
From the author of the highly acclaimed Book of ™

VB .NET comes this comprehensive introduction to
Visual Basic 2005, the newest version of Microsoft’s
popular programming language. If you’re a developer
who is new to the language, you will learn to use
VB 2005 effectively. If you’re from the old school of VB
but haven’t yet made the jump to .NET, you will be
able to make the transition seamlessly. And you won’t
have to wade through boring, unnecessary material
before you get there.

This guide covers all the necessities, ditching jargon
and getting right to the substance of how to:

• Implement object-oriented programming with classes,
interfaces, and inheritance

• Design well-behaved multithreaded applications

• Work with XML, file streams, and ADO.NET, the .NET
toolkit for relational databases

• Build code-driven web pages and rich Windows
applications

• Deploy your applications with snazzy setup programs

Conversational in tone and eminently readable, this
book tackles VB 2005’s hot new features and explains
how to work with .NET, but it doesn’t water the informa-
tion down for beginners. After a brief overview of
changes from VB 6, you’ll get real-world examples in
each chapter that will get you up to speed and ready
to perform in the VB 2005 environment. Helpful code
examples, references to additional online material, and
tips on planning, design, and architecture round out
The Book of Visual Basic 2005.

Professional developers who need to master VB 2005
will want this book by their side.

About the author

Matthew MacDonald is a developer, author, and
educator dedicated to all things Visual Basic and .NET.
He’s worked with Visual Basic and ASP since their initial
versions, and he has written more than a dozen books,
including The Book of VB .NET (No Starch Press) and
Visual Basic 2005: A Developer’s Notebook (O’Reilly).

YOUR PASSPORT

TO THE WORLD

OF .NET

YOUR PASSPORT

TO THE WORLD

OF .NET

www.nostarch.com

 “I lay flat.”

Th is book uses RepKover — a durable b ind ing that won’t snap shut.

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN:
PROGRAM

M
ING LANGUAGES/

VISUAL BASIC

$39.95 ($51.95 CDN)

M
A

CD
O

N
A

LD
V

IS
U

A
L

 B
A

S
IC

 2
0

0
5

V
IS

U
A

L
 B

A
S

IC
 2

0
0

5

T H E

B O O K

of

M a t t h e w M a c D o n a l d

V ISUA L BA SIC
2005

V ISUA L BA SIC
2005

. N E T I N S I G H T F O R C L A S S I C V B D E V E L O P E R S

bvb_02.book Page ii Thursday, March 30, 2006 12:39 PM

THE BOOK OF™
VISUAL BASIC

2005
. N ET I n s i gh t f o r C l a s s i c

VB D ev el o p e r s

by Matthew MacDonald

San Francisco

bvb_02.book Page iii Thursday, March 30, 2006 12:39 PM

THE BOOK OF VISUAL BASIC 2005. Copyright © 2006 by Matthew MacDonald.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

 Printed on recycled paper in the United States of America

1 2 3 4 5 6 7 8 9 10 – 09 08 07 06

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock
Managing Editor: Elizabeth Campbell
Associate Production Editor: Christina Samuell
Cover and Interior Design: Octopod Studios
Developmental Editor: Jim Compton
Technical Reviewer: Dan Mabbutt
Copyeditor: Neil Ching
Compositor: Riley Hoffman
Proofreader: Stephanie Provines

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloging-in-Publication Data

MacDonald, Matthew.
 The Book of Visual Basic 2005 : .NET Insight for Classic VB Developers / Matthew MacDonald.
 p. cm.
 Includes index.
 ISBN 1-59327-074-7
 1. Microsoft Visual BASIC. 2. BASIC (Computer program language) 3. Microsoft .NET Framework.
I. Title.
 QA76.73.B3M282 2005
 005.2'768--dc22
 2005028823

bvb_02.book Page iv Thursday, March 30, 2006 12:39 PM

For Faria

bvb_02.book Page v Thursday, March 30, 2006 12:39 PM

A C K N O W L E D G M E N T S

The collection of .NET titles on bookstore shelves is embarrassingly large.
When writing a book about a language as popular as Visual Basic, the
challenge isn’t finishing it, but making sure that it’s really insightful, friendly,
and useful beyond the standard Microsoft documentation. To that end,
I have to thank countless other developers and .NET aficionados whose
words—in books, articles, websites, discussions groups, and emails—have
provided the seeds of insight that have enhanced the pages of this book.
I hope the readers of this book will also learn from and become a part of
the broader .NET community.

Closer to home, I should thank all the pleasant people at No Starch Press
who have worked with me throughout this project, for both this edition and
the previous one, including Bill Pollock, Karol Jurado, Christina Samuell,
Elizabeth Campbell, and Amanda Staab. I also owe a heartfelt thanks to this
book’s reviewers, Dan Mabbutt of About.com fame and Jim Compton, and
its copyeditor, Neil Ching.

Lastly, I need to thank my parents (all four of them) and my loving wife.

bvb_02.book Page vi Thursday, March 30, 2006 12:39 PM

B R I E F C O N T E N T S

Introduction ..1

Chapter 1: The .NET Revolution ..7

Chapter 2: The Design Environment...19

Chapter 3: VB 2005 Basics..47

Chapter 4: Windows Forms ...87

Chapter 5: Object-Oriented Programming..135

Chapter 6: Mastering Objects ..173

Chapter 7: Assemblies and Components ..211

Chapter 8: Bug Proofing ..239

Chapter 9: Dealing with Data: Files, Printing, and XML..271

Chapter 10: Databases and ADO.NET..311

Chapter 11: Threading ..355

Chapter 12: Web Forms and ASP.NET..387

Chapter 13: Web Services...425

Chapter 14: Setup and Deployment ..451

Index ...475

bvb_02.book Page vii Thursday, March 30, 2006 12:39 PM

bvb_02.book Page viii Thursday, March 30, 2006 12:39 PM

C O N T E N T S I N D E T A I L

INTRODUCTION 1

Who Should Read This Book ... 2
What You Will Learn .. 2
Code Samples ... 3
Complaints, Adulation, and Everything in Between ... 3
Chapter Overview .. 4
What Comes Next? .. 5

1
THE .NET REVOLUTION 7

A Brief History of Visual Basic .. 7
Enter .NET .. 8

The Limitations of “Classic” Visual Basic .. 8
Visual Basic’s Quirky Mix ... 8
Isolated Languages .. 9
Enterprise Development Headaches ... 9
DLL Hell .. 9
Incomplete Support for Object-Oriented Programming 10

The .NET Vision ... 10
The Ingredients of .NET .. 10
The Common Language Runtime (CLR) ... 11
The .NET Classes .. 11
Speaking the Same Language ... 12
Deep Language Integration .. 13
Prebuilt Infrastructure ... 13
Web Services and the Next-Generation Internet .. 14
Open Standards: XML, SOAP, WSDL, and Other Letters from the Alphabet 14
Metadata: The End of DLL Hell? .. 15

Is VB 2005 Still VB? ... 15
Ten Enhancements You Can’t Live Without ... 16
Ten Changes That May Frustrate You ... 16
The Dark Side of .NET ... 17
What About COM? ... 17

What Comes Next? .. 18

2
THE DESIGN ENVIRONMENT 19

New in .NET ... 20
Starting Out in the IDE .. 21

The Start Page .. 22
Changing the Startup Behavior ... 23

bvb_02.book Page ix Thursday, March 30, 2006 12:39 PM

x Conten ts in Detai l

Creating a Project ... 24
Tabbed Documents .. 25
Docked and Grouped Windows ... 26

Touring Visual Studio .. 27
The Solution Explorer ... 27
The Toolbox ... 28
The Properties Window .. 30
The Code Display .. 31
Splitting Windows ... 32
The Task List ... 34

Code Snippets ... 35
Inserting a Snippet .. 35
Managing Snippets ... 36

Macros ... 37
The Macro IDE .. 38
The Temporary Macro ... 39
Macros with Intelligence .. 39
Macros and Events .. 40

The Simplest Possible .NET Program ... 41
MyFirstConsoleApplication Files .. 43
MyFirstConsoleApplication Directories ... 43
Project Properties .. 44

What Comes Next? .. 46

3
VB 2005 BASICS 47

New in .NET ... 48
Introducing the Class Library .. 49

Namespaces .. 49
Assemblies ... 51
Types ... 52

Using the Class Library ... 53
Adding a Reference to an Assembly .. 53
Importing a Namespace .. 55
Exploring the Class Library Namespaces .. 57
The My Object .. 60

Code Files ... 62
Class and Module Blocks ... 63
Namespace Blocks .. 64
Adding Code Files .. 64

Data Types .. 65
The System Types .. 65
Multiple Variable Declaration ... 66
Initializers .. 66
Data Types as Objects ... 67
Strings ... 67
More Efficient Strings ... 70
Dates and Times ... 71
Arrays ... 71
Arrays and IEnumerable ... 72

bvb_02.book Page x Thursday, March 30, 2006 12:39 PM

Conten ts in Detai l xi

Built-in Array Features .. 72
Arrays as Reference Types ... 74

Changes to Operations ... 75
Assignment Shorthand ... 75
Converting Variables ... 75
Math ... 76
Random Numbers ... 76
Some New Rules for Scope .. 76
Short-Circuit Logic ... 77
Quickly Skipping Through a Loop ... 78

Enhanced Procedures ... 79
Calling a Method .. 79
ByVal and ByRef ... 80
The Return Keyword .. 81
Optional Parameters .. 81
Default Values ... 82
Method Overloading ... 82
Delegates ... 84

What Comes Next? .. 86

4
WINDOWS FORMS 87

New in .NET ... 88
Getting Started .. 89

The Component Tray ... 89
Custom Designers .. 90
Locking Your Controls .. 91

Control Layout ... 92
Anchoring .. 92
Docking ... 94
Maximum and Minimum Window Sizes ... 96
Automatic Scrolling ... 96
Split Windows .. 97
Container Controls .. 99

Controls and Events .. 100
Handling More Than One Event .. 102
Accept and Cancel Buttons ... 103

Exploring .NET Forms ... 104
Two Ways to Show a Form .. 104
Forms and the My Object ... 106
Modal Forms .. 107
The Startup Form and Shutdown Mode .. 108
Application Events ... 108
Form Oddities ... 110

The Inner Workings of Forms ... 111
Visual Basic 6 Forms “Under the Hood” ... 112
Visual Basic 2005 Forms “Under the Hood” ... 113
Stepping Through the “Muck and Goo” ... 115
What About Binary Information? ... 116

bvb_02.book Page xi Thursday, March 30, 2006 12:39 PM

xii Content s i n De ta i l

Adding Controls Dynamically .. 117
Dynamic Event Hookup .. 118

Interaction Between Forms ... 120
A Sample Form Interaction Problem ... 120
Dialog Windows ... 121
Owned Forms ... 123
MDI Interfaces .. 123

More .NET Controls .. 126
Strips and Menus .. 126
System Tray Icons .. 129
Providers .. 132

What Comes Next? .. 133

5
OBJECT-ORIENTED PROGRAMMING 135

New in .NET ... 136
Introducing OOP .. 137

What Is Object-Oriented Programming? ... 137
The Problems with Traditional Structured Programming 137

First There Were Structures 138
A Very Simple Person Structure ... 139
Making a Structure That Has Brains ... 140
Instantiating an Object ... 141
Objects Behind the Scenes ... 142
Classes in Pieces ... 144

Enhancing a Class with Properties .. 145
Enhancing a Class with a Constructor ... 148

Constructors That Accept Parameters ... 149
Multiple Constructors ... 150
The Default Constructor .. 152
Destructors ... 152
Garbage Collection ... 152

Enhancing a Class with Events ... 155
An Event in Action ... 155
Events with Different Signatures ... 157

Enumerations ... 159
Creating an Enumeration ... 160
Enumerations “Under the Hood” ... 162
Using Enumerations with an Event ... 163

Shared Members .. 165
Shared Methods ... 165
Shared Properties .. 167
Modules “Under the Hood” .. 168

Assessing Classes ... 169
Types: The Big Picture .. 169
Surveying the Objects in Your Application .. 170

What Comes Next? .. 171

bvb_02.book Page xii Thursday, March 30, 2006 12:39 PM

Conten t s in Detai l xiii

6
MASTERING OBJECTS 173

New in .NET ... 174
The Philosophy of OOP ... 174

The “Black Box” Idea ... 175
Loose Coupling ... 175
Cohesion ... 176
What Do Classes Represent? .. 177

Inheritance .. 177
Inheritance Basics ... 178
Constructors in Inherited Classes ... 180
Protected Members .. 182
Overriding Methods .. 183
Casting .. 185
MustInherit (Abstract Classes) ... 186
MustOverride ... 187
Multiple-Level Inheritance ... 188
Is Inheritance a Good Idea? ... 189
Using Inheritance to Extend .NET Classes ... 189

Interfaces .. 194
Using Interfaces .. 196
Interfaces and Backward Compatibility .. 197
Using Common .NET Interfaces ... 198

Collection Classes .. 203
A Basic Collection ... 204
A NuclearFamily Class .. 204
Specialized Collections .. 207
Generic Collections ... 207

What Comes Next? .. 209

7
ASSEMBLIES AND COMPONENTS 211

New in .NET ... 212
Introducing Assemblies ... 212

Assemblies Versus Components That Use COM .. 213
Why Haven’t We Seen These Features Before? ... 215
Looking at Your Program as an Assembly ... 215
Setting Assembly Information .. 218
Retrieving Assembly Information .. 221

Creating a .NET Component ... 223
Creating a Class Library Project .. 223
Creating a Client .. 224

The Global Assembly Cache .. 226
The GAC “Under the Hood” ... 227
Creating a Shared Assembly .. 228
Policy Files ... 230
Creating a Version Policy ... 231

bvb_02.book Page xiii Thursday, March 30, 2006 12:39 PM

xiv Content s i n De ta i l

Resources .. 233
Adding a Resource .. 233
Using a Resource .. 235

What Comes Next? .. 237

8
BUG PROOFING 239

New in .NET ... 240
Understanding Errors .. 241

The Principles of Bug Proofing ... 242
Errors at Compile Time ... 242
Option Explicit and Option Strict ... 244
Line Numbers ... 246

Visual Studio’s Debugging Tools .. 247
Watching Your Program in Action ... 247
Commands Available in Break Mode .. 249
The Breakpoints Window ... 250
Hit Count ... 251
The Autos, Locals, and Watch Windows .. 252
The Immediate Window ... 253
Errors at Runtime ... 254

Structured Exception Handling ... 255
Understanding the Error Call Stack .. 256
The Evolution from On Error Goto ... 257
The Exception Object ... 257
Filtering by Exception .. 260
Exception Types .. 261
Filtering by Conditions ... 261
Throwing Your Own Exceptions .. 262
Perfecting a Custom Exception Class ... 264
The UnhandledException Event: The Line of Last Defense 264

Defensive Coding ... 265
The Principles of Defensive Coding .. 266
Testing Assumptions with Assertions ... 266
Debug.WriteLine() ... 268
Using Logging and Traces .. 268

What Comes Next? .. 270

9
DEALING WITH DATA: FILES, PRINTING, AND XML 271

New in .NET ... 272
Interacting with Files ... 273
Reading and Writing Files ... 273

Creating a File with the My Object .. 274
Creating a File with the FileStream Class .. 275
The StreamWriter and StreamReader Classes ... 275
The BinaryWriter and BinaryReader Classes ... 276
Visual Basic–Style File Access ... 279

bvb_02.book Page xiv Thursday, March 30, 2006 12:39 PM

Conten ts i n Detai l xv

A Little More About Streams ... 280
Compressing Files ... 281

Managing Files and Folders .. 283
The FileInfo Class .. 283
A Simple Directory Browser .. 287
“Watching” the File System .. 288

Object Serialization ... 290
Storing and Retrieving a Serializable Object .. 291
Fine-Tuned Serialization ... 292
Cloning Objects with Serialization .. 292

Printing and Previewing Data ... 293
Printing Data from an Array .. 294
Printing Wrapped Text ... 296
Printing Pictures ... 298
Print Settings ... 298
Print Preview ... 299

Working with the Registry ... 301
XML Files ... 303

What Is XML, Anyway? .. 304
Writing a Simple XML Document ... 306
Reading XML .. 307
Advanced XML ... 309

What Comes Next? .. 310

10
DATABASES AND ADO.NET 311

New in .NET ... 312
Introducing ADO.NET ... 313

Using Relational Data .. 313
The Northwind Database ... 314
SQL Server 2005 Express Edition .. 314
The Provider Model ... 315

The Basic ADO.NET Objects ... 316
Fast-Forward Read-Only Access ... 317

Connection Objects ... 318
Command Objects .. 321
DataReader Objects .. 322

Updating Data with a Command Object ... 325
Why Use a Command Object? ... 326
A Data Update Example .. 326
Calling a Stored Procedure .. 328
Using a Parameterized Command ... 330
A Transaction Example .. 331

Using DataSet Objects .. 333
When to Use a DataSet Object ... 333
Filling a DataSet with a DataAdapter ... 334
Accessing the Information in a DataSet .. 334
Deleting Records ... 336
Adding Information to a DataSet ... 336
Working with Multiple Tables ... 338

bvb_02.book Page xv Thursday, March 30, 2006 12:39 PM

xvi Content s i n De ta i l

DataTable Relations ... 338
Using a DataSet Object to Update Data ... 341
Updating the Data Source .. 343
Creating a DataSet Object by Hand .. 347

Data Binding ... 350
What Comes Next? .. 352

11
THREADING 355

New in .NET ... 356
An Introduction to Threading ... 356

Threads “Under the Hood” ... 357
Comparing Single Threading and Multithreading .. 357
Scalability and Simplicity ... 359
Timers Versus Threads .. 359

Basic Threading with the BackgroundWorker .. 360
Transferring Data to and from the BackgroundWorker 363
Tracking Progress .. 366
Supporting a Cancel Feature .. 368

Advanced Threading with the Thread Class ... 369
A Simple Multithreaded Application .. 369
Sending Data to a Thread .. 371
Threading and the User Interface .. 373

Basic Thread Management .. 375
Thread Methods .. 375
Thread Priorities .. 377
When Is Too Much Not Enough? .. 377
Thread Priority Example ... 378
Thread Debugging .. 380

Thread Synchronization .. 381
Potential Thread Problems .. 381
Basic Synchronization .. 381
A Sample Synchronization Problem ... 382
Using SyncLock to Fix the Problem ... 384

What Comes Next? .. 385

12
WEB FORMS AND ASP.NET 387

New in .NET ... 388
A Web Development Outline ... 388

What Was Wrong with Classic ASP? .. 389
Web Application Basics .. 390
Creating a Web Application ... 390

Ingredients of an ASP.NET Project ... 392
Designing Web Forms .. 394

The Basic Controls ... 394
Adding Controls to a Web Form ... 395
Running a Web Page .. 397

bvb_02.book Page xvi Thursday, March 30, 2006 12:39 PM

Conten t s in Detai l xvii

Adding an Event Handler ... 398
How Does It Work? .. 399
The AutoPostback Property ... 400
Web Control Events ... 400
A Web Form “Under the Hood” .. 400
View State .. 403
The Page Processing Cycle ... 403
Other Controls .. 404

Thinking About State ... 404
Anatomy of a Web Request .. 406
Witnessing the Problem .. 406
Storing Extra Information in View State .. 407

Transferring Information .. 408
Passing Information in the Query String .. 409
Using Session State ... 411
Using Application State .. 413
A Summary of Different Types of State Management 414

Displaying Data with Data Binding ... 415
Basic ASP.NET Data Binding .. 415
The Data Source Controls ... 417

Deploying Your Website ... 418
IIS Setup .. 419
Virtual Directories .. 420

What Comes Next? .. 423

13
WEB SERVICES 425

New in .NET ... 426
The Vision of the Interactive Web ... 426

Web Services: COM for the Internet? .. 426
Web Services Today ... 427
Are Web Services Objects? .. 428

Creating Your First Web Service .. 428
Setting Up a Web Service .. 428
The Web Service Project .. 430
The Web Service Class .. 431
Touching Up Your Web Service .. 432

Testing Your Web Service ... 434
Your Web Service in Action ... 434

The Open Standards Plumbing ... 436
XML and WSDL .. 436
SOAP .. 438

Consuming a Web Service .. 439
The Proxy Class .. 439
Creating a Client Application ... 439
Adding a Web Reference .. 440
Inspecting the Proxy Class .. 442
Using the Proxy Class .. 443
Debugging a Web Service Project .. 444

bvb_02.book Page xvii Thursday, March 30, 2006 12:39 PM

xviii Conten t s in Deta i l

Asynchronous Web Service Calls ... 446
Asynchronous Support in the Proxy Class ... 446
An Asynchronous Client Example .. 447
Canceling an Asynchronous Request ... 448

What Comes Next? .. 449

14
SETUP AND DEPLOYMENT 451

New in .NET ... 452
Setup Programs .. 452

Requirements for .NET Applications ... 453
ClickOnce ... 454

Publishing to the Web or a Network .. 454
Installing a ClickOnce Application .. 458
Updating a ClickOnce Application .. 459
Publishing to a CD .. 461

Creating a Visual Studio Setup Project .. 461
Basic Setup Project Options ... 463

File System ... 464
Registry .. 466
File Types ... 467
User Interface ... 469
Custom Actions ... 472
Launch Conditions ... 473

What Comes Next? .. 474

INDEX 475

bvb_02.book Page xviii Thursday, March 30, 2006 12:39 PM

I N T R O D U C T I O N

Since its creation, Visual Basic (VB) has
steadily grown into the world’s most pop-

ular programming language. But popularity
doesn’t always mean respect, and for years the

development community has been split between
those who think Visual Basic is a revolutionary way to
solve just about any programming problem and those who think VB should
be sent to the bargain bin to make room for a return to “serious” C++ or Java
coding. As a result, Visual Basic programmers have a reputation for being a
slightly paranoid bunch.

Recently, Visual Basic has been through the greatest change of its life.
It’s morphed into a modern, object-oriented language that’s built on Micro-
soft’s .NET Framework—the same plumbing that powers such heavyweights
as C#. Although most VB developers believe that the .NET Framework will
eventually replace old-style Visual Basic 6, a surprising number haven’t made
the jump yet. Some don’t trust the new technology (and the never-ending
name changes). Others are too busy with real work to think about making
a move. And a few are scared off by the radical new model and inevitable
migration headaches.

bvb_02.book Page 1 Thursday, March 30, 2006 12:39 PM

2 I n t roduct ion

Now Microsoft has introduced Visual Basic 2005, along with the second
version of the .NET Framework. Microsoft’s developers have expended con-
siderable resources making Visual Basic 2005 easier to understand, use, and
embrace, and they’re earmarking this release as the version that will finally
make die-hard classic VB-ers switch to .NET. So have they succeeded?

As you’ll discover in this book, there’s still no easy migration path—
Visual Basic 2005 is entirely unlike Visual Basic 6, and there’s no turning
back now. However, if you’re ready to step up to a new language—one that
cleans out old cobwebs, levels the playing field between VB and other pro-
gramming languages, and introduces an avalanche of elegant, flexible, and
easy-to-use new features—Visual Basic 2005 fits the bill. In fact, it’s the Visual
Basic makeover many programmers have spent years waiting for.

This book provides a guided tour through the world of Visual Basic 2005.
In it, you’ll learn how you can use your existing VB skills and master the
.NET way of thinking.

Who Should Read This Book

This book is aimed at Visual Basic 6 developers who want to shed some of
their current habits and start learning about how the .NET platform works
and thinks. We won’t spend any time rehashing basic syntax, but we will
spend a lot of time exploring new .NET concepts.

To get the most out of this book, you should have some experience
developing with Visual Basic. You don’t need to have tackled advanced
subjects, such as Internet applications and object-oriented programming—
these are well explained in the book—but you should be familiar with all the
“Visual Basic basics,” such as variables, controls, loops, conditions, and func-
tions. If you’ve never programmed with Visual Basic or another programming
language like Java, this isn’t the best book for you. (You might want to start
with Wallace Wang’s Visual Basic 2005 Express: Now Playing, also from No
Starch Press.)

If you’re a master programmer with an earlier version of .NET, you
already know most of what there is to learn in this book. You may want to
check out a book like my own Visual Basic 2005: A Developer’s Notebook, which
concentrates exclusively on new features that have been added to .NET 2.0.

If you’re an experienced programmer who’s new to .NET, welcome
aboard! You’ll soon get a handle on Visual Basic 2005’s most exciting new
innovations and pick up some invaluable tricks on the way.

What You Will Learn

Many of the chapters in this book could be expanded into complete books of
their own. It’s impossible to cover all the details of .NET, so this book strives
to give you the essential facts and insights. The emphasis isn’t on becoming a
“language nerd” (learning every syntax trick in the book), but on gaining the

bvb_02.book Page 2 Thursday, March 30, 2006 12:39 PM

I n troduct ion 3

insights you’ll need in order to understand .NET development and to
continue learning on your own. We’ll go about our journey in a lively, no-
nonsense way.

Each chapter begins with a “New in .NET” section that gives experienced
developers a quick introduction to what has changed since Visual Basic 6.
The rest of the chapter takes a lightning tour through a single aspect of
programming with VB 2005. The code examples are tightly focused on
specific concepts—you won’t find toy applications that are written just for
the book. (Those tend to look great while flipping through the book in the
bookstore, but end up being much less helpful once you get started.)

A “What Comes Next?” section at the end of every chapter provides some
ideas about where you can find more information on the current topic and
maybe even become a VB 2005 guru.

NOTE No single book can teach you the entire .NET platform. The emphasis here is on introduc-
ing fundamental techniques and concepts, and giving you the resources you’ll need in
order to continue exploring the areas that interest you most. To accomplish all this,
the text is complemented by code examples, references to additional online material, and
helpful tips about planning, design, and architecture. For best results, try to read the
chapters in order, because later examples will use some of the features introduced in
earlier chapters.

Code Samples

Practical examples often provide the best way to learn new concepts and see
programming ideas in action. Following that principle, this book includes a
wealth of code samples to help stimulate your mind and keep you awake.
The design philosophy for these samples is straightforward: demonstrate,
as concisely as possible, how a .NET developer thinks. This means that all
examples are broken down to their simplest elements. The hope is that these
code samples represent kernels of coding insight.

The code samples in this book are provided online, grouped by
chapter, at www.prosetech.com. These examples aren’t exactly the same as
the code fragments in the book. For example, they might have a little extra
code or user interface, which would just be a distraction in a printed exam-
ple. These samples provide an excellent starting point for your own .NET
experimentation.

Complaints, Adulation, and Everything in Between

While I’m on the subject of online support for the book, I should probably
add that you can reach me via email at p2p@prosetech.com. I can’t solve
your Visual Basic 2005 problems or critique your own code creations, but I
would like to hear what this book does right and wrong (and what it may do
in an utterly confusing way). You can also send comments about the website
and the online samples.

bvb_02.book Page 3 Thursday, March 30, 2006 12:39 PM

4 I n t roduct ion

Chapter Overview
Here’s a quick guide that describes what each chapter has to offer. Some of
the later chapters build on concepts in earlier chapters, so it will probably be
easiest to read the book in order, to make sure you learn the basics about
Windows forms, object-oriented programming, and Visual Basic 2005 syntax
changes before moving on to the more specialized topics such as web applica-
tions and database programming.

Chapter 1: The .NET Revolution
What is this thing called .NET, anyway? Learn why Microsoft decided to
create a whole new framework for programming and what it threw in.

Chapter 2: The Design Environment
Visual Basic’s integrated design environment (IDE), known as Visual
Studio, is every programmer’s home away from home. In VB 2005,
it’s been given a slick makeover and new features such as enhanced
IntelliSense, macros, and a collapsible code display.

Chapter 3: VB 2005 Basics
I warned you that things had changed. Here you’ll get your first real look
at the .NET world, with an overview of language changes, an exploration
of the class library, and an introduction to namespaces.

Chapter 4: Windows Forms
Windows forms are an example of the good getting better. Visual Basic
has always made it easy to drag and drop your way to an attractive user
interface, and with the revamped Windows Forms model you’ll get some
long-awaited extras, such as automatic support for resizable forms, a variety
of new controls, and the ability to finally forget all about the Windows API.

Chapter 5: Object-Oriented Programming
At last, Visual Basic 2005 is a full object-oriented programming language.
This chapter teaches you the basics of object-oriented development, the
most modern and elegant way to solve almost any programming problem.
VB 2005 is built almost entirely out of objects, and understanding them
is the key to becoming a .NET expert.

Chapter 6: Mastering Objects
In this chapter, we’ll continue to explore VB 2005’s object-oriented fea-
tures and advanced class construction techniques including interfaces
and inheritance, the most anticipated Visual Basic enhancement ever.

Chapter 7: Assemblies and Components
Modern applications work best when designed as a collection of separate,
collaborating components. In this chapter, you’ll learn how to make your
own components and get the essentials you need to know in order to
transfer your applications to other computers.

Chapter 8: Bug Proofing
Visual Basic 2005 retains most of VB’s legendary debugging tools, with a
few refinements. This chapter describes debugging in the IDE, outlines
some tips for making bug-resistant code, and introduces structured
exception handling.

bvb_02.book Page 4 Thursday, March 30, 2006 12:39 PM

I n troduct ion 5

Chapter 9: Dealing with Data: Files, Printing, and XML
Traditional Visual Basic data-handling functions have been replaced with
objects that let you manage files, serialize objects, print data, and manipu-
late XML. But the greatest enhancement may be the print preview control.

Chapter 10: Databases and ADO.NET
Visual Basic 2005 includes ADO.NET, a revamped version of ADO that
allows you to connect to just about any database and extract the infor-
mation you need (or make the changes you want) quickly and efficiently.
Again, the .NET team has been up late at night tweaking things, and the
changes are bound to surprise you.

Chapter 11: Threading
Visual Basic 2005 now goes where only C++ and other heavyweights
could venture before: multithreading. But just because you can thread
doesn’t mean you should. In fact, threading is still the best way to shoot
yourself squarely in the foot. Read this chapter for some advice about
when to create threads (and when not to) and how to use them safely.

Chapter 12: Web Forms and ASP.NET
This chapter describes the basics of ASP.NET, Microsoft’s all-in-one
solution for creating web-based applications. Finally, after years of
promises, creating scalable web applications with a rich user interface
is just as easy as creating a desktop application.

Chapter 13: Web Services
Central to the .NET platform is the vision of software as a service, with
worldwide web servers providing features and functions that you can
seamlessly integrate into your own products. Read this chapter to start
creating web services and, best of all, let .NET take care of all the
plumbing.

Chapter 14: Setup and Deployment
Need a quick way to deploy an application or a full-fledged setup program
complete with shortcuts, registry tweaking, and an uninstall feature?
In this chapter you’ll learn two ways to deploy your application: the
streamlined web-based ClickOnce model, and the more comprehensive
Visual Studio setup project.

What Comes Next?
If you’ve made it this far, I’ll assume you’re continuing for the rest of the
journey. For best results, you should already have a copy of Visual Basic 2005.
The professional edition is best (it includes support for every type of project),
but you can also complete many of the examples in this book using a com-
bination of the Visual Basic 2005 Express Edition (for Windows applications)
and Visual Web Developer 2005 Express Edition (for web applications). You
can get the details on these low-cost versions at http://msdn.microsoft.com/
vstudio/express.

But first, before you touch any code, we’ll start with Chapter 1—and
clear up the cloud of jargon and hype that surrounds .NET. Along the way,
you’ll discover why so many people find Microsoft’s new platform so exciting.

bvb_02.book Page 5 Thursday, March 30, 2006 12:39 PM

bvb_02.book Page 6 Thursday, March 30, 2006 12:39 PM

1
T H E . N E T R E V O L U T I O N

This chapter presents the “big picture”
of Visual Basic and the .NET Framework.

You’ll get an overview of what has changed,
why it’s different, and just what life will be like

in the .NET world. Along the way, we’ll sort through
Microsoft’s newest jargon, demystifying the Common Language Runtime
(CLR), “managed” code, and the .NET class library. This chapter is for
anyone wondering, “What the heck is .NET?” or, “Why do we need a new
programming philosophy?” or, “What has Microsoft promised us this time?”

A Brief History of Visual Basic

Visual Basic has its roots in BASIC, a simple teaching language that program-
mers once learned before graduating to more serious languages like C.
Visual Basic inherited at least part of the BASIC legacy, beginning its life
with the goal of being the easiest way for anybody to program . . . anything.

It’s probably because of this history that Visual Basic developers have
always had their hands full demonstrating that their favorite language is
more than just a toy. Time and time again, as programming methodologies

bvb_02.book Page 7 Thursday, March 30, 2006 12:39 PM

8 Chapter 1

and application demands have changed, it has seemed that Visual Basic’s
time in the spotlight was about to end. Instead, VB has not only kept stride; it
has made the world rethink computer programming—first with version 1.0,
which introduced the easiest way to create a graphical user interface; then
with version 4.0, which provided the easiest way to talk to a database; and
then with version 5.0, which gave us the easiest way to go “object-oriented.”

Enter .NET

When Visual Basic .NET hit the scene, life changed dramatically. That’s
because VB .NET 1.0 was the first version of Visual Basic that broke language
compatibility. And it didn’t do it meekly. Suddenly, commands that VB pro-
grammers had been able to use since Visual Basic 1.0 earned a blank stare
from the VB .NET compiler. Traditional VB programming tricks and hacks
either failed or risked serious side effects. And there was no way to drop
projects from earlier versions of Visual Basic into the new VB .NET world.

So how does Visual Basic 2005 fit into this evolution? Visual Basic 2005
is VB .NET 2.0. Microsoft marketers decided that the .NET moniker was con-
fusing the heck out of pretty much everyone, so they dropped it. However,
they didn’t change the language to make it one iota closer to classic VB. In
fact, Visual Basic 2005 is almost identical to VB .NET 1.0. The only differences
are a few new language frills (many of which are introduced in Chapter 3), a
revamped design environment (which is really more about Visual Studio
than about the VB language itself; see Chapter 2), and a return of the long-
lost (and much-loved) run-edit-and-continue debugging feature (Chapter 8).

But it’s important to understand that Visual Basic 2005 is still VB .NET.
And well it should be. VB .NET may pose a migration challenge and a whole
new learning curve, but it also represents a major redesign and refinement of
the Visual Basic language. The features it adds are too good to give up.

One more thing has to be said—don’t believe the marketing hype
about migration. Microsoft is trying to make Visual Basic 2005 look like a
more natural step up from classic VB, and it’s claiming it works a lot more
like classic VB does. In a few superficial cases, this is true (as with the return
of edit-and-continue). But overall, it’s no easier to move to Visual Basic 2005
than it was to move to VB .NET 1.0.

The Limitations of “Classic” Visual Basic

Have you heard the argument, “Before you can understand the solution, you
have to understand the problem”? In this case it’s true, so before we go any
further, let’s take a look at some of Visual Basic’s most infamous shortcomings
that VB.NET was designed to address.

Visual Basic’s Quirky Mix

Visual Basic’s evolution has been so quick that the last version (6.0) was a
mixture of cutting-edge features and Paleolithic throwbacks. For example,
Visual Basic 6 provided a great framework for creating a graphical user

bvb_02.book Page 8 Thursday, March 30, 2006 12:39 PM

The .NET Revolu ti on 9

interface, allowing you to configure controls and windows just by setting
convenient properties. But if you went one step further into an unsupported
area, you quickly felt abandoned. Want to stop a window from resizing to
specific minimum dimensions? Want to add your program’s icon to the
system tray? How about disabling a window’s Maximize button without
hiding its Minimize button? To perform any of these common tasks, you
had to plunge into the Windows API, a library of perplexing C routines.
And watch out: If you misused an API function, you could easily crash your
program—and even the entire development environment!

I could go on to talk about a number of other hangovers from the past,
like Visual Basic’s “evil” type-conversion mechanism, which tries to make
your life easier by letting you convert data types without following the proper
rules—thus allowing you to overlook serious errors. Then there is the archaic
practice of referring to open files with numbers. And who can explain why a
world-class object-oriented programming language still has the Goto command?

Isolated Languages

If you’ve dabbled in more than one programming language, you’ve probably
realized that each one does things a bit differently. This was certainly true for
Windows programming without .NET, where C++ uses the MFC library, J++
uses WFC, and Visual Basic uses its own framework (with sprinkles of the
Windows API thrown in for good measure). Basically, programmers suffered
endless headaches trying to understand each other, and they had to consider
the quirks and idiosyncrasies of every language before they could choose one
to use for development. And even if a problem was solved in C++, Visual
Basic developers usually still needed to solve it all over again.

Enterprise Development Headaches
Three-tier design. Distributed objects. Load balancing. It all sounds good
on paper. Data objects reading and writing to the database, business objects
processing the results, and a Windows application displaying the results, with
everyone talking together using the Component Object Model (COM).

But if you’ve ever tried to create a distributed program, you’ve probably
discovered that setting it up, registering your components, and maintaining
version compatibility add a whole new set of agonizing problems that have
nothing to do with programming.

DLL Hell
DLL Hell is a particularly ugly example of the problem with component-based
programs. Most Visual Basic programs rely heavily on specialized components
and controls, sometimes without the programmer even realizing it. These
programs work fine when the correct version of every dependent file is
present on the system, but if the user installs an application that mistakenly
overwrites one of these files with an older version, or updates some but not
all of a set of dependent files, then strange problems start to come out of the
woodwork. Such problems are a nightmare to try and identify, and the worst

bvb_02.book Page 9 Thursday, March 30, 2006 12:39 PM

10 Chapter 1

part is, they usually appear long after a fully functional application has been
installed. The end result? Fragile programs that can easily be disrupted when
other applications are updated or uninstalled.

Incomplete Support for Object-Oriented Programming
Before I even knew what polymorphism and inheritance were, I knew that
classic Visual Basic didn’t have them. Never mind that VB had all the other
tools needed to write elegant programs based on objects; there was no escap-
ing the talk about its OOP limitations. No other limitation did more to crush
the personal self-esteem of the dedicated VB programmer.

The .NET Vision

Most people were expecting Microsoft to deal with some of these complaints
by bolting on a few new features, as it did for the previous few versions of Visual
Basic. As advanced developers started to expand the types of programs that
Visual Basic was used to develop, cracks in the VB picture started to appear—
everywhere. Applications became more complicated, and language enhance-
ments only brought more inconsistencies and deficiencies to light. At some
point, the people at Microsoft decided to start over and build a new set of lan-
guages from the ground up. The .NET Framework is the result of that effort.

The Ingredients of .NET
Like COM and ActiveX, the .NET Framework means a lot of different things,
depending on whom you talk to in Microsoft’s marketing department. On
the programming side, .NET is made up of the Common Language Runtime
(CLR) and a set of unified classes. The .NET Framework sits on top of the
Windows platform, which provides its own set of services (for example, the
IIS server built into Windows lets your computer be a web server). Figure 1-1
shows the relationship.

Figure 1-1: The .NET Framework

The .NET Framework

Windows

Unified Classes

Common Language Runtime

Operating System Services
(COM+, Transactions,

Message Queuing, etc.)

bvb_02.book Page 10 Thursday, March 30, 2006 12:39 PM

The .NET Revo lut ion 11

The Common Language Runtime (CLR)

The CLR (see Figure 1-2) is a runtime environment that processes, executes,
and manages Visual Basic code. It’s a little like the traditional Visual Basic
runtimes (for example, VBRUN300.dll or MSVBVM60.dll), but with increased
responsibility.

Figure 1-2: The Common Language Runtime (CLR) environment

What does the CLR code offer to your applications? Here are some
examples:

� It prevents operations that could corrupt memory and cause the system
to become unstable.

� It automatically cleans up objects you don’t need.

� It catches common mistakes and halts your program with an error, rather
than letting it run on with scrambled data.

� It compiles your code on the fly into native machine code, ensuring
optimum performance.

Many of these features have been available in the Visual Basic world for
years, albeit in a somewhat less ambitious form. In fact, much of the excite-
ment about C# (another .NET language released about the same time as
VB.NET 1.0) came from C++ programmers who had never experienced some
of the advantages that VB programmers take for granted, like automatic
memory management.

Code that executes inside the CLR is called managed code. Visual Basic 2005
code is always managed code, which means that it works with CLR services
and operates under the CLR’s careful supervision.

The .NET Classes

The .NET classes contain the tools that let you perform all kinds of tasks,
from writing to a database to reading from a web page (see Figure 1-3). In
the past, these capabilities either were hard-coded into the language with

The Common Language Runtime

IL Compiler

Code Verification and Optimization

Memory Management and Garbage Collection

Code Access Security

(Other Managed Code Services)

bvb_02.book Page 11 Thursday, March 30, 2006 12:39 PM

12 Chapter 1

special functions, or provided through separate components. Think of
the integrated class library as a supremely well-organized programming
toolbox.

Figure 1-3: The unified classes in .NET

Speaking the Same Language

Within .NET, each programming language still has its own syntax. For exam-
ple, every line in a C# program ends with a semicolon (;), unlike Visual Basic.
But these differences are really just superficial.

� Every .NET language is built on the CLR.

� All .NET languages share a common set of class libraries, which they use
to do everything from displaying a Windows message box to retrieving a
file from the Internet.

For example, look at the similarity of these two .NET-based programs,
which accomplish the same thing—first in Visual Basic, and then in C#:

Here is the VB 2005 version:

Private Sub CreateTextBox()
 ' This function makes a new text box,
 ' and puts some text in it.
 Dim MyText As New Textbox()
 MyText.Location = New Point(25,25)
 MyText.Size = New Size(25,125)
 MyText.Text = "This was made in VB!"
 Me.Controls.Add(MyText)
End Sub

Unified Classes

Web Classes (ASP.NET)
Web Controls, Web Services, Caching, Security,

State Management, Configuration, etc.

Data (ADO.NET)
Data Modeling,

SQL Server Data Access, etc.

Windows Forms
Windows Controls, Design,

Component Model

XML Classes
XSLT, XPath,

Serialization, etc.

Drawing Classes
GDI+ (Drawing, Printing,

Imaging, Text, etc.)

System
Collections, Diagnostics, Globalization, I/O, Security, Threading,

Serialization, Reflection, Messaging, COM Compatibility, etc.

bvb_02.book Page 12 Thursday, March 30, 2006 12:39 PM

The .NET Revo lut ion 13

And here is the C# 2005 version:

private void CreateTextBox()
{
 // This function makes a new text box,
 // and puts some text in it.
 Textbox MyText = new Textbox();
 MyText.Size = new Size(25,125);
 MyText.Location = new Point(25,25);
 MyText.Text = "I come from C#...";
 this.Controls.Add(MyText);
}

There are some obvious superficial differences here; for instance, you’re
probably wondering what’s going on with all the curly brackets, slashes, and
semicolons in C#. However, if you study the two programs carefully, you’ll
realize that their differences are simply matters of syntax. Every line in the
VB program has a direct “translation” into a line in the C# program. The
code is written a little differently, but it uses the same concepts. Or to be more
picturesque, the two languages use different words, but have the same
grammar.

The full effects of these changes are amazing. At last, Visual Basic
programmers can interact with the full Windows developer community!
If someone has solved your problem in C#, you can now benefit from their
experience and translate their solution into VB 2005 without a lot of trouble.

Deep Language Integration

The power of CLR integration extends beyond the way you code. Behind the
scenes, the same engine is processing code from different .NET languages.
This deep integration means, for instance, that code written in Visual Basic
can inherit procedures and properties from classes written in C#, and that
errors thrown from code written in C# can be caught by code written in
Visual Basic.

In fact, every CLR language compiles into the same CPU-independent
bytecode when you create a .exe or .dll file: the Microsoft Intermediate Language
(MSIL, or IL for short). This means that ultimately, different .NET languages
have essentially the same performance—so programming in VB 2005 instead
of C# 2005 is nothing more than a lifestyle choice.

Prebuilt Infrastructure

If you’re an experienced developer, it has probably dawned on you that
developers are paid to solve the same problems over and over again. Most
internal business applications boil down to databases, web development
always involves tackling site-management issues, and every first-person game
requires the traditional 3D-rendering engine. In the past, Microsoft has been
tremendously successful designing some of the basic infrastructure that we

bvb_02.book Page 13 Thursday, March 30, 2006 12:39 PM

14 Chapter 1

all need, creating such tools as ADO for universal database access and COM+
for managing transactions. Microsoft’s philosophy has been that they should
supply the infrastructure, while the programmer writes the specific “business
logic” that distinguishes one project from the next. And it’s likely that you
heartily agree (unless you want to spend your time wrestling with low-level
details such as state management, database-specific APIs, and messaging).

The .NET Framework extends this philosophy with its common class
library. Here you can find cutting-edge tools for creating everything from a
Windows service to an ASP.NET web application ready to serve thousands of
eager e-shoppers.

Web Services and the Next-Generation Internet

Microsoft is also using .NET to expound its vision of “software as a service.”
The story goes a little bit like this: Many years ago, Windows applications
were isolated. Integrating parts of different applications was difficult unless
they resided together in a rigorously thought-out .dll. Code sharing really
only occurred inside the walls of individual companies. Then, along came
COM and ActiveX technology. All of a sudden, programmers had exciting
new ways to communicate. Dozens of vendors offered custom controls that
you could easily and painlessly drop into your applications. Other developers
discovered how easy it was to use automation features to drive COM programs
by “remote control.” For example, you could create a spreadsheet in Excel
from within VB, or even perform a search operation in Word from within
C++, using an easy-to-understand object model.

Where am I going with this? The idea is that the Internet is now at roughly
the same stage in its evolution. We finally have interactive web applications
for tracking stock portfolios and ordering books, and yet we don’t have an
easy way to integrate parts of web applications without resorting to awkward
tricks such as “screen scraping,” where information is read from a predefined
line in a web page. These techniques are difficult to maintain and to extend.
What happens if a website changes its content or goes out of business? In
short, a better solution is needed.

That’s where web services come in. A web service is an application that
exposes its functionality over the Internet using standard Internet protocols,
such as HTTP and XML. A developer can use a web service just as easily as a
local component, without worrying about the technology involved.

Open Standards: XML, SOAP, WSDL, and Other Letters from the Alphabet

Open standards? Microsoft? That’s what flashed through my mind when I
heard that the .NET Framework was going to have key technologies based
on open standards such as XML. Finally, Microsoft has recognized that the
world of the Internet is a diverse one, and that in order for developers to
adopt Microsoft tools, they need innovations based on a solid foundation of
platform-independent, widely accepted open standards. This means that

bvb_02.book Page 14 Thursday, March 30, 2006 12:39 PM

The .NET Revo lut ion 15

.NET can transfer a database table using XML markup, and provide web
services that can be used by applications on Unix or Macintosh computers.

But how open are their “open standards?” Or, to put it another way, is
the Microsoft implementation of these open standards really able to interact
with other operating systems and programming languages? Suprisingly, yes.
Today, .NET applications can communicate with services written in competing
languages like Java, and Java clients can communicate with .NET services. At
first, minor implementation differences caused the odd hiccup. Remarkably,
Microsoft and other technology vendors have worked to remove these compli-
cations, rather than defending them in a desperate bid to lock in their
customers. The .NET Framework just might be Microsoft’s first truly open
platform.

NOTE However open .NET is, it definitely isn’t an open source or cross-platform product.
(Open source means the source code is available for other developers to improve, or at
least peruse. Cross-platform means you can use it to build applications that run on
different operating systems.) Even though .NET plays nicely with others, your code still
needs to run on a Windows computer. However, if you want to create applications that
everyone can enjoy, why not build a web application (Chapter 12)? Even though your
code runs on a Windows-powered web server, any type of computer can surf it happily.

Metadata: The End of DLL Hell?

Programs in .NET are self-describing. In other words, when you create a .NET
.exe file, it doesn’t just contain your compiled program; it also has informa-
tion that describes the other components it needs in order to work, and
which version of each component is supported. Previously, this information
was buried in the Windows registry, which meant that every application had
to go through a registration process, and that its registry information had to
be rigorously updated to keep from becoming out-of-date and conflicting
with the application itself.

So is DLL Hell really over? The answer is yes. And no. Well, as you’ll find
out in Chapter 7, there is a Global Assembly Cache (GAC) where applications
can share components, just as they always have. No one wants to distribute a
separate version of the .NET Framework with every application they make.
However, you don’t need to use it just to use a simple component in a few
applications. Even better, the amazing version control and management
features provided by the Global Assembly Cache should guarantee that DLL
Hell will never appear again. Probably.

Is VB 2005 Still VB?

Microsoft has played it a little risky and completely tossed out some of the old
Visual Basic nightmares. As a result, VB 2005 looks quite a bit different from
classic Visual Basic. In fact, many time-honored commands are no longer
available in .NET. Following are some of the advances that you should cheer
about . . . and some other changes that you won’t be celebrating.

bvb_02.book Page 15 Thursday, March 30, 2006 12:39 PM

16 Chapter 1

Ten Enhancements You Can’t Live Without

1. Visual Basic is truly object-oriented—at last.

2. The new Windows Forms model for programming a user interface is more
powerful than ever, and bundles convenient controls for everything from
system tray icons to print previewing to web browser windows.

3. There’s no automatic type conversion: Option Strict lets you turn off this
dangerous “convenience.”

4. Structured error handling makes it as easy to trap an error in Visual Basic
as in any other modern programming language.

5. ASP.NET provides the easiest and most powerful system to date for
programming web applications.

6. Method overloading now allows you to create different versions of meth-
ods with the same name, but with different arguments. Visual Basic 2005
will use the correct one automatically.

7. Even critics can’t deny that the new development environment is heart-
stoppingly beautiful. Does any other language offer collapsible code,
intelligent dynamic help, and an entire programming language for
creating macros?

8. A new event model lets you connect multiple event handlers to a
single control and store function references in special variables,
called delegates.

9. Initializers let you set the value of a variable on the same line where it is
declared.

10. Metadata means that DLL Hell may finally be a thing of the past. You can
now set up a program just by copying its directory—a capability that hasn’t
existed in the Windows world for years.

Ten Changes That May Frustrate You

1. Arrays must always have a lower boundary of 0.

2. Existing Internet projects using Web Classes or DHTML aren’t supported,
so you will need to rewrite them from scratch as ASP.NET applications.

3. There are no more default properties, so you can’t abbreviate Text1.Text
as just Text1.

4. The techniques you used in the past to print documents, draw graphics,
read text files, and provide context-sensitive help have changed—get ready
to learn these basics all over again.

5. There is no deterministic finalization. That fancy jargon means that
when you’re finished with an object, it may still hang around in memory
for some time until it’s cleaned out. As a result, you can’t rely on events
that take place when an object is unloaded, because they won’t occur at a
predictable time.

bvb_02.book Page 16 Thursday, March 30, 2006 12:39 PM

The .NET Revo lut ion 17

6. Older database access methods, such as RDO and DAO, are not fully
supported. (For example, they can’t be used for data binding.)

7. Even if you use the upgrade wizard, a great deal of code may need to be
rewritten, including routines for reading from and writing to files, and
for creating printouts. In fact, for complex applications, you may have to
abandon the whole idea of migration.

8. There is no way of accessing pointers. In classic Visual Basic, pointer
access was dangerous and unsupported, but could still be done by those
who knew the “secret” functions, such as StrPtr() and ObjPtr().

9. Goto, Gosub, and line numbers are no longer supported.

10. The model for drawing on a form has changed. If you did custom drawing
in the past, you’ll need to rewrite it from scratch.

The Dark Side of .NET

Not every Visual Basic programmer is happy with the radical changes Micro-
soft made. To some critics, .NET’s drive to modernize programming has left
Visual Basic 2005 looking more like Java than .NET.

They argue that years of Visual Basic legacy are being left behind, and
that compatibility with old code is being rudely broken. There’s more than a
grain of truth to these complaints.

So is .NET worth it? Yes. Visual Basic 2005 has changed enough to make
life a little painful for developers, but once you understand the new changes,
your coding days will be easier and more productive. In a sense, Microsoft
is gambling that developers will be so eager to program with an elegant,
revitalized version of Visual Basic that they’ll sacrifice backward compatibility.
Sometimes change hurts.

What About COM?

COM is the Component Object Model, the fundamental technology that allows
programs to communicate together, and allows parts of programs (their
components) to interact as well. Until now, COM was supposedly the basis of
Windows programming—so where has it gone?

This is a question that’s bound to be asked again and again. As Microsoft
points out, there are hundreds of millions of COM applications, including
such heavyweights as Microsoft Office. COM will be around as long as Win-
dows is around; in fact, Windows won’t boot without COM.

That said, .NET is not built on top of COM. Programs written in .NET
communicate natively; because their languages are all based on the CLR,
they don’t need to work through obscure COM interfaces. In fact, .NET is
really a next-generation version of COM. (At one early stage, parts of it were
even called COM+ 2.0.) But don’t panic. Microsoft has worked long and hard
to make sure that COM applications can communicate seamlessly with .NET.
One day you may wake up to a world without COM . . . but it won’t be any
time soon.

bvb_02.book Page 17 Thursday, March 30, 2006 12:39 PM

18 Chapter 1

What Comes Next?

Throughout the rest of the book, the .NET Framework will never be far from
our discussion. Even though this is a book about writing software using the
VB 2005 programming language, our time will be evenly divided between VB
syntax and the common classes that are part of .NET. You just can’t master
VB 2005 development without spending a good amount of time becoming
familiar with the class library. Conversely, many VB concepts like objects,
exceptions, and threading are built into the CLR and shared by all .NET
languages.

There is an advantage to this organization: once you’ve mastered VB
2005, you aren’t all that far from becoming an accomplished C# coder—if it
interests you. Perhaps the most exciting fact about life in the .NET world is
that language wars are (mostly) dead, and the broad community of .NET
developers can share tips, tricks, and insights across language boundaries.

bvb_02.book Page 18 Thursday, March 30, 2006 12:39 PM

2
T H E D E S I G N E N V I R O N M E N T

The changes in the Visual Studio 2005
integrated design environment (IDE) haven’t

generated the same amount of attention as
other new features such as language enhance-

ments and web services. That’s because the IDE doesn’t
determine what you can and can’t do with a well-written
program. In fact, you can create a Visual Basic project using nothing more
than Notepad and compile it at the command line using the vbc.exe utility
included with the .NET Framework, even if you don’t have the complete
Visual Studio package installed. The IDE is really nothing more than a
helpful work area for designing programs.

On the other hand, there are several good reasons to explore the IDE in
detail, as you’ll see in this chapter. For one thing, it’s changed so much since
Visual Basic 6 that even experienced programmers may find themselves some-
what lost. Most importantly, though, if you master the IDE, you’ll become a
more productive developer, with tools such as integrated help, flexible macros,
and a customizable code display ready at your fingertips. Look at the new
IDE features in Visual Studio 2005 as your reward for upgrading to the .NET

bvb_02.book Page 19 Thursday, March 30, 2006 12:39 PM

20 Chapter 2

platform. Stepping up to Visual Basic 2005 requires some relearning and a
little hard work, but in the end you’ll get to spend your programming hours
in a state-of-the-art environment equipped with conveniences that no other
programming tool can boast.

This chapter describes each part of the Visual Studio interface, along
with additional tips for configuring the IDE and working with macros and
other time-savers. You’ll round up with a look at the simplest possible .NET
application that you can create—a command-line program called a Console
application.

New in .NET

The IDE in Visual Studio has evolved from a mix of different ancestors. It
combines the best of Visual InterDev, Visual Basic, and Visual C++. It also
throws in some of the attractive new interface elements turning up in such
products as Office and Windows XP. Some of the most important changes are
summarized in the following paragraphs.

True integration
It’s always been called the “integrated” design environment, but up
until .NET it’s been anything but. While different Visual Studio prod-
ucts, such as Visual Basic, Visual C++, and Visual InterDev, have had
similar interfaces, they’ve also had a whole host of subtle differences.
As you discovered in the first chapter, one of the core goals of the .NET
Framework is to integrate different languages, and this strategy extends
to the development environment. With Visual Studio, programmers of
all stripes share the same IDE, and they can use identical components
such as debugging tools and menu designers.

The new “look”
Could Microsoft release a groundbreaking new product without revamp-
ing the interface? Probably not. As we’ve seen with Windows 95, 98,
2000, and XP, Microsoft tries to combine technological advances that
are buried under the hood with painstaking design enhancements.
Visual Studio follows this trend. Depending on your outlook, it’s a
welcome improvement, an inconsequential change, or a distracting
nuisance. In any case, get ready to look at a new set of hand-detailed
icons and learn to use windows that dock, tab, collapse, and hide
automatically.

Enhanced IntelliSense
Visual Basic programmers have always been able to count on
catching typos and minor mistakes, thanks to the built-in syntax
checker. IntelliSense remains in Visual Basic 2005, with a few refine-
ments. Now errors are underlined (as they are in Microsoft Word, for
example), and a tooltip explains the problem when you hover your

bvb_02.book Page 20 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 21

mouse over the offending code. When you start a conditional or loop
structure, Visual Basic 2005 automatically adds the last End If, End Case,
or Loop line. And, if you let it, the editor will automatically format your
code with the appropriate indenting.

Macros
Visual Basic 2005 allows you to record simple macros or create more
complex ones using a built-in macro editor. It’s the first indication of
Visual Studio’s Automation model, which allows developers to interact with
the development environment to create enhanced add-ins and custom-
ized programming tools.

Code snippets
Need the code for a common task, but can’t quite remember what func-
tions to use? Visual Basic 2005 adds a new Code Snippets feature that
lets you quickly insert ready-made code and tweak it to suit your needs.
Although you’re initially limited to what Visual Studio includes, you’ll be
able to download more great examples from Microsoft or third-party
developers in the future and add them to your snippets collection.

A little more like classic VB
Visual Studio 2005 adds a few refinements that are designed to make
it behave like the Visual Basic 6 environment developers remember
and love. Two key features include edit-and-continue debugging
(which you’ll study in Chapter 8) and the ability to create a new
project without saving it right away. Of course, there’s a whole pile of
annoying VB 6 quirks that will never return (like the in-your-face VB 6
error checker, which stopped you in your tracks every time you made
a minor mistake).

Starting Out in the IDE

You know the drill. It’s time to load up the design environment by browsing
to the Visual Studio shortcut in your Start menu.

Although it’s well organized, the Visual Studio interface is somewhat
complicated, with a wealth of features packed into every corner of the IDE.
In the following sections, we’ll look at different aspects of the interface one
by one and explore the concepts you need to know to become completely
comfortable in your new programming home.

NOTE To be technically correct, Visual Basic 2005 is the programming language that you use,
while Visual Studio 2005 is the IDE that provides all the conveniences from automatic
syntax checking to a built-in form designer. For familiarity, though, this book sometimes
refers to the editor as though it were a part of Visual Basic 2005.

bvb_02.book Page 21 Thursday, March 30, 2006 12:39 PM

22 Chapter 2

The Start Page

When you first open Visual Studio, a detailed Start Page appears (as shown
in Figure 2-1). The Start Page gathers several types of information together,
along with links that let you open recent projects.

Figure 2-1: The Start Page

The most useful part of the Start Page is the Recent Projects section,
which shows a list of applications you worked on recently (and allows you to
open one of them with a single click). However, the other portions of the
Start Page offer some interesting frills. They consist of information that’s
drawn from Microsoft’s own MSDN (Microsoft Developer Network) website
(http://msdn.microsoft.com). You could browse to this information on
your own using a web browser (and many developers do), but Visual Studio
incorporates it into the interface to spare you the trouble of having to search
around on the Web. It’s a simple idea, but it can help you stay up to date with
the latest developments, trends, and bug fixes. Of course, all these web-based
features rely on you having a live Internet connection ready to go. If you’re
not currently connected to the Internet, the links won’t be updated and they
obviously won’t work when you click them.

NOTE Microsoft is following its own advice with Visual Studio’s seamless Internet integration.
As you’ll find out in Chapter 13 on web services, Microsoft (like many other leading
technology companies) sees the computer industry evolving into a model in which
numerous discrete components provide services to other applications over the Internet.

Single-click
access to

applications
you worked on

recently

Jump to the
MSDN Help

or a useful
section of the

MSDN website

Breaking news
(from the Web)

Recent MSDN
articles (from

the Web)

bvb_02.book Page 22 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 23

Features like the Start Page resemble web services in that they seamlessly incorporate a
piece of Internet functionality (like late-breaking articles) into a Windows application
(in this case, Visual Studio).

The Start Page includes three panels with MSDN content, which are
described in the following sections.

MSDN: Visual Basic
This large section provides a list of recent articles from the MSDN website.
Check here frequently, and you can keep an eye out for developments
that interest you, say, a new optional add-in or a tutorial that describes a
thorny problem you’re grappling with. To read one of these articles, just
click the link. The related web page will open inside the Visual Studio
interface.

Getting Started
This section includes links that lead to the Visual Studio Help (on your
computer) and valuable sections of the MSDN website. For example,
you can click “How Do I?” for task-specific help, “What’s New in Visual
Basic 2005” if you’re a longtime user getting up to speed with the latest
version, or “Learn Visual Basic” for a comprehensive (if a bit dry) tutorial
on the VB language. All of these sections are great for browsing, but
the other links lead to even more treasures. Try “Download Additional
Content” to hunt for useful sample code, and “Connect With the
Community” to head to the Microsoft newsgroup forums, where
you can pose your most head-scratching VB questions to the VB
community.

Visual Studio Headlines
This section is used for important announcement from the MSDN website.
(Oddly enough, this section of supposedly vital information is buried
at the bottom of the Start Page, where most developers are likely to
overlook it.)

Changing the Startup Behavior

Visual Studio gives you a very limited ability to configure what it should do
on startup. To see your options, select Tools�Options from the menu. The
Options dialog box will appear, with a tree of settings. Make sure the Show
All Settings check box is selected, so that you see every section of settings.
Then drill down to the Environment�Startup section shown in Figure 2-2.

The “At startup” list allows you to choose what action Visual Studio
should take when you first fire it up. The default is to show the Start Page
described in the previous section. If you just can’t warm up to the Start Page,
however, or if you don’t have an Internet connection to make the most of all
those web-enhanced features, you might want to choose something different.
Your options include loading the project you used most recently, showing the
New Project or Open Project dialog boxes, or doing nothing at all, which starts
you off with a blank, uncluttered window.

bvb_02.book Page 23 Thursday, March 30, 2006 12:39 PM

24 Chapter 2

Figure 2-2: Configuring Visual Studio’s startup behavior

If you decide to keep the Start Page, there’s a little more you can control.
You can choose the web URL from which Visual Studio reads all its content.
(Unfortunately, you can’t use just any URL—it needs to be in the format
Visual Studio expects, which makes this setting relatively useless.) You can
also choose how often the Start Page is refreshed with newly downloaded web
data. The default is once an hour.

TIP You can also configure the number of projects in the recent project list. Head to the
Environment�General section, and set the Items Shown In Recently Used Lists setting.
It’s 6 by default.

Creating a Project

Before you go any further, you may want to create a project so that you can see
the interface components this chapter describes. You won’t actually do much
with this first program—not even make it display a “Hello, World!” message—
but you will get your first look at the full design-time environment.

To create a new project, click the Create Project . . . link in the Recent
Projects section of the Start page, or just choose File�New Project from the
menu. A window will appear (see Figure 2-3) listing the different project types
you can create.

For now, keep the default (Windows Application), and click OK to
continue. A new project will created with a single form.

When you create a new project in Visual Studio 2005, you aren’t forced to
save it right away. Instead, your project files are tucked away in a user-specific
temporary folder, which allows you to tweak your application, compile it, and
debug it, all without saving it to a specific location on your hard drive. When
you’re ready to keep your work around for the long term, just choose File�
Save [ProjectName] from the menu.

bvb_02.book Page 24 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 25

Figure 2-3: Creating a project

If you’re curious and you want to track down the real code files, search
for a temporary directory like C:\Documents and Settings\[UserName] \Local
Settings\Application Data\Temporary Projects\[ProjectName]. Visual Studio
creates these directories automatically to store new, unsaved projects. Once
you save a project, it’s moved to the location you choose.

NOTE If you want to ensure that projects are always saved when they’re created, you can
change Visual Studio’s behavior. Select Tools�Options, browse to the Projects and
Solutions�General section, and turn on the Save New Projects When Created check
box. If you install Visual Studio as a multilanguage or C# developer (rather than choos-
ing the VB profile in the setup program), this check box is selected initially.

Tabbed Documents

You might notice that you didn’t really leave the Start Page behind when you
created your application. Instead, you’ve just opened a new window (which
displays the one default form that’s added to all new Windows applications).
You can find out which windows are open (and move back and forth from
one to another) using the row of tabs just under the Visual Studio menu
(see Figure 2-4). The IDE uses tabbed windows to organize a great deal of
information without creating excessive clutter.

As with Visual Basic 6, there are two ways to edit any form. You can use the
design view to arrange and configure the controls on a window, and use the
code view to add the event handlers that run when specific actions take place.
You can switch back and forth between code and design views with the
buttons at the top of the Solution Explorer window, described later in this
chapter (or you can use the less convenient View�Code and View�Designer
menu commands). Once you show these additional views, you can switch
between them quickly by clicking the appropriate tab.

bvb_02.book Page 25 Thursday, March 30, 2006 12:39 PM

26 Chapter 2

Figure 2-4: The tabbed window display

In the tabbed window list, the name of the tab indicates the file and the
view. If it’s a code display window, you’ll just see the filename (for example,
Form1.vb contains the event-handling code for Form1). Form design win-
dows add the word “design” (for example, Form1.vb [Design] provides a
graphical look at Form1). Thus, Figure 2-4 includes three tabs—one for the
Start Page, one for the code view of Form1, and one for the design view of
the same form.

Docked and Grouped Windows

Most of the windows in Visual Studio support docking, which allows them to
latch onto a side of the main IDE window rather than floating together in a
jumbled mess. In addition, some windows are docked together, which means
that when they appear, you’ll need to switch from one to another by clicking
the appropriate tab. For example, the Breakpoints, Locals, and Immediate
windows (which are used for debugging) are shown in a tabbed group (see
Figure 2-5). Similarly, the Toolbox and Server Explorer are also grouped
(on the left of the IDE). Windows that are grouped together in this way aren’t
necessarily related. It’s just Visual Studio’s way of saving screen real estate.

Figure 2-5: Grouped windows

If you just won’t feel comfortable until you’ve customized every avenue
of Visual Studio, you can drag windows to different areas of the screen to
change the way they are docked and grouped. Rearranging windows on your
own is a little tricky. After a prolonged bout of experimentation, you’re likely to

Window
tabs

bvb_02.book Page 26 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 27

wind up with windows in the wrong places or grouped with the wrong windows.
Correcting these problems can be awkward, and you may find it easiest to
reset the display to its default layout. To do this, select Window�Reset
Window Layout from the menu. Everything will be restored to its original
layout.

Touring Visual Studio

One of the most remarkable features of the IDE is that just about everything
you need is only a few clicks away . . . once you understand how to get there.

NOTE You can’t realistically use the IDE with a small monitor (or with a large monitor using
a low resolution). If your current screen resolution is less than 1024 × 768, be ready to
endure some clutter and suffer a severe reduction in quality of life while using the IDE.
With Visual Studio, the greater your resolution is, the more convenient the IDE will be.
Generally, a monitor that’s 19" or larger is best.

Just as with Visual Basic 6, the IDE is built out of a collection of different
windows. Some windows are used for writing code, some for designing inter-
faces, and others for getting a general overview of files or classes in your
application. Now that you understand how windows work in Visual Studio,
it’s time to take a look around the design environment, and find out the role
each window plays.

The Solution Explorer

The Solution Explorer window shows all the files that are part of the current
project. The Solution Explorer replaces the Project Explorer in Visual Basic 6,
and it works similarly, with a couple of important differences. The Solution
Explorer can contain multiple projects (as shown in Figure 2-6), much like a
project group in Visual Basic 6. The Solution Explorer can also contain other
files that are used in your project but contain data rather than code. For
example, you can include pictures, XML documents, and other files. Hav-
ing the Solution Explorer track these dependencies for you is a substantial
improvement. In the past, an obscure part of a program might fill controls
using external bitmap files. If you didn’t know about this requirement, you
might not have remembered to make sure the bitmap files were in the appli-
cation directory, which would be sure to cause a problem when you ran the
program.

NOTE Technically speaking, a solution is a group of one or more projects. Every new project is
automatically placed inside a new solution. In Chapter 7 you’ll learn how to get fancier
and place multiple projects in a solution.

One nice feature about the Solution Explorer is that it provides signif-
icant file management capabilities, enabling you to create folders to organize
dependent files. You can easily rearrange and rename files without breaking
other portions of your code.

bvb_02.book Page 27 Thursday, March 30, 2006 12:39 PM

28 Chapter 2

Figure 2-6: The Solution Explorer with
two projects

By default, the Solution Explorer ignores files that happen to be in your
project directory but weren’t created in Visual Studio (and haven’t been
explicitly added to the project). However, if you want to take a look at every-
thing in the project directory, just click the Show All Files button at the top
of the Solution Explorer (or choose Project�Show All Files). This trick
uncovers some hidden resource files, such as the automatically generated
code for forms that you’ll explore in Chapter 4.

The Toolbox

The Toolbox window (see Figure 2-7) is similar to
the toolbox in Visual Basic 6, but it’s more carefully
organized. It provides controls you can use when
designing a graphical interface.

By default, the Toolbox uses automatic hiding
to slide out of the way when it’s not being used.
An icon is displayed at the left edge of the screen,
and if you hover over it, the Toolbox slides out.
(You’ve probably encountered the same feature
with the Windows taskbar.)

Although the automatic hiding feature
conserves screen space, this behavior is frustrating
when you are designing a form’s interface, both
because the window constantly slides in and out
of view and because when it appears, it obscures
part of the form you’re editing. When you need
to work with the toolbox, click the pushpin in
the top right corner of the window when it slides
into view. This disables the automatic hiding
feature (until you click the pushpin to “unpin”
the window). Figure 2-7: Some of the

controls in the Toolbox

bvb_02.book Page 28 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 29

Similarly, you can free up real estate by unpinning other Visual Studio
windows. In practice, you’ll probably prefer to have everything you need on
the screen waiting for you, rather than interactively bouncing on and off it,
but the auto-hide feature does give you some ability to free up space when
needed.

When you have a design view of a form open, the Toolbox displays all the
controls you can drop on the form, subdivided into several groups. You can
see all the possible controls using the first group, which is named All Windows
Forms.

By default, these controls are displayed in a list view that displays the
name of each item, but you can also change it to the more compact icon
display used in Visual Basic 6 by right-clicking and clearing the check box
next to the List View option.

NOTE If your toolbox is empty, it’s probably because you aren’t currently designing a Windows
form. If you haven’t started a project, or if you are in code view, no controls will be shown.

Customizing the Toolbox

If a third-party developer releases a custom control that you’re eager to use,
you can add it straight to the Toolbox. Just right-click the Toolbox, and
select Choose Items. Select the .NET Framework Components tab, click
Browse, and find the appropriate .dll file. You can then choose exactly
which controls to display by adding a check mark next to the appropriate
items (see Figure 2-8).

Figure 2-8: Choosing which items to display in the Toolbox

You can also use the .NET Framework Components tab to hide items
that are currently shown. But what’s the point of having a component if
you can’t use it?

bvb_02.book Page 29 Thursday, March 30, 2006 12:39 PM

30 Chapter 2

You’ll find that the list of Toolbox components is longer than you
expect, because it includes certain items (such as web controls) that only
appear in specific project types. It also includes some items that were originally
included in .NET 1.0 for backward compatibility—such as controls for con-
trol arrays—but that are no longer recommended and are therefore never
included in the Toolbox.

NOTE You can also use this window to add an ActiveX control—just use the COM Components
tab instead of the .NET Framework Components tab. Most ActiveX controls can be
wedged into .NET applications without a problem, and Visual Studio will automatically
generate interoperability code that makes it work almost seamlessly. However, it’s a better
idea to stick with .NET controls where possible. They provide more features, fewer
headaches, and better performance.

The Properties Window

The Properties window is the IDE window that has changed the least from
classic versions of Visual Basic. It still occupies the same place in the IDE, and
it is used for the same purpose: setting the properties for the controls in your
application.

One enhancement is the collapsible interface, which allows you to show
or hide categories by clicking the plus (+) or minus (−) boxes next to the
category heading (see Figure 2-9). Category headings are indicated with a gray
background. The collapsible interface also applies to some properties that use
complex data types. For example, forms have a Font property that references
a Font object. You can set the information for this font object by clicking the
ellipsis (. . .) next to the word Font, or you can expand the Font property to
show all the subproperties. These are the properties of the related font
object, such as Name, Size, and Unit.

Figure 2-9: The collapsible Properties window

bvb_02.book Page 30 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 31

The Code Display

The code display window in Visual Studio has some impressive refinements.
One of these is the auto-formatter, which automatically applies the correct
indenting to block structures. However, one of the most innovative features
is the collapsible display, which allows you to choose portions of the code to
view while hiding those that don’t interest you. This allows you to control
screen clutter and navigate through your code files more easily.

There are two ways to collapse a section of code. One way is to place code
in a #Region block. These blocks have no effect on the function of your code
and are ignored when the code is compiled. The hash (#) indicates that this
is a special instruction for the IDE.

For example, suppose you want to create a region named Secret Algorithm.
Here’s how you define that region:

#Region "Secret Algorithm"
#End Region

Inside the Region block, you can place any ordinary code. For example,
here’s a region that wraps two procedures:

#Region "Secret Algorithm"

 Public Function CalculateCodes() As String
 ' (Code goes here).
 End Function

 Public Function ValidateCodes(code As String) As Boolean
 ' (Code goes here).
 End Function
#End Region

Figure 2-10 shows how this code can be tucked neatly out of sight.

Figure 2-10: A collapsible code region before (left) and after (right) collapsing

bvb_02.book Page 31 Thursday, March 30, 2006 12:39 PM

32 Chapter 2

Additionally, any code in a class, module, subroutine, or function is
automatically made collapsible. Figure 2-11 shows both an expanded and
a collapsed procedure.

Figure 2-11: Collapsible code without a region

Splitting Windows

In a large project you may sometimes need to work with more than one
document at a time, and the IDE makes it easy to do that. Here’s how it
works. First, right-click the tabbed list of documents, and choose either New
Horizontal Group or New Vertical Group. New Horizontal Group creates two
rows of tabs, one above the other (as shown in Figure 2-12). New Vertical
Group creates two rows of tabs: one on the left and one on the right. You can
repeat this process to create even more tab groupings.

To move a document tab from one window to another, you can drag the
tab (the easiest approach), or you can right-click it and choose Move to Next
Tab. This trick allows you to organize your environment when editing a large
project. If you empty out a tab group, it disappears, and life reverts back to
normal.

You can also split each individual code editing window so that you can see
two parts of the same document at once. To do this, select Window�Split from
the menu while you’re editing the appropriate code file (and use Window�
Remove Split to take it away). This technique allows you to see more than one
portion of the code in a single file (as shown in Figure 2-13).

Even though you have a split in your window, there’s still just one docu-
ment. All views are updated automatically when you make a change in either
section.

bvb_02.book Page 32 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 33

Figure 2-12: Organizing windows with multiple (horizontal) tab groups

Figure 2-13: Using split windows

bvb_02.book Page 33 Thursday, March 30, 2006 12:39 PM

34 Chapter 2

The Task List

The Task List (see Figure 2-14) is another convenience that helps you
manage programming tasks while working on a project. The Task List
acts like a developer’s to-do list. To show the Task List, select View�Other
Windows�Task List.

To add an item to the Task List, click the clipboard icon, and type a
description. You can also give each task a priority (Low, Medium, or High)
by choosing an option in the ! column. When you’re finished with the task,
you can mark it completed by adding a check mark, or you can right-click
and choose Delete to remove it altogether.

Figure 2-14: User tasks

So far, you’ve seen how to add user task items to the Task List. However,
the most interesting part of the Task List is the way you can link it to your
code using predefined comment items. For example, any time you add a com-
ment that starts with 'TODO, it will be automatically added to the list. You can
then double-click the item to jump directly to the relevant place in code.
This allows you to keep track of locations in code where further work or
revision is required.

Figure 2-15 shows how comment items work. The 'TODO comment in the
upper pane (the code view) is linked to the task item in the bottom pane
(the Task List). Notice that comment items appear only when you select
Comment in the drop-down list at the top of the Task List, instead of
User Tasks.

Figure 2-15: Comment tasks

bvb_02.book Page 34 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 35

You don’t need to add 'TODO in front of all the comments you want to
track. Instead, you can set the predetermined comment types that will be
automatically added to the Task List. To do so, select Tools�Options, and
then choose the Environment�Task List section. You can add a new type of
comment (called a “comment token”) by typing the prefix the comment
must start with (leave out the apostrophe), setting the default priority, and
clicking Add (Figure 2-16).

Figure 2-16: Adding custom comment tokens

Code Snippets

Every day, developers write similar code to solve similar problems. The creators
of VB wanted to take some of the pain out of hunting for code examples and
to put the syntax for basic tasks right at your fingertips. Visual Basic 2005
addresses this challenge with a new feature called code snippets.

The idea behind the code snippets feature is that you can quickly dig up
a few elusive lines of code for a common task and then customize them to
suit your exact needs. Visual Studio helps you out by organizing snippets into
groups and using some innovative highlighting.

Inserting a Snippet

To try this out, move to the appropriate location in your code, right-click
the mouse, and select Insert Snippet. A pop-up menu will appear with a list
of snippet categories, such as Common Code Patterns, Data, Security, and
Windows Forms Applications. Once you select a category, you’ll see a full list
of all the snippets that are available. You can then select one to insert it at the
current position.

For example, Figure 2-17 shows the result of inserting the code snippet
named Get a Random Number using the Random class from the Math category.

bvb_02.book Page 35 Thursday, March 30, 2006 12:39 PM

36 Chapter 2

Figure 2-17: Inserting a snippet

The best feature snippets provide is that they highlight any hard-coded
values in green. For example, the snippet shown in Figure 2-17 includes two
hard-coded values (the numbers 10 and 100, which represent the lowest and
highest random numbers you’re willing to consider). When you hover over
either of these values, a tooltip pops up with an explanation about what value
you should type in to replace the hard-coded number (Figure 2-18). And for
a real shortcut, you can jump from one highlighted region to the next, just
by pressing TAB.

Figure 2-18: Replacing the hard-coded values in a snippet

Managing Snippets

Snippets are only as useful as the code they contain, and Visual Basic
2005 ships with a relatively small collection of snippets that range from
genuinely useful (like “Compare Two Files”) to absurdly trivial (like “Define
a Function”). Many useful topics aren’t dealt with at all. However, there’s still
hope, because the snippets system is extensible. That means you can hunt
down .vbsnippet files on the Internet and add them to your collection.

bvb_02.book Page 36 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 37

To get an overview of all the snippets that are currently on your computer
or to add new ones, you need to use the Snippet Manager. Select Tools�
Code Snippets Manager (Figure 2-19). Select a snippet, and you’ll get a brief
description that indicates who created it.

Figure 2-19: The Code Snippets Manager

The hidden gem in the Code Snippets Manager window is the Search
Online button. Click this to launch a search that goes beyond your local
computer and into the CodeZone community. (You may find that this search
isn’t quite as refined as should be. If you’re digging up irrelevant links, try
adding the word “snippet” to the search to home in on the code.)

TIP Want to take your snippets to the next level? Microsoft offers a surprisingly powerful free
tool for managing and customizing code snippets—you can download it at http://
msdn.microsoft.com/vbasic/downloads/tools/snippeteditor. Using this tool you can
edit and test existing snippets, set author, title, and keyword information for your own
snippets, and even convert your snippet into a .vsi (Visual Studio Content Installer)
file for easy sharing with other programmers.

Macros

Macros are a new and welcome feature for Visual Basic 2005 users. At their
simplest, macros are little pieces of functionality that help you automate
repetitive coding tasks. For example, consider the following code example.
(I’ve abbreviated it considerably to save space, but you get the idea.)

' Assigning to oddly named controls.
FirstNamelbl.Text = FirstName
LastNamelbl.Text = LastName
Streettxt.Text = Street
Countrycbo.Text = Country

bvb_02.book Page 37 Thursday, March 30, 2006 12:39 PM

38 Chapter 2

The programmer who wrote these lines made a common naming mistake
and put the control identifier (for example, txt for text box) at the end of
the name instead of the beginning. In this case, using Visual Studio’s Find
and Replace feature isn’t much help, because even though the mistake is
repeated, many different variables are incorrectly named. If you’re a seasoned
problem-solver, you may already realize that this mistake can be fixed by
repeating a set of steps like this:

1. Start at the beginning of the line.

2. Press CTRL and the right arrow to jump to the position right before the
period.

3. Highlight the last three letters (hold down SHIFT and press the left arrow
three times).

4. Use CTRL+X to cut the text.

5. Press HOME to return to the front of the line.

6. Press CTRL+V to paste the variable prefix in the right position.

7. Move one line down by pressing the down arrow.

Easy, right? Just repeat these steps for each of the next dozen lines, and
the problem is solved. Of course, now that we’ve realized that the process of
editing a line is just a sequence of clearly defined steps, we can automate the
whole process with a macro.

To do this, select Tools�Macros�Record TemporaryMacro (or press
CTRL+SHIFT+R). Follow the steps, enter the appropriate keystrokes, and then
click the Stop button on the macro toolbar. Now you can play the temporary
macro (CTRL+SHIFT+P) to fix up the remaining lines.

The Macro IDE
When you record a macro, Visual Studio stores a series of instructions that
correspond to your actions. If you’ve created macros in other Microsoft
applications such as Microsoft Word or Microsoft Access, you’ll already be
familiar with this system. The interesting thing in Visual Studio is that the
macro language used to record your actions is exactly the same as ordinary
Visual Basic 2005 code. The only difference is that it has built-in objects that
allow you to interact with the IDE to do things like insert text, open windows,
and manage projects. In fact, an entire book could be written about the
object model used in Visual Studio’s macro facility.

To view the code you created with your temporary macro, select Tools�
Macros�Macro Explorer. In the Macro Explorer window (which is paired
with the Solution Explorer by default), find the TemporaryMacro routine in the
RecordingModule, as shown in Figure 2-20.

Right-click the TemporaryMacro routine, and select Edit to view the code,
which looks like this:

Sub TemporaryMacro()
 DTE.ActiveDocument.Selection.StartOfLine(VsStartOfLineOptionsFirstText)

bvb_02.book Page 38 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 39

 DTE.ActiveDocument.Selection.WordRight()
 DTE.ActiveDocument.Selection.CharLeft(True, 3)
 DTE.ActiveDocument.Selection.Cut()
 DTE.ActiveDocument.Selection.StartOfLine(VsStartOfLineOptionsFirstText)
 DTE.ActiveDocument.Selection.Paste()
 DTE.ActiveDocument.Selection.LineDown()
End Sub

Figure 2-20: The Macro Explorer window

This code is bound to look a little unfamiliar, as it uses the DTE object
model, which allows you to interact with the IDE. The important thing to
understand is that every macro corresponds to a subroutine, and all recorded
actions are defined in code. To interact with the IDE, you use DTE commands.

TIP When you open a macro project, you’ll end up with what looks like two design environ-
ments. The easiest way to switch from your regular project to your macro project is using
the taskbar, which shows both.

The Temporary Macro

Macros help you while you are writing a program. In fact, most macros have a
limited usefulness: They are created to solve a specific problem and are not
used once that problem is solved. For that reason, a Visual Studio macro is
recorded as a “temporary” macro. There can only be one temporary macro at
a time, and when you create a new temporary macro, the old one is replaced.

If you want to create a permanent macro, you’ll have to open the macro
editor and move the code in the TemporaryMacro subroutine into a new sub-
routine that you’ve just created for that purpose. To run this new macro,
double-click its name in the Macro Explorer window.

Macros with Intelligence

In practice, macros often take over where more mundane find-and-replace
or cut-and-paste operations leave off. For example, you might want to make a
macro that could intelligently examine the currently selected text and decide
what correction or insertion to make based on some test. You could even build
an entire wizard, complete with Windows forms and file access. Some examples
of advanced macros are included in the sample code for this chapter.

bvb_02.book Page 39 Thursday, March 30, 2006 12:39 PM

40 Chapter 2

Following is a straightforward example that swaps the code on either side
of an equal (=) sign in the selected range. For example, it could convert the
line of code StringA = StringB to StringB = StringA.

Public Sub InvertAssignmentLine()

 ' Retrieve the text.
 Dim str As String
 Dim i As Integer
 DTE.ActiveDocument.Selection.SelectLine()
 str = DTE.ActiveDocument.Selection.Text

 ' Trim the final hard return.
 str = Left(str, Len(str) - 2)

 ' Find the equal sign.
 i = InStr(str, "=")

 ' Reverse the text if it had an equal sign.
 If i > 0 Then
 str = Mid(str, i + 1) & "=" & Left(str, i - 1)
 DTE.ActiveDocument.Selection.Text = str & vbNewLine
 End If

 ' "De-select" the current line.
 DTE.ActiveDocument.Selection.Collapse()

End Sub

The structure of this code should be clear, but the DTE commands will
be new. A good way to start learning about DTE commands is to record a task
in the IDE, and then look at the automatically generated code. For compre-
hensive information about the DTE, check out the Visual Studio Help.

Incidentally, this code also uses traditional Visual Basic 6 string manipu-
lation functions such as Len() and Left(), which are still supported but whose
use is discouraged in favor of VB 2005’s new object-oriented equivalents.
The online samples for this chapter include a rewritten version of this macro
that uses .NET-style string manipulation. After you’ve read the next chapter
and learned the basics of .NET, you might want to take a look at that sample.

Macros and Events

Visual Studio also provides a special EnvironmentEvents macro module, which
contains macros that react to IDE events for windows, documents, and build
and debugging operations. Once again, you need to know some non-VB
features to perfect this type of macro—namely, the object model for the IDE.

The next macro example uses the WindowActivated event. Whenever you
change focus to a new window, this macro closes all the other windows that
are part of your project (the dockable Visual Studio windows and the Start
Page won’t be closed) in an attempt to reduce screen clutter. It may seem a

bvb_02.book Page 40 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 41

little foreign because we haven’t yet explained how .NET handles events, but
it gives you an interesting idea of what is possible with the IDE. For example,
you could create a macro that executes every time a user starts a new project
and preconfigures the toolbox or initial code files.

Public Sub WindowEvents_WindowActivated(GotFocus As EnvDTE.Window, _
 LostFocus As EnvDTE.Window) Handles WindowEvents.WindowActivated

 ' Exit if the current window doesn't correspond to a document.
 If GotFocus.Document Is Nothing Then Exit Sub

 Dim Doc As Document
 Dim Win As EnvDTE.Window

 ' Scan through all the windows.
 For Each Win In DTE.Windows
 ' Ignore the window if it doesn't correspond to a document
 ' or is the currently active window.
 If Not Win.Document Is Nothing And Not Win Is GotFocus Then
 Win.Close()
 End If
 Next

End Sub

Remember, this macro will work only if it’s placed in the EnvironmentEvents
module. Only that module has the automatically generated code that makes
all the Visual Studio events available.

NOTE These macro examples are by no means comprehensive. Visual Studio allows you to write
and integrate all sorts of advanced add-ins, control designers, and macros. Macros can
even use the .NET class library, display a Windows interface, and examine your code.
For a rich set of macro samples, check out the macro project named Samples, which is
installed automatically with Visual Studio and will appear in the Macro Explorer.

The Simplest Possible .NET Program

Now that you’ve made your way around the Visual Studio environment, it’s
time to take a closer look at the project and solution system by generating
your first real program.

The simplest possible .NET program doesn’t use any Windows forms.
Instead, it is a Console or command-line application. This type of application
takes place in something that looks like an old-fashioned DOS window, but
it is really just a text-based Windows program. Console applications are some-
times used for batch scripts and other extremely simple utilities. Mainly,
though, Console applications are used to create every computer writer’s
traditional favorite: the “Hello, World!” program.

To create a Console application, just start a new project and select Visual
Basic Projects�Console Application (Figure 2-21).

bvb_02.book Page 41 Thursday, March 30, 2006 12:39 PM

42 Chapter 2

Figure 2-21: Creating a Console application

The following sample program, called MyFirstConsoleApplication, uses
the Console object (found in the System namespace) to display some basic
information on the screen. The project is configured to run the Main sub-
routine at startup.

Module Module1

 Sub Main()
 Console.WriteLine("What is your name?")
 Dim Name As String = Console.ReadLine()
 Console.WriteLine()
 Console.WriteLine("Hi " & Name & ". I feel like I know you already.")

 ' This stops the application from ending (and the debug window
 ' from closing) until the user presses Enter.
 ' If you were interested, you could examine the return value
 ' of ReadLine() to find out what the user typed in.
 Console.ReadLine()
 End Sub

End Module

To launch this program, choose Debug�Start Debugging (or just press
the F5 key). The result is shown in Figure 2-22.

This book won’t feature anything more on Console applications, because
Windows and web applications provide much richer interface options. The
only significance of MyFirstConsoleApplication (and the only reason it’s
included in this book) is the fact that it shows you a complete Visual Basic 2005
application in its simplest form. That application is a module (although a
class could be substituted) and a single subroutine that contains all of the

bvb_02.book Page 42 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 43

program’s operations. Nothing is hidden in this example. You could write
this program in a text file, give it the .vb extension, and compile it the old-
fashioned way using the vbc.exe command-line compiler.

Figure 2-22: An unimpressive .NET application

MyFirstConsoleApplication Files
The essential logic for this application is contained in a single .vb file, named
Module1.vb. However, Visual Studio uses a few extra files to keep track of
additional information about your solution.

� MyFirstConsoleApplication.sln contains information about the projects
in the solution and their build settings (which determine whether the
project is compiled or ignored when you click the Start button).

� The MyFirstConsoleApplication.suo file contains binary data that pre-
serves your view settings for the solution, making sure that Task List
items, breakpoints, and window settings are retained between sessions.
This is a major improvement over Visual Basic 6.

� The MyFirstConsoleApplication.vbproj file is the most interesting. It uses
an XML format to store information about your application, including
the assemblies it needs, the configuration settings it uses, and the files it
contains. This information is required only when programming and test-
ing your application—as you’ll see in Chapter 7, all the necessary details
are embedded into the final executable when you compile it.

MyFirstConsoleApplication Directories
There are also three extra subdirectories created inside every VB project:

� The My Project directory includes some resource files that support
various Visual Basic features that you may or may not use, such as
the My object, application settings, and embedded resources. You’ll
learn about all of these details later in this book. But for now, don’t
worry about this directory. It doesn’t include any nondefault content
for the MyFirstConsoleApplication project.

bvb_02.book Page 43 Thursday, March 30, 2006 12:39 PM

44 Chapter 2

� The obj directory contains some temporary files that are created while
building the application (every time you press the Start button to run it
in Visual Studio). These files can be safely ignored.

� The bin directory contains the actual application once it’s compiled.
There are two ways to compile your application—in debug mode (for
testing) and in release mode (once you’ve perfected it). When you launch
your application for debugging (by pressing F5, clicking the Start button
in the toolbar, or selecting Debug�Start Debugging), your application
is compiled in debug mode and placed in the bin\Debug folder. On
the other hand, when you choose Build�Build [ProjectName] from the
menu, your application is compiled in release mode (which gives it that
extra performance edge) and placed in the bin\Release folder.

The compiled MyFirstConsoleApplication consists of one executable file,
which is named MyFirstConsoleApplication.exe. However, you’ll find that
some extra support files turn up in the bin\Debug directory, such as the .pdb
file that Visual Studio uses for debugging. When you distribute your application
to other computers, you won’t need these extra files. For more information
about .NET compilation and deployment, refer to Chapter 14.

NOTE Unlike in Visual Basic 6, all programs are fully compiled before you can run them.
When debugging, Visual Studio will create a .pdb file along with the executable. This
file contains the debug symbols that allow you to pause, resume, and debug your
application.

Project Properties

Visual Studio introduces a new control panel for configuring projects. To
take a look, double-click My Project in the Solution Explorer, or choose
Project�[ProjectName] Properties. Either way, you’ll see a new page appear,
with a list of tabs on the left (see Figure 2-23).

You’ll consider the options in this window at various points throughout
this book, whenever they relate to a specific feature. But if you want to start
exploring by tweaking the options in MyFirstConsoleApplication, here’s a
quick guide that explains each tab:

Application
This tab lets you choose the filename for your final .exe file, the icon,
and how it starts. You’ll learn how to use it to set a startup form and
respond to application events in Chapter 4.

Compile
This tab lets you supply settings for the VB compiler. For example, you
can turn off certain warnings, and require cleaner coding by turning on
Option Explicit and Option Strict. Chapter 8 has more about these two
options.

bvb_02.book Page 44 Thursday, March 30, 2006 12:39 PM

The Des ign Envi ronmen t 45

Figure 2-23: Managing project properties

Debug
This tab lets you supply command-line arguments, set the startup direc-
tory, and set a few more settings that affect debugging sessions. Chapter 8
explores debugging in detail.

References
This tab shows you your project references, which are other components
that your application is using. You’ll learn more in Chapter 3.

Resources
This tab lets you add resources, text or binary information that’s embedded
right inside your compiled application file. You’ll learn more in Chapter 7.

Settings
This tab lets you set application settings, which are automatically stored
in a configuration files. You’ll use settings to keep track of database con-
nection strings in Chapter 10, but you can use them for almost any type
of simple data.

Signing
This tab lets you give your compiled project a strong name, so that it can
be placed in the computer-specific component repository called the
Global Assembly Cache (GAC). You’ll try this out in Chapter 7.

bvb02_02.fm Page 45 Tuesday, April 11, 2006 9:38 AM

46 Chapter 2

Security
This tab lets you fine-tune security settings for ClickOnce, a specialized
deployment technology described in Chapter 14.

Publish
This tab lets you publish your application as a ClickOnce publication, so
it can be easily installed from the Web or a network (and updated seam-
lessly). You’ll learn how in Chapter 14.

What Comes Next?

In this chapter you learned about Visual Studio, the integrated environ-
ment where you will perform all your programming. Visual Studio is an
indispensable tool, correcting simple mistakes, making code easily readable
and navigable, organizing resources, and providing designers for HTML
pages, XML documents, graphics, and icons.

Though the focus of the remainder of this book is on the Visual Basic
2005 language, an entire book could easily be written on the features in Visual
Studio (and several have been). The customization and macro features alone
are probably the most sophisticated ever bundled into a Windows application,
and it will take some time before developers have explored all the benefits and
possibilities they can provide. If these features have captured your interest, go
ahead and start experimenting! One great starting point is the Visual Studio
Extensibility website provided by Microsoft at http://msdn.microsoft.com/
vstudio/extend.

bvb_02.book Page 46 Thursday, March 30, 2006 12:39 PM

3
V B 2 0 0 5 B A S I C S

So far you’ve read about the fundamental
goals of the .NET platform, and you’ve

learned how to work in the remodeled Visual
Studio programming environment. But before you

can start creating real VB 2005 programs, you need
a basic understanding of a few .NET concepts. These
concepts—the basics of Visual Basic 2005—range over every aspect of the
language. They include everything from small details, such as changes to
assignment syntax and variable scoping, to the namespace feature, which is
the basis of .NET’s overall organization. Understanding how namespaces work
is your key to accessing the common class library—the all-in-one repository of
functionality used for everything from downloading a file from the Internet to
printing a document.

We’ll begin this chapter with an introduction to namespaces, the common
class library, and Visual Basic 2005’s file format. These are the aspects of Visual
Basic programming that have changed the most in the .NET world. Next,
you’ll learn about how the basic data types have evolved and their hidden

bvb_02.book Page 47 Thursday, March 30, 2006 12:39 PM

48 Chapter 3

object structure. Finally, you’ll explore the changes that have been made to
assignment syntax and functions, and you’ll learn about delegates, another
.NET newcomer. By the end of the chapter you’ll be familiar with .NET’s
most fundamental innovations, and you’ll be ready to get to work with the
Visual Basic 2005 language.

NOTE Although a handful of language refinements are new in Visual Basic 2005, almost all
of the changes you’ll learn about in this chapter apply to all .NET versions of Visual
Basic. The most notable exception is the My object, which makes its debut in Visual
Basic 2005.

New in .NET

You might wonder what a chapter on basics is doing in a book designed for
developers who already understand details such as functions, variables, and
events. The answer? VB 2005 and its predecessor, VB.NET, represent a
complete overhaul of the Visual Basic language. The changes from classic
Visual Basic range from minor tweaks all the way to a radical new program-
ming model based on the class library. Some of the features you’ll read about
in this chapter include:

The common class library
Java has one. Windows programmers have had dozens, ranging from
C++ tools such as MFC and ATL to the built-in Ruby engine in Visual
Basic 6. Unfortunately, none of these class libraries has offered a truly
complete and integrated solution, so developers have been forced to
work with a mix of different components and even resort to the Win-
dows API. With .NET, developers finally have a complete, modern class
library providing all the programming capabilities that were previously
available only in countless different bits and pieces.

The My object
In a bid to demystify the sprawling class library, the designers of VB added
a new My object that provides shortcuts to some of the most useful fea-
tures. Sadly, My isn’t all it’s cracked up to be (for example, it lacks access
to some of .NET’s most powerful features), but it does have a few genu-
inely useful tricks in store.

Redefined arrays
Arrays are the most obviously changed basic elements from classic VB.
Gone are the days when arrays could take any shape and size. In order to
work with the Common Language Runtime and be consistent, VB 2005
arrays always begin at element 0. And that’s only the start. Be sure to
review the data type descriptions in this chapter to learn why arrays now
act like objects, not like structures.

bvb_02.book Page 48 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 49

Shortcuts and cosmetic changes
Facing the need to implement sweeping changes to support the Com-
mon Language Runtime, the VB design team decided to revise the whole
language for .NET, introducing minor refinements like new assignment
shortcuts, mandatory function parentheses, better support for optional
parameters, and keywords that allow you to exit a function quickly or
skip to the next iteration of a loop. Many of these hit the scene with
.NET 1.0, but VB 2005 continues to evolve.

Method overloading
You can use the Overloads keyword to create multiple procedures that
have the same name, but different parameters. Visual Basic 2005 will
decide which procedure to use depending on the variables you supply.

Delegates
A delegate is a variable that can store a reference to a function or sub-
routine. You can then use this variable to execute the procedure at any
time, without needing to call it directly. Delegates help you write flexible
code that can be reused in many different situations.

TIP If you want a detailed look at the entire VB 2005 language, from the ground up, why not
take a look at the Visual Basic Language Specification 8.0. (VB 2005 is also known by
the version number 8.) You can search for this document at www.microsoft.com/
downloads, or just use http://tinyurl.com/8rne5 to get there.

Introducing the Class Library

The cornerstone of .NET is the common class library, which provides several
thousand useful types (programming objects) that you can drop directly into
a Visual Basic 2005 program. Essentially, the class library is filled with prebuilt
pieces of functionality. For example, you’ll find that it contains all the ingre-
dients you need to build graphical Windows applications, web pages, and
modest command-line applications (like the one shown in Chapter 2).

The class library is enormous. Even after you have finished this book and
learned VB 2005 programming style and syntax, you’ll continue to return to
new parts of the class library as you add new features to your applications.
But before you start considering any of the types in the class library, it helps to
understand two of its basic organizing principles: namespaces and assemblies.

Namespaces

Every piece of code in a .NET program exists inside a conceptual construct
known as a namespace. Namespaces prevent .NET from confusing one program
with another. For example, suppose the Acme Insurance Company uses a
namespace called AcmeInsurance for all of its programs. The code for a program
that provides insurance policy information might then exist in a namespace

bvb_02.book Page 49 Thursday, March 30, 2006 12:39 PM

50 Chapter 3

called AcmeInsurance.PolicyMaker (which is really a PolicyMaker namespace
inside the AcmeInsurance namespace).

Namespaces are hierarchical, like directories on a hard drive. AcmeInsurance
is a company-specific namespace that can contain other namespaces repre-
senting programs; those namespaces can themselves include still more name-
spaces. This is useful, because Acme’s PolicyMaker program might use a class
named Policy. Somewhere in the world, another program probably uses a
Policy class. However, there’s no chance of confusion, even if you install both
of these programs at once, because Acme’s Policy class really has the full name
AcmeInsurance.PolicyMaker.Policy, which is almost certainly unique.

NOTE A dramatic comparison can be made between namespaces and the Windows API.
Essentially, all the capabilities of the Windows API exist in a single namespace that is
stuffed full of hundreds of functions. Without a very thorough, cross-referenced guide,
there is no way to tell which functions belong together. The problem is compounded by
the fact that procedures in the Windows API must have less-than-ideal names just to
avoid colliding with existing function names. This is one of the main reasons that
using the Windows API is the secret nightmare of many VB programmers.

Namespaces aren’t just used in your own applications. They’re also an
important organizing principle for the class library. The thousands of types
that are included with .NET are organized into more than 100 namespaces.
For example, if you want to build a Windows application, you’ll use the types
from the System.Windows.Forms namespace.

To take a look at the class library namespaces and start exploring them,
you can refer to the indispensable class library reference. To find it, fire up the
Microsoft Visual Studio 2005 Documentation (you’ll find the link in the Start
menu), and then dig through the table of contents to this location: .NET
Development�.NET Framework SDK�Class Library Reference. Figure 3-1
shows this all-important location.

Figure 3-1: The class library reference

bvb_02.book Page 50 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 51

The class library is arranged like a giant tree structure, and each branch
(namespace) contains a few dozen or a few hundred types. The core name-
spaces of the .NET Framework begin with System (for example, System.Data
or System.Windows.Forms).

To find out what’s inside a namespace, just expand the node in the tree.
For example, Figure 3-2 shows a partial list of the types in the System name-
space, which is the most fundamental .NET namespace. It includes basic data
types and core ingredients such as the Console class demonstrated in Chapter 2.
To get more information about one of these types, select it.

Figure 3-2: Documentation for the System namespace

The class library is intimidating at first glance. However, as you become
more familiar with VB 2005, and after you study its object-oriented under-
pinnings in Chapters 5 and 6, you’ll start to feel more at home.

TIP To jump straight to the documentation that details a specific class, just look up the
class name in the index of the Visual Studio Help.

Assemblies

Although namespaces are used to organize types logically into separate groups,
that’s not the whole story. In order to use any namespace in your application,
you need to have access to the right assembly, which is the physical file (a .dll
or .exe) that contains the corresponding compiled code. For example, if you
want to use the controls in the System.Windows.Forms namespace, you need to
have access to the System.Windows.Forms.dll file, where the code is stored.
(In this case, the namespace name and the assembly name match, but this
isn’t a requirement. An assembly can contain code in many different name-
spaces, and different assemblies can use the same namespace.)

bvb_02.book Page 51 Thursday, March 30, 2006 12:39 PM

52 Chapter 3

In other words, there are two ways to think about the class library. You
can picture it as a collection of types that are organized into namespaces, all of
which you can use in your programs. Or, you can think of it as compiled code
in a set of .dll files, stored in a system-specific location on your computer.

TIP In Chapter 7 you’ll explore assemblies in much more detail. You’ll learn what these files
look like on the inside and how you can divide your own applications into multiple
components.

Types

At this point, you might be wondering exactly what the class library con-
tains. The answer is types—a .NET concept that includes classes, events,
structures, and more exotic creations such as enumerations and delegates.
In Chapters 5 and 6 you’ll get to the technical details of this arrangement,
but for now you can think of the class library as a collection of objects you
can use in your programs.

This model is dramatically different from pre-.NET versions of VB. Visual
Basic 6 provided a few built-in objects that you could use (such as Printer,
Screen, App, and Err) and allowed you to add more objects by adding references
to COM libraries (for example, those used for databases or XML support).
Visual Basic 2005, on the other hand, provides hundreds of objects that are
sorted into namespaces according to function and at your fingertips through
the .NET class library.

If you aren’t quite clear on what an object is, keep reading. The next
sections explain the bare minimum you need to know to start using objects.

NOTE Objects are programming constructs that contain properties, methods, and events
(all of which are called members).

Properties
Properties store information about objects. For example, a TextBox control
in a Windows application has a property called Text, which stores the text
that appears in the text box. (A control is really just a special type of object.)
If you had a TextBox control named Text1, you could use str = Text1.Text
to copy the text out of the text box and into a variable named str.

Methods
Methods are commands that cause an object to do something. For exam-
ple, MessageBox.Show() uses the Show() method of the MessageBox object to
display a message, and MyDoc.Print() uses the Print method of the MyDoc
object to send some data to the printer. In this book, you’ll recognize
method names because they are always followed by empty parentheses.

Events
Events are notifications that an object sends you, which you can then
either listen to or ignore. For example, a button object sends a Click
event, which gives you the chance to respond and perform an operation
in your code.

bvb_02.book Page 52 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 53

Instance members and shared members
One of the most confusing aspects of object-oriented programming, at
least for the newcomer, is that some objects need to be created, while oth-
ers don’t. The reason for this difference is that objects can have both
shared members, which are available even if you haven’t created an object,
and normal instance members, which are available only once you’ve cre-
ated an object. For example, Console.WriteLine(), used to display a line of
text in a command-line application, and MessageBox.Show(), used to display
a message box in a Windows application, are two examples of shared
methods. You don’t need to create objects of the Console or MessageBox
types in order to use the WriteLine() or Show() methods. On the other
hand, TextBox.Text is an instance member. Instance members don’t have
any meaning without an object—for example, you can’t talk about the
Text property of a TextBox unless you’re talking about a specific TextBox
object in a window.

In VB 2005, any class can have a combination of shared members
and instance members. For example, you’ll consider the DateTime type a
little later in this chapter. It provides a shared Now property that you can
use to retrieve the current date and time without creating an object first.
DateTime also contains ordinary instance properties, including Day, Month,
Year, and Time, which get individual components of a date stored in a
particular DateTime object.

Using the Class Library

Now that you’ve learned about the nifty class library, you’re no doubt eager
to put it to use in your applications.

In order to use the types in the class library, you need to make sure they’re
accessible to your code. This feat requires two steps. First you need to make
sure your project has a reference to the correct assembly where the code is
stored. Next, you need to consider importing the namespace that contains the
types you’re interested in so that they’re easier to code with. The following
sections have the full details.

Adding a Reference to an Assembly
Before you can use the objects provided in a namespace, you must make a
reference to the appropriate assembly. A reference is simply your application’s
way of letting Visual Basic know which components it’s using. Often, you
won’t need to worry about this issue at all, because when you create a new
application in Visual Studio, you start out with references to a small set of
assemblies you’re likely to use. For example, Windows applications always
have a reference to System.Windows.Forms.dll.

You can use the Solution Explorer to see a list of all the references used
by your project. However, Visual Studio hides this information from you by
default (assuming that it’s more information than you really want to know).
To take a look, select Project�Show All Files. The Solution Explorer will
now include several new ingredients: files that are in the project directory

bvb_02.book Page 53 Thursday, March 30, 2006 12:39 PM

54 Chapter 3

but aren’t a part of your project, the compiled version of your application in
the bin directory, and a group of references. Figure 3-3 shows the references
that are added, by default, to all new Windows applications.

Usually, these references will be all you need. Of course, sometimes you
will decide to use a component of the class library that exists in a different
assembly. The process works like this:

Figure 3-4: Assembly information from the class library reference

3. Then you right-click the References item in the Solution Explorer and
select Add Reference.

4. Last, you find the appropriate file (System.Xml.dll in this example)
in the list under the .NET tab, and select it (see Figure 3-5).

1. You find an exciting component in
the class library that does exactly
what you need.

2. You look at the top of the class
information page to find out
which assembly you need. For
example, the System.Xml.XmlNode
class lives in the assembly named
System.Xml.dll (as indicated in
Figure 3-4). If your application
already has a reference to this
assembly, you don’t need to take
any additional steps. Figure 3-3: Basic references in a

Windows application

bvb_02.book Page 54 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 55

Figure 3-5: Adding a reference

5. Click OK. Visual Studio will add the reference (and you’ll see it in the
References group in the Solution Explorer). Now the components in
that part of the class library are available for you to use.

NOTE Don’t become confused between assemblies and namespaces. Logically speaking, the
objects in the class library are grouped in namespaces. Physically speaking, the code that
defines these types is stored in assemblies. Once you have the correct assemblies referenced
for your project, you can forget about them entirely, assume the point of view of your
code, and start thinking in terms of namespaces.

Importing a Namespace

As long as you have a reference to the appropriate assembly, you can
access an object in a namespace by writing its fully qualified name (as in
[Namespace].[Class]). This can be cumbersome, though, because many objects
are stored several levels deep, in namespaces with long names. For example,
the .NET version of the VB 6 App object is called Application and is found
in the System.Windows.Forms namespace. This means, for example, that in
order to retrieve the product version of your application, you have to write
code like this:

VersionString = System.Windows.Forms.Application.ProductVersion

Admittedly, the line looks far more complicated than it needs to be. To
improve on this, you can make things simpler by using the Imports statement.

Essentially, the Imports statement tells the VB compiler what namespaces
you’re using. It’s strictly a time-saver to help reduce the number of long, fully
qualified names you have to type. The Imports statement must occupy the first
line in your code window, before any classes or modules are defined, and the
Imports statement doesn’t use a block structure.

bvb_02.book Page 55 Thursday, March 30, 2006 12:39 PM

56 Chapter 3

Here’s an example of code without the Imports statement. This snippet
of code simply uses the MessageBox class (from the System.Windows.Forms
namespace) to show a message box.

' This code has no Imports statement.
' A reference to the System.Windows.Forms assembly exists in the project.
' (VB 2005 added it automatically because we chose to create a Windows
' application.)

Public Module MyModule
 Public Sub Main
 System.Windows.Forms.MessageBox.Show("You must enter a name.", _
 "Name Entry Error", System.Windows.Forms.MessageBoxButtons.OK)
 End Sub
End Module

The following example rewrites the code with the benefit of the Imports
statement. The Imports statement saves us some typing in two places:

Imports System.Windows.Forms

Public Module MyModule
 Public Sub Main
 MessageBox.Show("You must enter a name.", _
 "Name Entry Error", MessageBoxButtons.OK)
 End Sub
End Module

You can import as many namespaces as you want by adding additional
Imports statements at the top of your code file. The Imports statement won’t
slow your code down in any way—in fact, the compiled code won’t change at
all. It’s simply a coding convenience.

NOTE If you try this example for yourself, you’ll find that you can use the nonqualified names
(in the second example) without adding the Imports statement. That’s because the
System.Windows.Forms namespace is already imported by default in a new Visual Studio
project—read the next section to find out more.

Project-wide Imports

An Imports statement only applies to the file that it’s used in. You can also
create project-wide imports that apply to all the files in your project. In fact,
if you create a new Windows project, you’ll find that System.Windows.Forms is
already imported at the project level, so you can write code like the preceding
MessageBox.Show() example without typing the Imports statement or using a fully
qualified name.

To see all the project-wide imports, right-click your project in the Solution
Explorer and select Properties. Then click the References tab (as shown in
Figure 3-6). The top portion of this page shows the assemblies that are refer-
enced; the bottom portion shows namespaces that are imported automatically.

bvb_02.book Page 56 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 57

Figure 3-6: Project imports

Using this window, you can easily add, edit, and remove any of the project-
wide imports.

Aliases

You can also use the Imports statement to create an alias, which is typically a
short form that you can use to refer to a namespace. For example:

Imports Wn = System.Windows.Forms
' Now we can use statements like Wn.MessageBox.Show

An alias is useful if you want to import namespaces that have classes with
the same names. Using an alias, you can still make it much easier to work
with these types (and ensure that the resulting code is much more readable),
but you won’t have to worry about conflicts between identically named types.

Exploring the Class Library Namespaces

Throughout this book you will discover various parts of the class library and
learn how to use them in your programs. But just to get yourself oriented and
help you understand the structure of the class library, the following sections
provide a quick overview of some of the more important namespaces.

bvb_02.book Page 57 Thursday, March 30, 2006 12:39 PM

58 Chapter 3

System
This is the core namespace that you’ll begin learning about in this chap-
ter. The System namespace includes the definitions of basic data types
such as strings, arrays, and events. It also introduces exceptions, which
you’ll study in Chapter 8.

System.Collections and System.Collections.Generic
These namespaces provide collection classes—objects that can contain
groups of objects. You’ll explore these in Chapter 6, which focuses on
object-oriented programming.

System.Data
This namespace includes the types needed for ADO.NET, which is dis-
cussed in Chapter 10. Other namespaces that start with System.Data are
used for specific parts of ADO.NET, such as SQL Server and Oracle
support.

System.Drawing
This namespace provides types that allow you to work with colors and
fonts and draw directly on a form. Many of these features go under the
collective name GDI+ and are quite different from the drawing features
provided in Visual Basic 6. These features aren’t described in this book,
because manually drawing a form’s interface in code is an unsatisfying
experience for most all programmers. It’s difficult to produce content
that looks attractive, and it’s nearly impossible to generate anything like
an animation program that works with respectable speed. However, GDI+
does make a brief appearance in Chapter 9 with printing.

System.Drawing.Printing
This is a namespace used to support print and print preview features,
which you’ll explore in Chapter 9.

System.IO
This namespace is used for file access, including file management and
reading and writing your own files. It’s also covered in Chapter 9.

System.Net
This namespace contains low-level network communication classes, as
well as some useful objects you can use to retrieve information from
the web without delving into ASP. Chapter 9 provides a taste of these
features.

System.Reflection
This namespace provides support for reflection, a technique that
allows you to do various interesting and slightly unusual things, such
as examining a class you don’t have information about and finding
out what it is (“reflecting” on it). Reflection is further discussed in
Chapter 7.

bvb_02.book Page 58 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 59

System.Runtime.Serialization
This branch of the class library contains several namespaces that allow
you to serialize objects (convert them to a block of bytes for long-term
storage) and then restore them effortlessly. This impressive feature
makes an appearance in Chapter 9.

System.Threading
This namespace provides the tools you’ll need for creating multithreaded
programs. Chapter 11 will give you a solid grounding in threading.

System.Web
This is the namespace to use for ASP.NET applications. The root
System.Web namespace provides the basic built-in ASP.NET objects.
Other namespaces that start with System.Web include additional impor-
tant types, such as those used to create Web Forms interfaces. You’ll
learn about ASP.NET in Chapters 12 and 13.

System.Windows.Forms
This namespace includes all the types you need for building the user
interface in a Windows program, including classes that support forms,
text boxes, buttons, and countless other controls. You’ll learn all about
Windows programming in Chapter 4.

System.Xml
This namespace contains objects that allow you to interact with XML
data and create your own XML documents. You’ll be introduced to XML
in Chapter 9.

Microsoft.VisualBasic
This tiny namespace provides the classic built-in VB functions (the string
manipulation functions Left() and Mid(), along with other blasts from the
past). You won’t use this namespace directly.

Microsoft.Win32
This is a small namespace that lets you access the registry and respond to
certain global system events. You’ll use the registry in Chapter 9.

Other namespaces
Of course, the class library provides many more capabilities than this book
has space to cover, including advanced string manipulation, regular
expressions, sockets and other tools for FTP-type programs, and low-level
classes for managing the sticky details of security and COM. There are
even whole namespaces of classes that do little more than support fea-
tures in the Visual Studio IDE and that provide design-time support for
controls and the Properties window.

The class library integrates features that previously required a com-
bination of dozens of separately developed components and the Windows
API. Throughout this book, I’ll introduce you to the most exciting parts
of the class library, the Visual Basic 2005 programming language, and
the Visual Studio interface where you’ll do your work, all at once.

bvb_02.book Page 59 Thursday, March 30, 2006 12:39 PM

60 Chapter 3

The My Object

After releasing VB .NET 1.0, Microsoft discovered that developers often had
trouble finding the specific classes they needed in the sprawling .NET class
library. In a bid to improve this situation, Visual Basic 2005 introduces quick
access through a built-in object that’s always available. Oddly enough, this
one-stop shop is called the My object.

Obviously, the My object can provide hooks into only a very small subset
of the total .NET Framework. (After all, the more features it provides, the
more complex it will become, until it’s much more confusing than the class
library it’s trying to replace!) However, Microsoft has made a reasonable
attempt to centralize some of the most commonly used features in My.

For example, imagine you want to grab a few commonly used pieces of
information, such as the current time, the name of the computer where your
code is running, the name of the user running the code, and the current
directory where the application is stored. All of these details are available in
the class library, but they’re easier to find using the My object. To get a sense
of the information you can find, try out this code:

MessageBox.Show(My.Computer.Clock.LocalTime)
MessageBox.Show(My.Computer.Name)
MessageBox.Show(My.Computer.FileSystem.CurrentDirectory)
MessageBox.Show(My.User.Name)

My Core Objects

Without a doubt, the best feature of My is that its features are discoverable—in
other words, you have a good chance of finding them using Visual Studio
IntelliSense. To help you out, the My object divides all its features into seven
key branches (see Figure 3-7).

Figure 3-7: Browsing for features with My

bvb_02.book Page 60 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 61

Five of these branches have core objects that centralize functionality
from the .NET Framework and provide computer information.

My.Computer

This object provides information about the current on which your code is
running. For example, you can access the clipboard (My.Computer.Clipboard),
play sounds (My.Computer.Audio), retrieve information from the Windows
registry or a file (My.Computer.Registry and My.Computer.FileSystem), and
even check the network status (My.Computer.Network).

My.Application

This object provides information about the current application, includ-
ing the assembly and its version number, the folder where the application
is running, and the command-line arguments that were used to start the
application. You can also use this object for quick-and-easy logging.

My.User

This object provides information about the current user. You can use
this object to write security code that checks the user’s account or group
membership.

My.Settings

This object allows you to retrieve custom settings from your application’s
configuration file. You’ll use configuration settings in Chapter 10.

My.Resources

This object allows you to retrieve resources—blocks of binary or text data
that are embedded in your application when you compile it. Resources
are a great way to store items such as pictures that your application needs
to use, and you’ll learn more about them in Chapter 7.

Default Instances

There are also two My objects that provide default instances. Default instances
are objects that .NET creates automatically for certain types of classes defined
in your application.

My.Forms

This object provides a default instance for each form. This allows you to
communicate between forms, as you’ll see in the next chapter.

My.WebServices

This object provides a default proxy object for every web service your
application uses. You’ll learn about web services in Chapter 13.

The Dark Side of My

At first glance, the My objects seem like a great idea. However, they aren’t
without their critics. One problem is that even though the My objects simply
provide access to features that are already in the .NET class library, they do
so in a slightly different way—and having to learn two ways to solve the same
problem can get confusing. A more significant problem is that the My objects
usually don’t give you all the power that you get by using the corresponding

bvb_02.book Page 61 Thursday, March 30, 2006 12:39 PM

62 Chapter 3

classes directly from the .NET class library. In many cases, you’ll need to use
the real .NET classes anyway, so many developers question why they should
spend time learning a scaled-down model. Finally, the My objects are unabash-
edly VB-centric. Even though C# developers (and programmers working in
other .NET languages) can, technically, use the My objects, most won’t go to
the extra work. As a result, VB code that relies heavily on the My objects isn’t
as easy to convert into pure C# code, which is a drawback if you like to
exchange ideas and insights with programmers of other stripes.

Throughout this book, you’ll occasionally dip into the My objects. You’ll
learn when they provide the quickest, neatest solution. However, we won’t
shy away from getting more power by delving into the .NET Framework on
our own either.

Code Files

In Visual Basic 6 (and older versions), there were several specialized types of
files that went into a project. Form files (.frm) contained the graphical layout
and event-handling code for a form. Class files (.cls) contained individual
classes that you created on your own. Module files (.mod) contained variables
and functions that could be made globally accessible. The whole collection
of files was grouped into a project, which was described by the familiar Visual
Basic project file (.vbp) and could be further bundled into project group
files (.vbg). Keeping all these different file types straight could be a bit of a
challenge.

Visual Basic 2005 takes a different approach.

� When you start a new application, you create a solution file (.sln), as
shown in Figure 3-8.

� Each solution can hold one or more project files (.vbproj).

Figure 3-8: A solution file

Code Form, Class,
or Module (.vb)

Code Form, Class,
or Module (.vb)

Code Form, Class,
or Module (.vb)

Code Form, Class,
or Module (.vb)

Project
(.vbproj)

Project
(.vbproj)

Project
(.vbproj)

Project (.vbproj)

Solution (.sln)

bvb_02.book Page 62 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 63

� All the other files are code files (.vb). These code files can contain multi-
ple classes, modules, and forms (which are really just a special type of
class). In other words, the logical grouping of your program into classes,
modules, and forms doesn’t necessarily determine the physical division
of your code into files on the hard drive.

NOTE As you’ll discover in Chapters 12 and 13, Internet applications are a little different
from other programs and contain a variety of distinct file types.

Class and Module Blocks

In order to make this model possible, Visual Basic 2005 use various block
structures to hold classes, modules, and forms. For example, here’s a code
file that contains a class and a module:

Public Class MySampleClass
 ' Code here.
End Class

' No man's land...code can't exist here.

Public Module MySampleModule
 ' Code here.
End MyModule

Inside a class or module definition, you can add procedures and write your
code as normal. However, you can’t place any type of variable or procedure
declaration outside of these definitions. The following example illustrates the
difference.

Public i As Integer ' This is not allowed!

Public Class MySampleClass
 Public j As Integer ' This is OK.
 Public Sub MySub() ' This is also fine.
 End Sub
End Class
Public Sub MySub2() ' This has no meaning!
End Sub

Public Module MySampleModule
 Public Sub MySub3() ' This is OK.
 End Sub
End Module

All classes and modules are contained in a root element that you
don’t see: your project’s namespace. For example, if you place the code
shown above into a .NET component (something you’ll try in Chapter 7),
another application can access MySub3() using the fully qualified name
MyProject.MyModule.MySub3().

bvb_02.book Page 63 Thursday, March 30, 2006 12:39 PM

64 Chapter 3

TIP Bear in mind that Visual Basic 2005’s multipart file format should not be seen as a
good reason to combine dozens of classes and modules into a single file. Organization
at the file level still makes sense. The only difference is that now you have the ability to
group together small, interconnected classes in one file.

Namespace Blocks

All the code you enter in your project is contained in a root namespace. By
default, Visual Basic 2005 will assign it the name of your application. To
rename your project’s root namespace, right-click your project in the
Solution Explorer, and choose Properties. Then edit the text in the Root
Namespace text box. You can also change the assembly name of your program
at the same time (the name the final .exe file will have when you build it).

NOTE It’s all well and good to learn how to change your root namespace, but a logical question
is why bother? Technically, you care about your project’s namespace only if you want it
to be used by other applications. For example, if you’re creating a database component
for a Fortune 100 company, it makes more sense to use the namespace DatabaseLibrary
rather than MyProject0043. Of course, even if you aren’t building a component, it’s a
good rule of thumb to choose respectable namespace names just in case you want to
reuse your code in the future.

You can also create additional namespaces to help you organize your
code in a large application. To do this, use the Namespace/End Namespace block.
Namespaces have to be defined outside all other constructs. This means that
you can’t create a namespace inside a class or a module; it has to be the other
way around. Here’s an example of how you might create a new namespace
(named Configuration) to hold a module named ConfigTools:

Namespace Configuration

 Module ConfigTools
 Public Sub UpdateSettings
 ' Some code goes here.
 End Sub
 End Module

End Namespace

In this example you can access the UpdateSettings() procedure from another
namespace in your project as Configuration.ConfigTools.UpdateSettings() or from
another application as [ProjectName].Configuration.ConfigTools.UpdateSettings().

Adding Code Files
You can easily add modules, forms, and ordinary code files to a Visual Basic
2005 project using the Project menu. Choose Project�Add New Item to get
a full list of choices, as shown in Figure 3-9.

bvb_02.book Page 64 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 65

Figure 3-9: Adding a new file

Visual Basic 2005 projects aren’t limited to code files. You’ll also see some
templates for quickly creating About boxes and other common windows.
You can even add other resources such as bitmap files, HTML pages, and
icons. The ability to add these files directly into your project ensures that
you can keep track of important resources.

Data Types

Most Visual Basic 6 data types remain the same in VB 2005, at least on the
surface. For example, all of the following statements are still valid:

Dim MyInteger As Integer
Dim MyString As String
Dim MyDate As Date

These may look the same as the built-in data types in Visual Basic 6,
but in fact they are not. Each one of these variable types is mapped to a
corresponding type in the System namespace. For example, the Date keyword
really corresponds to System.DateTime, and the String keyword represents
System.String.

The System Types
The types in the System namespace are shared by every .NET language, and
they form part of the infrastructure that lets you integrate code components
written in different languages without running into any trouble. Of course,
in order for this integration to work, the built-in variable types in Visual
Basic 6 had to be harmonized with those from other programs to create the
best possible common type system. This is the reason for most of the data
type changes that you’ll find in VB 2005. For example, Integer now maps to

bvb_02.book Page 65 Thursday, March 30, 2006 12:39 PM

66 Chapter 3

System.Int32—a 32-bit integer that can store a number as great as
2,147,483,647—rather than to Visual Basic’s traditional 16-bit integer,
which could accommodate numbers only up to 32,767.

Dim MyInteger1 As Integer ' This is a 32-bit integer.
Dim MyInteger2 As System.Int32 ' This is also a 32-bit integer.

This is quite a convenience for new VB developers, who often use integers
as loop counters without realizing the size limitations. One manifestation of
this problem is a VB 6 report-generating program that fails with an overflow
error if it finds more than 32,767 records in a database.

If you’re moving from VB 6, you’ll find a slew of minor changes to many
of your favorite data types. Strings work more or less the same way that they
did in VB 6, although you can’t create a fixed-length string anymore. User-
defined types (those created with Type/End Type statements) are another
casualty, but they can be replaced by structures and classes, as you’ll see in
Chapters 5 and 6. Another change is that the Currency data type is no longer
available. You’ll have to use Decimal instead, which is optimized for financial
calculations that require exact fractions.

Multiple Variable Declaration

Visual Basic has always allowed you to create more than one variable on a
single line. In the past, however, the results weren’t always what you might
have expected. Consider the following example:

Dim intA, intB, intC As Integer

In Visual Basic 6 this line of code would create one integer (intC) and
two Variants. (A Variant was the default variable type in VB 6.) In Visual
Basic 2005, however, all the variables in this line will become integers. In fact,
Visual Basic 2005 no longer supports Variants. If you want to create a variable
that can accommodate different data types, you will need to use the generic
System.Object type.

Initializers

Initializers are a convenient VB 2005 feature that lets you assign a value to a
variable on the same line where you define it. Here’s an example:

Dim i As Integer = 1

This technique even works with arrays (in which case you need to
enclose all the values in a set of curly braces) and objects:

' Define an array and fill it (with four numbers) in one step.
Dim NumberArray() As Integer = {1, 2, 3, 4}

bvb_02.book Page 66 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 67

' Define and initialize an object in one step, using its constructor.
Dim MyFile1 As System.IO.FileInfo = New System.IO.FileInfo("c:\readme.txt")

' or...
Dim MyFile2 As New System.IO.FileInfo("c:\readme.txt")

You can also create new variables inside other code statements, such as
function calls, by using the New keyword:

ProcessFile(New System.IO.FileInfo("c:\readme.txt"))

Don’t overuse this convenience, though, because it can make your code
difficult to read.

Data Types as Objects

Visual Basic 2005 is object-oriented to the core. If you haven’t had any exper-
ience with object-oriented programming and design, you may have to wait
until Chapters 5 and 6 before the .NET picture really becomes clear. How-
ever, I can’t wait that long to divulge one more unusual secret: Every type in
Visual Basic 2005 is really a full-fledged object.

The most important consequence of this shift is the fact that all data
types have built-in methods for handling associated tasks. For example, you
may remember that Visual Basic 6 included a whole host of functions for
calculating such values as the length of a string or the upper boundary of an
array. One of the goals of .NET was to remove this collection of disorganized,
language-specific functions and provide equivalent or better capabilities
through the elegant class library.

Accordingly, you might expect to find classes in the System namespace
that contain similar helper methods, organized according to function. But
there’s a weakness to this design—in order to use this approach, you’d need
to know which class to use. For example, in order to manipulate a string,
you’d need to find a (hypothetical) StringManager class. Learning about all
these helper classes would be a significant bit of extra work.

A better option is to organize these features so that they’re actually a part
of related data type. For example, the length of a string should be a charac-
teristic of the String object. That way, you can get the length information
without resorting to another class or a miscellaneous function that’s built
into the VB language. The following section demonstrates this principle
and gets under the hood with the System.String type.

Strings

In .NET, every string is an object based on the System.String type. That
means a string contains all the basic methods that it needs, bundled right
with it.

bvb_02.book Page 67 Thursday, March 30, 2006 12:39 PM

68 Chapter 3

The following example shows how string manipulation works in the
.NET world. This code compares two ways to find the length of a string—
using the Len() function, which is a part of the VB language, and using the
Length property, which is a part of every String object.

Dim MyString As String = "This is some sample text."
Dim StringLength As Integer

' The old fashioned way, which is still supported in VB 2005
StringLength = Len(MyString)

' The .NET way, which treats the string as a System.String object.
StringLength = MyString.Length

In order to use the first approach, you need to know that the built-in
Len() function exists. In any language, there could be hundreds of built-in
functions. The worst part is that they aren’t organized in any way. The only
way to know what functions work with what data types is through hard-won
experience.

The second approach is much nicer. The Length property is built into
your String object. To find out about it, you simply need to type your variable
name (MyString), hit the period key, and look through the IntelliSense list of
string-related functionality (see Figure 3-10).

Figure 3-10: IntelliSense for a string

These techniques work for both string variables and string literals
(text enclosed in quotation marks). Here are a few more examples of string
manipulation code:

Dim MyString As String

' Capitalize a string and trim spaces, all in one line.
MyString = "lower case ".ToUpper().Trim() ' = "LOWER CASE"

bvb_02.book Page 68 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 69

' Get the portion of the string that starts at the second character
' and is four characters long. Note that strings start numbering at 0,
' which represents the first character.
MyString = MyString.Substring(1, 4) ' = "OWER"

' Replace all occurrences of the characters "W" with "LD".
MyString = MyString.Replace("W", "LD") ' = "OLDER"

' Get a string from an integer.
Dim MyInteger As Integer = 42
MyString = MyInteger.ToString() ' = "42"

These examples only scratch the surface. Table 3-1 provides a more
comprehensive look at what a String object can do. For even more details,
check out the class library reference in the Visual Studio Help. In the follow-
ing sections you’ll learn about some of the object smarts that are built into
other common data types.

,

Table 3-1: Members of the String Class

Member Description

Length Returns the number of characters in the string.
ToUpper() and ToLower() Return a copy of the string with all the characters changed to be

uppercase or lowercase.
Insert() Puts another string inside a string at a specified (zero-based) index

position. For example, Insert(1, "pre") adds the string “pre” after
the first character of the current string.

Remove() Removes a specified number of strings from a specified position.
For example, Remove(0, 1) removes the first character.

Replace() Replaces a specified substring with another string. For example,
Replace("Hi", "Bye") changes all occurrences of “Hi” in a string
to “Bye”.

Substring() Extracts a portion of a string of the specified length at the specified
location (as a new string). For example, Substring(0, 5) retrieves 5
characters starting at position 0 (the start of the string).

StartsWith() and
EndsWith()

Determine whether a string ends or starts with a specified
substring. For example, StartsWith("The") will return either
True or False, depending on whether the string begins with the
word “The”.

IndexOf() and
LastIndexOf()

Find the position of a substring in a string. This returns the
first match. IndexOf() starts searching at the beginning, while
LastIndex() starts at the end and works backward. There are
also versions of these methods that accept an integer indicating the
position where you want to start the search.

Split() Divides a string into an array of substrings. It splits the string by
looking for a delimiter you indicate. For example, use Split(" ")
to split a sentence into individual words, by dividing it wherever a
space occurs.

Join() Fuses an array of strings into a new string. You can specify a
separator that will be inserted between each element.

(continued)

bvb_02.book Page 69 Thursday, March 30, 2006 12:39 PM

70 Chapter 3

TIP Remember, many traditional Visual Basic functions are still supported for backward
compatibility. However, the object-oriented way of doing things is often more elegant
and more organized. You’ll learn far more about objects and how to use them in
Chapters 5 and 6 of this book.

More Efficient Strings

The .NET string is easy to work with, but it doesn’t always perform well. For
example, it’s not very efficient when you need to paste together a new string
out of several smaller strings. Because of the way the String data type is de-
signed, this type of operation actually generates a new String object for
each new addition, and creating a new object takes a short amount of time.
Multiply that by several thousand (for an intensive string-processing
algorithm), and you may wind up with a sluggish application.

To see the problem in action, try out the following code, which stitches
together a new string out of 10,000 snippets:

Dim BigString As String = ""
For i As Integer = 1 To 10000
 ' Enlarge BigString.
 BigString &= " This is string part " & i.ToString()
Next

This code is slow because it requires creating (and abandoning)
1,000 string objects. Fortunately, .NET doesn’t expect you to give up
string parsing. In situations where you need fast processing (for example,
when combining a large number of strings), you can use a more specialized
System.Text.StringBuilder class. When you create a StringBuilder, it latches on
to a buffer of memory where it can store its string. As you enlarge the string
(by calling the StringBuilder.Append() method), it simply grabs more memory
as needed, rather than generating a whole new object. When you’re finished
your string operations, you can convert your StringBuilder back into a con-
ventional string by calling the ToString() method.

Here’s an example that rewrites the earlier code snippet to use a
StringBuilder:

Dim BigStringBuilder As New System.Text.StringBuilder()
For i As Integer = 1 To 10000

Trim(), TrimEnd(),
and TrimStart()

Remove spaces (or some other character) from the sides of a string.
You can use Trim() to remove this character from both sides, or
TrimStart() or TrimEnd() to remove them from just the beginning
or end.

PadLeft() and PadRight() Add the specified character to either side of a string, the number of
times you indicate. For example, PadLeft(3, MyString) returns a
string with three additional spaces on the left side.

Table 3-1: Members of the String Class (continued)

Member Description

bvb_02.book Page 70 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 71

 ' Enlarge BigStringBuilder.
 BigStringBuilder.Append(" This is string part ")
 BigStringBuilder.Append(i.ToString())
Next
Dim BigString As String = BigStringBuilder.ToString()

If you run both of these code sections, you’ll discover that the StringBuilder
works almost instantaneously, while the ordinary string code is sluggish. Try
the StringProcessing test project (available with the samples for this chapter)
to see the difference in action.

Dates and Times
Date variables also have some interesting built-in features. For example,
you’ll find members that make it easy to retrieve portions of a date and
perform date calculations. You can also use the TimeSpan class to store a
measured interval of time, instead of a specific date. Here’s an example:

Dim MyDate As Date
Dim MySpan As TimeSpan

' Set the date to today and the timespan to one day.
MyDate = Date.Now
MySpan = TimeSpan.FromDays(1)

' This displays the current hour.
MessageBox.Show(MyDate.Hour)

' This moves the date to tomorrow.
MyDate = MyDate.Add(MySpan)

' Here's another way to modify dates, which moves us back to today.
MyDate = MyDate.AddDays(-1)

Arrays

Arrays in Visual Basic 2005 always start counting at element 0. The types in
the class library also follow this convention. (This is a change from VB 6,
where some collections were 0-based and others 1-based, with little real
consistency.)

When declaring an array, you specify only the upper boundary, as shown
in our next example. The total number of elements in the array is always one
greater than the number you specify.

Dim MyArray(10) As String ' This creates an array with 11 elements,
 ' numbered from 0 to 10.

Dim MyArray(1 To 10) As String ' This doesn't work!
 ' The To keyword is allowed,
 ' but the lower bound must be 0.

bvb_02.book Page 71 Thursday, March 30, 2006 12:39 PM

72 Chapter 3

Opinions vary about this change. Many programmers resent the fact that
arrays have been limited, while other developers have accepted it as a cost
of integration with the Common Language Runtime. It also adds a level of
commonality that helps programmers share code and know what to expect.

If you don’t want to specify your array bounds at all, you can create and
fill an array in one step using the new initializer syntax. Here’s an example:

' This creates a three-element array with the numbers 1, 2, and 3.
' Notice that you don't need to explicitly indicate the array size,
' because it's based on the number of values you supply.
Dim NumberArray() As Integer = {1, 2, 3}

' Here's the much longer way of doing this:
Dim NumberArray(2) As Integer
NumberArray(0) = 1
NumberArray(1) = 2
NumberArray(3) = 3

NOTE It is technically possible to create a .NET array with a lower bound other than zero by
resorting to some very strange commands. I certainly don’t recommend this ugly work-
around. Instead, if you need a more flexible type of array, consider a more object-oriented
solution and create a custom collection class.

Arrays and IEnumerable

One useful addition to arrays is the IEnumerable interface, which lets you move
through an array with a For Each command instead of looking up the appro-
priate upper and lower boundaries and then specifying the coordinates. The
following example shows how you can examine every string in an array with a
few lines that are very light on manual code. The only drawback is that you
receive a read-only element from the array, which is suitable for a display or
print operation but not for a modification.

Dim Foods() As String = {"cheese", "meat", "sugar", "soy milk"}

' Define a variable that has the same type as your array.
Dim Food As String

' Loop through the array, getting each string.
For Each Food In Foods
 ' Display the string in a list box.
 lstStrings.Items.Add(Food)
Next

Built-in Array Features

Just like strings and dates, arrays are also objects. They’re based on the
System.Array class.

bvb_02.book Page 72 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 73

It’s interesting to look at some of the built-in features of an array. For
example, you can find the bounds of an array using methods GetLowerBound()
and GetUpperBound(). That means you can iterate over an array with a loop
like this:

For i = MyArray.GetLowerBound(0) To MyArray.GetUpperBound(0)
 ' Some code here.
Next

The methods shown here replace the old UBound() and LBound() functions,
although those functions are still supported if you want to code in the tradi-
tional (and slightly outdated) way. The 0 in this example specifies the first
element. Remember, VB 2005 starts counting array elements at 0, so 0 means
“first.” Note that we don’t really need to check the lower boundary, because
we know that all arrays start numbering at 0. (So you could hard-code the
number 0 in your loop.)

The Array class also includes shared methods. The methods and properties
shown so far use instance methods, which means you need to create an array
in order to use them. Shared methods, however, can be used independently.
To use a shared method, you use the name of the class, which in this case is
Array.

For example, you can reverse an entire array in one blow with the
following code:

Dim NumberArray() As Integer = {1, 2, 3}
Array.Reverse(NumberArray)

' NumberArray now contains the sequence of elements 3, 2, 1.

You can use similar shared methods for even more value-added features:

Dim NumberArray() As Integer = {143, 242, 7}
Array.Sort(NumberArray)

' NumberArray now contains the sequence of elements 7, 143, 242.

This code works as long as the array contains elements that can be sorted
and has only one dimension. Examples include numbers or strings.

Even array searching is automated:

Dim Foods() As String = {"cheese", "meat", "sugar", "soy milk"}

Dim MeatPosition As Integer
MeatPosition = Array.IndexOf(Foods, "meat")

' MeatPosition is set to 1, representing the second element.
' If you receive –1, the item could not be found.

For more information, refer to the System.Array class in the class library
reference.

bvb_02.book Page 73 Thursday, March 30, 2006 12:39 PM

74 Chapter 3

Arrays as Reference Types

Another interesting detail about arrays is that they are actually reference types,
not value types like the other simple variables. That means that, behind the
scenes, an array variable holds a reference to an array object that’s floating
around in memory. (Essentially, a reference is a memory pointer, but you’ll
never get a chance to actually take a look at that memory pointer, because
it’s managed by .NET.) By comparison, a value-type variable contains its
information directly. Both reference and value types are objects. However,
reference types are more common when dealing with complex objects,
because they provide a more efficient way to manage large amounts of
memory. Numeric data types and dates are simple value types.

In most situations, the technical different between reference types and
value types won’t affect your code. You’ll be happy enough to manipulate both
using variables. However, there are two cases where reference types may
produce slightly unexpected behavior because of their differences. This quirk-
iness appears when you write code that attempts to copy an array or test
whether two arrays are equal.

Here’s an example of this weirdness in action. Setting two arrays equal to
each other doesn’t copy the contents of an array—only the reference. You
end up with two array variables that access the same array. If you modify one
of these variables, the other will be updated as well.

' Integers are value types.
Dim Integer1 As Integer = 100
Dim Integer2 As Integer
Integer2 = Integer1 ' Copies the value 100 into Integer2.
 ' We end up with two copies of the
 ' same information.

' Arrays are reference types.
Dim NumberArray1() As Integer = {1, 2, 3}
Dim NumberArray2() As Integer
NumberArray2 = NumberArray1 ' Copies the reference into NumberArray2.
 ' We end up with two variables accessing
 ' the same array!

' This change affects the first element of both
' NumberArray2 and NumberArray1.
NumberArray2(0) = 52

To create a real copy of an array, you just need to use its built-in Clone()
method, as shown here:

NumberArray2 = NumberArray1.Clone() ' A duplicate copy is created.
 ' We have two copies of the array.

Once again, the Clone() method is one of the many features provided to
all array objects.

bvb_02.book Page 74 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 75

NOTE You’ll learn more about reference types and how they differ from value types when you
dig into object-oriented programming in Chapter 5. All reference types behave like the
array when you attempt to create a copy (although not all provide a Clone() method to
get around the problem).

Changes to Operations

Operations look the same in Visual Basic 2005 as they did in previous
releases, so you won’t have any trouble combining strings and adding
numbers. However, you can make use of a few elegant shortcuts. The
following sections explain what’s new.

Assignment Shorthand

Visual Basic 2005 provides timesaving ways to perform simple arithmetic
operations. They look a little strange at first, but they let you save a few extra
keystrokes and condense overly verbose code. If you have used C#, Java, Perl,
or a similar language, you will be familiar with these already.

intA += 1 ' Equivalent to intA = intA + 1
intA += intB ' Equivalent to intA = intA + intB
intA -= 10 ' Equivalent to intA = intA - 10
strName &= "End" ' Equivalent to strName = strName & "End"

You can use this trick with all the basic numeric operators, including
addition (+), subtraction (-), multiplication (*), division (/), and
exponents (^).

Converting Variables

Most professional applications use the Option Strict statement to prevent
automatic variable conversions. These automatic conversions (famously
called “evil type coercion” in classic versions of Visual Basic) are dangerous
because they may work under some circumstance and fail under others.
The problem is explored in much more depth in Chapter 8, which deals
with bug proofing your code. For now, it is enough to know that conver-
sions that might fail, such as converting a string to a number or a 32-bit
integer to a 16-bit integer, can’t occur automatically if you have Option
Strict enabled. You have to do the work manually, using either the shared
functions of the System.Convert class or the CType() function that is built into
Visual Basic 2005.

CType() works by taking two parameters: the variable you want to convert
and the type that you want to convert it to. Consider this example:

' This converts a string to a number.
MyInteger = CType(MyString, Integer)

bvb_02.book Page 75 Thursday, March 30, 2006 12:39 PM

76 Chapter 3

Here is another example that uses conversion with basic objects, VB 2005’s
replacement for the Variant:

Dim objA As Object, objB As Object
objA = 3
objB = "3"

' Will not work if Option Strict is on!
' VB 2005 doesn't know how to add mysterious objects.
objA = objA + objB
' This works, provided the objects can be converted to integers.
objA = CType(objA, Integer) + CType(objB, Integer)

Math

The Math class contains a number of shared properties and methods that sup-
port mathematical operations. For example, you can get the value of the con-
stant pi by using the Math.Pi property. A few other examples are shown here:

MyValue = Math.Sqrt(81) ' MyValue is 9.
MyValue = Math.Abs(-42) ' MyValue is 42.
MyValue = Math.Round(4.779, 2) ' MyValue is 4.78.
MyValue = Math.Log(4.22) ' I'll let you calculate this one.

Random Numbers
It’s easy to generate random numbers in Visual Basic 2005. This is another
programming capability that Microsoft has moved out of the dark alcoves of
specific languages and into the common class library. This example uses the
System.Random class to automatically generate an integer between 0 and 5:

Dim MyNumber As Integer
Dim RandomGenerator As New Random()

' Retrieve a random number from 0 to 5.
' (You can add one to get a random number from 1 to 6.)
MyNumber = RandomGenerator.Next(5)

' Retrieve another random number, but this time make it an integer
' from 1 to 6. (VB 2005 interprets this as a value of 1 or larger,
' but always less than 7.)
MyNumber = RandomGenerator.Next(1, 7)

Some New Rules for Scope
Scope is the measure of a variable’s life and of the ability of other parts of your
code to access it. You are probably familiar with the fact that a Private variable
in a module or class can’t be accessed by any code outside of that module or
class. Similarly, a variable created inside a procedure exists only as long as
the procedure does and can’t be accessed in any other routine.

bvb_02.book Page 76 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 77

Visual Basic 2005 tightens scoping another notch. Variables defined
inside block structures (such as loops and conditional blocks) can’t be
reached from outside the block. This probably won’t affect you, but it is
still good to know.

If MyCondition = True Then
 ' Create a variable with If-block scope.
 ' (This scoping behavior is automatic and unchangeable.)
 Dim NewInteger As Integer = 12
End If
' NewInteger cannot be accessed here.

Short-Circuit Logic

In previous versions of VB, you could use two logical operators to make
comparisons: And and Or. VB 2005 adds two new operators to the mix: AndAlso
and OrElse.

AndAlso and OrElse work in a similar way to And and Or. The difference is
that they use short-circuit logic, which allows you to evaluate just one part of
a long conditional statement.

Here’s how it works. Imagine you want to perform a certain task only if
two conditions are true. This is a situation that’s tailor made for an And.

If MyString <> "" And MyInteger > 0 Then
 ' Code here runs if MyString isn't empty and MyInteger is more than 0.
End If

In this situation, VB always evaluates both conditions. In other words, it
tests whether MyString is blank, and then it checks MyInteger. But if you use
AndAlso, VB decides to use a bit of a shortcut:

If MyString <> "" AndAlso MyInteger > 0 Then
 ' Code here runs if MyString isn't empty and MyInteger is more than 0.
End If

Now VB begins by checking whether MyString is blank. If MyString is blank,
it doesn’t bother to check MyInteger at all. That’s because it’s clear that the
condition can’t be met, because one of the criteria has already failed. This
process of skipping the second check when it’s not required is called short-
circuit evaluation.

In this example, it doesn’t matter much whether you use And or AndAlso.
The end result is the same, and the performance is roughly equal. However,
there are some cases where it could make a difference. For example, your
condition might call a function that runs some code. Here’s an example:

If MyString <> "" AndAlso TestIfValid(MyInteger) Then
 ' Code here runs if MyString isn't empty and the TestIfValid()
 ' function returns true.
End If

bvb_02.book Page 77 Thursday, March 30, 2006 12:39 PM

78 Chapter 3

If MyString is blank, the TestIfValid() function isn’t called. If MyString isn’t
blank, the TestIfValid() function is called, and its return value is checked. This
is important, because the code in TestIfValid() could conceivably take some
time or affect other details in your program.

The same principle holds with OrElse.

If MyString <> "" OrElse TestIfValid(MyInteger) Then
 ' Code here runs provided one of the following is true:
 ' MyString isn't blank or TestIfValid() returns true.
End If

In this case, if MyString isn’t blank, there’s no need to run TestIfValid().
That’s because the condition is already satisfied by the first part of the expres-
sion. On the other hand, if MyString is blank, VB will call TestIfValid() and
run the conditional code if it returns true.

AndAlso and OrElse are handy when dealing with objects that might
contain null references. Consider this example:

If MyObject Is Nothing Or MyObject.Value > 10 Then
 ' (Do something.)
End If

Technically, an object with a null reference hasn’t been created yet, so
it’s not safe to do anything with it. That means this code will generate an
error if MyObject is Nothing (a null reference). That’s because the second
condition will still be evaluated, even though it isn’t valid.

The solution is to use short-circuit evaluation:

If MyObject Is Nothing OrElse MyObject.Value > 10 Then
 ' (Do something.)
End If

Now the object won’t be examined if it doesn’t really exist.

Quickly Skipping Through a Loop

VB 2005 adds a Continue statement that you can use inside any loop.
The Continue statement exists in three versions: Continue For, Continue Do,
and Continue While. You use the version that corresponds to the type of loop
(For...Next, Do...Loop, or While...End While). When the Continue statement is
executed, it automatically skips any remaining code in the loop and starts
the next iteration.

To see the Continue statement in action, consider this code:

For i = 1 to 1000
 ' (Code goes here.)

 If i > 10 Then
 Continue For

bvb_02.book Page 78 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 79

 End If

 ' (More code goes here.)
Next

This code loops 1,000 times, incrementing a counter i. The first ten times,
both blocks of code execute. But once i is greater than 10, the behavior
changes. For example, when i is 11, the first block of code runs, and then
the condition is evaluated. Because 11 is greater than 10, the Continue For
statement springs into action. Execution skips over the remaining code in
the loop, and the next iteration starts, with i set to 12.

In this example, the Continue For statement isn’t really required. You
could solve the problem by making the second block of code conditional.
However, if you have deeply nested code in which you evaluate multiple
conditions, the Continue statement can be a handy way to jump out of
the mess.

Enhanced Procedures

Just as in previous versions of Visual Basic, VB 2005 incorporates two types of
procedures: the function, which returns a value, and the subroutine, which
does not. In the following sections, you’ll learn about the changes .NET has
in store.

NOTE In object-oriented speak, procedures are also known as methods. The term methods
includes both functions and subroutines. It’s the .NET standard, and you’ll see it used
throughout this book—starting now.

Calling a Method

One minor change with method calls is that they now require parentheses.
In the past, parentheses were used only when a return value was needed:

' Visual Basic 6 code

' No parentheses allowed.
MsgBox "Hi there!", vbOKOnly

' Parentheses required.
Response = MsgBox("Delete file?", vbYesOrNo, "Confirm")

Visual Basic 2005 always uses parentheses. It’s only a cosmetic change,
but it makes code a little more consistent, and it aids readability because
you can distinguish a method call from another type of statement at a
glance:

' Visual Basic 2005 code

' Parentheses are always required.

bvb_02.book Page 79 Thursday, March 30, 2006 12:39 PM

80 Chapter 3

MessageBox.Show("Hi there!" , MessageBoxButtons.OK)

Response = MessageBox.Show("Delete file?", "Confirm", _
 MessageBoxButtons.YesNo)

(Notice here also that the MsgBox function has also been replaced with
the MessageBox class.)

Parentheses are even used when a function or subroutine doesn’t require
parameters, as in this line, which shows a window:

Form1.Show()

ByVal and ByRef

ByVal is the new default for method parameters, and Visual Studio inserts
that keyword automatically and incessantly to emphasize the point. ByVal
parameters are passed as copies. Any changes to a ByVal parameter affect the
copy, not the original. The following method, for example, is free to change
the Number parameter without affecting the variable that was supplied in the
calling code.

Public Function CheckForPrimeNumber(ByVal Number As Integer) As Boolean
 ' What happens to Number here, stays here.
End Function

That said, there are some subtleties that you need to be aware of when
passing certain data types by value. With reference types (like the array), a
copy of the reference is passed for a ByVal parameter, not a copy of the actual
data. This copy still refers to the same in-memory object. As a result, if you
access the object and change it in some way, the change will still affect the
one and only original object, contrary to what you might expect!

In other words, changes you make to simple data types won’t return to
your calling code. However, any reference type will be modifiable whether
passed by reference or by value.

Public Function CheckForPrimeNumber(ByVal Number() As Integer) As Boolean
 ' If we change a value in the Number() array, it will affect
 ' the original array in the calling code, even though it was
 ' passed ByVal.
End Function

You could take extra, potentially painful, steps to change this behavior.
For example, you could use the array’s built-in Clone() method. However, it’s
better just to rely on your code to behave properly and refrain from tampering
with values it shouldn’t touch. Incidentally, this design makes a fair bit of
sense—after all, if .NET created a copy of a huge array every time you called
a method like CheckForPrimeNumber(), it could end up slowing down your
application.

bvb_02.book Page 80 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 81

The Return Keyword

One nice addition to methods is the Return keyword, which allows you to
write this kind of code:

Public Function Add(intA As Integer, intB As Integer)
 Return intA + intB ' Instead of Add = intA + intB

 ' Any code here will not be executed.
End Function

The Return command combines two actions together: setting the func-
tion’s result to the specified value and exiting the function immediately (as
though an Exit Function statement had been used). The nicest thing about
using Return is that you don’t need to specify the function’s name to provide
the return value. This allows you to sidestep some minor but annoying prob-
lems, such as mistyping the method name or having to update your method
code if you change the name of the method.

Optional Parameters

A method can still use optional values by incorporating a parameter array. A
parameter array is an array provided to your function that contains “everything
extra” that was added in the function call. For example, this function:

Public Function GetRecordCount(EndDate As Date, _
 ParamArray OtherOptions() As String) As Integer

 ' (Function code goes here.)
End Function

could be called with this statement:

NumberOfRecords = GetRecordCount(Date.Now, "John", "California")

The OtherOptions array would contain the string “John” at index 0 and the
string “California” at index 1.

Parameter arrays allow you to collect any extra information, and that
makes them very flexible, especially when the method being called doesn’t
need to know a lot about the extra information and can just write it to disk,
pass it to another method, or use it in a predefined way. However, a method
with a parameter array can be difficult to use, particularly for other develop-
ers, because it doesn’t define what information is required or provide any type
checking. Consequently, the method might easily end up with a lot of
mysterious information that it can’t interpret.

Generally, parameter arrays are an awkward means of using optional
values. Visual Basic 2005 provides two other options: default values and
overloaded methods, both of which are more convenient and aesthetically
pleasing.

bvb_02.book Page 81 Thursday, March 30, 2006 12:39 PM

82 Chapter 3

Default Values

With default values, you explicitly mark parameters that are optional. These
can be included, or just left blank by the calling code. If they are left blank,
the default value that you have specified will be used automatically.

For example, this method,

Public Function GetRecordCount(ByVal EndDate As Date, _
 Optional ByVal Person As String = "", _
 Optional ByVal State As String = "Kentucky") As Integer

 ' (Some code here.)
End Sub

can be called like this:

NumberOfRecords = GetRecordCount(Date.Now)

or like this:

NumberOfRecords = GetRecordCount(Date.Now, , "California")

or like this:

NumberOfRecords = GetRecordCount(Date.Now, "John", "California")

Default values may seem just about perfect. They allow you to create
methods that accept a variety of different information, but they also define
all the possible pieces of information. In practice, however, optional values
aren’t always ideal. One problem is that they sometimes allow too much
flexibility. The method might end up making assumptions about what infor-
mation will be supplied, or you might end up using default values that are
inappropriate for certain situations. There is also no way to find out whether a
value hasn’t been supplied or the user has supplied a value that is identical to
the default value.

NOTE Once you declare an optional parameter, any parameters to the method that are declared
after the optional parameter must also be optional.

Method Overloading

If you want to create more flexible functions and subroutines—ones that can
accept different combinations of parameters—it’s recommended that you
use method overloading instead of default parameters. Method overloading
allows you to provide different versions of the same function or subroutine.
These methods have the same name, but they have different parameter lists
(and are preceded with the Overloads keyword).

bvb_02.book Page 82 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 83

For example, consider the following Combine() functions:

Public Overloads Function Combine(intA As Integer, intB As Integer) _
 As Integer
 Return(intA + intB)
End Function

Public Overloads Function Combine(strA As String, strB As String) As String
 Return(strA & strB)
End Function

In this scenario, if you call the Combine() function in your code, Visual
Basic 2005 will look at the parameter list you provide and match it with the
appropriate version of Combine().

IntegerValue = Combine(1, 2) ' Uses the first version to return 3.
StringValue = Combine("1", "2") ' Uses the second version to return "12".

In this case, we overload the Combine() function because “combine”
means two different things, depending on the data type that’s used.
Combining numbers involves adding them, whereas combing strings
involves joining them together. This type of differentiation already existed in
the Visual Basic language with the addition operator (+), which adds
numbers but concatenates strings, just like the Combine() function. This is an
example of operator overloading, which is built into the VB 2005 language.

Another common use of method overloading is to provide database
access routines that work with different criteria. For example, if you have
ever created a database program, you’ve probably used such functions as
GetRecordByID(), GetRecordByName(), and GetRecordsByDate(). There is nothing
wrong with this system, but it can get awkward when you have several
different databases and need to create long function names, such as
GetClientSalesByClientName().

You can provide a cleaner solution with overloaded methods:

Public Overloads Function GetUser(ID As Integer) As UserObject
 ' Code here.
End Function

Public Overloads Function GetUser(Name As String) As UserObject
 ' Code here.
End Function

' And so on...

However, you will need to make sure that the methods take different
numbers of parameters or require parameters with different data types.
A common technique is to start by creating a very basic method and then add

bvb_02.book Page 83 Thursday, March 30, 2006 12:39 PM

84 Chapter 3

overloaded versions that introduce new parameters, one by one. It’s not
enough to give the parameters different names, because you don’t use these
names when you call the method.

TIP There’s another good reason to learn about method overloading. The .NET
library uses this technique extensively in its own classes (and never uses optional
parameters). This allows you to concentrate on the information you need from a
function rather than worry about what kinds of information you can supply as
parameters.

Delegates

Visual Basic 2005 includes an interesting feature called delegates, which gives
you another way to work with functions and subroutines. A delegate is a special
type of variable that can store the location of a method. Before you can create
a delegate, you have to define its type, in a statement like this:

Public Delegate Function ProcessFunction(StringIn As String) As String

This statement doesn’t create a variable. Instead, it defines a type of
delegate. Based on this definition, the ProcessFunction delegate type can be
used to store the location of a function that accepts a single string argument
and has a string return value. (The names you give the parameters in the
declaration really don’t matter.)

Once you have this definition in place, you can use it to create a delegate
variable as you would any other variable:

Dim MyDelegate As ProcessFunction

A delegate can store references only to methods that have exactly the
same signature as the delegate definition. In other words, they need to have
the same number of parameters, the same parameter data types, and the
same return value data type. This is how delegates enforce type safety and
also prevent you from referring to the wrong function or subroutine by
accident.

Public Function CapitalizeName(Name As String) As String
 ' A reference to this function can be stored in MyDelegate.
End Sub

Public Function MyFunction(Name As String, Optional ID As Integer = 0) _
 As String
 ' This function is different. It cannot be stored in MyDelegate.
End Sub

Public Sub Process(Name As String)
 ' This won't work either. It's a subroutine, not a function.
End Sub

bvb_02.book Page 84 Thursday, March 30, 2006 12:39 PM

VB 2005 Basic s 85

Once you create a variable based on a delegate, you can assign a method
to it by using the AddressOf operator. The AddressOf operator lets Visual Basic
2005 know that you are using a reference to a method, not trying to run it
directly.

Dim MyDelegate As ProcessFunction
MyDelegate = AddressOf CapitalizeName

Once you set a delegate, you can run the method later, just by using the
delegate:

' Calls the CapitalizeName() function and assigns its return value
' to UCaseName.
Dim UCaseName As String
UCaseName = MyDelegate("samantha jones")

This is a useful technique, because it allows what programmers call an
extra layer of indirection. This means that the code you create is more generic
and has a better chance of being reused.

Here’s a function that accepts a delegate as an argument and uses the
function specified by the delegate to perform a task:

Public Sub ProcessArray(MyArray As String(), _
 FunctionToUse As ProcessFunction)

 Dim i As Integer
 For i = 0 to MyArray.GetUpperBound(0)
 MyArray(i) = FunctionToUse(MyArray(i))
 Next i

End Sub

You call the subroutine like this:

Dim CustomerNames() As String = {"bob evans", "chan park", "jill svetlova"}
ProcessArray(CustomerNames, AddressOf CapitalizeName)

The result of this sleight of hand is that each element of CustomerNames
will be modified according to the CapitalizeName() method.

By using a delegate, you can create a single ProcessArray() subroutine
that can process array elements in a variety of different ways, depending on
the FunctionToUse reference that you supply. You only need to write the code
in ProcessArray() once, but you still get ultimate flexibility (and the envy of
your colleagues).

NOTE It can become a little confusing to keep all of these ingredients in mind at once.
To perform this delegate test successfully, you need to define the delegate, create a delegate
variable, point the delegate variable at the right method, and then run the method
through the delegate. You can see these steps in action by using the sample code avail-
able online—check out the DelegateTest1 and DelegateTest2 projects.

bvb_02.book Page 85 Thursday, March 30, 2006 12:39 PM

86 Chapter 3

Delegates won’t receive much more attention in this book, for two
reasons. First, delegates can often be replaced by objects and methods. For
example, we could rewrite the preceding ProcessArray() example to use a
collection of special Customer objects that support a Process() method. (If the
following example is a little perplexing, don’t worry; all will be explained in
Chapters 5 and 6.)

Public Sub ProcessArray(MyArray As Customer())
 Dim MyCustomer As Customer
 For Each MyCustomer In MyArray
 MyCustomer.Process()
 Next
End Sub

A second use of delegates is to allow communication between different
objects, by having one object store a delegate that contains a method in
another object. However, there is also a better alternative for this type of
communication—events, which are really just delegates with some added
conveniences. You’ll learn how to work with events in detail in Chapter 5.

What Comes Next?

This chapter has provided a whirlwind tour through dozens of different
language changes introduced when VB.NET replaced Visual Basic 6. The
most fundamental concept presented here was the common class library,
which is a complete programmer’s toolkit stocked with most of the features
you could ever need in any language.

This chapter also explained how and why many of the features that VB
programmers have relied upon for years are now changing from stand-alone
functions into class methods and are being grouped with the objects that they
relate to. The key to understanding the new .NET world is realizing that every-
thing is an object. The next step is to dive into object-oriented programming
with the next few chapters. Additionally, you might want to start making forays
into the class library reference to find out what methods and properties are
exposed by the common data types.

bvb_02.book Page 86 Thursday, March 30, 2006 12:39 PM

4
W I N D O W S F O R M S

Windows forms are the building blocks of
the traditional graphical programs designed

for the Windows operating system. Most of
the applications you use, from office produc-

tivity software such as Microsoft Word to interactive
games and multimedia products, can be considered
Windows Forms applications. The hallmark of a Win-
dows Forms program is that every part of its user
interface is built out of windows.

Windows Forms applications are all-purpose solutions to many pro-
gramming problems. And .NET 2.0 makes it easier than ever to design a rich
interface with support for resizing forms, splitting windows, and anchoring
and docking controls. VB 2005 also takes the confusion out of Multiple
Document Interface (MDI) applications, adds enhanced designers that let
you build trees and lists by hand, and introduces the most powerful toolbars
and menus yet.

bvb_02.book Page 87 Thursday, March 30, 2006 12:39 PM

88 Chapter 4

Perhaps the most remarkable shift from classic VB is the fact that each
form, along with all the controls on it, is now completely defined in Visual
Basic code. This means that as you use the designer to rearrange your user
interface and set control properties, the IDE actually quietly stores the infor-
mation in a .vb code file. This allows you to tweak these settings by hand, or
even to dynamically create a portion of the user interface while the applica-
tion is running. All in all, it gives you greater control over your application.

New in .NET

.NET introduces a whole new model for working with forms—one that could
easily occupy an entire book. It saves C++ developers the effort of wrestling
with the MFC framework and gives Visual Basic programmers a level of con-
trol they’ve never had before.

A unified model for Windows applications
All .NET languages share the same Windows Forms (or WinForms) tech-
nology, which means that Microsoft won’t introduce new controls that
are available only to developers using a certain language. Just as all .NET
languages share a common runtime, they also all use exactly the same
user interface toolkit.

The component tray
In earlier versions of Visual Basic, controls were such a popular and easy
way to add functionality to a program that they were used even when the
“control” (for instance, a timer) didn’t require a visual interface. In VB
2005, these invisible components are no longer placed on a form’s draw-
ing area. Now they are organized in a dedicated component tray.

Anchoring and docking
These are the kind of little frills that win the hearts of developers.
Anchoring and docking let you make controls move and change size
automatically, so that you never need to write resizing code again. And if
you have a more sophisticated layout in mind, you’ll get a great start with
.NET’s intelligent panel controls.

Forms are classes
Visual Basic 6 forms had a dual identity, acting both as objects and as
classes at the same time. In Visual Basic 2005, a form is just another class
that inherits from System.Windows.Forms.Form. Even better, all of its charac-
teristics—including such details as its position and the properties of the
contained controls—are included automatically in the class code.

MDI enhancements
.NET removes many traditional restrictions on your ability to work with
windows, and nowhere is that more apparent than with MDI windows.
Not only can you turn any form into an MDI parent by setting a simple
property, but you can also turn any other Windows form into a child at
runtime with a single command.

bvb_02.book Page 88 Thursday, March 30, 2006 12:39 PM

Windows Forms 89

Extender providers
In a bid for even greater organization, Visual Basic 2005 introduces the
concept of providers, which are controls that enhance other controls on
the same form with additional properties. For example, if you want your
controls to have tooltips, you can add a ToolTip control to the component
tray, and voilà!—every control has a new ToolTip property.

Getting Started

Windows Forms applications get their name from the fact that they are built
out of a number of windows, or forms. Different applications use windows
differently. For example, multiple document (MDI) applications, such as
Visual Studio, can designate that several windows be manipulated inside a
larger “container” window. Other applications—Windows Explorer, for
example—use a single window that divides itself into several resizable panes.
Each of these types of interfaces is easy to create with Visual Basic 2005.

At this point, it’s a good idea to start a Windows Forms project and try
adding some controls to it. Much as in earlier VB versions, you add a control
by selecting the icon and drawing it on the design surface. You can also add
more forms by right-clicking your project in the Solution Explorer and choos-
ing Add�Add Windows Form.

NOTE In this section, we explore how you can design the interface for a project with a single
form. As you start adding more forms and writing code to handle events and to com-
municate information from one form to another, the VB 2005 world takes a couple of
twists. We’ll explore the implications of multiple forms, and their underlying architec-
ture, later in the chapter.

The new Windows Forms engine works like the traditional Visual Basic 6
Form Designer when it comes to creating and designing forms. Properties
are still configured in a Properties window. Controls can be moved, copied,
and aligned with the grid, exactly as they could be in classic VB. But you’ll
notice that the Toolbox packs in a great deal more—it’s now divided into
several subgroups, each with its own collection of related controls. You’ll find
the familiar Windows standards in the Common Controls group.

The Component Tray

In classic VB, some features would be implemented through “invisible”
controls, the most common example being the Timer control. This was a
convenient way to add functionality, but it was a little messy—after all,
controls were designed to provide user interface, not to replace .dll files
and other code components. Visual Basic 2005 provides a cleaner imple-
mentation through a tool called the component tray.

You’ll notice this new addition as soon as you try to draw an “invisible”
control on the design surface. (For example, try one of the items in the
Components section of the Toolbox.) Instead of appearing on the form,

bvb_02.book Page 89 Thursday, March 30, 2006 12:39 PM

90 Chapter 4

where they might be obscured by other, legitimate controls, the invisible
components will now appear in a special area of the window, as shown in
Figure 4-1.

This lets you easily add support for menus, timers, and standard Win-
dows dialog boxes (such as Open, Save, and Print, and selection windows for
Font, Color, and Print Settings). You could create these controls directly using
a couple of lines of code that access classes in the System.Windows.Forms name-
space, but the component tray makes the process effortless.

Figure 4-1: A timer in the component tray

Custom Designers

Some controls have complex properties that can’t be specified by simply
entering strings in the Properties window. A typical example is the TreeView
control, which contains a hierarchy of different elements (called nodes). In
the past, the content for complex controls like the TreeView couldn’t be created
at design time—instead, you needed to generate it programmatically. How-
ever, .NET outfits many of its most impressive controls with custom designers
that solve this problem.

For example, a ListBox control can be filled at design time using the handy
ListBox designer. Just find the Items property in the Properties window, and
click the ellipsis (. . .) next to the word Collection. A designer window will
appear where you can enter your list items (see Figure 4-2). A similar tool is
available for the Items property in the ListView control and for the Nodes
property in the TreeView control. These custom designers are lightweight
and straightforward.

bvb_02.book Page 90 Thursday, March 30, 2006 12:39 PM

Windows Forms 91

Figure 4-2: Configuring list items with the designer

The best way to get used to this new system is to try it out. The basic
principle is that you start by adding items (for example, individual nodes and
buttons) to the list on the left.

Then, to configure the properties for an individual item, you select the
item from the list and modify the property list that appears on the right. And
remember, if you want to add an image to an item, you’ll need an associated
ImageList control, which will provide a collection of pictures to choose from.
Thankfully, the ImageList control also has its own designer, so inserting and
rearranging graphics files is a breeze.

Locking Your Controls

It used to be that getting controls to line up perfectly in a complex interface
could be a slow and tricky process. It sometimes involved turning off the
Snap to Grid feature in order to position some of the controls exactly, and
then re-enabling it so that other controls could easily be placed in positions
that lined up consistently. And once you finally had your controls perfectly
arranged, you risked scattering them with an accidental mouse click.

Locking is a convenient design-time feature that can help you prevent this
type of accident. It existed in Visual Basic 6, but only in a crude “all or nothing”
form. As soon as you locked a VB 6 form, you couldn’t change anything until
you unlocked it, which often didn’t allow enough flexibility. The locking
feature still exists in Visual Basic 2005—just right-click your form and select
Lock Controls (and do it again to unlock them).

However, VB 2005 also provides a more useful version of this feature that
allows you to lock individual controls. To use it, select the control and change
its Locked property to True. You can then add new controls and rearrange exist-
ing ones, without having to worry that you’ll accidentally move the locked
control that you’ve positioned perfectly.

bvb_02.book Page 91 Thursday, March 30, 2006 12:39 PM

92 Chapter 4

Control Layout

As any Windows developer knows, it’s easy to add controls to a form, but it’s
much harder to arrange those controls in a perfectly pleasing layout. The
task becomes even trickier when you need to take into account different
window sizes and screen resolutions. Fortunately, .NET offers a set of features
that allow you to build flexible layouts that adapt easily to different conditions.
In the following sections, you’ll tour the highlights.

Anchoring

Anchoring is a simple idea that saves a lot of trouble. The best way to under-
stand anchoring is to see it in action. Examine the window shown in Figure 4-3.

Figure 4-3: An ordinary window

By default, Windows controls are “anchored” to the upper-left corner of
a form. This used to mean that as a form was resized, the controls stayed put,
because the position of the upper-left corner does not change. As a result,
unless you wrote explicit resizing code, the embarrassing blank borders at
the bottom and right edges of your form would grow wider, as shown in
Figure 4-4.

Figure 4-4: An embarrassment

bvb_02.book Page 92 Thursday, March 30, 2006 12:39 PM

Windows Forms 93

If, on the other hand, a control could be anchored to the bottom of the
form, its position would drop as you lengthened the form, guaranteeing that
the distance between the control and the bottom edge of your form always
remained constant. This anchoring to any side of a form is exactly the ability
that .NET forms provide.

To change a control’s anchoring, find its Anchor property in the Properties
window, and then change it using the special drop-down control (see Fig-
ure 4-5). Click to select the edge or edges that your control should bind to.
For example, you might want to anchor a control to the lower-right corner,
thus ensuring that the control will always be a fixed distance away from the
bottom and right edges of your form.

Figure 4-5: Anchoring options

You can even anchor a control to more than one side. In this case, the
control has to grow automatically to maintain a consistent distance away
from the form edges as the form is resized. In our sample resizable form
shown in Figure 4-6, the command buttons are anchored to the bottom
right, the group box is anchored to the left, right, and top (so it will grow to
fit the form width), and the radio buttons are anchored to the top left (the
default). A check box allows you to test anchoring by turning it on and off.
(You can try this example with the Anchoring project that’s included with
the sample code for this chapter.)

Figure 4-6: A basic resizable form

bvb_02.book Page 93 Thursday, March 30, 2006 12:39 PM

94 Chapter 4

There are some controls that you’ll never want to be resized. For
example, buttons should always be a standard, consistent size—they look
bizarre if they start to grow as a form changes size. This is one of the main
problems with many of the commercial add-ins for automatic resizing that
were in vogue before .NET hit the scene.

A sophisticated program will resize the areas of its interface that can ben-
efit from more screen real estate. For example, if you are creating a window
with a group of check-box settings, you should probably give it a fixed border,
because the window will not need to change size. On the other hand, if you
have a window that contains a control with a lot of scrollable information
(a RichTextBox, a ListView, or a DataGridView, for example), you should allow it
to grow when resized, by docking it to opposite sides.

NOTE Anchoring is always relative to the container that holds the control. For example, if you
put a button inside a panel, you can use anchoring in two ways. You can anchor the
panel so it moves or changes size when the form is enlarged, and you can anchor the
button so it moves or changes size as the panel is resized.

Docking

Docking allows a control to latch onto an edge of a window and resize itself
automatically. To add docking to a control, find the Docking property in the
Properties window, and choose an edge on which to dock (Figure 4-7). You
can only dock against a single edge (or choose to fill the entire form), and
you can’t dock and anchor a single control.

Figure 4-7: Docking options

The first time you use docking, you’re likely to become slightly frustrated.
While docking does what it claims, it also forces the control to sit flush against
the docked edge and take its full width. This often means that your control
is squeezed up against the side of the form, without enough of a border, as
shown in Figure 4-8.

bvb_02.book Page 94 Thursday, March 30, 2006 12:39 PM

Windows Forms 95

Figure 4-8: Docking problems

Thankfully, there is a way to fine-tune control docking and create a
perfectly resizable form. The secret to successful docking is padding. Padding
allows you to insert a buffer between the docked control and the form to which
it’s docked. To set some extra padding for your form, find the Padding property
in the Properties window, expand it, and set All to 15. Now the docked control
will still bind to the side and be resized, but it will have some much needed
spacing around it.

Of course, form padding doesn’t help if you are trying to dock multiple
controls next to each other and you want to increase the spacing between
them. To have more fine-grained control over spacing and docking, place
your controls inside separate Panel controls. The Panel control provides its
own Padding property. The process works like this: You dock the panel to the
side of the form, and then you configure the panel’s padding to make sure
the control it contains is placed perfectly. The online sample code includes
a simple application named Docking that allows you to play with different
docking settings (see Figure 4-9).

Figure 4-9: Adding space with docking

bvb_02.book Page 95 Thursday, March 30, 2006 12:39 PM

96 Chapter 4

It will take some experimentation before you master this system well
enough to create the interfaces you want. Many articles about Visual Basic 2005
just gloss quickly over the whole affair and don’t admit that fine-tuning an
interface is still a labor of love, even with Visual Studio’s enhanced anchoring
and docking features. To get started, you might want to start experimenting
with the sample code included for this chapter, which shows some examples
of how you can use panels to help organize groups of controls.

Maximum and Minimum Window Sizes

In VB 2005, all forms provide MinimumSize and MaximumSize properties that allow
you to set limits on how a form is resized. When these properties are set, they
stop users cold when they try to resize a form beyond its pre-established
dimensions. For example, you could cap a window at a height of 200 pixels and
a width of 400 pixels by setting the MaximumSize.Height and MaximumSize.Width
accordingly. (The default values of both are 0, which means that no limit is
enforced.)

MinimumSize and MaximumSize offer a great improvement over the manual
techniques to which Visual Basic programmers have traditionally resorted,
which involved reacting to a form’s Resize event, determining whether the
form had been made too small or too large, and then manually resizing it if
necessary. There were two significant problems with that approach: the Form
Designer had to be careful not to trigger an extra Resize event and get trapped
in an endless loop, and code in the Resize event handler reacted only after the
form had been changed to an invalid size. The latter meant that, depending
on the user’s display settings, the window would sometimes flicker noticeably
as it fought between the user’s attempted change and the programmer’s
stubbornly resistant code.

Automatic Scrolling

Have you ever wound up with too much content to fit on a single form? You
might need a more compact design, or you might be trying to cram too much
information into one place. Or, you may want to try out .NET’s automatic
scrolling feature, which gives any form instant scrollbars.

Here’s how it works. If you set the AutoScroll property of a form to True,
and you resize the form so that some controls “fall off the edge,” scrollbars
will be provided automatically so that the user can scroll through the form
and access the hidden controls. AutoScroll is a fairly crude option for large
windows, and you can usually achieve more professional results by using
anchoring and docking. However, if you use your imagination, you might
find some interesting uses for AutoScroll forms.

One useful technique is to use automatic scrolling within another con-
tainer control, like the Panel control. For example, you could create a list of
scrollable options by adding several controls inside a panel and then setting
its AutoScroll property to True. Figure 4-10 shows the difference between a
scrollable form and a scrollable panel.

bvb_02.book Page 96 Thursday, March 30, 2006 12:39 PM

Windows Forms 97

Figure 4-10: Two ways to scroll

Split Windows

The split-window interface is one of the hottest design features these days,
and the applications that use it are replacing traditional MDI programs. For
example, the system utilities component introduced with Windows 2000,
which is used for everything from configuring your hardware to adding user
accounts, has a Windows Explorer–like interface that divides a single window
into multiple, sizable components. Even applications (such as Visual Studio)
that still use the MDI paradigm usually combine it with dockable windows
and other split-window displays.

Split-window designs were somewhat of a rarity in classic Visual Basic
programs, however. That’s because before .NET they were a chore to pro-
gram, sometimes requiring reams of extra resizing code. One of Visual Basic
2005’s best-kept secrets is that it can not only dock and anchor controls, but
can also create resizable split-window programs that require no extra code.

To create a split window, you start by adding the SplitContainer control
from the Containers section of the Toolbox. Technically, the SplitContainer is
a container control that uses two panels and includes a user-resizable splitter
bar in between them. The user can drag the bar to one side or another to
change the amount of space given to each panel. Although the split con-
tainer always consists of two panels, you can change the orientation of these
panels. If you set the Orientation property to Orientation.Vertical (the default),
the splitter runs from top to bottom, creating left and right panels. The other
option is Orientation.Horizontal, which stacks a top and a bottom panel with a
splitter bar running between them.

Once you’ve added the SplitContainer (and anchored or docked it to
fill the appropriate portion of your form), you can add content inside the
SplitContainer. For example, Figure 4-11 shows a split window with a TreeView
in one panel (the left) and a PictureBox in the other (the right).

Of course, in this example, you want to make sure that the TreeView and
PictureBox change size when the splitter bar is moved. To do this, you need to
make sure the controls inside the SplitContainer use anchoring or docking.
For example, you could anchor the TreeView to all sides or set the Dock prop-
erty to Fill so that the TreeView automatically resizes itself to occupy the

bvb_02.book Page 97 Thursday, March 30, 2006 12:39 PM

98 Chapter 4

entire panel. That way, the user can move the splitter bar at runtime to
change the size of the PictureBox and the TreeView controls. Figure 4-12
shows the result of resizing the panel. (You can try this example out in the
SplitWindow project.)

Figure 4-11: Adjusting a split window

You can also set the Panel1MinSize and Panel2MinSize properties of the
SplitContainer to configure the smallest size (in pixels) to which the two
panels can be resized. When these properties are specified, users won’t be
able to make one panel too small (the splitter bar can then only be dragged
down as far as the minimum-size position). You can also stop resizing
altogether by setting the IsSplitterFixed property to False. With that setting,
the only way to change the size of the two panels is to set the SplitterDistance
property programmatically, which positions the splitter bar. You can even
hide a panel on a whim by setting the Panel1Collapsed or Panel2Collapsed
property to True.

Figure 4-12: A resized panel in a split window

bvb_02.book Page 98 Thursday, March 30, 2006 12:39 PM

Windows Forms 99

Once again, you’ll have to experiment with these techniques in order to
master them, but you now understand the fundamental concepts.

NOTE Here’s a mind-bending puzzle. You create a form with a SplitContainer, and you
anchor that container to all sides of the form. The user enlarges the form, and so the
SplitContainer also expands to fit. But inside the SplitContainer, which panel gets the
new space? By default, both panels grow or shrink proportionately. However, you can
change this behavior with the FixedPanel property. A fixed panel doesn’t change when
the SplitContainer is resized. So if you designate Panel1 as the fixed panel, the second
panel will grow as the window is resized. (In Windows Explorer the directory tree is in a
fixed panel. It doesn’t change size when you expand or shrink the window.)

Container Controls

Although the SplitContainer is one of the most useful containers, you’ll find
several other choices in the Containers section of the Toolbox.

The GroupBox and the Panel are the most straightforward of the containers.
The GroupBox is a long-standing Windows staple, which simply adds a curved
border and a title around a group of controls. The Panel is a little more ver-
satile—it supports scrolling and a configurable border. Unlike the GroupBox, it
can’t show a caption. The Containers section also includes the TabControl,
which works as a group of tabbed containers, only one of which can be
shown at a time.

The Panel is the basis for several other container controls. You’ve already
seen the SplitContainer, which wraps two Panel controls, but you haven’t
explored the more exotic FlowLayoutPanel and TableLayoutPanel controls.
These layout panels implement a more weblike way of arranging content.
When you place controls in either of these panels, the location information
is ignored. Instead, controls in the FlowLayoutPanel are arranged from top
to bottom (or side to side), one after the other in such a way that if one
control grows in size, the others are bumped out of the way. Controls in the
TableLayoutPanel are arranged similarly in a resizable (yet invisible) grid, with
one control in each cell.

Figure 4-13 shows an example of a left-to-right FlowLayoutPanel with several
controls. The WrapContents property is set to True, so that the controls are
arranged in multiple rows to fit the bounds of the panel, and the BorderStyle
property is set to show a sunken border around the edge. To add more space
around individual controls, you could tweak the Margin property of the appro-
priate control, which works like the Padding property discussed earlier.

This flexibility requires a different style of user interface design, but it’s
more flexible in situations where you have dynamically generated content
(if, for example, you’re reading large quantities of text from a file or data-
base and then displaying it in different controls). It’s also a good choice if
you need to localize your application for different languages, because your
controls can resize and rearrange themselves to fit changing text sizes.

bvb_02.book Page 99 Thursday, March 30, 2006 12:39 PM

100 Chap te r 4

Figure 4-13: Miscellaneous controls in a
FlowLayoutPanel

NOTE If you aren’t sure whether all the content will fit inside a FlowLayoutPanel or
TableLayoutPanel, you can use the same automatic scrolling property described
earlier. Just set AutoScroll to True.

Controls and Events

For a good part of its lifetime, the average Windows applications sits idle,
waiting for something to happen. For example, it’s not until a user clicks a
button or types into a text box that your code springs into action.

For that reason, you’ll spend a good amount of time thinking about the
event handlers for your controls. Event handlers, as their name suggests, are
dedicated subroutines that spring into action when the corresponding event
takes place. Generally speaking, an event handler allows your application to
respond to notifications from a control that something has happened.

To create an event handler, switch to code view (choose View�Code
from the menu). Then select the desired control from the control list at the
top left of the code window (see Figure 4-14).

Figure 4-14: Choosing a control

bvb_02.book Page 100 Thursday, March 30, 2006 12:39 PM

Windows Forms 101

Next, choose the desired event from the list on the right side
(see Figure 4-15).

Figure 4-15: Choosing an event

NOTE Of course, dedicated VB developers know there’s a shortcut for most controls. Double-
click the control on the design surface, and Visual Studio will create an event handler
for the default event (the event that’s most commonly used). For example, the default
event of a Button is Click, the default event of a Form is Load, and the default event of
a TextBox is TextChanged.

Here is a sample event handler for a button’s Click event:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' Show a message box.
 MessageBox.Show("You clicked me.")
End Sub

All Visual Basic 2005 event handlers look pretty much the same—
another valuable break from Visual Basic tradition, in which every event
handler had its own idiosyncratic collection of parameters. This new
uniformity allows you to write event handlers that can deal with more than
one type of event, and it makes it easier to figure out the correct method
signature for your event handlers.

The .NET convention for events states that they must have two parameters.
One, called sender, provides a reference to the object that sends the event.
Thus, you can always examine the sender parameter to find out where the
event originated. The other parameter, called e, is an object that bundles
together any additional information that you need from the event. Different
events will use different objects for e, depending on their needs. The default
event style, which is used for a button’s Click event, doesn’t require any
additional information, and so it sends an empty e object.

bvb_02.book Page 101 Thursday, March 30, 2006 12:39 PM

102 Chap te r 4

On the other hand, the MouseMove event does include important extra
information: the current coordinates of the mouse pointer. In the following
example (see Figure 4-16), the event handler retrieves and displays this
information.

Figure 4-16: Tracking the mouse

Here’s the code that makes it work:

Private Sub MouseTracker_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) Handles MyBase.MouseMove
 lblPosition.Text = "The mouse is at X: " & e.X & " Y:" & e.Y
End Sub

You can try this example in the MouseMoveHandler project.

Handling More Than One Event

Another profound change in Visual Basic 2005 is that an event handler
can work with multiple controls. This allows you to reuse code. For example,
imagine a form with a dozen labels. When the mouse moves over a label, you
want the label to change color. You could write a separate MouseEnter and
MouseLeave event handler for each label, but this would force you to write and
maintain reams of code, which is a certain nightmare (unless you’re paid by
the hour). A better choice is to write a single set of event handlers that can
respond to mouse movements for any label.

NOTE In Visual Basic 6, the solution to this problem was control arrays. Control arrays aren’t
available in VB 2005, and for good reason—they’re just too awkward to program with.
As you’ll see, the VB 2005 solution is much neater.

In VB 2005, an event handler is connected to an event through the Handles
keyword, which appears at the end of the definition of the event handler. By
default, functions use VB 6 naming conventions, so a Click event for Button1 is
named Button1_Click. However, you can change the name of the event handler
without causing any problem because the actual link between an event and a
control is specified explicitly with the Handles keyword.

One advantage of this system is that it’s easy to create event
handlers that work with more than one control. All you have to do is
add the names of the additional controls to the Handles clause. Consider

bvb_02.book Page 102 Thursday, March 30, 2006 12:39 PM

Windows Forms 103

our next example (see Figure 4-17), which receives Click events from
three different buttons, and examines the sender object to find out where
the event occurred:

Private Sub ClickHandler (ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdA.Click, cmdB.Click, cmdC.Click

 ' Convert the unidentified sender object to a more useful form.
 Dim ctrl As Control = CType(sender, Control)

 MessageBox.Show "You clicked the button called " & ctrl.Name
End Subinsert

Figure 4-17: A generic event handler

Notice that before this code can use the sender object, it has to convert it
into a recognized type. In this case, we cast convert the sender object to the
Button class, but instead we use the more generic Control class, which supports
some basic properties that are shared by all controls. This includes the Name
property. If the code didn’t make the conversion, and tried to use the sender
object directly, it would cause an error, because the System.Object class only
supports a few basic operations.

Accept and Cancel Buttons
All controls are not created equal. Forms have two properties that let you
designate special buttons: AcceptButton and CancelButton. These properties
single out the button that will be “clicked” automatically when the user presses
the ENTER key (to “accept” the window) or the ESC key (to “cancel” it). Thus, if
you add a button named cmdOK, and set the Form.AcceptButton to cmdOK, the
cmdOK.Click event handler will run automatically when the user presses the
ENTER key.

The feature existed in Visual Basic 6, but it was implemented by adding
the Default and Cancel properties for button controls. This state of affairs was
a little confusing, as it didn’t clearly indicate that a form could have only one
Default and one Cancel button.

bvb_02.book Page 103 Thursday, March 30, 2006 12:39 PM

104 Chap te r 4

Exploring .NET Forms

So far, you’ve learned how to combine controls to build a snazzy form and
how to write the code that drives them. The next step is to assemble a suitable
group of forms into a complete multiwindow application.

Two Ways to Show a Form
Forms have existed in Visual Basic since its first release, and along the way,
they’ve evolved from static templates to full-featured objects. Unfortunately,
this evolution has led to a few inconsistencies. A form in Visual Basic 6 can
act like both a class definition and a special kind of ready-made object.

NOTE If you haven’t used classes before, you may wonder what the difference is between a class
and an object. Essentially, a class is a definition from which an object can be created.
For example, there is one text box class (System.Windows.Forms.TextBox) that provides
all the features that let a text box work the way it does, including properties such as
Text that your program can interact with. There may be many text box objects in your
program that are built with this class. For all the explicit details about classes and
objects, be sure to read Chapters 5 and 6.

As in Visual Basic 6, every .NET form
comes with some built-in capabilities. Tech-
nically, every form you create inherits all
the features of the prebuilt Form class that
can be found in the System.Windows.Forms
namespace. Inheritance allows an object to
access the features of another class. This
means that System.Windows.Forms.Form pro-
vides your form with the basic functions
that it needs in order to look and act like
a form. In addition, your form possesses
other features all its own (depending on
the controls you’ve added). The hierarchy
is shown in Figure 4-18.

I’ve actually simplified the
relationships a bit here. In fact, the
System.Windows.Forms.Form class itself
inherits qualities from other, more
basic classes in the .NET class library.
(You’ll learn more about inheritance
in Chapter 6.) Figure 4-18: Form inheritance

System.Windows.Forms
Namespace

A Form
Object

Your Custom
Form Class

Form Class

Inherited by

Instantiated

bvb_02.book Page 104 Thursday, March 30, 2006 12:39 PM

Windows Forms 105

The fact that a form plays a strange dual role as both a class and an
object means that there are two ways to show a form:

Explicit creation
In this case, you’re in control, and it’s up to you to create the form
object you need. This is the .NET standard.

Implicit creation
With this shortcut, the form object is created on the fly as soon as it’s
needed. This is a VB 6 tradition, but it can lead to headaches down
the road.

For example, imagine you’ve added a form named MyForm to your
project. Here’s the correct object-oriented approach to showing it, using
explicit creation:

Dim MyDynamicallyCreatedForm As New MyForm()
MyDynamicallyCreatedForm.Show()

In this example, the first line creates the form object. The second line
uses that form object, displaying it on the screen. This two-step approach
gives you a lot of flexibility when creating multiple-document applications.
For example, you could use this technique in a word processing application
to create a new window whenever the user opens a document. Code like this
can handle as many simultaneous windows as you want, with no extra pro-
gramming required.

You can also use the traditional implicit creation approach that harkens
back to VB 6. Here’s how that works:

MyForm.Show()

This shortcut uses the default instance of MyForm. Essentially, Visual Basic is
willing to create one MyForm object automatically, as needed. It creates this
object as soon as you attempt to interact with it. Assuming you haven’t used
any of the methods or properties of MyForm yet, Visual Basic creates the default
instance when you call MyForm.Show(). If you call MyForm.Show() again sometime
later, the default instance already exists, so you end up showing the same form
object (if it’s not already visible).

This automatic-form-creation shortcut seems convenient at first, but it
actually hides a few dangerous thorns. For example, it’s all too easy to make
the mistake shown here:

Dim MyDynamicallyCreatedForm As New MyForm()
MyForm.Show()

bvb_02.book Page 105 Thursday, March 30, 2006 12:39 PM

106 Chap te r 4

In this case a new (non-default) form object is created, but the default
instance is displayed. The newly created MyDynamicallyCreatedForm object drifts
off into memory, abandoned.

Conceptually, the default instance approach is a little ugly. Because it
doesn’t require you to explicitly create the form object, you never know for
sure where the form object is created (and when its initialization code runs).
The default instance approach also breaks down if you want to show more
than one copy of the same window at the same time, in which case you need
to head back to the explicit creation approach. In fact, implicit creation
acquired such a bad reputation that it was removed entirely from VB .NET
1.0—and rightly so. But in VB 2005, Microsoft caved in to the pressure to
make VB respect its roots and added implicit creation back.

Using implicit creation is a bit of a minefield. But you can improve on it
a bit by using another approach—the My object. The My object gives you the
same implicit creation behavior, but it makes your code clearer. That’s because
when you see a line of code that shows a form with the My object, you know
that implicit creation is at work.

Forms and the My Object

.NET 1.0 introduced the new object-based form system, and it made a lot of
a sense. However, irate VB programmers were quick to complain that their
much-loved environment had changed. To try to keep them happy, Micro-
soft added a shortcut to VB 2005 that allows you to access the default instance
of a form without bringing back all the confusion. This shortcut is based on
the My object.

Here’s how it works. The My.Forms object provides one default instance
of every form in your application. You access this form object by name. So, if
you have a form named SuperCoolWindow, you can access the default instance as
My.Forms.SuperCoolWindow. You can show the form with this single line of code:

My.Forms.SuperCoolWindow.Show()

This is equivalent to this:

SuperCoolWindow.Show()

But the My approach is nicer, because it makes it easier to see what’s
taking place.

Remember, the default instance isn’t actually created until the first time
you refer to it in code. This behavior can get a bit tricky, because you don’t
have any way to know when your form will be created and therefore when its
initialization code will run.

However, there’s a definite benefit to the My syntax. Namely, you can
always get a reference to your form, no matter where you are in code. This is
important if one form needs to interact with another. For example, one form
might want to call a subroutine that’s coded inside another. Using the My
object, it’s easy to get there.

bvb_02.book Page 106 Thursday, March 30, 2006 12:39 PM

Windows Forms 107

The My object also has a dark side (see Chapter 3 for more details). First
of all, it’s clearly not going to work if you need to show more than one copy of
a form (for example, most professional word processing applications let the
user edit several files at once). In this case, it’s up to you to create your forms
and track them. The second problem is that the default instance isn’t
necessarily the one you want to use. For example, suppose your application
creates a form with the following code:

Dim MyFormObject As New SuperCoolWindow()
MyFormObject.Show()

This won’t be the same form object as My.Forms.SuperCoolWindow. Even
worse, imagine what happens if another window tries to interact with your
form object using code like this:

My.Forms.SuperCoolWindow.RefreshData()

This code compels Visual Studio to create a new SuperCoolWindow object
(assuming it doesn’t already exist), and call its RefreshData() method. This
can be a tricky problem. It might lead to a situation where one form tries
to interact with SuperCoolWindow, but actually ends up talking to the invisible
default instance. You’ll never be alerted with an error, but the task you want
to perform won’t take place on the form where it should.

So what’s the best option—creating form objects explicitly or using the
default instances through the My object? The best advice is to use the My object
in simple applications. If you have an application that shows more than one
instance of the same form, or needs complex interactions between forms,
you should take control of form creation and tracking on your own. You’ll
learn how later in this chapter, in “Interaction Between Forms” on page 120.
And to avoid problems, stick to one approach (the My object or explicit
creation). Don’t mix and match.

Modal Forms

The preceding example uses the Show() method, which displays a modeless
form. A modeless form is one that doesn’t disable other forms in your appli-
cation. This means that a user can access several different modeless windows
at once and enter information into any one of them. Sometimes, modeless
forms have to be built with custom communication and refresh routines,
which allow them to update themselves in response to changes in other
currently open forms. Interaction between different forms is examined later
in this chapter.

Some parts of an application’s interface are modal. For example, About
windows, Open/Save windows, and Preferences windows are, by convention,
almost always modal. Once a modal window appears, the user cannot access
any other part of the application until the window has been dealt with and
closed. Usually, the user does this by entering or selecting any necessary
information and then clicking OK or Cancel, at which point you can call
Form.Close().

bvb_02.book Page 107 Thursday, March 30, 2006 12:39 PM

108 Chap te r 4

To show a modal form in Visual Basic 2005, you use the ShowDialog()
method instead of Show():

Dim MyFormObject As New MyForm()
MyFormObject.ShowDialog()
' Any code here is executed only after MyFormObject is closed.

The ShowDialog() method stops your code. For example, any code that
falls after the ShowDialog() statement in the example above won’t be executed
until the new form is closed.

The Startup Form and Shutdown Mode

In a Windows application, you’ll typically end up with many forms. One of
these forms plays a special role—it’s the startup form, and it’s shown auto-
matically when the application starts.

To choose your startup form, double-click the My Project node in the
Solution Explorer, select the Application tab, and set the Startup Form.
You’ll be given a list of all the forms in your project to choose from.

The startup form is shown automatically when your application first
launches. From that point on, you’re free to create as many modal or
modeless forms as you want. By default, your application ends as soon as the
startup form is closed. However, you can change this behavior by setting the
Shutdown Mode option to When Last Form Closes, which keeps your appli-
cation alive until every form is explicitly closed. If you want even more control,
you can explicitly end the application at any point by calling Application.Exit().

Application Events

In some applications, you might want to show more than one form when
your application first starts up. So how do you do it? In previous versions of
VB, the best choice was to choose to start your application with a Sub Main
method—a code routine where you can explicitly show whatever forms you
want. This option is still available in VB 2005, but in order to use it you need to
clear the Enable Application Framework check box in the project properties,
which disables several useful features. A better option is to respond to special
application events to show the extra forms you need.

To create event handlers for application events, you need to click the
View Application Events button in the project properties window. The first
time you do this, it creates a new code file named ApplicationEvents.vb.

Here are the events you can react to:

Startup

Fires when the application starts but before the startup form is created.
If you want to show a form before the main form, you could show it here.
This is also a great place to put initialization code that should run before
the first form appears.

bvb04_02.fm Page 108 Tuesday, April 11, 2006 9:41 AM

Windows Forms 109

Shutdown

Fires after all the forms in application are closed, just before your pro-
gram ends. This is a good place to save user preferences and last-minute
settings. This event isn’t raised if the application fails with an error.

UnhandledException

Fires if the application ends with an unhandled error. If you perform
application-wide cleanup in response to the Shutdown and UnhandledException
events, you’ve covered your bases. (Exceptions and error handling are
covered in Chapter 8.)

StartupNextInstance

Fires when the application is launched for a second time (in other
words, one copy is already running). Usually you won’t use this event.
Instead, you can select the Make Single Instance Application setting in
the project properties to allow only one copy of your application to run
at once. If the user tries to launch a second copy, the first instance is
brought to the foreground.

NetworkAvailabilityChanged

Fires when a network connection is connected or disconnected. This is
useful if you have some features that depend on Internet connectivity
(such as when you use a web service, as discussed in Chapter 13).

For example, if you want to perform some initialization code and show a
splash screen when your application first starts, you could handle the Startup
event like this:

Partial Friend Class MyApplication
 Private Sub MyApplication_Startup(ByVal sender As Object, _
 ByVal e As StartupEventArgs) Handles Me.Startup
 ' Show this form modelessly, so your code keeps running.
 ' Note that this form doesn't show a close box or title bar
 ' (Form.ControlBox is false) so the user can't close it.
 Dim Splash As New SplashForm()
 Splash.Show()

 ' (Put time-consuming initialization code here.)

 ' Hide the splash screen.
 Splash.Close()

 ' On to the main form...
 End Sub
End Class

You can also add a splash screen using the Splash Screen option in the
project properties, but the approach shown here gives you much more con-
trol. You could use a similar approach is you wanted to show a Login window
to collect user credentials before starting an application or show a window
with a license message.

bvb_02.book Page 109 Thursday, March 30, 2006 12:39 PM

110 Chap te r 4

Several of the application events also provide extra information through
an event argument object. For example, in the Startup event, you can retrieve
the command-line parameters used to start the application (e.CommandLine),
which is useful if you want to open a user-specified file automatically. You can
also use set the e.Cancel property to true to cancel a startup (for example, if
the user doesn’t supply required login credentials).

Form Oddities
Forms have a few unusual extra properties, two of which we’ll briefly examine
here. You probably won’t need to use them, but they can provide a few hours
of design-time fun. Both of these strange behaviors are on display in the
FormOddities project included with the sample code.

Opacity

One of these interesting features is opacity, which allows you to make a form
partially transparent (see Figure 4-19). For example, if you change a form’s
Opacity property to 10% (actually 0.10), the form and all its controls will be
almost completely invisible, and the background window will clearly show
through. If you set the background window’s Opacity property to 90% (0.90),
the background will show through only slightly.

Figure 4-19: A transparent window

This feature is supported only in Windows 2000 and later operating systems
(and has sketchy support with some color and graphics card settings). For this
reason, the opacity feature should never be used indiscriminately in business
applications. A master user-interface designer might be able to use it to create
floating controls or menus that don’t mask underlying content—or to enable
some nifty effect in a logo animation or graphic display. In general, however,
such enhancements won’t be supported by older computers and will do little
more than complicate an application.

bvb_02.book Page 110 Thursday, March 30, 2006 12:39 PM

Windows Forms 111

TransparencyKey

You can use the TransparencyKey property to make portions of a window
invisible. The color that you specify with this feature will become trans-
parent when your program is running (much as a form does when you alter its
opacity). For example, if you choose light red, any occurrence of light red
in your form—whether it is in the form’s background, in another control,
or even in a picture contained in a control—will become invisible, and the
application behind your program will show through. However, unlike sec-
tions altered with the Opacity property, transparent areas act like “holes” in
your application’s window (see Figure 4-20). A user can even click to activate
another window if it’s visible through a transparent region.

Figure 4-20: Cutting out bits of a form

The FormOddities sample code uses a form with three red PictureBox
controls, which disappear at runtime. Once again, this feature is only sup-
ported in Windows 2000 or later. Can it be useful? It all depends. If you’re
trying to create a next-generation user interface, you might decide to create
an irregularly shaped form by hiding parts of a background image. It’s eye
candy when it works, but difficult to perfect.

The Inner Workings of Forms

There’s a lot more to forms than you might suspect. In fact, forms are com-
plex classes that contain detailed initialization code, all of which is generated
automatically (thanks to Visual Studio). In this section, you’ll take a closer
look and see how forms really work, and why they are a dramatic change
from pre-.NET versions of Visual Basic.

bvb_02.book Page 111 Thursday, March 30, 2006 12:39 PM

112 Chap te r 4

Visual Basic 6 Forms “Under the Hood”

In Visual Basic 6, every form is stored in a file with the extension .frm, and
any binary information (pictures, for example) is stored in a corresponding
file with a .frx extension. If you open a VB6 .frm file in a text editor, you’ll
see information like this:

Begin VB.Form frmHello
 Caption = "Hello World Program"
 ClientHeight = 3195
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 4680
 LinkTopic = "frmHello"
 ScaleHeight = 3195
 ScaleWidth = 4680
 StartUpPosition = 3 'Windows Default
 Begin VB.CommandButton cmdQuit
 Caption = "Quit"
 Height = 495
 Left = 1440
 TabIndex = 1
 Top = 2520
 Width = 1815
 End
 Begin VB.Label lblHello
 Caption = "Hello World (of Visual Basic 6)!"
 Height = 495
 Left = 1080
 TabIndex = 0
 Top = 960
 Width = 2535
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Private Sub cmdQuit_Click()
 Unload Me
End Sub

This code was generated when I created the simple “Hello, World!” form
shown here in Figure 4-21, with a label control and a Quit button.

If you’ve never looked at VB 6 code before, this might come as a bit of a
surprise. At the end of this file is all of the Visual Basic event handler code
that you created (in the preceding example, it’s just the Click event handler
for the cmdQuit button). But before that is a great deal of information that sets
the properties and position of all the interface elements in your program.

bvb_02.book Page 112 Thursday, March 30, 2006 12:39 PM

Windows Forms 113

This code resembles Visual Basic code somewhat, but closer examination
shows that it’s actually sort of a strange hybrid. For example, controls are
defined with a statement like Begin VB.Label lblHello, which follows the C
style of syntax by indicating the type of element to be created (VB.Label),
followed by the name of the item (lblHello). Though this code is clearly
present and accessible, it wasn’t shown anywhere inside the Visual Basic 6 IDE.

Figure 4-21: A basic VB 6 form

The “code” in a VB 6 .frm file is untouchable, because there is no
guarantee that your changes won’t break it. If you want to modify your user
interface, you have to do it manually, using the built-in Form Designer.
Usually, this is the most convenient option; however, every once in a while a
problem appears that could easily be solved by tweaking a few values if you
could only have direct access to the form file. Instead, these changes always
require time-consuming manual repositioning or resizing.

Visual Basic 2005 handles this kind of situation quite a bit differently.

Visual Basic 2005 Forms “Under the Hood”

Every Visual Basic 2005 file has the extension .vb, whether it is a form, a class,
or a module. However, when you create a form VB 2005 actually creates two
files. These two files are definitions for the same form class, but there’s a
clear division. The file you see in the Solution Explorer contains the event
handling code you’ve written. The other file is made up of the automatically
generated code that initializes your form and configures its controls—what
I’ll call infrastructure code. Ordinarily, this file is hidden from view—but it’s
not too hard to peel back the curtain and see what’s going on inside.

Take a close look at Figure 4-22. It shows an ordinary form named
Form1.vb. (An initial, blank form named Form1.vb is added to all new
Windows application projects.) If you look at the code for this form (choose
View�Code from the menu), you’ll see an empty class definition that’s just
waiting to receive your code:

Public Class Form1
End Class

bvb_02.book Page 113 Thursday, March 30, 2006 12:39 PM

114 Chap te r 4

Figure 4-22: A basic VB 2005 form

However, there’s more here that meets the eye. To see the other side of
the story, choose Project�Show All Files from the menu. Now you’ll find
that every form is paired with a designer file. For example, Form1.vb has
Form1.Designer.vb. (Visual Studio generates this name automatically by
adding .Designer on the end of your form name.) Figure 4-23 shows the
designer file for Form1.

Figure 4-23: The designer code file

If you look into this code, you’ll find quite a bit more content. The key
section is a subroutine named InitializeComponent(). Essentially, every time
you do something in Visual Studio that affects your form (like add a new con-
trol, or configure an existing control), Visual Studio adds the corresponding
code in the InitializeComponent() method. In other words, InitializeComponent()
has every code statement that’s needed to construct your form from scratch.

This code frees Visual Basic from its dependence on the IDE. A Visual
Basic application now consists of nothing but pure VB code and could be
created with nothing more than a text editor. Most times, you’ll want to stay
away from this infrastructure code, because it’s long, tedious, and sometimes
convoluted. Generally, it’s easiest to configure your forms through the
designer in Visual Studio.

However, you may find that going behind the scenes to see how Visual
Basic creates your interface not only provides some interesting information,
but also allows you to perform some otherwise time-consuming rearrange-
ments just by modifying a few automatically generated values. For example,
if you’ve been forced to change your naming convention, you can quickly
change all the names of your interface elements with a simple Find and
Replace operation in your code display. In other words, you won’t need to

bvb_02.book Page 114 Thursday, March 30, 2006 12:39 PM

Windows Forms 115

click each control in the Form Designer and manually make the change to
the Name property through the Properties window. Or, you might find that
this code allows you to understand how a specific control really works—sort
of like a condensed tutorial.

Stepping Through the “Muck and Goo”

Some developers refer to this portion of the Visual Basic code as “muck and
goo” (and others have likely invented less flattering euphemisms). Once you
understand it, however, you’ll gain a unique programming edge and a better
understanding of the .NET Framework.

In the sample .frm file shown earlier, I showed the code that would be
needed for a simple “Hello, World!” form. In Visual Basic 2005, the same
window would create code like this in the designer file:

Friend WithEvents lblHello As System.Windows.Forms.Label
Friend WithEvents cmdQuit As System.Windows.Forms.Button

'Required by the Windows Form Designer
Private components As System.ComponentModel.Container

'NOTE: The following procedure is required by the Windows Form Designer
'It can be modified using the Windows Form Designer.
'Do not modify it using the code editor.
<System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponent()
 Me.lblHello = New System.Windows.Forms.Label()
 Me.cmdQuit = New System.Windows.Forms.Button()
 Me.SuspendLayout()
 '
 'lblHello
 '
 Me.lblHello.Location = New System.Drawing.Point(80, 40)
 Me.lblHello.Name = "lblHello"
 Me.lblHello.Size = New System.Drawing.Size(208, 40)
 Me.lblHello.TabIndex = 1
 Me.lblHello.Text = "Hello World"
 '
 'cmdQuit
 '
 Me.cmdQuit.Location = New System.Drawing.Point(128, 264)
 Me.cmdQuit.Name = "cmdQuit"
 Me.cmdQuit.Size = New System.Drawing.Size(80, 40)
 Me.cmdQuit.TabIndex = 0
 Me.cmdQuit.Text = "Exit"
 '
 'HelloForm
 '
 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
 Me.ClientSize = New System.Drawing.Size(440, 373)
 Me.Controls.AddRange(New Control() {Me.lblHello, Me.cmdQuit})
 Me.Name = "HelloForm"

bvb_02.book Page 115 Thursday, March 30, 2006 12:39 PM

116 Chap te r 4

 Me.Text = "Hello World Program"
 Me.ResumeLayout(False)

End Sub

Looking at this code, you can make the following observations:

� Every control is defined as a variable in a form. The Friend accessibility
keyword is used, which means that other forms in your program can
access these controls.

� All these controls are initialized in the InitializeComponent() subroutine
that is called automatically when the form is loaded. This subroutine has a
special DebuggerStepThrough attribute (see the text enclosed in the < > angle
brackets) that tells Visual Studio to ignore the code during debugging.

� The properties of each control are set in separate blocks, each identified
with a comment indicating the control name.

� The Me.Controls.AddRange() statement ads all the controls to the form at
once. The Me keyword represents the current form, which has a Controls
property that represents all the controls it contains.

� At the end of the InitializeComponent() subroutine, some additional prop-
erties are set for the current form.

� The SuspendLayout() method is invoked at the beginning of this process,
and the ResumeLayout() method is called at the end. This stops the form
from rearranging and refreshing its controls while the initialization is
underway, which optimizes performance.

Perhaps the most useful thing you can do once you understand the
infrastructure code is to copy and paste parts of a user interface from one
form to another. With the Form Designer, you have to manually select the
correct controls—and positioning them on another form can be tricky. If
you understand the muck and goo, however, it’s just a matter of copying text.

What About Binary Information?

Not all information can be represented in code. For example, you might
load a picture into a picture box, a form, or an image list at design time.
When you do this, Visual Basic 2005 stores the appropriate information in
a resource file and then writes the code needed to read the information
from that file. As with Visual Basic 6, each form can have a resource file,
but instead of having the extension .frx, every VB 2005 resource file ends
with .resx. As with the designer file, the .resx files are hidden until you
choose Project�Show All Files. (You’ll learn more about resources in
Chapter 7.)

bvb_02.book Page 116 Thursday, March 30, 2006 12:39 PM

Windows Forms 117

Adding Controls Dynamically

A common question from Visual Basic programmers is how to add controls
to a form dynamically—in other words, while the program is running. For
example, you might want to create a diagramming program that allows users
to drag and drop various symbols onto a form. Rather than manually paint-
ing the individual graphics, a better way to handle this problem is to use
button or picture controls. With this technique, you can easily move pictures
using their properties, and let the Windows operating system worry about
painting the form in such a way that the existing controls aren’t overwritten.
This approach also allows you to easily capture mouse clicks and allows the
user to drag and move your icons after they have been placed.

In Visual Basic 2005, the distinction between controls added at runtime
and those added at design time has been blurred. As you’ve already learned,
all the controls that you add using the Windows Form Designer are really
created by the code in the InitializeComponent() routine when your form is
first loaded. This code looks almost exactly the same as the code you would
use to add a control later in a program’s execution. The only difference is its
location in your program.

Thus, one easy way to add a control dynamically is to add it at design
time and configure its properties. Then, find the corresponding automatically
generated code, and cut and paste it into another method. Be aware that
this code may exist at several different places in the Windows Designer code
region.

Examine the following infrastructure code, which is used to create a new
label:

' The declaration in the class:
Friend WithEvents Label1 As System.Windows.Forms.Label

' From the InitializeComponent() subroutine:
Private Sub InitializeComponent()
 Me.Label1 = New System.Windows.Forms.Label
 Me.Label1.Location = New System.Drawing.Point(96, 100)
 Me.Label1.Name = "Label1"
 Me.Label1.Size = New System.Drawing.Size(112, 48)
 Me.Label1.Text = "Permanent label"
 ' (Code for other controls has been left out.)
 Me.Controls.AddRange(New Control(){Me.Button1}, Me.Label1)
End Sub

This code, with some minor modifications, could be inserted into a
button’s Click event to create the label dynamically, as shown in our next
example. There are two significant changes. First, the Controls.AddRange()
method, which adds a whole group of controls from an array, has been

bvb_02.book Page 117 Thursday, March 30, 2006 12:39 PM

118 Chap te r 4

replaced with the Controls.Add() method, which adds only a single control.
Second, the declaration for the label has been changed to a Dim statement,
because the Friend and WithEvents keywords are not valid when you create an
object inside a method.

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim LabelNew As New System.Windows.Forms.Label()
 LabelNew.Location = New System.Drawing.Point(96, 200)
 LabelNew.Name = "LabelNew"
 LabelNew.Size = New System.Drawing.Size(112, 48)
 LabelNew.Text = "Dynamically created label"
 Controls.Add(LabelNew)

End Sub

This code does have a couple of drawbacks, however. For one thing, the
control variable is created inside the button’s Click event, so it is destroyed
as soon as the Click event is over. Does this mean that the control itself
disappears? In fact, the control remains, but it’s a little bit more difficult to
access. The only way you can reach it is through the Controls property of your
form (with MyForm.Controls("LabelNew"), for instance), which contains a
collection of all the controls on the form. A better solution is to use your
own collection for groups of dynamically added controls. To use your own
collection, add this line to your form at the class level:

Private DynamicControls As Collection

Then, when you create the label, use the following line of code to store it
in the collection:

DynamicControls.Add(LabelNew)

Of course, if you are creating a control that you won’t need to access
again, these lines aren’t necessary.

Dynamic Event Hookup

Alternatively, you might be adding a control whose prime purpose is receiving
events (such as a button control). In this case, you may not need to explicitly
keep track of the control, but you do need a way to receive its events. Unfor-
tunately, controls that are created at runtime can’t be defined with the
WithEvents keyword. Even if they could, it wouldn’t help you; all that WithEvents
really does is to make it easier for you to wire up an event handler with the
Handles keyword. But if you haven’t created a control yet (and you don’t know
when or if you’ll create it), it’s impossible to connect the event handler
ahead of time.

bvb_02.book Page 118 Thursday, March 30, 2006 12:39 PM

Windows Forms 119

You can solve this problem by dynamically wiring up a new control at
runtime with the AddHandler statement. Consider the following example,
which adds a new button at a random location, and sets it to use the same
event handler as the first button. Every time you click this button, you add a
new button that, when clicked, adds yet another new button.

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ' Create a random number generator for choosing the
 ' new button's position.
 Dim Rand As New Random()

 ' Generate and configure the new button.
 Dim NewButton As New System.Windows.Forms.Button()
 NewButton.Left = Rand.Next(Me.Width)
 NewButton.Top = Rand.Next(Me.Height)
 NewButton.Size = New System.Drawing.Size(88, 28)
 NewButton.Text = "New Button"

 ' Add the button to the form.
 Me.Controls.Add(NewButton)

 ' Wire up the new button's Click event.
 AddHandler NewButton.Click, AddressOf Button1_Click

End Sub

To see this random button reproduction in action, try out the
DynamicRandomButtons sample program (Figure 4-24).

Figure 4-24: Buttons that spawn other buttons

NOTE Assigning dynamic event handlers is another technique that you can use to replace the
control arrays that were used in classic VB.

bvb_02.book Page 119 Thursday, March 30, 2006 12:39 PM

120 Chap te r 4

Interaction Between Forms

You’re about to learn several ways that forms can interact with one another
in more sophisticated applications. In particular, you’ll look at dialog windows
(the easiest case), at owned forms, and at MDI applications. But first, we’ll
set the stage by considering one of the challenges that can arise with form
interaction.

A Sample Form Interaction Problem

As you learned earlier in this chapter, forms can come into existence in two
different ways:

� You can create the form object explicitly in your code.

� You can use the default instance using the My.Forms object, in which case
the form object is created automatically when needed.

It’s important to decide which approach you’re using in an application,
because it determines how forms will interact.

Imagine you’ve created a form named RecordList with a list of product
records drawn from a database. The user can choose a product record and
start editing it by clicking a button. At this point, you fire up a second form,
called EditRecord.

Once the user completes the change in EditRecord, the user clicks an
update button. At this point, the record is updated, but the edit form isn’t
closed. (Let’s assume that the user might want to make more changes.)
However, there’s now a problem—the list that’s shown in the RecordList
window now has out-of-date information.

Depending on the exact behavior you want, there are several ways you
can solve this problem. One option is for the EditRecord form to call a custom
subroutine in the RecordList form. (Let’s call this the RefreshRecords() method
of the RecordList form.) The challenge here is that in order for EditRecord to
access RecordList, it needs a way to access the form.

If you’ve embraced the My object, this code does the trick:

' This may work (if you showed the form through My).
' Be careful.
My.Forms.RecordList.RefreshRecords()

But there’s a potential problem with this approach. If you didn’t use
My to show the RecordList form in the first place, the current RecordList
window won’t be the default instance. In that case, when the EditRecord
form accesses the default instance, it will actually be interacting with a
different form object from the one you intend. This form will be generated
on demand. And unless you’ve already called the Show() method on this
form, it won’t even be visible.

bvb_02.book Page 120 Thursday, March 30, 2006 12:39 PM

Windows Forms 121

So what’s the solution if the My object isn’t your cup of tea? You need to
explicitly keep track of the form yourself. That means you need to keep the
form variable stored somewhere. One option is a module. For example, you
could create this module for the sole purpose of tracking forms:

Public Module FormTracker
 Public RecordListForm As RecordList
End Module

Now you simply need to remember to set this form variable. You could
do it at the same time you create the form:

Dim NewRecordList As New RecordList()
FormTracker.RecordListForm = NewRecordList
FormTracker.RecordListForm.Show()

Or you could use an event handler in the form so it always happens
automatically whenever the form is created. (This assumes you’ll only have
one copy of the form in existence at a time.)

Public Class RecordList

 Public Sub Form_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles RecordList.Load
 ' Set the reference so others can access this form.
 FormTracker.RecordListForm = Me
 End Sub

End Class

Either way, you can access the form later through the form variable
you’ve created.

Dialog Windows

Dialog windows offer another way to communicate information. The MessageBox
object is a special kind of built-in dialog window. You choose the options you
need, display them in the window, and then examine the user’s choices
through the return value:

Dim Result As DialogResult
Result = MessageBox.Show("Is this a yes or no question?", _
 "Question", MessageBoxButtons.YesNo)

If Result = DialogResult.Yes Then
 ' The user clicked Yes.
Else
 ' The user clicked No.
End If

bvb_02.book Page 121 Thursday, March 30, 2006 12:39 PM

122 Chap te r 4

NOTE You may receive a Visual Studio warning when you check the DialogResult. That’s
because there’s a name conflict between the DialogResult property of the current form,
and the DialogResult enumeration, which provides the list of constants that correspond
to different actions (such as Yes, No, OK, Cancel, and so on). This warning is harmless,
but you can remove it by replacing every reference to DialogResult with the fully qualified
name System.Windows.Forms.DialogResult, which makes it clear you aren’t using the
property of the current form. To learn more about enumerations and get a deeper under-
standing of how DialogResult works, refer to Chapter 5.

A custom Windows form isn’t this convenient. You can display the win-
dow, but your window won’t return a value. That means you need to rely on
global variables, or check the state of other variables in the form to find out
what choices the user had made.

.NET provides a new model for dialog windows that lets you get simple
results from a custom form without needing to maintain extra variables. It
also gives you the ability to put code where it belongs rather than scattering it
among various event handlers. This method won’t help you if you must have
complex or detailed information returned from a window, but if all you need
is a simple yes or no, your code will be cleaner and more standardized than it
would have been in the past.

A good example of a dialog window is a custom confirmation window.
For example, you may have an email feature in your application that allows
the user to send you a purchase order. Before sending the order, a confirma-
tion window might display additional information and ask whether or not
the user wants to proceed. This window requires very little code. Essentially,
it displays some information and then closes when the user clicks OK or
Cancel. However, you also need a special control or format to display the
required information, so you can’t use the typical MessageBox object.

To solve this problem, select the OK button, and set the DialogResult
property to OK. This is the value that will be returned from your window auto-
matically if the user clicks this button. Now select the Cancel button, and set
the DialogResult property to Cancel. There’s no need to write any extra code
or even to add an event handler. Once the user clicks one of these buttons,
Visual Basic 2005 will automatically close the form and return the result to you.

The code for displaying your custom confirmation window will look
something like this:

Dim Result As DialogResult
Dim Confirm As New ConfirmationForm()
Result = Confirm.ShowDialog()

If Result = DialogResult.OK Then
 ' The user clicked your OK button.
Else
 ' The user clicked your Cancel button.
End If

bvb_02.book Page 122 Thursday, March 30, 2006 12:39 PM

Windows Forms 123

NOTE If necessary, you can add additional code to the button event handlers to store extra
information on the form, and you can check those variables from within your calling
code. Keep in mind that even after the window is closed, the form object remains in
memory, along with all its information, until the form variable goes out of scope.

The dialog model is extremely convenient. However, it may not work
for more complicated scenarios—for example, when a user has a variety of
different options that aren’t covered by the preset DialogResult variables.
And remember, it’s only valid when you’re showing a modal window with the
ShowDialog() method. If you use Show() instead to pop up multiple windows at
once, there’s no return value, and you’ll need to devise other ways to com-
municate between your forms.

Owned Forms

.NET introduces the concept of owned forms. An owned form belongs to
another form. When the owner window is minimized, all of its owned forms
are also minimized automatically. When an owned form overlaps its owner, it
is always displayed on top. Owned forms are usually used for floating toolbox
and command windows. One example of an owned form is the Find and
Replace window in Microsoft Word.

Any form can own another form, and you don’t need to set up the rela-
tionship at design time. Instead, you just set the Owner property, as shown here:

' Show the main window.
Dim Main As New MainForm()
Main.Show()

' Create and display an owned form.
Dim Search As New SearchForm()
Search.Owner = Main
Search.Show()

MDI Interfaces
A Multiple Document Interface (MDI) program is generally based on
a single parent window that can contain numerous child windows (see
Figure 4-25). Usually this model is used to allow a user to work with more
than one document at a time. (A “document” might be a report, a data
grid, a log, a text listing, or something entirely different.)

Any window can become an MDI parent (container) if you set the
IsMdiContainer property to True. Many of the restrictions that were placed
on MDI parents in pre-.NET versions of Visual Basic have now been lifted.
For example, parent windows can now contain regular controls, such as
buttons, along with the standard menus and command bars. This makes it
possible to create a wide variety of bizarre forms that look nothing like a
conventional window should. For respectable interfaces, an MDI parent

bvb_02.book Page 123 Thursday, March 30, 2006 12:39 PM

124 Chap te r 4

should contain only dockable controls, such as status bars and menu bars,
which latch onto an edge of the window and provide a clear working area for
any child windows.

Figure 4-25: MDI children are locked inside MDI parents

Turning a window into an MDI child is similar to making it an
owned form.

Private Sub NewChild(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdNewChild.Click
 Dim Child As New DateForm()
 Child.MdiParent = Me
 Child.Show()
End Sub

Of course, at the end of this subroutine, the Child variable will be lost,
and you won’t be able to use it to access the MDI child. However, MDI forms
include some extra conveniences that make them easy to work with, and free
you from manually keeping track of forms. Every MDI parent provides a
collection named MdiChildren that contains all of the currently opened MDI
forms. Every MDI parent also has an ActiveMdiChild property, which tells you
which child window currently has focus. This allows the following kind of
information exchange:

' This code is in the MDI child class.
Public Sub RefreshData()
 ' Some code here to update the window display.
End Sub

Private Sub InfoChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdRefresh.Click
 ' Calls a function in the parent.
 CType(Me.MdiParentForm, ParentForm).RefreshAllChildren()
End Sub

bvb_02.book Page 124 Thursday, March 30, 2006 12:39 PM

Windows Forms 125

NOTE This example assumes the child form class is named ParentForm, and it contains a
custom method named RefreshAllChildren() that performs the refresh. To see the
complete code, refer to the MDIForms project included with the samples for this chapter.

Note that in order to call the RefreshAllChildren() subroutine, the code
needs to convert the reference to the MDI parent form into the appropriate
form class. Otherwise, you’ll only be able to access the standard form prop-
erties and methods through the reference, not the custom ones you may
have added to the class.

The RefreshAllChildren() subroutine is found in the parent:

' This code is in the MDI parent class.
Public Sub RefreshAllChildren()
 Dim Child As DateForm
 For Each Child in Me.MdiChildren
 If Not Me.MdiChildren Is Me.ActiveMdiChild
 Child.RefreshData()
 End If
 Next
End Sub

This form has an extra feature that determines whether an MDI child is
the one that called it, and if so it doesn’t bother to call the refresh proce-
dure. The reasoning here is that the active MDI child will already be up to
date, as it was the form that originated the refresh request. Of course, the
real reason I’ve included this code is to demonstrate the ActiveMdiChild
property. Notice that the code uses the Is statement, instead of an equal sign,
to compare the forms. This is because both forms are objects (reference
types), which cannot be compared with an equal sign.

To see this logic in action, try out the MDIForms project, which auto-
matically refreshes all windows when you click a button in any one of the
child forms (see Figure 4-26).

Figure 4-26: Coordinated child forms

bvb_02.book Page 125 Thursday, March 30, 2006 12:39 PM

126 Chap te r 4

More .NET Controls

So far this chapter hasn’t described the individual controls that you can work
with. For essentials like the Button, TextBox, CheckBox, PictureBox, RadioButton,
and Label controls, there’s no need—most of these controls are similar to
those provided in earlier versions of Visual Basic, and are fairly straight-
forward, with similar sets of properties, events, and methods. (One obvious
difference is that controls that display text now always have a Text property.
For some controls, Visual Basic 6 used a Caption property instead.)

However, along with these standbys are a dizzying array of genuinely
new controls that do everything from displaying web pages to validating
text boxes. You’ve already seen a few of these—namely, advanced container
controls like the Panel, SplitContainer, and FlowLayoutPanel—and you’ll see
some more useful widgets throughout this book. (For example, the printing
controls are featured in Chapter 9, the DataGridView control makes an
appearance in Chapter 10, and the Timer shows up in Chapter 11.)

NOTE There’s no way to walk you through all the available controls in a single chapter. In the
following sections, you’ll consider three nifty additions: the ToolStrip, the NotifyIcon,
and the ToolTipProvider. However, there’s lots more out there for those who want to
experiment!

Strips and Menus

.NET 2.0 includes the most powerful model for menus and toolbars that VB
developers have ever laid their hands on. Without any programming effort,
you get frills like automatic overflow menus, drag-and-drop rearrangement,
support for Windows XP visual styles, and a slick modern look. More ambitious
users can dig into the menu and toolbar internals to change nearly every
drawing detail.

Collectively, the menus and toolbars in .NET 2.0 are known as the “strip”
controls, because they all share some core functionality that’s built into the
System.Windows.Forms.ToolStrip class. You’ll find all of these controls in the
Menus and Toolbars section of the Toolbox. Here are the highlights:

ToolStrip

Use this for toolbars that you can latch to the top or sides of your windows.

MenuStrip

Use this for the familiar Windows menu, complete with optional thumb-
nail icons next to any command.

ContextMenuStrip

Use this for a pop-up menu that you can show when the user right-clicks
something. Use ContextMenuStrip.Show() to pop the menu into view at the
right time. (You’ll see an example in the following section, which demon-
strates a system tray application.)

bvb_02.book Page 126 Thursday, March 30, 2006 12:39 PM

Windows Forms 127

StatusStrip

Use this for a status bar. Status bars are similar to toolbars, although they
tend to have a slightly different visual appearance and they usually rely on
static text more than clickable commands. (However, you can technically
put all the same ToolStrip ingredients into a StatusStrip.)

ToolStripContainer

This oddball container control allows the user to drag and rearrange ordi-
nary ToolStrip controls. It’s composed of five panels: one panel for each
side, and one panel that fills the remaining content in the middle (where
you put other content). When you place a ToolStrip in a ToolStripContainer,
it’s automatically made mobile.

Learning everything there is to know about these controls would require
at least one lengthy chapter, but, fortunately, you don’t need much expertise
to get started. The basic concept is that all strips are really collections of one
or more ToolStripItem objects. (This collection is provided through the Items
property of the strip control.) Each ToolStripItem represents a separate ele-
ment on a strip or menu. This item could be a clickable button or menu
command, an ordinary label, a separator, a text box, and so on.

Technically, the ToolStripItem objects aren’t genuine controls. However,
they provide nearly as much functionality, including properties for the font
(Font), colors (BackColor and ForeColor), the display style (DisplayStyle), the
displayed content (Image and Text), the state of the item (Visible and Enabled),
and so on. They also provide events, like Click (the most useful one), which
fires when the user clicks the item.

To create any strip, whether it’s a status bar or menu, you follow more or
less the same process. First, you drag the appropriate control onto your form
from the Menus & Toolbars section of the Toolbox. Then, you use the Visual
Studio design support to start adding ToolStripItem objects. For a menu, you
can start typing the text of each command directly on the form design surface.
For a ToolStrip, you create each ToolStripItem by selecting it from a drop-down
list (see Figure 4-27); then you can select the ToolStripItem and customize it
in the Properties window.

The ToolStrip in Figure 4-27 is a simple one, composed entirely of the
most useful ToolStripItem types: the ToolStripButton and ToolStripSeparator.
Once you’ve created the ToolStrip you want, it’s time to handle the button
clicks. Here’s an example event handler that responds when the user clicks
the New button on the ToolStrip by showing the name of the ToolStripItem.
As usual, you can generate this event handler quickly by double-clicking the
New button in the design environment.

Private Sub NewToolStripButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles NewToolStripButton.Click
 Dim item As ToolStripItem = CType(sender, ToolStripItem)
 MessageBox.Show("You clicked " & item.Name)
End Sub

bvb_02.book Page 127 Thursday, March 30, 2006 12:39 PM

128 Chap te r 4

Figure 4-27: Choosing a ToolStripItem to add to a ToolStrip

As you use the ToolStrip, you’ll find yourself getting quickly acquainted
with it. In the meantime, keep these useful facts in mind:

� By default, the ToolStripButton shows a picture only (as set in the Image
property). To change this so that it also shows content set in the Text
property, set the DisplayStyle property to ImageAndText. You can even con-
figure where the image goes relative to the text using the TextImageRelation
property.

� A ToolStrip can be vertical or horizontal. To change its orientation,
change the Dock property. (By default, when you create a new ToolStrip
it’s docked to the top of the form as a horizontal toolbar.)

� A ToolStrip can’t float, but it can be moved into different positions using
the ToolStripContainer. To try this trick out, start by adding a ToolStripCon-
tainer, and docking it to fill your form. Then, add your ToolStrip controls
inside the ToolStripContainer, along one of the four sides. At runtime, the
user will be able to rearrange ToolStrip objects that are next to each other,
or move a ToolStrip from one side to another. (To disable some sides
so that they aren’t dockable use ToolStripContainer properties like
LeftToolStripPanelVisible, TopToolStripPanelVisible, and so on.)

� By default, when a ToolStrip can’t fit all its items at once, the ones at the
end drop off into an overflow menu (see Figure 4-28). If this isn’t the
behavior you want, set the ToolStrip.CanOverflow property to False. Or
for even more control, set the Overflow property of individual items to

bvb_02.book Page 128 Thursday, March 30, 2006 12:39 PM

Windows Forms 129

determine whether they will be made a part of the overflow menu. This
allows you to ensure that the most items will remain visible even as the
less important ones are shuffled into the overflow menu.

Figure 4-28: The ToolStrip
overflow menu

� As shown in Figure 4-27, you can add several ToolStripItem types to
a ToolStrip. However, you aren’t limited to just these options; you
can add a ToolStripControlHost to a ToolStrip programmatically.
The ToolStripControlHost can wrap any other type of control, allowing
you to quickly put check boxes, date controls, and just about anything
else into the ToolStrip. For example:

' Create a DateTimePicker control.
Dim Dt As New DateTimePicker()
Dt.Value = DateTime.Now
Dt.Format = DateTimePickerFormat.Short

' Wrap it in a ToolStripControlHost.
Dim Host As New ToolStripControlHost(Dt)

' Place it in the ToolStrip.
MyToolStrip.Items.Add(Host)

Use the ToolStrips project to begin playing with the MenuStrip and
ToolStrip controls.

System Tray Icons

At last, Visual Basic provides an easy way to add and use a system tray icon.
All you need to do is place the NotifyIcon control on your component tray, and
supply an appropriate icon using the Icon property (and pop-up text using the
Text property). The icon will appear immediately when the form is displayed
(Figure 4-29) and will disappear when the form is unloaded.

bvb_02.book Page 129 Thursday, March 30, 2006 12:39 PM

130 Chap te r 4

Figure 4-29: A system tray icon

The only problem with this approach is that the NotifyIcon won’t appear
until the form is loaded, which prevents you from creating system tray appli-
cations that quietly load themselves in the background without showing
anything. Unfortunately, this sort of background application is quite useful.
It can linger in the background performing periodic tasks automatically, or it
could wait for the user to click the icon and choose a menu command before
performing any operations.

To create a background application that works this way, you need to
switch off the VB application framework. It’s a little counterintuitive, but not
terribly difficult. Here’s how to get started:

1. Double-click the My Project node in the Solution Explorer.

2. Clear the check mark next to the Enable Application Framework setting.

3. Choose Sub Main for the startup object.

4. Select File�Add Component, and create a new component with any file-
name. (In the following example, we use the name ApplicationStartup.)
This component will contain the Main() method that launches your
application.

You must use a component to start your application (rather than an
ordinary class or module) because only a component gives you a design
surface where you can create controls and other components. In other
words, although the ApplicationStartup component isn’t a form, you can
still use Visual Studio to design it. That means you can add objects like the
NotifyIcon by dragging them from the Toolbox and dropping them onto
your component, without having to write all the code by hand.

In this example, you need both a NotifyIcon and ContextMenuStrip. Drop
both of these ingredients onto the design surface of your component, which
looks like the component tray of a form (see Figure 4-30). You can select items
here and configure them further in the Properties window.

Before going any further, set the text and icon for the NotifyIcon (using the
Text and Icon properties), and add two menu comments to the ContextMenuStrip:
Show Clock and Exit. To add these items, right-click the ContextMenuStrip and
select Edit Items.

Now, set the NotifyIcon.ContextMenuStrip property to refer to the
ContextMenuStrip that you’ve created so that the the NotifyIcon will auto-
matically show the menu when a user right-clicks the system tray icon.

bvb04_02.fm Page 130 Tuesday, April 11, 2006 9:41 AM

Windows Forms 131

Figure 4-30: Adding a system tray icon and context menu
to a component

Next, it’s time to add event handlers for the two context menus. Here’s
the code you need:

Public Class ApplicationStartup
 Private Sub cmdExit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles cmdExit.Click
 AppIcon.Visible = False
 Application.Exit()
 End Sub

 Private Sub cmdShowClock_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles cmdShowClock.Click
 ' You could show another form here, but we
 ' simply show a message box.
 MessageBox.Show(Date.Now.ToString, "Date", _
 MessageBoxButtons.OK)
 End Sub

 Public Shared Sub Main()
 ' (Code omitted.)
 End Sub
End Class

The real trick is the Main() method, which starts your program. The
Main() method must be declared with the Shared keyword so that it’s always
available, even before your component has been created. (You’ll learn more
about shared methods in Chapter 5.) Your task in the Main() method is to
create the form, perform any other initialization you need, and get things
started. Here’s the code that does the trick:

Public Shared Sub Main()
 ' Make sure we get the Windows XP look, if available.
 Application.EnableVisualStyles()

bvb_02.book Page 131 Thursday, March 30, 2006 12:39 PM

132 Chap te r 4

 ' Create this component.
 ' At this point, the NotifyIcon appears automatically
 ' (assuming its Visible property is True).
 Dim App As New ApplicationStartup

 ' Because no forms are being displayed, you need this
 ' statement to stop the application from automatically ending.
 ' The application will just wait for menu clicks from this point on.
 Application.Run()
End Sub

NOTE If you choose to switch off the application framework in this way, make sure you include
the command Application.EnableVisualStyles() before you show any forms to ensure
that your application will support Windows XP visual styles when running under
Windows XP. (On earlier operating systems, this command has no effect.) Without this
step, you’ll always get the old-fashioned buttons, for a decidedly dated look.

This completes a background application that uses the system tray.
When you first load it, the icon appears but no forms show up. Right-click
to see the menu and start interacting with your application. If the user clicks
Exit, the program ends; if the user clicks Show Clock, the current time is dis-
played. (This application is provided with the examples for this chapter in
the SystemTrayApplication project.)

The possible uses for an application like this are countless. For example,
you could create a task-logging program that records the amount of time
spent on each project by simply “punching in” and “punching out” on the
system tray icon menu. The program would then write the appropriate
information to a file or database.

Providers

Providers are an innovative type of component. Providers extend the prop-
erties of other controls on the current form. For example, to add a tooltip to
a control, all you need to do is drag a ToolTipProvider onto the component
tray. Once you do so, every control on the current form automatically acquires
a new property (courtesy of the ToolTipProvider) named ToolTip. You can set
this with the tooltip text that you want to appear when the user hovers the
mouse over the corresponding control.

You can also tweak various ToolTipProvider properties to configure global
tooltip settings, such as how many milliseconds your program will wait before
showing the tooltip, or how long the tooltip will remain displayed if the user
doesn’t move the mouse. Usually, however, the default settings are best.

NOTE Remember that a tooltip should be reserved for graphical controls such as toolbar buttons,
not used with label controls or ordinary buttons.

bvb_02.book Page 132 Thursday, March 30, 2006 12:39 PM

Windows Forms 133

You’ll find two other providers with .NET:

HelpProvider

This provider lets you show help messages or launch a help topic in
another window. Best of all, you can create context-sensitive help that
shows different help for different windows and controls. The HelpProvider
springs into action when a user presses F1 while positioned over another
control.

ErrorProvider

This provider lets you show a flashing error icon (with a Tooltip error
message) when invalid data is entered. You can use it with your own vali-
dation routines to alert a user when a mistake is made in an input control
like a TextBox.

What Comes Next?

The future is bright for user interface programming with Windows forms.
Because all .NET languages share the same WinForms technology, Microsoft
won’t be introducing new controls that are only available to developers using
a certain language.

To learn more, your best bet is to master the full-featured suite of
controls bundled with Visual Basic 2005. Complete reference information
for every control can be found in the class reference portion of the Visual
Studio Help, in the System.Windows.Forms namespace. Or, for a detailed look
at each and every Windows Forms control, you can try a book like my own
Pro .NET 2.0 Windows Forms and Custom Controls in VB (Apress, forthcoming).

bvb_02.book Page 133 Thursday, March 30, 2006 12:39 PM

bvb_02.book Page 134 Thursday, March 30, 2006 12:39 PM

5
O B J E C T - O R I E N T E D

P R O G R A M M I N G

Visual Basic first introduced support for
object-oriented programming in version 4.0,

and the response was varied. Some cutting-
edge VB developers began to push forward with

object-oriented concepts, using them to build sophisti-
cated component-based programs that could scale to
serve thousands of simultaneous users, while the rest of the VB developer
community continued as it always had. As time went on, the group of object-
oriented programmers grew larger, and most books about Visual Basic pro-
gramming began to include at least some reference to its OOP features.
With Visual Basic 2005 these features are greatly expanded—in fact, they’ve
swallowed the entire language!

If you want to do anything in .NET, you’ll need to use objects. For
example, you create and manage files by using File and Directory objects,
print out reports using PrinterDocument objects, and interact with databases
using DataSet and DataReader objects (as you’ll discover in Chapter 9). In fact, in
Visual Basic 2005 everything is an object, whether you realize it at first or not.
You had a glimpse of this in Chapter 3, which examined how fundamental

bvb_02.book Page 135 Thursday, March 30, 2006 12:39 PM

136 Chap te r 5

Visual Basic 2005 data types, such as arrays, strings, and even integers, are
actually full-featured objects. In Chapter 4 the plot thickened with forms,
which were also exposed as a special type of object. As this book continues,
you’ll learn how to create your own custom objects and use them for a variety
of programming tasks. But before you can get there, you need a crash course
in object-oriented programming. That’s where this chapter comes in.

To make the best use of .NET objects, and to enhance your own applica-
tions, you should develop a good understanding of object-oriented concepts.
You may have already learned how to use classes and objects with a previous
version of Visual Basic or another programming language. Even so, you’ll
probably still want to read through the majority of this chapter and the next
to explore the object-oriented features of VB 2005 and to get the big picture
of the world of classes, interfaces, and object relationships.

New in .NET

Visual Basic 2005’s enhanced OOP features first appeared in .NET 1.0, when
they were among the most hotly anticipated language changes. Visual Basic
2005 keeps all of these features (and adds a few more, which you’ll learn about
in Chapter 6). At last, Visual Basic includes all the hallmarks of a true object-
oriented language.

In this chapter, you’ll see some of the following changes:

The Class keyword
In Visual Basic 6, each class required a separate file. Now you can group
your classes any way you want, as long as you place all classes inside dec-
larations (for example, start with Public Class MyClassName and end with
End Class).

The Is keyword
In VB 2005, you test whether two objects are the same by using the Is
keyword (for example, If objOne Is objTwo Then), not the equal sign.

Constructors
You can now use constructors to preload information into an object in a
single line. Initializing objects can’t get any easier.

Garbage collection
Garbage collection replaces deterministic finalization. When you set an
object to Nothing, it doesn’t disappear until the next time the garbage
collector runs, which means that you can’t use an event handler to do the
cleanup.

Enumerations
Need to use constants, but tired of using hard-coded numbers and strings?
Enumerations give you the ability to define groups of related values and
give each value a descriptive name, which makes for cleaner coding.

bvb_02.book Page 136 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 137

Shared members
The Shared keyword allows you to create properties, variables, and meth-
ods that are always available, even when no instance object exists. Visual
Basic 6 allowed you to create modules that were entirely made up of
shared methods, but it didn’t provide anything close to the features and
fine-grained control afforded by the Shared keyword.

Introducing OOP

Visual Basic is often accused of being a loosely structured language, and
many VB developers lapse into an event-driven style of programming that
scatters code fragments everywhere. If you want to write a program that has
any chance of being extensible, reliable, and even fun to program, it’s up to
you to adopt a more systematic programming methodology—and none is
nearly as powerful, or as natural to the way Windows works, as object-oriented
programming.

It’s hard to imagine anything in the past ten years that has so completely
caught the imagination of developers as object-oriented programming. What
started off as an obscure philosophy for “language nerds” has grown into a
whole assortment of nifty, easy-to-use techniques that can transform a com-
plex, bloated application into a happy collection of intercommunicating
objects. Quite simply, object-oriented programming makes it easier to
debug, enhance, and reuse parts of an application. What’s more, object-
oriented principles are the basis of core pieces of the Windows operating
system—first with COM, and now with the .NET Framework.

What Is Object-Oriented Programming?

One of the more intimidating aspects of object-oriented programming is
the way its advocates tout it as a philosophy (or even a religion). To keep
things straight, it’s best to remind yourself that object-oriented programming
really boils down to the best way to organize code. If you follow good object-
oriented practices, you’ll end up with a program that’s easier to manage,
enhance, and troubleshoot. But all these benefits are really the result of
good organization.

The Problems with Traditional Structured Programming

Traditional structured programming divides a problem into two kinds of
things: data and ways to process data. The problem with structured program-
ming is that unless you’ve put a lot of forethought into your application
design, you’ll quickly end up with a program that has its functionality
scattered in many different places.

bvb_02.book Page 137 Thursday, March 30, 2006 12:39 PM

138 Chap te r 5

Consider a simple database program for sales tracking that includes a
basic search feature. Quite probably, at some point, you’ll need to add the
ability to search using slightly different criteria than you originally defined.
If you’re lucky, you’ve built your search routine out of a few general functions.
Maybe you’re really lucky, and your changes are limited to one function.
Hopefully, you can make your changes without reworking the structure of
your existing code.

Now consider a more drastic upgrade. Maybe you need to add a logging
feature that works whenever you access the database, or perhaps your organi-
zation has expanded from Access to SQL Server and you now have to connect
to an entirely new and unfamiliar type of database. Maybe you need to have
your program provide different levels of access, to change the user interface
radically, or to create a dozen different search variants that are largely similar
but slightly different. As you start to add these enhancements, you’ll find
yourself making changes that range over your entire program. If you’ve been
extremely disciplined in the first place, the job will be easier. By the end of
the day, however, you’ll probably end up with a collection of loosely related
functions, blocks of code that are tightly linked to specific controls in specific
windows, and pieces of database code scattered everywhere.

In other words, the more changes you make in a traditionally structured
program, the more it tends toward chaos. When bugs start to appear, you’ll
probably have no idea which part of the code they live in. And guess what
happens when another programmer starts work on a similar program for
inventory management? Don’t even dream of trying to share your code. You
both know that it will be more difficult to translate a routine into a usable
form for another program than it will be to rewrite the code from scratch.

In Chapter 6 you’ll see some examples that explain how object-oriented
programming overcomes these disasters. But for now, it will help if you get a
handle on how you can create an object in Visual Basic 2005.

First There Were Structures . . .

The precursor to classes was a programming time-saver called structures.
A structure is a way of grouping data together, so that several variables
become part of one conceptual whole.

NOTE In earlier versions of Visual Basic, structures were called types. As you learned in
Chapter 3, the word type has a completely different meaning in .NET—it encompasses
all the different ingredients you’ll find in the class library. This is a potential point of
confusion for classic VB developers migrating to .NET.

For example, suppose you need to store several pieces of information
about a person. You could create separate variables in your code to represent
the person’s birth date, height, name, and taste in music. If you leave these
variables separate, you’ve got a potential problem. Your code becomes more
complicated, and it’s not obvious that these separate variables have anything
to do with each other. And if you have to work with information for more
than one person at a time, you have to create a frightening pile of variables

bvb_02.book Page 138 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 139

to keep track of all the information. It’s likely that you’ll soon make the mis-
take of changing the wrong person’s age, forgetting to give someone a birth
date, or misplacing their favorite CD collection. Here’s where structures come
into the picture.

A Very Simple Person Structure

To group this information together, you can create the following structure:

Public Structure Person
 Dim FirstName As String
 Dim LastName As String
 Dim BirthDate As Date
End Structure

Where can you place this code? In VB 2005 you can put public structures
anywhere at the file or module level. The only limitation is that they can’t be
inside a function or a subroutine. If you define a private structure, you can
put it inside the class or module where you want to use it.

Now you can use this structure to create a Person object in some other
place in your code, and you can set that Person’s information like so:

Dim Lucy As Person
Lucy.FirstName = "Lucy"
Lucy.LastName = "Smith"
Lucy.BirthDate = DateTime.Now

In this case, we set the birthday to the current time to indicate that Lucy
has just been brought to life.

The preceding code is easy to read. When you change a variable, you
know which person it relates to. If you want to create more than one Person
object, it’s easy, and there will be a lot less code. Best of all, you can pass an
entire Person through just one parameter to a function or subroutine that
uses it, as follows:

Public Sub GoShopping(ByVal Shopper As Person)
' Some code here to manage the mall process.

End Sub

NOTE The word object is often used in a fairly loose fashion to mean all sorts of things. But
technically speaking, an object is a live instance of a structure or a class that’s floating
around in memory. In other words, you use a structure to define a person at design time,
and you use that structure to create as many Person objects as you need at runtime, each
of which stores its own personal data.

Structures are really “super variables.” You’re probably familiar with this
concept if you’ve worked with databases, even if you’ve never actually created a
structure or a class. In a database, each person is represented by a record (also
known as a row), and each record has the same series of fields to describe it.

bvb_02.book Page 139 Thursday, March 30, 2006 12:39 PM

140 Chap te r 5

Basically, there is one important similarity between structures and classes:
Both are defined only once, but can be created as many times as you want,
just about anywhere in your code. This means you only need to define one
Person structure, but you can build families, convention centers, and bowling
clubs without introducing any new code.

Making a Structure That Has Brains

What about a structure with built-in intelligence? For example, what if we
could make a Person structure that wouldn’t let you set a birth date that was
earlier than 1800, could output a basic line of conversation, and would notify
you when its birthday arrives?

This is what you get with a class: a structure that can include data and
code. (Actually, Visual Basic 2005 structures can contain code, though there
are subtle differences between structures and classes, which we’ll explore a
little later in this chapter. In practice, classes are usually the way to go because
structures have subtle limitations. Most programmers see structures simply
as examples of backward compatibility—like little pieces of living history
accessible from the modern Visual Basic programming language.)

Consider our Person as a full-fledged class:

Public Class Person

 ' Data for the Person
 Public FirstName As String
 Public LastName As String
 Public BirthDate As Date

 ' Built-in feature to get the Person object to introduce itself.
 Public Function GetIntroduction() As String
 Dim Intro As String
 Intro = "My name is " & FirstName & " " & LastName & ". "
 Intro &= "I was born on " & BirthDate.ToString()
 Return Intro
 End Function

End Class

Notice that this Person class looks similar to the Person structure you saw
earlier. It has the same three variables, except that now you must be careful
to mark them with the Public keyword. (By default, variables inside a class are
private, which means that only the code inside the class can see or change
them. In this case, this behavior isn’t what you want, because it would prevent
your code from changing or retrieving this information.) The Person class
also adds a method (here, a function) called GetIntroduction(), which is placed
right in the class. This means that every Person object is going to have a built-
in feature for introducing itself.

bvb_02.book Page 140 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 141

NOTE To create a file quickly for a new class in Visual Studio, load up a project and choose
Project�Add Class from the menu.

Similarly, if you were to make a class modeling a microwave oven, you
might have data such as the microwave’s manufacturer and the current
power level, along with a CookFood() method. Now you can see how classes
help organize code. Methods that are specific to a particular class are
embedded right in the class.

Instantiating an Object

Returning to our Person class, you’ll find that it’s quite easy to use it to create
a live object (a process called instantiation):

Dim Lucy As New Person()
Lucy.FirstName = "Lucy"
Lucy.LastName = "Smith"
Lucy.BirthDate = DateTime.Now
MessageBox.Show(Lucy.GetIntroduction(), "Introduction")

This code produces the output shown in Figure 5-1.

Figure 5-1: An introductory class

NOTE To see this code in action and create a Lucy object, you can use the ObjectTester project
included with the samples for this chapter.

Notice that to create an object based on a class, you use a Dim statement
with the New keyword. The New keyword is required to actually create the object.
Alternatively, you could use the following code:

Dim Lucy As Person ' Define the Lucy object variable.
Lucy = New Person() ' Create the Lucy object.

This code is almost exactly the same. The only difference is that it
gives you the ability to separate the two lines. This approach could be useful
if you want to define the Lucy variable in one spot and then create the Lucy
object in another spot, such as a separate method. Notice that there is no
Set statement used. (The Set statement was a hallmark of objects in
Visual Basic 6.)

bvb_02.book Page 141 Thursday, March 30, 2006 12:39 PM

142 Chap te r 5

TIP In classic Visual Basic, using the New keyword in a Dim statement could get you into
trouble by defining a dynamically creatable object that could spring to life at any
moment and just wouldn’t stay dead. Now the syntax Dim VarName As New ClassName
defines a variable and instructs Visual Basic to instantiate the object immediately, just
as you would expect.

To release an object, set it equal to Nothing, as shown here:

Lucy = Nothing

This tells Visual Basic that the object is no longer needed. Strictly
speaking, you won’t often need to use this statement, because the variable
will be automatically cleared as soon as it goes out of scope. For example, if
you define a variable in a subroutine, the variable will be set to nothing as
soon as the subroutine ends. If you want to clear an object variable before
this, use the Nothing keyword.

Objects Behind the Scenes

When you create an object based on a class, you’ll find that it behaves
differently from other variables. This unusual behavior was introduced in
connection with arrays in Chapter 3, although it is significant enough to
examine in more detail here. The issue is that classes are reference types, which
means that, behind the scenes, .NET tracks them using a reference that
points to some location in memory. All reference types exhibit some quirky
behavior when you copy or compare instances.

Copying Objects

Consider the following code:

' Create two people objects.
Dim Lucy As New Person()
Dim John As New Person()

' Enter information in the Lucy object.
Lucy.FirstName = "Lucy"

' Copy the reference, not the value. The original John object is abandoned.
John = Lucy

The last line is the most significant. If you were expecting objects to
behave like variables of the Integer or String data type, you might expect that
this line copies Lucy’s information into John. Instead, the existing John object
is abandoned, and the reference to it in the John variable is replaced by a
reference to the Lucy object. At the end of the last line, there is really only
one object (Lucy) remaining, with two different variables that you can use to
access it.

bvb_02.book Page 142 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 143

Let’s continue with the following code:

John.FirstName = "John"
' Now Lucy.FirstName is also John!

This is an example of reference equality. In most cases it is more useful than
value equality for working with objects. It’s definitely faster, because all .NET
needs to do is copy a memory pointer from one variable to another (rather
than copy the entire block of memory that represents the object, which
could be quite large).

NOTE This is the key difference between VB 2005 structures and classes: Structures are value
types, while classes are reference types. As with all value types, assignment and compar-
ison operations work on the contents of the object, not the memory reference. This can
make large structures much slower and less efficient to work with than classes.

Many classes support cloning, which allows you to copy the contents of an
object when needed by calling a Clone() method. The familiar Array class is an
example. To create an object that supports cloning, you need to go to a little
extra work and implement a special interface. The next chapter explains inter-
faces and demonstrates this technique.

Comparing Objects

Reference types also have their own rules for comparison. Notably, you can’t
use the equal sign (=). This is to eliminate confusion regarding the true mean-
ing of an “equals” comparison. With two variables, a comparison determines
whether the values of both variables are the same. With two objects, a compari-
son doesn’t determine whether the contents are the same, but rather whether
both object references are pointing to the same object. In other words, if objOne
Is objTwo, there really is only one object, which you can access with two differ-
ent variable names. If intOne = intTwo, however, it means that two separate
variables are storing identical information.

Here’s an example that demonstrates this oddity:

If Lucy Is John Then
 ' Contrary to what you might expect, the Lucy and John
 ' variables are pointing to the same object.
End If

' The following won't work, because you can't compare object contents
directly.
' If Lucy = John Then
 ' This comparison can't be made automatically.
 ' Instead, the object would need to provide a method that
 ' compares every property (or just the important
 ' ones that are necessary to define equality).
End If

bvb_02.book Page 143 Thursday, March 30, 2006 12:39 PM

144 Chap te r 5

The difference between reference equality and value equality takes a
little getting used to. Sometimes it helps to understand why the creators of
VB (and most other modern languages, such as Java and C#) choose to
implement this sort of behavior. The reality is that objects are often large
blobs of memory with plenty of information and functionality packed in.
Although it’s possible for an environment like the Common Language
Runtime to provide a standard way to compare two blobs of memory to see
whether they contain the same data, it would be unacceptably slow. Simple
value types tend to be much smaller scraps of information that are readily
available and can be compared with lightning speed.

There’s also the issue of identity, which reference types have and value
types don’t. Essentially, if two value types have the same data, they are the
same. However, if two reference types have the same data, they are equiva-
lent but separate. In other words, it’s possible to have two identical but
separate Person objects. (Maybe it’s just a freakish coincidence.)

The Null Value Error

The most common error you will receive while working with reference types
is the common NullReferenceException, which warns you that “Value null was
found where an instance of an object was required.” What this means is that
you’ve tried to work with an object that you have defined but have not instanti-
ated. Typically, this is caused when you forget to use the New keyword. Here’s
the mistake in action:

Dim Lucy As Person ' No New keyword is used; this is a definition only.
Lucy.FirstName = "Lucy" ' Won't work because Lucy doesn't exist yet!

It’s a small mistake that you will soon learn to avoid, but being able to
recognize it ensures that it will never frustrate you for long.

Classes in Pieces

As you’ve already learned, Visual Basic 2005 is flexible enough to let you
define as many classes as you want in the same file. This feature has been
around since .NET 1.0 first hit the scene. However, VB 2005 adds a new
wrinkle. Now, not only can you place multiple classes in one file; you can also
split a single class across different files. (This might be worthwhile if you’re
working with extremely large classes.)

In order to pull off this trick, you need to add the Partial keyword to
your class declaration. Otherwise, the VB compiler assumes you’ve made a
mistake. For example, you could split the Person class into two pieces in sev-
eral ways. First, put this part of the declaration in a file named Person1.vb:

Partial Public Class Person
 Public FirstName As String
 Public LastName As String
 Public BirthDate As Date
End Class

bvb_02.book Page 144 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 145

Then put this part into a file named Person2.vb:

Partial Public Class Person
 Public Function GetIntroduction() As String
 Dim Intro As String
 Intro = "My name is " & FirstName & " " & LastName & ". "
 Intro &= "I was born on " & BirthDate.ToString()
 Return Intro
 End Function
End Class

This doesn’t change how your program works one bit. When you compile
your application, these two pieces are fused together into one class, exactly as
though you had coded them in the same file.

NOTE Technically, you only need to add the Partial keyword to one of the class declarations.
In other words, if you split a class into ten pieces, you need to use Partial on at least
one of those pieces. However, it’s good style to use it on every declaration, so you don’t
forget that you only have a piece of the picture when you’re editing one of the files.

You probably won’t use partial classes too often. Although they can help
you break down large classes into more manageable bits, the presence of
large classes in the first place probably indicates that you need a better design
(one that splits your code into smaller classes). However, Visual Studio uses
partial classes to hide details that you don’t need to see, like the automatically
generated form code that you saw in Chapter 4. The idea is that the class is
split into two pieces—the one you fill with your application code and the
other that has the low-level plumbing you can safely ignore.

Enhancing a Class with Properties

A class provides another important ingredient, called properties. Right now,
the Person class uses three variables, and all of these variables are exposed
to the outside world. This exposure makes life convenient but dangerous.
Suppose a microwave oven did not have a control panel; instead, the user was
supposed to control it directly through the circuitry in the back. In such a
situation, numerous problems could occur, ranging from unsatisfactory
results (for example, burning dinner by forgetting to turn the power off at
the right time) to safety hazards (for example, burning people by running the
microwave with the door open).

In order to make sure that a class does only the legitimate things it is
intended to do, its developer has to make it a well-encapsulated black box,
hiding as much of the internal details as possible and providing it with a con-
trol panel. This means that every class should perform its own basic error
checking. It also means that a class should use only private variables, which
are hidden from the outside world. To let the calling code change a private
variable in a class in a controlled manner, you use properties.

bvb_02.book Page 145 Thursday, March 30, 2006 12:39 PM

146 Chap te r 5

Properties are really special procedures that allow a private variable to be
changed or retrieved in a more controlled way. For example, to use a prop-
erty instead of a public variable for a Person’s first name, you can remove the
FirstName variable and add this code instead:

Private _FirstName As String

Public Property FirstName() As String
 Get
 Return _FirstName
 End Get

 Set(ByVal Value As String)
 _FirstName = Value
 End Set
End Property

The code breaks the public FirstName variable into two parts: a private
_FirstName variable that stores the actual information behind the scenes, and
a public FirstName property that the class user sees. The internal _FirstName
variable uses an underscore in its name to distinguish its name from the
property name. This is a common technique, but is definitely not your only
possible choice. (Some developers prefer to add a prefix; for example, m_ to
indicate “member variable.”)

The code for setting and retrieving FirstName is still exactly the same.
In fact, the property procedure hasn’t introduced any new code, so we
haven’t gained anything. You can also use the same approach to change
the LastName variable to a property. But let’s look at what we can do with the
BirthDate variable:

Private _BirthDate as Date

Public Property BirthDate() As Date
 Get
 Return _BirthDate
 End Get

 Set(ByVal Value As Date)
 If BirthDate > Now Then
 MessageBox.Show("You can't create an unborn person")
 Else
 _BirthDate = Value
 End If
 End Set
End Property

Now, if you attempt to set a birthdate that occurs in the future, the
property procedure will refuse to comply and will scold you with a message
box. Be aware that for a class to display message boxes in response to invalid
input is bad design. A Person class has nothing to do with your program’s user
interface; it should limit its functions to setting and retrieving data about

bvb_02.book Page 146 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 147

persons. To handle invalid input correctly, you should throw an exception,
which would be received by the code setting the property and would be
interpreted as an error. The code where the class properties are being set
could then decide how to handle the problem. (Throwing and catching of
exceptions are discussed in Chapter 8.)

You may have also noticed that the limitations imposed by this code
don’t necessarily make a lot of sense. For example, assigning the Person a
birth date in the future might make a lot of sense for performing certain
types of calculations. The restrictions in the preceding code example are
really just designed to give you an idea of how a class can review data and
refuse to accept information that is not appropriate.

Properties also provide another layer of abstraction. For example, when
you set a microwave to defrost, several different internal properties are set,
including settings for a maximum and a minimum power level, and a fre-
quency between which the two are alternated. These details are hidden from
the user. If the user had to set all this information directly, not only would a
typical microwave operation take a lot more effort, but different microwave
models would require different steps to operate.

Read-Only Properties

Sometimes you might want a property to be visible but not directly changeable.
For example, in our microwave analogy, there could be a LastServiceDate
property that indicates when the microwave was most recently repaired or
examined. You wouldn’t want the microwave user to change this date,
although the microwave class itself might update it in response to its
ServiceMicrowave() method.

To make a property read-only, you leave out the Set procedure and add
the keyword ReadOnly to the definition. In the case of the Person object, you
might want to make the BirthDate property read-only, because this value can’t
be changed at will:

Public ReadOnly Property BirthDate() As Date
 Get
 Return _BirthDate
 End Get
End Property

You can also use the WriteOnly keyword to include a property with only a
Set procedure and no Get procedure. This rarely makes sense, however, and
is not usually what an ordinary programmer expects from an object. Typically,
it’s a trick that’s used only in unusual scenarios, such as if you’re creating a
password property that can be set at will but (for security reasons) can’t be
retrieved.

The preceding code example raises an interesting question. The pro-
gram has been restricted so that the value of BirthDate can’t be changed,
which is a reasonable restriction. However, it also prevents you from assign-
ing a BirthDate value in the first place. In order to solve this problem, you
need a way to load basic information when the Person object is first created,

bvb_02.book Page 147 Thursday, March 30, 2006 12:39 PM

148 Chap te r 5

and then prevent any future changes to those values (such as BirthDate) that
can’t ordinarily be modified. The way to accomplish this is to use a ReadOnly
property procedure, as shown in the preceding example, in combination
with a custom constructor.

Enhancing a Class with a Constructor

In Chapter 3 you learned that with initializers you can preload variables with
information using the same line that you use to create them. Initializers allow
you to convert this:

Dim MyValue As Integer
MyValue = 10

into this:

Dim MyValue As Integer = 10

Constructors work the same kind of magic with classes that initializers do
with variables. The difference is that classes, being much more complex than
simple variables, can require significantly more advanced initialization. For
example, you will typically have to set several properties, and in the case of a
business object, you might want to open a database connection or read values
from a file. Constructors allow you to do all this and more.

A constructor is a special subroutine that is invoked automatically in your
class. This subroutine must have the name New—that’s how Visual Basic 2005
identifies it as a constructor.

Consider the following Person class:

Public Class Person
 ' (Variable definitions omitted.)
 ' (Property procedures omitted.)

 Public Sub New()
 _BirthDate = DateTime.Now
 End Sub

End Class

Notice that we’ve included a constructor that assigns a value for the
internal _BirthDate variable. Now, every time you create a Person object, a
default birth date will be automatically assigned. This technique can allow for
some shortcuts in your code if you frequently rely on certain default values.

bvb_02.book Page 148 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 149

Constructors That Accept Parameters

The previous example only scratches the surface of what a well-written con-
structor can do for you. For one thing, constructors can require parameters.
This allows for a much more flexible approach, as shown here:

Public Class Person
 ' (Variable definitions omitted.)
 ' (Property procedures omitted.)

 Public Sub New(ByVal FirstName As String, ByVal LastName As String, _
 ByVal BirthDate As Date)
 _FirstName = FirstName
 _LastName = LastName
 _BirthDate = BirthDate
 End Sub

End Class

NOTE You might notice that the parameter names in the previous example conflict with the
property names of the class. However, the parameter names have precedence, so the code
will work the way it is written. To refer directly to one of the properties with the same name
in the New subroutine, you would need to use the Me keyword (as in Me.FirstName).

The constructor in this example allows you to preload information into
a Person object in one line. Best of all, it’s done in a completely generic way
that lets you specify each required piece of information.

Dim Lucy As New Person("Lucy", "Smith", DateTime.Now)

' This can also be written with the following equivalent syntax:
' Dim Lucy As Person = New Person("Lucy", "Smith", DateTime.Now)

Bear in mind that it makes no difference in what order you place your
methods, properties, variables, and constructors within a class. To make it
easy to read your code, however, you should standardize on a set order.
One possible standard is to include all your private variables first, followed by
property procedures, then constructors, and then other methods. Visual
Basic 2005 gives you as much freedom to arrange the internal details of a
class as it gives you to arrange different classes and modules in a file.

To try out the Person class and see how a simple client interacts with it,
you can use the ObjectTester project included with the sample code for this
chapter (see Figure 5-2).

bvb_02.book Page 149 Thursday, March 30, 2006 12:39 PM

150 Chap te r 5

Figure 5-2: Testing the Person object

Multiple Constructors

Another exciting feature of VB 2005 is the ability to define multiple construc-
tors for a class. Once you’ve done this, then when you create an instance of
that class, you can decide which constructor you want to use. Each constructor
must have its own distinct parameter list. (In other words, multiple construc-
tors can’t share the same signature.)

How does it work? Conceptually, it’s the same process as for overloading
procedures, which was demonstrated in Chapter 3. The only difference is
that you don’t use the Overloads keyword.

Here’s a Person class with more than one constructor:

Public Class Person
 ' (Variable definitions omitted.)
 ' (Property procedures omitted.)

 Public Sub New(ByVal FirstName As String, ByVal LastName As String, _
 ByVal BirthDate As Date)
 _FirstName = FirstName
 _LastName = LastName
 _BirthDate = BirthDate
 End Sub

 Public Sub New(ByVal FirstName As String, ByVal LastName As String)
 _FirstName = FirstName
 _LastName = LastName
 _BirthDate = DateTime.Now
 End Sub

 Public Sub New(ByVal FirstName As String, ByVal LastName As String, _
 ByVal Age As Integer)

bvb_02.book Page 150 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 151

 _FirstName = FirstName
 _LastName = LastName
 _BirthDate = DateTime.Now.AddYears(-Age)
 End Sub
End Class

These overloaded constructors allow you to create a Person by specifying
all three pieces of information or by specifying only the name, in which case
a default date will be used. You can also use a variant of the constructor that
calculates the BirthDate using a supplied Age parameter.

The technique of multiple constructors is used extensively in the .NET
class library. Many classes have a range of different constructors that allow
you to set various options or load information from different data sources.
Overloaded constructors are also much more flexible than optional para-
meters, which are never used in the .NET class library.

When you create an object that has more than one constructor, Visual
Studio shows you the parameter list for the first constructor in a special
IntelliSense tooltip (see Figure 5-3). This tooltip also includes a special arrow
icon that you can click to move from constructor to constructor (you can also
use the up and down arrow keys).

Multiple constructors are a way of life in .NET. The concept is fairly
straightforward, but as you learn about the .NET class library, you’ll realize that
creating classes with the perfect set of constructors is as much an art as a skill.

Figure 5-3: Visual Studio.NET’s IntelliSense tooltip for a constructor

TIP You can create multiple versions of any method in a class. You just need to use the
Overloads keyword, along with the techniques that were introduced in Chapter 3. Over-
loading methods is another trick that makes a frequent appearance in the .NET class
library and provides your objects with increased flexibility.

bvb_02.book Page 151 Thursday, March 30, 2006 12:39 PM

152 Chap te r 5

The Default Constructor
One other detail about constructors is worth noting. If you don’t create a
constructor, your class has one. In the case of a class without a specified
constructor in code, your object will use a default constructor that doesn’t
require any arguments and doesn’t do anything special.

However, as soon as you add a custom constructor to your class, Visual
Basic 2005 will stop generating the default constructor for you. This means
that if you add a constructor that requires parameters, that becomes your
only constructor. When you create an object based on that class, you will
then be forced to use that constructor and provide the required parameters.
This restriction can come in very handy, ensuring that you create your
objects successfully with valid data.

If you want to be able to create objects without any special parameters,
just include the default constructor manually in your class. The default
constructor looks like this:

Public Sub New()
 ' Initialize variables here if required.
End Sub

Destructors

With all this talk about constructors, it might have occurred to you that it
would be useful to have a complementary destructor method that is auto-
matically invoked when your object is destroyed. A destructor method might
allow a lazy programmer to create a class that automatically saves itself just
before it is deallocated, or—more usefully—one that cleans up after itself,
closing database connections or open files. However, Visual Basic 2005 has
no direct support for destructors. That’s because .NET uses garbage collec-
tion, which is not well suited to destructors. Quite simply, garbage collection
means that you can’t be sure when your object will really be cleared.

Garbage Collection

It’s worth a quick digression to explain garbage collection. Garbage collection
is a service used for all languages in the .NET Framework, and it’s radically
different from the way things used to work in Visual Basic 6.

Object Death in Visual Basic 6

Visual Basic 6 uses a technique called reference counting to manage object
lifetime. Behind the scenes, it keeps track of how many variables are pointing
at an object. (As you’ve already seen in this chapter, more than one object
variable can refer to the same object.) When the last object variable is set to
Nothing, the number of references pointing to an object drops to zero, and
the object will be swiftly removed from memory. At the same time, the

bvb_02.book Page 152 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 153

Class.Terminate event occurs, giving your code a chance to perform any
related cleanup. This process is called deterministic finalization because you
always know when an object will be removed.

As with many characteristics of Visual Basic 6, this system had some
problems. For example, if two objects refer to each other, they could never
be removed, even though they might be floating in memory, totally detached
from the rest of your program. This problem is called a circular reference.

Object Death in Visual Basic 2005

In .NET, objects always remain in memory until the garbage collector finds
them. The garbage collector is a .NET runtime service that works automatically,
tracking down classes that aren’t referenced anymore. If the garbage collec-
tor finds two or more objects that refer to one another (a circular reference),
and it recognizes that the rest of the program doesn’t use either of them, it
will remove them from memory.

This system differs from Visual Basic 6. For example, imagine a Person
object that has a Relative property that can point to another Person object.
A very simple program might hold a couple of variables that point to Person
objects, and these Person objects may or may not point to still more Person
objects through their Relative property. All these objects are referenced, so
they will be safely preserved.

On the other hand, consider a Person object that you use temporarily,
and then release—let’s call this object PersonA. The twist is that the PersonA
object itself points to another object (PersonB), which points back to PersonA.
In Visual Basic 6, this circular reference would force the abandoned Person
objects to remain floating in memory, because neither one has been fully
released. With VB 2005 garbage collection, the garbage collector will notice
that these objects are cut off from the rest of your program, and it will free
the memory.

For example, Figure 5-4 shows the in-memory objects in a sample appli-
cation. When the garbage collector checks this application, it will start at the
application root and discover that three Person objects are still in use. However,
there are two Person objects that aren’t in play, so they’ll be removed.

A side effect of garbage collection is nondeterministic finalization. In other
words, in Visual Basic 2005, you don’t know exactly when an object will be
removed. This is because the garbage collection service, handy as is, does
not run continuously. Instead, it waits for your computer to be idle, or for
memory to become scarce, before it begins scanning. This often allows your
program to have better all-around performance. However, it also means
that any code that responds to a Finalize event (the VB 2005 equivalent of
Class.Terminate) may not be executed for quite some time. This can be a
problem. If you are relying on using the Finalize event to release a limited
resource, such as a network database connection, the resource remains active
for a longer time, thus increasing the resource cost of your application—and
potentially slowing life down dramatically.

bvb_02.book Page 153 Thursday, March 30, 2006 12:39 PM

154 Chap te r 5

Figure 5-4: Garbage collection and .NET objects

Object Cleanup

You can manually trigger the garbage collection process by using the
following code:

System.GC.Collect()

However, this technique is strongly discouraged. For one thing, it
will cause an immediate performance slowdown as .NET scans the entire
allocated memory in your application. A much better approach is to create
your own “destructor” type of method for classes that use limited resources.
This method will have to be called manually by your code. By convention,
this method should be named Dispose().

Generally, most classes won’t need a Dispose() method. However, a few
classes might—for example, any object that holds on to a database connection
or a file handle needs to ensure that it releases its resources as quickly as
possible. In the next chapter, you’ll see how to use the IDisposable interface
to implement a Dispose() method in a class in the most standardized way
possible.

Before adding a Dispose() method, ask yourself whether it is really
required. A class that reads information from a database should probably
open and close the database connection within the bounds of a single
method. That ensures that no matter how you use the class, there’s no
possibility of accidentally holding a database connection open for too long.
Careful programming design can prevent limited resources from being
wasted.

Person
Object

Person
Object

Person
Object

Person
Object

Person
Object

Application
Root

Variables

A circular reference—but still available for garbage collection

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFE
REN

CES

bvb_02.book Page 154 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 155

Enhancing a Class with Events

Events are notifications that an object sends to other objects. These notifications
are often ignored. (Consider, for example, the many different events that are
fired from a typical form.) However, the client can choose to pay attention to
important events and write an event handler to respond to them.

You can define an event with the Event keyword. An example is shown
below in the Person class:

Public Class Person
 ' (Other class code omitted.)
 Public Event DataChanged()
End Class

Once you have defined an event, you can fire it at a later time from inside
any code in your Person class. For example, you can use the DataChanged event
in any part of your Person class to notify the rest of your code that a piece of
information has changed.

The following code demonstrates how you could modify the FirstName
property procedure to fire the DataChanged event:

Public Property FirstName() As String
 Get
 Return _FirstName
 End Get
 Set(ByVal Value As String)
 _FirstName = Value
 RaiseEvent DataChanged()
 End Set
End Property

An Event in Action

These are the ingredients: an event definition and a RaiseEvent command to
fire the event when needed. So how do you link it all together? Events used
in classes work the same way as the control events that you are already famil-
iar with. As with control events, you can create an object using the WithEvents
keyword and then attach event handlers to its events using the Handles key-
word for a subroutine. You can also hook up event handlers dynamically
using the AddHandler command, as you saw in Chapter 4.

Our example uses a simple program that creates a Person object and
displays the object’s information in a window. The fields that show this
information are read-only and can’t be modified. However, the user can
change the first name through another avenue: an additional text box and
an update button in a group box with the caption Apply For a Name Change,
as shown in Figure 5-5. (This example is also included with the sample code
for this chapter, in the EventTester project.)

bvb_02.book Page 155 Thursday, March 30, 2006 12:39 PM

156 Chap te r 5

Figure 5-5: The event tester

The form class looks like this:

Public Class EventTester

 ' Create the Person as a form-level variable.
 Private WithEvents CurrentPerson As New Person("Lucy", "Smith", _

DateTime.Now)

 ' This event handler updates the window when the form is loaded.
 Private Sub frmClassTester_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 RefreshData()
 End Sub

 ' This event handler allows the user to update the class.
 Private Sub cmdUpdate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdUpdate.Click
 CurrentPerson.FirstName = txtNewFirst.Text
 End Sub

 ' This procedure must be called manually.
 Private Sub RefreshData()
 txtFirstName.Text = CurrentPerson.FirstName
 txtLastName.Text = CurrentPerson.LastName
 dtBirth.Value = CurrentPerson.BirthDate
 End Sub

End Class

Here’s a quick summary:

� A Person object is created as a form-level variable named CurrentPerson
when the form is created. This variable is declared WithEvents, which
means that its events are automatically available.

bvb_02.book Page 156 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 157

� An event handler for the form’s Load event calls the RefreshData() sub-
routine when the form is first loaded.

� The RefreshData() subroutine updates the on-screen controls with the
information from the CurrentPerson object.

We are now just a step away from putting the DataChanged event to good
use, so that our EventTester form can get immediate notification when a name
change occurs.

First, we can modify the RefreshData() method so that it is invoked
automatically in response to our DataChanged event:

Private Sub RefreshData() Handles CurrentPerson.DataChanged

Now, when you click the cmdUpdate button, the CurrentPerson object is
modified, the event is fired, and the data is refreshed automatically.

Clearly, the preceding example doesn’t need an event. You could accom-
plish the same thing by calling the RefreshData() procedure manually after
you make your changes. To make life a little more confusing, there’s no
single rule to determine when you should use events and when you should
do the work by explicitly calling methods in your client code. In fact, a lot of
thought needs to go into the process of modeling your program as a collec-
tion of happily interacting objects. There are many different design patterns
for communication, and they are the focus of frequent debate and discussion.
A good way to get started is to start thinking of your objects as physical, tan-
gible items. In the case of events, ask the question, “Which object has the
responsibility of reporting the change?”

Events are very flexible because they allow multiple recipients. For
example, you could add a Handles clause for the CurrentPerson.DataChanged
event to several different subroutines. These methods will be triggered one
after another, although the order can vary. Events can also be fired across
projects and even from event definition code in one language to event
handler code in another.

Events with Different Signatures

You can also create an event that supplies information through additional
parameters. Remember, the recommended format for a .NET event is a
parameter for the sender, combined with a parameter for the additional
information. The additional information is provided through a class that
derives from System.EventArgs. For example, our DataChanged event might
require a special object that looks like this:

Public Class PersonDataChangedEventArgs
 Inherits EventArgs

 Private _ChangedProperty As String
 Public Property ChangedProperty As String
 Get
 Return _ChangedProperty

bvb_02.book Page 157 Thursday, March 30, 2006 12:39 PM

158 Chap te r 5

 End Get
 Set(ByVal Value As String)
 _ChangedProperty = Value
 End Set
 End Property

End Class

With this example, we’re getting slightly ahead of ourselves. It introduces
the concept of inheritance, which Chapter 6 delves into in more detail. The
important concept here is that PersonDataChangedEventArgs is a special class
used to pass information to our DataChanged event handler. It is based on the
standard EventArgs class, but it adds a new property that can hold additional
information.

The event definition will now need to be adjusted to accept an argument
of the new class. It makes sense to use the typical two-parameter format that’s
found in all .NET events:

Public Event DataChanged(ByVal sender As Object, _
 ByVal e As PersonDataChangedEventArgs)

NOTE The standard names—sender and e—are used for the parameters.

The event can be raised like this:

' This code would appear in the FirstName property Set procedure.
Dim e As New PersonDataChangedEventArgs
e.ChangedProperty = "FirstName"
RaiseEvent DataChanged(Me, e)

This system introduces a few problems. First, the RefreshData() method
can no longer receive the event, because it has the wrong signature. We must
rectify this before we can use RefreshData(). Second, the process of creating
the PersonDataChangedEventArgs object and filling it with information adds a
few more lines to our code. In short, we may have added more functionality
than is required and needlessly complicated our code.

In a sophisticated scenario, however, multiple parameters can be
invaluable. For example, as soon as you create an event handler that can
receive events from several different objects, you’ll need to make sure it can
distinguish which object is sending it the notification and take the appropriate
action. In this case, the end result will be shorter and clearer code. The preced-
ing example might be useful if the refresh operation required is particularly
time-consuming. Depending on which information has changed, the event
handler might refresh only part of the display:

Private Sub RefreshData(ByVal sender As System.Object, _
 ByVal e As PersonDataChangedEventArgs) Handles CurrentPerson.DataChanged

bvb_02.book Page 158 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 159

 Select Case e.ChangedProperty
 Case "FirstName"
 txtFirstName.Text = CurrentPerson.FirstName
 Case "LastName"
 txtLastName.Text = CurrentPerson.LastName
 Case "BirthDate"
 dtpBirth.Value = CurrentPerson.BirthDate
 End Select

End Sub

This type of design could bring about a significant improvement in
performance. Of course, the approach of including the property values as
strings isn’t very efficient, because it leaves the door wide open to logic errors
caused by mistyped variable names. A better way of passing information to a
method is to use enumerations, which make their appearance in the next
section.

Enumerations

The previous example uses a DataChanged event that fires every time a change
was made. The DataChanged event provides extra information, namely the
name of the variable that has changed. However, to keep the example as
simple as possible, we made a decision that might have had unfortunate
consequences in a real application: We used a string to identify the variable
name. This makes it all too easy to cause an error by using the wrong
capitalization or misspelling a word. Even worse, an error like this has no
chance of being caught by the compiler. Instead, it will probably become a
hard-to-detect logic error, propagating deep within your application and
causing all sorts of mysterious problems.

The problem exposed by the Person.DataChanged event is not at all
unusual. A similar error can occur if you are creating any method that can
perform one of a set number of different tasks. For example, consider a Person
object with a more advanced GetIntroduction() method that allows you to
specify the type of environment:

Public Function GetIntroduction(EnvironmentType As String) As String
 Dim Intro As String
 If EnvironmentType = "Business"
 ' Set Intro accordingly.
 ElseIf EnvironmentType = "Home"
 ' Set Intro accordingly.
 ElseIf EnvironmentType = "Formal Occasion"
 ' Set Intro accordingly.
 End If
 Return Intro
End Function

bvb_02.book Page 159 Thursday, March 30, 2006 12:39 PM

160 Chap te r 5

In this example, the GetIntroduction() method uses a string value that is
supposed to be set equal to a specific predetermined value to designate the
type of introduction required. The same type of logic could be used with an
integer variable that stores a predetermined number. However, there are
several drawbacks to this approach:

� A mistake is easy to make, because no checking is performed to make
sure that the parameter has a supported value (unless you add such logic
yourself).

� The client code has no idea what logic your method uses. If you use an
integer, it may be easier to code accurately but harder to guess what each
value really represents to your method.

� The code is difficult to read and understand. It may make sense when
you write it, but it might become much less obvious a few months later.

� The approach is not standardized. A hundred different programmers
may solve similar problems a hundred different ways, with hundreds of
different predetermined values; as a result, integration and code sharing
can become very difficult.

A somewhat better approach is to define fixed constants. Then you can
pass the appropriate constant to the method. This approach prevents casual
mistakes from being made, because the compiler will catch your mistake if
you type the constant name incorrectly. However, it doesn’t really solve the
consistency problem. It also introduces a new problem: Where should the
constants be stored? If a program is not carefully designed, the constants
can be lost in a separate file, or the names of constants used in one method
might even conflict with those used for different methods! And what’s to
stop a careless programmer from bypassing this safety net and (incorrectly)
using ordinary numbers instead?

Creating an Enumeration

Enumerations are designed to solve such problems. An enumeration is a type
that groups a set of constants together. For example, the following enumera-
tion could help with the GetIntroduction() example:

Public Enum EnvironmentType
 Business
 Home
 FormalOccasion
End Enum

In your code, you would use this enumeration with the name you have
created. For example, here’s the new GetIntroduction() method:

Public Function GetIntroduction(Environment As EnvironmentType) As String
 Dim Intro As String

bvb_02.book Page 160 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 161

 If Environment = EnvironmentType.Business
Intro = "Hi guys. It's me."

 ElseIf Environment = EnvironmentType.Home
Intro = "Honey, I'm home!"

 ElseIf Environment = EnvironmentType.FormalOccasion
Intro = "Pleased to meet you, sir or madam."
Intro &= "My name is " & FirstName & " " & LastName

 End If
 Return Intro
End Function

And here’s how you could call the method:

ReturnedMessage = GetIntroduction(EnvironmentType.Business)

Notice that you don’t have to create an instance of an enumeration
object to use its values. Those values are automatically available. However,
you can create a variable just for storing a value for an enumeration, if you
want. Here’s an example:

Dim EnvironmentValue As EnvironmentType
EnvironmentValue = EnvironmentType.Business
ReturnedMessage = GetIntroduction(EnvironmentValue)

One other nice feature is the way that Visual Studio’s IntelliSense auto-
matically prompts you with possible values from your enumeration, as shown
in Figure 5-6.

Figure 5-6: IntelliSense with enumerations

bvb_02.book Page 161 Thursday, March 30, 2006 12:39 PM

162 Chap te r 5

Enumerations “Under the Hood”
Behind the scenes, each entry in the enumeration is given its own integer
value. In our previous example, Business is given the value 0, Home is 1, and
FormalOccasion is 2. This means that the comparison in the GetIntroduction()
method is really just examining a number value and comparing it to the
values defined in the EnvironmentType definition.

In fact, if you were to look directly at the Environment value you received
(for example, by displaying it in a message box without using the ToString()
method), you would see that it is really an ordinary number. The use of the
enumeration in your code just makes the logic more clear and understand-
able. It also makes it much more difficult to make a mistake, because you
have only a small group of enumerated values, whereas there is no practical
limit to the number of different integer values you could use.

Dim Environment As EnvironmentType = EnvironmentType.Home
Dim EnvironmentString As String
EnvironmentString = Str(Environment) ' EnvironmentString = "1"
EnvironmentString = Environment.ToString() ' EnvironmentString = "Home"

In some cases, you might want to define specific number values for your
enumerations. This might be required if you are migrating a segment of
code from a system of hard-coded integer values or constants to a more
modern approach with enumerations. In this case, you might have proce-
dures in your code that still expect certain specific values and that check for
these values instead of comparing a value to your enumeration definition.

To create a backward-compatible enumeration for this situation, you
could specify values in your enumeration definition, like this:

Public Enum EnvironmentType
 Business = 50
 Home = 51
 FormalOccasion = 52
End Enum

You could also use this approach if you need an enumeration to
correspond to some other value. For example, you might want to create
an enumeration that allows you to examine error codes. You would create
the enumeration using the error codes with the appropriate values and use it
to make your code more clear.

In other words, this:

ReturnValue = OpenDB("mydb")
If ReturnValue = 34 Then
 ' Database already open error.
End If

bvb_02.book Page 162 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 163

would become this:

ReturnValue = OpenDB("mydb")
If ReturnValue = DBErrors.AlreadyOpen Then
 ' Database already open error.
End If

with the help of this enumeration:

Public Enum DBErrors
 AlreadyOpen = 34
End Enum

NOTE You could also still use the old code and check that ReturnValue = 34. Essentially,
AlreadyOpen is a named numeric constant.

Using Enumerations with an Event

Enumerations can be placed just about anywhere in your code, but they
generally belong in the class that uses them. That prevents them from
conflicting with other enumerations and makes sure they will always be
available if you copy a class into another project. For example, the Person
class could use the following enumeration to support the PersonChanged event:

Public Class Person
 ' (Code omitted.)
 Public Enum ChangedProperty
 FirstName
 LastName
 BirthDate
 End Enum
End Class

Even if you don’t place an enumeration inside a class, it’s a good idea to
keep it in the same file—just place it before or after your class. This makes
sense if you want to use one enumeration in several classes.

Using the ChangedProperty enumeration, you can improve the event
handling example you saw earlier. Once you’ve added the enumeration,
the next step is to create a standard EventArgs class that stores the changed
property. This PersonChangedEventArgs class will be used to pass the required
information with the PersonChanged event.

Public Class PersonChangedEventArgs
 Inherits EventArgs

 Private _ChangedProperty As Person.ChangedProperty
 Public Property ChangedProperty() As Person.ChangedProperty

bvb_02.book Page 163 Thursday, March 30, 2006 12:39 PM

164 Chap te r 5

 Get
 Return _ChangedProperty
 End Get
 Set(ByVal Value As Person.ChangedProperty)
 _ChangedProperty = Value
 End Set
 End Property

 Public Sub New(ByVal ChangedProperty As Person.ChangedProperty)
 _ChangedProperty = ChangedProperty
 End Sub
End Class

You would also need to update the PersonChanged event definition:

Public Event PersonChanged(ByVal sender As Object, _
 ByVal e As PersonChangedEventArgs)

and the code that raises the event:

' Raise the PersonChanged event to indicate that the LastName was modified.
' This also involves creating a new PersonChangedEventArgs object to send.
RaiseEvent PersonChanged(Me, _
 New PersonChangedEventArgs(ChangedProperty.LastName))

The fully revised code is available as with the code for this chapter (look
for the EnumerationTester project).

Keep in mind that to use an enumeration in a class, you will have to
specify its full name. Enumerations are always available, even if you don’t
have a live object. For example, you could use the following code to examine
the enumeration in the PersonChanged event handler:

Private Sub RefreshData(ByVal sender As System.Object, _
 ByVal e As PersonChangedEventArgs) Handles CurrentPerson.PersonChanged
 Select Case e.ChangedProperty
 Case Person.ChangedProperty.FirstName
 txtFirstName.Text = Lucy.FirstName
 Case Person.ChangedProperty.LastName
 txtLastName.Text = Lucy.LastName
 Case Person.ChangedProperty.BirthDate
 dtBirth.Value = Lucy.BirthDate
 End Select
End Sub

This example takes the ChangedProperty value returned in the
PersonChangedEventArgs object and compares it to the different possible
values in the enumeration. The interesting detail about this code is that the
enumeration is accessed directly through the class (Person) instead of through
a live object. This is possible because all public enumerations are shared
members that are always available, even if you haven’t created an object.

bvb_02.book Page 164 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 165

Visual Basic 2005 provides this ability because enumerations are part of
the basic set of information that you need in order to interact with an object.
Because enumerations are essentially unchangeable constants, they don’t
need to be linked to a specific object instance. Also, because enumerations
are shared, you can easily use them in constructors and other shared methods,
when you might not have an object instance available. The next section
delves into shared members in more detail.

Shared Members

When you first considered objects in Chapter 3, you briefly learned how
classes can be potentially confusing because they can have both shared and
instance members. So far, all the properties, methods, and events you have
seen in the Person class have been instance members. These members have
no meaning until you create an instance of the class.

Person.FirstName = "Lucy" ' Has no meaning and will cause an error!

Dim Lucy As New Person() ' FirstName is an instance member,
Lucy.FirstName = "Lucy" ' so this will work.

We examined a similar distinction with Windows forms in Chapter 4.
Windows forms also need to be instantiated from the class description before
you can access any members.

Shared members allow you to circumvent these rules. A shared member
can be used directly, without requiring a live object.

Shared Methods

Shared methods allow you to provide useful functionality related to a class.
Many classes in the .NET class library use shared methods. For example, the
System.Math class is composed entirely of useful methods for performing
advanced mathematical operations. You never need to specifically create a
Math object.

' Works even though Math is the class name, not an instance object!
MyVal = Math.Sin(AngleInRadians)

Other commonly used classes with shared members are the MessageBox
class (use MessageBox.Show() to show a message) and the Console class (use
Console.WriteLine() to write text in a command-line application).

Shared methods have a wide variety of possible uses. Sometimes they
provide basic conversions and utility methods that support your class. For
example, you might have a special class that reads information from a file
and provides it through properties. This class might benefit from a shared
IsFileValid() method that takes the name of the file you plan to open,
determines whether it is in the correct format, and returns True or False.

bvb_02.book Page 165 Thursday, March 30, 2006 12:39 PM

166 Chap te r 5

You could then make a decision about whether to use the file by creating an
instance of the class.

The following example uses a shared method named CalculateBirthDate()
to enhance the Person class:

Public Class Person
 ' (Other code omitted.)

 Public Shared Function CalculateBirthDate(AgeInYears As Integer) As Date
 ' The following line takes the current date (using a shared method
 ' of the DateTime class), subtracts the number of specified years
 ' (using a built-in method), and returns the result.
 Return DateTime.Now.AddYears(-AgeInYears)
 End Function
End Class

The Shared keyword indicates that this method is “shared” among all
instances of this class and will always be available.

This method is useful if you want to create a new Person object but you
don’t know the appropriate BirthDate to use. Using this shared method, you
could supply the age in years and receive a date value that you could use to
create a new Person. (In this example, this method wouldn’t actually be
needed because the Person class provides an additional constructor that
accepts an Age parameter instead of a BirthDate.)

Dim BirthDate As Date
' Calculate the appropriate birth date for a 25-year-old
' using the shared method.
BirthDate = Person.CalculateBirthDate(25)

' Now create the person.
Dim CurrentPerson As New Person("Lucy", "Smith", BirthDate)

A shared method can’t access an instance member, such as a non-shared
property or variable. In order to access a non-shared member, it would need
an actual instance of your object—in which case it would also have to be an
instance method.

Public Shared Function GetAgeInYears() As Integer
 ' This will not work because there is no current object!
 ' It would work perfectly well for a non-shared
 ' method.
 Dim Age As TimeSpan
 Age = DateTime.Now.Subtract(BirthDate)
 Return (Age.TotalDays \ 365)
End Function

The problem that occurs here is when you attempt to access the BirthDate
property. BirthDate is an instance member, so it’s not available in the shared
method.

bvb_02.book Page 166 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 167

Even so, you can still call up a shared method through an instance
object. In practice, though, it’s best to use the class name instead of a live
object when invoking a shared method. That way, it’s obvious to anyone
looking at your code that the particular procedure you are using is a shared
method.

Shared Properties
Just as you can create shared methods, you can create shared variables and
properties by adding the Shared keyword. Once again, the possibilities are
profound. Here is a simple example:

Public Class Person
 ' (Other code omitted.)

 Private Shared _Count As Integer
 Public ReadOnly Property Count() As Integer
 Get
 Return _Count
 End Get
 End Property

 Public Sub New()
 _Count += 1
 End Sub
End Class

This example leaves out the basic Person code you’ve already considered
and illustrates a new concept: A class can count how many objects have been
created. It works like this:

� A shared variable, _Count, is used to keep track of the number of objects
in use.

� Every time an object is created, the _Count variable is incremented in
the constructor. The variable exists as long as the program is running,
whether or not there are currently any Person objects in use.

� Remember that Count is read-only, so it doesn’t have a corresponding Set
procedure.

Here’s a simple code snippet that tests this counting feature:

Dim FirstPerson As New Person("Lucy", "Smith")
Dim AnotherPerson As New Person("Joe", "Xamian")

' This line displays a count of 2.
MessageBox.Show(Person.Count & " people have been created.")

Keep in mind that there is no code to subtract from _Count when an
object is destroyed. This means that the counter won’t be accurate in the
long run unless you add additional features, such as a Dispose() method that
subtracts one from _Count.

bvb_02.book Page 167 Thursday, March 30, 2006 12:39 PM

168 Chap te r 5

Modules “Under the Hood”

You probably remember that classes aren’t the only place to put code in
Visual Basic—you can also use modules, which provide procedures and
variables that can be accessed at any time.

Modules are usually used for helper methods—routines that perform basic
conversion or utility methods that may be required in numerous different
places in your application. For many Visual Basic programmers, modules
were the first tool they had to reuse code throughout an application.

If all this sounds oddly familiar, it’s because modules perform the same
role as shared methods. You might think that modules are a simpler way to
share functionality, but in fact, there is really no difference at all. If you were
to peer into the innards of your code, you would see that modules are really
special classes that are made up entirely of shared members.

That’s right—modules are classes! Because every member is shared, you
don’t need to create an instance of a module before you use it. This also
means that you can work with only a single copy of your module, and any
information stored in its variables is available to any code using that module.

Here’s an example of a module:

Public Module FileAccessTools
 Public FileName As String

 Public Sub OpenFile(ByVal File As String)
 ' Open the file here and set the FileName variable.
 End Sub

 Public Sub CloseFile
 ' Close the current file (indicated by FileName).
 End Sub
End Module

This module is identical to the class shown next. There isn’t a single
difference, other than syntax:

Public Class FileAccessTools
 Public Shared FileName As String

 Public Shared Sub OpenFile(File As String)
 ' Open the file here and set the FileName variable.
 End Sub

 Public Shared Sub CloseFile
 ' Close the current file (indicated by FileName).
 End Sub
End Class

The more you understand about Visual Basic 2005, the more you’ll realize
that the language is completely built around objects and the principles of
object-oriented programming. Some of the conventions of traditional Visual
Basic remain, but really just as a thin veneer over the OO reality.

bvb_02.book Page 168 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 169

Assessing Classes

Let’s take a step back and answer our original question: Just what is a class?
A class is a template we use to create objects. A class consists of three things:
properties that allow you to access information about it, methods that you
use to make it take actions, and events that it uses to notify your program
about certain changes. Some classes might have only properties. In that case
they resemble our Person structure. Other classes might consist almost entirely
of methods that allow us to process information or to perform such tasks as
writing to a file. An example of a class like this is the Math class featured in
Chapter 3. It is made up entirely of shared methods that perform mathe-
matical operations.

The amazing thing about our Person class is the way that we, or other
programmers, can reuse and expand upon it. Other programmers don’t have
to understand how the Person class works in order to use it. To them, it’s just
a black box. Can you imagine the excitement you’ll feel when a colleague
tells you he’s taken your Person class and incorporated it in a collection
within a NuclearFamily object that has additional properties such as Address
and additional methods such as FindYoungestMember()?

Types: The Big Picture

As you now know, the .NET class library consists of types, a catch-all term
that includes several types of ingredients. To help you get your bearings, you
might want to review the following sections, which show the full list of .NET
types:

Structures
Structures are composite data types. They wrap related variables into a
convenient package. One of the main differences between structures
and classes is that structures are value types, so they act differently than
reference types for comparison and assignment operations. For exam-
ple, assigning one structure variable to another copies the entire struc-
ture, not the object reference.

Classes
Classes are more advanced structures that often add code, constructors,
and events into the mix. Classes are the most common type in the class
library and the one that you spend most of your time examining in this
chapter. The word classes is sometimes used interchangeably with objects
or types in casual speech, because classes underlie the most important
features of any object-oriented framework (such as .NET). Classes are
the basic ingredient for creating a wide array of flexible objects.

Delegates
A delegate defines the signature of a method. Using a delegate defini-
tion, you can create variables that point to other methods, as you saw in
Chapter 3. In this chapter, you considered events, which build on the
delegate feature to allow one object to notify another when something
important occurs.

bvb_02.book Page 169 Thursday, March 30, 2006 12:39 PM

170 Chap te r 5

Enumerations
An enumeration is a list of constants, each of which has a descriptive
name. Enumerations make it easy for a programmer to choose one of
several different options. Enumerations were described in this chapter.

Interfaces
An interface is a contract that defines methods or properties a class must
provide. Interfaces allow for more sophisticated class design, and they
are particularly useful when a class needs to be deployed and enhanced
or substituted without breaking existing clients. Interfaces are discussed
in the next chapter.

Surveying the Objects in Your Application

You can get started looking at the object structure of your application
with the Class View window. To show this window, select View�Other
Windows� Class View. Figure 5-7 shows the Class View window as it surveys
the ObjectTester application.

Figure 5-7: An application’s class structure

This top portion of the Class View window provides a tree showing all the
classes you use, organized by namespace. Figure 5-7 makes it clear that there
are exactly two classes in the ObjectTester application—the familiar Person
class and a ControlPanelForm class that represents the main window.

When you select a class, the bottom portion display all the information
about the properties, methods, events, and private variables contained in
that class. Together, these details make up the members of the class.

bvb_02.book Page 170 Thursday, March 30, 2006 12:39 PM

Object -Or ien ted Programming 171

You can see a similar view of namespaces and the .NET class library using
the Object Browser. To display the Object Browser, choose View�Other
Windows�Object Browser. Each member has a brief associated description.
However, you’ll probably find that it’s easiest to learn about .NET classes by
consulting the class library reference in the Visual Studio Help.

What Comes Next?

Objects are central to the philosophy of .NET. You’ll continue to explore
them in Chapter 6, where you’ll learn more about object-oriented philos-
ophy and guiding principles. You’ll also tackle some of the most advanced
object-oriented concepts, including inheritance and interfaces.

bvb_02.book Page 171 Thursday, March 30, 2006 12:39 PM

bvb_02.book Page 172 Thursday, March 30, 2006 12:39 PM

6
M A S T E R I N G O B J E C T S

This chapter continues our exploration
into the world of objects. In Chapter 5 we

covered the basics of defining a class, of
enhancing it with properties, methods, events,

and constructors, and of using it to create live objects.
This chapter begins by explaining some more of the
philosophy behind why you should go to all this trouble, and outlining the
principles that can guide you to good object-oriented design. Next, you’ll
tackle three key topics for classy programming: inheritance (the ability of
a class to acquire and extend the functionality of another class), interfaces
(contracts that allow you to “lock down” class design), and collections (objects
that group other objects together).

As you read this chapter, you’ll realize that these features aren’t just new
frills for OO gurus—instead, they are organizing principles that shape the
entire .NET Framework and the Visual Basic 2005 language. The more you
learn about objects, the more you’ll understand about the .NET class library,
and the easier you’ll find it to learn about new classes and to integrate them

bvb_02.book Page 173 Thursday, March 30, 2006 12:39 PM

174 Chap te r 6

into your programs to provide additional features. In short, if you have time
to learn about only one VB 2005 concept, I heartily recommend the theory
and practice of using objects. No other topic is as integral to the workings of
the Visual Basic 2005 language.

New in .NET

If you’re coming from a classic version of VB, you’ll find that Visual Basic
2005 has a whole new perspective on objects. Classes and interfaces are no
longer just two more features pasted onto the language—they now represent
the underlying philosophy of the whole .NET Framework. Here are some
of the minor changes, along with some of the more seismic ones:

Inheritance
Inheritance, perhaps the most anticipated feature to ever enter into the
Visual Basic language, allows you to create sophisticated objects that
share features and functions. In fact, if you’ve worked through the exam-
ples in the preceding chapters of this book, you’ve already been using
inheritance in Visual Basic 2005, most notably to create your own Win-
dows forms.

Interfaces
Interfaces are now directly supported as a separate code construct,
instead of a special type of class. This makes using them more straight-
forward and convenient than ever.

Collections and generics
Visual Basic 2005 goes one step further than Visual Basic .NET 1.x with
generics—a new feature that lets you create more flexible classes. You’ll
see generics at work with some miraculously adaptable collections. These
collections are flexible enough to work with any type of object but can be
“locked in” to a type of your choice to prevent errors.

The Philosophy of OOP

Making the shift from traditional programming to an object-oriented
approach is a significant adjustment. Before you plunge back into the
technical details of Visual Basic 2005’s support for object-oriented design
and development, it may help to review some of the reasons why object-
oriented design and programming are held in such high esteem.

Object-oriented programming encompasses several principles that
contribute to reusable, efficient design. Taken together, these principles
allow you to create programs and components built out of tightly organized,
extremely reusable components.

You already know how to use objects. The following sections will help
guide you to using them well.

bvb_02.book Page 174 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 175

The “Black Box” Idea

Classes in your program should behave as much as possible like black boxes—
“black” meaning that you can’t see inside them to puzzle out what’s going
on, and you don’t have to. Imagine the difficulty you would have if using your
microwave to defrost chicken required you to peer into the microwave object’s
circuitry and make alterations. Clearly, you would have quite a problem on
your hands. If you look at the appliance as a black box (which conceptually
it is), you are only concerned with the input and output: Frozen chicken goes
in; defrosted chicken comes out. The process of defrosting is “abstracted
away,” which is a fancy way of saying that the microwave manufacturer
worries about it so you won’t have to. And I’m sure you’ll agree that as a
result, your kitchen experience is much more productive.

Similarly, if an entirely new microwave were to come onto the market
tomorrow, you wouldn’t need to change your cooking habits to accommodate
it. You could still rely on the new microwave having the same interface. The
microwave would plug into the same outlet, accept food through a similar
door, and require the same information (cooking time and power level) in
order to perform its tasks. Interface design is another important object-
oriented concept.

TIP Don’t confuse the concept of user interface with programming interface. The user inter-
face is how an end user (your customer) interacts with your code. The programming
interface is how one part of your code interacts with another part or a separate component
from a different developer.

Any component of a program that can be updated without “breaking”
the existing client code that it services is the programming analog of our
standardized, functionally encapsulated microwave oven.

TIP This chapter frequently refers to “the client code” as though the programmer writing an
object and the programmer using it were not the same. In fact, this is not a strange
example of multiple personalities, but a healthy way to approach object-oriented design.
In order to make sure your applications are built out of complete, well-encapsulated
objects that can be reused in different scenarios and even in different programs, you
should start thinking of each object as its own individual program. Every object should
receive all the information it needs through clear, standardized methods and properties,
and it should provide capabilities that can be used directly, without requiring additional
processing or the use of specific conversions and undefined rules.

Loose Coupling

In the preceding example, we hinted at another principle of good object-
oriented design: loose coupling. In a loosely-coupled system, the various
components in your application are as independent as possible. Consider
the microwave object again as part of your kitchen system. As the microwave
defrosts the chicken, it doesn’t need to know whether you’re baking a potato

bvb_02.book Page 175 Thursday, March 30, 2006 12:39 PM

176 Chap te r 6

in the conventional oven or cooking mashed potatoes or rice on the stovetop.
Nor does it matter if you plan to prep ingredients in the microwave and
transfer them to the stovetop. To you, all these steps are part of a one
conceptual PrepareDinner() method. But the appliances you use are loosely
coupled, which means you can use them in any combination you see fit.

When you’re designing classes, it will help to think about yourself as a
component designer and to imagine that other programmers will use your
classes in their own highly customized programs. The more interdependencies
and requirements you incorporate in a component, the harder it will be to
move that component into another program. In the worst-case scenario,
another programmer would have to bring along a whole class of unrelated
objects, global variables, and helper functions before your object would work
properly.

TIP It’s worth noting that although loose coupling is credited as an object-oriented design
principle, it isn’t really anything new. The best traditional structured programs also
incorporate this principle, and their creators design functions that are highly generic.
The more generic the code is, the easier it is to reuse, whether it’s inside your own program
or inside someone else’s.

Cohesion

A related idea is cohesion. In a well-designed, highly cohesive program, every
portion of code is responsible for one—and only one—task. In traditional
structured programming, this means that you carefully separate functions so
as to isolate small, reusable units of logic. In object-oriented programs you
should apply this principle as rigorously as possible, dividing objects and their
methods into the smallest useful components and clearly distinguishing
between the types of tasks that each method performs. For example, you
would never include presentation-layer code in an object. An object should
return information to the calling code, which you can then format and present
to the user. If you were to include user interface code in an object, it would
be tied to a specific display environment and hard to reuse in different
windows or in other programs.

You’ve probably come across nightmarish situations where user inter-
face, data access, and business logic code were all intermingled in a single
procedure. Part of the reason classic version of Visual Basic sometimes have
a bad reputation is that it’s just too easy to put data access and processing
code in an event handler (such as the Click event for a button) where it’s
hard to find, debug, and reuse. You can still make this mistake in a .NET
application, but VB 2005 gives you all the object-oriented tools you need to
design better code.

TIP It may help to remind yourself of the black box principle: The object consumer (that is,
the program) shouldn’t need to know anything about how an object works.

bvb_02.book Page 176 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 177

What Do Classes Represent?

When introducing classes, most programming books use examples with classes
that represent concrete, physical things in the real world. For example, in
Chapter 5 our Person class is clearly designed to model a real-world person.
Similar concrete classes might have names like Invoice, Product, TextBox, and
Calculator.

However, you should remember that programming classes don’t need to
correspond to something real. Classes might just represent a programming
abstraction. For example, classes like Rectangle, FontUnit, Buffer, and Version
may just represent useful ways to combine together related bits of informa-
tion. Similarly, classes might just group together useful related functionality—
Console and Math are two .NET classes that do exactly that.

Inheritance

Inheritance, consistently the most requested addition to Visual Basic, made
its debut in Visual Basic .NET 1.0 and is still going strong in Visual Basic 2005.
Inheritance allows you to take a class, called a base class, that has a basic set of
features and procedures and then create from it new classes, called derived
classes, that inherit this functionality and extend it with their own members.
There are three main uses for inheritance:

Inheritance allows code to be reused.
For example, you might create an application with several data objects
that read information from various files. Each data object would have its
own methods and properties, depending on the types of information it
manipulates, but the file access code would probably be almost identical
for all of them. In this case, you could create a base class with basic file
access code and then create derived classes that would inherit from the
base class and extend it in various ways. The individual data objects
would then be instantiated from the appropriate derived class. In this way
the data object gets all the common file access code and any new function-
ality you need to include.

Inheritance is required to use key components of the .NET class library.
For example, you create a form by defining a class that inherits from the
System.Windows.Forms.Form class and adding your own code elements, such
as control variables and event-handling procedures. If you didn’t use
inheritance, you would have to use the default form that the class library
provides to you, unchanged.

Inheritance allows related classes to be standardized.
For example, in .NET every control class (including labels, text boxes,
buttons, and so on) inherits from the Control class, which includes basic
details such as font, color, and text support. As a result, you could write a
piece of code to perform basic formatting with any control class, even
one that hasn’t been invented yet.

bvb_02.book Page 177 Thursday, March 30, 2006 12:39 PM

178 Chap te r 6

In the preceding chapters, you were introduced to a few important
examples of inheritance at work, and more will be explored throughout the
book. Some examples where inheritance is used with the .NET class library
include:

� Forms, which inherit all their basic functions from
System.Windows.Forms.Form

� Web services, which inherit from System.Web.Services.WebService

� Custom exceptions (which inherit from System.Exception), event
arguments (System.EventArgs), collections, and many more

Inheritance Basics

Here’s an example of inheritance at its simplest:

Public Class Politician
 Inherits Person
 Private _Elected As Boolean
 Private _Party As Party

 ' Include some sample political parties.
 Public Enum Party
 Independent
 Communist
 National
 End Enum

 Public Property PoliticalParty() As Party
 Get
 Return _Party
 End Get
 Set(ByVal Value As Party)
 _Party = Value
 End Set
 End Property

 Public Property IsInOffice() As Boolean
 Get
 Return _Elected
 End Get
 Set(ByVal Value As Boolean)
 _Elected = Value
 End Set
 End Property

End Class

This Politician class inherits from (or derives from) the original Person class,
which is Politician’s base class or parent class. This design is used because a
Politician has all the basic properties of a Person, including a first and last
name and a birth date. In addition, there is some information that applies only
to politicians, such as the PoliticalParty and IsInOffice properties.

bvb_02.book Page 178 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 179

If you create a Politician, you’ll see that it has all the events, subroutines,
and properties defined for a person, as shown in Figure 6-1.

Figure 6-1: IntelliSense display of the events, subroutines, and properties of a
Politician

This means that you can easily work with the full set of properties in
your code:

Dim President As New Politician()
President.PoliticalParty = Politician.Party.National
President.FirstName = "Lucy"
President.LastName = "Smith"

Inheritance in Action

The online sample code for this chapter includes an InheritedObjectTester
project that shows the Politician class in action (see Figure 6-2).

One interesting feature of this program is how it works with enumerations.
The main window displays a list box that allows the user to set the political
party for a Politician object. However, the list of political parties is not con-
structed by hand—to do so would violate encapsulation by mingling Politician
details with the user interface code.

Instead, the code uses a special shared method that is built into the
System.Enum class: the GetNames() method. This method provides an array of
strings that represents all the constant names in the enumeration. Here’s
how it works:

Private Sub ControlPanelForm_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

bvb_02.book Page 179 Thursday, March 30, 2006 12:39 PM

180 Chap te r 6

 ' AddRange adds a whole array of string items at once.
 lstParty.Items.AddRange(System.Enum.GetNames(GetType(Politician.Party)))
End Sub

Figure 6-2: The Politician Object Tester window

NOTE In order the use the GetNames() method, you need to retrieve a special Type object that
represents the Party enumeration type. This Type object is obtained with the GetType()
function, which is hard-wired into the Visual Basic language. (This is an example of
reflection, a feature you’ll study more closely in Chapter 7.)

Once a user has chosen a value from the list box, the string has to be
reconverted to the appropriate enumerated value (which, as you’ll remember
from Chapter 5, is really just an integer). To perform this magic, you can
turn to another piece of functionality that’s built into every enumeration.
In this case, it’s the Parse() method, which converts a string name to the
appropriate enumeration number.

Dim PartyChoice As Politician.Party
PartyChoice = System.Enum.Parse(GetType(Politician.Party), _
 lstParty.SelectedItem)

Constructors in Inherited Classes

There are a couple of interesting quirks associated with derived classes. First
of all, constructors are not directly inherited. Instead, as with any other class,
Visual Basic 2005 automatically provides a default constructor for your derived
class that takes no arguments. This constructor automatically calls the con-
structor of your base class (Person, in our example). But our Person class has
several different constructors. How does the Politician constructor know
which one to call?

bvb_02.book Page 180 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 181

By default, the Politician constructor calls the parent (Person) construc-
tor that has no arguments. If the Person class doesn’t have a constructor with
no arguments, Visual Basic 2005 will generate an error when you try to run
the program and compile the Politician.

You could get around this problem by adding a constructor with no argu-
ments to the Person class, but this is a bit messy—after all, what if you really
need to make sure that a Person object can’t be created without supplying a
bare minimum of information? A better way to solve this problem is to create
at least one custom constructor for the Politician class. This new constructor
must explicitly call a constructor in the base Person class. You accomplish this
with the MyBase keyword.

MyBase represents the portion of the object that’s been inherited. In other
words, you can use MyBase to access any member (method, property, event, and
so on) that’s been inherited from another class. In most cases, you don’t need
to use MyBase because you can access inherited members directly. (Consider,
for example, the FirstName property of a Politician object.) However, there are
two situations where you do need MyBase: if a member is defined in both the cur-
rent class and the inherited class (so there’s a name conflict), or if you need to
trigger a constructor in the parent class (which you ordinarily can’t call directly).

Here’s an example of a custom constructor in the Politician class that
uses a constructor from the Person class:

Public Sub New(ByVal FirstName As String, ByVal LastName As String, _
 ByVal Age As Integer)
 MyBase.New(FirstName, LastName, Age)
End Sub

The parameter list for this constructor is exactly the same as that for the
constructor in our Person class. Once the constructor receives the informa-
tion, it passes it along to the Person class to set up the basic Person values.

This approach to the initialization of derived object is extremely powerful
for the following reasons:

� You control exactly which constructors are available in the derived class.
For example, a constructor from the Person class that does not apply to
the Politician class doesn’t need to be available.

� You can use all appropriate constructor logic from the parent class
without having to repeat the code in the derived class.

� You have the chance to perform any additional setup or error checking
that is required for the derived object. For example, you can ensure that
a Politician can’t be created with an age less than 18.

� You can use a constructor from the parent class and perform additional
logic to extend the initialization process. The following example demon-
strates with a Politician-specific constructor that initializes the name,
age, and party affiliation:

Public Sub New(ByVal FirstName As String, ByVal LastName As String, _
 ByVal Age As Integer, ByVal PoliticalParty As Party)

bvb_02.book Page 181 Thursday, March 30, 2006 12:39 PM

182 Chap te r 6

 MyBase.New(FirstName, LastName, Age)
 _Party = PoliticalParty
End Sub

It’s always good practice to begin a constructor in a derived class by
calling one of the parent constructors. If you don’t, you are at risk of creating
redundant code or making it more difficult to update your base class later
on. As a rule, if instantiating a derived object is difficult or requires a great
amount of special code to alter or override the base behavior, you are not
making proper use of class inheritance.

Protected Members
When you inherit from a class, all its public members are available, and all
the private members—such as the variables used to store internal details—
are hidden. This is generally good encapsulation. It all boils down to proper
division of labor. The base class needs to be assured that no other code,
including that of its child classes, can reach in and modify its internal varia-
bles except through the methods and properties it presents to clients. Thus
the base class is responsible for managing its own internal workings, and the
derived class is responsible for managing all the additional information it
supplies. If your derived class needs to modify one of the base variables, it
should go through the appropriate method in the base class—for example,
by calling a property procedure.

Sometimes, however, you might want to make a variable available to all
derived classes, but not to any other code. This could allow some optimiza-
tions among a tightly linked group of related classes. To make a class variable
available in subclasses, use the keyword Protected, instead of Private or Public.

The name Protected is a bit of a misnomer. Like a private variable, a
protected variable is protected from careless client code, but it is not protected
from careless code in the derived class. Here is an example that defines a
protected variable for the Person class:

Protected _BirthDate As Date

This variable will be accessible only to code in the Person class and its derived
class, such as Politician. However, there is nothing to guarantee that the
derived Politician class will use the value properly.

Public Class Politician
 ' (Code omitted.)

 Public Sub ChangeBirthDate(ByVal NewDate As String)
 ' Note that the MyBase keyword isn't required, but it makes it clear
 ' that you are modifying a value from the parent class.
 MyBase._BirthDate = NewDate
 ' No error checking!
 End Sub
End Class

bvb_02.book Page 182 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 183

The same principle can be applied to methods, which can also be pro-
tected. This is generally a more useful technique. For example, you might
have a utility method that modifies certain variables in your Person class. This
utility method shouldn’t be made directly available to the client code—
instead, it should only be available for use by other class methods or con-
structors when needed. However, the utility method might also be useful for
a derived class, and you can probably trust a derived class, such as Politician,
to use it for the right reasons. By declaring the method Protected you can
provide access to it from subclasses and still perform any required error
checking to create a basic level safety to ensure that no invalid data is
supplied.

Overriding Methods
Sometimes, the behavior of a parent class may not suit a derived class. For
example, consider the GetIntroduction() method in the Person class. While this
is a nice starting point for a conversation, it may not be the most suitable
choice for a politician’s introduction. You could create a new method (like
GetPoliticianIntroduction) in the derived class, but this would mean that the
client code would have to treat Politician objects and Person objects differ-
ently in order to get the appropriate introduction. One of the goals of object-
oriented design is to allow related types of objects to have the same interface
so they can be manipulated with the same code. If this is done correctly, a
programmer needs to modify only one definition in order to allow a program
to use Politician objects just as easily as it can use Person objects, with no
coding changes required.

To help facilitate this vision, you can use overridable methods. Method
overriding allows you to replace a method defined in the base class with a
more suitable method in the derived classes. For example, you could make
the GetIntroduction() function of the Person class overridable in a derived class
by adding the Overridable keyword like this:

Public Class Person
 ' (Code omitted.)

 Public Overridable Function GetIntroduction() As String
 Dim Intro As String
 Intro = "My name is " & FirstName & " " & LastName & ". "
 Intro = Intro & "I was born on " & BirthDate.ToString()
 Return Intro
 End Function
End Class

Then you could create a specialized version for a Politician using the
Overrides keyword:

Public Class Politician
 Inherits Person
 ' (Code omitted.)

bvb_02.book Page 183 Thursday, March 30, 2006 12:39 PM

184 Chap te r 6

 Public Overrides Function GetIntroduction() As String
 ' Make use of the original GetIntroduction() method.
 Dim Intro As String = MyBase.GetIntroduction()

 ' Add some additional politician-specific content.
 Intro &= " I am a politician for the " & _
 _Party.ToString() & " party."
 Return Intro
 End Function
End Class

This example uses the MyBase keyword to get the original introduction
and then extends it. Alternatively, you could have skipped this step and
substituted a totally new custom introduction.

Overridden Methods in Action

The technical details of overridden methods are fairly straightforward, but
you may not realize the real benefit they provide until you see them in action.
The advantage of overridden methods is that they allow a derived class to
continue to interact with client code in the same way that the original parent
class does, but with customized results.

For example, you might have made a simple program using a Person class:

Dim CurrentPerson As New Person("Lucy", "Smith", 44)
' Call a custom procedure to print out the introduction to a printer.
PrintIntro(CurrentPerson)

This program uses a custom PrintIntro() method, which accepts a Person
object as a parameter:

Public Sub PrintIntro(ByVal P As Person)
 Dim StringToPrint = P.GetIntroduction()
 ' (Remainder of code omitted.)
End Sub

Now, perhaps you want to update the program to use the new Politician
class. The following change is made:

Dim CurrentPerson As New Politician("Lucy", "Smith", 44)

No other changes are required—the program is now complete and fully
functional. The PrintIntro() procedure does not need to be changed, even
though it expects a Person object. Because the Politician object is really a
special kind of Person, the PrintIntro() method automatically supports both.

The PrintIntro() method doesn’t explicitly use any Politician-specific
features, because it is treating the Politician object as a simple Person. However,
when it calls the GetIntroduction() method, it is the Politician object’s version
of the method that will be invoked. This is because in .NET, the bottommost
version of a method is always used in a class, regardless of how the variable is
defined (whether as a Politician or a Person, in our example). This ensures

bvb_02.book Page 184 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 185

that when you call an overridden method, the correct version is executed.
The technical term for this behavior is polymorphism, and it ensures that you
can look at an object in different ways depending on the context (for
example, you the CurrentPerson object in the previous example can behave
like a Politician or a Person, depending on how you want to interact with it).

Technically, no type conversion actually takes place when the Politician
object is passed to PrintIntro() function. Instead, a process called casting
occurs.

Casting

No information is lost when an object is cast to another type. Instead, Visual
Basic just looks at it in a different way. For example, you might receive an
object of type Object from some sort of generic function (like a search or sort
routine). Essentially, an object is a reference to a blob of memory. When you
receive an Object type, there’s not much that you can do with it. If, on the
other hand, you know what the object is really supposed to be, you can use
the CType() function to cast it to the correct type, and start using the associ-
ated properties and methods of that type. You can’t use these properties and
methods without casting it, because the Common Language Runtime can’t
otherwise verify whether the object will really support them, and that violates
type safety.

The key to understanding this process is realizing that casting is not a
conversion. No matter how you cast an object, it is still the identical blob of
data. The only change is which methods and properties are available. Of
course, an object can only be cast to a supported type. The only supported
types of casting are from a derived class to a parent class (for example, from
a Politician to a Person), or from a class to one of its supported interfaces
(which is discussed later in this chapter).

Here’s a direct example of casting in action, using the Politician class:

Dim CurrentPerson As New Politician("Lucy", "Smith", 44)
lblIntro.Text = CurrentPerson.GetIntroduction()

' Now convert the reference to a Person object.
CurrentPerson = CType(CurrentPerson, Person)

' GetIntroduction() still works the same as it did before,
' returning the political introduction, because CurrentPerson
' is still a Politician object.
lblIntro.Text = CurrentPerson.GetIntroduction()

' However, this doesn't work, because though CurrentPerson
' is still a Politician, the code is treating it as a
' simple Person, and so the Party property is not available.
Lucy.Party = Politician.Party.Communist

Of course, you can attempt to perform certain casting operations that
won’t work. For example, if you create a Person object and then try to cast it
to a Politician, you’re doomed to fail. (Or to put it another way, although all

bvb_02.book Page 185 Thursday, March 30, 2006 12:39 PM

186 Chap te r 6

politicians are people, all people aren’t necessarily politicians.) If you’re in
doubt about whether a particular cast will work, you need to remember the
exact type of object you created when you used the New keyword.

TIP Instead of using CType(), you can use a related function that’s new in VB 2005. It’s
called TryCast(), and it allows you to shave a few milliseconds off type casting code.
It works like CType(), with one exception—if the object can’t be converted to the requested
type, a null reference is returned. You can test for a null reference by checking if your
object is Nothing. If you make the same mistake with CType(), an InvalidCastException
occurs, which you need to catch with exception-handling code, as described in Chapter 8.

MustInherit (Abstract Classes)

There are a couple of additional tools you can use when modeling objects.
One is abstract classes. You cannot create an instance of an abstract class; you
can only derive new classes based on it.

Abstract classes are defined using the MustInherit keyword. Here’s an
example:

Public MustInherit Class DBRecord

End Class

Inside a MustInherit class, you can add ordinary methods and properties,
just like you would in any other class. Of course, these properties won’t ever
be used on their own—instead, they’ll be inherited by other classes. For
example, the DBRecord class shown above could be used to group together
some functionality that’s commonly used in classes that represent database
records. Along those lines, the DBRecord class might define a Connect() method
like this:

Public MustInherit Class DBRecord
 Public Sub Connect(ByVal ConnectionString As String)
 ' Code goes here.
 End Sub
End Class

Keep in mind that the DBRecord class has no meaning on its own. In order
to actually get something accomplished, you need to know exactly what type
of record is being used. For example, if it’s employee records, you might
want this EmployeeRecord class:

Public Class EmployeeRecord
 Inherits DBRecord
 ' Employee-specific members go here.
End Class

bvb_02.book Page 186 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 187

This design ensures that you can reuse common pieces of functionality
(like the code for the Connect() method) without allowing a programmer to
inadvertently create a meaningless object (like an instance of the base
DBRecord class).

MustOverride

In the previous section, you saw how an abstract class can allow you to share
code with different derived classes, while remaining safely inactive. Abstract
classes also play another role as class templates.

To understand how this works, you need to realize that there are some
members that you might want to declare in a MustInherit class even though
you can realistically supply the code. For example, when you’re designing the
DBRecord class, you might decide that all the classes that derive from DBRecord
should have basic SaveData() and LoadData() methods, which gives them the
ability to update or retrieve a single record. However, you can’t actually write
the code to perform this task, because it depends on the type of record.

Here’s where the MustOverride keyword fits in. The MustOverride keyword
indicates a method whose implementation must be provided by the derived
class. In other words, a MustOverride method has no code! For that reason, a
MustOverride method can only be placed inside a MustInherit class. Here’s an
example:

Public MustInherit Class DBRecord

 Public Sub Connect(ByVal ConnectionString As String)
 ' Code goes here.
 End Sub

 Public MustOverride Sub LoadData()
 Public MustOverride Sub SaveData()

End Class

In this example, we assume that the Connect() method, which is used to
open a database connection, is standard enough that it can be coded directly
into the DBRecord class. However, the other declared methods, which retrieve
and save data from the database, have no default implementation that can be
given because they depend upon the contents of the database in question
and their types. Therefore we leave them to be overriden (actually, imple-
mented) by methods in derived classes.

When you define a method in an abstract class with MustOverride, you do
not specify any code other than the method declaration. You don’t even
include a final End Sub statement. The derived class must implement all
MustOverride methods declared in its parent. It can’t ignore any of them
(unless it too is a MustInherit class).

The approach illustrated in this example is a powerful one. It ensures
consistency, and it allows you to use classes with different code (for example,
an EmployeeRecord and an OrderRecord) in the same way, using common

bvb_02.book Page 187 Thursday, March 30, 2006 12:39 PM

188 Chap te r 6

methods like Connect(), SaveData(), and LoadData(). However, in .NET it’s
more common to create reusable class templates in a different way—using
interfaces, which are presented later in this chapter.

Multiple-Level Inheritance

Visual Basic 2005 allows you to use unlimited layers of inheritance. For exam-
ple, we could create a new class called DemocratPolitician, or even President,
that inherits from the Politician class, which in turn inherits from the Person
class. Some classes pass through many levels of inheritance to build up all
their features. For example, every .NET type originates from the ultimate
base type System.Object which is enhanced by a number of subsequent
derived classes. Figure 6-3 shows the inheritance diagram for a common
Windows form.

Figure 6-3: The lineage of a Windows form

Of course, the architects of the .NET class library are experienced OO
developers, and multiple-level inheritance is used to great effect in the class
library. In general, however, levels of inheritance should be viewed with
cautious skepticism. As a rule of thumb, you should try to keep the levels of
inheritance to as few as possible (perhaps just a single level), particularly if
the intermediate levels are not used. For example, if your application will
only ever use Politicians, it’s best to create only a Politician class, rather than
a base Person class and a derived Politician class.

Visual Basic 2005 does not allow you to inherit from more than one class
at the same time. (This is a limitation of all .NET languages.) If you have
multiple classes whose features you want to include in a new class, it’s often
best to create a compound class that brings together different subobjects
through its properties. These objects can “plug in” to instances of the new

System.Object

System.MarshalByRefObject

System.ComponentModel.Component

System.Windows.Forms.Control

System.Windows.Forms.ScrollableControl

System.Windows.Forms.ContainerControl

System.Windows.Forms.Form

bvb_02.book Page 188 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 189

type to provide more features. For example, you could create a Person class
that can contain an instance of an Occupation class to specify job-related infor-
mation and a Car object that describes the primary vehicle used by that person.

Is Inheritance a Good Idea?

Inheritance can be a bit tricky to use properly, and with overuse it can lead to
more problems than it’s worth. A common problem arising with inheritance
is fragile classes. These can emerge when you have a complex hierarchy of
objects and multiple layers of inheritance. In such a situation, it’s often
extremely difficult to change any characteristics of your base classes, because
the changes would affect countless derived classes. In other words, your
program reaches an evolutionary dead end, because any enhancement
would break existing classes and require a cascade of changes that would be
difficult to track down and deal with.

When using inheritance, you should ask yourself if there are other avail-
able solutions to your problem. In some cases, you can share code by creating
a utility class with appropriate functions. For example, you might redesign
the DBRecord data object described earlier by placing file access routines into a
common class or code module. Another way to avoid inheritance is to design
objects that can contain other objects, which in turn provide the desired
functionality. This technique is called containment, and it’s usually used in
combination with a technique called delegation.

For example, suppose you want to create an OrderRecord object with a
Connect() method that opens a database connection. You could use contain-
ment and delegation to implement this functionality, without inheriting it
from a parent class, as follows. First, a DBAccess class is designed whose
instances can be used to manage communication with the database. The
definition of the OrderRecord class then includes an internal variable of this
type. When the OrderRecord.Connect() method is called, it uses the contained
DBAccess object in the appropriate way to make the connection. In other
words, OrderRecord delegates the responsibility of connecting to DBAccess.
Here’s a rough outline of the code:

Public Class OrderRecord
 Private objDB As New DBAccess()

 Public Sub Connect(ByVal ConnectionString As String)
 objDB.Connect(ConnectionString)
 End Sub
End Class

Using Inheritance to Extend .NET Classes

This chapter has concentrated on using inheritance with business objects.
Business objects tend to model entities in the real world, and they usually
consist of data (properties and variables) and useful methods that allow you
to process and manipulate that data.

bvb_02.book Page 189 Thursday, March 30, 2006 12:39 PM

190 Chap te r 6

Inheritance also allows you to acquire features and procedures from the
.NET class library for free. You’ve already seen how to do this with Windows
forms, but we haven’t yet discussed the full range of possibilities. This section
provides two quick examples designed to illustrate the power of inheritance.

Visual Inheritance

Every form inherits from System.Windows.Forms.Form. However, you can also
make a form that inherits from another form. Here’s how to do it:

1. Start a new Windows project. Rename the form you start off with to
BaseForm. This is the form you’ll use as the standard for other forms.

2. Before going any further, add a couple of buttons to BaseForm. Then,
right-click your project in the Solution Explorer, and choose Build.

3. Now, choose Project�Add Windows Form to add a second form.
But instead of starting with the standard blank template, choose the
Inherited Form option shown in Figure 6-4.

Figure 6-4: Adding an inherited form

4. Name your new form DerivedForm, and click OK.

5. The Inheritance Picker dialog box will show you all the forms in your
project (and any other components you’re using). You need to choose
the form you want to inherit from. In this case, it’s BaseForm, as shown in
Figure 6-5.

6. Click OK.

bvb_02.book Page 190 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 191

Figure 6-5: Choosing the base form

Your new form, DerivedForm, will contain all the controls you created on
BaseForm. In fact, DerivedForm will look exactly the same as BaseForm, because
it will have inherited all of BaseForm’s controls and their properties. In the
designer, you’ll see a tiny arrow icon next to each inherited control (see
Figure 6-6).

Figure 6-6: An inherited form in the designer

What’s more, any time you make changes to BaseForm, DerivedForm will be
updated automatically (although you may have to build the project before
Visual Studio will update the display). None of the code will be repeated in
the DerivedForm form class code, but it will all be available. For example, if
you include a button click event handler in BaseForm, it will take effect in
DerivedForm as well.

bvb_02.book Page 191 Thursday, March 30, 2006 12:39 PM

192 Chap te r 6

The only difference between BaseForm and DerivedForm is that you won’t be
able to move or alter the controls on DerivedForm. However, you can still add
new controls to DerivedForm, and you can also change form-level properties
(like the form caption or dimensions).

If you’re curious to take a look behind the scenes (and confirm that inher-
itance really is at work), you need to dive into the designer code file for the
form. First, select Project�Show All Files to reveal it in the Solution Explorer.
Then, expand the DerivedForm.vb node to show the DerivedForm.Designer.vb
code file. (Chapter 4 has more on the designer code file, which has the auto-
matically generated code that Visual Studio creates.)

In the DerivedForm.Designer.vb file, check out the class declaration.
Instead of seeing this:

Public Class DerivedForm
 Inherits System.Windows.Forms.Form

you’ll see this:

Public Class DerivedForm
 Inherits BaseForm

In other words, the DerivedForm class inherits from the BaseForm class
(which itself inherits from the Form class). As a result, the DerivedForm is a
DerivedForm, a BaseForm, and a plain old Form, all rolled into one.

Visual inheritance is a strict and somewhat limiting tool. However, if you
need to create several extremely similar windows, such as a series of windows
for a custom wizard, you can make good use of it.

Subclassing a Control

You can use a similar technique to extend a .NET control. The following
example creates a customized text box that accepts only numeric input.
(It’s included as the NumericTextBox project with the samples.) To create it
yourself, add the following class to a Windows application:

Public Class CustomTextBox
 Inherits System.Windows.Forms.TextBox

 ' Override the OnKeyPress method, which fires whenever
 ' a key is pressed.
 Protected Overrides Sub OnKeyPress(ByVal e As KeyPressEventArgs)
 ' Call the base method (which raises the KeyPress event).
 MyBase.OnKeyPress(e)

 ' Check if the just-typed character is numeric
 ' or a control character (like backspace).
 If Char.IsControl(e.KeyChar) = False And _
 Char.IsDigit(e.KeyChar) = False Then
 ' If it isn't, set the Handled property to
 ' tell the TextBox to ignore this keypress.

bvb_02.book Page 192 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 193

 e.Handled = True
 End If
 End Sub
End Class

This is a customized version of the common text box. It inherits
everything that the TextBox control has to offer, and overrides one of the
existing methods, OnKeyPress(). The OnKeyPress() method is always called
when a key is pressed, just before the character appears in the text box.
Here you have the chance to examine the character that was typed, and
(optionally) refuse it by setting the KeyPressEventArgs.Handled property to True.

TIP How did we know there was an OnKeyPress() method to override? By .NET, all Windows
controls provide an OnXxx() method for each event they provide. For example, a button
has a Click event, so you can assume it also has an OnClick() method that fires just
before the event is raised. If you want to react to this action, you can create an event
handler (as you saw in Chapter 4), or you can derive a new class and override the
related method (as with the custom text box example). Both approaches are functionally
equivalent. The difference is in where you place the code and how you can reuse it.

To use this class, begin by compiling your application. Then, switch
to the design surface of a form. You’ll see the CustomTextBox control appear
in the Toolbox automatically (see Figure 6-7). This is a convenience that
Visual Studio provides automatically—it searches your code for all classes that
derive (directly or indirectly) from System.Windows.Forms.Control and makes
them readily available.

Now you can drop your custom text box on
a form and run your application. You’ll notice
that you can only type numeric characters into
the text box. Letters and symbols are ignored.

This raises an interesting question. If you
want to create a text box that rejects certain
characters, is it a better idea to handle an event
like KeyPress in your form, or to create a whole
new custom control? Generally, it’s better to
prevent cluttering your application with extra
classes, so it’s simpler to keep all your code in
the form. However, if you have any complex
keystroke-handling logic that you need to share
in several different forms, the custom control
approach becomes a lot more attractive. Using
this technique, you write the code once, and
reuse it to your heart’s content. You can even
share your control in several separate applica-
tions by placing your class in a class library
(.dll) project and sharing the component with
other programmers.

Figure 6-7: A custom control
in the Toolbox

bvb_02.book Page 193 Thursday, March 30, 2006 12:39 PM

194 Chap te r 6

Interfaces

The interface is a cornerstone of object-oriented design, particularly for large-
scale applications that need to be deployed, maintained, and enhanced over
long periods of time. Interfaces require a bit of extra effort to use, and they
are often avoided because they provide few immediate benefits. However,
over the long term, they help solve common problems that make an appli-
cation difficult to extend and enhance.

The goal of an interface is to allow you to separate a class’s definition
from its implementation. An interface defines a small set of related prop-
erties, methods, and events. By convention, interfaces always start with the
capital letter I.

For example, you could create an interface that collects common file
access operations:

Public Interface IFileAccess

 Property IsFileOpen() As Boolean

 Sub Open(ByVal FileName As String)
 Sub Close()

 Sub LoadData()
 Sub SaveData()

End Interface

Note that interfaces don’t use the Public or Private keyword in the dec-
larations of their members. All the elements in an interface are automatically
public. You’ll also notice that interfaces don’t define their members—in
particular, they leave out the End statement and only include the signatures
of properties and methods.

An interface contains absolutely no real code. It’s a bare skeleton that
describes the members needed to support a specific feature or procedure. The
IFileAccess interface requires a class to provide its functionality—opening
and closing a file, and loading and saving data. In that respect, an interface is
very similar to an abstract MustInherit class that is entirely composed of empty
MustOverride methods.

To use an interface in a class, you use the Implements statement. A class
can implement as many interfaces as it needs. However, the class needs to
provide its own code for every member of the implemented interface. Con-
sider this example:

Public Class PersonData
 Implements IFileAccess
End Class

bvb_02.book Page 194 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 195

As soon as you enter this information in Visual Studio, the IntelliSense
feature will underline the word IFileAccess to indicate that your class cannot
be considered complete, because one or more member declared in the
IFileAccess interface has not been defined in PersonData (see Figure 6-8).

Figure 6-8: An unimplemented interface

To fully implement an interface, you need to provide code for every
method. Here is an example of how you would implement the Open() method:

Public Sub Open(ByVal FileName As String) Implements IFileAccess.Open
 ' (Code omitted.)
End Sub

NOTE Visual Studio has a fantastic shortcut for implementing interfaces. Just type in the
Implement... line, and then press ENTER. It will automatically fill in every required
method for you, with the correct accessibility, data types, and so on. Of course, it’s still
up to you to add the code.

Inheritance Versus Interfaces

The difference between inheritance and interfaces is that inheritance is used
to share code, whereas interfaces are used to standardize it. Interfaces guar-
antee that several classes all present a standard set of methods to their clients,
even when the implementation details are class-specific. In the IFileAccess
example, interfaces are a good idea, because while saving data to and loading
data from a file is a common operation that several classes need to support,
the code for the SaveData() and LoadData() methods will depend on the type of
data being saved and loaded, and vary from class to class. (Of course, these
methods might themselves use a common .NET component or a custom file
access class to take care of some of the heavy lifting and reuse some code.)

bvb_02.book Page 195 Thursday, March 30, 2006 12:39 PM

196 Chap te r 6

Using Interfaces

If you are new to interfaces, you’re probably wondering why you should use
them at all when they clearly require so much work. Unlike inheritance,
interfaces do not let you reuse blocks of code; in order to share code, you
have to make careful use of utility functions or inheritance in addition to
interfaces. Interfaces also have the drawback of inflexibility (you always have
to implement every member of the interface) and extra syntax (every member
definition requires an additional Implements statement to match it to the
method, property, or event that it implements). So what benefit does an
interface provide?

In fact, interfaces aren’t nearly as crazy as they look. First of all, you need
to understand that interfaces are not designed to solve problems of code reuse.
Instead, an interface is a contract that guarantees that a class offers a certain
set of features. A client program may not know anything about a new SalesInfo
class, but as long as it knows that the class implements the IFileAccess inter-
face, it knows that the class provides LoadData() and SaveData() methods (and
how they are used). Or, consider a Microwave and a ToasterOven object, both of
which use a similar control panel to cook food. This could be modeled as an
interface (ICookFood), which would allow a client to make dinner without
necessarily needing to use any microwave-specific or toaster oven–specific
functions.

Inheritance provides a similar standardization mechanism. As you
learned earlier, you can cast an object to its parent’s type to provide a get
access to a basic set of functions and features. (For example, you can treat
any Person-derived class as a Person.) The same is true with interfaces.

Imagine the following class, which implements the IFileAccess interface:

Public Class SalesInfo
 Implements IFileAccess
 ' (Code omitted.)
End Class

The SalesInfo class is standardized according to the IFileAccess interface.
As a result, you could pass a SalesInfo object to any method that understands
the IFileAccess interface. Here’s an example:

Public Sub PrintFileInfo(DataObject As IFileAccess)
 ' Interact with the object (which is a SalesInfo in this example)
 ' through the IFileAccess interface.
 DataObject.Open()
 DataObject.LoadData()

 ' (Printing code omitted.)
 DataObject.Close()
End Sub

bvb_02.book Page 196 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 197

In other words, objects of any class that implements IFileAccess can be cast
to IFileAccess. This allows generic functions to be created that can handle the
file access features of any class. For example, the PrintFileInfo() method could
handle an EmployeeInfo, CustomerInfo, or ProductInfo object, as long as these
classes all implement the IFileAccess interface.

Interfaces and Backward Compatibility

Interfaces are designed as contracts. Therefore, once you specify an interf-
ace, you must be extremely careful how you change it. One fairly innocent
change is to add a new method. Although you’ll need to track down all the
classes that implement the interface and add the new method, you won’t
need to change the code that uses these objects, because all the original
methods are still valid.

However, it’s much more traumatic to remove existing methods from an
interface or to change their signatures. For example, if you decide you need
to replace the LoadData() and SaveData() methods with versions that require
different parameters (for example, a version that takes an additional para-
meter specifying a key for data encryption), existing programs that use the
original IFileAccess interface may stop working. The problem is that the orig-
inal version of the method—the one the code is attempting to use—won’t be
around anymore. (To avoid this problem, keep to the first rule—add new
methods, but don’t remove the original versions of the method.)

Some developers choose to never change anything about an interface
once it’s released into the wild. They won’t even make “safe” changes (like
adding new methods). If they absolutely have to modify the interface, they
will create a whole new interface, like IFileAccess2. Your classes can imple-
ment both, and clients will have a choice of which to use:

Public Class SalesInfo
 Implements IFileAccess, IFileAccess2
 ' (Code omitted.)
End Class

In such a situation, when two interfaces overlap (i.e., they each declare a
method with the same name and signature), you can create a single method
that satisfies both interfaces:

Public Sub Open(ByVal FileName As String) _
 Implements IFileAccess.Open, IFileAccess2.Open
 ' (Code omitted.)
End Sub

All this interface-based programming may seem like a lot of extra work,
and it sometimes is. You may therefore be tempted to forget about backward
compatibility and just recompile all the programs that use a class whenever
you change one of the interfaces it uses. In truth, that isn’t such a bad idea.
In many cases it may even be the best idea. However, this is only valid when

bvb_02.book Page 197 Thursday, March 30, 2006 12:39 PM

198 Chap te r 6

you are developing a class for use in programs over whose development and
maintenance you have total control. Once your class is distributed as a stand-
alone component and used in third-party applications, you can’t modify it
without possibly breaking client applications.

Using Common .NET Interfaces

Interfaces aren’t just used for backward compatibility. They also allow a class
to standardize a range of feature sets from which clients may choose. Remem-
ber, a class can only inherit from one parent class, but it can implement all
the interfaces it needs.

NOTE Interfaces allow you to standardize how classes interact. Taken to its extreme, this
allows different developers to code each class independently. As long as developers of the
class and of its clients both stick to the rules of the interfaces and interact only through
these interfaces, their code is guaranteed to be compatible.

Interfaces are used extensively in the .NET Framework, and they
represent the handiwork of master OO designers. For example, arrays
implement the ICloneable interface (to provide every array with a Clone()
method that copies the elements of an array), the IList and ICollection inter-
faces (which allow the array to act like a collection), and the IEnumerable
interface (which allows the array to provide For Each enumeration support).
The next few sections present some of .NET’s most useful interfaces.

NOTE To see these interfaces in action, try out the InterfaceTester project with the code for this
chapter.

Cloneable Objects

Each instance of every class that you create has the built-in intelligence to
create a copy of itself. It acquires this feature from the MemberwiseClone()
method, which every class inherits from the base System.Object class.

However, client code can’t access this method directly, because it is
marked as Protected, which means it’s available to code inside the class, but
not to code using the class. This is designed to impose some basic restrictions
on object copying. As you’ll see, the way the MemberwiseClone() method works
isn’t suitable for all classes, so .NET forces you to go through a little bit of
extra work to enable it.

You could create your own public class method that uses MemberwiseClone().
The recommended approach, however, is to use the ICloneable interface,
which is designed for just this purpose. By using the ICloneable interface,
you guarantee that other pieces of code will know how to copy your objects,
even if they’ve never seen them before.

The ICloneable interface defines a single method, Clone(). Your object pro-
vides the code for this method, which should use the internal MemberwiseClone()
method to perform the copy (and possibly add some additional logic).

bvb_02.book Page 198 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 199

Here’s a Clone() method that could be used for the Person class:

Public Class Person
 Implements ICloneable
 ' (Other code omitted.)

 Public Function Clone() As Object Implements ICloneable.Clone
 ' Return a duplicate copy of the object using the
 ' MemberwiseClone() method.
 Return Me.MemberwiseClone()
 End Function

End Class

Clients of a Person object can then call its Clone() method and use the CType()
function to cast the result to the appropriate type.

NOTE The ICloneable interface and the Clone() method need to be flexible enough to work
with any class. For that reason, the Clone() method returns a generic Object. This
design allows it to support every type of object, because no matter what object you create,
you can always cast it to the Object type. However, it also forces the client using the
Clone() method to do a little extra work and cast the object back to the correct type. It’s a
small price to pay to have a standardized object-cloning system.

Dim CurrentPerson As New Person("Matthew", "MacDonald")
Dim NewPerson As Person

' Clone the author.
NewPerson = CType(CurrentPerson.Clone(), Person)

Cloning Compound Objects

One reason the MemberwiseClone() feature is hidden from client use is the
difficulty involved in cloning a compound object. For example, consider the
following cloneable Family class:

Public Class Family
 Implements ICloneable
 ' (Other code omitted.)

 Public Mother As Person
 Public Father As Person

 Public Function Clone() As Object Implements ICloneable.Clone
 Return Me.MemberwiseClone()
 End Function

End Class

bvb_02.book Page 199 Thursday, March 30, 2006 12:39 PM

200 Chap te r 6

When this object is cloned, the Mother and Father object references will be
copied. That means that a duplicate Family class will be created that refers to
the same Mother and Father. To modify this behavior so that the contained
Mother and Father objects are also cloned (as shown in Figure 6-9), you would
need to add additional code:

Public Function Clone() As Object Implements ICloneable.Clone
 Dim NewFamily As Family
 ' Perform the basic cloning.
 NewFamily = Me.MemberwiseClone()

 ' In order for this code to work, the Person object
 ' must also be cloneable.
 NewFamily.Father = Me.Father.Clone()
 NewFamily.Mother = Me.Mother.Clone()

 Return NewFamily
End Function

Here’s an example that tests the Family.Clone() method:

' Create the family, with two parents.
Dim TestFamily As New Family()
TestFamily.Mother = New Person("Lucy", "Smith")
TestFamily.Father = New Person("Joe", "Xamian")

' Clone the family. This also duplicates the two referenced
' Person objects (the mother and father).
Dim FamilyCopy As Family = CType(TestFamily.Clone(), Family)

Figure 6-9: Two ways to clone

Family
Object

Cloned Family
Object

Family
Object

Cloned Family
Object

DEFAULT

CLONING

Father
Object

Mother
Object

Cloned
Father
Object

Cloned
Mother
Object

CUSTOMIZED

CLONING

Father
Object

Mother
Object

bvb_02.book Page 200 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 201

NOTE In this example, it’s fairly obvious that the Family class is a compound object. Com-
pound objects are not always this recognizable. For example, an object might store
information in a collection or an array. Collections and arrays are both reference types,
which means that MemberwiseClone() will copy the reference, not duplicate the object.
You need to be extra vigilant when adding cloning capabilities to a class in order to
avoid this sort of subtle error.

Disposable Objects

You’ll remember from the last chapter that because of the nondeterministic
nature of garbage collection, you can’t count on code that runs when an
object is destroyed to be executed immediately. If your class uses a limited
resource (like a file or a database connection) that should be released as
soon as an object is done using it, you should provide a method that allows
this resource to be released explicitly. The recommended, standardized way
to do this is to implement the IDisposable interface, which contains a single
method called Dispose().

Public Class PersonFile
 Implements IDisposable

 Public Sub New()
 ' (Add code here to open the file.)
 End Sub

 Public Sub Dispose() Implements IDisposable.Dispose
 ' (Add code here to release the file.)
 End Sub
 ' (Other code omitted.)
End Class

There’s not much to using IDisposable. Just remember that the calling
code needs to call the Dispose() method. It will not be invoked automatically.
A good safeguard is to use VB’s new Using block with any disposable object.
Here’s an example:

Dim PFile As New PersonFile()
Using PFile
 ' Perform normal tasks with the PFile object here.
End Using
' When your code reaches this point, PFile.Dispose() is
' called automatically.

The nice thing about the Using block is that it guarantees Dispose() will be
called (if the object implements IDispose; otherwise, the Using block doesn’t
do anything). Even if an unhandled exception occurs inside the Using block,
the Dispose() method is still called, ensuring proper cleanup. This is a great
way to make sure limited resources (like database connections or file handles)
are always released, even in the event of an unexpected error.

bvb_02.book Page 201 Thursday, March 30, 2006 12:39 PM

202 Chap te r 6

The only disadvantage to the Using block is that if you have several objects
you need to dispose of, this can lead you to write a stack of confusingly
nested Using statements. In this case, a better solution is to use the Finally
section of an exception-handling block (see Chapter 8) to perform your
disposal.

For even more compact code, you can create an object at the same time
you start your Using block:

Using PFile As New PersonFile()
 ' Perform normal tasks with the PFile object here.
End Using

Comparable Objects

By implementing the IComparable interface, you allow .NET to compare
objects based on your class. One common reason that you might want to
implement IComparable is to allow your classes to be sorted in an array or
collection.

The IComparable interface has a single method called CompareTo(). In the
CompareTo() method, your code examines two objects based on the same class
and decides which one is greater. The CompareTo() method then returns one
of three numbers: 0 to indicate equality, –1 to indicate that the compared
object has a value less than the current object, or 1 to indicate that the
compared object is greater than the current object. It’s up to you to decide
what it means for one class to be “greater” than another. For example, you
might compare numeric data, strings, some other data, or a combination of
variables.

Following is an example that shows how you can implement custom
comparisons involving Person objects. In this case, the programmer decided
that the criterion for comparing Person objects would be their age. Thus, in a
sorted Person list the youngest people would appear first, and the oldest would
appear last.

Public Class Person
 Implements IComparable
 ' (Other code omitted.)

 Public Function CompareTo(ByVal Compare As Object) As Integer _
 Implements IComparable.CompareTo
 Dim ComparePerson As Person = CType(Compare, Person)
 If ComparePerson.BirthDate = Me.BirthDate
 Return 0 ' Represents equality.
 ElseIf ComparePerson.BirthDate < Me.BirthDate
 ' The compared object's age is greater than the current object.
 ' (Remember, the greater the birth date, the smaller the age.)
 Return 1
 ElseIf ComparePerson.BirthDate > Me.BirthDate
 ' The compared object's age is less than the current object.
 Return -1
 End If

bvb_02.book Page 202 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 203

 End Function

End Class

If you want, you can use the CompareTo() method directly in code. How-
ever, the built-in Sort() method in the Array class recognizes the IComparable
interface and uses the CompareTo() method automatically. Here’s an example
that puts it to work:

' Define birth dates for a 45, 28, and 5 year old.
DateTime BirthDate1, BirthDate2, BirthDate3 As DateTime
BirthDate1 = DateTime.Now.AddYears(-45)
BirthDate2 = DateTime.Now.AddYears(-28)
BirthDate2 = DateTime.Now.AddYears(-5)

' Create an array with three people.
Dim GroupOfPeople() As Person = {New Person("Lucy", "Smith", BirthDate1), _
 New Person("Joe", "Xamian", BirthDate2), _
 New Person("Chan Wook", "Lee", BirthDate3)}
' Sort the array, so that the people are ordered from youngest to oldest:
Array.Sort(GroupOfPeople)

NOTE Sometimes you need to provide a class that can be sorted in several different ways. In
this case, you need to create separate sorting classes (like SortByName, SortByDate, and
so on). Each of these sorting classes will implement the IComparer interface. This inter-
face is similar to IComparable and provides one method, CompareTo(), that compares
two objects and returns an integer indicating 0, 1, or –1. To use a special sorting method
with the Array class, use the overloaded Sort() method that allows you to specify an
additional parameter with the appropriate IComparer object.

Collection Classes

Inheritance is a relatively strict type of relationship, referred to as an is-a
relationship. For example, most would agree that a Politician is a Person.
However, there are many other types of relationships in the world of objects.
One of the most common is the has-a relationship—and as many can attest,
in the materialistic world of today, what a person has is often more important
than who they are. The same is true for classes, which can contain instances
of other classes, or even entire groups of classes. This section discusses the
latter case, and introduces the collection class, which is an all-purpose tool for
aggregating related objects, particularly for inclusion in a class.

A collection is similar to an array, but much more flexible. An array
requires that you specify a size when you create it. A collection, on the other
hand, can contain any number of elements, and allows you to add or remove
items as you see fit. An array requires that you specify the data type of the
information it will contain (or specify Object, if you want the array to hold
variables of different data types). A collection can contain any type of object.
Lastly, while an array uses an index to identify its elements, a numeric index
is of little use for a collection, because items can be added and removed

bvb_02.book Page 203 Thursday, March 30, 2006 12:39 PM

204 Chap te r 6

arbitrarily. Instead, when you need to find a specific item in a collection,
you either search through the collection until you find it or refer to it by a
key that you specified for the item when you added it to the collection.

NOTE A key is a short, unique string description. Collections that use keys are sometimes
called dictionaries, because they store information under specific key headings, like a
dictionary.

A Basic Collection
Here’s a code snippet that creates and uses a simple collection:

' Create a Person object.
Dim Person1 As New Person("Lucy", "Smith")

' Create a collection.
Dim People As New Collection()

' Add the Person to the collection with the key "First"
People.Add(Person1, "First")

' Display the number of items in the collection (currently 1).
MessageBox.Show(People.Count)

' Retrieve the Person from the collection
Dim RetrievedPerson As Person = People("First")

A NuclearFamily Class
Now it’s time to jump right into a full-fledged example: the NuclearFamily
class. I’ll break down the elements of this example to explain how it uses a
collection.

Here is the definition for our NuclearFamily class:

Public Class NuclearFamily
 Public Father As Person
 Public Mother As Person
 Public Children As New Collection()

 Public Sub New(ByVal Father As Person, ByVal Mother As Person)
 Me.Father = Father
 Me.Mother = Mother
 End Sub

 Public Function FindYoungestChild() As Person
 Dim Child As Person
 Dim Youngest As Person

 For Each Child In Children
 If Youngest Is Nothing Then
 Youngest = Child
 ElseIf Youngest.BirthDate < Child.BirthDate Then

bvb_02.book Page 204 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 205

 Youngest = Child
 End If
 Next

 Return Youngest
 End Function

End Class

Here’s the rundown:

� The NuclearFamily class has a Father and a Mother variable, which point to
corresponding Person objects. These variables are defined without the New
keyword. This means that blank Father and Mother objects aren’t created
when you create a NuclearFamily. Instead, you must assign preexisting
Person objects to these variables. (In the interest of shorter code, our
example takes a shortcut by using variables instead of full property
procedures.)

� All the children are contained in a collection called Children. This col-
lection is defined with the New keyword, because it needs to be created
before any Person objects can be added to it.

� A single constructor is used for the class. It requires parameters identifying
both parents. In other words, you won’t be able to create a NuclearFamily
without a Father and Mother. Notice that the names of the parameters in
the constructor are the same as the names of the variables in the class.
This may seem confusing, but it’s actually a common convention. In this
case, the parameter name has priority over the class name, so you need
to use the Me keyword to refer to the class in order to directly access the
instance variables from within the function.

� A FindYoungest() function searches through the Children collection and
compares each child until it finds the one with the most recent BirthDate
(and hence, the youngest age).

To use the NuclearFamily class, you need to create and add family members:

' Create four distinct people.
Dim Lucy As New Person("Lucy", "Smith", 43)
Dim John As New Person("John", "Smith", 29)
Dim Anna As New Person("Anna", "Smith", 17)
Dim Eor As New Person("Eor", "Smith", 15)

' Create a new family.
Dim TheFamily As New NuclearFamily(John, Lucy)

' Add the children.
TheFamily.Children.Add(Anna)
TheFamily.Children.Add(Eor)

' Find the youngest child.
MessageBox.Show("The youngest is " & TheFamily.FindYoungestChild.FirstName)

bvb_02.book Page 205 Thursday, March 30, 2006 12:39 PM

206 Chap te r 6

The result of all this is shown in Figure 6-10.
There isn’t much new material in this example. What’s important is the

way everything comes together. The NuclearFamily class is a compound class
that contains two Person objects and its own collection.

Figure 6-10: Finding
the youngest member

A traditional structured program would probably model a family by
creating a bunch of different information. Maybe it would keep track of only
the children’s birthdays, or even hard-code a maximum number of children.
Along the way, a structured program would probably also introduce fixed
assumptions that would make it difficult to expand the program and keep it
clear. The NuclearFamily class, on the other hand, is built out of Person objects.
Every family member is treated the same way, and the family is broken down
into equivalent objects. You could even create multiple NuclearFamily classes
that assign the same family member (Person object) different roles—for
example, as a child in one class and a parent in another.

In short, everything is consistently well organized. We change the Person
class, and any part of our code that uses it automatically benefits. Code that
deals with people is contained inside the Person class, so we always know where
to find it. Life is good.

To try out the NuclearFamily class, run the CollectionTester project from
the sample code (see Figure 6-11).

Figure 6-11: The NuclearFamily test utility

bvb_02.book Page 206 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 207

Specialized Collections

The basic Collection class is really a holdover from Visual Basic 6. However,
.NET developers often use one of several more specialized collections, which
can be found in the System.Collections namespace. Some popular collection
classes include:

ArrayList

This is similar to the Collection class, but it doesn’t support keys. It’s just
a collection that dynamically grows (when you use the Add() method)
and shrinks (when you call the Remove() method).

Hashtable

This is similar to the Collection class, but it requires that each item have
a key.

SortedList

This is like a Hashtable, but it automatically sorts itself (based on key
values) whenever you add or remove an item.

Queue and Stack
A Queue is a first-in, first-out collection. You call Enqueue() to insert an item
at the end of the queue, and Dequeue() to retrieve the oldest-added item.
A Stack uses the same principle, but in reverse. You call Push() to add an
item to the top of the stack and Pop() to get the item that’s currently
topmost.

Hold on—before you head off to the System.Collections namespace to
check out these specialized collection classes, it’s worth noting that .NET 2.0
added yet another set of collections, this one in the System.Collections.Generic
namespace. You’ll learn about these collections in the following section.

Generic Collections

One drawback with our NuclearFamily.Children collection is that it isn’t type-
safe. Though our respectful program only adds children into the collection,
poorly written code could easily throw in strings, numbers, and other objects,
which could cause all sorts of problems. Remember, when creating a com-
ponent, you should always imagine that it is a separate program that may be
thrust out into the world on its own and used by a variety of programmers,
who may have little knowledge about its inner workings. For that reason, a
class has to carefully protect itself against incorrect input.

One way to do this is through property procedures, as you saw in Chap-
ter 5. In the NuclearFamily class, we could create a property procedure or a
special method that accepts an object, checks its type, and then adds it to the
Children collection if it is a Person. However, this approach has a significant
drawback. Because the collection is no longer directly exposed, the client
doesn’t have any way to iterate through it. (Iteration is the handy process that
allows a programmer to use a For Each block to move through all the items in

bvb_02.book Page 207 Thursday, March 30, 2006 12:39 PM

208 Chap te r 6

a collection without worrying about indexes or keys.) Another solution is to
create a custom collection class. This is fairly easy because .NET provides a
System.Collections.CollectionBase class from which you can derive subclasses.
It has all the tricky stuff built in, so you have relatively little code to add.
In fact, The Book of VB .NET (No Starch Press, 2002) demonstrated a
custom collection class for Person objects, which you can examine with
the downloadable code for this chapter.

In VB 2005, you don’t need to take either of these steps. That’s because
.NET 2.0 adds a new feature called generics that allows developers to build
more flexible classes. One of the first beneficiaries of this change are the
collection classes.

Thanks to generics, it’s possible to create collections that can support
any data type but are instantly “locked in” to the data type you choose when
you create them. The only trick is that you need to specify that data type
using a slightly unusual syntax. For example, imagine you want to use the
generic List collection class. You would change the NuclearFamily class by
modifying this line:

Public Children As New Collection()

to this:

Public Children As New System.Collections.Generic.List(Of Person)

The Of Person part in parentheses explains that you want your Children
collection to only accept Person objects. From this point on, you won’t be able
to add any other type of object. For example, if you write this code:

Children.Add("This is some text, not a Person object.")

You’ll get an error. Best of all, you’ll receive the error when you try to compile
your application (not later on, when it’s running merrily). That way, your
invalid code is stopped cold before it can cause a problem.

Another benefit is that you can pull a Person object out of the List collec-
tion without needing to use CType() to cast the object. For example, with an
ordinary collection you need the following code to get the first Person object:

Dim FirstPerson As Person
FirstPerson = CType(Children(0), Person)

But with a generic collection, the following simpler code works fine, because
the compiler knows your collection is limited to Person objects:

Dim FirstPerson As Person
FirstPerson = Children(0)

bvb_02.book Page 208 Thursday, March 30, 2006 12:39 PM

Maste ring Object s 209

The List class is the generic version of the ArrayList class—it’s a collec-
tion that doesn’t use keys. You’ll also find a few more generic collections in
the System.Collections.Generic namespace. They include:

Dictionary

This is a name-value collection that indexes each item with a key, similar
to the Hashtable collection.

SortedList

This is the generic version of the System.Collections.SortedList class
(a perpetually sorted key-value collection).

Queue

This is the generic version of the System.Collections.Queue class (a first-in,
first-out collection).

Stack

This is the generic version of the System.Collections.Stack class (a last-in,
first-out collection).

What Comes Next?

This chapter has discussed a wide range of object-oriented techniques. How-
ever, now that you have the knowledge, you still need the experience to learn
how to implement object-oriented designs.

A substantial part of the art of using objects is deciding how to divide
a program into classes. That question has more to do with the theory of
application architecture than with the Visual Basic 2005 language.

For example, you may be interested in learning the basics about three-tier
design. Three-tier design is the idea that applications should be partitioned
into three principal levels: the user interface, known as the presentation tier;
the business objects or data processing procedures, known as the business tier;
and a back-end data store (a relational database or a set of XML files, for
example), known as the data tier. Figure 6-12 shows a diagram of this model.

Three-tier design has caught on because it allows extremely scalable
applications. With clever design, all three levels can be separated, upgraded
or debugged separately, and even hosted on different computers for a poten-
tial performance boost. The concepts of three-tier design are also important
when you are creating simpler client-server or desktop applications. By remem-
bering that database access, data processing, and user interface are three
different aspects of a program, you can get into the habit of separating these
functions into different groups of classes. For example, your form classes all
reside at the user interface level. This means that they shouldn’t contain any
code for processing data; instead, they should make use of a business object.
Similarly, a business object shouldn’t display a message directly on the screen,
or access a form. It should be completely isolated from the user interface,
and should rely on receiving all the information it needs through method

bvb_02.book Page 209 Thursday, March 30, 2006 12:39 PM

210 Chap te r 6

parameters and properties. Understanding three-tier design can help you
ensure that even your most straightforward programs are more encapsulated
and easier to enhance and troubleshoot.

Figure 6-12: Three-tier design

Presentation Tier

Business Tier

Data Tier

Application
Window

Application
Window

Business
Object

Business
Object

Database Data Files

bvb_02.book Page 210 Thursday, March 30, 2006 12:39 PM

7
A S S E M B L I E S A N D C O M P O N E N T S

Some of the most remarkable changes to
the way VB developers do business in the

.NET world stem from the introduction of
assemblies, .NET’s catch-all term for executable

application files and compiled components. In Visual
Basic 6, creating and reusing a component was often
tricky, especially if you wanted to share your work with
applications coded in other programming languages. Registration hassles
and versioning conflicts—which occur when two programs expect different
versions of the same component—appear when you least expect them and
can take hours to resolve. In this chapter, you’ll learn how .NET clears out
these headaches and offers a better model for sharing components. You’ll
also learn enough to prepare yourself for Chapter 14, which explores how
you can create customized setup programs to deploy your applications.

bvb_02.book Page 211 Thursday, March 30, 2006 12:39 PM

212 Chap te r 7

New in .NET

Could the end of versioning headaches, deployment struggles, and multiple-
application conflicts finally have arrived? In this chapter you’ll see the changes
in Microsoft’s new deployment philosophy. Some of these changes include:

Assemblies
If you are an experienced developer, you’ve seen how COM can simplify
code reuse by allowing programmers to create and share distinct compo-
nents. You’ve probably also seen how much trouble can be caused when
different shared components conflict, and installing one program breaks
another. Assemblies are Microsoft’s replacement to components and tra-
ditional application files, and they include built-in metadata designed to
help you avoid “DLL Hell.”

No more registration
The advent of assemblies means that you no longer have to rely on
the registry to maintain important information about your component.
Instead, it’s all stored directly in your program files, making it easy to
copy applications and components from computer to computer, and
allowing you to share components in your programs without worrying
about messy configuration details.

Versioning policies
.NET puts you in complete control over versioning. Only you have the
power to decide which version of a component your application will use.
If another application is given an upgraded version of a shared compo-
nent, you’re free to keep using the original version your application was
built and tested with, guaranteeing rock-solid stability.

Resources
Need to use a binary image in your application, but you’re worried about
what happens if someone deletes, moves, or tampers with your image file?
In this chapter, you’ll learn how to embed the image within your applica-
tion assembly as binary data, where no one can touch it. Best of all, Visual
Studio will still let you update it easily.

Introducing Assemblies

An assembly is a .NET version of a .dll or .exe. Quite simply, an assembly is
some grouping of program functionality that corresponds to a single compo-
nent or application. In the programs you’ve seen so far, all the functions and
features have been coded inside a single assembly, which becomes a .exe
file when you compile it. If, however, you wanted to make separately distribut-
able components, you would divide your program into several distinct units
of functionality, which would then become individual assemblies.

bvb_02.book Page 212 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 213

Assemblies Versus Components That Use COM

At this point, you are probably wondering why developers need assemblies
when we already have COM—a system for creating and sharing components
that’s baked into the Windows operating system. Once again, .NET is making
a clean break. With the introduction of assemblies, the versioning headaches
that developers have suffered through for years are finally at an end. That’s
not just hot air—assemblies have a few unique features that make them com-
pletely unlike anything Windows programmers have used before.

Assemblies Are Self-Describing

The most revolutionary aspect of assemblies is the fact that they are self-
describing. Every assembly you create contains one or more program files
and a manifest. The manifest includes additional information called metadata.
(Metadata is “data about data.” Essentially, your program code is the data,
and the metadata is the information about your program, such as its name,
version, publicly available types, and dependencies.) The manifest replaces
the type library and registry information used with COM components. That
brings us to the next point.

Assemblies Don’t Need the Registry

All the information needed to use a component or to run an application is
contained in the assembly’s manifest, which is embedded right inside the
corresponding .dll or .exe file. It is impossible to create a program in .NET
without automatically generating a manifest and a proper assembly. This
means that you can copy your applications and components to any other
computer using .NET, and they will work automatically. There’s no need to
fiddle around with regsvr32.exe or other awkward tools to add information to
the registry.

In Visual Basic 6, you can transfer a simple application from computer to
computer easily enough. But as soon as your application uses other COM
components or ActiveX controls, you face several new problems. Namely,
you need to register these files on every computer that uses them, and the
registration process can cause a conflict with other installed applications. But
in .NET, you can simply identify and copy the needed files—no registration
is required. Of course, if you forget a dependent file, you’ll still run into
trouble.

Assemblies Can Be Privately Shared

A Visual Basic 6 application can use two broad types of components: those
that have been developed in-house to share company-specific functionality,
and those that have been developed (and may even be sold) by third-party
component developers or by Microsoft. The latter type of component requires
some kind of central repository. In traditional COM programming, that’s

bvb_02.book Page 213 Thursday, March 30, 2006 12:39 PM

214 Chap te r 7

the Windows system directory, where all the files are piled in a somewhat dis-
organized mess. In .NET development, the Global Assembly Cache (GAC)
serves much the same purpose, and we’ll explore it later in this chapter.

In the other scenario—company-specific code modules—components
don’t need to be shared across the computer. They may be used by only a
single application, or by a few applications created by the same developers.
In COM development, there was no easy way to implement this approach.
Private components still had to be tossed into the system directory with every-
thing else, which meant extra registration steps, unnecessary information
added to the registry (such as a global unique identifier, or GUID), and a
clutter of components that couldn’t be reused by other programs.

If you’ve ever tried to explore the full list of COM components and add
some of them to your Visual Basic projects, you’ve surely discovered that
many of the items that appear on the list aren’t thoughtful examples of
shared procedures and resources provided by other application developers.
Instead, they are designed for use with a specific application that is installed
on your computer and are essentially useless outside that program. They may
even have licensing restrictions that prevent you from creating an instance of
a component in your applications.

In .NET, private assemblies are private. You store these components in
your application directory or in an application subdirectory.

Assemblies Are Rigorous Version Trackers

The manifest also records information about the current versions of all
the included files. Whenever you compile a VB 2005 program, this version
information is written into the manifest automatically, meaning that there’s
no possibility for it to become out of date, or not be synchronized with the
underlying application code. The manifest also contains a short block of
cryptographic hash code based on all the files in the assembly. Whenever you
run an assembly, the Common Language Runtime verifies that the hash code
is valid. If a change is detected that isn’t reflected in the manifest (which is
impossible, unless the file is corrupted or has been modified by a malicious
user with a low-level tool), it won’t let you run the application.

This is a stark difference from the way that COM components and
ActiveX controls work. With COM components, you have to trust that the
information in the registry and any associated type library is up to date—and
this trust may not be rewarded.

Assemblies Support Side-by-Side Versioning

How many times have you installed a new application only to discover that it
overwrote a file required for another application with a newer version that
broke backward compatibility? No matter how hard developers struggle, the
ideal of backward compatibility will never be universally achieved, and any sys-
tem that uses a single component and a single version for dozens of different
applications will run into trouble (or DLL Hell, as it is affectionately known).

.NET sidesteps this problem in two ways. The first solution is with
private assemblies. Because each application has its own separate copy of

bvb_02.book Page 214 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 215

a component, you’re free to update the .dll files whenever you wish. It’s up
to you whether to roll out a change for a single application or a dozen.

Of course, that separation won’t help you if you decide to share compo-
nents across a computer by placing them in the GAC. Fortunately, .NET avoids
trouble here as well with a landmark feature called side-by-side execution. Under
this system, you can install multiple versions of a single component in the
GAC. When you run an application, .NET uses the version of the component
that it was developed with. If you run another program at the same time that
uses the same component, the Common Language Runtime will load the
appropriate version for that program as well. No unexpected behavior or
incompatibilities will appear, because every application uses the set of
components that it was designed for.

Why Haven’t We Seen These Features Before?

It wasn’t just shortsightedness that led Microsoft to create the COM we know,
love, and hate, with its obvious versioning nightmares. Some of the features
that assemblies use just weren’t practical in the past. For example, side-by-
side execution can multiply the amount of memory required when several
applications are running. Each application may use a different version of the
same component, which is effectively the same as if each application were
using a completely separate component. Today, it’s fairly easy to buy a few
hundred megabytes more of RAM to prevent this problem, but in the past,
an operating system designed without code sharing in mind would quickly
grind to a standstill. Similarly, allowing multiple versions to be tracked and
stored separately on a computer (or giving each application its own copy of a
component with private assemblies) just wasn’t efficient with the limited disk
space of the past. Today, with physical space so absurdly cheap, the overhead
is much less severe.

In other words, COM and the entire Windows platform were created
with the vision of a single, centralized component repository. The emphasis
was on saving space and memory to provide better performance, rather than
on the relative luxury of making applications (and the life of a developer)
easier, more convenient, and more consistently reliable. Today, more and
more mission-critical applications are being designed in the Windows environ-
ment, which has shifted from a home user’s toy to a professional business
platform. The current emphasis is on reliability and on structured, fail-safe
designs, even if a few megabytes have to be wasted in the process. After all,
modern computers have resources to spare. It all comes back to one
principle—.NET programming is modern programming.

Looking at Your Program as an Assembly

As mentioned earlier, all the applications you’ve created up to this point are
genuine .NET assemblies. If they weren’t, the Common Language Runtime
would refuse to execute them. To see what your program looks like as
an assembly, you can use an interesting program called ILDasm.exe

bvb_02.book Page 215 Thursday, March 30, 2006 12:39 PM

216 Chap te r 7

(IL Disassembler), which can be found in a directory like C:\Program Files\
Microsoft Visual Studio 8\SDK\v2.0\Bin, depending on where you have
installed the .NET Framework and what version of Visual Studio you’re
using. The easiest way to launch ILDasm is to first start the Visual Studio
command prompt (choose Programs�Visual Studio 2005�Visual Studio
Tools�Visual Studio 2005 Command Prompt) and then type ildasm at the
command line.

Once you run ILDasm, you can choose to open any .NET assembly (.exe
or .dll file). Just choose File�Open and browse to the file. In the following
example, you’ll see the ObjectTester utility from Chapter 5.

ILDasm uses a tree to show you information about your program. All the
types that are defined in your projects are automatically defined in metadata
in your program’s assembly. This makes it easy to browse through a specific
definition of our Person class, as shown in Figure 7-1.

Figure 7-1: Dissecting the Person class

If you double-click a method or property, you’ll see the list of related
.NET instructions that was created based on your program code, as shown
in Figure 7-2.

If you’ve ever used any other disassembling tools, you probably realize
that .NET code is quite different. Usually, the best you can hope for when
looking at a compiled program is to find a list of low-level machine instruc-
tions. .NET, on the other hand, compiles programs to a special intermediary
language called IL. IL instructions don’t look the same as normal VB 2005
code, but they retain enough similarities that you can often get a general
idea of what is happening in a section of code.

Because the IL instructions retain so much information about your pro-
gram, the Common Language Runtime can perform optimizations, guard

bvb_02.book Page 216 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 217

against illegal operations, and protect memory when running an application.
However, retaining all this information also makes it fairly easy for other pro-
grammers to peer into some of the internal details about how a competing
program works. This is a problem that has plagued Java for a while, and the
.NET solution is similar to the Java solution. Namely, if readable code is a
security concern, you need to use a third-party obfuscation tool that allows you
to scramble your code so that it’s difficult for humans to interpret. (For exam-
ple, one technique is to give all variables meaningless numeric identifiers in
the compiled program file.) The full version of Visual Studio ships with a
scaled-down version of one popular obfuscator, called Dotfuscator.

Figure 7-2: IL code for the GetIntroduction() method

Dependency Information

Looking back at Figure 7-1, at the top of the ILDasm tree you’ll see an item
that represents the manifest for your assembly. If you double-click it, you will
see such information as your assembly’s version and locale settings. Most
importantly, you can see information about dependencies, which will appear
as .assembly extern statements that look like this:

.assembly extern System.Data
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89 ...)
 .ver 2:0:2411:0
}

bvb_02.book Page 217 Thursday, March 30, 2006 12:39 PM

218 Chap te r 7

This example indicates that in order to function correctly, the current
assembly requires the System.Data assembly included with .NET. There is also
additional information that specifies the required version of the System.Data
assembly: 2.0.2441.0. This number is in the format major.minor.build.revision.
When you run this application, it will look for an application with this exact
version number. By default, if this version doesn’t exist the application simply
refuses to run. Later versions won’t be used automatically unless you explicitly
configure a different versioning policy by creating a configuration file (as
discussed later in this chapter). The risk for breaking code with components
that claim to be backward compatible but aren’t is just too great.

Setting Assembly Information
The dependency information is added automatically to the manifest when
you create an assembly. But what about other information, such as product
name and version number? All of these details are specified in a special file
that every Visual Basic 2005 project contains. It’s called AssemblyInfo.vb.

Ordinarily, the AssemblyInfo.vb file is hidden. But if you’re truly curious,
choose Project�Show All Files, and then look for the file under the My
Project node in the Solution Explorer (see Figure 7-3). Inside this file,
you’ll see a number of assembly attributes.

Figure 7-3: The hidden AssemblyInfo.vb file

Each of the attributes in the AssemblyInfo.vb file embeds a single piece
of information into your compiled assembly. Here’s what the attributes look
like (with some sample information added):

<Assembly: AssemblyTitle("FileIOTester")>
<Assembly: AssemblyDescription("Test VB 2005 I/O features.")>
<Assembly: AssemblyCompany("No Starch Press, Inc.")>
<Assembly: AssemblyProduct("The No Starch VB 2005 Examples")>
<Assembly: AssemblyCopyright("Copyright 2006")>
<Assembly: AssemblyTrademark("No Starch(TM)")>

You can change all of these details by hand, but you don’t need to; the
same information is available in a Visual Studio designer. Just double-click the
My Project node in the Solution Explorer, choose the Application tab, and
then click the Assembly Information button. Figure 7-4 shows what you’ll see.

bvb_02.book Page 218 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 219

Figure 7-4: Modifying assembly metadata the easy way

Taken together, these options replace the project properties used in
classic versions of Visual Basic. If you’re curious to see where this infor-
mation ends up, just compile your application and fire up Windows Explorer.
Browse to your file, right-click it, and choose Properties. You’ll see a win-
dow like the one shown in Figure 7-5.

Figure 7-5: The assembly information

bvb_02.book Page 219 Thursday, March 30, 2006 12:39 PM

220 Chap te r 7

If you scroll to the bottom of the AssemblyInfo.vb file (or look at the
bottom of the Assembly Information dialog box in Figure 7-4), you’ll find the
most important piece of information. It’s the version number, and by default
it looks like this in a new project:

<Assembly: AssemblyVersion("1.0.0.0")>
<Assembly: AssemblyFileVersion("1.0.0.0")>

Try to ignore the fact that the version number is actually specified twice.
The reason for this quirk is that the first (the AssemblyVersion attribute) gives
the official .NET version number, while the second (the AssemblyFileVersion
attribute) gives the version older Windows applications, including Windows
Explorer, will see in the file. Unless you’re planning a truly strange joke (or
have a particular backward-compatibility problem you’re trying to solve),
these version numbers should always stay the same. In the .NET world, the
first version number is the most important.

If you take no action, the version of your application will be perpetually
locked at 1.0.0.0, no matter how many times you recompile it. If you want to
create a new version, you need to open the AssemblyInfo.vb file and modify
this value to something else. For example, after making a new version with
fairly minor changes, you might change the version to 1.1.0.0.

No one likes changing version numbers for each build, whether you
do it by editing the AssemblyInfo.vb file or by using the Assembly Information
dialog box. It’s just too cumbersome (and it’s too easy to forget to do it, lead-
ing to different versions with the same version number). Most programmers
prefer to have some sort of auto-incrementing number. That way, each
assembly has a unique version number.

In .NET, it’s easy to use an auto-incrementing version number. You just
need to use the asterisk (*) in your version number, as shown here:

<Assembly: AssemblyVersion("1.0.*")>
<Assembly: AssemblyFileVersion("1.0.*")>

This tells Visual Studio that your application will always be version 1.0
(these are the major and minor components of the version number), but it
should increment the build and revision properties every time you compile
a new .exe file (even when you do so for testing purposes by clicking the
run button in the IDE). Note that these numbers increment by more than
one. A typical version number using this system might be something like
1.0.594.21583.

Once you’ve finished your testing, you would typically change the major
or minor version number component to create a file that will be clearly dis-
tinguishable as a new release. But in the meantime, the build and revision
numbers can help keep multiple versions distinct.

bvb_02.book Page 220 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 221

Retrieving Assembly Information

Sometimes it’s useful to be able to retrieve assembly information program-
matically. The most obvious example is an About box, where your program
displays such information as its current version. This information can’t be
hard-coded into the program, because it would need to be altered with every
build and would not have guaranteed accuracy. Instead, the information can
be retrieved via the System.Windows.Forms.Application class, which is similar to
the App object in previous versions of Visual Basic. (The same information is
also available through the My object.)

lblProductName.Text = Application.ProductName
lblProductVersion.Text = Application.ProductVersion
lblPath.Text = Application.ExecutablePath

In most cases, this class provides the basic features that you need.
However, you can also delve into more interesting territory with the
System.Reflection.Assembly class. This class uses reflection to retrieve
information about an assembly. Reflection is a feature that allows you to peer
into an assembly at runtime, and retrieve information about the structure
of the code inside. For example, you can use reflection to find out what
classes are in an assembly, or what methods are in a class, although you
can’t retrieve the actual code. In a nutshell, reflection is the slightly mind-
bending trick of examining one piece of code with another piece of code.

To get started, you can use the GetExecutingAssembly() method to return a
reference to the current assembly for the project. Our next example uses the
assembly and retrieves all the defined types (including classes and other con-
structs, such as enumerations). Then, the code searches each class for a
list of its methods, events, and properties. Along the way, a TreeView is
constructed.

Dim MyAssembly As System.Reflection.Assembly
MyAssembly = System.Reflection.Assembly.GetExecutingAssembly()
lblAssemblyInfo.Text = MyAssembly.FullName

' Define some variables used to "walk" the program structure.
Dim MyTypes(), MyType As Type
Dim MyEvents(), MyEvent As System.Reflection.EventInfo
Dim MyMethods(), MyMethod As System.Reflection.MethodInfo
Dim MyProperties(), MyProperty As System.Reflection.PropertyInfo

' Iterate through the program's classes.
MyTypes = MyAssembly.GetTypes()
For Each MyType In MyTypes
 Dim nodeParent As TreeNode = treeTypes.Nodes.Add(MyType.FullName)

 ' Iterate through the events in each class.

bvb_02.book Page 221 Thursday, March 30, 2006 12:39 PM

222 Chap te r 7

 Dim node As TreeNode = nodeParent.Nodes.Add("Events")
 MyEvents = MyType.GetEvents
 For Each MyEvent In MyEvents
 node.Nodes.Add(MyEvent.Name)
 Next

 ' Iterate through the methods in each class.
 node = nodeParent.Nodes.Add("Methods")
 MyMethods = MyType.GetMethods()
 For Each MyMethod In MyMethods
 node.Nodes.Add(MyMethod.Name)
 Next

 ' Iterate through the properties in each class.
 node = nodeParent.Nodes.Add("Properties")
 MyProperties = MyType.GetProperties
 For Each MyProperty In MyProperties
 node.Nodes.Add(MyProperty.Name)
 Next
Next

The end result is a TreeView control that maps out a crude picture of the
program’s structure, showing every class in the application and its members
(Figure 7-6). In this case, you’ll find a few automatically generated classes
(used to support the My objects), and the custom form class. You’ll find this
project (named Reflection) with the examples for this chapter.

Figure 7-6: Reflection information

bvb_02.book Page 222 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 223

Reflection is useful in countless unusual scenarios, but it’s usually not a
part of day-to-day development. Sometimes, it’s interesting to experiment
with reflection just to get a better idea of how the .NET engine works and
how it classifies and organizes types and metadata.

You may find it interesting to explore reflection in more detail. Use the
Assembly class as a starting point, and let it lead you to the other “info” classes
in the System.Reflection namespace. Each one is customized to provide infor-
mation about a special type of code construct and its metadata (for example,
the preceding code uses the EventInfo class, which provides detailed informa-
tion about the signature of an individual event).

Creating a .NET Component

A good way to understand .NET assemblies is to create a simple component
of your own. As in earlier versions of Visual Basic, a component is a collection of
one or more classes that contains a set of related functions and features.
These classes are provided in a .dll file, and the client can create objects
based on these classes as though the class definition were part of the current
project.

NOTE In many cases, .NET developers use the terms component and assembly interchange-
ably. Technically, an assembly is a compiled .NET component. However, the term com-
ponent is also used in a looser, less formal sense to refer to any package of related code.

Creating a Class Library Project

The Person and NuclearFamily classes you saw in Chapters 5 and 6 could form
the basis of a logical component. Currently, these class definitions are
located inside the Windows Forms project that was designed to test them.
By extracting these classes into a separate component, we acquire a sepa-
rately distributable, shareable component that can be used in any type of
application, including an ASP.NET website or a web service (see Chapters 12
and 13 for more about these project types). In small-scale projects, this
pattern—where a class is developed inside a project and later made into a
separate component—is a common one.

To create a component, choose File�New�Project from the Visual
Studio menu. Then choose the Class Library project type from the Visual
Basic project group (Figure 7-7).

An ordinary VB 2005 project will be created, without any graphical
components such as Windows forms. You can use as many files as you want
for creating classes. In our example, the class library will use code that has
already been developed in another project. To transfer the code, you can
import the existing .vb files into the project, or you can open another
instance of Visual Studio, open the source project, and cut and paste the
appropriate class definitions for the NuclearFamily and Person classes.

bvb_02.book Page 223 Thursday, March 30, 2006 12:39 PM

224 Chap te r 7

Once the code has been copied, you only need to build the project.
You can build it by clicking the standard Start button. A .dll file with the
project name will be compiled in the bin directory, and you will receive a
warning message informing you that the project can only be compiled, not
executed. Unlike stand-alone applications, components need a client that
uses them, and they can’t accomplish anything on their own. To skip the
error message, just right-click the project in the Solution Explorer, and click
Build whenever you want to generate the assembly.

Figure 7-7: Creating a class library

Creating a Client

To create a client, begin by either opening an existing project or starting
a new Windows Forms application. Then, right-click the project in the
Solution Explorer, and choose Add Reference.

To add your reference, click the Browse tab, and hunt for the .dll
file from your class library project, as shown in Figure 7-8. You’ll find
the .dll file in the bin directory inside the project folder (for example,
PersonComponent). Select the file, and click OK.

TIP The approach demonstrated here (adding a reference using the compiled file) is a good
way to learn about .NET components, because it’s clear exactly what’s taking place.
However, if you plan to develop a client and a component at the same time, there’s an
easier way to debug them both. Begin by adding both projects to the same solution. (Make
sure you set your client as the startup project, by right-clicking it in the Solution Explorer
and choosing Set As StartUp Project.) This keeps all of your code together for easy editing.
Now, when you add your reference, choose it from the Projects tab. That way, whenever
you change anything in the component, a new version will be compiled for the client
automatically.

bvb_02.book Page 224 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 225

Figure 7-8: Referencing PersonComponent.dll

Once you have chosen the right file, click OK to continue. Visual Studio
will copy the .dll file to the bin directory of the current project. The classes
defined in your class library project will now automatically be available in
your current project, just as though you had defined them in that project.
The only difference is that you need to use the namespace of your project
library in order to access its classes, as shown in Figure 7-9.

Figure 7-9: Using PersonComponent.dll

TIP To confirm that the component has been added as you expect, you can select Project�
Show All Files from the menu, and check the References group in the Solution Explorer.
Your component should be listed as one of the references that’s linked to your project.

bvb_02.book Page 225 Thursday, March 30, 2006 12:39 PM

226 Chap te r 7

This is code sharing at its most efficient, and it easily crosses language
barriers. You can work with C# classes in VB 2005 and vice versa, without
even being aware of the difference. You can even inherit from and extend
a class in a .dll file, using any .NET language. The actual .dll assembly is
language-neutral and has its code stored in special IL instructions, like those
you saw in the ILDasm program.

When you decide to deploy your new client project, you will once again
notice how dramatic the differences are between COM and .NET. In COM
development, you would need to first copy the custom component to the
Windows system directory on the new computer, register it, and then use the
client program. In .NET development, no registration is required. The class
library .dll and client .exe files can be copied to any directory on the new
computer, and they will work automatically. The .exe file has all the informa-
tion that .NET needs in its manifest about dependencies. It will automatically
locate the class library .dll, as long as it is present in the same directory.

The Global Assembly Cache

Not all assemblies are private. For example, no one would want to install a
separate version of the .NET class library in the directory for each .NET appli-
cation. For these situations, Microsoft still includes a central component
repository. This time, instead of tossing files into a system directory shared
with drivers and other system devices, Windows uses a dedicated area called
the Global Assembly Cache (GAC). The GAC differs from the Windows sys-
tem directory in a number of other important respects as well. For example,
it allows—in fact, encourages—multiple versions of the same component to
be installed. It doesn’t lock files so that they can’t be updated when in use;
instead, it phases out existing users and provides the updated version for new
users (or when the program is restarted). Finally, it allows you to put custom-
ized versioning policies into place that dictate exactly which version of a
component an application will use.

Even with all these advances, you should resist the urge to start
throwing components into the GAC. Many of the factors that required a
global component store in the past simply don’t apply in the .NET world.
With COM, a component had to be part of the global registry in order to be
used. In .NET, this isn’t the case. If you develop your own component, there’s
no reason to use the GAC. In fact, even if you purchase a third-party com-
ponent to use with your applications, there may still be no reason to put it in
the GAC. You’ll probably be better off just copying the file into your appli-
cation directory. Remember, the .NET philosophy values easy, painless
deployment over a few dozen extra megabytes of disk space. When in doubt,
use a local, private assembly.

On the other hand, if you are developing your own components for
other developers to use in their applications, or some other type of assembly
that you want to make globally available on an entire system, the GAC may be
exactly what you need. To take a look at the GAC, browse to the Windows
directory in Windows Explorer, and then head to the Assembly subdirectory.
Thanks to a dedicated plug-in within Windows Explorer, you’ll see assemblies

bvb_02.book Page 226 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 227

with their name, culture, and version information. Figure 7-10 shows a
partial list of what you’ll see on a computer that has both .NET 1.0 and
2.0 installed.

NOTE Culture is a technical term for a group of settings that apply to specific region or
language. For example, a culture groups together information like the date and time
formatting conventions, the language, sorting and text display rules, and so on. An
example of a culture is zh-TW, which represents Chinese (Taiwan). You’ll find .NET
support for localization in the System.Globalization namespace.

Figure 7-10: The Global Assembly Cache

The GAC is slightly less intimidating than the world of COM, because it
has fewer components. More components and controls are bundled together
in single assemblies. Also, the only assemblies that will be present initially are
part of the .NET Framework.

The GAC “Under the Hood”

The appearance of a single list of files in the GAC is slightly deceptive. If what
you see was really what you get, this simple approach would lead to two obvious
problems:

Name collision
What would happen if you installed another assembly with the same
filename as an existing assembly?

Versioning problems
One of .NET’s greatest advances is its ability to store more than one ver-
sion of an assembly in the GAC, so that every program uses exactly the
version for which it was designed. But how is that possible if assemblies
use the same filename?

bvb_02.book Page 227 Thursday, March 30, 2006 12:39 PM

228 Chap te r 7

The GAC reality is a little more surprising. What you see in Explorer is
the product of a thoughtful Explorer plug-in. If you use a low-level utility to
view directories, or a command prompt listing, you’ll see a very different
picture of the GAC (Figure 7-11).

Figure 7-11: A partial listing of GAC directories

Instead of a simple list of assembly files, the GAC is really a complex
directory structure. This structure allows multiple versions of any assembly,
and uses special strong names to ensure that a name collision is impossible.
The actual assembly file is given the name you see in the GAC plug-in,
but it’s stored in a special directory that uses the version number and a
uniquely generated ID (such as C:\[WinDir]\Assembly\GAC\System.Web\
2.0.2411.0__b03f5f7f11d50a3a, which could be used to store a version of the
System.Web.dll assembly).

Creating a Shared Assembly

Now that you know the truth about the GAC, it probably won’t come as a
surprise to find out that you can’t copy a private assembly directly into it.
(In Windows Explorer, the Paste command is disabled.) Instead, you have to
create a shared assembly.

Before you can copy a file to the GAC, you need to create a strong name
for it. A strong name is a special concept introduced by .NET to help ensure
that DLL Hell is never an issue. The idea is that all the assemblies you create

bvb_02.book Page 228 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 229

are signed with a special key that only you possess. This system makes it
impossible for anyone else to create an assembly that pretends to be a new
version of your component. The strong name you use for a shared assembly
also includes an ID that is guaranteed to be statistically unique (much like
a GUID).

To make a long story short, you need to follow four steps:

1. Create a key.

2. Add the key to your assembly.

3. Then compile your assembly.

4. Install the assembly into the GAC.

In earlier versions of .NET, you had to resort to command-line tools to
get the job done. In Visual Basic 2005, however, you can perform the first two
steps right inside the design environment.

Creating a Key

The first step is to double-click the My Projects node in the Solution Explorer.
Then click the Signing tab. This tab is a little intimidating, because its options
include both the strong naming feature we’re interested in right now and a
signing feature for ClickOnce (which is discussed in Chapter 14). For now,
stick to the strong naming feature, and check the Sign The Assembly check
box. Next, in the Choose A Strong Name Key File list, choose New, supply a
filename, and (optionally) a password, and click OK (see Figure 7-12). You’ll
see the key file appear in the Solution Explorer.

Figure 7-12: Setting a key file

bvb_02.book Page 229 Thursday, March 30, 2006 12:39 PM

230 Chap te r 7

TIP .NET actually provides two types of key files: ordinary key files, which have the file
extension .snk, and password-protected key files, which have the file extension .pfx.
As you probably guessed, Visual Studio decides which one to create based on whether
or not you supply a password when you create the key file. Although the security isn’t
ironclad, .pfx files add an extra layer of protection, because other developers won’t be
allowed to use them to sign applications unless they can supply the password.

Each key file has a combination of a private and a public key. The public
key is typically made available to the world. The private key is carefully guarded
and should never be released to more than a selected few people in a specific
organization. Private and public keys provide a special type of encryption.
Anything encrypted with a private key can be read only with the correspond-
ing public key. Anything encrypted with the public key can only be read with
the corresponding private key. This is a time-honored encryption system used
in email and other Internet applications.

In .NET use, the private key is used when the assembly is created, and
the public key is stored in the assembly’s manifest. When someone runs the
assembly from the GAC, the Common Language Runtime uses the public
key to decode information from the manifest. If a different key was used to
sign, the operation will fail. In other words, by using a key pair, you can be
sure that only a person with access to the key file can create an assembly with
your identity. On the other hand, anyone can run a properly signed file,
thanks to the included public key.

TIP Once you have a key file, you can reuse it in as many projects as you want. You can
even create a key file outside of Visual Studio, by using the sn.exe tool that’s included
with .NET. The magical command line to create a new key file with sn.exe is
sn -k KeyFileName.snk.

Installing the Assembly into the GAC

You now have a variety of options for installing the assembly into the GAC. You
can use a dedicated setup program (see Chapter 14) or the GACUtil.exe
utility, or you can drag and drop the assembly using the Windows Explorer
GAC plug-in. Either way, the directory structure is created for you auto-
matically, your assembly is copied, and your component will appear in the
GAC list.

Policy Files

One of the most exciting features with strongly named assemblies is that you
can configure their versioning settings. You do this by creating a file with the
same name as the corresponding .dll or .exe file and adding the extension
.config. This file will be automatically examined by the Common Language
Runtime for additional information about where to search for assemblies
and which versions to allow.

The information in the .config file is stored in a readable XML format.
However, we’re not going to discuss the format of the .config file. If you’re

bvb_02.book Page 230 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 231

curious, you can explore the Visual Studio Help. Instead, I recommend that
you use a convenient management snap-in provided by Microsoft and shown
in Figure 7-13. To run the .NET Framework Configuration utility, select
Settings�Control Panel�Administrative Tools�Microsoft .NET Framework
2.0 Configuration from the Start menu.

Figure 7-13: The .NET Framework Configuration utility

The configuration utility is filled with a dizzying number of options for
everything from setting computer-wide security settings to viewing assembly
dependencies. In this section, you’ll consider how to use the configuration
utility for a single purpose: to set a version policy.

To understand why this is necessary, consider the following scenario.
You have installed a newer assembly to the GAC that is still backward
compatible and improves performance. However, because it uses a new
version number, it won’t be used by existing applications. The solution?
On an application-by-application basis, you can instruct programs to use
the new version.

Creating a Version Policy

Here’s how to change the version policy for an assembly. First, browse to the
Configured Assemblies node in the tree, and click Configure An Assembly,
which brings up the window shown in Figure 7-14.

bvb_02.book Page 231 Thursday, March 30, 2006 12:39 PM

232 Chap te r 7

Figure 7-14: Configuring an assembly

Click the Choose Assembly button, and select the appropriate assembly
from the GAC. Once you have confirmed your selection, you’ll see a tabbed
Properties window that allows you to change assembly options:

� The General tab provides basic information about the assembly.

� The Binding Policy tab allows you to configure version policies, which is
our focus in this example.

� The Codebases tab allows you to specify a path for automatic download-
ing and updating of assemblies.

To set a new version policy, you need to add entries to the Binding Policy
tab. Each entry links a requested version (or a range of requested versions)
to a new version number. The requested version is what the client applica-
tion attempts to access. The new version is the assembly that the Common
Language Runtime decides to use instead. Essentially, .NET forwards the
request for the assembly to another version of the same assembly.

In the following sample configuration (Figure 7-15), the component will
use the version 2.0.0.0 when a request is received for any version between
0.0.0.0 and 1.9.9.9. This version is known to be backward compatible and to
provide the best performance. A similar specification is made for versions
between 3.0.0.0 and 3.9.9.9. However, a request for any other version (like
2.5.0.2, for example) will not be forwarded, and the requested assembly
version will be used, if it exists.

NOTE The binding policy only applies to strongly named assemblies, and it only makes sense
when you’re dealing with shared assemblies in the GAC (where more than one version can
coexist). When you create an ordinary private assembly without a strong name, the client
application will simply use whatever version of the component is in the current directory.

bvb_02.book Page 232 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 233

Figure 7-15: Creating a version policy

Resources

Many applications have related resources—ingredients like sound files,
bitmaps, and large blocks of help text (which are occasionally translated into
multiple languages). You could store all this information in separate files,
but that complicates your deployment, and it opens the door to all kinds of
insidious problems, like strange errors when these files go missing or are
modified outside your program.

.NET has always had a solution for this type of problem, but in Visual
Basic 2005 it finally has the convenient design-time support you need to use
it effectively. The basic idea is that you’ll take these separate files and embed
them as binary data directly inside your compiled assembly (.dll or .exe file).
That keeps them safe from prying eyes and tampering. When your program
needs the resource, it can pull it out of the assembly, and hand it back to
your program as a stream of bytes (or some more convenient data type).

Adding a Resource
To try this out, create a new Windows application. Then, double-click the My
Project node in the Solution Explorer, and select the Resources tab. The
Resources tab is the central place where you can add, remove, and manage
all your resources. Resources are grouped into separate categories based on
the type of content—for example, there’s a separate section for string text
(which you can edit by hand), images, icons, audio, and any other type of
file. You choose the type of resource you want to see from the Category
drop-down list (see Figure 7-16).

In this case, we’re interested in images, so select the Images category.
Each category has a slightly different view—the Images category shows a

bvb_02.book Page 233 Thursday, March 30, 2006 12:39 PM

234 Chap te r 7

thumbnail of each picture. Of course, in a new application you’ll start off
without any image files.

To add a new picture, select Add Resource�Add Existing File from the
toolbar. Browse to an image file, select it, and click OK. If you don’t have an
image file handy, try using one from the Windows directory.

Figure 7-16: Viewing a type of resource

When you add a new resource, Visual Studio gives it the same name as its
current filename (minus the extension, and with slight changes if the name
isn’t valid as a VB variable name). However, you can rename the resource
after adding it by right-clicking the label and choosing Rename. Figure 7-17
shows an example with two sample images that have been added as resources.

Figure 7-17: Adding image resources

bvb_02.book Page 234 Thursday, March 30, 2006 12:39 PM

Assembl ies and Component s 235

Something interesting happens when you add a resource. Visual Studio
creates a Resources subdirectory in your project directory and copies the file
there. You can see this directory, along with all the resources it contains, in
the Solution Explorer (see Figure 7-18).

Figure 7-18: Resource files in your project

In other words, the source files for your resources are kept around as
part of your project. However, when you compile your application, each one
of these resources is embedded into the assembly. The beauty of this model
is that it’s easy to update a resource—all you need to do is overwrite the file
in the Resources folder and then recompile your application. In other words,
you can safely use a resource in dozens of different code files and still update
that resource with a single copy and paste operation. This is a much better
approach than in previous programming frameworks. For example, Visual
Basic 6 programmers often stored resources in separate files, which made
their applications vulnerable if these files went missing or were tampered with.

Using a Resource

The only remaining step is to actually use the resource in the project.
Because it’s embedded in the assembly when your program is compiled, you
don’t need to fish it out from the file. In fact, the file won’t even be deployed
with your application. Instead, you need the help of a dedicated .NET class
called the ResourceManager.

You don’t need to use the ResourceManager directly. Instead, Visual
Basic exposes all of your resources as dedicated properties of the My.Resources
object. For example, imagine you’ve added the Crayons resource shown in
Figure 7-17. You can retrieve it as an Image object from My.Resources using the
automatically generated My.Resources.Crayons property. Here’s an example of
how you might take the image and assign it to the background of a form:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Me.BackgroundImage = My.Resources.Crayons
 Me.BackgroundImageLayout = ImageLayout.Tile
End Sub

Figure 7-19 shows the result.

bvb_02.book Page 235 Thursday, March 30, 2006 12:39 PM

236 Chap te r 7

Figure 7-19: Displaying an image from a resource

In most cases, you won’t resort to code to use a resource, unless you’re
planning to do some custom drawing or you want to use a dynamic effect
(like an image that appears when the mouse moves over a portion of your
form). The Visual Studio designer gives you great support for attaching
image resources to other controls. For example, if you drop a PictureBox
control onto your Windows form, you can click the ellipsis (. . .) in the
Properties window next to the Image property to bring up the designer
shown in Figure 7-20. It allows you to choose an image from any resource
in your project.

Figure 7-20: Attaching an image to a resource at design time

NOTE You can use the Local Resource option in the top portion of this window to import a
picture and add it as a resource for just the current form. This mimics the behavior of
earlier versions of Visual Basic. It gives you the benefit of embedding the resource in
your assembly, but it has a serious drawback—namely, the image file isn’t copied to the
Resources subdirectory, so there’s no easy way to update it. You also won’t be able to use
the same image resource with multiple forms.

bvb07_02.fm Page 236 Tuesday, April 11, 2006 9:42 AM

Assembl ies and Component s 237

Incidentally, if you’re curious you can see the automatically generated
code for the My.Resources class (although you should never attempt to
change it). To see this code, choose Project�Show All Files and look for
the Resources.Designer.vb file under the My Project node in the Solution
Explorer.

Resources are used for other tasks in .NET. For example, you can experi-
ment with different types of resources, like sounds and files, which you can
retrieve in you program as byte arrays and stream objects. Resources also
allow you to localize forms, a process by which you define control text in
different languages and the proper version is applied automatically depending
on the locale settings of the current computer. You can find out much more
about localization in the Visual Studio Help.

What Comes Next?

This chapter has explored the heart of .NET versioning and how it differs
radically from the COM way of life. You also you took a look at how you can
embed resources (useful bits of binary information) directly into your assem-
blies, so your component never has to go looking for the data it needs.

Much of the complexity explored here won’t affect you—thanks to
.NET’s planning, deploying an application is often just as easy as copying a
directory. But if you want a deeper understanding of the .NET Framework,
you can play with such tools as reflection, ILDasm, and the .NET Framework
Configuration tool, all of which were introduced here.

Overall, .NET assemblies lay the groundwork for a new way to deploy
applications. You already know enough to get a .NET application working
on another computer. After all, as long as the .NET Framework is installed
it’s just a matter of transferring files. In Chapter 14, you’ll go one step
further and learn how you can create customized setup programs with a
few more frills.

bvb_02.book Page 237 Thursday, March 30, 2006 12:39 PM

bvb_02.book Page 238 Thursday, March 30, 2006 12:39 PM

8
B U G P R O O F I N G

Bugs—flaws in a program’s logic, design,
or syntax—have crashed everything from

personal computers to a $125 million Mars
orbiter. This chapter examines how you can

code defensively, restrict possible problems, and pro-
tect yourself from bugs. You’ll also learn how to handle
common problems by using Visual Basic 2005’s structured exception handling,
which replaces the well-worn On Error Goto statement of classic VB. This
error-handling infrastructure allows you to filter out specific errors, pass
error information in exception objects, and deal with exceptions in
deeply nested code.

Traditional VB error handling used a sort of “traffic redirection” to deal
with problems. That made it very difficult to isolate error-handling code from
application code, and the resulting spaghetti-like tangle could actually make
errors more likely. VB 2005 exception handling works like a handcrafted net.
You design this net to catch specific error types, and then handle them
appropriately if they occur.

Of course, even the best error-handling methods won’t stop every
potential problem. Eventually a bug will slip into your program, producing

bvb_02.book Page 239 Thursday, March 30, 2006 12:39 PM

240 Chap te r 8

an error that you can’t fix, or generating results that just don’t make sense.
VB 2005 continues to offer the wide range of debugging tools found in
earlier versions of Visual Basic, with some additional refinements. In this
chapter, you’ll learn how to use these tools to track down and exterminate
any bug that’s loose in your software. You’ll also learn some debugging
techniques that will help you peer into the low-level gears and wires of your
applications and uncover what’s really taking place while your code executes.

New in .NET

Visual Basic has always provided a rich set of debugging tools, and these tools
are still available in VB 2005, with a few helpful tweaks and improvements.
The real story, however, is the error-handling syntax that modernizes VB to
match other .NET languages.

Some of the changes you’ll see in this chapter include:

Structured exception handling
Finally, you can remove the last Goto statement from your application
and clean out spaghetti code for good. Visual Basic 2005’s structured
exception handling helps you ensure that your application’s error
recovery logic is as clean and well organized as the rest of your code.

Error highlighting
Visual Basic has always been famous for catching errors as you type, and
with the .NET platform, its intelligence has grown. Now troublesome code
will be automatically underlined, identifying where you’ve tried to use a
method or variable that doesn’t seem to exist, or where you’ve performed
an illegal data conversion. VB 2005 even flags code that isn’t an error
but might indicate an unintentional slip-up, like defining a variable but
never using it.

Type safety
Accidental conversion errors are no longer a silent killer. VB 2005 allows
you to forbid dangerous conversions, thus giving you tighter control over
your code.

Improved debugging tools
With Visual Basic 2005, the great gets better. Enhanced debugging tools,
including an improved Call Stack display and a Breakpoints window,
make it a breeze to hunt down troublesome code. You can even set dif-
ferent debugging options (like break or continue) for different types of
errors.

The return of the “run-edit-and-continue” pattern
Visual Basic .NET 1.0 lost the indispensable run-edit-and-continue feature
due to the dramatic change in the way .NET applications are compiled
(as compared to classic VB). But in the time since, Microsoft has been
hard at work on the problem, and starting with Visual Basic 2005 you will
once again be able to modify your programs on the fly while you’re run-
ning them in the debugger. In fact, in several respects this feature has
even been improved from classic VB.

bvb_02.book Page 240 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 241

Understanding Errors

Bugs exist in many different varieties—some exotic, others as well known as
the common housefly. Some of the species you’ll see include:

Editor mistakes
Mistyped words and syntax errors are source-code mistakes that are best
caught as early as possible. The Visual Basic 2005 editor includes a sophis-
ticated error checker that finds these errors as you type. This tool is your
first defense against errors, and it’s one of the best ways to catch minor
mistakes and save time.

Compile-time errors
Compile-time errors can result when you ignore an editor mistake, or if
you make some other type of error—such as trying to perform a math
operation with a string—that may not be caught until the program is
being built. When you run a program from the Visual Studio IDE, any
compile-time errors are reported to you in the Output window and on
the Error List.

Runtime errors
Runtime errors are problems that occur while the program is being used.
Usually, a runtime error is an unhandled error that propagates back to
the user and ends the program. For example, if you try to open a file that
doesn’t exist and don’t provide any error-handling code, the Common
Language Runtime will provide an error message and your code will stop
abruptly. A compile-time error usually cannot become a runtime error,
because Visual Basic 2005 will refuse to compile the offending code.
(When you try to launch it, Visual Studio will explain the problem and
give you the option to continue with the previously compiled version of
your program.) However, a code statement that is syntactically correct
may still result in a runtime problem. For example, trying to access a web
page on a computer that may or may not have an Internet connection
can cause a runtime error.

Logic errors
This is the most insidious type of bug, because it is often difficult to
determine what part of the code is responsible. Code containing a logic
error runs without generating any warning or error messages. However,
the information or behavior that results is clearly not what is expected.
A good example is an investment program that automatically subtracts 1.5
percent interest on existing balances.

Errors that can’t happen
One of the goals of the .NET platform is to make your life easier.
There are entire classes of errors that have troubled generations of
earlier programmers but are now impossible. Memory leaks, pointer
errors, and other types of fiendish problems that have plagued our
programming ancestors are carefully defended against in the .NET
world.

bvb_02.book Page 241 Thursday, March 30, 2006 12:39 PM

242 Chap te r 8

The Principles of Bug Proofing

The following rules will guide you in creating high-quality applications.

The earlier an error is detected, the better.
You should celebrate when Visual Basic 2005 generates a build error and
refuses to compile your code. When a compile-time error occurs, it means
that Visual Basic 2005’s automatic error checking has found a potential
problem that you’ve missed and has identified it so that you don’t have
to spend hours trying to troubleshoot a mystery in the future. Visual Basic
2005 improves on Visual Basic 6 by detecting many common errors
earlier—finding missing variables while you type, for instance, instead
of when you compile, and flagging data-type conversion problems with
compile-time errors before they create runtime errors.

Expect the unexpected.
Later in this chapter, we’ll consider some basic techniques for coding
defensively. Once you start expecting users to enter strange and possibly
illogical input, you are ready to prepare and prevent possible catastrophes.
Often you can tell the novice programmer from the expert not by how
fast an application is completed, but by how well the application stands
up after a few months of intensive use in the field.

Don’t ignore the compiler.
Once your program gets into the hands of users, and inexplicable errors
start to occur, a trivial problem that once seemed to be fixed by a ran-
domly changed line may keep you awake for a few sleepless nights.

Test early and test often.
I won’t spend much time in this chapter talking about testing, because it
really is a straightforward process. Still, it is amazing how many program-
mers don’t try out their own creations, thus missing mistakes that can
hurt their pride and careers once they deliver the code. None of the
great tools in Visual Basic 2005 can remove the inevitability of human
error, so be thorough, and make use of the debugging tools discussed in
this chapter. Some programmers even insist that they won’t let any code
out of their hands until they’ve single-stepped through every line in every
function.

Errors at Compile Time
Visual Basic 2005’s treatment of errors is straightforward, but slightly differ-
ent than in previous releases. In Visual Basic 6, the editor would interrupt
you every time you made a mistake with an intrusive message box (as seen in
Figure 8-1).

Visual Basic 2005 takes a friendlier approach, working as your partner,
not your prosecutor. The process works like this:

� First, if you’ve made an obvious, clear-cut mistake, the editor tries
to correct it for you automatically. For example, you’ll notice that
if you start an If block and leave out the word Then, the editor will

bvb_02.book Page 242 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 243

add it for you. It will also add certain details (such as the closing
End If, in this case) to prevent you from making other possible
mistakes.

Figure 8-1: The intrusive editor in Visual Basic 6

� If the editor can’t correct the mistake, it will underline the offending code.
Common reasons for underlining include using a variable, method, or
property that’s not defined, calling a method with the wrong number of
arguments, or using a language construct with syntax that just doesn’t
make sense (for example, writing If End instead of End If). If you have
Option Strict enabled (and you should; see the next section for details),
invalid variable assignments and conversions will also be highlighted. If
you’re wondering why a line is underlined, place the mouse over the line
and read the corresponding tooltip text (see Figure 8-2).

Figure 8-2: The polite editor in VB 2005

� When you compile a program, either for debugging or as a release,
any editor errors you’ve ignored will become compile-time errors, and
you’ll be asked if you want to continue (Figure 8-3). If you continue,

bvb_02.book Page 243 Thursday, March 30, 2006 12:39 PM

244 Chap te r 8

your application will not be recompiled, and you’ll end up testing
the previously compiled version of your code, without your recent
changes.

Figure 8-3: A failed build

� Instead of continuing with compile-time mistakes, you should cancel the
build process and review the contents of the Error List window (see Fig-
ure 8-4). This window appears automatically when you build an applica-
tion that contains at least one compile error. Visual Basic 2005 makes it
easy for you: Just double-click on an entry in the Error List, and you’ll
be brought to the appropriate spot in your code, with the error high-
lighted. This is a big improvement over Visual Basic 6, where you were
told about errors one by one, and you had to fix the current error
before finding out about the rest. Once you’ve corrected these errors,
you can successfully launch your application and get to work.

Figure 8-4: Problems in the error list

Option Explicit and Option Strict

These two lifesaving options should always be enabled. Option Explicit stops
you from using a variable without creating it, and thus prevents the mistakes
that can occur when a new, empty variable is automatically created after you
misspell the name of an existing variable. Option Explicit is enabled by
default.

Option Strict is new to the .NET versions of Visual Basic. It prevents errors
that can result from attempted automatic variable conversions. For example,
converting an Int32 into an Int16 is a “narrowing” conversion, and it may or
may not succeed. With Option Strict off, you are free to try. . . .

bvb_02.book Page 244 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 245

Option Strict Off

Private Sub SwapNumbers(BigNumber As Int32, SmallNumber As Int16)
 Dim Swap As Int32
 Swap = BigNumber

 ' This is a widening conversion; it always works.
 BigNumber = SmallNumber

 ' This is a riskier narrowing conversion.
 SmallNumber = Swap
 ' Sure, it works now, but it could become a fatal
 ' runtime error under the right circumstances.
End Sub

In this example, Visual Basic won’t complain, and you’ll be blissfully
unaware of the potential time bomb—until you submit a value for BigNumber
that is larger than 32,767.

With Option Strict on, it’s a different story. The code will be underlined,
and an error will be generated at compile time. You won’t be allowed to use
the code without modifying it to perform an explicit (manual) conversion.
At that point, you’ll probably realize the potential problem, and either change
SmallNumber to an Int32 or rewrite the code with an extra safeguard:

Option Strict On

Private Sub SwapNumbers(BigNumber As Int32, SmallNumber As Int16)
 Dim Swap As Int32
 Swap = BigNumber

 ' This is a widening conversion; it always works.
 BigNumber = SmallNumber

 If BigNumber > SmallNumber.MaxValue Then
 MessageBox.Show "Sorry, this number doesn't fit."
 Else
 ' The CType function manually converts the number.
 SmallNumber = CType(Swap, Int16)
 End If
End Sub

This example makes use of the MaxValue constant that is built into many
simple data types, including integers. It indicates the largest number that the
current variable can hold (which is 32,767 in this case). By using the MaxValue
constant, you can avoid coding the number directly into the program, and
you allow the program to continue working even if you change the data type
of SmallNumber.

If you suspect that Option Strict or Option Explicit is not enabled for
your project, right-click your project in the Solution Explorer, and select
Properties. Now click the Compile tab (shown in Figure 8-5). You can use this
tab to set both the Option Strict and Option Explicit settings. You can also

bvb_02.book Page 245 Thursday, March 30, 2006 12:39 PM

246 Chap te r 8

configure a list of warnings that work in addition to these settings. For exam-
ple, you can allow implicit conversions but ask the compiler to warn you
when you inadvertently rely on this behavior.

Although the Option Explicit and Option Strict settings are the best
defense, the warnings are also helpful. In fact, some of the warnings catch
potential error conditions that would otherwise pass unnoticed, like declar-
ing a variable but not using it, creating a function that doesn’t provide a
return value, or creating recursive code (for example, properties that refer
to themselves, and are likely to tie your code up in an endless loop of self-
referencing).

Figure 8-5: Project settings for Option Explicit and Option Strict

Line Numbers

Line numbers were once the hallmark of old-fashioned programming
languages—such as the original DOS version of BASIC. In Visual Basic 6, you
were able to optionally add numbers to specific lines. In Visual Basic 2005,
you can’t even do that. Line numbers have vanished. Or have they?

One well-kept secret is that you can enable a line number display for your
code by selecting Tools�Options to display the Options window, and then
selecting the Text Editor�Basic�General tab. Click the Line Numbers check
box, and Visual Studio will display a margin that numbers every line in the
file, including blank ones (see Figure 8-6).

bvb_02.book Page 246 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 247

Figure 8-6: Line numbers return from the past

You can’t directly enter or change these numbers. So why use them? As
you’ll see later in this chapter, Visual Basic errors include line number infor-
mation that pinpoints where an error has occurred. If an unhandled error
occurs at a client site, you can customize your error message to display or
record the corresponding line number. Then you can track down the corre-
sponding code at your desk, without needing to re-create the problem.

Visual Studio’s Debugging Tools

It’s bound to happen eventually. Illogical data appears. Strange behavior
occurs. It looks as though information that you’ve never entered is appearing
out of thin air, and code is being executed in a different order or in a differ-
ent way than you expected. In other words, you’ve got a bug. So what should
you do about it?

This section walks you through Visual Basic 2005’s debugging
tools, including breakpoints that let you study code flow, watch windows
that let you examine variables in action, and the call stack history, which
gives additional information about your program’s place in the overall
order of procedures.

Watching Your Program in Action

One of the greatest tools in any programming language is the ability to
step through an application. This feature allows you to watch the action and
study the flow, or the path, of execution your program takes, through the
classes and functions that you provide it with. When you step through your
code, you test the assumptions that you have about how it will work. You
determine the order in which statements are executed, and the values that
are recorded in your variables. Single-stepping allows you to spy on what
your program is really up to.

bvb_02.book Page 247 Thursday, March 30, 2006 12:39 PM

248 Chap te r 8

To single-step through a Visual Basic 2005 program, follow these steps:

1. Find a convenient spot in your code where you want to pause execution
and start single-stepping. Click in the gray margin next to the appropri-
ate line to insert a red breakpoint (Figure 8-7). (You can put a breakpoint
on any executable line of code. If you put it on a blank line, comment, or
variable declaration, Visual Basic will quietly move your breakpoint down
to the next executable line when you run your application.)

Figure 8-7: Setting a breakpoint

2. Run your program. When it reaches the breakpoint, execution will pause.
The statement with the breakpoint will not be executed. This line will
have a yellow arrow next to it, indicating that it is the next instruction
that will be executed when the program resumes.

3. You can now hover over any variable to see its current value in a pop-up
tooltip (see Figure 8-8).

Figure 8-8: Checking out the contents of a variable

bvb_02.book Page 248 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 249

4. This a great way to test your assumptions about your code, and find out
if there’s a subtle disconnect between the information you think you’re
manipulating and the actual contents of your variables. To continue
your investigation, you can run your program one line at a time by
pressing F8.

Commands Available in Break Mode

While your program is paused, you can use the following commands. All of
these commands have useful shortcut keys, and some are found in the
Debug menu.

Step Into (F8)
This command executes the currently highlighted line and then pauses
again. If the currently highlighted line calls a method or a function, exe-
cution will pause at the first executable line inside the method or function
(which is why this feature is called stepping into).

Step Over (SHIFT+F8)
This command works the same as Step Into, except that it runs methods
and functions as though they are a single line. If you press Step Over
while a procedure call is highlighted, the entire method or function will
be executed, and execution will pause at the next executable statement
in the current procedure.

Step Out (CTRL+SHIFT+F8)
This command executes all the code in the current procedure, and then
pauses at the statement that immediately follows the one that called the
executed method or function. In other words, it allows you to step out of
the current procedure in one large jump.

Continue (F5)
This command resumes the program and continues to run it normally,
without pausing until another breakpoint is reached or you click the
Pause button.

Run To Cursor (CTRL+F8)
This command lets you run all the code up to a specified location (where
your cursor is currently positioned). Run To Cursor is often used to skip
a time-consuming loop, and is a little bit like creating a temporary break-
point. You can also use this feature by right-clicking a line of code in
break mode and choosing Run To Cursor from the context menu.

Set Next Statement (CTRL+F9)
This command causes your program to mark the line where your cur-
sor is positioned as the current line for execution. When you resume
execution, that line will be executed, and the program will continue
from that point. Essentially, Set Next Statement allows you to change
your program’s path of execution while you are debugging. This useful
feature allows you to repeat a section of code, or to skip a section that is

bvb_02.book Page 249 Thursday, March 30, 2006 12:39 PM

250 Chap te r 8

potentially problematic or requires some sort of validation that would
ordinarily prevent you from continuing. For example, you may have
code that only runs in a certain situation. Rather than trying to re-create
this situation, you can use the Set Next Statement command to jump
directly to the appropriate section and run it.

TIP There’s another way to change the next statement to be executed. You can also click and
drag the yellow arrow that points to the next line of code in break mode. Just drag it to
where you want the code to resume, and then hit F8 or F5 to start it up.

Show Next Statement
This command displays the current statement, which will be executed
when you next press F8 or F5. The line will be marked by a yellow arrow.
Show Next Statement is useful if you lose your place while editing, and
you can choose it quickly from the right-click context menu.

The Breakpoints Window

You can take a quick look at all your breakpoints by using the Breakpoints
window (Figure 8-9). Simply choose Debug�Windows�Breakpoints. In the
Breakpoints window you will see a list of all the breakpoints defined in your
project. You can jump to the corresponding location in code by double-
clicking a breakpoint.

Figure 8-9: The Breakpoints window

If you uncheck a breakpoint, it appears in the code editor as a trans-
parent gray circle with a red outline. This means that the breakpoint is
disabled and will be ignored. However, you can quickly re-enable it from
the Breakpoints window when it is needed again. The Breakpoints window
also provides the hit count, showing the number of times a breakpoint has
been encountered. The hit count is reset every time the program is stopped
and restarted.

Unlike earlier versions of Visual Basic, VB 2005 automatically saves your
breakpoints with your application. This means that you can insert break-
points at important debugging points, temporarily disable them, and quickly
enable them from the Breakpoints window when they are needed at a
later time.

You can also configure breakpoint properties from this window by right-
clicking an individual breakpoint. The following sections describe your
options.

bvb_02.book Page 250 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 251

Condition
Sometimes you’ll want to place a breakpoint in a heavily trafficked piece of
code to hunt down an error. The problem is that this error might only
happen in certain circumstances, whereas the breakpoint stops your code
every time it’s hit, which can be an annoying waste of time. Fortunately, there’s
a solution. You can set a condition that will be used to decide whether or not
execution should pause at the breakpoint. To set a condition, right-click your
breakpoint (either in the code margin or in the Breakpoints window), and
select Condition.

For example, the condition shown in Figure 8-10 will stop execution at
the specified point when the variable Animal contains the string “horse.” Other-
wise, the breakpoint will be ignored. You can use a condition to filter out a
problem and then halt the program immediately when a specific piece of
invalid data appears.

Figure 8-10: A sample breakpoint condition

Hit Count
The Hit Count window allows you to specify whether or not execution should
pause at a breakpoint, depending on how many times the program has exe-
cuted the line of code. This feature is useful when you create a breakpoint on
a frequently executed line, such as one inside a loop. In this case, you may
want to stop execution after a certain number of passes through the loop,
rather than every time the statement is encountered.

Depending on the hit count options you set, you can configure your
program to pause only after a breakpoint has been encountered a certain
number of times, after a certain multiple of times (for example, every third
time), or when the hit count is exactly equal to a specified number. To set
the hit count, right-click the breakpoint and select Hit Count. Figure 8-11
shows a breakpoint that triggers every fifth time it’s hit.

Figure 8-11: A Hit Count breakpoint condition

bvb_02.book Page 251 Thursday, March 30, 2006 12:39 PM

252 Chap te r 8

The Autos, Locals, and Watch Windows

When Visual Basic 2005 is in break mode, several additional tabbed windows
are provided at the bottom of your screen. If any of these is not visible, you
can display it using the Debug�Windows menu.

The Autos, Locals, and Watch windows show you the contents of variables
in break mode. As you have learned earlier in this chapter, you can inspect
the current contents of a variable by finding it in your code and hovering
your mouse cursor above it. However, the Autos, Locals, and Watch windows
provide a more convenient way to peer “under the hood” at the contents of
your variables.

� The Autos window is automatically set to variables that Visual Basic 2005
determines are probably important for the current breakpoint. Usually,
these include only the variables that were accessed or changed in the
previous line.

� The Locals window displays all the variables that are in scope in the
current procedure. This window offers a quick summary of important
variables.

� The Watch window is quite similar to the Autos and Locals windows.
However, its list contains only variables that you have specifically added.
This makes the Watch window well suited for prolonged testing, when
you want to keep track of a specific variable or object during the lifetime
of an application. Watches are even saved with your project, so you can
pause testing and continue at a later time. You can add a watch quickly
by double-clicking the last blank row in the Watch window and typing in
an appropriate variable name, or by right-clicking a variable in your code
display and selecting Add Watch.

Each row in the Autos, Locals, and Watch windows provides such infor-
mation as the type or class of the variable or object, and its current value.

Object Structure

One of the most impressive features of the Autos, Locals, and Watch windows
is that you can see the object structures of the classes and procedures in your
program. For example, in the Locals window you’ll see the term Me, which is a
reference to the current class. Next to the word Me is a box with a plus sign (+),
indicating that more information is available. Click this box to expand the Me
reference and display all of its properties.

NOTE The Watch window also shows information about nested objects. For example, an ordi-
nary Form class contains a variable for each control displayed in the window. You can
expand these variables to find out information about the properties of your text boxes,
buttons, and labels.

Figure 8-12 shows a good example of how to use a Watch window with an
object. Using the Watch window on a Person object, it’s possible to spot a poten-
tial mistake: The LastName property has not been initialized.

bvb_02.book Page 252 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 253

Figure 8-12: Examining the object structure of a Person

Notice that the Watch window knows no boundaries—it fearlessly displays
both public data (properties such as FirstName, LastName, and BirthDate) and
private data (the internal member variables, whose names are preceded with
an underscore in this example).

Modifying Variables in Break Mode

The Autos, Locals, and Watch windows don’t just display variables; they also
allow you to change them while a program is in break mode. This allows you
to easily re-create specific scenarios. For example, you might run a test to
determine what happens when an invalid value is set in one of your variables.

To set a value, double-click the value in the Value column, and type the
new value.

The Immediate Window

Longtime Visual Basic developers may remember the Immediate window,
which is alive and well in VB 2005. Using the Immediate window, you can
dump out the full contents of an object using the Debug.Print command
(or the handy question mark shortcut), as shown in Figure 8-13.

Figure 8-13: Printing an object’s contents

You can also use the Immediate window for more drastic actions, like
assigning a new value to any variable that’s currently in scope, or calling a
method to trigger specific code in your application.

bvb_02.book Page 253 Thursday, March 30, 2006 12:39 PM

254 Chap te r 8

Errors at Runtime

As you’ve seen, you can switch your application into break mode at any time
using breakpoints, and begin taking a closer look at your application’s behind-
the-scenes work. But breakpoints aren’t the only way to get your program
into break mode—Visual Studio also pauses your program when an error
occurs.

When a runtime error occurs, .NET searches your code for an error
handler that can deal with the problem. (You’ll learn how to create these
handlers later in this chapter.) If none is found, your program switches
into break mode, and Visual Studio highlights the offending line, with a
window that offers some tips for correcting the problem. Figure 8-14 shows
an example. In this case, Option Strict is not enabled, so Visual Basic cheerily
attempts to convert a string into a number. However, this string contains
pure text, so the move is destined to fail.

Figure 8-14: A runtime error

There are several steps you can take at this point. You can dodge the
error, by dragging the yellow arrow to another line of code and then pressing
F5 to resume running your application starting at that line. However, it’s
easy to skip over something you need, so this approach is likely to lead to
another error.

Alternatively, you can try to resolve the error by editing the code. You
don’t need to stop your application to do this—Visual Basic allows you to
tweak statements, refine your logic, and insert entirely new blocks of code

bvb_02.book Page 254 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 255

while your application is paused. For example, replacing the string shown in
Figure 8-14 with a number will take care of the problem, and you can resume
execution by pressing F5.

Of course, there are some changes that will derail your debugging
session. For example, deleting the current method where your code is
running will put an end to your application. You can dig up a full list of
unsupported changes in the Visual Studio Help (look under the “Edit and
Continue” index entry). Visual Basic flags changes that will force a restart
by underlining them with a squiggly line (similar to how it shows a compile
error). You can hover over the line to get a full description, as shown in
Figure 8-15.

Figure 8-15: A change that requires a restart

NOTE If an error occurs while your application is running in the real world (instead of Visual
Studio) debugging won’t take place. Instead, the user will see a message explaining
that an unhandled error occurred, with some fairly cryptic details. The program will
then end. To prevent this rude ending, use exception handling, as described in the next
section.

Structured Exception Handling

Not every bug can be tracked down and removed from your program. In fact,
there are some cases where an error can occur through no fault of your own.
For example, if your program uses file input, when you open a file you are
assuming that it is accessible to you, that the disk has not been corrupted by
media failure or a virus, and that the file won’t be deleted between the time
the user selects it and the time your code attempts to read it.

Your application can and should handle basic verification procedures,
such as checking that the file exists before attempting to open it, and check-
ing that it contains the header that your program created to indicate that the
file is valid. However, you can’t defend yourself against all the possible prob-
lems that might occur. This is why Visual Basic 2005 provides structured exception
handling.

bvb_02.book Page 255 Thursday, March 30, 2006 12:39 PM

256 Chap te r 8

Here’s an example of structured exception handling in a file access
routine:

Dim FileLine As String
Dim FileStream As System.IO.StreamReader

Try
 ' This code could cause a problem...
 FileStream = System.IO.File.OpenText("does_not_exist.txt")
 FileLine = FileStream.ReadLine()
Catch MyError As Exception
 ' We end up here if an error occurred.
 MessageBox.Show(MyError.Message)
Finally
 ' We end up here no matter what!
 If Not FileStream Is Nothing Then
 FileStream.Close() ' Close the file.
 End If
End Try

The foundation of structured error handling is the Try/Catch/Finally
block, which replaces certain patterns of use of Goto statements with a
more modern structured construct, much as the If/End If or For/Next
statements do.

In the preceding example, the portion of the code after the Try state-
ment is the code that is being watched for errors. If an error occurs, the Catch
portion of the code is executed. And either way, whether a bug occurs or
not, the Finally section of the code is executed next. The Finally code
allows you to perform some basic cleanup. Even if an unrecoverable error
occurs that prevents the program from continuing, the Finally code will
still be executed.

NOTE Along with this new method of error handling comes some new lingo. You’ve probably
already noticed that it’s not an error anymore, but an “exception.” Also, exceptions
aren’t generated or raised but “thrown” by misbehaving code. Your Try/Catch block
then “catches” the thrown exception.

Understanding the Error Call Stack

When an error occurs in your application, Visual Basic 2005 tries to find a
matching Catch statement in the current procedure. If none is found, the
search continues through any Catch statements in the code that has called the
current procedure. This process continues through the entire calling stack
until a Catch block is found that can handle the current error, or until the
search reaches the uppermost level of the application—at which point a
runtime error will be generated, ending the program.

bvb_02.book Page 256 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 257

The Evolution from On Error Goto

Up until now, I’ve glossed over an ugly secret. Visual Basic 2005 still supports
the On Error Goto command for backward compatibility. All your old programs
can continue using it. However, you should adopt the new structured excep-
tion handling as soon as you start a new project. Why?

On Error Goto has a number of problems. Almost every other language,
from Pascal to C++, has been using more advanced error handling for years.
I hate to revisit ancient history, but here is a quick summary of what you are
leaving behind when you enter the .NET world:

Spaghetti code
Error routines in Visual Basic 6 were clear and readable, as long as you
were checking for only one type of error in one block of code. If you
needed to handle multiple errors, you had to juggle numerous On Error
Goto statements directing control to different sections of your program.
Otherwise, you could determine the type of error, but not where it
occurred.

Error monogamy
Visual Basic 6 has exactly one error object: the built-in Err. If an error
occurs in your error-handling routine, or if you try to examine the
error information in another routine, you’ll find that all of the error
information disappears immediately, leaving you empty-handed. Visual
Basic 2005 exceptions are full-featured objects that you can catch and
throw on your own, and pass from routine to routine.

Language limitations
Exceptions are built into the .NET runtime. This means that you can
throw an exception in Visual Basic 2005 and catch it in C# without
having to worry about writing compatibility code.

Limited diagnostic ability
The Err object just doesn’t provide enough information. However, even
the most basic exceptions contain a StackTrace property that gives you
specific low-level information about where the error originated.

The Exception Object

The cornerstone of structured exception handling is the exception object. The
basic exception class is System.Exception, and that’s the type that we caught
in the preceding example. Exceptions also exist in many different, more
specialized versions that inherit from System.Exception. When an error is
thrown, it’s usually one of these more specific varieties. For example, in the
previous file-handling example, the exception that occurred might have been
System.IO.EndOfStreamException if the file existed but had no content, or it
might have been System.IO.FileNotFoundException if the file had not been
found.

bvb_02.book Page 257 Thursday, March 30, 2006 12:39 PM

258 Chap te r 8

To gain some insight into what an exception object is, it helps to exam-
ine one close up. A tool you can use for such an examination is the Locals
window. To try it out, create a Windows Forms application, and enter the code
from the previous file access example in the Form.Load event handler. This
code is sure to fail, because the file does_not_exist.txt is not present on your
computer. Now, place a breakpoint after the Catch line, on the MessageBox.Show()
statement. When you run your program, the bug will be triggered, and the
program will enter break mode. You can now take a closer look at the object
structure of the exception you’ve caught in a Watch window (see Figure 8-16).

Figure 8-16: The internal structure of an exception

What does this tell us about the error object?

� Its type is indeed System.IO.FileNotFoundException.

� It comes with a Message property that contains explanatory text such as
“Could not find file D:\does_not_exist.txt.”

� It has a Source property that tells us which class or application the error
occurred in.

� It has a StackTrace property that contains a whole list of information
about the recent history leading up to the error. (The easiest way to
see this information is usually to display it in the label of a message
box.) The last line contains this important piece of information:
“at ExceptionsAndAssertions.BasicExceptions.cmdThrow_Click(Object
sender, EventArgs e) in D:\Code\The Book of VB .NET\Chapter 08\
Exceptions\BasicExceptions.vb:line 111”.

� The last part of the StackTrace property indicates a line number that tells
us where the problem occurred. This can be a very useful piece of infor-
mation. For example, you might create a simple logging routine that
automatically stores the StackTrace property in a text file when an error
occurs. Then, if you have enabled line numbering as described earlier in
this chapter, you can easily find the corresponding problem.

You can replace the MessageBox.Show() statement in the previous example
with the following block of code. It reports more information about the excep-
tion (see Figure 8-17).

bvb_02.book Page 258 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 259

Dim Spacer As New String("-", 150)
Spacer = vbNewLine & Spacer & vbNewLine

' Use a StringBuilder, as this is the most efficient way
' to paste together a string.
Dim Message As New System.Text.StringBuilder()
Message.Append("Exception Type")
Message.Append(Spacer)
Message.Append(MyError.GetType().ToString() & vbNewLine & vbNewLine)
Message.Append("Message")
Message.Append(Spacer)
Message.Append(MyError.Message & vbNewLine & vbNewLine)
Message.Append("Stack Trace")
Message.Append(Spacer)
Message.Append(MyError.StackTrace)

MessageBox.Show(Message.ToString(), "Exception Occurred")

Figure 8-17: Reporting exception details

NOTE There are some other, less frequently used properties. For example, exceptions automati-
cally have an HResult error code associated with them for backward compatibility with
COM, and they can store a reference to a specific help file and topic in the HelpLink
property.

InnerException

One interesting property, InnerException, doesn’t appear in the preceding
example. InnerException is used when more than one error happens in quick
succession. For example, a FileNotFoundException could trigger a higher-level
data processing error, say a NullReferenceException, when you try to access a
class that hasn’t been initialized because the data couldn’t be loaded from
the file. In Visual Basic 6, you would lose track of all previous errors whenever a

bvb_02.book Page 259 Thursday, March 30, 2006 12:39 PM

260 Chap te r 8

new error occurred. In Visual Basic 2005, however, you can preserve a previous
error by putting it into the InnerException property of a new error object.

In the file access example, a custom class might return a
NullReferenceException with a FileNotFoundException in the InnerException
property, thus identifying the exception that started the whole problem.
There’s no limit to the number of errors you can chain together in this way.
However, your code needs to perform this task manually, by creating a new
exception object, and assigning the original exception to the InnerException
property of this new object. (We’ll consider how you can create your own
exceptions a little later in this chapter.)

Filtering by Exception

The file access example used a generic error-handling routine that dealt with
any error, regardless of the cause. The Try/Catch/Finally construct also allows
you to identify specific types of exceptions and handle them separately. To
do so, you would write several Catch statements, each designed to handle a
different type of exception.

Consider the more sophisticated file access example here, which stores
information read out of a file in a collection:

Dim FileLines As Collection
Dim FileStream As System.IO.StreamReader

Try
 FileStream = System.IO.File.OpenText("does_not_exist.txt")
 Do
 FileLines.Add FileStream.ReadLine()
 Loop
Catch MyError As System.IO.EndOfStreamException
 ' All the information has been read out of the file.
 ' No other action needs to be taken.
Catch MyError As System.IO.FileNotFoundException
 ' The file was not found.
 ' Add code to request a different file name from the user.
Catch MyError As Exception
 ' Some other error occurred.
 MessageBox.Show(MyError.Message)
Finally
 If Not FileStream Is Nothing Then
 FileStream.Close() ' Close the file.
 End If
End Try

In this case, Visual Basic 2005 will automatically use the first matching
exception when an error occurs. If an exception occurs, but it is not an
EndOfStreamException or a FileNotFoundException, the final, generic Catch
statement will handle it.

bvb_02.book Page 260 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 261

Exception Types

When writing code, you’ll find it helpful to know what types of exceptions
you can expect. You can get a nice overview from the Exceptions window
(select Debug�Exceptions). Expand the Command Language Runtime
Exceptions item, and you’ll see all the exceptions in the .NET class library,
organized by namespace (as shown in Figure 8-18).

Figure 8-18: The .NET exception hierarchy

This window doubles as an extremely useful debugging tool. You probably
remember how Visual Basic 6 provided two basic error-handling options:
breaking on unhandled errors only, or breaking on all errors. The latter
option allowed you to bypass your program’s error-handling code when
debugging, and be immediately alerted about an error. That meant you
didn’t need to disable your error-handling code to troubleshoot a problem.

VB 2005 goes one step further: It allows you to set this option individually
for each type of exception. That means you could choose to allow your pro-
gram to handle a common FileNotFoundException (which might just be the
result of an invalid user selection), but cause it to enter debug mode if it
encounters an unexpected EndOfStreamException (which might indicate a more
serious error in your file access code). To set this up, you would add a check-
mark in the Thrown column next to the EndOfStreamException. This tells Visual
Studio to always enter break mode when this exception is thrown, regardless of
whether you’ve included error-handling code that can deal with it. However,
you could still provide error-handling code for both situations. This error-
handling code would run in a non-debugging scenario to alert the end user
of the problem or to abort the action.

Filtering by Conditions
Filtering out different types of exception objects is the most common way
of filtering errors. However, you can also filter your code based on a specified
conditional expression by using the When keyword. This is most useful in

bvb_02.book Page 261 Thursday, March 30, 2006 12:39 PM

262 Chap te r 8

higher-level code where you might be dealing with a business object, rather
than directly with a file. In the following example, a business object is used to
create a new record in the database:

Dim NewSale As SaleItem
Try
 NewSale.ID = "sale220"
 NewSale.AddOrderItems(MyCustomOrderCollection)
 NewSale.AddToDatabase()
Catch When NewSale.Items = 0
 ' Error must have occurred when we tried to add the items.
Catch When NewSale.DBConnection = Nothing
 ' For some reason, the database connection couldn't be established.
Finally
 NewSale.Close()
End Try

Instead of looking for specific exception objects, this error routine exam-
ines properties of the NewSale object. You can accomplish the same sort of
higher-level logic by creating your own exceptions, as explained in the next
section.

Throwing Your Own Exceptions

In your own classes, you should throw an exception whenever a problem
occurs. Remember, a business object should never present an error message
directly to the user. Instead, it should alert the calling procedure when invalid
data has been supplied, and let the procedure decide how to handle the prob-
lem. This is a principle of encapsulation, and it allows your code components
to be flexible and highly reusable.

To throw your own exception, you must instantiate a valid exception
object and then use the Throw keyword:

Public Sub UpdateFile()
 If IsFileOpen = False Then
 ' There is no currently open file to update!
 Dim MyError As New System.InvalidOperationException()
 Throw MyError
 End If
End Sub

Each exception object also provides a constructor that allows you to specify
a string with a user-friendly text message that describes the problem:

Dim MyError As New InvalidOperationException(_
 "You have made a terrible mistake.")
Throw MyError

bvb_02.book Page 262 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 263

You can also create your own custom exception classes that can
assist in providing more detailed information. For example, consider
this custom exception, which is designed to identify invalid database
information:

Public Class ConflictingDBDataException
 Inherits System.ApplicationException

 Public InvalidFields As New Collection()

End Class

This custom exception would be useful when, for instance, a user attempts
to add a record to a database that contains conflicting information. The follow-
ing block shows the action that the code will take when the user attempts to
create a record that has two conflicting fields: an IsPetOwner flag set to False,
but a PetBreed name set to Daschund, indicating that there really is a pet. The
code responds by creating an instance of the ConflictingDBDataException and
adding information about both fields to the InvalidFields collection:

Dim MyError As New ConflictingDBDataException()
MyError.InvalidFields.Add("IsPetOwner", IsPetOwner)
MyError.InvalidFields.Add("PetBreed", PetBreed)
Throw MyError

You can then catch this exception in the same way you would a natural
.NET exception:

Try
 ' Try to add a database record here with your data.
Catch MyError As ConflictingDBDataException
 MessageBox.Show("Operation failed. You had " & _
 MyError.InvalidFields.Count & "conflicting data fields.")
End Try

There’s really no limit to what you can do with custom exceptions.
In highly componentized systems, you might create your own exceptions
with special helper functions for performing additional diagnosis, trouble-
shooting, or cleanup. You can also use the InnerException property to add
additional information—for example, to include a more basic exception
type representing the origin of the problem.

TIP All custom exceptions inherit from the ApplicationException class, not the basic
Exception class. By inheriting from ApplicationException, you identify that your
exception does not represent a Common Language Runtime error. Instead, it represents
an application-specific problem.

bvb_02.book Page 263 Thursday, March 30, 2006 12:39 PM

264 Chap te r 8

Perfecting a Custom Exception Class

In order to make your exception respectable, you should follow the design
pattern specified by the .NET Framework. All exceptions require two special
constructors: one that allows a custom exception message to be specified,
and one that allows a nested exception to be inserted. In addition, you need
to explicitly add the default parameterless constructor.

Public Class ConflictingDBDataException
 Inherits System.ApplicationException

 Public InvalidFields As New Collection()

 Public Sub New()
 MyBase.New()
 End Sub

 Public Sub New(Message As String)
 MyBase.New(Message)
 End Sub

 Public Sub New(Message As String, Inner As Exception)
 MyBase.New(Message, Inner)
 End Sub

End Class

All these constructors do is call the base class constructor with the supplied
information. The base class performs the required initialization.

The UnhandledException Event: The Line of Last Defense

As described earlier, if an exception occurs and you fail to catch it, your
program is finished. If you’re debugging the application in Visual Studio,
you’ll enter break mode. If you’re running your application outside the
design environment, .NET will provide a message box identifying the
problem, and then it will rudely terminate your program.

For this reason, it’s always a good idea to catch any possible exceptions
whenever you perform risky operations. However, there is a final recourse
that you can take advantage of even if you fail to catch an exception: the
UnhandledException application event.

Application events were first introduced in Chapter 4. They’re useful for
controlling what your program does when it’s first launched. However, the
UnhandledException also allows you to respond when an unhandled exception
has sidelined your application. UnhandledException occurs just before .NET
shuts down your application. This gives you a chance to log the cause of the
error. (Logging is described later in this chapter.) And if you’re feeling a
little reckless, you can even ask your program to continue and ignore the
exception.

bvb_02.book Page 264 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 265

To create an event handler for the UnhandledException event, double-
click the My Project node in the Solution Explorer, select the Application
tab, and then click the View Application Events button in the project prop-
erties window. The first time you do this, Visual Studio creates a new code
file named ApplicationEvents.vb. You can choose the UnhandledException
event from the drop-down lists at the top of the code window, and Visual
Studio will add the event handler method you need to the autogenerated
MyApplication class.

The UnhandledException event receives an UnhandledExceptionEventArgs
object. You can use the properties of this object to retrieve the exception
that wasn’t handled (through the Exception property) and tell .NET whether
your application should be allowed to carry on (through the Boolean
ExitApplication property). By default, ExitApplication is false, and your
application will end after your event handler finishes its work.

Here’s an example that shows a message that indicates the type of excep-
tion and keeps the program alive, so long as it was an ApplicationException
that occurred and not something else:

Private Sub MyApplication_UnhandledException(ByVal sender As Object, _
 ByVal e As UnhandledExceptionEventArgs) Handles Me.UnhandledException

 MessageBox.Show("An exception was not handled by your application.", _
 e.Exception.GetType.Name)

 If TypeOf e.Exception Is ApplicationException Then
 e.ExitApplication = False
 End If
End Sub

To test this code you’ll need to build your program and then run it
directly from Windows Explorer, outside the Visual Studio environment.
Otherwise, Visual Studio will catch any unhandled errors and enter break
mode, expecting you’ll want to fix the problem.

NOTE Be very cautious about using the ExitApplication property. It may be that your pro-
gram is not in a recoverable state, or that carrying on from the current point could
cause more damage or just leave the application idling quietly in the background,
without any visible windows for the user to actually do anything. In a well-written
program, you should always catch the exception close to where it occurs.

Defensive Coding

Defensive coding arises out of the philosophy that it’s better to prevent an
error than to try and compensate for it in your code or fix it afterward with
an update to your application. The goal of defensive coding is to restrict
the ways that an error can occur and to make sure that when an error does
occur, it is confined to a limited, diagnosable area in your code.

bvb_02.book Page 265 Thursday, March 30, 2006 12:39 PM

266 Chap te r 8

The Principles of Defensive Coding

A few basic principles can guide you to code defensively:

Garbage in, garbage out.
This is a cliché in today’s world, but it highlights an important program-
ming truth. One of the most common sources of error is invalid user
input. To compensate for this, many programmers write involved valida-
tion routines that verify submitted input and alert the user if an entry is
invalid. If you’ve tried this approach, you know that it can be labor inten-
sive. A better solution is just to restrict input so that invalid options can’t
be entered. Make the user choose from preselected lists whenever
possible, disable invalid options by setting the Enabled property to False,
and restrict input in text boxes using such properties as MaxLength and
CharacterCasing. If numeric input is required, use the KeyPress event to
check the character before it appears, and disallow it if it’s invalid.

Reduce your assumptions.
Assumptions make your code fragile and result in code that may work
properly at your site, but will break when run by a user in a different
environment. A typical example is division. When dividing numbers, it’s
a good rule of thumb to check to make sure that the divisor doesn’t equal
zero, which would cause the infamous divide-by-zero error. Don’t assume
that just because the variable must be greater than zero; it will be. An error
or oversight in your code may create a problem that you can easily pro-
tect against—if you take the time.

Build your code out of independent units.
You learned in Chapters 5 and 6 that if you structure your program as
multiple, independent components, you will simplify the processes of
enhancing, troubleshooting, and sharing your code. You will also make
it easier to contain your errors. For example, a database error should be
caught and trapped in a database access class, so it won’t propagate into
the rest of your program, where it might metamorphose into a data or
logic error.

Testing Assumptions with Assertions

One reason why bugs are so difficult to eliminate from applications is that
our code often contains easily overlooked assumptions. For example, you
may assume that a certain object is always initialized when used or that a
variable is always greater than zero, and so fail to see that a potential error
lurks ahead.

Visual Basic 2005 includes an assertions feature that forces your code to
test these assumptions. Assertions are statements that you guarantee must be
true; otherwise something serious has gone unexpectedly wrong in your appli-
cation. If Visual Basic 2005 tests an assertion and finds out that it is, in fact,
false, it will provide an intimidating error message with a pile of diagnostic
code, and give you the option to either halt the execution of your program,

bvb_02.book Page 266 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 267

or ignore the problem and continue. Using assertions is a good way to train
yourself to look for assumptions your code makes. They also allow you to
halt problems (such as invalid data) before they cause more serious damage
(such as a corrupted file or out-of-sync database).

There’s one catch. Assertions only work in debug mode. Once you
compile and distribute your program, all the assertions disappear. This
means that assertions are designed to help you spot problems while testing
your application. They do not take the place of error-handling code; rather,
they let you know when your error-handling code has failed and something
has gone wrong.

To include an assertion in your code, you use the Assert() method of the
Debug class from the System.Diagnostics namespace. Here’s an example:

Debug.Assert(Balance > 0)

If this assertion evaluates to False (that is, if the Balance variable is less
than or equal to zero), an error message will be displayed, which will look
something like Figure 8-19.

Figure 8-19: Pure intimidation with a failed assertion

Remember, assertions cannot take the place of error-handling code. If it
is possible, for example, that the user might attempt to specify a balance less
than zero in some way and then handle that error appropriately. If, however,
you restrict the user from specifying a negative balance, then an assertion is
a good place to double-check that the limitation really is in effect. Think of
assertions as a form of quality control.

bvb_02.book Page 267 Thursday, March 30, 2006 12:39 PM

268 Chap te r 8

Debug assertions are completely removed from the final release of your
program, so you don’t have to worry about these checks slowing down your
code. You do have to make sure that a debug assertion doesn’t call a proce-
dure that might somehow modify a value in your program, because then
there might be unintended side effects when you remove it.

Debug.WriteLine()

Another useful tactic for reporting error information while debugging is to
use the Debug class (from the System.Diagnostics namespace). Using Debug,
you can write out diagnostic information to the Output window (as shown in
Figure 8-20). For example, you could use the WriteLine() method to explain
what your code is doing in a loop:

' Leaving out the code to define variables and open the file.
Dim i As Integer
For i = 0 to 100
 Info(i) = TextFile.ReadLine()
 Debug.WriteLine("Iteration number " & i.ToString() & _
 ". Read " & Info(i))
Next i

Figure 8-20: Writing debugging information

The nice thing about this method is that the information will be there if
you need it, but can be easily ignored if you don’t need it.

This kind of information can save a lot of time when you are testing your
application, because you can see very clearly what data was being used and
what point the application reached when a given error occurred. It can
provide a shortcut to solving your problem when manually single-stepping
through your code might take a little longer. As with the Debug.Assert()
method, Debug.WriteLine() statements are removed from your code in the
final release version, so they won’t slow your application down.

Using Logging and Traces
Picture this situation: A client is having a problem with your Visual Basic
program. You could probably fix it, if you could only figure out what it is.
The client’s memory is a little hazy . . . maybe the trouble occurred when he

bvb_02.book Page 268 Thursday, March 30, 2006 12:39 PM

Bug Proofi ng 269

or she clicked the Submit button, or maybe just after . . . and no one thought
to copy down the specific error message or error number that you created.

As you might guess, this scenario is quite common. The best solution is
often to create a log file. When an error occurs, you can simply instruct the
client to email the log file to you for technical review. Depending on your
needs, you may want to create your own system for creating text log files, but
you can also use the built-in features in the .NET class library. One of these
features is tracing.

To use tracing, you use the Trace class in the System.Diagnostics name-
space. It works very similarly to the Debug class, but trace writes and assertions
are performed even in the release build of your program. To capture trace
information to a file, you have to start off by adding a listener. In order for
tracing to be useful, you will usually use a text file as a listener. This is the file
where all output will be stored.

Dim FileListener As New TextWriterTraceListener(_
 System.IO.File.Create("output.txt"))
Trace.AutoFlush = True
Trace.Listeners.Add(FileListener)

You can now use the methods of the Trace class to write to the text file.

Trace.WriteLine("Starting application")
Trace.Indent ' This is a nice touch to make well organized output.
Trace.WriteLine("Doing some task...")
' Add some code here.
Trace.WriteLine("Finished task")
Trace.Unindent()
Trace.WriteLine("All done")

The output.txt file would look like this:

Starting application
 Doing some task...
 Finished task
All done

Even if you don’t use Trace.WriteLine() statements very often, make sure
that you use them every time an error occurs. It’s a good idea to develop a
generic procedure that will take an exception object and write all of its prop-
erties to the Trace object (including the properties of any exception stored in
the InnerException property). Here is an example:

Try
 ' Some code here.
Catch MyError As Exception
 WriteTraceInfo(MyError)
End Try

bvb_02.book Page 269 Thursday, March 30, 2006 12:39 PM

270 Chap te r 8

The generic routine would look something like this:

Public Sub WriteTraceInfo(CaughtError As Exception)

 Trace.Write(CaughtError.Message)
 Trace.Write(CaughtError.StackTrace)
 ' And so on...

 ' Use recursion to get all the information in the entire
 ' exception chain.
 If Not CaughtError.InnerException = Nothing Then
 ' Call this subroutine again, with the nested exception.
 WriteTraceInfo(CaughtError.InnerException)
 End If

End Sub

Keep in mind that a log file really can’t contain too much information
about an error, and information such as StackTrace and InnerException can
really help track down the root of the problem.

What Comes Next?

In this chapter, you’ve seen how to maintain complete control of your code
in .NET, and how to watch its flow, monitor the contents of its variables, and
track its performance in the field. The key to successfully using these features
is just to use them. Take the extra time to add logging instructions to your
code. You will more than make up for that time when you are solving the
inevitable bugs later on.

You’ve also learned how to use Visual Basic 2005’s structured exception-
handling feature to catch exceptions and to throw your own. You’ll find that
once you get comfortable dealing with exception objects, you won’t ever feel
the same thrill of fear when an error occurs. Instead, you’ll be ready for it.

To really master exception handling, you should become familiar with
the exception classes that .NET uses to notify you about common problem
types. It’s always better to specifically catch different types of exceptions than
to just catch a generic System.Exception object. A good tool for learning about
exceptions is the .NET class library reference in the Visual Studio Help. Start
with the System.Exception class, and browse through any of its descendants
that you think may be related to the tasks you are performing.

bvb_02.book Page 270 Thursday, March 30, 2006 12:39 PM

9
D E A L I N G W I T H D A T A : F I L E S ,

P R I N T I N G , A N D X M L

Most programs consist of a series of opera-
tions that retrieve, process, and display data.

A typical example is a reporting program
that reads information from a database, chews

through it to produce interesting summary information
according to the user’s selections, and returns a result
that can be displayed in a window or sent to a printer. More complicated
applications might add considerably more sophisticated interfaces, and they
might use other .NET features. They might also support various environments,
from traditional desktop applications to interactive Internet sites. In the end,
however, everything is about data.

This chapter examines some of the nuts and bolts of dealing with data.
You’ll learn how to store information in the registry and retrieve it as needed,
how to display and print formatted documents, and how to interact with files
in a completely object-oriented way. You’ll also learn about .NET tools that
let you work with XML files so easily and painlessly that you might make XML
the native format for all your applications. (You won’t learn how to retrieve
information from a database yet—that subject is the focus of Chapter 10.)

bvb_02.book Page 271 Thursday, March 30, 2006 12:39 PM

272 Chap te r 9

Most of these capabilities aren’t new to the .NET Framework. However,
pre-.NET versions of Visual Basic provided a variety of different ways to access
files—some more flexible than others—and required separate components
for dealing with XML. By contrast, VB 2005 uses a unified model that suits
everything from the simplest to the most sophisticated scenarios.

New in .NET

Data access in Visual Basic 2005 provides more refinement than revolution.
However, if you are a longtime Visual Basic developer, you’ll find many
enhancements to be happy about.

Object-oriented file access
You may have already seen it with the FSO (File System Object) model in
Visual Basic 6. Or, you may be an unredeemed user of Open and Input #
commands. Either way, you’ll discover that the .NET class library offers
easy and consistent ways to access your computer’s file system as a collec-
tion of interrelated objects.

Zip compression
Are your files getting too large to handle? VB 2005 adds a new data com-
pression feature that lets you zip up files into small packages. Best of all,
it plugs right into the ordinary file access model.

Asynchronous printing
In .NET, lengthy print operations can’t drain the life out of your applica-
tions. Pages are sent to the printer one at a time, using a separate thread
that triggers the PrintPage event.

Print preview
Once you’ve created a print routine in VB 2005, you have all the code
you need to show a print preview—even though you might not realize
it at first. All you need to do is pass your PrintDocument object to the
PrintPreviewDialog control that .NET provides for you. If you’ve ever
struggled to create a print preview with a third-party component or tried
to draw a dynamic print preview on your own, this feature will be a wel-
come addition.

Unrestricted access to the registry
The built-in registry features in Visual Basic 6 limited you to a small branch
of the registry, under the heading “VB and VBA Program Settings.” This
made life difficult when you wanted to read settings from a third-party
program or use a more professional (and standardized) location. Visual
Basic 2005 now makes it easy for you to read and write to any area of the
registry.

XML access
In Visual Basic 6, reading XML files was one more activity that required
the help of an additional component, which you had to distribute with
your application and register on any computer that used it. VB 2005 fills

bvb_02.book Page 272 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 273

the void with several different classes that allow you to write and read
XML with the exact level of sophistication and complexity that you need.
For quick and easy XML, you can use the straightforward XmlTextWriter
class. For more advanced applications, you can manipulate XML files
with the full XML Document Object Model (DOM), which treats XML
data as a collection of interrelated objects.

Interacting with Files

Before we go ahead, it’s worth surveying the .NET landscape to find out what
tools are available for dealing with files. As in the previous chapters of this
book, we want to do this the “.NET way”—which means using objects and the
class library, of course!

The key namespace for files is System.IO. It contains all the classes you
need to deal with files, directories, and drives. It also includes writer and
reader classes that convert .NET data types into string or binary representa-
tions that you can send straight to a file. So to get off to a good start with the
sample code you’ll see in this chapter, import the System.IO namespace so
you’ll have all of its classes at your fingertips:

Imports System.IO

As you’ve seen throughout this book, VB 2005 adds a grab bag of useful
features with the built-in My object. Some of these features aim to simplify file
access. You’ll find these under the My.Computer.FileSystem branch.

So what does the My object have in store for file manipulation? Essentially,
you’ll find two things:

� Methods for quickly reading and writing text and binary files

� Methods and properties that allow you to explore the file system and to
manage files and folders (for example, you can use them to delete, copy,
and move files)

All of these features are available directly through the classes in the
System.IO namespace, but the My approach aims to streamline the process.
However, while the My object works well for file management, it isn’t nearly as
useful when it comes to reading and writing files. As you’ll see, the My object
doesn’t give you all of the features that you’ll need. In this chapter, you’ll see
how you can use My to quickly perform basic tasks with files, and then you’ll
learn how to go further and dive into the class library on your own.

Reading and Writing Files

Many programs store some information in a file, whether it’s a collection of
user-configured settings or a document with data that you’ll need to process
later on. Reading and writing a file in VB 2005 is refreshingly easy, and there
are two ways to do it: using the My object, and using the FileStream class.

bvb_02.book Page 273 Thursday, March 30, 2006 12:39 PM

274 Chap te r 9

Creating a File with the My Object

The My.Computer.FileSystem object gives you a few methods for creating or read-
ing a file in one step. The centerpiece is the WriteAllText() and ReadAllText()
pair of methods. WriteAllText() creates a file, copies a string into the file, and
then neatly closes the file. You supply the full path and filename, the content,
and a Boolean append parameter that indicates what you should do if the file
already exists. You have the choice of overwriting it (False), or adding your
content to the end of the file (True).

Here’s the WriteAllText() method in action:

My.Computer.FileSystem.WriteAllText("c:\myfile.txt", _
 "Here is some sample content.", False)

As you can probably guess, this creates a text file named myfile.txt that
contains a single line of text.

The logical partner to WriteAllText() is ReadAllText(), which extracts the
contents of a file and provides it to your code as a single string:

Dim FileContents As String
FileContents = My.Computer.FileSystem.ReadAllText("c:\myfile.txt")
MessageBox.Show(FileContents)

Any guess what you’ll see in the message box?

NOTE Rather than hard-code a full path like c:\myfile.txt, you can use the shared
Application.StartupPath property to find out where your application currently
resides and create the file there.

The WriteAllText() and ReadAllText() methods are great for one-off jobs,
but they suffer from a few problems. First of all, they don’t use the elegant
stream model that you’ll learn about next. (As you’ll see, the stream model
allows you to add more features, like automatic compression and encryption.)

Another problem is that these methods only work for small files. If you
have a lot of data, you don’t want to place all of it in memory at once as a
single clunky string. Even if you use the appending feature of WriteAllText(),
performance will suffer, because you’re repeatedly opening and closing the
file. And no matter what you do, ReadAllText() always gets you a string con-
taining the full file. Parsing a string (huge or even not-so-huge) into logical
sections isn’t elegant or easy.

Finally, the WriteAllText() and ReadAllText() methods work only with text
files. If you want binary data, you’re out of luck. You can try to use the corre-
sponding WriteAllBytes() and ReadAllBytes() methods, but then it’s up to you
to translate an intimidating byte array into the data types you really want. As
you’ll see, .NET makes it much easier for you when you use the FileStream
class.

All in all, the file reading and writing features in the My.Computer.FileSystem
object won’t be suitable for purposes other than quick, simple file I/O.

bvb_02.book Page 274 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 275

Creating a File with the FileStream Class

As you might expect, the class library approach is a little more involved, but
much more powerful. It all revolves around the FileStream class.

The FileStream class is your gateway to file access. Each instance of this
class represents a file on your computer. Creating one is easy:

Dim fs As FileStream
fs = New FileStream("c:\myfile.txt", FileMode.CreateNew)
' You could also do this in one line like so:
' Dim fs As New FileStream("c:\myfile.txt", FileMode.CreateNew)

FileMode is an enumeration whose values are used to specify the type of file
access you require. As you might have guessed, passing the FileMode.CreateNew
value to the stream constructor tells Visual Basic 2005 that your program
expects this file to be created anew; if the file already exists, you will receive
an error (an IOException object, to be precise). Alternatively, you can instruct
Visual Basic 2005 to open an existing file (FileMode.Open) or to append data to
an existing one (FileMode.Append). You can even use FileMode.OpenOrCreate,
which opens the file if it exists, and creates it if it doesn’t. Finally, you can use
FileMode.Create, which create a new file and quietly overwrite any existing file
with the same name. This matches the behavior of the WriteAllText() method
you saw earlier.

Before you can do anything with a file stream, you have to attach a stream
reader or writer to it. Why the extra step? Even though you have already speci-
fied whether to read or write information using the new FileStream object,
you still haven’t specified the format that will be used to transmit data through
that stream. Without this format information, your stream can’t be used for
any practical purpose.

At this point, you have two main options: You can work with binary data
using the BinaryWriter and BinaryReader classes, or with plaintext using the
StreamWriter and StreamReader classes. The Writer classes are for sending
information to a file, while the Reader classes retrieve information from a file.

The StreamWriter and StreamReader Classes

It’s easier to get the hang of streams if you begin with plaintext data. That
way, you can examine the file you’re using in Notepad to ensure that your
program is working correctly.

Here’s an example that uses a StreamWriter object to send two lines of
information to a file:

' Create the file stream.
Dim fs As New FileStream("c:\myfile.txt", FileMode.CreateNew)

' Create a StreamWriter that uses this file stream.
Dim w As New StreamWriter

' Send some data.

bvb_02.book Page 275 Thursday, March 30, 2006 12:39 PM

276 Chap te r 9

w.WriteLine("First line")
w.WriteLine(40023) ' Integers work as well as strings.

' Tidy up.
w.Close()

If you look at the resulting myfile.txt file in Notepad, you will see the
following information:

First line
40023

Notice that there are no quotation marks around the data in the text file.
A StreamWriter object outputs an entire line of text, not a quote-delimited
string.

The StreamWriter object provides a reasonably straightforward approach to
saving your data. Using a StreamReader object is just as easy. It has a ReadLine()
method that returns a string containing a line of information that you placed
in the file.

' Create the file stream.
Dim fs As New FileStream("c:\myfile.txt", FileMode.Open)

Dim r As New StreamReader(fs)
Dim FirstLine As String, SecondLine As Integer
FirstLine = r.ReadLine()
SecondLine = CType(r.ReadLine(), Integer)

r.Close()

The StreamWriter class is smart enough that it can handle any simple data
type, including numbers, strings, and Booleans (which become the text True or
False when written to a file). When you are retrieving information, though,
it always comes out of the stream in the form of a string. You then have to
convert this string to the appropriate type using the CType() function.

The BinaryWriter and BinaryReader Classes

The BinaryWriter class works in a similar fashion to the StreamWriter, except
that it only works with bytes in an encoded binary format. If you need to
convert data into byte arrays, you can use some of the shared methods of
the System.BitConverter class, or you can just use the Write() method of the
BinaryWriter class, which is smart enough to do all the work for you, as long as
you are only using simple data types.

In many programs, binary files are the standard way of storing information
(although XML is also gaining ground as a popular standard for hierarchical
text-based information). One of the advantages of binary information is that
it is not easily readable. While the information is still visible in the file (if you
hunt for it), novice users are less likely to accidentally change it in Notepad

bvb_02.book Page 276 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 277

or some other editor. Binary storage also makes the best use of space.
The only thing you have to remember is that, as with the StreamWriter and
StreamReader class, you must read information in the same order that you
wrote it in.

The next example is slightly more sophisticated. It presents a custom
Person class that has the built-in features it needs to serialize itself to a file.
You can find the full code for this example in the SimpleSerializablePerson
project.

NOTE Serialization is the process of converting an object to a stream of bytes that can be written
to another data source, like a file. As you’ll see, .NET has several different options for
serializing data.

Public Class Person
 Public Name As String
 Public Age As Integer
 Public Height As Integer

 Public Sub New()
 End Sub

 Public Sub New(ByVal Name As String, ByVal Age As String, _
 ByVal Height As String)
 Me.Name = Name
 Me.Age = Age
 Me.Height = Height
 End Sub

 Public Sub SaveToFile(ByVal Filename As String)
 Dim fs As New FileStream(Filename, FileMode.CreateNew)
 Dim w As New BinaryWriter(fs)
 w.Write(Name)
 w.Write(Age)
 w.Write(Height)
 w.Close()
 End Sub

 Public Shared Function LoadFromFile(ByVal Filename As String) As Person
 Dim fs As New FileStream(Filename, FileMode.Open)
 Dim r As New BinaryReader(fs)
 Dim NewPerson As New Person()
 NewPerson.Name = r.ReadString()
 NewPerson.Age = r.ReadInt32()
 NewPerson.Height = r.ReadInt32()
 r.Close()
 Return NewPerson
 End Function
End Class

bvb_02.book Page 277 Thursday, March 30, 2006 12:39 PM

278 Chap te r 9

This class provides the following elements:

� Three pieces of information—a name, age, and height—all of which
would be implemented as property procedures in a more sophisticated
example, but are here represented as public variables for the sake of
simplicity.

� Two constructors: a basic parameterless one that creates an empty Person
object, and a more useful constructor that takes arguments to initialize
the name, age, and height.

� A SaveToFile() method that stores the current Person object in a speci-
fied file as binary information. (Note that both this and the following
LoadFromFile() function are simplified examples that do not incorpo-
rate the error checking that you would require in a production-level
application.)

� A LoadFromFile() method that creates a Person object based on the infor-
mation stored in a file. One interesting feature of this function is that it’s
declared with the Shared keyword, which means that you can use it even if
you haven’t created a Person object. It will then return an instantiated,
fully initialized Person object for you to work with. This is a common
object creation technique. Another option would be to supply a con-
structor that accepts a string specifying the name of the file containing
the initial values and then loads this data into the new Person object.

To determine whether the class works as expected, we test it with this code:

' Create Bob and clone a copy of him into a file.
Dim Bob As New Person("Bob", 34, 5.25)
Bob.SaveToFile("c:\bob.dat")

' Erase the current copy of Bob.
Bob = Nothing

' Revive Bob by using the file, and check that his data is correct.
Bob = Person.LoadFromFile("c:\bob.dat")
MessageBox.Show(Bob.Name)

This verifies that we have created an intelligent, self-storing object.
The only drawback to this method is that the binary format reflects the
structure of each data type. As a result, when retrieving information in
the LoadFromFile() method, you need to know the data type of each variable
so that you can use the appropriate method to retrieve it (for example,
ReadString() or ReadInt32(), in this case). This raises two potential problems.
First of all, if other programmers want to use your binary files in their pro-
grams, there are a lot of data type details they need to know. Secondly, if you
change a data type in your Person code (for example, switching from an
Integer to a Long), you’ll break your serialization routine. (And even if you
fix it, you’ll lose the ability to retrieve old files serialized with the previous

bvb_02.book Page 278 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 279

version of your code.) You won’t face these problems when you use the
StreamWriter with plaintext data, because all types of numeric values are
converted to a string representation before they’re stored in the file.

TIP A more powerful but time-consuming approach might use XML to describe the data
and implement more intelligent storage and retrieval routines, which could allow Bob to
be revived from older files even if the class is modified. You’ll learn more about using
XML later in this chapter.

Figure 9-1 shows what the bob.dat file looks like in Notepad.

Figure 9-1: The contents of bob.dat

The string is still readable, but the conversion of our integers is quite
unintuitive. All the information is packed together, with no spaces.

NOTE .NET automatically adds information to the beginning of the string that indicates its
length in characters. This lets the ReadString() method know how much information it
should retrieve (and once again shows us the built-in cleverness of the .NET Framework).

The last thing you should know about binary files is that you can use the
Seek() method to move directly to a specific byte position in the file. However,
this technique isn’t used very much these days. It used to be important when
processing files that hold distinct records, but now databases provide a much
more powerful and flexible alternative to this type of data storage. The
process of navigating through binary information in a file is frustrating,
time-consuming, and prone to error.

Visual Basic–Style File Access

There is one ugly secret I should admit. VB 2005 still provides Visual Basic’s
old-fashioned file access routines—in a slightly recast form. The Open state-
ment was removed because its name is potentially confusing: Why assume
that the only thing that can be opened is a file? The new equivalent is the
FileOpen statement, which closely parallels the archaic Open. The Input
statement remains (along with LineInput), and Get and Put have been
renamed FileGet and FilePut.

bvb_02.book Page 279 Thursday, March 30, 2006 12:39 PM

280 Chap te r 9

If you are an experienced Visual Basic developer, your first instinct may
be to return to these familiar functions. I strongly discourage it. The file
access classes in the System.IO namespace provide all the benefits of modern
object-oriented programming. In addition, they settle issues of scope and code
readability, make it easier to send information from procedure to procedure,
and help you catch errors. If you want your program to have the greatest
standardization, and you are thinking the .NET way, then you will use the
compatibility functions I have just mentioned sparingly, for reasons of com-
patibility only.

A Little More About Streams

Our discussion so far has focused on the practical steps you need to follow
when accessing a file. However, there are also some interesting concepts at
work that aren’t immediately obvious.

You’ll remember that to access a file, you first create a stream, and then
attach the appropriate writer and reader. Streams are an important concept
in .NET, and they aren’t just limited to files. Streams represent a generic way
to access different data sources (also known as backing stores). This philosophy
means that you can read information from a memory stream, a network
stream, or a file stream using conceptually similar techniques. The .NET
Framework even uses streams behind the scenes for tasks like saving a
bitmap.

For most programmers, file access will be the most common use of
streams. But consider the next example, which retrieves a web page (the eBay
home page) and displays the resulting HTML text stream in a text box (see
Figure 9-2). You’ll find this example in the sample code as the NetReader
project.

Figure 9-2: Reading a web page

bvb_02.book Page 280 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 281

The nice thing about this application is that it uses streams to do its work,
with a little help from the System.Net namespace. And, because you now under-
stand streams, you can probably already interpret the code.

Me.Cursor = Cursors.WaitCursor

Dim PageRequest As HttpWebRequest = WebRequest.Create(txtURL.Text)
Dim PageResponse As WebResponse = PageRequest.GetResponse()
Dim PageReader As New StreamReader(PageResponse.GetResponseStream())
Dim PageString As String = PageReader.ReadToEnd()
PageReader.Close()
txtHTML.Text = PageString

Me.Cursor = Cursors.Default

The basic steps are as follows:

1. Use the shared Create() method of the System.Net.WebRequest class to
specify the page that you want to retrieve. You’ll get an HttpWebRequest
object that will do the job for you.

2. Use the GetResponse() method of the HttpWebRequest object to return
the page as a WebResponse object. The WebResponse class exposes a
GetResponseStream() method that allows you to access the underlying
stream.

3. Create a StreamReader for the WebResponse object’s stream.

4. Now you have a familiar stream object from which to read, and you can
perform whatever additional steps you want, such as writing the informa-
tion to a file or copying it to a variable.

NOTE Retrieving a web page as a stream isn’t as useful as it might seem at first. For one
thing, it’s next to impossible to retrieve any useful information from the page without
making assumptions about how it is laid out. The moment the page is slightly changed,
your application will fail to get the right data. Instead, a better way to communicate
information over the Web is to use web services, which you’ll examine in Chapter 13.

Compressing Files

One of the neatest parts of the stream model is the way you can wrap streams
to get extra features. For example, you’ve already seen how one class—the
StreamReader—can work with files and web pages, because it has the ability to
wrap any stream. The same is true with other classes, including the GZipStream
class from the System.IO.Compression namespace. It can also wrap any stream,
giving you the ability to compress or decompress data no matter what the
backing store.

For example, the following code compares two approaches to data
storage. It opens two files for writing, one with compression, and one with-
out. To perform the compression, the code uses a GZipStream. This GZipStream

bvb_02.book Page 281 Thursday, March 30, 2006 12:39 PM

282 Chap te r 9

sits between the BinaryWriter object and the underlying FileStream. As a result,
every time you write a number through the BinaryWriter, it actually passes
through the GZipStream, where it gets compressed, and is then passed to the
FileStream. The no-compression approach works in the same way as the
previous examples you’ve seen.

Once both streams are open and ready, the code writes 1,000 random
strings, each of which is 30 characters long, to both files. (The private
GetRandomString() helper method that generates the strings isn’t shown
in the code.)

' First, create a file that doesn't use any compression.
Dim fsNoCompress As New FileStream("c:\nocompress", FileMode.Create)
Dim rNoCompress As New BinaryWriter(fsNoCompress)

' Now create a file that will use compression.
Dim fsCompress As New FileStream("c:\compress", FileMode.Create)

' You need to create a GZipStream in Compress mode. It wraps the FileStream.
Dim CompressStream As New GZipStream(fsCompress, CompressionMode.Compress)

' The BinaryWriter writes to the GZipStream, not the FileStream.
Dim rCompress As New BinaryWriter(CompressStream)

' Write 1,000 random strings (each 30 characters long) to both files.
For i As Integer = 1 To 1000
 Dim RandomString As String = GetRandomString(30)
 rNoCompress.Write(RandomString)
 rCompress.Write(RandomString)
Next

' Close both files.
rNoCompress.Close()
fsNoCompress.Close()

rCompress.Close()
fsCompress.Close()

To test this code, you might want to compare the sizes of the compressed
and non-compressed files it creates. Here’s a snippet of code that does this
for you, using the GetFileInfo() method you’ll learn about later in this chapter:

MessageBox.Show("Compressed data from " & _
 My.Computer.FileSystem.GetFileInfo("c:\nocompress").Length & _
 " bytes to " & _
 My.Computer.FileSystem.GetFileInfo("c:\compress").Length & _
 " bytes.")

As you might expect, the compressed file is smaller. In this example, the
difference is dramatic—the uncompressed file is a hefty 310,000 bytes, while
the compressed file weighs in just under 41,000 bytes.

bvb_02.book Page 282 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 283

Of course, you’ll need to adjust your code for reading the compressed
file. Once again, it needs to use a GZipStream to wrap the FileStream, but this
time you specify CompressionMode.Decompress.

Dim fsRead As New FileStream("c:\compress", FileMode.Open)
Dim DecompressStream As New GZipStream(fsRead, CompressionMode.Decompress)
Dim r As New BinaryReader(DecompressStream)

' (Read the data here.)

r.Close()
fsRead.Close()

To see the end-to-end code in action, look for the Compress project
that’s included with the sample code.

Managing Files and Folders

If you try to use the original Bob program twice in a row, you will receive an
error indicating that your program is trying to create a file that already exists.
To get around this problem, you could specify FileMode.Create instead of
FileMode.CreateNew when creating the FileStream object. As described earlier,
this instructs Visual Basic 2005 to erase the current file, if it exists. How-
ever, this is only a partial solution. What if the existing Bob file contains
important information that you’ll need to retain in a backup file? In order to
handle that situation, you’ll need a way to manage directories and files
programmatically.

The FileInfo Class

Once again, the System.IO namespace in the .NET class library provides all the
tools you need. This time, the class you need to work with is named FileInfo.
You can create a FileInfo object by calling the My.Computer.FileSystem.GetFileInfo()
method and passing it the full path to the file you want. You can also create a
FileInfo object directly—the only difference in this case is that you would
pass the path as a constructor argument.

' This works.
Dim Info1 As FileInfo = My.Computer.FileSystem.GetFileInfo(Filename)

' This also works.
Dim Info2 As New FileInfo(Filename)

A FileInfo object represents a single file. Often, you’ll create a FileInfo
object that corresponds to a file on your computer and then manipulate that
file through the FileInfo object (retrieving properties, settings attributes, copy-
ing or deleting it, and so on). You can also create a FileInfo object for a file
that doesn’t exist. You might do this for one of two reasons—either you

bvb_02.book Page 283 Thursday, March 30, 2006 12:39 PM

284 Chap te r 9

aren’t sure that it exists and you want to check, or you want to create the file
yourself. When you create a FileInfo object for a file that doesn’t exist yet, its
Exists property will return False.

You can use the FileInfo class to fix the Bob program so that it deals with
duplicate files appropriately. For example, you could use code like the follow-
ing to check for a previous copy of the file and then delete it. Simply add this
code to the beginning of the Person.SaveToFile() method.

Dim BobFile As New FileInfo(Filename)
If BobFile.Exists Then
 BobFile.Delete()
End If

This example shows how easy it is to manipulate files with FileInfo
objects. It’s just a matter of finding the specific method that does what you
need. There are methods for copying a file (the CopyTo() and MoveTo()
methods) and an Attributes property for examining and changing file attri-
butes. There are even shortcuts you can use to create the file (such as Create(),
which returns a FileStream, and CreateText(), which returns a StreamWriter) or
to read the file (such as OpenRead(), which returns a FileStream, and OpenText(),
which returns a StreamReader).

NOTE The information that’s returned from the FileInfo properties is filled the first time
you access a property. It’s then cached in memory for best performance. That means if
you’ve held onto a FileInfo object for a long time, you’ll need to make sure you’re getting
the latest, most up-to-date information about the file by calling the FileInfo.Refresh()
method before reading another property value.

The following program shows another example of how a FileInfo object
might be used. This program retrieves information for an existing file when a
button is clicked. A subroutine called Out allows the program to quickly add
information to a read-only text box.

Private Sub cmdGetInfo_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdGetInfo.Click
 Dim MyFile As New FileInfo("c:\myfile.txt")

 ' We can now access some of the following properties.
 Out("Length in bytes: " & MyFile.Length)
 Out("Attribute list: " & MyFile.Attributes.ToString)
 Out("Stored in: " & MyFile.DirectoryName)
 Out("Created: " & MyFile.CreationTime)

 ' Any property we can get, we can also change.
 MyFile.LastWriteTime = DateTime.Today.Add(TimeSpan.FromDays(100))
End Sub

' Utility for displaying information.

bvb_02.book Page 284 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 285

Public Sub Out(ByVal NewText As String)
 txtDisplay.Text &= vbNewLine & NewText
End Sub

After running this example (shown in Figure 9-3), you can check the
c:\myfile.txt file in Windows Explorer. You will see that it claims to have been
last updated 100 days in the future. (This example is available with the sample
code as the FileInformation project.)

Figure 9-3: Testing the FileInfo class

The FileInfo class is quite versatile. You can also work with directories by
using analogous DirectoryInfo class. Much as the FileInfo class has functionality
for creating, moving, and deleting files, the DirectoryInfo class has the built-in
smarts for copying, moving, and deleting directories. There is also a DriveInfo
class for working with drives.

TIP Some directories have a special meaning to the operating system. These include the
Program Files directory, My Documents directory, Desktop directory, Temp directory,
and others. You can retrieve the physical paths for these special directories using the
My.Computer.FileSystem.SpecialDirectories object. For each special directory, there’s
a property that returns the full path to the directory as a string.

File Attributes

There is one interesting trick you should understand when working with
files, and it has to do with file attributes. File attributes are accessed through
the FileInfo.Attributes property (or the GetAttributes() and SetAttributes()
methods of the File class). This property can be set using the FileAttributes
enumeration, whose values denote the various properties that a file can
possess (hidden file, system file, read-only file, and so on).

However, a file can have a combination of these attributes. To evaluate
or set a combination of enumerated values, you need to use what is called a
bitwise comparison or assignment.

bvb_02.book Page 285 Thursday, March 30, 2006 12:39 PM

286 Chap te r 9

To understand this better, let’s consider the following fatally flawed code.

If MyFileInfo.Attributes = FileAttributes.Hidden Then
 ' The file is hidden, but has no other attributes.
End If

The problem here is that a file may have several attributes, including
hidden, system, read-only, and so on. This code only succeeds if the file is
hidden but doesn’t have any other attributes applied, which probably isn’t
what you want.

The correct approach is to use the And keyword to filter out just a single
attribute. You can then examine if this attribute is set. Here’s the code:

If (MyFileInfo.Attributes And FileAttributes.Hidden) =
FileAttributes.Hidden Then
 ' You have successfully filtered out the hidden attribute, and found
 ' that it is set.
End If

The same rule applies with assignment. Here’s an assignment to the
FileInfo.Attributes property done the wrong way:

' A dangerous mistake that accidentally clears all other attributes:
MyFileInfo.Attributes = FileAttributes.ReadOnly

The correct solution uses the Or keyword to combine an additional
attribute to the current set of attributes.

' This adds a read-only attribute, and leaves the other attributes intact.
MyFileInfo.Attributes = MyFileInfo.Attributes Or FileAttributes.ReadOnly

' This removes a read-only attribute, and leaves the other
' attributes intact.
MyFileInfo.Attributes = _
 MyFileInfo.Attributes And Not FileAttributes.ReadOnly

File and Directory Relationships

Another nice feature is the way that the file and directory objects link up
with each other. A FileInfo object provides a Directory property, which
returns a DirectoryInfo object that represents the directory where the file
resides. Each DirectoryInfo object also has methods, such as GetFiles() and
GetDirectories(), that return arrays of FileInfo and DirectoryInfo objects,
representing files and subdirectories in that directory.

' Make a DirectoryInfo for c:\
Dim RootDrive As New DirectoryInfo("c:\")

' Get all the files.
Dim FileArray() As FileInfo
FileArray = RootDrive.GetFiles()

bvb_02.book Page 286 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 287

' Display every file's name.
Dim i As Integer
For i = 0 To FileArray.GetUpperBound(0) - 1
 Out(FileArray(i).Name)
Next i

It’s simple but powerful. You can access your computer’s file system as a
collection of interrelated objects, and you can manipulate attributes and
names just by changing properties.

A Simple Directory Browser

The next example recursively traverses the file system on a drive and fills a
TreeView control with a complete directory listing. The user can click any
directory to see the list of files it contains (as shown in Figure 9-4).

Figure 9-4: A simple file browser

The program begins by filling the TreeView with all the subdirectories on
drive C: at startup. It does this with the help of a Fill() method that calls itself
recursively to burrow down the levels of the directory tree.

Private Sub Browser_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim RootDir As New DirectoryInfo("c:\")
 Dim RootNode As New TreeNode("c:\")
 treeFiles.Nodes.Add(RootNode)
 Fill(RootDir, RootNode)
End Sub

Private Sub Fill(ByVal Dir As DirectoryInfo, ByVal DirNode As TreeNode)
 For Each DirItem As DirectoryInfo In Dir.GetDirectories()
 ' Add node for the directory.
 Dim NewNode As New TreeNode(DirItem.Name)
 DirNode.Nodes.Add(NewNode)

bvb_02.book Page 287 Thursday, March 30, 2006 12:39 PM

288 Chap te r 9

 ' Use a recursive call here to get all subdirectories.
 Fill(DirItem, NewNode)
 Next
End Sub

When a node is selected, a DirectoryInfo object is created and used to
retrieve a list of the contained files, which is then added to the list box:

Private Sub treeFiles_AfterSelect(ByVal sender As System.Object, _
 ByVal e As TreeViewEventArgs) Handles treeFiles.AfterSelect
 Dim Dir As New DirectoryInfo(e.Node.FullPath)
 lstFiles.Items.Clear()
 lstFiles.Items.AddRange(Dir.GetFiles())
End Sub

NOTE It can take quite a long time for the program to start and fill the initial tree on startup.
A better approach would be to fill the first level of nodes and to fill in subdirectories
“just in time” as the nodes are expanded. You could do this by responding to the
TreeView.BeforeExpand event. For an example of this technique, see the online code
(look for the DirectoryTree project).

“Watching” the File System

Another interesting feature introduced with .NET is the ability to “watch”
folders for any changes, deletions, or additions. This technique can come in
quite handy. For example, you could create a sales fulfillment program that
waits for a new order file to be saved in a directory (perhaps after it is received
by a sales associate as an email attachment), and then automatically springs
into action to process the new file. This technique replaces some of the ugly
tricks that programmers resorted to in the past, which include continuously
examining a directory for changes, and thereby wasting precious CPU cycles
with unproductive checks.

To add this functionality to your applications, you just need to use the
FileSystemWatcher class, which, like all our file access tools, is found in the
System.IO namespace. You set the Path property to indicate the directory to
monitor (here, d:\Orders), and set the Filter string to specify the file types
(here, .xls files).

Dim Watch As New FileSystemWatcher()
Watch.Path = "d:\Orders"
Watch.Filter = "*.xls"

' You can also allow the FileSystemWatcher to search subdirectories.
' Watch.IncludeSubdirectories = True

The FileWatcher produces four events: Changed, Created, Deleted, and
Renamed. If needed, you can disable its events by setting the EnableRaisingEvents
property to False.

bvb_02.book Page 288 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 289

' Add an event handler dynamically.
AddHandler Watch.Created, AddressOf NewFile

The subroutine below reacts when a new file is added to the monitored
directory, retrieving its name using the supplied parameters. Figure 9-5 shows
this code in action.

Public Sub NewFile(ByVal sender As Object, _
 ByVal e As System.IO.FileSystemEventArgs)

 lstNewFiles.Items.Add("New file: " & e.Name)
End Sub

Figure 9-5: Monitoring the file system

NOTE To make this example more robust, you need a dash of multithreading smarts. That’s
because the FileWatcher fires events on another thread, not the thread that’s controlling
your application. To prevent a conflict, consider the code shown in the FileWatcher
project (included with the sample code), which uses the Control.Invoke() method.
This technique is explained in detail in Chapter 11.

File System Change Events

It’s easy to handle the Created, Deleted, and Renamed events of the
FileSystemWatcher. However, the Changed event is a little trickier, because
there are a huge number of types of possible changes that can be detected
as Windows performs its ordinary housekeeping.

In order to handle the Change event properly, you need to set the types
of changes you want to monitor in the NotifyFilter property (specifying
each one using a value from the NotifyFilters enumeration). You can
combine several different types of monitored actions using the bitwise
Or keyword.

bvb_02.book Page 289 Thursday, March 30, 2006 12:39 PM

290 Chap te r 9

' Watch for changes to file size or file name.
Watch.NotifyFilter = NotifyFilters.FileName Or NotifyFilters.Size

Object Serialization

The Bob program we looked at earlier used a relatively crude (but effective)
mode of handmade serialization. The .NET platform also introduces an auto-
matic form of serialization that you can use to store the information in an
object (see Figure 9-6). This technique can be used in your own applications,
and the .NET Framework also relies on it to transmit a class to a remote com-
ponent on another computer if you are designing a distributed application.

Figure 9-6: .NET serialization

Implementing this type of serialization in one of your classes is extremely
easy. All you need to do is flag your class as serializable with a special attribute.
The client code (the code using your class) can then decide what type of
serialization it wants to use, and store the object as a binary file, as an XML
file, or as something else.

Here is the Person class, simplified and remade to support automatic
serialization.

<Serializable> Public Class SerializablePerson
 Public Name As String
 Public Age As Integer
 Public Height As Integer

 Public Sub New()
 End Sub

 Public Sub New(ByVal Name As String, ByVal Age As String, _
 ByVal Height As String)
 Me.Name = Name
 Me.Age = Age
 Me.Height = Height
 End Sub
End Class

BinaryFormatter
or

SoapFormatter
Object

Your
Serializable

Object

Backing Store
(a file, memory

block, etc.)Deserialize()

Serialize() Stream

Stream

bvb_02.book Page 290 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 291

Did you notice the differences? There are exactly two modifications:

� The SaveToFile() and LoadFromFile() methods were removed. This time,
.NET will do the serialization for us automatically.

� The Class now has a <Serializable> attribute in the first line, where it is
declared. This tells .NET that it is allowed to persist and restore instances
of this class to and from any type of stream.

Storing and Retrieving a Serializable Object

To serialize the class, you need to use a serializer from the System.Runtime
.Serialization branch of the class library. The best choice is the BinaryFormatter
class, which is found in the System.Runtime.Serialization.Formatters.Binary
namespace. To get off to a good start, we’ll import the namespace:

Imports System.Runtime.Serialization.Formatters.Binary

The BinaryFormatter class has two important, straightforward methods:
Serialize() and Deserialize(). Serialize() takes an object, converts it to a
compact binary format, and sends it to the specified stream.

Dim Bob As New SerializablePerson("Bob", 34, 5.25)
Dim fs As New FileStream("c:\bob.dat", FileMode.Create)
Dim bf As New BinaryFormatter()

' Store Bob with the help of the BinaryFormatter.
bf.Serialize(fs, Bob)

fs.Close()

Deserialize() retrieves the information from the stream and reconstructs
the object. The object is returned to life as the generic System.Object type, so
you need to use the CType() function to give it back its proper identity.

Dim fs As New FileStream("c:\bob.dat", FileMode.Open)
Dim bf As New BinaryFormatter()

' Retrieve Bob with the help of the BinaryFormatter.
Dim Bob As SerializablePerson
Bob = CType(bf.Deserialize(fs), SerializablePerson)

' Verify Bob's information.
MessageBox.Show(Bob.Name)

fs.Close()

bvb_02.book Page 291 Thursday, March 30, 2006 12:39 PM

292 Chap te r 9

That’s really all you need. It’s very simple (although some error-handling
code would be nice to guard against any possible file access errors). You can
try out this code with the SerializablePerson2 project.

Fine-Tuned Serialization

In some cases, you might have a class that can be partly but not entirely
serialized. For example, you might have certain member variables that
correspond to information that won’t have any meaning on another
computer or at another time, such as a low-level handle to a Window.
(A handle is a number that the operating system uses to uniquely identify
a currently running window. It’s abstracted away by .NET, but it’s heavily used
by the Windows API.) To deal with this case, just mark the nonserializable
information with a <NonSerialized> attribute. This indicates to .NET that it
should ignore this value when persisting instances of the class. When the
serialized object is reconstructed, this variable will return to its default
uninitialized value.

In the PartlySerializablePerson class shown below, any information about
Height will not be retained. When a PartlySerializablePerson is deserialized,
its Height will return to zero.

<Serializable> Public Class PartlySerializablePerson
 Public Name As String
 Public Age As Integer
 <NonSerialized> Public Height As Integer
End Class

A more interesting situation occurs with serializable objects that con-
tain references to other objects. In this case, the referenced object must also
support serialization, or the whole process will fail. The .NET Framework will
store and restore all the subobjects automatically. This can end up persisting
a large amount of information. For example, if you have a SerializablePerson
object that contains a reference to another SerializablePerson object, which
in turn references a third SerializablePerson object, you will end up with three
times the data you expected. If you don’t want to serialize a linked object, you
can always mark the as appropriate variables with <NonSerialized>.

Cloning Objects with Serialization

Serialization also provides us with an interesting way to clone an object. You
may remember (from Chapter 6) that cloning an object is not always easy,
particularly if the class contains multiple subobjects.

Cloning an object with serialization basically consists of copying the object
into a memory stream and then retrieving it from the stream as a new object.
You can insert this cloning code directly into your object, as shown here.

<Serializable> Public Class ClonableSerializablePerson
 Implements ICloneable

bvb_02.book Page 292 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 293

 Public Name As String
 Public Age As Integer
 Public Height As Integer

 Public Function Clone() As Object Implements ICloneable.Clone
 Dim ms As New MemoryStream()
 Dim bf As New BinaryFormatter()

 ' No more MemberwiseClone()!
 bf.Serialize(ms, Me)
 Clone = bf.Deserialize(ms)
 ms.Close()
 End Function

End Class

This code will duplicate every contained object. In some cases this will be
too much, and you’ll need a more controlled approach that involves manually
copying some objects, as shown in Chapter 6.

Printing and Previewing Data

Printing in Visual Basic 2005 is quite different than it was before .NET. The
main difference is that the printing process is now asynchronous. In Visual
Basic 6, the computer would be temporarily frozen while output commands
were sent to the printer. While this worked fine for most applications, pro-
grams that required lengthy print operations would be unresponsive while
the information was being sent.

Visual Basic 2005 introduces an event-based printing model. Here’s how
it works. First, you create a PrintDocument object. You then start printing by
calling the Print() method. At this point the PrintDocument begins firing the
PrintPage event, once for each page that needs to be printed.

The PrintPage event provides your code with a PrintPageEventArgs
object which contains information about the printer, together with
methods you can use to print text and pictures. Your code handles the
PrintPage event in an event handler, outputs the next page, and then
decides whether or not another page is required. If it is, the event handler
sets PrintPageEventArgs.HasMorePages to True, and the PrintPage event is fired
again a short time after. If not, it sets PrintPageEventArgs.HasMorePages to False,
and the process ends.

Because pages are printed one at a time, your program remains
responsive. However, another consequence of the page-by-page printing
model is that your code needs to keep track of where it currently is in the
printout, so that the next time the PrintPage event is fired, the printing
resumes at the proper position.

How can you keep track of your position? This part is up to you, but a
common way is to use a variable that stores the current page. Then, each
time the PrintPage event fires you can check the variable in a conditional
block (an If/End If statement or a Select Case statement) and print the

bvb_02.book Page 293 Thursday, March 30, 2006 12:39 PM

294 Chap te r 9

corresponding text. In many programs, a printout actually consists of a single
large block of information that spans as many pages as needed, in which case
it makes more sense to store an offset into that block. For example, if you are
printing rows of report information from a database, you might store the
current row number. If you are printing a text stream, you might keep track
of the character position.

Printing Data from an Array
The following example uses a simple array. The reference to the PrintDocument
object and the code for the PrintPage event are contained in a form class
named PrintStatus.

Imports System.Drawing.Printing

Public Class PrintStatus
 Private WithEvents MyDoc As PrintDocument
 Private PageNumber As Integer
 Private Offset As Integer
 Private PrintData(100) As String
 Private PrintFont As New Font("Arial", 10)

 Private Sub PrintStatus_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' Fill PrintData array with bogus information.
 Dim i As Integer
 For i = 0 To 100
 PrintData(i) = "This is line number " & i + 1 & ". "
 PrintData(i) &= "It originates from the array element number "
 PrintData(i) &= i & "."
 Next
 MyDoc = New PrintDocument()
 End Sub

 Private Sub cmdPrint_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdPrint.Click
 PageNumber = 0
 Offset = 0
 MyDoc.Print()
 End Sub

 Private Sub MyDoc_PrintPage(ByVal sender As Object, _
 ByVal e As PrintPageEventArgs) Handles MyDoc.PrintPage
 ' (Printing code left out.)
 End Sub

End Class

This form contains member variables that store the current page
number and print offset, as well as the actual print data. In the Load
event, the print data array is filled with sample information, and a

bvb_02.book Page 294 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 295

printer is selected. Asynchronous printing is started when the user clicks
the cmdPrint button.

The actual printing takes place once the PrintPage event occurs. The first
PrintPage event will occur almost instantaneously (as you can verify by insert-
ing a breakpoint). Inside the event handler, you use the PrintPageEventArgs
object to perform the actual printing:

Private Sub MyDoc_PrintPage(ByVal sender As Object, _
 ByVal e As PrintPageEventArgs) Handles MyDoc.PrintPage

 ' Determine the line height.
 Dim LineHeight As Single = PrintFont.GetHeight(e.Graphics)

 ' Create variables to hold position on page.
 Dim x As Single = e.MarginBounds.Left
 Dim y As Single = e.MarginBounds.Top

 ' Increment global page counter and refresh display.
 PageNumber += 1
 lblStatus.Text = "Print Page " & PageNumber

 ' Print all the information that can fit on the page.
 Do
 e.Graphics.DrawString(PrintData(Offset), PrintFont, _
 Brushes.Black, x, y)
 Offset += 1
 y += LineHeight
 Loop Until (y + LineHeight) > e.MarginBounds.Bottom Or _
 Offset > PrintData.GetUpperBound(0)

 ' Determine if another page is needed.
 If Offset < PrintData.GetUpperBound(0) Then e.HasMorePages = True

End Sub

In our example, the PrintPage event will occur twice—once for each of
the two required pages. The event handler code begins by defining a font
that will be used for printing and determining how large the line spacing
should be to accommodate that font. The next two lines create variables to
track the current position on the page. By default, printing begins at the
page margin border. Remember, with printing routines, you need to take
care of all the details; for example, you have to break up long strings into
multiple lines of text, and explicitly set the position on the page every time
you print a new line.

The following two lines increment the page counter and display the
page information in a label control in the window. This keeps the user
informed about print progress. The Do/Loop block contains the actual print-
ing code. This code uses the DrawString() method to print out a single line of
text at the indicated coordinates. The code then increments our Offset value
(which represents the line number) and moves the y coordinate down one

bvb_02.book Page 295 Thursday, March 30, 2006 12:39 PM

296 Chap te r 9

full line space. (Coordinates are measured from zero, starting at the upper
left corner.) Before continuing to print the next line, the event handler
checks for two possible conditions:

Loop Until (y + LineHeight) > e.MarginBounds.Bottom Or _
 Offset > PrintData.GetUpperBound(0)

In order to continue, there must be space left on the current page for
the next line, and there must be data left to print. (The value of PrintOffset
can’t be larger than the upper boundary of our array, because then it would
indicate a row that doesn’t exist.)

The final line of our event handler determines whether there is still
unprinted data left in the array. If there is, the e.HasMorePages property must
be set to True. Otherwise, .NET will assume that our printing is completed
and won’t bother to call the PrintPage event again.

Printing Wrapped Text
Some applications print out extremely long strings of text that break over
more than one printed line. There are several different ways to handle this
scenario. You can split the text into a series of separate lines before printing
and then load the information into an array or collection. Alternatively, you
can split the information into lines as you print it, depending on the width
of the current page. This approach, known as “wrapping” the text, is often the
required solution if you are printing mixed information that combines text,
graphics, and other data, or if you allow the user to select the font size you use.

.NET has a handy shortcut that handles this job. You simply need to use
the Graphics.DrawString() method with x and y coordinates and a bounding
rectangle. The rectangle represents the bounds inside of which you want the
text to be printed. The x and y coordinates tell .NET where the top-left corner
of the rectangle should be placed on the page. The text is automatically
wrapped to fit the rectangle.

The online samples for this chapter include a WrappedPrinting example
that demonstrates the difference between wrapping and not wrapping
(Figure 9-7).

Figure 9-7: The WrappedPrinting project

bvb_02.book Page 296 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 297

When printing text that doesn’t need to wrap, you simply specify the
top-left coordinate where printing should start. The line extends to the
right indefinitely and will continue off the edge of the page without causing
an error.

e.Graphics.DrawString(txtData.Text, MyFont, Brushes.Black, _
 x, y, StringFormat.GenericDefault)

To print wrapped text, you supply a Rectangle object instead of the coor-
dinates. (The Rectangle object is defined in the System.Drawing namespace.)
You can create a rectangle by hand, but this example simply uses the already
available rectangle that represents the page margins, e.MarginBounds. The
default page margins are set according to the printer settings. You’ll learn
how to tweak these details in the next section.

e.Graphics.DrawString(txtData.Text, MyFont, Brushes.Black, _
 e.MarginBounds, StringFormat.GenericDefault)

Figure 9-8 shows the result.

Figure 9-8: The wrapped printout

You can also modify the StringFormat parameter that you use with the
DrawString() method to specify different options for the text alignment. For
example, you can create a new StringFormat object and configure it to auto-
matically center the printed text with this code:

Dim CustomFormat As StringFormat = StringFormat.GenericDefault

' Center the block of text on the page (vertically).
CustomFormat.LineAlignment = StringAlignment.Center

' Center the individual lines of text (horizontally).
CustomFormat.Alignment = StringAlignment.Center

e.Graphics.DrawString(txtData.Text, MyFont, Brushes.Black, _
 e.MarginBounds, CustomFormat)

bvb_02.book Page 297 Thursday, March 30, 2006 12:39 PM

298 Chap te r 9

Printing Pictures
The previous example demonstrates how to print the most common type of
information: formatted text. You can also use other methods from the Graphics
object with equal ease to print different types of information, including basic
shapes (through methods like DrawRectangle), lines (DrawLine), and even
pictures:

e.Graphics.DrawImage(Image.FromFile("c:\MyFolder\MyFile.bmp"), x, y)

When you use the Graphics object, you are actually making use of the
GDI+ technology in the .NET Framework. The interesting part is that this
standard Graphics object is reused in more than one place. For example, you
use DrawImage() and DrawString() to place output on a printed page in exactly
the same way that you use them to place output onto a Windows form. Even
though you are less likely to use GDI+ to manually create window output, it’s
good to know that the skills you use in printing can be reused with on-screen
graphics if required.

NOTE If you don’t want to store the graphic in a separate file, you can embed it directly into
your application assembly using the resource techniques described in Chapter 7.

Print Settings
The previous printing examples use the default margin and page size settings.
However, this approach is rarely flexible enough for a real application. Most
users expect to have control of at least some basic printing options, including
the ability to choose the specific printer they want to use. In Visual Basic 6,
this was a fairly straightforward but manual task that involved presenting the
user with a Print Options window, retrieving the settings they chose, and
applying them to the Print object before beginning a print operation. In
.NET, the process has been made much easier.

All the tools you need for displaying standard Print Options and Page
Settings windows are provided in convenient classes from .NET’s class
library. Before you display a Printer Settings window, you associate it with
the PrintDocument object that you are using. Then, any configuration that the
user performs will be automatically incorporated in the appropriate object
(MyDoc in our example) and in the PrinterEventArgs object (called e) provided
in the PrintPage event.

Private Sub cmdConfigure_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdConfigure.Click

 Dim dlgSettings As New PrintDialog()
 dlgSettings.Document = MyDoc
 dlgSettings.ShowDialog()
End Sub

bvb_02.book Page 298 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 299

With this simple code, you allow the user to set the standard printer
options such as Printer and Number of Copies. These settings will be
stored in the supplied PrintDocument object. For example, that means the
MyDoc.PrinterSettings.PrinterName property will be automatically updated to
reflect the selected printer.

For simplicity, this example creates the PrintDialog object entirely in
code. You could also use the component tray to add it to your form and set
its properties at design time. Of course, the end result would be the same.
The only difference is that Visual Studio will automatically add the corre-
sponding code for the PrintDialog object to the hidden designer code file.

Similar code can be used to give the user a chance to modify page settings:

Dim dlgSettings As New PageSetupDialog()
dlgSettings.Document = MyDoc
dlgSettings.ShowDialog()

These changes will also be reflected automatically throughout
related areas of the program. For example, margin selections will affect
the e.MarginBounds.Top property used in the PrintPage event.

Print Preview

Visual Basic 2005’s print preview feature is almost an example of getting
something for nothing. With a few simple lines, you can create a Print
Preview screen that displays the printed information and its pagination,
complete with controls for zooming and options for displaying multiple
pages at a time.

Here is the code needed to incorporate the print preview feature in our
current example:

Private Sub cmdPreview_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdPreview.Click

 Dim dlgPreview As New PrintPreviewDialog()
 dlgPreview.Document = MyDoc
 dlgPreview.Show()

End Sub

Once again, rather than add the PrintPreviewDialog control to the
component tray at design time (which would work just as well), this code
creates the PrintPreviewDialog control manually at runtime. When your users
click the cmdPreview button, a new nonmodal window will appear, as shown in
Figure 9-9.

bvb_02.book Page 299 Thursday, March 30, 2006 12:39 PM

300 Chap te r 9

Figure 9-9: The Print Preview screen

The amazing aspect of the print preview feature is that it uses all your
prewritten printing code, both saving you trouble and eliminating differ-
ences in appearance between the Print Preview display and the actual
printed copy. Various third-party components attempt to implement this
simple but tricky concept, but none do so as simply or as successfully as the
.NET Framework.

The print preview feature also provides a substantial amount of flexibility
and customization. Before you display your PrintPreviewDialog object, you can
tweak various form properties, including such standards as WindowState, Size,
MaximumSize, MinimumSize, and StartupPosition. You can even set its MdiParent
property to make it become an MDI child window inside your program!

The PrintPreview Control

.NET also gives you the ability to create a custom Print Preview window or
integrate the Print Preview display into one of your application windows.
This allows you to combine print preview information with other components
of the user interface. For example, you could create a program with a
customized Print window that lets your users set special options, such as
footer and page numbering style. Whenever a change is made, you would
update the Print Preview display automatically to provide a dynamic preview.

To incorporate a Print Preview display inside one of your windows, you use
the PrintPreview control and draw it on your form at design time. Figure 9-10
shows an example (available in the samples as the PrintTest project). This
application uses a custom form that includes three buttons, a label with status
information, and a preview window (courtesy of the PrintPreview control) on
the right side.

bvb_02.book Page 300 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 301

Figure 9-10: Incorporating the print preview feature in a form

To display the preview inside the PrintPreview control, just set its Document
property, as you would with the PrintPreviewDialog. You can also tweak the
Zoom property to specify how large the pages should be and the Columns or Rows
property to set the number of pages that can be displayed side by side.

' The default size zoom is 0.3. 1 is full-size.
Preview.Zoom = 0.2

' The Rows and Columns settings mean 6 pages can be displayed at once
' (2 x 3).
Preview.Columns = 2
Preview.Rows = 3

Preview.Document = MyDoc

' The next line triggers the actual preview.
Preview.InvalidatePreview()

To recalculate the Print Preview display, call the InvalidatePreview()
method again.

Working with the Registry

As long as we’re on the subject of data, it’s worth slipping in a quick discussion
of the Windows registry, which is the central repository for storing application
settings on a Windows computer. It wasn’t hard to use the registry in Visual
Basic 6, but you were forced to put your settings into a special area designated

bvb_02.book Page 301 Thursday, March 30, 2006 12:39 PM

302 Chap te r 9

for VB programmers. To escape this bizarre (and somewhat insulting) restric-
tion and access the full registry, you had to resort to the Windows API.
Thankfully, VB 2005 has improved the picture once again.

To access the Windows registry in .NET, you use two classes from the
Microsoft.Win32 namespace: Registry and RegistryKey. Registry provides your
starting point into one of the main divisions of the registry. Typically, you will
use the Registry.CurrentUser property to work with the registry settings that
affect the currently logged-on user. Less often, you might use another branch,
such as Registry.LocalMachine, which allows you to configure settings that will
affect all users.

The registry is a hierarchical repository, containing keys and many
levels of subkeys. The usual practice for an application is to store informa-
tion in either the CurrentUser (HKEY_CURRENT_USER) or LocalMachine
(HKEY_LOCAL _MACHINE) branch, in the path Software\CompanyName \
ProductName\ or Software\CompanyName \ ProductName\Category. This location
is the organizational equivalent of a file folder on a hard drive. The actual
information about the application is stored in string values.

The following example shows a generic RegistryReader class that receives
a reference to a form, and then either saves its current size and position
attributes (SaveSize) or retrieves another set of attributes and applies them
instead (SetSize). The path name is hard-coded for this application as
Software\AcmeInsurance\PolicyMaker. A key is added to the path using the
name of the form, to help group the settings for different forms (as in
Software\AcmeInsurance\PolicyMaker\Main). Depending on how your appli-
cation works, this may not be an appropriate way to store information. For
example, if you create different forms dynamically, and are in the habit of
giving them the same name, their settings will overwrite each other in the
registry.

Inside each form-specific key, four values are specified: Height, Width, Top,
and Left.

Imports Microsoft.Win32

Public Class RegistryReader

 Public Shared Sub SaveSize(ByVal frm As System.Windows.Forms.Form)
 ' The next line creates the key only if it doesn't already exist.
 Dim rk As RegistryKey
 rk = Registry.LocalMachine.CreateSubKey(_
 "Software\Acme\TestApp\" & frm.Name)
 rk.SetValue("Height", frm.Height)
 rk.SetValue("Width", frm.Width)
 rk.SetValue("Left", frm.Left)
 rk.SetValue("Top", frm.Top)
 End Sub

 Public Shared Sub SetSize(ByVal frm As System.Windows.Forms.Form)
 Dim rk As RegistryKey
 rk = Registry.LocalMachine.OpenSubKey(_

bvb_02.book Page 302 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 303

 "Software\Acme\TestApp\" & frm.Name)

 ' If the value isn't found the second argument is used.
 ' This leaves the size and location unchanged.
 frm.Height = CType(rk.GetValue("Height", frm.Height), Integer)
 frm.Width = CType(rk.GetValue("Width", frm.Width), Integer)
 frm.Left = CType(rk.GetValue("Left", frm.Left), Integer)
 frm.Top = CType(rk.GetValue("Top", frm.Top), Integer)
 End Sub

End Class

NOTE Registry settings are not case-sensitive, so differences in the capitalization of a key or
value name will be ignored. As you’ve seen in the preceding examples, you don’t need to
worry about missing values. You can use the same command to add a new value or to
replace an existing one. When retrieving a value, you can supply a default, which will
be returned if the specified value does not exist.

To use this class, just call the appropriate subroutine with the form that
you want to save or reset. The following example shows two button event
handlers that can be used to make a form automatically save and restore its
size and position. (You can run the included RegistryTester program to try
this out.)

Private Sub cmdSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSave.Click
 RegistryReader.SaveSize(Me)
End Sub

Private Sub cmdLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdLoad.Click
 RegistryReader.SetSize(Me)
End Sub

NOTE For more convenient access to the registry, you can use the My.Computer.Registry
branch of the My object.

XML Files

The real story with XML and Visual Basic 2005 is how the .NET platform uses
XML behind the scenes to accomplish a variety of tasks. You’ll discover in
Chapters 10 and 13 how .NET uses XML to provide communication between
web services and clients, and to store relational data in ADO.NET. In these
cases, the use of XML is automatic and transparent. You won’t need to deal
with the XML information directly. For many programmers, this will be the
closest they get to XML. Sometimes, however, you may want to read or write
XML files manually. You might be interacting with data stored by another
program, or you may want to use XML to store your own application’s data.

bvb_02.book Page 303 Thursday, March 30, 2006 12:39 PM

304 Chap te r 9

For example, you might create a special sales ordering program that
allows customers to choose the items they want to order out of a database,
and to save their choices to a file if they don’t want to order right away. This
file will probably contain little more than a list of product IDs that identify
the selected items. The corresponding price and product information will
reside in corresponding records in the full product database, which is stored
on your company’s website. In this case, it would make sense to store the
local list of product IDs in a simple format, such as a text file rather than a
separate database. An XML file, which is really a text file with an enhanced,
standardized organization, may be exactly what you need.

What Is XML, Anyway?

XML code is stored on your computer in a text file, but it looks more like
HTML. That’s because XML uses elements to “mark up” content. A very
basic XML document might look a little like this:

<?xml version="1.0"?>
<mydocument>
 <person>
 <name>Matthew</name>
 <phone>555-5555</phone>
 </person>
</mydocument>

This XML document has four elements. As with most XML files, the
whole document is contained in a root element, which in this case is called
mydocument. This element contains a single person element, which in turn con-
tains two additional pieces of information—a name and a phone number—in
separate element called name and phone. Elements come in starting and ending
pairs (known as tags) that look the same, except that the ending tag has a
slash (/) character in front. In between the two tags is where the element
content goes.

As in an HTML document, extra whitespace is collapsed. The different
levels of indentation are used to indicate structure, but they have no effect
on how the document is read. If this were a text file, you would read it line by
line. However, with an XML document you will read it element by element.
Even if the document above were condensed to a single line, its elements
would be read separately.

Content, Not Format

The preceding example illustrates the primary difference between HTML
and XML. In an HTML document, tags indicate formatting. For example,
<h1>The Title!</h1> tells an Internet browser to place a line of text in a bold
font with a larger size than normal body text. An XML document, on the
other hand, indicates absolutely nothing about how to format data for
presentation. In fact, if you open an XML document in Internet Explorer,
you’ll see everything in the same size text, with the tags displayed (Figure 9-11).

bvb_02.book Page 304 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 305

Figure 9-11: XML in Internet Explorer

XML tags indicate content, not format. In fact, XML documents
are used almost exclusively for storing data, because the data is described
in a way that makes it easy for other programs (and even humans) to
interpret it.

Part of the complexity of using XML is understanding the many
standards for writing XML documents. As you can see, the underlying
concept behind XML is pretty general. You can create an XML document
pretty much any way you want. Different standards are used to ensure some
consistency, but we won’t have a chance to review them in this book.

Attributes and Comments

One other thing you should know about XML is that it doesn’t just use
elements, although those are its primary units for organizing content. You
can also use attributes and comments. Comments go anywhere and are ignored
for data processing purposes. Usually, they just provide additional informa-
tion that might help a human being understand something about a file.
Comments are bracketed by <!-- and -->.

Attributes add extra information into an element. Attributes appear
inside the opening tag of an element and are specified using a Name=“Value”
syntax. A subject of great debate in the XML world is what information should
go into an attribute, and what should go into an element. Generally, an ele-
ment is preferred for storing the core information (like names and phone
numbers in a customer list), while attributes are used to indicate extra descrip-
tive information (like the version of the document, the time a change was
made, a particular way the information should be processed or interpreted,
and so on). Once again, there is no single all-encompassing standard.

Here is a modification of the previous XML document that includes two
comments and an attribute:

<?xml version="1.0"?>
<mydocument title="MatthewDescription">

bvb_02.book Page 305 Thursday, March 30, 2006 12:39 PM

306 Chap te r 9

<!-- This is the comment. Right above us is the attribute, inside the
mydocument element (attributes are always part of a tag like this). It says
that mydocucment has the title "MatthewDescription". -->
 <person>
 <name>Matthew</name>
 <phone>555-5555</phone>
 </person>
 <!-- It would make sense to add more person tags here, as needed. -->
</mydocument>

Writing a Simple XML Document

The easiest way to write an XML document is to use the no-nonsense
XmlTextWriter class, which works a little like the StreamWriter class. This class is
designed to let you write a series of XML information from start to finish.
If your information needs to be edited, you need to perform the necessary
operations with the data in memory before you start writing it to the file.

Our next example shows a block of Visual Basic 2005 code that could
create the sample XML document we looked at in the previous section.
Before beginning, make sure you import the two required namespaces:

Imports System.IO
Imports System.Xml

The XML-writing code is shown below. This listing uses indentation to
help you see the structure of the corresponding XML document.

Dim fs As FileStream = New FileStream("c:\myfile.xml", FileMode.Create)
Dim w As XmlTextWriter = New XmlTextWriter(fs, Nothing)
w.WriteStartDocument()
w.WriteStartElement("mydocument")
 w.WriteAttributeString("name", "", "MatthewDescription")
 w.WriteComment("This is the comment, etc.")
 w.WriteStartElement("person")
 w.WriteStartElement("name")
 w.WriteString("Matthew")
 w.WriteEndElement() ' Close the name element.
 w.WriteStartElement("phone")
 w.WriteString("555-5555")
 w.WriteEndElement() ' Close the phone element.
 w.WriteEndElement() ' Close the person element.
' Could add more person elements here...
w.WriteEndElement() ' Close the mydocument element.
w.WriteEndDocument()
w.Close()

Notice that you need the root mydocument element. As soon as you close it,
the XML document is finished. .NET will not allow you to open another
mydocument element in the same file, nor will it allow you to write a file consisting
only of several person elements without any other element containing
them, because a document structured in this way would violate the XML

bvb_02.book Page 306 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 307

standard. (This is one of the benefits of using the XmlTextWriter class instead
of StreamWriter for XML information: It proofreads your output and stops you
if you try to create invalid XML.)

Reading XML
To read an XML file, you can use a simple text-reading class called, unsur-
prisingly, XmlTextReader, or you can use a combination of the XmlDocument and
XmlNodeReader classes, which is what we will do here. XmlNodeReader is designed
to read nodes. Each time you use the XmlNodeReader.Read() method, it loads the
information for the next node in the XML file into the XmlNodeReader object
(using the Name, Value, and NoteType properties). The Read() method returns
True if the operation is successful, and False if the end of the file has been
reached and another node couldn’t be found. An XmlError is thrown if the
XML file is discovered to contain invalid content, such as a starting tag that
doesn’t have a corresponding ending tag. If the read operation succeeds, you
can then use the various properties of the XmlNodeReader object to access the
content in the node.

By this point you may be wondering, “What exactly is a node?” and, “Is it
any different than an element?” The easiest way to answer these questions is
to show you what an XmlNodeReader will read from the sample myfile.xml file.

The following example uses a subroutine called Out to add some infor-
mation to a label without overwriting it. (This simple procedure, which isn’t
shown here, was used earlier in this chapter.)

Dim doc As New XmlDocument()
doc.Load("c:\myfile.xml")
Dim r As XmlNodeReader = New XmlNodeReader(doc)
' Use a counter to keep track of how many nodes are found.
Dim ElementNumber As Integer = 0

' Loop until the file is finished.
Do
 ElementNumber += 1
 ' Display each node property, unless it's blank.
 Out(ElementNumber.ToString & ". " & r.NodeType.ToString)
 If Not (r.Name = "") Then Out(" Name: " & r.Name)
 If Not (r.Value = "") Then Out(" Value: " & r.Value)
 Out("")
Loop While r.Read() = True

This program performs the simple task of displaying information about
each node in the label control. The information that is displayed will look
like this:

1. XmlDeclaration
 Name: xml
 Value: version= "1.0"

2. Element
 Name: mydocument

bvb_02.book Page 307 Thursday, March 30, 2006 12:39 PM

308 Chap te r 9

3. Element
 Name: person

4. Element
 Name: name

5. Text
 Value: Matthew

6. EndElement
 Name: name

7. Element
 Name: phone

8. Text
 Value: 555-5555

9. EndElement
 Name: phone

10. EndElement
 Name: person

11. EndElement
 Name: mydocument

From this listing, it’s obvious that our XML file has 11 nodes. There is
one node for every starting tag, every ending tag, every comment, and even
the XML definition at the top of the file. Elements have names, but no values.
The data inside an element has no name, but it does have a value. The only
potential problem with this arrangement is that attributes don’t appear. How-
ever, that’s because attributes are actually properties of nodes—not nodes.
To check for an attribute, examine the node’s HasAttributes property or
its AttributeCount property. If attributes are present, you can then use the
MoveToAttribute() method to jump to the attributes, and the MoveToElement()
method to get back to the element and continue on your way.

It works like this:

If r.HasAttributes Then
 Dim i As Integer
 For i = 0 To r.AttributeCount - 1
 r.MoveToAttribute(i)
 ' Display the attribute's properties.
 Out(" Attribute #" & (i + 1).ToString())
 Out(" Name: " & r.Name)
 Out(" Value: " & r.Value)
 Next i
 ' Go back to the start of the original element.
 r.MoveToElement()
End If

bvb_02.book Page 308 Thursday, March 30, 2006 12:39 PM

Deal ing with Data: Fi le s, Pr in ti ng, and XML 309

(Of course, you could also just refrain from using attributes altogether
and make your life a little easier.)

The full code can be found in the online XmlTester application (shown
in Figure 9-12).

Figure 9-12: The XmlTester utility

This should give you a little taste of what it’s like to work with the full XML
Document Object Model (DOM), in which you navigate through an XML
file as a collection of objects.

Advanced XML

The techniques you’ve learned in this chapter are the most convenient ways
to create and access XML documents. However, they are designed for quickly
writing or reading from an entire XML file at once. For example, you might
use an XmlNodeReader in some sort of FileOpen() routine that creates business
objects and sets their properties based on the information that you read.
You could then use these objects to manipulate the information, and
possibly end by writing a new XML file (or overwriting the existing file)
using an XmlTextWriter.

On the other hand, you might sometimes prefer that applications read
XML data and work with the information as XML data, not as custom objects.
This technique might be useful in a cross-platform project, for example,
where XML data is going to be used in several different programming
environments, and the features of those environments are known to be
incompatible.

In order to work with XML data, you can use the XML DOM which
treats your XML document as a collection of related objects, based on their
element tags. This model is available in .NET through the XmlDocument class,

bvb_02.book Page 309 Thursday, March 30, 2006 12:39 PM

310 Chap te r 9

which has methods for adding nodes in any location, and for navigating
through your document. It’s similar to working your way through a TreeView
control, with properties like FirstChild, NextSibling, and so on.

In this book, we stick to basic XML reading and writing. If you need to
store complex structured information, you should check out ADO .NET,
which uses XML natively. If you are working on a cross-platform project that
needs more in-depth XML features, refer to the reference in the Visual Studio
Help class library for the XmlDocument class in the System.Xml namespace.

What Comes Next?

In this chapter, we’ve examined how to reach out from Visual Basic 2005
programs and manipulate the data in the registry, as well as in text, binary,
and XML files. You have learned how to send data to the printer, build a
logical printing framework, configure printing settings, and display a Print
Preview window.

Now that you have a good understanding of the fundamental ingredients,
it’s up to you to discover how to best integrate these features in a live appli-
cation. It’s here where object-oriented design starts to come into play. For
example, you might want to create your own class to represent a data file.
This class would contain the appropriate StreamReader and StreamWriter objects,
but it would expose an interface to the rest of your program that is specific to
the type of information stored in the file. Your class might also take care of
basic chores, such as writing a special identifying signature at the top of a file
when creating the file, and then verifying the signature when reading the
file to make sure that the file really does belong to your application. Or, it
might calculate a checksum based on the data in the file. (A simple example
would be adding together all the product numbers in a purchase order file
and then storing this total at the end of the file. When reading the file, you
could verify this checksum to make sure the data hasn’t been accidentally
corrupted.)

These are all examples of abstraction at work—your file class handles the
low-level text stream features, and your program only has to understand
higher-level operations like opening files, checking for error conditions, and
reading the appropriate properties. This is where the real fun of .NET design
begins.

bvb_02.book Page 310 Thursday, March 30, 2006 12:39 PM

10
D A T A B A S E S A N D A D O . N E T

If you’ve ever programmed internal projects
for tracking customers, sales, payroll, or

inventory, you’ve probably realized that data
is the lifeblood of any company. For the Visual

Basic programmer, this understanding is particularly
relevant, because no other language is used as often to
create database applications. In the early days of Windows programming,
Visual Basic came to prominence as a simple and powerful tool for writing
applications that could talk to a database and generate attractive reports.
In some ways, this is still Visual Basic’s most comfortable niche.

Over the years, Microsoft has given the world a confusing alphabet
soup of database access technologies. Visual Basic programmers first started
with something called Data Access Objects (DAO), later upgrading to Remote
Data Objects (RDO) to access client-server database products such as SQL, and
then migrating to Active Data Objects (ADO), which was supposed to provide
the best of both worlds. In many ways, ADO fulfilled its promise, providing a
flexible and powerful object model that could be used by programmers in just

bvb_02.book Page 311 Thursday, March 30, 2006 12:39 PM

312 Chap te r 10

about any Windows-based programming language. However, it didn’t take
Microsoft long to throw in the towel once again and decide with .NET that
what everyone needs is yet another entirely new way to access data.

And calling ADO.NET “entirely new” is only a modest exaggeration. While
ADO.NET has some superficial similarities to ADO, its underlying technol-
ogy and overall philosophy are dramatically different. While ADO was a
connection-centered database technology that threw in some disconnected
access features as an afterthought, ADO.NET is based on disconnected
DataSets, with no support for server-side cursors. While ADO was a “best of
breed” standard Microsoft component built out of COM, ADO.NET is an
inhabitant of the .NET class library, designed for managed code, and inte-
grated with XML. As you’ll see in this chapter, ADO.NET is one more .NET
revolution.

New in .NET

The .NET languages require a new database technology. ADO, the previous
standard, was wedded to COM, and every interaction between .NET-managed
code and COM-based code suffers an automatic performance hit. The surprise
is that ADO.NET is not just a .NET version of ADO. Instead, ADO.NET has
been redesigned from the ground up.

No server-side cursors
In ADO, a cursor tracks your current location in a result set, and allows
you to perform updates on live data. Cursors have completely disappeared
in ADO.NET. They are replaced by a new disconnected model that
doesn’t maintain connections.

DataSets and DataReaders replace Recordsets
ADO.NET introduces the DataSet, an all-in-one data storage object that
replaces the more limited Recordset from classic ADO. The DataSet is the
perfect container for relational data—it’s able to store more than one
table of data at a time, it supports table relations and column constraints,
and it tracks changes seamlessly. For situations where you need fast read-
only access, and you don’t want to hold onto information for longer than
a few seconds, ADO.NET provides a streamlined DataReader object.

The DataAdapter
In ADO, Recordsets were usually directly connected to a data source. In
the connectionless world of ADO.NET, DataSets don’t directly relate to
any data source. Instead, you use a special DataAdapter to pull information
out of the database and pop it into a DataSet. You also use the DataAdapter
to submit DataSet changes back to the database when you’re finished.

XML-based data storage
In ADO, XML data access is an afterthought. ADO.NET, however, uses
XML effortlessly. Using this XML support, you can store data locally in a
file or transfer XML data to a component on another computer or oper-
ating system (like a web service).

bvb_02.book Page 312 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 313

Introducing ADO.NET

There are essentially two ways you can use ADO.NET in your applications.
First of all, you can use it entirely on its own to create tables and relations
by hand. You can then easily store this information in an XML file using
ADO.NET’s built-in XML capabilities and retrieve it later to work with it
again. This way of using of ADO.NET, with a dynamically created data file, is
described later in this chapter. It provides a single user with a simple, no-frills
approach to creating and storing information.

However, it’s much more likely that you’ll use ADO.NET to interact with
an underlying database. This database might be a stand-alone Access data-
base, or it might be a multiuser relational database management system
(RDBMS) such as Microsoft SQL Server or Oracle. No matter what your data
source, the way you use ADO.NET will be essentially the same. You can still
write data to an XML file for temporary storage, but your ultimate goal is to
commit any modifications back to the database.

Using Relational Data

ADO.NET excels at dealing with relational data: information that is concept-
ually organized as a set of tables, which are filtered and fused together in
various ways by your application.

For example, consider an application that tracks the work records for
different employees. You could try to store all this information in a single
table, but you’d end up duplicating the same employee information in mul-
tiple work records whenever an employee works on several jobs at different
sites. Figure 10-1 shows a more efficient arrangement that models this data
using three tables: Employee, Location, and WorkLog.

Figure 10-1: Table relations

In this example, the Employee table contains all the personnel information
related to specific individuals. The Location table stores the information about
the work sites. Finally, the WorkLog table records the number of hours worked
by each employee at various sites. Each WorkLog record contains a reference to
the appropriate record in the Employee table specifying who did the work
(given in the EmployeeID field) and the appropriate record in the Location
table specifying where the work was done (given in the LocationID field).

bvb_02.book Page 313 Thursday, March 30, 2006 12:39 PM

314 Chap te r 10

This carefully factored arrangement makes it easy to manipulate the data
in many different ways. For example, you could generate a list of employees
who worked at a specific location, or determine the total number of hours
worked by a single employee, or calculate the total number of hours worked
at a specific site by all employees. This arrangement is also lean on storage
space, and it avoids potential conflicts that could occur if you were to store
employee-specific information (such as the worker’s name) or location-
specific information (such as the site address) in the WorkLog table.

This example, of course, shows the standard way to store information in
any relational database, whether it is SQL Server, Oracle, MySQL, or some-
thing else. The applications that need to access this information can use a
combination of SQL statements and stored procedures (miniature programs
stored in the database) to access and change this information. ADO and
ADO.NET handle the processes of sending commands to the database and
of retrieving results. Both ADO and ADO.NET allow you to connect to other
data sources—even sources that are not relational databases. But in the major-
ity of cases, you will use ADO or ADO.NET to access a relational database.

The Northwind Database
All the examples in this chapter use tables from the Northwind database, a
sample database included with SQL Server to help you test database access
code. If you have SQL Server but you don’t have the Northwind database
installed, you can use the script included with the online samples to install
it automatically. You can also use this script to install the Northwind database
for SQL Server 2005 Express Edition. (Consult the README file for specific
instructions.)

If you have another database product or you don’t want to install the
Northwind database, you can tweak the examples to use another data source.
Usually you’ll only have to adjust the connection string and the names of the
tables and fields. Bear in mind, however, that some data sources, such as
Microsoft Access databases, don’t support all the features we’ll discuss
(stored procedures, for instance).

SQL Server 2005 Express Edition
SQL Server 2005 Express Edition is one of Microsoft’s best-kept secrets—it’s
essentially a scaled-down version of SQL Server 2005 that’s bundled with full
versions of Visual Studio and available separately for no cost. It’s completely
compatible with SQL Server (in fact, it is SQL Server) and free to use for
anyone. There are just a few limitations that are designed to restrict it to
smaller systems—for example, it’s only able to use one CPU and 1 GB of
memory, and it can’t create a database larger than 4 GB. But even these
restrictions shouldn’t cause you too much worry—if a client installs SQL
Server 2005 Express Edition and then wants to upgrade to a system that
supports more simultaneous users, a full version of SQL Server 2005 can be
easily installed, and your databases can be imported in a snap.

The only catch is that SQL Server 2005 Express Edition, on its own,
doesn’t provide the nice graphical tools that help you build tables and

bvb_02.book Page 314 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 315

relations, monitor performance, and perform general database upkeep. To
remedy this problem, Microsoft has added some helpful developer database
utilities to Visual Studio. Using the Server Explorer window in Visual Studio,
you can create a new connection to SQL Server 2005 Express Edition, and
start creating databases, tables, and even stored procedures, without leaving
the comfort of the design environment.

However, this is a chapter about programming with databases—not how to
use database management tools. Although I don’t have the space to tell you
everything you need to know to install and configure SQL Server 2005 Express
Edition, you can find more information at Microsoft’s SQL Server 2005
Express site (www.microsoft.com/sql/express).

The Provider Model

ADO.NET uses a provider model. In this model, you use a different set of
classes to connect to each type of database. Each of these sets is known as a
provider. For example, if you want to connect to a SQL Server database, you
use the SQL Server provider. If you want to connect to Oracle, you use the
Oracle provider, which is also included with .NET. Altogether .NET 2.0
includes four providers (there is also one for OLE DB data sources and one
for ODBC drivers), and you can find many more on the Web (or buy them
from third-party component developers).

At first glance, this approach seems unnecessarily complicated. After
all, wouldn’t developers want a single database access framework that lets
them write code that works for any database provider? It’s actually not
as bad as it seems, because all providers adopt the same strict model.
For example, each provider must include a Connection, a Command, and a
DataAdapter class, each of which must provide exactly the same set of methods.
The only thing that changes is the prefix before the name. So SQL Server
fans use the SqlConnection.Open() method, whereas Oracle mavens get an
OracleConnection.Open() method. In other words, the data model is ruthlessly
consistent, so if you learn to program ADO.NET with one provider’s set
of objects, you’ll know most of what you need to write code for any other
provider. And every provider uses the exact same DataSet class to store data
once it’s extracted from the database.

There are two reasons ADO.NET uses the provider-based model. First, it
allows performance optimizations. That’s because OracleCommand can use the
fastest communication method known to Oracle databases. Behind the scenes,
SqlCommand can use the best approach for SQL Server. Previous database access
technologies, like classic ADO, forced everyone to go through a common
layer, which necessarily slowed everything down (even if only by a bit). Second,
the provider model also makes sense because individual database vendors
are able to provide customized features. For example, SQL Server 2000 and
later versions can perform an XML query that returns results as an XML
document. Oracle databases provide specialized support for large data fields.
These extra features can be accessed through additional provider-specific
methods above and beyond the core methods that are part of the ADO.NET
standard (which you will study in this chapter). All in all, ADO.NET bets that

bvb_02.book Page 315 Thursday, March 30, 2006 12:39 PM

316 Chap te r 10

customized features and performance are more important than write-once,
run-with-any-database coding.

However, if you do want to write code that can be adapted for any database,
it is still possible. Because all the provider objects use the same interfaces, you
can create code that uses these interfaces, instead of the objects directly. With
a little care, you can create a program that chooses a provider based on a con-
figuration file and then opens connections and performs queries entirely
through the interfaces. In fact, there’s an example of one such program in
the downloadable code for this chapter (it’s named GenericDataAccess).

However, you won’t see this technique described here. Why? It just isn’t
practical for most applications. Different databases need different optimiza-
tions and data access strategies. Choosing a database product is a significant
investment. Usually, companies want to stick with one database and get the
best they can out of it. They don’t flip to a different product on a whim, and
if they do change, they’re ready to rewrite some database code for optimum
performance.

TIP Even if you decide to stick with one database, it’s always a good idea to minimize the
interdependencies between your database code and the rest of your application. You
should be able to put your database code into one or more separate classes (and possibly
even compile them separately into a component, as described in Chapter 7). That way,
if you do choose to change your database later on, your changes will be confined to one
section of your application. When you need to send data to the rest of your application,
you should use the DataSet, which isn’t provider-specific.

The Basic ADO.NET Objects

All of the ADO.NET features are provided through types in the System.Data
branch of the .NET class library. This includes the following namespaces:

System.Data
Contains the fundamental classes for managing data, such as DataSet and
DataRelation. These classes are totally independent of any specific type of
database.

System.Data.Common
Contains some base classes that are inherited by other provider-specific
classes. The classes in this namespace specify the basic functionality,
whereas the classes in the other namespaces are customized for particular
data sources. Thus, you don’t use the System.Data.Common classes directly.

System.Data.SqlClient
Contains the classes you use to connect to a Microsoft SQL Server data-
base using the optimized TDS (Tabular Data Stream) interface. This
includes such classes as SqlCommand and SqlConnection.

System.Data.Oracle
Contains the classes you use to connect to an Oracle database, including
OracleCommand and OracleConnection. To use these classes, you must add a
reference to the system.oracle.dll assembly.

bvb_02.book Page 316 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 317

System.Data.OleDb
Contains the classes you use to connect to an OLE DB provider, includ-
ing OleDbCommand and OleDbConnection. These classes are useful if you still
have OLE DB providers kicking around, and you don’t have a pure .NET
provider for that database. One example for which OLE DB is necessary
is a Microsoft Access database.

System.Data.SqlTypes
Includes additional data types that aren’t provided in .NET, but are
used in SQL Server. These include SqlDateTime and SqlMoney. These
types can be converted into the standard .NET equivalents, but the
process introduces the possibility of a conversion or rounding error
that might adversely affect data. Instead, you can create objects based
on the structures defined in this class. It might even increase speed a
bit, as no automatic conversions will be required.

This chapter uses SQL Server and the associated System.Data.SqlClient
namespace. In most cases, the techniques described here are identical for
Oracle and OLE DB providers.

To get off to a good start, you should import the two namespaces that
you’ll need for the examples that follow:

Imports System.Data ' Provides common classes like DataSet.
Imports System.Data.SqlClient ' Contains the SQL Server provider.

Fast-Forward Read-Only Access

There are two ways you can access relational data with ADO.NET: as a read-
only stream of information that wraps an underlying database connection or
as a disconnected DataSet that you can examine and manipulate long after
the database connection has been closed. In a sense, ADO.NET forces you to
choose between two dramatically different approaches. The middle ground
found in ADO programming—a live read-write cursor that maintains a
connection—just isn’t an option in ADO.NET.

In the first section of this chapter, you’ll consider how to access data the
easy way and temporarily avoid the thorny issues surrounding disconnected
data. As you read ahead, you might want to refer to the diagram in Figure 10-2,
which shows you the basic model for this simple type of data access.

Figure 10-2: Using ADO.NET without disconnected data

RETRIEVE READ-ONLY DATA

SEND DIRECT COMMANDS

DataReader
Object

Command
Object

Command
Object

Your
Application

Connection
Object Data Store

bvb_02.book Page 317 Thursday, March 30, 2006 12:39 PM

318 Chap te r 10

Your first task is to explore the basic ingredients for any type of data access:
connections and commands.

Connection Objects

You use a Connection object to establish a connection to a data source.
The only trick is using the right connection string.

The Connection String

The connection string specifies, in a single line of text, all the information
that the database needs to establish a client session. It consists of a string with
pairs of named parameters and values (for example, user id=sa), each of
which is separated by a semicolon.

Here’s an example of a connection string:

Dim ConnectionString As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" & _
 "Integrated Security=True"

This connection string supplies three pieces of information. First, it
specifies a connection to the SQL Server database on the local computer
(rather than a remote network server). Next, it identifies the database that
you want to use (Northwind). Finally, it uses Windows integrated security, which
means it attempts to connect using the current Windows user account.

This approach works only if your database supports Windows integrated
security. SQL Server supports Windows integrated security and an older
authentication model (called SQL Server authentication), but by default
only Windows authentication is enabled.

If you’ve allowed the older SQL Server authentication model, you can
connect by supplying a database-defined user ID and password. Commonly,
you’ll use the user sa (for system administrator), as shown here:

Dim ConnectionString As String = _
 "Data Source=localhost;Initial Catalog=Northwind;" & _
 "user id=sa;password=S5lt_o"

In order for this to work, you need to use the right password for the sa
account, which you may have specified when installing SQL Server.

If you’re using SQL Server 2005 Express Edition, you need to modify the
Data Source value slightly, as shown here:

Dim ConnectionString As String = _
 "Data Source=localhost\SQLEXPRESS;Initial Catalog=Northwind;" & _
 "Integrated Security=True"

This change is required because SQL Server 2005 Express Edition installs
itself as a named instance (with the name SQLEXPRESS). When connecting to a
named instance of any SQL Server database, you need to supply the instance
name in the connection string.

bvb_02.book Page 318 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 319

And just for variety, here’s how a connection string might look for an
OLE DB provider using the OleDbConnection object. The only real difference is
the addition of the Provider setting, which identifies the appropriate OLE DB
provider. In the following example, the connection string points to the SQL
Server OLE DB provider, which you generally won’t use because it’s slower
than the native SQL Server provider.

Dim ConnectionString As String = _
 "Provider=SQLOLEDB.1;Data Source=localhost;" & _
 "Initial Catalog=Northwind; Integrated Security=True"

Other providers include MSDAORA (the OLE DB provider for an
Oracle database) and Microsoft.Jet.OLEDB.4.0 (the OLE DB provider for
Access).

There are several other options you can set for a connection string, and
they are all documented in the MSDN Help (look up the connection class,
like SqlConnection or OleDbConnection). They include settings that specify how
long you’ll wait while trying to make a connection before timing out, and
how long .NET should keep a connection in the connection pool for possible
reuse later. If you’re using SQL Server 2005, you also have the option to use
the AttachDbFilename parameter, which allows you to open a database directly
from a file (rather than the catalog of registered databases). Here’s an exam-
ple of this trick:

Dim ConnectionString As String = _
 "Data Source=localhost\SQLEXPRESS;" & _
 "AttachDbFilename='C:\SQL Server 2000 Sample Databases\NORTHWND.MDF';" & _
 Integrated Security=True"

Making a Connection

Once you have created the right connection string, it’s easy to create a con-
nection object and establish a live connection. For SQL Server, you use a
SqlConnection object. It works like this:

Dim ConnectionString As String = "Data Source=localhost;" & _
 "Integrated Security=True;Initial Catalog=Northwind;"
Dim con As New SqlConnection(ConnectionString)
con.Open()

The Open() method is used to establish the connection. You can close
your connection at any time by calling the Close() method.

NOTE As illustrated in the preceding example, you don’t really use a Connection object. Instead,
you use the appropriate derived class (such as SqlConnection or OleDbConnection).
In cases where there is more than one flavor of a class, as with the Connection class, this
chapter introduces them with a common (yet fictitious) object name.

bvb_02.book Page 319 Thursday, March 30, 2006 12:39 PM

320 Chap te r 10

Storing Connection Strings

You should never hard-code a connection string. Doing so introduces several
problems. First of all, if you need to move the database to another server, you
need to edit your code and recompile the entire application. And if you’re
not careful, you’ll be forced to make changes to database code throughout
your application, making for a management nightmare.

Fortunately, VB 2005 provides a convenient solution—you can store the
connection string in a configuration file. This technique works in any type of
application (including Windows, web, and console projects). Best of all, you
can edit the configuration file at any time without being forced to recompile
anything.

To create a configuration file that contains a connection string, follow
these steps:

1. Open or create a project in Visual Studio.

2. Double-click the My Project node in the Solution Explorer.

3. Click the Settings tab. You’ll see a list of all the settings that are defined
for this application. (By default, this list is empty.)

4. Add a new setting to the list. Give it a descriptive name (for example,
Northwind), use Application for the scope (so that the setting is com-
mon for all users), and supply the full connection string as the value.
Figure 10-3 shows an example of a completed connection string.

Figure 10-3: Adding a connection string to a configuration file

When you carry out this step, Visual Studio generates a new file named
app.config, which contains your connection string. You’ll see this file in the
Solution Explorer. If you’re curious, you can open the configuration file to
see what it contains. You’ll notice that it uses an XML format. You can edit
this file using an ordinary text editor (such as Notepad) if you want to change
the connection string after you’ve compiled the application.

bvb_02.book Page 320 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 321

NOTE When you compile your application, the app.config file is transferred to the bin folder
(along with your compiled application). However, there’s a twist: the configuration
file is renamed to match your application. For example, if you create the application
MyDatabaseChecker.exe, the config file is name MyDatabaseChecker.exe.config. This
is how .NET recognizes that the configuration file and application are linked.

Retrieving a setting from the configuration file is easy, thanks to the My
object. Here’s the code you need to retrieve the setting shown in Figure 10-3:

Dim ConnectionString As String = My.Settings.Northwind

As you can see, using a configuration file makes for cleaner, more main-
tainable code.

Command Objects

Now that you’ve learned how to create connections and manage connection
strings, you’re ready to move on to the next step and execute database
operations with Command objects.

Command objects represent SQL statements or stored procedures that you
use to retrieve data or submit changes. In order to use ADO.NET, you should
have a basic understanding of SQL. The following section provides a quick
refresher.

SQL Statements

Here’s a SQL statement at its simplest. It’s used to retrieve data from a
single table in the current database (in this case, the Orders table). The
asterisk (*) indicates that you want to retrieve all the fields from the table
(OrderID, CustomerID, and so on).

Dim SQLString As String = "SELECT * FROM Orders"

Seasoned database programmers will shudder when they see this
statement, because it doesn’t limit the number of returned records in any
way. In other words, it selects all the records in the Orders table, whether
there are fifty or five million of them. An application that includes this type
of statement typically works well when it is first deployed, but gradually slows
to a crawl as the number of records in the database climbs. Eventually, you
may even receive timeout errors.

A safer SQL statement would look like this:

Dim SQLString As String = "SELECT * FROM Orders " & _
 "WHERE OrderDate < '2000/01/01' AND OrderDate > '1987/01/01'"

The Where clause ensures that only certain rows are retrieved. In this case,
the OrderDate column must have a value between the two specified dates.
(This example uses the international standard date format yyyy/mm/dd,
which is typically the safest representation.) The values (dates) being

bvb_02.book Page 321 Thursday, March 30, 2006 12:39 PM

322 Chap te r 10

compared to the OrderDate are enclosed in single quotes, unless they are
numbers. The And keyword allows you to apply to criterion that the results
must meet.

In a real application, SQL statements are often much longer and much
more complex. For example, they will usually access several tables and specify
only certain fields in each table (rather than using the asterisk, which can
slow down your application by requesting data that it doesn’t need).

Creating a Command

Once you have a connection, a command is easy to define. If you are
using a SQL Server database, you will use the SqlCommand object, as
shown here:

Dim SQLString As String = "SELECT * FROM Orders " & _
 "WHERE OrderDate < '2000/01/01' AND OrderDate > '1987/01/01'"
Dim cmd As New SqlCommand(SQLString, con)

This example creates a SqlCommand object using a constructor that lets you
specify the connection that should be used and the SQL statement that it will
execute. Like ADO, ADO.NET often provides many paths toward the same
end, and you could accomplish the same thing in the more verbose form
shown here:

Dim cmd As New SqlCommand()
cmd.CommandText = SQLString
cmd.Connection = con
' Strictly speaking, the next line isn't required because
' CommandType.Text is the default.
cmd.CommandType = CommandType.Text

Notice that these two examples don’t actually read any data; each of
them simply defines a command. In order to use the command, you have to
decide whether to create a simple DataReader or a full-fledged disconnected
DataSet.

DataReader Objects

A DataReader is a firehose cursor, which gets its name from the fact that it pro-
vides a steady one-way stream of data pouring from the database straight into
your program. It provides few additional frills. A DataReader doesn’t provide
disconnected access or any ability to change or update the original data
source. You should use a DataReader whenever you need fast, read-only data
access, as its performance will always beat that of the full-fledged DataSet.
On the other hand, the DataSet provides few features beyond simple read-
only access (like the ability to navigate relationships and sort records on
the fly).

bvb_02.book Page 322 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 323

Each provider includes its own DataReader class. For SQL Server, you use
the SqlDataReader class. Once you’ve made a connection and created the
appropriate Command object, you can access the data through a DataReader
instance. The heart of ADO.NET DataReader programming is contained in
a single line of code:

Dim reader As SqlDataReader = cmd.ExecuteReader()

This declares a SqlDataReader object and initializes it using the
ExecuteReader() method of our Command object. Remember, we have already
created the Connection object and the Command object that are being used here.
Once you have the reader, you can use it to move through the records in the
result set from start to finish, interacting with one record at a time, as shown
below. Note that there is no way to move backward. This is similar to the way
you interact with a Recordset in classic ADO, but instead of using the MoveNext()
method you use the Read() method. This method returns True as long as there
is a row of data at the current position. It returns False when an attempt is
made to read a record following the last one.

Do While reader.Read()
 ' Process current row here.
Loop

reader.Close()
con.Close()

This loop invokes the reader.Read() method in each pass. When the
reader has read all the available information, the Read() method returns False
and the loop ends gracefully. Keep in mind that you have to call the Read()
method before you start processing the first record. When the reader is first
created, there is no “current” row.

TIP Remember, DataReaders maintain a live connection, so you should process the data and
close your connection as quickly as possible.

To access the data in the current record, you can use either a field
name or an index number (which starts counting from zero). For example,
if you want to add the contents of the OrderID field of each record processed
into a list box named lstOrders, you would use this code in the body of
the loop:

' Add the data from the OrderID field.
lstOrders.Items.Add(reader("OrderID"))

Alternatively, you could perform the same task using the field index:

lstOrders.Items.Add(reader(0))

bvb_02.book Page 323 Thursday, March 30, 2006 12:39 PM

324 Chap te r 10

Usually, a field name is the clearest option, but a numeric index provides
an easy way for you to make sure you use every column in the row (as you’ll
see in the next section).

This is just about all that a DataReader allows you to do.

Using the DataReader to Fill a ListView

The next example uses a SqlDataReader object to move through the returned
records and place some basic information into a ListView control (see Fig-
ure 10-4). The code looks more complicated than the previous snippets you’ve
seen, because the ListView control requires a few special considerations.
To see the complete code, refer to the ListViewDataReader project with the
sample code for this chapter.

Figure 10-4: Filling a ListView

The first step is to set up the ListView control so that it displays a multi-
column list:

lvOrders.View = View.Details

Now you can add a column for each field in the DataReader. There is no
quick and easy way to get the field names, so this example sticks to index
numbers. FieldCount is one of the few properties provided by the SqlDataReader
object, so you can use that to determine how many columns are required:

Dim i As Integer
For i = 0 To reader.FieldCount - 1
 lvOrders.Columns.Add("Column " & (i + 1).ToString, 100, _
 HorizontalAlignment.Left)
Next

bvb_02.book Page 324 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 325

Now that the initial setup is complete, the data can be added:

Do While (reader.Read())
 Dim NewItem As New ListViewItem()
 NewItem.Text = reader(0)

 For i = 1 To reader.FieldCount - 1
 If reader(i) Is DBNull.Value Then
 NewItem.SubItems.Add("")
 Else
 NewItem.SubItems.Add(reader(i).ToString())
 End If
 Next i

 lvOrders.Items.Add(NewItem)
Loop

This example looks more complicated than it is. The code is divided into
two portions because of the way the ListView control works. Every ListView
control contains a collection of items. (In our example, each item represents
an OrderID.) To put information into additional columns, you have to add
subitems to each ListView item.

This example also checks for a null value in the field. In a database, a
null value indicates only that the field is empty and that no information has
been entered. You can’t change a null value into a string, however, so the
Add() method will fail if it’s used to add a field that contain a null value.

If you can accomplish everything you need to do with a DataReader, it’s
always a good choice. If you need more sophisticated data manipulating
abilities, like the ability to navigate table relations, dynamically sort data, or
cache data for long periods of time, you’ll need to step up to the DataSet
object. The DataSet is described a little later in this chapter.

Updating Data with a Command Object

The DataReader object provides a simple way to pull a stream of data out of a
database, but it doesn’t allow you to make any changes.

In ADO.NET, you have two options for updating data:

� Updating it directly with a customized Command. This is the easiest and
often the most practical solution, because it minimizes the chance of
conflict between users. All other users will see your change the next time
they query the database.

� Creating a DataSet, implementing the changes there, and then committing
them to the original data source later on. This pattern (change-wait-
commit) is a little trickier, because it increases the chance that multiple
users will make conflicting changes at the same time. However, it may
offer better performance, because you can group changes together in
batches that are more efficient.

The next section examines the easier of these two methods: using a
Command object directly.

bvb_02.book Page 325 Thursday, March 30, 2006 12:39 PM

326 Chap te r 10

NOTE All the command examples in this section can be found in the SimpleDBCommandTester
project with the sample code.

Why Use a Command Object?

If your application makes relatively straightforward changes, the best way to
update the data source is to use a Command object directly. The Command object
can contain a SQL statement to perform the modification (such as Update or
Delete), or it can run a stored procedure that exists in your database for this
purpose.

Generally, a Command object provides the most straightforward and
uncomplicated way to make a change. The drawback is that it can require
some extra work (and code) if your application allows the user to make sub-
stantial, varied modifications. This approach—using a Command object to go
straight to the data source—was available in ADO. However, ADO developers
often fell back on the Recordset object because it was easier to code a solution
on the fly. The advantages of using a Command object are as follows:

� No data is returned from the database. After all, why waste time creating
a Recordset, and then using a Select statement to put some information
into it, if you don’t need to?

� If there’s a problem following your update instruction, you’ll know it
right away. (With disconnected data and DataSets, however, several
changes are usually made at the same time, and this makes it harder to
track down what’s failed and identify the cause.)

� Disconnected DataSets require extra planning to use properly. They can
apply changes in an unpredictable order, which may cause problems
with related tables. In these cases, it’s often easier to perform updates
through direct commands.

A Data Update Example

Here’s an example that uses a Command object to perform an update operation,
with the help of its ExecuteNonQuery() method:

' Create connection.
Dim ConnectionString As String = _
 "Data Source=localhost;Integrated Security=True;" & _
 "Initial Catalog=Northwind;"
Dim con As New SqlConnection(ConnectionString)
con.Open()

' Create a silly update command.
Dim SQL As String = "UPDATE Orders SET ShipCountry='Oceania' " & _
 "WHERE OrderID='10248'"
Dim cmd As New SqlCommand(SQL, con)

' Execute the command.
Dim NumAffected As Integer

bvb_02.book Page 326 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 327

NumAffected = cmd.ExecuteNonQuery()
con.Close()

' Display the number of affected records.
MessageBox.Show(NumAffected.ToString & " records updated", "Results", _
 MessageBoxButtons.OK)

This code creates the standard Connection and Command objects and then
executes the command directly. The update command is a SQL Update state-
ment that finds the record with the OrderID 10248 (which exists in the default
Northwind database) and changes its ShipCountry value to Oceania. The matching
record will be updated even if ShipCountry has already been changed (although
in that case the modification won’t produce any noticable effect). The message
you’ll see is shown in Figure 10-5.

Figure 10-5: A simple update test

NOTE The preceding example uses a fairly straightforward SQL Update statement. However,
if you aren’t familiar with SQL, it still may take a little getting used to. Unfortunately,
SQL is beyond the scope of this book. You can get a basic SQL primer at the excellent
tutorial site www.w3schools.com/sql.

In a more realistic example, the Update statement would be created
dynamically. Here’s an example:

Dim SQL As String = "UPDATE Orders SET ShipCountry='" & lstCountry.Text & _
 "' WHERE OrderID='" & intCurrentOrder & "'"

Although this is a commonly used approach, writing a SQL statement
like this in your program is extremely bad form. One of the key problems it
introduces is the possibility of a SQL injection attack, where a malicious user
tricks your application into doing something it shouldn’t by using special
characters (like the apostrophe) in the input text. When you combine these
user-supplied values with the rest of your command template and execute
the resulting query, you might unwittingly return confidential information
or even end up launching an extra command that deletes records or performs
arbitrary changes.

To avoid these problems, you have two choices. You can validate your
data very carefully and remove special characters before you use it in SQL
queries. This is hard to do accurately, and it gets more complicated if your

bvb10_02.fm Page 327 Tuesday, April 11, 2006 9:43 AM

328 Chap te r 10

input field needs to accept characters like the apostrophe. A better approach
is to call a stored procedure, or use a parameterized command, which encodes
user-supplied values in a much safer way. You’ll learn how to use stored
procedures and parameterized commands in the following sections.

Calling a Stored Procedure

Stored procedures are programs stored inside a relational database. A typical
stored procedure consists of a number of SQL statements that perform some
specific task (such as selecting, updating, inserting, or deleting data).

Here’s an example of a stored procedure that to adds a new customer
record to the Customers table. It’s not present in the default SQL Server
Northwind database, so before you can use the procedure, you have to use
the Enterprise Manager or SQL Server to add it. (It will already be added
if you used the script provided with this chapter’s examples to install the
database.)

CREATE PROCEDURE AddNewCustomer
 @CustomerID varchar(5), @CompanyName varchar(40),
 @ContactName varchar(30)
AS INSERT INTO Customers(CustomerID, CompanyName, ContactName)
 VALUES(@CustomerID, @CompanyName, @ContactName)

This code looks quite different from anything you could write in VB 2005.
The basic details are as follows:

� The procedure is called AddNewCustomer.

� The procedure uses three variables, which are defined in the second
and third lines. All SQL variables are identified by an at (@) symbol at
the beginning of their names. The data types for these variables are also
unfamiliar to the VB programmer. Varchar is the SQL Server–specific
version of a string type (and the number in brackets specifies the maxi-
mum length).

� The fourth line features an Insert command, which adds a new row to the
Customers table. It also inserts values for the three named fields (using
the information on the next line, which is the list of variables). All other
fields will be left empty—in fact, they will have null values.

You can use a Command object to execute a stored procedure in the same
way you would execute a SQL statement. However, there are two differ-
ences. First of all, you should set the Command object’s CommandType to
CommandType.StoredProcedure:

' (Code to create a connection omitted).
Dim cmd As New SqlCommand("AddNewCustomer", con)
cmd.CommandType = CommandType.StoredProcedure

bvb_02.book Page 328 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 329

Secondly, if your stored procedure requires parameters with additional
information (as the AddNewCustomer procedure does), you need to create a few
Parameter objects. Here’s how you would create parameters to use with the
AddNewCustomer procedure:

' Declare a SqlParameter variable.
' We will use the Command object to actually create each
' SqlParameter object.
Dim param As SqlParameter

param = cmd.Parameters.AddWithValue("@CustomerID", "*TEST")
param = cmd.Parameters.AddWithValue("@CompanyName", "No Starch Press")
param = cmd.Parameters.AddWithValue("@ContactName", "Matthew MacDonald")

When you add a parameter, you must specify the corresponding stored
procedure variable name and the value you want to supply. Based on the
data type you supply, .NET is able to convert the information in your VB
variable into a database-friendly data type. However, some restrictions apply.
For example, database fields are usually size limited, and if you supply a string
that’s too long, part of your information will be truncated.

Once you’ve added the parameters and assigned the appropriate values,
you can execute the stored procedure:

Dim NumAffected As Integer
NumAffected = cmd.ExecuteNonQuery()
con.Close()

The new record will be added, as shown in Figure 10-6.

Figure 10-6: The inserted record

Stored procedures are quite handy. They let the application programmer
remove database code from the application and the database administrator
control security (by restricting direct access to the tables, but allowing access
to permitted stored procedures) and improve performance. All of these
advantages together mean that you will probably want to use stored procedures
in any large, professional business application. However, stored procedure
design can become quite complicated. A stored procedure might perform

bvb_02.book Page 329 Thursday, March 30, 2006 12:39 PM

330 Chap te r 10

multiple tasks, and it may even return a result set. A stored procedure can
also send additional information to your program using output parameters.
By default, all the Parameter objects you add are for input parameters. How-
ever, this is easy to change:

param.Direction = ParameterDirection.Output

When using an output parameter, you use the Add() method instead of
the AddWithValue() method. That’s because you don’t supply a value. Instead,
you define the exact database data type.

' Define the parameter.
param = cmd.Parameters.Add("@OutputID", SqlDbType.VarChar, 5)
param.Direction = ParameterDirection.Output

' Execute the query.
cmd.ExecuteNonQuery()

' Get the result.
Dim Result As String = param.Value

After the command has been executed, you can read the output param-
eter from the Parameter.Value property to retrieve your results.

Using a Parameterized Command

When you call a stored procedure, your command supplies its information
through parameters. This is a safer approach than dynamically constructing
a SQL statement by pasting together bits of text. Because ADO.NET separates
the command text from the parameter values, there’s no possibility that
malicious input could be used to launch a SQL injection attack.

Fortunately, you can take advantage of this higher level of security even
if you aren’t using stored procedures. The trick is to write parameterized
commands—commands that use parameters even though they aren’t linked
to a stored procedure. Creating a parameterized command is surprisingly
easy. All you need to do is replace the places where you would ordinarily put
hard-coded values with parameter-name placeholders.

For example, imagine you want to execute a command like this one
(from an earlier example) to update a record:

Dim SQL As String = "UPDATE Orders SET ShipCountry='" & lstCountry.Text & _
 "' WHERE OrderID='" & intCurrentOrder & "'"

The parameterized version of this query looks like this:

Dim SQL As String = _
 "UPDATE Orders SET ShipCountry=@ShipCountry WHERE OrderID=@OrderID"

bvb_02.book Page 330 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 331

Two points are worth noting. First, it doesn’t matter what parameter
names you use, so long as you’re consistent when you refer to them later
(when setting the parameter values), and @ is the first character. Of course,
using the field name (as in @ShipCountry) usually makes most sense.

Second, different providers use different syntax for parameterized com-
mands. For example, the OLE DB provider doesn’t use named parameters.
Instead, each parameter is indicated by a question mark. You need to supply
the parameter values in exactly the same order as they appear in the com-
mand, and the OLE DB provider sets the values by position.

To supply parameter values, you add Parameter objects, exactly as you
would with a command that calls a stored procedure. For example, here’s
the complete code required to execute a parameterized update statement:

' Define the connection.
Dim con As New SqlConnection(ConnectionString)
con.Open()

' Define the parameterized command.
Dim SQL As String = _
 "UPDATE Orders SET ShipCountry=@ShipCountry WHERE OrderID=@OrderID"
Dim cmd As New SqlCommand(SQL, con)
' Add the parameters.
cmd.Parameters.AddWithValue("@ShipCountry", lstCountry.Text)
cmd.Parameters.AddWithValue("@OrderID", intCurrentOrder)

' Execute the command.
Dim NumAffected As Integer
NumAffected = cmd.ExecuteNonQuery()
con.Close()

Remember, this approach is far more secure and error-proof than using
dynamically created SQL. It’s recommended that all database applications
use parameterized commands.

A Transaction Example

A transaction allows you to execute several commands at once and to be
guaranteed that they will all succeed or fail as a unit. The basic principle of a
transaction is that if any of the actions in it fails, the whole process is “rolled
back” to its initial state. You can appreciate the value of this system if you
have ever used an instant bank machine. If, after requesting a withdrawal,
the bank machine failed and could not give you any money, you would not
be happy if it still deducted the amount from your bank account. In other
words, withdrawing money is a transaction consisting of two steps: your bank
account being debited and you receiving your money. Neither one of these
steps should happen without the other.

A database often uses transactions in its stored procedures. They can save
you the trouble of coding extra database logic inside your application and help
separate the basic data management code from the rest of your application.

bvb_02.book Page 331 Thursday, March 30, 2006 12:39 PM

332 Chap te r 10

In some cases it is convenient to be able to create an ad hoc transaction pro-
grammatically in your VB 2005 code. To do this, you create a Transaction
object and use the BeginTransaction() method of the Connection object.

To start the process, you need to create and initiate the transaction:

' (The code to create the standard Connection and Command objects
' is left out.)
' Don't need to use New, as this object will be created for us.
Dim tran As SqlTransaction

' Create the transaction and assign it to our Transaction object.
tran = con.BeginTransaction()

Now the transaction exists, but it includes no Command objects yet. To make
a Command object a part of this transaction, you can set its Transaction property.
Assuming that we’ve already created two Command objects (cmdOne and cmdTwo),
this is done like so:

cmdOne.Transaction = tran
cmdTwo.Transaction = tran

These commands can now be executed in the normal way:

Dim NumAffected As Integer
NumAffected = cmdOne.ExecuteNonQuery()

' Add the rows affected for the second query to find the total number of
' rows affected by both statements.
NumAffected += cmdTwo.ExecuteNonQuery()

However, the changes won’t be permanently made to the data source
until you commit them:

tran.Commit()

If necessary, you can use the Rollback() method to reverse changes that
have not been committed and set the data source back to its original state.
Usually, you would use the Rollback() method in response to an error, as
shown here:

' Define Connection, Command, and Transaction objects here.
Try
 ' Start the Transaction, execute the Commands, and perform any other
 ' related code here.
 tran.Commit()
Catch err As Exception
 tran.Rollback()
End Try

bvb_02.book Page 332 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 333

Using DataSet Objects

In many ways, the DataSet object is the focus of ADO.NET programming.
Unlike the data reader, a DataSet is disconnected by nature. You can place
information retrieved from a relational database into a DataSet or move infor-
mation from a DataSet back into a relational database, but the DataSet itself
never maintains a connection with a data source—in fact, it doesn’t even
have a connection property. To shuffle information back and forth between
a DataSet object and a data source, you need to use a DataAdapter object. Fig-
ure 10-7 shows all the ADO.NET objects involved in disconnected access and
how they interact.

Figure 10-7: Disconnected data access with ADO.NET

When to Use a DataSet Object
A DataReader provides the best possible performance. In general, you should
always use a DataReader unless you need the advanced capabilities of a DataSet.
Some of these capabilities include the following:

� The ability to store data for long periods of time and transfer it as a neatly
packaged object to other classes or components.

� The ability to perform complex updates and changes to the data,
without needing to execute each change through a separate Command
object.

� The ability to save or retrieve XML-formatted data to a file.

� The ability to bind your data to controls in a Windows form or an
ASP.NET web page for quick, code-free display.

� The ability to sort and filter your results on the fly. (Dynamic sorting
and filtering isn’t discussed in this chapter, but you can learn all
you need to know by searching for the DataView class in the Visual
Studio Help.)

� Greater flexibility when reading data, such as the ability to move for-
ward and backward through data and the ability to jump back and forth
between distinct but related tables in the DataSet.

FILL DataSet

UPDATE SOURCE

Your
Application

Connection
Object Data Store

DataAdapter
Object

SelectCommand

UpdateCommand

InsertCommand

DeleteCommand

DataSet
Object

bvb_02.book Page 333 Thursday, March 30, 2006 12:39 PM

334 Chap te r 10

Filling a DataSet with a DataAdapter
As with a DataReader, you need to create a Connection and a Command object before
you can retrieve the rows you need:

Dim ConnectionString As String = "Data Source=localhost;" & _
 "Integrated Security=True;Initial Catalog=Northwind;"
Dim con As New SqlConnection(ConnectionString)

Dim SQL As String = "SELECT * FROM Orders " & _
 "WHERE OrderDate < '2000/01/01' AND OrderDate > '1987/01/01'"
Dim cmd As New SqlCommand(SQL, con)

So far, these lines are the same as those used by the DataReader example
you saw earlier.

Next, you need to create a DataAdapter. DataAdapters are another example
of data source–specific objects in the provider model. There are several flavors,
including SqlDataAdapter (shown here), OracleAdapter, and OleDbDataAdapter.

Dim adapter As New SqlDataAdapter(cmd)

This statement creates an adapter using a Command object. There are
several other ways to accomplish the same task. For example, you could pass
the SQL and ConnectionString strings to the SqlDataAdapter constructor, and
coax it into creating an implicit Connection and Command on its own. However,
the approach used in the preceding example is generally more flexible,
particularly if you need to reuse the connection or to run more than one
SQL query in a row with the same adapter.

The next step is to create a new DataSet and then fill it by calling the
DataAdapter.Fill() method:

Dim dsNorthwind As New DataSet()
con.Open()
adapter.Fill(dsNorthwind, "Orders")
con.Close()

The Fill() method executes the command you’ve specified, takes the
results, and inserts them into the dsNorthwind DataSet in a table named Orders.
(In this case, the destination table name is the same as the table name in the
data source, but it doesn’t need to be.)

NOTE The DataSet object is generic. Whether you are using an Oracle provider, SQL Server
provider, or something else altogether, you always create and fill the same type of
DataSet object.

Accessing the Information in a DataSet
The information in a DataSet is stored in collections. This is quite different
from a DataReader, which exposes only one row at a time, forcing you to use
the Read() method to move from row to row. A DataSet, on the other hand,

bvb_02.book Page 334 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 335

has a Tables property that contains a collection of DataTable objects. Each
DataTable has a Rows property that contains a collection of DataRow objects. You
access these DataRows by using the corresponding field names, much as you
would with a DataReader. The diagram in Figure 10-8 shows the overall object
model.

Figure 10-8: The DataSet

You’ll notice that the discussion so far has left out a few of the details
shown in this illustration. For example, a DataSet can also contain DataRelation
objects (which link different DataTables together), and each DataTable can also
contain Constraint objects (which specify restrictions on allowable column
information) and Column objects (which contain information about the field
name and data type of each column). These collections are generally less
important, although later in the chapter we will return to the DataRelation
object in more detail.

You move through the data in a table using the Rows collection,
as shown here:

Dim row As DataRow
For Each row In dsNorthwind.Tables("Orders").Rows
 ' Here you can retrieve a value using the current row.
 lstOrders.Items.Add(row("OrderID"))
 ' Or you can change it.
 row("ShipCountry") = "Lilliput"
Next

DataSet Object

Tables Collection Relations Collection

DataRelation ObjectDataTable Object

Rows Collection

Columns Collection

Constraints Collection

DefaultView

DataRow Object

DataColumn Object

Constraint Object

DataView Object

bvb_02.book Page 335 Thursday, March 30, 2006 12:39 PM

336 Chap te r 10

NOTE Of course, the DataSet object is always disconnected. This means that any changes you
make will appear in your program but won’t affect the original data source unless
you take additional steps, which this chapter will delve into a little bit later.

Deleting Records

You can also delete records from a DataSet using the Delete() method.
The process is quite straightforward:

Dim row As DataRow
Dim colRowsToDelete As New Collection()

For Each row In dsNorthwind.Tables("Orders").Rows
 If row("ShipCountry") <> "Brazil" Then
 ' If the ShipCountry is not Brazil, mark it for deletion.
 row.Delete()
 Else
 ' Otherwise, add it to our list.
 lstOrders.Items.Add(row("OrderID") & " to " & row("ShipCountry"))
 End If
Next

However, when you use the Delete() method, the row is not actually
removed, only marked for deletion. That’s because ADO.NET needs to
retain information about the record in order to be able to remove it from the
original data source when you reconnect later. You need to be aware of this
fact, and you need to include steps that prevent your programs from trying to
use or display deleted rows. Here’s an example that explicitly ignores deleted
rows when adding items to a list:

For Each row In dsNorthwind.Tables("Orders").Rows
 If row.RowState <> DataRowState.Deleted Then
 lstOrders.Items.Add(row("OrderID"))
 End If
Next

NOTE If your program tries to read a field of information from a deleted item, an error will
occur. This error is meant to alert you that you are trying to access information that is
scheduled for deletion.

You can also use the Remove() method to delete an item completely.
However, if you use this method, the record won’t be deleted from the data
source when you reconnect and update it with your changes. Instead, it will
just be eliminated from your DataSet object.

Adding Information to a DataSet

You can also easily add a new row using the Add() method of the Rows collec-
tion. The trick is to use the NewRow() method first to get a blank copy of the
row you want to create.

bvb_02.book Page 336 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 337

Dim rowNew As DataRow
' Create the row.
rowNew = dsNorthwind.Tables("Orders").NewRow()

' Set the information in the row.
rowNew("OrderID") = 12000
rowNew("ShipCountry") = "Lilliput"
' (And so on to add more fields...)

' Add the row to the DataSet.
dsNorthwind.Tables("Orders").Rows.Add(rowNew)

In a real application it might not be this easy, depending on your origi-
nal data source. For example, the database may have other requirements
for these columns (such as a maximum length, or a restriction against
null values). In addition, most database designs use auto-incrementing
identity columns. For example, if OrderID were an auto-numbering column,
SQL Server would automatically give it a new value when you add a new
record. This means that you shouldn’t specify any value at all in the
OrderID field while you are creating the record, or else you risk specifying a
number that will conflict with an already generated value, thus causing a
problem.

ADO.NET provides a tool that can help you in many cases. It’s called the
FillSchema() method, and you can use it to retrieve information about your
database before invoking the Fill() method. The FillSchema() method gen-
erates an empty DataTable and preconfigures it with details like fields, column
constraints, data types, and so on. However, no records are added.

adapter.FillSchema(dsNorthwind, SchemaType.Mapped, "Orders")
adapter.Fill(dsNorthwind, "Orders")

The FillSchema() method adds the DataTable and all the DataColumn objects,
but it doesn’t add the actual data. Unlike the Fill() method, FillSchema()
completely configures each DataColumn object with such information as default
value, whether it can be null, and maximum length. (For a full list, check the
properties of the DataColumn object in the Visual Studio Help.) The primary
key requirement is also added as a Constraint object. Foreign keys, which
define relationships between tables, are not added, because ADO.NET has
no way of knowing whether you have added the required linked tables. When
you use the Fill() method, the information streams into the ready-made
columns without a problem.

The specific details of how to create and modify column constraints and
default values are beyond the scope of this chapter. Most programmers will
use a visual database design tool (like SQL Server’s Enterprise Manager) for
this task. Also, keep in mind that it’s often a better idea to add a new record
directly by using a stored procedure rather than create a DataSet, add the
record, and commit the update with a DataAdapter.

bvb_02.book Page 337 Thursday, March 30, 2006 12:39 PM

338 Chap te r 10

Working with Multiple Tables
Sadly, the Fill() method can add only one table at a time to a DataSet.
If you want to add more than one table, you have to use the Fill() method
more than once and create several Command objects (or change the
Command.CommandText property in between). Here’s an example:

Dim dsNorthwind As New DataSet()
adapter.Fill(dsNorthwind, "Orders")

' This command is still linked to the DataAdapter.
cmd.CommandText = "SELECT * FROM Customers"
adapter.Fill(dsNorthwind, "Customers")

cmd.CommandText = "SELECT * FROM Employees"
adapter.Fill(dsNorthwind, "Employees")

After these commands, there will be three tables in the DataSet, each of
which can be accessed individually by specifying the appropriate table name
(for example, dsNorthwind.Table("Customers") accesses the Customers table).

DataTable Relations
There is no way to import information about linked tables from the data
source. Instead, you need to add this information manually if you want to
make use of it. To link two tables together, you need to create a DataRelation
object.

Our multiple-table example uses three tables that are related. For exam-
ple, the Orders table has a CustomerID field that corresponds to a CustomerID in
the Customers table. To specify this relationship in a DataSet, you can use the
following code:

' Define the relation.
Dim relCustomersOrders As New DataRelation("CustomersOrders", _
 dsNorthwind.Tables("Customers").Columns("CustomerID"), _
 dsNorthwind.Tables("Orders").Columns("CustomerID"))

' Add the relation to the DataSet.
dsNorthwind.Relations.Add(relCustomersOrders)

This code defines a relationship in which the Customers table is the parent
and the Orders table is the child. This is because one customer record can have
multiple children (orders), but every order has only one parent (customer).
This parent-to-child relationship is just another way of describing a one-to-many
relationship, which is a basic ingredient in database theory. Once the relation-
ship is defined, our example adds it to the DataSet to put it to work.

As with any relational database, using a relation here implies certain
restrictions. For example, if you add a relation to the DataSet and then try to
create a child row that refers to a nonexistent parent, ADO.NET will generate
an error. Similarly, you can’t delete a parent that has child records linked to it.

bvb_02.book Page 338 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 339

These requirements will be enforced by your data source, but by adding them
to the DataSet, you ensure that your application will catch any errors as soon
as they occur, rather than when it tries to commit an entire batch of changes
to the data source later on only to have them rejected.

You can also use your relation to better navigate through records. This
technique, shown in the following code, allows you to combine information
dynamically from several linked tables, without having to use a join query.
It works using the GetChildRows() method of a DataRow object. The results
are shown in Figure 10-9 (and are available in the RelationalDataNavigation
project).

Dim rowParent, rowChild As DataRow
For Each rowParent In dsNorthwind.Tables("Customers").Rows
 For Each rowChild In rowParent.GetChildRows(relCustomersOrders)
 ' Display combined information using both rows.
 lstOrders.Items.Add(rowParent("CompanyName") & _
 " ordered on " & rowChild("OrderDate"))
 Next
Next

Figure 10-9: A simple example of relational data

An even more useful way to use this relational ability would be to construct
a hierarchical TreeView display. The only difference in the code is that you
need to make sure to store a reference to the current customer node so that
you can add subnodes for orders. The following code demonstrates with a
tree named treeDB.

bvb_02.book Page 339 Thursday, March 30, 2006 12:39 PM

340 Chap te r 10

Dim nodeParent, nodeChild As TreeNode
Dim rowParent, rowChild As DataRow

For Each rowParent In dsNorthwind.Tables("Customers").Rows
 ' Add the customer node.
 nodeParent = treeDB.Nodes.Add(rowParent("CompanyName"))

 ' Store the disconnected customer information for later.
 nodeParent.Tag = rowParent

 For Each rowChild In rowParent.GetChildRows(relCustomersOrders)
 ' Add the child order node.
 nodeChild = nodeParent.Nodes.Add(rowChild("OrderID"))

 ' Store the disconnected order information for later.
 nodeChild.Tag = rowChild
 Next
Next

As an added enhancement, this code stores a reference to the associated
DataRow object in the Tag property of each TreeNode. When the node is clicked,
all the information is retrieved from the DataRow, and then displayed in the
adjacent text box. This is one of the advantages of disconnected data objects:
You can keep them around for as long as you want.

NOTE You might remember the Tag property from Visual Basic 6, where it could be used to store
a string of information for your own personal use. The Tag property in VB 2005 is sim-
ilar, except you can store any type of object in it.

Private Sub treeDB_AfterSelect(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.TreeViewEventArgs) _
 Handles treeDB.AfterSelect

 ' Clear the textbox.
 txtInfo.Text = ""
 Dim row As DataRow = CType(e.Node.Tag, DataRow)

 ' Fill the textbox with information from every field.
 Dim Field As Object
 For Each Field In row.ItemArray
 txtInfo.Text &= Field.ToString & vbNewLine
 Next

End Sub

This sample program (featured in the chapter examples as the
RelationalTreeView project and shown in Figure 10-10) is also a good
demonstration of docking at work. To make sure all the controls stay where
they should, and to allow the user to change the relative screen area given to
the TreeView and text box, a SplitContainer control is used along with an
additional Panel along the bottom.

bvb_02.book Page 340 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 341

Figure 10-10: An advanced example of relational data

Using a DataSet Object to Update Data

The DataSet object stores additional information about the initial values of your
table and the changes that you have made. You have already seen how deleted
rows are left in your DataSet with a special “deleted” flag (DataRowState.Deleted).
Similarly, added rows are given the flag DataRowState.Added, and modified rows
are flagged as DataRowState.Modified. This allows ADO.NET to quickly deter-
mine which rows need to be added, removed, and changed when the update
is performed with the DataAdapter.

For example, in order to commit the update for a changed row, ADO.NET
needs to be able to select the original row from the data source. To allow
this, ADO.NET stores information about the original field values, as shown
in this example:

Dim rowEdit As DataRow
' Select the 11 row (at position 10).
rowEdit = dsNorthwind.Tables("Orders").Rows(10)

' Change some information in the row.
rowEdit("ShipCountry") = "Oceania"

' This returns "Oceania".
lblResult.text = rowEdit("ShipCountry")

' This is identical.
lblResult.text = rowEdit("ShipCountry", DataRowVersion.Current)

' This returns the last data source version (in my case, "Austria").
lblResult.text = rowEdit("ShipCountry", DataRowVersion.Original)

bvb_02.book Page 341 Thursday, March 30, 2006 12:39 PM

342 Chap te r 10

Ordinarily, you don’t need to worry about this extra layer of information,
except to understand that it is what allows ADO.NET to find the original row
and update it when you reconnect to the data source.

The whole process works like this:

1. Create a Connection object, and define a Command object that will select the
data you need.

2. Create a DataAdapter object using your Command object.

3. Using the DataAdapter, transfer the information from the source into a
disconnected DataSet object. Close the Connection object.

4. Make changes to the DataSet (modifying, deleting, or adding rows).

5. Create another Connection object (or reuse the existing one).

6. Create Command objects for inserting, updating, and deleting data. Alterna-
tively, to save yourself some work, you can use the special CommandBuilder
class.

7. Create a DataAdapter object using your Command or CommandBuilder objects.

8. Reconnect to the data source.

9. Using the DataAdapter, update the data source with the information in the
DataSet.

10. Handle any concurrency errors (for example, if an operation fails because
another user has already changed the row after you’ve retrieved it) and
choose how you want to log the problem or report it to the user.

You can see why using a simple command containing a SQL Update
statement is a simpler approach than managing disconnected data!

Using the CommandBuilder Object

Assuming that you have already created a DataSet, filled it with information,
and made your modifications, you can continue on with Step 5 from
the preceding list. This step involves defining a connection, which is
straightforward:

Dim ConnectionString As String = "Data Source=localhost;" & _
 "Integrated Security=True;Initial Catalog=Northwind;"
Dim con As New SqlConnection(ConnectionString)

The next step is to create the Command objects used to update the data
source. When you selected information from the data source, you needed
only one type of SQL command—a Select command. However, when you
update the data source, up to three different tasks could be performed in
combination, depending on the changes that you have made: Insert, Update,
and Delete. In order to avoid the work involved in creating these three Command
objects manually, you can use a CommandBuilder object.

bvb_02.book Page 342 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 343

NOTE In this chapter, we use the CommandBuilder for quick, effective coding. However, the com-
mands the CommandBuilder creates may not always be the ones you want to use. For
example, you might want to use stored procedures. Or, you might not like the fact that
CommandBuilder-generated commands try to match records exactly when they perform
updates. That means if someone else has modified the record since you queried it, your
change won’t be applied. (You’ll learn how to handle the resulting concurrency error
later in this chapter.) Although this is generally the safest option, it might not be what
you want, or you might want to implement that strategy in a different way, such as
with a timestamp column. In any of these cases, you must give the CommandBuilder a
pass and create your own Command objects from scratch.

The CommandBuilder takes a reference to the DataAdapter object that was
used to create the DataSet, and it adds the required additional commands.

' Create the Command and DataAdapter representing the Select operation.
Dim SQL As String = "SELECT * FROM Orders " & _
 "WHERE OrderDate < '2000/01/01' AND OrderDate > '1987/01/01'"
Dim cmd As New SqlCommand(SQL, con)
Dim adapter As New SqlDataAdapter(cmd)

At this point, the adapter.SelectCommand property refers to the cmd object.
This SelectCommand property is automatically used for selection operations
(when the Fill() and ExecuteReader() methods are called). However, the
adapter.InsertCommand, adapter.DeleteCommand, and adapter.UpdateCommand
properties are not set. To set these three properties, you can use the
CommandBuilder:

' Create the CommandBuilder.
Dim cb As New SqlCommandBuilder(adapter)

' Retrieve an updated DataAdapter.
adapter = cb.DataAdapter

Updating the Data Source

Once you have appropriately configured the DataAdapter, you can update the
data source in a single line by using the DataAdapter.Update() method:

Dim NumRowsAffected As Integer
NumRowsAffected = adapter.Update(dsNorthwind, "Orders")

The Update() method works with one table at a time, so you’ll need to call
it several times in order to commit the changes in multiple tables. When you
use the Update() method, ADO.NET scans through all the rows in the specified
table. Every time it finds a new row (DataRowState.Added), it adds it to the data
source using the corresponding Insert command. Every time it finds a row
that is marked with the state DataRowState.Deleted, it deletes the corresponding

bvb_02.book Page 343 Thursday, March 30, 2006 12:39 PM

344 Chap te r 10

row from the database by using the Delete command. And every time it finds a
DataRowState.Modified row, it updates the corresponding row by using the Update
command.

Once the update is successfully complete, the DataSet object will be
refreshed. All rows will be reset to the DataRowState.Unchanged state, and all
the “current” values will become “original” values, to correspond to the data
source.

Reporting Concurrency Problems

Before a row can be updated, the row in the data source must exactly match
the “original” value stored in the DataSet. This value is set when the DataSet is
created and whenever the data source is updated. But if another user has
changed even a single field in the original record while your program has
been working with the disconnected data, the operation will fail, the Update
will be halted, and an exception will be thrown. In many cases, this prevents
other valid rows from being updated.

An easier way to deal with this problem is to detect the discrepancy by
responding to the DataAdapter.RowUpdated event. This event occurs each time
a single update, delete, or insert operation is completed, regardless of the
result. It provides you with some additional information, including the type
of statement that was just executed, the number of rows that were affected,
and the DataRow from the DataTable that prompted the operation. It also gives
you the chance to tell the DataAdapter to ignore the error.

The RowUpdated event happens in the middle of DataAdapter.Update()
process, and so this event handler is not the place to try to resolve the
problem or to present the user with additional user interface options, which
would tie up the database connection. Instead, you should log errors, display
them on the screen in a list control, or put them into a collection so that you
can examine them later.

The following example puts errors into one of three shared collections
provided in a class called DBErrors. The class looks like this:

Public Class DBErrors
 Public Shared LastInsert As Collection
 Public Shared LastDelete As Collection
 Public Shared LastUpdate As Collection
End Class

The event handler code looks like this:

Public Sub OnRowUpdated(ByVal sender As Object, ByVal e As
 SqlRowUpdatedEventArgs)

 ' Check if any records were affected.
 ' If no records were affected, the statement did not
 ' execute as expected.
 If e.RecordsAffected() < 1 Then
 ' We add information about failed operations to a table.
 Select Case e.StatementType

bvb_02.book Page 344 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 345

 Case StatementType.Delete
 DBErrors.LastDelete.Add(e.Row)
 Case StatementType.Insert
 DBErrors.LastInsert.Add(e.Row)
 Case StatementType.Update
 DBErrors.LastUpdate.Add(e.Row)
 End Select

 ' As the error has already been detected, we don't need the
 ' DataAdapter to cancel the entire operation and throw an exception,
 ' unless the failure may affect other operations.
 e.Status = UpdateStatus.SkipCurrentRow
 End If

End Sub

The nice thing about this approach is that it allows you the flexibility to
decide how you want to deal with these errors when you execute the Update()
method, rather than hard-coding a specific approach into the event handler
for the RowUpdated event.

To bring it all together, you need to attach the event handler before the
update is performed. The next example goes one step further, and examines
the error collections and displays the results in three separate list controls
in the current window.

' Connect the event handler.
AddHandler(adapter.RowUpdated, AddressOf OnRowUpdated)

' Perform the update.
Dim NumRowsAffected As Integer
NumRowsAffected = adapter.Update(dsNorthwind, "Orders")

' Display the errors.
Dim rowError As DataRow
For Each rowError In DB.LastDelete
 lstDelete.Items.Add(rowError("OrderID"))
Next

For Each rowError In DB.LastInsert
 lstInsert.Items.Add(rowError("OrderID"))
Next

For Each rowError In DB.LastUpdate
 lstUpdate.Items.Add(rowError("OrderID"))
Next

The ConcurrencyErrors project shows a live example of this technique.
It creates two DataSets and simulates a multiuser concurrency problem by
modifying them simultaneously in two different ways (see Figure 10-11).
This artificial error is then dealt with in the RowUpdated event handler.

bvb_02.book Page 345 Thursday, March 30, 2006 12:39 PM

346 Chap te r 10

Figure 10-11: Simulating a concurrency problem

Updating Data in Stages

Concurrency issues aren’t the only potential source of error when you
update your data source. Another problem can occur if you use linked tables,
particularly if you have deleted or added records. When you update the data
source, your changes will probably not be committed in the same order in
which they were performed in the DataSet. If you try to delete a record from a
parent table while it is still linked to other child records, an error will occur.
This error can take place even if you haven’t defined relations in your DataSet,
because the restriction is enforced by the database engine itself. In the case
of the Northwind database, you could encounter these sorts of errors by trying
to add a Product that references a nonexistent Supplier or Category, or by try-
ing to delete a Supplier or Category record that is currently being used by a
Product. (Of course, there are some exceptions. Some database products can
be configured to automatically delete related child records when you remove
a parent record, in which case your operation will succeed, but this might
have more consequences than you expect.)

There is no simple way around these problems. If you are performing
sophisticated data manipulations on a relational database using a DataSet,
you will have to plan out the order in which changes need to be implemented.
However, you can then use some built-in ADO.NET features to perform
these operations in separate stages.

Generally, a safe approach would proceed in this order:

1. Add new records to the parent table, then to the child table.

2. Modify existing records in all tables.

3. Delete records in the child table, then in the parent table.

To perform these operations separately, you need a special update
routine. This routine will create three separate DataSets, one for each
operation. Then you’ll move all the new records into one DataSet, all the
records marked for deletion into another, and all the modified records into
a third.

bvb_02.book Page 346 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 347

To perform this shuffling around, you can use the DataSet.GetChanges()
method:

' Create three DataSets, and fill them from dsNorthwind.
Dim dsNew As DataSet = dsNorthwind.GetChanges(DataRowState.Added)
Dim dsModify As DataSet = dsNorthwind.GetChanges(DataRowState.Deleted)
Dim dsDelete As DataSet = dsNorthwind.GetChanges(DataRowState.Modified)

' Update these DataSets separately, in an order guaranteed to
' avoid problems.
adapter.Update(dsNew, "Customers")
adapter.Update(dsNew, "Orders")
adapter.Update(dsModify, "Customers")
adapter.Update(dsModify, "Orders")
adapter.Update(dsDelete, "Orders")
adapter.Update(dsDelete, "Customers")

Creating a DataSet Object by Hand
Incidentally, you can add new tables and even populate an entire DataSet by
hand. There’s really nothing tricky to this approach—it’s just a matter of
working with the right collections. First you create the DataSet, then at least
one DataTable, and then at least one DataColumn in each DataTable. After that,
you can start adding DataRows. This brief example demonstrates the whole
process:

' Create a DataSet and add a new table.
Dim dsPrefs As New DataSet
dsPrefs.Tables.Add("FileLocations")

' Define two columns for this table.
dsPrefs.Tables("FileLocation").Columns.Add("Folder", _
 GetType(System.String))
dsPrefs.Tables("FileLocation").Columns.Add("Documents", _
 GetType(System.Int32))
' Add some actual information into the table.
Dim newRow As DataRow = dsPrefs.Tables("FileLocation").NewRow()
newRow("Folder") = "f:\Pictures"
newRow("Documents") = 30
dsPrefs.Tables("FileLocation").Rows.Add(newRow)

Notice that this example uses standard .NET types instead of SQL-specific,
Oracle-specific, or OLE DB–specific types. That’s because the table is not
designed for storage in a relational data source. Instead, this DataSet stores
preferences for a single user, and must be stored in a stand-alone file. Alter-
natively, the information could be stored in the registry, but then it would be
hard to move a user’s settings from one computer to another. This way, it’s
stored as a file, and these settings can be placed on an internal network and
made available to various workstations.

bvb_02.book Page 347 Thursday, March 30, 2006 12:39 PM

348 Chap te r 10

Storing a DataSet in XML

To store and retrieve the custom data as an XML document, you use the
built-in methods of the DataSet object:

Dim dsUserPrefs As New DataSet()
' (Code for defining and filling the DataTables goes here.)

' Save the DataSet to an XML file using the WriteXml() method.
dsUserPrefs.WriteXml("c:\MyApp\UserData\" & UserName & ".xml")

' Release the DataSet.
dsUserPrefs = Nothing

' And recreate it with the ReadXml() method.
dsUserPrefs.ReadXml("c:\MyApp\UserData\" & UserName & ".xml")

The XML document for a DataSet is shown in Figure 10-12, as displayed
in Internet Explorer.

Figure 10-12: A partly collapsed view of a DataSet in XML

Of course, you will probably never need to look at it directly, because the
ADO.NET DataSet object handles the XML format automatically. You can test
XML reading and writing with the sample project XMLDataSet.

NOTE It really is quite easy to use ADO.NET’s XML support in this way. However, keep in
mind that what you get is not a true database system. For example, there is no way to
manage concurrent user updates to this file—every time it is saved, the existing version
is completely wiped out.

bvb_02.book Page 348 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 349

Storing a Schema for the DataSet

If you need to exchange XML data with another program, or if the structure
of your DataSet changes with time, you might find it a good idea to save the
XML schema information for your DataSet. This document (shown in Fig-
ure 10-13) explicitly defines the format that your DataSet file uses, preventing
any chance of confusion. For example, it details the tables, the columns in
each table, and their data types.

Figure 10-13: A DataSet schema

Generally, storing the schema is a good safeguard, and it’s easy to imple-
ment. You simply need to remember to write the schema when you write the
DataSet, and read the schema information back into the DataSet to configure
its structure before you load the actual data.

' Save it as an XML file with the WriteXmlSchema() and WriteXml() methods.
dsUserPrefs.WriteXmlSchema("c:\MyApp\UserData\" & UserName & ".xsd")
dsUserPrefs.WriteXml("c:\MyApp\UserData\" & UserName & ".xml")
dsUserPrefs = Nothing

' And retrieve it with the ReadXmlSchema() and ReadXml() methods.
dsUserPrefs.ReadXmlSchema("c:\MyApp\UserData\" & UserName & ".xsd")
dsUserPrefs.ReadXml("c:\MyApp\UserData\" & UserName & ".xml")

bvb_02.book Page 349 Thursday, March 30, 2006 12:39 PM

350 Chap te r 10

Data Binding

Data binding is a powerful way to display information from a DataSet by bind-
ing it directly to a user interface control. It saves you from writing simple but
repetitive code to move through the database and manually copy content
from a DataSet into a control. (The ListView example used this kind of code,
but in that case, there was no other choice, because the ListView control
doesn’t support data binding.)

Binding a control in a Windows application is often just as easy as setting
a DataSource property. Here’s an example with the super-powerful DataGridView
control:

DataGridView1.DataSource = dsNorthwind.Tables("Products")

This produces a display that includes every field in a separate column
and all the rows of data, as shown in Figure 10-14.

Figure 10-14: A data-bound grid

In its default mode, the DataGridView even allows you to edit a data value
by typing in a field and to add a new row by entering information at the
bottom of the row (see Figure 10-15).

When you change or add information to the DataGridView, the linked
DataSet is modified automatically, providing some very convenient basic data
editing features.

bvb_02.book Page 350 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 351

Figure 10-15: Adding a new record

Not all controls support data binding, and few can bind to multiple
tables at once. Some, like ListBox controls, can only support binding to one
field in a table. In this case, you have to specify two properties: the table data
source, and the field that should be used for display purposes:

lstID.DataSource = dsNorthwind.Tables("Employees")
lstID.DisplayMember = "EmployeeID"

Just about every .NET control supports single-value data binding through
the DataBindings property. This property provides a collection that allows you
to connect a field in the data source with a property in the control. That
means you could have a check box control, for example, that has several
bound properties, including Text, Tag, and Checked.

The following code binds a generic text box:

' Bind the FirstName field to the Text property.
txtName.DataBindings.Add("Text", dsNorthwind.Tables("Employees"), _
 "FirstName")

You can bind a DataSet to as many controls as you want, all at the same
time (as shown in Figure 10-16). However, only one record can be selected at
a time. When you select a value in the ListBox, the corresponding full record
row is selected in the DataGridView, and the corresponding values are filled
into other bound controls like the text box.

This allows you to create windows that contain many different controls,
each of which allows you to edit one property of the currently selected record.
There’s much more that you can do with data binding to configure advanced
column display. For example, using such features as column mapping, you can
rename or hide specific columns. ASP.NET even allows you to use templates to
configure specifically how a column will look. Unfortunately, we won’t get
a chance to explore these topics in this chapter. Instead, refer to the Visual
Studio Help.

bvb_02.book Page 351 Thursday, March 30, 2006 12:39 PM

352 Chap te r 10

Figure 10-16: Multiple bound controls

What Comes Next?

This chapter has tackled a subject that can easily make up an entire book of
its own. We’ve examined all the essentials, with a fairly in-depth look at the
best way to organize database code, update information, and manage dis-
connected DataSet objects. You may want to take the time to work through
this chapter again, as many of the insights contained here are the basis for
“best practices” and other techniques that can ensure a robust, scalable
database application.

There are still many more possibilities left for you to discover with
ADO.NET. Here are some of them:

� If you don’t already know SQL, now is the perfect time to learn. Although
you don’t need a sophisticated understanding of SQL to program with
ADO.NET, the difference between a competent database programmer
and an excellent one is often an understanding of the limitations and
capabilities of SQL. Many excellent SQL resources are available online.

� It also helps to know a specific database product in order to create stored
procedures and well-organized data tables. SQL Server provides Books
Online, documentation which covers advanced tools such as stored
procedures, views, column constraints, and triggers, all of which can
help you to become a database guru. SQL Server 2005 even allows you
to create these database ingredients using pure VB 2005 code!

bvb_02.book Page 352 Thursday, March 30, 2006 12:39 PM

Databases and ADO.NET 353

� Data binding was a dirty word in traditional Visual Basic programming,
because it was slow, inefficient, and extremely inflexible. In .NET, data
binding has been improved so much that it finally makes sense. Using
data binding with the DataGridView, for example, you can automatically
provide a sophisticated number of data editing features.

� In the examples in this chapter, we updated our data source using a
DataSet and the default UpdateCommand, InsertCommand, and DeleteCommand that
ADO.NET generates automatically. You might be able to improve perfor-
mance and provide additional options if you learn how to customize these
properties with your own commands. For example, you might create a
command that can update a record even if it has been changed in the
meantime, by making the selection criteria less strict. (You might look
the record up just using the ID column, for example.) Or, you could con-
figure the DataAdapter to use a specific stored procedure you have created.
See the Visual Studio Help for more information.

� To become a database programming expert, you might want to consult
a dedicated book on the subject. Consider David Sceppa’s relentlessly
comprehensive Programming Microsoft ADO.NET 2.0: Core Reference
(Microsoft Press, 2006).

bvb_02.book Page 353 Thursday, March 30, 2006 12:39 PM

bvb_02.book Page 354 Thursday, March 30, 2006 12:39 PM

11
T H R E A D I N G

Threading is, from your application’s point
of view, a way of running various different

pieces of code at the same time. Threading is
also one of the more complex subjects examined

in this book. That’s not because it’s difficult to use
threading in your programs—as you’ll see, Visual Basic
2005 makes it absurdly easy—but because it’s difficult to use threading correctly.
If you stick to the rules, keep your use of threads simple, or rely on the new
all-in-one BackgroundWorker component, you’ll be fine. If, however, you embark
on a wild flight of multithreaded programming, you will probably commit
one of the cardinal sins of threading, and wind up in a great deal of trouble.
Many excellent developers have argued that the programming community
has repeatedly become overexcited about threading in the past, and has
misused it, creating endless headaches.

This chapter explains how to use threading and, more importantly, the
guidelines you should follow to make sure you keep your programs free of
such troubles as thread overload and synchronization glitches. Threading is

bvb_02.book Page 355 Thursday, March 30, 2006 12:39 PM

356 Chap te r 11

a sophisticated subject with many nuances, so it’s best to proceed carefully.
However, a judicious use of carefully selected threads can make your appli-
cations appear faster, more responsive, and more sophisticated.

New in .NET

In Visual Basic 6, there was no easy way to create threads. Programmers who
wanted to create truly multithreaded applications had to use the Windows
API (or create and register separate COM components). Visual Basic 2005
provides these enhancements:

Integrated threads
The method of creating threads in Visual Basic 2005 is conceptually
and syntactically similar to using the Windows API, but it’s far less error-
prone, and it’s elegantly integrated into the language through the
System.Threading namespace. The class library also contains a variety of
tools to help implement synchronization and thread management.

Multithreaded debugging
The Visual Studio debugger now allows you to run and debug multi-
threaded applications without forcing them to act as though they are
single-threaded. You can even view a Threads window that shows all
the currently active threads and allows you to pause and resume them
individually.

The BackgroundWorker
As you’ll learn in this chapter, multithreaded programming can be
complicated. In .NET 2.0, Microsoft has added a BackgroundWorker com-
ponent that can simplify the way you code a background task. All you
need to do is handle the BackgroundWorker events and add your code—
the BackgroundWorker takes care of the rest, making sure that your code
executes on the correct thread. This chapter provides a detailed look at
the BackgroundWorker.

An Introduction to Threading

Even if you’ve never tried to implement threading in your own code, you’ve
already seen threads work in the modern Windows operating system. For
example, you have probably noticed how you can work with a Windows
application while another application is busy or in the process of starting up,
because both applications run in separate processes and use separate threads.
You have probably also seen that even when the system appears to be frozen,
you can almost always bring up the Task Manager by pressing CTRL+ALT+
DELETE. This is because the Task Manager runs on a thread that has an
extremely high priority. Even if other applications are currently executing or
frozen, trapping their threads in endless CPU-wasting cycles, Windows can
usually wrest control away from them for a more important thread.

If you’ve used Windows 3.1, you’ll remember that this has not always
been the case. Threads really came into being with 32-bit Windows and the
Windows 95 operating system.

bvb_02.book Page 356 Thursday, March 30, 2006 12:39 PM

Thread ing 357

Threads “Under the Hood”

Now that you have a little history, it’s time to examine how threads really work.
Threads are created by the handful in Windows applications. If you open

a number of different applications on your computer, you will quickly have
several different processes and potentially dozens of different threads exe-
cuting simultaneously. The Windows Task Manager can list all the active
processes, which gives you an idea of the scope of the situation (Figure 11-1).

Figure 11-1: Active processes in Task Manager

In all honesty, there is no way any computer, no matter how tech-
nologically advanced, can run dozens of different operations literally at
once. If your system has two CPUs, it is technically possible for two instruc-
tions to be processed at the same time, and Windows is likely to send the
instructions for different threads to different CPUs. At some point, however,
you will still end up with many more threads than CPUs.

Windows handles this situation by switching rapidly between different
threads. Each thread thinks it is running independently, but in reality it only
runs for a little while, is suspended, and is then resumed a short while later
for another brief interval of time. This switching is all taken care of by the
Windows operating system and is called preemptive multitasking.

Comparing Single Threading and Multithreading

One consequence of thread switching is that multithreading usually doesn’t
result in a speed increase. Figure 11-2 shows why.

bvb_02.book Page 357 Thursday, March 30, 2006 12:39 PM

358 Chap te r 11

Figure 11-2: Multithreading can make operations appear slower

This illustration compares a single-threaded and a multithreaded application.
Both are performing the same two tasks, but the multithreaded program is
working by dividing the two operations into numerous little intervals, and
rapidly switching from one to the other. This switching introduces a small
overhead, but overall, both applications will finish at about the same time.
However, if a user is waiting for both tasks to end, they will both seem to be
running more slowly, because both tasks will finish at more or less the same
time—at the end of two seconds. With the single-threaded approach, Oper-
ation A will be completed sooner, after about a second of processing time.

So why use multithreading? Well, if you were running a short task and a
long task simultaneously, the picture might change. For example, if Opera-
tion B took only a few time slices to complete, a user would perceive the
multithreaded application as being much faster, because the user wouldn’t
have to wait for Operation A to finish before Operation B was started (in tech-
nical terms, with multithreading Operation B is not blocked by Operation A).
In this case, Operation A would finish in a fraction of a second, rather than
waiting the full one-second period (see Figure 11-3).

Figure 11-3: Multithreading lets short tasks finish first

Serialized Operation Calls Multithreaded Operation Calls

Operation A
(1 second)

Operation A
(Odd time

slices)

Operation B
(Even time
slices)

Perceived
time for
Operation B is
2 seconds.

Perceived time
for both A and B
is 2 seconds.

Operation B
(1 second)

Perceived Average:
(1+2)/2 = 1.5 seconds

Perceived Average:
(2+2)/2 = 2.0 seconds

Serialized Operation Calls Multithreaded Operation Calls

Operation A
(almost 2
seconds)

Operation A
(Odd time

slices)

Operation B
(Even time
slices)

Perceived
time for
Operation B is
2 seconds.

Perceived time
for Operation B is
0.5 seconds.

Operation B
(fraction of
a second)

bvb_02.book Page 358 Thursday, March 30, 2006 12:39 PM

Thread ing 359

This is the basic principle of multithreading. Rather than speeding up
tasks, it allows the quickest tasks to finish first; this makes an application
appear more responsive and adds only a slight performance degradation
(caused by all the required thread switching).

Multithreading works even better in applications where substantial waits
are involved for certain tasks. For example, an application that spends a lot
of time waiting for file I/O operations to complete could accomplish other
useful tasks while waiting. In this case, multithreading can actually speed up
the application, because it will not be forced to sit idle.

Scalability and Simplicity
There is one other reason to use threading: It makes program design much
simpler for some common types of applications. For example, imagine you
want to create an FTP server that can serve several simultaneous users. In a
single-threaded application, you may find it very difficult to manage a vari-
able number of users without hard-coding some preset limit on the number
of users and implementing your own crude thread-switching logic.

With a multithreaded application, you can easily create a new thread to
serve each client connection. Windows will take care of automatically assign-
ing the processor time for each thread, and you can use exactly the same
code to serve a hundred users as you would to serve one. Each thread uses
the same code, but handles a different client. As the workload increases, all
you need to do is add more threads.

Timers Versus Threads
You may have used Timer objects in previous versions of Visual Basic. Timer
objects are still provided in Visual Basic 2005, and they are useful for a wide
variety of tasks. Timers work differently than threads, however. From the
program’s standpoint, multiple threads execute simultaneously. In contrast,
a timer works by interrupting your code in order to perform a single task at a
“timed” interval. This task is then started, performed, and completed before
control returns to the procedure in your application that was executing when
the timer code launched.

This means that timers are not well suited for implementing long-
running processes that perform a variety of independent, unpredictably
scheduled tasks. To use a timer for this purpose, you would need to fake a
multithreaded process by performing part of a task the first time a timer
event occurs, a different part the next time, and so on.

To observe this problem, you can create a project with two timers and
two labels, and add the following code.

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 Timer1.Enabled = True
 Timer2.Enabled = True
End Sub

bvb_02.book Page 359 Thursday, March 30, 2006 12:39 PM

360 Chap te r 11

Private Sub Timer1_Elapsed(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick
 Dim i As Integer
 For i = 1 To 5000
 Label1.Text = i.ToString()
 Label1.Refresh()
 Next
 Timer1.Enabled = False
End Sub

Private Sub Timer2_Elapsed(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Timer2.Tick
 Dim i As Integer
 For i = 1 To 5000
 Label2.Text = i.ToString()
 Label2.Refresh()
 Next
 Timer2.Enabled = False
End Sub

When you run this program, one timer will take control, and one label
will display the numbers from 1 to 5,000. The other timer will also perform
the same process, but only after the first timer finishes. Even though both
timers are scheduled to start at the same time, only one can work with the
application window at a time. (Indeed, if Visual Basic 2005 were to allow timer
events to execute simultaneously, it would lead programmers to encounter
all the same synchronization issues that can occur with threads, as you’ll see
later this chapter.)

You’ll also notice that while the timer is executing in this example (incre-
menting a label), the application as a whole won’t be responsive. If you try to
have perform another task with your application or drag its window around
on the desktop, you’ll find it performs very sluggishly.

Basic Threading with the BackgroundWorker

The simplest way to create a multithreaded application is to use
the BackgroundWorker component, which is new in Visual Basic 2005. The
BackgroundWorker handles all the multithreading behind the scenes and
interacts with your code through events. Your code handles these events to
perform the background task, track the progress of the background task, and
deal with the final result. Because these events are automatically fired on the
correct threads, you don’t need to worry about thread synchronization and
other headaches of low-level multithreaded programming.

Of course, the BackgroundWorker also has a limitation—namely, flexibility.
Although the BackgroundWorker works well when you have a single, distinct task
that needs to take place in the background, it isn’t as well suited when you
want to manage multiple background tasks, control thread priority, or main-
tain a thread for the lifetime of your application.

bvb_02.book Page 360 Thursday, March 30, 2006 12:39 PM

Thread ing 361

To use the BackgroundWorker, you begin by dragging it from the
Components section of the Toolbox onto a form. (You can also create
a BackgroundWorker in code, but the drag-and-drop approach is easiest.)
The BackgroundWorker will then appear in the component tray (see
Figure 11-4).

Figure 11-4: Adding the BackgroundWorker to a form

Once you have a BackgroundWorker, you can begin to use it by connecting it
to the appropriate event handlers. A BackgroundWorker throws three events:

� The DoWork event fires when the BackgroundWorker begins its work. But
here’s the trick—this event is fired on a separate thread (which is tempo-
rarily borrowed from a thread pool that the Common Language Runtime
maintains). That means your code can run freely without stalling the rest
of your application. You can handle the DoWork event and perform your
time-consuming task from start to finish.

NOTE The code that responds to the DoWork event can’t communicate directly with the rest of
your application or try to manipulate a form, control, or member variable. If it did,
it would violate the rules of thread safety (as you’ll see later in this chapter), perhaps
causing a fatal error.

� The ProgressChanged event fires when you notify the BackgroundWorker
(in your DoWork event handler) that the progress of the background task
has changed. Your application can react to this event to update some sort
of status display or progress meter.

� The RunWorkerCompleted event fires once the code in the DoWork handler
has finished. Like the ProgressChanged event, the RunWorkerCompleted event
fires on the main application thread, which allows you to take the result
and display it in a control or store it in a member variable somewhere
else in your application, without risking any problems. RunWorkerCompleted
also fires when the background task is canceled (assuming you elect to
support the Cancel feature).

bvb_02.book Page 361 Thursday, March 30, 2006 12:39 PM

362 Chap te r 11

To try out the BackgroundWorker, you can create a simple test. First, drop
the BackgroundWorker component onto a form. Then attach the following
DoWork event handler, which simply idles away ten seconds without doing
anything. (We’ll return to the Sleep() method later in the chapter.)

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.DoWorkEventArgs) _
 Handles BackgroundWorker1.DoWork

 ' This fires on a thread from the CLR thread pool.
 ' It's not safe to access the form here or any shared data
 ' (such as form-level variables).
 System.Threading.Thread.Sleep(TimeSpan.FromSeconds(10))

End Sub

WARNING If you do break the rule in the above code and manipulate a control or form-level vari-
able, you might not receive an error. But eventually you will cause a more serious problem
under difficult-to-predict conditions, as described later in this chapter.

Next you need to handle the RunWorkerCompleted event, in order to react
when the background task is complete:

Private Sub BackgroundWorker1_RunWorkerCompleted(_
 ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _
 Handles BackgroundWorker1.RunWorkerCompleted

 ' This fires on the main application thread.
 ' It's now safe to update the form.
 MessageBox.Show("Time wasting completed!")

End Sub

The only thing remaining is to set the BackgroundWorker in motion when
the form loads. To do this, call the BackgroundWorker.RunWorkerAsync() method.
Here’s the code that launches the BackgroundWorker when the form loads:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 BackgroundWorker1.RunWorkerAsync()

End Sub

When you run this application, you’ll see a message box appear after ten
seconds have elapsed.

Although this example is trivial, it should be clear that if you were doing
something truly time-consuming in the DoWork event handler (like performing
a database query or calling a web service on a remote computer), there
would be a clear benefit: Your application would remain responsive as this
work is taking place in the background.

bvb_02.book Page 362 Thursday, March 30, 2006 12:39 PM

Thread ing 363

In the next section, you’ll see how to extend this pattern to use the
BackgroundWorker in a more realistic application.

Transferring Data to and from the BackgroundWorker

One of the main challenges in multithreaded programming is exchanging
information between threads. Fortunately, the BackgroundWorker includes a
mechanism that lets you send initial information to the background thread
and retrieve the result from it without any synchronization headaches.

To supply information to the BackgroundWorker you pass a single parameter
to the RunWorkerAsync() method. This parameter can be any object type from a
simple integer to a full-fledged object. However, you can only supply a single
object. This object will be delivered to the DoWork event.

For example, imagine you want to calculate a series of cryptographically
strong random digits. Cryptographically strong random numbers are random
numbers that can’t be predicted. Ordinarily, computers use relatively well-
understood algorithms to generate random numbers. As a result, a malicious
user can predict an upcoming “random” number based on recently generated
numbers. This isn’t necessarily a problem, but it is a risk if you need your
random number to be secret.

For this operation, your code needs to specify the number of digits and
the maximum and minimum value. In this case, you might create a class like
this to encapsulate the input arguments:

Public Class RandomNumberGeneratorInput

 Private _NumberOfDigits As Integer
 Private _MinValue As Integer
 Private _MaxValue As Integer

 ' (Property procedures are omitted.)

 Public Sub New(ByVal numberOfDigits As Integer, _
 ByVal minValue As Integer, _
 ByVal maxValue As Integer)
 Me.NumberOfDigits = numberOfDigits
 Me.MinValue = minValue
 Me.MaxValue = maxValue
 End Sub

End Class

The form should provide text boxes for supplying this information and a
button that can start the asynchronous background task. When the button is
clicked, you’ll launch the operation with the correct information. Here’s the
event handler that starts it all off:

Private Sub cmdDoWork_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdDoWork.Click

bvb_02.book Page 363 Thursday, March 30, 2006 12:39 PM

364 Chap te r 11

 ' Prevent two asynchronous tasks from being triggered at once.
 ' This is allowed but doesn't make sense in this application
 ' (because the form only has space to show one set of results
 ' at a time).
 cmdDoWork.Enabled = False
 ' Clear any previous results.
 txtResult.Text = ""

 ' Start the asynchronous task.
 Dim Input As New RandomNumberGeneratorInput(_
 Val(txtNumberOfDigits.Text), _
 Val(txtMin.Text), Val(txtMax.Text))
 BackgroundWorker1.RunWorkerAsync(Input)
End Sub

Once the BackgroundWorker acquires the thread, it fires a DoWork event.
The DoWork event provides a DoWorkEventArgs object, which is the key ingre-
dient for retrieving and returning information. You retrieve the input through
the DoWorkEventArgs.Argument property, and return the result by setting the
DoWorkEventArgs.Result property. Both properties can use any object.

Here’s the implementation for a simple secure random number gen-
erator that’s deliberately written to take almost 1,000 times longer than it
should (and thereby make testing easier).

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.DoWorkEventArgs) _
 Handles BackgroundWorker1.DoWork

 ' Retrieve the input arguments.
 Dim Input As RandomNumberGeneratorInput = CType(_
 e.Argument, RandomNumberGeneratorInput)

 ' Create a StringBuilder to hold the generated random number sequence.
 Dim ResultString As New System.Text.StringBuilder()

 ' Start generating numbers.
 For i As Integer = 0 To Input.NumberOfDigits - 1
 ' Create a cryptographically secure random number.
 Dim RandomByte(1000) As Byte
 Dim Random As New _
 System.Security.Cryptography.RNGCryptoServiceProvider()

 ' Fill the byte array with random bytes. In this case,
 ' the byte array only needs a single byte.
 ' We fill it with 1000 just to make sure this is the world's slowest
 ' random number generator.
 Random.GetBytes(RandomByte)

 ' Convert the random byte into a decimal from MinValue to MaxValue.
 Dim RandomDigit As Integer

bvb_02.book Page 364 Thursday, March 30, 2006 12:39 PM

Thread ing 365

 RandomDigit = Int(RandomByte(0) / 256 * _
 (Input.MaxValue - Input.MinValue + 1)) + Input.MinValue

 ' Add the random number to the string.
 ResultString.Append(RandomDigit.ToString())
 Next

 ' Return the complete string.
 e.Result = ResultString.ToString()
End Sub

TIP In many cases, you’ll want your DoWork event handler to call a method in another class
to perform the actual work. This more extensively factored approach gives you greater
flexibility—you can decide whether to perform the task synchronously, asynchronously,
in multiple forms, or even in other applications (if you place the component in a separate
class library assembly).

Once the handler completes, the BackgroundWorker fires the
RunWorkerCompletedEventArgs on the user interface thread. At this point, you
can retrieve the result from the RunWorkerCompletedEventArgs.Result property
and update the interface and access form-level variables without worry:

Private Sub BackgroundWorker1_RunWorkerCompleted(_
 ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _
 Handles BackgroundWorker1.RunWorkerCompleted
 ' Show the results.
 txtResult.Text = CType(e.Result, String)

 ' Allow another operation to be started.
 cmdDoWork.Enabled = True
End Sub

This code completes the simple asynchronous random number
generator shown in Figure 11-5. You can find this example (complete
with the refinements for cancellation handling and progress tracking
that you’ll consider in the following sections) in the BackgroundWorkerTest
project.

This simple application really demonstrates the power of threading.
When you run it, you have no idea that any work is being carried out in the
background. Best of all, the user interface remains responsive, which is not
the case when timers are used. The user can click other buttons and per-
form other tasks while the time-consuming random number calculation is
performed without any noticeable slowdown.

One reason multithreading works so well is that modern computers are
so fast. Slowing down an application to execute several operations at once is
a performance degradation that most applications can easily afford. Also,
there’s a little human psychology involved—in a user’s experience, perception
is reality.

bvb_02.book Page 365 Thursday, March 30, 2006 12:39 PM

366 Chap te r 11

Figure 11-5: Generating random
numbers asynchronously

Tracking Progress

There’s no automatic way to report progress with the BackgroundWorker
because it won’t know how long your code will take to execute. However, the
BackgroundWorker does provide built-in support for your DoWork code to read
progress information and pass it to the rest of the application. This is useful
for keeping a user informed about how much work has been completed in a
long-running task.

To add support for progress reporting, you first need to set the
BackgroundWorker.WorkerReportsProgress property to True. Then it’s up to your
code in the DoWork event handler to call the BackgroundWorker.ReportProgresss()
method and provide an estimate of percentage complete (from 0% to 100%).
You can do this as little or as often as you like. How is progress estimated? Each
time you call ReportProgress(), the BackgroundWorker fires the ProgressChanged
event. You can react to this event to read the new progress percentage and
update the user interface. Because the ProgressChanged event fires on the user
interface thread, there’s no need for you to worry about marshalling your
call to the correct thread.

Reporting progress usually involves a calculation, a call to another thread,
an event, and a refresh of the form’s user interface. Because of this overhead,
you want to cut down the rate of progress reporting as much as possible. In
our random number generator example, we do this by reporting progress in
1% increments only. Before the loop starts, a calculation is made to determine
how many iterations must pass before a 1% progress change has occurred:

Dim ProgressIteration As Integer = Input.NumberOfDigits / 100

bvb_02.book Page 366 Thursday, March 30, 2006 12:39 PM

Thread ing 367

For example, if you are calculating 500 random numbers, progress will
be reported every fifth iteration. This is a relatively quick calculation to make
in the loop:

For i As Integer = 0 To Input.NumberOfDigits - 1
 If BackgroundWorker1.WorkerReportsProgress _
 And ProgressIteration > 0 Then
 If i Mod ProgressIteration = 0 Then
 BackgroundWorker1.ReportProgress(i / ProgressIteration)
 End If
 End If
 ...
Next

Now the only remaining step is to respond to the ProgressChanged event
and update a ProgressBar control:

Private Sub BackgroundWorker1_ProgressChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.ProgressChangedEventArgs) _
 Handles BackgroundWorker1.ProgressChanged

 ProgressBar1.Value = e.ProgressPercentage
End Sub

Remember, you’ll also need to reset the ProgressBar.Value at the beginning
of each new operation. Figure 11-6 shows the revised program with a random
number calculation in progress.

Figure 11-6: Tracking progress in an
asynchronous task

bvb_02.book Page 367 Thursday, March 30, 2006 12:39 PM

368 Chap te r 11

Supporting a Cancel Feature

Another feature your users will appreciate is cancellation—the ability to halt
an asynchronous task before it’s complete if the information isn’t needed.
However, there’s no generic way to support cancellation in the BackgroundWorker
component. After all, your DoWork code might need to perform some cleanup
before it can stop, or it might be in the middle of an operation that isn’t safe
to stop. However, the BackgroundWorker provides support for passing cancel-
lation messages, which you can take advantage of. To enable this feature, first
set the BackgroundWorker.WorkerSupportsCancellation property to True.

As long as WorkerSupportsCancellation is true, your form can call the
BackgroundWorker.CancelAsync() method to request a cancellation. In this
example, the cancellation is requested when a Cancel button is clicked:

Private Sub cmdCancel_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdCancel.Click

 BackgroundWorker1.CancelAsync()
End Sub

Nothing happens automatically when you call CancelAsync(). The code
that’s performing the task needs to explicitly check for a cancel request, set
the DoWorkEventArgs.Cancel property to true, perform any required cleanup,
and return. Here’s how you can add this code to the loop in your DoWork code:

For i As Integer = 0 To Input.NumberOfDigits - 1
 If BackgroundWorker1.CancellationPending Then
 e.Cancel = true
 ' Return without doing any more work.
 Return
 End If
 ...
Next

Even when you cancel an operation, the RunWorkerCompleted event still
fires. At this point, you can check whether the task was canceled and handle
it accordingly.

Private Sub BackgroundWorker1_RunWorkerCompleted(_
 ByVal sender As System.Object, _
 ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _
 Handles BackgroundWorker1.RunWorkerCompleted

 ' This fires on the main application thread.
 ' It's now safe to update the form.
 If e.Cancelled Then
 MessageBox.Show("Task canceled.")
 Else
 txtResult.Text = CType(e.Result, String)
 End If

bvb_02.book Page 368 Thursday, March 30, 2006 12:39 PM

Thread ing 369

 cmdDoWork.Enabled = True
 ProgressBar1.Visible = False
End Sub

Advanced Threading with the Thread Class

The BackgroundWorker is a great tool for implementing a single, straightforward
background task. However, there are several situations in which you might
want to use a more sophisticated (and more complex) approach. Here are
some examples:

� You want to control the priority of a background task.

� You want to have the ability to suspend and resume a task (by suspending
and resuming the thread that executes it).

� You want to reuse a thread over the lifetime of the application.

� You need to have a single thread perform multiple tasks and communicate
with multiple forms or other classes.

Although there’s no denying that the BackgroundWorker is a great tool
for many common scenarios involving a single, asynchronously running
background task, sooner or later nearly every Windows programmer is
tempted to get his or her hands dirty with something a little more powerful.
In the rest of this chapter, you’ll get an overview of how you can use the
Thread class from the System.Threading namespace to create and control
threads at will.

A Simple Multithreaded Application

The first type of threaded program we will create using the Thread class is an
unsynchronized multithreaded application. An unsynchronized application
only spawns threads that perform independent tasks—that is, tasks that
require no interaction with other parts of your application in order to do
their work.

NOTE The BackgroundWorker example obviously wasn’t an example of unsynchronized
multithreading—not only did it return a result after it finished its work, but it also
reported progress along the way. However, in this scenario the distinction between
unsynchronized and synchronized multithreading wasn’t as important because
the BackgroundWorker handles the messy plumbing without requiring any work
from you.

Before going any further, it makes sense to import the namespace that’s
used for threading so that its classes are easily accessible in your code:

Imports System.Threading

bvb_02.book Page 369 Thursday, March 30, 2006 12:39 PM

370 Chap te r 11

A thread runs a single method (technically, a procedure that takes no
arguments and doesn’t have a return value). Thus, before you can create a
thread, you need to create a method and code the task you want to perform
inside it. In this example, the method has a boringly simple task—every ten
seconds, it writes a timestamp to a file named Alive.txt.

NOTE There is no necessary relationship between a thread and an object. A single thread can
run code that belongs to several objects. The methods of a single object can be executed
by different threads.

Private Sub WriteRegularTimeStamp()
 Dim LastUpdate As DateTime
 Do
 ' Write the file every 10 seconds.
 If DateTime.Now.Subtract(LastUpdate).TotalSeconds > 10 Then
 My.Computer.FileSystem.WriteAllText(_
 "c:\alive.txt", _
 DateTime.Now.ToLongTimeString + vbNewLine, True)
 LastUpdate = DateTime.Now
 End If

 ' You could use the following line of code to pause the thread,
 ' which makes the overall application more efficient.
 ' This example leaves it out, just to prove that
 ' multithreading works smoothly even with a CPU-intensive loop.
 'Thread.Sleep(TimeSpan.FromSeconds(10))
 Loop
End Sub

The thread is created and started in the handler for the Click event of a
button:

Private Sub cmdStart_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdStart.Click

 Dim MyThread1 As New Thread(AddressOf WriteRegularTimeStamp)
 MyThread1.IsBackground = True
 MyThread1.Start()
End Sub

All of the threading logic is contained in just three lines. This code
declares a thread for the appropriate procedure, and then sets its IsBackground
property to True. This ensures that the thread will be a background thread.
A background thread lasts only as long as another foreground thread is running
(namely, the rest of your application). That way, the thread stops as soon as
you exit the application. Another option would be to write some sort of
termination condition in the loop, so that it only writes the timestamp a
certain number of times before exiting. (Once the thread’s method ends,
the thread dies off.) Finally, you could also terminate a thread the hard way,

bvb_02.book Page 370 Thursday, March 30, 2006 12:39 PM

Thread ing 371

by explicitly calling its Abort() method, as discussed later in this chapter.
Generally, however, a background thread is a good choice for a noncritical
task that can be shut down independently of any other application activity.

Once the thread is created, you simply need to call its Start() method to
send it on its way.

TIP The Start() method does not instantaneously start the thread. Instead, it notifies the
Windows operating system, which then schedules the thread to be started. If your system
is currently bogged down with a heavy task load, there could be a noticeable delay.

You’ll have no obvious indication that the thread is at work while your
application is running. But after it’s been at its work for a while, you’ll find a
list of timestamps in the Alive.txt file that look something like this:

3:28:22 PM
3:28:32 PM
3:28:42 PM
3:28:52 PM
3:29:02 PM
...

Sending Data to a Thread

There’s an obvious drawback with this application the way it stands. Namely,
it hard-codes the file path. What if you want to move the Alive.txt file to
another directory, or you want to run two threads, each of which will be
working with its own Alive.txt file? You need a way to pass some date to your
thread—namely, the full path of the file you want to use.

You might think that this modification would work:

Private Sub WriteRegularTimeStamp(filePath As string)

Here, the WriteRegularTimeStamp() method is modified to accept a string
argument. Unfortunately, this isn’t allowed. Thread objects can only point to a
method that takes no parameters.

The best way to get around this limitation is to create a class that encap-
sulates the procedure that you want to use and any data that it needs. In this
case, the only data required is the path to the file to be modified. The follow-
ing class works well for the desired purpose:

Public Class TimeStamper
 Private filePath As String

 Public Sub New(ByVal filePath As String)
 Me.filePath = filePath
 End Sub

 Public Sub WriteRegularTimeStamp()

bvb_02.book Page 371 Thursday, March 30, 2006 12:39 PM

372 Chap te r 11

 Dim LastUpdate As DateTime
 Do
 ' Write the file every 10 seconds.
 If DateTime.Now.Subtract(LastUpdate).TotalSeconds > 10 Then
 My.Computer.FileSystem.WriteAllText(_
 filePath, DateTime.Now.ToLongTimeString + vbNewLine, True)
 LastUpdate = DateTime.Now
 End If
 Loop
 End Sub
End Class

As a nice touch, each instance of this class receives its path string as
an argument in its constructor, rather than forcing you to set it through a
property.

You can now modify the code in the click event handler. Here’s an
example that starts two threads off, each with a different file:

Private Sub cmdStart_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdStart.Click

 Dim Stamper1 As New TimeStamper("c:\alive1.txt")
 Dim MyThread1 As New Thread(AddressOf Stamper1.WriteRegularTimeStamp)
 MyThread1.IsBackground = True

 Dim Stamper2 As New TimeStamper("c:\alive2.txt")
 Dim MyThread2 As New Thread(AddressOf Stamper2.WriteRegularTimeStamp)
 MyThread2.IsBackground = True

 ' Start both threads.
 MyThread1.Start()
 MyThread2.Start()
End Sub

If you run the program now, you’ll find that it works more or less the
same as before. Under the hood, however, the design is much more elegant
and extensible. You can find this code in the ThreadTest project, with the
samples for this chapter. (This sample project also uses the notification
technique described in the following section, so it reports to the user every
time the file is stamped.)

One of the reasons this works so well is that each thread has its own data.
There’s no need to worry about exchanging or synchronizing information, as
each thread is independent. If you stick to this type of multithreading, you’ll
have little to worry about.

In many situations, unsynchronized multithreading can be very useful.
For example, you might want to process a batch of data while waiting for the
user to enter more information. Or, you might want to create something like
a graphical arcade game, where the background music is handled by a sep-
arate thread that queues the appropriate music files.

bvb_02.book Page 372 Thursday, March 30, 2006 12:39 PM

Thread ing 373

Threading and the User Interface

One of the reasons our examples have worked so well is that the information
the threads return is sent directly to the appropriate label control in the
window. There is no need for the main program to determine whether a
thread is finished, or to try to retrieve the result of its work. Most real-world
programs don’t work this way. It is far more common (and far better program
design) for an application to use a thread to perform a series of calculations,
retrieve the results once they are ready, and then format and display them in
the user interface, if necessary.

This technique isn’t as easy as it seems. For example, imagine you
want to modify the previous threading example so that every time it writes a
new timestamp to the Alive.txt file, it updates the text in a status bar. This
seems like a trivial task—after all, you simply need to tweak the text in the
WriteRegularTimeStamp() method, right?

Wrong. In fact, if you attempt to interact with a Windows control from
another thread, the results could be disastrous. While you’re debugging a
prerelease version your application, most controls are kind enough to throw
an exception to warn you when you’ve made this mistake, but when you
compile a release version of your application, these checks disappear (for
better performance). In this environment, you won’t get an error, and your
code might work fine in many cases. But under certain difficult-to-predict
conditions, your application will lock up. Tricks that you might think would
get you out of this mess won’t help. For example, you might try to dodge the
problem by firing an event from the code that’s performing the background
work (like the file stamping in the previous example). Then the form can
handle that event and update the user interface safely, right? Not so fast.
It turns out that it doesn’t matter where you write the code—even if you place
the event handler in your form, it’s still going to be executed on the time
stamper thread, because the time stamper thread fires the event. So this
approach just creates the same problem in another location.

Fortunately, there is a solution. .NET provides a way to force a code
routine to run on the user interface thread. You just need to follow these
steps:

1. Put your otherwise unsafe code into a separate procedure.

2. Create an instance of the MethodInvoker delegate, and point it to this
procedure.

3. Call the Invoke() method on any control or form in your application,
and pass it the MethodInvoker delegate as an argument.

Invoke() is the only user interface method that’s safe to call from another
thread. It triggers the code you specify through the delegate to execute it on
the safe user-interface thread. You can also check a control’s InvokeRequired
property to determine whether the current code is running on the user-
interface thread or on another thread. This allows you to determine whether
you need to call Invoke() when modifying the control.

bvb_02.book Page 373 Thursday, March 30, 2006 12:39 PM

374 Chap te r 11

Here is a revised TimeStamper example that uses the Invoke() solution and
reports its last update in a label in a thread-safe manner (the changed lines are
highlighted in bold):

Public Class TimeStamper
 Private filePath As String
 Private statusLabel As Control

 Public Sub New(ByVal filePath As String)
 Me.filePath = filePath
 End Sub

 Public Sub New(ByVal filePath As String, ByVal statusLabel As Control)
 Me.filePath = filePath
 Me.statusLabel = statusLabel
 End Sub

 Private LastUpdate As DateTime
 Public Sub WriteRegularTimeStamp()
 Do
 ' Write the file every 10 seconds.
 If DateTime.Now.Subtract(LastUpdate).TotalSeconds > 10 Then
 My.Computer.FileSystem.WriteAllText(_
 filePath, DateTime.Now.ToLongTimeString + vbNewLine, True)
 LastUpdate = DateTime.Now

 ' Perform the update on the right thread.
 Dim method As New MethodInvoker(AddressOf UpdateStatusLabel)
 statusLabel.Invoke(method)
 End If
 Loop
 End Sub

 Private Sub UpdateStatusLabel()
 statusLabel.Text = "File updated at " + _
 LastUpdate.ToLongTimeString()
 End Sub
End Class

Figure 11-7 shows the revised application in action. This example is
provided with the sample code as the ThreadTest project.

Figure 11-7: Updating the user interface
from another thread (safely)

bvb_02.book Page 374 Thursday, March 30, 2006 12:39 PM

Thread ing 375

This example shows one way to get information out of a thread and back
into the rest of your application. But directly updating a user interface ele-
ment is not the only approach. In many cases, you want a way to transfer
information to some sort of variable, where other code can access it later as
needed. You’ll see this issue later when we tackle synchronization.

Basic Thread Management

The previous example takes advantage of some simplifications. For one thing,
it assumes that you can create a thread and then leave it to do its work with-
out ever worrying about it again. In the real world, however, you often need
to know when a thread has completed its work. You might even need to pause
or kill a thread.

Thread Methods
You’ve already seen how to start a thread. You can also stop a thread by using
the Abort() method, which will finish it off by raising a ThreadAbortException.

MyThread.Abort()

Your thread class can then handle this exception in order to try to end as
gracefully as possible, performing any necessary cleanup in a Finally block.
However, the ThreadAbortException can never be killed off. Even if you catch it,
once the cleanup code finishes, the exception will be thrown again to end the
code in the thread procedure.

Using the Abort() method is a relatively crude way to stop a thread. You
might use it to reign in an otherwise unresponsive thread, but it’s not an ideal
mechanism. It’s more typical for a long-running thread to take the responsi-
bility of polling a variable that indicates whether or not it should continue, as
shown below. This relies on the thread being well behaved, but it also allows
processing to be interrupted at a natural stopping point, as opposed to being
unpredictably interrupted with an exception. If you wrap your thread in a
class, it makes sense for this to be a public class variable or property.

Private Sub ThreadFunction()
 Do Until ThreadStop = true
 ' Do some work here.
 Loop
End Sub

You can also pause and resume a thread with the Suspend() and Resume()
methods:

MyThread.Suspend()
' Do something in the foreground that requires a lot of CPU work.
MyThread.Resume()

bvb_02.book Page 375 Thursday, March 30, 2006 12:39 PM

376 Chap te r 11

TIP The Suspend() and Resume() methods generally aren’t used much in multithreaded
applications, because they can easily lead to deadlocks (as you’ll see later in this
chapter). If the suspended thread has a lock on a resource that another thread needs,
the other thread will be forced to stop processing as well. If both threads are holding
on to resources that the other needs, neither can continue. A better approach to
managing shared resources is to use thread priorities, which are introduced in
the next section.

As you’ve already seen, you can pause a thread for a preset amount of
time using the shared Sleep() method:

Thread.Sleep(TimeSpan.FromSeconds(1))

This is a common method to use in a CPU-intensive or disk-intensive
process to provide a bit of time during which other threads can get their
work done. The example here uses the TimeSpan class to send the thread to
sleep for one second, which makes the resulting code very readable.

Another commonly used method is Join(). It waits for a thread to
complete.

MyThread.Join()

When you use the Join() method, your code becomes synchronous,
meaning that the thread executing the Join() will not progress until the
waited-for thread is finished. In the above example, the code won’t continue
until MyThread finishes its work. The Join() method can also be used with a
TimeSpan that specifies the maximum amount of time that you will wait before
continuing.

TIP When you abort a thread with the Abort() method, it does not necessarily terminate
immediately, because the thread may be running exception-handling code. If you need
to ensure that the thread has stopped before continuing, use the Join() method on the
thread after calling the thread’s Abort() method.

And how do you know what a thread is up to? You can examine its
ThreadState property and compare it against the possible enumerated values.
Here’s an example:

MyThread.Join(TimeSpan.FromSeconds(10))
If (MyThread.ThreadState And ThreadState.Stopped) = _
 ThreadState.Stopped Then
 MessageBox.Show("We waited with Thread.Join, and the thread finished.")
ElseIf (MyThread.ThreadState And ThreadState.Running) = _
 ThreadState.Running Then
 MessageBox.Show(_
 "We waited 10 seconds, but the Thread is still running.")
End If

Figure 11-8 shows the different stages in a thread’s execution.

bvb_02.book Page 376 Thursday, March 30, 2006 12:39 PM

Thread ing 377

Figure 11-8: The life cycle of a thread

Thread Priorities

All threads are created equal, but they don’t have to stay that way. Priorities
allow you to make sure that some threads are always executed preferentially.
Threads with low priorities, on the other hand, may not do much work if the
system is heavily bogged down with other, higher priority tasks.

You can set a thread’s priority to various values: AboveNormal, BelowNormal,
Highest, Lowest, and Normal, which is the default. These priorities are relative;
they are significant only in the way that they compare with the priorities of
other currently executing threads in your program or in other programs.
If all of your application’s threads have the same priority, it doesn’t make
much difference whether that priority is Normal or Highest (assuming, for the
moment, that there aren’t any other programs or processes competing for
the CPU’s attention).

Setting a thread’s priority is straightforward:

MyThread.Priority = ThreadPriority.Lowest

A thread with a high priority may need to use the Sleep() method to
allow other threads a chance to get their work done. Fine-tuning this sharing
of the CPU is an art that requires significant trial-and-error experimentation.

When Is Too Much Not Enough?
As just mentioned, you must be careful about using high priorities. If you
have too many aggressive threads, some threads may not receive enough
CPU time to be able to perform their work properly. The sorry state that

The Thread object is created.

You call Thread.Start().

Unstarted

Running

Stopped SuspendRequested AbortRequested

WaitSleepJoin

Aborted

You call Thread.Suspend(). You call Thread.Abort().

You call Thread.Sleep()
or Thread.Join()
or use SyncLock.

The thread ends naturally.

The time interval is finished,
or the object is now available.

Exception handling is complete,
and the thread ends.

Suspended

You call Thread.Resume().

bvb_02.book Page 377 Thursday, March 30, 2006 12:39 PM

378 Chap te r 11

results when too many threads compete for too few resources is called thread
starvation, and it can make an application perform poorly, or render some
functions inoperative.

TIP When using threads, it’s a good idea to test them on the minimum system configuration
that your application will support.

Thread Priority Example

The online chapter sample code provides a project named ThreadPriorities
that allows you to satisfy your curiosity and create as many simultaneous
threads as you want (see Figure 11-9). These threads “compete” to increment
their individual counter variables. The ones that receive the most CPU time
will increment their counters the fastest.

Figure 11-9: Testing threads

A separate thread class, ThreadCounter, provides this counter functionality
and incorporates a Boolean “stop signal” variable named ThreadStop:

Public Class ThreadCounter

 Public LoopCount As Integer
 Public MaxValue As Integer
 Public Priority As String
 Public ThreadStop As Boolean

 Public Sub New(ByVal MaxValue As Integer, ByVal Priority As String)
 Me.MaxValue = MaxValue
 Me.Priority = Priority
 End Sub

 Public Sub Refresh()
 ' Increment the counter.
 For LoopCount = 0 To MaxValue - 1
 ' Check for the signal to stop abruptly.
 If ThreadStop = True Then Exit For
 Next

bvb_02.book Page 378 Thursday, March 30, 2006 12:39 PM

Thread ing 379

 End Sub

End Class

The interesting part about this program is that it uses a collection called
ActiveCounters to store references to all the objects that are running on the
various threads (and another collection called ActiveThreads to store refer-
ences to the Thread objects). Periodically, a timer fires, and a routine in the
form code loops through the ActiveCounters collection and prints out the
status of every thread in a label.

Private Sub tmrThreadMonitor_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles tmrThreadMonitor.Tick

 lblThreads.Text = ""
 Dim Counter As ThreadCounter
 Dim i As Integer

 For Each Counter In ActiveCounters
 i += 1
 lblThreads.Text &= "#" & i.ToString() & " at: "
 lblThreads.Text &= Counter.LoopCount.ToString() & " ("
 lblThreads.Text &= Counter.Priority & ")"
 lblThreads.Text &= vbNewLine
 Next

End Sub

The ThreadPriorities program allows you to set the priority of each
thread when you create it. This allows you to verify that a high-priority thread
will increment its counter much faster than a low-priority one. You’ll also
notice that when you create a thread with a high priority, your application
(and your computer) will become noticeably less responsive until the thread
is finished incrementing its counter.

When you end the program, it performs some graceful cleanup by
iterating through the ActiveThreads collection and stopping each thread.
Rather than use the Abort() method, this program does things the nice way,
setting the ThreadStop member variable of each ThreadCounter object, and then
waiting on each thread’s termination with the Join() method to verify that it
has stopped. This is actually much faster than aborting each thread, because
it avoids the overhead of wresting control of the thread and throwing an
exception.

Here’s the code:

Private Sub ThreadPriorityTester_Closing(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) Handles MyBase.Closing

 ' Signal each thread to stop.
 Dim Counter As ThreadCounter
 For Each Counter In ActiveCounters
 Counter.ThreadStop = True

bvb_02.book Page 379 Thursday, March 30, 2006 12:39 PM

380 Chap te r 11

 Next

 ' Wait to verify that each thread has stopped.
 Dim CounterThread As Thread
 For Each CounterThread In ActiveThreads
 CounterThread.Join()
 Next

End Sub

Thread Debugging
One very useful technique when debugging a multithreaded project is to
assign each thread a name. This allows you to distinguish one thread from
another and to verify which thread is currently executing. It’s not unusual
when debugging a tricky problem to discover that the thread you thought
was at work actually isn’t responsible for the problem.

To name a thread with a descriptive string, use the Thread.Name property:

CounterThread.Name = "Counter 1"

To check which thread is running a given code procedure at a specific
time, you can use code like this, which uses the shared CurrentThread()
method of the Thread class:

MessageBox.Show(Thread.CurrentThread.Name)

Visual Studio also provides some help with a Threads debugging window
(Figure 11-10). This window shows all the currently executing threads in
your program and indicates the thread that currently has the processor’s
attention with a yellow arrow. The Location column even tells you what code
the thread is running.

Figure 11-10: Controlling threads at runtime

NOTE To access the Threads window, you need to pause your program’s execution and choose
Debug�Windows�Threads. You can then use some advanced features for controlling
threads. For example, you can set the active thread by right-clicking a thread and selecting
Switch to Thread. You can also use the Freeze command to instruct the operating system
to ignore a thread, giving it no processing time until you select the corresponding Thaw
command to restore it to life. This fine-grained control is ideal for isolating problematic
threads in a misbehaving application. The Threads window includes other threads that
you haven’t created, but are a part of .NET. As a general rule of thumb, you should
assign names to all the threads you create so that you can identify each one in the list.

bvb_02.book Page 380 Thursday, March 30, 2006 12:39 PM

Thread ing 381

Thread Synchronization

The mistake that most novice programmers make when they start creating
multithreaded applications is simple: They assume that everything they want
to do is thread-safe. In other words, they assume that any action that can be
performed by a synchronous piece of code can be moved into a thread. This
is a dangerous mistake that ignores the effects of concurrency.

Potential Thread Problems

Remember, threads work almost simultaneously as Windows switches from
one thread to another. This means that each time you run the application, the
relative order of execution of the multithreaded code may vary. Sometimes
Thread A might perform a given action before Thread B, but at other
times Thread B might take the lead. You can configure the priorities of
individual threads, as you’ve seen, but you can never be absolutely sure when
a thread will act, or what the order will be for operations on different threads.

What’s more, if you have more than one thread manipulating the same
object, eventually at least two of them will try to use it at once. Consider a
situation where you have a global counter used by multiple threads for
keeping track of the number of times an operation takes place. Sooner or
later, Thread A will try to increment the value from, say, 10 to 11 at the same
time that Thread B is also trying to increment the value from 10 to 11. The
result? In this case, the count will be set to 11, even though the final value
should really be 12. The more threads there are (and the greater the delay
between reading and updating the counter variable), the worse the problem
will become.

Concurrency and synchronization problems are particularly tricky
because they often don’t show up when an application is being tested, but
only lead to bugs later in unpredictable situations, after the application has
been deployed. If you neglect giving adequate consideration to synchroniza-
tion issues at design time, there is no way to know when a problem could
appear. Many programmers don’t realize the dependencies of the objects
they are using. Trying to use an object concurrently when that object has not
been designed to be thread-safe is likely to cause a runtime exception in the
best case, and a more insidious data (and more difficult to spot) data error in
the worst case.

NOTE Most classes in the .NET Framework are not thread-safe, because adding the required
synchronization code would dramatically slow down their performance.

Basic Synchronization
The best approach to avoiding data synchronization problems is often to
refrain from modifying variables that are accessible to multiple threads. If this
isn’t possible, the next best thing is to use synchronization (which is also
known as locking). The idea behind synchronization, as mentioned earlier,
is to acquire a lock on a resource before you access it so that other threads

bvb_02.book Page 381 Thursday, March 30, 2006 12:39 PM

382 Chap te r 11

that try to access the resource will be forced to wait. This process prevents
collisions, but it also slows down performance.

All you need to do is place code that uses shared objects inside a
SyncLock/End SyncLock block. The first line of this block identifies the data
item that is being synchronized. This item must be a reference type, such
as an object or an array; it can’t be a simple value type.

When you use the SyncLock statement, your application waits until it has
exclusive access to the object you’ve specified before performing the com-
mands in the SyncLock block. While these commands are being executed, any
other thread that tries to access the synchronized object will be temporarily
suspended by the operating system. When the final End SyncLock statement is
reached the lock is released and the operating system gives other threads the
opportunity to access that object. Again, although this guarantees thread
safety, performance can suffer, because all threads trying to access a locked
object are blocked.

A Sample Synchronization Problem
To demonstrate how synchronization works, we will use a variant of a global
counter program. There are many different ways to observe the effects of
thread synchronization problems, but this one gives a quick demonstration
of the potential hazards.

The first ingredient is a GlobalCounter class:

Public Class GlobalCounter
 Public Counter As Integer
End Class

An instance of this class is provided as a public variable in the form class:

Public MyGlobalCounter As New GlobalCounter()

There is also a class that wraps our threaded operations, as before:

Public Class IncrementThread

 Private Counter As GlobalCounter
 Private LocalCounter As Integer
 Private ThreadLabel, GlobalLabel As Label

 Public Sub New(ByVal Counter As GlobalCounter, _
 ByVal ThreadLabel As Label, ByVal GlobalLabel As Label)
 Me.Counter = Counter
 Me.ThreadLabel = ThreadLabel
 Me.GlobalLabel = GlobalLabel
 End Sub

 Public Sub Increment()
 Dim i As Integer
 Dim GlobalCounter As Integer

bvb_02.book Page 382 Thursday, March 30, 2006 12:39 PM

Thread ing 383

 For i = 1 To 1000
 LocalCounter = LocalCounter + 1
 GlobalCounter = Counter.Counter
 Thread.Sleep(TimeSpan.FromTicks(1))
 Counter.Counter = GlobalCounter + 1
 Next i

 ' Assume that ThreadLabel and GlobalLabel are on the same window.
 Dim Invoker As New MethodInvoker(AddressOf UpdateLabel)
 ThreadLabel.Invoke(Invoker)
 End Sub

 Private Sub UpdateLabel()
 ThreadLabel.Text = LocalCounter.ToString()
 GlobalLabel.Text = Counter.Counter.ToString()
 End Sub

End Class

This threading class wraps two counters—a local counter (stored in an
integer) and a global counter, which is stored in an object so it can be shared
between several different IncrementThread objects. When IncrementThread
finishes its work (coded in the Increment() method), it uses the thread-safe
MethodInvoker described earlier to update the user interface with information
based on both its local and global counters.

A deliberate feature of this example is the way that the global counter
is incremented. Instead of doing it in one instruction (GlobalCounter =
Counter.Counter + 1), our example uses two lines, pausing the thread for one
tick (a small interval of time equal to 100 nanoseconds) in between the time
that the counter value is read and the time that the counter is updated. This
pause is meant to simulate thread latency and therefore increase the like-
lihood that synchronization issues will occur when this example is run. In
realistic scenarios, synchronization issues occur only when many more threads
than are at work here compete for the CPU. (Remember, one of the most
devious aspects of synchronization problems is that they often don’t come
out of the woodwork when you are testing under simple conditions.)

As before, the threads are created and started in a Click event handler
for a button on the form. The following code is used:

Private Sub cmdStart_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdStart.Click
 MyGlobalCounter.Counter = 0
 Dim Increment1 As New IncrementThread(MyGlobalCounter, _
 lblThread1, lblGlobal)
 Dim Increment2 As New IncrementThread(MyGlobalCounter, _
 lblThread2, lblGlobal)
 Dim MyThread1 As New Thread(AddressOf Increment1.Increment)
 Dim MyThread2 As New Thread(AddressOf Increment2.Increment)
 MyThread1.Start()
 MyThread2.Start()
End Sub

bvb_02.book Page 383 Thursday, March 30, 2006 12:39 PM

384 Chap te r 11

The result is shown in Figure 11-11.
Each thread has kept track of its own private local counter value, so that

much is accurate. However, the global counter is completely wrong. It should
be 2,000, reflecting that each of the two threads incremented it 1,000 times.
Instead, the competing threads performed overlapped edits that didn’t take
each other’s actions into account. Here’s an example of how the problem
occurs (assuming the counter’s current value was 12):

1. MyThread1 reads the value 12.

2. MyThread2 reads the value 12.

3. MyThread1 sets the value to 13.

4. MyThread2 sets the value to 13—instead of 14.

Figure 11-11: A flawed global counter

Using SyncLock to Fix the Problem
In this case, the fix is quite easy. Because GlobalCounter is a full-fledged object,
you can use SyncLock while your thread is executing to gain exclusive access
to the global counter. (If GlobalCounter was only a variable, this solution
wouldn’t be possible.)

In fact, all you need to do is to add two lines to the Increment() method,
as shown here:

Public Sub Increment()
 Dim i As Integer
 Dim GlobalCounter As Integer
 For i = 1 To 1000
 LocalCounter = LocalCounter + 1
 SyncLock Counter
 GlobalCounter = Counter.Counter
 Thread.Sleep(TimeSpan.FromTicks(1))
 Counter.Counter = GlobalCounter + 1
 End SyncLock
 Next i

 Dim Invoker As New MethodInvoker(AddressOf UpdateLabel)
 ThreadLabel.Invoke(Invoker)
End Sub

bvb_02.book Page 384 Thursday, March 30, 2006 12:39 PM

Thread ing 385

Now the result, as shown in Figure 11-12, will be correct. You can see the
complete code in the ThreadingSynchronization project.

If you timed the application, you might notice that it has slowed down.
All of the automatic pausing and resuming of threads creates some overhead.
But when you consider the frustrating problems that SyncLock can help you
avoid, you’ll be eager to put it to work in your applications.

Figure 11-12: A successful global counter

What Comes Next?

This chapter has endeavored to give you a solid understanding of the funda-
mentals of threading, and a knowledge of the issues involved. Mastering all
the aspects of threading could almost be a life’s work, and many books and
articles have been written on the subject.

If you’re in search of more threading information, the best place to start
is the documentation. Both the Visual Studio Help and the MSDN website
provide white papers describing the technical details of threading, along with
code examples that show it in action in live applications.

bvb_02.book Page 385 Thursday, March 30, 2006 12:39 PM

bvb_02.book Page 386 Thursday, March 30, 2006 12:39 PM

12
W E B F O R M S A N D A S P . N E T

Creating web applications with Visual
Basic 6 was a bit of a mess. To start with,

there were a dizzying number of different
options. Visual Basic 6 shipped with a “kitchen

sink” of competing web technologies, including tem-
plates for applications built out of Dynamic HTML,
ActiveX documents, and Active Server pages (in which case you had the
additional choice of Web Classes, Visual Interdev, Notepad with VBScript,
or a good stiff drink and a new career).

In .NET, Microsoft has an ambitious strategy for web development, and
this time it’s not going to cost you a few months of sleepless nights. With
ASP.NET, life for the web developer gets a whole lot simpler. You’re able
to take care of your application’s business logic (that is, what your program
actually accomplishes) while using Microsoft’s class infrastructure to handle
all the messy Internet-specific details. The long-promised dream—being
able to create software for the Web as easily as for Windows—has finally
come true.

bvb_02.book Page 387 Thursday, March 30, 2006 12:39 PM

388 Chap te r 12

New in .NET

The ASP.NET toolkit is a new .NET innovation with no parallel in the VB 6
world. The web technologies you had to choose from in VB 6 are completely
gone in Visual Basic 2005.

� Programs based on Dynamic HTML (DHTML) and ActiveX docu-
ments were just too restrictive in their browser requirements, and they
suffered from a substantial learning curve. These technologies have
been removed from Visual Basic 2005.

� Active Server Pages (ASP) technology has been transformed into ASP.NET.
Along the way, such tools as Web Classes and Visual Interdev have disap-
peared, replaced by the much more flexible and straightfoward Web Form
Designer.

With Visual Basic 2005, programming an Internet application automat-
ically means creating an ASP.NET application.

A Web Development Outline

In this chapter, you’ll learn how to create a server-side web application. Server-
side web applications have a few basic characteristics. They appear to users as a
collection of web pages. Users move through these pages, entering information
in forms and clicking buttons and other graphical widgets. The information
they enter is handled by pure VB code that runs on the server. This code tracks
what’s important, interacts with other resources (such as databases), and
dynamically configures the web page content before sending it to the user.

If you’re like many Visual Basic programmers, you’ve never created a
web application before. This chapter will teach you the basics and help you
understand the special considerations that apply to Internet programming.

The development plan for an ASP.NET project goes something like this:

1. You design your web application’s interface, using the web forms you need.

2. You write the code behind your forms and add any classes you need, just
as you would with an ordinary Windows application. The only difference
is that you have to spend some time thinking about maintaining state, that
is, how your program remembers information in between user requests.
This chapter spends a large amount of time examining different meth-
ods of state management.

3. You upload your completed web application to a web server.

4. Using a web browser, a user navigates to one of your application’s web
forms. Behind the scenes, the web server examines the settings of the
user’s browser in order to tailor its responses to make the most of the
features that browser supports. As the user selects options and clicks on
buttons, the web server runs the appropriate web application code, creat-
ing the appearance of a fully integrated application.

bvb_02.book Page 388 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 389

What Was Wrong with Classic ASP?

Quite simply, a lot. ASP made it all too easy to create disorganized, inefficient
programs that mixed together HTML markup code and programming logic.
It was possible to create a world-class ASP application, but the lack of struc-
ture in ASP led to—and even encouraged—poor programming.

� ASP programs emphasized an old-fashioned, script-based style of pro-
gramming. ASP.NET is completely component-based, and as you know
from Chapter 6, component-based programs are more elegant, efficient,
and easy to maintain.

� ASP programs provided part of the infrastructure you needed in
order to create a web application, but some tasks were still a chore.
ASP.NET provides a host of addictive frills, including graphically
rich controls, an easy way to validate user input, and painless state
management.

� Well-designed ASP applications were generally built out of ASP pages
and ActiveX components created in Visual Basic. This was a good sys-
tem, but it imposed additional headaches when you configured, installed,
and versioned your applications. We won’t get into the details here,
except to note that ASP.NET applications are a breeze to install and
update.

� ASP applications were notoriously difficult to debug if you didn’t have a
spare web server in the office. With ASP.NET, you can use all of Visual
Basic’s debugging tools while running the application from a browser on
your local computer.

� ASP pages used VBScript, a stripped-down flavor of Visual Basic with its
own quirks and idiosyncrasies. ASP.NET no longer supports VBScript
and now uses Visual Basic as its native language.

� ASP.NET compiles your pages automatically the first time they are used
and every time they are updated. That may seem like a small detail, but
it’s one of a series of performance improvements that makes ASP.NET
the fastest version of ASP yet.

Still the Same: IIS

If you’ve programmed with ASP before, you’ll find that not everything has
changed. If you look hard enough, you’ll even find familiar objects, such as
Request and Response, although you won’t need to use them nearly as much
this time around. One detail that hasn’t changed is that ASP.NET applica-
tions are hosted by Internet Information Services (IIS), a built-in service
that’s included with Windows 2000, Windows XP Professional, and Windows
Server 2003 (although it’s not installed by default). IIS can’t run on non-
Microsoft platforms. While site visitors using your web application are free to
work with any type of browser or operating system, you still need to host your
application on a Windows web server.

bvb_02.book Page 389 Thursday, March 30, 2006 12:39 PM

390 Chap te r 12

Web Application Basics

It used to be that you needed a special computer to act as a web server. These
days, any computer with a modern Windows operating system can install the
necessary IIS hosting software from the Windows setup CD.

Of course, in most cases you won’t develop an ASP.NET application
directly on the web server that will host it. Doing so could hamper the
performance of the server, or even lead to crashes that would make your
website unavailable (not to mention the fact that the web server is often
located at a different site). Instead, you will generally perfect your web
application on another computer, and copy the project directory to the
web server when all your work is complete.

The trick is that in order to debug your web application, your computer
needs to act as a web server. Fortunately, Visual Studio 2005 includes its own
built-in web server that’s limited to testing on the local computer. That means
when you debug an ASP.NET application, you will actually be making requests
through HTTP to a virtual web server, which then instructs ASP.NET to run
the code in the corresponding web page. You can use all the same debugging
tricks that you learned about in Chapter 8, like breakpoints and variable
watches.

In other words, there is no difference between the way you interact with
your web application while testing, and the way a site visitor will use it over
the Internet. The only distinction between your local testing and the final
deployed application is that your test website is not visible or accessible to
other web clients on the Internet. At the end of this chapter, you’ll get a
quick primer that shows you how to deploy a finalized web application to a
web server.

NOTE To create web projects, you need a full version of Visual Studio 2005 (Standard, Profes-
sional, and Team editions work fine) or the Visual Web Developer 2005 Express Edition
(which can only create web applications). The scaled-down Visual Basic 2005 Express
Edition doesn’t support the Web.

Creating a Web Application

Before going any further, let’s dive right into our first ASP.NET application.
To get started, select File�New Web Site from the Visual Studio menu.
The New Web Site dialog box (shown in Figure 12-1) will appear.

The New Web Site dialog box allows you to choose from several basic
templates—use the ASP.NET Web Site template to start out with an ordinary
website. Here are some of the templates you may see:

� ASP.NET Web Site creates a new web application with one default web
page (named Default.aspx).

� ASP.NET Web Service creates a new web application with one default
web service (named Service.asmx). You’ll learn about web services in
Chapter 13.

bvb_02.book Page 390 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 391

Figure 12-1: Creating an ASP.NET website

� Empty Web Site creates a new web application with no files at all. Of
course, you can easily add new web pages and web services as you see fit.

� Personal Web Site Starter Kit creates a full-fledged personal website,
complete with a standardized look and feel, an integrated navigation
system, and some basic web pages (like Resume.aspx, Download.aspx,
and Links.aspx). You can use this project to learn more about ASP.NET
after you’ve finished this chapter.

� ASP.NET Crystal Reports Web Site creates a new web application with a
Default.aspx page that’s designed to show a database-driven report using
the Crystal Reports. This is a rarely used specialty feature.

The Location box is more important. It allows you to tell Visual Studio
where you’ll store your website files. Typically, you’ll choose File System
(as in Figure 12-1), and then use a directory somewhere on your computer.
That’s sufficient for creating and testing an application. When you’re ready
to make your work available to a crowd of eager web surfers, you’ll then upload
your files to a web server. Unlike other types of Visual Basic projects, you can’t
create a new website project without saving it.

NOTE The other location options allow you to create your application directly on a web server.
You can use HTTP if you want to directly connect to an IIS web server and create your
website. (This might be the case if you’re working with a test web server on your computer
or local network.) You can also use FTP if you want to upload your files to a remote web
server. Neither option is commonly used at the development stage. As mentioned earlier,
it’s always better to create a test version of your website, perfect it, and only then upload
it to a live web server that other people can access.

Once you’ve chosen your location, click OK to create your website. You’ll
start out with a relatively small set of files, as shown in Figure 12-2.

bvb_02.book Page 391 Thursday, March 30, 2006 12:39 PM

392 Chap te r 12

Figure 12-2: Initial files for a web application

Ingredients of an ASP.NET Project
Every web project is made up of the following files:

web.config
This file allows you to fine-tune advanced settings that apply to your
entire application, including security and state settings. These options
are outside the scope of this chapter, but you can read up on them in the
Visual Studio Help.

.aspx files
These files are the ASP.NET web pages. Each web form you create will
have an .aspx file that contains controls and formatting information. The
.aspx file is sometimes called the presentation template of a web form. When
you start a new website, Visual Studio adds one file—a Default.aspx page
that represents your home page (the default starting page for your web
application).

.vb files
These files are used to hold the code “behind” each web form. For exam-
ple, a typical web form named HelloWorld would have its visual layout
stored in the file HelloWorld.aspx, and its event-handling code in the
Visual Basic file HelloWorld.aspx.vb. The Web Form Designer links
these files together automatically.

NOTE You might think that it is a serious security risk to have your source files located in a pub-
licly accessible place, like a folder on a web server. However, ASP.NET is configured to
automatically reject browser requests for configuration files like web.config and requests for
any .vb file. ASP.NET also includes deployment tools that let you precompile your source
code so that it won’t be readable to anyone, even the administrators managing the website.

You can add a new web page to your application by selecting Website�
Add New Item. The most common type of item you’ll add is a web form. It’s
recommended that you always keep the Place Code In Separate File check
box selected, as in Figure 12-3. This tells ASP.NET to create an .aspx file for
the page design (which contains HTML markup and ASP.NET control tags)
and a separate .vb file with your event handler code. This separation makes it
easier to program your page without worrying about the HTML details, and
it’s the approach used in this chapter.

bvb_02.book Page 392 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 393

Figure 12-3: Adding a web form

TIP The Select Master Page option allows you to create web forms that are based on other
web form templates, similar to the way that visual inheritance works with forms. Master
pages aren’t covered in this chapter, although you can learn more in the Visual Studio
Help (look for the index entry “master pages”).

You can also add other types of resources to a web project, like ordinary
HTML pages, style sheets (.css files), images to which you plan to link, and
so on.

When you create a web application, Visual Studio doesn’t place
project (.vbproj) and solution (.sln) files in your website directory (as it
does with other project types). Instead, it stores these files in a user-specific
location in the Visual Studio projects directory (which is typically some-
thing like c:\My Documents\Visual Studio 2005\Projects). This keeps your
website directory clean and uncluttered, containing only the files you
actually need. It also simplifies deployment. Best of all, the project and
solution files aren’t required for deployed web applications, so if you
accidentally delete them (or you don’t copy them when you transfer a
website to another development computer), Visual Studio will quietly
re-create new ones.

NOTE The only important data that’s stored in the project and solution files are your debug
settings (for example, any breakpoints you create) and a list of other projects that you
want to load in the same solution for testing purposes (such as additional components
that your website uses).

bvb_02.book Page 393 Thursday, March 30, 2006 12:39 PM

394 Chap te r 12

Designing Web Forms

Web forms are designed to work as much like Windows forms as possible.
However, there are still some basic differences between the two. There is no
direct way to display a Windows-style dialog box from a web page, so throw away
any ideas about using floating tool windows, message boxes, and multiple-
document interfaces. A web form’s ultimate destination is an HTML page, to
be delivered to a user working on an Internet browser. The ASP.NET engine
may make use of JavaScript or Dynamic HTML to improve the appearance of
your page if it detects that the client’s browser supports these enhancements,
but every web form ultimately boils down to basic HTML.

That said, you’ll find that web forms aren’t programmed like static
web pages. Unlike ASP pages, which were often created with cryptic
Response.Write() commands, a web form can (and usually should) be
composed entirely of web controls that have properties and events, just
like the controls in a Windows form.

ASP.NET provides this kind of magic by using server-side controls. The basic
idea behind a server-side control is that the display of the control is sent to
the user in HTML, but the user’s interaction with the control is handled
at the server. All of the web controls in ASP.NET are server-side controls.

The Basic Controls
To add a web control, you drag the control you want from the Toolbox
(on the left) and drop it onto your web page. The controls in the Toolbox
are grouped in a number of categories based on their function. Here’s a
quick overview of the different groups:

Standard
This group has all the essentials, including web controls like labels,
buttons, and text boxes, all of which closely resemble their Windows
counterparts. You’ll use this group most often.

Data
This group contains controls for ASP.NET data binding, including con-
trols for rich grid data display.

Validation
This group contains validators—controls that automatically display error
messages when the input in another control (usually a text box) is invalid.

Navigation
This group contains controls that can help surfers navigate through all
the pages of a website, including the snazzy TreeView control.

Login
This group contains security-related controls that allow you to add pages
for logging in, creating users, and retrieving passwords.

WebParts
This group contains specialized controls that work with WebParts,
ASP.NET’s model for portal sites.

bvb_02.book Page 394 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 395

HTML
This group contains plain HTML tags that don’t have any server-side
interactivity.

NOTE You can convert any piece of static HTML into a server control by right-clicking it
and choosing Run As Server Control. This transforms the HTML tag into an HTML
server control, which is a more limited type of server-side control than the other control
types in the Toolbox. HTML server controls are primarily useful for backward compati-
bility when migrating an HTML page or a classic ASP page to ASP.NET.

The arsenal of ASP.NET controls is truly impressive—in fact, there are
many more controls for ASP.NET than for Windows Forms applications.

Adding Controls to a Web Form
The Web Form Designer provides many of the same controls as the Windows
Form Designer, including labels, text boxes, and buttons. Unlike the Win-
dows Form Designer, the Web Form Designer uses flow layout, which means
elements are positioned relative to each other, rather than in absolute
coordinates.

In a Windows application, every control is lined up according to an invis-
ible grid. In a web application, controls are positioned one after another, like
in a word processor. That means if you add more content to one element
and it gets larger, the following elements are bumped down the page to make
room, which is a clear advantage when dealing with large, variable amounts
of content (as often found in web pages).

NOTE Flow layout can be just as useful in a Windows application, although it’s not as often
used for this purpose. In Chapter 4, you took a quick look at layout controls like the
FlowLayoutPanel that use this system of arranging controls. The future holds even
more—the next-generation framework for Windows user interface (named Windows
Presentation Foundation, or WPF) makes flow layout the new standard. WPF is cur-
rently an early alpha technology that will feature in Windows Vista, the next version
of the Windows operating system.

Flow layout also has a disadvantage: namely, you can’t place controls
exactly. Instead, you need to add spaces and hard returns to position them
on the page. You also need to drag and drop controls onto the page instead
of drawing them on the page. This approach can take a little getting used to.

TIP Technically, it is possible to position elements using absolute coordinates in a web page,
but in order to do it you need to use the advanced formatting muscle of cascading style
sheets (CSS). Usually flow layout is easier and more flexible, but if you want to learn
more about grid layout with CSS, see www.w3schools.com/css/css_positioning.asp. Style
sheets are also a great way for formatting entire web pages (without having to set font
and color settings for each individual control).

Getting pages to look right in flow layout mode takes a little bit of practice.
To see the potential problem, take a look at the MetricConverter page shown
in Figure 12-4. It has all the necessary controls, but getting them to line up
properly using nothing but spaces and hard returns is iffy at best.

bvb_02.book Page 395 Thursday, March 30, 2006 12:39 PM

396 Chap te r 12

Figure 12-4: A first crack at designing a page

Fortunately, a few simple tricks can save a lot of trouble:

� Use invisible tables to line up columns (for example, a series of text labels
with text boxes). To add a table to your page, use the Table control from
the HTML group. You can then add or remove columns and rows, resize
it, and so on.

NOTE Don’t use the table from the Standard group. This is a dynamic table that you can
interact with in code. However, it’s not as convenient for layout because you can’t edit
it using the Web Form Designer.

� Use panels to get a nice border around a group of controls, separating
them from the rest of page. The easiest way to do this is to use the
Div control (which stands for division) from the HTML group or the
Panel control in the Standard group.

� You can format web controls using properties like Font, ForeColor,
BackColor, and so on. However, this is tedious. In Windows applications,
you had a shortcut—you could adjust these properties in the main form,
and they’d automatically apply to all contained controls, unless the con-
trols explicitly overrode them. A similar trick is possible in web pages using
the Div and Panel controls. Any formatting you apply to the Div or Panel
controls affects everything inside. However, the Properties window isn’t
the way to format the Div control—instead, right-click it, and choose
Style to set border, color, margin (external spacing), padding (internal
spacing), and font options.

NOTE If you’re a web guru, it may interest you to know that ASP.NET performs almost all its
formatting using CSS. However, you don’t need to learn the details—instead, you simply
configure the controls, and the appropriate style tags are set automatically.

Figure 12-5 shows the revamped MetricConverter page. Now it has a Div that
applies a background color, the well supported Verdana font, and a border.
Inside the Div is a table that keeps the labels and text boxes properly aligned.

bvb_02.book Page 396 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 397

Figure 12-5: Designing a better page

Before continuing, try creating this page yourself so that you can follow
through the rest of the example.

Running a Web Page
You can try out your simple MetricConverter web page, and see what it looks
like in a browser, by running it. Just click the Start button in Visual Studio as
you would with a Windows application. When you run a web application,
Visual Studio starts up its integrated web server to handle the requests and
launches your default web browser to show you the web page output.

The first time you run a web application, Visual Studio will inform you
that it needs to edit the web.config file to add a setting that allows debugging
(see Figure 12-6). Choose OK to make the change and continue.

Figure 12-6: Allowing debugging

When you’re ready to deploy your final application, you’ll want to remove
this setting for the sake of optimum performance. To do so, find this line in
the web.config file:

<compilation debug="true" strict="false" explicit="true">

and remove the debug="true" attribute.

bvb_02.book Page 397 Thursday, March 30, 2006 12:39 PM

398 Chap te r 12

In a Windows application, you always know which window you’ll see first.
A web application is a little different, because there are multiple points of
entry. A user could surf to your site by typing a URL (or clicking an external
link) that points to any page in your site. Similarly, when you debug your
application, you can start running any page you want to test. All you need to
do is select that page in the Solution Explorer before you run the application.

Visual Studio’s behavior changes if you don’t select a web page (for exam-
ple, if you select the application name or another file that can’t be executed,
like the web.config settings file, in the Solution Explorer). In this case, Visual
Studio runs the Default.aspx page (if your website includes it). If your website
doesn’t have a Default.aspx page, the integrated web server in Visual Studio
generates a list of all files in your web application (see Figure 12-7). You can
then click any .aspx page to launch it.

Figure 12-7: The file list for a web application with one web page

TIP Because the compilation model is for a web application is different from that for other
types of applications, you can’t use run-edit-continue debugging. Although you can
make changes at debug time, the new code won’t be used automatically. But there is one
shortcut available. After you make changes, you can start working with the new version
of a web page by saving the file (in Visual Studio) and then clicking the Refresh button
in your web browser.

When you run a page, ASP.NET compiles the code in your page behind
the scenes, runs it, and then returns the final HTML to the browser. Of
course, the MetricConverter page doesn’t actually do anything yet, but you
can still launch it and see all its controls.

Adding an Event Handler

Using Visual Studio, you can create event handlers for web forms exactly
as you do in the Windows Form Designer (see Chapter 4 if you need a
refresher). For example, you can add a Click event handler to the button

bvb_02.book Page 398 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 399

in the MetricConverter program by double-clicking the button. Add the follow-
ing code. (You may have to make slight modifications, depending on the
names that you have given your controls.)

Protected Sub cmdConvert_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdConvert.Click
 Dim Inches, Meters As Single
 Inches = 36 * Val(txtYards.Text) + 12 * Val(txtFeet.Text)
 Meters = Inches / 39.37
 lblResult.Text = "Result in meters: " & Meters.ToString()
End Sub

You can now try running the program. Enter some sample values and
click the Convert button. The label will be refreshed with the result of the
conversion (see Figure 12-8).

Figure 12-8: Testing a web page

How Does It Work?

What happens in our MetricConverter program is relatively simple: The server
delivers an HTML page with a form submission button to your browser. When
you click the button, the information entered by the user is transmitted back
to the server, your code runs, and a new version of the page is delivered in
response. This entire process unfolds automatically.

Every time a user interacts with a control that fires an event, a similar
“round trip” occurs from the client to the server and back. This round trip is
called a postback.

When you run a web page, you’ll notice that the URL in the browser
includes a port number. For example, in Figure 12-8 you can see that run-
ning the page named MetricConverter.aspx in a folder on my computer
named TestWebSite displays the URL http://localhost:2414/TestWebSite/
MetricConverter.aspx. The localhost part at the beginning of the URL
indicates that the web server is running on your computer. The port number
(in this case, 2414) is randomly chosen every time Visual Studio starts the web

bvb_02.book Page 399 Thursday, March 30, 2006 12:39 PM

400 Chap te r 12

server, which ensures that web server requests won’t conflict with any other
applications that might be running on your computer and listening for
network communication.

NOTE When you deploy a website you won’t need to use a port number to access it. That’s
because the IIS web server listens to port 80, which is the official port for all HTTP
traffic. When a URL doesn’t have a port number, port 80 is assumed by default.

The AutoPostback Property

The button we’ve created is a special type of control that will always cause a
postback when clicked. Other controls are not as straightforward. For exam-
ple, consider the TextChanged event of a TextBox control. In the MetricConverter
program, we don’t use this event. However, another program might update
the display dynamically as new text is entered, or as CheckBox or RadioButton
controls are selected by the user. In this case, you would need to set the
AutoPostback property for each of these controls to True.

Because a postback involves getting a new page from the server, it can
slow things down a little, and the user may notice the page flicker as it is
being refreshed. For that reason, the default AutoPostback setting is False.
When AutoPostback is disabled, the control’s events will be delayed until
another control (like a button) triggers a postback. Thus, the code in the
control’s event handler will not execute immediately.

Web Control Events

Events in web form controls are slightly different from Windows Forms
controls. For example, the CheckedChanged event occurs when a RadioButton
selection is changed, not necessarily every time it is clicked.

Similarly, the TextBox event occurs when a user moves to a different
control on the page after modifying the text box, not every time he or she
presses a key. These changes are designed to minimize the number of
postbacks. If a postback occurred every time the user pressed a key in a text
box, the web page would be constantly reloading, the user would quickly
become frustrated, and the web developer responsible would need to find a
new line of employment. For similar reasons, events such as MouseMove and
KeyPress aren’t implemented at all.

In our MetricConverter example, we can leave AutoPostback set to False
for all our controls, because a postback is triggered when the user clicks the
button.

A Web Form “Under the Hood”

Here’s an interesting question: What’s the difference between Visual Basic
2005 and ASP.NET?

The answer is that ASP.NET defines the markup language you use to
design your web pages. Ordinarily, you can rely on Visual Studio to help
you out here, and simply drag-and-drop your way to success. However,

bvb_02.book Page 400 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 401

as you do this Visual Studio quietly creates and modifies the control tags
in the .aspx page.

We won’t be examining the ASP.NET tags in this book because the
Web Form Designer abstracts away these details. However, if you fall in love
with ASP.NET and decide to devote yourself to web development, you might
want to take a closer look under the hood. To do so, click the Source button
at the bottom of the web form display. Figure 12-9 shows a portion of the
ASP.NET markup that defines the controls and layout for the MetricConverter
page, with one of the control tags highlighted. You can click the Design button
to switch back to the graphical designer view.

Figure 12-9: ASP.NET control tags for the MetricConverter page

Here’s a sample ASP.NET control tag:

<asp:TextBox ID="txtYards" runat="server"></asp:TextBox>

This tag declares a TextBox control named txtYards. The runat="server"
portion indicates that this is a dynamic server-side control that your code can
interact with. If you were to set other properties for the text box, like a font,
maximum length, and so on, those properties would also appear in the text
box tag.

If you’re familiar with HTML, you’ll notice that the ASP.NET control tags
use a syntax that looks suspiciously like HTML. In fact, the .aspx page is the
HTML that will be sent to the client, with a few extra details—namely, the
ASP.NET control tags. When a user requests a page, the ASP.NET engine
scans the .aspx page. Each time it finds a control tag, it creates a control
object that your page can interact with. This allows your code to read values

bvb_02.book Page 401 Thursday, March 30, 2006 12:39 PM

402 Chap te r 12

out of the text boxes and change the text in the labels. After all your code
has finished running, ASP.NET replaces each control tag with the HTML
elements that are needed to display the control in the browser. For example,
an Image control becomes an HTML tag, and an ordinary text box will
become an <input> tag.

To see the HTML output that the web server generates, try running the
MetricConverter page again. Then, choose View�Source from your browser
menu to see the HTML your browser received.

Figure 12-10 shows a portion of the HTML output that ASP.NET sends
to the client for the MetricConverter page. It’s similar to but different from
the original ASP.NET tags, which can only be understood by the ASP.NET
engine and not by ordinary Internet browsers.

Figure 12-10: HTML output for the MetricConverter

The best part about all of this is that you don’t need to understand the
quirky details of HTML, because the ASP.NET engine on the web server
takes care of it for you. For example, if you create a TextBox web control,
ASP.NET might use an HTML text box, password box, or text area element,
depending on the properties you’ve set. Similarly, you can use advanced con-
trols, such as the Calendar control, even though there are no direct equivalents
in HTML code. In this case, the ASP.NET engine will use several HTML
elements to create the control, and it will handle all the processing and
redirecting of events.

NOTE This point is so amazing that I have to repeat it. If you know anything about HTML
elements, forget it now. Not only will the ASP.NET engine translate your web form
flawlessly every time, it can also circumvent some the ugliest limitations of the
HTML language.

bvb_02.book Page 402 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 403

View State

You probably take it for granted that the values in the two text boxes in the
MetricConverter program remain after you click the Convert button. This is
intuitively how we expect an application to work—but it’s not the way that
traditional ASP pages worked.

Ordinarily, every time your web page makes a round trip to a web server
(for instance, when an event occurs), all the information entered in the user
interface controls is lost. This is because the web page is essentially recreated
from scratch every time the user requests it. ASP.NET just loads the .aspx
template to set up the initial page appearance, runs the appropriate event
handler code to respond to the current action, and then returns the final
HTML output.

Losing information can be a traumatizing experience for users, so ASP
developers have traditionally toiled long and hard to make the controls store
and reload data. The great news with ASP.NET is that the server can perform
this chore by recording information about the current state of web page con-
trols in a hidden field on the web page. This hidden field is then transmitted
back to the server with each postback. ASP.NET automatically uses this infor-
mation to fill your control objects with the appropriate data before it runs your
event handling code. The end result is completely transparent, and your
code can safely assume that information is retained in every control, as it
would be in an ordinary Windows application.

You can see the information in this hidden field by looking at the HTML
page in Notepad or another text editor. View state information is encoded to
save space and prevent the casual user from being able to tell what it contains.
Here’s an example:

<input type="hidden" name="__VIEWSTATE" value="dDwyMzc0MTY5ODU7Oz4=" />

In order for a control to maintain its state, its EnableViewState property
must be set to True (the default). This property doesn’t apply just to user
input controls, but to any control that you can modify in code, including
labels, buttons, and lists. If you are absolutely sure that a control doesn’t
need to maintain state (for example, a label that always has the same text),
you can set the EnableViewState property to False. This may speed up your web
page a little, as there will be less information to be transmitted in each post-
back, but the effect is usually minor with simple controls.

The Page Processing Cycle

To make sure you understand view state, it helps to consider the actual life
cycle of a web page.

1. The page is posted back whenever the user clicks a button or modifies an
AutoPostback control.

2. ASP.NET recreates the page object using the .aspx file.

bvb_02.book Page 403 Thursday, March 30, 2006 12:39 PM

404 Chap te r 12

3. ASP.NET retrieves state information from the hidden view state field, and
fills the controls. Any control that does not maintain state will be left
with its initial (default) value.

4. The Page.Load event occurs.

5. The appropriate event-handling code runs (such as the Click event for a
button or TextChanged event for a text box).

6. ASP.NET creates the HTML output for the final page and sends it to
the client.

7. The Page.Unload event occurs and the web page object is unloaded from
the server’s memory.

Note that the Page.Load event occurs every time the page is posted back,
because the page is essentially being recreated from scratch with each user
request. If you use this event to do some page initialization on the first request,
be sure your event handler checks the web form’s IsPostBack property first, as
shown here:

Protected Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 If IsPostback Then
 ' Do nothing, this is a postback.
 Else
 ' The page is loading for the first time,
 ' so you can perform any required initialization.
 txtFeet.Text = "0"
 txtYards.Text = "0"
 End If
End Sub

Other Controls

As with the Windows Forms engine, Microsoft provides a full complement of
controls for web forms. Table 12-1 provides a quick overview of some of the
most useful controls in the Standard tab.

Thinking About State

There is one area where web programming is completely unlike Windows
programming. HTTP, the protocol used to communicate over the Internet,
is stateless, which means that the client (the browser) does not maintain a
connection to the server (where your code is running). A Windows applica-
tion, by contrast, is much simpler. It’s always loaded and running on a single
machine, with a dedicated amount of memory set aside.

bvb_02.book Page 404 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 405

Table 12-1: Essential Controls for Web Forms

Function Control Description

Text display
(read-only)

Label Displays text that users can’t edit.

Text edit TextBox Displays text that users can edit.

Selection from
a list

DropDownList Allows users either to select from a list or to enter text as in
a standard combo box.

ListBox Displays a list of choices. Optionally, the list can allow
multiple selections.

Graphics
display

Image Displays an image.

AdRotator Displays a sequence (predefined or random) of images,
which is often used in banner advertisements.

Value setting CheckBox Displays a standard check box.

RadioButton Displays a standard option button.

Date setting Calendar Displays a calendar that allows the user to select a date
and browse from month to month. Extensively configurable
(much more than the Windows DateTimePicker control)—
you can even add text into individual date cells or make
certain dates unselectable.

Commands Button Displays a button that the user can click to cause a
postback and run some code.

LinkButton Like a button, but it has the appearance of a hyperlink.

ImageButton Like a button, but it incorporates an image instead of text.

Navigation
control

HyperLink Creates a web navigation link that gets your user to
another page.

Grouping and
list controls

CheckBoxList Creates a collection of check boxes. From an HTML
standpoint, these check boxes aren’t obviously related, but
ASP.NET lets you interact with them using a single control
object.

Panel Creates a box (with or without a border) that serves as a
container for other controls.

RadioButtonList Creates a grouping of radio buttons. Inside the group, only
one button can be selected.

Data controls Repeater Displays information (usually from a database) using a set
of HTML elements and controls that you specify, repeating
the elements once for each record in the DataSet. A
powerful tool for some custom database viewing/editing
applications.

DataList Like the Repeater control, but with more formatting and
layout options, including the ability to display information in
a table. The DataList control comes with built-in editing
capabilities.

GridView Like the DataList, but even more powerful, with the ability
for automatic paging, sorting, and editing. It’s designed to
display information from a data source (like a DataSet).

bvb_02.book Page 405 Thursday, March 30, 2006 12:39 PM

406 Chap te r 12

Anatomy of a Web Request

In a typical web request, the client’s browser connects to the web server and
requests a page. As soon as the page is delivered, the connection is broken,
and the web server immediately forgets everything it ever knew about the
client. This method of communication is highly efficient. Because a client
needs to be connected for only a few seconds, a typical web server can easily
handle thousands of requests without a noticeable performance hit. How-
ever, life gets a little more interesting when you want your web server to not
only display content, but also run a (stateful) web application.

In the world of classic ASP, every time a new web request was made, your
program had to store every piece of information that it needed and reload it
as required. In ASP.NET, there are some ready-made state management
features that make the web application request-handling process a lot easier.
You’ve already seen how view state manages the state of user controls for you
automatically. The next step is to learn how to harness it for storing your own
information, such as private form variables.

Witnessing the Problem

To see what can happen when your web server needs to display content and
run a web application simultaneously, we’ll return to our MetricConverter
program and make the small enhancement shown in the following code.
Our intention is to use the private variable Counter to keep track of how
many times the user performs a conversion.

Private Counter As Integer

Protected Sub cmdConvert_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdConvert.Click
 Dim Inches, Meters As Single
 Inches = 36 * Val(txtYards.Text) + 12 * Val(txtFeet.Text)
 Meters = Inches / 39.37
 lblResult.Text = "Result: " & Meters.ToString() & " Meters. "

 Counter += 1
 lblResult.Text &= Counter.ToString() & " conversions performed."
End Sub

If you try this code out, you’ll see that it doesn’t work the way we
intended. The counter never rises above a value of 1, because the Counter
variable is recreated at the start of each new web request (and discard at
the end).

Clearly, in order to keep track of the counter in between requests, the
server will need to store the Counter variable in its memory. However, in a
scenario with hundreds of users and operations that require a lot more
persistence than a single integer, the server might quickly run out of memory
(or at least start to show reduced performance). There are several ways to solve
this problem. The easiest is to store the information in the page’s view state.

bvb_02.book Page 406 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 407

Storing Extra Information in View State

You’ve already seen how view state allows controls to retain information
between postbacks. When you switch on the EnableViewState property for a
control, you’re telling ASP.NET to keep track of the control’s properties in a
hidden field of the web page. However, you can also add your own informa-
tion into view state, including simple data types, arrays, and even DataSet
objects! As with ASP.NET controls, this information is encoded in hidden
fields and sent back from the client with each round trip.

To store or retrieve information from the view state for the current page,
you use the ViewState collection. Here’s a code example that corrects the
problem shown in the previous section:

Protected Sub cmdConvert_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdConvert.Click
 Dim Inches, Meters As Single
 Inches = 36 * Val(txtYards.Text) + 12 * Val(txtFeet.Text)
 Meters = Inches / 39.37
 lblResult.Text = "Result: " & Meters.ToString() & " Meters. "

 ' Retrieve the state information.
 Dim Counter As Integer = CType(ViewState("Counter"), Integer)

 ' Update the counter and display the result.
 Counter += 1
 lblResult.Text &= Counter.ToString() & " conversions performed."

 ' Store the new value.
 ViewState("Counter") = Counter
End Sub

As you can see, items in the ViewState collection are indexed by name.
(This example uses the name Counter.) When you assign information to a
state value that doesn’t exist, it’s created automatically. If you try to retrieve
a state value that doesn’t exist, you’ll just end up with a null value (represented
by the keyword Nothing). Figure 12-11 shows the page in action.

Figure 12-11: A MetricConverter with state management

bvb_02.book Page 407 Thursday, March 30, 2006 12:39 PM

408 Chap te r 12

If you mistype the name of an item in the ViewState collection, you won’t
receive an error; you’ll just receive blank space. A good way to help safeguard
yourself is to create properties for every item stored in the hidden field view
state, as shown next, and add them to your page class. (To refresh your mem-
ory about properties, review Chapter 5.)

Private Property Counter() As Integer
 Get
 Return CType(ViewState("Counter"), Integer)
 End Get
 Set (ByVal Value As Integer)
 ViewState("Counter") = Value
 End Set
End Property

Are there any drawbacks to this method? Using view state is an excellent
way to store information without adversely affecting web server performance.
However, there are a few things you might want to consider:

� View state information is stored in the final rendered HTML page. That
means if you store a lot of information in view state, it can slow down
transmission times, both when receiving the page and when sending it as
part of postback.

� ASP.NET uses a hash code to detect if anyone attempts to tamper with
view state information (in which case it rejects the request). However, a
malicious user can still take a look at the view state details, because they
aren’t encrypted. If you need to store sensitive information, consider
using encryption by modifying the web.config file. Find the <pages> tag
and change it to

<pages viewStateEncryptionMode="Always">

� View state relies on the hidden field in the current web form. If your user
navigates to a different web form, you’ll need a method of passing infor-
mation from one form to another. This is the issue we’ll discuss next.

Transferring Information

So far you’ve learned enough to create a basic, one-page web application.
But what happens in a multiple-page project? Unlike the Windows Forms
engine, you can’t display a new web page by invoking a handy Show() method.
In fact, you can’t refer to another web page at all. Instead, you need to redirect
the user to the right page.

There are two basic ways to navigate to another page:

� Use the HyperLink web control.

� Use the built in Redirect() method of the built in Response object, as in

Response.Redirect("WebPage2.aspx")

bvb_02.book Page 408 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 409

Because the new web form will be in the same directory as the current web
form, you don’t need to enter a full URL (such as http://www.mysite.com/
myapplication/WebPage2.aspx).

The only problem is that the new page won’t have the benefit of the
hidden view state field of the previous page, and so they won’t be able to
access its ViewState collection. Even if the user navigates back to the original
page by clicking the Back button or another hyperlink, the page still starts
over again with no view state data.

There are several ways that you can resolve this problem. In the following
section, you’ll consider two common solutions—the query string and session
state.

Passing Information in the Query String

If you’ve ever studied the URL bar in your web browser while exploring pop-
ular sites, you might have noticed the appearance of some extra information.
For example, after you perform a search in Yahoo!, the URL looks a little
like this:

http://search.yahoo.com/search?p=dogs

Clearly, the first part of this line is telling your browser where it
should connect. The interesting part occurs after the question mark.
The user in this case has entered a search looking for websites about dogs,
and Yahoo! has stored this information in the URL, under the variable p.
This type of augmentation is called a query string, and you can use it in
ASP.NET.

Programming the Query String

The query string is similar to the ViewState collection in that it contains a list
of name-value pairs that you can retrieve from a collection. However, the
only way you can add to the query string is by supplying a new URL, with the
appropriate values added at the end of the browser string. You can do this
with a hyperlink, or by using the Response.Redirect() method.

For example, consider a modified MetricConverter that displays the
conversion results in a separate page by passing the information in a query
string. Here’s the code that executes when the user clicks the Convert
button:

Protected Sub cmdConvert_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdConvert.Click
 Dim QueryString As String
 QueryString = "?Yards=" & txtYards.Text & "&Feet=" & txtFeet.Text

 ' Send the information to the QueryStringResult page
 ' and redirect the user there.
 Response.Redirect("QueryStringResult.aspx" & QueryString)
End Sub

bvb_02.book Page 409 Thursday, March 30, 2006 12:39 PM

410 Chap te r 12

Note that to pass more than one value in the query string, you
need to separate them with an ampersand (&) symbol.

The QueryStringResult.aspx page processes this information
in a Page.Load event handler and displays the output shown in Fig-
ure 12-12.

Figure 12-12: The QueryStringResult.aspx page

Protected Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' Retrieve the query string information.
 Dim Feet, Yards As Single
 Feet = Val(Request.QueryString("Feet"))
 Yards = Val(Request.QueryString("Yards"))

 ' Perform the calculation
 Dim Inches, Meters As Single
 Inches = 36 * Yards + 12 * Feet
 Meters = Inches / 39.37

 ' Display the result
 lblResult.Text = Yards.ToString() & " yards + " & Feet.ToString()
 lblResult.Text &= " feet = " & Meters.ToString() & " Meters. "
End Sub

Best of all, like the view state, the query string stores information without
affecting the performance of your web server.

TIP The query string is often used to display detailed information about a specific item. For
example, you might have a page that displays a catalog of products and allows the user
to choose a product to view additional information about it. Upon selecting a product,
the user would be redirected to the product’s page, and a query string argument would
be appended to specify the selected product (as in ?ProductID=34). The Page.Load event-
handling code in the new page would open the file or database, retrieve the appropriate
product information, and display it.

bvb_02.book Page 410 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 411

Convenient as it is, there are some drawbacks to using the query string
that you might want to consider.

� The amount of information you can store is limited. To ensure compati-
bility with all browsers, you shouldn’t make the query string more than
about 1,000 bytes.

� The information is extremely insecure. Not only it is transmitted in clear
text over the Internet, but it’s also clearly visible to the person using your
application. In fact, it might be too visible . . . giving malicious users the
opportunity to alter information by changing the query string manually,
or just revealing too much about how your program works and what vari-
ables it stores.

� You can’t store complex information in the query string. Everything is
stored as a string, so arrays and objects won’t work.

If you need to get around these limitations, you have another option.
You can use session state to store information in the server’s memory.

Using Session State

Session state is one of the most useful tools for tracking information. It stores
user-specific information that’s available to every web form in your application.

A session begins when a user navigates to a page in your web appli-
cation. A session ends when you end it programmatically (by calling the
Session.Abandon() method), or when it times out after the web server stops
receiving requests from the user. The standard timeout is about 20 minutes,
but you can configure this default using the web.config file. To do so, you
need to insert the <sessionState> tag inside the <system.web> tag, assuming
it isn’t already there (by default, it isn’t). You can use the <sessionState>
tag specifically to set the timeout, in minutes. Here’s an example:

<configuration>
 <!-- Other settings omitted. -->
 <system.web>
 <sessionState timeout="20" />
 <!-- Other settings omitted. -->
 </system.web>
</configuration>

Setting the right timeout interval is not as easy as it seems. You don’t
want to erase a user’s information too quickly, in case the user returns and
needs to start over again. However, you also don’t want to waste memory on
your server and potentially make life difficult for other users.

How Session State Works

Session information is stored on the server. Even after the client receives a web
page and breaks its connection, session information remains floating in mem-
ory on the web server. When the client reconnects by clicking a control or
requesting a new page, the web server looks up the user’s session information

bvb_02.book Page 411 Thursday, March 30, 2006 12:39 PM

412 Chap te r 12

and makes it available to your code. The whole process is automatic; it works
because the browser stores a small scrap of information (known as a cookie)
that uniquely identifies that user’s session. ASP.NET automatically generates a
session cookie with a unique session ID whenever a user requests a web page
that accesses session state.

Programming Session State

To create a MetricConverter page that uses session state instead of view state
doesn’t take very much effort. You still need to use a collection of name-value
pairs, except that this time they are stored in the built-in Session object.
Remember, session information will be accessible from any web page in your
web application (typically, any other .aspx file in the virtual directory).

Protected Sub cmdConvert_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdConvert.Click
 Dim Inches, Meters As Single
 Inches = 36 * Val(txtYards.Text) + 12 * Val(txtFeet.Text)
 Meters = Inches / 39.37
 lblResult.Text = "Result: " & Meters.ToString() & " Meters. "

 ' Retrieve the state information.
 Counter = CType(Session("Counter"), Integer)

 ' Update the counter and display the result.
 Counter += 1
 lblResult.Text &= Counter.ToString() & " conversions performed."

 ' Store the new value.
 Session("Counter") = Counter
End Sub

Because session information is stored on the server and is never trans-
mitted to the client, session state is more secure than any of the other kinds
of state management I’ve discussed. It also allows you to store just about any
type of information you need, including objects. However, session state does
come with one potential drawback: It consumes server memory. Even a small
amount of session information can consume extensive server resources if
hundreds or thousands of users are using the web application simultaneously.
To help reduce problems, you’ll have to follow these guidelines:

Acquire late, release early.
Store information only when you need it, and release it as soon as you
don’t need it anymore. In the preceding example, you could use the line
Session("Counter").Remove() to release your state information.

Consider all state possibilities.
Before you store information in session state, consider whether it would
be better suited for view state or one of ASP.NET’s other state manage-
ment options. Table 12-2 on page 415 summarizes and compares the var-
ious choices.

bvb_02.book Page 412 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 413

Reduce the amount of information you need.
Store only what you need. It sounds simple, but you would be amazed
how many problems occur because a web application programmer
decides to store multiple DataSet objects in server memory.

Using Application State

Application state is similar to session state, except that it applies to the whole
application, not just a single user, and it never times out. Once you add some-
thing to the built-in Application object, it’s available to all users for the entire
lifetime of your web application. For example, if we stored our Counter in
application state, we could track the total number of times that all users have
clicked the Calculate button.

NOTE Generally, your web application’s lifetime is as long as the server is running. However,
depending on the settings on the web server, web applications sometimes “recycle” them-
selves to clean up any stray memory and resources that might not have been released
properly. If this takes place (typically when certain resource usage or time thresholds are
reached), all application state is lost.

Unfortunately application state isn’t quite as simple as it seems. For one
thing, you can run into problems if multiple users try to modify a variable
stored in application state at the same time. To get around this, you can use
the Application object’s Lock() and Unlock() methods, as shown here, but this
method can cause a significant slowdown in a multiuser scenario.

' Store the new value.
Application.Lock()
Application("Counter") = Counter.ToString()
Application.Unlock()

It’s probably best to avoid using application state unless you absolutely
need it. And don’t try to improve performance by using application state to
store important information. It’s much better to use ASP.NET’s caching
features for this purpose. For more information, read up on the built-in
Response.Cache object in the Visual Studio Help.

Where Do All These Built-in Objects Come From?

So far, you’ve tackled a number of problems using built-in objects. By this
point, you’re probably wondering where all these built-in objects come
from. To get the lowdown on exactly how this works, you need to know a
little bit about the object-oriented internals of an ASP.NET application. All
the built-in objects are provided through references in the System.Web.UI.Page
class, which is the basis for every ASP.NET page, as shown in Figure 12-13.

The Page class is fully described in the .NET class reference included in
the Visual Studio Help.

bvb_02.book Page 413 Thursday, March 30, 2006 12:39 PM

414 Chap te r 12

Figure 12-13: The System.Web.UI.Page class

A Summary of Different Types of State Management

So far, you’ve learned about view state, session state, application state, and
the query string. It turns out there are actually several more possibilities for
managing state in a web application. In fact, considering the tools ASP.NET
gives you for this feature, you might conclude that ASP.NET is downright
obsessed with state management. Table 12-2 compares your options.

We haven’t discussed the last two options in this table, because they
require more programming work than the others. They tend to be specialty
items.

� Cookies are small files that are stored on the client’s computer to
remember items of information. They are similar in function and use to
other state management methods, and, like the query string, they can
only contain strings. The only difference is that every cookie includes an
expiration date that you can use to store information for long periods of
time (for example, a cookie can store customer preferences in between
visits). You use a cookie by creating an instance of the HttpCookie class,
and using the Response.AppendCookie() method to add it to the Response
object’s cookie collection.

� Server-side database storage requires custom programming. It’s an
extremely flexible approach, but you need to write the ADO.NET code
that makes it work. If you’ve read Chapter 10 about databases, you
already know everything you need.

Page Class

Your Custom
Page Class

(in the .vb file)

Your Custom
.aspx File

A Page
Object

System.Web.UI Namespace

Inherited by

Inherited by

Instantiated

bvb_02.book Page 414 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 415

Displaying Data with Data Binding

ASP.NET is packed with impressive features that are impossible to cover
completely in this chapter. But before you move on, it’s worth introducing
just one of these tools—automatic data binding.

Automatic data binding provides a convenient way to retrieve and
display information from a database in an ASP.NET application. Data
binding works quite a bit differently in ASP.NET than it does in a Windows
application. When you use data binding with a web control, the information
can only travel in one direction. It flows from the data source into the con-
trol, where it becomes ordinary content. Any modifications to the control do
not affect the original DataSet—in fact, the original DataSet ceases to exist as
soon as the operation is complete and the page is presented to the user.

Web controls work differently in this regard because they are designed
for optimal web application performance. Even with this limitation, data
binding still provides a very useful way for retrieving information from a
database and displaying it in a web page with a minimum amount of coding.
Best of all, the ADO.NET data access code is identical whether you are pro-
gramming for the web or the desktop.

Basic ASP.NET Data Binding

The online examples contain a simple ASP.NET page called DataBinding.aspx
that demonstrates data binding in action (Figure 12-14). It binds a drop-down
list, a check-box list, and a GridView control.

Table 12-2: State Management Options in ASP.NET

Type of State
Management Scope Storage Location Lifetime Security

View state The current page and the
current user.

A hidden field in
the current page

Lost when you browse to
another page.

Fairly secure (if you
opt for automatic
encryption).

Query string The specified page and
the current user, although
it can be passed along
from page to page if
your code redirects
the user.

The browser’s
URL string

Lost when you type a new
URL or close the browser.
However, can be stored
between sessions in a
bookmark.

Insecure, and can be
modified by the user.

Session state The entire application
and the current user.

Server memory Times out after a
predefined period.

Secure

Application state The entire application;
shared with all users.

Server memory Never times out; remains
until you remove it (or the
application is restarted).

Secure

Cookies The entire application
and the current user.

Client’s computer Set by the programmer,
and can persist between
visits.

Insecure, and can be
modified by the user.

Database The entire application;
shared with all users.

Server hard drive Permanent unless removed. Secure

bvb_02.book Page 415 Thursday, March 30, 2006 12:39 PM

416 Chap te r 12

Figure 12-14: A data-bound web page

Basic ASP.NET data binding looks a lot like data binding in a Windows
Forms application. The most noticeable difference in the code is that you
must explicitly trigger data binding. You can bind a single control calling
that control’s DataBind() method, or you can bind the entire page at once by
calling the page’s DataBind() method. It’s at this point that the web control
is filled. If you forget to call this method, no data will appear in the bound
control.

Protected Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim con As New SqlConnection(ConnectionString)
 Dim SQL As String = "SELECT * FROM Products"
 Dim cmd As New SqlCommand(SQL, con)
 Dim adapter As New SqlDataAdapter(cmd)
 Dim dsNorthwind As New DataSet()

 con.Open()
 adapter.Fill(dsNorthwind, "Products")
 con.Close()

 ' Bind the grid.
 gridDB.DataSource = dsNorthwind.Tables("Products")

 ' Bind the drop-down list to the ProductName field.
 lstName.DataSource = dsNorthwind.Tables("Products")
 lstName.DataTextField = "ProductName"

bvb_02.book Page 416 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 417

 ' Bind the check-box list to the QuantityPerUnit field.
 lstQuantity.DataSource = dsNorthwind.Tables("Products")
 lstQuantity.DataTextField = "QuantityPerUnit"

 ' Move the information from the DataSet into the controls.
 Me.DataBind()

End Sub

NOTE When you bind to multiple controls at once in a Windows application, the controls are
automatically synchronized. If you select a record in one control, the corresponding
information appears in all the other controls. This is not the case in ASP.NET, where
the controls act as though they had been filled manually. That is because data binding
in ASP.NET exists only while the page is being processed. When the final HTML output
is received by the client, only ordinary HTML content remains.

The Data Source Controls

Basic data binding gives you a quick way to get your information about a data
object (like the DataSet) and into the controls on a page. But ASP.NET goes a
step further, providing a whole set of data source controls that are designed
to help you avoid writing any code at all!

Here’s how it works. You drop one of the data source controls (found
on the Data group in the Toolbox) onto a web page. You can choose one of
several data source controls, depending on whether you want to extract data
from a database or from a custom class that you’ve created with ADO.NET
(the two most common options). You configure this data source control so it
has all the information it needs to get the information you want. Then, you
simply link it to your data control by setting the DataSourceID property. When
you run the page, the control automatically asks the data source control for
data, the data source control retrieves the data, and then the data binding
happens automatically, without a single keystroke of code on your behalf.

NOTE The data source controls appear on your form at design-time, so it’s easier to select them
and set their properties. However, they don’t appear when you run the page.

The easiest way to understand how this works is to consider a basic
example. Imagine you want to simplify the data binding example from the
previous section. Instead of writing the ADO.NET code to query the Products
table, you want to get a data source control to do the work for you. In this
case, the SqlDataSource is your man—it’s the data source that’s designed for
working with an ADO.NET provider to get information from a relational
database. Here’s what you need to do:

1. Double-click the SqlDataSource control in the Toolbox to add it to your
page. Select it so you can configure its properties in the Properties
window.

2. Set the ID page to something descriptive, like sourceProducts (because
we’re returning product information).

bvb_02.book Page 417 Thursday, March 30, 2006 12:39 PM

418 Chap te r 12

3. Set the ProviderName property to the name of the ADO.NET provider
you want the data source to use. You can use System.Data.SqlClient
for the SQL Server provider, System.Data.OracleClient for Oracle, or
System.Data.OleDb for the OLE DB provider.

4. The next step is to supply the required connection string through the
ConnectionString property.

5. Now you need to define the query that the SqlDataSource will use. To do
so, edit the SelectCommand to be SELECT * From Products.

6. Now your data source is fully configured for selecting records. Add
another control that supports data binding to your page (such as the
GridView), and then set its DataSourceID to match whatever name you
chose in Step 2 (here, sourceProducts).

7. Run the page. The grid is filled with data automatically, even though you
haven’t written any code.

Professional ASP.NET developers are split on the data source controls.
Clearly, they offer a nifty way to create data bound pages without much effort.
However, if you rely heavily on the SqlDataSource, you’ll end up embedding
all kinds of database details into your web pages, and you’ll lose the ability to
customize how queries are performed in the same way that you can with pure
ADO.NET code. Whether or not you dabble with the data source controls
probably depends on how much flexibility you need and how quickly you
need to create your pages.

TIP This section has only scratched the surface of ASP.NET’s data binding features. If you
dig deeper, you’ll find ways to commit updates automatically using advanced controls,
such as the GridView, as well as ways to bind to custom classes. To get hard core, try the
references provided at the end of this chapter.

Deploying Your Website

Until you deploy them, the websites you create in Visual Studio are only
available while Visual Studio is running. As soon as you shut Visual Studio
down, the integrated web server disappears, and there’s no way to surf to
your pages. There’s also no way to access a web page from another computer
(at any time), because the integrated web server doesn’t support remote
connections.

This is all perfectly reasonable for testing applications, but there comes a
time when you need to deploy your application so others can use it. If you’re
planning to upload your web application to the Internet, you’re probably
going to use a dedicated web host provider (like www.brinkster.com). In this
case, all you need to do is to copy the contents of your website folder to your
web host, usually by FTP.

bvb_02.book Page 418 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 419

On the other hand, if you secretly have a web server stashed in your
basement, or you just want to run a web server on an ordinary computer
to let other people on the same network access it (useful for a company
intranet), than you’ll need to know a little more about how IIS works.
Keep reading.

IIS Setup

In order for your computer to become a web server, it needs to have the IIS
software installed. Although IIS is a part of the Windows operating system, it
isn’t necessarily installed by default. To see whether IIS is installed, try typing
the following request into an Internet browser:

http://localhost/localstart.asp

Localhost is the special “loopback” alias that always refers to the current
computer. Localstart.asp is a traditional ASP file that is stored in the root
directory of your computer’s website home directory.

You should see the picture shown in Figure 12-15.

Figure 12-15: The Localstart.asp home page

You could also request the file using the specific name of your computer
(as in http://MyComputer/localstart.asp). This is the approach you need to
use if you want to request the localstart.asp file on your computer from
another computer on the network.

bvb_02.book Page 419 Thursday, March 30, 2006 12:39 PM

420 Chap te r 12

If you receive an error message, check that you have IIS installed. If it’s
not already installed, click the Start button, and select Settings�Control
Panel. Then, choose Add or Remove Programs, and click Add/Remove
Windows Components. Find Internet Information Services in the list (see
Figure 12-16), select it, and click Next to install the appropriate files.

There’s one catch. If you install IIS after you install the .NET Framework,
IIS won’t be correctly configured. The problem is that IIS doesn’t won’t
know anything about the .aspx file type, and so it won’t pass requests along
to ASP.NET like it should. Fortunately, it’s easy to correct this problem by
repairing the IIS file mappings. Just run the Visual Studio command prompt
(select Programs�Visual Studio 2005�Visual Studio Tools�Visual Studio
2005 Command Prompt), and then type this:

aspnet_regiis.exe -i

The aspnet_regiis tool will update IIS by registering the ASP.NET
file types.

Figure 12-16: Installing IIS

Virtual Directories

By default, your website’s home directory is the physical directory c:\
Inetpub\wwwroot, and the localstart.asp file is contained in this directory.
If you try to double-click localstart.asp to run it directly from Windows
Explorer, you will receive an error. This file can only be rendered by
ASP, must be invoked by IIS in response to a web request. ASP processes
the .asp page and returns an HTML page that can be displayed in the
browser. This is essentially the same way that ASP.NET works with
.aspx files.

bvb_02.book Page 420 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 421

When you create a new web page, you have two choices. You can place
it in c:\ Inetpub\wwwroot or in one of its subdirectories. For example, if you
create a directory c:\ Inetpub\wwwroot\MyFiles and place the file Test.html
in it, you can request this page via HTTP by entering the URL http://
localhost/MyFiles/Test.html in a browser.

A more flexible approach is to create your own virtual directory. A virtual
directory represents a physical web directory, but it doesn’t need to use
the same name as the physical directory, and it doesn’t need to be a
subdirectory of c:\ Inetpub\wwwroot. For example, you could expose the
directory c:\WebApps\01 as the virtual directory Sales. Then you can request
the Test.html file from the c:\WebApps\01 directory by entering the URL
http://localhost/Sales/Test.html.

Virtual directories are easy to create, but you don’t use Visual Studio to
do the work. Instead, you have to use the IIS Manager utility. You can run
IIS Manager by selecting Settings�Control Panel�Administrative Tools�

Internet Services Manager from the taskbar (Figure 12-17).

Figure 12-17: IIS Manager

1. To create a virtual directory, you first create the physical directory on
your hard drive.

2. Then, use the virtual directory wizard in IIS manager. Right-click the
Default Web Site item (under your computer in the tree), and choose
New�Virtual Directory from the context menu.

3. Click Next to get started. The first piece of information required is the
Alias (Figure 12-18), which is the name that your virtual directory will
have for web requests. Click Next to continue.

4. The second piece of information is the physical directory that will be
exposed through the virtual directory. This can have the same name as
the virtual directory, but it doesn’t need to. Click Next to continue.

bvb_02.book Page 421 Thursday, March 30, 2006 12:39 PM

422 Chap te r 12

Figure 12-18: The Virtual Directory Creation Wizard

5. The final wizard window gives you the chance to configure the permis-
sions for the directory (Figure 12-19). The default settings allow clients
to read the directory and run ASP.NET pages, but not to make any
modifications. This is the recommended configuration.

Figure 12-19: Virtual directory access permissions

6. Click Next and then Finish to end the wizard. You will see the virtual
directory in the IIS Manager tree display with a package icon next to it.
Once you have created a virtual directory, you can create a web project
in it using Visual Studio.

bvb_02.book Page 422 Thursday, March 30, 2006 12:39 PM

Web Forms and ASP.NET 423

TIP When you create a virtual directory with the IIS Manager wizard, it’s also marked as a
web application. That means that the ASP.NET files in this directory will run in their
own isolated memory space, use their own set of local session data, and have their own
independent configuration settings. If you create a subdirectory in your virtual directory,
this directory will also be accessible over the Internet, but it will be a part of the same
application. For example, if you create the virtual directory Sales for the physical
directory c:\WebApps\01, the subdirectory c:\WebApps\01\Special will be available as
http://localhost/Sales/Special. Any ASP.NET files in this subdirectory will be considered
a part of the Sales application, and will have the same settings and run in the same
memory space.

What Comes Next?

ASP.NET almost qualifies as a programming framework of its own. If you work
through the concepts in this chapter, you’re well on your way to creating
substantial web applications. However, if you want to become an ASP.NET
guru, there are a few further topics you might want to start exploring:

� Performance can be critical when you’re working on the Internet.
Seemingly small changes can affect efficiency quite a bit. To improve per-
formance, you might want to use the caching features. You can read up on
the System.Web.Caching.Cache class in the Visual Studio Help.

� Get to know all the built-in web controls that you have to choose from,
and try them out. As you become more experienced, you might even
create your own. Controls like the Calendar, GridView, and AdRotator
completely hide the underlying HTML.

� As indicated earlier in the chapter, once you create a form in the Web
Form Designer, it’s translated into an ASP.NET-enriched flavor of HTML.
To glimpse what’s going on underneath the hood and get a subtler
understanding of ASP.NET, click the Source button in the Web Form
Designer.

� Consult the Visual Studio Help to learn about higher-level features. For
example, ASP.NET has premade solutions for data binding (which you
saw briefly in this chapter), website navigation, web page standardization,
validation, and security. And if the Visual Studio Help is too dry for your
tastes, try the quick get-up-and-go tutorials at www.asp.net/Tutorials/
quickstart.aspx, which are dense but informative.

� And lastly, if you’re interested in reading an entire book that delves
into web programming, you could do worse than my own Beginning
ASP.NET 2.0 (Apress, 2001).

bvb_02.book Page 423 Thursday, March 30, 2006 12:39 PM

bvb_02.book Page 424 Thursday, March 30, 2006 12:39 PM

13
W E B S E R V I C E S

Web services are code routines that you
can call from another application over

the Internet. They’re built on an impressive
foundation of open standards and backed by a

range of technology vendors from Microsoft to IBM to
Sun Microsystems (the creators of Java). Since their
creation, web services have spread through almost every current programming
platform. Today, they power an ever-increasing number of web-enabled Win-
dows applications, unite the business processes of different companies, and
allow just about anyone to share functionality over the Internet.

.NET makes web services incredibly easy to program, while retaining
their cross-platform credentials. The web services you create in Visual Basic
2005 can be used seamlessly by applications written in different program-
ming languages and running on different operating systems. But the best
part is that you don’t have to worry about the plumbing, because ASP.NET
handles these details automatically.

bvb_02.book Page 425 Thursday, March 30, 2006 12:39 PM

426 Chap te r 13

This chapter starts by asking, “What is a web service?” and takes you
through the process of creating, deploying, and interacting with one.
Luckily, .NET makes web services so quick and convenient that you can be
creating simple examples in no time at all. However, it may take many more
months of experimentation before you start to realize all of the possible ways
web services can be used. The end of this chapter includes some helpful web
links to live examples of web services.

New in .NET

Web services appeared in the VB toolkit for the first time in .NET 1.0.
However, they are still usable (with a little more work) in classic VB 6. The
difference is that in previous version of VB you needed to use a separate
component, named the Microsoft SOAP Toolkit, to get web service features.
For most VB developers, .NET is the first time they’ll encounter web services.

In fact, web services are so well integrated into .NET that they are some-
times identified synonymously with the entire .NET platform. Of course,
now that you have read Chapter 1 of this book, you know what .NET is
really about—a compatible set of retooled languages, a runtime that provides
high-level services, and a rich toolkit of features. How large a part web services
will play in Microsoft’s strategy of integrating languages, embracing open
standards, and programming the Internet remains to be seen.

The Vision of the Interactive Web

What is a web service, anyway? Clearly, many sites on the Internet provide
useful “services.” A common example is a shipping company, which allows
you to look up the location and delivery date of packages using a tracking
number. Is this a web service?

The delivery date lookup meets one of the criteria of a web service—it’s a
discrete unit of functionality that serves a single purpose: returning informa-
tion about your package. But in order to get this information, you have to
navigate to the correct HTML page, select an option from a menu, and then
enter your tracking number. In other words, you have to use an Internet
application—represented by the shipping company’s website—in order to
get the information you need. A web service doesn’t force you to use a web
page, and it doesn’t have any user interface associated with it. Instead, a web
service is a piece of functionality that can only be used by another application.

Web Services: COM for the Internet?

One of the great developments in Windows programming was COM (some
parts of which are also called ActiveX), a technology that allows code compo-
nents to be easily shared among applications. When COM was introduced, it
added flexibility. Instead of using monolithic applications, custom utilities
could be created that reused a subset of all the capabilities provided in COM
components.

bvb_02.book Page 426 Thursday, March 30, 2006 12:39 PM

Web Servi ces 427

In this respect, web services are like COM for the Internet. With a web
service, you can take a unit of logic in a web application and allow it to be
seamlessly accessed and used by other Windows or Internet applications.
A web service is like a business object: It accepts information and returns
information. Your program uses web services without involving the user, and
takes care of providing the appropriate user interface to present the results.
This is particularly important in the world of the Internet, where a user might
be accessing information from a full-featured Internet Explorer browser or
from a stripped-down interface on a cell phone or other wireless device. In
each case, the web service used would be the same, but a different applica-
tion would take care of the display. Like a COM object, a web service doesn’t
need to be tied to any specific interface.

In one important way, however, web services are not like COM technology.
COM relies on a proprietary Windows standard, which means that it’s useless
for Macintosh computers, Unix systems, or any other non-Microsoft plat-
form. Web services, on the other hand, are built on open standards such as
SOAP and WSDL, which are based on XML and are described in this chapter.
This means that any application can interact with web services (though few
so easily as a .NET application) and can transmit data painlessly over HTTP.
Because data is exchanged as text in XML format, there’s also no problem
sending a web service request or receiving its response, even when the web
service is behind a corporate firewall.

Web Services Today

You are probably already making use of “first-generation” web services. These
are examples of Internet procedures that are integrated into desktop pro-
grams, but require company-specific and site-specific standards. For example,
you may use a personal finance desktop application that can automatically
retrieve stock portfolio information from the Internet. This type of applica-
tion retrieves information from the Internet, and it doesn’t bother you with
the details of the process. However, it relies on having information provided
in a specific way, which was been planned and set up in advance, according
to the particular application. It does not use an independent, widely accepted
standard, as web services do with .NET. As a consequence, other applications
can’t easily extend or work with its functions and features. They must be
recreated for every application that requires them.

Now imagine a world with thousands of web service components, where
a desktop application has access to all kind of features that require up-to-the-
minute information from the Web. Everyone has some type of “always-on”
broadband Internet access, and users often are not even aware that an
application is interacting with the Web. Programmers no longer have to
constantly redesign off-the-cuff solutions that schedule Internet downloads
or parse HTML files manually looking for specially formatted information.

Of course, that’s still in the future. But today, web services already allow
you to modularize Internet applications and provide components that can be
consumed and reused by any other application. Web services can also use

bvb_02.book Page 427 Thursday, March 30, 2006 12:39 PM

428 Chap te r 13

authentication and login procedures, allowing you to support various
subscription models. In other words, you can sell units of application func-
tionality to other developers, just like programmers have sold ActiveX
components in the past.

Are Web Services Objects?

Web services are not objects, at least not in the traditional sense of the word.
The main distinction is that web services don’t maintain state, unless you
specifically take extra steps to store information in a database or ASP.NET’s
session state. In fact, a web service that maintains state is rarely a good idea
because it means the web server must allocate a portion of its precious mem-
ory for each client, which can quickly impose a noticeable performance
penalty as the number of clients increases.

Web services also don’t support object-oriented basics like overloaded
methods and property procedures. Constructors work, but the web service
class is constructed for each request and then automatically destroyed, even
if the client maintains a reference. This ensures that web services perform
well, but it also means that they can’t be used like a local business object. It’s
best to think of a web service as a utility class made up of shared members.
You can call a remote function to get a piece of information, but you shouldn’t
expect to keep a web service around and store information in it.

Creating Your First Web Service

Creating a web service is easier than you might think. All you have to do is
create a class that incorporates some useful functions. This class should
inherit from the System.Web.Services.WebService class (for maximum con-
venience), and all the methods that are going to be made available over the
Web must be marked with <WebMethod> attributes. The following sections walk
you through the process.

Setting Up a Web Service
In order to provide a web service, you first need to create a virtual directory
using the IIS web hosting software described in the previous chapter. There’s
a simple reason for this requirement—namely, the clients of your web service
need to be able to contact the service, so it needs to be at a well-known, fixed
location. If you use the web server that’s built into Visual Studio, the web
service will only be available while you’re debugging it, and it won’t be
accessible to other computers. (And even if it were publicly available, the
URL used to contact the web service would constantly change, because each
time the integrated web server starts it chooses a new, random port number.)
Trying to keep clients up to date with this ever changing location would be
almost impossible.

bvb_02.book Page 428 Thursday, March 30, 2006 12:39 PM

Web Servi ces 429

What’s a web service developer to do? Here are the steps to follow:

1. First, follow the instructions in the section “IIS Setup” on page 419. This
ensures that IIS is installed on your computer and ready to host a web
service.

2. Next, create a virtual directory for your web service using IIS Manager,
as described in the section “Virtual Directories” on page 420. Use any
directory you like, but make sure you make a note of the virtual direc-
tory name.

3. Fire up Visual Studio, and choose File�New Web Site. This opens the
New Web Site dialog box (Figure 13-1).

Figure 13-1: Creating a web project in a virtual directory

4. Choose the ASP.NET Web Service template.

5. In the Location box, choose HTTP instead of file. Then enter the exact
URL that points to the virtual directory. For example, if you created a vir-
tual directory named NoStarchWeb on the current computer, you would
enter the URL http://localhost/NoStarchWeb, as in Figure 13-1.

6. Click OK to create the web application in the virtual directory. When you
run any web pages or web services in this web application, the IIS web
server will handle your requests instead of the built-in Visual Studio
web server. The end result is exactly the same, except that you won’t
see the random port numbers in the URL.

It is possible to create a virtual directory through Visual Studio, without
using IIS at all. Just skip steps 1 and 2 in the list. However, the virtual directory
you create will be mapped to a new directory in the C:\Inetpub\wwwroot,
which might not be what you want.

bvb_02.book Page 429 Thursday, March 30, 2006 12:39 PM

430 Chap te r 13

When you create a new virtual directory it may not be configured to
support Integrated Windows authentication, depending on your IIS settings.
This is a problem, because Visual Studio needs this support in order to allow
web service debugging. If you receive an error informing you of the problem
when you try to launch your web service, follow these steps:

1. Launch IIS Manager.

2. Browse to your virtual directory, right-click it, and select Properties.

3. Go to the Directory Security tab.

4. Click the first Edit button at the top of this tab. A dialog box titled
Authentication Methods will appear.

5. Make sure the Integrated Windows Security check box is checked.

6. Click OK to commit the change.

The Web Service Project

When you create a web service project, you’re actually creating the same sort
of web application you used in Chapter 12. The only difference is that a web
service project starts off with one web service instead of one web page.

TIP The web service and web application projects are both ASP.NET applications. In fact,
any web application can host a combination of web pages and web services.

As with ASP.NET web forms, each ASP.NET web service actually consists
of two files. An .asmx file for web services plays a similar role to the .aspx page
for web forms. It is the file the client requests in a URL to access the web
service. However, there isn’t any content in the .asmx file. Instead, it simply
links itself to another source code file with the extension .vb.

When you create a new web service, you’ll start out with two files—a
web service named Service.asmx, and a corresponding code file for that web
service, named Service.vb (see Figure 13-2). The code file is stored in the
App_Code directory, because ASP.NET uses a slightly different compilation
model for web services than it uses for web forms.

Figure 13-2: A web service project with
one web service

bvb_02.book Page 430 Thursday, March 30, 2006 12:39 PM

Web Servi ces 431

As you continue on with the following sections, you can use and modify
this sample web service (by editing the code in the Service.vb file), or you can
create a new web service that’s all your own. To create a web service, select
Website�Add New Item, choose Web Service, and supply a filename, as
shown in Figure 13-3.

Figure 13-3: Adding a new web service

NOTE Web services consist of two files (the .asmx file, which is how other applications access
your service, and the .vb file, which contains the code). You’re free to rename either of
these files, but you should use the same names (with different extensions) to prevent
confusion. However, if you change the class name in your .vb file, you must also edit
the Class attribute in the .asmx file so that it matches. Otherwise, ASP.NET won’t realize
the two pieces are linked.

The Web Service Class

Now consider a very rudimentary example of a web service class for providing
information about a package tracked with a shipping company. To enter this
class on your own, select Website�Add New Item, choose Web Service, and
supply the filename PostalWebService.

Here’s the complete code:

Imports System.Web.Services

Public Class PostalWebService
 Inherits System.Web.Services.WebService

bvb_02.book Page 431 Thursday, March 30, 2006 12:39 PM

432 Chap te r 13

 <WebMethod> _
 Public Function GetDeliveryDate(ByVal TrackID As String) As Date
 Dim PackageInfo As Package
 PackageInfo = GetPackageRecordFromDB(TrackID)
 Return PackageInfo.DeliveryDate
 End Function

 Private Function GetPackageRecordFromDB(ByVal TrackID As String) _
 As Package
 ' Some database access code here.
 End Function

End Class

Public Class Package
 Public PackageID As String
 Public DeliveryDate As Date
End Class

The Package class encapsulates information about a package. Notice
that it doesn’t inherit from the WebService class or use the <WebMethod>
attribute because it isn’t a web service. Instead, it is used internally in the
PostalWebService class, to pass information.

The PostalWebService class has two methods. The GetDeliveryDate()
method is marked with a special attribute, <WebMethod>, which indicates that it
will be provided in the public interface of the web service. No other methods
are available. The GetPackageRecordFromDB() method is used internally by your
code to get information, but it is not made available to any clients.

Now, believe it or not, any application using this web service will have
access to the features and operations of the GetDeliveryDate() function. All
you need is a method that uses the <WebMethod> attribute. Could it be any
easier?

Touching Up Your Web Service

To improve your web service, you might want to add a description to the
<WebMethod> attribute. This description may be displayed for the client develop-
ing the application that will use your web service, depending on the type of
development tool they are using.

<WebMethod(Description:="Use this function to...")>

You should also specify a namespace for your web service. Ideally, your
namespace should be uniquely identified with you—your company name, for
example, or best of all, your web address. If you do not specify a namespace,
the default (http://tempuri.org) will be used. Be aware that this is an XML
namespace, and it has nothing to do with .NET namespaces.

bvb_02.book Page 432 Thursday, March 30, 2006 12:39 PM

Web Servi ces 433

NOTE An XML namespace is used to identify different types of XML markup. Most XML
namespaces look like an URLs, because the organizations that create the namespace use
names of domains that they own. This prevents the possibility of more than one company
using the same namespace name for completely different XML-based formats.

To specify an XML namespace, change the first line of your class declara-
tion to use the WebService attribute:

<WebService(Namespace:="http://mycompany.com/post")> _
Public Class PostalWebService

Enhancing the PostalWebService Class

You can also make a more useful web service that returns a custom object
with several pieces of information at once, as shown in the following example.
Notice that the Package information has been separated into two classes; we’ll
assume here that you will not want to provide the entire database record to
the client, in case it includes sensitive information (such as a credit card
number).

<WebService(Namespace:="http://mycompany.com/post")> _
Public Class PostalWebService
 Inherits System.Web.Services.WebService

 <WebMethod(Description:="Gets tracking information about a package.")> _
 Public Function GetPackageInfo(ByVal TrackID As String) _
 As ClientPackageInfo
 Dim PackageInfo As Package
 PackageInfo = GetPackageRecordFromDB(TrackID)
 Return PackageInfo.BasicInfo
 End Function

 Private Function GetPackageRecordFromDB(ByVal TrackID As String) _
 As Package
 ' Some database access code here.
 Dim PackageInfo As New Package()

 ' To perform a crude test, uncomment the following two lines.
 ' PackageInfo.BasicInfo.PackageID = TrackID
 ' PackageInfo.BasicInfo.DeliveryDate = Now

 Return PackageInfo
 End Function
End Class

Public Class Package
 Public BasicInfo As New ClientPackageInfo
 Public CreditCardNumber As String
End Class

bvb_02.book Page 433 Thursday, March 30, 2006 12:39 PM

434 Chap te r 13

Public Class ClientPackageInfo
 Public PackageID As String
 Public DeliveryDate As Date
End Class

Database and OOP mavens will realize that there are many different ways
to implement this type of scenario. (You may also wonder why the credit card
is stored with each package.) In a real-world example, security concerns will
shape the whole construction of the database (and the applications that
access it).

In any case, this example demonstrates that a .NET web service can pass
many types of information to the client, including a DataSet, custom objects,
arrays, and simple variables. Keep in mind, however, that if you were to pass
an object with a built-in method, the method would be lost. Only the data is
preserved.

Testing Your Web Service

Maybe you’re still wondering exactly what is provided with the web service
we’ve created. So now that you have created it, how can you use it? For-
tunately, ASP.NET includes a handy feature that allows you to preview and
perform a limited test on any web service.

Your Web Service in Action

To try out this useful feature, run your web service. Remember, web services
are designed to be used from inside other applications, not executed directly.
However, when you choose to run a web service in Visual Studio, your browser
will display the test page shown in Figure 13-4.

Figure 13-4: The web service test page

bvb_02.book Page 434 Thursday, March 30, 2006 12:39 PM

Web Servi ces 435

This window lists all the available web service methods. (In this case, only
one, GetPackageInfo(), is available.) The Service Descriptions link will display
the WSDL description of your web service. (WSDL is described in the next
section of this chapter.) Click the GetPackageInfo link, and the test page
shown in Figure 13-5 will appear.

Figure 13-5: Testing a web service method

Ignore the puzzling XML code further down the page for now, and
concentrate on the first portion of the page, which provides a prefabricated
way for you to test your application. Try it by entering a package ID and
clicking Invoke.

When you click the Invoke button, the browser posts a web service
request to the .asmx page (the web service URL). IIS handles this request.
Because .asmx files are registered to ASP.NET, IIS passes the request along
to the ASP.NET worker process, which then creates an instance of your web
service class. The web service runs the appropriate method and returns the
result, which ASP.NET converts into XML. The web service object is then
destroyed. The end result appears as a page in your Internet browser.

If you’ve entered the preceding example, and uncommented the hard-
coded package values, you will receive a result like the one shown in
Figure 13-6.

At this point you’ll probably start to wonder if your web service has worked
at all. However, on close examination, it turns out that the appropriate infor-
mation is present; it’s just been marked up in a special XML format. What
you have received is a translated version of the ClientPackageInfo class. The
class is marked with a beginning and an ending tag, and inside are the tags
for the members, including the PackageID and a DeliveryDate field.

You don’t need to understand the format of this information if you are
programming in Visual Basic 2005. As you’ll discover later in this chapter,
.NET provides special utilities that abstract away this layer of XML. These

bvb_02.book Page 435 Thursday, March 30, 2006 12:39 PM

436 Chap te r 13

features allow you to call a web service and retrieve its data as though it were
a local function inside your application. However, understanding this format
can give you some additional insight into what’s really going on with web
services.

Figure 13-6: A web service response

The Open Standards Plumbing

Much of the excitement over web services results from the fact that they are
built on open standards. It’s this foundation that makes them more flexible
and extensible than previous attempts at allowing distributed component-
based programming, including such existing standards as DCOM (Microsoft’s
own Distributed COM), and RMI (Java’s Remote Method Invocation).

XML and WSDL

Web services are based on the XML standard (which was introduced in
Chapter 8). XML, however, is only the starting point. XML is just a tool for
describing data, much as SQL is a tool for accessing databases. Both are
generic, and both can be used in countless different ways. What is needed is
an agreed-upon standard for encoding information in XML before it’s
packaged in a web service message, guaranteeing that other clients will be
able to decode the information by following a uniform set of rules. You also
need an agreed-upon standard for describing the functionality that’s available
for a web service, so your programming framework can interact with it with-
out you needing to worry about all the low-level details. There are two web
service standards that fill these gaps: WSDL and SOAP. Both are XML-based
languages.

bvb_02.book Page 436 Thursday, March 30, 2006 12:39 PM

Web Servi ces 437

The standard way of describing web services is the Web Services Descrip-
tion Language (WSDL), an XML-based language that has been accepted by
Microsoft, IBM, and a host of other vendors. WSDL tells clients what methods
a web service contains, what data types it uses (for example, it will define the
ClientPackageInfo class used in the previous example), and how to contact it.

If you want to find out all the low-level details of WSDL, you can read up
on it at http://msdn.microsoft.com/xml/general/wsdl.asp. However, for
most developers, these details won’t hold any more interest than do the
details of the technologies that underlie many of the other aspects of the
.NET platform. What is more interesting is examining the WSDL informa-
tion that ASP.NET generates automatically for your particular web service.
To display this information, click the Service Description link on the web
service test page. You’ll see a lengthy—and perhaps intimidating—document
that describes the types and the functions used in your web service. A portion
of the WSDL document for the PostalWebService is shown in Figure 13-7.
Among other details, this section of the WSDL document defines the
ClientPackageInfo class.

Figure 13-7: Part of the WSDL document describing a web service

If you pay careful attention to the URL that’s used when you click the
Service Description link, you’ll realize that you don’t really need to go through
the web service test page (although it is very convenient). Instead, to see the
WSDL contract for a web service, just add ?WSDL after the web service file name.
This works for any .NET web service, including those that have been created
by other developers. For example, the web service WSDL contract for the
PostalWebService can be retrieved with this line (assuming it’s in a virtual
directory called NoStarchWeb on the local computer):

http://localhost/NoStarchWeb/PostalWebService.asmx?WSDL

bvb_02.book Page 437 Thursday, March 30, 2006 12:39 PM

438 Chap te r 13

SOAP
WSDL describes your web service, but another standard is needed to com-
municate with it. In fact, there are three different ways to communicate with
a web service. The first is HTTP POST, which Internet Explorer uses auto-
matically when you click on Invoke on the web service test page. The second
is HTTP GET, which is very similar to HTTP POST. Internet veterans will
realize that a POST request sends information in the body of an HTTP request
instead of in the query string. ASP.NET ignores HTTP GET requests for
security reasons. The final method is SOAP, which is what .NET uses trans-
parently when you create a client (as shown later in this chapter).

SOAP is another XML-based standard, and it predates the .NET platform.
Essentially, when you send information to and retrieve information from a
web service in a .NET application, your requests and responses are packaged
in the SOAP format. The SOAP format looks similar to the XML response
you saw in Figure 13-6, but it’s a little more detailed. To take a closer look at
the SOAP message format (for curiosity’s sake), launch your web service in
Visual Studio to head back to the test page. Then, select a method (in this
case, use the GetPackageInfo() method). When the method page appears,
scroll down to see the format for a SOAP request message (the message a
client sends to a web service to request information) and a SOAP response
message (the answer the web service sends back). Figure 13-8 shows these
details for the PostalWebService.

Figure 13-8: The SOAP message format

bvb_02.book Page 438 Thursday, March 30, 2006 12:39 PM

Web Servi ces 439

The next section looks at how .NET applications consume web services
by using SOAP calls, which allows you to retrieve the results of a web service
in a .NET program instead of in a browser.

Consuming a Web Service

At this point, you’ve seen your web service in action, but you haven’t usefully
incorporated it into another program. Clearly, if users had to rely on the
web service test page, they would be better off with a full-featured Internet
application!

In this section you’ll learn how to create a web service client that uses
your web service (or consumes it, to use programmer-speak). Best of all, you’ll
learn how to get Visual Studio to create all the infrastructure code you need.

The Proxy Class

Web service clients communicate with web services through a proxy class that
you can create automatically with the .NET Framework. The proxy class trans-
lates your actions into the appropriate SOAP calls and then interacts with the
web service. The whole process is seamless, so you might not have even
realized it was happening if you hadn’t seen Figure 13-9.

Figure 13-9: Web service interaction

Creating a Client Application

Once you’ve created your web service, it’s always available. Even if you shut
down Visual Studio, IIS keeps running. Whenever it receives a web service
request it fires up ASP.NET and passes along the SOAP message for
processing.

Your
Application

The
Local Proxy

Class

The Web
Service Class

(on the Web Server)

SOAP
Request
Message

SOAP
Response
Message

Ordinary
Function Call

Internet

bvb_02.book Page 439 Thursday, March 30, 2006 12:39 PM

440 Chap te r 13

As a result, you have a good deal of flexibility when it comes to creating
a client for your web service. For example, you can start a completely new
Visual Studio solution with a client application in it. Your client application
can be any type of .NET application, including a console (command-line)
application, a Windows application, a web application, and so on. However,
if you’re still testing your web service, the best approach is to put both your
client and your web service project in the same solution. That way you
can easily debug both, and even step from your client code into your web
service code.

To set up this relationship, open your web service project (if it’s not
already open), and choose File�Add�New Project. Put this project in a
completely different directory. Unless your client is also a web application, it
doesn’t need to be in a virtual directory. This project should not be created
in the virtual directory where the web service is located because it will not be
hosted on the web server.

Once you create this new project, you’ll see both applications in the
Solution Explorer, as shown in Figure 13-10.

Figure 13-10: Two projects in Solution Explorer

At this point, there are still a couple of configuration steps to take care
of. First, right-click your client project, and select Set As StartUp Project.
That way, when you start this solution, the client project is launched (not the
web service test page). Also, you may want to save the solution you’ve created
so you can open this combination (the web service and the client) later
for more testing. To save the solution, select the solution name in the
Solution Explorer (which is the very first node) and then select File�Save
[SolutionName].sln As.

Adding a Web Reference

Although you now have a client project, the client currently has no way to
know about the web service. To configure a client to use a web service, you
need to use a Visual Studio feature called web references. Web references are
special types of links, stored in your project, that identify the web services

bvb_02.book Page 440 Thursday, March 30, 2006 12:39 PM

Web Servi ces 441

your code uses. The neat bit is that when you add a web reference, Visual
Studio also generates the code you need to communicate with the web
service, saving you a lot of work.

To add a web reference, right-click your client project in the Solution
Explorer and choose Add Web Reference. The Add Web Reference window
will appear (Figure 13-11). In the address box, type in the full URL of your
web service (like http://localhost/NoStarchWeb/PostalWebService.asmx),
and click the Go button. Assuming you’ve typed the reference in correctly,
you’ll see the test page for your web service.

Figure 13-11: Adding a web reference

TIP To save some keystrokes, you can use the browser functionality that’s built into Visual
Studio to find web services on the local computer. To do this, click the Web Services On
The Local Machine link that’s initially shown in Add Web Reference browser box.

Optionally, you can change the web reference name at this point. The
web reference name determines the namespace where the proxy class will be
created. By default, Visual Studio uses the server name (in this case, localhost).
To add the web reference, click the Add Reference button. At this point,
Visual Studio copies some information it needs (like the WSDL document)
and generates the proxy class. It also adds a configuration file to your project
to store the web service URL. This file appears as app.config in the Solution
Explorer, but every time you build your application, a copy is placed in the
output directory, with the name of the application plus the extension .config.
For example, the application MyClient.exe will have a configuration file
MyClient.exe.config.

bvb_02.book Page 441 Thursday, March 30, 2006 12:39 PM

442 Chap te r 13

Sometimes, a web service might move to a new URL after you create a
client for it. In Visual Studio you can easily change the URL you use by
selecting the web reference (under the Web References node in the Solution
Explorer) and changing the Web Reference URL in the Properties window.
But what do you if you’ve already deployed your client, and you don’t want to
recompile it? Fortunately, .NET has the answer. Just look for the configuration
file, which has the same name as your client (such as MyClient.exe.config).

You can edit the configuration file with any text editor. Inside you’ll find
the current setting, looking something like this:

<setting name="PostalClient_localhost_PostalWebService"
 serializeAs="String">
 <value>http://localhost/NoStarchWeb/PostalWebService.asmx</value>
</setting>

You can change this setting to update the web reference URL, without
recompiling a lick of code. When you launch your client, it always uses the
URL in the configuration file. Of course, if the web service changes more
drastically—for example, the name of the web methods changes—you’ll
need to modify your client application and recompile.

Inspecting the Proxy Class

Visual Basic 2005 hides the proxy class that it creates from you, because you
don’t really need to see it or modify it directly. However, it’s always a good
idea to peek under the hood of an application and get a better understanding
of what’s really happening along the way.

To see the proxy class, select Project�Show All Files from the menu.
Then, expand the Web References node, which contains all your web refer-
ences. Expand the node with the web reference you just added (which is
named localhost by default). Finally, look for a file named Reference.map.
Once you expand this node, you’ll see the Visual Basic proxy file, which is
named Reference.vb, as shown in Figure 13-12.

This Reference.vb file includes a proxy class with all the code needed to
call the methods of your web service. It also includes the ClientPackageInfo
class that you need to use to retrieve the information from the GetPackageInfo()
method. It’s important to understand that the Reference.vb file is constructed
out of the public information about your web service. This information, which
includes the method names, their parameters, and the data types they use,
is drawn from the WSDL file. It’s impossible for a client to snoop out the
internal details of a web service. For example, you won’t see the private
GetPackageRecordFromDB() method in the proxy class, and you won’t find the
Package class in the Reference.vb file, because they are only used internally.
Similarly, you won’t be able to see (or learn anything about) the code inside
your web service. If you could, that would constitute a significant security risk.

bvb_02.book Page 442 Thursday, March 30, 2006 12:39 PM

Web Servi ces 443

Figure 13-12: The hidden proxy class

Take a quick look at the modified version of the GetPackageInfo() function
contained in the proxy class. (To simplify the display, the information in the
SoapDocumentMethodAttribute is not included here.)

<SoapDocumentMethodAttribute(...)> _
Public Function GetPackageInfo(ByVal TrackID As String) As ClientPackageInfo
 Dim results() As Object = Me.Invoke("GetPackageInfo", _
 New Object() {TrackID})
 Return CType(results(0), ClientPackageInfo)
End Function

This function converts the TrackID input string into a generic object,
retrieves the result as a generic object, and then converts it into the appropri-
ate ClientPackageInfo object. In between, it accesses the web service through
the appropriate SOAP request and waits for the response, although all this is
taken care of automatically in the Me.Invoke() method, with the help of the
.NET attributes that provide additional information to the Common Language
Runtime.

Using the Proxy Class

The proxy class is the key to using a web service. Essentially, you create an
instance of this class, and call the appropriate methods on it. You treat the
proxy class as though it were a local class that contained the same functions
and methods as the web service.

bvb_02.book Page 443 Thursday, March 30, 2006 12:39 PM

444 Chap te r 13

To try out the PostalWebService, add the following code to the Click event
handler of a button:

Private Sub cmdCallService_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdCallService.Click
 Dim ServiceInstance As New localhost.PostalWebService()
 Dim PackageInfo As New localhost.ClientPackageInfo()
 PackageInfo = ServiceInstance.GetPackageInfo("221")
 MessageBox.Show("Received the delivery date: " & _
 PackageInfo.DeliveryDate)
End Sub

Now run the application and click the button. If Visual Studio loads up
the web service test page, you have a configuration problem. Stop the project,
right-click the Windows application in the Solution Explorer, and select
Set As Startup Project. If you have configured everything correctly, you’ll
see the window in Figure 13-13.

Figure 13-13: Calling a web service

Once again, the technical details are pretty sophisticated, but the actual
implementation is hidden by the .NET framework. Calling a web service is as
easy as creating one, once you have set up the web reference.

TIP There’s a handy shortcut for using the proxy class without needing to explicitly create it
yourself. You can use VB’s built-in My.WebServices object. For example, to call the
GetPackageInfo() method from the PostalWebService, you could use My.WebServices
.PostalWebService.GetPackageInfo(). The proxy class is used in exactly the same way;
the only difference is that you don’t need to instantiate it.

Debugging a Web Service Project

When debugging a solution that includes a web service project and client,
you will find that any breakpoints or watches you set for the web service code
are ignored. That’s because, by default, Visual Studio only loads the debug
symbols for the startup project, which is the client.

To solve this problem, you need to configure Visual Studio to load both
projects at once. Right-click the solution name in the Solution Explorer (the
first node), and select Properties. Then, browse to the Common Properties�

Startup Project tab and specify Multiple Startup Projects, so that both your
client and the web service will be built when you click the Start button
(Figure 13-14). Also, make sure that the Action column is set to Start
for both projects. Then click OK.

bvb_02.book Page 444 Thursday, March 30, 2006 12:39 PM

Web Servi ces 445

Figure 13-14: Starting the web service and client at the same time

You still need to make one more change. By default, Visual Studio starts
the web service project by displaying the web service test page. In this case,
however, you don’t want any action to be taken other than loading the debug
symbols so that the web service code is available for debugging. You don’t
want to see the test page.

To set this up, right-click the web service project, and select Property
Pages. In the Start Options section, select “Don’t open a page. Wait for a
request . . .” as your start action (Figure 13-15).

Figure 13-15: Loading the web service debug symbols

Click OK. You can now use the full complement of debugging tools,
including breakpoints, with your web service and client code.

bvb_02.book Page 445 Thursday, March 30, 2006 12:39 PM

446 Chap te r 13

TIP You’re free to change your web service without breaking your client. As long as you only
change the code inside an existing method, there’s no problem. However, if you add a
new method, or change the signature of an existing method (for example, by renaming
it or adding new parameters), the client won’t see your changes automatically. Instead,
you need to rebuild your web service and then rebuild the proxy class. To rebuild the
proxy class at any time, right-click the web reference in the Solution Explorer, and choose
Update Web Reference.

Asynchronous Web Service Calls

You may have noticed that the proxy class actually contains more than just
the GetPackageInfo() method. It also includes a GetPackageInfoAsync() method
that allows you to retrieve a web service result asynchronously. For example,
your code can submit a request with GetPackageInfoAsync(). That request will
start processing on another thread. Meanwhile, your application can perform
some other time-consuming tasks. When the result is ready, the proxy class
will fire an event to notify you. This allows your program to remain responsive,
even when waiting for a response over a slow Internet connection.

Before going any further, you should modify the GetPackageInfo() web
method so it runs more slowly. This makes the asynchronous behavior much
easier to test. The easiest way to make this change is to add the following line
of code to the GetPackageInfo() web method, which artificially delays execu-
tion for 20 seconds:

System.Threading.Thread.Sleep(TimeSpan.FromSeconds(20))

Now you’re ready to forge on and see how it all works.

Asynchronous Support in the Proxy Class
As you learned in Chapter 11, you can perform any task in .NET on a separate
thread. However, the built-in support for asynchronous web services is a lot
more convenient. When your web service finishes its work, you’re notified on
the main application thread, which makes it safe to update controls and
change variables. In other words, the asynchronous support in the proxy
class allows you to dodge many of the threading headaches discussed in
Chapter 11.

In order for this system to work, the proxy class also adds an event for
each web method. This event is fired when the asynchronous method is
finished. Here’s what the event looks like for the GetPackageInfoAsync() method:

Public Event GetPackageInfoCompleted As GetPackageInfoCompletedEventHandler

And here’s the delegate that defines the event signature, which the proxy
class also creates:

Public Delegate Sub GetPackageInfoCompletedEventHandler(_
 ByVal sender As Object, ByVal e As GetPackageInfoCompletedEventArgs)

bvb_02.book Page 446 Thursday, March 30, 2006 12:39 PM

Web Servi ces 447

But wait, there’s more. The proxy class simplifies your life by creating a
custom EventArgs object for every web method. This EventArgs object exposes
the result from the method as a Result property. That way, when the asynch-
ronous processing is finished and the completion event fires, you can use the
GetPackageInfoCompletedEventArgs object and check its Result property to get
the ClientPackageInfo object you’re interested in. If an error occurred contact-
ing the web service (or in the web service code), you’ll receive an exception as
soon as you try to retrieve this result, so be ready with some exception handl-
ing code.

An Asynchronous Client Example

The easiest way to understand this pattern is to see it in action in an appli-
cation. You can use your existing Windows client, and modify it to have
asynchronous support.

The first step is to attach the event handler so that you can receive the
completion event. You should attach this event handler when the form first
loads:

Private Sub ClientForm_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' Attach the event handler.
 AddHandler My.WebServices.PostalWebService.GetPackageInfoCompleted, _
 AddressOf GetPackageInfoCompleted
End Sub

This example uses the default instance of the proxy class that’s exposed
through the My.WebServices object. This is useful, because you need to make
sure you use the same proxy object in all your event handlers. Another option
is to create your own default instance as a form-level variable.

NOTE It’s easy to make the mistake of attaching the event handler just before you make the call
(for example, in the Click event handler for a button). Don’t do this. If you do, you’ll
wind up attaching the same event handler multiple times, which means your event-
handling code will be repeated several times in a row.

You still need two more methods to complete this example. First,
you need the event handler that triggers the asynchronous task when the
user clicks a button. This is fairly straightforward. You simply need to tweak
your code so it uses the asynchronous GetPackageInfoAsync() instead of
GetPackageInfo(). Here’s what your code should look like:

Private Sub cmdCallService_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdCallService.Click
 ' Disable the button so that only one asynchronous
 ' call will be allowed at a time (this is optional).
 cmdCallService.Enabled = False

 ' Start the asynchronous call.
 ' This method does not block your code.

bvb_02.book Page 447 Thursday, March 30, 2006 12:39 PM

448 Chap te r 13

 ' The second parameter can be any object you want. You must use the
 ' same parameter if you choose to cancel the request.
 ServiceInstance.GetPackageInfoAsync("Call001", "Call001")

 MessageBox.Show("Call001 has been started")
End Sub

Notice that when you call GetPackageInfoAsync() you need to supply a track-
ing ID as a string. This allows you to uniquely identify the call, if multiple calls
are taking place at once. You can generate a unique ID in your program using
a random number or a GUID, but in this example there’s only one call, so
the ID is hard-coded. The ID isn’t too useful at this point, but it becomes very
handy when we consider cancellation in the next section.

The last detail is the event handler that responds to the completion
event, which is named GetPackageInfoCompleted() in this example. To complete
this example, you’ll need to add that event handler to your form. Here’s the
code you need:

Private Sub GetPackageInfoCompleted(ByVal sender As Object, _
 ByVal e As localhost.GetPackageInfoCompletedEventArgs)
 MessageBox.Show("Received the delivery date: " & e.Result.DeliveryDate)

 ' Re-enable the button for another call.
 cmdCallService.Enabled = True
End Sub

TIP Have no fear—web service completion events are always fired on the same form as the
rest of your application. That means you don’t need to worry about interacting with
other controls or synchronizing your code. Behind the scenes, the proxy class uses the
BackgroundWorker component that you considered in Chapter 11.

Now you’re ready to try out this example. When you click the button,
the code will use the GetEmployeesAsync() method to start the asynchronous
process. In the meantime, the form will remain responsive. You can try
moving the form, minimizing and resizing it, or clicking other buttons to
verify that your code is still running while the web service request is taking
place. Finally, when the results are in, the proxy class fires the completion
event, and a message box will appear alerting the user. (A more common
action might be to use the information to update a portion of the user
interface.)

Canceling an Asynchronous Request

The web service proxy class has one more feature in store—cancellation. It’s
possible for you to halt a request in progress at any time using the CancelAsync()
method. The trick is that you need to have the proxy object handy in order
to call the method, and you need to use the tracking ID that you supplied
when you first called the method.

bvb_02.book Page 448 Thursday, March 30, 2006 12:39 PM

Web Servi ces 449

To change the current example to support cancellation, add a new
button for cancellation. When this button is clicked, call the CancelAsync()
method, using the same tracking ID:

ServiceInstance.CancelAsync("Call001")

There’s one catch. As soon as you call CancelAsync(), the proxy class
fires its completion event. To prevent an error, you need to explicitly test for
cancellation in your event handler, as shown here:

Private Sub GetPackageInfoCompleted(ByVal sender As Object, _
 ByVal e As localhost.GetPackageInfoCompletedEventArgs)
 If Not e.Cancelled Then
 MessageBox.Show("Received the delivery date: " & _
 e.Result.DeliveryDate)
 End If

 ' Either way, re-enable the button for another call.
 cmdCallService.Enabled = True
End Sub

What Comes Next?

This chapter has provided an overview of how web services work and how to
use them. Leading-edge companies and developers have invented all kinds
of imaginative web services. One example includes Microsoft’s Passport,
which allows other companies to provide authentication using the engine
that powers the Hotmail email system.

If you want to continue learning about and working with web services,
here are some interesting places to start:

� Microsoft provides a web services portal that provides such information as
low-level technical information about the SOAP and WSDL standards,
code samples of professional web services, and white papers discussing
the best ways to design web services. Be warned—it’s highly technical.
Check it out at http://msdn.microsoft.com/webservices.

� Eager to create a client for some sample web services? Try playing with
the examples on www.xmethods.com, which provide currency exchange
rates, stock quotes, and prime numbers. Most aren’t written in .NET, but
you can still add a web reference to them and use them just as easily.

� Have some classic VB 6 applications kicking around? Remarkably, they
don’t have to be left out of the party. Microsoft includes the SOAP
Toolkit—a COM component that allows other applications (like VB 6)
to contact web services (like those you create in .NET) and get the
same information a .NET client would. Check it out by surfing to
www.microsoft.com/downloads and searching for SOAP Toolkit.

bvb_02.book Page 449 Thursday, March 30, 2006 12:39 PM

450 Chap te r 13

� Web services isn’t the only distributed object technology on the block.
.NET also introduces a feature called remoting, which allows two .NET
applications to interact over a network. Remoting is a strictly .NET solu-
tion—cross-platform applications need not apply. It also doesn’t use
IIS—instead, you need to launch an application that hosts the remotable
object, and make sure it keeps running. However, remoting also adds a
few features that web services doesn’t have, such as the ability for any
application to act like a web server and receive requests from others.
Also unlike web services, configuring remoting can be fiendishly diffi-
cult (and forget about peer-to-peer applications on the Internet, because
there’s no built-in way to get around firewalls and proxy servers). To learn
more, check out a dedicated book or head to the Visual Studio Help.

bvb_02.book Page 450 Thursday, March 30, 2006 12:39 PM

14
S E T U P A N D D E P L O Y M E N T

If you’ve read through the last few chap-
ters, you’ve gained the knowledge you need

to make a professional, useful application in
Visual Basic 2005. In fact, you may already have

created one or more programs that you want to share
with others, deploy internally, or even market to the
world. But how does a .NET application make the
transition from your workstation to a client’s
computer?

To answer that question, you need to have an understanding of
assemblies, the .NET way of packaging files. You also need to understand file
dependencies, or, “What does my program need to be able to run?” Both of
these subjects were tackled in Chapter 7.

Once you’ve learned which files you need, you can copy and set up your
program on another computer. If the program is only being used internally
(for example, from a company server), or if your only goal is to transfer the
program from one development computer to another, you won’t need to do

bvb_02.book Page 451 Thursday, March 30, 2006 12:39 PM

452 Chap te r 14

much more. In some cases, you can even use a rudimentary batch file or script
to copy all the required files. However, if you’re deploying a program to mul-
tiple users or selling it as a package, you probably need a more convenient,
automated solution. Using Visual Studio, you can create a full-featured setup
program that selectively copies files, allows the user to configure options, and
creates appropriate shortcuts and registry settings. You can also use ClickOnce,
a new technology for rolling out automatically updated applications using a
website. This chapter describes these features and shows how you can use
them to create professional, off-the-shelf products.

New in .NET

Visual Basic 6 provided a utility called the Package and Deployment Wizard
to help you create setup programs for your applications. Unfortunately, there
was little support for customized deployment or advanced configuration
options. In this chapter you’ll see the changes in Microsoft’s new deployment
philosophy, which provides two new setup options.

ClickOnce
Developers who are searching for a streamlined setup option may appre-
ciate ClickOnce, a new .NET 2.0 feature that’s tailored for creating setup
applications that users can install from a website. Without a doubt, the
greatest feature of ClickOnce is its support for automatic update check-
ing, while its most significant limitation is that it provides very few options
and stubbornly resists all customization.

Visual Studio setup projects
Visual Studio includes a much more powerful feature for building setup
projects that can be added directly to your solution files and configured
extensively. With a Visual Studio setup project you can copy whatever
files you want, create shortcuts, configure the registry, and more. You
may never need to resort to a third-party installation tool again.

Setup Programs

In Chapter 7, you learned how .NET assemblies work, and you learned how
you can deploy an application just by copying it to another computer, so long
as the target computer has the .NET 2.0 runtime and you copy all the .dll
files that your application uses. However, the simple copy-and-run approach
doesn’t suit a professional application. Most users expect a more user-friendly
interface, including a wizard that walks them through the process and puts a
nice shortcut in the Start menu (or on the Desktop). A setup program can
put these details in place.

If you develop products that will be distributed to other users on CD
media or over the Internet, you will almost certainly want to create a full-
fledged setup program that takes care of creating shortcuts, making any
important registry settings, and copying the actual files. While .NET is

bvb_02.book Page 452 Thursday, March 30, 2006 12:39 PM

Setup and Deployment 453

intelligent enough that a simple copy operation can transfer an application,
it still makes sense to provide a customized, wizard-based approach for your
product’s end users.

To make life more interesting, .NET actually includes two deployment
technologies:

� ClickOnce is a new setup approach that made its debut in .NET 2.0.
It’s designed to be simple, and sports two interesting features: installa-
tions from a website, and automatic download of updates. However,
ClickOnce’s emphasis on security and simplicity means it lacks most of
the snazzy installation features users of a professional application typi-
cally expect.

� Visual Studio setup projects are a more powerful option that lets you
hand-craft your setup application through a set of designers. Although
you won’t get the automatic updating features of ClickOnce, you will get
much more power to customize the target computer, including features
that allow you to create registry values, create custom shortcut icons, and
launch utilities to perform custom actions.

You may want to evaluate both technologies before settling on an
approach for your application. However, a few basic rules of thumb can help
steer you right. ClickOnce is best for line-of-business applications in huge
companies, where deployment needs to be simplified and standardized as
much as possible. In that environment, the ClickOnce approach of removing
features in order to guarantee simple deployment makes sense. ClickOnce
may also be a good choice if you want application updates to be automatically
downloaded to the user’s computer. In any other case, the Visual Studio setup
project is a far more powerful option that allows you to build a traditional
setup application.

Requirements for .NET Applications
One aspect of application setup that’s all too easy to ignore is the fact that
so-called copy-and-run deployment isn’t quite as easy now as it should be in a
few years. The problem is that while your assemblies have all the metadata
they need to identify themselves and their dependencies, they will still only
work on another computer with the .NET Framework. If you copy your
application to a computer that does not have the .NET runtime, it won’t
work. And because you’re creating your application with .NET 2.0, you need
the .NET 2.0 runtime—earlier versions are no help.

The easiest way to ensure that a computer is .NET-ready is to install the
.NET Framework through the Windows Update feature (select Windows
Update from the Start menu). The .NET Framework runtime is fairly small
(much smaller than Visual Studio itself), but it’s an optional install, so many
computers won’t have it. You can also use the .NET Redistributable to
install .NET, and even include it with your own setup projects. The easiest
way to find the .NET Redistributable is to surf to Microsoft’s MSDN site
(http://msdn.microsoft.com) and search for “.NET redistributable 2.0.”

bvb_02.book Page 453 Thursday, March 30, 2006 12:39 PM

454 Chap te r 14

ClickOnce

ClickOnce provides a streamlined solution for application rollout that may
appeal to programmers who want minimum fuss, including automatic updat-
ing and web-based deployment. However, it’s short on the features that
traditional consumer-level setups need, and provides almost no custom-
izability. (And that’s the point. With ClickOnce, standardization is king.)

The very long list of ClickOnce limitations includes the following:

� ClickOnce applications are installed for a single user. You cannot install
an application for all users on a workstation.

� ClickOnce applications are always installed in a system-managed user-
specific folder. You cannot choose the folder where the application is
installed. You cannot install additional files in another folder. And you
won’t know what folder ClickOnce uses, because it’s all managed behind
the scenes.

� If ClickOnce applications are installed in the Start menu, they show up
as a single shortcut in the form [Publisher Name]�[Product Name]. You
can’t change this, and you can’t add additional shortcuts (for a help file,
related website, or an uninstall feature, for example). Similarly, you can’t
add a shortcut for a ClickOnce application to other locations like the
Startup group, the Favorites menu, and so on.

� You can’t change the user interface of the setup wizard. That means you
can’t add new dialogs (for example, to include a user registration step),
change the wording of existing ones, and so on.

� You can’t install shared components in the Global Assembly Cache (GAC).

� You can’t perform custom actions (like creating a database, registering
file types, or configuring registry settings).

In the following sections, you’ll take a quick walk through ClickOnce.
You’ll learn how to create an automatically-updating setup that users can
install from the Web, and you’ll see how to create a more modest install
package for a setup CD.

Publishing to the Web or a Network

ClickOnce install packages are called publications. Because of the
way ClickOnce works, you need to choose a single, specific location
where your publication will be stored. This is where users will go to run
the setup and install your application. This location can be a UNC path
to another networked computer (like \ComputerName \ShareName). Or, you
may prefer to use a web server, in which case you use a URL of the form
http://ServerName/VirtualDirectoryName.

bvb_02.book Page 454 Thursday, March 30, 2006 12:39 PM

Setup and Deployment 455

NOTE For more information about web servers, refer to Chapter 12. Before continuing in this
section, you should make sure that IIS is installed and correctly configured. You may
remember that you can use a web server for computers in a local network, or you can use
a web server that publicly accessible over the Internet. For the first option, you simply need
to install IIS on your web server computer. For the second option, you’ll probably need to
buy space at another web hosting company, and upload your files via FTP or some other
mechanism.

Here’s the important bit. Before you can create your ClickOnce setup,
you need to pick this location. If you decide to change the location later, you’ll
need to republish your setup. That may sound like an irritating limitation
(and sometimes it is), but it makes sense because the ClickOnce setup loca-
tion is also the update location. ClickOnce’s premier feature is automatic
updates and in order for this feature to work, ClickOnce needs to know
where it should head to check for newer versions.

That means if you decide to publish your application to http://
IntranetComputer/SuperApp, the client will automatically check the
http://IntranetComputer/SuperApp location to look for new versions.

You don’t need to have your publication site ready before you create
your publication. It’s perfectly acceptable to store the publication files in a
local directory, and then transfer them to the right site (network share or
website) for deployment. However, you do need to know what the ultimate
destination will be, because you’ll supply that information when you create
your publication.

To get a better understanding of how this works, you can load up a
completed project and create a new publication. (Any of the sample appli-
cations from previous chapters will work for this purpose; if you haven’t
created them for yourself, you can use the downloadable samples as described
in the introduction.)

The easiest way to publish an application through ClickOnce is to choose
Build�Publish [ProjectName] from the Visual Studio menu, which walks you
through a short wizard. This wizard doesn’t give you access to all the ClickOnce
features you can use, but it’s the best way to get started.

Here’s what you need to do:

1. Select Build�Publish [ProjectName] to start the wizard.

2. First choose the location where you‘ll save your publication. You have a
few choices. First, you can copy your files to a local directory and then
transfer them to their final location (manually). Alternatively, if you’re
installing your ClickOnce application to a website on the local computer
for a quick test (as in this example) and you’ve installed IIS (as described
in Chapter 12), you can use a URL that points to the local computer
(as shown in Figure 14-1). Visual Studio will create the virtual directory
and transfer your files automatically.

bvb_02.book Page 455 Thursday, March 30, 2006 12:39 PM

456 Chap te r 14

Figure 14-1: Installing to a website on the local computer

3. If you’ve chosen a local directory, you’ll see an extra step (Figure 14-2).
This is the point where you supply the final destination for your setup
files. The assumption is that you’ll transfer your files here before anyone
runs the setup. If you don’t need to use the automatic updating feature
of ClickOnce, and just want to create a setup program that can be run
from anywhere, with minimum fuss, you can use the From A CD-ROM
Or DVD-ROM option, which is described later in this chapter. If you sup-
plied a URL in Step 2, Visual Studio assumes that’s the final destination
for your files.

Figure 14-2: Specifying the final setup location

bvb_02.book Page 456 Thursday, March 30, 2006 12:39 PM

Setup and Deployment 457

4. The next window (Figure 14-3) asks whether you want an online or an
online/offline application. An online/offline application runs whether
or not the user can connect to the published location after the initial
setup. With this option, a user heads to the automatically generated
install page (named publish.htm) and runs the setup. A shortcut for the
application is then added to the Start menu, and the user can subse-
quently run the application from there. However, if you choose to create
an online-only application, no shortcut is created. Instead, the user
needs to launch the application from the automatically generated web
page every time. The only advantage of this approach is that it ensures
there’s no way to run an old version of the application. As with a web
application, only a user who can get online and connect to your site
can run your application. (The difference is that the application will
still be downloaded the first time it’s launched and then cached for
optimum performance.)

Figure 14-3: Choosing whether to allow offline use

5. Finally, you’ll see a summary (Figure 14-4) that explains all your choices.
Click Finish to generate the deployment files and copy them to the loca-
tion you chose in Step 2.

NOTE Keen eyes will notice that the URL specified in Step 2 (see Figure 14-1) has been modified
in the final summary. The first URL used the computer name localhost, which always
refers to the current computer. However, the problem is that if you try to use this URL on
another computer, localhost points to that computer (not to yours). To correct this problem,
the ClickOnce wizard substitutes your computer name in the last step. Now all clients
on your network can use the same URL, and that’s the URL that’s stored in the
publication.

bvb_02.book Page 457 Thursday, March 30, 2006 12:39 PM

458 Chap te r 14

Figure 14-4: The final summary

Installing a ClickOnce Application

The ClickOnce publication includes several files. Here’s what you’ll see for a
typical application:

c:\MyClickOnceApplication\setup.exe
c:\MyClickOnceApplication\publish.htm
c:\MyClickOnceApplication\MyClickOnceApplication.application
c:\MyClickOnceApplication\MyClickOnceApplication_1_0_0_0.application
c:\MyClickOnceApplication\MyClickOnceApplication_1_0_0_0\MyClickOnceApplication.exe.deploy
c:\MyClickOnceApplication\MyClickOnceApplication_1_0_0_0\MyClickOnceApplication.exe.manifest

As you publish newer versions of your application, ClickOnce adds new
subdirectories for each new version.

The most important file is setup.exe, which installs the application. The
setup program uses a bootstrapper to check for system requirements. For
example, if the target computer doesn’t have the .NET Framework 2.0 run-
time, it launches that setup first. Provided the requirements are installed, the
setup.exe file installs the application.

If you’re installing from a website, ClickOnce includes a publish.htm file.
Users can browse to this page and click Install to install your application
(see Figure 14-5). When you finish generating a new ClickOnce publication,
Visual Studio opens this page for you automatically.

To install your application, click Install in the web page or run the
setup.exe file directly. The application will download, install, and run in
one quick step. If you’re installing from the web, the only pause you’ll see
is a security message asking if you want to trust the application (similar

bvb_02.book Page 458 Thursday, March 30, 2006 12:39 PM

Setup and Deployment 459

to when you download an ActiveX control in a Web browser). Clearly,
ClickOnce does everything it can to make a setup painless and (almost)
invisible.

You’ll also see a new shortcut in your Programs menu that you can use to
run the application. You can uninstall it using the Add/Remove Programs
section of the Control Panel.

Figure 14-5: The publish.htm page

Updating a ClickOnce Application

The most exciting ClickOnce feature is its support for automatic updates.
But before you try this out, it’s worth reviewing the update settings, which are
mostly left out of the ClickOnce wizard.

To see the update settings, double-click the My Projects node in the
Solution Explorer, and select the Publish tab. This tab provides quick access
to all the ClickOnce settings. To control the update settings, click the Updates
button. (The Updates button isn’t available if you’re creating an online-only
application, because an online-only application always runs from its published
location on a website or network share.)

You’ll see the Application Updates dialog box (Figure 14-6).
To use automatic updating, you must check the The Application Should

Check For Updates check box. You then have two choices about how updates
are made:

� Before the application starts. In this case, every time the user runs the
application, ClickOnce checks for a newer version in the publish loca-
tion. If an update is found, the user is prompted to install it, and then the
application is launched.

bvb_02.book Page 459 Thursday, March 30, 2006 12:39 PM

460 Chap te r 14

� After the application starts. In this case, ClickOnce checks for new ver-
sions periodically. You can choose whether this checking is performed
every time the application is launched, or only after a certain interval of
days. If an updated version is detected, this version is installed the next
time the user starts the application.

Figure 14-6: Configuring update settings

The first option ensures that the user gets an update as soon as it’s
available. The second option improves load times, and is recommended if
you don’t require immediate updating. Of course, an update won’t be made
if the user can’t connect to the site where the application is installed. If you’re
really concerned about missed updates, you can use the online-only model to
ensure that the user it always forced to use the latest version.

You can also specify a minimum required version if you want to make
updates mandatory. For example, if you set the publish version to 1.5.0.1 and
the minimum version to 1.5.0.0 and then publish your application, any user
who has a version older than 1.5.0.0 will be forced to update before being
allowed to run the application. Ordinarily, there is no minimum version, and
all updates are optional.

To see automatic updates in action, follow these steps using the same
application you chose in the section “Publishing to the Web or a Network”
on page 454:

1. Select the Before The Application Starts update mode.

2. Make a change in your application. For example, add a new button.

3. Republish your application to the same location.

4. Run the application from the Start menu.

5. The application will detect the new version, and ask you if you’d like to
install it (see Figure 14-7). If you accept the update, the new version will
be installed and then launched.

bvb_02.book Page 460 Thursday, March 30, 2006 12:39 PM

Setup and Deployment 461

Figure 14-7: Automatic updates in action

Publishing to a CD

If you’re not interested in automatic updates and web-based deployment,
you can use a simpler strategy. ClickOnce allows you to create a publication
that can be installed from any location (including a setup CD). Here’s how
to create it:

1. Select Build�Publish [ProjectName] to start the wizard.

2. Enter a file path for your installation location (like C:\MySetupFiles).
You can burn them to a CD or copy them to some other location later.
Click Next.

3. Choose the From A CD-ROM Or DVD-ROM option, which turns off the
online-only features. Click Next.

4. In the last step, choose The Application Will Not Check For Updates to
turn off the automatic updating feature. (If, on the other hand, you want
to make an application that is deployed by CD but can be updated via
the web, you would specify the website where you also plan to copy the
publication files.) Click Next.

5. Finally, you’ll see the summary. Click Finish to generate the deploy-
ment files.

Of course, if all you want to create is a CD setup that copies your project,
you’ll find a much more customizable, flexible model with Visual Studio setup
projects, as described in the next section.

Creating a Visual Studio Setup Project

Although ClickOnce is an exciting technology targeted for a specific set of
users, it pales in comparison to full-fledged setup projects. Most users will
prefer to use Visual Studio setup projects.

Unlike the other project types discussed in this book, Visual Studio setup
projects are not language-specific. Instead of writing scripts, you configure
setup options through special designers and property windows. You don’t
ever write any code.

bvb_02.book Page 461 Thursday, March 30, 2006 12:39 PM

462 Chap te r 14

You can create a stand-alone setup project, and then import the output
from another .NET project, or you can add a setup project to an existing
solution that contains the project you want to deploy. This second option is
often the most convenient.

First, open an existing project. You can use any existing project, although
Windows and Console applications are obviously the most likely choices.

NOTE You can create a full-blown setup and a ClickOnce setup for the same application.
However, you won’t be able to benefit from the automatic updating of ClickOnce unless
you install the application from the ClickOnce publication.

Then, right-click the solution item in the Solution Explorer window,
and choose Add�New Project. Choose Setup Project from the Setup and
Deployment Projects group, as shown in Figure 14-8.

Figure 14-8: Creating a setup project

Then enter a name for the setup program, and click OK to add the proj-
ect. You will now have two projects in your solution, as shown in Figure 14-9.

Figure 14-9: A solution with a Windows
application and its setup project

bvb_02.book Page 462 Thursday, March 30, 2006 12:39 PM

Setup and Deployment 463

Make sure you set the application (not the setup project) to be the
startup project. To do this, right-click your application in the Solution
Explorer and choose Set As StartUp Project.

Compiling a setup file can take some time, and it’s only required when
you want to deploy the finished application, not during testing. To create the
.msi setup file at any time, just right-click the setup project and choose Build.
An .msi file for your setup will be created in the bin directory, with the name
of your project.

Basic Setup Project Options

The setup project is unlike any other type of .NET application. Instead of
writing code, you configure options in a variety of different designers. Find-
ing the designer you need and setting the appropriate options are the keys to
creating your setup project.

To start, use the Properties window to set some of the basic setup options,
such as Author, Manufacturer, ManufacturerURL, Title, ProductName, and Version.
Most of these settings are descriptive strings that will show up in the Setup
Wizard or in other Windows dialog windows, such as the Support Info window
(which can be launched from the Add/Remove Programs window).

You can also set the AddRemoveProgramsIcon (the icon that represents your
program in the list of currently installed applications for the Add/Remove
Programs window) and the DetectNewerInstalledVersion setting (which will
abort the setup if a newer setup program has already been used to install
software). Each setting is described individually in the Visual Studio Help.

To configure more sophisticated options, you will have to use one of
the setup designers. To navigate to the main designers, right-click on your
setup project in the Solution Explorer, and select View. There are six differ-
ent designer options, depending on the settings you want to configure
(Figure 14-10).

Figure 14-10: The setup designers

bvb_02.book Page 463 Thursday, March 30, 2006 12:39 PM

464 Chap te r 14

NOTE You can also jump from one designer to another quickly by clicking one of the buttons
in the Solution Explorer. As long as you’ve selected your setup project, you’ll see one button
for each designer.

In the next few sections, we’ll quickly explore each of these setup options.
The first and most important is File System.

File System

Initially, your setup project is a blank template that does not install anything.
You can change this by using the File System options window, which allows
you to specify the files that should be installed during the setup procedure.
Once you’ve configured this window by adding your application, along with
any dependent files and shortcuts, you can create a fully functional .msi file
simply by building the project. All the other windows provide additional
options that you may or may not need.

By default, a short list provides access to commonly needed folders on
the destination computer. You can add links to additional folders by right-
clicking in the directory pane and choosing Add Special Folder (Figure 14-11).
There are options that map to the computer’s Fonts folder, Favorites folder,
Startup folder, and many more, allowing you to install files and shortcuts in a
variety of places. Folders that have already been added to the list are grayed
out so that you can’t choose them again.

Figure 14-11: Setup folders

bvb_02.book Page 464 Thursday, March 30, 2006 12:39 PM

Setup and Deployment 465

Adding a Project File

On their own, these links don’t actually do anything. However, you can add
files and shortcuts into the folders they represent. For example, to add an
application file, click the Application Folder item. Then, on the right side of
the window, right-click and choose Add�Project Output.

The other project in your solution—that is, your application itself—is
automatically selected in this window (Figure 14-12). Choose Primary Output
and click OK. (Primary output is the .exe or .dll file a project creates when
you click on the start button.) Figure 14-13 shows a setup project with a project
output added and ready to be installed to the user-selected application folder.

Figure 14-12: Adding a project output

You should also note that you can right-click in the file list and select
Add to insert any other dependent files, such as pictures or XML documents.
You can also create as many layers of subdirectories as you need. Lastly,
you can click any folder to display additional information about it in the Prop-
erties window. You can see, for example, that the standard format for naming
directories (ProgramFiles\[Manufacturer] \[ProductName]) is used by default for
the application directory.

Figure 14-13: The FontViewer project output

bvb_02.book Page 465 Thursday, March 30, 2006 12:39 PM

466 Chap te r 14

Adding a Shortcut

You can also use the File System designer to add shortcuts for your application.
Add a shortcut directly to the desktop by including it in the User’s Desktop
folder, or add one to the Programs group in the Start menu by using the
User’s Programs Menu folder.

Once again, just right-click in the file list space on the right. Choose
Create New Shortcut. A special window will appear that allows you to choose
the linked file from one of the other folders. For example, you can browse
to the application folder and choose the application’s .exe file for the short-
cut target. Figure 14-14 shows a setup project with a shortcut added to the
Program menu for the main application executable (project output).

Figure 14-14: The FontViewer shortcut

You can then use the Properties window to fine-tune your shortcut, chang-
ing its name, icon, default window state (the ShowCmd property), and startup or
working folder. Note that in order to assign a special icon for the shortcut,
you must have added it to the setup project.

NOTE At this point, you’ve created a fully functioning setup that can install your
application, complete with a basic wizard, a shortcut, and an uninstall feature.
All you need to do is build the setup project and double-click on the .msi file. All
the other options we’ll consider in this chapter are for adding enhanced features to
your setup program.

Registry

The Registry designer (shown in Figure 14-15) allows you to create registry
entries in the destination computer as easily as you create shortcuts and copy
files. The display is similar to the familiar Windows regedit program which you
can use to edit the registry. To add a new registry key in the Registry designer,
browse to the proper location on the left, right-click the list at the right, and
choose New�String Value. Any values you specify in this way will be created
automatically during the setup.

bvb_02.book Page 466 Thursday, March 30, 2006 12:39 PM

Setup and Deployment 467

If you want to use one of the setup variables in a registry setting, enclose
it in square brackets. For example, if you use [Manufacturer], the setup program
will use the corresponding Manufacturer value defined in the project properties.
This is a good way to design a generic setup that can keep up with frequent
product updates, or even with company name changes.

Figure 14-15: The Registry designer

It’s a good idea to reduce your reliance on these registry settings. Even if
your application is designed exclusively to be deployed through your custom
setup, there may be situations where you want the ease and convenience of a
simple file-copying deployment. In this case, your application should be
intelligent enough to use default registry settings if none are specified, or
raise a nonfatal error and query the user for more information. You should
not rely on the success of this setup program. The best use of the registry
features in a Windows Installer project is to preconfigure directory settings,
based on the location where the application is installed. The application
should not fail without this information.

File Types

The File Types designer allows you to associate your program with specific
extensions, a trick that was awkward with the Package and Deployment Wizard
in earlier versions of Visual Basic. A file association allows Windows to auto-
matically launch the correct program when you double-click on a file (for
example, .pdf files are opened in Adobe Acrobat, and .txt files are usually
opened in Notepad).

If you are deploying a document-based application, you may want to use
your own registered file types. Make sure, however, that your file types have
reasonably unique names, to prevent them from conflicting with other
programs. File types do not need to be restricted to three characters. Also,
never try to take over such basic file types as .bmp, .html, or .mp3. It is almost
certain that the user will have a preferred program for accessing these types
of files, and trying to override such preferences is certain to annoy your clients.

bvb_02.book Page 467 Thursday, March 30, 2006 12:39 PM

468 Chap te r 14

Figure 14-16 shows a complete File Type entry. To add a file type associa-
tion like this, begin by right-clicking anywhere in the File Types designer and
choosing Add File Type. Before the file extension is considered complete,
you must specify the following details:

� The name of the type of document (Name)

� The associated extension (Extension)

� The program to launch for the extension (Command)

� Ideally, a nice icon (Icon) and a two- or three-word description of the
format (Description)

Figure 14-16: A custom file type

You can then add actions to each of your file types. The most common
action is Open. When you double-click a file or right-click it and choose
Open, the owning program will launch, and should open the file automatic-
ally. By convention, the filename is passed to your program, and it is your
program’s responsibility to check its command-line arguments and take the
appropriate action (in this case, opening the file). The "%1" string in the
Arguments property indicates that the action passes the filename to your
program as a command-line parameter.

In some cases, you might want to add other actions, such as a Print
command that would automatically open your application with the selected
document and print out the corresponding file. To do this, alter the Arguments
property to some other format that your program can recognize. For example,
you could set it to /p "%1" and specifically check in your program for the /p
parameter.

Before you use this setting, you should test it out with your program, and
fine-tune it as needed. You should also look at how the icon and description
appear in Windows Explorer. To test a custom file type, add it manually using
Windows Explorer. (Choose Tools�Folder Options from the menu, and
select the File Types tab.) If you’re trying this out for the first time, it will also
be helpful to see how other file types are registered.

bvb_02.book Page 468 Thursday, March 30, 2006 12:39 PM

Setup and Deployment 469

User Interface

For a simple setup, you can let the Windows Installer generate the entire user
interface for you using its default options. For a more sophisticated setup,
you may want to configure some of the Setup Wizard options using the User
Interface designer.

The Windows Installer user interface is not created using .NET, or even
using Visual Basic code. Instead, it is configured through a series of options
that you can specify within your setup project. These limitations are designed
to make setup creation easy and to restrict setup variations so that Setup
Wizards follow a highly consistent pattern.

With the User Interface designer, you can see the windows that will be
displayed to the user. Windows are listed in the order in which they will
appear, are grouped by setup type, and are further subgrouped by setup
stage, as shown in Figure 14-17.

Figure 14-17: Configuring the Setup User Interface

NOTE You will see two versions of your setup listed: a normal user install and an administra-
tive install. To access the administrative install, you run the .msi setup file with the /a
command-line parameter. Usually the administrative install is used if you need to pro-
vide a network setup.

To customize your setup, there are four tasks you can perform:

� Modifying options for a window, using the Properties window.

� Rearranging the order of windows by right-clicking one of them and
choosing Move Up or Move Down.

� Removing a window from the setup by right-clicking it and selecting
Delete.

� Adding a new window to the setup by right-clicking a setup state and
selecting Add Dialog. All windows are chosen from one of the predefined
window types available to you.

bvb_02.book Page 469 Thursday, March 30, 2006 12:39 PM

470 Chap te r 14

Predefined Window Types

You can add one of several predefined windows to the Setup Wizard
(Figure 14-18).

Figure 14-18: Adding setup windows

Each window is designed for a single purpose and provides an extremely
limited set of functions. Some options include:

� A Splash window, which displays an image file for the product, and is
sometimes used as the first window in a setup project.

� A License Agreement or Read Me window, which shows information from
a linked .rtf file. If you add a license agreement, users must accept it, or
they will not be allowed to continue.

� A Register User window, which launches a custom program if the user
clicks the Register Now button. You can also add a Customer Information
window which requires a name, an organization, and a serial number
that can be validated by comparing it with the format specified in the
SerialNumberTemplate property.

� A choice window, which uses radio buttons, check boxes, or text boxes to
allow the user to enter additional information.

These windows are described in more detail in the Visual Studio Help.
Generally, though, each of these windows provides only a small set of prop-
erties, which are self-explanatory.

Some aren’t even configurable at all! Also, you will notice that a combi-
nation of four check boxes or three radio buttons is the most sophisticated
interface that you can use. The Setup Wizard does not provide more complex
options, the idea being to force you to create a straightforward setup that is
consistent with other Windows products.

Choice Windows

Choice window is the catchall term I use to describe the setup windows that
request additional selections from the user, through such basic interface
controls as check boxes. Because a setup project does not allow you to write

bvb_02.book Page 470 Thursday, March 30, 2006 12:39 PM

Setup and Deployment 471

any actual code, you might be wondering how you can use the results of a
user selection. The answer is quite straightforward.

First of all, you must choose a choice window to add to your project. Each
choice window is based on a single type of control. The different versions of
each window (A, B, and C) are identical, but each window can only be used
once. Clearly the language used to create Windows Installer files is not built
using .NET class-based technology! However, Microsoft is unlikely to change
this system in the future. Presenting more than three configuration windows
using similar controls is a nightmarish scenario that would frustrate many
average users. If possible, a setup should always default to the most common
value—or not provide an option at all. Remember, whenever presenting users
with a choice, you are demanding that they make a decision.

To create a simple choice window, add a check-box window. You can set
values for up to four check boxes by modifying the corresponding properties:
CheckBox1Visible, CheckBox1Label (the descriptive text), and CheckBox1Value
(the default setting, either checked or unchecked). You match this check box
to a global setup variable by setting the property named CheckBox1Property.

If the user checks CheckBox1 from the example in Figure 14-19, the
variable MYCHECKBOX1 will be set to True. (This introduces another ugly
feature of setup project design—variable names are almost always typed
in uppercase.)

Figure 14-19: Setting a CheckBox variable

Conditions

To use the MYCHECKBOX1 variable, you need to assign it to a Condition. Condi-
tions are provided as properties of all sorts of elements in the setup project.
For example, you can find a file or a shortcut using the File System designer,
or a registry setting using the Registry designer, and set its condition prop-
erty to MYCHECKBOX1. If this value evaluates to True (meaning the check box was
selected from the original window), the file will be copied or the entry will be
added. Otherwise, the operation will be skipped. For example, Figure 14-20
shows a conditional file operation that will only be carried out if MYCHECKBOX1
was selected.

bvb_02.book Page 471 Thursday, March 30, 2006 12:39 PM

472 Chap te r 14

Figure 14-20: Making a file operation conditional

If you are working with a text data type or with a radio button window
that assigns different numeric values to a property, you can still create a con-
dition. For example, you might create a condition such as SELECTEDBUTTON = 1,
assuming you’ve added a radio button choice window with the ButtonProperty
of SELECTEDBUTTON, and assigned the value 1 to one of the buttons (for example,
Button1Value). This condition will only evaluate to true if the user chose the
SELECTEDBUTTON with the value of 1.

Conditions and choice windows provide a fairly crude way to manage user
selections, but they are ideal for the simplified Setup Wizard application.
Always make sure that the choice window is displayed before the setup action
that evaluates the condition. For example, if you place a choice window at
the end of your setup project, after the files have been copied, you won’t be
able to make the file copy operation conditional.

Built-in Conditions

The choice window isn’t the only source of conditions. There are also about
a dozen conditions with some basic information that are always available.
These are special environment variables that provide information about the
destination computer.

All of these built-in properties are described in the Visual Studio Help.
Some of the most useful are COMPANY and USERNAME (which correspond to the
information entered in the CustomerInformation window, if you are using
it), LogonUser (the username of the currently logged-on user), ComputerName,
PhysicalMemory (the number of megabytes of installed RAM), VersionNT (the
version number of Windows NT/2000/XP/2003 operating system), and
Version9X (the version number of a Windows 95/98/ME operating system).

Custom Actions

Custom actions allow you to run code at the end of the installation process
to perform additional configuration. As you’ve seen so far, the features built
into the Windows Installer are extremely easy to use, but they provide a set of
defined options with little extensibility. If you need to perform other tasks,

bvb_02.book Page 472 Thursday, March 30, 2006 12:39 PM

Setup and Deployment 473

such as configuring a database, adding a user account, or setting up some
other type of application-specific configuration file, you can create a separate
.exe file for this purpose, and run it when the setup is complete by using a
custom action. You can even make custom actions dependent upon other
options, such as a choice window or the version of Windows installed on the
current computer. Keep in mind, however, that if a custom action generates
an unhandled error or fails, your entire setup will be rolled back, and the
program will be uninstalled.

You can add a custom action to one of several different installation phases
(Figure 14-21). Right-click the appropriate phase, and choose Add Custom
Action. You must choose the program from the files included in your setup
project (as there is no guarantee that any other files will be available).

Figure 14-21: A custom action

Of course, most users like to set up a program with a minimum of fuss.
Also remember that in many environments, the person installing the pro-
gram is not the person who will be using it. For these reasons, it is sometimes
better to add a special configuration window to your application (perhaps one
that launches the first time the program is executed), rather than adding a
custom action to your setup program.

Launch Conditions
Launch conditions allow you to specify the ingredients that a setup must
have in order to run. If these conditions are not met, the setup will be auto-
matically cancelled and an error message you specify will be displayed.

A launch condition has two parts. First, there is a search operation, which
hunts for the registry, file, or component that you identify. You have to set a
variety of properties in order to set the scope of the search and the type of
match. A Boolean True or False is set using the corresponding property.
For example, if you add a Search For File operation and set its property to
FILEFOUND, that will be the global variable you can use in other conditions.

You can use the search result at any point in your application, but it is
typically used with a corresponding item in the Launch Condition group. Just
set the Condition property to the appropriate variable name (in this case
FILEFOUND), and specify a Message property that specifies the error message
that the setup will display if the condition is not met. Figure 14-22 shows a

bvb_02.book Page 473 Thursday, March 30, 2006 12:39 PM

474 Chap te r 14

launch condition that searches for a particular file in the Windows folder and
prevents the setup from continuing if the file cannot be found.

Launch conditions are really just an extension of the Windows Installer
way of dealing with conditions. You can create a search and use the global
variable for another conditional operation (a file copy, for instance), or you
can create a launch condition that uses one of the built-in variables (such as
Version9X or VersionNT). By default, every setup has a launch condition that
verifies that the .NET Framework 2.0 is installed. You can (foolishly) remove
this requirement, or customize it to give a more detailed error message if
.NET 2.0 isn’t found, or even point the user to another URL where they can
find it. (The default is http://go.microsoft.com/fwlink/?LinkId=9832.)

Figure 14-22: Anatomy of a launch condition that searches for a file

What Comes Next?

This chapter introduced the new ClickOnce setup infrastructure, which gives
you a quick way to deploy lightweight applications over the Web and ensure
that they’re updated automatically. Then we considered the more powerful
technique of creating a full setup project. Rather than reviewing a full setup
example, we took a comprehensive look at the available designers. Setup
projects are simple to create, and there aren’t any hidden dangers. However,
you need to know exactly what is possible and what isn’t. Remember, setup
projects aren’t written in VB code and really have little in common with true
.NET projects, other than the fact that they are easy to create in Visual
Studio.

To see an actual setup project, refer to the online samples for this
chapter, which include a simple setup program for a FontViewer utility.
The FontViewer utility is relatively modest—it simply provides a list of all the
fonts installed on the computer and allows the user to preview each one—
but it provides a good example of a fully configured setup project. (As a side
note, the FontViewer utility also shows you how to enumerate the fonts on
your computer and how to draw directly on a Windows form using the .NET
class library.)

bvb_02.book Page 474 Thursday, March 30, 2006 12:39 PM

I N D E X

Symbols
+=, -=, &=, *=, /=, and ^= assignment

shorthand, 75
= vs. Is keyword for equality testing, 143
<!-- and --> XML comment

identifiers, 305
'TODO, 34–35
?WSDL, 437

A
abandoning a session, 411
Abort(), Thread method, 375
abstract classes, 186
AcceptButton, Form property, 103
actions, custom, in setup, 472–473
Active Data Objects (ADO)

described, 311
Recordsets vs. DataReaders, 312

ActiveMDIChild, Form property, 120
AddDays(), DateTime method, 71
AddHandler statement

described, 119
example with dynamic controls, 119
example with FileSystemWatcher, 288

AddressOf keyword, with delegates,
84–85

ADO. See Active Data Objects (ADO)
ADO.NET. See also DataSet class

concurrency problems, 344–346
creating a connection, 318–320
data binding, 350–352
DataSet relations, 338–341
direct updates, 326–327
executing commands, 321–322
fast-forward access, 317
namespaces, 316–317
relational data, 313–314

role, 313
transactions, 331–332
updating a data source

concurrency problems, 344–345
direct updates, 317, 325–327
disconnected updates, 333
an example, 341–344
with multiple tables, 346–347
with parameterized commands,

330–331
with transactions, 331–332

updating disconnected data,
341–343

using data readers, 322–324
using without disconnected data, 317
using with stored procedures,

328–332
aliasing namespaces, 57
anchoring, 92–93
AndAlso operator, 77
Application class, 413
application events, 108–110
application state, with ASP.NET,

413–414
ApplicationException class, 263
arguments. See methods
arrays

built-in methods, 71–73
cloning, 74
determining bounds, 71
enumerating with For Each, 72
initializers, 66
as reference types, 74
required lower boundary of 0, 71–73
reversing, 73
searching, 73
sorting, 73

.asmx file, 430

bvbIX_03.fm Page 475 Tuesday, April 11, 2006 11:24 AM

476 INDEX

ASP
localstart.asp, 419
problems with, 389

ASP.NET. See also web services
application state, 413
automatic postback, 400
data binding, 415–417
file types, 392
page processing cycle, 403–404
session state, 411–412
setup for, 390
state management, 414–415
view state, 403, 407–408
virtual directories, 420–423
web controls, 404–405
web events, 398–400
web projects, 390–391

aspnet_regiis.exe, 420
.aspx file, 392
assemblies. See also Global Assembly

Cache (GAC)
adding references, 53–55
vs. COM, 213–214
components, 223–224
configuring information for,

218–220
contrasted with namespaces, 51–52
creating a version policy, 231–233
dependency information, 217–218
described, 212
disassembling, 215–217
installing in GAC, 230
private, 213–214
reflecting on, 221–223
shared, 228–229
side-by-side execution, 214–215
signing, 229–230
with resources, 233–237
retrieving information from,

221–223
versioning, 214, 217–218

assembly attributes, 218
.assembly extern, 217
AssembyInfo.vb file, 218
assertions

debug, 266–268
trace, 268–270

asynchronous code. See multithreading
asynchronous web service calls, 446–449

attributes
file, 285–286
XML, 304–305

automatic updates, ClickOnce,
459–460

AutoPostback, web control property, 400
AutoScroll, Form property, 96
Autos window, 252

B
background threads, 370
BackgroundWorker

cancellation feature, 368–369
described, 360–361
tracking progress, 366–367
transferring data to, 363–365

backing store, 280, 290
BeginTransaction(), Connection

method, 332
binary files, reading/writing, 276–279
binary information, in controls, 116
binary serialization, 291
BinaryFormatter class, 291
BinaryReader class, 275
BinaryWriter class, 276
binding assemblies to new versions,

231–233
bitwise comparison/assignment,

with file attributes, 285
black box programming, 175
brackets, in functions, 79–80
break mode

commands available, 249–250
modifying variables during, 253
seeing variable contents during,

252–253
breakpoints

with conditions, 251
described, 248
with hit counts, 251
saving, 252

bugs. See errors
built-in conditions, setup, 472
built-in objects, with ASP.NET,

413–414
business objects, 209–210
business tier, in three-tier design, 210
ByRef keyword, 80
ByVal keyword, 80

bvbIX_03.fm Page 476 Tuesday, April 11, 2006 11:24 AM

INDEX 477

C
C#, language similarities, 12–13
caching, web, 423
call stack, effect on exception

handling, 256
CancelAsync(), BackgroundWorker

method, 368
CancelButton, Form property, 103
Catch statement

described, 256
filtering with, 260

choice windows, setup, 470–472
circular reference, 154
class blocks, 63
class library

contents of, 49
described, 11–12, 49
projects, 223–224
reference, 49
useful namespaces, 57–59

Class View window, 170
classes. See also cloning; collections;

inheritance
accessing in a namespace, 53
brief definition, 52
business objects, 209–210
casting, 185
constructors, 148–152
destructors, 152
disposable, 201–202
events, 155–159
forms, 104
garbage collection, 152–154
instance vs. shared members, 53
instantiating, 141–142
interfaces, 194–198
null reference error, 144
partial, 144–145
properties, 145–148
reference vs. value types, 142–143
releasing, 142
representation, 177
serialization, 290–293
shared members, 165–168
simple Person class, 140–141
support for cloning, 198–201
three-tier design, 209

ClickOnce
compared with setup projects, 451
files used, 458
install from CD, 461

install from network or web,
455–457

limitations, 454
publications, 454–455
updating with, 459–460

Clone() method. See cloning
cloning

arrays, 74
compound objects, 199–201
objects, 198–201
possible errors with, 201
through serialization, 292–293

Close(), Connection method, 319
CLR (Common Language Runtime), 11
code samples, 3
code snippets, 35–37
cohesion, 176
collapsible code display, 31–32
collections

custom, 208
described, 203–204
generic, 207–209
keys in, 203

Columns, DataTable property, 347
COM. See Component Object

Model (COM)
Command class

command types, 322–323
creating, 322

CommandBuilder, 342–343
comment tokens, for task list, 34
comments, XML, 305
Common Language Runtime (CLR), 11
comparable objects, 202–203
compilation, 44, 212
Component Object Model (COM)

vs. assemblies, 213–215
vs. GAC, 227–228
interface-based programming,

196–197
vs. web services, 426–427

component tray, 89–90
components. See also assemblies; Global

Assembly Cache (GAC)
class library project, 223–224
clients, 224–226

compound objects, cloning, 199–201
compressing files, 281–283
concurrency

database concurrency problems,
344–345

thread concurrency problems, 381

bvbIX_03.fm Page 477 Tuesday, April 11, 2006 11:24 AM

478 INDEX

conditions, setup, 471–472
.config file

described, 230–231
storing connection strings in,

320–321
web.config, 392

configuration tool, for .NET, 231
configuring assemblies, 230–232
Connection class, 318–319
connection strings

described, 318–319
storing in config file, 320–321

console applications, 41–43
Console class, 41–43
constructors

default, 152
described, 148–149
inherited, 180–182
with parameters, 149
using multiple, 150–152

container controls, 99–100
containment, 189
ContextMenuStrip, 126
context-sensitive help. See help
Continue statement, 78–79
control designers, 90–91
controls

creating dynamically, 117–119
DataGridView, 350–351
events. See events
grouping, 99
invisible, 90–91
locking, 91
providers, 132–133
subclassing, 192–193
web, 405. See also web forms

conversions, data type, 67, 75
conversions, objects, 185
cookies, 414
current date, retrieving, 71
custom actions, in setup, 472–473
custom collections, 208
custom event arguments, 157–158
custom exception objects, 262–264
custom file types, registering in setup,

467–468
customizing the toolbox

to add/remove .NET controls,
29–30

to import ActiveX controls, 30

CType() function
using to handle multiple events, 102
using for object casting, 186–188
using with session state, 412
using for variable conversions,

75–76

D
DAO (Data Access Objects), 311
data binding

in an ASP.NET application, 415–418
in a Windows application, 350–352

data source controls, 417–418
data tier, in three-tier design, 209
data types

arrays, 71–74
with binary files, 278
conversion, 75–76
dates and times, 71
integers, 65–66
as objects, 67
strings, 67–70

DataAdapter class
filling a DataSet with, 334
using FillSchema, 337

database stored procedures. See stored
procedures

database transactions, 331–332
databases. See ADO.NET
DataGridView control, 350–351
DataReader class

vs. disconnected access, 317
ListView example, 324–325
reading records, 322–324

DataRelation object, 338–339
DataRow class, 335
DataRowState enumeration, 341,

343–344
DataSet class. See also ADO.NET

creating by hand, 347
data binding, 350–352
deleting records, 336
disconnected use, 333
filling with a DataAdapter, 334
GetChanges method, 347
inserting records, 336–337
with multiple tables, 338
object model, 335
ReadXml method, 348
with relations, 338–339

bvbIX_03.fm Page 478 Tuesday, April 11, 2006 11:24 AM

INDEX 479

retrieving schema information with
a DataAdapter, 337

rows collection, 335
RowUpdated event, 344–345
storing in an XML file, 348–349
updating the data source, 341–344
updating with multiple tables,

346–347
WriteXml method, 348

DataSource control property, 350
DataTable class, 335
date and time arithmetic, 71
DateTime class, 71
debug assertions, 267–268
Debug class

Assert method, 267–268
WriteLine method, 268

Debug window, 268
debugging

custom exception settings, 261
seeing variable contents, 248,

252–253
single-step execution, 247–249
with threads, 380
tools, 247–253
with web services, 444–445
windows

Autos, Locals, and Watch,
252–253

Breakpoints, 250–251
Immediate, 253
Threads, 380

delegates
described, 84–86
MethodInvoker, 373

delegation, 189
DeleteCommand, DataAdapter property, 353
dependency information, 217–218
dependent files, in setup, 465
Deserialize(), BinaryFormatter

method, 291
destructors, 152
deterministic finalization, 152–153
dialog windows

custom, 121–123
PageSetupDialog, 299
PrintDialog, 298–299
PrintPreviewDialog, 299–300

DialogResult enumeration, 122
Dictionary class, 209

dictionary collection, 204, 209
directory browser, 287–288
DirectoryInfo class, 286
disassembler, 215–218
Dispose() method

described, 154
using IDisposable, 201

.dll files. See assemblies
DLL Hell, 9
docking

basic, 94–95
with dock padding, 95

Document Object Model (DOM), 309
document view applications. See MDI
DoWork, BackgroundWorker event, 361–362
DrawImage method, for printing, 298
dynamic control creation, 117–119
dynamic event hookup. See AddHandler

statement

E
e event argument, 101
edit-and-continue, 240
embedded resources, 233–237
EnableViewState, web control

property, 403
encapsualtion

described, 175
with exceptions, 262
violations with user interface,

134, 166
EndsWith(), String method, 69
enumerations

bitwise combination, 285–286
described, 159–161
with file attributes, 285–286
using specific numbers with,

162–163
Error List window, 244
ErrorProvider, 133
errors

at compile time, 243–244
in the IDE, 242–243
preventing, 242
at runtime, 254–255
types of, 241

event arguments, custom, 157–158
EventArgs class, 157–159
EventInfo class, 221–223

bvbIX_03.fm Page 479 Tuesday, April 11, 2006 11:24 AM

480 INDEX

events
advisory about thread change, 373
connecting handlers

dynamically, 119
handlers, 100–103
handling for controls, 100–103
handling multiple, 102–103
raising your own, 155–159
standard arguments, 101–102
tracking mouse movement, 102
in web applications, 398–400

Exception class, 257–259
exception handling

described, 255–256
with different types, 260
vs. On Error Goto, 257

exception objects, custom, 262–264
exceptions

debugging settings, 261
deriving your own, 262–264
filtering by condition, 261–262
filtering by type, 260
inner, 259–260
StackTrace property, 258
types of, 261

.exe files. See assemblies
ExecuteNonQuery(), Command method, 326
ExecuteReader(), Command method, 323
Exit(), Application method, 108
extender providers, 132–133
extern statements, in manifest, 217–218

F

fast-forward database access, 317
file access. See also serialization; XML

with My object, 273–274
reading/writing binary files,

276–279
reading/writing text files, 275–276
Visual Basic 6 style, 279–280

file and directory relationships,
286–287

file attributes, 285–286
file properties, for assemblies, 218–220
file system designer, in setup, 464–466
file types, custom, registering in setup,

467–468
FileGet statement, 279
FileInfo class, 283–284

FileMode enumeration, 275, 283
FileOpen() statement, 279
FilePut() statement, 279
files

attributes, 285–286
compression, 281–283
copying/deleting/moving, 284
making setups conditional on,

473–474
monitoring for change events,

238–240
retrieving information about,

288–290
FileStream class, 275
FileSystemWatcher class, 288–290
Fill(), DataAdapter method, 334
FillSchema(), DataAdapter method, 337
filtering exceptions, 260–262
flow layout

in web forms, 395
in Windows forms, 99–100

FlowLayoutPanel, 99–100
FontViewer setup, 474
For Each, with arrays, 72
form interaction, 120–121
forms

AcceptButton and CancelButton, 103
anchoring, 92–94
binary information in, 116
as classes, 104
dialog, 121–123
docking, 94–95
dock padding, 95
generated code, 115–116
inheritance, 104, 190–192
interaction between, 120–121
limiting size, 96
MDI, 123–125
modal and modeless, 107–108
opacity, 110
owned, 123
resizing, 92–96
saving size to registry, 302–303
scrolling, 96
showing, 104–106
splitting, 97–99
transparency, 111
using with My object, 106–107
in Visual Basic 6, 112–113
visual inheritance, 190–192

bvbIX_03.fm Page 480 Tuesday, April 11, 2006 11:24 AM

INDEX 481

fragile classes with inheritance, 189
.frm file, 112
FromDays(), TimeSpan method, 71
.frx file, 112
functions. See methods

G
GAC. See Global Assembly Cache (GAC)
garbage collection, 152–154
GC object, 154
GDI+, 298
generated code, Windows Form

Designer, 113–116
generic collections, 207–209
generics, 208
GetUpperBound() and GetLowerBound(),

Array methods, 71
Global Assembly Cache (GAC)

configuration tool, 230–231
described, 226
directory structure of, 228
installing shared assemblies,

228–230
versioning, 227
with Windows Explorer plug-in, 227

global unique identifier (GUID), 214
GZipStream, 281–283

H
Handles keyword, 102
Hashtable class, 207
help

context-sensitive, 16, 133
linking to an application, 133

HelpProvider, 133
hidden code regions, 31–32
hidden input control, in ASP.NET, 403
hidden project files, 116, 442–443
hidden proxy class, 442–443
Hide(), Form method, 120–121
hit counts, using with breakpoints, 251
HKEY_CURRENT_USER, use of, 302
HKEY_LOCAL_MACHINE, use of, 302
HTML

ASP.NET output, 394, 400–401
in data binding, 416

HTTP
with ASP.NET, 419
with web services, 427

HTTP GET, web service invocation, 438
HttpCookie class, 414
HttpWebRequest class, 281
HyperLink web control, 408

I

ICloneable, 198–201
IComparable, 202
IDE. See Visual Studio
IDisposable, 201–202
IEnumerable, with arrays, 72
IIS. See Internet Information

Services (IIS)
IL (Microsoft Intermediate

Language), 13
IL Disassembler (ILDasm.exe),

215–216
images, as embedded resources,

233–237
importing namespaces

with Imports statement, 55–56,
project-wide, 56–57

Imports statement, 55–57
IndexOf()

Array method, 73
String method, 69

inetpub directory, 420–421
inheritance

assessment of value, 189
with collections, 208
described, 177–178
effect on constructors, 180–182
with event arguments, 157
with exceptions, 263–264
with forms, 104, 188
vs. interfaces, 195
multiple, 188
MustOverride and MustInherit

members, 186–187
overriding members, 183–185
with the Person class, 178–180
protected members, 182–183
subclassing, 189–193
with web pages, 413–414

initializing variables, 66–67
inner exceptions, 259–260
InnerException, Exception property, 259
input control, for viewstate, 403
Input statement, 279

bvbIX_03.fm Page 481 Tuesday, April 11, 2006 11:24 AM

482 INDEX

Insert(), String method, 69
InsertCommand, DataAdapter property, 353
instantiating objects, 141–143
Integer, MaxValue property, 245
Integer data type, change from Visual

Basic 6, 65–66
IntelliSense

with enumerations, 161
with errors, 243
with inherited members, 178–179
with interfaces, 194–195
with multiple constructors, 151
with String methods, 68

interface-based programming,
196–197

interfaces
cloneable objects with, 198–201
described, 194–197
disposable objects with, 201–202
vs. inheritance, 195
versioning with, 197

interfaces in .NET
ICloneable, 198–201
IComparable, 202
IDisposable, 201–202
IEnumerable, 72

Internet
ASP.NET applications. See ASP.NET
reading pages from, 280–281

Internet Explorer test page, 434–436
Internet Information Services (IIS)

described, 419
setup, 419–420
virtual directories, 420–423

InvalidatePreview(), PrintPreview
method, 301

invisible controls in component tray,
89–90

Invoke(), Control method, 289, 373–374
Is keyword, 143
iterations, skipping with Continue,

78–79

J
Join

String method, 69
Thread method, 376

K
KeyPress, TextBox event, 192–193,

266, 400
keys

adding to registry in setup, 466–467
for assemblies in GAC, 230
in collections, 203–204
in the Windows registry, 301–302

L
language integration, 12–13
LastIndexOf(), String method, 69
launch conditions, in setup, 473–474
legacy code. See Component Object

Model (COM); Visual Basic 6
Length, String property, 69
line height, calculating in printout,

295–296
line numbers in IDE, 246
LineInput statement, 247
ListBox control designer, 90–91
ListView control, example with

database, 324–325
Load, Page event, 404
localhost alias, 419
Locals window, 252
localstart.asp file, 419
locking

controls, 91
shared resources, 384–385
web application state collection, 413

logging errors, 268–269
loop, skipping iterations, 78–79
loopback alias, 419
loose coupling, 175–176

M
Macro Explorer, 38–39
macros

events, 40–41
IDE, 38–39
recording, 37–38
temporary, 39

managed code, 11
margins, calculating in printout,

295, 297

bvbIX_03.fm Page 482 Tuesday, April 11, 2006 11:24 AM

INDEX 483

Math class, 76
MaximumSize, Form property, 96
MaxValue, Integer property, 245
MDI forms, 123–125
MdiChildren, Form property, 124
MdiParent, Form property, 124, 300
Me keyword, 116, 205, 252
MemberwiseClone() method, 198
menu, 126
MenuStrip, 126
metadata, 15, 213, 216–220
MethodInvoker delegate, 373
methods

ByVal and ByRef parameters, 80
calling, 79–80
default parameter values, 82
delegates, 84–86
described, 52, 79
optional parameters, 81
overloading, 82–84
overriding in derived classes, 183–185
Return keyword, 81
shared, 165–167

Microsoft Intermediate Language, 13
Microsoft .NET Framework

Configuration tool, 231
Microsoft.VisualBasic namespace, 59
Microsoft.Win32 namespace, 59, 302
MinimumSize, Form property, 96
modal forms, 107
modeless forms, 107
modules

block structure, 63
vs. shared members, 168

monitoring file system events, 288–290
mouse events, 102
MSIL (Microsoft Intermediate

Language), 13
Multi Document Interface, 123–125
multiple inheritance, 188
multithreading. See also threads

with the BackgroundWorker, 360–368
debugging, 280
design scalability, 311
interacting with user interface, 373
vs. single-threading, 357–359
synchronization, 381–385
thread management, 375–376
thread priorities, 377
thread starvation, 377–378

MustInherit keyword, 186

MustOverride keyword, 187
My object

core objects, 60–61
described, 60

My.Application, 61, 265
My.Computer, 61
My.Computer.FileSystem, 61, 273–274
My.Forms, 61, 106–107
My.Resources, 61, 235–236
My.Settings, 61, 321
My.User, 61
My.WebServices, 61, 447
MyBase keyword, 181

N
name collision, prevention in GAC, 228
Namespace keyword, 64
namespaces

aliases, 57
described, 49–51
importing, 55–57
project-wide imports, 56–57
setting the root namespace for your

projects, 64
useful ones in .NET, 57–59
XML namespaces in web services, 432

.NET class library. See class library

.NET Framework
Configuration tool, 231
overview, 10–15

NetworkAvailabilityChanged, Application
event, 109

New keyword, 67, 141
NewRow(), DataTable method, 336
nodes

TreeView. See TreeView
XML. See XML

nondeterministic finalization, 152
NonSerialized attribute, 292
Northwind database, 314
Nothing keyword, releasing an object

with, 142
NotifyIcon control, 129–130
Now, DateTime property, 71
null reference

with conversions, 186
dealing with using AndAlso and

OrElse, 78
error, 144

NullReferenceException, 144

bvbIX_03.fm Page 483 Tuesday, April 11, 2006 11:24 AM

484 INDEX

O
obfuscation, 217
object. See also classes

assignment, 143
cleanup, 154
comparison, 143–144
death, 153
equality, 142–143
serialization, 290–292

Object Browser, 171
object-oriented programming (OOP)

described, 137
principles of, 174–177
vs. traditional structured

programming, 137–138
OLE DB, 317
On Error Goto vs. exception

handling, 257
one-to-many relationship, with

DataSets, 338–339
OnKeyPress(), TextBox method, 192–193
OOP. See object-oriented

programming (OOP)
opacity, of forms, 110
Open(), Connection method, 315
OpenRead(), FileInfo method, 284
OpenText(), FileInfo method, 284
operations

changes from Visual Basic 6, 75–79
conversion, 75–76
initializers, 72
math, 75–76
math with dates and times, 71
random numbers, 76

Option Explict

described, 244
enabling, 246

Option Strict

described, 244–245
enabling, 246

optional parameters, in methods, 81
OrElse operator, 78
output parameters, reading from

stored procedures, 330
Output window, 268
overloading

constructors, 150–151
methods, 82–84

overriding members, 183–185
owned forms, 123

P
PadLeft() and PadRight(), String

methods, 70
Page class, 413–414
Page.Load event, in ASP.NET, 404
PageSetupDialog class, 299
Panel control, scrolling, 96–97
parameter array, 81
parameterized command, database, 330
parameters. See methods
parentheses, in methods, 79–80
parent-to-child relation, modeling in a

DataSet, 338–339
partial classes, 144–145
Partial keyword, 144–145
pictures, as embedded resources,

233–237
policy files, 230–232
postback, 399–400
preemptive multitasking, 357
presentation tier, in three-tier

design, 210
PrintDialog class, 298–299
PrintDocument class, 245–247
printing

from an array, 294–296
pictures, 298
preview, 300–301
settings, 298–299
wrapped text, 296–297

PrintPage event of PrintDocument
class, 295

PrintPreview control, 300–301
PrintPreviewDialog, 299–300
priorities, thread, 377
private assemblies, described, 214–215.

See also assemblies
procedures. See methods
processes, 356–357
ProgressChanged(), BackgroundWorker

event, 361, 367
projects

Console, 41–44
creating, 24–25
directory, 29, 43–44
organization of, 62–63
output, adding to setup, 465
properties, 44–46

changing namespaces, 64
described, 44–46
project-wide imports, 56–57
web service debugging, 444–445

bvbIX_03.fm Page 484 Tuesday, April 11, 2006 11:24 AM

INDEX 485

setup, 461–463
temporary, 24

properties
described, 145–148
ReadOnly, 147–148
shared, 167

Properties window, 30
protected members, 182–183
providers, extender, 132–133
proxy class, with web services

analyzing code, 442–443
described, 439
generating, 440–442
using, 443–444

publications, ClickOnce, 454–455

Q
query string, 409–411
Queue class, 207, 209

R

RaiseEvent statement, 155
Random class, 76
random numbers, 76
RDO (Remote Data Objects), 311
Read()

DataReader method, 323
XmlNodeReader method, 307

ReadAllBytes(), My.Computer.FileSystem
method, 274

ReadAllText(), My.Computer.FileSystem
method, 274

ReadLine(), StreamReader method, 276
ReadOnly properties, 147–148
ReadString(), BinaryReader method, 278
recursive functions, example with files,

287–288
redirecting between web pages, 408–409
reference types

advisory about using with ByVal, 80
comparison with, 143–144
equality testing with, 142–143

references
to custom assemblies, 224–225
to .NET assemblies, 53–53
to other projects, 224
to web services, 440–442

reflection, 221–223
#Region, for collapsing code, 31

registering file types in setup, 467–468
registry, 301–303
relational data, 313–314
Relations, DataSet property, 338–339
Remote Data Objects (RDO), 311
Remove(), String method, 69
Replace(), String method, 69
ReportProgresss(), BackgroundWorker

method, 366
Request.QueryString property, 409
resizable forms, 92–96
resources

adding to a project, 233–234
described, 233
using, 235–236

Response.Redirect() method, 408–409
.resx file, 116
Return keyword, 81
Rows, DataTable property, 335
RowUpdated event, 344–345
run-edit-and-continue pattern, 240
runtime, errors, 254–255
Run To Cursor, debugging command, 249
RunWorkerAsync(), BackgroundWorker

method, 362
RunWorkerCompleted, BackgroundWorker

event, 361, 365

S

scope changes from Visual Basic 6, 76
scrolling in forms and panels, 96–97
searching arrays, 73
security

with the CLR, 11
with SQL Server, 319

Seek() method for binary files, 279
SelectCommand, DataAdapter

property, 343
Serializable attribute, 290
serialization

with binary storage, 291–292
for cloning, 292–293
described, 290
partial, 292

Serialize(), BinaryFormatter method, 291
Session object, 412
session state, 411–413
Session.Abandon() method, 411
Set Next Statement, debugging

command, 249–250

bvbIX_03.fm Page 485 Tuesday, April 11, 2006 11:24 AM

486 INDEX

settings, retrieving with My, 321
setup designers

custom actions, 472–473
described, 463–464
file system, 464–465
file type, 467–468
launch conditions, 473–474
registry, 466–467
user interface, 469–472

setup projects. See also ClickOnce;
Global Assembly Cache
(GAC); setup designers

adding files, 466
adding project outputs, 464–465
adding shortcuts, 466
basic options, 463–464
choice windows, 470–471
conditions, 471–472
configuring registry, 466–467
custom actions, 472–473
described, 461–463
launch conditions, 473–474
.NET redistributable, 453
predefined windows, 470
registering file types, 467–468
user interface, 469

shared assemblies. See also assemblies;
Global Assembly Cache (GAC)

binding to new versions, 231–233
creating, 228–229
creating policy files for, 230–233
installing, 230
signing, 230

shared members
described, 165
vs. modules, 168
shared methods, 165–167
shared properties, 167

short-circuit logic, 77–78
shortcut, adding to setup, 466
Show(), Form method, 120–121
Show Next Statement, debugging

command, 250
Shutdown, Application event, 109
shutdown mode, 108
side-by-side execution, 214–215
signing assemblies, 229–230
single threading, vs. multithreading,

357–359
single-step execution, 249
Sleep(), Thread method, 376

.sln file, 43, 62
sn.exe utility, 230
snippets, code, 35–37
SOAP

proxy class, 439
in web services, 438

Solution Explorer window, 27
solution files, 43
SortedList class, 207, 209
sorting arrays

with basic data types, 73
with objects, 202–203

source event argument, 101
Split(), String method, 69
SplitContainer class, 97–99
splitting windows

in a form, 97–99
in the IDE, 32–33

SQL
dynamically generated, 327
injection attack, preventing,

327–328
Select statements, 321
Update statements, 327
Where clause, 321

SQL Server. See also ADO.NET
authentication, 319
connecting to ADO.NET with, 317
Enterprise Manager, 328

SQL Server 2005 Express Edition,
314–315

SqlClient, 316
SqlCommand. See Command class
SqlConnection. See Connection class
SqlDataAdapter. See DataAdapter class
SqlDataReader. See DataReader class
SqlDataSource class, 417–418
Stack class, 207, 209
StackTrace, Exception property, 258
Start Page, 22
Start(), Thread method, 370–371
StartsWith(), String method, 69
Startup, Application event, 108
startup form, 108
StartupNextInstance, Application

event, 109
state management

overview, 414–415
session state, 411–413
view state, 403

bvbIX_03.fm Page 486 Tuesday, April 11, 2006 11:24 AM

INDEX 487

StatusStrip, 127
Step Into/Over/Out, debugging

commands, 249
stored procedures, 328–330
StreamReader class, 275–276
streams

compression, 281–283
described, 280
for files, 275
serialization with, 290–292
for the Web, 280–281

StreamWriter class, 275–276
StringBuilder, 70–71
string manipulation, 67–68
strips, toolbar, 126–129
strong typing. See Option Strict
structured exception handling, 255–264
structures, 138–140
subclassing

with controls, 192–193
described, 189
with files, 309–310
with forms, 190–193

Substring(), String method, 69
.suo file, 43
Suspend(), Thread method, 375
synchronization

problems without, 382–385
SyncLock, 384–385

SyncLock statement, 384–385
System namespace, 51, 58
system tray icon, creating, 129
system types, 65–66
System.Collections namespace, 58,

207, 209
System.Data, 58, 316
System.Drawing, 58, 297
System.Drawing.Printing, 58, 294
System.IO, 58, 273
System.Net, 58, 281
System.Reflection, 58, 221
System.Runtime.Serialization, 59, 291
System.Threading, 59, 369
System.Web, 59, 413
System.Web.Services, 428
System.Windows.Forms, 50, 59, 90, 104
System.Xml, 59, 306

T
tabbed IDE windows, 25–26
TableLayoutPanel, 100

Tabular Data Stream (TDS) with SQL
Server, 316

Tag control property, for storing
data, 340

Task List window, 34–35
TDS (Tabular Data Stream) with SQL

Server, 316
temporary macro, 39
text files, reading or writing, 275–276
TextBox control, subclassing, 192–193
TextChanged, TextBox event, 101, 400
threads. See also multithreading

Abort method, 375
background, 370
debugging, 380
interacting with user interface, 373
IsBackground property, 370
Join method, 376
management, 375–376
priorities, 377
Resume method, 375–376
Sleep method, 376
Start method, 370–371
starvation, 377–378
state diagram, 377
Suspend method, 375–376
synchronization, 381–385
vs. timers, 359–360

three-tier design, 209–210
Throw statement, 262
timers, vs. threads, 359–360
TimeSpan class, 71
ToLower(), String method, 69
toolbox

customizing, 30
described, 28–29

ToolStrip, 126–129
ToolStripContainer, 127
ToolTipProvider, 132
ToUpper(), String method, 69
Trace class, 269
tracing, 268–270
transactions, database, 331–332
TransparencyKey, 111
transparent forms, 110–111
tray icon, creating, 129–130
TreeView

example with files, 287–288
example with reflection, 221–222
example with relational data,

338–340

bvbIX_03.fm Page 487 Tuesday, April 11, 2006 11:24 AM

488 INDEX

Trim(), String method, 70
Try/Catch blocks, 255–256
types. See also classes; namespaces

overview, 169–170
reflecting on, 221–222

U
UnhandledException, Application event,

109, 264–265
Unload, Page event, 404
Update(), DataAdapter method, 343
UpdateCommand, DataAdapter property, 353
updating a data source in ADO.NET

concurrency problems, 344–345
direct updates, 317, 325–327
disconnected updates, 333
an example, 341–344
with multiple tables, 346–347
with parameterized commands,

330–331
with transactions, 331–332

user interface, setup designer, 469–471
Using statement, 201–202

V

value types
compared with reference types,

143–144
described, 74
structures, 138–139

variables. See also data types; operations
converting, 75–76
declaring multiple, 66
initializing, 66–67
scope changes, 76–77

.vb file, 63

.vbproj file, 43, 62
version policy, 231–232
versioning

with assemblies, 219–220
auto-incrementing, 220
in GAC, 227
in manifest, 217

view state
encryption, 408
storing custom information,

407–408
with web controls, 403

ViewState collection, property of Page,
407–408

virtual directories
creating with wizard, 421–422
described, 420
with web services, 428–430

Visual Basic 6
database access, 311–312
file access, 279–280
forms, 112–113
and migration, 2, 8
problems with, 8–10
project files, 62
web applications, 388

visual inheritance, 190–192
Visual Studio

debugging in, 247–253
macros, 37–41
setup designers, 463
setup projects, 461–463
Start Page, 22–23
startup behavior, 23–24
web projects, 390–392
windows

automatic hiding, 28
Autos, 252
Breakpoints, 250–251
Class View, 170
code display, 31–32
component tray, 89–90
creating tab groups, 32–33
Debug, 268
docking and grouping, 26
Error List, 244
Immediate, 253
Locals, 252
Object Browser, 171
Output, 268
Properties, 30
Solution Explorer, 27–28
splitting code, 32–33
tabbed navigation, 25–26
Task List, 34–35
Threads, 380
Toolbox, 28–30
Watch, 252–253

Windows projects, 49

bvbIX_03.fm Page 488 Tuesday, April 11, 2006 11:24 AM

INDEX 489

W

Watch window, 252–253
weak typing. See Option Strict
web applications. See also ASP.NET;

web forms
application state, 413
ASP.NET file types, 392
controls, 394–395, 405
creating a website, 390–391
page life cycle, 403–404
query string, 409–411
session state, 411–412
view state, 403, 407–408
virtual directories, 420–422

web development outline, 390
web forms

AutoPostback, 400
controls, 394–395, 405

adding, 395
data binding, 415–418
event handlers, 398–399
flow layout, 395
HTML output, 402
Page.Load event advisory, 404
processing cycle, 403–404
transferring information between,

408–411
view state, 403, 407–408

web pages, reading, 280–281
web references, 440–442
web services

adding a reference, 440–442
calling, 443–444
calling asynchronously, 446–449
creating, 430–432
debugging, 444–445
described, 426–428
vs. objects, 428
SOAP, 438
test page, 434–436
using with My object, 447
virtual directories for, 428–430
WSDL, 436–437

Web Services Description Language
(WSDL), 436–437

web.config file
automatically adding, 397
compilation settings, 397
described, 392
session state settings, 411

view state encryption settings, 408
WebMethod attribute

described, 432
using to configure method

descriptions, 432
using to configure the namespace,

432–433
WebResponse class, 281
WebService class, 428
windows

debugging. See debugging windows
IDE. See Visual Studio windows
splitting windows

in a form, 97–99
in the IDE, 32–33

Windows Form Designer generated
code, 113–116

Windows forms. See forms
Windows registry, 301–303
WithEvents keyword, 118,155
WorkerReportsProgress, BackgroundWorker

property, 366
WorkerSupportsCancellation,

BackgroundWorker property, 368
WrapContents, FlowLayoutPanel

property, 99
wrapped printing, 296–297
Write(), BinaryWriter method, 276
WriteAllBytes(), My.Computer.FileSystem

method, 274
WriteAllText(), My.Computer.FileSystem

method, 274
WriteLine(), StreamWriter method, 268
WSDL (Web Services Description

Language), 436–437
wwwroot directory, 420

X
XML

attributes, 305
collapsed whitespace in, 304
comments, 305–306
described, 304–305
DOM, 309
elements, 304
vs. HTML, 304
reading from a file, 307–209
storing DataSets, 348
in web services, 436
writing as a file, 306–307

bvbIX_03.fm Page 489 Tuesday, April 11, 2006 11:24 AM

490 INDEX

XML namespaces, in web services,
432–433

XML nodes, 307–308
XmlNodeReader class, 307
XmlTextWriter class, 306
XSD schemas, for a DataSet, 349

Z
ZIP compression in files, 281–283
Zoom, PrintPreviewDialog property, 301

bvbIX_03.fm Page 490 Tuesday, April 11, 2006 11:24 AM

	THE BOOK OF VISUAL BASIC 2005
	Content
	Introduction
	Chapter 1: The .NET Revolution
	Chapter 2: The Design Environment
	Chapter 3: VB 2005 Basics
	Chapter 4: Windows Forms
	Chapter 5: Object-Oriented Programming
	Chapter 6: Mastering Objects
	Chapter 7: Assemblies and Components
	Chapter 8: Bug Proofing
	Chapter 9: Dealing with Data: Files, Printing, and XML
	Chapter 10: Databases and ADO.NET
	Chapter 11: Threading
	Chapter 12: Web Forms and ASP.NET
	Chapter 13: Web Services
	Chapter 14: Setup and Deployment
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

