. You also
learned more about for loops and lists, such as reversing lists, looping
over dictionaries, and breaking for loops. You created two- and three-
dimensional lists with nested loops, which are super useful for building
an awesome Minecraft world.

From generating stairs and pyramids to duplicating structures and
creating art, you now have much more control over Minecraft than ever
before. The programs in this chapter are some of my favorite programs in
the book, and they’ll help you create your own advanced projects!

This chapter and Chapter 9 focused strongly on lists and for loops,
which are closely related. In Chapter 11, you’ll move on to files and
modules, which are closely related to functions and which you’ve been
using throughout this book. As part of the missions, you’ll learn how to
save and load structures to and from files.

11
saVing anD LoaDing BUiLDings

WiTh fiLes anD MoDULes

Files are a major part of computing. They
let you save data for long-term storage and

load data for use in your programs. So far,
the programs you’ve been working with have

stored data only in variables. You’ve either used hard-
coded data in your programs or taken data from user
input. Although you can do amazing things with this data, you’re limited to
single sessions and your own Minecraft world. Once you learn how to store
and retrieve data, you can save and load your Minecraft creations into any
Minecraft world, even your friends’ games!

In this chapter, you’ll learn how to get input from files and how to out-
put data to files. You’ll use some built-in functions in Python and learn how
to use two Python modules, the pickle and shelve modules, to store entire
Minecraft creations.

Modules can extend what it’s possible to accomplish with Python. Using
modules, you can draw pictures on the screen or run websites. Modules also
provide functions for common tasks so you don’t have to write your own
solutions.

232 Chapter 11

You’ll also learn about pip, which is a very useful program for installing
new modules. You’ll try it out by using the Flask module to make a simple
website that connects to Minecraft and displays the player’s position.

Using files
When you work with computers, you work with files all the time. Anytime
you write a text document or some Python code and save it, you’re working
with files. Text, pictures, videos, and music are all files! Even this book was
stored as a text file while I was writing it. Python’s file-handling features
are easy to learn and will let you create files, save files, and read informa-
tion from files to do cool things in Minecraft. Let’s start with the basics and
learn how to read and write to a text file in Python.

opening a file
Opening a file is the first step when you’re working with files. To open a
file in Python, you use the open() function, which takes two arguments: the
file’s location and its permissions. A file’s location is where the file is stored
on your computer. You’ll pass this into the open() function in the form of a
string. The file’s permissions control whether or not Python is allowed to read
or modify the file.

To open (or create) a text file named secretFile.txt in Python, you would
use the argument "secretFile.txt":

secretFile = open("secretFile.txt", "w")

The second argument, "w", is the permissions argument, which specifies
what the program is allowed to do with the file. In this case, w means that
the program can write data to the file secretFile.txt.

When a program calls the open() function with a filename, Python first
checks whether a file already exists with that name. If the file exists, Python
will use the contents of that file in the program. If it doesn’t exist, Python will
create a new file with that name.

If you don’t specify a directory with your filename (a folder and a direc-
tory are the same thing), Python will look for the file in the directory where
the program is located. If the file is stored in a different directory, you must
specify that in the argument. For example, if secretFile.txt was in the secrets
directory, the first argument would be "/secrets/secretFile.txt":

secretFile = open("/secrets/secretFile.txt", "w")

If you provide a directory in the argument and the directory doesn’t
exist, or if the file doesn’t exist, you’ll get an error message.

There are four options for the permissions argument:

w This means write only. Write-only permissions let the program write
new data to the file and overwrite content that is already in the file,

saving and Loading Buildings with files and Modules 233

but the program cannot read the contents of the file. If a file doesn’t
exist with the name that you provide as the first argument, the pro-
gram will create a new one.

r This means read only. Read-only permissions let the program read
the contents of the file, but the program is not allowed to modify the
file’s contents. This permission cannot be used to create a new file.

r+ This means read and write. Read-and-write permissions let the
program read and change the contents of the file. The program can
also write over any content that is already in the file. However, if the
file doesn’t exist, a new one will not be created; instead, you’ll get an
error.

a This stands for append. Append permissions let the program write
new data only to the end of the file, leaving the other contents of the
file intact. The program cannot read the contents of the file either.
This permission can be used to create a new file.

There are different circumstances in which you’d use each kind of per-
mission. Let’s say you write some directions to an awesome diamond mine
that you found, and you want to load the directions into Minecraft without
accidentally changing them. In that case, you’d want to use the read-only
permission to make sure nothing in the file changes. Alternatively, if you
want someone to be able to add data to a file but you don’t want them to see
the other data stored in the file, you would use the append permission. For
instance, you could use append if you want to let your friends add notes to
a shared travel log without letting them peak inside and read about all your
secret treasure!

Next, you’ll learn how to write data to an open file, and you’ll learn how
to close that file to use that data later.

Writing to and saving a file
The write() function writes data to a file that the program has opened. This
is the bread and butter of working with files because it lets you save all kinds
of data. You provide the data you want written to the file as an argument to
the write() function.

For example, let’s open a file and write a simple string to it:

secretFile = open("secretFile.txt", "w")
secretFile.write("This is a secret file. Shhh! Don't tell anyone.")

u secretFile.close()

First, you must open the file using the open() function. Next, use dot
notation to call the write() function to write a string to secretFile.txt. Then,
you need to call the close() function u, which saves and closes the file. It’s
important to remember to include the close() function; otherwise, the data
will not be stored in the file.

Run the program and then open secretFile.txt in a text editor to see if
your secret message was saved. Try changing the string to write something

234 Chapter 11

different to the file and run the program again. What happens? The old
message should have been replaced with the new message! Try changing
the message again, but instead of passing "w" pass in "a" instead. Now what
happens? Pretty cool, huh?

Reading a file
The read() function reads the entire contents of a file that a program has
opened. You may want to use the data in your program, modify the data
and then send it back to the file, or output the data to make it easy to
look at. Whatever the reason, you’ll use the read() function to read files.

To read a file, you must first open it and then remember to close it
when you’re finished. It’s important to learn this habit when you’re work-
ing with files in your programs to avoid errors!

Let’s read a file and then output its contents so we can see what it says.
This program, showSecretFile.py, outputs the contents of a file using the
read() and print() functions:

secretFile = open("secretFile.txt", "r")

u print(secretFile.read())
secretFile.close()

First, we open the file, and we pass in "r" as the permission argument
so our program can read from the file. You could also pass in "r+", but in
this case we’re not writing to the file, so "r" is best. To print out the contents
of secretFile.txt, we pass secretFile.read() to a print statement. Finally, even
though we haven’t written any data to the file, it’s still a good idea to close
it with the close() function.

Run the program to see what happens. The contents of secretFile.txt
should be printed to the screen. Now you can read the file without having
to open it in a text editor like you normally would!

Reading a Line of a file
Let’s say you have a long text document and you want to look at only part of
it. This is where the readline() function comes in handy. Unlike the read()
function, which gets the entire contents of the file, the readline() function
gets a single line of the file at a time.

To try the readline() function, first add a bunch of text to secretFile.txt.
You can do this either by using a text editor or by using your fancy new
Python abilities to write a bunch of information to it! If you use Python to
write to your file, add \n to your strings whenever you want a new line. For
example, if you write "Cool\nDance\nParty" to a file, Python places "Cool" on
one line, "Dance" on the next, and "Party" on the last line, like so:

Cool
Dance
Party

showSecret
File.py

saving and Loading Buildings with files and Modules 235

After you’ve added text to secretFile.txt, write this code into a Python file
and save the file as showSecretLines.py in a new folder called files:

secretFile = open("secretFile.txt", "r")

print(secretFile.readline())
print(secretFile.readline())
print(secretFile.readline())

secretFile.close()

Once again, you must open secretFile.txt before you can read from it
using the readline() function. Because you want your showSecretLines.py
program to read data from the file, you must pass in r (or r+) again. Next,
include three print statements to print the first three lines of secretFile.txt.
Finally, close the file again using close().

The readline() function starts with the first line of your file. Each time
the readline() function is used, it reads the next line automatically. This
function is very handy for printing a couple of lines from the beginnings
of text files.

No t e The readline() function converts the file to a list of strings, where each item in the
list represents a single line. If you want to print a line from the middle of a text docu-
ment, you could write a loop to find and print a particular string in the list!

Mission #64: To-Do List
Sometimes you might not have much spare time to play Minecraft. You
might build complex structures across several days in short sessions. As you
add programs to open doors or teleport the player somewhere, your builds
will become more complex and might take longer to finish. Working on
projects across several days could cause you to forget what you were doing
and what you need to do next. This happens to me often. Fortunately, you
can make a program to help you remember!

The programs in this mission create a to-do list and display it in the
Minecraft chat. You can use this program to keep track of your Minecraft
goals so when you have to stop playing, you can easily pick up where you
left off.

To make the to-do list, you’ll write two separate programs: one to write
the list and the other to display the list. Let’s start by creating the program
that writes the list.

Part 1: Writing the To-Do List
First, you need a program to create the items in the to-do list. Listing 11-1
starts you off, using a while loop and the input() function to add items to the
to-do list. Copy it into a file in IDLE and save it as inputToDoList.py in the files
folder.

showSecret
Lines.py

236 Chapter 11

u toDoFile =

v toDoList = ""

w toDoItem = input("Enter a to-do list item: ")

x while toDoItem != "exit":
y toDoList = toDoList + toDoItem + "\n"

 toDoItem = input("Enter a to-do list item: ")

z # Write the to-do list to the file
{ # Close the file

Listing 11-1: The start of the program to write items in your to-do list

The program creates an empty string called toDoList v, which will store
all the items for your to-do list when you enter them. Using the input() func-
tion, the program then asks you to enter an item into the to-do list w. The
while loop then checks whether the input is not equal to "exit" x; if it’s not,
the program adds your item to the to-do list with a new line at the end
using "\n" y. However, if you enter "exit", the loop no longer runs, and you
won’t be able to add any more items to the to-do list.

Your mission is to finish the program. To do that, you need to write
the code that opens the file, writes toDoList to the file, and then closes the
file. Use the open() function to open the file at the start of the program u.
You should open it with write permissions. Name the file that the function
opens toDoList.txt. Your program will create the file if it doesn’t already exist
in the directory.

At the end of the program, write the contents of the to-do list to the
file so you can access it later. Use the write() function to write the toDoList
variable to the toDoFile z. After the file has been written to, make sure you
close it with the close() function on the last line {.

Figure 11-1 shows me writing a to-do list with the program. When I’m
finished, I type exit.

Figure 11-1: Entering things to do, like build a cake forest and play hide-and-seek

input
 ToDoList.py

saving and Loading Buildings with files and Modules 237

Part 2: Displaying the To-Do List
Now that you have a program to write a to-do list to a file, you need to
display the to-do list in the Minecraft chat, one line at a time. Listing 11-2
starts the program for you. Copy the listing into a new file and save it as
outputToDoList.py in the files folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u toDoList =

for line in toDoList:
v # Output "line" to the chat

Listing 11-2: Program to output the to-do list file to the Minecraft chat

Listing 11-2 uses a for loop to output each line in the toDoList.txt file to
the Minecraft chat, one at a time. At the moment, the program is incom-
plete. To finish the program, add the open() function to open the toDoList.txt
file that you created with inputToDoList.py u. Make sure the file has read
permissions. After you open the file, add code inside the for loop to output
the string stored in the line variable to Minecraft’s chat v. You’ll have to
use the readline() and postToChat() functions to do this.

Figure 11-2 shows my to-do list in the Minecraft chat.

Figure 11-2: Now when I come back to building, I can see what I need to do.

output
 ToDoList.py

238 Chapter 11

Using Modules
Modules are collections of functions that you can import into Python so you
don’t have to write those functions in your programs. A module usually
has a specific purpose, such as performing scientific calculations or mak-
ing games, and a wide variety of modules are available for Python. You
might be surprised to know that you’ve been using modules throughout this
book! The Minecraft Python API is a module: every time you’ve written from
mcpi.minecraft import Minecraft, you’ve been using a module. The Minecraft
Python API module lets you connect your Python programs to Minecraft.
Because it’s prewritten by someone else, you can use the module’s functions
without having to write the code yourself.

Python comes with a bunch of modules that you can use in your pro-
grams. These modules, together with all the Python you’ve learned in this
book so far, are called the Python standard library. You can also install modules
that are not part of the standard library; we’ll do that in “Installing New
Modules with pip” on page 252.

In this section, you’ll learn all the ways that you can set up your pro-
grams to use modules. As an example, we’ll use the pickle module, which
provides more advanced ways to save and load data with files than just writ-
ing and reading data from them. Let’s look at the pickle module now.

The pickle Module
The pickle module is very useful when you’re writing complicated data to a
file. For example, dictionaries and multidimensional lists are challenging to
store and retrieve using the standard functions that we used earlier in the
chapter. This is where the pickle module comes in handy.

The pickle module can save you hours of writing and debugging your
own solutions for storing complex data. You can also use the pickle module
on simple data: for example, you can use it to store numbers without con-
verting them to and from strings, which is necessary for standard file input
and output.

In other words, you can use the pickle module to save a variable’s value
in a file and then read the variable’s value directly into another program
without any extra processing. The data type remains the same as when you
stored the value, even if the data type is a string, integer, float, or Boolean.

Next, you’ll learn how to import modules using pickle as an example.
Then you’ll use pickle to save some complex data—an entire Minecraft
building!

importing pickle
To use any module’s functions, you need to import them by using the
import keyword. Actually, you’ve already used the import keyword to import
modules, such as the time module, as well as functions from the Python
Minecraft API.

saving and Loading Buildings with files and Modules 239

After you’ve imported the module into your program, you can use
the module’s functions by using dot notation. Include the module name, a
dot, and the function you want to use. Let’s import the pickle module and
use a couple of its functions:

u import pickle

locations = {'John': 'Forest', 'Phillipa': 'Mountains', 'Pete': 'City'}

v secretFile= open("secretFile.txt", "wb")
w pickle.dump(locations, secretFile)

We import the pickle module at u. Next we open secretFile.txt with a
special file permission, "wb" v. When you open a file with pickle, you must
add b to the file permission. In this case, "wb" writes data to the file using a
special format that the pickle module requires.

The dump() function writes to the file at w. The pickle module’s dump()
function stores a variable in a file. It takes two arguments: the data to be
written to the file and the open file that it will write to. This example stores
the locations of secret agents in a dictionary called locations and then
dumps that dictionary in a file called secretFile. Because dump() belongs to
the pickle module, you must use dot notation to specify both the module
and the function with pickle.dump(). Unlike the standard file functions in
Python, the dump() function saves the data to the file automatically—you
don’t need to close the file with the close() function.

The pickle module also lets you read stored data. You can use pickle’s
load() function to read the contents of a file. It takes one argument, the file
that you want to load, and returns the contents of the file. The following
example loads the locations dictionary we stored earlier. Add this code to
the program:

import pickle

u secretFile= open("secretFile.txt", "rb")
locations = pickle.load(secretFile)

First we open the file with the permission "rb" u, which allows your
program to read a special data format that pickle uses. Then we load the
dictionary.

Now that the dictionary has been loaded, you can treat it like any other
dictionary. For example, you can access the value of one of the keys. Just
add this code after the pickle.load() function:

print(locations['Phillipa'])

This will print 'Mountains', the value of the 'Phillipa' key. That’s
because the dictionary in the file is unchanged when it’s loaded into the

240 Chapter 11

program with pickle—it’s still a dictionary, so we can access its keys and
values and use it just like any other Python dictionary. You could do the
same with a list or a variable as well.

importing one function with
the from Clause
Importing a module means you have access to all the functions in that
module, but sometimes you need only one function in a module. If you
want to import just one function, you use the from clause when you import
the module. This clause lets you access the function without including the
module name and dot notation every time you call a function. You would
just write function() instead of module.function().

Sometimes when you use the pickle module you might want to use only
the dump() function, not its other functions. To do this, change the code that
you wrote earlier so it looks like this:

u from pickle import dump

locations = {'John': 'Forest', 'Phillipa': 'Mountains', 'Pete': 'City'}

secretFile= open("secretFile", "wb")

v dump(locations, secretFile)

The first line uses the from clause to import only the dump() function
from the pickle module u. The last line calls the dump() function v. Notice
that it doesn’t have dot notation. You just call the function name without
referencing the module name.

You can also import more than one function from a module using
from. All you need to do is separate the function names with a comma. For
example, if you want to use the dump() and load() functions from pickle in
the same file, you could import them both:

u from pickle import dump, load
locations = {'John': 'Forest', 'Phillipa': 'Mountains', 'Pete': 'City'}

secretFile= open("secretFile", "wb")

v dump(locations, secretFile)

w locations = load(secretFile)
print(locations['Phillipa'])

The first line uses the from clause with commas to import both the
dump() and load() functions u. This means that later in the program, you
can use these functions without having to include the function name and
dot notation, which you can see at v and w.

saving and Loading Buildings with files and Modules 241

importing all functions with *
You can also import all the functions in a module so you don’t need to
include the name of the module with dot notation every time you use it.
You do this by entering an asterisk (*) at the end of the import statement,
like this:

u from pickle import *
locations = {'John': 'Forest', 'Phillipa': 'Mountains', 'Pete': 'City'}

secretFile= open("secretFile", "wb")

v dump(locations, secretFile)

w locations = load(secretFile)
print(locations['Phillipa'])

Because this code imported all the functions in the module using an
asterisk u, we don’t need to use dot notation when we call the dump() v and
load() w functions.

The * option is very handy, but it comes with a risk! If you’re working
with multiple modules, two modules might share the same function names.
When this happens, Python will get confused and you might get an error.
So when you’re working with many modules, it’s best to avoid using the *
option and instead import only the functions you need to use.

giving a Module a nickname
Sometimes you’ll want to rename a module because its name is too long
and you want to use a shorter name in your program. Or, you want to
change the module’s name to make it easier to remember. Or, perhaps
you want to change its name because the module shares the same name
as another module and you want to avoid conflicts.

You can use the as clause with the import statement to give a module an
alias—a nickname. For example, this code imports the pickle module and
renames it to p:

import pickle as p

Now, every time you want to use the pickle module, you can write p in
your program instead of pickle. Here’s an example of this in action:

p.dump(locations, secretFile)

Notice that p.dump() is used instead of pickle.dump(). This saves you time
because you don’t have to keep typing pickle!

242 Chapter 11

Mission #65: save a Building
Building things is my favorite part of Minecraft. I’ve spent hours build-
ing houses, castles, villages, and so many other things. But when I move to
another part of the map or to a different world, I have to leave my creations
behind. I’m sure you’ve also had to abandon some awesome creations.

Wouldn’t it be cool if you could save your buildings and take them with
you when you move into different worlds? Well, with pickle and the Python
API, you can!

In this mission, you’ll develop two programs that will save and load build-
ings into your Minecraft game. One program will store the building, and
the other will load the building. Both programs build on duplicateArea.py
from Chapter 10 (page 225).

Part 1: saving the Building
The first program will save a building into a file. Listing 11-3 includes the
code to copy the building. Copy the listing into a file in IDLE and save it as
saveStructure.py in the files folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import pickle

def sortPair(val1, val2):
 if val1 > val2:
 return val2, val1
 else:
 return val1, val2

u def copyStructure(x1, y1, z1, x2, y2, z2):
 x1, x2 = sortPair(x1, x2)
 y1, y2 = sortPair(y1, y2)
 z1, z2 = sortPair(z1, z2)

 width = x2 - x1
 height = y2 - y1
 length = z2 - z1

 structure = []

 print("Please wait...")

 # Copy the structure
 for row in range(height):
 structure.append([])
 for column in range(width):
 structure[row].append([])

save Structure
.py

saving and Loading Buildings with files and Modules 243

 for depth in range(length):
v block = mc.getBlock(x1 + column, y1 + row, z1 + depth)

 structure[row][column].append(block)

 return structure

w # Get the position of the first corner
input("Move to the first position and press ENTER in this window")
pos1 = mc.player.getTilePos()

x1 = pos1.x
y1 = pos1.y
z1 = pos1.z

x # Get the position of the second corner
input("Move to the opposite corner and press ENTER in this window")
pos2 = mc.player.getTilePos()

x2 = pos2.x
y2 = pos2.y
z2 = pos2.z

y structure = copyStructure(x1, y1, z1, x2, y2, z2)

z # Store the structure in a file

Listing 11-3: Incomplete code to store a building in a file

The copyStructure() function copies an area in the game into a set of
three-dimensional lists u. It takes two sets of coordinates as arguments.
I’ve made a slight change in the copyStructure() function compared to
duplicateArea.py. I’ve used the getBlockWithData() function instead of the
getBlock() function v. Rather than getting just the block ID for a block at
certain coordinates, the getBlockWithData() function also gets the block’s
state. This is useful for blocks like stairs, where the direction of the stairs
is stored in the block state. When the structure is copied, stairs and other
blocks that face a certain way will be built in the correct direction.

I’ve included some neat code so you can use the player’s position to set
the coordinates of a building you want to copy. When you run the program,
it asks you to move to the first corner of the structure and then press enter
in the Python shell w. The program uses the player’s position to get the first
set of coordinates for the building. Next, it asks you to move to the opposite
corner of the structure and do the same x. As a result, you can just stand
where you want to start copying your building instead of writing coordi-
nates or hard-coding them into your program.

The values of these coordinate variables are passed to the function
copyStructure() at y. The returned value is stored in a variable called
structure.

To complete the code, you need to open a new file with pickle. Call the
new file "pickleFile". Then write the code to store the building in the file.
Do this by using the pickle module to write the value of the structure vari-
able to a file z.

244 Chapter 11

Figure 11-3 shows a tower that I built in my Minecraft world.

Figure 11-3: My tower that I want to copy

To copy the tower using saveStructure.py, I move to one corner and press
enter in IDLE (Figure 11-4).

Figure 11-4: Standing next to one corner of the tower

Then I fly to the opposite corner of the tower and press enter in IDLE
a second time (Figure 11-5).

saving and Loading Buildings with files and Modules 245

Figure 11-5: Flying to the opposite corner of the tower

Follow the same steps to use saveStructure.py to save one of your own
buildings. Next we’ll complete the other half of the process and load our
saved buildings into the game.

Part 2: Loading the Building
The second program needs to load the building into the game from the
file (named pickleFile) created by saveStructure.py. Listing 11-4 includes code
from the duplicateArea.py program (page 225) that places a building stored
in lists. Copy the listing into a file in IDLE and save it as loadStructure.py in
the files folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import pickle

u def buildStructure(x, y, z, structure):
 xStart = x
 zStart = z
 for row in structure:
 for column in row:
 for block in column:
 mc.setBlock(x, y, z, block.id, block.data)
 z += 1
 x += 1
 z = zStart
 y += 1
 x = xStart

load Structure
.py

246 Chapter 11

Open and load the structure file
v structure =

w pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z

x buildStructure(x, y, z, structure)

Listing 11-4: When complete, this program will build a building from a file.

The buildStructure() function u does most of the work in this pro-
gram. It builds the structure in the game using four arguments: x-, y-, and
z-coordinates and a structure stored in a three-dimensional list.

Import the pickle module so you can load the structure into the pro-
gram, and then store it in the structure variable at v. Using the open() func-
tion, open the pickleFile file that you saved the structure into. Then load it
into the structure variable using pickle’s load() function. After the structure
has been loaded, close pickleFile using pickle’s close() function.

Also included in Listing 11-4 is some code that gets the player’s position
to use as the starting location for the structure w.

After the structure is loaded and the coordinates are set, pass the struc-
ture to the buildStructure() function along with a position x, which will build
the saved structure.

Figure 11-6 shows the program in action. The building I saved earlier has
been loaded into the game and rebuilt at a new position. Try it yourself—now
you have the ability to take your creations with you wherever you go!

Figure 11-6: Look, it’s a copy of my tower!

But what if you create a whole village and want to take it with you? You
could save each building in its own file using pickle, but that’s not very con-
venient. The pickle module works great for saving a single building, but it’s
not so good for saving a bunch of buildings. That’s where the shelve module
comes in. Let’s look at that next.

saving and Loading Buildings with files and Modules 247

storing Lots of Data with
the shelve Module

The pickle module can store only one piece of data at a time. In some
programs, you might want to store several variables; if you use the pickle
module, you’ll need to create several files, which can be difficult to manage.

Python’s shelve module solves this problem. It can store several items of
data in a single file. It works like a dictionary in which each data value has
a key that you can use to store and retrieve the data. Think of shelve like a
shelf: each compartment in the shelf stores different data values.

opening a file with shelve
After importing the shelve module, you’ll use its open() function to open
a file. If the file doesn’t already exist, a new one will be created.

The following code opens the locationsFile.db file and stores it in the
shelveFile variable:

import shelve
shelveFile = shelve.open("locationsFile.db")

The open() function takes only one argument, the name of the file.
You don’t need to specify file permissions when you use the shelve module
because it automatically grants read-and-write privileges.

When naming a file with the shelve module, you must include the .db
extension at the end of the filename. You can see the .db at the end of my
locationsFile.db file.

adding, Modifying, and accessing items
with shelve
The shelve module works like a dictionary. To add data to the file, you
use square brackets with a key name to store a value. For example, let’s
say a secret agent named Beatrice is on a submarine, and we want to store
Beatrice’s location in the shelveFile dictionary:

import shelve
shelveFile = shelve.open("locationsFile.db")
shelveFile['Beatrice'] = 'Submarine'
shelveFile.close()

First we open the file. Next, we give the shelveFile dictionary a key of
'Beatrice' and the value 'Submarine'. This line creates a new item in the
shelveFile dictionary with the key 'Beatrice' and the value 'Submarine'.

Then we use shelve’s close() function to add the new data to the file
and safely close the file.

248 Chapter 11

If a key already exists in a shelve file, this code would update the old
value to the new value. Let’s say that Beatrice finishes her mission and
returns to headquarters. You could update Beatrice’s location like this:

import shelve
shelveFile = shelve.open('locationsFile.db')
shelveFile['Beatrice'] = 'Headquarters'
shelveFile.close()

Now the corresponding value of the Beatrice key is 'Headquarters'.
Accessing a value from shelve works just like a dictionary, too. You use

keys to access specific values. For example, to print Beatrice’s location, we’d
use the following code:

import shelve
shelveFile = shelve.open('locationsFile.db')
print(shelveFile['Beatrice'])

This will output Beatrice’s location, Headquarters.
Just like a standard dictionary, the shelve module can store any data

type, including floats, strings, Booleans, multidimensional lists, other diction-
aries, and so on. In fact, in the next mission you’ll store and access multi-
dimensional lists to save and load multiple structures!

Mission #66: save a Collection
of structures
The programs in this mission will store and load all of your saved structures
using a single file. This mission is once again divided into two programs:
one for saving and the other for loading.

You’ll need to convert the programs from Mission #65 to use the shelve
module instead of the pickle module. You’ll also add code to take user
input so users can name their buildings. Open the saveStructure.py and
loadStructure.py files and save them as saveCollection.py and loadCollection.py.

As we did in the previous mission, let’s make the changes to these pro-
grams in two parts.

Part 1: saving a structure to a Collection
Part of the original saveStructure.py file is included and annotated here to
help identify where you’ll make the changes. Here’s the first line and the
last few lines of saveCollection.py:

u import pickle

--snip--

Name the structure
v structureName = input("What do you want to call the structure?")

save
 Collection.py

saving and Loading Buildings with files and Modules 249

Store the structure in a file
w pickleFile = open("pickleFile", "wb")
x pickleFile.dump(structure)

An extra line is added to the file to ask what you want to call the struc-
ture when you save it with pickle v. For example, my version of the program
asks “What do you want to call the structure?” and I can reply with some-
thing like “House” or “Cake forest.” Make sure you call each new structure
by a different name; if a new structure has the same name as another one,
the old structure will be overwritten by the new one.

To change this program to use the shelve module instead of pickle,
you need to make two changes. First, swap the module import from pickle
to shelve u. Second, change the last few lines of the code to use shelve
instead of pickle. Open a file called structuresFile.db and store it in a vari-
able called shelveFile using the shelve.open() function w. Then store the
structure variable in a shelve dictionary using the structureName variable
for the name of the dictionary’s key x. It should look something like this:
shelveFile[structureName] = structure. Finally, close shelveFile on the last line
by using close().

Part 2: Loading a structure from
a Collection
Now you need to change the loadCollection.py file. I’ve removed the middle
of the file to save space here and to make the bits you need to change easier
to see:

u import pickle

--snip--

v structure = pickle.load("pickleFile")
w structureName = input("Enter the structure's name")

pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z

x buildStructure(x, y, z, structureDictionary[structureName])

I’ve added an extra line to the code that asks for the name of the struc-
ture you want to build w. Also, I added a bit of code to the last line that gets
the structure from the shelve dictionary and passes it to the buildStructure()
function.

You need to make a couple of changes to this program. First, as in
saveCollection.py, change import to shelve instead of pickle u. Second, load
the shelveFile that you created in saveCollection.py by using shelve.open() v.
Store the data returned by the shelve.open() function in the variable

load
 Collection.py

250 Chapter 11

structureDictionary x. The code should look something like the following:
structureDictionary = shelve.load("shelveFile").

All of the data for the structures, including their names and blocks, are
stored in the structuresFile.db file, which means you don’t need to make any
changes to loadCollection.py before you run it. All you need to do is enter the
name of the structure that you want to use when you run the program.

Let’s see the program in action, using a structure from my Minecraft
world. First, I copy the structure using saveCollection.py by flying to one corner
of the structure and pressing enter (Figure 11-7).

Figure 11-7: I move to one corner of the structure I want to save.

Next, I fly to the opposite corner of the structure and press enter again
(Figure 11-8).

Figure 11-8: I move to the opposite corner.

saving and Loading Buildings with files and Modules 251

Then the program prompts me to enter a name for my structure. Fig-
ure 11-9 shows that I’ve called my structure "Cake tree".

Figure 11-9: I enter the name that I want to save the structure as.

Finally, I run loadCollection.py, fly to the location where I want to build
a copy of the structure, and enter the name of the structure I want to build
(Figure 11-10). The program starts building in front of me, just like magic!

Figure 11-10: Now when I want to create a copy, I just enter the name of the structure and
it builds.

You can repeat this process with as many buildings or structures as you
want; for example, I’ve made a copy of a hut in Figure 11-11. After you’ve
copied a structure once, you can load it anytime you want just by running
loadCollection.py and entering the structure’s name!

252 Chapter 11

Figure 11-11: You can use the program to save multiple structures. Here I’ve copied a hut.

installing new Modules with pip
In addition to pickle and shelve, you can import thousands of other
modules to use in your Python programs. With so many modules available,
correctly installing them is very important. To simplify installing modules,
Python provides a package manager called pip. A package manager is soft-
ware that has a database of other software that you can install on your
computer. It also includes features that make it straightforward to install,
upgrade, and uninstall the other software.

The pip package manager can install, upgrade, and remove packages in
Python. It also has a large collection of modules that you can use in Python.
This section shows you how to install a package using pip and showcases the
Flask module, which you can use to build a website!

If you’re using the most recent version of Python 3, pip is preinstalled.
If you’re using an earlier version of Python, pip may not be installed. The
easiest way to get pip is to install the latest version of Python. (See “Install-
ing Python” on page 3 for Windows and on page 13 for Mac.)

Let’s look at how to use pip. Depending on the operating system you
use, you can use pip in a couple of ways. Be sure to follow the instructions
that match your computer!

Using pip on Windows
When using pip on Windows, you need to open the Windows command
prompt. The command prompt is similar to the Python shell. It lets you
input a single command on a line, which runs when you press enter.

To open the command prompt, press the Windows key or open the
Start menu and search for cmd. When you open the program, you’ll see a
black window (Figure 11-12).

saving and Loading Buildings with files and Modules 253

Figure 11-12: The Windows command prompt

To use pip in the command prompt, type pip followed by the action you
want it to take. For example, let’s install the Python module Flask, which
you can use to make websites with Python. Enter the following command in
the command prompt:

> pip install Flask

On the Python Package index website at http://pypi.python.org/, you can
find many other Python modules that you can install.

Using pip on a Mac or Raspberry Pi
If you’re using pip on a Mac or a Raspberry Pi, you’ll need to include sudo
at the start of the command to get it to work. For example, enter this line:

$ sudo pip install Flask

If you get an error, flip to Chapter 1 to double-check the Mac or Rasp-
berry Pi installation instructions.

On the Python Package index website at http://pypi.python.org/, you can
find many other Python modules that you can install.

Using a Module from pip: flask
Flask is a Python module that you can use to develop websites. In this section,
you’ll learn how to set up a basic Flask website and then integrate the website
with Minecraft so you can display your player’s position on a website!

With Flask, you need only a few lines of code to make and manage a
website. You just write the Python code as you normally would and add

254 Chapter 11

some extra information related to Flask. Next, you run your code, and it
makes a website that your computer can access. You can then view the web-
site in your web browser.

Listing 11-5 creates a basic Flask website that includes the most impor-
tant piece of information about me: my name.

from flask import Flask
u app = Flask(__name__)

v @app.route("/")
def showName():

w return "Craig Richardson"

x app.run()

Listing 11-5: A Python program that uses Flask to create a website

To use Flask, you first need to create Flask using the Flask() function u.
The __name__ argument tells Flask that your Flask project is contained in this
file, and it doesn’t need to look anywhere else to find other parts of the pro-
gram. Note the two underscores, not one, at the start and at the end of the
__name__ argument.

The @app.route() tag uses a decorator. Decorators provide additional
information to Python about your functions. For example, in this program
the @app.route() decorator tells Flask which part of the website the function
will be used on. In this case, "/" tells Flask the showName() function will be
used on the home page v. The return statement in the function tells Flask
what will be displayed on the page. In this example, it returns my name, so
my name will be displayed on the page w. The last line of the program tells
Python to start Flask when this file is run x.

Save this file as namePage.py in the files folder. Add your own text to
make your own website.

To run the website, click Run4Run Module in IDLE. The program
runs and generates a website file that you can open in a web browser. To
find the location of the website, you need to read the line of code that your
program outputs when you start running it. When I run the program, the
output looks like this:

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

From this line, I can tell that entering http://127.0.0.1:5000/ into a web
browser will take me to the Flask website that I just started running. Now
when I open the web browser and go to this site, I can see my name dis-
played on the page (Figure 11-13).

No t e The website you create in this program is available only on your computer at the
moment. Only you can access this website—nobody else on the Internet can look at it.

namePage.py

saving and Loading Buildings with files and Modules 255

Figure 11-13: Look at my website! You can change what’s displayed here to
whatever you want. What will you write on your website?

To stop the program, go into IDLE and press ctrl-C or click Shell4
Restart Shell.

No t e This chapter covers only a very basic introduction to Flask. Flask is very useful
to learn because it allows you to build interactive websites quickly with Python. If
you want to know more about Flask, check out this tutorial on the Flask website at
http://flask.pocoo.org/docs/0.10/tutorial/.

Mission #67: Position Website
One of Python’s best qualities is that it’s easy to integrate the features of
different modules into a single program. You’ve been using the Minecraft
Python API module throughout the book and have just learned about the
Flask module. With just a few steps you can integrate the two.

In this mission, you’ll combine the Minecraft Python API with Flask to
display a player’s position on a web page.

Create a new file in IDLE and save it as positionPage.py in the files folder.
You need to get the player’s position from Minecraft and display it on the
web page using a function with the Flask @app.route("/") tag. You can base
the code on the example in Listing 11-5. Make the code display the position
in the format "x 10, y 110, z 12".

Run the program and check out your web page. Pretty cool, huh? Using
Flask you can create web pages with all kinds of information on them. You
can even upload these pages to the Internet to share with your friends!

256 Chapter 11

What You Learned
In this chapter, you were introduced to using files with Python. You learned
how to read and write to files using Python’s standard library, giving you
control over files when you create your own programs. You also learned how
to use modules, which extend Python’s capabilities and what you can do in
Python.

You explored the pickle module, the shelve module, and the pip pack-
age manager. The pickle and shelve modules are used for different pur-
poses. The pickle module saves the value of a single variable, especially
when it contains a multidimensional list or dictionary, which would be dif-
ficult to store and open using the standard library. The shelve module has
the same strengths as the pickle module, but it gives you more flexibility
to store several values at once in a dictionary-like structure. With pip, you
learned how to install new modules. You were also introduced to the Flask
module, which is a quick and flexible way to build websites with Python.

With this knowledge, you completed four missions. The first allowed
you to create to-do lists, which you can display in the Minecraft game
to remind you what you’re working on. The second made it possible to
save buildings and load them into your current world and other worlds.
The third mission modified the second mission so you could store all your
buildings in a single file instead of a file for each building. The final mission
showed you how to use the Flask module to create a web page that displays
the player’s current position.

You’ve done a great job so far! The next chapter is the final chapter.
You’ll learn about classes and object-oriented programming, a popular
programming style that allows you to reuse code.

12
geTTing CLassY WiTh

oBJeCT-oRienTeD PRogRaMMing

Reusability is a very important aspect of
programming. It saves time and effort.

You’ve seen this with loops and functions,
and now you’ll learn about object-oriented

programming.
Object-oriented programming is an approach to programming that

groups functions and variables together to create classes. Each class can
be used to create objects that share the same variables and functions as the
class. You can create many objects from the same class, making the class’s
variables and functions reusable.

When a function is part of a class, it’s called a method, and a variable
that’s part of a class is called an attribute.

In this chapter, you’ll learn object-oriented programming and use
classes to reuse code. Mastering object-oriented programming and classes
makes building programs a breeze, and you can even use object-oriented
programming to make games. In the missions in this chapter, you’ll use
classes to make some basic programs. You’ll start by creating a simple
building, but soon you’ll build an entire town.

258 Chapter 12

object-oriented Basics
Object-oriented programming is very popular, and you can use it to create
all kinds of cool software, but it can be a tricky concept to understand. Let’s
relate it to something that’s more familiar: you.

You’re a person. You have a number of methods: you can eat, breathe,
sleep, count to 10, and do lots of other things. You also have attributes:
name, age, height, shoe size, and so on.

Your friend Mary has the same methods as you; she too can eat, breathe,
sleep, count to 10, and do lots of other things. She also has the same attri-
butes (name, age, and so on), although they contain different values.

In fact, everyone has these methods and attributes. You can describe
people as a class. You and Mary are both people, so you could say you are
both objects in the Person class.

In object-oriented programming, objects are called instances of a class.
All objects share the methods and attributes of the class, but the values of
the attributes can be different for each object.

Let’s jump into Python and make a class.

Creating a Class
You’ll start by creating a class and then create all your objects from that
class. To create a class, you use the class keyword, the name you want to call
the class, and the object class in parentheses (I’ll explain the object class in
“Inheriting a Class” on page 274):

class ClassName(object):
 def __init__(self):
 # Body of init

It’s good practice to capitalize the names of your classes. This makes
it easier to tell the difference between classes and functions, which should
start with a lowercase letter.

When you create a new class, you need to include the __init__()
method and pass in self as an argument. The self argument is required
by every method in a class. It references the class the method belongs to.
The __init__() method tells Python what you want the class to do when
you use it for the first time in a program. This is called initializing the
class, which is what __init__() is short for.

For example, let’s create a class called Cat and then make some cat
objects. The Cat class will store two attributes for each cat, their name and
their weight in kilograms. Each cat object will have its own name and weight
values. Open a new file in IDLE’s text editor and save it as catClass.py in a new
folder called classes. Enter the following code to create a class called Cat:

class Cat(object):
u def __init__(self, name, weight):
v self.name = name
w self.weight = weight

catClass.py

getting Classy with object-oriented Programming 259

In this example, the __init__() method takes three arguments u. The
first is self, which is a required argument in every class method. The second
argument, name, and the last argument, weight, are additional arguments to
create attributes for all the cats.

The last two lines create the attributes name v and weight w and set them
to the values of the name and weight arguments. When you create attributes
inside a class, you use dot notation with self. Attributes are always identified
by a self, which tells Python that an attribute belongs to the class.

Next, you’ll learn how to use this class to create instances of objects.

Creating an object
Using the newly created class, let’s create some cat objects, or instances of
the Cat class.

Initializing an object is similar to creating a variable. To initialize an
object, you enter the name of the object, an equal sign (=), and the class
name. You pass arguments to the class in parentheses, just as you do with
a function call.

For example, let’s adopt a cat and name it Fluff. Using the Cat class, we
can create a cat object called fluff by adding the following code on the last
line of catClass.py (notice that it’s not indented):

class Cat(object):
 def __init__(self, name, weight):
 self.name = name
 self.weight = weight

fluff = Cat("Fluff", 4.5)

When you create an object, the number of arguments you provide
depends on the arguments in its __init__() function. Here we include two
arguments, one for name ("Fluff") and one for weight (4.5). You don’t need to
include the self argument when creating an object because the self argu-
ment is added automatically by Python.

Creating an object is also known as calling a constructor. The __init__()
method is often referred to as a constructor because it constructs a class
when called. The __init__() method is a special type of method because you
don’t reference it by name. Instead, it runs when you create an object using
the name of the class. For example, here the code fluff = Cat("Fluff", 4.5)
calls the __init__() method, which constructs a Cat object called fluff.

Next, you’ll learn how to access the fluff object’s attributes.

accessing attributes
You can access the attributes of an object to get more information about
that object. For example, add the following code to catClass.py after the
fluff object to print the weight attribute of the fluff object:

print(fluff.weight)

catClass.py

catClass.py

260 Chapter 12

The value that prints when you run the program should be 4.5, because
that’s what you set the weight attribute to when you created the object.

Notice that we’re using dot notation between the object’s name, fluff,
and the weight attribute. The dot means you want to use the attribute
that belongs to a specific object. In this case, the value of the weight attri-
bute belongs to the fluff object. Whenever you get or set the value of an
object’s attribute, you use dot notation.

You can change the value of an attribute as you would any other
variable—by using an equal sign (=). For example, let’s change Fluff’s
weight to 5 because he gained weight during the winter holidays. We do
this by changing the weight attribute in the fluff object to 5:

fluff.weight = 5

Now whenever you access the weight attribute on the fluff object, it
will be 5.

Using the knowledge you now have about making a class and creating
an instance of it, let’s make some cool stuff in Minecraft.

Mission #68: Location objects
Throughout the book, you’ve stored locations, such as your house, a castle,
or a palace, in your Minecraft world. You’ve used variables, lists, tuples, and
dictionaries to do this in a variety of ways.

You can also create and store related information, like locations, using
object-oriented programming. For example, you can use objects to store the
coordinates of a bunch of different locations.

Each location has an x-, y-, and z-coordinate, but the values for each
location are different. By creating a location class, you can store and access
the coordinates of different locations. That will help you keep track of
all the awesome things you build in Minecraft. You’ll be able to easily access
the coordinates of all your Minecraft creations so you can teleport the
player to them in an instant!

Listing 12-1 contains the start of the Location class. When the code is
finished, it can be used to store the coordinates of a location in a single
object. Copy the code into a new file called locationClass.py in the classes
folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

u class Location(object):
 def __init__(self, x, y, z):

v self.x = x
w # Add the y and z attributes here

x bedroom = Location(64, 52, -8)
y mc.player.setTilePos(bedroom.x, bedroom.y, bedroom.z)

Listing 12-1: The start of the Location class

catClass.py

locationClass
.py

getting Classy with object-oriented Programming 261

To start the class, I included the class keyword and named the class
Location u. At x is the code to initialize an object called bedroom, which will
store the location of the bedroom in my Minecraft home. The setTilePos()
method sets the player’s position to the bedroom’s location—the bedroom
object’s x, y, and z attributes y. However, the program is incomplete. You
need to finish the __init__() method of the class and set the y and z attri-
butes to the values of the arguments passed to the __init__() method. I set
the value of the x attribute v, but it’s your task to do the same for the y and z
attributes w. Don’t forget to use the location of your own bedroom at x!

Figure 12-1 shows the completed program in action as it teleports the
player into my bedroom.

Figure 12-1: The program has teleported the player into my bedroom.

BonUs oBJeCTiVe: hoMe sWeeT hoMe

Which other rooms in your house do you want to teleport to? Create more objects
using the Location class to zip around your house in style!

Understanding Methods
Classes can contain methods, which are functions associated with the class.
Writing class methods lets you create functions that all instances of that
class can use. This is a great way to save time and reuse code, because you’ll
only have to write one method.

To create a method, you write a function in the body of a class using the
def keyword. You’ve used the def keyword in previous chapters to create func-
tions. Methods are also created with the def keyword, but they’re indented
under the class they belong to. For example, let’s update the Cat class in

262 Chapter 12

catClass.py. We want the cat to be able to eat, so let’s add a method called eat()
to the Cat class. Enter the code and make the changes to catClass.py as you fol-
low along:

class Cat(object):
 def __init__(self, name, weight):
 self.name = name
 self.weight = weight

 def eat(self, food):
 self.weight = self.weight + 0.05
 print(self.name + " is eating " + food)

Notice that the method definition and body of the method are indented
by an extra four spaces so Python knows they belong to the class.

Like functions, methods can take arguments. Here the eat() method
takes an argument called food that states what the cat is eating. The eat()
method increases the weight attribute of the cat by 0.05 and then prints a
message that the cat is eating the food.

After creating an object, you can call any of its class’s methods. For
example, you can call the eat() method using the fluff object. Add this
code to the end of catClass.py:

fluff = Cat("Fluff", 4.5)
fluff.eat("tuna")

Here we see our earlier code, where we created an object called fluff
that is part of the Cat class. Then we call the eat() method and give it the
argument "tuna". When you run the program, the output will look like this:

Fluff is eating tuna

Now Fluff is happily eating tuna. Remember that the eat() method also
increases the weight attribute. After calling the eat() method, add the code
to print fluff’s weight.

You can also call methods from inside the class by calling a method
inside another method. Let’s create another method called eatAndSleep()
inside the Cat class. The eatAndSleep() method calls the eat() method and
then prints that the cat is sleeping. Add this code to catClass.py, just after
the eat() method (make sure you indent the new method as shown so
Python knows it’s part of the class):

 def eatAndSleep(self, food):
 self.eat(food)
 print(self.name + " is now sleeping...")

To call a method from inside the class it belongs to, you add self. to
the beginning of the method name. Here the eat() method is called using
self.eat(). Note that this is different from calling a method outside of

catClass.py

catClass.py

catClass.py

getting Classy with object-oriented Programming 263

a class. When you do that, you only have to enter the object name and
the method you’re calling. For example, the following code calls the new
eatAndSleep() method on the fluff object. Add it to your catClass.py file.
This should be the last line of code in your program:

fluff.eatAndSleep("tuna")

Here is the output that you should get when you run the program:

Fluff is eating tuna
Fluff is now sleeping...

Here’s the full program so you can see where all the pieces belong:

class Cat(object):
 def __init__(self, name, weight):
 self.name = name
 self.weight = weight

 def eat(self, food):
 self.weight = self.weight + 0.05
 print(self.name + " is eating " + food)

 def eatAndSleep(self, food):
 self.eat(food)
 print(self.name + " is now sleeping...")

fluff = Cat("Fluff", 4.5)
print(fluff.weight)
fluff.eat("tuna")
fluff.eatAndSleep("tuna")

Let’s take the new skills you’ve learned into the world of Minecraft!

Mission #69: ghost house
The best thing about programming with Python and Minecraft is that you
can start with a silly idea and run with it. Your idea might start small, but
with just a few lines of code, you can build a fun program very quickly.

Wouldn’t it be fun to build a ghost house that appeared in a game, only
to disappear 30 seconds later? The house could then reappear somewhere
else and then disappear again if you wanted it to.

Here’s the first version of the ghost house program. Save Listing 12-2 in
a file called ghostHouse.py in the classes folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import time

catClass.py

ghostHouse.py

264 Chapter 12

u class Building(object):
v def __init__(self, x, y, z, width, height, depth):

 self.x = x
 self.y = y
 self.z = z

 self.width = width
 self.height = height
 self.depth = depth

w def build(self):
 mc.setBlocks(self.x, self.y, self.z,
 self.x + self.width, self.y + self.height,
 self.z + self.depth, 4)

 mc.setBlocks(self.x + 1, self.y + 1, self.z + 1,
 self.x + self.width - 1, self.y + self.height - 1,
 self.z + self.depth - 1, 0)

x # Call the buildDoor() and buildWindows() methods here

y def clear(self):
 mc.setBlocks(self.x, self.y, self.z,
 self.x + self.width, self.y + self.height,
 self.z + self.depth, 0)

z # Remove the doors and windows here

pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z

{ ghostHouse = Building(x, y, z, 10, 6, 8)
ghostHouse.build()

time.sleep(30)

ghostHouse.clear()
| ghostHouse.x = 8

Listing 12-2: The Building class creates a building.

Listing 12-2 uses a class called Building u with an __init__() method
to set the house’s position and size v. It creates a Building object with the
name ghostHouse {. The building appears and then mysteriously disappears
after 30 seconds using the build() w and clear() y methods. The only prob-
lem is that it doesn’t look like a house. Right now it looks like a large, empty
shell made of cobblestone.

You need to make the ghost house look more like a house and less like
a shell, because ghost shells aren’t as scary as ghost houses. To make the
building look more house-like, your mission is to add a method that builds
a door at the front of the house and a second method that adds windows.
Call these two methods from inside the build() method so they’re built at
the same time x.

getting Classy with object-oriented Programming 265

After adding the methods to build a door and windows, you’ll need
to update the clear() method to delete them z; otherwise, they’ll be left
behind when the house disappears.

When you’ve added the extra methods, move the building to a new
location by changing the x, y, and z attributes of the ghostHouse object and
adding more calls to the build() and clear() methods. I’ve started this for
you by changing the house’s x position |.

When you run the program, the ghost house should suddenly appear
and then disappear 30 seconds later, only to reappear somewhere else.
Spooky!

Figure 12-2 shows my ghost house.

Figure 12-2: The ghost house appears and then disappears.

266 Chapter 12

BonUs oBJeCTiVe: hoMe iMPRoVeMenT

At the moment, the ghost house is very basic . Using the amazing Python skills
you’ve learned in this book, add whatever you want to the build() function to cus-
tomize your house .

Returning Values with Methods
Like functions, methods can also return values, or an object’s attributes,
using the return keyword. For example, let’s say we want to convert Fluff the
cat’s weight from kilograms to grams. A kilogram is equal to 1000 grams,
so to make the conversion, you multiply the weight attribute by 1000 and
return it. Add the following getWeightInGrams() method to the Cat class in
catClass.py:

class Cat(object):
 def __init__(self, name, weight):
 self.name = name
 self.weight = weight

 def getWeightInGrams(self):
 return self.weight * 1000

To output the value returned by the method, you create an object and
call the method. In the following code, the fluff object is used, and the
method is called inside a print() function to get the cat’s weight in grams:

fluff = Cat("Fluff", 4.5)
print(fluff.getWeightInGrams())

Now when you run the file, it will output the following:

4500

In the next mission, we’ll extend the ghost house program to include a
method that returns information about the building.

Mission #70: ghost Castle
I have all kinds of names in mind for the different places I’ve built in my
Minecraft world: the beach house, the plant farm, the animal farm, the
storage room, the palace, the underwater palace, the underground palace,
and loads more. The problem is that the names only exist in my head!

With classes, you can create attributes like location and size for things
you build, as you saw in Mission #69 (page 263). You can also include
names!

catClass.py

catClass.py

getting Classy with object-oriented Programming 267

Let’s name the ghost house and have Python remember it for us. We’ll
update the Building class from Mission #69 to add an extra method that
returns the name of the building. Copy Listing 12-3 into a new file called
ghostCastle.py in the classes folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

import time

u class NamedBuilding(object):
v def __init__(self, x, y, z, width, height, depth, name):

 self.x = x
 self.y = y
 self.z = z

 self.width = width
 self.height = height
 self.depth = depth

w self.name = name

 def build(self):
 mc.setBlocks(self.x, self.y, self.z,
 self.x + self.width, self.y + self.height,
 self.z + self.depth, 4)

 mc.setBlocks(self.x + 1, self.y + 1, self.z + 1,
 self.x + self.width - 1, self.y + self.height - 1,
 self.z + self.depth - 1, 0)

 def clear(self):
 mc.setBlocks(self.x, self.y, self.z,
 self.x + self.width, self.y + self.height,
 self.z + self.depth, 0)

x def getInfo():
 # Add the body of the getInfo() method here

pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z
ghostCastle = NamedBuilding(x, y, z, 10, 16, 16, "Ghost Castle")
ghostCastle.build()

y mc.postToChat(ghostCastle.getInfo())

time.sleep(30)

ghostCastle.clear()

Listing 12-3: NamedBuilding is very similar to the Building class, except it has an extra
attribute called name and an extra method that returns a description of the building.

ghostCastle.py

268 Chapter 12

First, I changed the name of the class to NamedBuilding so we won’t con-
fuse it with the Building class from the previous mission u. I’ve added an
extra argument and attribute to the constructor called name v. The argu-
ment allows you to give a name to the building, and the constructor assigns
the name to the name attribute w.

Your mission is to add a method called getInfo() to the new class
NamedBuilding that returns the name and position of the building. I’ve
added the start of the getInfo() method for you at x. You just need to add
the body. The getInfo() method is called on the ghostCastle object at y
so it outputs the string returned by the method to the Minecraft chat.
For example, if the ghost castle is located at x = -310, y = 64, z = 1081, the
getInfo() method should return the string "Ghost Castle's location is at
-310, 64, 1081".

Figure 12-3 shows my working program. Although the ghost castle is
taller, it looks like the house from Mission #69. This is because the build()
methods are the same for both, but feel free to change your version of the
code so your building looks more like a castle.

Figure 12-3: The description of the ghost castle is displayed.

BonUs oBJeCTiVe: a WaRM WeLCoMe

Wouldn’t it be cool if the name of any building you walked into appeared in the
chat automatically? Well, it’s possible, but it’s a bit challenging . If you want to try
this, you can use the shower.py program from Mission #32 (page 120) as a start-
ing point . The file should be in your ifStatements folder . You can use the program
to detect the coordinates of the player and, if they’re inside the building, call the
building object’s getInfo() method .

getting Classy with object-oriented Programming 269

Creating Multiple objects
You can make several objects from the same class by creating objects with
different names using the same class constructor (remember that constructor
is another name for the __init__() method). For example, let’s say we found
a second cat named Stella who is now friends with Fluff. Open catClass.py
and enter the following code to add Stella:

class Cat(object):
 def __init__(self, name, weight):
 self.name = name
 self.weight = weight

fluff = Cat("Fluff", 4.5)
stella = Cat("Stella", 3.9)

Now we have two cat objects, fluff and stella. Each has the same attri-
butes, name and weight, but with different values.

Add the following code to catClass.py to print the cats’ names:

print(fluff.name)
print(stella.name)

When you run the file, you’ll get this output:

Fluff
Stella

The two cat objects also have access to the same methods. Both can call
the eat() function. Add this code to catClass.py:

fluff.eat("tuna")
stella.eat("cake")

And the output will look like this:

Fluff is eating tuna
Stella is eating cake

Writing a class makes creating lots of objects very easy. Let’s try creating
multiple objects with Minecraft!

Mission #71: ghost Town
What’s scarier than one ghost house? That’s right, two ghost houses. But
three ghost houses would be even scarier. And more than three ghost
houses? I need to stop thinking about this, or I won’t get any sleep tonight!

catClass.py

catClass.py

catClass.py

270 Chapter 12

In Mission #69 (page 263), you made a class that builds a house that
disappears. Now you can create several objects using the same class, and
Python will remember each of the object’s attributes and methods. You can
make as many houses as you want, and you can make them appear and dis-
appear with ease.

Your mission is to create four or more ghost house objects and arrange
them in a village. After a certain amount of time, make them all disappear
and reappear elsewhere on the map, just like a real ghost town.

Open ghostHouse.py in IDLE—we’ll use this as a base. When you
created a house in the ghostHouse.py program, your code should have
looked like this:

ghostHouse = Building(17, 22, -54, 10, 6, 8)
ghostHouse.build()

time.sleep(30)

ghostHouse.clear()

Save ghostHouse.py as a new file called ghostVillage.py, and then create
three or more objects in the file using the Building class to build the village.
To help you get started, I’ve created a second object called shop in List-
ing 12-4. I’ve also set the variables x, y, and z to hold the player’s current
position, which we find using player.getTilePos(). This makes it easier to
build the village all around you.

pos = mc.player.getTilePos()
x = pos.x
y = pos.y
z = pos.z
ghostHouse = Building(x, y, z, 10, 6, 8)
shop = Building(x + 12, y, z, 8, 12, 10)
Create more ghost building objects here

ghostHouse.build()
shop.build()
Build more ghost building objects here

time.sleep(30)

ghostHouse.clear()
shop.clear()

Listing 12-4: Creating multiple ghost building objects

Figure 12-4 shows my ghost village. After 30 seconds, the ghost build-
ings suddenly disappear.

ghost House
.py

ghost Village
.py

getting Classy with object-oriented Programming 271

Figure 12-4: Look at all the ghost buildings in the ghost village!

Class attributes
Sometimes you might want to set attributes that have the same value for
every object instance in a class. It would be redundant to pass the same
argument to the class every time an object is created. Instead, you can
create a preset attribute in the class, and all the instances of objects in that
class will share those attributes.

When multiple objects share the same attribute, it’s called a class attri-
bute. For example, all the cat objects we’ve created are owned by Craig (me).
I can revisit the Cat class in the catClass.py file, create a class attribute called
owner, and set it to "Craig":

class Cat(object):
 owner = "Craig"

 def __init__(self, name, weight):
 self.name = name
 self.weight = weight

As you can see, class attributes don’t use self before their name. In this
example, owner is a class attribute and self.name is an attribute. Notice that
you define class attributes outside the __init__() function.

Class attributes work the same as any other attribute in an object. For
example, you can access the value of a class attribute as you would a normal
attribute. In this case, to find Fluff’s owner, we can print the owner class attri-
bute of the fluff object:

fluff = Cat("Fluff", 4.5)
print(fluff.owner)

catClass.py

catClass.py

272 Chapter 12

The printed value should be "Craig". If we printed Stella’s owner, the
value would be the same because class attributes are the same for every
object in that class:

stella = Cat("Stella", 3.9)
print(stella.owner)

The printed value here is also "Craig".
You can change the value of class attributes for individual objects. This

will change the value of the attribute for that object, but no other objects in
the class. For example, Stella has been adopted by my friend Matthew, so we
need to change Stella’s owner to "Matthew":

stella.owner = "Matthew"
print(stella.owner)
print(fluff.owner)

When the owner attribute of stella is printed, it shows "Matthew", but
fluff’s owner is still "Craig".

After all the changes we’ve made to catClass.py, the final program looks
like the following. It’s also available in the book’s resources at https://www
.nostarch.com/pythonwithminecraft/.

class Cat(object):
 owner = "Craig"

 def __init__(self, name, weight):
 self.name = name
 self.weight = weight

 def eat(self, food):
 self.weight = self.weight + 0.05
 print(self.name + " is eating " + food)

 def eatAndSleep(self, food):
 self.eat(food)
 print(self.name + " is now sleeping...")

 def getWeightInGrams(self):
 return self.weight * 1000

fluff = Cat("Fluff", 4.5)
print(fluff.owner)
stella = Cat("Stella", 3.9)
print(stella.owner)

print(fluff.weight)
fluff.eat("tuna")
fluff.eatAndSleep("tuna")

print(fluff.getWeightInGrams())

catClass.py

catClass.py

catClass.py

getting Classy with object-oriented Programming 273

print(fluff.name)
print(stella.name)

fluff.eat("tuna")
stella.eat("cake")

stella.owner = "Matthew"
print(stella.owner)
print(fluff.owner)

Now that you’ve seen how to use objects, let’s see how to make them
even more powerful with inheritance.

Understanding inheritance
Inheritance occurs when classes share the same methods and attributes as
other classes. For example, ducks are a type of bird. They share the same
methods as other birds (flying, eating, and so on), and they have the same
attributes as other birds (weight, wingspan, and so on). So you could
say that ducks inherit their attributes and methods from the class birds.
Figure 12-5 shows this relationship in a diagram.

BIRDS

Penguins Ducks

Figure 12-5: Penguins and ducks are both
types of birds.

The class that other classes inherit from is called a superclass; the class
that inherits from the superclass is called a subclass.

Inheritance is useful because it allows you to create subtle differences
between similar objects. For example, penguins are also a type of bird, but
they can swim underwater, unlike most birds. To represent penguins, you
need to create a subclass that inherits from the bird class but has adapta-
tions so the penguins can swim underwater. These adaptations are the
reason you create subclasses: you can keep the main superclass features to
avoid having to write the code again, and just add the methods and attri-
butes you need in the subclass.

274 Chapter 12

inheriting a Class
When a subclass inherits from a superclass, the subclass can use all the
superclass’s methods and attributes. The subclass can also add extra classes
and attributes without altering the original superclass.

Let’s use the birds example to illustrate this. First, we’ll write the code
for the Bird superclass. Open a new file in IDLE, name it birdClass.py, and
then add the following code to make the class:

u class Bird(object):
v def __init__(self, name, wingspan):

 self.name = name
 self.wingspan = wingspan

w def birdcall(self):
 print("chirp")

x def fly(self):
 print("flap")

We create a class called Bird u, but notice that the Bird class inherits
from object. The object class is a base class that all other classes will be
built on top of. All classes inherit from the object class, and you use it
when there are no other superclasses to inherit from. Even if there are
several levels of inheritance where lots of classes inherit from each other,
the object class will always be the superclass used on the highest level of
inheritance.

The Bird class’s __init__() method takes two arguments that set two
attributes: the name of the bird and its wingspan v. It has two methods:
birdcall() w and fly() x. At the moment, the birdcall() method just prints
"chirp" and the fly() method just prints "flap".

In the same file, create an object called gardenBird using the Bird class:

gardenBird = Bird("Geoffrey", 12)
gardenBird.birdcall()
gardenBird.fly()

This code will output:

chirp
flap

Now that you’ve created a superclass, you can create a subclass that
inherits from the superclass but gets its own method. You’ll do that in the
next section.

birdClass.py

birdClass.py

getting Classy with object-oriented Programming 275

adding new Methods to subclasses
Let’s add a class for penguins to birdClass.py and call it Penguin. Because
penguins can swim underwater, you can add an extra method to the Penguin
class called swim():

class Penguin(Bird):
 def swim(self):
 print("swimming")

When you define a subclass and want it to inherit from another super-
class instead of object, you put the name of the superclass to inherent from
in parentheses. Notice that I didn’t create an __init__() method for the
Penguin class. The reason is that it inherits from the Bird class, so it uses the
Bird class __init__() method. Let’s use that __init__() method and test the
swim() function by creating a penguin:

sarahThePenguin = Penguin("Sarah", 10)
sarahThePenguin.swim()

This code will output the following:

swimming

The Penguin class can also use the fly() and birdcall() methods because
it inherits them from Bird.

sarahThePenguin.fly()
sarahThePenguin.birdcall()

In this case, the output will look like this:

flap
chirp

But flap and chirp don’t make sense for a penguin because penguins
can’t fly and their birdcall is more of a quack! We’ll learn how to override
inherited methods and fix this in “Overriding Methods and Attributes” on
page 278.

But first, let’s return to Minecraft and create some new ghost buildings
using inheritance.

Mission #72: ghost hotel
Houses and hotels are both types of buildings: they have doors, windows,
rooms, stairs, and walls. Hotels are just fancy houses with extras like
balconies, lots of rooms, and a pretty entrance.

birdClass.py

birdClass.py

birdClass.py

276 Chapter 12

How can you program some ghost hotels using the code you’ve already
created for ghost houses? The basic structure of the buildings is the same.
So let’s say the only difference is that ghost hotels have extra methods to
create carpets inside the rooms and add flowers around the edge of the
building. That means the ghost hotel class can inherit all the methods
from the ghost house class. Then all the ghost hotel class needs is two extra
methods for the carpets and flowers.

In IDLE, create a new file and save it as ghostHotel.py in the classes folder.
Copy and paste the code for the Building class from the ghostHouse.py pro-
gram into the file.

Create a new class called FancyBuilding that inherits from the Building
class. The FancyBuilding class should have a new method called upgrade() that
adds carpet inside the building and flowers around the walls. Listing 12-5
shows my code for the upgrade() method, but feel free to customize your
hotels.

Create a FancyBuilding class here

 def upgrade(self):
 # Carpet
 mc.setBlocks(self.x + 1, self.y, self.z + 1,
 self.x + self.width - 1, self.y, self.z + self.depth - 1,
 35, 6)

 # Flowers
 mc.setBlocks(self.x - 1, self.y, self.z -1,
 self.x - 1, self.y, self.z + self.depth + 1,
 37)
 mc.setBlocks(self.x - 1, self.y, self.z - 1,
 self.x + self.width + 1, self.y, self.z – 1,
 37)
 mc.setBlocks(self.x + self.width + 1, self.y, self.z - 1,
 self.x + self.width + 1, self.y, self.z + self.depth + 1,
 37)
 mc.setBlocks(self.x - 1, self.y, self.z + self.depth + 1,
 self.x + self.width + 1, self.y, self.z + self.depth = 1,
 37)

Create an instance of the FancyBuilding class
Call the build() and upgrade() methods

Listing 12-5: A method for the FancyBuilding class that adds carpet and flowers to the
building

After you’ve created the class and added the new method, create an
instance of the FancyBuilding class and call it ghostHotel. Build the ghost
hotel using the build() method, and then add the extra bits using the
upgrade() method.

Figure 12-6 shows my fancy ghost hotel.

ghostHotel.py

getting Classy with object-oriented Programming 277

Figure 12-6: Look at those flowers and that carpet!

BonUs oBJeCTiVe: fanCY ViLLage

In Mission #71, you created a ghost village in which all the buildings looked about
the same . It’s rare to see identical buildings in real towns . Change the ghost village
program by creating several classes that inherit from the Building class . You could
make a Shop class, a Hospital class, and a Restaurant class, for example . Then
when you create the objects, you can choose which type of building to create by
using the different classes .

278 Chapter 12

overriding Methods and attributes
It’s possible for a subclass to redefine methods and attributes from its super-
class. This is useful when you want to use the same name for a method but
you want it to behave differently in the subclass.

In “Understanding Inheritance” on page 273, we created a Bird class
and a Penguin class. The Penguin class inherited from Bird so it shared all its
methods. But penguins can’t fly, and their birdcall is more of a quack sound
than a chirp. So, we should change the fly() and birdcall() methods to
reflect this. Open birdClass.py and add this code:

class Penguin(Bird):
 def swim(self):
 print("swimming")

u def birdcall(self):
 print("sort of a quack")

v def fly(self):
 print("Penguins cannot fly :(")

I’ve made two changes to the Penguin class. I’ve added a birdcall() u
method and a fly() v method. Because both methods are spelled the
same as they are in the Bird superclass, they will override the superclass’s
methods.

Call the methods by adding this code to birdClass.py:

sarahThePenguin.fly()
sarahThePenguin.birdcall()

Now when you run the program, you’ll get this output:

Penguins cannot fly :(
sort of a quack

Overriding a method from a superclass will change what the method
does for the subclass but not the superclass. So penguins won’t be able to
fly, but other birds that inherit from Bird will still be able to fly.

You can also overwrite the __init__() method in a subclass. This means
that when the subclass object is created, it can have different attributes or
behaviors than the superclass.

For example, let’s create a Parrot subclass of Bird in the same file.
Parrots can be different colors, so let’s include an extra argument in the
__init__() method for a color attribute:

class Parrot(Bird):
u def __init__(self, name, wingspan, color):

 self.name = name
 self.wingspan = wingspan
 self.color = color

birdClass.py

birdClass.py

birdClass.py

getting Classy with object-oriented Programming 279

I’ve included a new __init__() method for the Parrot class that has an
extra argument, color u, when compared to the original Bird class.

Now when we create a new Parrot object, we can access the color attri-
bute. We can also access the birdcall() and fly() methods because they were
inherited from the Bird superclass:

freddieTheParrot = Parrot("Freddie", 12, "blue")
print(freddieTheParrot.color)
freddieTheParrot.fly()
freddieTheParrot.birdcall()

This code will output the following:

blue
flap
chirp

Remember that you can overwrite any method that a subclass inherits
from a superclass; you can even overwrite the __init__() method. This gives
you a lot of control over objects and their many attributes and methods.

After all the changes we’ve made to birdClass.py, the final program looks
like the following. It’s also available in the book’s resources at https://www
.nostarch.com/pythonwithminecraft/.

class Bird(object):
 def __init__(self, name, wingspan):
 self.name = name
 self.wingspan = wingspan

 def birdcall(self):
 print("chirp")

 def fly(self):
 print("flap")

class Penguin(Bird):
 def swim(self):
 print("swimming")

 def birdcall(self):
 print("sort of a quack")

 def fly(self):
 print("Penguins cannot fly :(")

class Parrot(Bird):
 def __init__(self, name, wingspan, color):
 self.name = name
 self.wingspan = wingspan
 self.color = color

birdClass.py

birdClass.py

280 Chapter 12

gardenBird = Bird("Geoffrey", 12)
gardenBird.birdcall()
gardenBird.fly()

sarahThePenguin = Penguin("Sarah", 10)
sarahThePenguin.swim()
sarahThePenguin.fly()
sarahThePenguin.birdcall()

freddieTheParrot = Parrot("Freddie", 12, "blue")
print(freddieTheParrot.color)
freddieTheParrot.fly()
freddieTheParrot.birdcall()

You’ll try overriding methods and attributes in the next mission.

Mission #73: ghost Tree
You’ve created several forms of ghost buildings. Let’s take it to the next level
and create a ghost tree. That’s an amazing idea, but how can we do it? The
Building class is for buildings, which have walls and ceilings—trees don’t
have walls or ceilings. Worry not! You can work around this by modifying
your ghost Building class.

Like the ghost buildings, the ghost tree will appear and disappear using
the build() and clear() methods. But the methods need to work differently
because trees look different from houses. So, you need to create a class that
inherits from the Building class and then override the build() and clear()
methods.

To get you started, I’ve grabbed the function that creates a tree from
the forest.py file (page 149) and put it in Listing 12-6. Copy it into a new file
called ghostTree.py in the classes folder.

from mcpi.minecraft import Minecraft
mc = Minecraft.create()

Paste the ghostHouse.py program here
Create a Tree class here

u def growTree(x, y, z):
 """ Creates a tree at the coordinates given """
 wood = 17
 leaves = 18

 # Trunk
 mc.setBlocks(x, y, z, x, y + 5, z, wood)

 # Leaves
 mc.setBlocks(x - 2, y + 6, z - 2, x + 2, y + 6, z + 2, leaves)
 mc.setBlocks(x - 1, y + 7, z - 1, x + 1, y + 7, z + 1, leaves)

Create build() and clear() methods for the Tree class here

Listing 12-6: A function to create a tree

ghostTree.py

getting Classy with object-oriented Programming 281

To finish the program, copy and paste the code for the Building class
from ghostHouse.py into the new file. Then create a new class called Tree that
inherits from the Building class. Inside the Tree class, add a build() method
and a clear() method to override the methods from the Building class and
build a tree instead of a house. Make sure you include the self argument in
front of the attributes in the final growTree() method u.

After you’ve created the program, make a Tree object called ghostTree.
Call the build() method to make the tree appear, wait a bit, and then make
it vanish using clear().

Figure 12-7 shows the result of my program.

Figure 12-7: That’s a spooky tree!

282 Chapter 12

BonUs oBJeCTiVe: ghosT foResT

Modify the code in ghostTree.py to build a ghost forest . What kinds of treasures do
you think you could find in a ghost forest?

What You Learned
You just learned the basics of one of the most important concepts in pro-
gramming today: object-oriented programming! You learned how to write a
class and create objects, and you learned how to use inheritance to custom-
ize classes and object behavior. You’ll be able to apply this very useful skill
not only in Minecraft but also in any kind of programming adventure that
you choose to go on to next!

afTeRWoRD

This is a momentous occasion. You’ve just
finished the book. It’s been a long journey,

for me and for you! Since I started writing
this book, I’ve grown several beards, lived in

three different cities, and found out that bananas
don’t produce seeds. Honestly, I’ve had so much fun
writing this thing. At moments it was hard and tiring,
but I stuck with it because I wanted you to read it.

Since you started this book, you’ve covered a lot of ground. You’ve
learned about the fundamentals of programming in Python and made
some really cool programs that use these concepts to do amazing things
in Minecraft. You’ve learned about variables, math operations, strings,
input, Booleans, if statements, while and for loops, functions, lists and
dictionaries, modules, files, and classes. You may have been a complete
beginner when you started this book, but with this knowledge, you’ll be
capable of doing some really advanced things in Python.

284 afterword

Whatever you choose to do with programming in the future, I sincerely
wish you the best of luck. For me, programming has been an amazing hobby
that luckily turned into a full-time job.

If we ever meet in person, make sure we give each other a high five!

196 Acacia Door Block

161 Acacia Leaves

6, 4 Acacia Sapling

162 Acacia Wood

5, 4 Acacia Wood Plank

126, 4 Acacia Wood Slab

125, 4 Acacia Wood Slab (Dbl)

157 Activator Rail

38, 2 Allium

1, 5* Andesite

38, 3 Azure Bluet

138 Beacon

26* Bed

7* Bedrock

194 Birch Door Block

18, 2* Birch Leaves

6, 2* Birch Sapling

17, 2* Birch Wood

5, 2* Birch Wood Plank

126, 2 Birch Wood Slab

125, 2 Birch Wood Slab (Dbl)

38, 1 Blue Orchid

47* Bookshelf

117 Brewing Stand

44, 4* Brick Slab

43, 4* Brick Slab (Dbl)

108* Brick Stairs

45* Bricks

39* Brown Mushroom

99 Brown Mushroom Block

62* Burning Furnace

81* Cactus

92 Cake Block

171, 15 Carpet, Black

171, 11 Carpet, Blue

171, 12 Carpet, Brown

171, 9 Carpet, Cyan

171, 7 Carpet, Gray

171, 13 Carpet, Green

171, 3 Carpet, Light Blue

171, 8 Carpet, Light Gray

171, 5 Carpet, Lime

171, 2 Carpet, Magenta

171, 1 Carpet, Orange

171, 6 Carpet, Pink

171, 10 Carpet, Purple

171, 14 Carpet, Red

171 Carpet, White

171, 4 Carpet, Yellow

141 Carrots

118 Cauldron

54* Chest

155, 1* Chiseled Quartz Block

179, 1 Chiseled Red Sandstone

24, 1 Chiseled Sandstone

98, 3 Chiseled Stone Bricks

1

BLoCk iD CheaT sheeT
Where two numbers are listed, the second number is the block state. Blocks marked with an
asterisk (*) are available in Minecraft: Pi Edition.

286 Block iD Cheat sheet

82* Clay

173 Coal Block

16* Coal Ore

3, 1* Coarse Dirt

4* Cobblestone

44, 3* Cobblestone Slab

43, 3* Cobblestone Slab (Dbl)

67* Cobblestone Stairs

30* Cobweb

127 Cocoa

98, 2* Cracked Stone Bricks

58* Crafting Table

37* Dandelion

197 Dark Oak Door Block

161, 1 Dark Oak Leaves

6, 5 Dark Oak Sapling

162, 1 Dark Oak Wood

5, 5 Dark Oak Wood Plank

126, 5 Dark Oak Wood Slab

125, 5 Dark Oak Wood Slab (Dbl)

168, 2 Dark Prismarine

151 Daylight Sensor

32 Dead Bush

31* Dead Shrub

28 Detector Rail

57* Diamond Block

56* Diamond Ore

1, 3* Diorite

3* Dirt

23 Dispenser

122 Dragon Egg

158 Dropper

133 Emerald Block

129 Emerald Ore

116 Enchantment Table

119 End Portal

120 End Portal Frame

121 End Stone

60* Farmland

31, 2* Fern

51 Fire

140 Flower Pot

10* Flowing Lava

8* Flowing Water

61* Furnace

20* Glass

102* Glass Pane

95, 15* Glass, Black Stained

95, 11* Glass, Blue Stained

95, 12* Glass, Brown Stained

95, 9* Glass, Cyan Stained

95, 7* Glass, Gray Stained

95, 13* Glass, Green Stained

95, 3* Glass, Light Blue Stained

95, 8* Glass, Light Gray Stained

95, 5* Glass, Lime Stained

2

Block iD Cheat sheet 287

95, 2* Glass, Magenta Stained

95, 1* Glass, Orange Stained

95, 6* Glass, Pink Stained

95, 10* Glass, Purple Stained

95, 14* Glass, Red Stained

95* Glass, White Stained

95, 4* Glass, Yellow Stained

74* Glowing Redstone Ore

89* Glowstone

41* Gold Block

14* Gold Ore

1, 1* Granite

2* Grass

31, 1* Grass

13* Gravel

172 Hardened Clay

170 Hay Bale

154 Hopper

79* Ice

178 Inverted Daylight Sensor

101 Iron Bars

42* Iron Block

71* Iron Door Block

15* Iron Ore

167 Iron Trapdoor

91 Jack o’Lantern

84 Jukebox

195 Jungle Door Block

18, 3 Jungle Leaves

6, 3 Jungle Sapling

17, 3 Jungle Wood

5, 3 Jungle Wood Plank

126, 3 Jungle Wood Slab

125, 3 Jungle Wood Slab (Dbl)

65* Ladder

22* Lapis Lazuli Block

21* Lapis Lazuli Ore

175, 3 Large Fern

69 Lever

175, 1 Lilac

111 Lily Pad

103* Melon Block

105* Melon Stem

52 Monster Spawner

48* Moss Stone

98, 1* Mossy Stone Bricks

110 Mycelium

112* Nether Brick

44, 6* Nether Brick Slab

43, 6* Nether Brick Slab (Dbl)

114* Nether Brick Stairs

90 Nether Portal

153 Nether Quartz Ore

115 Nether Wart

87 Netherrack

25 Note Block

3

288 Block iD Cheat sheet

64* Oak Door Block

85* Oak Fence

107* Oak Fence Gate

18* Oak Leaves

6* Oak Sapling

17* Oak Wood

5* Oak Wood Plank

126 Oak Wood Slab

125 Oak Wood Slab (Dbl)

53* Oak Wood Stairs

49* Obsidian

38, 5 Orange Tulip

38, 8 Oxeye Daisy

174 Packed Ice

160, 15 Pane, Black Stained

160, 11 Pane, Blue Stained

160, 12 Pane, Brown Stained

160, 9 Pane, Cyan Stained

160, 7 Pane, Gray Stained

160, 13 Pane, Green Stained

160, 3 Pane, Light Blue Stained

160, 8 Pane, Light Gray Stained

160, 5 Pane, Lime Stained

160, 2 Pane, Magenta Stained

160, 1 Pane, Orange Stained

160, 6 Pane, Pink Stained

160, 10 Pane, Purple Stained

160, 14 Pane, Red Stained

160 Pane, White Stained

160, 4 Pane, Yellow Stained

175, 5 Peony

155, 2* Pillar Quartz Block

38, 7 Pink Tulip

33 Piston

34 Piston Head

3, 2* Podzol

1, 6* Polished Andesite

1, 4* Polished Diorite

1, 2* Polished Granite

38 Poppy

142 Potatoes

27 Powered Rail

148 Pressure Plate (heavy)

147 Pressure Plate (light)

168 Prismarine

168, 1 Prismarine Bricks

86 Pumpkin

104 Pumpkin Stem

155* Quartz Block

44, 7* Quartz Slab

43, 7* Quartz Slab (Dbl)

156* Quartz Stairs

66 Rail

40* Red Mushroom

100 Red Mushroom Block

12, 1 Red Sand

4

Block iD Cheat sheet 289

179 Red Sandstone

182 Red Sandstone Slab

181 Red Sandstone Slab (Dbl)

38, 4 Red Tulip

152 Redstone Block

124 Redstone Lamp (active)

123 Redstone Lamp (inactive)

73* Redstone Ore

93 Redstone Repeater (off)

94 Redstone Repeater (on)

75 Redstone Torch (off)

76 Redstone Torch (on)

175, 4 Rose Bush

12* Sand

24* Sandstone

44, 1* Sandstone Slab

43, 1* Sandstone Slab (Dbl)

128* Sandstone Stairs

169 Sea Lantern

165 Slime Block

179, 2 Smooth Red Sandstone

24, 2 Smooth Sandstone

78* Snow

80* Snow Block

88 Soul Sand

19 Sponge

193 Spruce Door Block

18, 1* Spruce Leaves

6, 1* Spruce Sapling

17, 1* Spruce Wood

5, 1* Spruce Wood Plank

126, 1 Spruce Wood Slab

125, 1 Spruce Wood Slab (Dbl)

63* Standing Sign Block

29 Sticky Piston

11* Still Lava

9* Still Water

1* Stone

44, 5* Stone Brick Slab

43, 5* Stone Brick Slab (Dbl)

109* Stone Brick Stairs

98* Stone Bricks

70 Stone Pressure Plate

44* Stone Slab

43* Stone Slab (Dbl)

83* Sugar Canes

175 Sunflower

46* TNT

46, 1* TNT, Hand Detonated

175, 2 Tallgrass (Dbl)

50* Torch

132 Tripwire

131 Tripwire Hook

106 Vines

68* Wall-Mounted Sign Block

19, 1 Wet Sponge

5

290 Block iD Cheat sheet

59* Wheat Crops

38, 6 White Tulip

72 Wooden Pressure Plate

44, 2* Wooden Slab

43, 2* Wooden Slab (Dbl)

96 Wooden Trapdoor

35, 15* Wool, Black

35, 11* Wool, Blue

35, 12* Wool, Brown

35, 9* Wool, Cyan

35, 7* Wool, Gray

35, 13* Wool, Green

35, 3* Wool, Light Blue

35, 8* Wool, Light Gray

35, 5* Wool, Lime

35, 2* Wool, Magenta

35, 1* Wool, Orange

35, 6* Wool, Pink

35, 10* Wool, Purple

35, 14* Wool, Red

35* Wool, White

35, 4* Wool, Yellow

6

symbols & numbers
+ (addition operator), 48–49
+= (addition shorthand), 62
* (asterisk), importing all functions

with, 241
/ (division operator), 58
/= (division shorthand), 62
"" (double quotation marks), for

strings, 66
= (equal sign), assigning values to

variables with, 28
== (equal to), 84
** (exponential operator), 60–61,

91–92
> (greater than), 88
>= (greater than or equal to), 89–90
(hash mark), for comments, 35
< (less than), 88–89
<= (less than or equal to), 89–90
* (multiplication operator), 58
*= (multiplication shorthand), 62
!= (not equal to), 86–87
'' (single quotation marks), for

strings, 66
[] (square brackets), for defining

lists, 168
- (subtraction operator), 48
-= (subtraction shorthand), 62
""" (triple quotation marks), for

docstrings, 152–153
2D lists, 208–213, 216
3D lists, 218–225

a
a (append permission), 233
addition operator (+), 48–49

shorthand (+=), 62
aliases, for modules, 241
and operator, 93

API (application programming
interface), Minecraft
Python

installing on Mac, 15
installing on Windows, 6

append permission (a), 233
append() function, 171–172
application programming

interface. See API
arguments, 34, 147–148

line breaks in, 153
math operators in, 54–55

arrays. See lists
asterisk (*), importing all functions

with, 241
attributes, 257. See also variables

accessing, 259–260
class, 271–273

B
block hits program, 180–182,

196–198
scoreboard, 192–194, 205–206

blocks
changing, 52–53, 138–139,

196–198
finding highest, 90
identifying, 85
IDs

cheat sheet, 283
finding by, 97–98, 186–187,

207–208
reminder program, 155–156

moving, 163–165
placing, 49, 55–56

by user input, 74–75
random, 160–161, 183
replacing, 173–174
stacking, 49–50

inDex

292 index

blocks, continued
state, 158–159
wool, setting color by name,

158–159
Boolean operators. See logical

operators
Boolean values, 82–83
break statements, 139, 207
building quickly, 55–57

C
chat

persistent, 139–140
posting to, 67–68, 69–70
usernames, 72–73

cheat sheet, block IDs, 283
choice() function, 182
class attributes, 271–273. See

also attributes, global
variables

classes, 257–260, 273–274
close() function, 233–234, 247–248
color of wool blocks, setting by

name, 158–159
command prompt, 21, 23–24
comments, 35, 152–153
comparators, 83–91, 104–105,

131–132
concatenation, 71–72, 83
conditions, 81, 104–105, 131–132
connecting to Minecraft, 34
constructor, 259
coordinates, 31–32
copying structures, 225–229,

242–246, 248–252
count variables, 124, 127–128
crater program, 105–106
curse program, 128–129

D
dance floor, generating, 135–137
data. See also files

storing with variables, 28
types, 31

debugging, 42–44
decimal values, 37–38
decrementing values, 128

def keyword, 146
del keyword, 172–173
delays, setting in programs, 39–40
dictionaries. See also shelve module

defining, 188–189
items

accessing, 189
adding, 191–192
changing, 191–192
deleting, 192

looping over, 205
readability, 205

diving contest program, 132–134
division operator (/), 58

shorthand (/=), 62
docstrings, 152–153
double quotation marks (""),

for strings, 66
dump() function, 239–240

e
elif statements, 109–110, 112–113
else statements, 107, 141, 206–207
else-if statements. See elif

statements
equal to (==), 84
equal sign (=), assigning values to

variables with, 28
errors

debugging, 42–44
handling, 76–78
index, 168–169
scope, 162
syntax, 30
type, 147–148, 154–155

exception handling, 76–78
exponential operator (**), 60–61,

91–92
expressions, 47–48

f
False (Boolean value), 82
files, 231–235

opening, 232–233, 247
reading, 234–235
saving, 233–234, 247–248

index 293

shelve module, using with,
247–248

writing to, 233–234
Flask module, 253–255. See also

modules, pip
floats, 37–38

converting to strings, 71–72
flower trail, creating, 130–131
forest, building, 148–150
for loops, 195–196

with dictionaries, 205
generating 2D lists with, 216
with multidimensional lists,

208–213, 218–225
for-else loops, 206–207
functions, 145. See also methods

arguments, 147–148
calling, 146–147
defining, 146
returning values with, 153–155,

179, 266

g
getBlock() function, 85
getHeight() function, 90
getPos() function, 56
getTilePos() function, 51
ghost structures

castle, 266–268
hotel, 275–277
house, 263–265
tree, 280–281
village, 269–271

gifts program, 110–111
global variables, 162–163
greater than (>), 88
greater than or equal to (>=),

89–90

h
hardcoded values, 68
hash marks (#), for comments, 35
"Hello, Minecraft World", posting to

chat, 67–68
hot and cold game, 141–143

i
IDLE, 20–24
if statements, 103–105

with Boolean operators, 119–120
in functions, 157–158
with lists, 185–186
nested, 115, 137
with range checks, 117

importing modules, 39–40, 238–241
immutable

strings, 175
world, 82–83, 108–109

in operator, 185–186
increment, 127–128
indentation, 76, 104, 146
index, of a list, 168–169, 213–214,

223–225
infinite loops, 127–128
inheritance, 273–275, 278–280
__init__() method, 258–260,

278–280
input

numbers only, 77–78
placing blocks by, 74–75

input() function, 68–69
installation. See Mac, Raspberry Pi,

Windows
int() function, 74
integers, 31

converting to a string, 71–72
range checks, 117, 135

iteration, 123–124

J
Java

installing on Mac, 14
installing on Windows, 4–5

joining strings, 71–72

k
keys, in dictionaries, 188–189

L
lava trap, setting, 52–53
len() function, 179

294 index

less than (<), 88–89
less than or equal to (<=), 89–90
lists, 167–169, 208–213

copying, 183–185
creating, 168
generating with range(),

198–199, 200–201
index positions of, 168–169,

213–214, 223–225
items in

accessing, 168–169
adding, 171–172
changing, 169
deleting, 172–173
finding, 185–186
inserting, 172

length, 179
slicing, 184–185
three-dimensional, 218–225
two-dimensional, 208–213, 216

list slice, 184–185
list() function, 200–201
load() function, 241
local variables, 162–163
logical operators, 92–100

and, 93
and if statements, 119–120
not, 96–97
or, 95
order of operations, 98–99
and while loops, 134–135

loops. See for loops, while loops

M
Mac, setup instructions, 11–18
magic wand program, 196–198
math module, 142
math operators, 48–58

addition (+), 48–49
exponential (**), 60–61, 91–92
division (/), 58
multiplication (*), 58
order of operations, 61
shorthand, 62
subtraction (-), 48

methods, 257, 261–263. See also
classes, functions

adding to subclasses, 275

inheritance, 274
overriding, 278–280
returning values with, 266

Midas touch program, 138–139
Minecraft

API (application programming
interface)

installing on Mac, 15–16
installing on Windows, 6–7

connecting programs to, 34
game

installing on Mac, 12–13
installing on Windows, 2–3

playing offline
on Mac, 18
on Windows, 9–10

server
installing on Mac, 15–16
installing on Windows, 6–7

worlds, creating new
on Mac, 17
on Windows, 8–9

modules, 238–241
installing with pip, 252–253
nicknames for, 241
pickle, 238–241
shelve, 247–248
time, 39–40

moving block program, 163–165
multiplication operator (*), 58

shorthand (*=), 62

n
nicknames, for modules, 241
night vision sword program,

186–187
not equal to (!=), 86–87
not operator, 96–97

o
object-oriented programming,

257–258
objects, 257–260, 269–270
offline, playing Minecraft

on Mac, 18
on Windows, 9–10

open() function, 232–233, 247

index 295

operators. See logical operators,
math operators

or operator, 95
order of operations

logical operators, 98–99
math operators, 61

OS X, setup instructions, 11–18

P
package manager, 252
parameters, of functions, 148
permissions, for files, 232–233, 239
pickle module, 238–241
pillars, building, 202–203
pip, installing modules with,

252–253
pixel art, 214–215
pollBlockHits() function, 180–182,

196–198
position, of player, 31–33. See also

teleporting
changing, 34
finding, 51, 56

in specific environments,
85–86, 87–88, 90–91,
93–96

in specific locations, 91–92,
100–101

highest and lowest, 169–171
postToChat() function, 67–68
print() function, 66–67
progress bar, 173–174
pyramid, building, 203–204
Python

installing on Mac, 13
installing on Windows, 3–4

Python shell, 20–21, 23–24

Q
quotation marks

for docstrings, 152–153
for strings, 66

R
r (read permission), 233
r+ (read-and-write permission), 233

randint() function, 62–63
random module, 62–63, 182–183
range checks, 117, 135
range() function, 198–199, 200–201
Raspberry Pi, setup instructions,

18–19
read-and-write permission (r+), 233
read permission (r), 233
read() function, 234
readline() function, 234–235
refactoring, 150–152
return keyword, 153–155, 179, 266
reversed() function, 201–202
running a program, 36

s
scope, of variables, 162–163
scoreboard, for block hits game,

192–194, 205–206
secret passage, building, 115–116
server

installing on Mac, 15
installing on Windows, 6

setBlock() function, 49, 158–159
setBlocks() function, 55–56
setPos() function, 38
setTilePos() function, 34–35
setting() function, 82–83
setup instructions

for Mac, 11–18
for Raspberry Pi, 18–19
for Windows, 2 –11

shell, 20–21, 23–24
shelve module, 247–248
shorthand operators, 62
shower program, 120–122
sightseeing guide, creating,

190–191
single quotation marks (''),

for strings, 66
sleep() function, 39–40
slices, of lists, 184–185
sliding program, 177–178
smashing, preventing, 82–83,

108–109
Spigot

on Mac, 15–18
on Windows, 6–11

296 index

spires, creating, 58–60
sprint record, 78–80
sqrt() function, 142
square brackets ([]), for defining

lists, 168
square root, calculating, 142
stairs, building, 199–200
state, of blocks, 158–159
statements, 29–30, 47–48
str() function, 71–72, 83
strings, 66

accessing characters in, 175
concatenating, 71–72
converting to integers, 74

subclasses, 273–275, 278–280
subtraction operator (-), 52

shorthand (-=), 62
super jump program, 63–64
superclasses, 273–275, 278–280
survival mode

on Mac, 18
on Windows, 10–11

sword
hits, 180–182, 196–198
magic wand, 196–198
night vision, 186–187

syntax, 29–30

T
teleporting, 31–35, 40–42

by location name, 190–191,
260–261

by point score, 113–114
precisely, 38–39
to random locations, 125–126
restrictions, 118–119

text. See files, strings
text editor, 21–23
three-dimensional lists, 218–225
throwing an exception, 76
time module, 39–40
to-do list, 235–237
triple quotation marks ("""), for

docstrings, 152–153
True (Boolean value), 82
try-except statements, 76–78
tuples, 175–176, 179

two-dimensional lists, 208–213, 216
TypeError, 147–148, 154–155

U
UnboundLocalError, 162
usernames, adding to chat, 72–73

V
values

in dictionaries, 188–189,
191–192

of variables, 28
variables, 28–31, 168

assigning values to, 28
changing values of, 31
global, 162–163
local, 162–163
naming, 28–29
syntax, 29–30

W
w (write permission), 232–233
waiting, in programs, 39–40
wand, magic, 196–198
watery curse program, 128–129
weather-worn wall, building,

217–218
website, creating with Flask,

253–255
while loops, 123–124

conditions, 131–132
ending, 127–128, 139
with if statements, 137
infinite, 127–128, 130
with return statements, 160

while-else statements, 141
Windows, setup instructions, 2 –11
wool blocks, setting color by name,

158–159
worlds (Minecraft), creating new

on Mac, 17
on Windows, 8–9

write permission (w), 232–233
write() function, 233–234

x
x, y, and z coordinates, 31–32

Python for Kids
A Playful introduction to Programming
by jason r. briggs

dec 2012, 344 pp., $34.95
isbn 978-1-59327-407-8
full color

LeArn to ProgrAm
with scrAtch
A Visual introduction to Programming
with games, Art, science, and math
by majed marji

feb 2014, 288 pp., $34.95
isbn 978-1-59327-543-3
full color

the officiAL
scrAtchJr BooK
help your Kids Learn to code
by marina umaschi bers and
mitchel resnick

oct 2015, 160 pp., $19.95
isbn 978-1-59327-671-3
full color

800.420.7240 or 415.863.9900 | sales@nostarch.com | www.nostarch.com

MoRe sMaRT Books foR CURioUs kiDs!

suPer scrAtch
ProgrAmming
AdVenture!
Learn to Program By
making cool games
by the lead project

oct 2013, 160 pp., $24.95
isbn 978-1-59327-531-0
full color

ruBy wizArdry
An introduction to Programming
for Kids
by eric weinstein

dec 2014, 352 pp., $29.95
isbn 978-1-59327-566-2
two color

teAch your Kids to code
A Parent-friendly guide to Python
Programming
by bryson payne

april 2015, 336 pp., $29.95
isbn 978-1-59327-614-0
full color

ResoURCes
Visit https://www.nostarch.com/pythonwithminecraft/ for updates, program files for the
Minecraft missions, and installation files.

Requirements
Here’s what you’ll need in order to follow along with this book!

if you’re Using Windows 7, 8, or 10
•	 The official, paid version of Minecraft, available from https://minecraft.net/

•	 Python 3, available for free from http://www.python.org/downloads/

•	 Java, available for free from http://www.java.com/en/download/

•	 The book’s accompanying setup folder, available for free from https://www.nostarch
.com/pythonwithminecraft/ (includes the Python Minecraft API and Spigot server)

See “Setting Up Your Windows PC” on page 2 for detailed instructions.

if you’re Using os x 10.10 or Later
•	 The official, paid version of Minecraft, available from https://minecraft.net/

•	 Python 3, available for free from https://www.python.org/downloads/mac-osx/

•	 The Java Development Kit, available for free from http://www.oracle.com/
technetwork/java/javase/downloads/index.html

•	 The book’s accompanying setup folder, available for free from https://www.nostarch
.com/pythonwithminecraft/ (includes the Python Minecraft API and Spigot server)

See “Setting Up Your Mac” on page 11 for detailed instructions.

if you’re Using a Raspberry Pi
You shouldn’t have to install anything at all—a free version of Minecraft comes
installed on the Raspberry Pi! Read more about it at http://www.raspberrypi.org/.
See “Setting Up Your Raspberry Pi” on page 18 for details.

You’ve bested creepers, traveled deep into
caves, and maybe even gone to The End
and back—but have you ever transformed
a sword into a magic wand? Built a palace
in the blink of an eye? Designed your own
color-changing disco dance floor? In Learn to
Program with Minecraft®, you’ll do all this and
more with the power of Python, a free language
used by millions of professional and first-time
programmers!

Begin with some short, simple Python
lessons and then use your new skills to modify
Minecraft to produce instant and totally awe-
some results. Learn how to customize Minecraft
to make mini-games, duplicate entire buildings,
and turn boring blocks into gold. You’ll also
write programs that:

 Take you on an automated teleportation
 tour around your Minecraft world

 Build massive monuments, pyramids,
 forests, and more in a snap!

 Make secret passageways that open when
 you activate a hidden switch

 Create a spooky ghost town that vanishes
 and reappears elsewhere

 Show exactly where to dig for rare blocks

 Cast a spell so that a cascade of flowers
 (or dynamite if you’re daring!) follows
 your every move

 Make mischief with dastardly lava traps
 and watery curses that cause huge floods

Whether you’re a Minecraft megafan or a
newbie, you’ll see Minecraft in a whole new
light while learning the basics of programming.
Sure, you could spend all day mining for pre-
cious resources or building your mansion by
hand, but with the power of Python, those
days are over!

ABOUT THE AUTHOR

Craig Richardson is a software developer
and Python educator. He has worked for the
Raspberry Pi Foundation, taught high school
computing classes, and led many workshops
on Python programming with Minecraft.

SHELVE IN
:

PROGRAM
M

ING LANGUAGES/PYTHON

For kids aged 10+ (and their parents)

A Blocky
introduction to

Programming

A Blocky
Introduction to

Programming

$29.95 ($34.95 CDN)

This book is not authorized
or endorsed by Mojang.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

The code in this book will run on
Windows 7 or later, OS X 10.10 or
later, or the Raspberry Pi. (See the
last page for detailed requirements.)

Learn to
Program with

Minecraft

Learn to
Program with

Minecraft
Transform Your World

with the Power of Python

C r a i g R i c h a r d s o n

®

	About the Author

	About the Technical Reviewer

	Brief Contents

	Contents in Detail

	Acknowledgments
	Introduction
	Why Learn to Program?
	Why Python?
	Why Minecraft?
	What’s in This Book?
	Online Resources
	Let the Adventure Begin!

	Chapter 1: Setting Up for Your Adventure
	Setting Up Your Windows PC
	Installing Minecraft
	Installing Python
	Installing Java
	Installing the Minecraft Python API and Spigot
	Running Spigot and Creating a Game
	Starting Over with a New World
	Playing Offline
	Switching to Survival Mode

	Setting Up Your Mac
	Installing Minecraft
	Installing Python
	Installing Java
	Installing the Minecraft Python API and Spigot
	Running Spigot and Creating a Game
	Starting Over with a New World
	Playing Offline
	Switching to Survival Mode

	Setting Up Your Raspberry Pi
	Getting to Know IDLE
	Getting to Know the Python Shell
	Say Hello to IDLE’s Text Editor
	When to Use the Python Shell and When to Use the Text Editor
	The Prompts Used in This Book

	Testing Your Minecraft Python Setup

	Chapter 2: Teleporting Through Minecraft with Variables
	What Is a Program?
	Storing Data with Variables
	The Structure of Programming Languages
	Syntax Rules for Variables
	Changing the Values of Variables
	Integers
	Mission #1: Teleport the Player
	Floats
	Mission #2: Go Exactly Where You Want

	Slowing Down Teleportation Using the time Module
	Mission #3: Teleportation Tour

	Debugging
	Mission #4: Fix the Buggy Teleportation

	What You Learned

	Chapter 3: Building Quickly and Traveling Far with Math
	Expressions and Statements
	Operators
	Addition
	Mission #5: Stack Blocks
	Mission #6: Super Jump
	Subtraction
	Mission #7: Change the Blocks Under You
	Using Math Operators in Arguments
	Mission #8: Speed Building
	Multiplication
	Division
	Mission #9: Spectacular Spires

	Exponents
	Parentheses and Order of Operations
	Handy Math Tricks
	Shorthand Operators
	Playing with Random Numbers
	Mission #10: Super Jump Somewhere New!

	What You Learned

	Chapter 4: Chatting with Strings
	What Are Strings?
	The print() Function
	Mission #11: Hello, Minecraft World

	The input() Function
	Mission #12: Write Your Own Chat Message

	Joining Strings
	Converting Numbers to Strings
	Concatenating Integers and Floats
	Mission #13: Add Usernames to Chat

	Converting Strings to Integers with int()
	Mission #14: Create a Block with Input

	Bounce Back from Errors
	Mission #15: Only Numbers Allowed
	Mission #16: Sprint Record

	What You Learned

	Chapter 5: Figuring Out What’s True and False with Booleans
	Boolean Basics
	Mission #17: Stop Smashing Blocks!

	Concatenating Booleans
	Comparators
	Equal To
	Mission #18: Am I Swimming?
	Not Equal To
	Mission #19: Am I Standing in Something Other Than Air?
	Greater Than and Less Than
	Greater Than or Equal To and Less Than or Equal To
	Mission #20: Am I Above the Ground?
	Mission #21: Am I Close to Home?

	Logical Operators
	and
	Mission #22: Am I Entirely Underwater?
	or
	Mission #23: Am I in a Tree?
	not
	Mission #24: Is This Block Not a Melon?
	Logical Operator Order
	Is My Number Between Two Others?
	Mission #25: Am I in the House?

	What You Learned

	Chapter 6: Making Minecraft Mini-Games with if Statements
	Using if Statements
	Mission #26: Blast a Crater
	else Statements
	Mission #27: Prevent Smashing, or Not
	elif Statements
	Mission #28: Offer a Gift
	Chaining Together elif Statements
	Mission #29: Teleport to the Right Place
	Nested if Statements
	Mission #30: Open a Secret Passage

	Using if Statements to Test a Range of Values
	Mission #31: Restrict Teleport Locations

	Boolean Operators and if Statements
	Mission #32: Take a Shower

	What You Learned

	Chapter 7: Dance Parties and Flower Parades with while Loops
	A Simple while Loop
	Mission #33: A Random Teleportation Tour

	Controlling Loops with a Count Variable
	Mission #34: The Watery Curse
	Infinite while Loops
	Mission #35: Flower Trail

	Fancy Conditions
	Mission #36: Diving Contest
	Boolean Operators and while Loops
	Checking a Range of Values in while Loops
	Mission #37: Make a Dance Floor
	Nested if Statements and while Loops
	Mission #38: The Midas Touch

	Ending a while Loop with break
	Mission #39: Create a Persistent Chat with a Loop
	while/else Statements
	Mission #40: Hot and Cold

	What You Learned

	Chapter 8: Functions Give You Superpowers
	Defining Your Own Functions
	Calling a Function
	Functions Take Arguments
	Mission #41: Build a Forest
	Refactoring a Program
	Mission #42: Refactor Away
	Commenting with Docstrings
	Line Breaks in Arguments
	Function Return Values
	Mission #43: Block ID Reminder

	Using if Statements and while Loops in Functions
	if Statements
	Mission #44: Wool Color Helper
	while Loops
	Mission #45: Blocks, Everywhere

	Global and Local Variables
	Mission #46: A Moving Block

	What You Learned

	Chapter 9: Hitting Things with Lists and Dictionaries
	Using Lists
	Accessing a List Item
	Changing a List Item
	Mission #47: High and Low

	Manipulating Lists
	Adding an Item
	Inserting an Item
	Deleting an Item
	Mission #48: Progress Bar

	Treating Strings Like Lists
	Tuples
	Setting Variables with Tuples
	Mission #49: Sliding
	Returning a Tuple

	Other Useful Features of Lists
	List Length
	Mission #50: Block Hits
	Randomly Choosing an Item
	Mission #51: Random Block
	Copying a List
	Items and if Statements
	Mission #52: Night Vision Sword

	Dictionaries
	Defining a Dictionary
	Accessing Items in Dictionaries
	Mission #53: Sightseeing Guide
	Changing or Adding an Item in a Dictionary
	Deleting Items in Dictionaries
	Mission #54: Block Hits Score

	What You Learned

	Chapter 10: Minecraft Magic with for Loops
	A Simple for Loop
	Mission #55: Magic Wand
	The range() function
	Mission #56: Magic Stairs
	Playing Around with range()

	Other List Functions
	Mission #57: Pillars
	Mission #58: Pyramid

	Looping Over a Dictionary
	Mission #59: Scoreboard

	for-else Loops
	Breaking a for-else Loop
	Mission #60: The Diamond Prospector

	Nested for Loops and Multidimensional Lists
	Thinking in Two Dimensions
	Accessing Values in 2D Lists
	Mission #61: Pixel Art
	Generating 2D Lists with Loops
	Mission #62: A Weather-Worn Wall
	Thinking in Three Dimensions
	Outputting 3D Lists
	Accessing Values in 3D Lists
	Mission #63: Duplicate a Building

	What You Learned

	Chapter 11: Save and Load Buildings with Files and Modules
	Using Files
	Opening a File
	Writing to and Saving a File
	Reading a File
	Reading a Line of a File
	Mission #64: To-Do List
	Part 1: Writing the To-Do List
	Part 2: Displaying the To-Do List

	Using Modules
	The pickle Module
	Importing pickle
	Importing One Function with the from Clause
	Importing All Functions with *
	Giving a Module a Nickname
	Mission #65: Save a Building
	Part 1: Saving the Building
	Part 2: Loading the Building

	Storing Lots of Data with the shelve Module
	Opening a File with shelve
	Adding, Modifying, and Accessing Items with shelve
	Mission #66: Save a Collection of Structures
	Part 1: Saving a Structure to a Collection
	Part 2: Loading a Structure from a Collection

	Installing New Modules with pip
	Using pip on Windows
	Using pip on a Mac or Raspberry Pi

	Using a Module from pip: Flask
	Mission #67: Position Website

	What You Learned

	Chapter 12: Getting Classy with Object-Oriented Programming
	Object-Oriented Basics
	Creating a Class
	Creating an Object
	Accessing Attributes
	Mission #68: Location Objects

	Understanding Methods
	Mission #69: Ghost House

	Returning Values with Methods
	Mission #70: Ghost Castle

	Creating Multiple Objects
	Mission #71: Ghost Town

	Class Attributes
	Understanding Inheritance
	Inheriting a Class
	Adding New Methods to Subclasses
	Mission #72: Ghost Hotel

	Overriding Methods and Attributes
	Mission #73: Ghost Tree

	What You Learned

	Afterword

	Block ID Cheat Sheet
	Index
	More Smart Books for Curious Kids!

	Resources

	Requirements
	If You're Using Windows 7, 8, or 10

	If You're Using OS X 10.10 or Later

	If You're Using a Raspberry Pi

