2ND EDITION

HACKING

THE ART OF EXPLOITATION

JON ERICKSON

PRAISE FOR THE FIRST EDITION OF
HACKING: THE ART OF EXPLOITATION

“Most complete tutorial on hacking techniques. Finally a book that does not
just show how to use the exploits but how to develop them.”
—PHRACK

“From all the books I've read so far, I would consider this the seminal
hackers handbook.”
—SECURITY FORUMS

“I recommend this book for the programming section alone.”
—UNIX REVIEW

“I highly recommend this book. It is written by someone who knows of what
he speaks, with usable code, tools and examples.”
—IEEE CIPHER

“Erickson’s book, a compact and no-nonsense guide for novice hackers,
is filled with real code and hacking techniques and explanations of how
they work.”

—COMPUTER POWER USER (CPU) MAGAZINE

“This is an excellent book. Those who are ready to move on to [the next
level] should pick this book up and read it thoroughly.”
—ABOUT.COM INTERNET/NETWORK SECURITY

V413HAV
Typewritten Text
V413HAV

2ND EDITION

HACKING

THE ART OF EXPLOITATION

JON ERICKSON

=

NO STARCH
PRESS

San Francisco

HACKING: THE ART OF EXPLOITATION, 2ND EDITION. Copyright © 2008 by Jon Erickson.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

{5 Printed on recycled paper in the United States of America

1110 09 08 07 123456789

ISBN-10: 1-59327-144-1
ISBN-13: 978-1-59327-144-2

Publisher: William Pollock

Production Editors: Christina Samuell and Megan Dunchak
Cover Design: Octopod Studios

Developmental Editor: Tyler Ortman

Technical Reviewer: Aaron Adams

Copyeditors: Dmitry Kirsanov and Megan Dunchak
Compositors: Christina Samuell and Kathleen Mish
Proofreader: Jim Brook

Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Erickson, Jon, 1977-

Hacking : the art of exploitation / Jon Erickson. -- 2nd ed.

p. cm.

ISBN-13: 978-1-59327-144-2

ISBN-10: 1-59327-144-1

1. Computer security. 2. Computer hackers. 3. Computer networks--Security measures. I. Title.
QA76.9.A25E75 2008
005.8--dc22

2007042910

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and

company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

BRIEF CONTENTS

PrEfOICE e e xi
Acknowledgmentscc.ooiiiiiiii i xii
OXTO0 INHTOAUCHION .ttt ettt ettt ee et e en 1
OX200 Programmingcoo.euueeeee ettt ettt e e s e ettt ee e e e e 5
OX3B00 EXPIOHAHION .ottt ettt 15
OX400 NEIWOTKING .. cve ittt et 195
OX500 Shellcode ...t 281
OXO00 COUNTEIMEASUIES.iiiieeeriiiiie ettt ettt e een ettt eeeeen e e 319
OX700 Cryprology ..eveeeeeeieetie ettt ettt 393
OXBO0 CONCIUSION ...ttt ettt 451

CONTENTS IN DETAIL

PREFACE xi
ACKNOWLEDGMENTS xii
Ox100 INTRODUCTION 1
0x200 PROGRAMMING 5
0x210 What Is Programming?cccooiiiiiiiiiieeie e 6
0X220 PSEUdO-COAE ...t 7
OX230 CONol SHTUCHUIIES ..ottt 8
OX23T FTRhEN-ElSe. ... eeeeeiiie i 8
0x232 While/Until LOOPS ...eoveeiiiiieeiii et 9
OX233 FOI LOOPS t ettt 10
0x240 More Fundamental Programming Conceptscccoeevuiieriieeiiiiiiie e 11
0x241 Variablesoooiiiii e 11
0x242 Arithmetic OPeratorscccuviiiiieeiiie et 12
0x243 Comparison OPEratorseeeeeeereriiiiiiieieieee e eeeeen e 14
OX244 FUNCHONS ..cceiiiiiiiiie et 16
0x250 Getting Your Hands Dirtyccueoiiiiiiiiiiiii et 19
0x251 The Bigger PictUrecooiviiieiiiiiiie e 20
0X252 The X8O ProCeSSOr......uiiiiiie et 23
0x253 Assembly Language.........oovveeiiiiiiiiiiie e 25
OX260 BACK 10 BASICS e tvieiie et 37
OX26 T SHTINGS 1ot 38
0x262 Signed, Unsigned, Long, and Shortcocciiiiiiiiiiiiiiiieceen 41
OX263 POINES .ottt 43
Ox264 FOrmat SIHNGS ...ceeeieieieee ettt 48
OX265 TYPECASHING +oeieeieieieie ittt 51
0x266 Command-Ling ArgumENtsccuviieeriiiieeiiiiieie et 58
0x267 Variable SCOPING ..vviiviiiiiieeiie e 62
0x270 Memory Segmentationuuuiueuuiiiiiiiieie e 69
0x271 Memory Segments in C......ooooiiiiiiiiiiiiiiiiiiie e 75
0x272 Using the Heapcocuviiiiiiiiie e 77
0x273 Error-Checked malloc().......cooovimiiiiie e 80
0x280 Building 0N BASICSvvvieeeiiiieeiie ettt et 81
OX28T1 File ACCESS oot 81
0x282 File Permissionsccueeiiiieeiiieiiiie e 87
OX283 USEI IDS ..ot 88
OX284 SHTUCES ..ottt 96
Ox285 FuNCtion POINIErSccooiiiiiiiiiiiiiiieie e 100
0x286 Pseudo-random Numberscccoviiiiiiiiiiiiiie i 101

0x287 A Game of ChaNCecoovveie e 102

0x300 EXPLOITATION 115

0x310 Generalized Exploit Techniquescccooiiiiiiiiiiiiei e 118
0x320 Buffer Overflowsooiiiiiiiii e 119
0x321 Stack-Based Buffer Overflow Vulnerabilitiesccccccoiiiinnin, 122
0x330 Experimenting with BASHcooiiiiiiiiii e 133
0x331 Using the ENvironment..........ooouiiiiiiiiiiiieiie et 142
0x340 Overflows in Other Segmentsccciiiiiiiiiiiiiii e 150
0x341 A Basic Heap-Based Overflowcooiviiiiiiiiiiiii 150
0x342 Overflowing Function Pointers............cccceeeviiviieiiiiiieiiiiiieeein 156
Ox350 FOrmat SIINGS ...ceeeieee ettt 167
Ox351 Format Parameters.ccovuuuiiiiiiiiiiiniiiiiic e 167
0x352 The Format String Vulnerability..........cccccoviiniiiniii 170
0x353 Reading from Arbitrary Memory Addressescccceeviieiniinn. 172
0x354 Writing to Arbitrary Memory Addresses............cccooveeiiiiiiininin, 173
0x355 Direct Parameter ACCESS........covmiiiiiiiiiiieiiiiiiiiee e 180
0x356 Using Short WISooiiiiiiieiiiiiiie et 182
0x357 Detours With .dtors........ooiiiiiiiiiiiie e 184
0x358 Another notesearch Vulnerability ..o 189
0x359 Overwriting the Global Offset Tableccccccoovviiiiiiiii. 190
0x400 NETWORKING 195
OX4T0 OSIMOE ..o 196
OXA20 SOCKELS ...t 198
Ox421 Socket FUNCHONSeiitiiiiiiie et 199
O0x422 Socket AdAresseseevuiieiiiiiiiie et 200
0x423 Network Byte Orderccoviiviiiiiiiiiiiieee 202
0x424 Internet Address CONVErsioncoovvieiiueeiiiieaiie e 203
0x425 A Simple Server Examplecccooviiiiiiiiiiiii e 203
0x426 A Web Client Exampleccccooiiiiiiiiiiiii e 207
O0x427 A TinyWeb Server.......ccooiiiiiiiiiiiie et 213
0x430 Peeling Back the Lower Layers...........ccoiiiiiiiiiiiiiiiiiie e 217
Ox431 Data-Link Layer......c.ueeoiieiiiiiiie e 218
0x432 Network Layerccceiiiiiiiiiiiiic e 220
Ox433 Transport LOYErccciiiriiiiiiiiiiiee et 221
Ox440 Network Sniffingccviiiiiiiiiiii e 224
0x441 Raw Socket Sniffer..........coociiiiiiiiii 226
0x442 libpcap Snifferccooiiiiii i 228
0x443 Decoding the Layersoociiiiiieiiiieie e 230
Ox444 Active Sniffing......coooiiiiiiiiiii e 239
0x450 Denial of Service..........oiiiiiiiiiii e 251
Ox451 SYN FIoodingeeeeiiiiieieiii ettt 252
0x452 The Ping of Death.........oooiiiiiiiiiiiiic e 256
OXA453 T@ATAIrOP ..oeeeiiiiiiie ettt 256
Ox454 Ping Floodingcouiiiiiiiiiiiiieiiiiie e 257
0x455 Amplification ARACKScovviiiiiiiiiie e 257
0x456 Distributed DoS Flooding..........ccuviiiiiiiiiieiiiiiieciie e 258
Ox460 TCP/IP HiJaCKing ... vveeeeeiie et 258
Ox4671 RST HIiJACKING «vvveieeiii et 259
0x462 Continued Hijackingcccvvviiiiiiiiiiiiie e 263

viii Contents in Detail

Ox470 Port SCANNINGeeviiii et 264

0x471 Stealth SYN SCaN ...ooiiiiiiiiii e 264
O0x472 FIN, X-mas, and Null Scans ...t 264
Ox473 Spoofing DECOYSveiviiieiiie ettt 265
Ox474 Idle SCanning.......ooviiiiiiee i 265
0x475 Proactive Defense (shroud)..........cc.oooviiiiiiiiiiiiiiiiiiiie e 267
0x480 Reach Out and Hack Someoneccooiiiiiiiiiiiiiiie e 272
0x481 Analysis With GDB.........couuiiiiiiiiiiie e 273
0x482 Almost Only Counts with Hand Grenadesccccoeeiiiiiiieiiin. 275
0x483 PortBinding Shellcodeooviviiiiiiiiiiie e 278
O0x500 SHELLCODE 281
Ox510 Assembly vs. € .oooiiiiii e 282
0x511 Linux System Calls in Assemblycccoooiiiiiiiiiiiii 284
0x520 The Path to Shellcode.coiiiiiiiiiie i 286
0x521 Assembly Instructions Using the Stackcccooociiiiiiiiii, 287
0x522 Investigating With GDB..........cceeiiiiiiiiiiiiiiie et 289
0x523 Removing NUll BYesccceevriiiiiieiiiiiieiieeicece e 290
0x530 Shell-Spawning Shellcode...........oouiiiiiiiiii e 295
0x531 A Matter of Privilege.........cccoooiviiiiiiiiiiiiiiccie e 299
0x532 And Smaller Still........cooiiiiii 302
0x540 PortBinding Shellcodecooiiiiiiiiiiiiiii e 303
0x541 Duplicating Standard File Descriptors............coovviiiieeniiiiiiiiieenns 307
0x542 Branching Control SIructures.............oovviieiiiiiiiieiiie e 309
0x550 Connect-Back Shellcodeoouiiiiiiiiii 314
0x600 COUNTERMEASURES 319
0x610 Countermeasures That Detecteeiiiiiiiiiiiie e 320
Ox620 System DABMONSceeiiiiiiiiiiiiit ettt 321
0x621 Crash Course in Signals..........cccoeiiiiiiiiiiii e 322
0x622 Tinyweb DAaemonccccoviiiiiiiiiiiie i 324
0x630 Tools of the Trade.........ceeiiiiii i 328
0x631 tinywebd Exploit Tool..........ooiiiiiiiiieiie e 329
OXO40 LOg Files...oieiiiiieieiie e 334
0x641 Blend In with the Crowdoooiiiiiiiii e 334
0x650 Overlooking the ObVIoUScc.uiiiiiiiiiieiiiie e 336
Ox651 One Step af @ TIME ..eeiiiiiiiiiiiiiiie e e 336
0x652 Putting Things Back Together Againcooovvviiiiiiiiiieiiiiie e 340
0x653 Child Laborerscoooiiiiiiiiiii e 346
0x660 Advanced Camouflagecoooviiiiiiiiiiii 348
0x661 Spoofing the Logged IP Address..........cccoeviiiiiiiiiiiiiiiieciee 348
0x662 Logless Exploitationccoiiiiiieiiiie e 352
0x670 The Whole Infrastructureooouiiiiiiiiiiiie e 354
OXB7 1 SOCKEt REUSE ...t 355
0x680 Payload Smuggling «.....ceeiiieiiiiiiie e 359
Ox681 String ENcodingoovvviiiiiiiiie e 359
0x682 How to Hide a Sled.......ccoiiiiiiiiiii e 362
OXx690 Buffer ReSHICHONS ..eeoviieiiiie ettt 363
0x691 Polymorphic Printable ASCII Shellcode..........cccoviviiiiiiiiiiiiiiine. 366

Contents in Detail iX

0x6a0 Hardening Countermeasures............oeovveeruieeenieeniieeiiee e
0x6b0 Nonexecutable Stackoociiviiiiiii
Ox6b1 ret2libe .o
O0x6b2 Returning into system()........ccccovvieiiiiiiinieiiieeeeee.
0x6c0 Randomized Stack Spacecccovvvieiiiiiiiieeiiiec e
Ox6c1 Investigations with BASH and GDBccccovvviennn.
Ox6c2 Bouncing Off linux-gateooovvuiiiiiiiiiieiieiiiece,
0x6c3 Applied Knowledgeccooviiiiiiiiiiiiii,
Ox6cd A First AHEMP....ceviiieiiiiiiiiiie e
O0x6c5 Playing the Odds.......cuooviiiiiiiiiiieeee e,

0x700 CRYPTOLOGY

0x710 Information Theoryccooiiiiiiiiiiiie e
0x711 Unconditional Securitycooveiiiiiiiiiiiie e,
0x712 OneTime Pads.......ccceeiiiiiiiiiiiiiie e
0x713 Quantum Key Distribution...........cccooiiiiiiiieiiie.
0x714 Computational Securitycccoveviiieaiiiiiieieieen
0x720 Algorithmic Run Timeoooiiiiiiiiiie e
0x721 Asymptotic Notatonccccoviiiiiniiiiciniicce,
O0x730 Symmetric ENcryption..........coooiiiiiiiiiiiiniiniiiiceee e
0x731 Lov Grover’'s Quantum Search Algorithm....................
Ox740 Asymmetric Encryptionc.ccocovuiiiiiiiiininniiiiiiccce e
Ox741 RSA .o

0x742 Peter Shor's Quantum Factoring Algorithm

0x750 Hybrid Ciphersccoeiiiiiii e
0x751 Man-inthe-Middle Attackscccoveeiiiiiiii,
0x752 Differing SSH Protocol Host Fingerprints.....................
Ox753 Fuzzy Fingerprintscooooveviveiieieeininniiiiiiiceeeeenn

0x760 Password Cracking..........cccuvveeiiiiiieieiiiie e
0x761 Dictionary ARACKScc.eeiiiiiiiieiiieiiie e
0x762 Exhaustive Brute-Force Attacks.........ccooveiviieiniinnn.
0x763 Hash Lookup Tablecccveiveiiiiiiiiiie e,
0x764 Password Probability Matrixoooviiiiiiiiiiieenne,

0x770 Wireless 802.11b Encryphoncoovuviiiiiiiiiiiiiiieeeeeiiiee
0x771 Wired Equivalent Privacyccccceeeeviiiieeiiiiieeenns
0x772 RC4 Stream Ciphercoooviiiiiiiiiieeieieee e

OX780 WEP AHACKS ... eeeeiiiiie e
0x781 Offline Brute-Force Attacks...........ccuvervieiiiiieiniee.
0x782 Keystream ReUSecceveiiiiiiiiiiiiiii
0x783 IV-Based Decryption Dictionary Tables
0x784 IP RedireChoncouvveiiiiiiiiiie e
0x785 Fluhrer, Mantin, and Shamir Attack

0x800 CONCLUSION

OX8TO RefEreNCeS....oeeeee e,
OXB20 SOUMCES ... e

INDEX

X Contents in Detail

PREFACE

The goal of this book is to share the art of hacking
with everyone. Understanding hacking techniques

is often difficult, since it requires both breadth and
depth of knowledge. Many hacking texts seem esoteric

and confusing because of just a few gaps in this prerequisite education. This
second edition of Hacking: The Art of Exploitation makes the world of hacking
more accessible by providing the complete picture—from programming to
machine code to exploitation. In addition, this edition features a bootable
LiveCD based on Ubuntu Linux that can be used in any computer with

an x86 processor, without modifying the computer’s existing OS. This CD
contains all the source code in the book and provides a development and
exploitation environment you can use to follow along with the book’s
examples and experiment along the way.

ACKNOWLEDGMENTS

I would like to thank Bill Pollock and everyone else at
No Starch Press for making this book a possibility and

allowing me to have so much creative control in the
process. Also, I would like to thank my friends Seth Benson and Aaron Adams
for proofreading and editing, Jack Matheson for helping me with assembly,
Dr. Seidel for keeping me interested in the science of computer science, my
parents for buying that first Commodore VIC-20, and the hacker community
for the innovation and creativity that produced the techniques explained in
this book.

0x100

INTRODUCTION

The idea of hacking may conjure stylized images of
electronic vandalism, espionage, dyed hair, and body
piercings. Most people associate hacking with breaking
the law and assume that everyone who engages in hack-

ing activities is a criminal. Granted, there are people out
there who use hacking techniques to break the law, but hacking isn’t really
about that. In fact, hacking is more about following the law than breaking it.
The essence of hacking is finding unintended or overlooked uses for the
laws and properties of a given situation and then applying them in new and
inventive ways to solve a problem—whatever it may be.

The following math problem illustrates the essence of hacking:

Use each of the numbers 1, 3, 4, and 6 exactly once with any
of the four basic math operations (addition, subtraction,
multiplication, and division) to total 24. Each number must be
used once and only once, and you may define the order of
operations; for example, 3 * (4 + 6) + 1 = 31 is valid, however
incorrect, since it doesn’t total 24.

The rules for this problem are well defined and simple, yet the answer
eludes many. Like the solution to this problem (shown on the last page of
this book), hacked solutions follow the rules of the system, but they use those
rules in counterintuitive ways. This gives hackers their edge, allowing them to
solve problems in ways unimaginable for those confined to conventional
thinking and methodologies.

Since the infancy of computers, hackers have been creatively solving
problems. In the late 1950s, the MIT model railroad club was given a dona-
tion of parts, mostly old telephone equipment. The club’s members used this
equipment to rig up a complex system that allowed multiple operators to con-
trol different parts of the track by dialing in to the appropriate sections. They
called this new and inventive use of telephone equipment hacking; many
people consider this group to be the original hackers. The group moved on
to programming on punch cards and ticker tape for early computers like the
IBM 704 and the TX-0. While others were content with writing programs that
just solved problems, the early hackers were obsessed with writing programs
that solved problems well. A new program that could achieve the same result
as an existing one but used fewer punch cards was considered better, even
though it did the same thing. The key difference was how the program
achieved its results—elegance.

Being able to reduce the number of punch cards needed for a program
showed an artistic mastery over the computer. A nicely crafted table can hold
a vase just as well as a milk crate can, but one sure looks a lot better than the
other. Early hackers proved that technical problems can have artistic solu-
tions, and they thereby transformed programming from a mere engineering
task into an art form.

Like many other forms of art, hacking was often misunderstood. The few
who got it formed an informal subculture that remained intensely focused
on learning and mastering their art. They believed that information should
be free and anything that stood in the way of that freedom should be circum-
vented. Such obstructions included authority figures, the bureaucracy of
college classes, and discrimination. In a sea of graduation-driven students,
this unofficial group of hackers defied conventional goals and instead pursued
knowledge itself. This drive to continually learn and explore transcended
even the conventional boundaries drawn by discrimination, evident in the
MIT model railroad club’s acceptance of 12-year-old Peter Deutsch when
he demonstrated his knowledge of the TX-0 and his desire to learn. Age,
race, gender, appearance, academic degrees, and social status were not
primary criteria for judging another’s worth—not because of a desire for
equality, but because of a desire to advance the emerging art of hacking.

The original hackers found splendor and elegance in the conventionally
dry sciences of math and electronics. They saw programming as a form of
artistic expression and the computer as an instrument of that art. Their desire
to dissect and understand wasn’t intended to demystify artistic endeavors; it
was simply a way to achieve a greater appreciation of them. These knowledge-
driven values would eventually be called the Hacker Ethic: the appreciation
of logic as an art form and the promotion of the free flow of information,
surmounting conventional boundaries and restrictions for the simple goal of

better understanding the world. This is not a new cultural trend; the
Pythagoreans in ancient Greece had a similar ethic and subculture, despite
not owning computers. They saw beauty in mathematics and discovered many
core concepts in geometry. That thirst for knowledge and its beneficial by-
products would continue on through history, from the Pythagoreans to Ada
Lovelace to Alan Turing to the hackers of the MIT model railroad club.
Modern hackers like Richard Stallman and Steve Wozniak have continued
the hacking legacy, bringing us modern operating systems, programming
languages, personal computers, and many other technologies that we use
every day.

How does one distinguish between the good hackers who bring us the
wonders of technological advancement and the evil hackers who steal our
credit card numbers? The term cracker was coined to distinguish evil hackers
from the good ones. Journalists were told that crackers were supposed to be
the bad guys, while hackers were the good guys. Hackers stayed true to the
Hacker Ethic, while crackers were only interested in breaking the law and
making a quick buck. Crackers were considered to be much less talented
than the elite hackers, as they simply made use of hacker-written tools and
scripts without understanding how they worked. Cracker was meant to be the
catch-all label for anyone doing anything unscrupulous with a computer—
pirating software, defacing websites, and worst of all, not understanding what
they were doing. But very few people use this term today.

The term’s lack of popularity might be due to its confusing etymology—
cracker originally described those who crack software copyrights and reverse
engineer copy-protection schemes. Its current unpopularity might simply
result from its two ambiguous new definitions: a group of people who engage
in illegal activity with computers or people who are relatively unskilled hackers.
Few technology journalists feel compelled to use terms that most of their
readers are unfamiliar with. In contrast, most people are aware of the mystery
and skill associated with the term hacker, so for a journalist, the decision to
use the term hacker is easy. Similarly, the term script kiddie is sometimes used
to refer to crackers, but it just doesn’t have the same zing as the shadowy
hacker. There are some who will still argue that there is a distinct line between
hackers and crackers, but I believe that anyone who has the hacker spiritis a
hacker, despite any laws he or she may break.

The current laws restricting cryptography and cryptographic research
further blur the line between hackers and crackers. In 2001, Professor Edward
Felten and his research team from Princeton University were about to publish
a paper that discussed the weaknesses of various digital watermarking schemes.
This paper responded to a challenge issued by the Secure Digital Music
Initiative (SDMI) in the SDMI Public Challenge, which encouraged the
public to attempt to break these watermarking schemes. Before Felten and
his team could publish the paper, though, they were threatened by both the
SDMI Foundation and the Recording Industry Association of America (RIAA).
The Digital Millennium Copyright Act (DCMA) of 1998 makes it illegal to
discuss or provide technology that might be used to bypass industry con-
sumer controls. This same law was used against Dmitry Sklyarov, a Russian
computer programmer and hacker. He had written software to circumvent

Introduction 3

overly simplistic encryption in Adobe software and presented his findings at a
hacker convention in the United States. The FBI swooped in and arrested
him, leading to a lengthy legal battle. Under the law, the complexity of the
industry consumer controls doesn’t matter—it would be technically illegal to
reverse engineer or even discuss Pig Latin if it were used as an industry con-
sumer control. Who are the hackers and who are the crackers now? When
laws seem to interfere with free speech, do the good guys who speak their
minds suddenly become bad? I believe that the spirit of the hacker transcends
governmental laws, as opposed to being defined by them.

The sciences of nuclear physics and biochemistry can be used to Kkill,
yet they also provide us with significant scientific advancement and modern
medicine. There’s nothing good or bad about knowledge itself; morality lies
in the application of knowledge. Even if we wanted to, we couldn’t suppress
the knowledge of how to convert matter into energy or stop the continued
technological progress of society. In the same way, the hacker spirit can
never be stopped, nor can it be easily categorized or dissected. Hackers will
constantly be pushing the limits of knowledge and acceptable behavior,
forcing us to explore further and further.

Part of this drive results in an ultimately beneficial co-evolution of
security through competition between attacking hackers and defending
hackers. Just as the speedy gazelle adapted from being chased by the cheetah,
and the cheetah became even faster from chasing the gazelle, the competi-
tion between hackers provides computer users with better and stronger
security, as well as more complex and sophisticated attack techniques. The
introduction and progression of intrusion detection systems (IDSs) is a prime
example of this co-evolutionary process. The defending hackers create IDSs
to add to their arsenal, while the attacking hackers develop IDS-evasion
techniques, which are eventually compensated for in bigger and better IDS
products. The net result of this interaction is positive, as it produces smarter
people, improved security, more stable software, inventive problem-solving
techniques, and even a new economy.

The intent of this book is to teach you about the true spirit of hacking.
We will look at various hacker techniques, from the past to the present,
dissecting them to learn how and why they work. Included with this book is
a bootable LiveCD containing all the source code used herein as well as a
preconfigured Linux environment. Exploration and innovation are critical
to the art of hacking, so this CD will let you follow along and experiment on
your own. The only requirement is an x86 processor, which is used by all
Microsoft Windows machines and the newer Macintosh computers—just
insert the CD and reboot. This alternate Linux environment will not disturb
your existing OS, so when you’re done, just reboot again and remove the CD.
This way, you will gain a hands-on understanding and appreciation for hacking
that may inspire you to improve upon existing techniques or even to invent
new ones. Hopefully, this book will stimulate the curious hacker nature in you
and prompt you to contribute to the art of hacking in some way, regardless of
which side of the fence you choose to be on.

0x200

PROGRAMMING

Hackeris a term for both those who write code and
those who exploit it. Even though these two groups of
hackers have different end goals, both groups use similar
problem-solving techniques. Since an understanding
of programming helps those who exploit, and an under-

standing of exploitation helps those who program, many
hackers do both. There are interesting hacks found in both the techniques
used to write elegant code and the techniques used to exploit programs.
Hacking is really just the act of finding a clever and counterintuitive
solution to a problem.

The hacks found in program exploits usually use the rules of the
computer to bypass security in ways never intended. Programming hacks are
similar in that they also use the rules of the computer in new and inventive
ways, but the final goal is efficiency or smaller source code, not necessarily a
security compromise. There are actually an infinite number of programs that

6

0x210

0x200

can be written to accomplish any given task, but most of these solutions are
unnecessarily large, complex, and sloppy. The few solutions that remain
are small, efficient, and neat. Programs that have these qualities are said to
have elegance, and the clever and inventive solutions that tend to lead to
this efficiency are called hacks. Hackers on both sides of programming
appreciate both the beauty of elegant code and the ingenuity of clever hacks.

In the business world, more importance is placed on churning out func-
tional code than on achieving clever hacks and elegance. Because of the
tremendous exponential growth of computational power and memory,
spending an extra five hours to create a slightly faster and more memory-
efficient piece of code just doesn’t make business sense when dealing with
modern computers that have gigahertz of processing cycles and gigabytes of
memory. While time and memory optimizations go without notice by all but
the most sophisticated of users, a new feature is marketable. When the
bottom line is money, spending time on clever hacks for optimization just
doesn’t make sense.

True appreciation of programming elegance is left for the hackers:
computer hobbyists whose end goal isn’t to make a profit but to squeeze
every possible bit of functionality out of their old Commodore 64s, exploit
writers who need to write tiny and amazing pieces of code to slip through
narrow security cracks, and anyone else who appreciates the pursuit and the
challenge of finding the best possible solution. These are the people who get
excited about programming and really appreciate the beauty of an elegant
piece of code or the ingenuity of a clever hack. Since an understanding of
programming is a prerequisite to understanding how programs can be
exploited, programming is a natural starting point.

What Is Programming?

Programming is a very natural and intuitive concept. A program is nothing
more than a series of statements written in a specific language. Programs are
everywhere, and even the technophobes of the world use programs every day.
Driving directions, cooking recipes, football plays, and DNA are all types of
programs. A typical program for driving directions might look something
like this:

Start out down Main Street headed east. Continue on Main Street until you see
a church on your right. If the street is blocked because of construction, turn
right there at 15th Street, turn left on Pine Street, and then turn right on
16th Street. Otherwise, you can just continue and make a right on 16th Street.
Continue on 16th Street, and turn left onto Destination Road. Drive straight
down Destination Road for 5 miles, and then you'll see the house on the right.
The address is 743 Destination Road.

Anyone who knows English can understand and follow these driving
directions, since they’re written in English. Granted, they’re not eloquent,
but each instruction is clear and easy to understand, at least for someone
who reads English.

0x220

But a computer doesn’t natively understand English; it only understands
machine language. To instruct a computer to do something, the instructions
must be written in its language. However, machine language is arcane and
difficult to work with—it consists of raw bits and bytes, and it differs from
architecture to architecture. To write a program in machine language for an
Intel x86 processor, you would have to figure out the value associated with
each instruction, how each instruction interacts, and myriad low-level details.
Programming like this is painstaking and cumbersome, and it is certainly not
intuitive.

What'’s needed to overcome the complication of writing machine language
is a translator. An assembler is one form of machine-language translator—it is
a program that translates assembly language into machine-readable code.
Assembly language is less cryptic than machine language, since it uses names
for the different instructions and variables, instead of just using numbers.
However, assembly language is still far from intuitive. The instruction names
are very esoteric, and the language is architecture specific. Just as machine
language for Intel x86 processors is different from machine language for
Sparc processors, x86 assembly language is different from Sparc assembly
language. Any program written using assembly language for one processor’s
architecture will not work on another processor’s architecture. If a program
is written in x86 assembly language, it must be rewritten to run on Sparc
architecture. In addition, in order to write an effective program in assembly
language, you must still know many low-level details of the processor archi-
tecture you are writing for.

These problems can be mitigated by yet another form of translator called
a compiler. A compiler converts a high-level language into machine language.
High-level languages are much more intuitive than assembly language and
can be converted into many different types of machine language for differ-
ent processor architectures. This means that if a program is written in a high-
level language, the program only needs to be written once; the same piece of
program code can be compiled into machine language for various specific
architectures. C, C++, and Fortran are all examples of high-level languages.
A program written in a high-level language is much more readable and
English-like than assembly language or machine language, but it still must
follow very strict rules about how the instructions are worded, or the com-
piler won’t be able to understand it.

Pseudo-code

Programmers have yet another form of programming language called
pseudo-code. Pseudo-code is simply English arranged with a general structure
similar to a high-level language. It isn’t understood by compilers, assemblers,
or any computers, but it is a useful way for a programmer to arrange instruc-
tions. Pseudo-code isn’t well defined; in fact, most people write pseudo-code
slightly differently. It’s sort of the nebulous missing link between English and
high-level programming languages like C. Pseudo-code makes for an excel-
lent introduction to common universal programming concepts.

Programming 7

8

0x230

0x200

Control Structures

Without control structures, a program would just be a series of instructions
executed in sequential order. This is fine for very simple programs, but most
programs, like the driving directions example, aren’t that simple. The driv-
ing directions included statements like, Continue on Main Street until you see a
church on your right and If the street is blocked because of construction. . . . These
statements are known as control structures, and they change the flow of the
program’s execution from a simple sequential order to a more complex and
more useful flow.

0x231 If-Then-Else

In the case of our driving directions, Main Street could be under construction.
If it is, a special set of instructions needs to address that situation. Otherwise,
the original set of instructions should be followed. These types of special cases
can be accounted for in a program with one of the most natural control
structures: the ifthen-else structure. In general, it looks something like this:

If (condition) then
{

Set of instructions to execute if the condition is met;

}
Else

{
Set of instruction to execute if the condition is not met;

}

For this book, a C-like pseudo-code will be used, so every instruction will
end with a semicolon, and the sets of instructions will be grouped with curly
braces and indentation. The if-then-else pseudo-code structure of the pre-
ceding driving directions might look something like this:

Drive down Main Street;

If (street is blocked)

{
Turn right on 15th Street;
Turn left on Pine Street;
Turn right on 16th Street;

}
Else

{
Turn right on 16th Street;
}

Each instruction is on its own line, and the various sets of conditional
instructions are grouped between curly braces and indented for readability.
In C and many other programming languages, the then keyword is implied and
therefore left out, so it has also been omitted in the preceding pseudo-code.

Of course, other languages require the then keyword in their syntax—
BASIC, Fortran, and even Pascal, for example. These types of syntactical
differences in programming languages are only skin deep; the underlying
structure is still the same. Once a programmer understands the concepts
these languages are trying to convey, learning the various syntactical vari-
ations is fairly trivial. Since C will be used in the later sections, the pseudo-
code used in this book will follow a C-like syntax, but remember that
pseudo-code can take on many forms.

Another common rule of C-like syntax is when a set of instructions
bounded by curly braces consists of just one instruction, the curly braces are
optional. For the sake of readability, it’s still a good idea to indent these
instructions, but it’s not syntactically necessary. The driving directions from
before can be rewritten following this rule to produce an equivalent piece of
pseudo-code:

Drive down Main Street;
If (street is blocked)
{
Turn right on 15th Street;
Turn left on Pine Street;
Turn right on 16th Street;
}
Else
Turn right on 16th Street;

This rule about sets of instructions holds true for all of the control
structures mentioned in this book, and the rule itself can be described in
pseudo-code.

If (there is only one instruction in a set of instructions)

The use of curly braces to group the instructions is optional;
Else
{

The use of curly braces is necessary;

Since there must be a logical way to group these instructions;

}

Even the description of a syntax itself can be thought of as a simple
program. There are variations of if-then-else, such as select/case statements,
but the logic is still basically the same: If this happens do these things, otherwise
do these other things (which could consist of even more if-then statements).

0x232 While/Until Loops

Another elementary programming concept is the while control structure,
which is a type of loop. A programmer will often want to execute a set of
instructions more than once. A program can accomplish this task through
looping, but it requires a set of conditions that tells it when to stop looping,

Programming 9

10

0x200

lest it continue into infinity. A while loop says to execute the following set of
instructions in a loop while a condition is true. A simple program for a hungry
mouse could look something like this:

While (you are hungry