
K A R L B U N Y A N

B U I L D A N
H T M L 5 G A M E

B U I L D A N
H T M L 5 G A M E

A D E V E L O P E R ’ S G U I D E

W I T H C S S A N D J A V A S C R I P T

SHELVE IN: COM
PUTERS/

W
EB PROGRAM

M
ING

$29.95 ($34.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

L E V E L U P !
T I M E T O

L E V E L U P !
T I M E T O

“ I L I E F LAT .”

Th is book uses a durab le b ind ing that won’t snap shut.

If you already have even basic familiarity with HTML,
CSS, and JavaScript, you’re ready to learn how to
build a browser-based game. In Build an HTML5
Game, you’ll use your skills to create a truly cross-

desktop and mobile browsers.
platform bubble-shooter game — playable in both

• Send sprites zooming around the screen with
JavaScript animations

• Make things explode with a jQuery plug-in

• Use hitboxes and geometry to detect collisions

As you follow along with this in-depth, hands-on
tutorial, you’ll learn how to:

• Implement game logic to display levels and
respond to player input

• Convey changes in game state with animation
and sound

• Add flair to a game interface with CSS transitions
and transformations

• Gain pixel-level control over your game display with
the HTML canvas

The programming starts right away in Chapter 1—no
hemming and hawing, history, or throat clearing. Exer-
cises at the end of each chapter challenge you to dig

games ever since. Bunyan created HTML5 prototypes

A B O U T T H E A U T H O R

Karl Bunyan’s first adventure game was published in
1990 on the ZX Spectrum, and he’s been developing

for the Game Show Network’s Facebook gaming plat-

independent firm that builds web and mobile games.
form, and he is currently the owner of Wedu Games, an

in to the bubble shooter’s code and modify the game.

Go ahead. Take the plunge. Learn to create a complete
HTML5 game right now and then use your newfound
skills to build your own mega-popular, addictive game.

B
U

IL
D

 A
N

 H
T

M
L

5
 G

A
M

E
B

U
IL

D
 A

N
 H

T
M

L
5

 G
A

M
E

B
U

N
Y

A
N

Build an HTML5 Game

B u i l d A n
H T M L 5 G A m e

A D e v e l o p e r ’ s G u i d e
w i t h C S S a n d J a v a S c r i p t

by Karl Bunyan

San Francisco

Build An HTML5 Game. Copyright © 2015 by Karl Bunyan.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

First printing

19 18 17 16 15   1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-575-7
ISBN-13: 978-1-59327-575-4

Publisher: William Pollock
Production Editor: Alison Law
Cover Illustration: Garry Booth
Interior Design: Octopod Studios
Developmental Editor: Jennifer Griffith-Delgado
Technical Reviewer: Patrick H. Lauke
Copyeditor: Anne Marie Walker
Compositor: Susan Glinert Stevens
Proofreader: James Fraleigh

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data:

Bunyan, Karl.
 Build an HTML5 game : a developer's guide with CSS and JavaScript / by Karl Bunyan.
 pages cm
 Includes index.
 Summary: "A hands-on guide to web game development for programmers interested in building games
for web and mobile using HTML5, CSS, and JavaScript"-- Provided by publisher.
 ISBN 978-1-59327-575-4 -- ISBN 1-59327-575-7
 1. Computer games--Programming. 2. Web applications. 3. HTML (Document markup language) 4.
JavaScript (Computer program language) 5. Cascading style sheets. I. Title.
 QA76.76.C672B856 2015
 794.8'1526--dc23
 2014040059

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

About the Author
Karl Bunyan began his programming
career in the early 1980s, writing adven-
ture games on the Sinclair ZX Spectrum.
His first game was published in 1990,
and he took his first steps in Internet
development in 1998. After three years
of developing websites, touchscreen dis-
plays, interactive television applications,
and CD-ROM projects for web agen-
cies, Karl started his own consultancy
business.

Since 2008, Karl has developed a number of games for the Facebook
platform, ranging from traditional turn-based puzzlers to complex resource-
management games, including HTML5 prototypes for the Game Show
Network. He has spoken at events such as the Facebook Developer Garage
in London and the HTML5 Developer’s Conference, and he is the owner
of Wedu Games, an independent firm that builds web and mobile games.

About the Technical Reviewer
Patrick H. Lauke works as an accessibility consultant for The Paciello
Group. In a previous life he was a web evangelist in the developer
relations team at Opera Software ASA, and before that he worked as
a web editor for a large UK university for nearly 10 years. He’s been
involved in the discourse around web standards and accessibility since
2001, speaking at conferences and actively participating in initiatives
such as the Web Standards Project (WaSP). An outspoken accessibility
and standards advocate, Patrick favors a pragmatic hands-on approach
over purely theoretical, high-level discussions. His personal corner of the
Web can be found at http://www.splintered.co.uk/.

B r i e f C o n t e n ts

Preface . xiii

Introduction . xv

Part 1: Building a Game with HTML, CSS, and JavaScript

Chapter 1: Preparation and Setup . 3

Chapter 2: Sprite Animation Using jQuery and CSS . 29

Chapter 3: Game Logic . 43

Chapter 4: Translating Game State Changes to the Display . 69

Part 2: Enhancements with HTML5 and the Canvas

Chapter 5: CSS Transitions and Transformations . . 93

Chapter 6: Rendering Canvas Sprites . 105

Chapter 7: Levels, Sound, and More . 137

Chapter 8: Next Steps in HTML5 . 165

Afterword . . 185

Index . . 189

C o n t e n ts i n D e ta i l

Preface	 xiii
Acknowledgments . xiv

Introduction	 xv
Why Build HTML5 Games? . xvi

Using Skills You Already Have . . xvi
Multi-environment Development . xvii
A Rapidly Improving Platform . xvii

About This Book . xvii
Who This Book Is For . xviii
Overview . xviii
Depth of Coverage . . xix
How to Use This Book . . xx

Part 1
Building a Game with HTML, CSS, and JavaScript

1
Preparation and Setup 	 3
How the Game Is Played . 4
Building the Game . 7
Development and Testing Environment . 7

Web Browser Testing . 8
Debugging in the Web Browser . . 9

Laying Out the Game Screen . 10
Creating Panels with HTML and CSS . 11
Code Structure . . 13

Adding the First Scripts . 14
The Modernizr and jQuery Libraries . 15
Adding the Modernizr Library . 17
Loading Scripts with Modernizr . 18
Modular JavaScript . 20
User Interface and Display Scripts . 25

Summary . 27
Further Practice . 28

2
Sprite Animation Using jQuery and CSS	 29
Principles of CSS Sprites . 31

Creating the Game Board . 31
Adding Sprites . . 33

x Contents in Detail

Animation and the Bubble Class . 35
Calculating Angle and Direction . 36
Firing and Animating Bubbles . 38

Summary . 41
Further Practice . 42

3
Game Logic	 43
Drawing the Game Board . 45

Rendering the Level . 49
The Bubble Queue . 50

Detecting Collisions . 53
Collision Geometry . . 54
Collision Detection Logic . 58

Reacting to Collisions . 63
Adding the bubble Object to the Board . 64
Locking the bubble Object into the Grid . 66

Summary . 67
Further Practice . 67

4
Translating Game State Changes to the Display	 69
Calculating Groups . 70

Fetching Bubbles . 70
Creating Matching Color Groups . . 71

Popping Bubbles . 74
Removing Bubble Groups with JavaScript . 74
Popping Animations with CSS . 76

Orphaned Groups . 78
Identifying Orphaned Bubbles . 78
Dropping Orphaned Bubbles . . 83

Exploding Bubbles with a jQuery Plug-in . 84
Summary . 89
Further Practice . 90

Part 2
Enhancements with HTML5 and the Canvas

5
CSS Transitions and Transformations	 93
Benefits of CSS . 93
Basic CSS Transitions . 94

How to Write a Transition . 94
Color-Changing Buttons . 96

Basic CSS Transformations . 98
How to Write a Transformation . 98
Scaling a Button . . 99

Contents in Detail xi

CSS Transitions in Place of jQuery animate . 100
Disadvantages of CSS Transitions . 102
Summary . 103
Further Practice . 103

6
Rendering Canvas Sprites	 105
Detecting Canvas Support . 106
Drawing to the Canvas . 106
Image Rendering . . 108

canvas Elements . . 108
Rotating the Canvas . 110

Sprite Rendering . 113
Defining and Maintaining States . 114

Preparing the State Machine . 114
Implementing States . 116

Sprite Sheets and the Canvas . 120
The Canvas Renderer . 126
Moving Sprites on the Canvas . 129
Animating Canvas Sprite Frames . 132
Summary . 134
Further Practice . 135

7
Levels, Sound, and More	 137
Multiple Levels and High Scores . 138

New Game State Variables . . 138
Display Level and Score . 139

Ending Levels Efficiently . 149
High Score Persistence with Web Storage . 151

Web Storage vs. Cookies . 151
Adding Data to Web Storage . 152

Smoothing Animations with requestAnimationFrame . 155
A New Perspective on Frame Updates . 155
Code Compatibility with Polyfills . 156

Adding Sound with HTML5 . 159
The HTML5 Audio API . 160
Popping Bubbles: Complete with Sound . 161

Summary . 163
Further Practice . 163

8
Next Steps in HTML5	 165
Saving and Retrieving Data . 165

AJAX . 166
WebSockets . 167
Web Workers . 168

WebGL  . 169

xii Contents in Detail

Deploying HTML5 Games . 171
Running Fullscreen in a Desktop Browser . . 171
Running in a Mobile Browser . . 172
Deploying as a Native Application . 175

Optimization . 176
Memory Management . 176
Optimizing for Speed . 178

Security . 180
Trust No One . 180
Obfuscation . 180
Using Private Variables . 182
Validating with Checksums . 182

Summary . 183
Further Practice . 184

Afterword	 185
Improving Bubble Shooter . 186
Creating a Whole New Game . 186

Match-3 . 186
Solitaire . 186
A Platform Game . 187
A Simple Physics Game . 187

Joining a Game Development Team . 187

Index	 189

P r e f ac e

Even among experienced web developers, I often hear
the question, “What exactly is HTML5?” The answer
is difficult, in part because the rate of technological
advances means the answer may change from one
week to the next. The term HTML5 also tends to be
used to bundle a collection of techniques, and those
techniques are often judged by their end effect rather
than the technology that created them.

Because of the uncertainty surrounding the term HTML5, the label
of HTML5 game programmer has acquired a mystique, as if moving from
web developer to game programmer requires superpowers. Thus the rea-
son for this book: to demystify the transition from building web pages to
building web games.

The challenge of writing a book on web technology is that the digital
world moves so much faster than the physical one. Fashions and practices
change while a book moves from first draft to publication, and technolo-
gies advance at such a pace that a book risks being obsolete from the day

xiv Preface

it’s published. Thankfully, the path for HTML5 has been laid down by the
World Wide Web Consortium (W3C) with the support of the major browser
vendors, so my challenge was less about guessing which HTML5 features to
include and more about considering when these features might be readily
available for mainstream use. I was keen to write a practical how-to guide
in the form of a tutorial, with techniques that could be used in the wild
from day one, and I’m glad that features that were cutting edge when I
wrote the initial draft are now supported by most web browsers.

Acknowledgments
Along the way, the input from the No Starch Press team has been invalu-
able in shaping the contents of this book. Thanks go to Keith Fancher, who
initially made contact and suggested I start writing in the first place; Tyler
Ortman, who set me on the right path after a very unstructured first draft;
Alison Law, who kept the whole process moving along; and especially my
editor, Jennifer Griffith-Delgado, without whom this book would have been
twice as long and made half as much sense. I’d also like to thank my techni-
cal reviewer, Patrick Lauke, who was particularly invaluable in identifying
areas where technology changed during the time between initial draft and
final version.

I’m also grateful to a host of former co-workers and bosses who put
up with—and often even encouraged—my playing with fun effects when I
should have been working on paid projects. And finally, I’d like to thank my
partner, Ann, whose goading about how long it was taking me to finish the
book ensured that I didn’t give up entirely.

I n t r o d u ct i o n

Games are everywhere, and they’re
increasingly played on connected web

devices and within desktop and mobile
browser environments. As browser-based

games become more popular, players are turning to
sites like Facebook to discover simple, casual games
that don’t require a disc or much up-front setup to
play. A game is just another link to click through.

During the past decade, improvements to Adobe’s Flash plug-in contrib-
uted to the growth of the web browser as a gaming platform. Most browsers
supported Flash, giving game developers access to a powerful platform that
approached the dream of write once, run anywhere. HTML-based games have
been around about as long, and you may even have played some (possibly
without noticing). However, until recently, the use of HTML and JavaScript
as a gaming platform played second fiddle to Flash due to graphics, sound,
and speed limitations. But browsers and mobile gaming platforms have

xvi Introduction

vastly improved, and the status quo is changing. Mobile operating systems
have steered away from Flash as a supported plug-in, and as a result, game
developers need tools that provide similar performance and flexibility
while retaining the ubiquity that Flash had.

Browsers have also seen a rapid improvement in graphical and sound
capabilities over the past few years. The rise in power of HTML mirrors
increasing demand for a platform that delivers rich gaming experiences
and has the backing of multiple platform providers. A well-supported, open
platform is considered less likely to fall foul of commercial controls and a
walled-garden mentality, and HTML5 is such a platform.

However, in my experience, many game developers come to HTML5 look-
ing to build the same type of games they would have built in Flash. HTML5
is certainly one of the best options: it has a huge user base (anyone with a
modern web browser), and HTML5 and Flash have many similar capabili-
ties and constraints. Despite this similarity, thinking of HTML5 as a Flash
replacement is likely to lead to disappointing product launches and missed
opportunities. This is because the strengths of one do not directly map to the
strengths of the other. Also, HTML5 is still in a relatively early stage of devel-
opment. The platform is advancing rapidly, and it can be difficult to keep up
with which new features are supported from month to month.

Much as with building a good web application, the key to making a suc-
cessful game is to understand your platform’s capabilities and restrictions.
You have to design and build games that maximize the platform’s potential
while avoiding or minimizing its limitations. This book is intended as a first
step in understanding what you can achieve with JavaScript, HTML, and
CSS and introducing the methods by which you can do so.

Why Build HTML5 Games?
Before I dive into specifics about this book, let’s step back and consider why
you might want to create a game on the HTML5 platform in the first place.

Using Skills You Already Have
Web developers who are skilled with JavaScript and CSS will feel more con-
fident about stepping into HTML5 game development. Deploying HTML
and JavaScript files is also a familiar process, and you can build online com-
ponents using server-side languages that overlap with web development.

But if you throw yourself into writing C++ or Objective-C, the combina-
tion of a new language, a new development environment, and new thought
processes required for game development can be a steep learning curve.
In short, the conceptual leap needed to move from web development to
HTML5 game development is relatively minor compared to that needed
for other game technologies.

Introduction xvii

Multi-environment Development
Many platforms have promised the ability to write once and run anywhere,
and in my opinion, HTML5 is the closest that any technology has come
to delivering. Whether you develop for a desktop browser or a packaged
mobile application, your coding styles won’t vary much, nor will the basic
technology of representing objects on the screen and having a user interact
with them. Of course, there will always be some environment-specific dif-
ferences, especially if code is to take advantage of the features and benefits
that one environment may have to offer over another.

Still, games written in HTML5 and JavaScript have a very good chance
of working with minimal changes across multiple operating systems. This
allows for simultaneous releases and single development teams rather than
a team per system. You can also code and test in a desktop browser, even if
the final environment will be different.

A Rapidly Improving Platform
HTML5 is constantly and rapidly improving. JavaScript’s processing speed
is also increasing, and sophisticated interpreters are approaching native
speeds for some operations. Given the increases in CPU speed in the past
10 years, games written in JavaScript can perform better than many of those
written in native code just a few years ago.

With the efforts of browser vendors and hardware manufacturers,
this improvement trajectory will only continue, and there’s no doubt that
HTML5 is growing as a viable gaming platform. Whether HTML5 game
development will grow as a fast development environment for immersive 3D
games on mobile or desktop browsers or as a rapid prototyping environment
for casual game developers, or even migrate into the console environment
through Android or other devices, it’s an exciting time to be a JavaScript
programmer. Now is the time to build on the knowledge you will gain in
this book and experiment with the capabilities of HTML5 and JavaScript
as an open game development platform.

About This Book
This book cannot demonstrate the full range of possible HTML5 games
and therefore does not explore the capabilities of HTML5 and JavaScript
to the fullest. Instead, I concentrate on creating a single casual game, like
those many developers have produced for years with Adobe Flash. These
games are generally two-dimensional and single player with relatively short
game loops. Advances in 3D capabilities, such as WebGL, mean that large,
complex, immersive multiplayer games are either possible now or just
around the corner, but a casual game project is a more natural place for
a game developer to start. Simple projects also make it easier to illustrate
the fundamental principles involved in building a game.

xviii Introduction

Who This Book Is For
This book is intended for web developers familiar with HTML, CSS, and
JavaScript who want to translate their existing skills to game development.
At the bare minimum, you should know how to program, and ideally, you
should know the basics of JavaScript. You should also have access to a web
server and development environment of your own or be able to set those up
for yourself.

If you have some background knowledge in either web or gaming tech-
nologies, want to know what you could achieve with HTML5, and have the
enthusiasm to learn and experiment, you should be able to work through this
book. By the end, you’ll have a clear idea of how to approach HTML5 game
development projects and a good overview of the core processes involved in
making games in general.

Overview
Throughout the book, you will develop a simple bubble-popping game
meant to be played in a browser. With each chapter, I’ll introduce new con-
cepts by putting them into practice.

In Part 1: Building a Game with HTML, CSS, and JavaScript, which
includes the first four chapters of the book, you’ll build a complete game
using HTML, CSS, and JavaScript.

•	 Chapter 1: Preparation and Setup looks at the tools we’ll need, includ-
ing the jQuery and Modernizr script libraries, how to debug, and how
to put the game’s file structure in place.

•	 Chapter 2: Sprite Animation Using jQuery and CSS describes how to
move HTML elements around the screen in response to mouse clicks.
In the context of the game, this means shooting an image from a start-
ing position to the coordinates that the player clicks.

•	 Chapter 3: Game Logic has you draw the game board and set up much
of the game logic, including firing a bubble and collision detection.

•	 Chapter 4: Translating Game State Changes to the Display teaches you
to make the game respond to the collisions that we detected in Chapter 3
and add more game logic to pop groups of bubbles. This introduces
some basic animation within an object by way of a popping effect.

In Part 2: Enhancements with HTML5 and the Canvas, you’ll improve
the game you created in Part 1 with features from HTML5 and the canvas.

•	 Chapter 5: CSS Transitions and Transformations shows you how to use
CSS3 to achieve some of the results that you used jQuery for in previ-
ous chapters.

•	 Chapter 6: Rendering Canvas Sprites shows you how to render the
game entirely within the HTML5 canvas, including moving objects
across the screen and animation effects.

Introduction xix

•	 Chapter 7: Levels, Sound, and More tidies up some loose ends in the
game logic, introduces smoother animation techniques, and shows you
how to implement sound effects and save the player’s score.

•	 Chapter 8: Next Steps in HTML5 discusses some useful technologies
that you didn’t need to use in the casual game you developed. It sug-
gests areas for future reading, such as Web Workers and WebGL for 3D
games, and discusses important issues, such as memory management
and optimizing for speed.

•	 Finally, the Afterword provides some ideas to improve your HTML5
game-programming skills. For example, you could continue to improve
on the game you built in this book, or you could start developing game
ideas of your own.

All the code created in this book is available to download from http://
buildanhtml5game.com/, where you can also see a version of the game you’ll
be building in action. And at the end of each chapter, I include exercises to
test your skills and spark ideas for improving the Bubble Shooter game.

Depth of Coverage
Because this book focuses on casual game development, I won’t go into
detail about WebGL, three-dimensional modeling, shaders, textures,
lighting, and other techniques associated with more complex games like
first-person action shooters or massively multiplayer online role-playing
games (MMORPGs). These subjects fill books all on their own. However,
you’ll find most principles of building casual games useful in more tech-
nically demanding situations. I recommend keeping your initial projects
achievable and working toward something more complex after you have a
few releases under your belt. Once you’ve completed a couple of projects
using HTML, CSS, and the canvas, you’ll be equipped to learn more about
WebGL if that’s a direction you want to pursue; however, you may find that
you have more than enough development opportunities in the casual game
space.

This book introduces you to game development techniques, but it is not
an exhaustive reference for the Application Programming Interfaces (APIs)
you’ll use. Neither is it a complete guide to HTML5: only the features that
are most relevant to game development are covered. The Internet is full of
material that not only provides more detail but is also updated to reflect
the ever-changing browser environment. I’ll highlight useful resources and
documentation as appropriate.

Likewise, this is not a book about game design. I’ll teach you how to
build, but not what to build. The skills you learn should give you a starting
point from which you can bring your own ideas to life or start to work on
projects designed by others.

xx Introduction

How to Use This Book
Throughout the book, I’ll help you create the HTML, CSS, and JavaScript
files that form the Bubble Shooter game. You should keep the file index.html
(created in Chapter 1) open in at least one browser at all times as you work
through the tutorial. That way, you can refresh the page to see how your
changes to the code have altered the game.

I encourage you to run the Bubble Shooter on a local development web
server rather than viewing it from the filesystem so you can access it as a
real user would and see how it looks on mobile devices.

N o t e 	 If you don’t want to type the example code, just download the source code (from
http://buildanhtml5game.com/) and work from the game files for the chapter
you’re reading.

Once you’ve decided how you want to load the Bubble Shooter files for
testing, jump into Chapter 1 to start making your first game!

Part 1
B u i l d i n g a G am e w i th

H T M L , C S S , a n d J a v a S c r i pt

1
P r e pa r at i o n a n d S e t u p

In this chapter, we’ll begin to develop
a full game using HTML, CSS, and

JavaScript. Our simple bubble shooter
game will demonstrate a range of develop-

ment techniques, but it won’t need extensive logic
to control the mechanics. Game logic includes systems
for interaction between in-game elements, events that result from the
player’s actions, simulation of artificial intelligence in characters, and so
on. Developing intricate game logic can be time-consuming, so for learn-
ing purposes, we’ll stick with basic principles, such as how to render graph-
ics and animation, respond to user input, and play sounds.

We’ll start with the user interface and page layout, then load scripts,
and finally add some basic interaction. During development, we’ll also
explore some browser tools that will prove helpful (especially when debug-
ging), as well as Modernizr and jQuery—two main libraries that will speed
up development. We’ll use Modernizr to load scripts and detect whether a
user’s browser supports a given feature, and we’ll use jQuery when working
with HTML and JavaScript together.

4 Chapter 1

If you’re experienced in web application development using HTML, CSS,
JavaScript, and jQuery, much of the code in this chapter will be familiar to
you. My aim is to demonstrate what you can achieve with relatively little code
and how easy it is to create basic interactive elements.

How the Game Is Played
If you’ve ever played Puzzle Bobble, Bust-a-Move, Snood, or any of the many
mobile bubble-shooting games, you already know the basic mechanics of a
bubble shooter. Figure 1-1 shows a screenshot of the finished game.

Figure 1-1: A screenshot of the finished Bubble Shooter game

The goal of the game is to clear all of the bubbles hanging from the top
of the screen. The player aims with the mouse and clicks to fire a bubble
from the bottom of the screen into the bubbles at the top, in hopes of form-
ing groups of three or more bubbles of the same color. Once a matching
color group of at least three bubbles is formed, all of the bubbles in the
group burst, as shown in Figure 1-2.

If a bubble is fired and doesn’t form a group that matches by color, it is
added to the display, as shown in Figure 1-3.

Preparation and Setup 5

Figure 1-2: The blue bubble is fired at the group, creating a match, and all of the
highlighted bubbles will pop.

Figure 1-3: The blue bubble fired here won’t cause the green group above it to pop.
Instead, it will be added to the board.

6 Chapter 1

Fired bubbles that don’t form a matching group of three or more stick
in the bubble grid. Because bubbles behave as if they’re all hanging from
the top row, if a set of bubbles can’t trace a connection back to the top after
a matching color group is created and removed, we need to remove those
“orphaned” bubbles from the screen. An example of an orphaned bubble is
shown Figure 1-4.

Figure 1-4: The red bubble is orphaned. We don't want to leave orphaned bubbles
hanging, so we’ll need some logic to detect them and an animation to remove them
from the screen.

Players can fire only a limited number of bubbles (Figure 1-1 shows 70),
and they must clear the board before they run out of bubbles to shoot. At
the end of each level, the player scores points for popping bubbles and pro-
gresses to the next level. The game ends when the player fails to clear a level.

Short of a couple of enhancements that we’ll add later, that’s the main
flow of the game.

We’ll build the game mechanics using HTML, CSS, and JavaScript—
core tools that are well suited to creating many simple games, especially
two-dimensional games that don’t require detailed pixel manipulation. In
Bubble Shooter, we’re essentially firing a circle (the bubble) into a grid of
other circles (bubbles) and then either popping a group, as in Figure 1-2,
or adding the bubble to the board, as in Figure 1-3. The demands of the
game’s layout are fairly simple, and we can use CSS and JavaScript to per-
form all of the animation we’ll need.

We’ll build the user interface in HTML and CSS because like most
HTML games, Bubble Shooter will take advantage of the tasks the browser
can do well, such as laying out text and rendering simple graphics. In later

Preparation and Setup 7

chapters, we’ll explore using the canvas element to display the game area,
but I’ll first demonstrate what you can achieve with regular Document
Object Model (DOM)–based development.

Building the Game
Now that we have an idea of the game we want to create, let’s break it down
into manageable tasks. We’ll need to solve a number of high-level challenges
to create Bubble Shooter. Specifically, we need to do the following:

Randomize and render the game board
The bubble grid must be randomly generated and drawn onscreen for
each new level.

Calculate the firing angle and stopping point for a bubble
The player will fire bubbles by clicking on the screen. We’ll calculate
the angle at which to fire the bubble, move it along that path, and
either stop it when it hits something or let it continue.

Resolve collisions
When the fired bubble hits another bubble and does not form a match-
ing group of three or more, it will add itself to the board. Otherwise,
when it does form a group of at least three bubbles of the same color,
it will pop all bubbles of that color contiguous with the one it strikes.
If the fired bubble does pop bubbles, we’ll check to see if we’ve created
any orphaned bubbles, such as those shown in Figure 1-4.

Keep track of score and levels
The game ends when all the bubbles are cleared. Because the player
has only a limited number of bubbles to fire, we’ll track the number of
bubbles fired. We’ll also add a scoring system to give the player a reason
to play again (to beat a high score, for example).

Handle the game’s end and new levels
If a player completes a level, we’ll indicate that (using certain interface
elements) and give the player an option to progress to the next level.
Changing levels clears the board and tidies up the internal game state,
and then the game starts again.

Development and Testing Environment
Let’s set up our development environment and make sure we have the right
tools to complete the game. To start developing games for the Web, you’ll
need access to a range of browsers to test in and software that allows you
to edit code. You’ll also need to set up a web server to view the game in

8 Chapter 1

development. Although you can run Bubble Shooter locally (simply by open-
ing its index.html file), you should regularly test your games in situations that
match those of your end users as closely as possible.

N o t e 	 The process of setting up a server varies by operating system. The Apache web server
(available at http://httpd.apache.org/) has good installation packages and
instructions for setting up on most system configurations.

Web Browser Testing
One rule of web development is to test on all browsers that you expect
your target audience to use. Although this is essential for released software,
while developing you can usually use a slightly smaller subset of browsers to
identify most potential problems. The list of browsers you need to test on
changes constantly, but when you release a game onto the Web, those dis-
cussed next are essential.

Desktop Browsers

Users of a desktop PC or laptop could end up playing your game in various
browsers on any operating system, so be sure to test at least the latest ver-
sions of Internet Explorer (IE), Firefox, Chrome, and Safari for Windows
and OS X. Depending on your target audience, you may need to test earlier
browser versions as well.

Not everyone updates their web browsers, so when coding for a mass
web audience, be sure not to ignore users who might be using earlier ver-
sions. Some versions of IE do not play well together on the same operating
system (due to IE’s tight integration with Windows), so when testing, you’ll
need multiple Windows installations available, either on different PCs or
on virtual machines. I strongly suggest you install and use virtual machine
software, such as VMWare (http://www.vmware.com/), VirtualBox (http://
www.virtualbox.org/), or Virtual PC (http://www.microsoft.com/download/ ;
search in the Download Center). Virtual machines allow you to run operat-
ing systems within your regular operating system, essentially simulating an
entire system from your desktop. Virtual machines preinstalled with dif-
ferent versions of IE can be downloaded from http://www.modern.ie/en-us/
virtualization-tools/.

Because Firefox now updates regularly, you should be able to safely
test your games on the latest release. Earlier versions have patchy HTML5
support, but later versions rarely have major changes from one release to
the next. Chrome updates automatically and regularly as well, so you don’t
need to worry about versions; just make sure you’re running the latest one.

And, of course, you should also test your game on a Mac in at least
one version of Safari. It’s also possible to run an OS X virtual machine
within Windows, although the setup is slightly more complex than running
Windows within Windows or Windows within OS X. Tutorials are available
online for achieving this setup within the virtual machine applications
listed earlier.

Preparation and Setup 9

Mobile Browsers

If you’re deploying on mobile devices or tablets, testing on a wide range
of devices (iOS, Android, and Windows mobile) and multiple browsers is
more important than ever. For basic mobile development, access to one
iOS device and one Android device may be sufficient for testing, but when
you’re considering wider distribution, the plot thickens. Apple’s iOS ver-
sions vary in their behavior, and Android comes in so many flavors on so
many devices with differing screen resolutions and hardware configurations
that you should have access to multiple devices (perhaps through a limited
beta testing group) for testing. We won’t be packaging Bubble Shooter for
release in the Apple App Store or Google Play Store, but by virtue of writing
the game using HTML5 and JavaScript, we’ll produce an app that’s play-
able on mobile devices without extra coding.

Ultimately, due to the fragmentation of the Android platform, it’s
impossible for a single developer to test on every device; therefore, you
may find it more viable to use a third-party testing service. Testing on iOS
devices is slightly simpler because Apple controls its operating system and
device specifications, but iPhones and iPads can be costly. When you add
Windows tablets into the mix and consider the growing range of tablets and
other portable devices that can run a web browser, you’ll realize that the
mobile testing battle is difficult to win.

Debugging in the Web Browser
With your test browsers set up, you can then use several developer tools to
make debugging easy. Each browser has its own development tool set, but for-
tunately, they all operate along similar lines, provide ways to inspect HTML
elements on the page, and add breakpoints and logging to JavaScript. Learn
how to access your browser’s developer tools and experiment with them to
become familiar with their capabilities.

All browser debugging tools are useful, but you’ll likely use the JavaScript
console the most during development. You’ll interact with your code through
the console in two main ways:

Logging to the console with the console.log command
Call the console.log function, and the console should display the contents
of whatever you pass into the function. For example, console.log("Hello")
should display the string Hello. Even better, call console.log with a Java
Script object or array, and you’ll get a limited listing of the object’s con-
tents that you can use to explore entire object trees.

Running ad hoc code to interrogate variable states
You can enter JavaScript code into the console to evaluate it immedi-
ately. Enter alert(1) into the console to see how it works. If your game
code exposes object properties publicly, you can use this feature to exam-
ine properties or trigger methods. You can even paste in multiple lines of
code to create and run entire functions in the context of the page.

10 Chapter 1

Now that we have some of the tools we need, let’s start building the
game. We’ll begin by setting up the basic code and implementing the start
screen user interface.

Laying Out the Game Screen
Before we can program the fun parts of animation and gameplay, we need
to lay out the user interface. We’ll use HTML and CSS to place the main
interface elements; the game screen will consist of three major areas, shown
in Figure 1-5.

Figure 1-5: Sections of the game screen

At the top of the game screen, you can see the status bar u, which will
show score and level information. The next (and largest) section contains
the game area v, which will contain all the bubbles. The game area is also
where the actual gameplay will happen. The footer w at the bottom of the
game screen frames the game area.

Now, let’s lay out these three Bubble Shooter components.

v

u

w

Preparation and Setup 11

Creating Panels with HTML and CSS
Using straightforward HTML and CSS to lay out the game screen is the
easiest way to create the three panels and define where the action happens.
The approach and techniques used here are identical to those used in
building a regular website or web application.

We’ll start by creating a wrapper div for the entire page. Because the
div tag has no semantic meaning, we’ll use it to denote a division on the
page. Make a new folder in your web server’s root directory to build the
game in and call it bubbleshoot. Every file needed to run the game will be
stored in this folder or within a subdirectory of it. Next, create a new file
called index.html and add the following code:

<!DOCTYPE HTML>
<html lang="en-US">
 <head>
 <meta charset="utf8">
 <title>Bubble Shooter</title>
 </head>
 <body>

u <div id="page">
 </div>
 </body>
</html>

The entire game will run within this single HTML page, and the
"page" div u will constrain the area in which the game happens. If we ever
need to center the game or move it to fit into unusual screen aspect ratios,
we need only change the position of the wrapper element.

N o t e 	 Many HTML tags have been simplified in version 5, in contrast to the relative strict-
ness in versions 3 to 4 and XHTML. For example, the doctype declaration is now
vastly simplified because many tags are assigned a default type. The <script> tag
actually defaults to JavaScript in HTML5, which is why we don’t need to specify
type="text/javascript" or language="javascript" in our page.

Next, we’ll create three new div elements, one for each of the three
page sections, and place them inside our page div:

<div id="page">
 <div id="top_bar"></div>
 <div id="game"></div>
 <div id="footer_bar"></div>
</div>

Now, we need to assign some CSS to our page and the three sections we
just added.

index.html

12 Chapter 1

Create a folder called _css in the game folder to contain all the style
sheets we’ll use for the game. In the _css folder, make a new file called
main.css that contains the following code:

body
{
 margin: 0;
}
#page
{
 position: absolute;
 left: 0;
 top: 0;
 width: 1000px;

u height: 738px;
}
#top_bar
{
 position: absolute;
 left: 0;
 top: 0;
 width: 1000px;

v height: 70px;
 background-color: #369;
 color: #fff;
}
#game
{
 position: absolute;
 left: 0px;
 top: 70px;
 width: 1000px;

w height: 620px;
 background-color: #fff;
 clip: auto;

x overflow: hidden;
}
#footer_bar
{
 position: absolute;
 left: 0;
 top: 690px;
 width: 1000px;

y height: 48px;
 background-color: #369;
}

We’ll make the top banner 70 pixels high v and the bottom one 48 pix-
els high y. We want the game to fit in a standard monitor size, so we set the
total game area to be 620 pixels high w, resulting in a total page height of
738 pixels u, which should fit within a 1024×768 display and even allow for
a browser taskbar.

main.css

Preparation and Setup 13

These values set the size and position of the entire usable display area.
Also, notice that game has overflow: set to hidden x, which means that the
bubbles in the game will never accidentally display over the header or footer.

To link up the CSS file, we’ll add a file link for main.css to the HTML
header:

<head>
 <meta charset="utf8">
 <title>Bubble Shooter</title>
 <link href="_css/main.css" rel="stylesheet">
</head>

Now that we’ve created the basic structure for Bubble Shooter with HTML
and CSS, load the page in a browser and keep it open. There’s no interaction
yet, so next we’ll add basic interactivity, such as a start game dialog, before we
work on the game logic. The first step is to set up the coding structure.

Code Structure
Let’s take a high-level look at the main concepts of the game and inter-
face, which will guide how we’ll structure the code. With a number of sig-
nificant elements to implement, we’ll structure the code in a way similar
to the Model/View/Controller (MVC) principles that you may be familiar
with from web application development. If MVC is new to you, here’s the
basic setup:

•	 The Model consists of data and maintains the state of the application.
In a web application, this might be user’s details or shopping cart con-
tents, for example.

•	 The View renders what’s on the screen and intercepts user input. For
web applications, this is generally HTML output. For example, a view
might read the contents of an online shopping cart from the Model and
then display those items in a list.

•	 The Controller manages the logic and processing. For example, click-
ing an item in a View sends a message to the Controller to add a new item
to a shopping cart Model.

index.html

Dime nsions: F luid v s. F i x e d

To keep the game simple, I used a fixed width of 1000 pixels in the CSS,
which should provide a large screen area that fits within the majority of desk-
top and mobile displays. Typically, the screen dimension situation is more com-
plex; mobile devices in particular have a wide range of pixel dimensions and
aspect ratios. However, we want to concentrate on development principles rather
than design decisions, and 1000 pixels should work well for a prototype game.

14 Chapter 1

With some alterations, this MVC principle will work for structuring
Bubble Shooter.

Game Controller

The game controller will keep track of the game state and act as a director
to determine outcomes in response to user actions.

The game controller is similar to a controller in the MVC system; it will
run the game and manage all the functions. In a more complex game, a
single controller would become too big and complicated to handle every
task, because there would be too much code in one place and one set of
code would have too many responsibilities, making the code more prone
to bugs that would be harder to find. In that case, we’d probably need to
subdivide the tasks further. Fortunately, because Bubble Shooter is so simple,
using one controller to manage all tasks should work well.

User Interface Code

The game needs to display all kinds of information for the user, including
score updates, level end screens, and so on. Instead of the game controller
handling these tasks, it will instruct a set of user interface functions to con-
trol the way the user interface elements appear and disappear.

You could put much of the UI code into the game controller, but
you’ll often end up writing as much animation and UI code as game logic,
so it’s best to separate the code for readability. Generally, if you’re not
changing the state of the game in some way but instead are managing a
function in the display, you should do that in the UI code.

Game Elements as Objects

We’ll code a few game elements as objects, including the bubbles and the
game board. The reason is that we’ll have properties—x- and y -coordinates
for the bubbles, for example—and methods to apply, such as bubbles pop-
ping. Following object-oriented programming convention, we’ll split those
objects into separate classes so the code structure maps to the conceptual
elements involved in making the game.

The game’s objects will also align closely with the idea of a model in
the MVC web pattern. Objects will have properties and state, but they really
shouldn’t interact with the display or make significant gameplay decisions.

Adding the First Scripts
We’ll use Modernizr, a JavaScript library, to load in all of the JavaScript
files the game will need, such as the game controller and the UI class
mentioned earlier. Using Modernizr has some advantages over using
conventional <script> tags, and I’ll explain those later in this chapter.
Modernizr has other useful features as well, but we’ll start by loading
in the script files we need.

Preparation and Setup 15

The Modernizr and jQuery Libraries
To short-cut some common tasks throughout the development of the game,
we’ll rely heavily on two libraries. Both libraries solve many cross-browser
problems and provide high-level functions in a simple and consistent instruc-
tion set.

Modernizr will load scripts and detect whether a given feature is avail-
able in a browser. As an example, let’s write some code to detect whether the
canvas element is supported. To code this by hand, you would create a canvas
node within the DOM and then check whether or not it supports a given
method. In this example, we’ll use the canvas element’s getContext method,
which is supported everywhere that canvas is supported, although you could
try any canvas method you like:

var element = document.createElement("canvas");
var canvasSupported = !!element.getContext;

With Modernizr, we don’t have to do as much work. We can simply write:

var canvasSupported = Modernizr.canvas;

The Modernizr object contains a set of properties whose values
are set at load time to either true or false, depending on whether a par-
ticular feature is supported or not by the browser. As such, the variable
canvasSupported should now contain either true or false, depending on the
value of Modernizr.canvas. Using Modernizr to check for features is helpful
because if a browser changes how it implements a feature, Modernizr will
likely receive new detection routines faster than you can detect and imple-
ment the change within your codebase.

jQuery also provides useful shorthand functions, but these largely
involve detecting and responding to events, making Asynchronous
JavaScript and XML (AJAX) requests to communicate with a server or
accessing and manipulating HTML elements in the browser’s DOM.

The DOM is the browser’s internal organization of an HTML docu-
ment, and we’ll primarily use jQuery’s DOM access methods to simplify
much of the animation code. The DOM provides a way for you to manipu-
late the structure of the HTML by exposing each element in the HTML as
a DOM node. To manipulate the DOM, we first use JavaScript to select a
node. We can then change one or more of its properties, which is possible
and relatively straightforward with regular JavaScript. But using jQuery
makes the code more likely to work as intended without writing code to
handle browsers that implement individual features differently.

The most trivial example of jQuery in action is selecting a DOM node
with an ID, such as the game div we’ve created. In conventional JavaScript,
we would write this as

var element = document.getElementById("game");

16 Chapter 1

This line of code retrieves a single DOM element, which will have various
properties, such as its CSS formatting and methods that allow it to be interro-
gated. For example, element.getAttribute("id") will return the string game.

jQuery provides a way to wrap this functionality, and more, in a simpler,
more compact syntax. To achieve the same result as the preceding code line
with jQuery, we use jQuery selectors. Selectors are syntax for selecting a node
or nodes within the DOM, and their format—including dot notation and
using # to select unique elements—is borrowed from CSS selectors. The val-
ues returned from jQuery’s selectors aren’t DOM nodes but rather custom
objects that contain a reference to the DOM nodes and add a range of other
methods. The equivalent of document.getElementById("game").getAttribute("id")
using a jQuery selector is $("#game").attr("id").

Selectors are a core jQuery concept, and you’ll become very familiar
with using them by the end of this book. Nearly all of jQuery is used to
manipulate DOM elements, so calls to jQuery almost always specify which
element or elements should be changed, and that’s where selectors come in.
They let you choose an HTML node set using a range of factors, such as the
following:

•	 A unique ID for selecting single elements

•	 A CSS class for selecting all the DOM elements with that class

•	 The tag that defines the node (div, img, span, and so on), which allows
you, for example, to select all the images on a page

•	 Many other options, including combinations of the previous items in
this list, the element’s position in a list, parent-child relationships, or
nearly any other way you can traverse a DOM

The jQuery object that the call to $ returns lets you manipulate the
DOM object.

So in jQuery, the document.getElementById call is shortened to

var element = jQuery("#game").get(0);

We require the .get(0) function call to retrieve the DOM object from
within the jQuery object, although generally it’s more useful to work with
jQuery objects than with DOM objects directly. This can be further short-
ened to

var element = $("#game").get(0);

The value $ is defined as an alias to the jQuery function, which does
one of several tasks based on what you pass into it. For a selector, we pass
a string value (in this case, "#game") to jQuery. As in CSS, the hash symbol
tells jQuery that we want to select a single element by its ID. The value
$("#game") returns the jQuery object containing a reference to the DOM node.

You can use jQuery selectors to retrieve multiple DOM nodes, which are
stored internally as an array. If you want to access the DOM node, you can

Preparation and Setup 17

retrieve the nth element returned from a query by calling .get(n) on the
jQuery object. Because we have only one element with the ID game, we want
the first (zero index) element, which we can retrieve by adding .get(0)
onto the end of $("#game").

We don’t save much coding in this simple case, but more important,
we can use the objects that jQuery returns from selection queries with
cross-browser methods that abstract away a lot of the hard work of DOM
manipulation.

jQuery objects let us query the DOM node for various CSS properties,
as in these examples:

var top = $("#game").css("top");
var width = $("#game").width();
var divs = $("div");

The first two lines query the DOM node for the game div’s top position
and width, respectively, and the last line is a selector that returns a jQuery
object containing all the div tags on a page. jQuery is a powerful library,
and although we’ll use quite a few of its features in the game, covering it in
great detail is beyond the scope of this book. The jQuery documentation at
http://api.jquery.com/ provides an in-depth look at how it works.

Adding the Modernizr Library
To get started with Modernizr, download it from its official website (http://
modernizr.com/download/). Modernizr lets you choose individual features to
download so you don’t waste bandwidth on code that you’ll never use. We’ll
need a few specific features, so make sure you select the following boxes on
the download page to include them:

•	 CSS Transitions (under CSS3)

•	 Canvas and HTML5 Audio (under HTML5)

•	 Modernizr.load (under Extra)

•	 Modernizr.prefixed (under Extensibility)

Then, click Generate and Download.
Create a new folder in the game folder called _js and save the file there

as modernizr.js. Also add the file to the HTML document, as shown here:

<head>
 <meta charset="utf8">
 <title>Bubble Shooter</title>
 <link href="_css/main.css" rel="stylesheet">
 <script src="_js/modernizr.js"></script>
</head>

Now that we’ve added Modernizr with a <script> tag, we’ll use it to load
the rest of the JavaScript game files.

index.html

http://modernizr.com/download/
http://modernizr.com/download/

18 Chapter 1

Loading Scripts with Modernizr
Rather than just adding <script> tags to the document, we use Modernizr
to load scripts for two main reasons. First, we can trigger functions to run
immediately after a script is loaded rather than waiting until the entire
page, including HTML and images, has loaded. Second, Modernizr allows
us to load scripts in on a conditional basis (for example, if this condition is
satisfied, load in this script) without writing much code to do it.

N o t e 	 Modernizr actually uses another library called yepnope.js for its script-loading func-
tionality. You can learn more about that library at http://yepnopejs.com/.

A simple example of this is to load jQuery from Google’s Content
Delivery Network (CDN) to expedite load times. The potential flaw with
using a third-party CDN is that the CDN could be down or inaccessible,
or, more likely, your own server could be unavailable. However, relying on
a service that you can’t control is never a good idea. Fortunately, Modernizr
lets you add a test during the loading process and then call a backup func-
tion if that test fails. As a result, we can attempt to load the file from the
CDN, and if it doesn’t work, load a local version instead.

Wh y Use Googl e’s Host e d jQue ry ?

Although it may seem odd to rely on someone else’s server to obtain a critical
file, using Google’s version of jQuery offers a few advantages, and I don’t just
mean saving money or using someone else’s bandwidth should you create a
popular game.

One advantage is that because the file comes from Google’s Content
Delivery Network, users will almost always download it from a server closer
to them than your server.

Another advantage is that, because the file comes from a server other than
the one your game is hosted on, users can actually download it faster. Browsers
often limit the number of connections they’ll open to a single server, so files wait
in a queue to be downloaded, even if plenty of bandwidth is available. By host-
ing files on a different server, you increase the number of files that are down-
loaded in parallel and decrease the download time.

An additional advantage is that other sites are using the same copy of
jQuery; therefore, if users have visited any of them recently, they’ll most likely
have a copy of the file in their browser cache and won’t have to download the
file at all!

Preparation and Setup 19

Download the latest jQuery build from http://jquery.com/download/ and
place it in the _js folder. Then add the following code block in bold just
before the closing </head> tag. Be sure to change the version of jQuery in
the URLs to match the version that you’ve downloaded.

<head>
 <meta charset="utf8">
 <title>Bubble Shooter</title>
 <link href="_css/main.css" rel="stylesheet">
 <script src="_js/modernizr.js"></script>
 <script>

u Modernizr.load({
 load: "//ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.js",

v complete: function () {
w if(!window.jQuery){
x Modernizr.load("_js/jquery-1.8.2.min.js");

 }
 }
 });
 </script>
</head>

This example shows the compact script loading Modernizr provides. In
short, it attempts to load jQuery from the Google CDN u. When loading is
finished v (either when the file has loaded or the script returns from a fail-
ure to load), the complete property’s function call checks for the existence
of window.jQuery w, and if that object doesn’t exist, loads the jQuery library
from the local folder x.

The reason that Modernizr.load is called with two different sets of param-
eters is that the file can accept the following types of arguments: a single
file (as a string), an object with name/value pairs, or an array containing a
set of either strings or objects. Consequently, we can load in multiple files
with a single Modernizr.load call. In the first call u, we pass in an object with
load and complete properties. (The Modernizr website documents other
properties available to use.) At the second call x, we only pass in a string.
This line

Modernizr.load("_js/jquery-1.8.2.min.js");

is equivalent to writing

Modernizr.load({load : "_js/jquery-1.8.2.min.js"});

The first version uses the filename string as a convenient shorthand for
loading just that file without any other configuration options.

index.html

20 Chapter 1

We also want to load in the game scripts with Modernizr. Create a new
file called game.js in the _js folder. To add the new file to .load, wrap the first
Modernizr.load call in array brackets and add a new entry, shown here in bold:

Modernizr.load([{
 load: "//ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.js",
 complete: function () {
 if(!window.jQuery){
 Modernizr.load("_js/jquery-1.8.2.min.js");
 }
 },
 },
 {
 load: "_js/game.js"
 }]);

We can continue adding new files to the Modernizr.load call as new ele-
ments in the array at any point before we load game.js.

Modernizr will load game.js, but the file doesn’t contain any code yet.
The next task is to set up the main game controller class and run it when
loading is complete.

Modular JavaScript
To minimize global variables and the potential for duplicate variable name
conflicts, we’ll use a modular approach for the JavaScript code. Using a
module is a way of wrapping all the objects and variables of the game within
a single containing namespace. The namespace will be called BubbleShoot.
A class named Game will be contained within the module BubbleShoot.Game
and can be accessed from anywhere else in the application by writing
BubbleShoot.Game. This namespace is a safeguard: If we add another JavaScript
library later in development that also has a variable named Game, both can
exist simultaneously without conflict.

We’ll start with the game module, which will run much of the game.
Enter the following code into game.js:

u var BubbleShoot = window.BubbleShoot || {};
v BubbleShoot.Game = (function($){
w var Game = function(){};
x return Game;
y })(jQuery);

First, we check to see whether the object BubbleShoot exists u. Naming our
code BubbleShoot.Game is roughly equivalent to using a namespace in languages
such as Java or C#. All of the classes will be properties of the BubbleShoot
object. Naming collisions aren’t likely to happen in small games like Bubble
Shooter but can become a problem with larger projects. If window.BubbleShoot
doesn’t exist, it will be created as an empty object. We’ll include this line at
the top of every class file so we don’t have to think about the order in which
scripts are loaded.

index.html

game.js

Preparation and Setup 21

The next code line defines BubbleShoot.Game v. This structure—a func-
tion inside brackets—may look strange if you’re not familiar with it, but it’s
a common approach to use when you’re writing JavaScript modules.

The structure uses an Immediately Invoked Function Expression (IIFE),
which is a piece of code that creates a function and runs it immediately.
Usually, you will assign the returned results to a variable. The benefit is that
the function block creates a variable scope within JavaScript, meaning that
any variables created inside it won’t pollute the global scope.

The variable declaration contains a function definition followed by
parentheses y. The function is created, run, and instantly destroyed, but
not before returning its contents x, which will be the object Game created
at w. The bracket-wrapped function call v is inside the new scope. Once
this function has run, we can access the Game class from the global scope as
BubbleShoot.Game.

Now we have a stub of a class, so we need to add some useful code to
run. Let’s start by hooking up a New Game button. Add the following to
index.html inside the page div:

<div id="page">
 <div id="top_bar"></div>
 <div id="game"></div>
 <div id="footer_bar"></div>

u <div id="start_game" class="dialog">
v <div id="start_game_message">

 <h2>Start a new game</h2>
 </div>

w <div class="but_start_game button">
 New Game
 </div>
 </div>
</div>

The new div elements will create a dialog that displays information to
players before they start the game u. The dialog will contain a heading
with a message v and a New Game button w. We still need to add some
styling for them to the end of main.css, so let’s do that now.

.dialog
{
 position: absolute;
 left: 300px;
 top: 110px;
 height: 460px;
 width: 320px;
 background-color: #369;
 border-radius: 30px;
 border: 2px solid #99f;
 padding: 20px 50px;
 color: #fff;
 text-align: center;
 display: none;

index.html

main.css

22 Chapter 1

}
.dialog h2
{
 font-size: 28px;
 color: #fff;
 margin: 20px 0 20px;
}
.but_start_game
{
 position: absolute;
 left: 100px;
 top: 360px;
 height: 60px;
 width: 200px;
 background-color: #f00;
 cursor: pointer;
 border-radius: 15px;
 border: 2px solid #f66;
 font-size: 28px;
 line-height: 60px;
 font-weight: bold;
 text-shadow: 0px 1px 1px #f99;
}
.but_start_game:hover
{
 background-color: #f33;
}
#start_game
{
 display: block;
}

With this styling in place in main.css, reload the page to see the dialog.
But note that there’s no way for the player to remove it yet. This will happen
inside the Game class.

Next, we need some code to run when the page has finished loading so
we can attach an event handler to the New Game button. One function will
initialize the objects and set up the game after the page has loaded, and
another will run every time a new game starts. Make the following changes
to game.js:

BubbleShoot.Game = (function($){
 var Game = function(){

u this.init = function(){
v $(".but_start_game").bind("click",startGame);

 };
w var startGame = function(){

 };
 };
 return Game;
})(jQuery);

game.js

Preparation and Setup 23

This new code sets up one public method, called init u, and one private
method, called startGame w. The init method is public because it’s attached
as a property of the Game object. Inside init, we add a jQuery event handler
called bind to the New Game button v, which will call the startGame func-
tion whenever the button is clicked.

We know the IIFE has a short life and isn’t attached as a property of
any object, and yet the startGame function can be called here. The reason
is due to a JavaScript feature called closure. Closure means that a variable
exists within the code block that defined it and persists inside that code
block. Therefore, the startGame function can be used within other functions
inside Game, including init, but can’t be accessed by any JavaScript outside of
this scope.

We want to call init after the page has loaded, so back in index.html
we’ll add a complete call in Modernizr.load once game.js has finished loading:

Modernizr.load([{
 load: "//ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.js",
 complete: function(){
 if(!window.jQuery){
 Modernizr.load("_js/jquery-1.8.2.min.js");
 }
 }
 },
 {
 load: "_js/game.js",
 complete: function(){

u $(function(){	
v var game = new BubbleShoot.Game();
w game.init();

 })
 }
 }]};

Recall that the $ function u is shorthand for the jQuery function, which
can do one of several tasks based on what you pass into it. Previously, we’ve
passed in a string (#game), which jQuery interpreted as a selector. In this
case, we’re passing in a function, which jQuery stores to run once the DOM
is ready to be manipulated.

This bit of jQuery functionality is incredibly useful, especially for a
game, because from this point we know that we can safely manipulate the
DOM with JavaScript even if all of the game’s other assets (such as images
and sounds) haven’t finished loading. Traditionally, client-side interaction
has been triggered by waiting for a window.onload event to fire from within
JavaScript, which signifies that the HTML has loaded, the DOM is ready,
and all of the images are loaded. However, waiting for the images can leave

index.html

24 Chapter 1

users staring at screens they can’t interact with for too long. The prefer-
able alternative is to allow users to interact with the application as soon as
the DOM is ready without waiting for the images to load, which produces
more responsive interfaces. But determining when the DOM is ready often
involves code unique to each browser vendor and frequently changes from
one version of a browser to the next. jQuery’s $ function smoothes over any
browser inconsistencies and lets you achieve that responsiveness without
having to determine exactly when the DOM is ready.

Look back at the $ function. Inside it we created an instance of the
Game class v and then called the public init method w of that class. Based
on what we know about the $ function, anything we do inside init should
happen after jQuery has loaded and the DOM is ready for us to work
with it.

Now we have an instance of Game that binds its startGame function to the
New Game button. However, the startGame function still doesn’t do anything.
Let’s change that!

In t roducing Closur e

One of JavaScript’s most powerful features, closure means that variables that
have been defined within a function are stored in the function’s scope. These
variables persist within the scope even when the function has exited, so long
as the JavaScript interpreter determines that it still has to make use of them.
Reasons for persisting in the scope could include an event handler that requires
one of the values when it is triggered or a setTimeout call that will need access
to a variable at some time in the future. A simple example will help to explain
how this works, but it’s worth reading up on closure in order to better make use
of it within your own functions.

The following example shows how scope works in JavaScript (and many
other languages). The three alert calls in this example should display alerts of
1, 2, and 1 respectively, because the value of myVar inside the function does
not overwrite the value in the parent scope. You can run this code from the
JavaScript console:

var myVar = 1;
alert(myVar);
function innerMyVar(){
 var myVar = 2;
 alert(myVar);
};
innerMyVar();

alert(myVar);

Preparation and Setup 25

User Interface and Display Scripts
Let’s create a class to handle the user interface and some of the other page
display functionality. Create a new file called ui.js in the _js folder and add
the following code:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){

u var ui = {
 init : function(){
 },

v hideDialog : function(){
w $(".dialog").fadeOut(300);

 }
 };
 return ui;
})(jQuery);

Although not much is in this code, notice that the UI object follows the
same pattern as the previous Game class. The hideDialog function v contains
a simple bit of jQuery that fades out any HTML element with the CSS class
dialog w. The structural difference that ui has from the Game class pattern is
that rather than making a ui class, we’re just creating a single object u and
attaching methods to it. This structure is similar to the way static classes are
used in other languages.

ui.js

To demonstrate how the scope is retained even when a function is exe-
cuted, we can add a timeout inside the innerMyVar function:

var myVar = 1;
alert(myVar);
function innerMyVar(){
 var myVar = 2;
 setTimeout(function(){
 alert(myVar);
 },1000);
 myVar++;
};
innerMyVar();

alert(myVar);

This code should display alerts of 1, 1, and 3. The scope of innerMyVar
retains the value of myVar defined inside it, including the increment that occurs
after the timeout has been defined.

You can read more about scope at https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Guide/Closures/.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Closures/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Closures/

26 Chapter 1

The call to fadeOut takes a parameter that specifies the number of milli
seconds to fade out the dialog. We use a value of 300, which is fast enough
to not slow down users but not so fast that they won’t notice it. The fadeOut
method is built into jQuery, but other ways are available to combine selec-
tors and manipulate DOM elements. For now, let’s quickly run through
what jQuery actually does in the fadeOut call:

•	 Reduces the CSS opacity by a small, fixed amount and repeats in a loop
for 300 milliseconds. At the end of this time, the opacity should be zero.

•	 Sets the display CSS property of the element to none.

We could have created this effect by hand by stringing together some
setTimeout calls, but jQuery handles it for us with fadeOut. Using jQuery saves
us a lot of code here because, as with many CSS properties, manipulating
opacity is not straightforward across browsers (earlier versions of IE use a
filter instead of the opacity property, for example).

Note that at the moment we’re not doing anything particular to CSS3
or HTML5. We’re using old HTML tags and manipulating relatively old
CSS properties through JavaScript loops. Later in this book, you’ll learn
whether you should do this in a more modern way, but for now, the code
does the job well. As you develop games, you’ll realize that a lot of code
runs just as well on earlier browsers as it does on later ones and that, unless
you’re exclusively rendering to the canvas, your HTML5 games look similar
to regular web applications.

Now we need to load our newly created UI file into index.html by adding
it to the Modernizr.load call:

Modernizr.load([{
 load: "//ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.js",
 complete: function(){
 if(!window.jQuery){
 Modernizr.load("_js/jquery-1.8.2.min.js");
 }
 }
 },

u "_js/ui.js",
 {
 load: "_js/game.js",
 complete: function(){
 $(function(){	
 var game = new BubbleShoot.Game();
 game.init();
 })
 }
 }
]);

index.html

Preparation and Setup 27

To add a new .js file to the load call u, simply add the URL to your
script file as an extra array item after ui.js but before loading game.js. We’ll
need to add each new script file we create to index.html, so remember this
process.

To call hideDialog when we click the New Game button, add the follow-
ing lines in bold to game.js:

BubbleShoot.Game = (function($){
 var Game = function(){
 this.init = function(){

u $(".but_start_game").bind("click",startGame);
 };
 var startGame = function(){

v $(".but_start_game").unbind("click");
w BubbleShoot.ui.hideDialog();

 };
 };
 return Game;
})(jQuery);

Using the bind method in jQuery u is a cross-browser way to add event
handlers. This method binds a function to an object that triggers when an
event occurs. In this game application, the trigger occurs when the user
clicks the New Game button, which calls the startGame function.

Note that we unbind the event v when the button is clicked to pre
vent double-clicks from being registered while the button is fading out
and trying to start a game twice. If you reload the page and click the
New Game button, the dialog should disappear due to the hideDialog
function w.

The Bubble Shooter game still doesn’t do much, but at least now we have
some structure to add code to.

Summary
We now have the foundation in place to start building the game. Modernizr
is loading in files, and we can easily add to this task when we create more
classes and functions. An instance of the Game class is created when the DOM
has finished loading, and clicking on a button starts the game.

In the next chapter, we’ll create our first sprites for the bubble object,
forming the core of the game, and you’ll learn how to animate the sprites
on the screen.

game.js

28 Chapter 1

Further Practice
1.	 The dialog is being hidden with a jQuery fadeOut function, but you can

apply other effects to remove the dialog from the screen. Try using
slideUp or hide instead of fadeOut, for example. Alternatively, start the
dialog offscreen and move it into place with an animate call.

2.	 The colors and styling of the dialogs and the header and footer are
quite simple. Change the colors in those areas (or even experiment
with graphics) until you find a combination you like.

3.	 Learn how to use your browser’s debugging tools. It’s likely you’ll have
access to breakpoints, watch variables, and the variable stack, so read
about and experiment with them. Learning your way around the tools
now can be quite a time-saver when you’re debugging later. Try adding
breakpoints within the init and startGame functions in game.js and trace
the code as it runs.

2
S p r i t e A n i mat i o n

Us i n g j Q u e r y a n d C S S

In this chapter we’ll dive into moving
sprites around the screen. Animation is

one of the most common tasks in game
development, and the principles you’ll learn

in animating a simple game apply to most game types.
Although much of the buzz around HTML5 games focuses on the

canvas element, you can implement many games just as well using more
traditional HTML, CSS, and JavaScript techniques, which are the focus of
this chapter. They’re useful game development lessons in their own right,
and they’ll be advantageous when we look into using the canvas element
later. Games developed using HTML, JavaScript, and CSS techniques,
often referred to as DOM-based games, also have much wider browser com-
patibility. Some older browsers still in use have no canvas support and also
are unlikely to support CSS3 transformations and transitions; therefore,
we’ll use older CSS features.

30 Chapter 2

The key mechanic of the Bubble Shooter game is, of course, shooting
bubbles, and the bubble that the player fires triggers every bubble-popping
effect. We’ll start by moving a fired bubble based on user input (a mouse
click).

First, we need a way to move a bubble from a starting point A to an end-
ing point B, and that bubble needs to move in a straight line at a constant
velocity. Second, we need to determine exactly where points A and B are
located. Because the player always fires bubbles from the same position, the
starting coordinates (point A) will be the same for each new bubble. Point B
will be the coordinates of the user’s mouse click when they fire the bubble,
so we must retrieve those coordinates. To start, we’ll implement that move-
ment from A to B.

In the final game, the bubble won’t stop when it reaches the click coor-
dinates but rather will continue until it collides with another bubble or
moves off the edge of the screen. We’ll deal with collisions later when we
more fully develop the game display.

When we have movement from point to point, we can then extrapolate
a bubble’s path past the user’s click and continue to move the bubble for-
ward in the same direction. To find that path, we need to calculate a firing
angle based on the relative positions of point A and point B, as shown in
Figure 2-1.

Mouse click point:
Point B

Vector from bubble to
mouse click

Continue moving bubble to
point off the screen

Bubble: Point A

Screen boundary

Firing
angle

Figure 2-1: Moving the bubble along a vector

Sprite Animation Using jQuery and CSS 31

Given that firing angle, we can send a bubble in a particular direction
as far as needed. Later, we can calculate how far it needs to move by deter-
mining any collisions. For now, we’ll just define as far as needed as a point
sufficiently far away to move the bubble off the screen.

Principles of CSS Sprites
A sprite is a two-dimensional game element that is part of a larger scene but
can move around without affecting the background data. At the moment,
the bubble at point A is the only sprite.

At its simplest, in this DOM-based approach, a sprite is an HTML block
(often a set of div tags) with CSS styling applied. Due to the way a browser
renders HTML, moving a sprite without altering the rest of the screen is
easy to do. An HTML element that is absolutely positioned with CSS is
rendered independently of the surrounding HTML elements. The browser
paints all the objects to the screen and handles layering and overlaps. If
we remove an object, the browser knows it needs to display whatever is
underneath. This HTML and CSS sprite manipulation property isn’t free
with canvas development, but as you’ll see when we learn more about the
canvas element in Chapter 6, it’s one of the features that makes DOM game
development an ideal place to start and a great tool for rapidly prototyping
games.

Creating the Game Board
In the Bubble Shooter game, the bubbles will all be sprites so we can move
them around the screen as self-contained elements. We’ll create the first
sprite soon by creating one of the bubbles that will sit in the display. But
first we need a container for the game board within the area where all the
bubble action happens. We’ll put this container in a div called "board", so
add the new div to index.html:

<div id="game">
 <div id="board"></div>
</div>

Next, we’ll position the board with CSS. The game board will be cen-
tered within the fixed-width display, so we’ll make a 760-pixel-wide board
and position it 120 pixels from the left edge of the game div, which is posi-
tioned to the left of the window. Add the definition for #board to main.css
after the definition for #game:

body
{
 margin: 0;
}
--snip--
#game
{

index.html

main.css

32 Chapter 2

--snip--
}
#board
{
 position: absolute;
 left: 120px;
 top: 0;
 width: 760px;
 height: 620px;
}

We also need some CSS to describe a bubble’s starting position, width,
and height. The player’s current bubble will be placed in the bottom center
of the play area and will be 50 pixels square. We’ll assign the user’s current
ready-to-fire bubble the CSS class of cur_bubble and define its positioning
and appearance in a style sheet. We’ll put game elements in their own CSS
file so we can easily distinguish them from the various user interface ele-
ments, such as dialog boxes and buttons.

Create a new file in the _css directory, call it game.css, and put the follow-
ing code in it:

.bubble
{
 position: absolute;
 width: 50px;
 height: 50px;
}
.cur_bubble
{
 left: 360px;
 top: 470px;
}

Each bubble will sit inside a 50-pixel square. We could just fill the game
area completely with bubbles, but the trick is to provide a large playing board
without making the game too long lasting. After some trial and error, I chose
to use 16 bubbles, which should fit in the game area width and still leave a bit
of border.

We also need to link game.css to the style sheet file in the HTML header,
so add that link to index.html after the link to main.css:

<head>
 <meta charset="UTF-8" />
 <title>Bubble Shooter</title>
 <link href="_css/main.css" rel="stylesheet" />
 <link href="_css/game.css" rel="stylesheet" />

game.css

index.html

Sprite Animation Using jQuery and CSS 33

The bubble we want to fire doesn’t yet display on the screen, so let’s add
an image to the filesystem and then use some CSS to display it.

Adding Sprites
Figure 2-2 shows how a single bubble will appear
(without coloring). The appearance of the bubble
will be rendered as a background image within the
board div element.

We’ll use four different bubble colors, so let’s
make all four colors of bubbles at the same time. Any
four colors will do, as long as they’re sufficiently dis-
tinct. As with other assets, which are generally images
and sound files, we’ll store the colored bubbles in an
underscored folder. Let’s call this one _img.

To speed up loading time and keep file management simple, we’ll put
the images for all four bubble types into a single PNG file. You can see the
complete image in Figure 2-3.

Figure 2-3: A single image file containing all
animation states for four bubble types

The PNG file (bubble_sprite_sheet.png) contains not only the base state
for the four bubbles but also animations of the popping process that we’ll
use later. The standard bubble image is shown in the left column; the three
popping animation stages are shown in the second, third, and fourth col-
umns. Because we have four different bubbles, we’ll create CSS definitions
that let us display whichever color we want by shifting the position of the
background image up or down. The ability to use a single image to render
multiple sprites is the reason we’re using a CSS background image rather
than placing tags directly into the DOM; as a result, the browser needs

Figure 2-2: Our first
bubble sprite graphic

34 Chapter 2

to download only one image file, which speeds up initialization time. Also,
the animation frames for popping are preloaded, so we shouldn’t have any
nasty pauses while loading images later in the game.

Although we’re using four bubble colors, the game doesn’t need to
know the colors—we might even change the color choices later—but it does
need a way to reference them. We’ll number the bubble types from zero to
three to represent the four colors.

We can use the base CSS class of .bubble for properties that are common
to all bubbles and add an additional class to the HTML elements when we
need to specify the bubble’s type (which sets its color). Modify game.css as
follows:

.bubble
{
 position: absolute;
 width: 50px;
 height: 50px;
 background-image: url("../_img/bubble_sprite_sheet.png");
}
.cur_bubble
{
 left: 360px;
 top: 470px;
}
 .bubble_0
 {
 background-position: 0 0;
 }
 .bubble_1
 {
 background-position: 0 -50px;
 }
 .bubble_2
 {
 background-position: 0 -100px;
 }
 .bubble_3
 {
 background-position: 0 -150px;
 }

Now, when we want to render the four bubbles, we can just add the cor-
rect classes to a div element, and the background-position property should
display the appropriate image. If we want to hard-code a bubble of the last
type into the DOM, we’d add the following:

<div class="bubble bubble_3"></div>

A bubble of the first type would be

<div class="bubble bubble_0"></div>

game.css

Sprite Animation Using jQuery and CSS 35

Although we currently have a definition for the bubble in CSS, we have
no HTML to display it on the screen. Instead of hard-coding the bubbles,
we’ll generate them through JavaScript. But before we start animating a
bubble, we need to create and render one, which is the focus of the next
section.

Animation and the Bubble Class
Because the bubble is one of the main elements of the game, we’ll create
a separate JavaScript class for it. We don’t yet know all the properties this
class might need, but for every bubble object we need to manipulate in
code, an onscreen element will display; therefore, we’ll create a property
to reference that. We’ll call it the sprite property, and it will store a refer-
ence to the jQuery object that we use to manipulate the DOM element.

Put the following in a separate file called bubble.js in the _js folder, and
add the new file to the Modernizr.load call in index.html just after ui.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Bubble = (function($){
 var Bubble = function(sprite){
 var that = this;

u this.getSprite = function(){ return sprite;};
 };

v Bubble.create = function(){
 var sprite = $(document.createElement("div"));
 sprite.addClass("bubble");
 sprite.addClass("bubble_0");
 var bubble = new Bubble(sprite);
 return bubble;
 };
 return Bubble;
})(jQuery);

We have only one argument to pass into the constructor, which is a
reference to the jQuery sprite object that will be created within a call to
the Bubble.create function v. This function currently creates only one type
of sprite due to the assigning of the bubble_0 CSS class. Currently, only
one method is in the class definition u, and it returns the sprite object.
When we want to create a bubble, rather than invoking BubbleShoot.Bubble
directly, we’ll call BubbleShoot.Bubble.create. As a result, we can ensure that
all components of a bubble are instantiated correctly and minimize code
duplication.

Now we can create Bubble objects, and the document element is created
at the same time. However, the bubble still won’t be part of the visible DOM
because it hasn’t been inserted into the document. To handle this, we’ll
make a function inside Game to create new bubbles and add the CSS class of
cur_bubble to the newly created DOM element.

bubble.js

36 Chapter 2

At any time in the game, only a single bubble is on the screen that’s
ready for the player to fire, so we’ll keep a reference to it, called curBubble,
in a variable within Game. To finish this step of bubble creation, add the
lines in bold to game.js :

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Game = (function($){
 var Game = function(){

u var curBubble;
 this.init = function(){
 $(".but_start_game").bind("click",startGame);
 };
 var startGame = function(){
 $(".but_start_game").unbind("click");
 BubbleShoot.ui.hideDialog();

v curBubble = getNextBubble();
 };

w var getNextBubble = function(){
x var bubble = BubbleShoot.Bubble.create();
y bubble.getSprite().addClass("cur_bubble");
z $("#board").append(bubble.getSprite());

 return bubble;
 };
 };
 return Game;
})(jQuery);

At the top of the Game definition, we define curBubble u, which will exist
only within the scope of the Game object. This empty variable is declared here
and is set when the user clicks the New Game button, which calls startGame.
Here, curBubble is set to the value returned by getNextBubble v. The function
getNextBubble w calls BubbleShoot.Bubble.create x, which returns an instance
of the Bubble class and then adds the CSS class cur_bubble y to the DOM ele-
ment. Finally, the DOM element is appended to the board div element z.

Reload the page and click New Game. At the bottom center of the
screen you should see a bubble appear. The bubble can’t move anywhere
yet, but we’ll change that in the next section when we add some simple
animation.

Calculating Angle and Direction
To determine which direction to fire the bubble in, we need to find out
where the mouse is at the moment the user clicks. We can do this by inter-
rogating the event object that will fire in response to the click event. The
Game controller needs to know the angle to fire the bubble and what the
results of the game display should be. To avoid adding interface code to
the controller, the ui object will handle the movement process, which will
follow these steps:

1.	 Find the coordinates of the mouse click.

2.	 Calculate a vector from the bubble’s starting point to the click point.

game.js

Sprite Animation Using jQuery and CSS 37

3.	 Extend that vector by a sufficient length to move the bubble off the
game screen.

4.	 Move the bubble to the end of the vector.

An example of a bubble’s trajectory was shown in Figure 2-1 on page 33.
At this point, the movement process assumes that the bubble won’t col-

lide with anything, which is the feature we’ll tackle first.
In the Game function definition, create the clickGameScreen function (right

after the getNextBubble function) and add an event binding to startGame, as
shown here:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Game = (function($){
 var Game = function(){
 var curBubble;
 --snip--
 var startGame = function(){
 $(".but_start_game").unbind("click");
 BubbleShoot.ui.hideDialog();
 curBubble = getNextBubble();
 $("#game").bind("click",clickGameScreen);
 };
 --snip--

u var clickGameScreen = function(e){
 var angle = BubbleShoot.ui.getBubbleAngle(curBubble.getSprite(),e);
 };
 };
 return Game;
})(jQuery);

The function clickGameScreen u will be called in response to the user
clicking the screen. As part of the jQuery event handling, it will receive an
event object e that contains useful data about the clicked object, including
the coordinates of the click. This function also has a call to BubbleShoot
.ui.getBubbleAngle, which will calculate a firing angle for the bubble using
the event object’s click coordinates. The value returned will be an angle, in
radians, either to the left or right of the vertical center line of the bubble.
Let’s write that code now.

In ui.js, add the following constant at the top of the ui object and new
methods after hideDialog:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){
 var ui = {

u BUBBLE_DIMS : 44,
 init : function(){
 },
 hideDialog : function (){
 $(".dialog").fadeOut(300);
 },
 getMouseCoords : function(e){

v var coords = {x : e.pageX, y : e.pageY};

game.js

ui.js

38 Chapter 2

 return coords;
 },
 getBubbleCoords : function(bubble){

w var bubbleCoords = bubble.position();
 bubbleCoords.left += ui.BUBBLE_DIMS/2;
 bubbleCoords.top += ui.BUBBLE_DIMS/2;
 return bubbleCoords;
 },
 getBubbleAngle : function(bubble,e){
 var mouseCoords = ui.getMouseCoords(e);
 var bubbleCoords = ui.getBubbleCoords(bubble);
 var gameCoords = $("#game").position();
 var boardLeft = 120;

y var angle = Math.atan((xmouseCoords.x - bubbleCoords.left - boardLeft)
 / (xbubbleCoords.top + gameCoords.top - mouseCoords.y));
z if(mouseCoords.y > bubbleCoords.top + gameCoords.top){

 angle += Math.PI;
 }
 return angle;
 }
 };
 return ui;
})(jQuery);

BUBBLE_DIMS u is the width (and height) of a bubble sprite in the DOM.
This constant allows us to calculate the offset to the center of the element,
which means we can translate to the (top, left) coordinates that CSS uses.
In game programming, you’ll often want to work with the center coordi-
nates of an object when you change its position, whereas when rendering,
you’ll use the (top, left) coordinates.

This new code fetches the coordinates of the player’s mouse click v by
retrieving two properties that jQuery passes us with the event object e. We
also need the starting bubble’s coordinates, so the next method w will do
that job using another jQuery method. When we have the two coordinate
pairs, we can calculate the relative x/y offset between them x. Now, we can
use the tangent trigonometry function y to calculate the angle based on
the x/y offset. Then, if the click is below the center line of the bubble z, we
add pi (which is 180 degrees, but JavaScript trigonometry is always in radi-
ans) to the angle so we can describe a full circle.

To calculate the angle, we’ve used some trigonometry, which you’ll
become more familiar with as you build games, if you’re not already. The
Math.atan method retrieves angles offset from the vertical with positive num-
bers to the right and negative numbers to the left of vertical. The returned
angle will be a value in radians ranging from negative to positive pi.

Firing and Animating Bubbles
Now that we know the angle at which to fire a bubble, we can send it off the
screen. Let’s assume we’ll fire it at 1000 pixels—which is enough to move it
outside the game area—and then see the results in action.

A Quick T r igonome t ry R e f r e she r

We can calculate the angle we want to fire the bubble with some trigonom-
etry using the inverse tangent function. In Figure 2-4, we calculate the angle
by taking the inverse tangent of the vector’s x and y components.

Vector from bubble to
mouse click

Bubble: Point A

Firing
angle

= tan−1(distancex /distancey)

distancex

distancey

Figure 2-4: Calculating the firing angle manually

Sprite Animation Using jQuery and CSS 39

Add the following lines of code to clickGameScreen in game.js:

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 --snip--
 var clickGameScreen = function(e){
 var angle = BubbleShoot.ui.getBubbleAngle(curBubble.getSprite(),e);
 var duration = 750;
 var distance = 1000;
 var distX = Math.sin(angle) * distance;
 var distY = Math.cos(angle) * distance;
 var bubbleCoords = BubbleShoot.ui.getBubbleCoords(curBubble.
 getSprite());
 var coords = {
 x : bubbleCoords.left + distX,
 y : bubbleCoords.top - distY
 };

u BubbleShoot.ui.fireBubble(vcurBubble,wcoords,xduration);
 };
 };
 return Game;
})(jQuery);

game.js

 return coords;
 },
 getBubbleCoords : function(bubble){

w var bubbleCoords = bubble.position();
 bubbleCoords.left += ui.BUBBLE_DIMS/2;
 bubbleCoords.top += ui.BUBBLE_DIMS/2;
 return bubbleCoords;
 },
 getBubbleAngle : function(bubble,e){
 var mouseCoords = ui.getMouseCoords(e);
 var bubbleCoords = ui.getBubbleCoords(bubble);
 var gameCoords = $("#game").position();
 var boardLeft = 120;

y var angle = Math.atan((xmouseCoords.x - bubbleCoords.left - boardLeft)
 / (xbubbleCoords.top + gameCoords.top - mouseCoords.y));
z if(mouseCoords.y > bubbleCoords.top + gameCoords.top){

 angle += Math.PI;
 }
 return angle;
 }
 };
 return ui;
})(jQuery);

BUBBLE_DIMS u is the width (and height) of a bubble sprite in the DOM.
This constant allows us to calculate the offset to the center of the element,
which means we can translate to the (top, left) coordinates that CSS uses.
In game programming, you’ll often want to work with the center coordi-
nates of an object when you change its position, whereas when rendering,
you’ll use the (top, left) coordinates.

This new code fetches the coordinates of the player’s mouse click v by
retrieving two properties that jQuery passes us with the event object e. We
also need the starting bubble’s coordinates, so the next method w will do
that job using another jQuery method. When we have the two coordinate
pairs, we can calculate the relative x/y offset between them x. Now, we can
use the tangent trigonometry function y to calculate the angle based on
the x/y offset. Then, if the click is below the center line of the bubble z, we
add pi (which is 180 degrees, but JavaScript trigonometry is always in radi-
ans) to the angle so we can describe a full circle.

To calculate the angle, we’ve used some trigonometry, which you’ll
become more familiar with as you build games, if you’re not already. The
Math.atan method retrieves angles offset from the vertical with positive num-
bers to the right and negative numbers to the left of vertical. The returned
angle will be a value in radians ranging from negative to positive pi.

Firing and Animating Bubbles
Now that we know the angle at which to fire a bubble, we can send it off the
screen. Let’s assume we’ll fire it at 1000 pixels—which is enough to move it
outside the game area—and then see the results in action.

A Quick T r igonome t ry R e f r e she r

We can calculate the angle we want to fire the bubble with some trigonom-
etry using the inverse tangent function. In Figure 2-4, we calculate the angle
by taking the inverse tangent of the vector’s x and y components.

Vector from bubble to
mouse click

Bubble: Point A

Firing
angle

= tan−1(distancex /distancey)

distancex

distancey

Figure 2-4: Calculating the firing angle manually

40 Chapter 2

The new code sets a duration and total distance, and then calculates
the distance along the x - and y -axes to give coordinates (coords) that are
1000 pixels from its starting point in the direction of the mouse click.

Next, we need to write the fireBubble function u that takes the bubble
object v, a coordinate to fire at w, and a duration x as arguments. We’ll
put that in the ui class, because it handles just onscreen movement and
won’t affect the game state.

Add a new method right after getBubbleAngle in ui.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){
 var ui = {
 --snip--
 getBubbleAngle : function(bubble,e){
 --snip--
 },
 fireBubble : function(bubble,coords,duration){

u bubble.getSprite().animate({
v left : coords.x - ui.BUBBLE_DIMS/2,

 top : coords.y - ui.BUBBLE_DIMS/2
 },
 {

w duration : duration,
x easing : "linear"

 });
 }
 };
 return ui;
})(jQuery);

The fireBubble method is a jQuery call that moves a bubble with jQuery’s
animate method. The coordinates passed into the function represent the cen-
ter point of where the bubble needs to stop. To make sure the bubble reaches
the correct (top, left) coordinates, fireBubble first translates the coordinates it
receives to the top left of the object u, which is how CSS positions elements.

The simplest form of animation for moving a sprite around the screen
requires two steps: u place the sprite at a fixed position and v move it to
a new position a short time later. Repeat the second step until the sprite
reaches its destination. With DOM manipulation, we just need to change the
top and left CSS properties of the element for each movement and can let
the browser take it from there.

We can achieve this animation in two ways. We can use JavaScript ani-
mation, which requires us to move the sprite along each step of its path
manually, or we can use CSS3 transitions to move the sprite without input
from our code each frame. In this chapter, we’re focusing on the JavaScript
approach; later we’ll demonstrate a CSS3 implementation.

As with many of the effects we want to achieve in JavaScript and CSS,
we can let jQuery do much of the work for us. The animate method provides

ui.js

Sprite Animation Using jQuery and CSS 41

a way to animate numerical CSS properties, such as left and top coordi-
nates. It calculates the difference between the start and end values, and it
changes the property’s values from start to end over a number of steps.

N o t e 	 This method doesn’t work with non-numerical CSS properties because the way to get
from start to end can’t be calculated easily. For example, you couldn’t use animate to
transition a background color with start and end values that are hexadecimal pairs
because interpolating between two colors is not as simple a calculation.

The animate method takes a number of arguments, including these:

CSS properties v  Specifies the properties to animate. Most often,
these are positioning properties, such as top and left, but they could be
anything that can be defined by a single-integer dimension in pixels,
including font-size, width, height, or even border-width or margin-left.
(Note that the shorthand definition for margin, such as margin: 0
10px 20px 10px, contains four different values, so it won’t work with
animate without being split into the four constituent parts of margin-top,
margin-right, margin-bottom, and margin-left.)

Duration w  Defines the length in milliseconds of the animation
duration. The duration here is fixed at 1 second (1000 milliseconds)
for a velocity of 1000 pixels per second. The distance the bubble moves
will depend on the game state and, specifically, anything the bubble
might collide with. But the duration that we have now should be correct
for bubbles that are fired off the screen.

Easing x  Defines how an object transitions from its start state to its
end state. Easing is usually used to vary acceleration and deceleration
along a movement path. For movement, linear results in a constant veloc-
ity from start to end, whereas swing adds some starting acceleration and
ending deceleration.

You can pass other options to animate as well, and it’s worth referring to
the jQuery documentation to get an idea of the full potential of the func-
tion. To fire the bubble, we need only the preceding parameters.

Reload the page and click in a location above the bubble. The bubble
should fly off in that direction. This will work only once. You’ll need to
refresh the page to see it again, but it’s certainly a start.

Summary
In this chapter, you’ve learned how to perform simple animations with
jQuery, HTML, and CSS techniques. Now that we have the basic code in
place to move a bubble across the screen in response to a mouse click, it’s
time to start fleshing out the game.

In Chapter 3, we’ll focus on drawing the game board, detecting colli-
sions, and popping bubble groups.

42 Chapter 2

Further Practice
1.	 If you click in the game area a second time, the bubble appears back on

the screen. How would you disable this click event to prevent it?

2.	 In the .animate call, we specify easing : "linear". Try using "swing" and
think about why this may not be appropriate for Bubble Shooter but may
be a better animation method for other games. Then look at more eas-
ing settings at http://api.jqueryui.com/easings/ and see if you can incorpo-
rate any of them into the code.

http://api.jqueryui.com/easings/

3
G am e L o g i c

At this point, we’ve created an intro
screen with a New Game button and a

single bubble that a player can fire off the
screen. In this chapter, we’ll turn the Bubble

Shooter into more of a game. You’ll learn how to draw
the game board and display the level to the player,
and then learn about collision detection.

Collisions are central to many games and happen when sprites touch.
Once you can detect collisions, you can write code that makes the sprites
react to them. In the Bubble Shooter, collisions occur when a fired bubble
slams into a bubble in the game grid. We’ll implement two reactions: the
fired bubble will stick to the board if it doesn’t form a color group of three
or more bubbles, or it will cause a valid group to fall from the board.

But before we can calculate collisions, we need an object for a bubble
to collide with. The first section of this chapter discusses drawing the initial
board and setting up the game state. To do so, we’ll need to follow a process
containing a number of steps, shown in Figure 3-1.

44 Chapter 3

Draw the
game board

Wait for player’s
mouse click

Fire the bubble

Any collisions? Calculate effect

End game?

Show scores;
prepare for
next level

Yes

No

Yes

No

Draw bubble
ready to fire

Figure 3-1: The game loop starts by drawing the board and
ends by showing the score.

We’ll draw the game board first and then add collision detection to the
bubble that’s been fired. In the next chapter, we’ll implement the mecha-
nism to pop groups of bubbles based on matching color.

Let’s work through the steps and turn them into code.

Game Logic 45

Drawing the Game Board
The game board has a similar structure for every level, and each board con-
tains rows of bubbles in four different colors. Alternate rows contain either
an odd or even number of bubbles depending on whether the row is odd
or even. We’ll store all this state information in a Board object and store the
current board as a variable in the Game object.

The object structure you choose should vary depending on the game
design, but the goals should be the same as when you’re deciding how to
structure code in web applications: group objects that perform similar
operations, and strike a balance with how much common functions are
abstracted. Don’t define several classes that contain very little code, but
don’t create too few classes with long code listings that will be difficult to
read and understand. Game developers often base initial structural deci-
sions on instinct and experience as well as on hard-and-fast rules. Always
be prepared to refactor code if you think your original choices are no lon-
ger valid.

The rows that make up the board will be an array of Bubble objects. We’ll
create this array when we instantiate the Board object. Later, we’ll transfer
the drawing of the board elements to the DOM from within ui.js. Ending up
with a large mass of code within a Game class is easy to do but undesirable;
therefore, take the opportunity to hand off responsibilities to other classes
whenever possible, especially when rendering objects to the screen.

In game.js, we need to create a variable to hold the board and a new
instance of a Board object. The board is generated when the New Game
button is clicked. Add the following new code to game.js:

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 var curBubble;
 var board;
 --snip--
 var startGame = function(){
 $(".but_start_game").unbind("click");
 BubbleShoot.ui.hideDialog();
 curBubble = getNextBubble();
 board = new BubbleShoot.Board();
 BubbleShoot.ui.drawBoard(board);
 $("#game").bind("click",clickGameScreen);
 };
 --snip--
 };
 return Game;
})(jQuery);

game.js

46 Chapter 3

Board is a new constructor that we need to make. Create a new file called
board.js and add it to the list of files to load in Modernizr.load in index.html.
Add the following code to the new file:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Board = (function($){

u var NUM_ROWS = 9;
v var NUM_COLS = 32;

 var Board = function(){
 var that = this;

w var rows = createLayout();
x this.getRows = function(){ return rows;};

 return this;
 };
 var createLayout = function(){
 var rows = [];

y for(var i=0;i<NUM_ROWS;i++){
 var row = [];

z var startCol = i%2 == 0 ? 1 : 0;
 for(var j=startCol;j<NUM_COLS;j+=2){

{ var bubble = BubbleShoot.Bubble.create(i,j);
 row[j] = bubble;
 };
 rows.push(row);
 };
 return rows;
 };
 return Board;
})(jQuery);

NUM_ROWS u and NUM_COLS v are constants that determine the number
of rows and columns that make up the bubble board grid. The number of
columns may seem high, since we certainly won’t have 32 bubbles in a row.
The reason for such a large column value is that we’ll create a grid entry
for every half bubble width, because odd and even rows are offset on the
game board. This design decision results in a more visually appealing lay-
out, making it look like bubbles are stacking on top of each other. It also
creates more interesting angles for the player to fire at.

All the bubbles on the first row and every subsequent odd row will have
odd y -coordinates, and those on even rows will have even y -coordinates.
The rows increment in integer steps, but the array we’ll use starts with an
index of zero: the first row will be at index 0, the second will be at index 1,
and so on. Thus, the bubble coordinates (x,y), starting from the top-left cor-
ner of the bubble board, will be labeled as shown in Figure 3-2. Specifying
coordinates this way and having a half-populated grid avoids having to
work with half values and decimal points. In addition, we can store the
layout of the board in arrays indexed by integers. Working with integers
rather than decimals doesn’t change the process we’ll follow to calculate
collisions, but it does make the code more readable.

board.js

Game Logic 47

Figure 3-2: Coordinates of the bubbles in
the game grid

In the code, we’ll now call the createLayout function w, which returns
a two-dimensional array of rows and columns. We provide public access to
this array in the next line x. Once we have a Board object, we can retrieve
the bubble at any specific row and column position. For example, to access
a bubble at coordinate (4,1) we would write:

var rows = board.getRows();
var row = rows[1];
var bubble = row[4];

Bubbles are accessed by row and then column number. First, we grab all
the rows with board.getRows, and then we store the first row from the board
as row. Next, we access the fourth bubble within row by its column number.
Because the row array is only half populated, all odd entries in even-indexed
rows (starting at zero) and all even entries in odd rows will be null.

The createLayout function contains a loop y. For each row we want to
create, startCol z calculates whether to start on column 1 or 0 depending
on whether the row is odd or even, respectively. Then another loop incre-
ments to the maximum column number, creates a new Bubble object {, and
adds it to the row array, which is returned on completion.

For this function to work, we need to adapt the Bubble class to accept
row and column input coordinates, and we need to make a change to the
Bubble.create method. Also, if a Bubble object knows its position in the grid
by storing its coordinates, that information will be useful when we need to
calculate groups to pop. When we know a bubble’s position, we can access
that bubble, as it’s stored within the Board object. Then given a bubble, we
can interrogate it to determine its position. Each bubble will have a type
property, which corresponds to its color, and the property will be deter-
mined at creation time.

When you start coding your own game ideas, the decisions about where
to store data and how to access it are critical. Your solution will depend on
the type of game you’re building. In Bubble Shooter, we store a relatively small
number of Bubbles within a Board object. To find out information about a par-
ticular bubble, we can access the data that the Board stores by retrieving data
from the rows array.

48 Chapter 3

Depending on how we need to use that bubble data, this method might
not be the most elegant solution. For example, imagine we want to find all
of the red bubbles in the game. Currently, we would have to loop over every
space on the board, check whether the bubble is red, and then store the
outcome. The game grid is small, so modern processors can perform this
operation quickly. As long as we don’t run the color check too many times
a second, the current code structure should work.

But now imagine thousands of bubbles on the screen. Looping over
all the bubbles just to find red ones would consume too much processing
power. Instead, we might want to store bubbles in multiple arrays—one for
all the red bubbles, one for all the green bubbles, and so on—for instant
access to all bubbles of each color. However, there would still be a trade-
off: to check whether a given space on the board is occupied by a bubble,
regardless of color, we would have to look at multiple arrays.

When you have only a rough sense of how fast a processor can run an
operation, it’s best to make your code clear and simple. If your game is
playable and runs sufficiently fast, you won’t need to experiment with dif-
ferent ways to access data. Alternatively, if you identify bottlenecks, you’ll
then have to refactor some sections to increase their speed. Game develop-
ment is an iterative process; you’ll revisit existing lines of code as much as
you write new ones.

How you design objects and where you store their data will vary from
game to game. But remember this: if the Game object needs to use that data,
one way or another you must allow the object to access it. Whether data
is stored directly in a variable or in an array within Game, or is accessed
through an intermediate object that Game has access to (such as the Board
object in Bubble Shooter), the code will need to access that object’s state if it
needs to make decisions about that object.

To support a bubble storing its position on the board and its color,
amend bubble.js as follows:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Bubble = (function($){
 var Bubble = function(urow,col,type,sprite){
 var that = this;
 this.getType = function(){ return type;};
 this.getSprite = function(){ return sprite;};
 this.getCol = function(){ return col;};
 this.getRow = function(){ return row;};
 };
 Bubble.create = function(vrowNum,colNum,type){

w if(type === undefined){
x type = Math.floor(Math.random() * 4);

 };
 var sprite = $(document.createElement("div"));
 sprite.addClass("bubble");
 sprite.addClass("bubble_" + type);
 var bubble = new Bubble(rowNum,colNum,type,sprite);
 return bubble;
 };

bubble.js

Game Logic 49

 return Bubble;
})(jQuery);

Bubble now takes grid coordinates and a bubble type as well as the sprite
object u, where type corresponds to colors that were specified in game.css. The
Bubble.create method accepts the same parameters v; if type isn’t passed w,
one of the four types (colors) is chosen at random x.

Now we have a Board object, plenty of bubbles, and their types and posi-
tions. But all this information is entirely in memory and is stored within the
Board object’s rows property. Next, we’ll render the level using this informa-
tion so players can see the game board.

Rendering the Level
Drawing the level is a perfect job for the ui class, because ui represents the
game state but doesn’t affect that state.

Separating the code that calculates an object’s position from the code
that renders that object to the screen is a principle you should apply in all
of your game ideas. Not only does it separate rendering code from game
logic, thereby improving readability, but it also allows you to more easily
change how objects are rendered. For example, if the Bubble Shooter board
was larger and didn’t fit on the screen but we wanted to implement a zoom
or pan feature, we could change the code that renders the board to either
offset the rendering position or to scale up or down to draw a different size
board. The power of separating rendering from game logic will become
apparent when we switch from DOM-based sprites to drawing onto the
HTML canvas element in Chapter 6.

Because the creation of a bubble object involves creating a DOM sprite
element, the rendering process needs to place this element in the docu-
ment and position it correctly. These simple steps follow:

1.	 Loop over all the rows and columns and pull out each bubble object.

2.	 Write the bubble’s HTML into the DOM.

3.	 Position the bubble in the correct position.

The next piece of code you add will apply these steps. Open ui.js, add
a new method (drawBoard) after fireBubble, and then add a new ROW_HEIGHT
constant at the top:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){
 var ui = {
 BUBBLE_DIMS : 44,
 ROW_HEIGHT : 40,
 init : function(){
 },
 fireBubble : function(bubble,coords,duration){
 --snip--
 },
 drawBoard : function(board){

ui.js

50 Chapter 3

u var rows = board.getRows();
 var gameArea = $("#board");
 for(var i=0;i<rows.length;i++){
 var row = rows[i];

v for(var j=0;j<row.length;j++){
 var bubble = row[j];

w if(bubble){
x var sprite = bubble.getSprite();
y gameArea.append(sprite);

 var left = j * ui.BUBBLE_DIMS/2;
 var top = i * ui.ROW_HEIGHT;

z sprite.css({
 left : left,
 top : top
 });
 };
 };
 };
 }
 };
 return ui;
})(jQuery);

The drawBoard method retrieves the board rows and columns u
and loops over them v. If there’s a bubble w (recall that every other
x -coordinate position is null due to the sparse grid system), drawBoard
grabs the sprite object x, appends it to the board y, and calculates its
coordinates before setting its position z.

To determine a bubble’s position, drawBoard first calculates the left coor-
dinate, which is the bubble’s column number multiplied by half its width.
To calculate the top coordinate, we’ll use a value slightly smaller than the
BUBBLE_DIMS height. The odd and even rows are staggered, and we want the
bubbles to look like they fit together. To create the stacking effect, the verti-
cal separation will be slightly less than the horizontal distance. At the top
of ui.js, ROW_HEIGHT has been set to 40, which is 4 pixels less than the height.
This value was determined through trial and error rather than geometrical
calculation: adjust the numbers until the bubble grid looks pleasing to you.

Reload and click New Game; you should see a nicely rendered board.
You can even fire a bubble at the rest of the board; unfortunately, it should
just go straight through without hitting anything and continue off the screen
as before.

Because we have only one bubble, we need to refresh to retry the pro-
cess. Before we begin working on collision detection, we’ll make sure we
can keep firing one bubble after another.

The Bubble Queue
Although the player will have only a finite number of bubbles to fire, the
game needs to provide those bubbles in a constant stream. Therefore, we’ll
need to add a function that creates a new bubble, adds it to the DOM, and
queues up the next bubble as soon as the user fires the first one.

Game Logic 51

In game.js, add the following variables and functions and change the
initialization for curBubble to call a new getNextBubble function:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Game = (function($){
 var Game = function(){
 var curBubble;
 var board;

u var numBubbles;
v var MAX_BUBBLES = 70;

 this.init = function(){
 $(".but_start_game").bind("click",startGame);
 };
 var startGame = function(){
 $(".but_start_game").unbind("click");

w numBubbles = MAX_BUBBLES;
 BubbleShoot.ui.hideDialog();
 curBubble = getNextBubble();
 board = new BubbleShoot.Board();
 BubbleShoot.ui.drawBoard(board);
 $("#game").bind("click",clickGameScreen);
 };
 var getNextBubble = function(){
 var bubble = BubbleShoot.Bubble.create();
 bubble.getSprite().addClass("cur_bubble");
 $("#board").append(bubble.getSprite());

x BubbleShoot.ui.drawBubblesRemaining(numBubbles);
 numBubbles--;
 return bubble;
 };
 var clickGameScreen = function(e){
 var angle = BubbleShoot.ui.getBubbleAngle(curBubble .getSprite(),e);
 var duration = 750;
 var distance = 1000;
 var distX = Math.sin(angle) * distance;
 var distY = Math.cos(angle) * distance;
 var bubbleCoords = BubbleShoot.ui.getBubbleCoords(curBubble .getSprite());
 var coords = {
 x : bubbleCoords.left + distX,
 y : bubbleCoords.top - distY
 };
 BubbleShoot.ui.fireBubble(curBubble,coords,duration);

y curBubble = getNextBubble();
 };
 return Game;
})(jQuery);

The new code first creates a variable u to store the number of bubbles
the player has fired. Because the number of fired bubbles is an integer—a
basic data type—we’ll store it as a variable in Game. If, for example, we had a
time limit that a level had to be completed within, we might create an object
to store time remaining along with bubbles remaining rather than continu-
ing to create variables in Game. As it is, the variable suits our purpose.

game.js

52 Chapter 3

The code also sets a constant for the maximum number of bubbles v
the player can fire. When a level is started, it sets the number of bubbles
remaining to the value of MAX_BUBBLES w and calls a new function in ui.js to
display the number of remaining bubbles on the screen x. Finally, the code
calls getNextBubble y each time a bubble is fired to prepare a new one.

We also want to show the player the number of remaining bubbles
available to fire within a level, so create the drawBubblesRemaining method in
ui.js, appending this new function to the ui object:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){
 var ui = {
 BUBBLE_DIMS : 44,
 ROW_HEIGHT : 40,
 --snip--
 drawBoard : function(board){
 --snip--
 },
 drawBubblesRemaining : function(numBubbles){
 $("#bubbles_remaining").text(numBubbles);
 }
 };
 return ui;
})(jQuery);

Additionally, we need to display the number of remaining bubbles, so
add a new element in index.html:

<div id="game">
 <div id="board"></div>
 <div id="bubbles_remaining"></div>
</div>

Add some styling for the bubbles_remaining div into main.css:

#bubbles_remaining
{
 position: absolute;
 left: 479px;
 top: 520px;
 width: 50px;
 font-size: 26px;
 font-weight: bold;
 color: #000;
 text-align: center;
}

Now refresh the game. You should be able to fire bubbles into the distance,
get a new one as soon as the first is fired (until you’ve used 70 bubbles, or
whatever value you used for MAX_BUBBLES), and be able to fire that new bubble
immediately.

ui.js

index.html

main.css

Game Logic 53

Often, you can break down a game into a repeating turn loop. The loop
is usually initiated by a player action and then closed when that action has
been resolved. In Bubble Shooter, the loop commences when the player clicks
the screen to fire the button and completes when the next bubble is ready
to fire. At this point we have the basic turn loop, but to create the game, we
need to flesh out the middle part of the loop to calculate where to stop a
bubble and whether to pop bubbles.

Detecting Collisions
Although you can now fire bubbles, they pass straight through the board
without affecting the bubble grid. The game design calls for them to col-
lide with the board and either become part of the board or cause groups
of bubbles that are the same color to pop. The next task is to work out
where collisions occur.

We can calculate collisions in two ways:

•	 Move a sprite forward a few pixels for each frame and then try to detect
any overlaps with other sprites. If there’s an overlap, we know we’ve hit
another bubble.

•	 Use geometry to calculate where the sprite might collide with another
bubble before it even starts moving.

In fast-paced arcade games, you might choose the first option, as long
as there’s no chance objects will pass through each other without a collision
being detected. These pass-throughs can happen when objects move at high
speeds, and collision checks occur after an object has moved numerous pixels
since the previous check. For example, in a game in which you fire a bullet at
a one-foot-thick wall, the bullet would only be guaranteed to collide with the
wall if you check for collisions every foot. If you checked for collisions every
two feet instead, you might check for a collision just before the bullet should
hit and find no wall. Then two feet further along when you check again, the
bullet would be past the wall, again resulting in no collision.

To work around the fast-moving-object problem, we could make sure
the steps are always small enough that pass-throughs never happen; how-
ever, that requires more calculations, which may not be possible without
significant computing power. This problem is more likely to surface in a
browser environment: because we never know the specs of the end user’s
computer, we can’t take processing power for granted.

The second option, using geometry, is more accurate if it’s feasible.
Fortunately, our game design has fairly simplistic geometric properties.
Unfortunately, this option isn’t possible in games in which sprites have
more complex shapes. In that case, you’d have to check whether pixels
overlap on a frame-by-frame basis and test thoroughly to ensure you don’t
see any side effects. For Bubble Shooter, we’ll use a geometrical approach
because we have the following advantages:

•	 The game is on a regular grid.

•	 All the objects (the bubbles) are identical.

54 Chapter 3

•	 We’re working in only two dimensions.

•	 The player moves only one object.

•	 All the objects are simple geometric shapes (circles), so the calculation
of where edges meet is easy.

These conditions make geometric calculations for collisions relatively
straightforward. Because game development often involves a lot of geom-
etry, having a good grounding in trigonometry and vectors is essential. The
next section discusses the geometry involved in this game. Then we’ll turn
that geometry into code.

Collision Geometry
When you need to calculate collisions, draw the geometry on a piece of
paper before you write the detection code. You’ll then be able to visualize
the values you’ll need to calculate, as shown in Figure 3-3.

R

Fired bubble

Struck bubble

Path of fired bubble

Figure 3-3: Visualizing the geometry behind a bubble collision

The bubble being fired should cause a collision when its center passes
within 2R (where R is a bubble’s radius) of another bubble’s center, mean-
ing that the two circumferences are touching. Because the intersection
point will always be normal (at 90 degrees) to the colliding bubble’s edge
and the edge of the bubble being hit, we need to check for a collision only if
the path of the moving bubble’s center comes within 2R of another bubble’s
center.

To determine where collisions occur, we need to check every other
bubble on the board to determine whether the fired bubble’s path passes
through it. If it overlaps with multiple bubbles, as it does in Figure 3-4, we
need to make sure that the struck bubble we pick is the first collision that
occurs, which will be the one in which the firing bubble has traveled the
least distance.

Game Logic 55

Fired bubble

Path of fired bubble

Possible struck bubbles

Figure 3-4: The fired bubble may be on a path to collide with multiple other bubbles.

Detecting a collision is equivalent to detecting when a vector drawn
from the center line of the bubble we’re firing intersects with a circle with
a radius double that of our bubbles. This will be known as a bubble’s hitbox.
Figure 3-5 shows how we can redraw this concept to help us think about it
in a way that’s easier to compute.

2R

Fired bubble’s center

Path of fired
bubble’s center

Struck bubble Hitbox

Figure 3-5: If the fired bubble’s travel path intersects
a stationary bubble’s circular hitbox, a collision occurs.

In this diagram, the small filled circle marks the center of the bubble
being fired. The bubble it will collide with is the inner circle, and the inter-
section with the bubble’s hitbox (the point marked with the arrow 2R, which
is double a bubble’s radius) is where the bubble will stop.

Turning the diagram into a mathematical formula means using vec-
tors. Rather than working through the math before showing any code,
let’s go straight into the necessary JavaScript, which includes explanatory
annotations.

56 Chapter 3

The calculation is a large block of code with a specific function, so we’ll
put it in its own file. Create a file called collision-detector.js and add it to the
Modernizr.load call in index.html. Type in the following:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.CollisionDetector = (function($){
 var CollisionDetector = {
 findIntersection : function(curBubble,board,angle){
 var rows = board.getRows();
 var collision = null;
 var pos = curBubble.getSprite().position();
 var start = {
 left : pos.left + BubbleShoot.ui.BUBBLE_DIMS/2,
 top : pos.top + BubbleShoot.ui.BUBBLE_DIMS/2
 };
 var dx = Math.sin(angle);
 var dy = -Math.cos(angle);
 for(var i=0;i<rows.length;i++){
 var row = rows[i];
 for(var j=0;j<row.length;j++){
 var bubble = row[j];
 if(bubble){

u var coords = bubble.getCoords();
 var distToBubble = {
 x : start.left - coords.left,
 y : start.top - coords.top
 };
 var t = dx * distToBubble.x + dy * distToBubble.y;
 var ex = -t * dx + start.left;
 var ey = -t * dy + start.top;
 var distEC = Math.sqrt((ex - coords.left) * (ex - coords.left) +
 (ey - coords.top) * (ey - coords.top));
 if(distEC<BubbleShoot.ui.BUBBLE_DIMS * .75){
 var dt = Math.sqrt(BubbleShoot.ui.BUBBLE_DIMS * BubbleShoot.
 ui.BUBBLE_DIMS - distEC * distEC);
 var offset1 = {

collision
-detector.js

Simpl if y ing Hi tb ox e s

Because we are working with circles, creating a hitbox is simpler than it might
be if you were dealing with, for example, a figure that runs and jumps, as in a
platform game. In that case, you might not want to detect collisions just by check-
ing whether pixels overlap because of possible performance issues; instead, you
could simplify the geometry of the main character and create a rectangular hit-
box to check against. Not all games lend themselves to this approach. However,
if you can reduce complex character outlines to simple geometrical shapes, you
can detect collisions with much greater precision and less processing power than
by checking whether pixels have overlapped. Always look for creative, efficient
solutions to avoid brute-force techniques that monopolize resources.

Game Logic 57

 x : (t - dt) * dx,
 y : -(t - dt) * dy
 };
 var offset2 = {
 x : (t + dt) * dx,
 y : -(t + dt) * dy
 };
 var distToCollision1 = Math.sqrt(offset1.x * offset1.x +
 offset1.y * offset1.y);
 var distToCollision2 = Math.sqrt(offset2.x * offset2.x +
 offset2.y * offset2.y);
 if(distToCollision1 < distToCollision2){
 var distToCollision = distToCollision1;
 var dest = {
 x : offset1.x + start.left,
 y : offset1.y + start.top
 };
 }else{
 var distToCollision = distToCollision2;
 var dest = {
 x : -offset2.x + start.left,
 y : offset2.y + start.top
 };
 }
 if(!collision || collision.distToCollision>distToCollision){
 collision = {
 bubble : bubble,
 distToCollision : distToCollision,
 coords : dest
 };
 };
 };
 };
 };
 };
 return collision;
 }
 };
 return CollisionDetector;
})(jQuery);

In a moment I’ll break down the code in collision-detector.js. But
first, notice the call to a new method in bubble.js called getCoords u, which
returns the center (x,y) coordinate of a bubble based on its position in
the row/column hierarchy. You’ll need to amend the bubble class to
add the new method:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Bubble = (function($){
 var Bubble = function(row,col,type,sprite){
 var that = this;
 this.getType = function(){ return type;};
 this.getSprite = function(){ return sprite;};
 this.getCol = function(){ return col;};

bubble.js

58 Chapter 3

 this.getRow = function(){ return row;};
 this.getCoords = function(){
 var coords = {
 left : uthat.getCol() * vBubbleShoot.ui.BUBBLE_DIMS/2 +
 yBubbleShoot.ui.BUBBLE_DIMS/2,
 top : wthat.getRow() * xBubbleShoot.ui.ROW_HEIGHT +
 yBubbleShoot.ui.BUBBLE_DIMS/2
 };
 return coords;
 }
 };
 Bubble.create = function(rowNum,colNum,type){
 --snip--
 };
 return Bubble;
})(jQuery);

The game coordinates of a bubble are simple to calculate: you start by
finding each top-left corner coordinate. The x-coordinate (left) is the column
number u multiplied by half the bubble sprite’s width v. The y -coordinate
(top) is the row number w multiplied by the row height x, which is slightly
less than the bubble’s full height. To find the center of a bubble, just add
half the bubble’s dimensions y to both x and y.

When you’re developing game logic, the center coordinates of an object
are more often the focus, whereas for rendering purposes, you’ll usually
specify the top-left corner along with a width and a height. Building a handy
method into the object that converts from one to the other will save you
from writing out the math each time you need to switch.

Collision Detection Logic
Now let’s walk through the entire findIntersection routine in CollisionDetector
.js block by block. If you don’t want to dig into the math right now, you can
skip this breakdown—it’s purely the math of detecting collisions and doesn’t
contain any new HTML5 or game development concepts. However, know that
in almost every game you write, you’ll break down the complexities of how
objects interact into a model that you can manipulate with relatively simple
mathematics.

Starting Position and Direction Vector

The first part added to collision-detector.js is the standard library intro:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.CollisionDetector = (function($){
 var CollisionDetector = {

We’ve created an object called CollisionDetector. Now let’s look at the
first method on that object:

 findIntersection : function(curBubble,board,angle){

Game Logic 59

When you call CollisionDetector, you’ll use BubbleShoot.CollisionDetector
.findIntersection. It accepts the parameters curBubble (an instance of the
Bubble class), the board variable (an instance of Board), and the angle at
which the bubble is being fired, giving the function everything it needs
to know about the starting situation.

Now, examine the first variables within findIntersection:

 var rows = board.getRows();
 var collision = null;

We’ll loop over each row to check for collisions, so let’s grab the board
rows into a local variable. Assuming there’s no collision by default, this will
be the state returned by the function if no intersections occur. As a result,
if the fired bubble doesn’t hit another bubble, it will keep moving forward.

The starting value of collision is null instead of false because if an
intersection occurs, it will hold the bubble that’s been collided with, plus
some other information, rather than a Boolean that indicates whether or
not a collision has occurred. We need to know that a collision has occurred
(which would be a “true” or “false” result), but more important, we need to
send back information about what was collided with and where the collision
occurred:

 var pos = curBubble.getSprite().position();
 var start = {
 left : pos.left + BubbleShoot.ui.BUBBLE_DIMS/2,
 top : pos.top + BubbleShoot.ui.BUBBLE_DIMS/2
 };

The next pair of variables retrieves the bubble’s starting position (on
the screen) as an object with top and left properties:

 var dx = Math.sin(angle);
 var dy = -Math.cos(angle);

Finally, dx and dy define how much a bubble moves left or right (dx) or up
(dy) relative to the total distance the bubble will move. With those variables
defined, we can loop through the rows and columns of the game board:

 for(var i=0;i<rows.length;i++){
 var row = rows[i];
 for(var j=0;j<row.length;j++){
 var bubble = row[j];
 if(bubble){

We’ll start at the top left of the game board and work our way down and
to the right. Because we only fire bubbles upward, we know that a bubble
will never collide with another from the top of the game board. We also
know that if multiple collision candidates are present along the bubble’s
path, we want to grab the one where the bubble has traveled the least

60 Chapter 3

distance—that is, the collision that happened first. Remember that because
columns are sparsely populated (every other entry is null), we also need to
make sure we’re actually looking at a bubble before we try to do anything
with it—hence the if(bubble) check.

Calculating Collisions

Next we need to use some geometry to check whether the fired bubble’s hit-
box collided with another bubble. We’ll determine where the vector defined
by (dx,dy), which begins at the center of the fired bubble, intersects with the
circle drawn in Figure 3-4. Let’s start with the equation of a circle:

(x – cx)
2 + (y – cy)

2 = r2

Here, x and y are the points on the circle’s circumference, cx and cy are
the center points of the circle, and r is the radius of the circle. We’ll need
those points to find the distance to the starting bubble.

 var coords = bubble.getCoords();
 var distToBubble = {
 x : start.left - coords.left,
 y : start.top - coords.top
 };

This part of the loop contains a bubble to check a collision against, so
let’s get cx and cy , the center coordinates of the bubble (coords in the pre-
ceding code), and calculate the distance between this point and the fired
bubble’s coordinates. We don’t yet know whether or not a collision will
occur.

The bubble being fired follows a set of coordinates defined by the
equations:

px = ex + tdx
py = ey + tdy

where px and py are points on the trajectory of the bubble’s center point.
The calculation of px and py happens in jQuery’s animate method and is the
standard equation for moving a point along a line. Next, we’ll calculate t at
the closest point on this line to the center of the bubble that we’re checking
against:

 var t = dx * distToBubble.x + dy * distToBubble.y;

This line tells us at what proportion of the fired bubble’s total move-
ment it will be closest to the candidate bubble’s center. From this, we can
calculate the screen coordinates where this happens:

 var ex = -t * dx + start.left;
 var ey = -t * dy + start.top;

Game Logic 61

With these coordinates, we can find the distance of e (the closest point
on the fired bubble’s center line to the center of the candidate bubble):

 var distEC = Math.sqrt((ex - coords.left) * (ex - coords.left) + (ey -
 coords.top) * (ey - coords.top));

If the distance distEC is less than double the candidate bubble’s radius,
a collision occurs. If not, the fired bubble will not collide with this candi-
date bubble.

If distEC is less than three-quarters of the bubble sprite width, we know
that the fired bubble’s travel path intersects the candidate bubble’s hitbox
at some point:

if(distEC < BubbleShoot.ui.BUBBLE_DIMS * .75){

Most likely, a second intersection point will occur where the line exits
the bubble’s hitbox (see Figure 3-5, which shows the center line of the fired
bubble passing through the hitbox at two points), but we only want the first.
Two calculations will ensure that we have the correct intersection. Let’s look
at the first calculation:

 var dt = Math.sqrt(BubbleShoot.ui.BUBBLE_DIMS * BubbleShoot.ui.BUBBLE_DIMS
 - distEC * distEC);

T r i a l a nd E r ror v s. C a lcul at ion

Note that although BubbleShoot.ui.BUBBLE_DIMS gives the width and height of the
sprite, we’re checking distEC against a bubble image that is actually slightly
smaller. Multiplying the BUBBLE_DIMS value by 0.75 (obtained from a bit of trial
and error) gives a diameter for a bubble that works in the game.

We can arrive at a more precise value for distEC by measuring the width
of the bubble, which is 44 pixels in the images in this book. Dividing by the
BUBBLE_DIMS of 50 pixels, the result is a multiplier of 0.88. Although this larger
value might be more exact, it requires the player to be more accurate when
trying to fire bubbles through gaps. Therefore, 0.75 just feels better to the
player, because it gives them more chances to make shots that they would
find very difficult if the math were precise.

Often in game development, you’ll make decisions based on trial and
error as much as by calculation. In this case, by using a slightly smaller value,
you give the player the opportunity to fire bubbles through small gaps in the
game board. Players won’t notice the lax enforcement of the laws of physics,
and they’ll enjoy the game more.

62 Chapter 3

Here, we find the distance between the center of the struck bubble and
the closest point on the fired bubble’s path. The second calculation follows:

 var offset1 = {
 x : (t - dt) * dx,
 y : -(t - dt) * dy
 };
 var offset2 = {
 x : (t + dt) * dx,
 y : -(t + dt) * dy
 };

The points on the line that cross the stationary bubble’s center are cal-
culated here as offsets from the fired bubble’s path at point t.

Finding the Correct Collision Point

Now we want to choose which intersection we’ll encounter first—that is,
which point is closest to where we’re firing curBubble from—so we need the
distances to each potential collision point:

 var distToCenter1 = Math.sqrt(offset1.x * offset1.x + offset1.y *
 offset1.y);
 var distToCenter2 = Math.sqrt(offset2.x * offset2.x + offset2.y *
 offset2.y);

Next, we’ll choose the correct collision point and calculate where
curBubble needs to stop by adding the starting coordinates back into the
system:

 if(distToCollision1 < distToCollision2){
 var distToCollision = distToCollision1;
 var dest = {
 x : offset1.x + start.left,
 y : offset1.y + start.top
 };
 }else{
 var distToCollision = distToCollision2;
 var dest = {
 x : -offset2.x + start.left,
 y : offset2.y + start.top
 };
 }

Most of the time, if the center of the bubble being fired collides with
the edge of another bubble, it’ll cross twice: once on the way in and once
on the way out. In the rare cases where it just brushes past and only a single
collision point occurs, we’ll get two identical results, so it doesn’t matter
which one we choose.

Game Logic 63

At this point, the function will loop over every bubble in the display and
check for collisions; however, we don’t want to know about every collision—
just the nearest one that occurs earliest in curBubble’s movement path.

To store the current best-match collision, we use the collision variable,
which was set to null before the loop started. Then, each time we find a col-
lision, we check to see if the new collision is closer than the previous best.
If no previous collision happened, the first one we find will be the best.
The collision object stores a reference to the stationary bubble that the
fired bubble collides with, the distance to the collision, and the coordinates
where it happened:

 if(!collision || collision.distToCollision>distToCollision){
 collision = {
 bubble : bubble,
 distToCollision : distToCollision,
 coords : dest
 };
 };
 };
 }
 }
 };
 return collision;
};

Now the findIntersection function will return an object with all the data
we need if a collision is found or null if no collision occurs. All of these cal-
culations happen before the bubble has even started moving.

Reacting to Collisions
We now need to use the collision coordinates we have in an amended ver-
sion of clickGameScreen in game.js so we can fire and stop bubbles. We’ve writ-
ten the first step in detecting a collision by resolving what the bubble has
collided with (which may be nothing!). Now, Game needs to decide how to
react to that information.

First, we check for a collision. If one occurs, we move the bubble to
wherever the collision occurred. If one doesn’t occur, we fire the bubble off
the screen. Change the existing clickGameScreen function in game.js to the
following:

var clickGameScreen = function(e){
 var angle = getBubbleAngle(e);
 var bubble = $("#bubble");
 var duration = 750;
 var distance = 1000;
 var collision = BubbleShoot.CollisionDetector.findIntersection(curBubble,
 board,angle);
 if(collision){
 var coords = collision.coords;

game.js

64 Chapter 3

u duration = Math.round(duration * collision.distToCollision / distance);
 }else{

 var distX = Math.sin(angle) * distance;
 var distY = Math.cos(angle) * distance;
 var bubbleCoords = BubbleShoot.ui.getBubbleCoords(curBubble.getSprite());
 var coords = {
 x : bubbleCoords.left + distX,
 y : bubbleCoords.top - distY
 };
 };
 BubbleShoot.ui.fireBubble(curBubble,coords,duration);
 curBubble = getNextBubble();
};

If the distance the bubble moves has changed due to a collision, the
time it needs to get there should also change, so all bubbles fire at the same
velocity. We’ll use the collision data to recalculate that duration u.

Reload the game and fire a bubble. The bubble should stop when it hits
the main group. But it still doesn’t look quite right. The bubble stops, but
it doesn’t integrate itself into the board. It just sticks wherever it hits. Also,
if you fire more bubbles, they just pile on top of each other; new bubbles
won’t collide with previously fired bubbles. The problem is that the board
state doesn’t change to synchronize with the display state, so we’ll correct
this using two steps:

1.	 Add the fired bubble to the board state in the correct row and column.

2.	 When the fired bubble stops, lock it into a tidy grid position.

The second step will use information from the first.

Adding the bubble Object to the Board
The bubble object, curBubble, is in the DOM and should end up close to the
correct position on the screen, so we can add it to the board’s row/column
array when we know where it should fit.

To calculate the row number, we divide the y -coordinate by the height
of rows and round down the result. Calculating the column number is simi-
lar, except we need to snap to either odd column numbers on even rows
(including zero) or even column numbers on odd rows. Finally, we can add
the bubble to the rows property of the Board object, because Board is where
we’re storing positional information for all of the bubbles.

The function to add the fired bubble is trivial, so we’ll put that in board.js.
Within the definition of the board class and after the getRows method, add
the following:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Board = (function($){
 var NUM_ROWS = 9;
 var NUM_COLS = 32;
 var Board = function(){
 var that = this;

board.js

Game Logic 65

 var rows = createLayout();
 this.getRows = function(){ return rows;};
 this.addBubble = function(bubble,coords){
 var rowNum = Math.floor(coords.y / BubbleShoot.ui.ROW_HEIGHT);
 var colNum = coords.x / BubbleShoot.ui.BUBBLE_DIMS * 2;
 if(rowNum % 2 == 1)
 colNum -= 1;
 colNum = Math.round(colNum/2) * 2;
 if(rowNum % 2 == 0)
 colNum -= 1;
 if(!rows[rowNum])
 rows[rowNum] = [];

u rows[rowNum][colNum] = bubble;
v bubble.setRow(rowNum);
w bubble.setCol(colNum);

 };
 return this;
 };
 var createLayout = function(){
 --snip--
 };
 return Board;
})(jQuery);

Note that as well as adding the bubble into the correct row-column
position in rows[][] u, we’re also passing the calculated row v and column w
numbers to the bubble object so it knows its location relative to the other
bubbles. We don’t have those method calls yet, so let’s create them now in
bubble.js in the Bubble class definition:

var Bubble = function(row,col,type,sprite){
 var that = this;
 this.getType = function(){ return type;};
 this.getSprite = function(){ return sprite;};
 this.getCol = function(){ return col;};
 this.setCol = function(colIn){ col = colIn;};
 this.getRow = function(){ return row;};
 this.setRow = function(rowIn){ row = rowIn;};
 this.getCoords = function(){
 --snip--
 }
};

Next, amend game.js to call this new method in clickGameScreen:

var clickGameScreen = function(e){
 var angle = BubbleShoot.ui.getBubbleAngle(curBubble.getSprite(),e);
 var duration = 750;
 var distance = 1000;
 var collision = BubbleShoot.CollisionDetector.findIntersection(curBubble,
 board,angle);
 if(collision){
 var coords = collision.coords;

bubble.js

game.js

66 Chapter 3

 duration = Math.round(duration * collision.distToCollision / distance);
 board.addBubble(curBubble,coords);
 }else{
 var distX = Math.sin(angle) * distance;
 var distY = Math.cos(angle) * distance;
 var bubbleCoords = BubbleShoot.ui.getBubbleCoords(curBubble.getSprite());
 var coords = {
 x : bubbleCoords.left + distX,
 y : bubbleCoords.top - distY
 };
 };
 BubbleShoot.ui.fireBubble(curBubble,coords,duration);
 curBubble = getNextBubble();
};

Reload the game and shoot a few bubbles. They should start to pile up,
although some may still overlap because they don’t quite settle properly into
the grid. It’s progress, but we want the bubbles to line up nicely when they
collide—that’s what we’ll do next.

Locking the bubble Object into the Grid
When the fired bubbles collide with the rest of the board, we want to lock
them in place rather than just having them stop wherever they hit. The cur-
rent movement works well, but we need to add another step that locks the
bubble into position when it reaches its destination.

After board.addBubble has been run, the bubble object knows which row
and column it’s located in; therefore, calling its getCoords method (which
calculates based on row and column) will retrieve the coordinates where it
should be rather than the coordinates where it actually stopped. To nudge
it into place, we’ll add a complete function that can be set as part of a jQuery
animate call and use the information the bubble already has. As a result, we
can fire the bubble and forget about it rather than creating a process to
tidy up bubbles as they land. jQuery’s complete callback function is a use-
ful place to put code that needs to run when an animation has finished.
For example, in a game with an explosion effect, the frames of the anima-
tion could run, and when the animation finishes, the DOM elements that
formed the explosion could be removed from the screen.

The complete property is called when the animation has ended. In ui.js
amend fireBubble as follows:

fireBubble : function(bubble,coords,duration){
 bubble.getSprite().animate({
 left : coords.x - ui.BUBBLE_DIMS/2,
 top : coords.y - ui.BUBBLE_DIMS/2
 },
 {
 duration : duration,
 easing : "linear",
 complete : function(){

u if(bubble.getRow() !== null){

ui.js

Game Logic 67

 bubble.getSprite().css({
 left : bubble.getCoords().left - ui.BUBBLE_DIMS/2,
 top : bubble.getCoords().top - ui.BUBBLE_DIMS/2
 });
 };
 }
 });
},

When you reload, the bubbles you fire should settle into the grid system.
Note that we use getRow to check whether a collision has occurred u, because
getRow should return null for a bubble that misses all other bubbles and moves
off the screen.

Summary
Now that fired bubbles collide with the others on the board, Bubble Shooter
is starting to act more like a game. We’ve moved sprites across the screen
using jQuery, made the game react to the player’s input, and set up some of
the basic game logic. However, currently there’s no way to pop bubbles, and
it won’t be much of a game without that functionality. Popping logic and
displaying an animation are the subjects of the next chapter.

Further Practice
1.	 Each row of the game board is offset to form a staggered pattern.

Change the code in createLayout so the bubbles form a regular grid.
How will this change the game?

2.	 Now that you can make createLayout build a different grid pattern, write
code to generate an entirely new layout. For example, you could draw
only every alternate column or build a more creative layout.

3.	 Bubble Shooter has a simple object structure that consists of a Game, a
Board, and a set of Bubbles. What sort of objects would you need if you
were building a game like Angry Birds, Bejeweled, or Candy Crush?

4
T r a n s l at i n g G am e S tat e
C ha n g e s t o th e D i sp l a y

Animation is a powerful visual cue to show
players how their actions affect a game.

Whenever a player causes the game state to
change, you need to display the results. In this

chapter, you’ll add code to detect and remove bubble
groups, learn more about animating CSS sprites, and
implement a nifty exploding effect in jQuery.

At this point, players can fire bubbles at the game board, and those
bubbles will become part of the bubble grid. Now, we need to pop groups
of matching bubbles when a player fires the correct color at them. When
curBubble is fired into another bubble and a group of three or more match-
ing bubbles forms, all bubbles in that group should show a popping anima-
tion and then be removed from the display and the Board object.

We’ll also need to detect and handle any cascading effects caused by
popping bubbles. For example, if sets of bubbles are disconnected from the
main group when we pop another set, we should destroy the disconnected
bubbles in a different way.

70 Chapter 4

Calculating Groups
The Board object contains the row and column information for each bubble
in the grid and will determine whether a fired bubble forms a group of
three or more when it lands. We’ll add a function to board.js that returns
all of the bubbles surrounding a given (row,column) position. Then we’ll
group them by color and work out which ones to pop.

Fetching Bubbles
First, we need to retrieve the set of bubbles surrounding the specified coor-
dinates from the board’s rows variable. Add the following methods to board.js
after the addBubble method:

var Board = function(){
 var that = this;
 var rows = createLayout();
 this.getRows = function(){ return rows;};
 this.addBubble = function(bubble,coords){
 --snip--
 };

u this.getBubbleAt = function(rowNum,colNum){
 if(!this.getRows()[rowNum])
 return null;
 return this.getRows()[rowNum][colNum];
 };

v this.getBubblesAround = function(curRow,curCol){
 var bubbles = [];
 for(var rowNum = curRow - 1;rowNum <= curRow+1; rowNum++){
 for(var colNum = curCol-2; colNum <= curCol+2; colNum++){
 var bubbleAt = that.getBubbleAt(rowNum,colNum);
 if(bubbleAt && !(colNum == curCol && rowNum == curRow))

y bubbles.push(bubbleAt);
 };
 };
 return bubbles;
 };
 return this;
}

The getBubbleAt method u takes an input row and column coordinate
and returns the bubble at that location. If no bubble exists at that location,
it returns null. The getBubblesAround method v loops through the three
relevant rows—the same row, the one above, and the one below—and then
examines the surrounding columns, calling getBubbleAt for each position.
Note that getBubbleAt returns null for every alternate column entry due to
the half-populated row arrays. For this reason, we look at two entries to the
left w (curCol-2) and two to the right x (curCol+2) of the current bubble.
No matter whether we start on an odd or an even row, this method should
work. We also need to check that a bubble exists at the coordinates we’re
examining and that we don’t add the bubble that we’re checking around y.

board.js

Translating Game State Changes to the Display 71

Any bubbles surrounding the fired bubble are pushed into the bubbles
array and are returned by getBubblesAround. Each bubble stores its own coor-
dinates, so we don’t need to sort the array or store position information
separately.

Creating Matching Color Groups
Next, we’ll write a more substantial function called getGroup to return groups
that are the same color as the first bubble and are connected to that bubble.
This recursive function will accept two parameters: a bubble, which sets the
starting coordinates and the color (type) definition, and an object, which
stores bubbles that are part of the group. The object will store found bubbles
in two arrays added as properties: first as a linear array and additionally in an
array indexed by row and column. The second array allows us to easily check
whether we have already added a bubble to the matching set to avoid add-
ing duplicates. Both arrays are added as properties of an object so we can
return both when we call the method. The flowchart in Figure 4-1 shows an
overview of this process.

The function we’ll add to the Board class looks like this:

var Board = function(){
 var that = this;
 var rows = createLayout();
 this.getRows = function(){ return rows;};
 this.addBubble = function(bubble,coords){
 --snip--
 };
 this.getBubbleAt = function(rowNum,colNum){
 --snip--
 };
 this.getBubblesAround = function(curRow,curCol){
 --snip--
 };
 this.getGroup = function(bubble,found){
 var curRow = bubble.getRow();
 if(!found[curRow])
 found[curRow] = {};
 if(!found.list)
 found.list = [];
 if(found[curRow][bubble.getCol()]){
 return found;
 }
 found[curRow][bubble.getCol()] = bubble;
 found.list.push(bubble);
 var curCol = bubble.getCol();
 var surrounding = that.getBubblesAround(curRow,curCol);
 for(var i=0;i<surrounding.length;i++){
 var bubbleAt = surrounding[i];
 if(bubbleAt.getType() == bubble.getType()){
 found = that.getGroup(bubbleAt,found);
 };
 };

board.js

72 Chapter 4

 return found;
 };
 return this;
};

Let’s break down this new function and walk through the logic. After
we pass in the bubble object and found object, getGroup first checks to see if
this bubble was already found.

 var curRow = bubble.getRow();
u if(!found[curRow])

 found[curRow] = {};
v if(!found.list)

 found.list = [];
w if(found[curRow][bubble.getCol()]){

 return found;
 }

x found[curRow][bubble.getCol()] = bubble;
y found.list.push(bubble);

If the bubble was already found, getGroup should return the current
unchanged data and stop. If the found object doesn’t have an entry for the
current row, we need to create an empty array u. Then, if the list prop-
erty doesn’t exist, it needs to be created v but only on the initial call to the
function. If this bubble was detected previously, we return the found object
without adding the bubble again w. Otherwise, we track that we’ve looked
in this location x and store the bubble in the found list y.

Next, we retrieve the surrounding bubbles z.

 var curCol = bubble.getCol();
z var surrounding = that.getBubblesAround(curRow,curCol);

At most, there should be six, and then we need to check each for a
color match:

 for(var i=0;i<surrounding.length;i++){
 var bubbleAt = surrounding[i];

{ if(bubbleAt.getType() == bubble.getType()){
 found = that.getGroup(bubbleAt,found);
 };
 };

| return found;

If a bubble matches the fired bubble’s color {, the function calls itself;
getGroup adds the checked bubble to the flat array and marks that its coordi-
nates have been checked. The function calls itself again, passing in the newly
found bubble and the current data state (with the found list). Whatever the
result, we’ll return the final value of found |.

Translating Game State Changes to the Display 73

Start with current
bubble

Mark bubble as
member of “same

color” group

Register bubble
as checked

Get first adjacent
bubble

Has this bubble
been checked?

No

Return current
found group

Is this bubble
of matching

color?

Yes

Get next adjacent
bubble

No

More adjacent
bubbles to

check?

Yes

No

Yes

Add bubble to
found list

Figure 4-1: Grabbing a group of connected bubbles of the same color

74 Chapter 4

Now we need to call this method when the bubble is fired. In game.js,
add in the clickGameScreen routine:

var clickGameScreen = function(e){
 var angle = BubbleShoot.ui.getBubbleAngle(curBubble.getSprite(),e);
 var duration = 750;
 var distance = 1000;
 var collision = BubbleShoot.CollisionDetector.findIntersection(curBubble,
 board,angle);
 if(collision){
 var coords = {
 x : bubbleCoords.left + distX,
 y : bubbleCoords.top - distY
 };
 duration = Math.round(duration * collision.distToCollision / distance);
 board.addBubble(curBubble,coords);

u var group = board.getGroup(curBubble,{});
v if(group.list.length >= 3){
w popBubbles(group.list,duration);

 }
 }else{
 --snip--
 };
 BubbleShoot.ui.fireBubble(curBubble,coords,duration);
 curBubble = getNextBubble();
};

When we fetch a group of bubbles with board.getGroup u, we might end
up with a group containing fewer than three bubbles. Because we need
to consider only groups of three or more bubbles, we’ll skip any smaller
groups v. Now we just need to write the routine for popping bubbles w!

Popping Bubbles
We need the game to determine whether a group of bubbles has three
or more bubbles, and if so, remove those bubbles. In this section, you’ll
implement the JavaScript functions that remove bubble groups and add a
fun popping animation with CSS.

Removing Bubble Groups with JavaScript
We’ll begin by calculating what the board should look like after a group has
been popped. When that’s complete, we can update the display and remove
any popped bubbles from view. As long as the game state is calculated cor-
rectly, you can add animation thereafter. Updating the game state and then
writing separate code to display the new state is a useful approach to take
throughout game development.

game.js

Translating Game State Changes to the Display 75

Add a new function called popBubbles after clickGameScreen:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Game = (function($){
 var Game = function(){
 --snip--
 var clickGameScreen = function(e){
 --snip--
 };
 var popBubbles = function(bubbles,delay){

u $.each(bubbles,function(){
 var bubble = this;

v board.popBubbleAt(this.getRow(),this.getCol());
 setTimeout(function(){
 bubble.getSprite().remove();
 },delay + 200);
 });
 };
 };
 return Game;
})(jQuery);

The popBubbles function loops over each bubble object in the array we
pass it u and tells the board to remove the bubble v by calling popBubbleAt
(which we’ll write next). Then it waits for delay + 200 milliseconds to remove
the bubble from the DOM to allow time for the animation of firing the
bubble to run. As a result, the user can see what’s happened before the
screen is updated. The starting value of delay is passed in from the fired
bubble’s duration—the time it took to travel from its starting point—so
bubbles will always disappear 200 milliseconds after the grouping has
occurred.

The final piece of code is in board.js, where we need to define popBubbleAt.
Add the following method after the close of the getGroup method:

var Board = function(){
 --snip--
 this.getGroup = function(bubble,found){
 --snip--
 };
 this.popBubbleAt = function(rowNum,colNum){
 var row = rows[rowNum];
 delete row[colNum];
 };
 return this;
};

The popBubbleAt method simply removes the entry you pass it from the
row/column array.

Reload the game and fire a bubble. When you make a set of three or
more bubbles, they should disappear from view. At last, Bubble Shooter is
starting to look more like a game!

game.js

board.js

76 Chapter 4

Popping Animations with CSS
Moving sprites around the screen with CSS is one type of animation, but now
it’s time to animate sprites in a different way and change how they look. This
will present players with a visually rewarding popping animation, which will
use the other sprite frames we created at the beginning of the book.

The best way to animate a sprite graphic is by changing the position of
its background image. Recall that bubble_sprite_sheet.png (shown again in
Figure 4-2 for convenience) contains not only the four bubble types but also
four different states for each color.

Figure 4-2: The four states of the bubble sprite,
as contained in bubble_sprite_sheet.png

We can display a popping animation by showing the four frames in
succession, which we’ll do by shifting the background image to the left by
50 pixels at a time.

The game pops only bubbles in groups, but the popping effect won’t
be nearly as fun to watch if all the bubbles in a group disappear at once. To
make the effect more interesting, we’ll pop the bubbles individually rather
than all together. Doing so will require a small change to the popBubbles
method we just added to game.js:

var popBubbles = function(bubbles,delay){
 $.each(bubbles,function(){
 var bubble = this;
 setTimeout(function(){

u bubble.animatePop();
 },delay);
 board.popBubbleAt(bubble.getRow(),bubble.getCol());
 setTimeout(function(){
 bubble.getSprite().remove();
 },delay + 200);

v delay += 60;
 });
};

game.js

Translating Game State Changes to the Display 77

Here, we call animatePop u, a new method that we’ll add to Bubble to
change the bubble’s background image position. The first bubble’s popping
animation should start as soon as the fired bubble collides with it. But sub-
sequent pops should be delayed by 60 milliseconds by incrementing delay v.
Add animatePop to bubble.js.

var Bubble = function(row,col,type,sprite){
 --snip--
 this.getCoords = function(){
 --snip--
 };
 this.animatePop = function(){

u var top = type * that.getSprite().height();
v this.getSprite().css(Modernizr.prefixed("transform"),"rotate(" + (Math.
 random() * 360) + "deg)");
w setTimeout(function(){

 that.getSprite().css("background-position","-50px -" + top + "px");
 },125);
 setTimeout(function(){
 that.getSprite().css("background-position","-100px -" + top + "px");
 },150);
 setTimeout(function(){
 that.getSprite().css("background-position","-150px -" + top + "px");
 },175);

x setTimeout(function(){
 that.getSprite().remove();
 },200);
 };
};

Based on the bubble’s type, animatePop calculates u the value represent-
ing the top part of the bubble’s background-position property. The type value
tells us what color the bubble should be; we’ll use it to select the appropriate
row of popping animation images. Next, using a basic CSS transformation,
we add a bit of visual variation v to the animation by rotating the bubble
sprite at a random angle to prevent all the popping animations from appear-
ing identical. You’ll see more examples of CSS transformations in Chapter 5.
To stagger the start time of each popping animation, the function makes
three delayed calls w that move the background-position to the left by 50 pixels.

N o t e 	 Hard-coding an animation this way is not very scalable, but Bubble Shooter has
only one sprite with three frames to display. Therefore, we can avoid writing a generic
function, which is the reason we use a sequence of setTimeout calls instead. When we
implement the same animation using canvas rendering, you’ll see an example of how
to code an animation that is more reusable.

Finally, animatePop removes the sprite’s DOM element x when the ani-
mation has finished. Removing the node from the DOM helps with memory
management, which would be even more important in a game with more
onscreen objects. At approximately 20 frames per second, the resulting

bubble.js

78 Chapter 4

animation frame rate is fairly poor. A professional game should have a frame
rate of three times that number. But the principle of creating an animation
by shifting a background image is the same regardless.

When you reload the page and fire a bubble to make a matching group,
you should see a pleasing popping animation. However, after popping numer-
ous bubbles, you may see a side effect of removing bubbles that we need to
remedy: a popped group might be the only element holding a set of bubbles
of varied colors onto the main board. Currently, these bubbles are left hang-
ing in space and look a bit odd. Because the game design stipulates that these
bubbles be removed as well, we’ll do that next.

Orphaned Groups
Groups of bubbles that have been disconnected from the rest of the board
are called orphans. For example, in Figure 4-3, popping the boxed group of
bubbles would leave four orphaned bubbles hanging in midair. Orphaned
sets of bubbles need to be removed by the firing bubble as well. But rather
than have them pop in the same way as popped groups, we’ll add a differ-
ent animation. Orphans will fall off the screen and appear as though they
were hanging and had their supports cut. Not only will players recognize
that something different has happened, but we also get to experiment with
a different animation type. Currently, detecting orphaned groups is not
part of the code; so, before we can animate them, we need to find them.

Figure 4-3: Popping the red bubbles creates four
orphaned bubbles.

Identifying Orphaned Bubbles
We’ll check each bubble and determine whether it’s part of a group that’s
connected to any bubbles in the top row. Because the top row is considered

Popping the red
bubbles . . .

. . . creates
orphaned bubbles.

Translating Game State Changes to the Display 79

to be permanently attached, any bubble that can’t trace a route back to the
top row will be identified as part of an orphaned group.

Tracing this route might seem like a problem we haven’t encountered
yet; however, we can actually use the already written getGroup method and
find orphaned sets quite simply. Figure 4-4 shows the process for checking
whether a group is part of an orphaned set.

Take first bubble
in the top row

Mark bubble as
checked and
non-orphaned

Grab adjacent
bubble

Checked this
bubble already?

Grab next bubble
in top row

Yes

No

More adjacent
bubbles to check?

No

Yes

Checked all bubbles
in top row?

No

Build orphaned sets
from all bubbles

not yet found

Yes

Figure 4-4: The logic flow for determining the set of orphaned bubbles

80 Chapter 4

Using this logic, we can reuse the getGroup function in step 2. But to do
so, we need to revise the criterion that bubbles must be the same color to
form a group.

Let’s change getGroup to take a parameter that allows for the selection of
nonmatching color groups:

var Board = function(){
 --snip--

u this.getGroup = function(bubble,found,differentColor){
 var curRow = bubble.getRow();
 if(!found[curRow])
 found[curRow] = {};
 if(!found.list)
 found.list = [];
 if(found[curRow][bubble.getCol()]){
 return found;
 }
 found[curRow][bubble.getCol()] = bubble;
 found.list.push(bubble);
 var curCol = bubble.getCol();
 var surrounding = that.getBubblesAround(curRow,curCol);
 for(var i=0;i<surrounding.length;i++){
 var bubbleAt = surrounding[i];

v if(bubbleAt.getType() == bubble.getType() || differentColor){
 found = that.getGroup(bubbleAt,found,differentColor);
 };
 };
 return found;
 };
}

The function definition now takes an extra parameter u. Where
getGroup is called recursively, it should ignore the type check v if the value
is set to true, and it passes the input parameter through the recursion chain.
With these simple changes, a getGroup(bubble,{},true) call should return all
bubbles that the passed bubble is connected to regardless of color. Calling
getGroup(bubble,{},false) or just getGroup(bubble,{}) should operate the same
way as before.

The findOrphans function will be a method in the Board class and will
examine every bubble in the top row, finding the group of bubbles each
one connects to. (Initially, every bubble on the board will be in one big
group, except the bubble to be fired.) An array of (row,column) values
will be populated with false values, and every time a bubble is found, the
(row,column) entry will be set to true for that location. At the end of the
process, coordinates that contain a bubble but have a value set to false in
the returned array will be orphaned and removed from the game.

board.js

Translating Game State Changes to the Display 81

Add the following code to board.js after popBubbleAt:

var Board = function(){
 --snip--
 this.popBubbleAt = function(rowNum,colNum){
 --snip--
 };
 this.findOrphans = function(){
 var connected = [];
 var groups = [];
 var rows = that.getRows();
 for(var i=0;i<rows.length;i++){
 connected[i] = [];
 };
 for(var i=0;i<rows[0].length;i++){
 var bubble = that.getBubbleAt(0,i);
 if(bubble && !connected[0][i]){
 var group = that.getGroup(bubble,{},true);
 $.each(group.list,function(){
 connected[this.getRow()][this.getCol()] = true;
 });
 };
 };
 var orphaned = [];
 for(var i=0;i<rows.length;i++){
 for(var j=0;j<rows[i].length;j++){
 var bubble = that.getBubbleAt(i,j);
 if(bubble && !connected[i][j]){
 orphaned.push(bubble);
 };
 };
 };
 return orphaned;
 };
 return this;
};

Let’s analyze the findOrphans function more closely. First, we set up the
arrays we need to find orphaned groups.

u var connected = [];
v var groups = [];

 var rows = that.getRows();
 for(var i=0;i<rows.length;i++){
 connected[i] = [];
 };

board.js

82 Chapter 4

The connected array u is a two-dimensional array of rows and columns;
it marks the locations of connected bubbles. The groups array v will con-
tain a set of all the groups found, which will be a single group if the entire
board is connected. Next, we examine each bubble in the top row.

 for(var i=0;i<rows[0].length;i++){
 var bubble = that.getBubbleAt(0,i);

Here, because we’re only interested in bubbles connected to the top
row, we loop over just the top row and fetch bubbles to check. When we
have a bubble, we can start creating groups.

 if(bubble && !connected[0][i]){
 var group = that.getGroup(bubble,{},true);

If a bubble is present and this space hasn’t already been marked as
connected, we build a group. The call to getGroup passes true as the third
parameter (differentColor), because we don’t want to restrict connected
bubbles by color.

 $.each(group.list,function(){
 connected[this.getRow()][this.getCol()] = true;
 });
 };
 };

Because the bubble being checked is connected via the first row, the
entire group is connected; therefore, we mark each entry in the connected
array with a true flag.

After calling findOrphans, we should have an array of connected row and
column entries. A list of orphaned bubbles is the final output we want, so we
need to create another empty array to hold that list. A single-dimensional
array is sufficient because the bubbles store their own coordinates:

 var orphaned = [];
 for(var i=0;i<rows.length;i++){
 for(var j=0;j<rows[i].length;j++){
 var bubble = that.getBubbleAt(i,j);
 if(bubble && !connected[i][j]){
 orphaned.push(bubble);
 };
 };
 };
 return orphaned;
};

Using this new array, we examine all the rows and columns on the board,
checking whether a bubble exists at each space. If a bubble exists but no entry

Translating Game State Changes to the Display 83

is in the connected grid, it’s an orphan. We then add it to the orphaned list
with the call to orphaned.push(bubble). Finally, findOrphans returns the array of
orphaned bubbles, which should be empty if no orphans exist.

Dropping Orphaned Bubbles
Now that we can find the groups of bubbles that will be orphaned, we need
to call the function and remove any identified orphaned bubbles. Rather
than pop, we want the orphaned bubbles to drop, using an animation that
occurs after the popping animation has completed. The internal game
state will still update instantaneously, because we calculate the outcome as
soon as the player has fired the bubble. We add the delay not just to provide
a more dramatic effect, but also so players can follow the results of their
actions onscreen. If we animated the falling orphaned groups as soon as we
knew they would be orphaned, the effect might be lost. In addition, players
might be confused as to why bubbles of different colors had disappeared.

In this situation, the benefits of separating game state from display state
are apparent. We update the game state instantly, players can fire their next
bubble almost immediately without having to wait for completed animations,
and the game feels responsive. But in the display state, we make a big deal
of this game state change—for effect and to communicate how the player’s
actions lead to the final result. The animation approach is very much a game
design decision rather than a coding one, but the way we’ve coded the game
allows for flexibility.

In game.js, add the following after the call to popBubbles:

var Game = function(){
 --snip--
 var clickGameScreen = function(e){
 --snip--
 if(collision){
 --snip--

u if(group.list.length >= 3){
 popBubbles(group.list,duration);

v var orphans = board.findOrphans();
w var delay = duration + 200 + 30 * group.list.length;
x dropBubbles(orphans,delay);

 };
 }else{
 --snip--
 };
 BubbleShoot.ui.fireBubble(curBubble,coords,duration);
 curBubble = getNextBubble();
 };
};

We need to check for new orphans only if bubbles have been popped u,
because that’s how orphaned groups are formed. We pop bubbles only if a
matching group of three or more is created, so if group.list is greater than

game.js

84 Chapter 4

or equal to three, we need to look for orphaned bubbles. As we retrieve the
orphans v, we calculate a delay w timed to drop bubbles when all the pop-
ping has finished. To perform the animation, we need to write dropBubbles x.

The dropBubbles method will drop the bubbles off the screen. Add the
following code after the close of the popBubbles function in game.js:

var Game = function(){
 --snip--
 var popBubbles = function(bubbles,delay){
 --snip--
 };
 var dropBubbles = function(ububbles,delay){
 $.each(bubbles,function(){
 var bubble = this;

v board.popBubbleAt(bubble.getRow(),bubble.getCol());
 setTimeout(function(){

w bubble.getSprite().animate({
 top : 1000
 },1000);
 },delay);
 });
 };
};

The dropBubbles function takes in parameters for the bubbles to drop u
(we’ll pass it the array of bubbles returned by findOrphans) and a delay. It
removes the bubbles from the board v and then animates them as they
drop down the screen w.

Refresh the game and pop a few groups of bubbles. When you form an
orphan group, the bubbles should drop off the screen rather than popping.

Exploding Bubbles with a jQuery Plug-in
Although dropping bubbles is an animation, it’s not very dramatic. Let’s
liven it up and create more of an explosion! We’ll write a jQuery plug-in
to control this animation and abstract it from the game system.

To make the orphaned bubbles animation more impressive, we’ll make
the bubbles burst outward before dropping down the screen. We’ll do this
by assigning a starting momentum to each bubble and then adjusting its
speed with some simulated gravity.

Although writing all the code to do this inline inside dropBubbles is pos-
sible, it would start to clutter the Game class with display logic. However, this
animation is an ideal candidate for a jQuery plug-in, and the advantage is
that we can reuse the code in future projects.

N o t e 	 For this example, I’ll cover only the most basic principles of writing jQuery plug-ins.
You can explore plug-ins in more depth at http://learn.jquery.com/plugins/
basic-plugin-creation/.

game.js

http://learn.jquery.com/plugins/basic-plugin-creation/
http://learn.jquery.com/plugins/basic-plugin-creation/

Translating Game State Changes to the Display 85

Make a new file called jquery.kaboom.js in the _js folder and add it to the
Modernizr.load call. The file-naming convention informs others glancing in
your scripts folder that this file is a jQuery plug-in; they don’t even need to
look at the code.

First, we register the method—which we’ll name kaboom—by using
jQuery’s plug-in format:

(function(jQuery){
 jQuery.fn.kaboom = function(settings)
 {
 };
})(jQuery);

We’ll flesh out this code shortly; right now it doesn’t do anything. This
function definition is the standard way of registering a new plug-in with
jQuery. Its structure enables calls of the form $(...).kaboom(), including
passing an optional settings parameter.

The call to kaboom will be inside dropBubbles, so let’s add that call to
dropBubbles and remove the animate calls:

var Game = function(){
 --snip--
 var popBubbles = function(bubbles,delay){
 --snip--
 };
 var dropBubbles = function(bubbles,delay){
 $.each(bubbles,function(){
 var bubble = this;
 board.popBubbleAt(bubble.getRow(),bubble.getCol());
 setTimeout(function(){
 bubble.getSprite().kaboom();
 },delay);
 });
 return;
 };
};

The kaboom method will be called once for each object. This method
will also only operate on jQuery objects; as a jQuery plug-in, it will have
no knowledge of the game objects and will work only with DOM elements,
making the plug-in reusable in future games.

Inside jquery.fn.kaboom, we’ll use an array to store all the objects cur-
rently being exploded. Every time we call kaboom, we’ll add the calling
object to that array. When the bubble has finished moving, it should
remove itself from the list. By storing everything we want to move in an
array, we can run a single setTimeout loop and update the position of all
falling bubbles at the same time. Consequently, we’ll avoid having multiple
setTimeouts clamoring for processing power, and the animation should run
much more smoothly.

jquery
.kaboom.js

game.js

86 Chapter 4

We’ll also add two more components: some default parameters for grav-
ity and the distance we want a bubble to fall before we consider it off the
screen and no longer part of the function.

(function(jQuery){
u var defaults = {

 gravity : 1.3,
 maxY : 800
 };

v var toMove = [];
 jQuery.fn.kaboom = function(settings){
 }
})(jQuery);

The default values are gravity and maxY u, and toMove v will hold the
falling jQuery objects.

At present, nothing happens when kaboom is called. The full jquery.kaboom
plug-in follows:

(function(jQuery){
 var defaults = {
 gravity : 1.3,
 maxY : 800
 };
 var toMove = [];

u jQuery.fn.kaboom = function(settings){
 var config = $.extend({}, defaults, settings);
 if(toMove.length == 0){
 setTimeout(moveAll,40);
 };
 var dx = Math.round(Math.random() * 10) - 5;
 var dy = Math.round(Math.random() * 5) + 5;
 toMove.push({
 elm : this,
 dx : dx,
 dy : dy,
 x : this.position().left,
 y : this.position().top,
 config : config
 });
 };

v var moveAll = function(){
 var frameProportion = 1;
 var stillToMove = [];
 for(var i=0;i<toMove.length;i++){
 var obj = toMove[i];
 obj.x += obj.dx * frameProportion;
 obj.y -= obj.dy * frameProportion;
 obj.dy -= obj.config.gravity * frameProportion;
 if(obj.y < obj.config.maxY){

jquery
.kaboom.js

jquery
.kaboom.js

Translating Game State Changes to the Display 87

 obj.elm.css({
 top : Math.round(obj.y),
 left : Math.round(obj.x)
 });
 stillToMove.push(obj);
 }else if(obj.config.callback){
 obj.config.callback();
 }
 };
 toMove = stillToMove;
 if(toMove.length > 0)
 setTimeout(moveAll,40);
 };
})(jQuery);

Two main loops are in this plug-in: jQuery.fn.kaboom u, which adds
new elements to the animation queue, and moveAll v, which handles the
animation.

Let’s look at jQuery.fn.kaboom in more detail first:

jQuery.fn.kaboom = function(settings){
u var config = $.extend({}, defaults, settings);
v if(toMove.length == 0){

 setTimeout(moveAll,40);
 };

w var dx = Math.round(Math.random() * 10) - 5;
 var dy = Math.round(Math.random() * 5) + 5;

x toMove.push({
 elm : $(this),
 dx : dx,
 dy : dy,
 x : $(this).position().left,
 y : $(this).position().top,
 config : config
 });
};

This function initiates the animation process and is only called once
per object (that is, it doesn’t run as part of an animation loop). The function
then sets the config options u for this call to kaboom. The syntax creates an
object with defaults set in the parent definition (the defaults variable) and
overrides these settings with any found in the object that’s been passed. It
also adds any new name/value pairs to the object kaboom will act on.

We look in the array toMove and, if the array is empty v, set a timeout
call that runs the animation. Next, values for the initial x and y velocities
are set in dx and dy w. These values are between −5 and 5 pixels horizontally
and between 5 and 10 pixels vertically (upward); both have units of pixels per
second. We then add a new object to the toMove array x. The new object
contains the jQuery element, its newly created velocity information, the
current screen position, and the config options that were specified within
this call.

88 Chapter 4

The jQuery.fn.kaboom function runs whenever a $(...).kaboom call is made.
If at least one object is exploding, a timeout containing moveAll will be run-
ning. Let’s look at what the moveAll function does:

var moveAll = function(){
u var frameProportion = 1;
v var stillToMove = [];
w for(var i=0;i<toMove.length;i++){

 var obj = toMove[i];
x obj.x += obj.dx * frameProportion;

 obj.y -= obj.dy * frameProportion;
y obj.dy -= obj.config.gravity * frameProportion;
z if(obj.y < obj.config.maxY){

 obj.elm.css({
 top : Math.round(obj.y),
 left : Math.round(obj.x)
 });
 stillToMove.push(obj);

 }else if(obj.config.callback){
 obj.config.callback();
 }
 };

 toMove = stillToMove;
 if(toMove.length > 0)

 setTimeout(moveAll,40);
};

We assume that setTimeout is indeed running every 40 milliseconds
because it’s the value we specify }; therefore, we count the frame rate as
25 per second u. If a computer is underpowered (or just busy using CPU
cycles on another operation) and the delay between frames is much slower
than 40 milliseconds, this assumption may result in a poor animation quality.
Later, you’ll learn how to produce an animation at constant speed regardless
of processor power, but the current solution provides the best compatibility
in legacy browsers.

After setting the frame rate, moveAll creates an empty array v to store
any objects that don’t move past the maximum value of y by the end of the
animation frame. The resulting value here will become the new value for
toMove to move again on the next frame.

With the setup work done, moveAll loops w over each element in the
toMove array (that is, all the objects currently in the state of exploding; we
populated this array in jQuery.fn.kaboom) and grabs a reference to each one
in the obj variable, which is an object with the following properties:

•	 obj.elm pointing to the jQuery object

•	 dx and dy velocity values

•	 x- and y -coordinates storing the current position

Translating Game State Changes to the Display 89

Inside the loop, we change the x and y values x by a proportion of
the object’s x and y velocities, respectively. This doesn’t affect the bubble’s
screen position yet because we haven’t manipulated the DOM element.
The function also adds the configured gravity setting to the object’s verti-
cal velocity y. Horizontal velocity should remain constant throughout the
explosion effect, but the object will accelerate downward to simulate fall-
ing. Next, we check z to see if the object has a value of y that exceeds the
maximum we either configured in defaults or overrode in the call to kaboom.
If it doesn’t, the position of the screen element is set to the values stored for
the current position, and we add the object to the stillToMove array. On the
other hand, if the object has passed the maximum y and a callback function
was passed as part of the original kaboom call, moveAll runs  that function.
It’s useful to pass a function into an animation and have that function run
when the animation is complete.

Finally, we set the new value of toMove  to be the contents of
stillToMove (that is, all the objects that are still falling), and if the array
contains at least one element, we set a timeout to call the same function
again in another 40 milliseconds .

Now, when you reload the game and create an orphaned group of
objects, the kaboom plug-in should make bubbles drop down the screen.
Although it works within our game context, you could call it with any valid
jQuery selector and produce a similar result. Keep the code handy so you
can reuse the effect in future games!

Summary
Quite a bit of Bubble Shooter is in place now. We can fire bubbles that either
settle into the grid or pop groups, and we can detect orphaned groups
and drop them off the screen. However, the board can get clogged with
unpopped bubbles, and that’s a problem we still need to solve. Currently,
there’s also no way to start another level or keep track of your score; both
are important elements for this type of game. But before we complete some
of the other game functionality, we’ll dive into some HTML5 and CSS imple-
mentations of the animations we’ve already written.

So far, we’ve achieved the features needed with some fairly traditional
HTML, CSS, and JavaScript techniques. For the most part, the game should
run smoothly on most computers. In the next chapter, we’ll improve perfor-
mance by offloading some of the animation work from JavaScript to CSS.
The shift will let us take advantage of hardware acceleration when possible,
and we’ll even use some pure HTML5 features for smoother animation.
We’ll also implement the entire game using canvas rendering rather than
DOM and CSS, revealing the advantages and the challenges that result
using that approach.

90 Chapter 4

Further Practice
1.	 In the exercises in Chapter 3, you changed createLayout to generate

alternative grid patterns. Test your layouts now with the popping and
orphan-dropping code. Does the code work? How do your patterns
affect the feel of the game?

2.	 Bubble animations currently consist of four frames. Create your own
versions of the images and try adding more frames. Use a for loop to
generate the extra setTimeout calls rather than copying and pasting
new lines. Experiment with the timeout delays to speed up and slow
down the animation and see which values produce the best effect.

3.	 The kaboom jQuery plug-in drops the bubbles off the bottom of the
screen, but what would happen if you made the bubbles bounce when
they hit the bottom? Amend jquery.kaboom.js so the bubbles bounce
instead of drop off the screen. You’ll need to reverse their dy values
and scale them down each time they bounce to mimic some of the
bounce energy being absorbed; otherwise, they’ll just bounce back to
the same height. The bubbles should be removed from the DOM only
when they’ve bounced off either the left or the right edge of the screen,
so you’ll also need to ensure that the value of dx isn’t close to zero, or
they’ll never disappear.

Part 2
E n ha n c e m e n ts w i th

H T M L 5 a n d th e C a n v as

5
C S S T r a n s i t i o n s a n d

T r a n s f o r mat i o n s

So far, we’ve created a bare-bones game
with HTML, CSS, and JavaScript: we
can fire and pop bubbles, and our user

interface feels responsive. We achieved
this through Document Object Model (DOM)

manipulation with a lot of jQuery help.
In this chapter, we’ll explore CSS transitions and transformations, which

can improve game performance and let you create a wider range of effects,
such as rotating and scaling elements.

Benefits of CSS
CSS provides a set of transformation and transition attributes that you can
use to animate changes to CSS properties, such as the left or top coordi-
nates of an element. Rather than using JavaScript to handle animations
frame by frame, as we’ve done so far, CSS transitions are specified in the

94 Chapter 5

style sheet or as styles attached to DOM elements. An animation is then
initiated by making a single change to a CSS property rather than making
many incremental changes to a property, as JavaScript animations require.

CSS animations are handled by the browser’s rendering engine rather
than by the JavaScript interpreter, freeing up CPU time for running other
JavaScript code and ensuring the smoothest animation possible on the
device at the time. On systems with graphics processors, the effects are
often handled entirely by the graphics processor, which means less work for
the JavaScript code you are running and can reduce the load on the CPU
even further, resulting in higher frame rates. As a result, the animation will
run at the highest frame rate possible for the device it’s displayed on.

We’ll use CSS to add some simple transitions to user-interface elements
and then replace our jQuery animations with transformations, and we’ll do
this while maintaining the cross-browser compatibility that we’ve achieved
thus far.

Basic CSS Transitions
The first CSS animation we’ll focus on is the transition. A transition defines
how a style property of an object should change from one state to a new
one. For example, if we change the left property of a DOM element from
50 pixels to 500 pixels, it will instantly change position on the screen. But
if we specify a transition, we can instead make it move gradually across the
screen. A CSS transition specifies a property or properties to animate, how
the animation should take place, and how long the animation should take.

Transitions generally apply to any CSS property that has a numerical
value. For example, animating the left property, as mentioned earlier, is
possible because intermediate values between the beginning and end can
be calculated. Other property changes, such as between visibility : hidden
and visibility : visible, are not valid properties for a transition because
intermediate values cannot be calculated. However, we could make an ele-
ment fade in by animating the opacity property from 0 to 1.

Colors are also valid properties to animate, because hex values are also
numbers (each contains three pairs, and each pair represents red, green,
or blue) that can be gradually changed from one value to another. You
can find a list of all the properties that can be animated with transitions at
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties/.

How to Write a Transition
To animate a div using a transition, add a CSS transition property to it. A
transition property includes the following:

CSS properties to apply the transition to  These can be any valid CSS
properties that you want to animate, such as top, left, font-size, or just
all, which applies transitions to all valid property changes.

Duration  How long (in seconds) the transition will take.

CSS Transitions and Transformations 95

Easing  Tells a property how fast to change over the transition dura-
tion. For example, an element might move from one point to another at
a smooth pace, or it could accelerate at the beginning and then deceler-
ate toward the end, as in Figure 5-1. You can apply easing to other prop-
erties you want to change, too, including color.

Di
sta

nc
e

Time

No easing

Ease in
and out

Figure 5-1: Graph showing movement with no easing and
movement with easing in (at the start of the animation)
and out (at the end).

Start delay  Specifies the number of seconds to wait to start the transition.
The most common value is 0 (or empty), which means start immediately.

We’ll write a transition definition just like any other CSS rule, and when
we want the transition to occur, we’ll make a change to the CSS property
that we want to animate. To move a div or other HTML element smoothly
across the screen, we set the top and left coordinates to new values:

transition: top 1s, left 2s (etc)

As an example, we’ll make the New Game button move down the screen.
Add the following to main.css:

.button
{
 transition: uall v.8s wease-in-out x1s;

y -moz-transition: all .8s ease-in-out 1s;
 -webkit-transition: all .8s ease-in-out 1s;
 -ms-transition: all .8s ease-in-out 1s;
}

The transition definition’s first value u states which property (or prop-
erties) the transition applies to. Using all applies the transition to every
property; think of it as a wildcard. The second value v is the duration of the
transition in seconds. The third value w is the easing: ease-in-out produces
a smooth transition with an initial acceleration and ending deceleration.
Finally, we add a delay x of 1 second before the animation runs. The next

main.css

96 Chapter 5

three lines beginning at y provide the same specification but with vendor-
specific prefixes for cross-browser support. These are needed for older
browsers; newer browsers use the unprefixed version once the tag definition
is considered to be stable.

To guarantee your game will run on a certain browser, always include
the correct vendor-specific prefix. Just be sure that whenever you change a
transition’s property, you also change it in the transition definition for each
browser.

Fortunately, the rule is simple: the browser-specific versions of transition
are just copies of the regular version with one of the following prefixes:

•	 -moz- for Mozilla browsers, such as Firefox

•	 -webkit- for Webkit browsers, such as Chrome and Safari

•	 -ms- for Microsoft Internet Explorer

Reload the page and then type the following into the JavaScript
console:

$(".but_start_game").css("top",100)

You should see a pause, and then the button will smoothly slide up the
screen. The effect is more or less identical to an animate call, but we changed
only the CSS value.

Delete the CSS definition for .button now because we’re going to apply a
more useful effect.

Color-Changing Buttons
Let’s apply transitions to spice up our user interface! We’ll animate a button
without a single line of JavaScript; instead, we’ll use a transition definition
and the hover pseudo-class that you’re probably familiar with for creating
rollover button effects.

First, we’ll add a rollover state to the New Game button with a CSS
amendment. Add the following to main.css now:

.button
{
 transition: ubackground-color v.3s wease-in-out;

x -moz-transition: background-color .3s ease-in-out;
 -webkit-transition: background-color .3s ease-in-out;
 -ms-transition: background-color .3s ease-in-out;
}
 .button:hover
 {
 background-color: #900;
 }

main.css

CSS Transitions and Transformations 97

The transition definition’s first value u states which property (or prop-
erties) the transition applies to. We’re applying it to the background-color
property, which is written exactly as it would appear as a standard CSS rule.
The second value v is the length of the transition in seconds. The third
value w is once again the easing, set to ease-in-out.

Other types of easing include ease, linear, or just ease-in or ease-out.
But all of these shorthand descriptions are actually aliases for specific defi-
nitions of cubic-bezier, which you can use to indicate any transition curve
you like. The cubic-bezier easing function accepts four decimal numbers to
define a graph; for example,

transition: background-color .3s ease-in-out;

is identical to

transition: background-color .3s cubic-bezier(0.42, 0, 0.58, 1.0)

Bézier curves are described by specifying the coordinates of two points
that form the tangent line of the beginning and the end parts of the curve,
respectively. These are shown as P1 and P2 in Figure 5-2.

C
ha

ng
e

in
 p

ro
pe

rty

Time

1

P1

P2

P0

P3

Figure 5-2: The two points that specify a
Bézier curve are P1 and P2.

The values specified in the CSS are the coordinates of P1 and P2, which
are always between 0 and 1. You won’t specify P0 and P3 because they’re
always the origin (0,0) and (1,1), respectively. The angle of P1 and P2 from
the vertical axis determines the slope of the curve, and the length of the
lines from P0 to P1 and P2 to P3 determines how pronounced the curvature
will be.

Unless you want a specific easing, ease-in-out or linear will often do just
fine. But for more complex transitions, some online tools will help you create
cubic-bezier curves based on visual graphs and input values. One such website
is http://cubic-bezier.com/, which allows you to tweak values and watch the ani-
mation to see how the numbers translate to a movement transition.

98 Chapter 5

The three lines, starting after the initial transition definition at x, are
vendor-specific transition definitions, which I made sure to include so the
transition works properly in different browsers. The CSS standard is still
considered a work in progress, and browser manufacturers have adopted
their own prefixes to avoid potential conflicts with how the standard is
implemented when it’s finalized.

The single-line format I’ve used so far is the most compact way to spec-
ify a transition, but you could also specify the properties individually:

transition-property: background-color;
transition-duration: .3s;
transition-timing-function: ease-in-out;

I recommend sticking with the compact approach most of the time.
Otherwise, you’d need all the CSS standard lines plus the three vendor-
specific copies of each, which would quickly clutter your style sheet.

Reload the page and hover over the New Game button. You should see a
gentle change in color from light to darker red. That’s a nice effect, and you
didn’t write any JavaScript! But there’s still more you can do to add effects
using CSS only.

Basic CSS Transformations
The second powerful feature of CSS we’ll look at is transformations. Trans
formations allow you to manipulate an object’s shape. In most browsers,
it’s possible to transform an object in either two dimensions or three and
to skew, distort, and rotate it in any way that can be described by a three-
dimensional matrix. You can animate transformations with transitions
or let them stand alone; for example, to display a button at an angle, you
might let the viewer watch it rotate, or you might just render the button
askew.

How to Write a Transformation
Some simple CSS transformations include:

•	 Translations by (x,y) or even (x,y,z) coordinates in 3D

•	 Scaling by dimensions along the x-, y-, and z-axes

•	 Rotating in place by an angle along any of the x-, y-, or z-axes

•	 Skewing along the x- or y-axis

•	 Adding 3D perspective

You can transform by a 2D or even a 3D matrix. Transforming by
a matrix involves some calculation of the math involved. If you want to
explore it in more depth, some references are available online, such as
https://developer.mozilla.org/en-US/docs/Web/CSS/transform/.

CSS Transitions and Transformations 99

Scaling a Button
In this section, we’ll make the New Game button a bit more dynamic by
adding an enlarging effect on top of the current color change. Make the
following addition to the .button:hover definition in main.css:

.button:hover
{
 background-color: #900;

u transform: scale(1.1);
 -moz-transform: scale(1.1);
 -webkit-transform: scale(1.1);
 -ms-transform: scale(1.1);
}

The entire transformation is primarily contained in one transform line u.
The transformation is specified as scaling by a factor of 1.1—a size increase of
10 percent. The three lines that follow do the same thing but use the identi-
cal vendor-specific prefixes you used in the transition definition.

We just want to scale the New Game button, so reload the page and then
mouse over the button again. The scaling should work but not as a smooth
animation. Although the color still changes gradually in response to the
mouse hover, the button’s size jumps in a single step. We’ll amend the tran-
sition definition to apply to the transform as well as the background color.

To achieve this task, we could simply change the .button definition so the
transition property affects every CSS property:

transition: all .3s ease-in-out;

This definition applies the ease-in-out effect to all of the button’s CSS
properties that it’s possible to apply transitions to. Now if any of those prop-
erties change after the DOM is rendered, the button will be animated with
a 300-millisecond transition effect on that property. But what if you don’t
want all button animations to happen at the same rate?

In that case, you could specify multiple properties by adding a comma-
separated definition:

transition: background-color .2s ease-in-out, transform 0.2s ease-in-out;

This solution also minimizes side effects if we want to change any other
CSS properties on the fly without having them animate automatically.

When you apply transitions to individual transform properties in CSS,
you still need to specify vendor-specific versions within each transition defi-
nition. Therefore, the full button definition needs to be this:

.button
{
 transition: background-color .3s ease-in-out, transform .2s ease-in-out;
 -moz-transition: background-color .3s ease-in-out, -moz-transform .2s
ease-in-out;

main.css

100 Chapter 5

 -webkit-transition: background-color .3s ease-in-out, -webkit-transform .2s
ease-in-out;
 -ms-transition: background-color .3s ease-in-out, -ms-transform .2s ease-in-
out;
}

Make this change in main.css, reload the page, and mouse over the
button again. Now, both the background color and scale should change in
 a smooth transition.

CSS transitions and transformations are useful for simple animations
and especially for mouseover effects on user-interface elements, such as
buttons. However, they’re useful for more than just adding a bit of sparkle
to the user interface: we can also use them to animate sprites, including
the fired bubbles in the game.

CSS Transitions in Place of jQuery animate
Now, when a player fires a bubble, it leaves the firing point and moves in a
straight line toward its destination. Any fired bubble follows a path simple
enough that a CSS transition can handle that animation easily, and making
the switch will remove some of the load from JavaScript.

The hard-coded CSS transition we used for the button hover effect, where
the transition is defined in the style sheet, won’t work for bubble movement
because the duration of the transition needs to change depending on how
far the bubble has to move. Currently, a bubble moves at 1,000 pixels per
second. So for example, if we want a bubble to move 200 pixels, the dura-
tion needs to be set at 200 milliseconds. To handle this variable duration,
instead of specifying the CSS transitions in the style sheet, we’ll apply them
at runtime with JavaScript.

Setting a CSS transition with jQuery uses the same syntax as setting
any other CSS property, but we’ll need to add browser prefixes for property
names. Fortunately, we don’t have to write four versions of the same tran-
sition for this task. Modernizr can take care of those prefixes for us, which
actually makes it easier to create CSS transitions in JavaScript than in a style
sheet!

However, not all older browsers support transitions, so inside ui.js
we’ll first check whether CSS animations are supported and fall back to the
jQuery animation if they’re not. Unless you’re sure that CSS transitions are
supported in all of the browsers you’re targeting, it’s a good idea to build in
a fallback option.

The code for this CSS animation involves three steps:

1.	 Add the transition CSS property to the element to tell it how quickly to
move and which property to apply the transition to.

2.	 Change the top and left properties to the coordinates we want the
bubble to stop at.

3.	 Once the bubble has reached its destination, remove the CSS transition
definition.

CSS Transitions and Transformations 101

Amend fireBubble in ui.js as follows:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){
 var ui = {
 --snip--
 fireBubble : function(bubble,coords,duration){

u var complete = function(){
v if(bubble.getRow() !== null){
w bubble.getSprite().css(Modernizr.prefixed("transition"),"");

 bubble.getSprite().css({
 left : bubble.getCoords().left - ui.BUBBLE_DIMS/2,
 top : bubble.getCoords().top - ui.BUBBLE_DIMS/2
 });
 };
 };

x if(Modernizr.csstransitions){
y bubble.getSprite().css(Modernizr.prefixed("transition"),"all " +
 (duration/1000) + "s linear");

 bubble.getSprite().css({
 left : coords.x - ui.BUBBLE_DIMS/2,
 top : coords.y - ui.BUBBLE_DIMS/2
 });

z setTimeout(complete,duration);
 }else{

 bubble.getSprite().animate({
 left : coords.x - ui.BUBBLE_DIMS/2,
 top : coords.y - ui.BUBBLE_DIMS/2
 },
 {
 duration : duration,
 easing : "linear",
 complete : complete
 });
 }
 },
 --snip--
 };
 return ui;
})(jQuery);

We’ve moved the post-animation function—the one we want jQuery to
call once the animate call has been completed—into its own named defini-
tion u by assigning it to a variable. This function ensures that if the bubble
hasn’t disappeared off the screen, it’s finally positioned within the board
grid. This function is identical to the previous version in that first we check
to see whether the bubble has a row definition v. If the row definition is
null, the bubble missed the board or caused a popping event. Otherwise,
the bubble needs to become part of the main board. In that case, we also
remove w the transition definition and move the bubble to its final position.
Consequently, if we apply any CSS changes to the bubble in the future, an
unwanted transition won’t be applied to them.

ui.js

102 Chapter 5

When fireBubble is called, we check that CSS transitions are supported
using Modernizr x. If they are supported, we can add the transition CSS to
the bubble element y. The transition definition will take the form

transform: all [duration]s linear

Modernizr.prefixed("transition") adds any necessary vendor-specific pre-
fixes. We set the transition duration to be the same as the duration passed
in but divide it by a thousand to convert from milliseconds to seconds y.

Finally, if we did add a transition, we set a timeout z to call complete
when that transition ends. We don’t need the setTimeout call if a browser
doesn’t support CSS because, in that case, we’ll use the jQuery animate function,
which accepts a callback function to run once an animation completes. We
need to add the complete function as a parameter to that animate call , but
essentially, the jQuery version of the animation is the same as before.

Refresh the page, fire a bubble, and most likely you’ll see no change in
the game from the last time you tested it. But that just means your device
could display the jQuery animation we asked it to before at a high enough
frame rate that it’s indistinguishable from the CSS version. Behind the
scenes, that animation is now being passed off to the graphics processor,
if your device has one, so JavaScript doesn’t have to handle the processing
load. In games with numerous moving elements, the change you just made
could result in a noticeable performance increase.

Disadvantages of CSS Transitions
If JavaScript has to do so much work to animate an element frame by frame,
why not use CSS transitions wherever possible? Although CSS transitions
offer a number of benefits, particularly when it comes to smooth anima-
tions, their usefulness in games is often limited by a lack of control.

CSS transitions become more cumbersome to compose as you add more
animations to a single element. For example, if you want an element to move
by 100 pixels over a duration of 1 second and you also resize it by 10 pixels
over 2 seconds, you need to specify a different transition for each CSS prop-
erty. More important, at the end of the movement transition, you’ll need to
retain the CSS definition so the resize animation continues, which is espe-
cially difficult if you need to move the element again.

A second disadvantage of transitions is that although easing can alter the
way an animation appears, movement must be in a straight line. Movement
along a curve, as in an animation of a character jumping over something,
could be generated by animating over many small straight line segments.
But in that case, you may as well use JavaScript for the entire animation.

Once set in motion, CSS transitions are impossible to interrogate and
change. The browser handles the transition and updates the element’s posi-
tion as soon as you set the value in CSS. The element may be rendered half-
way to its destination due to the transition, but the DOM will report that it’s
already done moving. As a result, it is impossible to interrogate an element

CSS Transitions and Transformations 103

for its current position until the animation ends. If you wanted to apply a
change in direction, you’d need to perform new calculations and rewrite
your CSS transition.

For example, if you tell an element to change its left position from
50 pixels to 250 pixels over 2 seconds, but after 1 second you need to move
it to a different screen position, you would first need to calculate where it
sits on the screen after 1 second. The DOM would report its left position
at 250 pixels, but we know that it’s at the midpoint of an animation, which
would put it at 150 pixels in most cases. But if you had specified easing
along a cubic Bézier curve, the element is unlikely to be at the midpoint
and indeed may be quite far from it. You would need to write an equation
to calculate the current left coordinate. This example is simpler than most
because we stop the element midway, but with any kind of easing applied
and at almost any other point along the animation path, calculating where
an element might be drawn on the screen is no simple task.

Compare this example to animating with jQuery, in which you can just
call the .stop method after 1,000 milliseconds to stop an element dead in
its tracks. With jQuery, you can even apply a new animate method to set a
sprite on an entirely new path without waiting for a previous animation
to finish. CSS transformations and transitions work well for user-interface
manipulation or for relatively simple straight-line movement, but they don’t
provide the flexibility we need for a lot of in-game action.

Summary
You’ve seen how simple and powerful CSS transitions can be, but also how
their usefulness can be limited for in-game action. You’ve also taken a brief
look at CSS transformations that can be used in combination with transitions
to add special effects to buttons or other HTML elements.

One of the main advantages of CSS transitions over JavaScript animation
is their rendering speed, but unfortunately they are not easy to work with for
anything other than the simplest of animations. In the next chapter, we’ll
look at the canvas element and see how we can animate games with greater
speed and control than DOM-based development has given us.

Further Practice
1.	 Using the CSS transition example in which we animated the New Game

button, experiment with some Bézier curve easing. Think about how
different values might be useful in game animations.

2.	 Create a transformation matrix to flip an element from left to right to
make it appear mirrored.

3.	 Common 2D CSS transformations include translate, rotate, scale, and
skew. Which of these can you reproduce using a matrix transformation,
and which can’t you reproduce?

6
R e n d e r i n g C a n v as S p r i t e s

Up until now, we’ve built Bubble Shooter
with a DOM-based approach by using

HTML elements for game objects that are
styled and positioned by CSS and manipu-

lated by JavaScript. In this chapter, we’ll rework Bubble
Shooter so most of the game area is rendered to a can-
vas instead of using the DOM. Our game’s dialogs will
remain in HTML and CSS.

Canvas rendering allows us to achieve graphical effects that are often
impossible with DOM-based development, and it can often provide a faster
rendering speed. To use canvas rendering for Bubble Shooter, we need to
learn how to render entire scenes to the canvas, maintain state, and per-
form frame-by-frame animations.

106 Chapter 6

We’ll keep the existing DOM‑rendering code in place for devices where
the canvas element isn’t supported and provide progressive enhancement
to the canvas for more modern browsers. We’ll do this to demonstrate the
principle involved in coding for both canvas‑ and DOM-based animation
and to highlight the differences between the two approaches.

Detecting Canvas Support
Modernizr can help us detect canvas features so we don’t have to remember
multiple cross-browser cases. We’ll load in only a couple of extra JavaScript
files for the canvas version and won’t delete any files. To detect the canvas and
load in the right files, we need an extra node in Modernizr.load in index.html,
which will check for canvas support, and if present, load JavaScript files
from an array. Add the following before game.js is loaded:

 },
 {
 test: Modernizr.canvas,
 yep: ["_js/renderer.js","_js/sprite.js"]
 },
 {
 load: "_js/game.js",
 complete: function(){
 $(function(){
 var game = new BubbleShoot.Game();
 game.init();
 })
 }
 }]);

The value of Modernizr.canvas, the parameter that test looks for, will be
either true or false. If it’s true, the two files listed in yep are loaded; if it’s false,
nothing new happens.

Create empty files for renderer.js and sprite.js in the _js folder. The
Renderer object will draw the game state at each frame, and the Sprite class
will perform many of the operations that we’ve been using jQuery for to
date. We want Renderer to be responsible for drawing pixels onto the canvas
and not mix up game logic with it; likewise, we’ll try to keep state infor-
mation inside the relevant objects. This approach makes it much easier
to switch between rendering using the canvas or the DOM, depending on
what we think is best for the game.

Drawing to the Canvas
With HTML5’s canvas feature, you can build games at a level of sophistica-
tion similar to that of Flash games or even native applications. You place
canvas elements into documents in the same way as other elements, such
as <div> or , but it’s the way you work with the element that makes it

index.html

Rendering Canvas Sprites 107

different. Inside the canvas, you have pixel-level control, and you can draw
to individual pixels, read their values, and manipulate them. You can write
JavaScript code to generate arcade shooters or even 3D games that are dif-
ficult to reproduce with a DOM-based approach.

Unlike CSS and HTML, the canvas doesn’t let you rely on the browser
to keep track of the positions of objects on the screen. Nothing automati-
cally deals with layering or rendering backgrounds when a sprite moves over
them because the canvas outputs a flat image for the browser to display. If
sprite animation and movement with CSS is like moving papers around on
a notice wall, canvas animation is more like working with a whiteboard: if
you want to change something or move it, you’ll have to erase an area and
redraw it.

Canvas rendering also differs from CSS layout in that positioning of
elements can’t be offloaded to the browser. For example, with our existing
DOM-based system, we can use a CSS transition to move the bubble visually
from its firing position to wherever we want it to end up in the board layout.
To do this takes only a couple of lines of code.

T he DOM v s. th e C a n vas

HTML is primarily an information format; CSS was introduced as a way to
format that information. Creating games using both technologies is really a
misappropriation, and games like Bubble Shooter are feasible largely because
browser vendors have made an effort to increase performance. Many of the
processes that are invaluable in laying out documents, such as ensuring that
text areas don’t overlap or that text wraps around images, are practices that
we don’t need for laying out games. As game developers, we take on respon-
sibility for ensuring the screen is laid out well, but, unfortunately for us, the
browser still runs through all of these checks in the background.

For example, adding or removing elements in the DOM can be a rela-
tively expensive operation in terms of processing power. The reason is that if
we add or remove something, the browser needs to inspect it to ensure that
the change doesn’t have a domino effect on the rest of the document flow. If
we were working with, say, an expanding menu on a website, we might want
the browser to push a navigation area down if we add more elements to it.
However, in a game it’s more likely that we will be using position: absolute,
and we definitely don’t want the addition or removal of a new element to force
everything surrounding it to be repositioned.

By contrast, when the browser sees a canvas element, it sees just an image.
If we change the contents of the canvas, only the contents change. The browser
doesn’t need to consider whether this change will have a knock-on effect on
the rest of the document.

108 Chapter 6

Canvas rendering, on the other hand, requires us to animate frame by
frame in a way similar to the internal workings of jQuery. We must calculate
how far a bubble is along its path and draw it at that position each time a
frame update occurs.

On its own, animating on the canvas using JavaScript would be no
more arduous than JavaScript animation using the DOM without jQuery
or CSS transitions to fall back on, but the process is made more complex
by the fact that if we want to change the contents of the canvas, we need to
delete pixels and redraw them. Ways to optimize the redrawing process are
available, but a basic approach is to draw the entire canvas afresh for each
animation frame. This means that, if we want to move an object across the
canvas, we have to render not just the object that we want to move but pos-
sibly every object in the scene.

We’ll draw the game board and the current bubble using the canvas,
but some components, such as dialogs, are better left as DOM elements.
User interface components are generally easier to update as DOM ele-
ments, and the browser usually renders text more precisely with HTML
than it would render text within a canvas element.

Now that we’ve decided to render the game with a canvas system, let’s look
at what that will involve. The key tasks are rendering the images and maintain-
ing states for each bubble so that we know which bubbles are stationary,
which are moving, and which are in the various stages of being popped.

Image Rendering
Any image you want to draw to the canvas must be preloaded so it’s avail-
able to be drawn; otherwise, nothing appears. To do this, we’ll create an
in-memory Image object in JavaScript, set the image source to the sprite
sheet, and attach an onload event handler to it so we know when it’s finished
loading. Currently, the game is playable once the init function in game.js
has run and the New Game button has the startGame function attached to
its click event:

$(".but_start_game").bind("click",startGame);

We still want this to happen, but we don’t want it to happen until after
the sprite sheet image has loaded. This will be the first task we’ll tackle.

canvas Elements
Next, we need to know how to draw images onto the canvas. A canvas ele-
ment is an HTML element just like any other: it can be inserted into the
DOM, can have CSS styling applied, and behaves in much the same way as
an image. For example, to create a canvas element, we add the following to
index.html:

<canvas id="game_canvas " width="1000" height="620"></canvas>

Rendering Canvas Sprites 109

This creates a canvas element with the dimensions of 1000 pixels wide
by 620 pixels high. These dimensions are important because they establish
the number of pixels that make up the canvas. However, we should also set
these dimensions in CSS to establish the size of the canvas as it will appear
on the page:

#game_canvas
{
 width: 1000px;
 height: 620px;
}

In the same way that an image can be rendered at scale, the canvas ele-
ment can also be scaled. By setting the CSS dimensions to the same values
as the HTML attributes, we ensure that we’re drawing the canvas at a scale
of 1:1. If we omitted the CSS, the canvas would be rendered at the width
and height specified in the attributes, but it’s good practice to specify lay-
out dimensions within the style sheet. Not only does it help with code read-
ability, but it also ensures that if the internal dimensions of the canvas are
changed, the page layout won’t break.

To draw an image onto the canvas using JavaScript, we first need to
get a context, the object that you use to manipulate canvas contents, using
the method getContext. A context tells the browser whether we’re work-
ing in two dimensions or three. You would write something like this to
indicate you want to work in two-dimensional space rather than three-
dimensional space:

document.getElementById("game_canvas").getContext("2d");

Or to write this using jQuery:

$("#game_canvas").get(0).getContext("2d");

Note that the context is a property of the DOM node, not the jQuery
object, because we’re retrieving the first object in jQuery’s set with the get(0)
call. We need the DOM node because the basic jQuery library doesn’t con-
tain any special functions for working with canvas elements.

Now, to draw the image onto the canvas, we use the drawImage method of
the context object:

document.getElementById("game_canvas").getContext("2d").
drawImage(imageObject,x,y);

Or again, to write this using jQuery:

$("#game_canvas").get(0).getContext("2d").drawImage(imageObject,x,y);

110 Chapter 6

The parameters passed into drawImage are the Image object and then
x- and y -coordinates at which to draw the image. These are pixels relative
to the canvas context origin. By default, (0,0) is the top‑left corner of the
canvas.

We can also clear pixels from the canvas with the clearRect method:

$("#game_canvas").get(0).getContext("2d").clearRect(0, 0, 1000, 620);

The clearRect command removes all canvas pixels from the top-left
corner (first two parameters) down to the bottom-right corner (last two
parameters). Although you can just clear the canvas rectangle that you want
to change, it’s usually easier to clear the entire canvas and redraw it each
frame. Again, the coordinates are relative to the context origin.

The context maintains a number of state properties about the canvas,
such as the current line thickness, line colors, and font properties. Most
important for drawing sprites, it also maintains the coordinates of the con-
text origin and a rotation angle. In fact, you can draw an image at a set posi-
tion on the canvas in two ways:

•	 Pass x- and y -coordinates into the drawImage function.

•	 Move the context origin and draw the image at the origin.

In practice, you’ll see the same results with either method, but there
is a reason it’s often best to move—or translate—the context origin. If you
want to draw an image onto the canvas at an angle, it’s not the image that’s
rotated but the canvas context that’s rotated prior to drawing the image.

Rotating the Canvas
The canvas is always rotated around its origin. If you want to rotate an image
around its own center, first translate the canvas origin to a new origin at the
center of the image. Then rotate the canvas by the angle at which you want
to rotate the image but in the opposite direction to the rotation you wanted to
apply to the object. Then draw the image as usual, rotate the canvas back to
zero degrees around its new origin, and finally translate the canvas back to
its initial origin. Figure 6-1 shows how this works.

For example, to draw an image that’s 100 pixels across at coordinates
(100,100) and rotate it by 30 degrees around its center, you could write the
following:

u var canvas = $("#game_canvas").get(0);
v var context = canvas.getContext("2d");
w context.clearRect(0, 0, canvas.width, canvas.height);
x context.translate(150, 150);
y context.rotate(Math.PI/6);
z context.drawImage(imageObject, -50, -50);
 context.rotate(-Math.PI/6);
 context.translate(-150, -150);

Rendering Canvas Sprites 111

Rotated canvas context

Original canvas context

Origin after translation

2. Rotate the context
around the new origin.

3. Draw the image
at new coordinates.

(0,0)

Drawing and rotating
happen relative to the
new origin point.

Figure 6-1: Drawing a rotated image onto the canvas

This code retrieves the canvas u and the context v and then clears the
canvas so it’s ready for drawing w. We next translate the origin to the coor-
dinates at which we want to draw the image x, but we also need to add half
the image’s width and half of its height to the translation values, because
we’ll be drawing the center of the image at the new origin.

The next step is to add rotation y, but remember that we rotate the con-
text, not the image. Angles are also specified in radians rather than degrees.
The image is drawn at (-50,-50) z, which means that the center of the image
is drawn at the context origin and then the context is rotated back  and
then translated back . The last two steps are important because the con-
text maintains state, so the next operation that’s performed on the canvas
would be on the rotated coordinates. By reversing the rotation and the
translation, we have left the canvas in the same state in which we found it.

If you don’t want to have to remember to rotate and translate the canvas
back to its origin, you can simplify the whole process by storing the context
before changing your image and resetting the context afterward:

var canvas = $("#game_canvas").get(0);
var context = canvas.getContext("2d");
context.clearRect(0, 0, canvas.width, canvas.height);

u context.save();
context.translate(150, 150);
context.rotate(Math.PI/6);
context.drawImage(imageObject, -50, -50);

v context.restore();

112 Chapter 6

The call to context.save u saves the current state of the context,
although, importantly, it doesn’t save the pixel data inside the canvas.
Then context.restore v sets it back to this saved state.

These principles are all we need to draw whole images onto the canvas
and to remove them again, but to draw bubbles, we’ll need to draw only a
small section of the sprite sheet at a time.

C a n vas W idth a nd He ight

The canvas has its own settings for width and height, and it’s important to
specify these when you create a canvas element. You could use CSS to deter-
mine the dimensions of the canvas as displayed on the screen, but they may
not match the number of pixels that the canvas internally is set to render. In our
case, we’ll make both the same, so drawing one pixel to the canvas will result
in one pixel being displayed.

If we were to set the width and height of the canvas element to double
what they are now, the DOM element would still take up the same amount of
space on the page because of our CSS definition. The canvas interacts with
CSS in the same way images do: the width and height are specified in the style
sheet, but the canvas (or image) may be larger or smaller. The result is that the
image we draw occupies only the top quarter of the canvas and appears
to be a quarter of its original size. This happens because canvas pixels are
scaled to screen pixels at render time. Try changing the canvas definition in
index.html to the following and see what happens:

<canvas id="game_canvas" width="2000" height="1240"></canvas>

The canvas element won’t appear any bigger on the screen because of the
CSS rules. Instead, every pixel defined by CSS will be represented by 4 pixels
on the canvas. In most desktop browsers, 1 CSS pixel is identical to 1 screen
pixel, so there’s little benefit to setting the canvas dimensions to values larger
than those in the CSS. However, modern devices, especially mobile ones, have
become sophisticated in their rendering and have what is called a higher pixel
density. This allows the device to render much-higher-resolution images. You
can read more about pixel density at http://www.html5rocks.com/en/tutorials/
canvas/hidpi/.

When you’re working with the canvas and CSS together, you need to
remember which scale you’re working at. If you’re working within the canvas,
it’s the dimensions of the canvas, as specified by its HTML attributes, that are
important. When working with CSS elements around—or possibly even on top
of—the canvas, you’ll be using CSS pixel dimensions. For example, to draw an
image at the bottom‑right of a canvas that is 2000 pixels wide and 1240 pixels
high, you would use something like this:

$("#game_canvas").get(0).getContext("2d").drawImage(imageObject,2000,1240);

Rendering Canvas Sprites 113

Sprite Rendering
We can’t use background images
and position offsets to render bubble
sprites, as we did with our DOM-based
system. Instead, we need to draw the
bubble sprites as images onto the can-
vas. Remember that the sprite image
file contains all four bubble colors in
both resting and popping states. For
example, in the sprite image shown in
Figure 6-2, if we want to draw a blue
bubble onto the board, we are inter-
ested in only the section of the image
surrounded by the dotted line. To
select only this part of the image, we’ll
use the clip parameters that can be
passed into the drawImage method of
a canvas context.

If we want to draw the bubble in the first stage of being popped, we
would move the clip area to the right. This is similar to the way we display
bubbles in the DOM version except that, rather than letting the boundaries
of a div element define the clip boundaries, we’ll specify them in JavaScript.

To draw a clipped image to the canvas, add a couple more parameters to
the drawImage method. Previously, we used drawImage with only three parame-
ters (the Image object and x- and y-coordinates), but we can pass it a few more
to clip the image. The full set of parameters that drawImage accepts are these:

context.drawImage(img,sx,sy,swidth,sheight,x,y,width,height);

Figure 6-2: Clip boundary required to
draw a blue bubble onto the board

But to place a DOM element at the bottom-right corner, you would use the
coordinates (1000,620), such as in the following CSS:

{

 left: 1000px;

 top: 620px;

}

If possible, it’s generally easiest to keep your screen display canvas size
(set in the CSS) and the width and height definitions for the canvas the same
so the canvas renderer doesn’t have to try to scale pixels. But if you’re target-
ing devices with high pixel densities (such as Apple Retina displays), you can
improve the quality of your graphics by experimenting with increasing the num-
ber of pixels in the canvas.

114 Chapter 6

The parameters are as follows:

img  The Image object.

sx and sy  The x- and y -coordinates at which to clip the image relative
to the image’s origin. For a blue bubble in its nonpopping state, these
values would be 0 and 50, respectively.

swidth and sheight  The width and height of the clip area. For our
bubble sprite sheet, these values will both be 50.

x and y  The coordinates to draw the image on the canvas relative to
the canvas context origin.

width and height  The width and height of the image to draw. We can
use these parameters to scale an image, or we can omit them if we want
the image to be drawn at 1:1.

For example, to draw the blue bubble highlighted in Figure 6-2 at the
coordinates (200,150) on the canvas, we would use the following:

$("#canvas").get(0).getContext("2d").drawImage(spriteSheet,0,50,50,50,200,150,
50,50);

This line of code assumes the sprite Image object is named spriteSheet
and the sprite is 50 pixels wide and 50 pixels high.

Defining and Maintaining States
In the DOM-based version of the game code, we don’t have to think about
bubble state; we just queue up events with timeouts and animate/callback
chains. Once a bubble is drawn to the screen at a fixed position, we leave it
as is unless we need to change it. The bubble will be drawn in the same spot
until we tell the browser to do something else with it.

But when we switch to canvas rendering, we need to render each bubble,
with the correct sprite, on each frame redraw. Our code must track the state
of all bubbles on the screen, whether they’re moving, popping, falling, or
just stationary. Each bubble object will track its current state and how long
it’s been in that state. We need that duration for when we draw the frames
of the popping animation. The Board object currently keeps track of bubbles
in the main layout, and we need to add to it so we can also keep track of
those bubbles that are popping, falling, or firing.

Preparing the State Machine
To maintain bubble state, we’ll first create a set of constants that refer to a
bubble’s state. This is referred to as using a state machine, which you’re likely to
find increasingly useful as the complexity of your games increases. The basic
principles of using a state machine, as related to this game, are as follows:

•	 A bubble can exist in a number of states, such as moving, popping, or
falling.

Rendering Canvas Sprites 115

•	 The way a bubble reacts in the game will depend on the state it’s in. For
example, we don’t want the bubble being fired to collide with a bubble
being popped.

•	 The way a bubble is displayed may depend on its state, particularly if it’s
being popped.

•	 A bubble can be in only one state at a time; it can’t be popped and pop-
ping at the same time, or popping and falling simultaneously.

Once we have the state machine set up, we’ll know what we need to do
to a bubble in any given situation. Some changes of state occur as a result of
a user’s actions, such as when they fire the bubble, but we’ll also store the
timestamp when a bubble enters a state. As a result, we can determine when
the bubble should be moved from one state to another automatically, such
as when we’re in the process of popping it after a collision.

N o t e 	 In general, even if you think your game will be relatively simple, it’s worth using a
state machine as a way to manage complexity that you may not have thought of yet.

Add the following to bubble.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Bubble = (function($){

u BubbleShoot.BubbleState = {
 CURRENT : 1,
 ON_BOARD : 2,
 FIRING : 3,
 POPPING : 4,
 FALLING : 5,
 POPPED : 6,
 FIRED : 7,
 FALLEN : 8
 };
 var Bubble = function(row,col,type,sprite){
 var that = this;

v var state;
 var stateStart = Date.now();
 this.getState = function(){ return state;};

w this.setState = function(stateIn){
 state = stateIn;

x stateStart = Date.now();
 };

y this.getTimeInState = function(){
 return Date.now() - stateStart;
 };
 --snip--
 };
 Bubble.create = function(rowNum,colNum,type){
 --snip--
 };
 return Bubble;
})(jQuery);

bubble.js

116 Chapter 6

These additions allow us to store and retrieve the bubble’s current
state v, which will be one of the eight states at the top of the class u.
Whenever we change a bubble’s state w, we also record the timestamp
when it entered that state x. Once we determine how long the bubble has
been in its current state y, we can work out what to draw. For example,
the amount of time a bubble has spent in the POPPING state determines
which frame of the popping sequence to display.

Implementing States
Each bubble can have one of the following states, which we’ll need to
implement:

CURRENT	 Waiting to be fired.

ON_BOARD	 Already part of the board display.

FIRING	 Moving toward the board or off the screen.

POPPING	 Being popped. This will display one of the popping anima-
tion frames.

FALLING	 An orphaned bubble that’s falling from the screen.

POPPED	 Done POPPING. A popped bubble doesn’t need to be rendered.

FIRED	 Missed the board display after FIRING. A fired bubble doesn’t
need to be rendered.

FALLEN	 Done FALLING off the screen. A fallen bubble doesn’t need to
be rendered.

The bubbles displayed in the board at the beginning of a level start out
in the ON_BOARD state, but all other bubbles will start in the CURRENT state and
move into one of the other states, as shown in Figure 6-3.

We’ll add a couple of arrays to Game to keep track of those. At the top of
the class, add:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Game = (function($){
 var Game = function(){
 var curBubble;
 var board;
 var numBubbles;

u var bubbles = [];
 var MAX_BUBBLES = 70;
 this.init = function(){
 --snip--
 };
 var startGame = function(){
 $(".but_start_game").unbind("click");
 numBubbles = MAX_BUBBLES
 BubbleShoot.ui.hideDialog();
 board = new BubbleShoot.Board();

v bubbles = board.getBubbles();
 curBubble = getNextBubble();

game.js

Rendering Canvas Sprites 117

 BubbleShoot.ui.drawBoard(board);
 $("#game").bind("click",clickGameScreen);
 };
 var getNextBubble = function(){
 var bubble = BubbleShoot.Bubble.create();

w bubbles.push(bubble);
x bubble.setState(BubbleShoot.BubbleState.CURRENT);

 bubble.getSprite().addClass("cur_bubble");
 $("#board").append(bubble.getSprite());
 BubbleShoot.ui.drawBubblesRemaining(numBubbles);
 numBubbles--;
 return bubble;
 };
 --snip--
 };
 return Game;
})(jQuery);

This new array u will contain all of the bubbles in the game, both on
and off the board layout. Initially, every bubble is part of the board, so the
board contents can be used to populate the array v. Each time we call
getNextBubble, the bubble that’s ready to fire needs to be added w and have
its state set to CURRENT x.

CURRENT

POPPING

FIRING

ON_BOARD

FALLING

POPPED

FIRED

FALLEN

Figure 6-3: Flowchart showing bubble states

118 Chapter 6

board.getBubbles is a new method that will return all of the bubbles in
the rows and columns of the board as a single flat array, so add it to board.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Board = (function($){
 var NUM_ROWS = 9;
 var NUM_COLS = 32;
 var Board = function(){
 var that = this;
 --snip--
 this.getBubbles = function(){
 var bubbles = [];
 var rows = this.getRows();
 for(var i=0;i<rows.length;i++){
 var row = rows[i];
 for(var j=0;j<row.length;j++){
 var bubble = row[j];
 if(bubble){
 bubbles.push(bubble);
 };
 };
 };
 return bubbles;
 };
 return this;
 };
 --snip--
 return Board;
})(jQuery);

We also need to set the state of bubbles that are on the board to ON_BOARD,
so make this change to the createLayout function in the same file:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Board = (function($){
 var NUM_ROWS = 9;
 var NUM_COLS = 32;
 var Board = function(){
 --snip--
 };
 var createLayout = function(){
 var rows = [];
 for(var i=0;i<NUM_ROWS;i++){
 var row = [];
 var startCol = i%2 == 0 ? 1 : 0;
 for(var j=startCol;j<NUM_COLS;j+=2){
 var bubble = BubbleShoot.Bubble.create(i,j);
 bubble.setState(BubbleShoot.BubbleState.ON_BOARD);
 row[j] = bubble;
 };
 rows.push(row);
 };
 return rows;
 };

board.js

Rendering Canvas Sprites 119

 return Board;
})(jQuery);

bubble.setState handles the setup, which contains the states of CURRENT
and ON_BOARD, but we also need to be able to change the state of a bubble.

The two states of FIRING and FIRED will be set inside fireBubble in ui.js.
Amend the function as follows:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){
 var ui = {
 --snip--
 fireBubble : function(bubble,coords,duration){

u bubble.setState(BubbleShoot.BubbleState.FIRING);
 var complete = function(){
 if(typeof(bubble.getRow()) !== undefined){
 bubble.getSprite().css(Modernizr.prefixed("transition"),"");
 bubble.getSprite().css({
 left : bubble.getCoords().left - ui.BUBBLE_DIMS/2,
 top : bubble.getCoords().top - ui.BUBBLE_DIMS/2
 });

v bubble.setState(BubbleShoot.BubbleState.ON_BOARD);
 }else{

w bubble.setState(BubbleShoot.BubbleState.FIRED);
 };
 --snip--
 },
 --snip--
 };
 return ui;
})(jQuery);

When the bubble is initially fired, we set the state to FIRING u. If the bub-
ble reaches the board, we set it to ON_BOARD v, but if it hasn’t settled into a row
and column, that means it missed the board, in which case it becomes FIRED w.

The other states will be set in game.js:

var Game = function(){
 --snip--
 var popBubbles = function(bubbles,delay){
 $.each(bubbles,function(){
 var bubble = this;
 setTimeout(function(){

u bubble.setState(BubbleShoot.BubbleState.POPPING);
 bubble.animatePop();

v setTimeout(function(){
 bubble.setState(BubbleShoot.BubbleState.POPPED);
 },200);
 },delay);
 board.popBubbleAt(bubble.getRow(),bubble.getCol());
 delay += 60;
 });
 };

ui.js

game.js

120 Chapter 6

 var dropBubbles = function(bubbles,delay){
 $.each(bubbles,function(){
 var bubble = this;
 board.popBubbleAt(bubble.getRow(),bubble.getCol());
 setTimeout(function(){

w bubble.setState(BubbleShoot.BubbleState.FALLING);
 bubble.getSprite().kaboom({
 callback : function(){
 bubble.getSprite().remove();

x bubble.setState(BubbleShoot.BubbleState.FALLEN);
 }
 })
 },delay);
 });
 };
};

In popBubbles, we set every bubble to POPPING u, and then after 200 milli
seconds, when the popping animation has finished, we set them to POPPED v.
In dropBubbles, we set them to FALLING w, and then when they’ve finished fall-
ing at the end of the kaboom process, they become FALLEN x.

Now that bubbles know which state they’re in at any point in the game,
we can start to render them onto a canvas.

Sprite Sheets and the Canvas
We can use the existing sprite sheet PNG (bubble_sprite_sheet.png) from the
CSS version of the game when we draw to the canvas, although we need to
work with it in a different way. Rather than shifting the sprite sheet around
like a background image, we’ll draw part of the image that shows the cor-
rect bubble in the correct animation state. Our loading sequence will also
change because we need to make sure that the sprite image is loaded before
starting the game.

We’ll make a new object called Renderer to handle drawing to the canvas,
and we’ll give it its own init method, which will preload the sprite sheet, and
call that method within game.init.

Change the init method in game.js to the following:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Game = (function($){
 var Game = function(){
 --snip--
 this.init = function(){

u if(BubbleShoot.Renderer){
v BubbleShoot.Renderer.init(function(){
w $(".but_start_game").click("click",startGame);

 });
 }else{
 $(".but_start_game").click("click",startGame);
 };
 --snip--

game.js

Rendering Canvas Sprites 121

 };
 return Game;
})(jQuery);

First, we check if BubbleShoot.Renderer exists u. If the Modernizr.canvas
test passes when we load in scripts, the object will exist; if canvas isn’t sup-
ported, the object won’t exist.

Then we call a Renderer.init method and pass it a function as its only
parameter v. This is the function that attaches startGame to the New Game
button w.

Now we need to write the Renderer object. In the blank renderer.js file,
add the following code:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Renderer = (function($){

u var canvas;
 var context;
 var Renderer = {

v init : function(callback){
w canvas = document.createElement("canvas");

 $(canvas).addClass("game_canvas");
x $("#game").prepend(canvas);
y $(canvas).attr("width",$(canvas).width());

 $(canvas).attr("height",$(canvas).height());
 context = canvas.getContext("2d");
 callback();
 }
 };
 return Renderer;
})(jQuery);

We first create variables to hold the canvas that we’ll use to render the
game area u and a reference to its rendering context, so we don’t have to
call canvas.getContext("2d") constantly.

In the init method, we accept the callback function as a parameter v,
create the canvas DOM element w, and then prepend it in the game div x. We
also explicitly set the width and height attributes of the canvas y. Remember
that these attributes define the number of pixels and the boundaries of the
canvas internally, so for simplicity, we set them to the same dimensions as
those rendered to the screen.

That will create the canvas element for us and prime a context ready to
be drawn into. We need to set the width and height of game_canvas, so add
the following into main.css:

.game_canvas
{
 width: 1000px;
 height: 620px;
}

renderer.js

main.css

122 Chapter 6

The DOM-rendered version uses jQuery to move objects around the
screen, but we won’t have DOM elements to manipulate inside a canvas, so
there’s nothing for jQuery to work with. Hence, we’ll have to keep track of
the position of every bubble on the screen with new code. Much of this will
happen inside the new sprite.js file we’ve created.

Mult ipl e R e nde r ing Me th ods: T wo A pproache s

If you need to support different rendering methods, as we are here, you can
take two approaches. First, you can create a class for each rendering method
and provide identical sets of methods and properties so they can be used inter-
changeably. This is what we’re doing with Bubble Shooter.

Second, you can create a single class for both rendering methods and
then have code inside that branches depending on which rendering method is
supported. The new class may act as just a wrapper for a different class for
each method. For example, for Bubble Shooter, we could create something like
the following pseudocode:

BubbleShoot.SpriteWrapper = (function($){

u var SpriteWrapper = function(id){

 var wrappedObject;

v if(BubbleShoot.Renderer){

w wrappedObject = getSpriteObject(id);

 }else{

x wrappedObject = getJQueryObject(id);

 }

y this.position = function(){

 return wrappedObject.position();

 };

 };

 return SpriteWrapper;

})(jQuery);

Here, we would pass in some kind of identifier to an object constructor
u and then branch the code depending on how we’ll render the game v.
We would need new functions to return either a Sprite w or a jQuery x object,
which would be stored inside the class in wrappedObject.

From then on, if we wanted to find the position of the object, we would
call the position method y and know we would get correct data whether the
object was being rendered in the DOM or on the canvas.

The main reason we’re not taking this approach with Bubble Shooter is
that we have only one type of sprite—the bubbles on the screen. These are
represented well enough by the Bubble class, which acts as a wrapper anyway.
However, if we were dealing with many different kinds of sprites, we might
want to split the structure more explicitly.

Rendering Canvas Sprites 123

We’ll write sprite.js so that canvas sprites can be called with the same
methods that we’re using on jQuery sprites. The main methods we’ve been
calling are position, width, height, and css, and if we create implementa-
tions of these in sprite.js, the Sprite class will look like a jQuery object as far
as the rest of our code is concerned.

Add the following to sprite.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Sprite = (function($){
 var Sprite = function(){
 var that = this;

u var left;
 var top;

v this.position = function(){
 return {
 left : left,
 top : top
 };
 };

w this.setPosition = function(args){
 if(arguments.length > 1){
 return;
 };
 if(args.left !== null)
 left = args.left;
 if(args.top !== null)
 top = args.top;
 };

x this.css = this.setPosition;
 return this;
 };

y Sprite.prototype.width = function(){
 return BubbleShoot.ui.BUBBLE_DIMS;
 };

z Sprite.prototype.height = function(){
 return BubbleShoot.ui.BUBBLE_DIMS;
 };

 Sprite.prototype.removeClass = function(){};
 Sprite.prototype.addClass = function(){};
 Sprite.prototype.remove = function(){};
 Sprite.prototype.kaboom = function(){
 jQuery.fn.kaboom.apply(this);
 };
 return Sprite;
})(jQuery);

Here, we’ve created an object that implements many of the methods
that we access for jQuery objects. We have left and top coordinates u and
a position method v that returns those coordinates in the same way that a
call to jQuery’s position method would. The setPosition method can set the
top and left coordinates w or do nothing if other values are passed.

sprite.js

124 Chapter 6

In our DOM-based version of the game, we call the css method to set
the screen coordinates of an object. setPosition has been constructed to
accept the same arguments as the css method, and to spare us from having
to rewrite code anywhere that the css method is called and using setPosition
for the canvas version, we can create a css method of Sprite and alias it to
setPosition x.

The width y and height z methods return the values defined for a
bubble’s dimensions in ui.js. Finally, we define empty methods for removeClass,
addClass, and remove, which maintain compatibility with a lot of our existing
code {. Anywhere these last methods are called will not affect the display
but will also not throw an error.

When a bubble is created, we need to decide whether to create a jQuery
object or an instance of Sprite, depending on whether we’re rendering using
the DOM or canvas. We’ll do this inside the bubble creation process in
bubble.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Bubble = (function($){
 --snip--
 var Bubble = function(row,col,type,sprite){
 --snip--
 };
 Bubble.create = function(rowNum,colNum,type){
 if(!type){
 type = Math.floor(Math.random() * 4);
 };

u if(!BubbleShoot.Renderer){
 var sprite = $(document.createElement("div"));
 sprite.addClass("bubble");
 sprite.addClass("bubble_" + type);	
 }else{

v var sprite = new BubbleShoot.Sprite();
 }
 var bubble = new Bubble(rowNum,colNum,type,sprite);
 return bubble;
 };
 return Bubble;
})(jQuery);

This code checks again that the Renderer object is loaded u (which
happens if canvas is enabled) and, if not, continues the DOM-based path.
Otherwise, we make a new Sprite object v. With this in place, a call to
curBubble.getSprite will return a valid object no matter whether we’re using
jQuery with CSS or a pure canvas route.

The last part of initializing the Sprite objects is to make sure they have
the correct onscreen coordinates. In the DOM version of the game, we set

bubble.js

Rendering Canvas Sprites 125

these in the CSS, but with the canvas, we have to set them in JavaScript
code. These will be set in the createLayout function in board.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Board = (function($){
 var NUM_ROWS = 9;
 var NUM_COLS = 32;
 var Board = function(){
 --snip--
 return this;
 };
 var createLayout = function(){
 var rows = [];
 for(var i=0;i<NUM_ROWS;i++){
 var row = [];
 var startCol = i%2 == 0 ? 1 : 0;
 for(var j=startCol;j<NUM_COLS;j+=2){
 var bubble = BubbleShoot.Bubble.create(i,j);
 bubble.setState(BubbleShoot.BubbleState.ON_BOARD);

u if(BubbleShoot.Renderer){
v var left = j * BubbleShoot.ui.BUBBLE_DIMS/2;

 var top = i * BubbleShoot.ui.ROW_HEIGHT;
w bubble.getSprite().setPosition({

 left : left,
 top : top
 });
 };
 row[j] = bubble;
 };
 rows.push(row);
 };
 return rows;
 };
 return Board;
})(jQuery);

If the renderer exists u, we calculate the left and top coordinates of
where the bubble should be displayed v and then set the sprite’s properties
to those values w.

The current bubble also needs its position set, so this will happen
inside getNextBubble in game.js:

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 --snip--
 var getNextBubble = function(){
 var bubble = BubbleShoot.Bubble.create();

board.js

game.js

126 Chapter 6

 bubbles.push(bubble);
 bubble.setState(BubbleShoot.BubbleState.CURRENT);
 bubble.getSprite().addClass("cur_bubble");
 var top = 470;
 var left = ($("#board").width() - BubbleShoot.ui.BUBBLE_DIMS)/2;
 bubble.getSprite().css({
 top : top,
 left : left
 });
 $("#board").append(bubble.getSprite());
 BubbleShoot.ui.drawBubblesRemaining(numBubbles);
 numBubbles--;
 return bubble;
 };
 --snip--
 };
 return Game;
})(jQuery);

We now have all bubble positions tracked and know their state at all
times. We can also manipulate a sprite representation, but nothing will
appear on the screen just yet. In the next section, we’ll render our sprites
to the canvas.

The Canvas Renderer
To animate anything on the canvas, we need to clear pixels before each
redraw. To render the game, we’ll use setTimeout with a timer to redraw
the position and state of every bubble on a frame-by-frame basis. This pro-
cess will be the same for just about any game you build and, certainly, for
anything where the display is constantly being updated. In theory, we only
need to redraw the canvas when information on the screen has changed;
in practice, working out when there’s new information to show can be diffi-
cult. Fortunately, canvas rendering is so fast that there’s generally no reason
not to just update the display as often as possible.

We’ll store the value of the timeout ID returned by setTimeout so we
know whether or not the frame counter is running. This will happen at the
top of game.js in a new variable called requestAnimationID, where we’ll also
store a timestamp for when the last animation occurred:

var BubbleShoot = window.BubbleShoot || {};
 var Game = function(){
 var curBubble;
 var board;
 var numBubbles;
 var bubbles = [];
 var MAX_BUBBLES = 70;

u var requestAnimationID;
 this.init = function(){
 };
 --snip--

game.js

Rendering Canvas Sprites 127

 var startGame = function(){
 $(".but_start_game").unbind("click");
 $("#board .bubble").remove();
 numBubbles = MAX_BUBBLES;
 BubbleShoot.ui.hideDialog();
 board = new BubbleShoot.Board();
 bubbles = board.getBubbles();

v if(BubbleShoot.Renderer)
 {
 if(!requestAnimationID)

w requestAnimationID = setTimeout(renderFrame,40);
 }else{
 BubbleShoot.ui.drawBoard(board);
 };
 curBubble = getNextBubble(board);
 $("#game").bind("click",clickGameScreen);
 };
 };
 return Game;
})(jQuery);

We add the two variables u, and if the Renderer object exists v, we start
the timeout running to draw the first animation frame w.

We haven’t written renderFrame yet, but before we do, we’ll write a method
in renderer.js to draw all of the bubbles. The method will accept an array of
bubble objects as an input.

First we need to load the bubble images into renderer.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Renderer = (function($){
 var canvas;
 var context;

u var spriteSheet;
v var BUBBLE_IMAGE_DIM = 50;

 var Renderer = {
 init : function(callback){
 canvas = document.createElement("canvas");
 $(canvas).addClass("game_canvas");
 $("#game").prepend(canvas);
 $(canvas).attr("width",$(canvas).width());
 $(canvas).attr("height",$(canvas).height());
 context = canvas.getContext("2d");
 spriteSheet = new Image();

w spriteSheet.src = "_img/bubble_sprite_sheet.png";
x spriteSheet.onload = function() {

 callback();
 };
 }
 };
 return Renderer;
})(jQuery);

renderer.js

128 Chapter 6

We create a variable to hold the image data u and define another vari-
able for the width and height of each bubble image v. The dimensions will
tell us where to crop each image within the sprite sheet. We then load in
the image file w, and the callback function that’s passed into init is trig-
gered after the image has loaded x.

Next we’ll create the function to draw the sprites onto the canvas.

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Renderer = (function($){
 --snip--
 var Renderer = {
 init : function(callback){
 --snip--
 },

u render : function(bubbles){
 context.clearRect(0,0,canvas.width,canvas.height);
 context.translate(120,0);

v $.each(bubbles,function(){
 var bubble = this;

w var clip = {
 top : bubble.getType() * BUBBLE_IMAGE_DIM,
 left : 0
 };

x Renderer.drawSprite(bubble.getSprite(),clip);
 });
 context.translate(-120,0);
 },
 drawSprite : function(sprite,clip){

y context.translate(sprite.position().left + sprite.width()/2,sprite.
 position().top + sprite.height()/2);
z context.drawImage(spriteSheet,clip.left,clip.top,BUBBLE_IMAGE_DIM,
 BUBBLE_IMAGE_DIM,-sprite.width()/2,-sprite.height()/2,BUBBLE_IMAGE_
 DIM,BUBBLE_IMAGE_DIM);
 context.translate(-sprite.position().left - sprite.width()/2,
 -sprite.position().top - sprite.height()/2);

 }
 };
 return Renderer;
})(jQuery);

First, we create a render method that accepts an array of Bubble objects u.
We then clear the canvas and offset the context by 120 pixels so the board
display is drawn in the center of the screen. The code then loops over each
bubble in the array v and defines an (x,y) coordinate from which to extract
the bubble’s sprite from the image w. The x-coordinate always starts at zero
until we add frames for the popping animation, and the y -coordinate is the
bubble type (0 to 3) multiplied by the height of a bubble image (50 pixels).
We pass this information along with the bubble’s Sprite object to another
new method called drawSprite x before resetting the context position.

renderer.js

Rendering Canvas Sprites 129

Inside drawSprite, we translate the context y by the coordinates of
the sprite, remembering to offset the (top,left) coordinates by half of
(width,height) to get the center of the image, and then draw the image z.
In general, it’s best to translate the canvas context so its origin is at the
center of any image being drawn, because the rotate method of the context
performs rotations around the context origin. This means that if we want
to rotate an image around its center, we already have the context set up
correctly to do so.

Finally, after calling drawImage, we translate the context back to the
origin . To see the board being rendered to the canvas, we just need to
put renderFrame into game.js:

var BubbleShoot = window.BubbleShoot || {};
 var Game = function(){
 --snip--
 var renderFrame = function(){
 BubbleShoot.Renderer.render(bubbles);
 requestAnimationID = setTimeout(renderFrame,40);
 };
 };
 return Game;
})(jQuery);

Reload the page in your browser to start the game again. After clicking
New Game, you should see the board render in its initial state. However, fir-
ing a bubble produces no animation, and neither does popping, falling, or
anything else. In the next section, we’ll get bubble firing working again and
also animate the bubble popping. If you open the game in a browser that
doesn’t support canvas, then the game will still work as before because we
have left the DOM version intact. Next, we’ll add animation to the canvas
version.

Moving Sprites on the Canvas
With the CSS version of the game, we used jQuery to move objects around
on the screen with one call to the animate method. For canvas animation, we
need to calculate and update movements manually.

The process of animating on the canvas is the same as jQuery’s inter-
nal processes, and we’ll give Sprite an animate method so we can continue to
use our existing code. The animate method will do the following:

1.	 Accept destination coordinates for a bubble and the duration of the
movement.

2.	 Move the object a small distance toward those coordinates by a value
proportional to the time elapsed since the last frame.

3.	 Repeat step 2 until the bubble reaches its destination.

game.js

130 Chapter 6

This process is identical to the one that happens when we use jQuery’s
animate method and is one you’ll use just about any time you want to move
an object around the screen.

The renderFrame method, which is already called during each frame, will
run the entire animation process. After the bubble sprites calculate their
own coordinates, renderFrame will trigger the drawing process. We’ll add
an animate method to the Sprite object so our existing game logic will work
without us having to rewrite our code. Remember that when we call animate
in ui.js, we pass in two parameters:

•	 An object specifying left and top position coordinates

•	 An object specifying duration, callback function, and easing

By constructing the animate method of Sprite to take the same parame-
ters, we can avoid making any changes to the call in ui.js. Add the following
to sprite.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Sprite = (function($){
 var Sprite = function(){
 --snip--
 this.css = function(args){
 --snip--
 };

u this.animate = function(destination,config){
v var duration = config.duration;
w var animationStart = Date.now();
x var startPosition = that.position();
y that.updateFrame = function(){

 var elapsed = Date.now() - animationStart;
 var proportion = elapsed/duration;
 if(proportion > 1)
 proportion = 1;

z var posLeft = startPosition.left + (destination.left - startPosition.
 left) * proportion;

 var posTop = startPosition.top + (destination.top - startPosition.top)
 * proportion;

 that.css({
 left : posLeft,
 top : posTop
 });
 };

 setTimeout(function(){
 that.updateFrame = null;
 if(config.complete)

 config.complete();
 },duration);
 };
 return this;
 };
 --snip--
 return Sprite;
})(jQuery);

sprite.js

Rendering Canvas Sprites 131

The destination parameter passed into animate u represents the sprite’s
destination coordinates, which are contained in an object that looks like this:

{top: 100,left: 100}

We also pass a configuration object, which will have a duration property v,
plus an optional post-animation callback function to run when the anima-
tion is over.

Next, we set a start time for the animation w and store the starting
position x. These will both be used to calculate a bubble’s position at
any time.

We dynamically add the updateFrame method onto the Sprite object y so we
can call it each frame to recalculate a bubble’s position. Inside updateFrame,
we calculate how much of the animation is completed. In case the last
timeout is called after the animation has completed, we ensure that the
proportion is never greater than 1 so that a bubble never moves past its
target destination. The new coordinates are calculated z with the following
equations:

current x = start x + (final x – start x) × proportion elapsed

current y = start y + (final y – start y) × proportion elapsed

Once we have the new top and left coordinates, the position of the
sprite is updated with a call to its css method . We don’t need updateFrame
to run when the object has finished moving, so a timeout call is set  to
remove the method after duration  passes, which is when the animation
will be complete. This also calls any post-animation function that was passed
in as the callback property of the config variable .

Now that we can calculate a bubble’s new coordinates, add a call to
updateFrame in game.js:

var BubbleShoot = window.BubbleShoot || {};
 var Game = function(){
 --snip--
 var renderFrame = function(){

u $.each(bubbles,function(){
v if(this.getSprite().updateFrame)
w this.getSprite().updateFrame();

 });
 BubbleShoot.Renderer.render(bubbles);
 requestAnimationID = setTimeout(renderFrame,40);
 };
 };
 return Game;
})(jQuery);

Each time renderFrame is called on a bubble u, if the method updateFrame
is defined v, we call that method w.

game.js

132 Chapter 6

We also need to call animate in fireBubble in ui.js by checking for the
existence of BubbleShoot.Renderer again. We know that BubbleShoot.Renderer
will exist only if canvas is supported, and we want to use the canvas for ren-
dering if that is the case. The outcome is that CSS transitions will animate
the bubbles only if CSS transitions are supported and canvas rendering isn’t
supported.

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){
 var ui = {
 --snip--
 fireBubble : function(bubble,coords,duration){
 --snip--
 if(Modernizr.csstransitions && !BubbleShoot.Renderer){
 --snip--
 }else{
 --snip--
 }
 },
 --snip--
 };
 return ui;
})(jQuery);

Reload the game and fire away! You should now have a working game
again, but this time all the images are rendered onto the canvas. But now
there’s no popping animation because we’re not handling changes in bubble
state in the display. The game state is internally correct, but the screen isn’t
entirely in sync because we never see a bubble popping. Rendering the
bubbles in their correct state is the focus of the next section.

Animating Canvas Sprite Frames
Currently, every bubble is rendered in the same visual state regardless of
whether it’s sitting in the board, popping, newly fired, and so on. Bubbles
remain on the screen after they’ve been popped, and we’re missing out on
the popping animation! This happens because bubbles are never deleted
from the bubbles array in Game, so they’re rendered even after they’ve been
deleted from the Board object.

We already know which state a bubble is in, and we have the sprite sheet
image loaded into memory to access all of the animation states. Drawing
the correct state involves making sure that the drawSprite method of Renderer
is either called with the correct state for a visible bubble or skipped entirely
for any bubbles that have been popped or dropped off the screen. The
changes in a bubble’s appearance that we need to implement are listed by
state in Table 6-1.

ui.js

Rendering Canvas Sprites 133

Table 6-1: Visual Changes Based on Bubble State

Bubble’s state in code Visual displayed to the player

CURRENT_BUBBLE No change
ON_BOARD No change
FIRING No change
POPPING Render one of four bubble frames, depending

on how long the bubble has been POPPING
FALLING No change
POPPED Skip rendering
FALLEN Skip rendering
FIRED Skip rendering

Those changes will happen inside Renderer.render. We’ll loop over the
entire bubble array and either skip the rendering stage or adjust the coordi-
nates to clip the sprite sheet for the correct stage in the popping animation.
Make the following change to renderer.js:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Renderer = (function($){
 --snip--
 var Renderer = {
 init : function(callback){
 --snip--
 },
 render : function(bubbles){
 bubbles.each(function(){
 var bubble = this;
 var clip = {
 top : bubble.getType() * BUBBLE_IMAGE_DIM,
 left : 0
 };

u switch(bubble.getState()){
 case BubbleShoot.BubbleState.POPPING:

v var timeInState = bubble.getTimeInState();
w if(timeInState < 80){

 clip.left = BUBBLE_IMAGE_DIM;
x }else if(timeInState < 140){

 clip.left = BUBBLE_IMAGE_DIM*2;
y }else{

 clip.left = BUBBLE_IMAGE_DIM*3;
 };
 break;

z case BubbleShoot.BubbleState.POPPED:
 return;

{ case BubbleShoot.BubbleState.FIRED:
 return;

| case BubbleShoot.BubbleState.FALLEN:
 return;
 }

renderer.js

134 Chapter 6

} Renderer.drawSprite(bubble.getSprite(),clip);
 });
 },
 drawSprite : function(sprite,clip){
 --snip--
 }
 };
 return Renderer;
})(jQuery);

First, we want to see which state the bubble is in u. To do this, we’ll use
a switch statement. State machines are often written using switch/case state-
ments rather than multiple if/else statements. Using this structure not only
makes it easier to add any future states but also provides a clue to others
reading the code in the future that they’re looking at a state machine.

If the bubble is popping, we want to know how long it’s been in that
state v. That time determines which animation frame to fetch. We use the
unpopped state for the first 80 milliseconds w, the first frame for the next
60 milliseconds x, and the final popping frame from that point until the
POPPING state is cleared y.

If the bubble is in the POPPED z, FIRED {, or FALLEN | states, we return
and skip rendering altogether. Otherwise, we call drawSprite as before }.

Now if you reload the game, it should completely work again. Without
making drastic changes, we’ve refactored our entire game area to use either
canvas- or DOM-based rendering, depending on browser compatibility. The
browser you use to load the game and the features that browser supports
will determine how Bubble Shooter is presented to you:

•	 If your browser supports the canvas element, you’ll see that version.

•	 If your browser supports CSS transitions but not the canvas element,
you’ll see the CSS transition version.

•	 If neither of the above is supported, you’ll see the DOM version ani-
mated with jQuery.

Summary
That covers most of the core of drawing the graphics elements of an
HTML5 game, whether you’re using HTML and CSS or an entirely canvas-
based approach. But that doesn’t mean we’ve finished the game! We have
no sound, only one level of play exists, and a scoring system would be nice.
In the next chapter, we’ll implement these elements and explore a few
more features of HTML5, including local storage for saving game state,
requestAnimationFrame for smoother animations, and how to make sound
work reliably.

Rendering Canvas Sprites 135

Further Practice
1.	 When bubbles pop, the animation plays identically for every bubble.

Experiment with changing the timing so that some bubbles play the
animation faster and some slower. Also, try adding some rotation to the
bubbles as they’re drawn onto the canvas. This should give the popping
animation a much richer feel for very little effort.

2.	 When orphaned bubbles fall, they remain as the default sprite. Change
renderer.js so that bubbles pop as they’re falling.

7
L e v e l s , S o u n d, a n d M o r e

In this chapter, we’ll add a few finishing
touches to Bubble Shooter and cover a few

more features of HTML5. Right now, the
bubble grid could fill up the entire page in

no time, giving players no room to fire bubbles. To
prevent this from happening, we’ll make the game
end if the player adds more than two rows to the bottom of the board.
We’ll also implement multiple levels and high scores using the Local
Storage API, smooth out animation with requestAnimationFrame, and add
sound to the game with HTML5. Let’s start by adding multiple levels and
high scores.

138 Chapter 7

Multiple Levels and High Scores
It’s possible to complete a level by clearing out all of the bubbles, but there-
after, if you want to play again, you must refresh the browser. Obviously,
this is not satisfactory for a game, and a few other game flow elements are
missing:

•	 A limited supply of bubbles (otherwise, the player can continue firing
forever and cause the bubble counter to display negative numbers!)

•	 A scoring system

•	 End-of-level conditions

•	 Further levels

The game will award points for each bubble popped, and those points
will add up to the player’s score. We already have the information we need
to limit the player’s bubble supply, because we count the bubbles, although
our count can go into negative numbers. To add multiple levels that increase
in difficulty, we’ll give the player fewer bubbles at each level.

New Game State Variables
The first steps we need to take are incorporating the bubble counter and
creating other game state variables. We could create a new object to store
all of the game state parameters, such as the player’s score, the number of
bubbles remaining, the level number, and so on. Alternatively, we could store
these as variables inside the Game object. I’ve opted for the latter because there
are only three values to track. If you need to track more information or if the
information to track is more complex, it’s best to store the data in its own
object to keep game.js as small and readable as possible.

Let’s add a few new variables to the top of the Game class and give the
player a different number of bubbles to complete the level based on the
level number:

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 var curBubble;
 var board;
 var numBubbles;
 var bubbles = [];
 var MAX_BUBBLES = 70;

u var POINTS_PER_BUBBLE = 50;
v var level = 0;
w var score = 0;
x var highScore = 0;

game.js

Levels, Sound, and More 139

 var requestAnimationID;
 this.init = function(){
 --snip--
 };
 var startGame = function(){
 $(".but_start_game").unbind("click");
 BubbleShoot.ui.hideDialog();

y numBubbles = MAX_BUBBLES - level * 5;
 board = new BubbleShoot.Board();
 bubbles = board.getBubbles();
 if(BubbleShoot.Renderer)
 {
 if(!requestAnimationID)
 requestAnimationID = setTimeout(renderFrame,40);
 }else{
 BubbleShoot.ui.drawBoard(board);
 };
 curBubble = getNextBubble();
 $("#game").bind("click",clickGameScreen);
 };
 --snip--
 };
 return Game;
})(jQuery);

We’ve created new variables for the number of points to award for each
bubble u, the player’s current level v, their current score w, and a high
score x. When the game starts, we reduce the number of bubbles by 5 for
every level the player has completed y. At the first level, players are given
70 bubbles, at level 2, they have 65, and so on.

N o t e 	 You may notice a couple of problems with the way we are calculating the number
of bubbles available. First, it’s impossible to complete level 14, because the number of
bubbles the user would be given would be zero at this point. Second, the levels lead-
ing up to this will be extremely difficult. It’s hard to imagine being able to complete a
level with 20 or 30 bubbles, let alone only 10 or 15! I’ll leave a solution to this problem
as an exercise for the end of the chapter.

Display Level and Score
We don’t have anywhere to display the score yet, so we’ll add a DOM ele-
ment to index.html for that, as well as somewhere to display the current level
and high score. The bar at the top of the screen is a good place in the lay-
out to display that information. The new elements are shown at the top of
Figure 7-1.

140 Chapter 7

Figure 7-1: Screen layout showing level, score, and high score display

<!DOCTYPE HTML>
<html lang="en-US">
<head>
 --snip--
</head>
<body>
<div id="page">
 <div id="top_bar">

u <div id="top_level_box" class="top_bar_box">
 <div id="top_level_label">Level:</div>
 <div id="level">1</div>
 </div>

v <div class="top_bar_box">
 <div id="top_score_label">Score:</div>
 <div id="score">0</div>
 </div>

w <div class="top_bar_box">
 <div id="top_score_label">High Score:</div>
 <div id="high_score">0</div>
 </div>
 </div>
 --snip--
</div>
</body>
</html>

index.html

Levels, Sound, and More 141

Three new <div> elements were added: one each for the level number u,
the current game score v, and the high score w. Each <div> has an element
to display the label and then a value.

These also need style definitions in main.css:

body
{
 margin: 0;
}
#page
{
 position: absolute;
 left: 0;
 top: 0;
 width: 1000px;
 height: 738px;
}
 #top_bar
 {
 position: absolute;
 left: 0;
 top: 0;
 width: 1000px;
 height: 70px;
 background-color: #369;
 color: #fff;
 }

u .top_bar_box
 {
 font-size: 24px;
 line-height: 60px;
 float: left;
 margin-left:20px;
 width: 250px;
 }

v .top_bar_box div
 {
 float: left;
 margin-right: 20px;
 }
--snip--

I haven’t styled each of the three elements individually; instead, I’ve
given them a common class of top_bar_box u. The basic CSS styling gives
each element a width of 250 pixels and floats it to the left, so the elements
form a row at the top of the screen inside top_bar. The label and value dis-
played for each element is inside a <div>, so the styling for that is applied
without creating a new CSS class v.

Now let’s award some points to the player and display their score and
level. Points need to be awarded and displayed whenever bubbles are popped

main.css

142 Chapter 7

or orphaned, and score and level values should be displayed at the start of
the game. First, we need functions in ui.js to draw the values to the screen.
We’ll put them inside ui.js to continue to keep game.js free of display code:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){
 --snip--
 var ui = {
 --snip--

u drawScore : function(score){
 $("#score").text(score);
 },

v drawHighScore : function(highScore){
 $("#high_score").text(highScore);
 },

w drawLevel : function(level){
 $("#level").text(level+1);
 }
 };
 --snip--
 return ui;
})(jQuery);

drawScore u and drawHighScore v accept score values and draw them into
the relevant <div>s on the screen. drawLevel writes the level number but adds 1
to it first, because the internal level state starts at zero w. Although all three
of these functions contain only a single line of code, it’s a good idea to create
separate functions for them and write, for example, ui.drawScore(score) rather
than $("#score").text(score) each time you update the score value. Then, if
you want to add visual effects to any of the elements when they change, you
can do so in one function without tracking down every instance where the
score is updated. If you want the score to flash, say, every time it increases,
then you would only need to make the change in one place.

Now we add calls to these functions into game.js within startGame and
clickScreen:

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 --snip--
 var startGame = function(){
 $(".but_start_game").unbind("click");
 BubbleShoot.ui.hideDialog();
 numBubbles = MAX_BUBBLES;
 board = new BubbleShoot.Board();
 bubbles = board.getBubbles();
 if(BubbleShoot.Renderer)
 {
 if(!requestAnimationID)
 requestAnimationID = setTimeout(renderFrame,40);

 ui.js

game.js

Levels, Sound, and More 143

 }else{
 BubbleShoot.ui.drawBoard(board);
 };
 curBubble = getNextBubble();
 $("#game").bind("click",clickGameScreen);

u BubbleShoot.ui.drawScore(score);
 BubbleShoot.ui.drawLevel(level);
 };
 var clickGameScreen = function(e){
 var angle = BubbleShoot.ui.getBubbleAngle(curBubble.getSprite(),e,board.
 calculateTop());
 var duration = 750;
 var distance = 1000;
 var collision = BubbleShoot.CollisionDetector.findIntersection(curBubble,
 board,angle);
 if(collision){
 var coords = collision.coords;
 duration = Math.round(duration * collision.distToCollision / distance);
 board.addBubble(curBubble,coords);
 var group = board.getGroup(curBubble,{});
 if(group.list.length >= 3){
 popBubbles(group.list,duration);
 var orphans = board.findOrphans();
 var delay = duration + 200 + 30 * group.list.length;
 dropBubbles(orphans,delay);

v var popped = [].concat(group.list,orphans);
w var points = popped.length * POINTS_PER_BUBBLE;
x score += points;
y setTimeout(function(){

 BubbleShoot.ui.drawScore(score);
 },delay);
 };
 }else{
 --snip--
 };
 --snip--
 };
 --snip--
 };
 return Game;
})(jQuery);

We draw the score and level at game start u. When bubbles are popped,
we first want to make a set of all of the bubbles that are both popped and
orphaned. This is done by concatenating two arrays—the popped list and
orphaned list v—and then multiplying POINTS_PER_BUBBLE by the length of
the new array w. We then increment the score internally x, but we only
update the display once the bubble has finished firing at the end of delay y.
If you reload and start the game, your score should now increment.

Next, we’ll check for the end game conditions. Two states could result
in the end game being reached: the player could run out of bubbles to fire,

144 Chapter 7

or the player could pop all the bubbles in the game board. If the former,
then we want to show players a final score and have them start a new game
at the first level. If the latter, then we want to clear the board, increment the
level number, and prompt to start the next level.

We know that game state only changes as a result of the player firing
a bubble, so the only place we need to check for possible end game condi-
tions is after we calculate the result of any collision. We’ll do this immedi-
ately after the bubble has been fired, which happens inside clickGameScreen
inside Game. If the board is empty or the player has run out of bubbles, we’ll
end the game; if not, we’ll give the player the next bubble to fire. Make the
following change to game.js:

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 --snip--
 var clickGameScreen = function(e){
 --snip--
 BubbleShoot.ui.fireBubble(curBubble,coords,duration);

u if(numBubbles == 0){
 endGame(false);

v }else if(board.isEmpty()){
 endGame(true);

w }else{
 curBubble = getNextBubble(board);
 }
 };
 --snip--
 };
 return Game;
})(jQuery);

We first check to see if the player has run out of bubbles u and then
check to see if the board is cleared of bubbles v. If neither is true, we retrieve
the next bubble as usual w. A new function called endGame uses a Boolean
to determine whether the player has won or lost the level: false means the
player lost (by running out of bubbles), and true means the player won (by
clearing the board).

Note the call to board.isEmpty, which is a method that we haven’t written
yet. Let’s do that now by adding the following into the board.js class:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Board = (function($){
 var NUM_ROWS = 9;
 var NUM_COLS = 32;
 var Board = function(){
 var that = this;
 --snip--

game.js

board.js

Levels, Sound, and More 145

 this.isEmpty = function(){
 return this.getBubbles().length == 0;
 };
 return this;
 };
 --snip--
 return Board;
})(jQuery);

The isEmpty function checks to see if a call to the getBubbles method
returns any objects. If the array has a length of zero, all the bubbles have
been popped.

The second possible end game condition is if the player adds more than
two new rows to the bottom of the board. We already have a function, getRows,
to return the array of rows, so we just need to check whether its length is
greater than the maximum number of rows we’ll permit, which is 11.

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 var curBubble;
 var board;
 var numBubbles;
 var bubbles = [];
 var MAX_BUBBLES = 70;
 var POINTS_PER_BUBBLE = 50;

u var MAX_ROWS = 11;
 --snip--
 var clickGameScreen = function(e){
 --snip--
 BubbleShoot.ui.fireBubble(curBubble,coords,duration);

v if(board.getRows().length > MAX_ROWS){
 endGame(false);
 }else if(numBubbles == 0){
 endGame(false);
 }else if(board.isEmpty()){
 endGame(true);
 }else{
 curBubble = getNextBubble(board);
 }
 };
 --snip--
 };
 return Game;
})(jQuery);

To make the code easy to read, we’ll store the maximum number of rows
allowed in a variable called MAX_ROWS u and then we’ll check to see whether
the number of rows on the board is greater than this number v; if so, we’ll
end the game.

game.js

146 Chapter 7

We also need to display messages to the player indicating a win or loss,
a score, and so on. If we have a large number of different messages to show,
we might create some JavaScript code to dynamically create and display
dialogs. But we only have a couple of variations, so we’ll hardcode them
into the HTML. The dialog we’ll show will look the same as the one for
starting the game but with more information, as shown in Figure 7-2.

Figure 7-2: The end game dialog

Let’s add the structure for this to index.html now:

<!DOCTYPE HTML>
<html lang="en-US">
<head>
 --snip--
</head>
<body>
<div id="page">
 --snip--
 <div id="start_game" class="dialog">
 <div id="start_game_message">
 <h2>Start a new game</h2>
 </div>
 <div class="but_start_game button">
 New Game
 </div>
 </div>

u <div id="end_game" class="dialog">
 <div id="end_game_message">
 <h2>Game Over</h2>

v <div id="final_score">
 Final Score:

index.html

Levels, Sound, and More 147

 </div>

w <div id="new_high_score">New High Score!</div>
x <div id="level_failed" class="level_failed">Level Failed!</div>
y <div id="level_complete" class="level_complete">Level Complete!</div>

 </div>
z <div class="but_start_game button">
 Next Level
 New Game

 </div>
 </div>
</div>
</body>
</html>

Our game only ever shows one dialog u, which contains a message for
the final score v, whether the level was completed or failed. If the player
reaches a new high score, we’ll show that message w. The Level Failed! x
or Level Complete! y messages will be shown depending on the situation.
Finally, a single button will enable the next game to start z, which will
lead to either the next level { or a brand‑new game |. We can determine
after the button has been clicked whether the game is being restarted or
continued, because we’ll know the current level number.

When we show the end_game dialog, we’ll show or hide the level_complete
or level_failed classes, as appropriate, to display the correct messages.
Notice that the level_complete class is attached to both the Level Complete!
message y and the Next Level button {, whereas the level_failed class is
attached to the Level Failed! message x and the New Game button |. This
will enable us to, for example, hide all of the level_failed elements with a
single jQuery call:

$(".level_failed").hide();

This is one of the advantages of using HTML and CSS for the user
interface, and it’s possible because Bubble Shooter is a relatively simple game.
But even if you had a much larger range of messages to show in a dialog, you
could still use jQuery to create DOM elements and use CSS to style them.

The dialog will inherit some styling from the dialog class definition, but
we need to add some more definitions to main.css:

#final_score
{
 margin: 26px 0;
}
 #end_game_message span
 {
 margin-right: 20px;
 font-size: 24px;
 }

main.css

148 Chapter 7

 #level_complete,#level_failed,#new_high_score
 {
 font-size: 36px;
 color: #fff;
 }

We now want to create the endGame function in game.js. This will display
the end-of-game dialog with the appropriate win or lose message and then
allow the player to either play the next level or start a new game:

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 --snip--
 var renderFrame = function(){
 --snip--
 };
 var endGame = function(hasWon){

u if(score > highScore){
v highScore = score;
w $("#new_high_score").show();
x BubbleShoot.ui.drawHighScore(highScore);

 }else{
y $("#new_high_score").hide();

 };
z if(hasWon){

 level++;
 }else{

 score = 0;
 level = 0;
 };

 $(".but_start_game").click("click",startGame);
 $("#board .bubble").remove();

 BubbleShoot.ui.endGame(hasWon,score);
 };
 };
 return Game;
})(jQuery);

First, we check to see if the player’s score is higher than the value of
highScore, which starts at zero u. If so, highScore is updated v and we show
the new_high_score element inside the game completion dialog w. Then
a call to ui.drawHighScore occurs, which we created when we updated the
in-game scoring display x. If there isn’t a new high score, the message is
hidden y.

The next branch checks if the player has won and, if so z, increments
level by 1. If the player lost, score and level are reset to zero . Then we
need to enable the startGame button again by binding the click event to it ,
clear the rest of the bubbles from the display , and call a new method in
ui.js that will display the game over dialog.

game.js

Levels, Sound, and More 149

Note that it doesn’t matter whether the player is playing the first level
or the fiftieth, because startGame just draws the current level and starts the
game; therefore, we don’t need to create a new function to handle new levels.

But the display isn’t the only part of the game that should react to a
game over. The player shouldn’t be able to shoot bubbles anymore either!
Let’s also create a function called endGame in ui.js. Whereas endGame in game.js
deals with the game logic aspects to finishing a level, the code in ui.js will
handle the visual aspects of ending the game, such as showing the dialog
and populating it with the player’s score:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.ui = (function($){
 --snip--
 var ui = {
 --snip--
 endGame : function(hasWon,score){

u $("#game").unbind("click");
v BubbleShoot.ui.drawBubblesRemaining(0);
w if(hasWon){

 $(".level_complete").show();
 $(".level_failed").hide();
 }else{
 $(".level_complete").hide();
 $(".level_failed").show();
 };

x $("#end_game").fadeIn(500);
 $("#final_score_value").text(score);
 }
 };
 --snip--
 return ui;
})(jQuery);

When the game is finished, the endGame method ensures that clicks u in
the game area will no longer trigger the clickGameScreen function, because
we don’t want the player to fire bubbles when the game is over. It also updates
the bubbles remaining display to zero v and shows the correct win/lose
message inside the dialog w. Then we show the dialog with the messages for
Level Complete! or Level Failed! inside x.

Ending Levels Efficiently
Currently, Bubble Shooter’s end game can be a bit tedious: the player is left
firing bubbles until they form groups large enough to pop. This can also
prove problematic if the bubbles don’t come out in the right color combina-
tions. For example, if the only bubble on the board is blue and the randomizer
generates only red bubbles, the player might fail a level through no fault
of their own! Rather than expect the player to clear every bubble, we’ll give

ui.js

150 Chapter 7

them a quick ending when they clear all but the last five bubbles in the
top row. When that happens, the remaining top row bubbles will pop, and
everything else will drop down as if it were an orphaned group (using the
kaboom routine).

After we calculate the current set to pop, we’ll check how many bubbles
are left anytime the player pops bubbles. If five or fewer bubbles remain on
the board after the player has finished firing bubbles, we’ll pop those for
free and take the player straight to the game’s end.

The check to determine if the level is nearly complete will be inside
clickGameScreen in game.js:

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 --snip--
 var clickGameScreen = function(e){
 --snip--
 if(collision){
 var coords = collision.coords;
 duration = Math.round(duration * collision.distToCollision /
 distance);
 board.addBubble(curBubble,coords);
 var group = board.getGroup(curBubble,{});
 if(group.list.length >= 3){
 popBubbles(group.list,duration);

u var topRow = board.getRows()[0];
v var topRowBubbles = [];

 for(var i=0;i<topRow.length;i++){
 if(topRow[i])
 topRowBubbles.push(topRow[i]);
 };

w if(topRowBubbles.length <= 5){
x popBubbles(topRowBubbles,duration);
y group.list.concat(topRowBubbles);

 };

game.js

A n t icipat e a nd A l l e v i at e Pl ay e r Frust r at ions

Always think ahead about how your game could become frustrating and solve
the problem in advance. By doing so, you’ll improve the game and keep players
coming back for more. In Bubble Shooter, a level could be impossible to com-
plete because the bubbles didn’t appear in the correct order. This situation is a
perfect example of what can happen when a possible outcome—in this case,
a single bubble being left on the board and not being poppable—isn’t consid-
ered during the original game design. Game programming is almost always
iterative, and rarely will your first version be the final one.

Levels, Sound, and More 151

 var orphans = board.findOrphans();
 var delay = duration + 200 + 30 * group.list.length;
 dropBubbles(orphans,delay);

z var popped = [].concat(group.list,orphans);
 var points = popped.length * POINTS_PER_BUBBLE;
 score += points;
 setTimeout(function(){
 BubbleShoot.ui.drawScore(score);
 },delay);
 };
 }else{
 --snip--
 };
 --snip--
 };
 --snip--
 };
 return Game;
})(jQuery);

First, we retrieve the top row u, and then we loop through it, counting
the number of bubbles v. If five or fewer bubbles are present w, we pop all
of the bubbles in the top row x and add them to the list of popped bubbles y
so they contribute to the player’s score z.

You should now be able to play through an entire game level, clear the
board, and see a prompt to start the next level. Congratulations! You just
finished your first fully playable game.

But before you put Bubble Shooter in front of another player, let’s make
the high score persist from one session to the next rather than resetting
every time the browser window is closed. After all, what’s the point of a high
score if you can’t come back to challenge it later?

High Score Persistence with Web Storage
Although Bubble Shooter has no server-side component to save high scores,
we can use the Web Storage system that comes with HTML5 to save them
to the local machine. Players who play again with the same browser will see
the previous high score, which gives them a target to beat.

Bubble Shooter is a casual game: the user will open it, play a few levels
until they fail, and then close the browser tab. Remembering the high score is
a good idea, but we don’t need to retain any other data. Regardless, the prin-
ciple of using Web Storage to persist data from one game session to the next
is the same even if you’re storing a much larger amount of information.

Web Storage vs. Cookies
On the client side, Web Storage behaves in a similar way to cookies, but the
implementation details (and advantages) are very different. Web Storage
is easier to access than cookies are because data is stored in name/value
pairs. Unlike with cookies, there is no server-side access to the contents of

152 Chapter 7

Web Storage, because data isn’t transmitted as part of an HTTP request.
The contents of the store are restricted by domain, so different subdomains
have different stores. We could store the high score in a cookie, but there’s
no reason to do so, and the storage format as well as the overhead of trans-
mitting data unnecessarily to the server on each request makes a cookie a
worse option than Web Storage. Trying to store large amounts of data (such
as the layout of the current board) in a cookie can also cause performance
issues, because this data is transmitted to the server with each request.
For example, when the browser tries to download an image file of only a few
kilobytes, it could also have to send a large amount of extraneous data to
the server.

Web Storage, on the other hand, gives you more space than cookies do,
although the exact amount isn’t defined in the HTML specification and is set
individually by the browser vendors. The current lowest common figure among
the main web browsers is 5MB; that limit applies to all data stored within a
domain. Google Chrome, Firefox, and Internet Explorer 9 on a desktop all
provide up to 10MB, but the Android browser on phone and tablet devices
provides as little as 2MB. Compare that with the maximum cookie storage—
anything upwards of 300 cookies of 4KB each—and you can see that even at
the lower limits, Web Storage provides much more storage.

Because browser limits can change regularly, if you plan to place large
amounts of data into Web Storage, there’s no substitute for testing on spe-
cific devices; however, for small elements such as the high score in Bubble
Shooter, the space limits are irrelevant.

Adding Data to Web Storage
Web Storage comes in two parts: Session Storage and Local Storage. We’ll
only look at Local Storage, which is best for persisting data across sessions.
The principles of storing and accessing data are largely the same for Session
Storage, although the persistence and security differ slightly. As the name
might imply, Session Storage only persists for the duration of the browser
session. The data disappears when the user closes their browser window.
This type of storage might be useful for a multipage web application where
data needs to persist from one page to the next, but it’s obviously unsuited
to storing a high score. Once you’re familiar with Local Storage, you’ll be
able to adapt to working with Session Storage if you need to use it.

The format for adding a piece of data to localStorage is as follows:

localStorage.setItem(key,value);

The key is a string, such as "high_score", and value is also a string, or a
number or other object that can be automatically converted to a string.
Note that if you try to pass in a complex object, such as an array, the conver-
sion to a string may result in the name of the object (that is, Array) rather

Levels, Sound, and More 153

than the data you want to store. So if in doubt, perform a conversion your-
self. For more complex data, you can use JSON.stringify to save objects and
JSON.parse to retrieve them.

To retrieve data, you just need the key:

var value = localStorage.getItem(key);

localStorage.getItem always returns values as strings, so you’ll need to
use parseInt or parseFloat to convert them to numerical data.

If the game were more complex or took longer to play, you might want
to save more data, such as the current level as well as the high score. In that
case, we could just keep on adding strings:

localStorage.setItem("high_score",highScore);
localStorage.setItem("level",level);

Or we could create an object and JSON encode it:

var gameData = {high_score : highScore, level : level};
localStorage.setItem("bubbleshoot_data",JSON.stringify(gameData));

Then, when we want to retrieve the data, we would use this:

var gameData = JSON.parse(localStorage.getItem("bubbleshoot_data"));

The general principle is that if you can convert your data into a string
and decode it from a string when you want to retrieve it, you can save it to
Local Storage.

In Bubble Shooter, to save the high score, the Local Storage entry will be
called high_score. At game initialization, we want to check whether an exist-
ing value is stored and, if so, use that in place of the zero that is currently
hardcoded in. When the player has set a new record, we’ll set the Local
Storage value to the new high score.

In game.js, we’ll make additions to init and endGame to retrieve and set
the high score:

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 --snip--
 this.init = function(){
 if(BubbleShoot.Renderer){
 BubbleShoot.Renderer.init(function(){
 $(".but_start_game").click("click",startGame);
 });
 }else{
 $(".but_start_game").click("click",startGame);
 };

game.js

154 Chapter 7

u if(window.localStorage && localStorage.getItem("high_score")){
v highScore = parseInt(localStorage.getItem("high_score"));

 }
w BubbleShoot.ui.drawHighScore(highScore);

 };
 --snip--
 var endGame = function(hasWon){
 if(score > highScore){
 highScore = score;
 $("#new_high_score").show();
 BubbleShoot.ui.drawHighScore(highScore);

x if(window.localStorage){
y localStorage.setItem("high_score",highScore);

 }
 }else{
 $("#new_high_score").hide();
 };
 if(hasWon){
 level++;
 }else{
 score = 0;
 level = 0;
 };
 $(".but_start_game").click("click",startGame);
 $("#board .bubble").remove();
 BubbleShoot.ui.endGame(hasWon,score);
 };
 };
 return Game;
})(jQuery);

First, we check whether localStorage is supported by the browser, by
using another Modernizr detector, and whether a value for high_score
exists u. If a high score exists, we set highScore to the contents in the store v.
We make sure to wrap the value with a parseInt, because values in the store
are returned as strings and we want to work with an integer. We then display
the high score w. To save the score, we add a line to endGame to check whether
localStorage is supported x and then save to it y.

Reload the browser and play through a game. At first, any score you get
should become the new high score. But if you close the browser and reload
the game, the high score should be populated with your previous value.

You could also use Web Storage to save things like language prefer-
ences, player profiles, or game state progression. Just be mindful of what
you store there, because the values inside the storage system are open
to calls from the JavaScript console. That means there’s nothing to stop
particularly tech-savvy players from updating data themselves! In the next
chapter, we’ll briefly discuss security issues in HTML5 games, but for now
we can rely on the fact that there’s really no incentive to set an impossibly
high score to try to beat.

Levels, Sound, and More 155

Smoothing Animations with requestAnimationFrame
We use setTimeout to time animations in jquery.kaboom.js and when we trigger
frame updates in the canvas version of Bubble Shooter. setTimeout is cross-
browser compatible and relatively simple: set the timeout value to 40 milli-
seconds, and you can expect 25 frames per second.

However, there are downsides to using setTimeout. The main problem is
that if the browser is busy with something else, the next iteration may not
be called for more than 40 milliseconds. In some cases, it might take a lot
longer and the user will start to notice.

We could recode movement so that objects move a distance proportional
to the time elapsed since the last update, effectively ignoring the 40 milli
second figure. But we’d still have to accept the fact that whatever value we
set the timeout delay to will be too low for some setups and those displays
won’t be able to keep up. On systems that can handle much faster updates,
we could display much smoother animations, but if we set the timeout value
to 10 milliseconds to handle those cases, slower systems will see an adverse
effect.

Fortunately, HTML5 introduced requestAnimationFrame, an alternative to
setTimeout that is better suited to animation. Rather than making the pro-
grammer guess what kind of frame rate might work, the browser calls the
function passed to requestAnimationFrame whenever it is ready to draw a new
update. The time between updates might be much faster (or slower!) than
40 milliseconds, but at least we know that we’re neither making a process-
ing logjam worse nor having the system sit idle when we could spend extra
cycles smoothing the animations.

A New Perspective on Frame Updates
We have to think differently about frame updates when switching to
requestAnimationFrame. Currently, before setTimeout runs, we tell the browser
how long to wait. We assume that the time elapsed is the time we expected
to elapse. For example, in moveAll in jquery.kaboom.js, we set a timeout of
40 milliseconds:

setTimeout(moveAll,40);

We then update the position of the bubbles assuming that
40 milliseconds—1/25th of a second—has elapsed. However, with
requestAnimationFrame, we don’t specify a frame rate. In the moveAll function
in jquery.kaboom.js, if requestAnimationFrame did happen to run this routine
every 40 milliseconds, we wouldn’t need to change anything. But if it ran
every, say, 20 milliseconds, we couldn’t keep the same values of dx and dy, or
our whole animation would run much faster—twice as fast, in fact, because
it would add dx and dy twice as often.

Instead, we need to find out how many milliseconds have elapsed and
then adjust our animation step size. We can even apply the same math tech-
niques to setTimeout animations to get better results on older browsers that

156 Chapter 7

don’t support requestAnimationFrame. As shown in Figure 7-3, the less time
that’s elapsed since the bubble was last drawn, the less distance we have to
move it along its path.

setTimeout assumes
40 milliseconds
between frames.

But if only 25 milliseconds have
elapsed, we want to draw the
bubble position closer to the
previous frame.

If the computer is running slowly
and 60 milliseconds have elapsed,
we want to draw the bubble
position farther away.

Direction of
movement

Figure 7-3: Bubble positions with different frame rates

Code Compatibility with Polyfills
Modernizr will help us build the setTimeout fallback. requestAnimationFrame
is still regarded as prestandards by many browsers, so prefixed versions are
available for Webkit, Mozilla, and so on, which Modernizr can fill in for us.
Add the following to game.js:

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 --snip--
 };
 window.requestAnimationFrame = Modernizr.prefixed("requestAnimationFrame",
 window) || function(callback){
 window.setTimeout(function(){
 callback();
 }, 40);
 };
 return Game;
})(jQuery);

This single line of new code says that if requestAnimationFrame (vendor-
prefixed if necessary) is defined, then set window.requestAnimationFrame to the
contents of requestAnimationFrame. If requestAnimationFrame is not defined, then
we create a new function that accepts a function as a parameter and calls
that function after 40 milliseconds using setTimeout.

game.js

Levels, Sound, and More 157

This technique is known as a polyfill. Polyfills attempt to mimic or patch
in new functionality to a browser where it’s not supported natively, allowing
you to use new technologies in your code without having to always worry
about forking your code or providing fallbacks yourself. The name comes
from the filling substance Polyfilla, because the technique involves filling in
the cracks in browser support.

Polyfills are written to support all kinds of functionality in older
browsers. For example, to store the player’s high score, we’re using the
Local Storage API. This isn’t available in older browsers, but we could
achieve the same effect by storing the data in a cookie. There are two ways
to approach this: one way is to write an if/else statement every time we
access Local Storage to check if it exists and, if not, branch to run some
cookie code. Alternatively, we could create an object called localStorage
and add methods for getItem and setItem that use cookies to save and
retrieve data.

Polyfills are rarely perfect solutions: setTimeout and requestAnimationFrame
may operate in very similar ways, but sometimes the differences may be
important. In the Local Storage example, we might be able to use cookies
in exactly the same way as Local Storage, but if we tried to store a lot of
data, we’d run into problems. Polyfills can enhance browser compatibility
without a lot of code, but it’s important to know the limitations of any poly-
fill you use.

Once we have the polyfill for requestAnimationFrame, as far as the rest of
our code is concerned, requestAnimationFrame is supported, and we can use it
regardless of the browser. We know that in truth, a setTimeout call is running
behind the scenes and that sometimes the animation won’t run as smoothly
as it would with the natively supported requestAnimationFrame method. But as
far as the code that calls it is concerned, the function behaves in the same way.

Now that we have a working requestAnimationFrame polyfill, we can
replace our calls to setTimeout in game.js with calls to the new function in
startGame and renderFrame:

var BubbleShoot = window.BubbleShoot || {};
 BubbleShoot.Game = (function($){
 var Game = function(){
 --snip--
 var startGame = function(){
 --snip--
 if(BubbleShoot.Renderer)
 {
 if(!requestAnimationID)
 requestAnimationID = requestAnimationFrame(renderFrame);
 }else{
 BubbleShoot.ui.drawBoard(board);
 };
 --snip--
 };
 --snip--
 var renderFrame = function(){
 $.each(bubbles,function(){

game.js

158 Chapter 7

 if(this.getSprite().updateFrame)
 this.getSprite().updateFrame();
 });
 BubbleShoot.Renderer.render(bubbles,board.calculateTop());
 requestAnimationID = requestAnimationFrame(renderFrame);
 };
 --snip--
 };
 --snip--
 return Game;
})(jQuery);

We must make similar changes inside jquery.kaboom.js to use
requestAnimationFrame rather than setTimeout. The kaboom function
internally assumes that 40 milliseconds elapses between frames,
giving a frame rate of 25 frames per second, but as we now know,
with requestAnimationFrame the elapsed time may vary. Again, we need
to calculate how much time has elapsed and calculate movement
proportionally:

(function(jQuery){
 var defaults = {
 gravity : 1.3,
 maxY : 800
 };
 var toMove = [];

u var prevTime;
 var moveAll = function(){

v var newTime = Date.now();
w var elapsed = newTime - prevTime;
x var frameProportion = elapsed / 25;
y prevTime = newTime;

 var stillToMove = [];
 for(var i=0;i<toMove.length;i++){
 var obj = toMove[i];
 obj.x += obj.dx * frameProportion;
 obj.y -= obj.dy * frameProportion;
 obj.dy -= obj.config.gravity * frameProportion;
 if(obj.y < obj.config.maxY){
 obj.elm.css({
 top : Math.round(obj.y),
 left : Math.round(obj.x)
 });
 stillToMove.push(obj);
 }else if(obj.config.callback){
 obj.config.callback();
 }
 };
 toMove = stillToMove;
 if(toMove.length > 0)

z requestAnimationFrame(moveAll);
 };
 jQuery.fn.kaboom = function(settings)

jquery
.kaboom.js

Levels, Sound, and More 159

 {
 var elm = this;
 var config = $.extend({}, defaults, settings);
 if(toMove.length == 0){
 prevTime = Date.now();

 requestAnimationFrame(moveAll);
 };
 var dx = Math.round(Math.random() * 10) - 5;
 var dy = Math.round(Math.random() * 5) + 5;
 toMove.push({
 elm : this,
 dx : dx,
 dy : dy,
 x : this.position().left,
 y : this.position().top,
 config : config
 });
 };
})(jQuery);

First, we define an empty variable called prevTime u to store the timestamp
of the last rendered frame, which is null initially. Each time moveAll is called,
we retrieve the current timestamp v and calculate the time elapsed since
the last frame w. Our initial calculations were based on 40 milliseconds
having elapsed, so to calculate the correct position, we scale the proportion
of the frame elapsed accordingly x. If only 8 milliseconds have elapsed,
frameProportion will be 0.2, and the animation will update in smaller but
more frequent steps. If 80 milliseconds have elapsed, frameProportion will
be 2, and the animation will update in larger steps. The end effect is that the
bubbles take the same time to drop off the screen regardless of the frame
rate. To prepare for the next frame, we update prevTime to the current
timestamp y.

Also, setTimeout is replaced with requestAnimationFrame in two places:
once when the animation is started z and once for each frame loop .

Reload the game and run it again to make sure it works properly. You
probably won’t see a difference in performance unless you have a particu-
larly slow browser setup. However, now you can be confident that everyone
who plays Bubble Shooter will see bubbles moving and falling at the same
speeds, even if the frame update rates vary between devices.

Adding Sound with HTML5
A game never feels like a game without sound! HTML5 provides some
increasingly powerful options for processing and playing back audio. I say
increasingly powerful because browser support is being improved all the time.
You can manipulate wave files byte by byte, record from the microphone,
perform dynamic mixing, and take advantage of a whole host of features in
addition to the woeful audio options that HTML offered not long ago. Let’s
look at the basic features of HTML5 audio.

160 Chapter 7

The HTML5 Audio API
Historically, HTML has implemented audio poorly, offering no reliable
way to embed and control sounds within web pages. This changed with
HTML5, and you can embed a sound directly into a page with a simple tag,
such as this one:

<audio src="sounds.mp3" autoplay></autoplay>

On its own, this isn’t a lot of help for a game in which we want to pro-
grammatically start and stop sounds so they can react to events like bubbles
popping. Fortunately, HTML5 also provides a way to play audio through a
JavaScript API without using HTML tags at all.

The JavaScript equivalent of the preceding HTML fragment, which just
embeds and plays a single file, is this:

var sound = new Audio("sounds.mp3");
sound.play();

You can try this with any MP3 file you have. The parameter passed
into the new Audio call is the URL to the sound file. If you place it in the
bubbleshoot folder and change the parameter to the file’s name, you can run
the previous command in the JavaScript console and the sound should play.

The sound will stop naturally when it ends, and you can use the stop
method to end a sound at any point during playback:

sound.stop()

Those are the only commands we need, but take time to look through
the audio API specification to see the growing potential for sound delivery
in browsers. As well as methods and properties that affect the basic play-
back of audio, such as changing the volume of a sound or skipping to a spe-
cific point in a file, there is functionality for recording from input devices,
mixing sounds, changing stereo, and even 3D sound positioning, as well as
ways to post-process sounds to add effects such as echo. These are increas-
ingly being supported in mainstream browsers, such as Google Chrome
and Firefox, with improvements arriving in each new version.

If you want to play multiple sounds simultaneously, you must create
multiple Audio objects. For example:

var sound1 = new Audio("sounds.mp3");
var sound2 = new Audio("sounds.mp3");
sound1.play();
sound2.play();

To just play different sounds one after another, you could reuse an Audio
object by changing the object’s src property. But to play multiple sounds
at the same time, you need as many objects in existence as sounds that you

Levels, Sound, and More 161

plan to play simultaneously. As you’ll see in Bubble Shooter, this means that
if we want to pop a group of 20 bubbles, we’ll need 20 sound objects to play
the 20 popping sounds at the same time.

Popping Bubbles: Complete with Sound
We’ll add HTML5 sound support to Bubble Shooter using the audio API so
a sound plays for each bubble popped. Grab the file pop.mp3 from http://
www.buildanhtml5game.com/ and put it in a new folder called _mp3 inside
the game folder.

First, create a class to play the sounds. We’ll wrap the HTML5 audio
functionality in our own code, which will prevent an error from being
thrown in browsers that don’t support HTML5 audio. Create a new file in
the _js folder called sounds.js and then add the file to load in index.html.
Sound processing, like rendering and the user interface, is another piece
of functionality that’s best to keep separate from game logic wherever pos-
sible. By creating a separate file to handle playback, we can put all of our
sound‑handling code in one place.

We’ll reuse Audio objects, so we’ll create these as the code is initialized.
Then, whenever a sound needs to play, we’ll pull out the next object in the
queue, change the src to the file we want to play, and then play it. We’ll set
a cap of 10 sounds that can play simultaneously, which is a low number, but
even on the rare occasion when a player is popping more than 10 bubbles at
a time, there’s no need to play more than 10 sounds.

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Sounds = (function(){

u var soundObjects = [];
v for(var i=0;i<10;i++){

 soundObjects.push(new Audio());
 }

w var curSoundNum = 0;
x var Sounds = {
y play : function(url,volume){

 if(Modernizr.audio){
z var sound = soundObjects[curSoundNum];
 sound.src = url;
 sound.volume = volume;
 sound.play();
 curSoundNum++

 if(curSoundNum >= soundObjects.length){
 curSoundNum = curSoundNum % soundObjects.length;
 }
 }
 }
 };
 return Sounds;
})();

sounds.js

http://www.buildanhtml5game.com
http://www.buildanhtml5game.com

162 Chapter 7

A new object called BubbleShoot.Sounds contains the array soundObjects u,
which we’ll use to store the ten Audio objects. These are initialized as soon
as the code is loaded v. We also keep track of which object to use with the
variable curSoundNum w.

Next, we create the object to play the sound x, which contains a single
method to play a sound y. It will accept two parameters: the URL of the
sound file to play and the volume to play the sound at, which is a decimal
number between 0 (silent) and 1 (full volume).

We use Modernizr to check whether or not HTML5 audio is supported,
and if it is, we grab the current Audio object from the soundObjects array z,
set its src property to the URL of the file to play {, set its volume |, and
then play it }. If audio isn’t supported, the method will do nothing, but
because of our check for Modernizr.audio, no error will be thrown.

Finally, we increment the value of curSoundNum ~ so that next time play
is called, we will grab the next object in the queue. Then, we make sure that
the value of curSoundNum is never greater than the number of sound objects
in the soundObjects array.

If we want to play more sounds, we could push more Audio objects into
the soundObjects array. Currently, if we try to play more than 10 sounds at
once, only the last 10 sounds will play.

Sound control will happen inside game.js with a call to the BubbleShoot
.Sounds.play function:

var BubbleShoot = window.BubbleShoot || {};
BubbleShoot.Game = (function($){
 var popBubbles = function(bubbles,delay){
 $.each(bubbles,function(){
 var bubble = this;
 setTimeout(function(){
 bubble.setState(BubbleShoot.BubbleState.POPPING);
 bubble.animatePop();
 setTimeout(function(){
 bubble.setState(BubbleShoot.BubbleState.POPPED);
 },200);

u BubbleShoot.Sounds.play("_mp3/pop.mp3"v,Math.random()*.5 + .5w);
 },delay);
 board.popBubbleAt(bubble.getRow(),bubble.getCol());
 setTimeout(function(){
 bubble.getSprite().remove();
 },delay + 200);
 delay += 60;
 });
 };
 --snip--
 };
 --snip--
 return Game;
})(jQuery);

game.js

Levels, Sound, and More 163

We want to play as many sounds as there are bubbles to pop, and we
also want to start the sound at the same time we start the animation u. We
pass the play method of Sounds two parameters: a relative URL to the MP3 file
to play v and a volume, which will be a random number between .5 and 1 w.

Summary
Now that we have a simple sound to add a bit of atmosphere, you’ve fin-
ished building Bubble Shooter! The game should play on older browsers, using
CSS for positioning and animations, and it will work well on newer browsers
that support the canvas element. We have persistent high scores and audio,
and we’ve developed the animations in such a way that they should per-
form well regardless of the player’s system speed.

In the next chapter, we’ll explore some other parts of HTML5 that
aren’t directly related to the game you just built. You’ll learn some pointers
on how to deploy your game to Web and mobile environments, and you’ll
see what the future holds for HTML5.

Further Practice
1.	 Toward the end of each level, the player can only have bubbles of

one, two, or three colors left on the board. Giving them a bubble
of a color that won’t match any of these causes the player to waste a
shot and can make the game more difficult to complete. Change the
bubble‑generating algorithm so that it gives players only bubbles of a
color that can potentially form a match. For example, if only red and
blue bubbles remain, the firing bubble should be either red or blue.
You will need to amend getNextBubble in game.js and choose a bubble
type from one of the types that exist in the Board object.

Incr e as e Imme rsion w i th Va r ie t y

Why do we pass a random volume level? Try passing in a value of 1 and
popping some bubbles. Then compare this effect to that of the random value. It’s
only a small change, but the variation in volume provides just enough differentia-
tion between each sound to make it slightly less mechanical. We could do other
things to make the effect even more natural, such as using a set of sounds rather
than just one MP3 file so not every bubble sounds the same or changing the
timing between pops so they aren’t evenly spaced. Experimenting to create the
most immersive experience possible and doing it with minimum effort are tasks
you’ll become more proficient at as you develop more games.

164 Chapter 7

2.	 As noted in “Multiple Levels and High Scores” on page 138, the game
will become unplayable after a few levels because the number of bubbles
allowed becomes too small. Instead of subtracting five bubbles per level,
create an algorithm that makes levels progressively harder but makes it
possible to complete a level. Perhaps the smallest number of fired bubbles
a player can complete a level in is 30, and we want them to reach this level
of difficulty on level 15. Before this point, the step from level 1 to 2 might
be, say, five bubbles fewer, but the step from level 14 to 15 might be only
one fewer. Write an equation or other method to decrease the number of
bubbles allowed and increase the difficulty in this way.

3.	 Give players an incentive to repeat levels by awarding stars for a comple-
tion grade instead of the pass or fail condition that currently exists.
You could award one star whenever the player clears the level, two stars
if they clear with more than 25 percent of the level’s bubble allocation
remaining, and three stars if they complete the level by firing only half
the bubbles they were given. Add information to the level completion
dialog to show the player how many stars they earned.

4.	 Once you’ve added the preceding star system, create a way to store the
number of stars the player has obtained for each level. Then you can
show them not only how many stars they’ve attained but also a mes-
sage when they beat a previous best. Currently, we store the number
of bubbles remaining, the player’s score, and current level number as
variables inside Game. But now the best approach might be to create an
object that stores each level and records the number of stars. Save this
data to Local Storage for when the player returns to the game.

5.	 Write a polyfill to add Local Storage support to older browsers using
cookies. You’ll need to create an object called window.localStorage, if one
doesn’t already exist, and create getItem and setItem methods.

8
N e x t S t e ps i n H T M L 5

In addition to graphical advances, HTML5
has a host of other features that make it a

powerful game development environment.
In this chapter, I’ll discuss a few of them so

you’re aware of what features are available, and I’ll
point you to some useful resources for further reading.
Some of these features, such as WebGL, are subjects worthy of their own
books, whereas others will be useful only for certain types of games. For
these reasons, I’ll only introduce the concepts here and leave more thor-
ough exploration up to you.

Saving and Retrieving Data
People play games like Bubble Shooter in short sessions with little or no per-
sistent data; in fact, our game saves only the high score from one session to
the next. At present, the high score is stored in Web Storage, so it’s unique

166 Chapter 8

to the browser the game is played on. To save a global high score and dis-
play a high score table, we’d need to write a server-side component that
sends the score to a server and retrieves a list of high scores.

Games with more complex states should have server-side access, too.
When you store state on the server, players can return to the same game
from multiple devices. For our purposes, we’ll use two main ways to save
and retrieve data on a server: AJAX and WebSockets.

AJAX
AJAX (Asynchronous JavaScript and XML) provides a technique for sending a
request to a server and receiving a response. AJAX is not a single technol-
ogy but rather a method by which a number of tried-and-tested browser fea-
tures are combined to make server-side calls and manage the responses. All
of the major browsers have supported AJAX for a number of years.

Although the X stands for XML, you can use AJAX to retrieve HTML
data, string data, and JSON strings that can be parsed and interpreted. The
code for making AJAX calls is well documented, and multiple libraries are
available so you don’t have to handcraft the calls. For example, here’s how
you’d send an AJAX request to a server with the $.ajax call in jQuery:

$.ajax({
u url : "save_data.php",
v data : "high_score =" + highScore,
w type : "POST",
x complete : function(data){

 console.log(data);
 }
});

This $.ajax call makes a POST request to the relative URL save_data.php,
sends the value contained in highScore to the server under the name high_score,
and logs the server’s response to the console. I set the URL target for the
request u, the data to send v, the type of request w, and a function to
run after the request completes x, but you can set many other properties,
including functions to run in case of an error, timeout settings, and so on.
These are listed in the jQuery documentation at http://api.jquery.com/.

N o t e 	 The A in AJAX stands for asynchronous, because other JavaScript operations will
continue while the server deals with the data and sends the response. That means you
can’t be sure when the complete function will run: it’ll happen whenever the response
comes back, but the user interface will remain responsive while it happens. It’s possible
to make synchronous calls, but because this effectively freezes the entire page until the
request is complete, the user experience is generally so poor that doing so is considered
bad practice.

Next Steps in HTML5 167

WebSockets
Most modern browsers also have WebSockets available to make client to
server calls. WebSockets are a relatively new technology incorporated into
the HTML5 specification. If you want to learn how they work at a lower level
than I describe here, a good place to start is with the Mozilla Developer
Network documentation at https://developer.mozilla.org/en/docs/WebSockets/.

WebSockets are similar to AJAX, but whereas AJAX sets up a call-and-
response relationship between the client and server, a WebSocket maintains
a persistent connection between them. The client deals with responses as
they come in, and the JavaScript code can listen continuously for further
responses. The server also constantly listens while the socket is open; there-
fore, WebSockets are much better than AJAX when conversations between
the client and server involve lots of small data transactions.

A persistent connection is especially useful in multiplayer gaming envi-
ronments. Before WebSockets, the main way to update game state elements
shared by multiple clients, such as player avatars within an environment, was
to continuously poll the server with AJAX and check for updates. This would
be coded to happen every few seconds, which obviously isn’t sufficient for a
real-time game. People tried various hacks—such as a technique called long-
polling, which effectively tricks the client into maintaining a connection to
the server—to improve the process, but these were often inefficient in terms
of server resources. Now, you can just leave a WebSocket open, and whenever
one client updates the game state, the server can immediately update all of
the other clients’ information without waiting for the next update cycle.

Mainstream browsers have ever-improving support for WebSockets, and
as with AJAX, I recommend using a library to eliminate some of the nitty-
gritty of opening connections, sending and listening for data, and handling
errors. Libraries will also often have a fallback to AJAX or other server com-
munication methods for cases in which WebSockets aren’t supported; how-
ever, the fallbacks may not replicate the performance features that you’re
using WebSockets for in the first place, so be aware that they’re not a magic
solution.

Socket.IO (http://socket.io/) is one of the most popular WebSocket
libraries. Here’s how you can use it to make a call:

var socket = io.connect("http://localhost");
 socket.emit("new_high_score", {
 high_score : highScore
 });
});

This code uses a call to the library with io.connect to open a new
WebSocket and then socket.emit sends the highScore value as an event
named new_high_score.

https://developer.mozilla.org/en/docs/WebSockets

168 Chapter 8

WebSockets and libraries such as Socket.IO have much greater capabili-
ties than AJAX, but the libraries that make them easy to use often assume
a specific server-side environment. If you plan to use WebSockets, check
that the library you plan to use has a backend component that matches
your server environment. Libraries for most platforms are readily avail-
able, whether you’re using Node.js, .NET, or Java.

Along with sending and receiving data to and from the server, you
might also want to process certain data outside your main game program.
That’s where Web Workers will come in handy.

Web Workers
JavaScript in a browser is generally considered a single-threaded environment,
meaning that only one script can run at a time. This won’t cause problems
most of the time but can be an issue if a particularly large computational
process blocks the processor from animating, responding to user input, and
performing other important tasks.

For example, let’s say processing game-level data takes the browser 1 or
2 seconds, and this happens every 30 seconds or so. The overall load may
not be high, but you can’t pause the game every 30 seconds! In this situa-
tion, consider using a Web Worker.

Web Workers (https://developer.mozilla.org/en/docs/Web/API/Worker/)
allow you to run code in a separate thread without blocking your main
JavaScript operations. They’re called “workers” because you can essentially
hand them a task and tell them to report back when they’re finished. The
browser will determine how much CPU time to give them so as not to inter-
fere unduly with other processes. Workers can be dedicated or shared, but
you’ll generally find dedicated workers most useful, especially while support
for Web Workers is being developed across browsers.

Web Workers follow a couple of rules that differentiate them from
regular JavaScript. Most important, they have no access to the DOM, the
browser document, or the browser window. Workers also operate within
their own scope, so you’ll need to pass data explicitly and then retrieve
the result when complete. I’ll illustrate how they work with the following
example.

Workers are initialized by passing the name of a script to load to the
new Worker command:

var worker = new Worker("work.js");

This will start a new worker, and that worker will run the script inside
work.js.

A worker runs when you send it a message via postMessage:

worker.postMessage();

The postMessage command can contain a JavaScript object or be empty.

Next Steps in HTML5 169

You can handle responses—values a worker returns when it completes a
task—by adding event listeners to the worker within the calling script:

worker.addEventListener("message", function(e) {
 console.log(e.data);
}, false);

Here, e contains the data that worker sent back. The event to listen to,
labeled "message", is any valid string. Therefore, a worker could send back dif-
ferent responses in different circumstances, or it could just keep working
and sending messages.

Inside the worker, the model of event listeners is similar, with the worker
referring to itself as this or self. As an example, work.js could contain the
following to return the message:

self.addEventListener("message", function(e) {
 self.postMessage({
 message : "I'm done now"
 });
}, false);

This code listens for an event marked "message", and on receipt, it imme-
diately posts a response in the form of an object.

At present, not all the major browsers support Web Workers well enough
to make it reliable. Polyfills do exist for Web Workers, but these will often
negatively affect your user’s experience if a long-running process that you
assumed would be nonblocking suddenly freezes the game for a few sec-
onds. However, the situation is constantly improving, and hopefully, Web
Workers will soon be considered a core part of the HTML5 game devel-
oper’s arsenal.

But managing your data more effectively is just a start to making your
game more fun. Appearance matters, too, and for a graphics upgrade, you
can go 3D with WebGL or even use it to beef up your rendering power for
2D games.

WebGL
For the canvas version of Bubble Shooter, we used the 2D rendering context,
accessed with calls along the lines of

var context = canvas.getContext("2d");

As I touched upon in Chapter 6, the specification of "2d" implies that
other options are available, and sometimes, depending on browser support,
that’s true. The third dimension is accessed through WebGL, an API that
provides a set of 3D manipulation functions for creating scenes, adding light-
ing and textures, positioning cameras, and so on, taking advantage of the

170 Chapter 8

acceleration that modern graphics cards provide. (Visit https://www.khronos
.org/registry/webgl/specs/1.0/ to learn about WebGL in more detail.) To start
using WebGL, we first instantiate a 3D context with the following:

var context = canvas.getContext("webgl");

This is sometimes retrieved as "experimental-webgl", so the most compat-
ible call is this:

var context = canvas.getContext("webgl")
 || canvas.getContext("experimental-webgl");

Accelerated WebGL is powerful enough to display fully rendered 3D
scenes rivaling those of native games. The downside is that working in three
dimensions and manipulating and creating scenes requires a lot of math
and a lot of low-level code that involves writing programs directly to the
graphics processor. The concepts are the same as when creating 3D games
in native code, such as C++, and require low-level knowledge of 3D model-
ing to describe the shape of an object; textures to define surface patterns;
and shaders, which describe how to render a surface when light hits it. As
such, I highly recommend working with existing libraries to handle model
rendering, any physics requirements, and basically any features you can get
off the shelf. Babylon.js (http://www.babylonjs.com/) and PlayCanvas (https://
playcanvas.com/) are two libraries that make working with WebGL in the
browser much simpler.

Using WebGL also brings up the question of how to import objects and
textures into 3D scenes. Typically, you create models in modeling software,
such as 3D Studio or Maya, and then export to a commonly supported
format. WebGL libraries generally won’t work with those formats, so you’ll
usually need to convert from the original 3D modeling file format to JSON
using another set of tools, such as the 3DS Max-to-Babylon.js exporter
(https://github.com/BabylonJS/Babylon.js/tree/master/Exporters/3ds%20Max),
which exports from Autodesk’s 3D Studio product into Babylon.js.

Creating and converting 3D models is a large enough task that WebGL
game development quickly becomes a project for teams of developers and
designers rather than for a sole developer; however, many very impressive
demos have been made entirely solo, and the Babylon.js website has a great
set of showcases.

A secondary advantage of the WebGL context is that you can use it to
render 2D scenes, which can then take advantage of the huge speed avail-
able through GPU acceleration. Particle effects and rendering large num-
bers of onscreen elements in accelerated WebGL far outperform the same
tasks in the canvas.

I recommend that you look for off-the-shelf libraries that enable 2D
rendering in WebGL. One such library is Pixi.js (http://www.pixijs.com/),
which also provides a fallback to the canvas.

http://www.babylonjs.com/
https://playcanvas.com/
https://playcanvas.com/
https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/

Next Steps in HTML5 171

Browser support for WebGL is growing and includes the latest ver-
sions of Chrome, Firefox, and Internet Explorer, although older versions
of Internet Explorer are incompatible at the time of this writing. For this
reason, WebGL isn’t considered ready for mass-market development, but
this situation continues to improve.

Building a slick game is all well and good, but a game is nothing with-
out players. To reach players, you need to deploy your game somewhere
publicly accessible. Depending on where you deploy, you should consider
some changes to improve the player’s experience.

Deploying HTML5 Games
In this section, I’ll give a brief overview of the process behind deploying a
game running inside desktop and mobile browsers, and I’ll explain how
you’d wrap up an HTML5 application as a native mobile application.

Running Fullscreen in a Desktop Browser
One way to deploy an HTML5 game is to just create a website and upload it.
In fact, just upload Bubble Shooter to the Web to make it accessible to anyone
who accesses the index.html file. Deploying an HTML5 game to the Web is
no different from deploying any other website; however, players often com-
plain about a lack of immersion when they are running games in a browser,
because it’s easy to become distracted by tabs showing notifications from
Facebook, email, instant messages, and so on. The HTML5 arsenal has a
trick to fix these interruptions: the Fullscreen API.

Where supported, the Fullscreen API lets a web page fill the entire width
and height of the screen, removing the address bar and other browser frame
elements. You can implement fullscreen capabilities by running the following
JavaScript code. For security reasons, you need to run this code inside a user-
generated event handler; that is, you will usually make a button for the player
to click or specify a key for them to press to activate fullscreen mode.

if(document.body.requestFullScreen) {
 document.body.requestFullScreen();
} else if(document.body.mozRequestFullScreen) {
 document.body.mozRequestFullScreen();
} else if(document.body.webkitRequestFullScreen) {
 document.body.webkitRequestFullScreen();
} else if(document.body.msRequestFullScreen){
 document.body.msRequestFullScreen();
}

Note the use of vendor prefixes while the requestFullScreen API is being
implemented (mozRequestFullScreen for Firefox, webkitRequestFullScreen for
Chrome, and so on). When you call requestFullScreen, the user should see a

172 Chapter 8

dialog from the browser asking whether to allow or deny your game’s request
to go fullscreen. If the player allows fullscreen, pressing the esc key should
return them to the regular view.

You can also apply fullscreen mode to a single element inside the DOM.
You might want to do this if you have a game running within a website with
navigation to other pages, for example. Then, players can go into fullscreen
mode to remove the distractions of navigation bars and other page clutter.
You could even apply fullscreen mode to Bubble Shooter. Just add a new tool-
bar button that runs the following code when a player clicks the button:

if(document.body.requestFullScreen) {
 $("#page").get(0).requestFullScreen();
}else if(document.body.mozRequestFullScreen) {
 $("#page").get(0).mozRequestFullScreen();
}else if(document.body.webkitRequestFullScreen) {
 $("#page").get(0).webkitRequestFullScreen();
}else if(document.body.msRequestFullScreen){
 $("#page").get(0).msRequestFullScreen();
}

I’ll leave this as an exercise for you to implement, and I suggest you add
it to ui.js to keep it with the other user interface code. But if you’d rather
not deploy to your own website, try a hosting service. You could set up an
application on Facebook or upload a game to a dedicated game website,
such as Kongregate.

Of course, the promise of cross-platform development and deployment is
one of the biggest attractions of HTML5, and because most desktop browser
features have been ported to mobile browsers, Bubble Shooter should work just
as well on both. However, the behaviors aren’t quite identical between plat-
forms, and I’ll discuss those differences next.

Running in a Mobile Browser
Even if you’re still running Bubble Shooter on a local or development web
server, you should be able to load the game in a mobile browser and
play it. It should function just as well as it does on a desktop browser.
Congratulations, you’ve just made your first mobile game!

N o t e 	 In case you haven’t deployed the game yet, you can also play it at http://
buildanhtml5game.com/bubbleshooter/.

When developing games for mobile devices, it’s more likely you’ll
need to make usability and interface changes than technical ones, but
that’s not to say you can ignore implementation changes completely. You’ll
benefit from knowing the subtle differences in behavior and how to opti-
mize the experience for mobile users, so let’s get started.

http://buildanhtml5game.com/bubbleshooter
http://buildanhtml5game.com/bubbleshooter

Next Steps in HTML5 173

Touch Events

First, touchscreen-specific events are implemented by browsers on touch-
screen devices. Two of those events are touchstart and touchend, which are
roughly equivalent to mousedown and mouseup, respectively. However, the click
event differs slightly in a touchscreen environment. Mobile browsers wait
a few hundred milliseconds to determine whether the user double-taps,
which is a zoom operation, to make absolutely sure that the user intends
a single click. This won’t make much difference in Bubble Shooter, but for
rapid-reaction games, those few hundred milliseconds will be noticeable
to the player.

You can use mobile-specific events, and they’ll be ignored on desktop
devices without a touchscreen, although for the most part, using mousedown
will have the same effect as touchstart and mouseup will be equivalent to
touchend. For example, in Bubble Shooter, we could use mousedown instead of
click to detect when the player wants to fire a bubble, which would turn
this line from game.js :

$("#game").bind("click",clickGameScreen);

into this line of code instead:

$("#game").bind("mousedown",clickGameScreen);

The only effect would be that the bubble will fire when the user clicks
the mouse button down or touches the screen rather than waiting for the
mouse button to be released or the finger removed from the screen.

N o t e 	 Using only the mouse and touch events will remove keyboard accessibility if you have
a game that could conceivably be controlled by the keyboard. In some games, you might
want to continue using the click event so a player could still, for example, navigate
a menu system using the keyboard or other input device.

If you know that your game will be played only on a mobile device, you
could also use touchstart:

$("#game").bind("touchstart",clickGameScreen);

This should work the same way as mousedown.
You may be wondering, then, why touchstart and touchend exist at all if

they’re virtually equivalent to mousedown and mouseup. The answer is that in
most cases you can treat them as conceptually equivalent, but touch events
can be useful if you want to detect more than one touch point simultane-
ously. The user will (usually) have only one mouse pointer, but it’s possible
to make contact with a touchscreen in multiple places. If you’re building a
game that requires this kind of input, touch events are the ones to use, and
you’ll have to find a way to make them work in a mouse environment.

174 Chapter 8

Scaling

Another interaction difference comes into play with zooming. You probably
don’t want players zooming into the game area at all, whether they double-
tap or not. Fortunately, you can restrict this by adding <meta> tags to the
HTML head:

<meta name="viewport" content="user-scalable=no, initial-scale=1,
maximum-scale=1, minimum-scale=1, width=device-width, height=device-height" />

This example tells the browser to render the page at a scale of 1:1 and
set the viewport width to the default for the device. The content of the
<meta> tag specifies the size of the display and restricts (or allows) zooming.
Apple originally introduced this <meta> tag, and other browsers use it as a
basis for their own behavior. Hence, Apple’s own documentation (https://
developer.apple.com/library/ios/documentation/AppleApplications/Reference/
SafariWebContent/UsingtheViewport/UsingtheViewport.html) is the best place
to look for a description of the various options. However, using this tag is
very much a case of looking up what’s expected to happen in any particular
mobile browser and then testing it to see how it works in practice. Work is
underway to standardize viewport sizing using CSS (http://www.w3.org/TR/
css-device-adapt/), although it has minimal browser support at present.

The most common option you’ll use in the <meta> tag is user-scalable=no,
which simply prevents the user from zooming. But changing the other val-
ues in the <meta> tag can greatly affect how the browser displays your game,
too. The settings in the <meta> tag are as follows:

user-scalable  Can be yes or no. Allows or disables zooming.

initial-scale  A decimal number specifying the zoom factor at which
to draw the viewport.

maximum-scale  A decimal representing the maximum zoomable scale to
allow the user to zoom to.

minimum-scale  A decimal representing the minimum zoomable scale to
allow the user to zoom to.

width  Specify this in pixels, or use device-width.

height  Specify this in pixels, or use device-height.

If the game is designed with a width of, say, 760 pixels, you could set
width to 760, and the browser would keep the page at that width and elimi-
nate any extra pixels of spacing on either side. Unfortunately, by scaling the
viewport, you’ll almost certainly have to solve problems with image scaling
and aspect ratio; trying to draw 760 pixels on a screen that’s made up of
1024 pixels means some aliasing will need to occur.

Aspect ratios also vary much more between mobile devices than desk-
top screens. For example, the iPad 1 and 2 have a resolution of 1024×768,
the iPad 3 is 2048×1536, the iPhone 6 is 750×1334, the iPhone 6 Plus is
1080×1920, and there are almost as many Android resolutions as there are
devices. Unfortunately, no simple solution exists. Be sure to test continually

https://developer.apple.com/library/ios/documentation/AppleApplications/Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html
https://developer.apple.com/library/ios/documentation/AppleApplications/Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html
https://developer.apple.com/library/ios/documentation/AppleApplications/Reference/SafariWebContent/UsingtheViewport/UsingtheViewport.html
http://www.w3.org/TR/css-device-adapt/
http://www.w3.org/TR/css-device-adapt/

Next Steps in HTML5 175

on a wide range of devices, and experiment with a combination of <meta>
properties and CSS layouts to ensure your game looks good on a variety of
screen sizes and aspect ratios.

Of course, even after you solve the aspect ratio problem, if users are still
playing your game through a mobile browser, they may not be able to play
while offline. To really get an HTML5 game onto the device, you need to
wrap up the code in a native package. When your game is a native applica-
tion, the user should be able to play it whether online or offline, unless your
game requires an Internet connection anyway. Let’s look at using a wrapper
service next.

Deploying as a Native Application
You have two main ways to deploy your HTML5 game as a native web
application. You can write a wrapper using Objective-C, Java, or whichever
language the target platform requires, or you can use an existing wrapper
service. Unless you’re very proficient with native mobile coding, I highly
recommend that you look at a wrapper service.

Wrapper services, such as PhoneGap/Cordova (http://cordova.apache.org/)
and Ludei (https://www.ludei.com/), give you less control, but they often pro-
vide access to native features, such as accelerometers and in-app purchases.
Sometimes they even offer accelerated graphics capabilities and bespoke
APIs. They require less time and effort, too, making them an excellent way
to build test deployments so you can quickly see your game running on a
device. I’d advise using a service unless you have a very good reason not to.

Using a third-party wrapper often involves uploading your HTML5
code through an online service and downloading a compiled version for
each device. These services effectively do the same work as custom wrap-
pers, but they’ve been optimized over iterations, usually for multiple plat-
forms. They also continue to add support for newer handsets and operating
systems, which is very time consuming to keep on top of yourself. In addi-
tion, a community is usually writing plug-ins to provide extra functionality,
such as offering in-app purchases or accessing the device’s camera.

Just remember that no matter how you decide to wrap your HTML5
application, the files will all be running in a local environment; that is,
your game won’t need to download assets over the Web or from a server.
As a result, your game will be playable even when no web connection is
available. If you’re developing a multiplayer game, it will need an Internet
connection to be active, but even then your game will benefit from faster
startup times and (if your game is a hit) it will save on bandwidth costs. As
always, perform constant iterative testing to intercept problems before they
become major issues.

That’s the end of my mobile tour, but on a desktop browser, Bubble
Shooter is simple enough that unless you’re playing on a very low-powered
machine, you shouldn’t run into performance problems. But at some point,
as you develop more complex games, you’ll find that some piece of code
runs slower than intended, and then you’ll want to optimize that code.

176 Chapter 8

Optimization
Two main areas to look at when you’re optimizing a game are memory man-
agement and speed. In particular, you should ensure your game doesn’t con-
sume increasing amounts of system resources the longer it runs, and you’ll
want to make the most of available hardware and coding tricks for speed.

Whether or not you encounter visible problems, such as slowing ani-
mation, continually checking your game’s performance is good practice.
You’ll likely only need to optimize for speed as a result of a specific problem,
but keeping an eye on memory utilization is good practice in all cases. For
example, a game may run fine when you play for five minutes, but if you leave
it open in a browser tab for hours on end, you may return to find your nice
animation loop eating up tens or hundreds of megabytes of memory because
of a leak. For less powerful mobile devices, this can be a real problem.

Fortunately, browser tools can help identify and diagnose problems, and
you can implement coding techniques to fix those problems or minimize the
risk of them happening. Good memory management is particularly impor-
tant, so we’ll look at that before we move on to speed optimization.

Memory Management
You might not expect a small JavaScript game to run into memory issues
on systems that happily run massive 3D games, but memory management
is actually a pressing concern for HTML5 game developers. The problem is
less about running out of memory (although it is possible, with some effort,
to use up a vast amount of memory) and more about the way JavaScript allo-
cates memory and frees it up later. Rather than constantly allocating and
freeing memory, browsers run through periodic sweeps to clear memory,
which can cause jittery animations, unresponsive interfaces, and general
interruption of game flow.

Writing JavaScript in ways that minimize memory usage is a large
subject, and browser vendors often publish papers on how to get the best
out of their systems. For example, check out Mozilla’s documentation
on memory management at https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Memory_Management/. You can also read an excellent introduc-
tion to memory-efficient JavaScript, written by one of the Chrome engi-
neers, Addy Osmani, at http://www.smashingmagazine.com/2012/11/05/
writing-fast-memory-efficient-javascript/.

The key to dealing with memory issues is identifying them in the first
place. You may suspect you have a problem, but you need to know where it
is. The main desktop browsers have tools to help. Those tools are constantly
evolving, so I won’t discuss them in depth. But a search through the docu-
mentation for each browser should bring up relevant documents and tuto-
rials, such as the one for Chrome at https://developer.chrome.com/devtools/docs/
javascript-memory-profiling/.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
http://www.smashingmagazine.com/2012/11/05/writing-fast-memory-efficient-javascript/
http://www.smashingmagazine.com/2012/11/05/writing-fast-memory-efficient-javascript/
https://developer.chrome.com/devtools/docs/javascript-memory-profiling/
https://developer.chrome.com/devtools/docs/javascript-memory-profiling/

Next Steps in HTML5 177

Here’s where to start in the three major browsers:

•	 In Chrome, open Developer Tools and click Profiles. Select Take Heap
Snapshot and click Take Snapshot to examine objects in memory, includ-
ing DOM elements. Figure 8-1 shows how this looks for Bubble Shooter.

•	 In Firefox, you can use Firebug and other plug-ins to examine objects
in memory. You can also type about:memory into the address bar for a
snapshot of what’s currently in the browser’s memory.

•	 In Internet Explorer 11, open the Developer Tools and select the
Memory tool.

Figure 8-1: A snapshot of Bubble Shooter in memory, as displayed by the Chrome
browser tools

Another useful tool is to visualize when garbage collection is occurring.
This takes the form of a graph across time, and you can see what range of
memory your game is occupying. Figure 8-2 shows Bubble Shooter’s memory
usage over time.

The sawtooth line represents memory used when objects are created.
The line rises, and then it sharply drops when garbage collection occurs.
Although we’re not creating and destroying many objects, there’s a definite
sign that if we saw problems with animations not running smoothly, we
could look at using more object pools.

178 Chapter 8

The key to maintaining fast animations is to test and iterate. This is
especially true when developing for mobile devices, where debugging tools
are usually slightly harder to access and where memory and processing
power are also usually less abundant. If you notice intermittent slowdowns
and animation freezes that are difficult to reproduce, it’s likely that you
have a memory issue to identify and address.

Figure 8-2: Memory usage by Bubble Shooter

Optimizing for Speed
Memory may or may not be an issue, depending on your game’s needs,
and memory fixes occasionally require coding techniques somewhat at
odds with writing readable, reusable code. However, optimizing for speed
is more achievable as a side effect of following general best practices.

JavaScript engines are improving in speed all the time and so are
browsers’ rendering engines (especially with the addition of WebGL). But,
as with garbage collection, you should still be aware of the pain points. The
browser vendors won’t solve all your performance problems for you. In real-
ity, JavaScript interpreters are becoming so fast that speed problems are
more likely to occur while rendering than anywhere else; however, coding
techniques can make the translation between JavaScript and machine code
more efficient and speed up operations, such as passing image data to the
rendering engine.

Each time you add or change an element in the DOM, the browser has
to work out what to draw and where to draw it. HTML documents were origi-
nally designed as flowing, text-based documents, and the browser will assume
the content you send it is meant to be laid out like any other web page.

Next Steps in HTML5 179

But actions that cause the browser to repaint the display, such as add-
ing new elements to the screen or changing an element’s coordinates, are
very common in games. In Bubble Shooter, we can get away with adding and
removing elements as we want because relatively few elements are onscreen.
Multiply the number of items onscreen by 10 or 100, and you’ll start to see
problems. Remember that the garbage collector needs to sweep away any
element deleted from the scene, and DOM elements tend to be complex.

By contrast, the canvas copes with graphical additions without an
expensive paint operation because no reflowing occurs inside a canvas ele-
ment. The browser considers canvas elements to be images, which are just
streams of pixels that go from memory to screen.

N o t e 	 Changing properties of the canvas element, such as its position or transparency, rather
than pixels within it, is just as expensive as changing any other DOM element.

You can see how much time the browser spends painting a scene by
loading Bubble Shooter in the Chrome desktop browser, pressing F12 to open
Developer Tools, and navigating to the Timeline tab. Click Record in the
bottom control bar, reload the game, and then click the Events bar at the
top to see a view like Figure 8-3.

Figure 8-3: The browser events involved in playing Bubble Shooter in Chrome

All of the paint events u, like those in Figure 8-3, should be high-
lighted in green on your screen. In the canvas version of the game, a few
paint calls occur once a level has been loaded, whereas in the CSS version,
such calls occur constantly.

u

180 Chapter 8

You can use the Timeline tool to identify when paint events happen
and minimize them to speed up your game’s rendering. Just remember that
different browsers may repaint the scene at different times. As always, use
the tools available, but also test on your target platforms and devices as the
main guide to performance.

In general, minimizing DOM manipulation is the key to minimizing
paint operations. Search for articles on minimizing browser reflow and
browser paint operations for more detailed and up-to-date information
on the inner workings of rendering engines.

Security
If your game has any kind of scoring or progression system, someone will
try to cheat it. But the key is to assess the ramifications of having cheats
slip through the system and decide whether or not those ramifications are
critical. For Bubble Shooter, this isn’t an issue: if someone wants to set a high
score on their local machine, that’s up to them. However, for games with an
online competitive element or where buying power-ups is a revenue stream,
you need to ensure that cheating is difficult to impossible.

We can try to address security in HTML5 games in a few ways.

Trust No One
The simplistic approach to security in any games that run on the client,
whether they’re built with HTML5, Flash, or even native code, is to not
trust anything that the client sends to the server. A POST back to the server
with, say, a high score value (as we used in the examples on AJAX and Web
Sockets) is easily forged. The score may be valid, the POST may be forged,
or someone may even use a debugging tool to change the high score while
the game runs. The server only sees the data as it’s received and can’t differ-
entiate between a genuine and a cheat POST.

Unfortunately, not trusting the client is often the correct approach:
there’s no way to completely guarantee the security of code running on the
client. The only way to make a game secure is to have all game logic pro-
cessed by the server. To completely secure Bubble Shooter, we’d pass mouse
clicks to the server, have the collision and popping logic run on the server,
and then pass the results back to the client to animate. This is more dif-
ficult to develop and test, and the user would need a constant (and fast)
Internet connection to even play the game.

Obfuscation
The server-side approach is essential when a game includes financial
transactions, but for many games, obfuscation is good enough. The idea
behind obfuscation is to make cheating as difficult as possible, essentially
making the effort involved greater than the reward. For example, if a high
score is posted to the server as an encoded value, passed with a checksum,

Next Steps in HTML5 181

and takes hours of reading through code to decipher how it was created,
cheaters are unlikely to go through all of that effort just to get to the top of
a high score table.

Of course, obfuscation usually comes at the price of readability for you
as well as hackers. But there are a number of ways to make code difficult to
read, and you can even apply some as a post-build process.

The simplest option is running your code through a minifier before you
package it for a live environment. Minifiers shorten all long variable names
in your code and eliminate whitespace. For example, code such as this:

var highScore = 0;
highScore += 20;

becomes something like this after minifying:

var highScore=0;highScore+=20;

Effectively, minifying removes the whitespace and puts everything onto
one line. Such minified code quickly becomes difficult to read. You can
easily un-minify the line breaks. Many minifiers will also rename variables
inside functions. For example, this function:

var highScore = (function(){
 var highScore = 0;
 highScore += 20;
 return highScore;
});

could become much smaller:

var highScore=function(){var a=0;return a+=20};

The property that you’ve been calling highScore in your code becomes
much harder to find if it’s now called a instead!

N o t e 	 Minifying code also has the added advantage of creating smaller code that should
therefore load faster, which is an important consideration when deploying in a web
environment. In fact, you should consider minifying your JavaScript code in all web
applications.

Google released a tool called the Closure Compiler, which acts as a
minifier along with providing a number of other benefits. It attempts to
optimize code, even rewriting it in places, and outputs smaller and some-
times even faster code than the original version. The compiler generates
JavaScript, analyzes your code, and raises errors. Declaring variables, keep-
ing track of scope, and maintaining other good practices pay off when you
use a minifier such as the Closure Compiler, because the compiler provides
greater benefits the clearer and simpler your coding structure is.

182 Chapter 8

You can use the Closure Compiler online or download and run the Java
application from https://developers.google.com/closure/compiler/. Once you have
access to it, paste the Closure Compiler in the JavaScript code that you want
to compile and then copy the output. It’s recommended that you keep a
copy of your original code, because the compiler output is far too difficult
to work with if you need to make further changes.

Using Private Variables
Along with post-build processes, you can also code in ways that make it
harder for cheaters to follow through code and change it on the fly. For
example, private variables make manipulating internal values on the con-
sole more difficult. The following has a private variable for highScore:

var Game = function(){
 var highScore = 0;
 var getHighScore = function(){ return highScore;};
 return this;
};

The variable is considered private because it only exists inside the scope
of a Game object. We could have made the variable public as follows:

var Game = function(){
 this.highScore = 0;
 var getHighScore = function(){ return this.highScore;};
 return this;
};

This would allow the value of highScore to be changed on a Game object
just by changing the value of its highScore property. However, in the private
version, there’s no way to access the value of highScore from outside the
object.

If highScore is private, cheaters will have difficulty changing its value
without using a program like Firebug to add a breakpoint within the object.
They’ll have even more trouble if the code is minified and obfuscated.
highScore is actually labeled "a", and it’s difficult to even find where the high
score is updated in the first place.

With a couple of relatively simple steps (making some variables pri-
vate and minifying our code), we’ve already narrowed down the potential
cheaters from those who know a small amount of JavaScript to those who
know it quite well and are willing to take the time to reverse engineer our
code. Now, let’s look at one more way to prevent cheating.

Validating with Checksums
You can also secure information passed to the server by using checksums to
validate the variable passed. The simplest techniques just encode a value so
there is at least some check that the number is correct. This won’t eliminate

https://developers.google.com/closure/compiler/

Next Steps in HTML5 183

cheating, and checksums don’t need to be very complicated, but it will
ensure that anyone who wants to cheat needs to read and understand your
JavaScript code first. For example, if we passed highScore to the server, we
could POST something like this:

{
 highScore : 9825,
 check : 21
}

The value 21 is 9,825 modulus 129 (or highScore%129 in code), where 129
is a number I chose as being big enough to create a range of check values but
also being a factor smaller than likely high scores. This almost trivial check
actually increases the level of security because now the barrier to posting a
fake high score is not only knowing how to POST but also being able to follow
through the code to the point where the check value is created. A seasoned
JavaScript programmer might find those steps simple, but the average med-
dling game player probably won’t.

The preceding example may be too trivial for your liking, and you can
use any process you like for generating a checksum. Common approaches
include using hash functions such as MD5, SHA, or CRC32, although the
disadvantage of these is that programmers will often recognize the struc-
ture well enough to know they are looking at a standard hashing function.

In principle, any process you create that can generate a range of check
values will significantly slow down, and possibly discourage, a large number
of potential cheaters.

Of course, you may still get a few cheaters whatever you do, because
some hackers enjoy the challenge of beating the programmer more than
the challenge of beating the game. You can obfuscate as much as you like,
and you may end up with code that’s almost impossible to read. But remem-
ber that you can never guarantee security in client-side code and never fully
trust the information passed from the client to the server.

Summary
As you may have gathered from this chapter, browser support for HTML5 is
an ever-changing landscape. The good news is that browsers are generally
converging on the same standard rather than adding their own features.
Also, support for HTML5 is improving all the time.

With the rate of change, it’s important to keep up-to-date on which
browser features are ready for mainstream usage as well as what’s on the
horizon. Whether in terms of improved performance, memory manage-
ment, sound, or 3D features, the capabilities of HTML5 games are con-
stantly advancing.

184 Chapter 8

Further Practice
1.	 Add fullscreen capability to Bubble Shooter in a desktop browser. To

make the switch as easy as possible, add a button to the top bar that
is visible only if fullscreen mode is supported. Also, change the CSS
so that when the page is displayed fullscreen, the game is centered.

2.	 Write a routine to post the player’s score to a fictional server address using
jQuery’s ajax method. Post the score at the end of each level and write a
checksum function to add basic security using your method of choice.

3.	 Find and test some online minifier and obfuscation services. Compare
the file size of the output code to the size of the original source.

A f t e r w o r d

Hopefully, working through this book has
taught you how simple it can be to develop

a game with HTML5 and JavaScript and
has given you some insight into these tech-

nologies’ potential. The next question is: where to
next? The answer is: go and make more games!

With your new skills and HTML5, CSS, and JavaScript reference
material on the Internet, you should be able to tackle just about any kind
of game that’s possible with HTML5, although I recommend making your
next project relatively small and achievable. Most developers have a list of
unfinished projects longer than their list of finished ones, so start with a
game that will let you put a tick in the right column.

If you already have some game ideas and think you can build them, by
all means dive straight in! In case you’re wondering where to go, here are a
few suggestions to help you hone your skills and build a portfolio.

186 Afterword

Improving Bubble Shooter
Bubble Shooter is pretty nifty already, but we all know it could be better. Any
game always has room for improvement! Here are some ideas:

•	 Add power-ups and bonus points that drop when bubbles are popped
and that the user has to click to collect.

•	 Add more bubble colors to later levels.

•	 Create grid patterns in different sizes and layouts.

•	 Implement side walls so the player can bounce fired bubbles off the
sides.

You shouldn’t need to write an entirely new game to add these features,
and with the bulk of Bubble Shooter in place already, you can really focus on
refining them. Throw in a few creative ideas of your own, and you’ll have a
game that people can’t stop playing!

Creating a Whole New Game
You can learn a lot by spending time polishing a game such as Bubble Shooter,
but to build your confidence as a game developer, there’s nothing better
than building as many games as you can. You can either create your own
new game ideas or, to fast-track to the programming process, work with
some existing games and try to figure out how they’re made. I’ll describe
a few suggestions for basic game ideas that you’ll be able to construct with
your new skills.

Match-3
Match-3 games, such as Bejeweled and Candy Crush, never seem to go out
of fashion, and they present both a well-defined technical challenge and
a demanding user interface one. Consider the problem of a set of gems
exploding and dropping, which in turn causes more gems to drop and
explode, and so on. Visualize algorithms to handle the cascading effects
and consider what happens if the user tries to swap a gem while all of this
is happening. Will you let players do that? Try building the best game of
this type that you can, and then, once you have it working, play Bejeweled or
one of the other popular implementations, identify the features you think
make the experience fun, and try to add similar polish to your game. Subtle
but effective touches really make all the difference.

Solitaire
Card games are simpler than other games graphically, but they pose
enough user interface and game logic challenges that it’s worth work-
ing through one. Once the game logic is in place, you can offer users

Afterword 187

customized deck backs and animations to give your game personality. Be
sure to obfuscate your code so that players can’t peek at the deck state while
playing!

A Platform Game
A platform game is a big step up from the types of games mentioned
earlier. You’ll need to implement some basic physics for the main character
(although I wouldn’t try to implement real physics for the entire game) and
some kind of scrolling, either just sideways or possibly in both dimensions.
The level design can remain simple: define an entrance point and an exit
point and make the player cross between the two. By the end, you’ll start
thinking more in terms of reusing code for future games, and you’ll have
solved challenges such as animating a moving figure.

A Simple Physics Game
Angry Birds was a huge hit, which makes it all the more surprising that
the basic mechanics are so simple to re-create. Angry Birds uses a physics
engine called Box2D, and there’s a free version available for JavaScript
called Box2dWeb. You can find the code and documentation at https://
code.google.com/p/box2dweb/. The examples that you’ll find online aren’t
always simple to follow, and adding physics to a game is challenging. I rec-
ommend Seth Ladd’s tutorial for a step-by-step introduction to the library
at http://blog.sethladd.com/2011/08/box2d-orientation-for-javascript.html.

Joining a Game Development Team
If none of the ideas discussed so far captures your imagination, and you’re
struggling to come up with a game concept of your own, consider finding
a game designer who’s looking for someone to help realize their creations.
Sites such as Meetup (http://meetup.com/) are a good place to look for game
development groups. You can meet and perhaps collaborate with both
established and aspiring game developers.

With HTML5, an individual or a small team can create games that
mass audiences can play on desktop and mobile devices more easily than
ever before. Grab the opportunity—go forth and make games!

Note: Page numbers in italics refer to
figures.

Numbers and Symbols
$ (jQuery selector), 16–17, 23–24.

See also jQuery
$.ajax, 166
(jQuery selector), 16–17
2d canvas context, 109–114, 121, 127, 169
3D, 107, 169–171
3DS Max-to-Babylon.js, 170
3D Studio (3DS), 170

A
about:memory, 177
absolute positioning, 31
acceleration

animating, 41, 95
graphics processing speed, 170, 175

accelerometer, 175
accessibility, 173
AJAX (Asynchronous JavaScript and

XML), 15, 166–168
browser support, 166
libraries, 166
security, 180

alert, 9
aliasing, 174
Android, 9, 152, 174
Angry Birds (game), 187
animate

complete property, 66, 130
method of jQuery, 40–41, 60, 66,

84, 96, 100–103
method of Sprite, 129–132

animation, 35–41, 69, 74, 76–78,
155–159

acceleration, 41, 95
bubbles. See bubble, animating
canvas, 107, 129–134
CSS, 6, 29, 40–41, 76–78, 93–103

deceleration, 41, 95
delay, 95
dropping, 83–84, 114–120
duration, 41, 64, 75, 94–95,

100–102, 129
easing. See easing
frame rate, 94, 102, 155–159, 156
gravity, 84, 86, 89
JavaScript, 6, 40–41, 93–94,

102–103
jQuery, 6, 40–41, 93–94, 102–103
performance, 49, 56, 77, 102, 105,

107, 168–169, 176–180
popping, 33, 33, 69, 75–78, 76, 128,

132–134
sprite, 40, 76–78
velocity, 64, 87–89

Apache web server, 7
Apple

App Store, 9
iPad and iPhone, 9, 174
OS X, 8
viewport meta tag, 174

aspect ratio, 11, 174
Asynchronous JavaScript and XML

(AJAX). See AJAX
Audio API, 160–163. See also sound

HTML tag, 160
playing sounds, 160
reusing, 160–161

Autodesk, 170

B
Babylon.js, 170
background-color property, 12, 21–22,

96–100
background-image property, 34, 76–78,

113, 120
background-position property, 34, 77
bandwidth, 18, 175
Bejeweled (game), 186
Bézier curve, 97, 97, 103

I n d e x

190 Index

bind method, 22–24, 27, 37, 108, 173
board

clearing, 148
column, 46–47, 64–65, 70, 80, 82
drawing, 44, 45–49
grid, 46, 47
rendering, 31–32, 44, 45–49,

126–129
row, 45–47, 59, 64–65, 70, 79–80,

82, 101, 145, 150–151
state, 64

Board.addBubble method, 65–66
Board class, 45–47, 64, 70–71, 75, 80–81,

116, 118, 125, 144
createLayout method, 46–47,

118, 124
Board.getBubbleAt method, 70, 81–82
Board.getBubblesAround method,

70–72, 80
Board.getBubbles method, 116, 118, 145
Board.getGroup method, 71–75, 79–82
Board.popBubbleAt method, 75–76, 84
Box2D library, 187
breakpoints, 9, 182
browsers

cache, 18
desktop, 8
feature support. See browser

support
legacy, 88
memory profiling, 176–177, 177
mobile, 9, 174–175
paint events, 179, 179
testing, 7–8

browser support, 8, 29, 183
AJAX, 166
Audio API, 159–162
for canvas element, 15, 29, 106,

121–122, 129, 132, 134
CSS transitions, 96, 100, 102,

132, 134
CSS viewport sizing, 174
feature detection, 15, 102, 106,

121, 162
Fullscreen API, 171
localStorage, 154
polyfills, 156–159, 169
requestAnimationFrame, 156–157
viewport sizing, 174
WebGL, 169, 171
WebSockets, 167
Web Workers, 168–169

bubble
adding to the board, 4, 5, 64
animating

dropping, 78, 83–89
firing, 30, 30, 38–41, 100–102,

129–132, 155–156, 156
popping, 33, 33, 69, 75–78, 76,

128, 132–134
appearance, 33, 33
clearing, 148
color, 33, 33–34, 113
coordinates, 30, 38, 40, 46, 47,

57–58, 66, 71, 80, 82
creating, 35–36
detecting collisions, 7, 30, 43–44,

44, 53–63, 54, 55
displaying, 10, 32, 35, 127–134
dropping, 83–84, 114–120
exploding, 84–89
fired, 43, 51, 54, 54, 55, 58, 115
firing, 4, 5, 30, 38–41, 43, 54, 54,

100–102
firing angle, 30, 30–31, 36–37,

39, 59
calculating, 36–38

grid, 6–7, 46, 47, 66–67, 101
groups, 4, 5, 6–7, 43, 47, 69–74, 73,

76, 80
height, 32, 128
number remaining, 7, 52, 138, 144,

149–151
orphans, 6, 6–7, 78–84, 78, 79,

140–141
popping, 5, 6

animation, 33, 33, 69, 75–78,
76, 128, 132–134

game mechanic, 30, 69, 78,
141–143

game state, 74–75, 114–120
scoring, 141–143
sounds, 161–163

position, 32, 47, 49, 131
queue, 50–52, 144
sprite, 31–32, 33, 35, 113, 113,

120–130
state, 114–120, 117, 133, 133
type, 33–35, 71, 77
width, 32, 128

Bubble class, 35–36, 45, 47–49, 57–68,
115, 124

animatePop method, 76–77
create method, 35–36, 47–49, 124

Index 191

getCol method, 48, 58, 71–72, 75,
81–82, 84

getCoords method, 56–58, 60,
66–97, 101

getRow method, 48, 58, 66–67,
71–72, 75, 81–82, 84, 101

getSprite method, 35–37, 39–40,
50, 56, 59, 75–77, 84–85,
101, 122, 124–126, 128, 131

getState method, 115, 133
getTimeInState method, 115, 133
getType method, 48, 71–72, 128
rows property, 49
setCol method, 65
setRow method, 65
setState method, 115, 117–120
type property, 47

BUBBLE_DIMS constant, 37–38, 40, 49–50,
56, 58–59, 61, 65, 67, 101,
123, 125–126

Bubble Shooter (game), 4, 4–7, 5, 6.
See also game

development tasks, 7
improving, 166
layout, 10, 10, 11–13, 139–140, 140
levels, 7, 137–151. See also levels

bubble_sprite_sheet.png, 33, 33, 120
BubbleState object, 115–120, 133
button, New Game, 21–24, 27, 43,

96–100, 108, 121, 147–148

C
C++, 170
calculating angles, 36–38
cameras, 169
Candy Crush (game), 186
canvas element, 7, 29, 31, 108–109,

112–113
accessing with jQuery, 109
and animation, 107, 129–134
browser support, 15, 29, 106, 132
clearing, 126, 128
clipping images, 113, 113–114
comparison to DOM, 107, 179
context. See context (of canvas)
coordinates, 110–112
deleting from, 108, 110, 126
detecting with Modernizr, 15,

17, 106
dimensions, 108–109, 112–113
getContext method, 15, 109–112,

114, 121, 169–170

height attribute, 109, 112–113, 121
images, 108–114, 111, 113, 120, 129
origin, 110–111, 111
performance compared to

WebGL, 170
and pixels, 109–110, 112–113, 121
redrawing, 108, 110, 114, 126
rendering the game, 120–134, 155
rotating, 110–112, 111, 129
scaling, 109
size of, 108–109, 112–113, 121
sprites, rendering, 31, 105–134
state properties, 109–111
styling, 109
translating, 110–112, 111, 129
transparency, 179
width attribute, 109, 112–113, 121

CDN (Content Delivery Network),
18–19

cheating, 180–183
checksums, 180–183
Chrome browser, 8, 96, 152, 160, 171

developer tools, 177
memory profiling, 176–177, 177
paint operations, 179

classes (JavaScript), 14. See also Board
class, Bubble class, Game class,
Sounds class, Sprite class

click event, 22, 27, 36–38, 108, 116,
120, 148–149, 173

clickGameScreen function, 37, 39,
63–64, 65–66, 74, 143–145,
149–151, 173

closure, 23–25
Closure Compiler, 181–182
code structure, 13–14
CollisionDetector.findIntersection

method, 56–64
CollisionDetector object, 56–64
collisions, 7, 43

calculating effects, 44
coordinates, 61–62
detecting, 43–44, 44, 53–63, 54, 55
finding nearest, 63
geometry, 54–58, 54, 55
hitbox, 55, 55–56, 60–61
reacting to, 63–64

color, 94–95
column, 46–47, 64–65, 70, 80, 82
compiling HTML5

to native code, 175
optimizing, 181

192 Index

complete property of animate, 66, 130
console, 9, 154, 160, 166
console.log, 9, 166, 169
Content Delivery Network (CDN),

18–19
context (of canvas), 109–113, 121

2d, 109–114, 169–170
clearRect method, 110
clipping images, 113, 113–114
drawImage method, 109–114,

128–129
getContext method, 15, 109–112,

114, 121, 169–170
origin, 110–111, 111
restoring, 111–112
rotate method, 110–111, 111
rotations, 110–112, 129
saving, 111–112
state, 109–111
translate method, 110–111, 128
translating, 110–112, 111, 129

Controller, in MVC, 13–14
cookies, 151–152, 157
coordinates

bubble, 30, 38, 40, 46, 47, 57–58,
66, 71, 80, 82

mouse click, 30, 36–38, 40
CPU time, 94
CRC32 hash function, 183
createLayout method, 46–47, 118, 124
cross-browser development, 15, 17, 24,

29, 94, 106
cross-platform development, 172
CSS, 6, 26, 107, 147

animation, 6, 29, 40–41, 76–78,
93–103

canvas formatting, 109, 112–113, 121
dimensions, 13
display property, 21–22, 26
filter property, 26
layout, 10–13
mobile, 175
opacity property, 26, 94
selectors, 16
sprites, 31, 33–34. See also sprite

css method, 17, 50, 67, 77, 87–88, 124
CSS transformations, 77, 93–103

distort, 98
matrix, 98
perspective, 98
rotate, 98

scale, 98–99
skew, 98
support, 29
translate, 98

CSS transitions, 40, 93–103, 107–108
creating with jQuery, 100–102
curve, 96
disadvantages, 102–103
duration, 94–95, 100–102
easing, 95, 102
support, 29, 101–102, 132
valid properties, 94

cubic-bezier value, 97, 97
CURRENT bubble state, 115–119, 117,

133, 133
custom wrapper, 175

D
data transactions, 167
debugging, 9, 178
deceleration, 41, 95
dedicated workers, 168–169
delay, in animation, 95
deleting pixels (canvas), 108, 110, 126
desktop display, 13, 174
detecting

collisions, 43–44, 44, 53–63, 54, 55
end of game, 6, 44

developer tools, 9
development environment, 7–9
device-height attribute value, 174
device-width attribute value, 174
dialog, 21–22, 25–27, 108, 146, 146–149

requestFullScreen, 171–172
display property, 21–22, 26
display state, 83
distort transformation, 98
doctype declaration, 11
document flow, 107
DOM (Document Object Model),

105–108
appending to, 35–36, 45, 50, 107,

178–179
comparison to canvas, 107, 179
manipulating, 15–16, 26, 35–36, 40,

66, 75, 85, 89
node, 15–16
prepending, 121
ready, 23–24
removing elements, 66, 75, 107,

178–179

Index 193

sprites, 31, 33, 35, 49, 77, 122. See
also sprite

traversing, 16
Web Workers, 168

domain, 152
double-tap, 173–174
dropBubbles function, 83–85, 120
dropping bubbles, 83–84
duration of animation, 41, 64, 75,

94–95, 100–102, 129

E
easing, 41–42, 95, 95, 103, 130

cubic-bezier value, 97, 97
ease-in-out value, 95
ease-in value, 95
ease-out value, 95
ease value, 97
linear value, 40–41, 97
swing value, 41

endGame function, 144–145, 148–149,
153–154

ending levels, 138, 143–151, 146
environment, 7–9
event handlers, 22–23, 26–27, 37–38

triggering FullScreen API, 171
Web Workers, 169

event object, 36–38
Web Workers, 169

events
click, 22, 27, 36–38, 108, 116, 120,

148–149, 173
mousedown, 173
mouseup, 173
touchend, 173
touchstart, 173

experimental-webgl context, 170
exploding bubbles, 84–89

F
Facebook, 172
fadeIn method, 149
fadeOut method, 25–26
FALLEN bubble state, 115–120, 117, 133,

133–134
FALLING bubble state, 115–120, 117,

133, 133
fast-moving-object problem, 53
feature detection, 15

filter property, 26
Firebug, 177, 182
fired bubble, 43, 51, 54, 58
FIRED bubble state, 115–119, 117, 133,

133–134
Firefox browser, 8, 96, 152, 160, 171

memory profiling, 177
firing angle, 30, 30–31, 36–37, 39
FIRING bubble state, 115–119, 117,

133, 133
fixed layout, 13
Flash, xv–xvi
fluid layout, 13
folder, 11, 33
font-size property, 22, 41, 52, 94,

141, 147
frame rate, 94, 102, 155–159, 156
Fullscreen API, 171–172

G
game. See also Bubble Shooter (game)

board rendering, 31–32, 44, 45–49,
126–129

controller, 14, 20
detecting end of, 6, 44
grid, 6–7, 46, 47, 66–67, 101
layout, 10–13, 10
logic, 3, 13–14, 43–67, 161, 180
loop, 44
mechanics, 6
rendering with canvas, 120–134, 155
scoring, 44. See also score
state. See game state

Game class, 45
clickGameScreen function, 37, 39,

63–64, 65–66, 74, 143–145,
149–151, 173

dropBubbles function, 83–85, 120
endGame function, 144–145, 148–149,

153–154
getNextBubble function, 36–37,

51–52, 117, 125–127
popBubbles function, 74–76, 83–85,

119–120, 150, 162
renderFrame function, 127–131,

157–158
startGame function, 22–24, 27,

36–37, 45, 51, 108, 116,
120–121, 127, 139, 142–143,
148–149, 157

194 Index

Game.init method, 22–24, 26–27, 108,
120–121, 153–154

game state
bubble state machine, 114–120, 117
displaying, 74, 83, 106, 116, 142–144
maintaining, 7, 14, 45, 138–139
saving, 154
setting up, 43–44
updating, 74, 83, 167

garbage collection, 176–177
getAttribute method, 16
getContext method, 15, 109–112, 114,

121, 169–170
getElementById method, 15–16, 109
getNextBubble function, 36–37, 51–52,

117, 125–127
global scope, 21
Google Closure Compiler, 181–182
Google Play Store, 9
graphics processor, 94, 102, 170
gravity, simulating, 84, 86, 89
grid, 6–7, 43, 46, 47, 66–67, 101, 137

H
handsets, 175
hash functions, 183
heap snapshots, 177
height method, 77, 121, 123, 124, 128
hex codes, 94
high score, 137–149, 140

saving, 151–154, 165–168
security, 180–183

hitbox, 55, 55–56, 60–61
hover pseudo-class, 22, 96, 99
HTML, 6, 26, 107

layout, 10–13, 147
mobile development, 9
sprite, 31

HTML5, 11
compiling, 175
deploying games, 171

HTML5 Audio, 17, 160–163
HTTP request, 152

I
ID, of DOM node, 16
IIFE (Immediately Evoked Function

Expression), 21, 23
Image object, 108, 110, 113–114

images, loading, 23–24, 33–34, 108,
120, 124

Immediately Evoked Function
Expression (IIFE), 21, 23

in-app purchases, 175
initial-scale attribute value, 174
interaction, 3, 13
Internet connection, 175
Internet Explorer, 8, 96, 152, 171

memory profiling, 177
iOS, 9
iPad and iPhone, 9, 174

J
Java, 168, 175
JavaScript, 26

AJAX, 166
animation, 6, 40–41, 93–94, 102–103
breakpoints, 9
console, 9, 154, 160, 166
event object, 36–38
interpreter, 94, 178
loading, 11, 14–15, 18–20, 27, 106
logging, 9
modules, 20–21
namespaces, 20
node selection, 15
objects, 14, 25
public variables, 9
scope, 24–25, 36, 168–169, 182
security, 154
Web Workers, 168–169

JavaScript Object Notation (JSON),
166, 170

jQuery, 15–17, 122
$ (selector), 16–17, 23–24
adding, 19
AJAX, 15
animate method, 40–41, 60, 66, 84,

96, 100–103
bind method, 27
canvas elements, 109
complete property of animate, 66, 130
documentation, 17, 41
DOM manipulation, 15–16, 75, 147
DOM traversing, 16
downloading, 19
event handlers, 22–23, 26–27, 37–38
event object, 36–38
fadeOut method, 26

Index 195

plug-in, 84–89
remove method, 75–77, 148, 154
selectors, 16–17, 89
unbind method, 27

jQuery.fn.kaboom function, 85–89
jQuery.kaboom.js, 85–89, 155, 158
JSON (JavaScript Object Notation),

166, 170
JSON.parse method, 153
JSON.stringify method, 153

K
keyboard accessibility, 173
Kongregate, 172

L
layout, 10, 10, 11–13, 139–140, 140
left property, 40–41, 93–95, 100, 123,

130–131
legacy browsers, 88
levels, 7, 137–151

ending, 138, 143–151, 146
rendering, 10, 10, 14, 49–50
storing, 153

lighting, 169–170
linear value, 40–41, 97
loading scripts, 18–20
loading the page, 18, 22–24
Local Storage, 152–154, 157
localStorage.getItem method,

153–154, 157
localStorage.setItem method,

152–154, 157
logging, 9
logic, 3, 13–14, 43–67, 161, 180
long-polling, 167
loop, 44

M
Mac OS X, 8
match-3 games, 186
Math.atan method, 38
matrix transformation, 98
MAX_BUBBLES constant, 51–52, 139
maximum-scale attribute value, 174
MAX_ROWS constant, 145
MD5 hash function, 183
memory management, 77, 176–178,

177, 178

meta tag, 11, 174–175
minifying, 181–182
minimum-scale attribute value, 174
mobile browsers, 9
mobile

browsers, 9, 174–175
devices, 9
display, 13
running Bubble Shooter, 172
testing, 9
wrapper service, 175

Model, in MVC, 13–14
modeling software, 170
Model/View/Controller (MVC), 13–14
Modernizr, 14–20

adding, 17
downloading, 17
feature detection, 15, 154, 162
script loading, 14–15, 18–20, 27

Modernizr.audio property, 161–162
Modernizr.canvas property, 15, 106, 121
Modernizr.load method, 17–20, 23, 26,

35, 46, 56, 85, 106
Modernizr.prefixed, 17, 77, 101–102, 156
modular JavaScript, 20–21
module, 20–21
momentum, 84
monitor size, 12
mouse click, 30, 30, 37–38, 39, 40, 44
mousedown event, 173
mouseup event, 173
Mozilla browser, 96, 156. See also Firefox
Mozilla Developer Network, 167
-moz- prefix, 95–96
mozRequestFullScreen, 171–172
MP3 files, 160–163
-ms- prefix, 95–96
msRequestFullScreen, 171–172
multiplayer game, developing, 175
MVC (Model/View/Controller), 13–14

N
namespace, 20
native applications, 106, 170, 175, 180
.NET, 168
New Game button, 21–24, 27, 96–100,

108, 121, 147–148
Node.js, 168
NUM_COLS constant, 46
NUM_ROWS constant, 46

196 Index

O
obfuscation, 180–182
Objective-C, 175
object-oriented programming, 14
objects (JavaScript), 14, 25
ON_BOARD bubble state, 115–119, 117, 133,

133–134
onload event, 108
opacity property, 26, 94
optimization, 176–180
orphaned bubbles, 6–7, 6, 78–84, 78, 79
OS X, 8

P
page, loading, 18, 22–24
paint operation, 179, 179
parseFloat, 153
parseInt, 153–154
particle effects, 170
performance, 56, 77, 102, 105, 107,

168–169, 176–180
persistent connections, 167
perspective transformation, 98
physics, 187
pi, 38
pixel dimensions, 13, 112–113
pixel manipulation, 6, 107
Pixi.js, 170
platform games, 187
PlayCanvas library, 170
plug-ins

jQuery, 84–89
mobile wrapper, 175

PNG file, in Bubble Shooter (game), 33,
33, 120

POINTS_PER_BUBBLE constant, 138, 143
polyfill, 156–157, 169
popBubbles function, 74–76, 83–85,

119–120, 150, 162
pop.mp3 file, 161
POPPED bubble state, 115–120, 117, 133,

133–134
popping animation, 33, 33, 69, 75–78,

76, 128, 132–134
popping bubbles. See bubble, popping
POPPING bubble state, 115–119, 117,

133, 133
position method, 38, 86, 122–123, 128,

130, 159

position property, 12, 21–22, 32, 52, 107
POST request, 166, 180, 183
post-build process, 181
preloading images, 34, 108
private variables, 182
processing power, 48, 53, 56, 85, 94,

107, 168–169, 178
public methods, 23–24
public variables, 9
purchasing, in apps, 175

R
radians, 37–39, 111
readability, 14, 46, 49, 109, 138, 178, 181
redrawing canvas, 108, 110, 114, 126
remove method, 75–77, 148, 154
Renderer.drawSprite method, 128, 134
Renderer.init method, 120–121
Renderer object, 120–122, 124–125,

127–129, 132–133
Renderer.render method, 129, 131, 133
renderFrame function, 127–131, 157–158
rendering speed, 105, 178–179
requestAnimationFrame method, 155–159

polyfill, using with, 164
requestFullScreen method, 171–172
resolution, 9, 13, 112–113
retrieving data, 165–168
rotate transformation, 98
row, 45–47, 59, 64–65, 70, 79–80, 82,

101, 145, 150–151
ROW_HEIGHT constant, 49–50, 58, 65, 125

S
Safari, 8, 96
saving data, 165–168
scale transformation, 98–99
scaling (viewport), 174
scenes, 169–170
scope (JavaScript), 21, 24–25,

168–169, 182
score, 6–7, 138–139

display, 10, 14, 44, 139–144, 140,
146–149

high score. See high score
security, 180–183

screen aspect ratio, 11, 13
screen resolution, 9, 13, 112–113
script loading, 11, 14–15, 18–20, 27

Web Workers, 168

Index 197

script tag, 11, 14, 17–19
security, 154, 180–183
selectors (jQuery), 16, 89
server

bandwidth, 18, 175
communication, 15, 151–152,

165–168, 180–182
directory structure, 11
maintaining connections, 167
POST request, 166, 180, 183
request, 166
response, 166
setting up, 7–8

Session Storage, 152
setTimeout function, 24–26, 75–77,

84–88, 101–102, 126–127,
129–130, 143, 155–159, 156

SHA1 hash function, 183
shaders, 170
shared workers, 168
single-threaded environment, 168
skew transformation, 98
Socket.IO library, 167–168
solitaire, 186–187
sound, 159–163. See also Audio API

3D positioning, 160
browser support, 159–160
manipulating, 159
mixing, 159–160
multiple, 160–162
playing, 159–163
processing, 159–160
recording, 159–160
skipping, 160
volume, 160, 162

Sounds class, 161–163
Sounds.play method, 161–163
sprite

animation, 40, 76–78
canvas, 31, 105–134
CSS, 31, 33–34
definition, 31
DOM, 49, 77
frame animation, 33, 76, 76–78,

132–134
image, 33, 33–34, 76

Sprite.addClass method, 123
Sprite.animate method, 130
Sprite class, 123–124
Sprite.css method, 123, 130

Sprite.height method, 123
Sprite.kaboom method, 123
Sprite.position method, 123, 130
Sprite.removeClass method, 123
Sprite.remove method, 123
Sprite.setPosition method, 123
sprite sheet, 33, 33–34, 108, 113,

113, 120
Sprite.width method, 123
startGame function, 22–24, 27, 36–37, 45,

51, 108, 116, 120–121, 127,
139, 142–143, 148–149, 157

startup times, 175
state machine, 114–120, 117
static classes, 25
status bar, 10
stop method

Audio API, 160
jQuery, 103

structure, of code, 13–14
style sheet, 12, 93–94, 112
subdirectory, 11
subdomain, 152
surface, textures and light, 170
swing value, 41

T
tablets, 9
target audience, 8
testing, 7–9
text rendering, 108
textures, 169
text wrapping, 107
threading, 168
Timeline tool, 179–180
top property, 12, 17, 21–22, 32, 34,

40–41, 52, 93–96, 100, 113,
123, 130–131

touchend event, 173
touch events, 173
touchscreens, 173
touchstart event, 173
transformations. See CSS

transformations
transitions. See CSS transitions
translate transformation, 98
trial and error, 61
trigonometry, 38–39
turn loop, 53

198 Index

U
UI (user interface), 6, 10, 147

responsiveness, 166
scripts, 25–26

ui.drawBoard method, 45, 49–50
ui.drawBubblesRemaining method,

51–52, 149
ui.drawHighScore method, 148, 154
ui.drawLevel method, 142–143
ui.drawScore method, 142–143
ui.endGame method, 148–149
ui.fireBubble method, 39–41, 66–67,

101–102, 119, 132
ui.getBubbleAngle method, 37–39
ui.getBubbleCoords method, 38–39
ui.getMouseCoords method, 37–38
ui.init method, 25, 153
ui object, 25–27, 37–38, 40, 49–50, 52,

66–67, 101, 119, 132, 142, 149
unbind method, 27
user input, 3, 30. See also mouse click,

touch events, user interface
user interface (UI), 6, 10, 147

responsiveness, 166
scripts, 25–26

user-scalable attribute value, 174

V
variables

private, 182
scope, 21, 24–25, 168–169, 182
state, 9

vectors, 30, 36–37, 39, 55, 55, 58, 60
velocity, 64, 87–89
vendor prefixes, 96, 98, 100
View, in MVC, 13–14
viewport, 174
virtual machine, 8–9
visibility property, 94
volume (sound), 160

W
web application, 11, 13, 152
WebGL, 169–171, 178
webgl context, 170
Webkit, 96, 156
-webkit- prefix, 95–96
webkitRequestFullScreen, 171–172
web server, 7–8, 11, 15, 18
WebSockets, 167–168

security, 180
Socket.IO library, 167–168

Web Storage, 151–154
Web Workers, 168–169
whitespace, 181
width

canvas element attribute, 108–109,
112–113, 121

method, 17, 121, 123–124, 126, 128
viewport attribute value, 174

window.onload method, 23
Windows, 8
Windows Mobile, 9
workers, 168–169
wrapper service, 175

X
XHTML, 11
XML, 166

Y
yepnope.js, 18. See also Modernizr.load

method

Z
zooming, 174

Updates
Visit http://nostarch.com/html5game/ for updates, errata, and other
information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

Eloquent JavaScript,
2nd Edition
A Modern Introduction to Programming
by marijn haverbeke

december 2014, 472 pp., $39.95
isbn 978-1-59327-584-6

The book of CSS3
A Developer’s Guide to the
Future of Web Design
by peter gasston

november 2014, 304 pp., $34.95
isbn 978-1-59327-580-8

Build Your Own Website
A Comic Guide to HTML, CSS, and WordPress
by nate cooper, with art by kim gee

september 2014, 264 pp., $19.95
isbn 978-1-59327-522-8

Rails Crash Course
A No-Nonsense Guide to
Rails Development
by anthony lewis

october 2014, 296 pp., $34.95
isbn 978-1-59327-572-3

JavaScript for Kids
A Playful Introduction to Programming
by nick morgan

december 2014, 336 pp., $34.95
isbn 978-1-59327-408-5
full color

If Hemingway
Wrote JavaScript
by angus croll

october 2014, 192 pp., $19.95
isbn 978-1-59327-585-3

More no-nonsense books from No Starch Press

	About the Author
	Brief Contents

	Contents in Detail

	Preface
	Acknowledgments

	Introduction
	Why Build HTML5 Games?
	Using Skills You Already Have
	Multi-environment Development
	A Rapidly Improving Platform

	About This Book
	Who This Book Is For
	Overview
	Depth of Coverage
	How to Use This Book

	Part 1: Building a Game with
HTML, CSS, and JavaScript
	Chapter 1: Preparation and Setup
	How the Game Is Played
	Building the Game
	Development and Testing Environment
	Web Browser Testing
	Debugging in the Web Browser

	Laying Out the Game Screen
	Creating Panels with HTML and CSS
	Code Structure

	Adding the First Scripts
	The Modernizr and jQuery Libraries
	Adding the Modernizr Library
	Loading in Scripts with Modernizr
	Modular JavaScript
	User Interface and Display Scripts

	Summary
	Further Practice

	Chapter 2: Sprite Animation
Using jQuery and CSS
	Principles of CSS Sprites
	Creating the Game Board
	Adding Sprites

	Animation and the Bubble Class
	Calculating Angle and Direction
	Firing and Animating Bubbles

	Summary
	Further Practice

	Chapter 3: Game Logic
	Drawing the Game Board
	Rendering the Level
	The Bubble Queue

	Detecting Collisions
	Collision Geometry
	Collision Detection Logic

	Reacting to Collisions
	Adding the Bubble to the Board
	Locking the Bubble into the Grid

	Summary
	Further Practice

	Chapter 4: Translating Game State Changes to the Display
	Calculating Groups
	Fetching Bubbles
	Creating Matching Color Groups

	Popping Bubbles
	Removing Bubble Groups with JavaScript
	Popping Animations with CSS

	Orphaned Groups
	Identifying Orphaned Bubbles
	Dropping Orphaned Bubbles

	Exploding Bubbles with a jQuery Plug-in
	Summary
	Further Practice

	Part 2: Enhancements with HTML5 and the Canvas
	Chapter 5: CSS Transitions and Transformations
	Benefits of CSS
	Basic CSS Transitions
	How to Write a Transition
	Color-Changing Buttons

	Basic CSS Transformations
	How to Write a Transformation
	Scaling a Button

	CSS Transitions in Place of jQuery animate
	Disadvantages of CSS Transitions
	Summary
	Further Practice

	Chapter 6: Rendering Canvas Sprites
	Detecting Canvas Support
	Drawing to the Canvas
	Image Rendering
	Canvas Elements
	Rotating a Canvas

	Sprite Rendering
	Defining and Maintaining States
	Preparing the State Machine
	Implementing States

	Sprite Sheets and the Canvas
	The Canvas Renderer
	Moving Sprites on the Canvas
	Animating Canvas Sprite Frames
	Summary
	Further Practice

	Chapter 7: Levels, Sound, and More
	Multiple Levels and High Scores
	New Game State Variables
	Display Level and Score

	Ending Levels Efficiently
	High Score Persistence with Web Storage
	Web Storage vs. Cookies
	Adding Data to Web Storage

	Smoothing Animations with requestAnimationFrame
	A New Perspective on Frame Updates
	Code Compatibility with Polyfills

	Adding Sound with HTML5
	The HTML5 Audio API
	Popping Bubbles: Complete with Sound

	Summary
	Further Practice

	Chapter 8: Next Steps in HTML5
	Saving and Retrieving Data
	AJAX
	WebSockets
	Web Workers

	WebGL
	Deploying HTML5 Games
	Running Fullscreen in a Desktop Browser
	Running in a Mobile Browser
	Deploying as a Native Application

	Optimization
	Memory Management
	Optimizing for Speed

	Security
	Trust No One
	Obfuscation
	Using Private Variables
	Validating with Checksums

	Summary
	Further Practice

	Afterword
	Improving Bubble Shooter
	Creating a Whole New Game
	Match-3
	Solitaire
	A Platform Game
	A Simple Physics Game

	Joining a Game Development Team

	Index
	Updates

